xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 8e74a48d)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	if (prg->dist < 4)
328 		dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  *	cfg_soft_wwnn, cfg_soft_wwpn
344  * @vport: pointer to lpfc vport data structure.
345  *
346  *
347  * Return codes
348  *   None.
349  **/
350 void
351 lpfc_update_vport_wwn(struct lpfc_vport *vport)
352 {
353 	uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
354 	u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
355 
356 	/* If the soft name exists then update it using the service params */
357 	if (vport->phba->cfg_soft_wwnn)
358 		u64_to_wwn(vport->phba->cfg_soft_wwnn,
359 			   vport->fc_sparam.nodeName.u.wwn);
360 	if (vport->phba->cfg_soft_wwpn)
361 		u64_to_wwn(vport->phba->cfg_soft_wwpn,
362 			   vport->fc_sparam.portName.u.wwn);
363 
364 	/*
365 	 * If the name is empty or there exists a soft name
366 	 * then copy the service params name, otherwise use the fc name
367 	 */
368 	if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
369 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
370 			sizeof(struct lpfc_name));
371 	else
372 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
373 			sizeof(struct lpfc_name));
374 
375 	/*
376 	 * If the port name has changed, then set the Param changes flag
377 	 * to unreg the login
378 	 */
379 	if (vport->fc_portname.u.wwn[0] != 0 &&
380 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
381 			sizeof(struct lpfc_name)))
382 		vport->vport_flag |= FAWWPN_PARAM_CHG;
383 
384 	if (vport->fc_portname.u.wwn[0] == 0 ||
385 	    vport->phba->cfg_soft_wwpn ||
386 	    (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
387 	    vport->vport_flag & FAWWPN_SET) {
388 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
389 			sizeof(struct lpfc_name));
390 		vport->vport_flag &= ~FAWWPN_SET;
391 		if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
392 			vport->vport_flag |= FAWWPN_SET;
393 	}
394 	else
395 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
396 			sizeof(struct lpfc_name));
397 }
398 
399 /**
400  * lpfc_config_port_post - Perform lpfc initialization after config port
401  * @phba: pointer to lpfc hba data structure.
402  *
403  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
404  * command call. It performs all internal resource and state setups on the
405  * port: post IOCB buffers, enable appropriate host interrupt attentions,
406  * ELS ring timers, etc.
407  *
408  * Return codes
409  *   0 - success.
410  *   Any other value - error.
411  **/
412 int
413 lpfc_config_port_post(struct lpfc_hba *phba)
414 {
415 	struct lpfc_vport *vport = phba->pport;
416 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
417 	LPFC_MBOXQ_t *pmb;
418 	MAILBOX_t *mb;
419 	struct lpfc_dmabuf *mp;
420 	struct lpfc_sli *psli = &phba->sli;
421 	uint32_t status, timeout;
422 	int i, j;
423 	int rc;
424 
425 	spin_lock_irq(&phba->hbalock);
426 	/*
427 	 * If the Config port completed correctly the HBA is not
428 	 * over heated any more.
429 	 */
430 	if (phba->over_temp_state == HBA_OVER_TEMP)
431 		phba->over_temp_state = HBA_NORMAL_TEMP;
432 	spin_unlock_irq(&phba->hbalock);
433 
434 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
435 	if (!pmb) {
436 		phba->link_state = LPFC_HBA_ERROR;
437 		return -ENOMEM;
438 	}
439 	mb = &pmb->u.mb;
440 
441 	/* Get login parameters for NID.  */
442 	rc = lpfc_read_sparam(phba, pmb, 0);
443 	if (rc) {
444 		mempool_free(pmb, phba->mbox_mem_pool);
445 		return -ENOMEM;
446 	}
447 
448 	pmb->vport = vport;
449 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
450 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
451 				"0448 Adapter failed init, mbxCmd x%x "
452 				"READ_SPARM mbxStatus x%x\n",
453 				mb->mbxCommand, mb->mbxStatus);
454 		phba->link_state = LPFC_HBA_ERROR;
455 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
456 		mempool_free(pmb, phba->mbox_mem_pool);
457 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
458 		kfree(mp);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
465 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
466 	kfree(mp);
467 	pmb->ctx_buf = NULL;
468 	lpfc_update_vport_wwn(vport);
469 
470 	/* Update the fc_host data structures with new wwn. */
471 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
472 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
473 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
474 
475 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
476 	/* This should be consolidated into parse_vpd ? - mr */
477 	if (phba->SerialNumber[0] == 0) {
478 		uint8_t *outptr;
479 
480 		outptr = &vport->fc_nodename.u.s.IEEE[0];
481 		for (i = 0; i < 12; i++) {
482 			status = *outptr++;
483 			j = ((status & 0xf0) >> 4);
484 			if (j <= 9)
485 				phba->SerialNumber[i] =
486 				    (char)((uint8_t) 0x30 + (uint8_t) j);
487 			else
488 				phba->SerialNumber[i] =
489 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
490 			i++;
491 			j = (status & 0xf);
492 			if (j <= 9)
493 				phba->SerialNumber[i] =
494 				    (char)((uint8_t) 0x30 + (uint8_t) j);
495 			else
496 				phba->SerialNumber[i] =
497 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
498 		}
499 	}
500 
501 	lpfc_read_config(phba, pmb);
502 	pmb->vport = vport;
503 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
504 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
505 				"0453 Adapter failed to init, mbxCmd x%x "
506 				"READ_CONFIG, mbxStatus x%x\n",
507 				mb->mbxCommand, mb->mbxStatus);
508 		phba->link_state = LPFC_HBA_ERROR;
509 		mempool_free( pmb, phba->mbox_mem_pool);
510 		return -EIO;
511 	}
512 
513 	/* Check if the port is disabled */
514 	lpfc_sli_read_link_ste(phba);
515 
516 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
517 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
518 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
519 				"3359 HBA queue depth changed from %d to %d\n",
520 				phba->cfg_hba_queue_depth,
521 				mb->un.varRdConfig.max_xri);
522 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
523 	}
524 
525 	phba->lmt = mb->un.varRdConfig.lmt;
526 
527 	/* Get the default values for Model Name and Description */
528 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
529 
530 	phba->link_state = LPFC_LINK_DOWN;
531 
532 	/* Only process IOCBs on ELS ring till hba_state is READY */
533 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
534 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
535 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
536 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
537 
538 	/* Post receive buffers for desired rings */
539 	if (phba->sli_rev != 3)
540 		lpfc_post_rcv_buf(phba);
541 
542 	/*
543 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
544 	 */
545 	if (phba->intr_type == MSIX) {
546 		rc = lpfc_config_msi(phba, pmb);
547 		if (rc) {
548 			mempool_free(pmb, phba->mbox_mem_pool);
549 			return -EIO;
550 		}
551 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
552 		if (rc != MBX_SUCCESS) {
553 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
554 					"0352 Config MSI mailbox command "
555 					"failed, mbxCmd x%x, mbxStatus x%x\n",
556 					pmb->u.mb.mbxCommand,
557 					pmb->u.mb.mbxStatus);
558 			mempool_free(pmb, phba->mbox_mem_pool);
559 			return -EIO;
560 		}
561 	}
562 
563 	spin_lock_irq(&phba->hbalock);
564 	/* Initialize ERATT handling flag */
565 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
566 
567 	/* Enable appropriate host interrupts */
568 	if (lpfc_readl(phba->HCregaddr, &status)) {
569 		spin_unlock_irq(&phba->hbalock);
570 		return -EIO;
571 	}
572 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
573 	if (psli->num_rings > 0)
574 		status |= HC_R0INT_ENA;
575 	if (psli->num_rings > 1)
576 		status |= HC_R1INT_ENA;
577 	if (psli->num_rings > 2)
578 		status |= HC_R2INT_ENA;
579 	if (psli->num_rings > 3)
580 		status |= HC_R3INT_ENA;
581 
582 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
583 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
584 		status &= ~(HC_R0INT_ENA);
585 
586 	writel(status, phba->HCregaddr);
587 	readl(phba->HCregaddr); /* flush */
588 	spin_unlock_irq(&phba->hbalock);
589 
590 	/* Set up ring-0 (ELS) timer */
591 	timeout = phba->fc_ratov * 2;
592 	mod_timer(&vport->els_tmofunc,
593 		  jiffies + msecs_to_jiffies(1000 * timeout));
594 	/* Set up heart beat (HB) timer */
595 	mod_timer(&phba->hb_tmofunc,
596 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
597 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
598 	phba->last_completion_time = jiffies;
599 	/* Set up error attention (ERATT) polling timer */
600 	mod_timer(&phba->eratt_poll,
601 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
602 
603 	if (phba->hba_flag & LINK_DISABLED) {
604 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
605 				"2598 Adapter Link is disabled.\n");
606 		lpfc_down_link(phba, pmb);
607 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
608 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
609 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
610 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
611 					"2599 Adapter failed to issue DOWN_LINK"
612 					" mbox command rc 0x%x\n", rc);
613 
614 			mempool_free(pmb, phba->mbox_mem_pool);
615 			return -EIO;
616 		}
617 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
618 		mempool_free(pmb, phba->mbox_mem_pool);
619 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
620 		if (rc)
621 			return rc;
622 	}
623 	/* MBOX buffer will be freed in mbox compl */
624 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
625 	if (!pmb) {
626 		phba->link_state = LPFC_HBA_ERROR;
627 		return -ENOMEM;
628 	}
629 
630 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
631 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
632 	pmb->vport = phba->pport;
633 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
634 
635 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
637 				"0456 Adapter failed to issue "
638 				"ASYNCEVT_ENABLE mbox status x%x\n",
639 				rc);
640 		mempool_free(pmb, phba->mbox_mem_pool);
641 	}
642 
643 	/* Get Option rom version */
644 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
645 	if (!pmb) {
646 		phba->link_state = LPFC_HBA_ERROR;
647 		return -ENOMEM;
648 	}
649 
650 	lpfc_dump_wakeup_param(phba, pmb);
651 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
652 	pmb->vport = phba->pport;
653 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
654 
655 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
656 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
657 				"0435 Adapter failed "
658 				"to get Option ROM version status x%x\n", rc);
659 		mempool_free(pmb, phba->mbox_mem_pool);
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * lpfc_sli4_refresh_params - update driver copy of params.
667  * @phba: Pointer to HBA context object.
668  *
669  * This is called to refresh driver copy of dynamic fields from the
670  * common_get_sli4_parameters descriptor.
671  **/
672 int
673 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
674 {
675 	LPFC_MBOXQ_t *mboxq;
676 	struct lpfc_mqe *mqe;
677 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
678 	int length, rc;
679 
680 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
681 	if (!mboxq)
682 		return -ENOMEM;
683 
684 	mqe = &mboxq->u.mqe;
685 	/* Read the port's SLI4 Config Parameters */
686 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
687 		  sizeof(struct lpfc_sli4_cfg_mhdr));
688 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
689 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
690 			 length, LPFC_SLI4_MBX_EMBED);
691 
692 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
693 	if (unlikely(rc)) {
694 		mempool_free(mboxq, phba->mbox_mem_pool);
695 		return rc;
696 	}
697 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
698 	phba->sli4_hba.pc_sli4_params.mi_ver =
699 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
700 	phba->sli4_hba.pc_sli4_params.cmf =
701 			bf_get(cfg_cmf, mbx_sli4_parameters);
702 	phba->sli4_hba.pc_sli4_params.pls =
703 			bf_get(cfg_pvl, mbx_sli4_parameters);
704 
705 	mempool_free(mboxq, phba->mbox_mem_pool);
706 	return rc;
707 }
708 
709 /**
710  * lpfc_hba_init_link - Initialize the FC link
711  * @phba: pointer to lpfc hba data structure.
712  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
713  *
714  * This routine will issue the INIT_LINK mailbox command call.
715  * It is available to other drivers through the lpfc_hba data
716  * structure for use as a delayed link up mechanism with the
717  * module parameter lpfc_suppress_link_up.
718  *
719  * Return code
720  *		0 - success
721  *		Any other value - error
722  **/
723 static int
724 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
725 {
726 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
727 }
728 
729 /**
730  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
731  * @phba: pointer to lpfc hba data structure.
732  * @fc_topology: desired fc topology.
733  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
734  *
735  * This routine will issue the INIT_LINK mailbox command call.
736  * It is available to other drivers through the lpfc_hba data
737  * structure for use as a delayed link up mechanism with the
738  * module parameter lpfc_suppress_link_up.
739  *
740  * Return code
741  *              0 - success
742  *              Any other value - error
743  **/
744 int
745 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
746 			       uint32_t flag)
747 {
748 	struct lpfc_vport *vport = phba->pport;
749 	LPFC_MBOXQ_t *pmb;
750 	MAILBOX_t *mb;
751 	int rc;
752 
753 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
754 	if (!pmb) {
755 		phba->link_state = LPFC_HBA_ERROR;
756 		return -ENOMEM;
757 	}
758 	mb = &pmb->u.mb;
759 	pmb->vport = vport;
760 
761 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
762 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
763 	     !(phba->lmt & LMT_1Gb)) ||
764 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
765 	     !(phba->lmt & LMT_2Gb)) ||
766 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
767 	     !(phba->lmt & LMT_4Gb)) ||
768 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
769 	     !(phba->lmt & LMT_8Gb)) ||
770 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
771 	     !(phba->lmt & LMT_10Gb)) ||
772 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
773 	     !(phba->lmt & LMT_16Gb)) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
775 	     !(phba->lmt & LMT_32Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
777 	     !(phba->lmt & LMT_64Gb))) {
778 		/* Reset link speed to auto */
779 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
780 				"1302 Invalid speed for this board:%d "
781 				"Reset link speed to auto.\n",
782 				phba->cfg_link_speed);
783 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
784 	}
785 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
786 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
787 	if (phba->sli_rev < LPFC_SLI_REV4)
788 		lpfc_set_loopback_flag(phba);
789 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
790 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
791 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
792 				"0498 Adapter failed to init, mbxCmd x%x "
793 				"INIT_LINK, mbxStatus x%x\n",
794 				mb->mbxCommand, mb->mbxStatus);
795 		if (phba->sli_rev <= LPFC_SLI_REV3) {
796 			/* Clear all interrupt enable conditions */
797 			writel(0, phba->HCregaddr);
798 			readl(phba->HCregaddr); /* flush */
799 			/* Clear all pending interrupts */
800 			writel(0xffffffff, phba->HAregaddr);
801 			readl(phba->HAregaddr); /* flush */
802 		}
803 		phba->link_state = LPFC_HBA_ERROR;
804 		if (rc != MBX_BUSY || flag == MBX_POLL)
805 			mempool_free(pmb, phba->mbox_mem_pool);
806 		return -EIO;
807 	}
808 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
809 	if (flag == MBX_POLL)
810 		mempool_free(pmb, phba->mbox_mem_pool);
811 
812 	return 0;
813 }
814 
815 /**
816  * lpfc_hba_down_link - this routine downs the FC link
817  * @phba: pointer to lpfc hba data structure.
818  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
819  *
820  * This routine will issue the DOWN_LINK mailbox command call.
821  * It is available to other drivers through the lpfc_hba data
822  * structure for use to stop the link.
823  *
824  * Return code
825  *		0 - success
826  *		Any other value - error
827  **/
828 static int
829 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
830 {
831 	LPFC_MBOXQ_t *pmb;
832 	int rc;
833 
834 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
835 	if (!pmb) {
836 		phba->link_state = LPFC_HBA_ERROR;
837 		return -ENOMEM;
838 	}
839 
840 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
841 			"0491 Adapter Link is disabled.\n");
842 	lpfc_down_link(phba, pmb);
843 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
844 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
845 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
846 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
847 				"2522 Adapter failed to issue DOWN_LINK"
848 				" mbox command rc 0x%x\n", rc);
849 
850 		mempool_free(pmb, phba->mbox_mem_pool);
851 		return -EIO;
852 	}
853 	if (flag == MBX_POLL)
854 		mempool_free(pmb, phba->mbox_mem_pool);
855 
856 	return 0;
857 }
858 
859 /**
860  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
861  * @phba: pointer to lpfc HBA data structure.
862  *
863  * This routine will do LPFC uninitialization before the HBA is reset when
864  * bringing down the SLI Layer.
865  *
866  * Return codes
867  *   0 - success.
868  *   Any other value - error.
869  **/
870 int
871 lpfc_hba_down_prep(struct lpfc_hba *phba)
872 {
873 	struct lpfc_vport **vports;
874 	int i;
875 
876 	if (phba->sli_rev <= LPFC_SLI_REV3) {
877 		/* Disable interrupts */
878 		writel(0, phba->HCregaddr);
879 		readl(phba->HCregaddr); /* flush */
880 	}
881 
882 	if (phba->pport->load_flag & FC_UNLOADING)
883 		lpfc_cleanup_discovery_resources(phba->pport);
884 	else {
885 		vports = lpfc_create_vport_work_array(phba);
886 		if (vports != NULL)
887 			for (i = 0; i <= phba->max_vports &&
888 				vports[i] != NULL; i++)
889 				lpfc_cleanup_discovery_resources(vports[i]);
890 		lpfc_destroy_vport_work_array(phba, vports);
891 	}
892 	return 0;
893 }
894 
895 /**
896  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
897  * rspiocb which got deferred
898  *
899  * @phba: pointer to lpfc HBA data structure.
900  *
901  * This routine will cleanup completed slow path events after HBA is reset
902  * when bringing down the SLI Layer.
903  *
904  *
905  * Return codes
906  *   void.
907  **/
908 static void
909 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
910 {
911 	struct lpfc_iocbq *rspiocbq;
912 	struct hbq_dmabuf *dmabuf;
913 	struct lpfc_cq_event *cq_event;
914 
915 	spin_lock_irq(&phba->hbalock);
916 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
917 	spin_unlock_irq(&phba->hbalock);
918 
919 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
920 		/* Get the response iocb from the head of work queue */
921 		spin_lock_irq(&phba->hbalock);
922 		list_remove_head(&phba->sli4_hba.sp_queue_event,
923 				 cq_event, struct lpfc_cq_event, list);
924 		spin_unlock_irq(&phba->hbalock);
925 
926 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
927 		case CQE_CODE_COMPL_WQE:
928 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
929 						 cq_event);
930 			lpfc_sli_release_iocbq(phba, rspiocbq);
931 			break;
932 		case CQE_CODE_RECEIVE:
933 		case CQE_CODE_RECEIVE_V1:
934 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
935 					      cq_event);
936 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
937 		}
938 	}
939 }
940 
941 /**
942  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
943  * @phba: pointer to lpfc HBA data structure.
944  *
945  * This routine will cleanup posted ELS buffers after the HBA is reset
946  * when bringing down the SLI Layer.
947  *
948  *
949  * Return codes
950  *   void.
951  **/
952 static void
953 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
954 {
955 	struct lpfc_sli *psli = &phba->sli;
956 	struct lpfc_sli_ring *pring;
957 	struct lpfc_dmabuf *mp, *next_mp;
958 	LIST_HEAD(buflist);
959 	int count;
960 
961 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
962 		lpfc_sli_hbqbuf_free_all(phba);
963 	else {
964 		/* Cleanup preposted buffers on the ELS ring */
965 		pring = &psli->sli3_ring[LPFC_ELS_RING];
966 		spin_lock_irq(&phba->hbalock);
967 		list_splice_init(&pring->postbufq, &buflist);
968 		spin_unlock_irq(&phba->hbalock);
969 
970 		count = 0;
971 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
972 			list_del(&mp->list);
973 			count++;
974 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
975 			kfree(mp);
976 		}
977 
978 		spin_lock_irq(&phba->hbalock);
979 		pring->postbufq_cnt -= count;
980 		spin_unlock_irq(&phba->hbalock);
981 	}
982 }
983 
984 /**
985  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
986  * @phba: pointer to lpfc HBA data structure.
987  *
988  * This routine will cleanup the txcmplq after the HBA is reset when bringing
989  * down the SLI Layer.
990  *
991  * Return codes
992  *   void
993  **/
994 static void
995 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
996 {
997 	struct lpfc_sli *psli = &phba->sli;
998 	struct lpfc_queue *qp = NULL;
999 	struct lpfc_sli_ring *pring;
1000 	LIST_HEAD(completions);
1001 	int i;
1002 	struct lpfc_iocbq *piocb, *next_iocb;
1003 
1004 	if (phba->sli_rev != LPFC_SLI_REV4) {
1005 		for (i = 0; i < psli->num_rings; i++) {
1006 			pring = &psli->sli3_ring[i];
1007 			spin_lock_irq(&phba->hbalock);
1008 			/* At this point in time the HBA is either reset or DOA
1009 			 * Nothing should be on txcmplq as it will
1010 			 * NEVER complete.
1011 			 */
1012 			list_splice_init(&pring->txcmplq, &completions);
1013 			pring->txcmplq_cnt = 0;
1014 			spin_unlock_irq(&phba->hbalock);
1015 
1016 			lpfc_sli_abort_iocb_ring(phba, pring);
1017 		}
1018 		/* Cancel all the IOCBs from the completions list */
1019 		lpfc_sli_cancel_iocbs(phba, &completions,
1020 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1021 		return;
1022 	}
1023 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1024 		pring = qp->pring;
1025 		if (!pring)
1026 			continue;
1027 		spin_lock_irq(&pring->ring_lock);
1028 		list_for_each_entry_safe(piocb, next_iocb,
1029 					 &pring->txcmplq, list)
1030 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
1031 		list_splice_init(&pring->txcmplq, &completions);
1032 		pring->txcmplq_cnt = 0;
1033 		spin_unlock_irq(&pring->ring_lock);
1034 		lpfc_sli_abort_iocb_ring(phba, pring);
1035 	}
1036 	/* Cancel all the IOCBs from the completions list */
1037 	lpfc_sli_cancel_iocbs(phba, &completions,
1038 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1039 }
1040 
1041 /**
1042  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1043  * @phba: pointer to lpfc HBA data structure.
1044  *
1045  * This routine will do uninitialization after the HBA is reset when bring
1046  * down the SLI Layer.
1047  *
1048  * Return codes
1049  *   0 - success.
1050  *   Any other value - error.
1051  **/
1052 static int
1053 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1054 {
1055 	lpfc_hba_free_post_buf(phba);
1056 	lpfc_hba_clean_txcmplq(phba);
1057 	return 0;
1058 }
1059 
1060 /**
1061  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1062  * @phba: pointer to lpfc HBA data structure.
1063  *
1064  * This routine will do uninitialization after the HBA is reset when bring
1065  * down the SLI Layer.
1066  *
1067  * Return codes
1068  *   0 - success.
1069  *   Any other value - error.
1070  **/
1071 static int
1072 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1073 {
1074 	struct lpfc_io_buf *psb, *psb_next;
1075 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1076 	struct lpfc_sli4_hdw_queue *qp;
1077 	LIST_HEAD(aborts);
1078 	LIST_HEAD(nvme_aborts);
1079 	LIST_HEAD(nvmet_aborts);
1080 	struct lpfc_sglq *sglq_entry = NULL;
1081 	int cnt, idx;
1082 
1083 
1084 	lpfc_sli_hbqbuf_free_all(phba);
1085 	lpfc_hba_clean_txcmplq(phba);
1086 
1087 	/* At this point in time the HBA is either reset or DOA. Either
1088 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1089 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1090 	 * driver is unloading or reposted if the driver is restarting
1091 	 * the port.
1092 	 */
1093 
1094 	/* sgl_list_lock required because worker thread uses this
1095 	 * list.
1096 	 */
1097 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1098 	list_for_each_entry(sglq_entry,
1099 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1100 		sglq_entry->state = SGL_FREED;
1101 
1102 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1103 			&phba->sli4_hba.lpfc_els_sgl_list);
1104 
1105 
1106 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1107 
1108 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1109 	 * list.
1110 	 */
1111 	spin_lock_irq(&phba->hbalock);
1112 	cnt = 0;
1113 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1114 		qp = &phba->sli4_hba.hdwq[idx];
1115 
1116 		spin_lock(&qp->abts_io_buf_list_lock);
1117 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1118 				 &aborts);
1119 
1120 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1121 			psb->pCmd = NULL;
1122 			psb->status = IOSTAT_SUCCESS;
1123 			cnt++;
1124 		}
1125 		spin_lock(&qp->io_buf_list_put_lock);
1126 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1127 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1128 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1129 		qp->abts_scsi_io_bufs = 0;
1130 		qp->abts_nvme_io_bufs = 0;
1131 		spin_unlock(&qp->io_buf_list_put_lock);
1132 		spin_unlock(&qp->abts_io_buf_list_lock);
1133 	}
1134 	spin_unlock_irq(&phba->hbalock);
1135 
1136 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1137 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1138 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1139 				 &nvmet_aborts);
1140 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1141 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1142 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1143 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1144 		}
1145 	}
1146 
1147 	lpfc_sli4_free_sp_events(phba);
1148 	return cnt;
1149 }
1150 
1151 /**
1152  * lpfc_hba_down_post - Wrapper func for hba down post routine
1153  * @phba: pointer to lpfc HBA data structure.
1154  *
1155  * This routine wraps the actual SLI3 or SLI4 routine for performing
1156  * uninitialization after the HBA is reset when bring down the SLI Layer.
1157  *
1158  * Return codes
1159  *   0 - success.
1160  *   Any other value - error.
1161  **/
1162 int
1163 lpfc_hba_down_post(struct lpfc_hba *phba)
1164 {
1165 	return (*phba->lpfc_hba_down_post)(phba);
1166 }
1167 
1168 /**
1169  * lpfc_hb_timeout - The HBA-timer timeout handler
1170  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1171  *
1172  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1173  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1174  * work-port-events bitmap and the worker thread is notified. This timeout
1175  * event will be used by the worker thread to invoke the actual timeout
1176  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1177  * be performed in the timeout handler and the HBA timeout event bit shall
1178  * be cleared by the worker thread after it has taken the event bitmap out.
1179  **/
1180 static void
1181 lpfc_hb_timeout(struct timer_list *t)
1182 {
1183 	struct lpfc_hba *phba;
1184 	uint32_t tmo_posted;
1185 	unsigned long iflag;
1186 
1187 	phba = from_timer(phba, t, hb_tmofunc);
1188 
1189 	/* Check for heart beat timeout conditions */
1190 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1191 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1192 	if (!tmo_posted)
1193 		phba->pport->work_port_events |= WORKER_HB_TMO;
1194 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1195 
1196 	/* Tell the worker thread there is work to do */
1197 	if (!tmo_posted)
1198 		lpfc_worker_wake_up(phba);
1199 	return;
1200 }
1201 
1202 /**
1203  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1204  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1205  *
1206  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1207  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1208  * work-port-events bitmap and the worker thread is notified. This timeout
1209  * event will be used by the worker thread to invoke the actual timeout
1210  * handler routine, lpfc_rrq_handler. Any periodical operations will
1211  * be performed in the timeout handler and the RRQ timeout event bit shall
1212  * be cleared by the worker thread after it has taken the event bitmap out.
1213  **/
1214 static void
1215 lpfc_rrq_timeout(struct timer_list *t)
1216 {
1217 	struct lpfc_hba *phba;
1218 	unsigned long iflag;
1219 
1220 	phba = from_timer(phba, t, rrq_tmr);
1221 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1222 	if (!(phba->pport->load_flag & FC_UNLOADING))
1223 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1224 	else
1225 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1226 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1227 
1228 	if (!(phba->pport->load_flag & FC_UNLOADING))
1229 		lpfc_worker_wake_up(phba);
1230 }
1231 
1232 /**
1233  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1234  * @phba: pointer to lpfc hba data structure.
1235  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1236  *
1237  * This is the callback function to the lpfc heart-beat mailbox command.
1238  * If configured, the lpfc driver issues the heart-beat mailbox command to
1239  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1240  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1241  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1242  * heart-beat outstanding state. Once the mailbox command comes back and
1243  * no error conditions detected, the heart-beat mailbox command timer is
1244  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1245  * state is cleared for the next heart-beat. If the timer expired with the
1246  * heart-beat outstanding state set, the driver will put the HBA offline.
1247  **/
1248 static void
1249 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1250 {
1251 	unsigned long drvr_flag;
1252 
1253 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1254 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1255 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1256 
1257 	/* Check and reset heart-beat timer if necessary */
1258 	mempool_free(pmboxq, phba->mbox_mem_pool);
1259 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1260 		!(phba->link_state == LPFC_HBA_ERROR) &&
1261 		!(phba->pport->load_flag & FC_UNLOADING))
1262 		mod_timer(&phba->hb_tmofunc,
1263 			  jiffies +
1264 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1265 	return;
1266 }
1267 
1268 /*
1269  * lpfc_idle_stat_delay_work - idle_stat tracking
1270  *
1271  * This routine tracks per-cq idle_stat and determines polling decisions.
1272  *
1273  * Return codes:
1274  *   None
1275  **/
1276 static void
1277 lpfc_idle_stat_delay_work(struct work_struct *work)
1278 {
1279 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1280 					     struct lpfc_hba,
1281 					     idle_stat_delay_work);
1282 	struct lpfc_queue *cq;
1283 	struct lpfc_sli4_hdw_queue *hdwq;
1284 	struct lpfc_idle_stat *idle_stat;
1285 	u32 i, idle_percent;
1286 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1287 
1288 	if (phba->pport->load_flag & FC_UNLOADING)
1289 		return;
1290 
1291 	if (phba->link_state == LPFC_HBA_ERROR ||
1292 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1293 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1294 		goto requeue;
1295 
1296 	for_each_present_cpu(i) {
1297 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1298 		cq = hdwq->io_cq;
1299 
1300 		/* Skip if we've already handled this cq's primary CPU */
1301 		if (cq->chann != i)
1302 			continue;
1303 
1304 		idle_stat = &phba->sli4_hba.idle_stat[i];
1305 
1306 		/* get_cpu_idle_time returns values as running counters. Thus,
1307 		 * to know the amount for this period, the prior counter values
1308 		 * need to be subtracted from the current counter values.
1309 		 * From there, the idle time stat can be calculated as a
1310 		 * percentage of 100 - the sum of the other consumption times.
1311 		 */
1312 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1313 		diff_idle = wall_idle - idle_stat->prev_idle;
1314 		diff_wall = wall - idle_stat->prev_wall;
1315 
1316 		if (diff_wall <= diff_idle)
1317 			busy_time = 0;
1318 		else
1319 			busy_time = diff_wall - diff_idle;
1320 
1321 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1322 		idle_percent = 100 - idle_percent;
1323 
1324 		if (idle_percent < 15)
1325 			cq->poll_mode = LPFC_QUEUE_WORK;
1326 		else
1327 			cq->poll_mode = LPFC_IRQ_POLL;
1328 
1329 		idle_stat->prev_idle = wall_idle;
1330 		idle_stat->prev_wall = wall;
1331 	}
1332 
1333 requeue:
1334 	schedule_delayed_work(&phba->idle_stat_delay_work,
1335 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1336 }
1337 
1338 static void
1339 lpfc_hb_eq_delay_work(struct work_struct *work)
1340 {
1341 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1342 					     struct lpfc_hba, eq_delay_work);
1343 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1344 	struct lpfc_queue *eq, *eq_next;
1345 	unsigned char *ena_delay = NULL;
1346 	uint32_t usdelay;
1347 	int i;
1348 
1349 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1350 		return;
1351 
1352 	if (phba->link_state == LPFC_HBA_ERROR ||
1353 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1354 		goto requeue;
1355 
1356 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1357 			    GFP_KERNEL);
1358 	if (!ena_delay)
1359 		goto requeue;
1360 
1361 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1362 		/* Get the EQ corresponding to the IRQ vector */
1363 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1364 		if (!eq)
1365 			continue;
1366 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1367 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1368 			ena_delay[eq->last_cpu] = 1;
1369 		}
1370 	}
1371 
1372 	for_each_present_cpu(i) {
1373 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1374 		if (ena_delay[i]) {
1375 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1376 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1377 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1378 		} else {
1379 			usdelay = 0;
1380 		}
1381 
1382 		eqi->icnt = 0;
1383 
1384 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1385 			if (unlikely(eq->last_cpu != i)) {
1386 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1387 						      eq->last_cpu);
1388 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1389 				continue;
1390 			}
1391 			if (usdelay != eq->q_mode)
1392 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1393 							 usdelay);
1394 		}
1395 	}
1396 
1397 	kfree(ena_delay);
1398 
1399 requeue:
1400 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1401 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1402 }
1403 
1404 /**
1405  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1406  * @phba: pointer to lpfc hba data structure.
1407  *
1408  * For each heartbeat, this routine does some heuristic methods to adjust
1409  * XRI distribution. The goal is to fully utilize free XRIs.
1410  **/
1411 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1412 {
1413 	u32 i;
1414 	u32 hwq_count;
1415 
1416 	hwq_count = phba->cfg_hdw_queue;
1417 	for (i = 0; i < hwq_count; i++) {
1418 		/* Adjust XRIs in private pool */
1419 		lpfc_adjust_pvt_pool_count(phba, i);
1420 
1421 		/* Adjust high watermark */
1422 		lpfc_adjust_high_watermark(phba, i);
1423 
1424 #ifdef LPFC_MXP_STAT
1425 		/* Snapshot pbl, pvt and busy count */
1426 		lpfc_snapshot_mxp(phba, i);
1427 #endif
1428 	}
1429 }
1430 
1431 /**
1432  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1433  * @phba: pointer to lpfc hba data structure.
1434  *
1435  * If a HB mbox is not already in progrees, this routine will allocate
1436  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1437  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1438  **/
1439 int
1440 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1441 {
1442 	LPFC_MBOXQ_t *pmboxq;
1443 	int retval;
1444 
1445 	/* Is a Heartbeat mbox already in progress */
1446 	if (phba->hba_flag & HBA_HBEAT_INP)
1447 		return 0;
1448 
1449 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1450 	if (!pmboxq)
1451 		return -ENOMEM;
1452 
1453 	lpfc_heart_beat(phba, pmboxq);
1454 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1455 	pmboxq->vport = phba->pport;
1456 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1457 
1458 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1459 		mempool_free(pmboxq, phba->mbox_mem_pool);
1460 		return -ENXIO;
1461 	}
1462 	phba->hba_flag |= HBA_HBEAT_INP;
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1469  * @phba: pointer to lpfc hba data structure.
1470  *
1471  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1472  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1473  * of the value of lpfc_enable_hba_heartbeat.
1474  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1475  * try to issue a MBX_HEARTBEAT mbox command.
1476  **/
1477 void
1478 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1479 {
1480 	if (phba->cfg_enable_hba_heartbeat)
1481 		return;
1482 	phba->hba_flag |= HBA_HBEAT_TMO;
1483 }
1484 
1485 /**
1486  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1487  * @phba: pointer to lpfc hba data structure.
1488  *
1489  * This is the actual HBA-timer timeout handler to be invoked by the worker
1490  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1491  * handler performs any periodic operations needed for the device. If such
1492  * periodic event has already been attended to either in the interrupt handler
1493  * or by processing slow-ring or fast-ring events within the HBA-timer
1494  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1495  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1496  * is configured and there is no heart-beat mailbox command outstanding, a
1497  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1498  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1499  * to offline.
1500  **/
1501 void
1502 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1503 {
1504 	struct lpfc_vport **vports;
1505 	struct lpfc_dmabuf *buf_ptr;
1506 	int retval = 0;
1507 	int i, tmo;
1508 	struct lpfc_sli *psli = &phba->sli;
1509 	LIST_HEAD(completions);
1510 
1511 	if (phba->cfg_xri_rebalancing) {
1512 		/* Multi-XRI pools handler */
1513 		lpfc_hb_mxp_handler(phba);
1514 	}
1515 
1516 	vports = lpfc_create_vport_work_array(phba);
1517 	if (vports != NULL)
1518 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1519 			lpfc_rcv_seq_check_edtov(vports[i]);
1520 			lpfc_fdmi_change_check(vports[i]);
1521 		}
1522 	lpfc_destroy_vport_work_array(phba, vports);
1523 
1524 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1525 		(phba->pport->load_flag & FC_UNLOADING) ||
1526 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1527 		return;
1528 
1529 	if (phba->elsbuf_cnt &&
1530 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1531 		spin_lock_irq(&phba->hbalock);
1532 		list_splice_init(&phba->elsbuf, &completions);
1533 		phba->elsbuf_cnt = 0;
1534 		phba->elsbuf_prev_cnt = 0;
1535 		spin_unlock_irq(&phba->hbalock);
1536 
1537 		while (!list_empty(&completions)) {
1538 			list_remove_head(&completions, buf_ptr,
1539 				struct lpfc_dmabuf, list);
1540 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1541 			kfree(buf_ptr);
1542 		}
1543 	}
1544 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1545 
1546 	/* If there is no heart beat outstanding, issue a heartbeat command */
1547 	if (phba->cfg_enable_hba_heartbeat) {
1548 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1549 		spin_lock_irq(&phba->pport->work_port_lock);
1550 		if (time_after(phba->last_completion_time +
1551 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1552 				jiffies)) {
1553 			spin_unlock_irq(&phba->pport->work_port_lock);
1554 			if (phba->hba_flag & HBA_HBEAT_INP)
1555 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1556 			else
1557 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1558 			goto out;
1559 		}
1560 		spin_unlock_irq(&phba->pport->work_port_lock);
1561 
1562 		/* Check if a MBX_HEARTBEAT is already in progress */
1563 		if (phba->hba_flag & HBA_HBEAT_INP) {
1564 			/*
1565 			 * If heart beat timeout called with HBA_HBEAT_INP set
1566 			 * we need to give the hb mailbox cmd a chance to
1567 			 * complete or TMO.
1568 			 */
1569 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1570 				"0459 Adapter heartbeat still outstanding: "
1571 				"last compl time was %d ms.\n",
1572 				jiffies_to_msecs(jiffies
1573 					 - phba->last_completion_time));
1574 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1575 		} else {
1576 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1577 				(list_empty(&psli->mboxq))) {
1578 
1579 				retval = lpfc_issue_hb_mbox(phba);
1580 				if (retval) {
1581 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1582 					goto out;
1583 				}
1584 				phba->skipped_hb = 0;
1585 			} else if (time_before_eq(phba->last_completion_time,
1586 					phba->skipped_hb)) {
1587 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1588 					"2857 Last completion time not "
1589 					" updated in %d ms\n",
1590 					jiffies_to_msecs(jiffies
1591 						 - phba->last_completion_time));
1592 			} else
1593 				phba->skipped_hb = jiffies;
1594 
1595 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1596 			goto out;
1597 		}
1598 	} else {
1599 		/* Check to see if we want to force a MBX_HEARTBEAT */
1600 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1601 			retval = lpfc_issue_hb_mbox(phba);
1602 			if (retval)
1603 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1604 			else
1605 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1606 			goto out;
1607 		}
1608 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1609 	}
1610 out:
1611 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1612 }
1613 
1614 /**
1615  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1616  * @phba: pointer to lpfc hba data structure.
1617  *
1618  * This routine is called to bring the HBA offline when HBA hardware error
1619  * other than Port Error 6 has been detected.
1620  **/
1621 static void
1622 lpfc_offline_eratt(struct lpfc_hba *phba)
1623 {
1624 	struct lpfc_sli   *psli = &phba->sli;
1625 
1626 	spin_lock_irq(&phba->hbalock);
1627 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1628 	spin_unlock_irq(&phba->hbalock);
1629 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1630 
1631 	lpfc_offline(phba);
1632 	lpfc_reset_barrier(phba);
1633 	spin_lock_irq(&phba->hbalock);
1634 	lpfc_sli_brdreset(phba);
1635 	spin_unlock_irq(&phba->hbalock);
1636 	lpfc_hba_down_post(phba);
1637 	lpfc_sli_brdready(phba, HS_MBRDY);
1638 	lpfc_unblock_mgmt_io(phba);
1639 	phba->link_state = LPFC_HBA_ERROR;
1640 	return;
1641 }
1642 
1643 /**
1644  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1645  * @phba: pointer to lpfc hba data structure.
1646  *
1647  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1648  * other than Port Error 6 has been detected.
1649  **/
1650 void
1651 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1652 {
1653 	spin_lock_irq(&phba->hbalock);
1654 	if (phba->link_state == LPFC_HBA_ERROR &&
1655 	    phba->hba_flag & HBA_PCI_ERR) {
1656 		spin_unlock_irq(&phba->hbalock);
1657 		return;
1658 	}
1659 	phba->link_state = LPFC_HBA_ERROR;
1660 	spin_unlock_irq(&phba->hbalock);
1661 
1662 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1663 	lpfc_sli_flush_io_rings(phba);
1664 	lpfc_offline(phba);
1665 	lpfc_hba_down_post(phba);
1666 	lpfc_unblock_mgmt_io(phba);
1667 }
1668 
1669 /**
1670  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1671  * @phba: pointer to lpfc hba data structure.
1672  *
1673  * This routine is invoked to handle the deferred HBA hardware error
1674  * conditions. This type of error is indicated by HBA by setting ER1
1675  * and another ER bit in the host status register. The driver will
1676  * wait until the ER1 bit clears before handling the error condition.
1677  **/
1678 static void
1679 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1680 {
1681 	uint32_t old_host_status = phba->work_hs;
1682 	struct lpfc_sli *psli = &phba->sli;
1683 
1684 	/* If the pci channel is offline, ignore possible errors,
1685 	 * since we cannot communicate with the pci card anyway.
1686 	 */
1687 	if (pci_channel_offline(phba->pcidev)) {
1688 		spin_lock_irq(&phba->hbalock);
1689 		phba->hba_flag &= ~DEFER_ERATT;
1690 		spin_unlock_irq(&phba->hbalock);
1691 		return;
1692 	}
1693 
1694 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1695 			"0479 Deferred Adapter Hardware Error "
1696 			"Data: x%x x%x x%x\n",
1697 			phba->work_hs, phba->work_status[0],
1698 			phba->work_status[1]);
1699 
1700 	spin_lock_irq(&phba->hbalock);
1701 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1702 	spin_unlock_irq(&phba->hbalock);
1703 
1704 
1705 	/*
1706 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1707 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1708 	 * SCSI layer retry it after re-establishing link.
1709 	 */
1710 	lpfc_sli_abort_fcp_rings(phba);
1711 
1712 	/*
1713 	 * There was a firmware error. Take the hba offline and then
1714 	 * attempt to restart it.
1715 	 */
1716 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1717 	lpfc_offline(phba);
1718 
1719 	/* Wait for the ER1 bit to clear.*/
1720 	while (phba->work_hs & HS_FFER1) {
1721 		msleep(100);
1722 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1723 			phba->work_hs = UNPLUG_ERR ;
1724 			break;
1725 		}
1726 		/* If driver is unloading let the worker thread continue */
1727 		if (phba->pport->load_flag & FC_UNLOADING) {
1728 			phba->work_hs = 0;
1729 			break;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * This is to ptrotect against a race condition in which
1735 	 * first write to the host attention register clear the
1736 	 * host status register.
1737 	 */
1738 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1739 		phba->work_hs = old_host_status & ~HS_FFER1;
1740 
1741 	spin_lock_irq(&phba->hbalock);
1742 	phba->hba_flag &= ~DEFER_ERATT;
1743 	spin_unlock_irq(&phba->hbalock);
1744 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1745 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1746 }
1747 
1748 static void
1749 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1750 {
1751 	struct lpfc_board_event_header board_event;
1752 	struct Scsi_Host *shost;
1753 
1754 	board_event.event_type = FC_REG_BOARD_EVENT;
1755 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1756 	shost = lpfc_shost_from_vport(phba->pport);
1757 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1758 				  sizeof(board_event),
1759 				  (char *) &board_event,
1760 				  LPFC_NL_VENDOR_ID);
1761 }
1762 
1763 /**
1764  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1765  * @phba: pointer to lpfc hba data structure.
1766  *
1767  * This routine is invoked to handle the following HBA hardware error
1768  * conditions:
1769  * 1 - HBA error attention interrupt
1770  * 2 - DMA ring index out of range
1771  * 3 - Mailbox command came back as unknown
1772  **/
1773 static void
1774 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1775 {
1776 	struct lpfc_vport *vport = phba->pport;
1777 	struct lpfc_sli   *psli = &phba->sli;
1778 	uint32_t event_data;
1779 	unsigned long temperature;
1780 	struct temp_event temp_event_data;
1781 	struct Scsi_Host  *shost;
1782 
1783 	/* If the pci channel is offline, ignore possible errors,
1784 	 * since we cannot communicate with the pci card anyway.
1785 	 */
1786 	if (pci_channel_offline(phba->pcidev)) {
1787 		spin_lock_irq(&phba->hbalock);
1788 		phba->hba_flag &= ~DEFER_ERATT;
1789 		spin_unlock_irq(&phba->hbalock);
1790 		return;
1791 	}
1792 
1793 	/* If resets are disabled then leave the HBA alone and return */
1794 	if (!phba->cfg_enable_hba_reset)
1795 		return;
1796 
1797 	/* Send an internal error event to mgmt application */
1798 	lpfc_board_errevt_to_mgmt(phba);
1799 
1800 	if (phba->hba_flag & DEFER_ERATT)
1801 		lpfc_handle_deferred_eratt(phba);
1802 
1803 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1804 		if (phba->work_hs & HS_FFER6)
1805 			/* Re-establishing Link */
1806 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1807 					"1301 Re-establishing Link "
1808 					"Data: x%x x%x x%x\n",
1809 					phba->work_hs, phba->work_status[0],
1810 					phba->work_status[1]);
1811 		if (phba->work_hs & HS_FFER8)
1812 			/* Device Zeroization */
1813 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1814 					"2861 Host Authentication device "
1815 					"zeroization Data:x%x x%x x%x\n",
1816 					phba->work_hs, phba->work_status[0],
1817 					phba->work_status[1]);
1818 
1819 		spin_lock_irq(&phba->hbalock);
1820 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1821 		spin_unlock_irq(&phba->hbalock);
1822 
1823 		/*
1824 		* Firmware stops when it triggled erratt with HS_FFER6.
1825 		* That could cause the I/Os dropped by the firmware.
1826 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1827 		* retry it after re-establishing link.
1828 		*/
1829 		lpfc_sli_abort_fcp_rings(phba);
1830 
1831 		/*
1832 		 * There was a firmware error.  Take the hba offline and then
1833 		 * attempt to restart it.
1834 		 */
1835 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1836 		lpfc_offline(phba);
1837 		lpfc_sli_brdrestart(phba);
1838 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1839 			lpfc_unblock_mgmt_io(phba);
1840 			return;
1841 		}
1842 		lpfc_unblock_mgmt_io(phba);
1843 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1844 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1845 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1846 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1847 		temp_event_data.data = (uint32_t)temperature;
1848 
1849 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1850 				"0406 Adapter maximum temperature exceeded "
1851 				"(%ld), taking this port offline "
1852 				"Data: x%x x%x x%x\n",
1853 				temperature, phba->work_hs,
1854 				phba->work_status[0], phba->work_status[1]);
1855 
1856 		shost = lpfc_shost_from_vport(phba->pport);
1857 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1858 					  sizeof(temp_event_data),
1859 					  (char *) &temp_event_data,
1860 					  SCSI_NL_VID_TYPE_PCI
1861 					  | PCI_VENDOR_ID_EMULEX);
1862 
1863 		spin_lock_irq(&phba->hbalock);
1864 		phba->over_temp_state = HBA_OVER_TEMP;
1865 		spin_unlock_irq(&phba->hbalock);
1866 		lpfc_offline_eratt(phba);
1867 
1868 	} else {
1869 		/* The if clause above forces this code path when the status
1870 		 * failure is a value other than FFER6. Do not call the offline
1871 		 * twice. This is the adapter hardware error path.
1872 		 */
1873 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1874 				"0457 Adapter Hardware Error "
1875 				"Data: x%x x%x x%x\n",
1876 				phba->work_hs,
1877 				phba->work_status[0], phba->work_status[1]);
1878 
1879 		event_data = FC_REG_DUMP_EVENT;
1880 		shost = lpfc_shost_from_vport(vport);
1881 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1882 				sizeof(event_data), (char *) &event_data,
1883 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1884 
1885 		lpfc_offline_eratt(phba);
1886 	}
1887 	return;
1888 }
1889 
1890 /**
1891  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1892  * @phba: pointer to lpfc hba data structure.
1893  * @mbx_action: flag for mailbox shutdown action.
1894  * @en_rn_msg: send reset/port recovery message.
1895  * This routine is invoked to perform an SLI4 port PCI function reset in
1896  * response to port status register polling attention. It waits for port
1897  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1898  * During this process, interrupt vectors are freed and later requested
1899  * for handling possible port resource change.
1900  **/
1901 static int
1902 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1903 			    bool en_rn_msg)
1904 {
1905 	int rc;
1906 	uint32_t intr_mode;
1907 	LPFC_MBOXQ_t *mboxq;
1908 
1909 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1910 	    LPFC_SLI_INTF_IF_TYPE_2) {
1911 		/*
1912 		 * On error status condition, driver need to wait for port
1913 		 * ready before performing reset.
1914 		 */
1915 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1916 		if (rc)
1917 			return rc;
1918 	}
1919 
1920 	/* need reset: attempt for port recovery */
1921 	if (en_rn_msg)
1922 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1923 				"2887 Reset Needed: Attempting Port "
1924 				"Recovery...\n");
1925 
1926 	/* If we are no wait, the HBA has been reset and is not
1927 	 * functional, thus we should clear
1928 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1929 	 */
1930 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1931 		spin_lock_irq(&phba->hbalock);
1932 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1933 		if (phba->sli.mbox_active) {
1934 			mboxq = phba->sli.mbox_active;
1935 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1936 			__lpfc_mbox_cmpl_put(phba, mboxq);
1937 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1938 			phba->sli.mbox_active = NULL;
1939 		}
1940 		spin_unlock_irq(&phba->hbalock);
1941 	}
1942 
1943 	lpfc_offline_prep(phba, mbx_action);
1944 	lpfc_sli_flush_io_rings(phba);
1945 	lpfc_offline(phba);
1946 	/* release interrupt for possible resource change */
1947 	lpfc_sli4_disable_intr(phba);
1948 	rc = lpfc_sli_brdrestart(phba);
1949 	if (rc) {
1950 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1951 				"6309 Failed to restart board\n");
1952 		return rc;
1953 	}
1954 	/* request and enable interrupt */
1955 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1956 	if (intr_mode == LPFC_INTR_ERROR) {
1957 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1958 				"3175 Failed to enable interrupt\n");
1959 		return -EIO;
1960 	}
1961 	phba->intr_mode = intr_mode;
1962 	rc = lpfc_online(phba);
1963 	if (rc == 0)
1964 		lpfc_unblock_mgmt_io(phba);
1965 
1966 	return rc;
1967 }
1968 
1969 /**
1970  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1971  * @phba: pointer to lpfc hba data structure.
1972  *
1973  * This routine is invoked to handle the SLI4 HBA hardware error attention
1974  * conditions.
1975  **/
1976 static void
1977 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1978 {
1979 	struct lpfc_vport *vport = phba->pport;
1980 	uint32_t event_data;
1981 	struct Scsi_Host *shost;
1982 	uint32_t if_type;
1983 	struct lpfc_register portstat_reg = {0};
1984 	uint32_t reg_err1, reg_err2;
1985 	uint32_t uerrlo_reg, uemasklo_reg;
1986 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1987 	bool en_rn_msg = true;
1988 	struct temp_event temp_event_data;
1989 	struct lpfc_register portsmphr_reg;
1990 	int rc, i;
1991 
1992 	/* If the pci channel is offline, ignore possible errors, since
1993 	 * we cannot communicate with the pci card anyway.
1994 	 */
1995 	if (pci_channel_offline(phba->pcidev)) {
1996 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1997 				"3166 pci channel is offline\n");
1998 		return;
1999 	}
2000 
2001 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2002 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2003 	switch (if_type) {
2004 	case LPFC_SLI_INTF_IF_TYPE_0:
2005 		pci_rd_rc1 = lpfc_readl(
2006 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2007 				&uerrlo_reg);
2008 		pci_rd_rc2 = lpfc_readl(
2009 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2010 				&uemasklo_reg);
2011 		/* consider PCI bus read error as pci_channel_offline */
2012 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2013 			return;
2014 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2015 			lpfc_sli4_offline_eratt(phba);
2016 			return;
2017 		}
2018 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2019 				"7623 Checking UE recoverable");
2020 
2021 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2022 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2023 				       &portsmphr_reg.word0))
2024 				continue;
2025 
2026 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2027 						   &portsmphr_reg);
2028 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2029 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2030 				break;
2031 			/*Sleep for 1Sec, before checking SEMAPHORE */
2032 			msleep(1000);
2033 		}
2034 
2035 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2036 				"4827 smphr_port_status x%x : Waited %dSec",
2037 				smphr_port_status, i);
2038 
2039 		/* Recoverable UE, reset the HBA device */
2040 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2042 			for (i = 0; i < 20; i++) {
2043 				msleep(1000);
2044 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2045 				    &portsmphr_reg.word0) &&
2046 				    (LPFC_POST_STAGE_PORT_READY ==
2047 				     bf_get(lpfc_port_smphr_port_status,
2048 				     &portsmphr_reg))) {
2049 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2050 						LPFC_MBX_NO_WAIT, en_rn_msg);
2051 					if (rc == 0)
2052 						return;
2053 					lpfc_printf_log(phba, KERN_ERR,
2054 						LOG_TRACE_EVENT,
2055 						"4215 Failed to recover UE");
2056 					break;
2057 				}
2058 			}
2059 		}
2060 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2061 				"7624 Firmware not ready: Failing UE recovery,"
2062 				" waited %dSec", i);
2063 		phba->link_state = LPFC_HBA_ERROR;
2064 		break;
2065 
2066 	case LPFC_SLI_INTF_IF_TYPE_2:
2067 	case LPFC_SLI_INTF_IF_TYPE_6:
2068 		pci_rd_rc1 = lpfc_readl(
2069 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2070 				&portstat_reg.word0);
2071 		/* consider PCI bus read error as pci_channel_offline */
2072 		if (pci_rd_rc1 == -EIO) {
2073 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2074 				"3151 PCI bus read access failure: x%x\n",
2075 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2076 			lpfc_sli4_offline_eratt(phba);
2077 			return;
2078 		}
2079 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2080 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2081 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2082 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2083 					"2889 Port Overtemperature event, "
2084 					"taking port offline Data: x%x x%x\n",
2085 					reg_err1, reg_err2);
2086 
2087 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2088 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2089 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2090 			temp_event_data.data = 0xFFFFFFFF;
2091 
2092 			shost = lpfc_shost_from_vport(phba->pport);
2093 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2094 						  sizeof(temp_event_data),
2095 						  (char *)&temp_event_data,
2096 						  SCSI_NL_VID_TYPE_PCI
2097 						  | PCI_VENDOR_ID_EMULEX);
2098 
2099 			spin_lock_irq(&phba->hbalock);
2100 			phba->over_temp_state = HBA_OVER_TEMP;
2101 			spin_unlock_irq(&phba->hbalock);
2102 			lpfc_sli4_offline_eratt(phba);
2103 			return;
2104 		}
2105 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2106 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2107 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2108 					"3143 Port Down: Firmware Update "
2109 					"Detected\n");
2110 			en_rn_msg = false;
2111 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2112 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2113 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2114 					"3144 Port Down: Debug Dump\n");
2115 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2116 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2117 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2118 					"3145 Port Down: Provisioning\n");
2119 
2120 		/* If resets are disabled then leave the HBA alone and return */
2121 		if (!phba->cfg_enable_hba_reset)
2122 			return;
2123 
2124 		/* Check port status register for function reset */
2125 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2126 				en_rn_msg);
2127 		if (rc == 0) {
2128 			/* don't report event on forced debug dump */
2129 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2130 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2131 				return;
2132 			else
2133 				break;
2134 		}
2135 		/* fall through for not able to recover */
2136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2137 				"3152 Unrecoverable error\n");
2138 		phba->link_state = LPFC_HBA_ERROR;
2139 		break;
2140 	case LPFC_SLI_INTF_IF_TYPE_1:
2141 	default:
2142 		break;
2143 	}
2144 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2145 			"3123 Report dump event to upper layer\n");
2146 	/* Send an internal error event to mgmt application */
2147 	lpfc_board_errevt_to_mgmt(phba);
2148 
2149 	event_data = FC_REG_DUMP_EVENT;
2150 	shost = lpfc_shost_from_vport(vport);
2151 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2152 				  sizeof(event_data), (char *) &event_data,
2153 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2154 }
2155 
2156 /**
2157  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2158  * @phba: pointer to lpfc HBA data structure.
2159  *
2160  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2161  * routine from the API jump table function pointer from the lpfc_hba struct.
2162  *
2163  * Return codes
2164  *   0 - success.
2165  *   Any other value - error.
2166  **/
2167 void
2168 lpfc_handle_eratt(struct lpfc_hba *phba)
2169 {
2170 	(*phba->lpfc_handle_eratt)(phba);
2171 }
2172 
2173 /**
2174  * lpfc_handle_latt - The HBA link event handler
2175  * @phba: pointer to lpfc hba data structure.
2176  *
2177  * This routine is invoked from the worker thread to handle a HBA host
2178  * attention link event. SLI3 only.
2179  **/
2180 void
2181 lpfc_handle_latt(struct lpfc_hba *phba)
2182 {
2183 	struct lpfc_vport *vport = phba->pport;
2184 	struct lpfc_sli   *psli = &phba->sli;
2185 	LPFC_MBOXQ_t *pmb;
2186 	volatile uint32_t control;
2187 	struct lpfc_dmabuf *mp;
2188 	int rc = 0;
2189 
2190 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2191 	if (!pmb) {
2192 		rc = 1;
2193 		goto lpfc_handle_latt_err_exit;
2194 	}
2195 
2196 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2197 	if (!mp) {
2198 		rc = 2;
2199 		goto lpfc_handle_latt_free_pmb;
2200 	}
2201 
2202 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2203 	if (!mp->virt) {
2204 		rc = 3;
2205 		goto lpfc_handle_latt_free_mp;
2206 	}
2207 
2208 	/* Cleanup any outstanding ELS commands */
2209 	lpfc_els_flush_all_cmd(phba);
2210 
2211 	psli->slistat.link_event++;
2212 	lpfc_read_topology(phba, pmb, mp);
2213 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2214 	pmb->vport = vport;
2215 	/* Block ELS IOCBs until we have processed this mbox command */
2216 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2217 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2218 	if (rc == MBX_NOT_FINISHED) {
2219 		rc = 4;
2220 		goto lpfc_handle_latt_free_mbuf;
2221 	}
2222 
2223 	/* Clear Link Attention in HA REG */
2224 	spin_lock_irq(&phba->hbalock);
2225 	writel(HA_LATT, phba->HAregaddr);
2226 	readl(phba->HAregaddr); /* flush */
2227 	spin_unlock_irq(&phba->hbalock);
2228 
2229 	return;
2230 
2231 lpfc_handle_latt_free_mbuf:
2232 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2233 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
2234 lpfc_handle_latt_free_mp:
2235 	kfree(mp);
2236 lpfc_handle_latt_free_pmb:
2237 	mempool_free(pmb, phba->mbox_mem_pool);
2238 lpfc_handle_latt_err_exit:
2239 	/* Enable Link attention interrupts */
2240 	spin_lock_irq(&phba->hbalock);
2241 	psli->sli_flag |= LPFC_PROCESS_LA;
2242 	control = readl(phba->HCregaddr);
2243 	control |= HC_LAINT_ENA;
2244 	writel(control, phba->HCregaddr);
2245 	readl(phba->HCregaddr); /* flush */
2246 
2247 	/* Clear Link Attention in HA REG */
2248 	writel(HA_LATT, phba->HAregaddr);
2249 	readl(phba->HAregaddr); /* flush */
2250 	spin_unlock_irq(&phba->hbalock);
2251 	lpfc_linkdown(phba);
2252 	phba->link_state = LPFC_HBA_ERROR;
2253 
2254 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2255 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2256 
2257 	return;
2258 }
2259 
2260 /**
2261  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2262  * @phba: pointer to lpfc hba data structure.
2263  * @vpd: pointer to the vital product data.
2264  * @len: length of the vital product data in bytes.
2265  *
2266  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2267  * an array of characters. In this routine, the ModelName, ProgramType, and
2268  * ModelDesc, etc. fields of the phba data structure will be populated.
2269  *
2270  * Return codes
2271  *   0 - pointer to the VPD passed in is NULL
2272  *   1 - success
2273  **/
2274 int
2275 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2276 {
2277 	uint8_t lenlo, lenhi;
2278 	int Length;
2279 	int i, j;
2280 	int finished = 0;
2281 	int index = 0;
2282 
2283 	if (!vpd)
2284 		return 0;
2285 
2286 	/* Vital Product */
2287 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2288 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2289 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2290 			(uint32_t) vpd[3]);
2291 	while (!finished && (index < (len - 4))) {
2292 		switch (vpd[index]) {
2293 		case 0x82:
2294 		case 0x91:
2295 			index += 1;
2296 			lenlo = vpd[index];
2297 			index += 1;
2298 			lenhi = vpd[index];
2299 			index += 1;
2300 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2301 			index += i;
2302 			break;
2303 		case 0x90:
2304 			index += 1;
2305 			lenlo = vpd[index];
2306 			index += 1;
2307 			lenhi = vpd[index];
2308 			index += 1;
2309 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2310 			if (Length > len - index)
2311 				Length = len - index;
2312 			while (Length > 0) {
2313 			/* Look for Serial Number */
2314 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2315 				index += 2;
2316 				i = vpd[index];
2317 				index += 1;
2318 				j = 0;
2319 				Length -= (3+i);
2320 				while(i--) {
2321 					phba->SerialNumber[j++] = vpd[index++];
2322 					if (j == 31)
2323 						break;
2324 				}
2325 				phba->SerialNumber[j] = 0;
2326 				continue;
2327 			}
2328 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2329 				phba->vpd_flag |= VPD_MODEL_DESC;
2330 				index += 2;
2331 				i = vpd[index];
2332 				index += 1;
2333 				j = 0;
2334 				Length -= (3+i);
2335 				while(i--) {
2336 					phba->ModelDesc[j++] = vpd[index++];
2337 					if (j == 255)
2338 						break;
2339 				}
2340 				phba->ModelDesc[j] = 0;
2341 				continue;
2342 			}
2343 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2344 				phba->vpd_flag |= VPD_MODEL_NAME;
2345 				index += 2;
2346 				i = vpd[index];
2347 				index += 1;
2348 				j = 0;
2349 				Length -= (3+i);
2350 				while(i--) {
2351 					phba->ModelName[j++] = vpd[index++];
2352 					if (j == 79)
2353 						break;
2354 				}
2355 				phba->ModelName[j] = 0;
2356 				continue;
2357 			}
2358 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2359 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2360 				index += 2;
2361 				i = vpd[index];
2362 				index += 1;
2363 				j = 0;
2364 				Length -= (3+i);
2365 				while(i--) {
2366 					phba->ProgramType[j++] = vpd[index++];
2367 					if (j == 255)
2368 						break;
2369 				}
2370 				phba->ProgramType[j] = 0;
2371 				continue;
2372 			}
2373 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2374 				phba->vpd_flag |= VPD_PORT;
2375 				index += 2;
2376 				i = vpd[index];
2377 				index += 1;
2378 				j = 0;
2379 				Length -= (3+i);
2380 				while(i--) {
2381 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2382 					    (phba->sli4_hba.pport_name_sta ==
2383 					     LPFC_SLI4_PPNAME_GET)) {
2384 						j++;
2385 						index++;
2386 					} else
2387 						phba->Port[j++] = vpd[index++];
2388 					if (j == 19)
2389 						break;
2390 				}
2391 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2392 				    (phba->sli4_hba.pport_name_sta ==
2393 				     LPFC_SLI4_PPNAME_NON))
2394 					phba->Port[j] = 0;
2395 				continue;
2396 			}
2397 			else {
2398 				index += 2;
2399 				i = vpd[index];
2400 				index += 1;
2401 				index += i;
2402 				Length -= (3 + i);
2403 			}
2404 		}
2405 		finished = 0;
2406 		break;
2407 		case 0x78:
2408 			finished = 1;
2409 			break;
2410 		default:
2411 			index ++;
2412 			break;
2413 		}
2414 	}
2415 
2416 	return(1);
2417 }
2418 
2419 /**
2420  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2421  * @phba: pointer to lpfc hba data structure.
2422  * @mdp: pointer to the data structure to hold the derived model name.
2423  * @descp: pointer to the data structure to hold the derived description.
2424  *
2425  * This routine retrieves HBA's description based on its registered PCI device
2426  * ID. The @descp passed into this function points to an array of 256 chars. It
2427  * shall be returned with the model name, maximum speed, and the host bus type.
2428  * The @mdp passed into this function points to an array of 80 chars. When the
2429  * function returns, the @mdp will be filled with the model name.
2430  **/
2431 static void
2432 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2433 {
2434 	lpfc_vpd_t *vp;
2435 	uint16_t dev_id = phba->pcidev->device;
2436 	int max_speed;
2437 	int GE = 0;
2438 	int oneConnect = 0; /* default is not a oneConnect */
2439 	struct {
2440 		char *name;
2441 		char *bus;
2442 		char *function;
2443 	} m = {"<Unknown>", "", ""};
2444 
2445 	if (mdp && mdp[0] != '\0'
2446 		&& descp && descp[0] != '\0')
2447 		return;
2448 
2449 	if (phba->lmt & LMT_64Gb)
2450 		max_speed = 64;
2451 	else if (phba->lmt & LMT_32Gb)
2452 		max_speed = 32;
2453 	else if (phba->lmt & LMT_16Gb)
2454 		max_speed = 16;
2455 	else if (phba->lmt & LMT_10Gb)
2456 		max_speed = 10;
2457 	else if (phba->lmt & LMT_8Gb)
2458 		max_speed = 8;
2459 	else if (phba->lmt & LMT_4Gb)
2460 		max_speed = 4;
2461 	else if (phba->lmt & LMT_2Gb)
2462 		max_speed = 2;
2463 	else if (phba->lmt & LMT_1Gb)
2464 		max_speed = 1;
2465 	else
2466 		max_speed = 0;
2467 
2468 	vp = &phba->vpd;
2469 
2470 	switch (dev_id) {
2471 	case PCI_DEVICE_ID_FIREFLY:
2472 		m = (typeof(m)){"LP6000", "PCI",
2473 				"Obsolete, Unsupported Fibre Channel Adapter"};
2474 		break;
2475 	case PCI_DEVICE_ID_SUPERFLY:
2476 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2477 			m = (typeof(m)){"LP7000", "PCI", ""};
2478 		else
2479 			m = (typeof(m)){"LP7000E", "PCI", ""};
2480 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2481 		break;
2482 	case PCI_DEVICE_ID_DRAGONFLY:
2483 		m = (typeof(m)){"LP8000", "PCI",
2484 				"Obsolete, Unsupported Fibre Channel Adapter"};
2485 		break;
2486 	case PCI_DEVICE_ID_CENTAUR:
2487 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2488 			m = (typeof(m)){"LP9002", "PCI", ""};
2489 		else
2490 			m = (typeof(m)){"LP9000", "PCI", ""};
2491 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2492 		break;
2493 	case PCI_DEVICE_ID_RFLY:
2494 		m = (typeof(m)){"LP952", "PCI",
2495 				"Obsolete, Unsupported Fibre Channel Adapter"};
2496 		break;
2497 	case PCI_DEVICE_ID_PEGASUS:
2498 		m = (typeof(m)){"LP9802", "PCI-X",
2499 				"Obsolete, Unsupported Fibre Channel Adapter"};
2500 		break;
2501 	case PCI_DEVICE_ID_THOR:
2502 		m = (typeof(m)){"LP10000", "PCI-X",
2503 				"Obsolete, Unsupported Fibre Channel Adapter"};
2504 		break;
2505 	case PCI_DEVICE_ID_VIPER:
2506 		m = (typeof(m)){"LPX1000",  "PCI-X",
2507 				"Obsolete, Unsupported Fibre Channel Adapter"};
2508 		break;
2509 	case PCI_DEVICE_ID_PFLY:
2510 		m = (typeof(m)){"LP982", "PCI-X",
2511 				"Obsolete, Unsupported Fibre Channel Adapter"};
2512 		break;
2513 	case PCI_DEVICE_ID_TFLY:
2514 		m = (typeof(m)){"LP1050", "PCI-X",
2515 				"Obsolete, Unsupported Fibre Channel Adapter"};
2516 		break;
2517 	case PCI_DEVICE_ID_HELIOS:
2518 		m = (typeof(m)){"LP11000", "PCI-X2",
2519 				"Obsolete, Unsupported Fibre Channel Adapter"};
2520 		break;
2521 	case PCI_DEVICE_ID_HELIOS_SCSP:
2522 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2523 				"Obsolete, Unsupported Fibre Channel Adapter"};
2524 		break;
2525 	case PCI_DEVICE_ID_HELIOS_DCSP:
2526 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2527 				"Obsolete, Unsupported Fibre Channel Adapter"};
2528 		break;
2529 	case PCI_DEVICE_ID_NEPTUNE:
2530 		m = (typeof(m)){"LPe1000", "PCIe",
2531 				"Obsolete, Unsupported Fibre Channel Adapter"};
2532 		break;
2533 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2534 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2535 				"Obsolete, Unsupported Fibre Channel Adapter"};
2536 		break;
2537 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2538 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2539 				"Obsolete, Unsupported Fibre Channel Adapter"};
2540 		break;
2541 	case PCI_DEVICE_ID_BMID:
2542 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2543 		break;
2544 	case PCI_DEVICE_ID_BSMB:
2545 		m = (typeof(m)){"LP111", "PCI-X2",
2546 				"Obsolete, Unsupported Fibre Channel Adapter"};
2547 		break;
2548 	case PCI_DEVICE_ID_ZEPHYR:
2549 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2550 		break;
2551 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2552 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2553 		break;
2554 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2555 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2556 		GE = 1;
2557 		break;
2558 	case PCI_DEVICE_ID_ZMID:
2559 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2560 		break;
2561 	case PCI_DEVICE_ID_ZSMB:
2562 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2563 		break;
2564 	case PCI_DEVICE_ID_LP101:
2565 		m = (typeof(m)){"LP101", "PCI-X",
2566 				"Obsolete, Unsupported Fibre Channel Adapter"};
2567 		break;
2568 	case PCI_DEVICE_ID_LP10000S:
2569 		m = (typeof(m)){"LP10000-S", "PCI",
2570 				"Obsolete, Unsupported Fibre Channel Adapter"};
2571 		break;
2572 	case PCI_DEVICE_ID_LP11000S:
2573 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2574 				"Obsolete, Unsupported Fibre Channel Adapter"};
2575 		break;
2576 	case PCI_DEVICE_ID_LPE11000S:
2577 		m = (typeof(m)){"LPe11000-S", "PCIe",
2578 				"Obsolete, Unsupported Fibre Channel Adapter"};
2579 		break;
2580 	case PCI_DEVICE_ID_SAT:
2581 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2582 		break;
2583 	case PCI_DEVICE_ID_SAT_MID:
2584 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2585 		break;
2586 	case PCI_DEVICE_ID_SAT_SMB:
2587 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_SAT_DCSP:
2590 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2591 		break;
2592 	case PCI_DEVICE_ID_SAT_SCSP:
2593 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_SAT_S:
2596 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2597 		break;
2598 	case PCI_DEVICE_ID_HORNET:
2599 		m = (typeof(m)){"LP21000", "PCIe",
2600 				"Obsolete, Unsupported FCoE Adapter"};
2601 		GE = 1;
2602 		break;
2603 	case PCI_DEVICE_ID_PROTEUS_VF:
2604 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_PROTEUS_PF:
2608 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_PROTEUS_S:
2612 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_TIGERSHARK:
2616 		oneConnect = 1;
2617 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2618 		break;
2619 	case PCI_DEVICE_ID_TOMCAT:
2620 		oneConnect = 1;
2621 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2622 		break;
2623 	case PCI_DEVICE_ID_FALCON:
2624 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2625 				"EmulexSecure Fibre"};
2626 		break;
2627 	case PCI_DEVICE_ID_BALIUS:
2628 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_LANCER_FC:
2632 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2633 		break;
2634 	case PCI_DEVICE_ID_LANCER_FC_VF:
2635 		m = (typeof(m)){"LPe16000", "PCIe",
2636 				"Obsolete, Unsupported Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_LANCER_FCOE:
2639 		oneConnect = 1;
2640 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2641 		break;
2642 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2643 		oneConnect = 1;
2644 		m = (typeof(m)){"OCe15100", "PCIe",
2645 				"Obsolete, Unsupported FCoE"};
2646 		break;
2647 	case PCI_DEVICE_ID_LANCER_G6_FC:
2648 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2649 		break;
2650 	case PCI_DEVICE_ID_LANCER_G7_FC:
2651 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2652 		break;
2653 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2654 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_SKYHAWK:
2657 	case PCI_DEVICE_ID_SKYHAWK_VF:
2658 		oneConnect = 1;
2659 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2660 		break;
2661 	default:
2662 		m = (typeof(m)){"Unknown", "", ""};
2663 		break;
2664 	}
2665 
2666 	if (mdp && mdp[0] == '\0')
2667 		snprintf(mdp, 79,"%s", m.name);
2668 	/*
2669 	 * oneConnect hba requires special processing, they are all initiators
2670 	 * and we put the port number on the end
2671 	 */
2672 	if (descp && descp[0] == '\0') {
2673 		if (oneConnect)
2674 			snprintf(descp, 255,
2675 				"Emulex OneConnect %s, %s Initiator %s",
2676 				m.name, m.function,
2677 				phba->Port);
2678 		else if (max_speed == 0)
2679 			snprintf(descp, 255,
2680 				"Emulex %s %s %s",
2681 				m.name, m.bus, m.function);
2682 		else
2683 			snprintf(descp, 255,
2684 				"Emulex %s %d%s %s %s",
2685 				m.name, max_speed, (GE) ? "GE" : "Gb",
2686 				m.bus, m.function);
2687 	}
2688 }
2689 
2690 /**
2691  * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2692  * @phba: pointer to lpfc hba data structure.
2693  * @pring: pointer to a IOCB ring.
2694  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2695  *
2696  * This routine posts a given number of IOCBs with the associated DMA buffer
2697  * descriptors specified by the cnt argument to the given IOCB ring.
2698  *
2699  * Return codes
2700  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2701  **/
2702 int
2703 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2704 {
2705 	IOCB_t *icmd;
2706 	struct lpfc_iocbq *iocb;
2707 	struct lpfc_dmabuf *mp1, *mp2;
2708 
2709 	cnt += pring->missbufcnt;
2710 
2711 	/* While there are buffers to post */
2712 	while (cnt > 0) {
2713 		/* Allocate buffer for  command iocb */
2714 		iocb = lpfc_sli_get_iocbq(phba);
2715 		if (iocb == NULL) {
2716 			pring->missbufcnt = cnt;
2717 			return cnt;
2718 		}
2719 		icmd = &iocb->iocb;
2720 
2721 		/* 2 buffers can be posted per command */
2722 		/* Allocate buffer to post */
2723 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2724 		if (mp1)
2725 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2726 		if (!mp1 || !mp1->virt) {
2727 			kfree(mp1);
2728 			lpfc_sli_release_iocbq(phba, iocb);
2729 			pring->missbufcnt = cnt;
2730 			return cnt;
2731 		}
2732 
2733 		INIT_LIST_HEAD(&mp1->list);
2734 		/* Allocate buffer to post */
2735 		if (cnt > 1) {
2736 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2737 			if (mp2)
2738 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2739 							    &mp2->phys);
2740 			if (!mp2 || !mp2->virt) {
2741 				kfree(mp2);
2742 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2743 				kfree(mp1);
2744 				lpfc_sli_release_iocbq(phba, iocb);
2745 				pring->missbufcnt = cnt;
2746 				return cnt;
2747 			}
2748 
2749 			INIT_LIST_HEAD(&mp2->list);
2750 		} else {
2751 			mp2 = NULL;
2752 		}
2753 
2754 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2755 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2756 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2757 		icmd->ulpBdeCount = 1;
2758 		cnt--;
2759 		if (mp2) {
2760 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2761 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2762 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2763 			cnt--;
2764 			icmd->ulpBdeCount = 2;
2765 		}
2766 
2767 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2768 		icmd->ulpLe = 1;
2769 
2770 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2771 		    IOCB_ERROR) {
2772 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2773 			kfree(mp1);
2774 			cnt++;
2775 			if (mp2) {
2776 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2777 				kfree(mp2);
2778 				cnt++;
2779 			}
2780 			lpfc_sli_release_iocbq(phba, iocb);
2781 			pring->missbufcnt = cnt;
2782 			return cnt;
2783 		}
2784 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2785 		if (mp2)
2786 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2787 	}
2788 	pring->missbufcnt = 0;
2789 	return 0;
2790 }
2791 
2792 /**
2793  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2794  * @phba: pointer to lpfc hba data structure.
2795  *
2796  * This routine posts initial receive IOCB buffers to the ELS ring. The
2797  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2798  * set to 64 IOCBs. SLI3 only.
2799  *
2800  * Return codes
2801  *   0 - success (currently always success)
2802  **/
2803 static int
2804 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2805 {
2806 	struct lpfc_sli *psli = &phba->sli;
2807 
2808 	/* Ring 0, ELS / CT buffers */
2809 	lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2810 	/* Ring 2 - FCP no buffers needed */
2811 
2812 	return 0;
2813 }
2814 
2815 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2816 
2817 /**
2818  * lpfc_sha_init - Set up initial array of hash table entries
2819  * @HashResultPointer: pointer to an array as hash table.
2820  *
2821  * This routine sets up the initial values to the array of hash table entries
2822  * for the LC HBAs.
2823  **/
2824 static void
2825 lpfc_sha_init(uint32_t * HashResultPointer)
2826 {
2827 	HashResultPointer[0] = 0x67452301;
2828 	HashResultPointer[1] = 0xEFCDAB89;
2829 	HashResultPointer[2] = 0x98BADCFE;
2830 	HashResultPointer[3] = 0x10325476;
2831 	HashResultPointer[4] = 0xC3D2E1F0;
2832 }
2833 
2834 /**
2835  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2836  * @HashResultPointer: pointer to an initial/result hash table.
2837  * @HashWorkingPointer: pointer to an working hash table.
2838  *
2839  * This routine iterates an initial hash table pointed by @HashResultPointer
2840  * with the values from the working hash table pointeed by @HashWorkingPointer.
2841  * The results are putting back to the initial hash table, returned through
2842  * the @HashResultPointer as the result hash table.
2843  **/
2844 static void
2845 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2846 {
2847 	int t;
2848 	uint32_t TEMP;
2849 	uint32_t A, B, C, D, E;
2850 	t = 16;
2851 	do {
2852 		HashWorkingPointer[t] =
2853 		    S(1,
2854 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2855 								     8] ^
2856 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2857 	} while (++t <= 79);
2858 	t = 0;
2859 	A = HashResultPointer[0];
2860 	B = HashResultPointer[1];
2861 	C = HashResultPointer[2];
2862 	D = HashResultPointer[3];
2863 	E = HashResultPointer[4];
2864 
2865 	do {
2866 		if (t < 20) {
2867 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2868 		} else if (t < 40) {
2869 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2870 		} else if (t < 60) {
2871 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2872 		} else {
2873 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2874 		}
2875 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2876 		E = D;
2877 		D = C;
2878 		C = S(30, B);
2879 		B = A;
2880 		A = TEMP;
2881 	} while (++t <= 79);
2882 
2883 	HashResultPointer[0] += A;
2884 	HashResultPointer[1] += B;
2885 	HashResultPointer[2] += C;
2886 	HashResultPointer[3] += D;
2887 	HashResultPointer[4] += E;
2888 
2889 }
2890 
2891 /**
2892  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2893  * @RandomChallenge: pointer to the entry of host challenge random number array.
2894  * @HashWorking: pointer to the entry of the working hash array.
2895  *
2896  * This routine calculates the working hash array referred by @HashWorking
2897  * from the challenge random numbers associated with the host, referred by
2898  * @RandomChallenge. The result is put into the entry of the working hash
2899  * array and returned by reference through @HashWorking.
2900  **/
2901 static void
2902 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2903 {
2904 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2905 }
2906 
2907 /**
2908  * lpfc_hba_init - Perform special handling for LC HBA initialization
2909  * @phba: pointer to lpfc hba data structure.
2910  * @hbainit: pointer to an array of unsigned 32-bit integers.
2911  *
2912  * This routine performs the special handling for LC HBA initialization.
2913  **/
2914 void
2915 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2916 {
2917 	int t;
2918 	uint32_t *HashWorking;
2919 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2920 
2921 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2922 	if (!HashWorking)
2923 		return;
2924 
2925 	HashWorking[0] = HashWorking[78] = *pwwnn++;
2926 	HashWorking[1] = HashWorking[79] = *pwwnn;
2927 
2928 	for (t = 0; t < 7; t++)
2929 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2930 
2931 	lpfc_sha_init(hbainit);
2932 	lpfc_sha_iterate(hbainit, HashWorking);
2933 	kfree(HashWorking);
2934 }
2935 
2936 /**
2937  * lpfc_cleanup - Performs vport cleanups before deleting a vport
2938  * @vport: pointer to a virtual N_Port data structure.
2939  *
2940  * This routine performs the necessary cleanups before deleting the @vport.
2941  * It invokes the discovery state machine to perform necessary state
2942  * transitions and to release the ndlps associated with the @vport. Note,
2943  * the physical port is treated as @vport 0.
2944  **/
2945 void
2946 lpfc_cleanup(struct lpfc_vport *vport)
2947 {
2948 	struct lpfc_hba   *phba = vport->phba;
2949 	struct lpfc_nodelist *ndlp, *next_ndlp;
2950 	int i = 0;
2951 
2952 	if (phba->link_state > LPFC_LINK_DOWN)
2953 		lpfc_port_link_failure(vport);
2954 
2955 	/* Clean up VMID resources */
2956 	if (lpfc_is_vmid_enabled(phba))
2957 		lpfc_vmid_vport_cleanup(vport);
2958 
2959 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2960 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
2961 		    ndlp->nlp_DID == Fabric_DID) {
2962 			/* Just free up ndlp with Fabric_DID for vports */
2963 			lpfc_nlp_put(ndlp);
2964 			continue;
2965 		}
2966 
2967 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2968 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2969 			lpfc_nlp_put(ndlp);
2970 			continue;
2971 		}
2972 
2973 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
2974 		 * DEVICE_RM event.
2975 		 */
2976 		if (ndlp->nlp_type & NLP_FABRIC &&
2977 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2978 			lpfc_disc_state_machine(vport, ndlp, NULL,
2979 					NLP_EVT_DEVICE_RECOVERY);
2980 
2981 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2982 			lpfc_disc_state_machine(vport, ndlp, NULL,
2983 					NLP_EVT_DEVICE_RM);
2984 	}
2985 
2986 	/* At this point, ALL ndlp's should be gone
2987 	 * because of the previous NLP_EVT_DEVICE_RM.
2988 	 * Lets wait for this to happen, if needed.
2989 	 */
2990 	while (!list_empty(&vport->fc_nodes)) {
2991 		if (i++ > 3000) {
2992 			lpfc_printf_vlog(vport, KERN_ERR,
2993 					 LOG_TRACE_EVENT,
2994 				"0233 Nodelist not empty\n");
2995 			list_for_each_entry_safe(ndlp, next_ndlp,
2996 						&vport->fc_nodes, nlp_listp) {
2997 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2998 						 LOG_TRACE_EVENT,
2999 						 "0282 did:x%x ndlp:x%px "
3000 						 "refcnt:%d xflags x%x nflag x%x\n",
3001 						 ndlp->nlp_DID, (void *)ndlp,
3002 						 kref_read(&ndlp->kref),
3003 						 ndlp->fc4_xpt_flags,
3004 						 ndlp->nlp_flag);
3005 			}
3006 			break;
3007 		}
3008 
3009 		/* Wait for any activity on ndlps to settle */
3010 		msleep(10);
3011 	}
3012 	lpfc_cleanup_vports_rrqs(vport, NULL);
3013 }
3014 
3015 /**
3016  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3017  * @vport: pointer to a virtual N_Port data structure.
3018  *
3019  * This routine stops all the timers associated with a @vport. This function
3020  * is invoked before disabling or deleting a @vport. Note that the physical
3021  * port is treated as @vport 0.
3022  **/
3023 void
3024 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3025 {
3026 	del_timer_sync(&vport->els_tmofunc);
3027 	del_timer_sync(&vport->delayed_disc_tmo);
3028 	lpfc_can_disctmo(vport);
3029 	return;
3030 }
3031 
3032 /**
3033  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3034  * @phba: pointer to lpfc hba data structure.
3035  *
3036  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3037  * caller of this routine should already hold the host lock.
3038  **/
3039 void
3040 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3041 {
3042 	/* Clear pending FCF rediscovery wait flag */
3043 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3044 
3045 	/* Now, try to stop the timer */
3046 	del_timer(&phba->fcf.redisc_wait);
3047 }
3048 
3049 /**
3050  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3051  * @phba: pointer to lpfc hba data structure.
3052  *
3053  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3054  * checks whether the FCF rediscovery wait timer is pending with the host
3055  * lock held before proceeding with disabling the timer and clearing the
3056  * wait timer pendig flag.
3057  **/
3058 void
3059 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3060 {
3061 	spin_lock_irq(&phba->hbalock);
3062 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3063 		/* FCF rediscovery timer already fired or stopped */
3064 		spin_unlock_irq(&phba->hbalock);
3065 		return;
3066 	}
3067 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3068 	/* Clear failover in progress flags */
3069 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3070 	spin_unlock_irq(&phba->hbalock);
3071 }
3072 
3073 /**
3074  * lpfc_cmf_stop - Stop CMF processing
3075  * @phba: pointer to lpfc hba data structure.
3076  *
3077  * This is called when the link goes down or if CMF mode is turned OFF.
3078  * It is also called when going offline or unloaded just before the
3079  * congestion info buffer is unregistered.
3080  **/
3081 void
3082 lpfc_cmf_stop(struct lpfc_hba *phba)
3083 {
3084 	int cpu;
3085 	struct lpfc_cgn_stat *cgs;
3086 
3087 	/* We only do something if CMF is enabled */
3088 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3089 		return;
3090 
3091 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3092 			"6221 Stop CMF / Cancel Timer\n");
3093 
3094 	/* Cancel the CMF timer */
3095 	hrtimer_cancel(&phba->cmf_timer);
3096 
3097 	/* Zero CMF counters */
3098 	atomic_set(&phba->cmf_busy, 0);
3099 	for_each_present_cpu(cpu) {
3100 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3101 		atomic64_set(&cgs->total_bytes, 0);
3102 		atomic64_set(&cgs->rcv_bytes, 0);
3103 		atomic_set(&cgs->rx_io_cnt, 0);
3104 		atomic64_set(&cgs->rx_latency, 0);
3105 	}
3106 	atomic_set(&phba->cmf_bw_wait, 0);
3107 
3108 	/* Resume any blocked IO - Queue unblock on workqueue */
3109 	queue_work(phba->wq, &phba->unblock_request_work);
3110 }
3111 
3112 static inline uint64_t
3113 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3114 {
3115 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3116 
3117 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3118 }
3119 
3120 void
3121 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3122 {
3123 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3124 			"6223 Signal CMF init\n");
3125 
3126 	/* Use the new fc_linkspeed to recalculate */
3127 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3128 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3129 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3130 					    phba->cmf_interval_rate, 1000);
3131 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3132 
3133 	/* This is a signal to firmware to sync up CMF BW with link speed */
3134 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3135 }
3136 
3137 /**
3138  * lpfc_cmf_start - Start CMF processing
3139  * @phba: pointer to lpfc hba data structure.
3140  *
3141  * This is called when the link comes up or if CMF mode is turned OFF
3142  * to Monitor or Managed.
3143  **/
3144 void
3145 lpfc_cmf_start(struct lpfc_hba *phba)
3146 {
3147 	struct lpfc_cgn_stat *cgs;
3148 	int cpu;
3149 
3150 	/* We only do something if CMF is enabled */
3151 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3152 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3153 		return;
3154 
3155 	/* Reinitialize congestion buffer info */
3156 	lpfc_init_congestion_buf(phba);
3157 
3158 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3159 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3160 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3161 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3162 
3163 	atomic_set(&phba->cmf_busy, 0);
3164 	for_each_present_cpu(cpu) {
3165 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3166 		atomic64_set(&cgs->total_bytes, 0);
3167 		atomic64_set(&cgs->rcv_bytes, 0);
3168 		atomic_set(&cgs->rx_io_cnt, 0);
3169 		atomic64_set(&cgs->rx_latency, 0);
3170 	}
3171 	phba->cmf_latency.tv_sec = 0;
3172 	phba->cmf_latency.tv_nsec = 0;
3173 
3174 	lpfc_cmf_signal_init(phba);
3175 
3176 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3177 			"6222 Start CMF / Timer\n");
3178 
3179 	phba->cmf_timer_cnt = 0;
3180 	hrtimer_start(&phba->cmf_timer,
3181 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3182 		      HRTIMER_MODE_REL);
3183 	/* Setup for latency check in IO cmpl routines */
3184 	ktime_get_real_ts64(&phba->cmf_latency);
3185 
3186 	atomic_set(&phba->cmf_bw_wait, 0);
3187 	atomic_set(&phba->cmf_stop_io, 0);
3188 }
3189 
3190 /**
3191  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3192  * @phba: pointer to lpfc hba data structure.
3193  *
3194  * This routine stops all the timers associated with a HBA. This function is
3195  * invoked before either putting a HBA offline or unloading the driver.
3196  **/
3197 void
3198 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3199 {
3200 	if (phba->pport)
3201 		lpfc_stop_vport_timers(phba->pport);
3202 	cancel_delayed_work_sync(&phba->eq_delay_work);
3203 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3204 	del_timer_sync(&phba->sli.mbox_tmo);
3205 	del_timer_sync(&phba->fabric_block_timer);
3206 	del_timer_sync(&phba->eratt_poll);
3207 	del_timer_sync(&phba->hb_tmofunc);
3208 	if (phba->sli_rev == LPFC_SLI_REV4) {
3209 		del_timer_sync(&phba->rrq_tmr);
3210 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3211 	}
3212 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3213 
3214 	switch (phba->pci_dev_grp) {
3215 	case LPFC_PCI_DEV_LP:
3216 		/* Stop any LightPulse device specific driver timers */
3217 		del_timer_sync(&phba->fcp_poll_timer);
3218 		break;
3219 	case LPFC_PCI_DEV_OC:
3220 		/* Stop any OneConnect device specific driver timers */
3221 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3222 		break;
3223 	default:
3224 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3225 				"0297 Invalid device group (x%x)\n",
3226 				phba->pci_dev_grp);
3227 		break;
3228 	}
3229 	return;
3230 }
3231 
3232 /**
3233  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3234  * @phba: pointer to lpfc hba data structure.
3235  * @mbx_action: flag for mailbox no wait action.
3236  *
3237  * This routine marks a HBA's management interface as blocked. Once the HBA's
3238  * management interface is marked as blocked, all the user space access to
3239  * the HBA, whether they are from sysfs interface or libdfc interface will
3240  * all be blocked. The HBA is set to block the management interface when the
3241  * driver prepares the HBA interface for online or offline.
3242  **/
3243 static void
3244 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3245 {
3246 	unsigned long iflag;
3247 	uint8_t actcmd = MBX_HEARTBEAT;
3248 	unsigned long timeout;
3249 
3250 	spin_lock_irqsave(&phba->hbalock, iflag);
3251 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3252 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3253 	if (mbx_action == LPFC_MBX_NO_WAIT)
3254 		return;
3255 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3256 	spin_lock_irqsave(&phba->hbalock, iflag);
3257 	if (phba->sli.mbox_active) {
3258 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3259 		/* Determine how long we might wait for the active mailbox
3260 		 * command to be gracefully completed by firmware.
3261 		 */
3262 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3263 				phba->sli.mbox_active) * 1000) + jiffies;
3264 	}
3265 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3266 
3267 	/* Wait for the outstnading mailbox command to complete */
3268 	while (phba->sli.mbox_active) {
3269 		/* Check active mailbox complete status every 2ms */
3270 		msleep(2);
3271 		if (time_after(jiffies, timeout)) {
3272 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3273 					"2813 Mgmt IO is Blocked %x "
3274 					"- mbox cmd %x still active\n",
3275 					phba->sli.sli_flag, actcmd);
3276 			break;
3277 		}
3278 	}
3279 }
3280 
3281 /**
3282  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3283  * @phba: pointer to lpfc hba data structure.
3284  *
3285  * Allocate RPIs for all active remote nodes. This is needed whenever
3286  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3287  * is to fixup the temporary rpi assignments.
3288  **/
3289 void
3290 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3291 {
3292 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3293 	struct lpfc_vport **vports;
3294 	int i, rpi;
3295 
3296 	if (phba->sli_rev != LPFC_SLI_REV4)
3297 		return;
3298 
3299 	vports = lpfc_create_vport_work_array(phba);
3300 	if (vports == NULL)
3301 		return;
3302 
3303 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3304 		if (vports[i]->load_flag & FC_UNLOADING)
3305 			continue;
3306 
3307 		list_for_each_entry_safe(ndlp, next_ndlp,
3308 					 &vports[i]->fc_nodes,
3309 					 nlp_listp) {
3310 			rpi = lpfc_sli4_alloc_rpi(phba);
3311 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3312 				/* TODO print log? */
3313 				continue;
3314 			}
3315 			ndlp->nlp_rpi = rpi;
3316 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3317 					 LOG_NODE | LOG_DISCOVERY,
3318 					 "0009 Assign RPI x%x to ndlp x%px "
3319 					 "DID:x%06x flg:x%x\n",
3320 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3321 					 ndlp->nlp_flag);
3322 		}
3323 	}
3324 	lpfc_destroy_vport_work_array(phba, vports);
3325 }
3326 
3327 /**
3328  * lpfc_create_expedite_pool - create expedite pool
3329  * @phba: pointer to lpfc hba data structure.
3330  *
3331  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3332  * to expedite pool. Mark them as expedite.
3333  **/
3334 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3335 {
3336 	struct lpfc_sli4_hdw_queue *qp;
3337 	struct lpfc_io_buf *lpfc_ncmd;
3338 	struct lpfc_io_buf *lpfc_ncmd_next;
3339 	struct lpfc_epd_pool *epd_pool;
3340 	unsigned long iflag;
3341 
3342 	epd_pool = &phba->epd_pool;
3343 	qp = &phba->sli4_hba.hdwq[0];
3344 
3345 	spin_lock_init(&epd_pool->lock);
3346 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3347 	spin_lock(&epd_pool->lock);
3348 	INIT_LIST_HEAD(&epd_pool->list);
3349 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3350 				 &qp->lpfc_io_buf_list_put, list) {
3351 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3352 		lpfc_ncmd->expedite = true;
3353 		qp->put_io_bufs--;
3354 		epd_pool->count++;
3355 		if (epd_pool->count >= XRI_BATCH)
3356 			break;
3357 	}
3358 	spin_unlock(&epd_pool->lock);
3359 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3360 }
3361 
3362 /**
3363  * lpfc_destroy_expedite_pool - destroy expedite pool
3364  * @phba: pointer to lpfc hba data structure.
3365  *
3366  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3367  * of HWQ 0. Clear the mark.
3368  **/
3369 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3370 {
3371 	struct lpfc_sli4_hdw_queue *qp;
3372 	struct lpfc_io_buf *lpfc_ncmd;
3373 	struct lpfc_io_buf *lpfc_ncmd_next;
3374 	struct lpfc_epd_pool *epd_pool;
3375 	unsigned long iflag;
3376 
3377 	epd_pool = &phba->epd_pool;
3378 	qp = &phba->sli4_hba.hdwq[0];
3379 
3380 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3381 	spin_lock(&epd_pool->lock);
3382 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3383 				 &epd_pool->list, list) {
3384 		list_move_tail(&lpfc_ncmd->list,
3385 			       &qp->lpfc_io_buf_list_put);
3386 		lpfc_ncmd->flags = false;
3387 		qp->put_io_bufs++;
3388 		epd_pool->count--;
3389 	}
3390 	spin_unlock(&epd_pool->lock);
3391 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3392 }
3393 
3394 /**
3395  * lpfc_create_multixri_pools - create multi-XRI pools
3396  * @phba: pointer to lpfc hba data structure.
3397  *
3398  * This routine initialize public, private per HWQ. Then, move XRIs from
3399  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3400  * Initialized.
3401  **/
3402 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3403 {
3404 	u32 i, j;
3405 	u32 hwq_count;
3406 	u32 count_per_hwq;
3407 	struct lpfc_io_buf *lpfc_ncmd;
3408 	struct lpfc_io_buf *lpfc_ncmd_next;
3409 	unsigned long iflag;
3410 	struct lpfc_sli4_hdw_queue *qp;
3411 	struct lpfc_multixri_pool *multixri_pool;
3412 	struct lpfc_pbl_pool *pbl_pool;
3413 	struct lpfc_pvt_pool *pvt_pool;
3414 
3415 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3416 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3417 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3418 			phba->sli4_hba.io_xri_cnt);
3419 
3420 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3421 		lpfc_create_expedite_pool(phba);
3422 
3423 	hwq_count = phba->cfg_hdw_queue;
3424 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3425 
3426 	for (i = 0; i < hwq_count; i++) {
3427 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3428 
3429 		if (!multixri_pool) {
3430 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3431 					"1238 Failed to allocate memory for "
3432 					"multixri_pool\n");
3433 
3434 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3435 				lpfc_destroy_expedite_pool(phba);
3436 
3437 			j = 0;
3438 			while (j < i) {
3439 				qp = &phba->sli4_hba.hdwq[j];
3440 				kfree(qp->p_multixri_pool);
3441 				j++;
3442 			}
3443 			phba->cfg_xri_rebalancing = 0;
3444 			return;
3445 		}
3446 
3447 		qp = &phba->sli4_hba.hdwq[i];
3448 		qp->p_multixri_pool = multixri_pool;
3449 
3450 		multixri_pool->xri_limit = count_per_hwq;
3451 		multixri_pool->rrb_next_hwqid = i;
3452 
3453 		/* Deal with public free xri pool */
3454 		pbl_pool = &multixri_pool->pbl_pool;
3455 		spin_lock_init(&pbl_pool->lock);
3456 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3457 		spin_lock(&pbl_pool->lock);
3458 		INIT_LIST_HEAD(&pbl_pool->list);
3459 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3460 					 &qp->lpfc_io_buf_list_put, list) {
3461 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3462 			qp->put_io_bufs--;
3463 			pbl_pool->count++;
3464 		}
3465 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3466 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3467 				pbl_pool->count, i);
3468 		spin_unlock(&pbl_pool->lock);
3469 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3470 
3471 		/* Deal with private free xri pool */
3472 		pvt_pool = &multixri_pool->pvt_pool;
3473 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3474 		pvt_pool->low_watermark = XRI_BATCH;
3475 		spin_lock_init(&pvt_pool->lock);
3476 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3477 		INIT_LIST_HEAD(&pvt_pool->list);
3478 		pvt_pool->count = 0;
3479 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3480 	}
3481 }
3482 
3483 /**
3484  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3485  * @phba: pointer to lpfc hba data structure.
3486  *
3487  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3488  **/
3489 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3490 {
3491 	u32 i;
3492 	u32 hwq_count;
3493 	struct lpfc_io_buf *lpfc_ncmd;
3494 	struct lpfc_io_buf *lpfc_ncmd_next;
3495 	unsigned long iflag;
3496 	struct lpfc_sli4_hdw_queue *qp;
3497 	struct lpfc_multixri_pool *multixri_pool;
3498 	struct lpfc_pbl_pool *pbl_pool;
3499 	struct lpfc_pvt_pool *pvt_pool;
3500 
3501 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3502 		lpfc_destroy_expedite_pool(phba);
3503 
3504 	if (!(phba->pport->load_flag & FC_UNLOADING))
3505 		lpfc_sli_flush_io_rings(phba);
3506 
3507 	hwq_count = phba->cfg_hdw_queue;
3508 
3509 	for (i = 0; i < hwq_count; i++) {
3510 		qp = &phba->sli4_hba.hdwq[i];
3511 		multixri_pool = qp->p_multixri_pool;
3512 		if (!multixri_pool)
3513 			continue;
3514 
3515 		qp->p_multixri_pool = NULL;
3516 
3517 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3518 
3519 		/* Deal with public free xri pool */
3520 		pbl_pool = &multixri_pool->pbl_pool;
3521 		spin_lock(&pbl_pool->lock);
3522 
3523 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3524 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3525 				pbl_pool->count, i);
3526 
3527 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3528 					 &pbl_pool->list, list) {
3529 			list_move_tail(&lpfc_ncmd->list,
3530 				       &qp->lpfc_io_buf_list_put);
3531 			qp->put_io_bufs++;
3532 			pbl_pool->count--;
3533 		}
3534 
3535 		INIT_LIST_HEAD(&pbl_pool->list);
3536 		pbl_pool->count = 0;
3537 
3538 		spin_unlock(&pbl_pool->lock);
3539 
3540 		/* Deal with private free xri pool */
3541 		pvt_pool = &multixri_pool->pvt_pool;
3542 		spin_lock(&pvt_pool->lock);
3543 
3544 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3545 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3546 				pvt_pool->count, i);
3547 
3548 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3549 					 &pvt_pool->list, list) {
3550 			list_move_tail(&lpfc_ncmd->list,
3551 				       &qp->lpfc_io_buf_list_put);
3552 			qp->put_io_bufs++;
3553 			pvt_pool->count--;
3554 		}
3555 
3556 		INIT_LIST_HEAD(&pvt_pool->list);
3557 		pvt_pool->count = 0;
3558 
3559 		spin_unlock(&pvt_pool->lock);
3560 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3561 
3562 		kfree(multixri_pool);
3563 	}
3564 }
3565 
3566 /**
3567  * lpfc_online - Initialize and bring a HBA online
3568  * @phba: pointer to lpfc hba data structure.
3569  *
3570  * This routine initializes the HBA and brings a HBA online. During this
3571  * process, the management interface is blocked to prevent user space access
3572  * to the HBA interfering with the driver initialization.
3573  *
3574  * Return codes
3575  *   0 - successful
3576  *   1 - failed
3577  **/
3578 int
3579 lpfc_online(struct lpfc_hba *phba)
3580 {
3581 	struct lpfc_vport *vport;
3582 	struct lpfc_vport **vports;
3583 	int i, error = 0;
3584 	bool vpis_cleared = false;
3585 
3586 	if (!phba)
3587 		return 0;
3588 	vport = phba->pport;
3589 
3590 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3591 		return 0;
3592 
3593 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3594 			"0458 Bring Adapter online\n");
3595 
3596 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3597 
3598 	if (phba->sli_rev == LPFC_SLI_REV4) {
3599 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3600 			lpfc_unblock_mgmt_io(phba);
3601 			return 1;
3602 		}
3603 		spin_lock_irq(&phba->hbalock);
3604 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3605 			vpis_cleared = true;
3606 		spin_unlock_irq(&phba->hbalock);
3607 
3608 		/* Reestablish the local initiator port.
3609 		 * The offline process destroyed the previous lport.
3610 		 */
3611 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3612 				!phba->nvmet_support) {
3613 			error = lpfc_nvme_create_localport(phba->pport);
3614 			if (error)
3615 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3616 					"6132 NVME restore reg failed "
3617 					"on nvmei error x%x\n", error);
3618 		}
3619 	} else {
3620 		lpfc_sli_queue_init(phba);
3621 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3622 			lpfc_unblock_mgmt_io(phba);
3623 			return 1;
3624 		}
3625 	}
3626 
3627 	vports = lpfc_create_vport_work_array(phba);
3628 	if (vports != NULL) {
3629 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3630 			struct Scsi_Host *shost;
3631 			shost = lpfc_shost_from_vport(vports[i]);
3632 			spin_lock_irq(shost->host_lock);
3633 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3634 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3635 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3636 			if (phba->sli_rev == LPFC_SLI_REV4) {
3637 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3638 				if ((vpis_cleared) &&
3639 				    (vports[i]->port_type !=
3640 					LPFC_PHYSICAL_PORT))
3641 					vports[i]->vpi = 0;
3642 			}
3643 			spin_unlock_irq(shost->host_lock);
3644 		}
3645 	}
3646 	lpfc_destroy_vport_work_array(phba, vports);
3647 
3648 	if (phba->cfg_xri_rebalancing)
3649 		lpfc_create_multixri_pools(phba);
3650 
3651 	lpfc_cpuhp_add(phba);
3652 
3653 	lpfc_unblock_mgmt_io(phba);
3654 	return 0;
3655 }
3656 
3657 /**
3658  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3659  * @phba: pointer to lpfc hba data structure.
3660  *
3661  * This routine marks a HBA's management interface as not blocked. Once the
3662  * HBA's management interface is marked as not blocked, all the user space
3663  * access to the HBA, whether they are from sysfs interface or libdfc
3664  * interface will be allowed. The HBA is set to block the management interface
3665  * when the driver prepares the HBA interface for online or offline and then
3666  * set to unblock the management interface afterwards.
3667  **/
3668 void
3669 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3670 {
3671 	unsigned long iflag;
3672 
3673 	spin_lock_irqsave(&phba->hbalock, iflag);
3674 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3675 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3676 }
3677 
3678 /**
3679  * lpfc_offline_prep - Prepare a HBA to be brought offline
3680  * @phba: pointer to lpfc hba data structure.
3681  * @mbx_action: flag for mailbox shutdown action.
3682  *
3683  * This routine is invoked to prepare a HBA to be brought offline. It performs
3684  * unregistration login to all the nodes on all vports and flushes the mailbox
3685  * queue to make it ready to be brought offline.
3686  **/
3687 void
3688 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3689 {
3690 	struct lpfc_vport *vport = phba->pport;
3691 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3692 	struct lpfc_vport **vports;
3693 	struct Scsi_Host *shost;
3694 	int i;
3695 	int offline = 0;
3696 
3697 	if (vport->fc_flag & FC_OFFLINE_MODE)
3698 		return;
3699 
3700 	lpfc_block_mgmt_io(phba, mbx_action);
3701 
3702 	lpfc_linkdown(phba);
3703 
3704 	offline =  pci_channel_offline(phba->pcidev);
3705 
3706 	/* Issue an unreg_login to all nodes on all vports */
3707 	vports = lpfc_create_vport_work_array(phba);
3708 	if (vports != NULL) {
3709 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3710 			if (vports[i]->load_flag & FC_UNLOADING)
3711 				continue;
3712 			shost = lpfc_shost_from_vport(vports[i]);
3713 			spin_lock_irq(shost->host_lock);
3714 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3715 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3716 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3717 			spin_unlock_irq(shost->host_lock);
3718 
3719 			shost =	lpfc_shost_from_vport(vports[i]);
3720 			list_for_each_entry_safe(ndlp, next_ndlp,
3721 						 &vports[i]->fc_nodes,
3722 						 nlp_listp) {
3723 
3724 				spin_lock_irq(&ndlp->lock);
3725 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3726 				spin_unlock_irq(&ndlp->lock);
3727 
3728 				if (offline) {
3729 					spin_lock_irq(&ndlp->lock);
3730 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3731 							    NLP_RPI_REGISTERED);
3732 					spin_unlock_irq(&ndlp->lock);
3733 				} else {
3734 					lpfc_unreg_rpi(vports[i], ndlp);
3735 				}
3736 				/*
3737 				 * Whenever an SLI4 port goes offline, free the
3738 				 * RPI. Get a new RPI when the adapter port
3739 				 * comes back online.
3740 				 */
3741 				if (phba->sli_rev == LPFC_SLI_REV4) {
3742 					lpfc_printf_vlog(vports[i], KERN_INFO,
3743 						 LOG_NODE | LOG_DISCOVERY,
3744 						 "0011 Free RPI x%x on "
3745 						 "ndlp: x%px did x%x\n",
3746 						 ndlp->nlp_rpi, ndlp,
3747 						 ndlp->nlp_DID);
3748 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3749 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3750 				}
3751 
3752 				if (ndlp->nlp_type & NLP_FABRIC) {
3753 					lpfc_disc_state_machine(vports[i], ndlp,
3754 						NULL, NLP_EVT_DEVICE_RECOVERY);
3755 
3756 					/* Don't remove the node unless the node
3757 					 * has been unregistered with the
3758 					 * transport, and we're not in recovery
3759 					 * before dev_loss_tmo triggered.
3760 					 * Otherwise, let dev_loss take care of
3761 					 * the node.
3762 					 */
3763 					if (!(ndlp->save_flags &
3764 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3765 					    !(ndlp->fc4_xpt_flags &
3766 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3767 						lpfc_disc_state_machine
3768 							(vports[i], ndlp,
3769 							 NULL,
3770 							 NLP_EVT_DEVICE_RM);
3771 				}
3772 			}
3773 		}
3774 	}
3775 	lpfc_destroy_vport_work_array(phba, vports);
3776 
3777 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3778 
3779 	if (phba->wq)
3780 		flush_workqueue(phba->wq);
3781 }
3782 
3783 /**
3784  * lpfc_offline - Bring a HBA offline
3785  * @phba: pointer to lpfc hba data structure.
3786  *
3787  * This routine actually brings a HBA offline. It stops all the timers
3788  * associated with the HBA, brings down the SLI layer, and eventually
3789  * marks the HBA as in offline state for the upper layer protocol.
3790  **/
3791 void
3792 lpfc_offline(struct lpfc_hba *phba)
3793 {
3794 	struct Scsi_Host  *shost;
3795 	struct lpfc_vport **vports;
3796 	int i;
3797 
3798 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3799 		return;
3800 
3801 	/* stop port and all timers associated with this hba */
3802 	lpfc_stop_port(phba);
3803 
3804 	/* Tear down the local and target port registrations.  The
3805 	 * nvme transports need to cleanup.
3806 	 */
3807 	lpfc_nvmet_destroy_targetport(phba);
3808 	lpfc_nvme_destroy_localport(phba->pport);
3809 
3810 	vports = lpfc_create_vport_work_array(phba);
3811 	if (vports != NULL)
3812 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3813 			lpfc_stop_vport_timers(vports[i]);
3814 	lpfc_destroy_vport_work_array(phba, vports);
3815 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3816 			"0460 Bring Adapter offline\n");
3817 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3818 	   now.  */
3819 	lpfc_sli_hba_down(phba);
3820 	spin_lock_irq(&phba->hbalock);
3821 	phba->work_ha = 0;
3822 	spin_unlock_irq(&phba->hbalock);
3823 	vports = lpfc_create_vport_work_array(phba);
3824 	if (vports != NULL)
3825 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3826 			shost = lpfc_shost_from_vport(vports[i]);
3827 			spin_lock_irq(shost->host_lock);
3828 			vports[i]->work_port_events = 0;
3829 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3830 			spin_unlock_irq(shost->host_lock);
3831 		}
3832 	lpfc_destroy_vport_work_array(phba, vports);
3833 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3834 	 * in hba_unset
3835 	 */
3836 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3837 		__lpfc_cpuhp_remove(phba);
3838 
3839 	if (phba->cfg_xri_rebalancing)
3840 		lpfc_destroy_multixri_pools(phba);
3841 }
3842 
3843 /**
3844  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3845  * @phba: pointer to lpfc hba data structure.
3846  *
3847  * This routine is to free all the SCSI buffers and IOCBs from the driver
3848  * list back to kernel. It is called from lpfc_pci_remove_one to free
3849  * the internal resources before the device is removed from the system.
3850  **/
3851 static void
3852 lpfc_scsi_free(struct lpfc_hba *phba)
3853 {
3854 	struct lpfc_io_buf *sb, *sb_next;
3855 
3856 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3857 		return;
3858 
3859 	spin_lock_irq(&phba->hbalock);
3860 
3861 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3862 
3863 	spin_lock(&phba->scsi_buf_list_put_lock);
3864 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3865 				 list) {
3866 		list_del(&sb->list);
3867 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3868 			      sb->dma_handle);
3869 		kfree(sb);
3870 		phba->total_scsi_bufs--;
3871 	}
3872 	spin_unlock(&phba->scsi_buf_list_put_lock);
3873 
3874 	spin_lock(&phba->scsi_buf_list_get_lock);
3875 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3876 				 list) {
3877 		list_del(&sb->list);
3878 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3879 			      sb->dma_handle);
3880 		kfree(sb);
3881 		phba->total_scsi_bufs--;
3882 	}
3883 	spin_unlock(&phba->scsi_buf_list_get_lock);
3884 	spin_unlock_irq(&phba->hbalock);
3885 }
3886 
3887 /**
3888  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3889  * @phba: pointer to lpfc hba data structure.
3890  *
3891  * This routine is to free all the IO buffers and IOCBs from the driver
3892  * list back to kernel. It is called from lpfc_pci_remove_one to free
3893  * the internal resources before the device is removed from the system.
3894  **/
3895 void
3896 lpfc_io_free(struct lpfc_hba *phba)
3897 {
3898 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3899 	struct lpfc_sli4_hdw_queue *qp;
3900 	int idx;
3901 
3902 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3903 		qp = &phba->sli4_hba.hdwq[idx];
3904 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3905 		spin_lock(&qp->io_buf_list_put_lock);
3906 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3907 					 &qp->lpfc_io_buf_list_put,
3908 					 list) {
3909 			list_del(&lpfc_ncmd->list);
3910 			qp->put_io_bufs--;
3911 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3912 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3913 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3914 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3915 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3916 			kfree(lpfc_ncmd);
3917 			qp->total_io_bufs--;
3918 		}
3919 		spin_unlock(&qp->io_buf_list_put_lock);
3920 
3921 		spin_lock(&qp->io_buf_list_get_lock);
3922 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3923 					 &qp->lpfc_io_buf_list_get,
3924 					 list) {
3925 			list_del(&lpfc_ncmd->list);
3926 			qp->get_io_bufs--;
3927 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3928 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3929 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3930 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3931 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3932 			kfree(lpfc_ncmd);
3933 			qp->total_io_bufs--;
3934 		}
3935 		spin_unlock(&qp->io_buf_list_get_lock);
3936 	}
3937 }
3938 
3939 /**
3940  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3941  * @phba: pointer to lpfc hba data structure.
3942  *
3943  * This routine first calculates the sizes of the current els and allocated
3944  * scsi sgl lists, and then goes through all sgls to updates the physical
3945  * XRIs assigned due to port function reset. During port initialization, the
3946  * current els and allocated scsi sgl lists are 0s.
3947  *
3948  * Return codes
3949  *   0 - successful (for now, it always returns 0)
3950  **/
3951 int
3952 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3953 {
3954 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3955 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
3956 	LIST_HEAD(els_sgl_list);
3957 	int rc;
3958 
3959 	/*
3960 	 * update on pci function's els xri-sgl list
3961 	 */
3962 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3963 
3964 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3965 		/* els xri-sgl expanded */
3966 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3967 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3968 				"3157 ELS xri-sgl count increased from "
3969 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3970 				els_xri_cnt);
3971 		/* allocate the additional els sgls */
3972 		for (i = 0; i < xri_cnt; i++) {
3973 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3974 					     GFP_KERNEL);
3975 			if (sglq_entry == NULL) {
3976 				lpfc_printf_log(phba, KERN_ERR,
3977 						LOG_TRACE_EVENT,
3978 						"2562 Failure to allocate an "
3979 						"ELS sgl entry:%d\n", i);
3980 				rc = -ENOMEM;
3981 				goto out_free_mem;
3982 			}
3983 			sglq_entry->buff_type = GEN_BUFF_TYPE;
3984 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3985 							   &sglq_entry->phys);
3986 			if (sglq_entry->virt == NULL) {
3987 				kfree(sglq_entry);
3988 				lpfc_printf_log(phba, KERN_ERR,
3989 						LOG_TRACE_EVENT,
3990 						"2563 Failure to allocate an "
3991 						"ELS mbuf:%d\n", i);
3992 				rc = -ENOMEM;
3993 				goto out_free_mem;
3994 			}
3995 			sglq_entry->sgl = sglq_entry->virt;
3996 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3997 			sglq_entry->state = SGL_FREED;
3998 			list_add_tail(&sglq_entry->list, &els_sgl_list);
3999 		}
4000 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4001 		list_splice_init(&els_sgl_list,
4002 				 &phba->sli4_hba.lpfc_els_sgl_list);
4003 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4004 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4005 		/* els xri-sgl shrinked */
4006 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4007 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4008 				"3158 ELS xri-sgl count decreased from "
4009 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4010 				els_xri_cnt);
4011 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4012 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4013 				 &els_sgl_list);
4014 		/* release extra els sgls from list */
4015 		for (i = 0; i < xri_cnt; i++) {
4016 			list_remove_head(&els_sgl_list,
4017 					 sglq_entry, struct lpfc_sglq, list);
4018 			if (sglq_entry) {
4019 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4020 						 sglq_entry->phys);
4021 				kfree(sglq_entry);
4022 			}
4023 		}
4024 		list_splice_init(&els_sgl_list,
4025 				 &phba->sli4_hba.lpfc_els_sgl_list);
4026 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4027 	} else
4028 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4029 				"3163 ELS xri-sgl count unchanged: %d\n",
4030 				els_xri_cnt);
4031 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4032 
4033 	/* update xris to els sgls on the list */
4034 	sglq_entry = NULL;
4035 	sglq_entry_next = NULL;
4036 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4037 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4038 		lxri = lpfc_sli4_next_xritag(phba);
4039 		if (lxri == NO_XRI) {
4040 			lpfc_printf_log(phba, KERN_ERR,
4041 					LOG_TRACE_EVENT,
4042 					"2400 Failed to allocate xri for "
4043 					"ELS sgl\n");
4044 			rc = -ENOMEM;
4045 			goto out_free_mem;
4046 		}
4047 		sglq_entry->sli4_lxritag = lxri;
4048 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4049 	}
4050 	return 0;
4051 
4052 out_free_mem:
4053 	lpfc_free_els_sgl_list(phba);
4054 	return rc;
4055 }
4056 
4057 /**
4058  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4059  * @phba: pointer to lpfc hba data structure.
4060  *
4061  * This routine first calculates the sizes of the current els and allocated
4062  * scsi sgl lists, and then goes through all sgls to updates the physical
4063  * XRIs assigned due to port function reset. During port initialization, the
4064  * current els and allocated scsi sgl lists are 0s.
4065  *
4066  * Return codes
4067  *   0 - successful (for now, it always returns 0)
4068  **/
4069 int
4070 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4071 {
4072 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4073 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4074 	uint16_t nvmet_xri_cnt;
4075 	LIST_HEAD(nvmet_sgl_list);
4076 	int rc;
4077 
4078 	/*
4079 	 * update on pci function's nvmet xri-sgl list
4080 	 */
4081 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4082 
4083 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4084 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4085 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4086 		/* els xri-sgl expanded */
4087 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4088 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4089 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4090 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4091 		/* allocate the additional nvmet sgls */
4092 		for (i = 0; i < xri_cnt; i++) {
4093 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4094 					     GFP_KERNEL);
4095 			if (sglq_entry == NULL) {
4096 				lpfc_printf_log(phba, KERN_ERR,
4097 						LOG_TRACE_EVENT,
4098 						"6303 Failure to allocate an "
4099 						"NVMET sgl entry:%d\n", i);
4100 				rc = -ENOMEM;
4101 				goto out_free_mem;
4102 			}
4103 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4104 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4105 							   &sglq_entry->phys);
4106 			if (sglq_entry->virt == NULL) {
4107 				kfree(sglq_entry);
4108 				lpfc_printf_log(phba, KERN_ERR,
4109 						LOG_TRACE_EVENT,
4110 						"6304 Failure to allocate an "
4111 						"NVMET buf:%d\n", i);
4112 				rc = -ENOMEM;
4113 				goto out_free_mem;
4114 			}
4115 			sglq_entry->sgl = sglq_entry->virt;
4116 			memset(sglq_entry->sgl, 0,
4117 			       phba->cfg_sg_dma_buf_size);
4118 			sglq_entry->state = SGL_FREED;
4119 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4120 		}
4121 		spin_lock_irq(&phba->hbalock);
4122 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4123 		list_splice_init(&nvmet_sgl_list,
4124 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4125 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4126 		spin_unlock_irq(&phba->hbalock);
4127 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4128 		/* nvmet xri-sgl shrunk */
4129 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4130 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4131 				"6305 NVMET xri-sgl count decreased from "
4132 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4133 				nvmet_xri_cnt);
4134 		spin_lock_irq(&phba->hbalock);
4135 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4136 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4137 				 &nvmet_sgl_list);
4138 		/* release extra nvmet sgls from list */
4139 		for (i = 0; i < xri_cnt; i++) {
4140 			list_remove_head(&nvmet_sgl_list,
4141 					 sglq_entry, struct lpfc_sglq, list);
4142 			if (sglq_entry) {
4143 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4144 						    sglq_entry->phys);
4145 				kfree(sglq_entry);
4146 			}
4147 		}
4148 		list_splice_init(&nvmet_sgl_list,
4149 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4150 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4151 		spin_unlock_irq(&phba->hbalock);
4152 	} else
4153 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4154 				"6306 NVMET xri-sgl count unchanged: %d\n",
4155 				nvmet_xri_cnt);
4156 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4157 
4158 	/* update xris to nvmet sgls on the list */
4159 	sglq_entry = NULL;
4160 	sglq_entry_next = NULL;
4161 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4162 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4163 		lxri = lpfc_sli4_next_xritag(phba);
4164 		if (lxri == NO_XRI) {
4165 			lpfc_printf_log(phba, KERN_ERR,
4166 					LOG_TRACE_EVENT,
4167 					"6307 Failed to allocate xri for "
4168 					"NVMET sgl\n");
4169 			rc = -ENOMEM;
4170 			goto out_free_mem;
4171 		}
4172 		sglq_entry->sli4_lxritag = lxri;
4173 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4174 	}
4175 	return 0;
4176 
4177 out_free_mem:
4178 	lpfc_free_nvmet_sgl_list(phba);
4179 	return rc;
4180 }
4181 
4182 int
4183 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4184 {
4185 	LIST_HEAD(blist);
4186 	struct lpfc_sli4_hdw_queue *qp;
4187 	struct lpfc_io_buf *lpfc_cmd;
4188 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4189 	int idx, cnt, xri, inserted;
4190 
4191 	cnt = 0;
4192 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4193 		qp = &phba->sli4_hba.hdwq[idx];
4194 		spin_lock_irq(&qp->io_buf_list_get_lock);
4195 		spin_lock(&qp->io_buf_list_put_lock);
4196 
4197 		/* Take everything off the get and put lists */
4198 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4199 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4200 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4201 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4202 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4203 		qp->get_io_bufs = 0;
4204 		qp->put_io_bufs = 0;
4205 		qp->total_io_bufs = 0;
4206 		spin_unlock(&qp->io_buf_list_put_lock);
4207 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4208 	}
4209 
4210 	/*
4211 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4212 	 * This is because POST_SGL takes a sequential range of XRIs
4213 	 * to post to the firmware.
4214 	 */
4215 	for (idx = 0; idx < cnt; idx++) {
4216 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4217 		if (!lpfc_cmd)
4218 			return cnt;
4219 		if (idx == 0) {
4220 			list_add_tail(&lpfc_cmd->list, cbuf);
4221 			continue;
4222 		}
4223 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4224 		inserted = 0;
4225 		prev_iobufp = NULL;
4226 		list_for_each_entry(iobufp, cbuf, list) {
4227 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4228 				if (prev_iobufp)
4229 					list_add(&lpfc_cmd->list,
4230 						 &prev_iobufp->list);
4231 				else
4232 					list_add(&lpfc_cmd->list, cbuf);
4233 				inserted = 1;
4234 				break;
4235 			}
4236 			prev_iobufp = iobufp;
4237 		}
4238 		if (!inserted)
4239 			list_add_tail(&lpfc_cmd->list, cbuf);
4240 	}
4241 	return cnt;
4242 }
4243 
4244 int
4245 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4246 {
4247 	struct lpfc_sli4_hdw_queue *qp;
4248 	struct lpfc_io_buf *lpfc_cmd;
4249 	int idx, cnt;
4250 
4251 	qp = phba->sli4_hba.hdwq;
4252 	cnt = 0;
4253 	while (!list_empty(cbuf)) {
4254 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4255 			list_remove_head(cbuf, lpfc_cmd,
4256 					 struct lpfc_io_buf, list);
4257 			if (!lpfc_cmd)
4258 				return cnt;
4259 			cnt++;
4260 			qp = &phba->sli4_hba.hdwq[idx];
4261 			lpfc_cmd->hdwq_no = idx;
4262 			lpfc_cmd->hdwq = qp;
4263 			lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
4264 			lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
4265 			spin_lock(&qp->io_buf_list_put_lock);
4266 			list_add_tail(&lpfc_cmd->list,
4267 				      &qp->lpfc_io_buf_list_put);
4268 			qp->put_io_bufs++;
4269 			qp->total_io_bufs++;
4270 			spin_unlock(&qp->io_buf_list_put_lock);
4271 		}
4272 	}
4273 	return cnt;
4274 }
4275 
4276 /**
4277  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4278  * @phba: pointer to lpfc hba data structure.
4279  *
4280  * This routine first calculates the sizes of the current els and allocated
4281  * scsi sgl lists, and then goes through all sgls to updates the physical
4282  * XRIs assigned due to port function reset. During port initialization, the
4283  * current els and allocated scsi sgl lists are 0s.
4284  *
4285  * Return codes
4286  *   0 - successful (for now, it always returns 0)
4287  **/
4288 int
4289 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4290 {
4291 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4292 	uint16_t i, lxri, els_xri_cnt;
4293 	uint16_t io_xri_cnt, io_xri_max;
4294 	LIST_HEAD(io_sgl_list);
4295 	int rc, cnt;
4296 
4297 	/*
4298 	 * update on pci function's allocated nvme xri-sgl list
4299 	 */
4300 
4301 	/* maximum number of xris available for nvme buffers */
4302 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4303 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4304 	phba->sli4_hba.io_xri_max = io_xri_max;
4305 
4306 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4307 			"6074 Current allocated XRI sgl count:%d, "
4308 			"maximum XRI count:%d\n",
4309 			phba->sli4_hba.io_xri_cnt,
4310 			phba->sli4_hba.io_xri_max);
4311 
4312 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4313 
4314 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4315 		/* max nvme xri shrunk below the allocated nvme buffers */
4316 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4317 					phba->sli4_hba.io_xri_max;
4318 		/* release the extra allocated nvme buffers */
4319 		for (i = 0; i < io_xri_cnt; i++) {
4320 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4321 					 struct lpfc_io_buf, list);
4322 			if (lpfc_ncmd) {
4323 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4324 					      lpfc_ncmd->data,
4325 					      lpfc_ncmd->dma_handle);
4326 				kfree(lpfc_ncmd);
4327 			}
4328 		}
4329 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4330 	}
4331 
4332 	/* update xris associated to remaining allocated nvme buffers */
4333 	lpfc_ncmd = NULL;
4334 	lpfc_ncmd_next = NULL;
4335 	phba->sli4_hba.io_xri_cnt = cnt;
4336 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4337 				 &io_sgl_list, list) {
4338 		lxri = lpfc_sli4_next_xritag(phba);
4339 		if (lxri == NO_XRI) {
4340 			lpfc_printf_log(phba, KERN_ERR,
4341 					LOG_TRACE_EVENT,
4342 					"6075 Failed to allocate xri for "
4343 					"nvme buffer\n");
4344 			rc = -ENOMEM;
4345 			goto out_free_mem;
4346 		}
4347 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4348 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4349 	}
4350 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4351 	return 0;
4352 
4353 out_free_mem:
4354 	lpfc_io_free(phba);
4355 	return rc;
4356 }
4357 
4358 /**
4359  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4360  * @phba: Pointer to lpfc hba data structure.
4361  * @num_to_alloc: The requested number of buffers to allocate.
4362  *
4363  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4364  * the nvme buffer contains all the necessary information needed to initiate
4365  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4366  * them on a list, it post them to the port by using SGL block post.
4367  *
4368  * Return codes:
4369  *   int - number of IO buffers that were allocated and posted.
4370  *   0 = failure, less than num_to_alloc is a partial failure.
4371  **/
4372 int
4373 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4374 {
4375 	struct lpfc_io_buf *lpfc_ncmd;
4376 	struct lpfc_iocbq *pwqeq;
4377 	uint16_t iotag, lxri = 0;
4378 	int bcnt, num_posted;
4379 	LIST_HEAD(prep_nblist);
4380 	LIST_HEAD(post_nblist);
4381 	LIST_HEAD(nvme_nblist);
4382 
4383 	phba->sli4_hba.io_xri_cnt = 0;
4384 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4385 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4386 		if (!lpfc_ncmd)
4387 			break;
4388 		/*
4389 		 * Get memory from the pci pool to map the virt space to
4390 		 * pci bus space for an I/O. The DMA buffer includes the
4391 		 * number of SGE's necessary to support the sg_tablesize.
4392 		 */
4393 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4394 						  GFP_KERNEL,
4395 						  &lpfc_ncmd->dma_handle);
4396 		if (!lpfc_ncmd->data) {
4397 			kfree(lpfc_ncmd);
4398 			break;
4399 		}
4400 
4401 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4402 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4403 		} else {
4404 			/*
4405 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4406 			 * check to be sure.
4407 			 */
4408 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4409 			    (((unsigned long)(lpfc_ncmd->data) &
4410 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4411 				lpfc_printf_log(phba, KERN_ERR,
4412 						LOG_TRACE_EVENT,
4413 						"3369 Memory alignment err: "
4414 						"addr=%lx\n",
4415 						(unsigned long)lpfc_ncmd->data);
4416 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4417 					      lpfc_ncmd->data,
4418 					      lpfc_ncmd->dma_handle);
4419 				kfree(lpfc_ncmd);
4420 				break;
4421 			}
4422 		}
4423 
4424 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4425 
4426 		lxri = lpfc_sli4_next_xritag(phba);
4427 		if (lxri == NO_XRI) {
4428 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4429 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4430 			kfree(lpfc_ncmd);
4431 			break;
4432 		}
4433 		pwqeq = &lpfc_ncmd->cur_iocbq;
4434 
4435 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4436 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4437 		if (iotag == 0) {
4438 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4439 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4440 			kfree(lpfc_ncmd);
4441 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4442 					"6121 Failed to allocate IOTAG for"
4443 					" XRI:0x%x\n", lxri);
4444 			lpfc_sli4_free_xri(phba, lxri);
4445 			break;
4446 		}
4447 		pwqeq->sli4_lxritag = lxri;
4448 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4449 		pwqeq->context1 = lpfc_ncmd;
4450 
4451 		/* Initialize local short-hand pointers. */
4452 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4453 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4454 		lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4455 		spin_lock_init(&lpfc_ncmd->buf_lock);
4456 
4457 		/* add the nvme buffer to a post list */
4458 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4459 		phba->sli4_hba.io_xri_cnt++;
4460 	}
4461 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4462 			"6114 Allocate %d out of %d requested new NVME "
4463 			"buffers\n", bcnt, num_to_alloc);
4464 
4465 	/* post the list of nvme buffer sgls to port if available */
4466 	if (!list_empty(&post_nblist))
4467 		num_posted = lpfc_sli4_post_io_sgl_list(
4468 				phba, &post_nblist, bcnt);
4469 	else
4470 		num_posted = 0;
4471 
4472 	return num_posted;
4473 }
4474 
4475 static uint64_t
4476 lpfc_get_wwpn(struct lpfc_hba *phba)
4477 {
4478 	uint64_t wwn;
4479 	int rc;
4480 	LPFC_MBOXQ_t *mboxq;
4481 	MAILBOX_t *mb;
4482 
4483 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4484 						GFP_KERNEL);
4485 	if (!mboxq)
4486 		return (uint64_t)-1;
4487 
4488 	/* First get WWN of HBA instance */
4489 	lpfc_read_nv(phba, mboxq);
4490 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4491 	if (rc != MBX_SUCCESS) {
4492 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4493 				"6019 Mailbox failed , mbxCmd x%x "
4494 				"READ_NV, mbxStatus x%x\n",
4495 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4496 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4497 		mempool_free(mboxq, phba->mbox_mem_pool);
4498 		return (uint64_t) -1;
4499 	}
4500 	mb = &mboxq->u.mb;
4501 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4502 	/* wwn is WWPN of HBA instance */
4503 	mempool_free(mboxq, phba->mbox_mem_pool);
4504 	if (phba->sli_rev == LPFC_SLI_REV4)
4505 		return be64_to_cpu(wwn);
4506 	else
4507 		return rol64(wwn, 32);
4508 }
4509 
4510 /**
4511  * lpfc_vmid_res_alloc - Allocates resources for VMID
4512  * @phba: pointer to lpfc hba data structure.
4513  * @vport: pointer to vport data structure
4514  *
4515  * This routine allocated the resources needed for the VMID.
4516  *
4517  * Return codes
4518  *	0 on Success
4519  *	Non-0 on Failure
4520  */
4521 static int
4522 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4523 {
4524 	/* VMID feature is supported only on SLI4 */
4525 	if (phba->sli_rev == LPFC_SLI_REV3) {
4526 		phba->cfg_vmid_app_header = 0;
4527 		phba->cfg_vmid_priority_tagging = 0;
4528 	}
4529 
4530 	if (lpfc_is_vmid_enabled(phba)) {
4531 		vport->vmid =
4532 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4533 			    GFP_KERNEL);
4534 		if (!vport->vmid)
4535 			return -ENOMEM;
4536 
4537 		rwlock_init(&vport->vmid_lock);
4538 
4539 		/* Set the VMID parameters for the vport */
4540 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4541 		vport->vmid_inactivity_timeout =
4542 		    phba->cfg_vmid_inactivity_timeout;
4543 		vport->max_vmid = phba->cfg_max_vmid;
4544 		vport->cur_vmid_cnt = 0;
4545 
4546 		vport->vmid_priority_range = bitmap_zalloc
4547 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4548 
4549 		if (!vport->vmid_priority_range) {
4550 			kfree(vport->vmid);
4551 			return -ENOMEM;
4552 		}
4553 
4554 		hash_init(vport->hash_table);
4555 	}
4556 	return 0;
4557 }
4558 
4559 /**
4560  * lpfc_create_port - Create an FC port
4561  * @phba: pointer to lpfc hba data structure.
4562  * @instance: a unique integer ID to this FC port.
4563  * @dev: pointer to the device data structure.
4564  *
4565  * This routine creates a FC port for the upper layer protocol. The FC port
4566  * can be created on top of either a physical port or a virtual port provided
4567  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4568  * and associates the FC port created before adding the shost into the SCSI
4569  * layer.
4570  *
4571  * Return codes
4572  *   @vport - pointer to the virtual N_Port data structure.
4573  *   NULL - port create failed.
4574  **/
4575 struct lpfc_vport *
4576 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4577 {
4578 	struct lpfc_vport *vport;
4579 	struct Scsi_Host  *shost = NULL;
4580 	struct scsi_host_template *template;
4581 	int error = 0;
4582 	int i;
4583 	uint64_t wwn;
4584 	bool use_no_reset_hba = false;
4585 	int rc;
4586 
4587 	if (lpfc_no_hba_reset_cnt) {
4588 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4589 		    dev == &phba->pcidev->dev) {
4590 			/* Reset the port first */
4591 			lpfc_sli_brdrestart(phba);
4592 			rc = lpfc_sli_chipset_init(phba);
4593 			if (rc)
4594 				return NULL;
4595 		}
4596 		wwn = lpfc_get_wwpn(phba);
4597 	}
4598 
4599 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4600 		if (wwn == lpfc_no_hba_reset[i]) {
4601 			lpfc_printf_log(phba, KERN_ERR,
4602 					LOG_TRACE_EVENT,
4603 					"6020 Setting use_no_reset port=%llx\n",
4604 					wwn);
4605 			use_no_reset_hba = true;
4606 			break;
4607 		}
4608 	}
4609 
4610 	/* Seed template for SCSI host registration */
4611 	if (dev == &phba->pcidev->dev) {
4612 		template = &phba->port_template;
4613 
4614 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4615 			/* Seed physical port template */
4616 			memcpy(template, &lpfc_template, sizeof(*template));
4617 
4618 			if (use_no_reset_hba)
4619 				/* template is for a no reset SCSI Host */
4620 				template->eh_host_reset_handler = NULL;
4621 
4622 			/* Template for all vports this physical port creates */
4623 			memcpy(&phba->vport_template, &lpfc_template,
4624 			       sizeof(*template));
4625 			phba->vport_template.shost_groups = lpfc_vport_groups;
4626 			phba->vport_template.eh_bus_reset_handler = NULL;
4627 			phba->vport_template.eh_host_reset_handler = NULL;
4628 			phba->vport_template.vendor_id = 0;
4629 
4630 			/* Initialize the host templates with updated value */
4631 			if (phba->sli_rev == LPFC_SLI_REV4) {
4632 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4633 				phba->vport_template.sg_tablesize =
4634 					phba->cfg_scsi_seg_cnt;
4635 			} else {
4636 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4637 				phba->vport_template.sg_tablesize =
4638 					phba->cfg_sg_seg_cnt;
4639 			}
4640 
4641 		} else {
4642 			/* NVMET is for physical port only */
4643 			memcpy(template, &lpfc_template_nvme,
4644 			       sizeof(*template));
4645 		}
4646 	} else {
4647 		template = &phba->vport_template;
4648 	}
4649 
4650 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4651 	if (!shost)
4652 		goto out;
4653 
4654 	vport = (struct lpfc_vport *) shost->hostdata;
4655 	vport->phba = phba;
4656 	vport->load_flag |= FC_LOADING;
4657 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4658 	vport->fc_rscn_flush = 0;
4659 	lpfc_get_vport_cfgparam(vport);
4660 
4661 	/* Adjust value in vport */
4662 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4663 
4664 	shost->unique_id = instance;
4665 	shost->max_id = LPFC_MAX_TARGET;
4666 	shost->max_lun = vport->cfg_max_luns;
4667 	shost->this_id = -1;
4668 	shost->max_cmd_len = 16;
4669 
4670 	if (phba->sli_rev == LPFC_SLI_REV4) {
4671 		if (!phba->cfg_fcp_mq_threshold ||
4672 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4673 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4674 
4675 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4676 					    phba->cfg_fcp_mq_threshold);
4677 
4678 		shost->dma_boundary =
4679 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4680 
4681 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4682 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4683 		else
4684 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4685 	} else
4686 		/* SLI-3 has a limited number of hardware queues (3),
4687 		 * thus there is only one for FCP processing.
4688 		 */
4689 		shost->nr_hw_queues = 1;
4690 
4691 	/*
4692 	 * Set initial can_queue value since 0 is no longer supported and
4693 	 * scsi_add_host will fail. This will be adjusted later based on the
4694 	 * max xri value determined in hba setup.
4695 	 */
4696 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4697 	if (dev != &phba->pcidev->dev) {
4698 		shost->transportt = lpfc_vport_transport_template;
4699 		vport->port_type = LPFC_NPIV_PORT;
4700 	} else {
4701 		shost->transportt = lpfc_transport_template;
4702 		vport->port_type = LPFC_PHYSICAL_PORT;
4703 	}
4704 
4705 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4706 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4707 			"SEGcnt %d/%d\n",
4708 			vport->port_type, shost->sg_tablesize,
4709 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4710 
4711 	/* Allocate the resources for VMID */
4712 	rc = lpfc_vmid_res_alloc(phba, vport);
4713 
4714 	if (rc)
4715 		goto out;
4716 
4717 	/* Initialize all internally managed lists. */
4718 	INIT_LIST_HEAD(&vport->fc_nodes);
4719 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4720 	spin_lock_init(&vport->work_port_lock);
4721 
4722 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4723 
4724 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4725 
4726 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4727 
4728 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4729 		lpfc_setup_bg(phba, shost);
4730 
4731 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4732 	if (error)
4733 		goto out_put_shost;
4734 
4735 	spin_lock_irq(&phba->port_list_lock);
4736 	list_add_tail(&vport->listentry, &phba->port_list);
4737 	spin_unlock_irq(&phba->port_list_lock);
4738 	return vport;
4739 
4740 out_put_shost:
4741 	kfree(vport->vmid);
4742 	bitmap_free(vport->vmid_priority_range);
4743 	scsi_host_put(shost);
4744 out:
4745 	return NULL;
4746 }
4747 
4748 /**
4749  * destroy_port -  destroy an FC port
4750  * @vport: pointer to an lpfc virtual N_Port data structure.
4751  *
4752  * This routine destroys a FC port from the upper layer protocol. All the
4753  * resources associated with the port are released.
4754  **/
4755 void
4756 destroy_port(struct lpfc_vport *vport)
4757 {
4758 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4759 	struct lpfc_hba  *phba = vport->phba;
4760 
4761 	lpfc_debugfs_terminate(vport);
4762 	fc_remove_host(shost);
4763 	scsi_remove_host(shost);
4764 
4765 	spin_lock_irq(&phba->port_list_lock);
4766 	list_del_init(&vport->listentry);
4767 	spin_unlock_irq(&phba->port_list_lock);
4768 
4769 	lpfc_cleanup(vport);
4770 	return;
4771 }
4772 
4773 /**
4774  * lpfc_get_instance - Get a unique integer ID
4775  *
4776  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4777  * uses the kernel idr facility to perform the task.
4778  *
4779  * Return codes:
4780  *   instance - a unique integer ID allocated as the new instance.
4781  *   -1 - lpfc get instance failed.
4782  **/
4783 int
4784 lpfc_get_instance(void)
4785 {
4786 	int ret;
4787 
4788 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4789 	return ret < 0 ? -1 : ret;
4790 }
4791 
4792 /**
4793  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4794  * @shost: pointer to SCSI host data structure.
4795  * @time: elapsed time of the scan in jiffies.
4796  *
4797  * This routine is called by the SCSI layer with a SCSI host to determine
4798  * whether the scan host is finished.
4799  *
4800  * Note: there is no scan_start function as adapter initialization will have
4801  * asynchronously kicked off the link initialization.
4802  *
4803  * Return codes
4804  *   0 - SCSI host scan is not over yet.
4805  *   1 - SCSI host scan is over.
4806  **/
4807 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4808 {
4809 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4810 	struct lpfc_hba   *phba = vport->phba;
4811 	int stat = 0;
4812 
4813 	spin_lock_irq(shost->host_lock);
4814 
4815 	if (vport->load_flag & FC_UNLOADING) {
4816 		stat = 1;
4817 		goto finished;
4818 	}
4819 	if (time >= msecs_to_jiffies(30 * 1000)) {
4820 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4821 				"0461 Scanning longer than 30 "
4822 				"seconds.  Continuing initialization\n");
4823 		stat = 1;
4824 		goto finished;
4825 	}
4826 	if (time >= msecs_to_jiffies(15 * 1000) &&
4827 	    phba->link_state <= LPFC_LINK_DOWN) {
4828 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4829 				"0465 Link down longer than 15 "
4830 				"seconds.  Continuing initialization\n");
4831 		stat = 1;
4832 		goto finished;
4833 	}
4834 
4835 	if (vport->port_state != LPFC_VPORT_READY)
4836 		goto finished;
4837 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4838 		goto finished;
4839 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4840 		goto finished;
4841 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4842 		goto finished;
4843 
4844 	stat = 1;
4845 
4846 finished:
4847 	spin_unlock_irq(shost->host_lock);
4848 	return stat;
4849 }
4850 
4851 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4852 {
4853 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4854 	struct lpfc_hba   *phba = vport->phba;
4855 
4856 	fc_host_supported_speeds(shost) = 0;
4857 	/*
4858 	 * Avoid reporting supported link speed for FCoE as it can't be
4859 	 * controlled via FCoE.
4860 	 */
4861 	if (phba->hba_flag & HBA_FCOE_MODE)
4862 		return;
4863 
4864 	if (phba->lmt & LMT_256Gb)
4865 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4866 	if (phba->lmt & LMT_128Gb)
4867 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4868 	if (phba->lmt & LMT_64Gb)
4869 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4870 	if (phba->lmt & LMT_32Gb)
4871 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4872 	if (phba->lmt & LMT_16Gb)
4873 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4874 	if (phba->lmt & LMT_10Gb)
4875 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4876 	if (phba->lmt & LMT_8Gb)
4877 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4878 	if (phba->lmt & LMT_4Gb)
4879 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4880 	if (phba->lmt & LMT_2Gb)
4881 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4882 	if (phba->lmt & LMT_1Gb)
4883 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4884 }
4885 
4886 /**
4887  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4888  * @shost: pointer to SCSI host data structure.
4889  *
4890  * This routine initializes a given SCSI host attributes on a FC port. The
4891  * SCSI host can be either on top of a physical port or a virtual port.
4892  **/
4893 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4894 {
4895 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4896 	struct lpfc_hba   *phba = vport->phba;
4897 	/*
4898 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
4899 	 */
4900 
4901 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4902 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4903 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
4904 
4905 	memset(fc_host_supported_fc4s(shost), 0,
4906 	       sizeof(fc_host_supported_fc4s(shost)));
4907 	fc_host_supported_fc4s(shost)[2] = 1;
4908 	fc_host_supported_fc4s(shost)[7] = 1;
4909 
4910 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4911 				 sizeof fc_host_symbolic_name(shost));
4912 
4913 	lpfc_host_supported_speeds_set(shost);
4914 
4915 	fc_host_maxframe_size(shost) =
4916 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4917 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4918 
4919 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4920 
4921 	/* This value is also unchanging */
4922 	memset(fc_host_active_fc4s(shost), 0,
4923 	       sizeof(fc_host_active_fc4s(shost)));
4924 	fc_host_active_fc4s(shost)[2] = 1;
4925 	fc_host_active_fc4s(shost)[7] = 1;
4926 
4927 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
4928 	spin_lock_irq(shost->host_lock);
4929 	vport->load_flag &= ~FC_LOADING;
4930 	spin_unlock_irq(shost->host_lock);
4931 }
4932 
4933 /**
4934  * lpfc_stop_port_s3 - Stop SLI3 device port
4935  * @phba: pointer to lpfc hba data structure.
4936  *
4937  * This routine is invoked to stop an SLI3 device port, it stops the device
4938  * from generating interrupts and stops the device driver's timers for the
4939  * device.
4940  **/
4941 static void
4942 lpfc_stop_port_s3(struct lpfc_hba *phba)
4943 {
4944 	/* Clear all interrupt enable conditions */
4945 	writel(0, phba->HCregaddr);
4946 	readl(phba->HCregaddr); /* flush */
4947 	/* Clear all pending interrupts */
4948 	writel(0xffffffff, phba->HAregaddr);
4949 	readl(phba->HAregaddr); /* flush */
4950 
4951 	/* Reset some HBA SLI setup states */
4952 	lpfc_stop_hba_timers(phba);
4953 	phba->pport->work_port_events = 0;
4954 }
4955 
4956 /**
4957  * lpfc_stop_port_s4 - Stop SLI4 device port
4958  * @phba: pointer to lpfc hba data structure.
4959  *
4960  * This routine is invoked to stop an SLI4 device port, it stops the device
4961  * from generating interrupts and stops the device driver's timers for the
4962  * device.
4963  **/
4964 static void
4965 lpfc_stop_port_s4(struct lpfc_hba *phba)
4966 {
4967 	/* Reset some HBA SLI4 setup states */
4968 	lpfc_stop_hba_timers(phba);
4969 	if (phba->pport)
4970 		phba->pport->work_port_events = 0;
4971 	phba->sli4_hba.intr_enable = 0;
4972 }
4973 
4974 /**
4975  * lpfc_stop_port - Wrapper function for stopping hba port
4976  * @phba: Pointer to HBA context object.
4977  *
4978  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4979  * the API jump table function pointer from the lpfc_hba struct.
4980  **/
4981 void
4982 lpfc_stop_port(struct lpfc_hba *phba)
4983 {
4984 	phba->lpfc_stop_port(phba);
4985 
4986 	if (phba->wq)
4987 		flush_workqueue(phba->wq);
4988 }
4989 
4990 /**
4991  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4992  * @phba: Pointer to hba for which this call is being executed.
4993  *
4994  * This routine starts the timer waiting for the FCF rediscovery to complete.
4995  **/
4996 void
4997 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4998 {
4999 	unsigned long fcf_redisc_wait_tmo =
5000 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5001 	/* Start fcf rediscovery wait period timer */
5002 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5003 	spin_lock_irq(&phba->hbalock);
5004 	/* Allow action to new fcf asynchronous event */
5005 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5006 	/* Mark the FCF rediscovery pending state */
5007 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5008 	spin_unlock_irq(&phba->hbalock);
5009 }
5010 
5011 /**
5012  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5013  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5014  *
5015  * This routine is invoked when waiting for FCF table rediscover has been
5016  * timed out. If new FCF record(s) has (have) been discovered during the
5017  * wait period, a new FCF event shall be added to the FCOE async event
5018  * list, and then worker thread shall be waked up for processing from the
5019  * worker thread context.
5020  **/
5021 static void
5022 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5023 {
5024 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5025 
5026 	/* Don't send FCF rediscovery event if timer cancelled */
5027 	spin_lock_irq(&phba->hbalock);
5028 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5029 		spin_unlock_irq(&phba->hbalock);
5030 		return;
5031 	}
5032 	/* Clear FCF rediscovery timer pending flag */
5033 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5034 	/* FCF rediscovery event to worker thread */
5035 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5036 	spin_unlock_irq(&phba->hbalock);
5037 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5038 			"2776 FCF rediscover quiescent timer expired\n");
5039 	/* wake up worker thread */
5040 	lpfc_worker_wake_up(phba);
5041 }
5042 
5043 /**
5044  * lpfc_vmid_poll - VMID timeout detection
5045  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5046  *
5047  * This routine is invoked when there is no I/O on by a VM for the specified
5048  * amount of time. When this situation is detected, the VMID has to be
5049  * deregistered from the switch and all the local resources freed. The VMID
5050  * will be reassigned to the VM once the I/O begins.
5051  **/
5052 static void
5053 lpfc_vmid_poll(struct timer_list *t)
5054 {
5055 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5056 	u32 wake_up = 0;
5057 
5058 	/* check if there is a need to issue QFPA */
5059 	if (phba->pport->vmid_priority_tagging) {
5060 		wake_up = 1;
5061 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5062 	}
5063 
5064 	/* Is the vmid inactivity timer enabled */
5065 	if (phba->pport->vmid_inactivity_timeout ||
5066 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5067 		wake_up = 1;
5068 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5069 	}
5070 
5071 	if (wake_up)
5072 		lpfc_worker_wake_up(phba);
5073 
5074 	/* restart the timer for the next iteration */
5075 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5076 							LPFC_VMID_TIMER));
5077 }
5078 
5079 /**
5080  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5081  * @phba: pointer to lpfc hba data structure.
5082  * @acqe_link: pointer to the async link completion queue entry.
5083  *
5084  * This routine is to parse the SLI4 link-attention link fault code.
5085  **/
5086 static void
5087 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5088 			   struct lpfc_acqe_link *acqe_link)
5089 {
5090 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5091 	case LPFC_ASYNC_LINK_FAULT_NONE:
5092 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5093 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5094 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5095 		break;
5096 	default:
5097 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5098 				"0398 Unknown link fault code: x%x\n",
5099 				bf_get(lpfc_acqe_link_fault, acqe_link));
5100 		break;
5101 	}
5102 }
5103 
5104 /**
5105  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5106  * @phba: pointer to lpfc hba data structure.
5107  * @acqe_link: pointer to the async link completion queue entry.
5108  *
5109  * This routine is to parse the SLI4 link attention type and translate it
5110  * into the base driver's link attention type coding.
5111  *
5112  * Return: Link attention type in terms of base driver's coding.
5113  **/
5114 static uint8_t
5115 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5116 			  struct lpfc_acqe_link *acqe_link)
5117 {
5118 	uint8_t att_type;
5119 
5120 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5121 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5122 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5123 		att_type = LPFC_ATT_LINK_DOWN;
5124 		break;
5125 	case LPFC_ASYNC_LINK_STATUS_UP:
5126 		/* Ignore physical link up events - wait for logical link up */
5127 		att_type = LPFC_ATT_RESERVED;
5128 		break;
5129 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5130 		att_type = LPFC_ATT_LINK_UP;
5131 		break;
5132 	default:
5133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5134 				"0399 Invalid link attention type: x%x\n",
5135 				bf_get(lpfc_acqe_link_status, acqe_link));
5136 		att_type = LPFC_ATT_RESERVED;
5137 		break;
5138 	}
5139 	return att_type;
5140 }
5141 
5142 /**
5143  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5144  * @phba: pointer to lpfc hba data structure.
5145  *
5146  * This routine is to get an SLI3 FC port's link speed in Mbps.
5147  *
5148  * Return: link speed in terms of Mbps.
5149  **/
5150 uint32_t
5151 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5152 {
5153 	uint32_t link_speed;
5154 
5155 	if (!lpfc_is_link_up(phba))
5156 		return 0;
5157 
5158 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5159 		switch (phba->fc_linkspeed) {
5160 		case LPFC_LINK_SPEED_1GHZ:
5161 			link_speed = 1000;
5162 			break;
5163 		case LPFC_LINK_SPEED_2GHZ:
5164 			link_speed = 2000;
5165 			break;
5166 		case LPFC_LINK_SPEED_4GHZ:
5167 			link_speed = 4000;
5168 			break;
5169 		case LPFC_LINK_SPEED_8GHZ:
5170 			link_speed = 8000;
5171 			break;
5172 		case LPFC_LINK_SPEED_10GHZ:
5173 			link_speed = 10000;
5174 			break;
5175 		case LPFC_LINK_SPEED_16GHZ:
5176 			link_speed = 16000;
5177 			break;
5178 		default:
5179 			link_speed = 0;
5180 		}
5181 	} else {
5182 		if (phba->sli4_hba.link_state.logical_speed)
5183 			link_speed =
5184 			      phba->sli4_hba.link_state.logical_speed;
5185 		else
5186 			link_speed = phba->sli4_hba.link_state.speed;
5187 	}
5188 	return link_speed;
5189 }
5190 
5191 /**
5192  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5193  * @phba: pointer to lpfc hba data structure.
5194  * @evt_code: asynchronous event code.
5195  * @speed_code: asynchronous event link speed code.
5196  *
5197  * This routine is to parse the giving SLI4 async event link speed code into
5198  * value of Mbps for the link speed.
5199  *
5200  * Return: link speed in terms of Mbps.
5201  **/
5202 static uint32_t
5203 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5204 			   uint8_t speed_code)
5205 {
5206 	uint32_t port_speed;
5207 
5208 	switch (evt_code) {
5209 	case LPFC_TRAILER_CODE_LINK:
5210 		switch (speed_code) {
5211 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5212 			port_speed = 0;
5213 			break;
5214 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5215 			port_speed = 10;
5216 			break;
5217 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5218 			port_speed = 100;
5219 			break;
5220 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5221 			port_speed = 1000;
5222 			break;
5223 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5224 			port_speed = 10000;
5225 			break;
5226 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5227 			port_speed = 20000;
5228 			break;
5229 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5230 			port_speed = 25000;
5231 			break;
5232 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5233 			port_speed = 40000;
5234 			break;
5235 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5236 			port_speed = 100000;
5237 			break;
5238 		default:
5239 			port_speed = 0;
5240 		}
5241 		break;
5242 	case LPFC_TRAILER_CODE_FC:
5243 		switch (speed_code) {
5244 		case LPFC_FC_LA_SPEED_UNKNOWN:
5245 			port_speed = 0;
5246 			break;
5247 		case LPFC_FC_LA_SPEED_1G:
5248 			port_speed = 1000;
5249 			break;
5250 		case LPFC_FC_LA_SPEED_2G:
5251 			port_speed = 2000;
5252 			break;
5253 		case LPFC_FC_LA_SPEED_4G:
5254 			port_speed = 4000;
5255 			break;
5256 		case LPFC_FC_LA_SPEED_8G:
5257 			port_speed = 8000;
5258 			break;
5259 		case LPFC_FC_LA_SPEED_10G:
5260 			port_speed = 10000;
5261 			break;
5262 		case LPFC_FC_LA_SPEED_16G:
5263 			port_speed = 16000;
5264 			break;
5265 		case LPFC_FC_LA_SPEED_32G:
5266 			port_speed = 32000;
5267 			break;
5268 		case LPFC_FC_LA_SPEED_64G:
5269 			port_speed = 64000;
5270 			break;
5271 		case LPFC_FC_LA_SPEED_128G:
5272 			port_speed = 128000;
5273 			break;
5274 		case LPFC_FC_LA_SPEED_256G:
5275 			port_speed = 256000;
5276 			break;
5277 		default:
5278 			port_speed = 0;
5279 		}
5280 		break;
5281 	default:
5282 		port_speed = 0;
5283 	}
5284 	return port_speed;
5285 }
5286 
5287 /**
5288  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5289  * @phba: pointer to lpfc hba data structure.
5290  * @acqe_link: pointer to the async link completion queue entry.
5291  *
5292  * This routine is to handle the SLI4 asynchronous FCoE link event.
5293  **/
5294 static void
5295 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5296 			 struct lpfc_acqe_link *acqe_link)
5297 {
5298 	struct lpfc_dmabuf *mp;
5299 	LPFC_MBOXQ_t *pmb;
5300 	MAILBOX_t *mb;
5301 	struct lpfc_mbx_read_top *la;
5302 	uint8_t att_type;
5303 	int rc;
5304 
5305 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5306 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5307 		return;
5308 	phba->fcoe_eventtag = acqe_link->event_tag;
5309 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5310 	if (!pmb) {
5311 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5312 				"0395 The mboxq allocation failed\n");
5313 		return;
5314 	}
5315 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5316 	if (!mp) {
5317 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5318 				"0396 The lpfc_dmabuf allocation failed\n");
5319 		goto out_free_pmb;
5320 	}
5321 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5322 	if (!mp->virt) {
5323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5324 				"0397 The mbuf allocation failed\n");
5325 		goto out_free_dmabuf;
5326 	}
5327 
5328 	/* Cleanup any outstanding ELS commands */
5329 	lpfc_els_flush_all_cmd(phba);
5330 
5331 	/* Block ELS IOCBs until we have done process link event */
5332 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5333 
5334 	/* Update link event statistics */
5335 	phba->sli.slistat.link_event++;
5336 
5337 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5338 	lpfc_read_topology(phba, pmb, mp);
5339 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5340 	pmb->vport = phba->pport;
5341 
5342 	/* Keep the link status for extra SLI4 state machine reference */
5343 	phba->sli4_hba.link_state.speed =
5344 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5345 				bf_get(lpfc_acqe_link_speed, acqe_link));
5346 	phba->sli4_hba.link_state.duplex =
5347 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5348 	phba->sli4_hba.link_state.status =
5349 				bf_get(lpfc_acqe_link_status, acqe_link);
5350 	phba->sli4_hba.link_state.type =
5351 				bf_get(lpfc_acqe_link_type, acqe_link);
5352 	phba->sli4_hba.link_state.number =
5353 				bf_get(lpfc_acqe_link_number, acqe_link);
5354 	phba->sli4_hba.link_state.fault =
5355 				bf_get(lpfc_acqe_link_fault, acqe_link);
5356 	phba->sli4_hba.link_state.logical_speed =
5357 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5358 
5359 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5360 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5361 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5362 			"Logical speed:%dMbps Fault:%d\n",
5363 			phba->sli4_hba.link_state.speed,
5364 			phba->sli4_hba.link_state.topology,
5365 			phba->sli4_hba.link_state.status,
5366 			phba->sli4_hba.link_state.type,
5367 			phba->sli4_hba.link_state.number,
5368 			phba->sli4_hba.link_state.logical_speed,
5369 			phba->sli4_hba.link_state.fault);
5370 	/*
5371 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5372 	 * topology info. Note: Optional for non FC-AL ports.
5373 	 */
5374 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5375 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5376 		if (rc == MBX_NOT_FINISHED) {
5377 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
5378 			goto out_free_dmabuf;
5379 		}
5380 		return;
5381 	}
5382 	/*
5383 	 * For FCoE Mode: fill in all the topology information we need and call
5384 	 * the READ_TOPOLOGY completion routine to continue without actually
5385 	 * sending the READ_TOPOLOGY mailbox command to the port.
5386 	 */
5387 	/* Initialize completion status */
5388 	mb = &pmb->u.mb;
5389 	mb->mbxStatus = MBX_SUCCESS;
5390 
5391 	/* Parse port fault information field */
5392 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5393 
5394 	/* Parse and translate link attention fields */
5395 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5396 	la->eventTag = acqe_link->event_tag;
5397 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5398 	bf_set(lpfc_mbx_read_top_link_spd, la,
5399 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5400 
5401 	/* Fake the the following irrelvant fields */
5402 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5403 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5404 	bf_set(lpfc_mbx_read_top_il, la, 0);
5405 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5406 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5407 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5408 
5409 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5410 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5411 
5412 	return;
5413 
5414 out_free_dmabuf:
5415 	kfree(mp);
5416 out_free_pmb:
5417 	mempool_free(pmb, phba->mbox_mem_pool);
5418 }
5419 
5420 /**
5421  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5422  * topology.
5423  * @phba: pointer to lpfc hba data structure.
5424  * @speed_code: asynchronous event link speed code.
5425  *
5426  * This routine is to parse the giving SLI4 async event link speed code into
5427  * value of Read topology link speed.
5428  *
5429  * Return: link speed in terms of Read topology.
5430  **/
5431 static uint8_t
5432 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5433 {
5434 	uint8_t port_speed;
5435 
5436 	switch (speed_code) {
5437 	case LPFC_FC_LA_SPEED_1G:
5438 		port_speed = LPFC_LINK_SPEED_1GHZ;
5439 		break;
5440 	case LPFC_FC_LA_SPEED_2G:
5441 		port_speed = LPFC_LINK_SPEED_2GHZ;
5442 		break;
5443 	case LPFC_FC_LA_SPEED_4G:
5444 		port_speed = LPFC_LINK_SPEED_4GHZ;
5445 		break;
5446 	case LPFC_FC_LA_SPEED_8G:
5447 		port_speed = LPFC_LINK_SPEED_8GHZ;
5448 		break;
5449 	case LPFC_FC_LA_SPEED_16G:
5450 		port_speed = LPFC_LINK_SPEED_16GHZ;
5451 		break;
5452 	case LPFC_FC_LA_SPEED_32G:
5453 		port_speed = LPFC_LINK_SPEED_32GHZ;
5454 		break;
5455 	case LPFC_FC_LA_SPEED_64G:
5456 		port_speed = LPFC_LINK_SPEED_64GHZ;
5457 		break;
5458 	case LPFC_FC_LA_SPEED_128G:
5459 		port_speed = LPFC_LINK_SPEED_128GHZ;
5460 		break;
5461 	case LPFC_FC_LA_SPEED_256G:
5462 		port_speed = LPFC_LINK_SPEED_256GHZ;
5463 		break;
5464 	default:
5465 		port_speed = 0;
5466 		break;
5467 	}
5468 
5469 	return port_speed;
5470 }
5471 
5472 void
5473 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5474 {
5475 	struct rxtable_entry *entry;
5476 	int cnt = 0, head, tail, last, start;
5477 
5478 	head = atomic_read(&phba->rxtable_idx_head);
5479 	tail = atomic_read(&phba->rxtable_idx_tail);
5480 	if (!phba->rxtable || head == tail) {
5481 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
5482 				"4411 Rxtable is empty\n");
5483 		return;
5484 	}
5485 	last = tail;
5486 	start = head;
5487 
5488 	/* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */
5489 	while (start != last) {
5490 		if (start)
5491 			start--;
5492 		else
5493 			start = LPFC_MAX_RXMONITOR_ENTRY - 1;
5494 		entry = &phba->rxtable[start];
5495 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5496 				"4410 %02d: MBPI %lld Xmit %lld Cmpl %lld "
5497 				"Lat %lld ASz %lld Info %02d BWUtil %d "
5498 				"Int %d slot %d\n",
5499 				cnt, entry->max_bytes_per_interval,
5500 				entry->total_bytes, entry->rcv_bytes,
5501 				entry->avg_io_latency, entry->avg_io_size,
5502 				entry->cmf_info, entry->timer_utilization,
5503 				entry->timer_interval, start);
5504 		cnt++;
5505 		if (cnt >= LPFC_MAX_RXMONITOR_DUMP)
5506 			return;
5507 	}
5508 }
5509 
5510 /**
5511  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5512  * @phba: pointer to lpfc hba data structure.
5513  * @dtag: FPIN descriptor received
5514  *
5515  * Increment the FPIN received counter/time when it happens.
5516  */
5517 void
5518 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5519 {
5520 	struct lpfc_cgn_info *cp;
5521 	struct tm broken;
5522 	struct timespec64 cur_time;
5523 	u32 cnt;
5524 	u16 value;
5525 
5526 	/* Make sure we have a congestion info buffer */
5527 	if (!phba->cgn_i)
5528 		return;
5529 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5530 	ktime_get_real_ts64(&cur_time);
5531 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5532 
5533 	/* Update congestion statistics */
5534 	switch (dtag) {
5535 	case ELS_DTAG_LNK_INTEGRITY:
5536 		cnt = le32_to_cpu(cp->link_integ_notification);
5537 		cnt++;
5538 		cp->link_integ_notification = cpu_to_le32(cnt);
5539 
5540 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5541 		cp->cgn_stat_lnk_day = broken.tm_mday;
5542 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5543 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5544 		cp->cgn_stat_lnk_min = broken.tm_min;
5545 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5546 		break;
5547 	case ELS_DTAG_DELIVERY:
5548 		cnt = le32_to_cpu(cp->delivery_notification);
5549 		cnt++;
5550 		cp->delivery_notification = cpu_to_le32(cnt);
5551 
5552 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5553 		cp->cgn_stat_del_day = broken.tm_mday;
5554 		cp->cgn_stat_del_year = broken.tm_year - 100;
5555 		cp->cgn_stat_del_hour = broken.tm_hour;
5556 		cp->cgn_stat_del_min = broken.tm_min;
5557 		cp->cgn_stat_del_sec = broken.tm_sec;
5558 		break;
5559 	case ELS_DTAG_PEER_CONGEST:
5560 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5561 		cnt++;
5562 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5563 
5564 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5565 		cp->cgn_stat_peer_day = broken.tm_mday;
5566 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5567 		cp->cgn_stat_peer_hour = broken.tm_hour;
5568 		cp->cgn_stat_peer_min = broken.tm_min;
5569 		cp->cgn_stat_peer_sec = broken.tm_sec;
5570 		break;
5571 	case ELS_DTAG_CONGESTION:
5572 		cnt = le32_to_cpu(cp->cgn_notification);
5573 		cnt++;
5574 		cp->cgn_notification = cpu_to_le32(cnt);
5575 
5576 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5577 		cp->cgn_stat_cgn_day = broken.tm_mday;
5578 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5579 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5580 		cp->cgn_stat_cgn_min = broken.tm_min;
5581 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5582 	}
5583 	if (phba->cgn_fpin_frequency &&
5584 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5585 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5586 		cp->cgn_stat_npm = value;
5587 	}
5588 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5589 				    LPFC_CGN_CRC32_SEED);
5590 	cp->cgn_info_crc = cpu_to_le32(value);
5591 }
5592 
5593 /**
5594  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5595  * @phba: pointer to lpfc hba data structure.
5596  *
5597  * Save the congestion event data every minute.
5598  * On the hour collapse all the minute data into hour data. Every day
5599  * collapse all the hour data into daily data. Separate driver
5600  * and fabrc congestion event counters that will be saved out
5601  * to the registered congestion buffer every minute.
5602  */
5603 static void
5604 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5605 {
5606 	struct lpfc_cgn_info *cp;
5607 	struct tm broken;
5608 	struct timespec64 cur_time;
5609 	uint32_t i, index;
5610 	uint16_t value, mvalue;
5611 	uint64_t bps;
5612 	uint32_t mbps;
5613 	uint32_t dvalue, wvalue, lvalue, avalue;
5614 	uint64_t latsum;
5615 	__le16 *ptr;
5616 	__le32 *lptr;
5617 	__le16 *mptr;
5618 
5619 	/* Make sure we have a congestion info buffer */
5620 	if (!phba->cgn_i)
5621 		return;
5622 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5623 
5624 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5625 		return;
5626 	phba->cgn_evt_timestamp = jiffies +
5627 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5628 	phba->cgn_evt_minute++;
5629 
5630 	/* We should get to this point in the routine on 1 minute intervals */
5631 
5632 	ktime_get_real_ts64(&cur_time);
5633 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5634 
5635 	if (phba->cgn_fpin_frequency &&
5636 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5637 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5638 		cp->cgn_stat_npm = value;
5639 	}
5640 
5641 	/* Read and clear the latency counters for this minute */
5642 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5643 	latsum = atomic64_read(&phba->cgn_latency_evt);
5644 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5645 	atomic64_set(&phba->cgn_latency_evt, 0);
5646 
5647 	/* We need to store MB/sec bandwidth in the congestion information.
5648 	 * block_cnt is count of 512 byte blocks for the entire minute,
5649 	 * bps will get bytes per sec before finally converting to MB/sec.
5650 	 */
5651 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5652 	phba->rx_block_cnt = 0;
5653 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5654 
5655 	/* Every minute */
5656 	/* cgn parameters */
5657 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5658 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5659 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5660 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5661 
5662 	/* Fill in default LUN qdepth */
5663 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5664 	cp->cgn_lunq = cpu_to_le16(value);
5665 
5666 	/* Record congestion buffer info - every minute
5667 	 * cgn_driver_evt_cnt (Driver events)
5668 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5669 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5670 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5671 	 */
5672 	index = ++cp->cgn_index_minute;
5673 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5674 		cp->cgn_index_minute = 0;
5675 		index = 0;
5676 	}
5677 
5678 	/* Get the number of driver events in this sample and reset counter */
5679 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5680 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5681 
5682 	/* Get the number of warning events - FPIN and Signal for this minute */
5683 	wvalue = 0;
5684 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5685 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5686 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5687 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5688 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5689 
5690 	/* Get the number of alarm events - FPIN and Signal for this minute */
5691 	avalue = 0;
5692 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5693 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5694 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5695 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5696 
5697 	/* Collect the driver, warning, alarm and latency counts for this
5698 	 * minute into the driver congestion buffer.
5699 	 */
5700 	ptr = &cp->cgn_drvr_min[index];
5701 	value = (uint16_t)dvalue;
5702 	*ptr = cpu_to_le16(value);
5703 
5704 	ptr = &cp->cgn_warn_min[index];
5705 	value = (uint16_t)wvalue;
5706 	*ptr = cpu_to_le16(value);
5707 
5708 	ptr = &cp->cgn_alarm_min[index];
5709 	value = (uint16_t)avalue;
5710 	*ptr = cpu_to_le16(value);
5711 
5712 	lptr = &cp->cgn_latency_min[index];
5713 	if (lvalue) {
5714 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5715 		*lptr = cpu_to_le32(lvalue);
5716 	} else {
5717 		*lptr = 0;
5718 	}
5719 
5720 	/* Collect the bandwidth value into the driver's congesion buffer. */
5721 	mptr = &cp->cgn_bw_min[index];
5722 	*mptr = cpu_to_le16(mvalue);
5723 
5724 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5725 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5726 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5727 
5728 	/* Every hour */
5729 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5730 		/* Record congestion buffer info - every hour
5731 		 * Collapse all minutes into an hour
5732 		 */
5733 		index = ++cp->cgn_index_hour;
5734 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5735 			cp->cgn_index_hour = 0;
5736 			index = 0;
5737 		}
5738 
5739 		dvalue = 0;
5740 		wvalue = 0;
5741 		lvalue = 0;
5742 		avalue = 0;
5743 		mvalue = 0;
5744 		mbps = 0;
5745 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5746 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5747 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5748 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5749 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5750 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5751 		}
5752 		if (lvalue)		/* Avg of latency averages */
5753 			lvalue /= LPFC_MIN_HOUR;
5754 		if (mbps)		/* Avg of Bandwidth averages */
5755 			mvalue = mbps / LPFC_MIN_HOUR;
5756 
5757 		lptr = &cp->cgn_drvr_hr[index];
5758 		*lptr = cpu_to_le32(dvalue);
5759 		lptr = &cp->cgn_warn_hr[index];
5760 		*lptr = cpu_to_le32(wvalue);
5761 		lptr = &cp->cgn_latency_hr[index];
5762 		*lptr = cpu_to_le32(lvalue);
5763 		mptr = &cp->cgn_bw_hr[index];
5764 		*mptr = cpu_to_le16(mvalue);
5765 		lptr = &cp->cgn_alarm_hr[index];
5766 		*lptr = cpu_to_le32(avalue);
5767 
5768 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5769 				"2419 Congestion Info - hour "
5770 				"(%d): %d %d %d %d %d\n",
5771 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5772 	}
5773 
5774 	/* Every day */
5775 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5776 		/* Record congestion buffer info - every hour
5777 		 * Collapse all hours into a day. Rotate days
5778 		 * after LPFC_MAX_CGN_DAYS.
5779 		 */
5780 		index = ++cp->cgn_index_day;
5781 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5782 			cp->cgn_index_day = 0;
5783 			index = 0;
5784 		}
5785 
5786 		/* Anytime we overwrite daily index 0, after we wrap,
5787 		 * we will be overwriting the oldest day, so we must
5788 		 * update the congestion data start time for that day.
5789 		 * That start time should have previously been saved after
5790 		 * we wrote the last days worth of data.
5791 		 */
5792 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5793 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5794 
5795 			cp->cgn_info_month = broken.tm_mon + 1;
5796 			cp->cgn_info_day = broken.tm_mday;
5797 			cp->cgn_info_year = broken.tm_year - 100;
5798 			cp->cgn_info_hour = broken.tm_hour;
5799 			cp->cgn_info_minute = broken.tm_min;
5800 			cp->cgn_info_second = broken.tm_sec;
5801 
5802 			lpfc_printf_log
5803 				(phba, KERN_INFO, LOG_CGN_MGMT,
5804 				"2646 CGNInfo idx0 Start Time: "
5805 				"%d/%d/%d %d:%d:%d\n",
5806 				cp->cgn_info_day, cp->cgn_info_month,
5807 				cp->cgn_info_year, cp->cgn_info_hour,
5808 				cp->cgn_info_minute, cp->cgn_info_second);
5809 		}
5810 
5811 		dvalue = 0;
5812 		wvalue = 0;
5813 		lvalue = 0;
5814 		mvalue = 0;
5815 		mbps = 0;
5816 		avalue = 0;
5817 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5818 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5819 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5820 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5821 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5822 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5823 		}
5824 		if (lvalue)		/* Avg of latency averages */
5825 			lvalue /= LPFC_HOUR_DAY;
5826 		if (mbps)		/* Avg of Bandwidth averages */
5827 			mvalue = mbps / LPFC_HOUR_DAY;
5828 
5829 		lptr = &cp->cgn_drvr_day[index];
5830 		*lptr = cpu_to_le32(dvalue);
5831 		lptr = &cp->cgn_warn_day[index];
5832 		*lptr = cpu_to_le32(wvalue);
5833 		lptr = &cp->cgn_latency_day[index];
5834 		*lptr = cpu_to_le32(lvalue);
5835 		mptr = &cp->cgn_bw_day[index];
5836 		*mptr = cpu_to_le16(mvalue);
5837 		lptr = &cp->cgn_alarm_day[index];
5838 		*lptr = cpu_to_le32(avalue);
5839 
5840 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5841 				"2420 Congestion Info - daily (%d): "
5842 				"%d %d %d %d %d\n",
5843 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5844 
5845 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5846 		 * so we are wrapped on any data after this.
5847 		 * Save this as the start time for the next day.
5848 		 */
5849 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5850 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5851 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5852 		}
5853 	}
5854 
5855 	/* Use the frequency found in the last rcv'ed FPIN */
5856 	value = phba->cgn_fpin_frequency;
5857 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN)
5858 		cp->cgn_warn_freq = cpu_to_le16(value);
5859 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM)
5860 		cp->cgn_alarm_freq = cpu_to_le16(value);
5861 
5862 	/* Frequency (in ms) Signal Warning/Signal Congestion Notifications
5863 	 * are received by the HBA
5864 	 */
5865 	value = phba->cgn_sig_freq;
5866 
5867 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5868 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5869 		cp->cgn_warn_freq = cpu_to_le16(value);
5870 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5871 		cp->cgn_alarm_freq = cpu_to_le16(value);
5872 
5873 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5874 				     LPFC_CGN_CRC32_SEED);
5875 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5876 }
5877 
5878 /**
5879  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5880  * @phba: The Hba for which this call is being executed.
5881  *
5882  * The routine calculates the latency from the beginning of the CMF timer
5883  * interval to the current point in time. It is called from IO completion
5884  * when we exceed our Bandwidth limitation for the time interval.
5885  */
5886 uint32_t
5887 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5888 {
5889 	struct timespec64 cmpl_time;
5890 	uint32_t msec = 0;
5891 
5892 	ktime_get_real_ts64(&cmpl_time);
5893 
5894 	/* This routine works on a ms granularity so sec and usec are
5895 	 * converted accordingly.
5896 	 */
5897 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5898 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5899 			NSEC_PER_MSEC;
5900 	} else {
5901 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5902 			msec = (cmpl_time.tv_sec -
5903 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5904 			msec += ((cmpl_time.tv_nsec -
5905 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5906 		} else {
5907 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5908 				1) * MSEC_PER_SEC;
5909 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5910 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5911 		}
5912 	}
5913 	return msec;
5914 }
5915 
5916 /**
5917  * lpfc_cmf_timer -  This is the timer function for one congestion
5918  * rate interval.
5919  * @timer: Pointer to the high resolution timer that expired
5920  */
5921 static enum hrtimer_restart
5922 lpfc_cmf_timer(struct hrtimer *timer)
5923 {
5924 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5925 					     cmf_timer);
5926 	struct rxtable_entry *entry;
5927 	uint32_t io_cnt;
5928 	uint32_t head, tail;
5929 	uint32_t busy, max_read;
5930 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5931 	int timer_interval = LPFC_CMF_INTERVAL;
5932 	uint32_t ms;
5933 	struct lpfc_cgn_stat *cgs;
5934 	int cpu;
5935 
5936 	/* Only restart the timer if congestion mgmt is on */
5937 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5938 	    !phba->cmf_latency.tv_sec) {
5939 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5940 				"6224 CMF timer exit: %d %lld\n",
5941 				phba->cmf_active_mode,
5942 				(uint64_t)phba->cmf_latency.tv_sec);
5943 		return HRTIMER_NORESTART;
5944 	}
5945 
5946 	/* If pport is not ready yet, just exit and wait for
5947 	 * the next timer cycle to hit.
5948 	 */
5949 	if (!phba->pport)
5950 		goto skip;
5951 
5952 	/* Do not block SCSI IO while in the timer routine since
5953 	 * total_bytes will be cleared
5954 	 */
5955 	atomic_set(&phba->cmf_stop_io, 1);
5956 
5957 	/* First we need to calculate the actual ms between
5958 	 * the last timer interrupt and this one. We ask for
5959 	 * LPFC_CMF_INTERVAL, however the actual time may
5960 	 * vary depending on system overhead.
5961 	 */
5962 	ms = lpfc_calc_cmf_latency(phba);
5963 
5964 
5965 	/* Immediately after we calculate the time since the last
5966 	 * timer interrupt, set the start time for the next
5967 	 * interrupt
5968 	 */
5969 	ktime_get_real_ts64(&phba->cmf_latency);
5970 
5971 	phba->cmf_link_byte_count =
5972 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5973 
5974 	/* Collect all the stats from the prior timer interval */
5975 	total = 0;
5976 	io_cnt = 0;
5977 	lat = 0;
5978 	rcv = 0;
5979 	for_each_present_cpu(cpu) {
5980 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5981 		total += atomic64_xchg(&cgs->total_bytes, 0);
5982 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5983 		lat += atomic64_xchg(&cgs->rx_latency, 0);
5984 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5985 	}
5986 
5987 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
5988 	 * returned from the last CMF_SYNC_WQE issued, from
5989 	 * cmf_last_sync_bw. This will be the target BW for
5990 	 * this next timer interval.
5991 	 */
5992 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5993 	    phba->link_state != LPFC_LINK_DOWN &&
5994 	    phba->hba_flag & HBA_SETUP) {
5995 		mbpi = phba->cmf_last_sync_bw;
5996 		phba->cmf_last_sync_bw = 0;
5997 		extra = 0;
5998 
5999 		/* Calculate any extra bytes needed to account for the
6000 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6001 		 * calculate the adjustment needed for total to reflect
6002 		 * a full LPFC_CMF_INTERVAL.
6003 		 */
6004 		if (ms && ms < LPFC_CMF_INTERVAL) {
6005 			cnt = div_u64(total, ms); /* bytes per ms */
6006 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6007 
6008 			/* If the timeout is scheduled to be shorter,
6009 			 * this value may skew the data, so cap it at mbpi.
6010 			 */
6011 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6012 				cnt = mbpi;
6013 
6014 			extra = cnt - total;
6015 		}
6016 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6017 	} else {
6018 		/* For Monitor mode or link down we want mbpi
6019 		 * to be the full link speed
6020 		 */
6021 		mbpi = phba->cmf_link_byte_count;
6022 		extra = 0;
6023 	}
6024 	phba->cmf_timer_cnt++;
6025 
6026 	if (io_cnt) {
6027 		/* Update congestion info buffer latency in us */
6028 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6029 		atomic64_add(lat, &phba->cgn_latency_evt);
6030 	}
6031 	busy = atomic_xchg(&phba->cmf_busy, 0);
6032 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6033 
6034 	/* Calculate MBPI for the next timer interval */
6035 	if (mbpi) {
6036 		if (mbpi > phba->cmf_link_byte_count ||
6037 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6038 			mbpi = phba->cmf_link_byte_count;
6039 
6040 		/* Change max_bytes_per_interval to what the prior
6041 		 * CMF_SYNC_WQE cmpl indicated.
6042 		 */
6043 		if (mbpi != phba->cmf_max_bytes_per_interval)
6044 			phba->cmf_max_bytes_per_interval = mbpi;
6045 	}
6046 
6047 	/* Save rxmonitor information for debug */
6048 	if (phba->rxtable) {
6049 		head = atomic_xchg(&phba->rxtable_idx_head,
6050 				   LPFC_RXMONITOR_TABLE_IN_USE);
6051 		entry = &phba->rxtable[head];
6052 		entry->total_bytes = total;
6053 		entry->cmf_bytes = total + extra;
6054 		entry->rcv_bytes = rcv;
6055 		entry->cmf_busy = busy;
6056 		entry->cmf_info = phba->cmf_active_info;
6057 		if (io_cnt) {
6058 			entry->avg_io_latency = div_u64(lat, io_cnt);
6059 			entry->avg_io_size = div_u64(rcv, io_cnt);
6060 		} else {
6061 			entry->avg_io_latency = 0;
6062 			entry->avg_io_size = 0;
6063 		}
6064 		entry->max_read_cnt = max_read;
6065 		entry->io_cnt = io_cnt;
6066 		entry->max_bytes_per_interval = mbpi;
6067 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6068 			entry->timer_utilization = phba->cmf_last_ts;
6069 		else
6070 			entry->timer_utilization = ms;
6071 		entry->timer_interval = ms;
6072 		phba->cmf_last_ts = 0;
6073 
6074 		/* Increment rxtable index */
6075 		head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6076 		tail = atomic_read(&phba->rxtable_idx_tail);
6077 		if (head == tail) {
6078 			tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6079 			atomic_set(&phba->rxtable_idx_tail, tail);
6080 		}
6081 		atomic_set(&phba->rxtable_idx_head, head);
6082 	}
6083 
6084 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6085 		/* If Monitor mode, check if we are oversubscribed
6086 		 * against the full line rate.
6087 		 */
6088 		if (mbpi && total > mbpi)
6089 			atomic_inc(&phba->cgn_driver_evt_cnt);
6090 	}
6091 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6092 
6093 	/* Each minute save Fabric and Driver congestion information */
6094 	lpfc_cgn_save_evt_cnt(phba);
6095 
6096 	phba->hba_flag &= ~HBA_SHORT_CMF;
6097 
6098 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6099 	 * minute, adjust our next timer interval, if needed, to ensure a
6100 	 * 1 minute granularity when we get the next timer interrupt.
6101 	 */
6102 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6103 		       phba->cgn_evt_timestamp)) {
6104 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6105 						  jiffies);
6106 		if (timer_interval <= 0)
6107 			timer_interval = LPFC_CMF_INTERVAL;
6108 		else
6109 			phba->hba_flag |= HBA_SHORT_CMF;
6110 
6111 		/* If we adjust timer_interval, max_bytes_per_interval
6112 		 * needs to be adjusted as well.
6113 		 */
6114 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6115 						    timer_interval, 1000);
6116 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6117 			phba->cmf_max_bytes_per_interval =
6118 				phba->cmf_link_byte_count;
6119 	}
6120 
6121 	/* Since total_bytes has already been zero'ed, its okay to unblock
6122 	 * after max_bytes_per_interval is setup.
6123 	 */
6124 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6125 		queue_work(phba->wq, &phba->unblock_request_work);
6126 
6127 	/* SCSI IO is now unblocked */
6128 	atomic_set(&phba->cmf_stop_io, 0);
6129 
6130 skip:
6131 	hrtimer_forward_now(timer,
6132 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6133 	return HRTIMER_RESTART;
6134 }
6135 
6136 #define trunk_link_status(__idx)\
6137 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6138 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6139 		"Link up" : "Link down") : "NA"
6140 /* Did port __idx reported an error */
6141 #define trunk_port_fault(__idx)\
6142 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6143 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6144 
6145 static void
6146 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6147 			      struct lpfc_acqe_fc_la *acqe_fc)
6148 {
6149 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6150 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6151 
6152 	phba->sli4_hba.link_state.speed =
6153 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6154 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6155 
6156 	phba->sli4_hba.link_state.logical_speed =
6157 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6158 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6159 	phba->fc_linkspeed =
6160 		 lpfc_async_link_speed_to_read_top(
6161 				phba,
6162 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6163 
6164 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6165 		phba->trunk_link.link0.state =
6166 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6167 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6168 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6169 	}
6170 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6171 		phba->trunk_link.link1.state =
6172 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6173 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6174 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6175 	}
6176 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6177 		phba->trunk_link.link2.state =
6178 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6179 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6180 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6181 	}
6182 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6183 		phba->trunk_link.link3.state =
6184 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6185 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6186 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6187 	}
6188 
6189 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6190 			"2910 Async FC Trunking Event - Speed:%d\n"
6191 			"\tLogical speed:%d "
6192 			"port0: %s port1: %s port2: %s port3: %s\n",
6193 			phba->sli4_hba.link_state.speed,
6194 			phba->sli4_hba.link_state.logical_speed,
6195 			trunk_link_status(0), trunk_link_status(1),
6196 			trunk_link_status(2), trunk_link_status(3));
6197 
6198 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6199 		lpfc_cmf_signal_init(phba);
6200 
6201 	if (port_fault)
6202 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6203 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6204 				/*
6205 				 * SLI-4: We have only 0xA error codes
6206 				 * defined as of now. print an appropriate
6207 				 * message in case driver needs to be updated.
6208 				 */
6209 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6210 				"UNDEFINED. update driver." : trunk_errmsg[err],
6211 				trunk_port_fault(0), trunk_port_fault(1),
6212 				trunk_port_fault(2), trunk_port_fault(3));
6213 }
6214 
6215 
6216 /**
6217  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6218  * @phba: pointer to lpfc hba data structure.
6219  * @acqe_fc: pointer to the async fc completion queue entry.
6220  *
6221  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6222  * that the event was received and then issue a read_topology mailbox command so
6223  * that the rest of the driver will treat it the same as SLI3.
6224  **/
6225 static void
6226 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6227 {
6228 	struct lpfc_dmabuf *mp;
6229 	LPFC_MBOXQ_t *pmb;
6230 	MAILBOX_t *mb;
6231 	struct lpfc_mbx_read_top *la;
6232 	int rc;
6233 
6234 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6235 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6236 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6237 				"2895 Non FC link Event detected.(%d)\n",
6238 				bf_get(lpfc_trailer_type, acqe_fc));
6239 		return;
6240 	}
6241 
6242 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6243 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6244 		lpfc_update_trunk_link_status(phba, acqe_fc);
6245 		return;
6246 	}
6247 
6248 	/* Keep the link status for extra SLI4 state machine reference */
6249 	phba->sli4_hba.link_state.speed =
6250 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6251 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6252 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6253 	phba->sli4_hba.link_state.topology =
6254 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6255 	phba->sli4_hba.link_state.status =
6256 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6257 	phba->sli4_hba.link_state.type =
6258 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6259 	phba->sli4_hba.link_state.number =
6260 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6261 	phba->sli4_hba.link_state.fault =
6262 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6263 
6264 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6265 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6266 		phba->sli4_hba.link_state.logical_speed = 0;
6267 	else if	(!phba->sli4_hba.conf_trunk)
6268 		phba->sli4_hba.link_state.logical_speed =
6269 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6270 
6271 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6272 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6273 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6274 			"%dMbps Fault:%d\n",
6275 			phba->sli4_hba.link_state.speed,
6276 			phba->sli4_hba.link_state.topology,
6277 			phba->sli4_hba.link_state.status,
6278 			phba->sli4_hba.link_state.type,
6279 			phba->sli4_hba.link_state.number,
6280 			phba->sli4_hba.link_state.logical_speed,
6281 			phba->sli4_hba.link_state.fault);
6282 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6283 	if (!pmb) {
6284 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6285 				"2897 The mboxq allocation failed\n");
6286 		return;
6287 	}
6288 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6289 	if (!mp) {
6290 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6291 				"2898 The lpfc_dmabuf allocation failed\n");
6292 		goto out_free_pmb;
6293 	}
6294 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6295 	if (!mp->virt) {
6296 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6297 				"2899 The mbuf allocation failed\n");
6298 		goto out_free_dmabuf;
6299 	}
6300 
6301 	/* Cleanup any outstanding ELS commands */
6302 	lpfc_els_flush_all_cmd(phba);
6303 
6304 	/* Block ELS IOCBs until we have done process link event */
6305 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6306 
6307 	/* Update link event statistics */
6308 	phba->sli.slistat.link_event++;
6309 
6310 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6311 	lpfc_read_topology(phba, pmb, mp);
6312 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6313 	pmb->vport = phba->pport;
6314 
6315 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6316 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6317 
6318 		switch (phba->sli4_hba.link_state.status) {
6319 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6320 			phba->link_flag |= LS_MDS_LINK_DOWN;
6321 			break;
6322 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6323 			phba->link_flag |= LS_MDS_LOOPBACK;
6324 			break;
6325 		default:
6326 			break;
6327 		}
6328 
6329 		/* Initialize completion status */
6330 		mb = &pmb->u.mb;
6331 		mb->mbxStatus = MBX_SUCCESS;
6332 
6333 		/* Parse port fault information field */
6334 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6335 
6336 		/* Parse and translate link attention fields */
6337 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6338 		la->eventTag = acqe_fc->event_tag;
6339 
6340 		if (phba->sli4_hba.link_state.status ==
6341 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6342 			bf_set(lpfc_mbx_read_top_att_type, la,
6343 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6344 		} else {
6345 			bf_set(lpfc_mbx_read_top_att_type, la,
6346 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6347 		}
6348 		/* Invoke the mailbox command callback function */
6349 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6350 
6351 		return;
6352 	}
6353 
6354 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6355 	if (rc == MBX_NOT_FINISHED) {
6356 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
6357 		goto out_free_dmabuf;
6358 	}
6359 	return;
6360 
6361 out_free_dmabuf:
6362 	kfree(mp);
6363 out_free_pmb:
6364 	mempool_free(pmb, phba->mbox_mem_pool);
6365 }
6366 
6367 /**
6368  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6369  * @phba: pointer to lpfc hba data structure.
6370  * @acqe_sli: pointer to the async SLI completion queue entry.
6371  *
6372  * This routine is to handle the SLI4 asynchronous SLI events.
6373  **/
6374 static void
6375 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6376 {
6377 	char port_name;
6378 	char message[128];
6379 	uint8_t status;
6380 	uint8_t evt_type;
6381 	uint8_t operational = 0;
6382 	struct temp_event temp_event_data;
6383 	struct lpfc_acqe_misconfigured_event *misconfigured;
6384 	struct lpfc_acqe_cgn_signal *cgn_signal;
6385 	struct Scsi_Host  *shost;
6386 	struct lpfc_vport **vports;
6387 	int rc, i, cnt;
6388 
6389 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6390 
6391 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6392 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6393 			"x%08x x%08x x%08x\n", evt_type,
6394 			acqe_sli->event_data1, acqe_sli->event_data2,
6395 			acqe_sli->reserved, acqe_sli->trailer);
6396 
6397 	port_name = phba->Port[0];
6398 	if (port_name == 0x00)
6399 		port_name = '?'; /* get port name is empty */
6400 
6401 	switch (evt_type) {
6402 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6403 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6404 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6405 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6406 
6407 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6408 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6409 				acqe_sli->event_data1, port_name);
6410 
6411 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6412 		shost = lpfc_shost_from_vport(phba->pport);
6413 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6414 					  sizeof(temp_event_data),
6415 					  (char *)&temp_event_data,
6416 					  SCSI_NL_VID_TYPE_PCI
6417 					  | PCI_VENDOR_ID_EMULEX);
6418 		break;
6419 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6420 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6421 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6422 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6423 
6424 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6425 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6426 				acqe_sli->event_data1, port_name);
6427 
6428 		shost = lpfc_shost_from_vport(phba->pport);
6429 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6430 					  sizeof(temp_event_data),
6431 					  (char *)&temp_event_data,
6432 					  SCSI_NL_VID_TYPE_PCI
6433 					  | PCI_VENDOR_ID_EMULEX);
6434 		break;
6435 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6436 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6437 					&acqe_sli->event_data1;
6438 
6439 		/* fetch the status for this port */
6440 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6441 		case LPFC_LINK_NUMBER_0:
6442 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6443 					&misconfigured->theEvent);
6444 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6445 					&misconfigured->theEvent);
6446 			break;
6447 		case LPFC_LINK_NUMBER_1:
6448 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6449 					&misconfigured->theEvent);
6450 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6451 					&misconfigured->theEvent);
6452 			break;
6453 		case LPFC_LINK_NUMBER_2:
6454 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6455 					&misconfigured->theEvent);
6456 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6457 					&misconfigured->theEvent);
6458 			break;
6459 		case LPFC_LINK_NUMBER_3:
6460 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6461 					&misconfigured->theEvent);
6462 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6463 					&misconfigured->theEvent);
6464 			break;
6465 		default:
6466 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6467 					"3296 "
6468 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6469 					"event: Invalid link %d",
6470 					phba->sli4_hba.lnk_info.lnk_no);
6471 			return;
6472 		}
6473 
6474 		/* Skip if optic state unchanged */
6475 		if (phba->sli4_hba.lnk_info.optic_state == status)
6476 			return;
6477 
6478 		switch (status) {
6479 		case LPFC_SLI_EVENT_STATUS_VALID:
6480 			sprintf(message, "Physical Link is functional");
6481 			break;
6482 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6483 			sprintf(message, "Optics faulted/incorrectly "
6484 				"installed/not installed - Reseat optics, "
6485 				"if issue not resolved, replace.");
6486 			break;
6487 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6488 			sprintf(message,
6489 				"Optics of two types installed - Remove one "
6490 				"optic or install matching pair of optics.");
6491 			break;
6492 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6493 			sprintf(message, "Incompatible optics - Replace with "
6494 				"compatible optics for card to function.");
6495 			break;
6496 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6497 			sprintf(message, "Unqualified optics - Replace with "
6498 				"Avago optics for Warranty and Technical "
6499 				"Support - Link is%s operational",
6500 				(operational) ? " not" : "");
6501 			break;
6502 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6503 			sprintf(message, "Uncertified optics - Replace with "
6504 				"Avago-certified optics to enable link "
6505 				"operation - Link is%s operational",
6506 				(operational) ? " not" : "");
6507 			break;
6508 		default:
6509 			/* firmware is reporting a status we don't know about */
6510 			sprintf(message, "Unknown event status x%02x", status);
6511 			break;
6512 		}
6513 
6514 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6515 		rc = lpfc_sli4_read_config(phba);
6516 		if (rc) {
6517 			phba->lmt = 0;
6518 			lpfc_printf_log(phba, KERN_ERR,
6519 					LOG_TRACE_EVENT,
6520 					"3194 Unable to retrieve supported "
6521 					"speeds, rc = 0x%x\n", rc);
6522 		}
6523 		rc = lpfc_sli4_refresh_params(phba);
6524 		if (rc) {
6525 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6526 					"3174 Unable to update pls support, "
6527 					"rc x%x\n", rc);
6528 		}
6529 		vports = lpfc_create_vport_work_array(phba);
6530 		if (vports != NULL) {
6531 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6532 					i++) {
6533 				shost = lpfc_shost_from_vport(vports[i]);
6534 				lpfc_host_supported_speeds_set(shost);
6535 			}
6536 		}
6537 		lpfc_destroy_vport_work_array(phba, vports);
6538 
6539 		phba->sli4_hba.lnk_info.optic_state = status;
6540 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6541 				"3176 Port Name %c %s\n", port_name, message);
6542 		break;
6543 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6544 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6545 				"3192 Remote DPort Test Initiated - "
6546 				"Event Data1:x%08x Event Data2: x%08x\n",
6547 				acqe_sli->event_data1, acqe_sli->event_data2);
6548 		break;
6549 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6550 		/* Call FW to obtain active parms */
6551 		lpfc_sli4_cgn_parm_chg_evt(phba);
6552 		break;
6553 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6554 		/* Misconfigured WWN. Reports that the SLI Port is configured
6555 		 * to use FA-WWN, but the attached device doesn’t support it.
6556 		 * No driver action is required.
6557 		 * Event Data1 - N.A, Event Data2 - N.A
6558 		 */
6559 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6560 			     "2699 Misconfigured FA-WWN - Attached device does "
6561 			     "not support FA-WWN\n");
6562 		break;
6563 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6564 		/* EEPROM failure. No driver action is required */
6565 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6566 			     "2518 EEPROM failure - "
6567 			     "Event Data1: x%08x Event Data2: x%08x\n",
6568 			     acqe_sli->event_data1, acqe_sli->event_data2);
6569 		break;
6570 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6571 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6572 			break;
6573 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6574 					&acqe_sli->event_data1;
6575 		phba->cgn_acqe_cnt++;
6576 
6577 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6578 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6579 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6580 
6581 		/* no threshold for CMF, even 1 signal will trigger an event */
6582 
6583 		/* Alarm overrides warning, so check that first */
6584 		if (cgn_signal->alarm_cnt) {
6585 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6586 				/* Keep track of alarm cnt for cgn_info */
6587 				atomic_add(cgn_signal->alarm_cnt,
6588 					   &phba->cgn_fabric_alarm_cnt);
6589 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6590 				atomic_add(cgn_signal->alarm_cnt,
6591 					   &phba->cgn_sync_alarm_cnt);
6592 			}
6593 		} else if (cnt) {
6594 			/* signal action needs to be taken */
6595 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6596 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6597 				/* Keep track of warning cnt for cgn_info */
6598 				atomic_add(cnt, &phba->cgn_fabric_warn_cnt);
6599 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6600 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6601 			}
6602 		}
6603 		break;
6604 	default:
6605 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6606 				"3193 Unrecognized SLI event, type: 0x%x",
6607 				evt_type);
6608 		break;
6609 	}
6610 }
6611 
6612 /**
6613  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6614  * @vport: pointer to vport data structure.
6615  *
6616  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6617  * response to a CVL event.
6618  *
6619  * Return the pointer to the ndlp with the vport if successful, otherwise
6620  * return NULL.
6621  **/
6622 static struct lpfc_nodelist *
6623 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6624 {
6625 	struct lpfc_nodelist *ndlp;
6626 	struct Scsi_Host *shost;
6627 	struct lpfc_hba *phba;
6628 
6629 	if (!vport)
6630 		return NULL;
6631 	phba = vport->phba;
6632 	if (!phba)
6633 		return NULL;
6634 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6635 	if (!ndlp) {
6636 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6637 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6638 		if (!ndlp)
6639 			return NULL;
6640 		/* Set the node type */
6641 		ndlp->nlp_type |= NLP_FABRIC;
6642 		/* Put ndlp onto node list */
6643 		lpfc_enqueue_node(vport, ndlp);
6644 	}
6645 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6646 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6647 		return NULL;
6648 	/* If virtual link is not yet instantiated ignore CVL */
6649 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6650 		&& (vport->port_state != LPFC_VPORT_FAILED))
6651 		return NULL;
6652 	shost = lpfc_shost_from_vport(vport);
6653 	if (!shost)
6654 		return NULL;
6655 	lpfc_linkdown_port(vport);
6656 	lpfc_cleanup_pending_mbox(vport);
6657 	spin_lock_irq(shost->host_lock);
6658 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6659 	spin_unlock_irq(shost->host_lock);
6660 
6661 	return ndlp;
6662 }
6663 
6664 /**
6665  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6666  * @phba: pointer to lpfc hba data structure.
6667  *
6668  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6669  * response to a FCF dead event.
6670  **/
6671 static void
6672 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6673 {
6674 	struct lpfc_vport **vports;
6675 	int i;
6676 
6677 	vports = lpfc_create_vport_work_array(phba);
6678 	if (vports)
6679 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6680 			lpfc_sli4_perform_vport_cvl(vports[i]);
6681 	lpfc_destroy_vport_work_array(phba, vports);
6682 }
6683 
6684 /**
6685  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6686  * @phba: pointer to lpfc hba data structure.
6687  * @acqe_fip: pointer to the async fcoe completion queue entry.
6688  *
6689  * This routine is to handle the SLI4 asynchronous fcoe event.
6690  **/
6691 static void
6692 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6693 			struct lpfc_acqe_fip *acqe_fip)
6694 {
6695 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6696 	int rc;
6697 	struct lpfc_vport *vport;
6698 	struct lpfc_nodelist *ndlp;
6699 	int active_vlink_present;
6700 	struct lpfc_vport **vports;
6701 	int i;
6702 
6703 	phba->fc_eventTag = acqe_fip->event_tag;
6704 	phba->fcoe_eventtag = acqe_fip->event_tag;
6705 	switch (event_type) {
6706 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6707 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6708 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6709 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6710 					"2546 New FCF event, evt_tag:x%x, "
6711 					"index:x%x\n",
6712 					acqe_fip->event_tag,
6713 					acqe_fip->index);
6714 		else
6715 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6716 					LOG_DISCOVERY,
6717 					"2788 FCF param modified event, "
6718 					"evt_tag:x%x, index:x%x\n",
6719 					acqe_fip->event_tag,
6720 					acqe_fip->index);
6721 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6722 			/*
6723 			 * During period of FCF discovery, read the FCF
6724 			 * table record indexed by the event to update
6725 			 * FCF roundrobin failover eligible FCF bmask.
6726 			 */
6727 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6728 					LOG_DISCOVERY,
6729 					"2779 Read FCF (x%x) for updating "
6730 					"roundrobin FCF failover bmask\n",
6731 					acqe_fip->index);
6732 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6733 		}
6734 
6735 		/* If the FCF discovery is in progress, do nothing. */
6736 		spin_lock_irq(&phba->hbalock);
6737 		if (phba->hba_flag & FCF_TS_INPROG) {
6738 			spin_unlock_irq(&phba->hbalock);
6739 			break;
6740 		}
6741 		/* If fast FCF failover rescan event is pending, do nothing */
6742 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6743 			spin_unlock_irq(&phba->hbalock);
6744 			break;
6745 		}
6746 
6747 		/* If the FCF has been in discovered state, do nothing. */
6748 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6749 			spin_unlock_irq(&phba->hbalock);
6750 			break;
6751 		}
6752 		spin_unlock_irq(&phba->hbalock);
6753 
6754 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6755 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6756 				"2770 Start FCF table scan per async FCF "
6757 				"event, evt_tag:x%x, index:x%x\n",
6758 				acqe_fip->event_tag, acqe_fip->index);
6759 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6760 						     LPFC_FCOE_FCF_GET_FIRST);
6761 		if (rc)
6762 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6763 					"2547 Issue FCF scan read FCF mailbox "
6764 					"command failed (x%x)\n", rc);
6765 		break;
6766 
6767 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6768 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6769 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6770 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6771 				acqe_fip->event_tag);
6772 		break;
6773 
6774 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6775 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6776 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6777 				"2549 FCF (x%x) disconnected from network, "
6778 				 "tag:x%x\n", acqe_fip->index,
6779 				 acqe_fip->event_tag);
6780 		/*
6781 		 * If we are in the middle of FCF failover process, clear
6782 		 * the corresponding FCF bit in the roundrobin bitmap.
6783 		 */
6784 		spin_lock_irq(&phba->hbalock);
6785 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6786 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6787 			spin_unlock_irq(&phba->hbalock);
6788 			/* Update FLOGI FCF failover eligible FCF bmask */
6789 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6790 			break;
6791 		}
6792 		spin_unlock_irq(&phba->hbalock);
6793 
6794 		/* If the event is not for currently used fcf do nothing */
6795 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6796 			break;
6797 
6798 		/*
6799 		 * Otherwise, request the port to rediscover the entire FCF
6800 		 * table for a fast recovery from case that the current FCF
6801 		 * is no longer valid as we are not in the middle of FCF
6802 		 * failover process already.
6803 		 */
6804 		spin_lock_irq(&phba->hbalock);
6805 		/* Mark the fast failover process in progress */
6806 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6807 		spin_unlock_irq(&phba->hbalock);
6808 
6809 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6810 				"2771 Start FCF fast failover process due to "
6811 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6812 				"\n", acqe_fip->event_tag, acqe_fip->index);
6813 		rc = lpfc_sli4_redisc_fcf_table(phba);
6814 		if (rc) {
6815 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6816 					LOG_TRACE_EVENT,
6817 					"2772 Issue FCF rediscover mailbox "
6818 					"command failed, fail through to FCF "
6819 					"dead event\n");
6820 			spin_lock_irq(&phba->hbalock);
6821 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6822 			spin_unlock_irq(&phba->hbalock);
6823 			/*
6824 			 * Last resort will fail over by treating this
6825 			 * as a link down to FCF registration.
6826 			 */
6827 			lpfc_sli4_fcf_dead_failthrough(phba);
6828 		} else {
6829 			/* Reset FCF roundrobin bmask for new discovery */
6830 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6831 			/*
6832 			 * Handling fast FCF failover to a DEAD FCF event is
6833 			 * considered equalivant to receiving CVL to all vports.
6834 			 */
6835 			lpfc_sli4_perform_all_vport_cvl(phba);
6836 		}
6837 		break;
6838 	case LPFC_FIP_EVENT_TYPE_CVL:
6839 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6840 		lpfc_printf_log(phba, KERN_ERR,
6841 				LOG_TRACE_EVENT,
6842 			"2718 Clear Virtual Link Received for VPI 0x%x"
6843 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6844 
6845 		vport = lpfc_find_vport_by_vpid(phba,
6846 						acqe_fip->index);
6847 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6848 		if (!ndlp)
6849 			break;
6850 		active_vlink_present = 0;
6851 
6852 		vports = lpfc_create_vport_work_array(phba);
6853 		if (vports) {
6854 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6855 					i++) {
6856 				if ((!(vports[i]->fc_flag &
6857 					FC_VPORT_CVL_RCVD)) &&
6858 					(vports[i]->port_state > LPFC_FDISC)) {
6859 					active_vlink_present = 1;
6860 					break;
6861 				}
6862 			}
6863 			lpfc_destroy_vport_work_array(phba, vports);
6864 		}
6865 
6866 		/*
6867 		 * Don't re-instantiate if vport is marked for deletion.
6868 		 * If we are here first then vport_delete is going to wait
6869 		 * for discovery to complete.
6870 		 */
6871 		if (!(vport->load_flag & FC_UNLOADING) &&
6872 					active_vlink_present) {
6873 			/*
6874 			 * If there are other active VLinks present,
6875 			 * re-instantiate the Vlink using FDISC.
6876 			 */
6877 			mod_timer(&ndlp->nlp_delayfunc,
6878 				  jiffies + msecs_to_jiffies(1000));
6879 			spin_lock_irq(&ndlp->lock);
6880 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6881 			spin_unlock_irq(&ndlp->lock);
6882 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6883 			vport->port_state = LPFC_FDISC;
6884 		} else {
6885 			/*
6886 			 * Otherwise, we request port to rediscover
6887 			 * the entire FCF table for a fast recovery
6888 			 * from possible case that the current FCF
6889 			 * is no longer valid if we are not already
6890 			 * in the FCF failover process.
6891 			 */
6892 			spin_lock_irq(&phba->hbalock);
6893 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6894 				spin_unlock_irq(&phba->hbalock);
6895 				break;
6896 			}
6897 			/* Mark the fast failover process in progress */
6898 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6899 			spin_unlock_irq(&phba->hbalock);
6900 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6901 					LOG_DISCOVERY,
6902 					"2773 Start FCF failover per CVL, "
6903 					"evt_tag:x%x\n", acqe_fip->event_tag);
6904 			rc = lpfc_sli4_redisc_fcf_table(phba);
6905 			if (rc) {
6906 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6907 						LOG_TRACE_EVENT,
6908 						"2774 Issue FCF rediscover "
6909 						"mailbox command failed, "
6910 						"through to CVL event\n");
6911 				spin_lock_irq(&phba->hbalock);
6912 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6913 				spin_unlock_irq(&phba->hbalock);
6914 				/*
6915 				 * Last resort will be re-try on the
6916 				 * the current registered FCF entry.
6917 				 */
6918 				lpfc_retry_pport_discovery(phba);
6919 			} else
6920 				/*
6921 				 * Reset FCF roundrobin bmask for new
6922 				 * discovery.
6923 				 */
6924 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6925 		}
6926 		break;
6927 	default:
6928 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6929 				"0288 Unknown FCoE event type 0x%x event tag "
6930 				"0x%x\n", event_type, acqe_fip->event_tag);
6931 		break;
6932 	}
6933 }
6934 
6935 /**
6936  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6937  * @phba: pointer to lpfc hba data structure.
6938  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6939  *
6940  * This routine is to handle the SLI4 asynchronous dcbx event.
6941  **/
6942 static void
6943 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6944 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6945 {
6946 	phba->fc_eventTag = acqe_dcbx->event_tag;
6947 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6948 			"0290 The SLI4 DCBX asynchronous event is not "
6949 			"handled yet\n");
6950 }
6951 
6952 /**
6953  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6954  * @phba: pointer to lpfc hba data structure.
6955  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6956  *
6957  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6958  * is an asynchronous notified of a logical link speed change.  The Port
6959  * reports the logical link speed in units of 10Mbps.
6960  **/
6961 static void
6962 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6963 			 struct lpfc_acqe_grp5 *acqe_grp5)
6964 {
6965 	uint16_t prev_ll_spd;
6966 
6967 	phba->fc_eventTag = acqe_grp5->event_tag;
6968 	phba->fcoe_eventtag = acqe_grp5->event_tag;
6969 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6970 	phba->sli4_hba.link_state.logical_speed =
6971 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6972 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6973 			"2789 GRP5 Async Event: Updating logical link speed "
6974 			"from %dMbps to %dMbps\n", prev_ll_spd,
6975 			phba->sli4_hba.link_state.logical_speed);
6976 }
6977 
6978 /**
6979  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6980  * @phba: pointer to lpfc hba data structure.
6981  *
6982  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6983  * is an asynchronous notification of a request to reset CM stats.
6984  **/
6985 static void
6986 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6987 {
6988 	if (!phba->cgn_i)
6989 		return;
6990 	lpfc_init_congestion_stat(phba);
6991 }
6992 
6993 /**
6994  * lpfc_cgn_params_val - Validate FW congestion parameters.
6995  * @phba: pointer to lpfc hba data structure.
6996  * @p_cfg_param: pointer to FW provided congestion parameters.
6997  *
6998  * This routine validates the congestion parameters passed
6999  * by the FW to the driver via an ACQE event.
7000  **/
7001 static void
7002 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7003 {
7004 	spin_lock_irq(&phba->hbalock);
7005 
7006 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7007 			     LPFC_CFG_MONITOR)) {
7008 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7009 				"6225 CMF mode param out of range: %d\n",
7010 				 p_cfg_param->cgn_param_mode);
7011 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7012 	}
7013 
7014 	spin_unlock_irq(&phba->hbalock);
7015 }
7016 
7017 /**
7018  * lpfc_cgn_params_parse - Process a FW cong parm change event
7019  * @phba: pointer to lpfc hba data structure.
7020  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7021  * @len: the size of pdata in bytes.
7022  *
7023  * This routine validates the congestion management buffer signature
7024  * from the FW, validates the contents and makes corrections for
7025  * valid, in-range values.  If the signature magic is correct and
7026  * after parameter validation, the contents are copied to the driver's
7027  * @phba structure. If the magic is incorrect, an error message is
7028  * logged.
7029  **/
7030 static void
7031 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7032 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7033 {
7034 	struct lpfc_cgn_info *cp;
7035 	uint32_t crc, oldmode;
7036 
7037 	/* Make sure the FW has encoded the correct magic number to
7038 	 * validate the congestion parameter in FW memory.
7039 	 */
7040 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7041 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7042 				"4668 FW cgn parm buffer data: "
7043 				"magic 0x%x version %d mode %d "
7044 				"level0 %d level1 %d "
7045 				"level2 %d byte13 %d "
7046 				"byte14 %d byte15 %d "
7047 				"byte11 %d byte12 %d activeMode %d\n",
7048 				p_cgn_param->cgn_param_magic,
7049 				p_cgn_param->cgn_param_version,
7050 				p_cgn_param->cgn_param_mode,
7051 				p_cgn_param->cgn_param_level0,
7052 				p_cgn_param->cgn_param_level1,
7053 				p_cgn_param->cgn_param_level2,
7054 				p_cgn_param->byte13,
7055 				p_cgn_param->byte14,
7056 				p_cgn_param->byte15,
7057 				p_cgn_param->byte11,
7058 				p_cgn_param->byte12,
7059 				phba->cmf_active_mode);
7060 
7061 		oldmode = phba->cmf_active_mode;
7062 
7063 		/* Any parameters out of range are corrected to defaults
7064 		 * by this routine.  No need to fail.
7065 		 */
7066 		lpfc_cgn_params_val(phba, p_cgn_param);
7067 
7068 		/* Parameters are verified, move them into driver storage */
7069 		spin_lock_irq(&phba->hbalock);
7070 		memcpy(&phba->cgn_p, p_cgn_param,
7071 		       sizeof(struct lpfc_cgn_param));
7072 
7073 		/* Update parameters in congestion info buffer now */
7074 		if (phba->cgn_i) {
7075 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7076 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7077 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7078 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7079 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7080 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7081 						  LPFC_CGN_CRC32_SEED);
7082 			cp->cgn_info_crc = cpu_to_le32(crc);
7083 		}
7084 		spin_unlock_irq(&phba->hbalock);
7085 
7086 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7087 
7088 		switch (oldmode) {
7089 		case LPFC_CFG_OFF:
7090 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7091 				/* Turning CMF on */
7092 				lpfc_cmf_start(phba);
7093 
7094 				if (phba->link_state >= LPFC_LINK_UP) {
7095 					phba->cgn_reg_fpin =
7096 						phba->cgn_init_reg_fpin;
7097 					phba->cgn_reg_signal =
7098 						phba->cgn_init_reg_signal;
7099 					lpfc_issue_els_edc(phba->pport, 0);
7100 				}
7101 			}
7102 			break;
7103 		case LPFC_CFG_MANAGED:
7104 			switch (phba->cgn_p.cgn_param_mode) {
7105 			case LPFC_CFG_OFF:
7106 				/* Turning CMF off */
7107 				lpfc_cmf_stop(phba);
7108 				if (phba->link_state >= LPFC_LINK_UP)
7109 					lpfc_issue_els_edc(phba->pport, 0);
7110 				break;
7111 			case LPFC_CFG_MONITOR:
7112 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7113 						"4661 Switch from MANAGED to "
7114 						"`MONITOR mode\n");
7115 				phba->cmf_max_bytes_per_interval =
7116 					phba->cmf_link_byte_count;
7117 
7118 				/* Resume blocked IO - unblock on workqueue */
7119 				queue_work(phba->wq,
7120 					   &phba->unblock_request_work);
7121 				break;
7122 			}
7123 			break;
7124 		case LPFC_CFG_MONITOR:
7125 			switch (phba->cgn_p.cgn_param_mode) {
7126 			case LPFC_CFG_OFF:
7127 				/* Turning CMF off */
7128 				lpfc_cmf_stop(phba);
7129 				if (phba->link_state >= LPFC_LINK_UP)
7130 					lpfc_issue_els_edc(phba->pport, 0);
7131 				break;
7132 			case LPFC_CFG_MANAGED:
7133 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7134 						"4662 Switch from MONITOR to "
7135 						"MANAGED mode\n");
7136 				lpfc_cmf_signal_init(phba);
7137 				break;
7138 			}
7139 			break;
7140 		}
7141 	} else {
7142 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7143 				"4669 FW cgn parm buf wrong magic 0x%x "
7144 				"version %d\n", p_cgn_param->cgn_param_magic,
7145 				p_cgn_param->cgn_param_version);
7146 	}
7147 }
7148 
7149 /**
7150  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7151  * @phba: pointer to lpfc hba data structure.
7152  *
7153  * This routine issues a read_object mailbox command to
7154  * get the congestion management parameters from the FW
7155  * parses it and updates the driver maintained values.
7156  *
7157  * Returns
7158  *  0     if the object was empty
7159  *  -Eval if an error was encountered
7160  *  Count if bytes were read from object
7161  **/
7162 int
7163 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7164 {
7165 	int ret = 0;
7166 	struct lpfc_cgn_param *p_cgn_param = NULL;
7167 	u32 *pdata = NULL;
7168 	u32 len = 0;
7169 
7170 	/* Find out if the FW has a new set of congestion parameters. */
7171 	len = sizeof(struct lpfc_cgn_param);
7172 	pdata = kzalloc(len, GFP_KERNEL);
7173 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7174 			       pdata, len);
7175 
7176 	/* 0 means no data.  A negative means error.  A positive means
7177 	 * bytes were copied.
7178 	 */
7179 	if (!ret) {
7180 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7181 				"4670 CGN RD OBJ returns no data\n");
7182 		goto rd_obj_err;
7183 	} else if (ret < 0) {
7184 		/* Some error.  Just exit and return it to the caller.*/
7185 		goto rd_obj_err;
7186 	}
7187 
7188 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7189 			"6234 READ CGN PARAMS Successful %d\n", len);
7190 
7191 	/* Parse data pointer over len and update the phba congestion
7192 	 * parameters with values passed back.  The receive rate values
7193 	 * may have been altered in FW, but take no action here.
7194 	 */
7195 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7196 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7197 
7198  rd_obj_err:
7199 	kfree(pdata);
7200 	return ret;
7201 }
7202 
7203 /**
7204  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7205  * @phba: pointer to lpfc hba data structure.
7206  *
7207  * The FW generated Async ACQE SLI event calls this routine when
7208  * the event type is an SLI Internal Port Event and the Event Code
7209  * indicates a change to the FW maintained congestion parameters.
7210  *
7211  * This routine executes a Read_Object mailbox call to obtain the
7212  * current congestion parameters maintained in FW and corrects
7213  * the driver's active congestion parameters.
7214  *
7215  * The acqe event is not passed because there is no further data
7216  * required.
7217  *
7218  * Returns nonzero error if event processing encountered an error.
7219  * Zero otherwise for success.
7220  **/
7221 static int
7222 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7223 {
7224 	int ret = 0;
7225 
7226 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7227 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7228 				"4664 Cgn Evt when E2E off. Drop event\n");
7229 		return -EACCES;
7230 	}
7231 
7232 	/* If the event is claiming an empty object, it's ok.  A write
7233 	 * could have cleared it.  Only error is a negative return
7234 	 * status.
7235 	 */
7236 	ret = lpfc_sli4_cgn_params_read(phba);
7237 	if (ret < 0) {
7238 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7239 				"4667 Error reading Cgn Params (%d)\n",
7240 				ret);
7241 	} else if (!ret) {
7242 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7243 				"4673 CGN Event empty object.\n");
7244 	}
7245 	return ret;
7246 }
7247 
7248 /**
7249  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7250  * @phba: pointer to lpfc hba data structure.
7251  *
7252  * This routine is invoked by the worker thread to process all the pending
7253  * SLI4 asynchronous events.
7254  **/
7255 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7256 {
7257 	struct lpfc_cq_event *cq_event;
7258 	unsigned long iflags;
7259 
7260 	/* First, declare the async event has been handled */
7261 	spin_lock_irqsave(&phba->hbalock, iflags);
7262 	phba->hba_flag &= ~ASYNC_EVENT;
7263 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7264 
7265 	/* Now, handle all the async events */
7266 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7267 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7268 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7269 				 cq_event, struct lpfc_cq_event, list);
7270 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7271 				       iflags);
7272 
7273 		/* Process the asynchronous event */
7274 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7275 		case LPFC_TRAILER_CODE_LINK:
7276 			lpfc_sli4_async_link_evt(phba,
7277 						 &cq_event->cqe.acqe_link);
7278 			break;
7279 		case LPFC_TRAILER_CODE_FCOE:
7280 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7281 			break;
7282 		case LPFC_TRAILER_CODE_DCBX:
7283 			lpfc_sli4_async_dcbx_evt(phba,
7284 						 &cq_event->cqe.acqe_dcbx);
7285 			break;
7286 		case LPFC_TRAILER_CODE_GRP5:
7287 			lpfc_sli4_async_grp5_evt(phba,
7288 						 &cq_event->cqe.acqe_grp5);
7289 			break;
7290 		case LPFC_TRAILER_CODE_FC:
7291 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7292 			break;
7293 		case LPFC_TRAILER_CODE_SLI:
7294 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7295 			break;
7296 		case LPFC_TRAILER_CODE_CMSTAT:
7297 			lpfc_sli4_async_cmstat_evt(phba);
7298 			break;
7299 		default:
7300 			lpfc_printf_log(phba, KERN_ERR,
7301 					LOG_TRACE_EVENT,
7302 					"1804 Invalid asynchronous event code: "
7303 					"x%x\n", bf_get(lpfc_trailer_code,
7304 					&cq_event->cqe.mcqe_cmpl));
7305 			break;
7306 		}
7307 
7308 		/* Free the completion event processed to the free pool */
7309 		lpfc_sli4_cq_event_release(phba, cq_event);
7310 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7311 	}
7312 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7313 }
7314 
7315 /**
7316  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7317  * @phba: pointer to lpfc hba data structure.
7318  *
7319  * This routine is invoked by the worker thread to process FCF table
7320  * rediscovery pending completion event.
7321  **/
7322 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7323 {
7324 	int rc;
7325 
7326 	spin_lock_irq(&phba->hbalock);
7327 	/* Clear FCF rediscovery timeout event */
7328 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7329 	/* Clear driver fast failover FCF record flag */
7330 	phba->fcf.failover_rec.flag = 0;
7331 	/* Set state for FCF fast failover */
7332 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7333 	spin_unlock_irq(&phba->hbalock);
7334 
7335 	/* Scan FCF table from the first entry to re-discover SAN */
7336 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7337 			"2777 Start post-quiescent FCF table scan\n");
7338 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7339 	if (rc)
7340 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7341 				"2747 Issue FCF scan read FCF mailbox "
7342 				"command failed 0x%x\n", rc);
7343 }
7344 
7345 /**
7346  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7347  * @phba: pointer to lpfc hba data structure.
7348  * @dev_grp: The HBA PCI-Device group number.
7349  *
7350  * This routine is invoked to set up the per HBA PCI-Device group function
7351  * API jump table entries.
7352  *
7353  * Return: 0 if success, otherwise -ENODEV
7354  **/
7355 int
7356 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7357 {
7358 	int rc;
7359 
7360 	/* Set up lpfc PCI-device group */
7361 	phba->pci_dev_grp = dev_grp;
7362 
7363 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7364 	if (dev_grp == LPFC_PCI_DEV_OC)
7365 		phba->sli_rev = LPFC_SLI_REV4;
7366 
7367 	/* Set up device INIT API function jump table */
7368 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7369 	if (rc)
7370 		return -ENODEV;
7371 	/* Set up SCSI API function jump table */
7372 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7373 	if (rc)
7374 		return -ENODEV;
7375 	/* Set up SLI API function jump table */
7376 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7377 	if (rc)
7378 		return -ENODEV;
7379 	/* Set up MBOX API function jump table */
7380 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7381 	if (rc)
7382 		return -ENODEV;
7383 
7384 	return 0;
7385 }
7386 
7387 /**
7388  * lpfc_log_intr_mode - Log the active interrupt mode
7389  * @phba: pointer to lpfc hba data structure.
7390  * @intr_mode: active interrupt mode adopted.
7391  *
7392  * This routine it invoked to log the currently used active interrupt mode
7393  * to the device.
7394  **/
7395 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7396 {
7397 	switch (intr_mode) {
7398 	case 0:
7399 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7400 				"0470 Enable INTx interrupt mode.\n");
7401 		break;
7402 	case 1:
7403 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7404 				"0481 Enabled MSI interrupt mode.\n");
7405 		break;
7406 	case 2:
7407 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7408 				"0480 Enabled MSI-X interrupt mode.\n");
7409 		break;
7410 	default:
7411 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7412 				"0482 Illegal interrupt mode.\n");
7413 		break;
7414 	}
7415 	return;
7416 }
7417 
7418 /**
7419  * lpfc_enable_pci_dev - Enable a generic PCI device.
7420  * @phba: pointer to lpfc hba data structure.
7421  *
7422  * This routine is invoked to enable the PCI device that is common to all
7423  * PCI devices.
7424  *
7425  * Return codes
7426  * 	0 - successful
7427  * 	other values - error
7428  **/
7429 static int
7430 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7431 {
7432 	struct pci_dev *pdev;
7433 
7434 	/* Obtain PCI device reference */
7435 	if (!phba->pcidev)
7436 		goto out_error;
7437 	else
7438 		pdev = phba->pcidev;
7439 	/* Enable PCI device */
7440 	if (pci_enable_device_mem(pdev))
7441 		goto out_error;
7442 	/* Request PCI resource for the device */
7443 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7444 		goto out_disable_device;
7445 	/* Set up device as PCI master and save state for EEH */
7446 	pci_set_master(pdev);
7447 	pci_try_set_mwi(pdev);
7448 	pci_save_state(pdev);
7449 
7450 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7451 	if (pci_is_pcie(pdev))
7452 		pdev->needs_freset = 1;
7453 
7454 	return 0;
7455 
7456 out_disable_device:
7457 	pci_disable_device(pdev);
7458 out_error:
7459 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7460 			"1401 Failed to enable pci device\n");
7461 	return -ENODEV;
7462 }
7463 
7464 /**
7465  * lpfc_disable_pci_dev - Disable a generic PCI device.
7466  * @phba: pointer to lpfc hba data structure.
7467  *
7468  * This routine is invoked to disable the PCI device that is common to all
7469  * PCI devices.
7470  **/
7471 static void
7472 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7473 {
7474 	struct pci_dev *pdev;
7475 
7476 	/* Obtain PCI device reference */
7477 	if (!phba->pcidev)
7478 		return;
7479 	else
7480 		pdev = phba->pcidev;
7481 	/* Release PCI resource and disable PCI device */
7482 	pci_release_mem_regions(pdev);
7483 	pci_disable_device(pdev);
7484 
7485 	return;
7486 }
7487 
7488 /**
7489  * lpfc_reset_hba - Reset a hba
7490  * @phba: pointer to lpfc hba data structure.
7491  *
7492  * This routine is invoked to reset a hba device. It brings the HBA
7493  * offline, performs a board restart, and then brings the board back
7494  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7495  * on outstanding mailbox commands.
7496  **/
7497 void
7498 lpfc_reset_hba(struct lpfc_hba *phba)
7499 {
7500 	/* If resets are disabled then set error state and return. */
7501 	if (!phba->cfg_enable_hba_reset) {
7502 		phba->link_state = LPFC_HBA_ERROR;
7503 		return;
7504 	}
7505 
7506 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7507 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7508 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7509 	} else {
7510 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7511 		lpfc_sli_flush_io_rings(phba);
7512 	}
7513 	lpfc_offline(phba);
7514 	lpfc_sli_brdrestart(phba);
7515 	lpfc_online(phba);
7516 	lpfc_unblock_mgmt_io(phba);
7517 }
7518 
7519 /**
7520  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7521  * @phba: pointer to lpfc hba data structure.
7522  *
7523  * This function enables the PCI SR-IOV virtual functions to a physical
7524  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7525  * enable the number of virtual functions to the physical function. As
7526  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7527  * API call does not considered as an error condition for most of the device.
7528  **/
7529 uint16_t
7530 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7531 {
7532 	struct pci_dev *pdev = phba->pcidev;
7533 	uint16_t nr_virtfn;
7534 	int pos;
7535 
7536 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7537 	if (pos == 0)
7538 		return 0;
7539 
7540 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7541 	return nr_virtfn;
7542 }
7543 
7544 /**
7545  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7546  * @phba: pointer to lpfc hba data structure.
7547  * @nr_vfn: number of virtual functions to be enabled.
7548  *
7549  * This function enables the PCI SR-IOV virtual functions to a physical
7550  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7551  * enable the number of virtual functions to the physical function. As
7552  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7553  * API call does not considered as an error condition for most of the device.
7554  **/
7555 int
7556 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7557 {
7558 	struct pci_dev *pdev = phba->pcidev;
7559 	uint16_t max_nr_vfn;
7560 	int rc;
7561 
7562 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7563 	if (nr_vfn > max_nr_vfn) {
7564 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7565 				"3057 Requested vfs (%d) greater than "
7566 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7567 		return -EINVAL;
7568 	}
7569 
7570 	rc = pci_enable_sriov(pdev, nr_vfn);
7571 	if (rc) {
7572 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7573 				"2806 Failed to enable sriov on this device "
7574 				"with vfn number nr_vf:%d, rc:%d\n",
7575 				nr_vfn, rc);
7576 	} else
7577 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7578 				"2807 Successful enable sriov on this device "
7579 				"with vfn number nr_vf:%d\n", nr_vfn);
7580 	return rc;
7581 }
7582 
7583 static void
7584 lpfc_unblock_requests_work(struct work_struct *work)
7585 {
7586 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7587 					     unblock_request_work);
7588 
7589 	lpfc_unblock_requests(phba);
7590 }
7591 
7592 /**
7593  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7594  * @phba: pointer to lpfc hba data structure.
7595  *
7596  * This routine is invoked to set up the driver internal resources before the
7597  * device specific resource setup to support the HBA device it attached to.
7598  *
7599  * Return codes
7600  *	0 - successful
7601  *	other values - error
7602  **/
7603 static int
7604 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7605 {
7606 	struct lpfc_sli *psli = &phba->sli;
7607 
7608 	/*
7609 	 * Driver resources common to all SLI revisions
7610 	 */
7611 	atomic_set(&phba->fast_event_count, 0);
7612 	atomic_set(&phba->dbg_log_idx, 0);
7613 	atomic_set(&phba->dbg_log_cnt, 0);
7614 	atomic_set(&phba->dbg_log_dmping, 0);
7615 	spin_lock_init(&phba->hbalock);
7616 
7617 	/* Initialize port_list spinlock */
7618 	spin_lock_init(&phba->port_list_lock);
7619 	INIT_LIST_HEAD(&phba->port_list);
7620 
7621 	INIT_LIST_HEAD(&phba->work_list);
7622 	init_waitqueue_head(&phba->wait_4_mlo_m_q);
7623 
7624 	/* Initialize the wait queue head for the kernel thread */
7625 	init_waitqueue_head(&phba->work_waitq);
7626 
7627 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7628 			"1403 Protocols supported %s %s %s\n",
7629 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7630 				"SCSI" : " "),
7631 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7632 				"NVME" : " "),
7633 			(phba->nvmet_support ? "NVMET" : " "));
7634 
7635 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7636 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7637 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7638 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7639 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7640 
7641 	/* Initialize the fabric iocb list */
7642 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7643 
7644 	/* Initialize list to save ELS buffers */
7645 	INIT_LIST_HEAD(&phba->elsbuf);
7646 
7647 	/* Initialize FCF connection rec list */
7648 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7649 
7650 	/* Initialize OAS configuration list */
7651 	spin_lock_init(&phba->devicelock);
7652 	INIT_LIST_HEAD(&phba->luns);
7653 
7654 	/* MBOX heartbeat timer */
7655 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7656 	/* Fabric block timer */
7657 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7658 	/* EA polling mode timer */
7659 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7660 	/* Heartbeat timer */
7661 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7662 
7663 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7664 
7665 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7666 			  lpfc_idle_stat_delay_work);
7667 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7668 	return 0;
7669 }
7670 
7671 /**
7672  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7673  * @phba: pointer to lpfc hba data structure.
7674  *
7675  * This routine is invoked to set up the driver internal resources specific to
7676  * support the SLI-3 HBA device it attached to.
7677  *
7678  * Return codes
7679  * 0 - successful
7680  * other values - error
7681  **/
7682 static int
7683 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7684 {
7685 	int rc, entry_sz;
7686 
7687 	/*
7688 	 * Initialize timers used by driver
7689 	 */
7690 
7691 	/* FCP polling mode timer */
7692 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7693 
7694 	/* Host attention work mask setup */
7695 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7696 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7697 
7698 	/* Get all the module params for configuring this host */
7699 	lpfc_get_cfgparam(phba);
7700 	/* Set up phase-1 common device driver resources */
7701 
7702 	rc = lpfc_setup_driver_resource_phase1(phba);
7703 	if (rc)
7704 		return -ENODEV;
7705 
7706 	if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7707 		phba->menlo_flag |= HBA_MENLO_SUPPORT;
7708 		/* check for menlo minimum sg count */
7709 		if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7710 			phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7711 	}
7712 
7713 	if (!phba->sli.sli3_ring)
7714 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7715 					      sizeof(struct lpfc_sli_ring),
7716 					      GFP_KERNEL);
7717 	if (!phba->sli.sli3_ring)
7718 		return -ENOMEM;
7719 
7720 	/*
7721 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7722 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7723 	 */
7724 
7725 	if (phba->sli_rev == LPFC_SLI_REV4)
7726 		entry_sz = sizeof(struct sli4_sge);
7727 	else
7728 		entry_sz = sizeof(struct ulp_bde64);
7729 
7730 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7731 	if (phba->cfg_enable_bg) {
7732 		/*
7733 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7734 		 * the FCP rsp, and a BDE for each. Sice we have no control
7735 		 * over how many protection data segments the SCSI Layer
7736 		 * will hand us (ie: there could be one for every block
7737 		 * in the IO), we just allocate enough BDEs to accomidate
7738 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7739 		 * minimize the risk of running out.
7740 		 */
7741 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7742 			sizeof(struct fcp_rsp) +
7743 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7744 
7745 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7746 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7747 
7748 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7749 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7750 	} else {
7751 		/*
7752 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7753 		 * the FCP rsp, a BDE for each, and a BDE for up to
7754 		 * cfg_sg_seg_cnt data segments.
7755 		 */
7756 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7757 			sizeof(struct fcp_rsp) +
7758 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7759 
7760 		/* Total BDEs in BPL for scsi_sg_list */
7761 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7762 	}
7763 
7764 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7765 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7766 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7767 			phba->cfg_total_seg_cnt);
7768 
7769 	phba->max_vpi = LPFC_MAX_VPI;
7770 	/* This will be set to correct value after config_port mbox */
7771 	phba->max_vports = 0;
7772 
7773 	/*
7774 	 * Initialize the SLI Layer to run with lpfc HBAs.
7775 	 */
7776 	lpfc_sli_setup(phba);
7777 	lpfc_sli_queue_init(phba);
7778 
7779 	/* Allocate device driver memory */
7780 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7781 		return -ENOMEM;
7782 
7783 	phba->lpfc_sg_dma_buf_pool =
7784 		dma_pool_create("lpfc_sg_dma_buf_pool",
7785 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7786 				BPL_ALIGN_SZ, 0);
7787 
7788 	if (!phba->lpfc_sg_dma_buf_pool)
7789 		goto fail_free_mem;
7790 
7791 	phba->lpfc_cmd_rsp_buf_pool =
7792 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7793 					&phba->pcidev->dev,
7794 					sizeof(struct fcp_cmnd) +
7795 					sizeof(struct fcp_rsp),
7796 					BPL_ALIGN_SZ, 0);
7797 
7798 	if (!phba->lpfc_cmd_rsp_buf_pool)
7799 		goto fail_free_dma_buf_pool;
7800 
7801 	/*
7802 	 * Enable sr-iov virtual functions if supported and configured
7803 	 * through the module parameter.
7804 	 */
7805 	if (phba->cfg_sriov_nr_virtfn > 0) {
7806 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7807 						 phba->cfg_sriov_nr_virtfn);
7808 		if (rc) {
7809 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7810 					"2808 Requested number of SR-IOV "
7811 					"virtual functions (%d) is not "
7812 					"supported\n",
7813 					phba->cfg_sriov_nr_virtfn);
7814 			phba->cfg_sriov_nr_virtfn = 0;
7815 		}
7816 	}
7817 
7818 	return 0;
7819 
7820 fail_free_dma_buf_pool:
7821 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7822 	phba->lpfc_sg_dma_buf_pool = NULL;
7823 fail_free_mem:
7824 	lpfc_mem_free(phba);
7825 	return -ENOMEM;
7826 }
7827 
7828 /**
7829  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7830  * @phba: pointer to lpfc hba data structure.
7831  *
7832  * This routine is invoked to unset the driver internal resources set up
7833  * specific for supporting the SLI-3 HBA device it attached to.
7834  **/
7835 static void
7836 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7837 {
7838 	/* Free device driver memory allocated */
7839 	lpfc_mem_free_all(phba);
7840 
7841 	return;
7842 }
7843 
7844 /**
7845  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7846  * @phba: pointer to lpfc hba data structure.
7847  *
7848  * This routine is invoked to set up the driver internal resources specific to
7849  * support the SLI-4 HBA device it attached to.
7850  *
7851  * Return codes
7852  * 	0 - successful
7853  * 	other values - error
7854  **/
7855 static int
7856 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7857 {
7858 	LPFC_MBOXQ_t *mboxq;
7859 	MAILBOX_t *mb;
7860 	int rc, i, max_buf_size;
7861 	int longs;
7862 	int extra;
7863 	uint64_t wwn;
7864 	u32 if_type;
7865 	u32 if_fam;
7866 
7867 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7868 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7869 	phba->sli4_hba.curr_disp_cpu = 0;
7870 
7871 	/* Get all the module params for configuring this host */
7872 	lpfc_get_cfgparam(phba);
7873 
7874 	/* Set up phase-1 common device driver resources */
7875 	rc = lpfc_setup_driver_resource_phase1(phba);
7876 	if (rc)
7877 		return -ENODEV;
7878 
7879 	/* Before proceed, wait for POST done and device ready */
7880 	rc = lpfc_sli4_post_status_check(phba);
7881 	if (rc)
7882 		return -ENODEV;
7883 
7884 	/* Allocate all driver workqueues here */
7885 
7886 	/* The lpfc_wq workqueue for deferred irq use */
7887 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7888 
7889 	/*
7890 	 * Initialize timers used by driver
7891 	 */
7892 
7893 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7894 
7895 	/* FCF rediscover timer */
7896 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7897 
7898 	/* CMF congestion timer */
7899 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7900 	phba->cmf_timer.function = lpfc_cmf_timer;
7901 
7902 	/*
7903 	 * Control structure for handling external multi-buffer mailbox
7904 	 * command pass-through.
7905 	 */
7906 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7907 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7908 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7909 
7910 	phba->max_vpi = LPFC_MAX_VPI;
7911 
7912 	/* This will be set to correct value after the read_config mbox */
7913 	phba->max_vports = 0;
7914 
7915 	/* Program the default value of vlan_id and fc_map */
7916 	phba->valid_vlan = 0;
7917 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7918 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7919 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7920 
7921 	/*
7922 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7923 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7924 	 * The WQ create will allocate the ring.
7925 	 */
7926 
7927 	/* Initialize buffer queue management fields */
7928 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7929 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7930 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7931 
7932 	/* for VMID idle timeout if VMID is enabled */
7933 	if (lpfc_is_vmid_enabled(phba))
7934 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7935 
7936 	/*
7937 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7938 	 */
7939 	/* Initialize the Abort buffer list used by driver */
7940 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7941 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7942 
7943 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7944 		/* Initialize the Abort nvme buffer list used by driver */
7945 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7946 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7947 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7948 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7949 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7950 	}
7951 
7952 	/* This abort list used by worker thread */
7953 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7954 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7955 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7956 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7957 
7958 	/*
7959 	 * Initialize driver internal slow-path work queues
7960 	 */
7961 
7962 	/* Driver internel slow-path CQ Event pool */
7963 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7964 	/* Response IOCB work queue list */
7965 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7966 	/* Asynchronous event CQ Event work queue list */
7967 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7968 	/* Slow-path XRI aborted CQ Event work queue list */
7969 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7970 	/* Receive queue CQ Event work queue list */
7971 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7972 
7973 	/* Initialize extent block lists. */
7974 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7975 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7976 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7977 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7978 
7979 	/* Initialize mboxq lists. If the early init routines fail
7980 	 * these lists need to be correctly initialized.
7981 	 */
7982 	INIT_LIST_HEAD(&phba->sli.mboxq);
7983 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7984 
7985 	/* initialize optic_state to 0xFF */
7986 	phba->sli4_hba.lnk_info.optic_state = 0xff;
7987 
7988 	/* Allocate device driver memory */
7989 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7990 	if (rc)
7991 		return -ENOMEM;
7992 
7993 	/* IF Type 2 ports get initialized now. */
7994 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7995 	    LPFC_SLI_INTF_IF_TYPE_2) {
7996 		rc = lpfc_pci_function_reset(phba);
7997 		if (unlikely(rc)) {
7998 			rc = -ENODEV;
7999 			goto out_free_mem;
8000 		}
8001 		phba->temp_sensor_support = 1;
8002 	}
8003 
8004 	/* Create the bootstrap mailbox command */
8005 	rc = lpfc_create_bootstrap_mbox(phba);
8006 	if (unlikely(rc))
8007 		goto out_free_mem;
8008 
8009 	/* Set up the host's endian order with the device. */
8010 	rc = lpfc_setup_endian_order(phba);
8011 	if (unlikely(rc))
8012 		goto out_free_bsmbx;
8013 
8014 	/* Set up the hba's configuration parameters. */
8015 	rc = lpfc_sli4_read_config(phba);
8016 	if (unlikely(rc))
8017 		goto out_free_bsmbx;
8018 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8019 	if (unlikely(rc))
8020 		goto out_free_bsmbx;
8021 
8022 	/* IF Type 0 ports get initialized now. */
8023 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8024 	    LPFC_SLI_INTF_IF_TYPE_0) {
8025 		rc = lpfc_pci_function_reset(phba);
8026 		if (unlikely(rc))
8027 			goto out_free_bsmbx;
8028 	}
8029 
8030 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8031 						       GFP_KERNEL);
8032 	if (!mboxq) {
8033 		rc = -ENOMEM;
8034 		goto out_free_bsmbx;
8035 	}
8036 
8037 	/* Check for NVMET being configured */
8038 	phba->nvmet_support = 0;
8039 	if (lpfc_enable_nvmet_cnt) {
8040 
8041 		/* First get WWN of HBA instance */
8042 		lpfc_read_nv(phba, mboxq);
8043 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8044 		if (rc != MBX_SUCCESS) {
8045 			lpfc_printf_log(phba, KERN_ERR,
8046 					LOG_TRACE_EVENT,
8047 					"6016 Mailbox failed , mbxCmd x%x "
8048 					"READ_NV, mbxStatus x%x\n",
8049 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8050 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8051 			mempool_free(mboxq, phba->mbox_mem_pool);
8052 			rc = -EIO;
8053 			goto out_free_bsmbx;
8054 		}
8055 		mb = &mboxq->u.mb;
8056 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8057 		       sizeof(uint64_t));
8058 		wwn = cpu_to_be64(wwn);
8059 		phba->sli4_hba.wwnn.u.name = wwn;
8060 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8061 		       sizeof(uint64_t));
8062 		/* wwn is WWPN of HBA instance */
8063 		wwn = cpu_to_be64(wwn);
8064 		phba->sli4_hba.wwpn.u.name = wwn;
8065 
8066 		/* Check to see if it matches any module parameter */
8067 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8068 			if (wwn == lpfc_enable_nvmet[i]) {
8069 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8070 				if (lpfc_nvmet_mem_alloc(phba))
8071 					break;
8072 
8073 				phba->nvmet_support = 1; /* a match */
8074 
8075 				lpfc_printf_log(phba, KERN_ERR,
8076 						LOG_TRACE_EVENT,
8077 						"6017 NVME Target %016llx\n",
8078 						wwn);
8079 #else
8080 				lpfc_printf_log(phba, KERN_ERR,
8081 						LOG_TRACE_EVENT,
8082 						"6021 Can't enable NVME Target."
8083 						" NVME_TARGET_FC infrastructure"
8084 						" is not in kernel\n");
8085 #endif
8086 				/* Not supported for NVMET */
8087 				phba->cfg_xri_rebalancing = 0;
8088 				if (phba->irq_chann_mode == NHT_MODE) {
8089 					phba->cfg_irq_chann =
8090 						phba->sli4_hba.num_present_cpu;
8091 					phba->cfg_hdw_queue =
8092 						phba->sli4_hba.num_present_cpu;
8093 					phba->irq_chann_mode = NORMAL_MODE;
8094 				}
8095 				break;
8096 			}
8097 		}
8098 	}
8099 
8100 	lpfc_nvme_mod_param_dep(phba);
8101 
8102 	/*
8103 	 * Get sli4 parameters that override parameters from Port capabilities.
8104 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8105 	 * back in conflict.
8106 	 */
8107 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8108 	if (rc) {
8109 		if_type = bf_get(lpfc_sli_intf_if_type,
8110 				 &phba->sli4_hba.sli_intf);
8111 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8112 				&phba->sli4_hba.sli_intf);
8113 		if (phba->sli4_hba.extents_in_use &&
8114 		    phba->sli4_hba.rpi_hdrs_in_use) {
8115 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8116 					"2999 Unsupported SLI4 Parameters "
8117 					"Extents and RPI headers enabled.\n");
8118 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8119 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8120 				mempool_free(mboxq, phba->mbox_mem_pool);
8121 				rc = -EIO;
8122 				goto out_free_bsmbx;
8123 			}
8124 		}
8125 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8126 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8127 			mempool_free(mboxq, phba->mbox_mem_pool);
8128 			rc = -EIO;
8129 			goto out_free_bsmbx;
8130 		}
8131 	}
8132 
8133 	/*
8134 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8135 	 * for boundary conditions in its max_sgl_segment template.
8136 	 */
8137 	extra = 2;
8138 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8139 		extra++;
8140 
8141 	/*
8142 	 * It doesn't matter what family our adapter is in, we are
8143 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8144 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8145 	 */
8146 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8147 
8148 	/*
8149 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8150 	 * used to create the sg_dma_buf_pool must be calculated.
8151 	 */
8152 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8153 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8154 
8155 		/*
8156 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8157 		 * the FCP rsp, and a SGE. Sice we have no control
8158 		 * over how many protection segments the SCSI Layer
8159 		 * will hand us (ie: there could be one for every block
8160 		 * in the IO), just allocate enough SGEs to accomidate
8161 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8162 		 * to minimize the risk of running out.
8163 		 */
8164 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8165 				sizeof(struct fcp_rsp) + max_buf_size;
8166 
8167 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8168 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8169 
8170 		/*
8171 		 * If supporting DIF, reduce the seg count for scsi to
8172 		 * allow room for the DIF sges.
8173 		 */
8174 		if (phba->cfg_enable_bg &&
8175 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8176 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8177 		else
8178 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8179 
8180 	} else {
8181 		/*
8182 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8183 		 * the FCP rsp, a SGE for each, and a SGE for up to
8184 		 * cfg_sg_seg_cnt data segments.
8185 		 */
8186 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8187 				sizeof(struct fcp_rsp) +
8188 				((phba->cfg_sg_seg_cnt + extra) *
8189 				sizeof(struct sli4_sge));
8190 
8191 		/* Total SGEs for scsi_sg_list */
8192 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8193 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8194 
8195 		/*
8196 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8197 		 * need to post 1 page for the SGL.
8198 		 */
8199 	}
8200 
8201 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8202 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8203 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8204 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8205 	else
8206 		phba->cfg_sg_dma_buf_size =
8207 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8208 
8209 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8210 			       sizeof(struct sli4_sge);
8211 
8212 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8213 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8214 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8215 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8216 					"6300 Reducing NVME sg segment "
8217 					"cnt to %d\n",
8218 					LPFC_MAX_NVME_SEG_CNT);
8219 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8220 		} else
8221 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8222 	}
8223 
8224 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8225 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8226 			"total:%d scsi:%d nvme:%d\n",
8227 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8228 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8229 			phba->cfg_nvme_seg_cnt);
8230 
8231 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8232 		i = phba->cfg_sg_dma_buf_size;
8233 	else
8234 		i = SLI4_PAGE_SIZE;
8235 
8236 	phba->lpfc_sg_dma_buf_pool =
8237 			dma_pool_create("lpfc_sg_dma_buf_pool",
8238 					&phba->pcidev->dev,
8239 					phba->cfg_sg_dma_buf_size,
8240 					i, 0);
8241 	if (!phba->lpfc_sg_dma_buf_pool)
8242 		goto out_free_bsmbx;
8243 
8244 	phba->lpfc_cmd_rsp_buf_pool =
8245 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8246 					&phba->pcidev->dev,
8247 					sizeof(struct fcp_cmnd) +
8248 					sizeof(struct fcp_rsp),
8249 					i, 0);
8250 	if (!phba->lpfc_cmd_rsp_buf_pool)
8251 		goto out_free_sg_dma_buf;
8252 
8253 	mempool_free(mboxq, phba->mbox_mem_pool);
8254 
8255 	/* Verify OAS is supported */
8256 	lpfc_sli4_oas_verify(phba);
8257 
8258 	/* Verify RAS support on adapter */
8259 	lpfc_sli4_ras_init(phba);
8260 
8261 	/* Verify all the SLI4 queues */
8262 	rc = lpfc_sli4_queue_verify(phba);
8263 	if (rc)
8264 		goto out_free_cmd_rsp_buf;
8265 
8266 	/* Create driver internal CQE event pool */
8267 	rc = lpfc_sli4_cq_event_pool_create(phba);
8268 	if (rc)
8269 		goto out_free_cmd_rsp_buf;
8270 
8271 	/* Initialize sgl lists per host */
8272 	lpfc_init_sgl_list(phba);
8273 
8274 	/* Allocate and initialize active sgl array */
8275 	rc = lpfc_init_active_sgl_array(phba);
8276 	if (rc) {
8277 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8278 				"1430 Failed to initialize sgl list.\n");
8279 		goto out_destroy_cq_event_pool;
8280 	}
8281 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8282 	if (rc) {
8283 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8284 				"1432 Failed to initialize rpi headers.\n");
8285 		goto out_free_active_sgl;
8286 	}
8287 
8288 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8289 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8290 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8291 					 GFP_KERNEL);
8292 	if (!phba->fcf.fcf_rr_bmask) {
8293 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8294 				"2759 Failed allocate memory for FCF round "
8295 				"robin failover bmask\n");
8296 		rc = -ENOMEM;
8297 		goto out_remove_rpi_hdrs;
8298 	}
8299 
8300 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8301 					    sizeof(struct lpfc_hba_eq_hdl),
8302 					    GFP_KERNEL);
8303 	if (!phba->sli4_hba.hba_eq_hdl) {
8304 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8305 				"2572 Failed allocate memory for "
8306 				"fast-path per-EQ handle array\n");
8307 		rc = -ENOMEM;
8308 		goto out_free_fcf_rr_bmask;
8309 	}
8310 
8311 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8312 					sizeof(struct lpfc_vector_map_info),
8313 					GFP_KERNEL);
8314 	if (!phba->sli4_hba.cpu_map) {
8315 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8316 				"3327 Failed allocate memory for msi-x "
8317 				"interrupt vector mapping\n");
8318 		rc = -ENOMEM;
8319 		goto out_free_hba_eq_hdl;
8320 	}
8321 
8322 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8323 	if (!phba->sli4_hba.eq_info) {
8324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8325 				"3321 Failed allocation for per_cpu stats\n");
8326 		rc = -ENOMEM;
8327 		goto out_free_hba_cpu_map;
8328 	}
8329 
8330 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8331 					   sizeof(*phba->sli4_hba.idle_stat),
8332 					   GFP_KERNEL);
8333 	if (!phba->sli4_hba.idle_stat) {
8334 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8335 				"3390 Failed allocation for idle_stat\n");
8336 		rc = -ENOMEM;
8337 		goto out_free_hba_eq_info;
8338 	}
8339 
8340 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8341 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8342 	if (!phba->sli4_hba.c_stat) {
8343 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8344 				"3332 Failed allocating per cpu hdwq stats\n");
8345 		rc = -ENOMEM;
8346 		goto out_free_hba_idle_stat;
8347 	}
8348 #endif
8349 
8350 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8351 	if (!phba->cmf_stat) {
8352 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8353 				"3331 Failed allocating per cpu cgn stats\n");
8354 		rc = -ENOMEM;
8355 		goto out_free_hba_hdwq_info;
8356 	}
8357 
8358 	/*
8359 	 * Enable sr-iov virtual functions if supported and configured
8360 	 * through the module parameter.
8361 	 */
8362 	if (phba->cfg_sriov_nr_virtfn > 0) {
8363 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8364 						 phba->cfg_sriov_nr_virtfn);
8365 		if (rc) {
8366 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8367 					"3020 Requested number of SR-IOV "
8368 					"virtual functions (%d) is not "
8369 					"supported\n",
8370 					phba->cfg_sriov_nr_virtfn);
8371 			phba->cfg_sriov_nr_virtfn = 0;
8372 		}
8373 	}
8374 
8375 	return 0;
8376 
8377 out_free_hba_hdwq_info:
8378 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8379 	free_percpu(phba->sli4_hba.c_stat);
8380 out_free_hba_idle_stat:
8381 #endif
8382 	kfree(phba->sli4_hba.idle_stat);
8383 out_free_hba_eq_info:
8384 	free_percpu(phba->sli4_hba.eq_info);
8385 out_free_hba_cpu_map:
8386 	kfree(phba->sli4_hba.cpu_map);
8387 out_free_hba_eq_hdl:
8388 	kfree(phba->sli4_hba.hba_eq_hdl);
8389 out_free_fcf_rr_bmask:
8390 	kfree(phba->fcf.fcf_rr_bmask);
8391 out_remove_rpi_hdrs:
8392 	lpfc_sli4_remove_rpi_hdrs(phba);
8393 out_free_active_sgl:
8394 	lpfc_free_active_sgl(phba);
8395 out_destroy_cq_event_pool:
8396 	lpfc_sli4_cq_event_pool_destroy(phba);
8397 out_free_cmd_rsp_buf:
8398 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8399 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8400 out_free_sg_dma_buf:
8401 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8402 	phba->lpfc_sg_dma_buf_pool = NULL;
8403 out_free_bsmbx:
8404 	lpfc_destroy_bootstrap_mbox(phba);
8405 out_free_mem:
8406 	lpfc_mem_free(phba);
8407 	return rc;
8408 }
8409 
8410 /**
8411  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8412  * @phba: pointer to lpfc hba data structure.
8413  *
8414  * This routine is invoked to unset the driver internal resources set up
8415  * specific for supporting the SLI-4 HBA device it attached to.
8416  **/
8417 static void
8418 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8419 {
8420 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8421 
8422 	free_percpu(phba->sli4_hba.eq_info);
8423 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8424 	free_percpu(phba->sli4_hba.c_stat);
8425 #endif
8426 	free_percpu(phba->cmf_stat);
8427 	kfree(phba->sli4_hba.idle_stat);
8428 
8429 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8430 	kfree(phba->sli4_hba.cpu_map);
8431 	phba->sli4_hba.num_possible_cpu = 0;
8432 	phba->sli4_hba.num_present_cpu = 0;
8433 	phba->sli4_hba.curr_disp_cpu = 0;
8434 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8435 
8436 	/* Free memory allocated for fast-path work queue handles */
8437 	kfree(phba->sli4_hba.hba_eq_hdl);
8438 
8439 	/* Free the allocated rpi headers. */
8440 	lpfc_sli4_remove_rpi_hdrs(phba);
8441 	lpfc_sli4_remove_rpis(phba);
8442 
8443 	/* Free eligible FCF index bmask */
8444 	kfree(phba->fcf.fcf_rr_bmask);
8445 
8446 	/* Free the ELS sgl list */
8447 	lpfc_free_active_sgl(phba);
8448 	lpfc_free_els_sgl_list(phba);
8449 	lpfc_free_nvmet_sgl_list(phba);
8450 
8451 	/* Free the completion queue EQ event pool */
8452 	lpfc_sli4_cq_event_release_all(phba);
8453 	lpfc_sli4_cq_event_pool_destroy(phba);
8454 
8455 	/* Release resource identifiers. */
8456 	lpfc_sli4_dealloc_resource_identifiers(phba);
8457 
8458 	/* Free the bsmbx region. */
8459 	lpfc_destroy_bootstrap_mbox(phba);
8460 
8461 	/* Free the SLI Layer memory with SLI4 HBAs */
8462 	lpfc_mem_free_all(phba);
8463 
8464 	/* Free the current connect table */
8465 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8466 		&phba->fcf_conn_rec_list, list) {
8467 		list_del_init(&conn_entry->list);
8468 		kfree(conn_entry);
8469 	}
8470 
8471 	return;
8472 }
8473 
8474 /**
8475  * lpfc_init_api_table_setup - Set up init api function jump table
8476  * @phba: The hba struct for which this call is being executed.
8477  * @dev_grp: The HBA PCI-Device group number.
8478  *
8479  * This routine sets up the device INIT interface API function jump table
8480  * in @phba struct.
8481  *
8482  * Returns: 0 - success, -ENODEV - failure.
8483  **/
8484 int
8485 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8486 {
8487 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8488 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8489 	phba->lpfc_selective_reset = lpfc_selective_reset;
8490 	switch (dev_grp) {
8491 	case LPFC_PCI_DEV_LP:
8492 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8493 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8494 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8495 		break;
8496 	case LPFC_PCI_DEV_OC:
8497 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8498 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8499 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8500 		break;
8501 	default:
8502 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8503 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8504 				dev_grp);
8505 		return -ENODEV;
8506 	}
8507 	return 0;
8508 }
8509 
8510 /**
8511  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8512  * @phba: pointer to lpfc hba data structure.
8513  *
8514  * This routine is invoked to set up the driver internal resources after the
8515  * device specific resource setup to support the HBA device it attached to.
8516  *
8517  * Return codes
8518  * 	0 - successful
8519  * 	other values - error
8520  **/
8521 static int
8522 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8523 {
8524 	int error;
8525 
8526 	/* Startup the kernel thread for this host adapter. */
8527 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8528 					  "lpfc_worker_%d", phba->brd_no);
8529 	if (IS_ERR(phba->worker_thread)) {
8530 		error = PTR_ERR(phba->worker_thread);
8531 		return error;
8532 	}
8533 
8534 	return 0;
8535 }
8536 
8537 /**
8538  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8539  * @phba: pointer to lpfc hba data structure.
8540  *
8541  * This routine is invoked to unset the driver internal resources set up after
8542  * the device specific resource setup for supporting the HBA device it
8543  * attached to.
8544  **/
8545 static void
8546 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8547 {
8548 	if (phba->wq) {
8549 		flush_workqueue(phba->wq);
8550 		destroy_workqueue(phba->wq);
8551 		phba->wq = NULL;
8552 	}
8553 
8554 	/* Stop kernel worker thread */
8555 	if (phba->worker_thread)
8556 		kthread_stop(phba->worker_thread);
8557 }
8558 
8559 /**
8560  * lpfc_free_iocb_list - Free iocb list.
8561  * @phba: pointer to lpfc hba data structure.
8562  *
8563  * This routine is invoked to free the driver's IOCB list and memory.
8564  **/
8565 void
8566 lpfc_free_iocb_list(struct lpfc_hba *phba)
8567 {
8568 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8569 
8570 	spin_lock_irq(&phba->hbalock);
8571 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8572 				 &phba->lpfc_iocb_list, list) {
8573 		list_del(&iocbq_entry->list);
8574 		kfree(iocbq_entry);
8575 		phba->total_iocbq_bufs--;
8576 	}
8577 	spin_unlock_irq(&phba->hbalock);
8578 
8579 	return;
8580 }
8581 
8582 /**
8583  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8584  * @phba: pointer to lpfc hba data structure.
8585  * @iocb_count: number of requested iocbs
8586  *
8587  * This routine is invoked to allocate and initizlize the driver's IOCB
8588  * list and set up the IOCB tag array accordingly.
8589  *
8590  * Return codes
8591  *	0 - successful
8592  *	other values - error
8593  **/
8594 int
8595 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8596 {
8597 	struct lpfc_iocbq *iocbq_entry = NULL;
8598 	uint16_t iotag;
8599 	int i;
8600 
8601 	/* Initialize and populate the iocb list per host.  */
8602 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8603 	for (i = 0; i < iocb_count; i++) {
8604 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8605 		if (iocbq_entry == NULL) {
8606 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8607 				"expected %d count. Unloading driver.\n",
8608 				__func__, i, iocb_count);
8609 			goto out_free_iocbq;
8610 		}
8611 
8612 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8613 		if (iotag == 0) {
8614 			kfree(iocbq_entry);
8615 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8616 				"Unloading driver.\n", __func__);
8617 			goto out_free_iocbq;
8618 		}
8619 		iocbq_entry->sli4_lxritag = NO_XRI;
8620 		iocbq_entry->sli4_xritag = NO_XRI;
8621 
8622 		spin_lock_irq(&phba->hbalock);
8623 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8624 		phba->total_iocbq_bufs++;
8625 		spin_unlock_irq(&phba->hbalock);
8626 	}
8627 
8628 	return 0;
8629 
8630 out_free_iocbq:
8631 	lpfc_free_iocb_list(phba);
8632 
8633 	return -ENOMEM;
8634 }
8635 
8636 /**
8637  * lpfc_free_sgl_list - Free a given sgl list.
8638  * @phba: pointer to lpfc hba data structure.
8639  * @sglq_list: pointer to the head of sgl list.
8640  *
8641  * This routine is invoked to free a give sgl list and memory.
8642  **/
8643 void
8644 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8645 {
8646 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8647 
8648 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8649 		list_del(&sglq_entry->list);
8650 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8651 		kfree(sglq_entry);
8652 	}
8653 }
8654 
8655 /**
8656  * lpfc_free_els_sgl_list - Free els sgl list.
8657  * @phba: pointer to lpfc hba data structure.
8658  *
8659  * This routine is invoked to free the driver's els sgl list and memory.
8660  **/
8661 static void
8662 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8663 {
8664 	LIST_HEAD(sglq_list);
8665 
8666 	/* Retrieve all els sgls from driver list */
8667 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8668 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8669 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8670 
8671 	/* Now free the sgl list */
8672 	lpfc_free_sgl_list(phba, &sglq_list);
8673 }
8674 
8675 /**
8676  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8677  * @phba: pointer to lpfc hba data structure.
8678  *
8679  * This routine is invoked to free the driver's nvmet sgl list and memory.
8680  **/
8681 static void
8682 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8683 {
8684 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8685 	LIST_HEAD(sglq_list);
8686 
8687 	/* Retrieve all nvmet sgls from driver list */
8688 	spin_lock_irq(&phba->hbalock);
8689 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8690 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8691 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8692 	spin_unlock_irq(&phba->hbalock);
8693 
8694 	/* Now free the sgl list */
8695 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8696 		list_del(&sglq_entry->list);
8697 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8698 		kfree(sglq_entry);
8699 	}
8700 
8701 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8702 	 * The next initialization cycle sets the count and allocates
8703 	 * the sgls over again.
8704 	 */
8705 	phba->sli4_hba.nvmet_xri_cnt = 0;
8706 }
8707 
8708 /**
8709  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8710  * @phba: pointer to lpfc hba data structure.
8711  *
8712  * This routine is invoked to allocate the driver's active sgl memory.
8713  * This array will hold the sglq_entry's for active IOs.
8714  **/
8715 static int
8716 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8717 {
8718 	int size;
8719 	size = sizeof(struct lpfc_sglq *);
8720 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8721 
8722 	phba->sli4_hba.lpfc_sglq_active_list =
8723 		kzalloc(size, GFP_KERNEL);
8724 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8725 		return -ENOMEM;
8726 	return 0;
8727 }
8728 
8729 /**
8730  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8731  * @phba: pointer to lpfc hba data structure.
8732  *
8733  * This routine is invoked to walk through the array of active sglq entries
8734  * and free all of the resources.
8735  * This is just a place holder for now.
8736  **/
8737 static void
8738 lpfc_free_active_sgl(struct lpfc_hba *phba)
8739 {
8740 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8741 }
8742 
8743 /**
8744  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8745  * @phba: pointer to lpfc hba data structure.
8746  *
8747  * This routine is invoked to allocate and initizlize the driver's sgl
8748  * list and set up the sgl xritag tag array accordingly.
8749  *
8750  **/
8751 static void
8752 lpfc_init_sgl_list(struct lpfc_hba *phba)
8753 {
8754 	/* Initialize and populate the sglq list per host/VF. */
8755 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8756 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8757 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8758 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8759 
8760 	/* els xri-sgl book keeping */
8761 	phba->sli4_hba.els_xri_cnt = 0;
8762 
8763 	/* nvme xri-buffer book keeping */
8764 	phba->sli4_hba.io_xri_cnt = 0;
8765 }
8766 
8767 /**
8768  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8769  * @phba: pointer to lpfc hba data structure.
8770  *
8771  * This routine is invoked to post rpi header templates to the
8772  * port for those SLI4 ports that do not support extents.  This routine
8773  * posts a PAGE_SIZE memory region to the port to hold up to
8774  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8775  * and should be called only when interrupts are disabled.
8776  *
8777  * Return codes
8778  * 	0 - successful
8779  *	-ERROR - otherwise.
8780  **/
8781 int
8782 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8783 {
8784 	int rc = 0;
8785 	struct lpfc_rpi_hdr *rpi_hdr;
8786 
8787 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8788 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8789 		return rc;
8790 	if (phba->sli4_hba.extents_in_use)
8791 		return -EIO;
8792 
8793 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8794 	if (!rpi_hdr) {
8795 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8796 				"0391 Error during rpi post operation\n");
8797 		lpfc_sli4_remove_rpis(phba);
8798 		rc = -ENODEV;
8799 	}
8800 
8801 	return rc;
8802 }
8803 
8804 /**
8805  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8806  * @phba: pointer to lpfc hba data structure.
8807  *
8808  * This routine is invoked to allocate a single 4KB memory region to
8809  * support rpis and stores them in the phba.  This single region
8810  * provides support for up to 64 rpis.  The region is used globally
8811  * by the device.
8812  *
8813  * Returns:
8814  *   A valid rpi hdr on success.
8815  *   A NULL pointer on any failure.
8816  **/
8817 struct lpfc_rpi_hdr *
8818 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8819 {
8820 	uint16_t rpi_limit, curr_rpi_range;
8821 	struct lpfc_dmabuf *dmabuf;
8822 	struct lpfc_rpi_hdr *rpi_hdr;
8823 
8824 	/*
8825 	 * If the SLI4 port supports extents, posting the rpi header isn't
8826 	 * required.  Set the expected maximum count and let the actual value
8827 	 * get set when extents are fully allocated.
8828 	 */
8829 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8830 		return NULL;
8831 	if (phba->sli4_hba.extents_in_use)
8832 		return NULL;
8833 
8834 	/* The limit on the logical index is just the max_rpi count. */
8835 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8836 
8837 	spin_lock_irq(&phba->hbalock);
8838 	/*
8839 	 * Establish the starting RPI in this header block.  The starting
8840 	 * rpi is normalized to a zero base because the physical rpi is
8841 	 * port based.
8842 	 */
8843 	curr_rpi_range = phba->sli4_hba.next_rpi;
8844 	spin_unlock_irq(&phba->hbalock);
8845 
8846 	/* Reached full RPI range */
8847 	if (curr_rpi_range == rpi_limit)
8848 		return NULL;
8849 
8850 	/*
8851 	 * First allocate the protocol header region for the port.  The
8852 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8853 	 */
8854 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8855 	if (!dmabuf)
8856 		return NULL;
8857 
8858 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8859 					  LPFC_HDR_TEMPLATE_SIZE,
8860 					  &dmabuf->phys, GFP_KERNEL);
8861 	if (!dmabuf->virt) {
8862 		rpi_hdr = NULL;
8863 		goto err_free_dmabuf;
8864 	}
8865 
8866 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8867 		rpi_hdr = NULL;
8868 		goto err_free_coherent;
8869 	}
8870 
8871 	/* Save the rpi header data for cleanup later. */
8872 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8873 	if (!rpi_hdr)
8874 		goto err_free_coherent;
8875 
8876 	rpi_hdr->dmabuf = dmabuf;
8877 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8878 	rpi_hdr->page_count = 1;
8879 	spin_lock_irq(&phba->hbalock);
8880 
8881 	/* The rpi_hdr stores the logical index only. */
8882 	rpi_hdr->start_rpi = curr_rpi_range;
8883 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8884 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8885 
8886 	spin_unlock_irq(&phba->hbalock);
8887 	return rpi_hdr;
8888 
8889  err_free_coherent:
8890 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8891 			  dmabuf->virt, dmabuf->phys);
8892  err_free_dmabuf:
8893 	kfree(dmabuf);
8894 	return NULL;
8895 }
8896 
8897 /**
8898  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8899  * @phba: pointer to lpfc hba data structure.
8900  *
8901  * This routine is invoked to remove all memory resources allocated
8902  * to support rpis for SLI4 ports not supporting extents. This routine
8903  * presumes the caller has released all rpis consumed by fabric or port
8904  * logins and is prepared to have the header pages removed.
8905  **/
8906 void
8907 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8908 {
8909 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8910 
8911 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8912 		goto exit;
8913 
8914 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8915 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8916 		list_del(&rpi_hdr->list);
8917 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8918 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8919 		kfree(rpi_hdr->dmabuf);
8920 		kfree(rpi_hdr);
8921 	}
8922  exit:
8923 	/* There are no rpis available to the port now. */
8924 	phba->sli4_hba.next_rpi = 0;
8925 }
8926 
8927 /**
8928  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8929  * @pdev: pointer to pci device data structure.
8930  *
8931  * This routine is invoked to allocate the driver hba data structure for an
8932  * HBA device. If the allocation is successful, the phba reference to the
8933  * PCI device data structure is set.
8934  *
8935  * Return codes
8936  *      pointer to @phba - successful
8937  *      NULL - error
8938  **/
8939 static struct lpfc_hba *
8940 lpfc_hba_alloc(struct pci_dev *pdev)
8941 {
8942 	struct lpfc_hba *phba;
8943 
8944 	/* Allocate memory for HBA structure */
8945 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8946 	if (!phba) {
8947 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
8948 		return NULL;
8949 	}
8950 
8951 	/* Set reference to PCI device in HBA structure */
8952 	phba->pcidev = pdev;
8953 
8954 	/* Assign an unused board number */
8955 	phba->brd_no = lpfc_get_instance();
8956 	if (phba->brd_no < 0) {
8957 		kfree(phba);
8958 		return NULL;
8959 	}
8960 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8961 
8962 	spin_lock_init(&phba->ct_ev_lock);
8963 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
8964 
8965 	return phba;
8966 }
8967 
8968 /**
8969  * lpfc_hba_free - Free driver hba data structure with a device.
8970  * @phba: pointer to lpfc hba data structure.
8971  *
8972  * This routine is invoked to free the driver hba data structure with an
8973  * HBA device.
8974  **/
8975 static void
8976 lpfc_hba_free(struct lpfc_hba *phba)
8977 {
8978 	if (phba->sli_rev == LPFC_SLI_REV4)
8979 		kfree(phba->sli4_hba.hdwq);
8980 
8981 	/* Release the driver assigned board number */
8982 	idr_remove(&lpfc_hba_index, phba->brd_no);
8983 
8984 	/* Free memory allocated with sli3 rings */
8985 	kfree(phba->sli.sli3_ring);
8986 	phba->sli.sli3_ring = NULL;
8987 
8988 	kfree(phba);
8989 	return;
8990 }
8991 
8992 /**
8993  * lpfc_create_shost - Create hba physical port with associated scsi host.
8994  * @phba: pointer to lpfc hba data structure.
8995  *
8996  * This routine is invoked to create HBA physical port and associate a SCSI
8997  * host with it.
8998  *
8999  * Return codes
9000  *      0 - successful
9001  *      other values - error
9002  **/
9003 static int
9004 lpfc_create_shost(struct lpfc_hba *phba)
9005 {
9006 	struct lpfc_vport *vport;
9007 	struct Scsi_Host  *shost;
9008 
9009 	/* Initialize HBA FC structure */
9010 	phba->fc_edtov = FF_DEF_EDTOV;
9011 	phba->fc_ratov = FF_DEF_RATOV;
9012 	phba->fc_altov = FF_DEF_ALTOV;
9013 	phba->fc_arbtov = FF_DEF_ARBTOV;
9014 
9015 	atomic_set(&phba->sdev_cnt, 0);
9016 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9017 	if (!vport)
9018 		return -ENODEV;
9019 
9020 	shost = lpfc_shost_from_vport(vport);
9021 	phba->pport = vport;
9022 
9023 	if (phba->nvmet_support) {
9024 		/* Only 1 vport (pport) will support NVME target */
9025 		phba->targetport = NULL;
9026 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9027 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9028 				"6076 NVME Target Found\n");
9029 	}
9030 
9031 	lpfc_debugfs_initialize(vport);
9032 	/* Put reference to SCSI host to driver's device private data */
9033 	pci_set_drvdata(phba->pcidev, shost);
9034 
9035 	/*
9036 	 * At this point we are fully registered with PSA. In addition,
9037 	 * any initial discovery should be completed.
9038 	 */
9039 	vport->load_flag |= FC_ALLOW_FDMI;
9040 	if (phba->cfg_enable_SmartSAN ||
9041 	    (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
9042 
9043 		/* Setup appropriate attribute masks */
9044 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9045 		if (phba->cfg_enable_SmartSAN)
9046 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9047 		else
9048 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9049 	}
9050 	return 0;
9051 }
9052 
9053 /**
9054  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9055  * @phba: pointer to lpfc hba data structure.
9056  *
9057  * This routine is invoked to destroy HBA physical port and the associated
9058  * SCSI host.
9059  **/
9060 static void
9061 lpfc_destroy_shost(struct lpfc_hba *phba)
9062 {
9063 	struct lpfc_vport *vport = phba->pport;
9064 
9065 	/* Destroy physical port that associated with the SCSI host */
9066 	destroy_port(vport);
9067 
9068 	return;
9069 }
9070 
9071 /**
9072  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9073  * @phba: pointer to lpfc hba data structure.
9074  * @shost: the shost to be used to detect Block guard settings.
9075  *
9076  * This routine sets up the local Block guard protocol settings for @shost.
9077  * This routine also allocates memory for debugging bg buffers.
9078  **/
9079 static void
9080 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9081 {
9082 	uint32_t old_mask;
9083 	uint32_t old_guard;
9084 
9085 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9086 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9087 				"1478 Registering BlockGuard with the "
9088 				"SCSI layer\n");
9089 
9090 		old_mask = phba->cfg_prot_mask;
9091 		old_guard = phba->cfg_prot_guard;
9092 
9093 		/* Only allow supported values */
9094 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9095 			SHOST_DIX_TYPE0_PROTECTION |
9096 			SHOST_DIX_TYPE1_PROTECTION);
9097 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9098 					 SHOST_DIX_GUARD_CRC);
9099 
9100 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9101 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9102 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9103 
9104 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9105 			if ((old_mask != phba->cfg_prot_mask) ||
9106 				(old_guard != phba->cfg_prot_guard))
9107 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9108 					"1475 Registering BlockGuard with the "
9109 					"SCSI layer: mask %d  guard %d\n",
9110 					phba->cfg_prot_mask,
9111 					phba->cfg_prot_guard);
9112 
9113 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9114 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9115 		} else
9116 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9117 				"1479 Not Registering BlockGuard with the SCSI "
9118 				"layer, Bad protection parameters: %d %d\n",
9119 				old_mask, old_guard);
9120 	}
9121 }
9122 
9123 /**
9124  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9125  * @phba: pointer to lpfc hba data structure.
9126  *
9127  * This routine is invoked to perform all the necessary post initialization
9128  * setup for the device.
9129  **/
9130 static void
9131 lpfc_post_init_setup(struct lpfc_hba *phba)
9132 {
9133 	struct Scsi_Host  *shost;
9134 	struct lpfc_adapter_event_header adapter_event;
9135 
9136 	/* Get the default values for Model Name and Description */
9137 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9138 
9139 	/*
9140 	 * hba setup may have changed the hba_queue_depth so we need to
9141 	 * adjust the value of can_queue.
9142 	 */
9143 	shost = pci_get_drvdata(phba->pcidev);
9144 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9145 
9146 	lpfc_host_attrib_init(shost);
9147 
9148 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9149 		spin_lock_irq(shost->host_lock);
9150 		lpfc_poll_start_timer(phba);
9151 		spin_unlock_irq(shost->host_lock);
9152 	}
9153 
9154 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9155 			"0428 Perform SCSI scan\n");
9156 	/* Send board arrival event to upper layer */
9157 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9158 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9159 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9160 				  sizeof(adapter_event),
9161 				  (char *) &adapter_event,
9162 				  LPFC_NL_VENDOR_ID);
9163 	return;
9164 }
9165 
9166 /**
9167  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9168  * @phba: pointer to lpfc hba data structure.
9169  *
9170  * This routine is invoked to set up the PCI device memory space for device
9171  * with SLI-3 interface spec.
9172  *
9173  * Return codes
9174  * 	0 - successful
9175  * 	other values - error
9176  **/
9177 static int
9178 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9179 {
9180 	struct pci_dev *pdev = phba->pcidev;
9181 	unsigned long bar0map_len, bar2map_len;
9182 	int i, hbq_count;
9183 	void *ptr;
9184 	int error;
9185 
9186 	if (!pdev)
9187 		return -ENODEV;
9188 
9189 	/* Set the device DMA mask size */
9190 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9191 	if (error)
9192 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9193 	if (error)
9194 		return error;
9195 	error = -ENODEV;
9196 
9197 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9198 	 * required by each mapping.
9199 	 */
9200 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9201 	bar0map_len = pci_resource_len(pdev, 0);
9202 
9203 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9204 	bar2map_len = pci_resource_len(pdev, 2);
9205 
9206 	/* Map HBA SLIM to a kernel virtual address. */
9207 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9208 	if (!phba->slim_memmap_p) {
9209 		dev_printk(KERN_ERR, &pdev->dev,
9210 			   "ioremap failed for SLIM memory.\n");
9211 		goto out;
9212 	}
9213 
9214 	/* Map HBA Control Registers to a kernel virtual address. */
9215 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9216 	if (!phba->ctrl_regs_memmap_p) {
9217 		dev_printk(KERN_ERR, &pdev->dev,
9218 			   "ioremap failed for HBA control registers.\n");
9219 		goto out_iounmap_slim;
9220 	}
9221 
9222 	/* Allocate memory for SLI-2 structures */
9223 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9224 					       &phba->slim2p.phys, GFP_KERNEL);
9225 	if (!phba->slim2p.virt)
9226 		goto out_iounmap;
9227 
9228 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9229 	phba->mbox_ext = (phba->slim2p.virt +
9230 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9231 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9232 	phba->IOCBs = (phba->slim2p.virt +
9233 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9234 
9235 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9236 						 lpfc_sli_hbq_size(),
9237 						 &phba->hbqslimp.phys,
9238 						 GFP_KERNEL);
9239 	if (!phba->hbqslimp.virt)
9240 		goto out_free_slim;
9241 
9242 	hbq_count = lpfc_sli_hbq_count();
9243 	ptr = phba->hbqslimp.virt;
9244 	for (i = 0; i < hbq_count; ++i) {
9245 		phba->hbqs[i].hbq_virt = ptr;
9246 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9247 		ptr += (lpfc_hbq_defs[i]->entry_count *
9248 			sizeof(struct lpfc_hbq_entry));
9249 	}
9250 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9251 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9252 
9253 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9254 
9255 	phba->MBslimaddr = phba->slim_memmap_p;
9256 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9257 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9258 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9259 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9260 
9261 	return 0;
9262 
9263 out_free_slim:
9264 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9265 			  phba->slim2p.virt, phba->slim2p.phys);
9266 out_iounmap:
9267 	iounmap(phba->ctrl_regs_memmap_p);
9268 out_iounmap_slim:
9269 	iounmap(phba->slim_memmap_p);
9270 out:
9271 	return error;
9272 }
9273 
9274 /**
9275  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9276  * @phba: pointer to lpfc hba data structure.
9277  *
9278  * This routine is invoked to unset the PCI device memory space for device
9279  * with SLI-3 interface spec.
9280  **/
9281 static void
9282 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9283 {
9284 	struct pci_dev *pdev;
9285 
9286 	/* Obtain PCI device reference */
9287 	if (!phba->pcidev)
9288 		return;
9289 	else
9290 		pdev = phba->pcidev;
9291 
9292 	/* Free coherent DMA memory allocated */
9293 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9294 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9295 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9296 			  phba->slim2p.virt, phba->slim2p.phys);
9297 
9298 	/* I/O memory unmap */
9299 	iounmap(phba->ctrl_regs_memmap_p);
9300 	iounmap(phba->slim_memmap_p);
9301 
9302 	return;
9303 }
9304 
9305 /**
9306  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9307  * @phba: pointer to lpfc hba data structure.
9308  *
9309  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9310  * done and check status.
9311  *
9312  * Return 0 if successful, otherwise -ENODEV.
9313  **/
9314 int
9315 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9316 {
9317 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9318 	struct lpfc_register reg_data;
9319 	int i, port_error = 0;
9320 	uint32_t if_type;
9321 
9322 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9323 	memset(&reg_data, 0, sizeof(reg_data));
9324 	if (!phba->sli4_hba.PSMPHRregaddr)
9325 		return -ENODEV;
9326 
9327 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9328 	for (i = 0; i < 3000; i++) {
9329 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9330 			&portsmphr_reg.word0) ||
9331 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9332 			/* Port has a fatal POST error, break out */
9333 			port_error = -ENODEV;
9334 			break;
9335 		}
9336 		if (LPFC_POST_STAGE_PORT_READY ==
9337 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9338 			break;
9339 		msleep(10);
9340 	}
9341 
9342 	/*
9343 	 * If there was a port error during POST, then don't proceed with
9344 	 * other register reads as the data may not be valid.  Just exit.
9345 	 */
9346 	if (port_error) {
9347 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9348 			"1408 Port Failed POST - portsmphr=0x%x, "
9349 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9350 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9351 			portsmphr_reg.word0,
9352 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9353 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9354 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9355 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9356 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9357 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9358 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9359 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9360 	} else {
9361 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9362 				"2534 Device Info: SLIFamily=0x%x, "
9363 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9364 				"SLIHint_2=0x%x, FT=0x%x\n",
9365 				bf_get(lpfc_sli_intf_sli_family,
9366 				       &phba->sli4_hba.sli_intf),
9367 				bf_get(lpfc_sli_intf_slirev,
9368 				       &phba->sli4_hba.sli_intf),
9369 				bf_get(lpfc_sli_intf_if_type,
9370 				       &phba->sli4_hba.sli_intf),
9371 				bf_get(lpfc_sli_intf_sli_hint1,
9372 				       &phba->sli4_hba.sli_intf),
9373 				bf_get(lpfc_sli_intf_sli_hint2,
9374 				       &phba->sli4_hba.sli_intf),
9375 				bf_get(lpfc_sli_intf_func_type,
9376 				       &phba->sli4_hba.sli_intf));
9377 		/*
9378 		 * Check for other Port errors during the initialization
9379 		 * process.  Fail the load if the port did not come up
9380 		 * correctly.
9381 		 */
9382 		if_type = bf_get(lpfc_sli_intf_if_type,
9383 				 &phba->sli4_hba.sli_intf);
9384 		switch (if_type) {
9385 		case LPFC_SLI_INTF_IF_TYPE_0:
9386 			phba->sli4_hba.ue_mask_lo =
9387 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9388 			phba->sli4_hba.ue_mask_hi =
9389 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9390 			uerrlo_reg.word0 =
9391 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9392 			uerrhi_reg.word0 =
9393 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9394 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9395 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9396 				lpfc_printf_log(phba, KERN_ERR,
9397 						LOG_TRACE_EVENT,
9398 						"1422 Unrecoverable Error "
9399 						"Detected during POST "
9400 						"uerr_lo_reg=0x%x, "
9401 						"uerr_hi_reg=0x%x, "
9402 						"ue_mask_lo_reg=0x%x, "
9403 						"ue_mask_hi_reg=0x%x\n",
9404 						uerrlo_reg.word0,
9405 						uerrhi_reg.word0,
9406 						phba->sli4_hba.ue_mask_lo,
9407 						phba->sli4_hba.ue_mask_hi);
9408 				port_error = -ENODEV;
9409 			}
9410 			break;
9411 		case LPFC_SLI_INTF_IF_TYPE_2:
9412 		case LPFC_SLI_INTF_IF_TYPE_6:
9413 			/* Final checks.  The port status should be clean. */
9414 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9415 				&reg_data.word0) ||
9416 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9417 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9418 				phba->work_status[0] =
9419 					readl(phba->sli4_hba.u.if_type2.
9420 					      ERR1regaddr);
9421 				phba->work_status[1] =
9422 					readl(phba->sli4_hba.u.if_type2.
9423 					      ERR2regaddr);
9424 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9425 					"2888 Unrecoverable port error "
9426 					"following POST: port status reg "
9427 					"0x%x, port_smphr reg 0x%x, "
9428 					"error 1=0x%x, error 2=0x%x\n",
9429 					reg_data.word0,
9430 					portsmphr_reg.word0,
9431 					phba->work_status[0],
9432 					phba->work_status[1]);
9433 				port_error = -ENODEV;
9434 				break;
9435 			}
9436 
9437 			if (lpfc_pldv_detect &&
9438 			    bf_get(lpfc_sli_intf_sli_family,
9439 				   &phba->sli4_hba.sli_intf) ==
9440 					LPFC_SLI_INTF_FAMILY_G6)
9441 				pci_write_config_byte(phba->pcidev,
9442 						      LPFC_SLI_INTF, CFG_PLD);
9443 			break;
9444 		case LPFC_SLI_INTF_IF_TYPE_1:
9445 		default:
9446 			break;
9447 		}
9448 	}
9449 	return port_error;
9450 }
9451 
9452 /**
9453  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9454  * @phba: pointer to lpfc hba data structure.
9455  * @if_type:  The SLI4 interface type getting configured.
9456  *
9457  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9458  * memory map.
9459  **/
9460 static void
9461 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9462 {
9463 	switch (if_type) {
9464 	case LPFC_SLI_INTF_IF_TYPE_0:
9465 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9466 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9467 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9468 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9469 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9470 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9471 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9472 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9473 		phba->sli4_hba.SLIINTFregaddr =
9474 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9475 		break;
9476 	case LPFC_SLI_INTF_IF_TYPE_2:
9477 		phba->sli4_hba.u.if_type2.EQDregaddr =
9478 			phba->sli4_hba.conf_regs_memmap_p +
9479 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9480 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9481 			phba->sli4_hba.conf_regs_memmap_p +
9482 						LPFC_CTL_PORT_ER1_OFFSET;
9483 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9484 			phba->sli4_hba.conf_regs_memmap_p +
9485 						LPFC_CTL_PORT_ER2_OFFSET;
9486 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9487 			phba->sli4_hba.conf_regs_memmap_p +
9488 						LPFC_CTL_PORT_CTL_OFFSET;
9489 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9490 			phba->sli4_hba.conf_regs_memmap_p +
9491 						LPFC_CTL_PORT_STA_OFFSET;
9492 		phba->sli4_hba.SLIINTFregaddr =
9493 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9494 		phba->sli4_hba.PSMPHRregaddr =
9495 			phba->sli4_hba.conf_regs_memmap_p +
9496 						LPFC_CTL_PORT_SEM_OFFSET;
9497 		phba->sli4_hba.RQDBregaddr =
9498 			phba->sli4_hba.conf_regs_memmap_p +
9499 						LPFC_ULP0_RQ_DOORBELL;
9500 		phba->sli4_hba.WQDBregaddr =
9501 			phba->sli4_hba.conf_regs_memmap_p +
9502 						LPFC_ULP0_WQ_DOORBELL;
9503 		phba->sli4_hba.CQDBregaddr =
9504 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9505 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9506 		phba->sli4_hba.MQDBregaddr =
9507 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9508 		phba->sli4_hba.BMBXregaddr =
9509 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9510 		break;
9511 	case LPFC_SLI_INTF_IF_TYPE_6:
9512 		phba->sli4_hba.u.if_type2.EQDregaddr =
9513 			phba->sli4_hba.conf_regs_memmap_p +
9514 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9515 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9516 			phba->sli4_hba.conf_regs_memmap_p +
9517 						LPFC_CTL_PORT_ER1_OFFSET;
9518 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9519 			phba->sli4_hba.conf_regs_memmap_p +
9520 						LPFC_CTL_PORT_ER2_OFFSET;
9521 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9522 			phba->sli4_hba.conf_regs_memmap_p +
9523 						LPFC_CTL_PORT_CTL_OFFSET;
9524 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9525 			phba->sli4_hba.conf_regs_memmap_p +
9526 						LPFC_CTL_PORT_STA_OFFSET;
9527 		phba->sli4_hba.PSMPHRregaddr =
9528 			phba->sli4_hba.conf_regs_memmap_p +
9529 						LPFC_CTL_PORT_SEM_OFFSET;
9530 		phba->sli4_hba.BMBXregaddr =
9531 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9532 		break;
9533 	case LPFC_SLI_INTF_IF_TYPE_1:
9534 	default:
9535 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9536 			   "FATAL - unsupported SLI4 interface type - %d\n",
9537 			   if_type);
9538 		break;
9539 	}
9540 }
9541 
9542 /**
9543  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9544  * @phba: pointer to lpfc hba data structure.
9545  * @if_type: sli if type to operate on.
9546  *
9547  * This routine is invoked to set up SLI4 BAR1 register memory map.
9548  **/
9549 static void
9550 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9551 {
9552 	switch (if_type) {
9553 	case LPFC_SLI_INTF_IF_TYPE_0:
9554 		phba->sli4_hba.PSMPHRregaddr =
9555 			phba->sli4_hba.ctrl_regs_memmap_p +
9556 			LPFC_SLIPORT_IF0_SMPHR;
9557 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9558 			LPFC_HST_ISR0;
9559 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9560 			LPFC_HST_IMR0;
9561 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9562 			LPFC_HST_ISCR0;
9563 		break;
9564 	case LPFC_SLI_INTF_IF_TYPE_6:
9565 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9566 			LPFC_IF6_RQ_DOORBELL;
9567 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9568 			LPFC_IF6_WQ_DOORBELL;
9569 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9570 			LPFC_IF6_CQ_DOORBELL;
9571 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9572 			LPFC_IF6_EQ_DOORBELL;
9573 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9574 			LPFC_IF6_MQ_DOORBELL;
9575 		break;
9576 	case LPFC_SLI_INTF_IF_TYPE_2:
9577 	case LPFC_SLI_INTF_IF_TYPE_1:
9578 	default:
9579 		dev_err(&phba->pcidev->dev,
9580 			   "FATAL - unsupported SLI4 interface type - %d\n",
9581 			   if_type);
9582 		break;
9583 	}
9584 }
9585 
9586 /**
9587  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9588  * @phba: pointer to lpfc hba data structure.
9589  * @vf: virtual function number
9590  *
9591  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9592  * based on the given viftual function number, @vf.
9593  *
9594  * Return 0 if successful, otherwise -ENODEV.
9595  **/
9596 static int
9597 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9598 {
9599 	if (vf > LPFC_VIR_FUNC_MAX)
9600 		return -ENODEV;
9601 
9602 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9603 				vf * LPFC_VFR_PAGE_SIZE +
9604 					LPFC_ULP0_RQ_DOORBELL);
9605 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9606 				vf * LPFC_VFR_PAGE_SIZE +
9607 					LPFC_ULP0_WQ_DOORBELL);
9608 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9609 				vf * LPFC_VFR_PAGE_SIZE +
9610 					LPFC_EQCQ_DOORBELL);
9611 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9612 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9613 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9614 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9615 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9616 	return 0;
9617 }
9618 
9619 /**
9620  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9621  * @phba: pointer to lpfc hba data structure.
9622  *
9623  * This routine is invoked to create the bootstrap mailbox
9624  * region consistent with the SLI-4 interface spec.  This
9625  * routine allocates all memory necessary to communicate
9626  * mailbox commands to the port and sets up all alignment
9627  * needs.  No locks are expected to be held when calling
9628  * this routine.
9629  *
9630  * Return codes
9631  * 	0 - successful
9632  * 	-ENOMEM - could not allocated memory.
9633  **/
9634 static int
9635 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9636 {
9637 	uint32_t bmbx_size;
9638 	struct lpfc_dmabuf *dmabuf;
9639 	struct dma_address *dma_address;
9640 	uint32_t pa_addr;
9641 	uint64_t phys_addr;
9642 
9643 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9644 	if (!dmabuf)
9645 		return -ENOMEM;
9646 
9647 	/*
9648 	 * The bootstrap mailbox region is comprised of 2 parts
9649 	 * plus an alignment restriction of 16 bytes.
9650 	 */
9651 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9652 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9653 					  &dmabuf->phys, GFP_KERNEL);
9654 	if (!dmabuf->virt) {
9655 		kfree(dmabuf);
9656 		return -ENOMEM;
9657 	}
9658 
9659 	/*
9660 	 * Initialize the bootstrap mailbox pointers now so that the register
9661 	 * operations are simple later.  The mailbox dma address is required
9662 	 * to be 16-byte aligned.  Also align the virtual memory as each
9663 	 * maibox is copied into the bmbx mailbox region before issuing the
9664 	 * command to the port.
9665 	 */
9666 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9667 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9668 
9669 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9670 					      LPFC_ALIGN_16_BYTE);
9671 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9672 					      LPFC_ALIGN_16_BYTE);
9673 
9674 	/*
9675 	 * Set the high and low physical addresses now.  The SLI4 alignment
9676 	 * requirement is 16 bytes and the mailbox is posted to the port
9677 	 * as two 30-bit addresses.  The other data is a bit marking whether
9678 	 * the 30-bit address is the high or low address.
9679 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9680 	 * clean on 32 bit machines.
9681 	 */
9682 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9683 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9684 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9685 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9686 					   LPFC_BMBX_BIT1_ADDR_HI);
9687 
9688 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9689 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9690 					   LPFC_BMBX_BIT1_ADDR_LO);
9691 	return 0;
9692 }
9693 
9694 /**
9695  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9696  * @phba: pointer to lpfc hba data structure.
9697  *
9698  * This routine is invoked to teardown the bootstrap mailbox
9699  * region and release all host resources. This routine requires
9700  * the caller to ensure all mailbox commands recovered, no
9701  * additional mailbox comands are sent, and interrupts are disabled
9702  * before calling this routine.
9703  *
9704  **/
9705 static void
9706 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9707 {
9708 	dma_free_coherent(&phba->pcidev->dev,
9709 			  phba->sli4_hba.bmbx.bmbx_size,
9710 			  phba->sli4_hba.bmbx.dmabuf->virt,
9711 			  phba->sli4_hba.bmbx.dmabuf->phys);
9712 
9713 	kfree(phba->sli4_hba.bmbx.dmabuf);
9714 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9715 }
9716 
9717 static const char * const lpfc_topo_to_str[] = {
9718 	"Loop then P2P",
9719 	"Loopback",
9720 	"P2P Only",
9721 	"Unsupported",
9722 	"Loop Only",
9723 	"Unsupported",
9724 	"P2P then Loop",
9725 };
9726 
9727 #define	LINK_FLAGS_DEF	0x0
9728 #define	LINK_FLAGS_P2P	0x1
9729 #define	LINK_FLAGS_LOOP	0x2
9730 /**
9731  * lpfc_map_topology - Map the topology read from READ_CONFIG
9732  * @phba: pointer to lpfc hba data structure.
9733  * @rd_config: pointer to read config data
9734  *
9735  * This routine is invoked to map the topology values as read
9736  * from the read config mailbox command. If the persistent
9737  * topology feature is supported, the firmware will provide the
9738  * saved topology information to be used in INIT_LINK
9739  **/
9740 static void
9741 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9742 {
9743 	u8 ptv, tf, pt;
9744 
9745 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9746 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9747 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9748 
9749 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9750 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9751 			 ptv, tf, pt);
9752 	if (!ptv) {
9753 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9754 				"2019 FW does not support persistent topology "
9755 				"Using driver parameter defined value [%s]",
9756 				lpfc_topo_to_str[phba->cfg_topology]);
9757 		return;
9758 	}
9759 	/* FW supports persistent topology - override module parameter value */
9760 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9761 
9762 	/* if ASIC_GEN_NUM >= 0xC) */
9763 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9764 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9765 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9766 		    LPFC_SLI_INTF_FAMILY_G6)) {
9767 		if (!tf) {
9768 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9769 					? FLAGS_TOPOLOGY_MODE_LOOP
9770 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9771 		} else {
9772 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9773 		}
9774 	} else { /* G5 */
9775 		if (tf) {
9776 			/* If topology failover set - pt is '0' or '1' */
9777 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9778 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9779 		} else {
9780 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9781 					? FLAGS_TOPOLOGY_MODE_PT_PT
9782 					: FLAGS_TOPOLOGY_MODE_LOOP);
9783 		}
9784 	}
9785 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9786 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9787 				"2020 Using persistent topology value [%s]",
9788 				lpfc_topo_to_str[phba->cfg_topology]);
9789 	} else {
9790 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9791 				"2021 Invalid topology values from FW "
9792 				"Using driver parameter defined value [%s]",
9793 				lpfc_topo_to_str[phba->cfg_topology]);
9794 	}
9795 }
9796 
9797 /**
9798  * lpfc_sli4_read_config - Get the config parameters.
9799  * @phba: pointer to lpfc hba data structure.
9800  *
9801  * This routine is invoked to read the configuration parameters from the HBA.
9802  * The configuration parameters are used to set the base and maximum values
9803  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9804  * allocation for the port.
9805  *
9806  * Return codes
9807  * 	0 - successful
9808  * 	-ENOMEM - No available memory
9809  *      -EIO - The mailbox failed to complete successfully.
9810  **/
9811 int
9812 lpfc_sli4_read_config(struct lpfc_hba *phba)
9813 {
9814 	LPFC_MBOXQ_t *pmb;
9815 	struct lpfc_mbx_read_config *rd_config;
9816 	union  lpfc_sli4_cfg_shdr *shdr;
9817 	uint32_t shdr_status, shdr_add_status;
9818 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9819 	struct lpfc_rsrc_desc_fcfcoe *desc;
9820 	char *pdesc_0;
9821 	uint16_t forced_link_speed;
9822 	uint32_t if_type, qmin;
9823 	int length, i, rc = 0, rc2;
9824 
9825 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9826 	if (!pmb) {
9827 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9828 				"2011 Unable to allocate memory for issuing "
9829 				"SLI_CONFIG_SPECIAL mailbox command\n");
9830 		return -ENOMEM;
9831 	}
9832 
9833 	lpfc_read_config(phba, pmb);
9834 
9835 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9836 	if (rc != MBX_SUCCESS) {
9837 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9838 				"2012 Mailbox failed , mbxCmd x%x "
9839 				"READ_CONFIG, mbxStatus x%x\n",
9840 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9841 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9842 		rc = -EIO;
9843 	} else {
9844 		rd_config = &pmb->u.mqe.un.rd_config;
9845 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9846 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9847 			phba->sli4_hba.lnk_info.lnk_tp =
9848 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9849 			phba->sli4_hba.lnk_info.lnk_no =
9850 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9851 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9852 					"3081 lnk_type:%d, lnk_numb:%d\n",
9853 					phba->sli4_hba.lnk_info.lnk_tp,
9854 					phba->sli4_hba.lnk_info.lnk_no);
9855 		} else
9856 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9857 					"3082 Mailbox (x%x) returned ldv:x0\n",
9858 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9859 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9860 			phba->bbcredit_support = 1;
9861 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9862 		}
9863 
9864 		phba->sli4_hba.conf_trunk =
9865 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9866 		phba->sli4_hba.extents_in_use =
9867 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9868 		phba->sli4_hba.max_cfg_param.max_xri =
9869 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9870 		/* Reduce resource usage in kdump environment */
9871 		if (is_kdump_kernel() &&
9872 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9873 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9874 		phba->sli4_hba.max_cfg_param.xri_base =
9875 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9876 		phba->sli4_hba.max_cfg_param.max_vpi =
9877 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9878 		/* Limit the max we support */
9879 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9880 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9881 		phba->sli4_hba.max_cfg_param.vpi_base =
9882 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9883 		phba->sli4_hba.max_cfg_param.max_rpi =
9884 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9885 		phba->sli4_hba.max_cfg_param.rpi_base =
9886 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9887 		phba->sli4_hba.max_cfg_param.max_vfi =
9888 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9889 		phba->sli4_hba.max_cfg_param.vfi_base =
9890 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9891 		phba->sli4_hba.max_cfg_param.max_fcfi =
9892 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9893 		phba->sli4_hba.max_cfg_param.max_eq =
9894 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9895 		phba->sli4_hba.max_cfg_param.max_rq =
9896 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9897 		phba->sli4_hba.max_cfg_param.max_wq =
9898 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9899 		phba->sli4_hba.max_cfg_param.max_cq =
9900 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9901 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9902 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9903 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9904 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9905 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9906 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9907 		phba->max_vports = phba->max_vpi;
9908 
9909 		/* Next decide on FPIN or Signal E2E CGN support
9910 		 * For congestion alarms and warnings valid combination are:
9911 		 * 1. FPIN alarms / FPIN warnings
9912 		 * 2. Signal alarms / Signal warnings
9913 		 * 3. FPIN alarms / Signal warnings
9914 		 * 4. Signal alarms / FPIN warnings
9915 		 *
9916 		 * Initialize the adapter frequency to 100 mSecs
9917 		 */
9918 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9919 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9920 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9921 
9922 		if (lpfc_use_cgn_signal) {
9923 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9924 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9925 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9926 			}
9927 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9928 				/* MUST support both alarm and warning
9929 				 * because EDC does not support alarm alone.
9930 				 */
9931 				if (phba->cgn_reg_signal !=
9932 				    EDC_CG_SIG_WARN_ONLY) {
9933 					/* Must support both or none */
9934 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9935 					phba->cgn_reg_signal =
9936 						EDC_CG_SIG_NOTSUPPORTED;
9937 				} else {
9938 					phba->cgn_reg_signal =
9939 						EDC_CG_SIG_WARN_ALARM;
9940 					phba->cgn_reg_fpin =
9941 						LPFC_CGN_FPIN_NONE;
9942 				}
9943 			}
9944 		}
9945 
9946 		/* Set the congestion initial signal and fpin values. */
9947 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9948 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9949 
9950 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9951 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9952 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
9953 
9954 		lpfc_map_topology(phba, rd_config);
9955 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9956 				"2003 cfg params Extents? %d "
9957 				"XRI(B:%d M:%d), "
9958 				"VPI(B:%d M:%d) "
9959 				"VFI(B:%d M:%d) "
9960 				"RPI(B:%d M:%d) "
9961 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9962 				phba->sli4_hba.extents_in_use,
9963 				phba->sli4_hba.max_cfg_param.xri_base,
9964 				phba->sli4_hba.max_cfg_param.max_xri,
9965 				phba->sli4_hba.max_cfg_param.vpi_base,
9966 				phba->sli4_hba.max_cfg_param.max_vpi,
9967 				phba->sli4_hba.max_cfg_param.vfi_base,
9968 				phba->sli4_hba.max_cfg_param.max_vfi,
9969 				phba->sli4_hba.max_cfg_param.rpi_base,
9970 				phba->sli4_hba.max_cfg_param.max_rpi,
9971 				phba->sli4_hba.max_cfg_param.max_fcfi,
9972 				phba->sli4_hba.max_cfg_param.max_eq,
9973 				phba->sli4_hba.max_cfg_param.max_cq,
9974 				phba->sli4_hba.max_cfg_param.max_wq,
9975 				phba->sli4_hba.max_cfg_param.max_rq,
9976 				phba->lmt);
9977 
9978 		/*
9979 		 * Calculate queue resources based on how
9980 		 * many WQ/CQ/EQs are available.
9981 		 */
9982 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
9983 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9984 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
9985 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9986 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
9987 		/*
9988 		 * Whats left after this can go toward NVME / FCP.
9989 		 * The minus 4 accounts for ELS, NVME LS, MBOX
9990 		 * plus one extra. When configured for
9991 		 * NVMET, FCP io channel WQs are not created.
9992 		 */
9993 		qmin -= 4;
9994 
9995 		/* Check to see if there is enough for NVME */
9996 		if ((phba->cfg_irq_chann > qmin) ||
9997 		    (phba->cfg_hdw_queue > qmin)) {
9998 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9999 					"2005 Reducing Queues - "
10000 					"FW resource limitation: "
10001 					"WQ %d CQ %d EQ %d: min %d: "
10002 					"IRQ %d HDWQ %d\n",
10003 					phba->sli4_hba.max_cfg_param.max_wq,
10004 					phba->sli4_hba.max_cfg_param.max_cq,
10005 					phba->sli4_hba.max_cfg_param.max_eq,
10006 					qmin, phba->cfg_irq_chann,
10007 					phba->cfg_hdw_queue);
10008 
10009 			if (phba->cfg_irq_chann > qmin)
10010 				phba->cfg_irq_chann = qmin;
10011 			if (phba->cfg_hdw_queue > qmin)
10012 				phba->cfg_hdw_queue = qmin;
10013 		}
10014 	}
10015 
10016 	if (rc)
10017 		goto read_cfg_out;
10018 
10019 	/* Update link speed if forced link speed is supported */
10020 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10021 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10022 		forced_link_speed =
10023 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10024 		if (forced_link_speed) {
10025 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10026 
10027 			switch (forced_link_speed) {
10028 			case LINK_SPEED_1G:
10029 				phba->cfg_link_speed =
10030 					LPFC_USER_LINK_SPEED_1G;
10031 				break;
10032 			case LINK_SPEED_2G:
10033 				phba->cfg_link_speed =
10034 					LPFC_USER_LINK_SPEED_2G;
10035 				break;
10036 			case LINK_SPEED_4G:
10037 				phba->cfg_link_speed =
10038 					LPFC_USER_LINK_SPEED_4G;
10039 				break;
10040 			case LINK_SPEED_8G:
10041 				phba->cfg_link_speed =
10042 					LPFC_USER_LINK_SPEED_8G;
10043 				break;
10044 			case LINK_SPEED_10G:
10045 				phba->cfg_link_speed =
10046 					LPFC_USER_LINK_SPEED_10G;
10047 				break;
10048 			case LINK_SPEED_16G:
10049 				phba->cfg_link_speed =
10050 					LPFC_USER_LINK_SPEED_16G;
10051 				break;
10052 			case LINK_SPEED_32G:
10053 				phba->cfg_link_speed =
10054 					LPFC_USER_LINK_SPEED_32G;
10055 				break;
10056 			case LINK_SPEED_64G:
10057 				phba->cfg_link_speed =
10058 					LPFC_USER_LINK_SPEED_64G;
10059 				break;
10060 			case 0xffff:
10061 				phba->cfg_link_speed =
10062 					LPFC_USER_LINK_SPEED_AUTO;
10063 				break;
10064 			default:
10065 				lpfc_printf_log(phba, KERN_ERR,
10066 						LOG_TRACE_EVENT,
10067 						"0047 Unrecognized link "
10068 						"speed : %d\n",
10069 						forced_link_speed);
10070 				phba->cfg_link_speed =
10071 					LPFC_USER_LINK_SPEED_AUTO;
10072 			}
10073 		}
10074 	}
10075 
10076 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10077 	length = phba->sli4_hba.max_cfg_param.max_xri -
10078 			lpfc_sli4_get_els_iocb_cnt(phba);
10079 	if (phba->cfg_hba_queue_depth > length) {
10080 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10081 				"3361 HBA queue depth changed from %d to %d\n",
10082 				phba->cfg_hba_queue_depth, length);
10083 		phba->cfg_hba_queue_depth = length;
10084 	}
10085 
10086 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10087 	    LPFC_SLI_INTF_IF_TYPE_2)
10088 		goto read_cfg_out;
10089 
10090 	/* get the pf# and vf# for SLI4 if_type 2 port */
10091 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10092 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10093 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10094 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10095 			 length, LPFC_SLI4_MBX_EMBED);
10096 
10097 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10098 	shdr = (union lpfc_sli4_cfg_shdr *)
10099 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10100 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10101 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10102 	if (rc2 || shdr_status || shdr_add_status) {
10103 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10104 				"3026 Mailbox failed , mbxCmd x%x "
10105 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10106 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10107 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10108 		goto read_cfg_out;
10109 	}
10110 
10111 	/* search for fc_fcoe resrouce descriptor */
10112 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10113 
10114 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10115 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10116 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10117 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10118 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10119 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10120 		goto read_cfg_out;
10121 
10122 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10123 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10124 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10125 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10126 			phba->sli4_hba.iov.pf_number =
10127 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10128 			phba->sli4_hba.iov.vf_number =
10129 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10130 			break;
10131 		}
10132 	}
10133 
10134 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10135 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10136 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10137 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10138 				phba->sli4_hba.iov.vf_number);
10139 	else
10140 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10141 				"3028 GET_FUNCTION_CONFIG: failed to find "
10142 				"Resource Descriptor:x%x\n",
10143 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10144 
10145 read_cfg_out:
10146 	mempool_free(pmb, phba->mbox_mem_pool);
10147 	return rc;
10148 }
10149 
10150 /**
10151  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10152  * @phba: pointer to lpfc hba data structure.
10153  *
10154  * This routine is invoked to setup the port-side endian order when
10155  * the port if_type is 0.  This routine has no function for other
10156  * if_types.
10157  *
10158  * Return codes
10159  * 	0 - successful
10160  * 	-ENOMEM - No available memory
10161  *      -EIO - The mailbox failed to complete successfully.
10162  **/
10163 static int
10164 lpfc_setup_endian_order(struct lpfc_hba *phba)
10165 {
10166 	LPFC_MBOXQ_t *mboxq;
10167 	uint32_t if_type, rc = 0;
10168 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10169 				      HOST_ENDIAN_HIGH_WORD1};
10170 
10171 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10172 	switch (if_type) {
10173 	case LPFC_SLI_INTF_IF_TYPE_0:
10174 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10175 						       GFP_KERNEL);
10176 		if (!mboxq) {
10177 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10178 					"0492 Unable to allocate memory for "
10179 					"issuing SLI_CONFIG_SPECIAL mailbox "
10180 					"command\n");
10181 			return -ENOMEM;
10182 		}
10183 
10184 		/*
10185 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10186 		 * two words to contain special data values and no other data.
10187 		 */
10188 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10189 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10190 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10191 		if (rc != MBX_SUCCESS) {
10192 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10193 					"0493 SLI_CONFIG_SPECIAL mailbox "
10194 					"failed with status x%x\n",
10195 					rc);
10196 			rc = -EIO;
10197 		}
10198 		mempool_free(mboxq, phba->mbox_mem_pool);
10199 		break;
10200 	case LPFC_SLI_INTF_IF_TYPE_6:
10201 	case LPFC_SLI_INTF_IF_TYPE_2:
10202 	case LPFC_SLI_INTF_IF_TYPE_1:
10203 	default:
10204 		break;
10205 	}
10206 	return rc;
10207 }
10208 
10209 /**
10210  * lpfc_sli4_queue_verify - Verify and update EQ counts
10211  * @phba: pointer to lpfc hba data structure.
10212  *
10213  * This routine is invoked to check the user settable queue counts for EQs.
10214  * After this routine is called the counts will be set to valid values that
10215  * adhere to the constraints of the system's interrupt vectors and the port's
10216  * queue resources.
10217  *
10218  * Return codes
10219  *      0 - successful
10220  *      -ENOMEM - No available memory
10221  **/
10222 static int
10223 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10224 {
10225 	/*
10226 	 * Sanity check for configured queue parameters against the run-time
10227 	 * device parameters
10228 	 */
10229 
10230 	if (phba->nvmet_support) {
10231 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10232 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10233 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10234 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10235 	}
10236 
10237 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10238 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10239 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10240 			phba->cfg_nvmet_mrq);
10241 
10242 	/* Get EQ depth from module parameter, fake the default for now */
10243 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10244 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10245 
10246 	/* Get CQ depth from module parameter, fake the default for now */
10247 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10248 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10249 	return 0;
10250 }
10251 
10252 static int
10253 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10254 {
10255 	struct lpfc_queue *qdesc;
10256 	u32 wqesize;
10257 	int cpu;
10258 
10259 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10260 	/* Create Fast Path IO CQs */
10261 	if (phba->enab_exp_wqcq_pages)
10262 		/* Increase the CQ size when WQEs contain an embedded cdb */
10263 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10264 					      phba->sli4_hba.cq_esize,
10265 					      LPFC_CQE_EXP_COUNT, cpu);
10266 
10267 	else
10268 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10269 					      phba->sli4_hba.cq_esize,
10270 					      phba->sli4_hba.cq_ecount, cpu);
10271 	if (!qdesc) {
10272 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10273 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10274 				idx);
10275 		return 1;
10276 	}
10277 	qdesc->qe_valid = 1;
10278 	qdesc->hdwq = idx;
10279 	qdesc->chann = cpu;
10280 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10281 
10282 	/* Create Fast Path IO WQs */
10283 	if (phba->enab_exp_wqcq_pages) {
10284 		/* Increase the WQ size when WQEs contain an embedded cdb */
10285 		wqesize = (phba->fcp_embed_io) ?
10286 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10287 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10288 					      wqesize,
10289 					      LPFC_WQE_EXP_COUNT, cpu);
10290 	} else
10291 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10292 					      phba->sli4_hba.wq_esize,
10293 					      phba->sli4_hba.wq_ecount, cpu);
10294 
10295 	if (!qdesc) {
10296 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10297 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10298 				idx);
10299 		return 1;
10300 	}
10301 	qdesc->hdwq = idx;
10302 	qdesc->chann = cpu;
10303 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10304 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10305 	return 0;
10306 }
10307 
10308 /**
10309  * lpfc_sli4_queue_create - Create all the SLI4 queues
10310  * @phba: pointer to lpfc hba data structure.
10311  *
10312  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10313  * operation. For each SLI4 queue type, the parameters such as queue entry
10314  * count (queue depth) shall be taken from the module parameter. For now,
10315  * we just use some constant number as place holder.
10316  *
10317  * Return codes
10318  *      0 - successful
10319  *      -ENOMEM - No availble memory
10320  *      -EIO - The mailbox failed to complete successfully.
10321  **/
10322 int
10323 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10324 {
10325 	struct lpfc_queue *qdesc;
10326 	int idx, cpu, eqcpu;
10327 	struct lpfc_sli4_hdw_queue *qp;
10328 	struct lpfc_vector_map_info *cpup;
10329 	struct lpfc_vector_map_info *eqcpup;
10330 	struct lpfc_eq_intr_info *eqi;
10331 
10332 	/*
10333 	 * Create HBA Record arrays.
10334 	 * Both NVME and FCP will share that same vectors / EQs
10335 	 */
10336 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10337 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10338 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10339 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10340 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10341 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10342 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10343 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10344 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10345 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10346 
10347 	if (!phba->sli4_hba.hdwq) {
10348 		phba->sli4_hba.hdwq = kcalloc(
10349 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10350 			GFP_KERNEL);
10351 		if (!phba->sli4_hba.hdwq) {
10352 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10353 					"6427 Failed allocate memory for "
10354 					"fast-path Hardware Queue array\n");
10355 			goto out_error;
10356 		}
10357 		/* Prepare hardware queues to take IO buffers */
10358 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10359 			qp = &phba->sli4_hba.hdwq[idx];
10360 			spin_lock_init(&qp->io_buf_list_get_lock);
10361 			spin_lock_init(&qp->io_buf_list_put_lock);
10362 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10363 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10364 			qp->get_io_bufs = 0;
10365 			qp->put_io_bufs = 0;
10366 			qp->total_io_bufs = 0;
10367 			spin_lock_init(&qp->abts_io_buf_list_lock);
10368 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10369 			qp->abts_scsi_io_bufs = 0;
10370 			qp->abts_nvme_io_bufs = 0;
10371 			INIT_LIST_HEAD(&qp->sgl_list);
10372 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10373 			spin_lock_init(&qp->hdwq_lock);
10374 		}
10375 	}
10376 
10377 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10378 		if (phba->nvmet_support) {
10379 			phba->sli4_hba.nvmet_cqset = kcalloc(
10380 					phba->cfg_nvmet_mrq,
10381 					sizeof(struct lpfc_queue *),
10382 					GFP_KERNEL);
10383 			if (!phba->sli4_hba.nvmet_cqset) {
10384 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10385 					"3121 Fail allocate memory for "
10386 					"fast-path CQ set array\n");
10387 				goto out_error;
10388 			}
10389 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10390 					phba->cfg_nvmet_mrq,
10391 					sizeof(struct lpfc_queue *),
10392 					GFP_KERNEL);
10393 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10394 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10395 					"3122 Fail allocate memory for "
10396 					"fast-path RQ set hdr array\n");
10397 				goto out_error;
10398 			}
10399 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10400 					phba->cfg_nvmet_mrq,
10401 					sizeof(struct lpfc_queue *),
10402 					GFP_KERNEL);
10403 			if (!phba->sli4_hba.nvmet_mrq_data) {
10404 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10405 					"3124 Fail allocate memory for "
10406 					"fast-path RQ set data array\n");
10407 				goto out_error;
10408 			}
10409 		}
10410 	}
10411 
10412 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10413 
10414 	/* Create HBA Event Queues (EQs) */
10415 	for_each_present_cpu(cpu) {
10416 		/* We only want to create 1 EQ per vector, even though
10417 		 * multiple CPUs might be using that vector. so only
10418 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10419 		 */
10420 		cpup = &phba->sli4_hba.cpu_map[cpu];
10421 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10422 			continue;
10423 
10424 		/* Get a ptr to the Hardware Queue associated with this CPU */
10425 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10426 
10427 		/* Allocate an EQ */
10428 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10429 					      phba->sli4_hba.eq_esize,
10430 					      phba->sli4_hba.eq_ecount, cpu);
10431 		if (!qdesc) {
10432 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10433 					"0497 Failed allocate EQ (%d)\n",
10434 					cpup->hdwq);
10435 			goto out_error;
10436 		}
10437 		qdesc->qe_valid = 1;
10438 		qdesc->hdwq = cpup->hdwq;
10439 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10440 		qdesc->last_cpu = qdesc->chann;
10441 
10442 		/* Save the allocated EQ in the Hardware Queue */
10443 		qp->hba_eq = qdesc;
10444 
10445 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10446 		list_add(&qdesc->cpu_list, &eqi->list);
10447 	}
10448 
10449 	/* Now we need to populate the other Hardware Queues, that share
10450 	 * an IRQ vector, with the associated EQ ptr.
10451 	 */
10452 	for_each_present_cpu(cpu) {
10453 		cpup = &phba->sli4_hba.cpu_map[cpu];
10454 
10455 		/* Check for EQ already allocated in previous loop */
10456 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10457 			continue;
10458 
10459 		/* Check for multiple CPUs per hdwq */
10460 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10461 		if (qp->hba_eq)
10462 			continue;
10463 
10464 		/* We need to share an EQ for this hdwq */
10465 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10466 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10467 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10468 	}
10469 
10470 	/* Allocate IO Path SLI4 CQ/WQs */
10471 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10472 		if (lpfc_alloc_io_wq_cq(phba, idx))
10473 			goto out_error;
10474 	}
10475 
10476 	if (phba->nvmet_support) {
10477 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10478 			cpu = lpfc_find_cpu_handle(phba, idx,
10479 						   LPFC_FIND_BY_HDWQ);
10480 			qdesc = lpfc_sli4_queue_alloc(phba,
10481 						      LPFC_DEFAULT_PAGE_SIZE,
10482 						      phba->sli4_hba.cq_esize,
10483 						      phba->sli4_hba.cq_ecount,
10484 						      cpu);
10485 			if (!qdesc) {
10486 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10487 						"3142 Failed allocate NVME "
10488 						"CQ Set (%d)\n", idx);
10489 				goto out_error;
10490 			}
10491 			qdesc->qe_valid = 1;
10492 			qdesc->hdwq = idx;
10493 			qdesc->chann = cpu;
10494 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10495 		}
10496 	}
10497 
10498 	/*
10499 	 * Create Slow Path Completion Queues (CQs)
10500 	 */
10501 
10502 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10503 	/* Create slow-path Mailbox Command Complete Queue */
10504 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10505 				      phba->sli4_hba.cq_esize,
10506 				      phba->sli4_hba.cq_ecount, cpu);
10507 	if (!qdesc) {
10508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509 				"0500 Failed allocate slow-path mailbox CQ\n");
10510 		goto out_error;
10511 	}
10512 	qdesc->qe_valid = 1;
10513 	phba->sli4_hba.mbx_cq = qdesc;
10514 
10515 	/* Create slow-path ELS Complete Queue */
10516 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10517 				      phba->sli4_hba.cq_esize,
10518 				      phba->sli4_hba.cq_ecount, cpu);
10519 	if (!qdesc) {
10520 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10521 				"0501 Failed allocate slow-path ELS CQ\n");
10522 		goto out_error;
10523 	}
10524 	qdesc->qe_valid = 1;
10525 	qdesc->chann = cpu;
10526 	phba->sli4_hba.els_cq = qdesc;
10527 
10528 
10529 	/*
10530 	 * Create Slow Path Work Queues (WQs)
10531 	 */
10532 
10533 	/* Create Mailbox Command Queue */
10534 
10535 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10536 				      phba->sli4_hba.mq_esize,
10537 				      phba->sli4_hba.mq_ecount, cpu);
10538 	if (!qdesc) {
10539 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10540 				"0505 Failed allocate slow-path MQ\n");
10541 		goto out_error;
10542 	}
10543 	qdesc->chann = cpu;
10544 	phba->sli4_hba.mbx_wq = qdesc;
10545 
10546 	/*
10547 	 * Create ELS Work Queues
10548 	 */
10549 
10550 	/* Create slow-path ELS Work Queue */
10551 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10552 				      phba->sli4_hba.wq_esize,
10553 				      phba->sli4_hba.wq_ecount, cpu);
10554 	if (!qdesc) {
10555 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10556 				"0504 Failed allocate slow-path ELS WQ\n");
10557 		goto out_error;
10558 	}
10559 	qdesc->chann = cpu;
10560 	phba->sli4_hba.els_wq = qdesc;
10561 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10562 
10563 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10564 		/* Create NVME LS Complete Queue */
10565 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10566 					      phba->sli4_hba.cq_esize,
10567 					      phba->sli4_hba.cq_ecount, cpu);
10568 		if (!qdesc) {
10569 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10570 					"6079 Failed allocate NVME LS CQ\n");
10571 			goto out_error;
10572 		}
10573 		qdesc->chann = cpu;
10574 		qdesc->qe_valid = 1;
10575 		phba->sli4_hba.nvmels_cq = qdesc;
10576 
10577 		/* Create NVME LS Work Queue */
10578 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10579 					      phba->sli4_hba.wq_esize,
10580 					      phba->sli4_hba.wq_ecount, cpu);
10581 		if (!qdesc) {
10582 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10583 					"6080 Failed allocate NVME LS WQ\n");
10584 			goto out_error;
10585 		}
10586 		qdesc->chann = cpu;
10587 		phba->sli4_hba.nvmels_wq = qdesc;
10588 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10589 	}
10590 
10591 	/*
10592 	 * Create Receive Queue (RQ)
10593 	 */
10594 
10595 	/* Create Receive Queue for header */
10596 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10597 				      phba->sli4_hba.rq_esize,
10598 				      phba->sli4_hba.rq_ecount, cpu);
10599 	if (!qdesc) {
10600 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10601 				"0506 Failed allocate receive HRQ\n");
10602 		goto out_error;
10603 	}
10604 	phba->sli4_hba.hdr_rq = qdesc;
10605 
10606 	/* Create Receive Queue for data */
10607 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10608 				      phba->sli4_hba.rq_esize,
10609 				      phba->sli4_hba.rq_ecount, cpu);
10610 	if (!qdesc) {
10611 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10612 				"0507 Failed allocate receive DRQ\n");
10613 		goto out_error;
10614 	}
10615 	phba->sli4_hba.dat_rq = qdesc;
10616 
10617 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10618 	    phba->nvmet_support) {
10619 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10620 			cpu = lpfc_find_cpu_handle(phba, idx,
10621 						   LPFC_FIND_BY_HDWQ);
10622 			/* Create NVMET Receive Queue for header */
10623 			qdesc = lpfc_sli4_queue_alloc(phba,
10624 						      LPFC_DEFAULT_PAGE_SIZE,
10625 						      phba->sli4_hba.rq_esize,
10626 						      LPFC_NVMET_RQE_DEF_COUNT,
10627 						      cpu);
10628 			if (!qdesc) {
10629 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10630 						"3146 Failed allocate "
10631 						"receive HRQ\n");
10632 				goto out_error;
10633 			}
10634 			qdesc->hdwq = idx;
10635 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10636 
10637 			/* Only needed for header of RQ pair */
10638 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10639 						   GFP_KERNEL,
10640 						   cpu_to_node(cpu));
10641 			if (qdesc->rqbp == NULL) {
10642 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10643 						"6131 Failed allocate "
10644 						"Header RQBP\n");
10645 				goto out_error;
10646 			}
10647 
10648 			/* Put list in known state in case driver load fails. */
10649 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10650 
10651 			/* Create NVMET Receive Queue for data */
10652 			qdesc = lpfc_sli4_queue_alloc(phba,
10653 						      LPFC_DEFAULT_PAGE_SIZE,
10654 						      phba->sli4_hba.rq_esize,
10655 						      LPFC_NVMET_RQE_DEF_COUNT,
10656 						      cpu);
10657 			if (!qdesc) {
10658 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10659 						"3156 Failed allocate "
10660 						"receive DRQ\n");
10661 				goto out_error;
10662 			}
10663 			qdesc->hdwq = idx;
10664 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10665 		}
10666 	}
10667 
10668 	/* Clear NVME stats */
10669 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10670 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10671 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10672 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10673 		}
10674 	}
10675 
10676 	/* Clear SCSI stats */
10677 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10678 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10679 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10680 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10681 		}
10682 	}
10683 
10684 	return 0;
10685 
10686 out_error:
10687 	lpfc_sli4_queue_destroy(phba);
10688 	return -ENOMEM;
10689 }
10690 
10691 static inline void
10692 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10693 {
10694 	if (*qp != NULL) {
10695 		lpfc_sli4_queue_free(*qp);
10696 		*qp = NULL;
10697 	}
10698 }
10699 
10700 static inline void
10701 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10702 {
10703 	int idx;
10704 
10705 	if (*qs == NULL)
10706 		return;
10707 
10708 	for (idx = 0; idx < max; idx++)
10709 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10710 
10711 	kfree(*qs);
10712 	*qs = NULL;
10713 }
10714 
10715 static inline void
10716 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10717 {
10718 	struct lpfc_sli4_hdw_queue *hdwq;
10719 	struct lpfc_queue *eq;
10720 	uint32_t idx;
10721 
10722 	hdwq = phba->sli4_hba.hdwq;
10723 
10724 	/* Loop thru all Hardware Queues */
10725 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10726 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10727 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10728 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10729 		hdwq[idx].hba_eq = NULL;
10730 		hdwq[idx].io_cq = NULL;
10731 		hdwq[idx].io_wq = NULL;
10732 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10733 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10734 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10735 	}
10736 	/* Loop thru all IRQ vectors */
10737 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10738 		/* Free the EQ corresponding to the IRQ vector */
10739 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10740 		lpfc_sli4_queue_free(eq);
10741 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10742 	}
10743 }
10744 
10745 /**
10746  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10747  * @phba: pointer to lpfc hba data structure.
10748  *
10749  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10750  * operation.
10751  *
10752  * Return codes
10753  *      0 - successful
10754  *      -ENOMEM - No available memory
10755  *      -EIO - The mailbox failed to complete successfully.
10756  **/
10757 void
10758 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10759 {
10760 	/*
10761 	 * Set FREE_INIT before beginning to free the queues.
10762 	 * Wait until the users of queues to acknowledge to
10763 	 * release queues by clearing FREE_WAIT.
10764 	 */
10765 	spin_lock_irq(&phba->hbalock);
10766 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10767 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10768 		spin_unlock_irq(&phba->hbalock);
10769 		msleep(20);
10770 		spin_lock_irq(&phba->hbalock);
10771 	}
10772 	spin_unlock_irq(&phba->hbalock);
10773 
10774 	lpfc_sli4_cleanup_poll_list(phba);
10775 
10776 	/* Release HBA eqs */
10777 	if (phba->sli4_hba.hdwq)
10778 		lpfc_sli4_release_hdwq(phba);
10779 
10780 	if (phba->nvmet_support) {
10781 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10782 					 phba->cfg_nvmet_mrq);
10783 
10784 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10785 					 phba->cfg_nvmet_mrq);
10786 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10787 					 phba->cfg_nvmet_mrq);
10788 	}
10789 
10790 	/* Release mailbox command work queue */
10791 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10792 
10793 	/* Release ELS work queue */
10794 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10795 
10796 	/* Release ELS work queue */
10797 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10798 
10799 	/* Release unsolicited receive queue */
10800 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10801 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10802 
10803 	/* Release ELS complete queue */
10804 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10805 
10806 	/* Release NVME LS complete queue */
10807 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10808 
10809 	/* Release mailbox command complete queue */
10810 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10811 
10812 	/* Everything on this list has been freed */
10813 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10814 
10815 	/* Done with freeing the queues */
10816 	spin_lock_irq(&phba->hbalock);
10817 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10818 	spin_unlock_irq(&phba->hbalock);
10819 }
10820 
10821 int
10822 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10823 {
10824 	struct lpfc_rqb *rqbp;
10825 	struct lpfc_dmabuf *h_buf;
10826 	struct rqb_dmabuf *rqb_buffer;
10827 
10828 	rqbp = rq->rqbp;
10829 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10830 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10831 				 struct lpfc_dmabuf, list);
10832 
10833 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10834 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10835 		rqbp->buffer_count--;
10836 	}
10837 	return 1;
10838 }
10839 
10840 static int
10841 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10842 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10843 	int qidx, uint32_t qtype)
10844 {
10845 	struct lpfc_sli_ring *pring;
10846 	int rc;
10847 
10848 	if (!eq || !cq || !wq) {
10849 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10850 			"6085 Fast-path %s (%d) not allocated\n",
10851 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10852 		return -ENOMEM;
10853 	}
10854 
10855 	/* create the Cq first */
10856 	rc = lpfc_cq_create(phba, cq, eq,
10857 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10858 	if (rc) {
10859 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10860 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10861 				qidx, (uint32_t)rc);
10862 		return rc;
10863 	}
10864 
10865 	if (qtype != LPFC_MBOX) {
10866 		/* Setup cq_map for fast lookup */
10867 		if (cq_map)
10868 			*cq_map = cq->queue_id;
10869 
10870 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10871 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10872 			qidx, cq->queue_id, qidx, eq->queue_id);
10873 
10874 		/* create the wq */
10875 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10876 		if (rc) {
10877 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10878 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10879 				qidx, (uint32_t)rc);
10880 			/* no need to tear down cq - caller will do so */
10881 			return rc;
10882 		}
10883 
10884 		/* Bind this CQ/WQ to the NVME ring */
10885 		pring = wq->pring;
10886 		pring->sli.sli4.wqp = (void *)wq;
10887 		cq->pring = pring;
10888 
10889 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10890 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10891 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10892 	} else {
10893 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10894 		if (rc) {
10895 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10896 					"0539 Failed setup of slow-path MQ: "
10897 					"rc = 0x%x\n", rc);
10898 			/* no need to tear down cq - caller will do so */
10899 			return rc;
10900 		}
10901 
10902 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10903 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10904 			phba->sli4_hba.mbx_wq->queue_id,
10905 			phba->sli4_hba.mbx_cq->queue_id);
10906 	}
10907 
10908 	return 0;
10909 }
10910 
10911 /**
10912  * lpfc_setup_cq_lookup - Setup the CQ lookup table
10913  * @phba: pointer to lpfc hba data structure.
10914  *
10915  * This routine will populate the cq_lookup table by all
10916  * available CQ queue_id's.
10917  **/
10918 static void
10919 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10920 {
10921 	struct lpfc_queue *eq, *childq;
10922 	int qidx;
10923 
10924 	memset(phba->sli4_hba.cq_lookup, 0,
10925 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10926 	/* Loop thru all IRQ vectors */
10927 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10928 		/* Get the EQ corresponding to the IRQ vector */
10929 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10930 		if (!eq)
10931 			continue;
10932 		/* Loop through all CQs associated with that EQ */
10933 		list_for_each_entry(childq, &eq->child_list, list) {
10934 			if (childq->queue_id > phba->sli4_hba.cq_max)
10935 				continue;
10936 			if (childq->subtype == LPFC_IO)
10937 				phba->sli4_hba.cq_lookup[childq->queue_id] =
10938 					childq;
10939 		}
10940 	}
10941 }
10942 
10943 /**
10944  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10945  * @phba: pointer to lpfc hba data structure.
10946  *
10947  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10948  * operation.
10949  *
10950  * Return codes
10951  *      0 - successful
10952  *      -ENOMEM - No available memory
10953  *      -EIO - The mailbox failed to complete successfully.
10954  **/
10955 int
10956 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10957 {
10958 	uint32_t shdr_status, shdr_add_status;
10959 	union lpfc_sli4_cfg_shdr *shdr;
10960 	struct lpfc_vector_map_info *cpup;
10961 	struct lpfc_sli4_hdw_queue *qp;
10962 	LPFC_MBOXQ_t *mboxq;
10963 	int qidx, cpu;
10964 	uint32_t length, usdelay;
10965 	int rc = -ENOMEM;
10966 
10967 	/* Check for dual-ULP support */
10968 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10969 	if (!mboxq) {
10970 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10971 				"3249 Unable to allocate memory for "
10972 				"QUERY_FW_CFG mailbox command\n");
10973 		return -ENOMEM;
10974 	}
10975 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
10976 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10977 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10978 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10979 			 length, LPFC_SLI4_MBX_EMBED);
10980 
10981 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10982 
10983 	shdr = (union lpfc_sli4_cfg_shdr *)
10984 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10985 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10986 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10987 	if (shdr_status || shdr_add_status || rc) {
10988 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10989 				"3250 QUERY_FW_CFG mailbox failed with status "
10990 				"x%x add_status x%x, mbx status x%x\n",
10991 				shdr_status, shdr_add_status, rc);
10992 		mempool_free(mboxq, phba->mbox_mem_pool);
10993 		rc = -ENXIO;
10994 		goto out_error;
10995 	}
10996 
10997 	phba->sli4_hba.fw_func_mode =
10998 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10999 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11000 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11001 	phba->sli4_hba.physical_port =
11002 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11003 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11004 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11005 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11006 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11007 
11008 	mempool_free(mboxq, phba->mbox_mem_pool);
11009 
11010 	/*
11011 	 * Set up HBA Event Queues (EQs)
11012 	 */
11013 	qp = phba->sli4_hba.hdwq;
11014 
11015 	/* Set up HBA event queue */
11016 	if (!qp) {
11017 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11018 				"3147 Fast-path EQs not allocated\n");
11019 		rc = -ENOMEM;
11020 		goto out_error;
11021 	}
11022 
11023 	/* Loop thru all IRQ vectors */
11024 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11025 		/* Create HBA Event Queues (EQs) in order */
11026 		for_each_present_cpu(cpu) {
11027 			cpup = &phba->sli4_hba.cpu_map[cpu];
11028 
11029 			/* Look for the CPU thats using that vector with
11030 			 * LPFC_CPU_FIRST_IRQ set.
11031 			 */
11032 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11033 				continue;
11034 			if (qidx != cpup->eq)
11035 				continue;
11036 
11037 			/* Create an EQ for that vector */
11038 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11039 					    phba->cfg_fcp_imax);
11040 			if (rc) {
11041 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11042 						"0523 Failed setup of fast-path"
11043 						" EQ (%d), rc = 0x%x\n",
11044 						cpup->eq, (uint32_t)rc);
11045 				goto out_destroy;
11046 			}
11047 
11048 			/* Save the EQ for that vector in the hba_eq_hdl */
11049 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11050 				qp[cpup->hdwq].hba_eq;
11051 
11052 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11053 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11054 					cpup->eq,
11055 					qp[cpup->hdwq].hba_eq->queue_id);
11056 		}
11057 	}
11058 
11059 	/* Loop thru all Hardware Queues */
11060 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11061 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11062 		cpup = &phba->sli4_hba.cpu_map[cpu];
11063 
11064 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11065 		rc = lpfc_create_wq_cq(phba,
11066 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11067 				       qp[qidx].io_cq,
11068 				       qp[qidx].io_wq,
11069 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11070 				       qidx,
11071 				       LPFC_IO);
11072 		if (rc) {
11073 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11074 					"0535 Failed to setup fastpath "
11075 					"IO WQ/CQ (%d), rc = 0x%x\n",
11076 					qidx, (uint32_t)rc);
11077 			goto out_destroy;
11078 		}
11079 	}
11080 
11081 	/*
11082 	 * Set up Slow Path Complete Queues (CQs)
11083 	 */
11084 
11085 	/* Set up slow-path MBOX CQ/MQ */
11086 
11087 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11088 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11089 				"0528 %s not allocated\n",
11090 				phba->sli4_hba.mbx_cq ?
11091 				"Mailbox WQ" : "Mailbox CQ");
11092 		rc = -ENOMEM;
11093 		goto out_destroy;
11094 	}
11095 
11096 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11097 			       phba->sli4_hba.mbx_cq,
11098 			       phba->sli4_hba.mbx_wq,
11099 			       NULL, 0, LPFC_MBOX);
11100 	if (rc) {
11101 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11102 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11103 			(uint32_t)rc);
11104 		goto out_destroy;
11105 	}
11106 	if (phba->nvmet_support) {
11107 		if (!phba->sli4_hba.nvmet_cqset) {
11108 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11109 					"3165 Fast-path NVME CQ Set "
11110 					"array not allocated\n");
11111 			rc = -ENOMEM;
11112 			goto out_destroy;
11113 		}
11114 		if (phba->cfg_nvmet_mrq > 1) {
11115 			rc = lpfc_cq_create_set(phba,
11116 					phba->sli4_hba.nvmet_cqset,
11117 					qp,
11118 					LPFC_WCQ, LPFC_NVMET);
11119 			if (rc) {
11120 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11121 						"3164 Failed setup of NVME CQ "
11122 						"Set, rc = 0x%x\n",
11123 						(uint32_t)rc);
11124 				goto out_destroy;
11125 			}
11126 		} else {
11127 			/* Set up NVMET Receive Complete Queue */
11128 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11129 					    qp[0].hba_eq,
11130 					    LPFC_WCQ, LPFC_NVMET);
11131 			if (rc) {
11132 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11133 						"6089 Failed setup NVMET CQ: "
11134 						"rc = 0x%x\n", (uint32_t)rc);
11135 				goto out_destroy;
11136 			}
11137 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11138 
11139 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11140 					"6090 NVMET CQ setup: cq-id=%d, "
11141 					"parent eq-id=%d\n",
11142 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11143 					qp[0].hba_eq->queue_id);
11144 		}
11145 	}
11146 
11147 	/* Set up slow-path ELS WQ/CQ */
11148 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11149 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11150 				"0530 ELS %s not allocated\n",
11151 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11152 		rc = -ENOMEM;
11153 		goto out_destroy;
11154 	}
11155 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11156 			       phba->sli4_hba.els_cq,
11157 			       phba->sli4_hba.els_wq,
11158 			       NULL, 0, LPFC_ELS);
11159 	if (rc) {
11160 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11161 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11162 				(uint32_t)rc);
11163 		goto out_destroy;
11164 	}
11165 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11166 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11167 			phba->sli4_hba.els_wq->queue_id,
11168 			phba->sli4_hba.els_cq->queue_id);
11169 
11170 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11171 		/* Set up NVME LS Complete Queue */
11172 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11173 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11174 					"6091 LS %s not allocated\n",
11175 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11176 			rc = -ENOMEM;
11177 			goto out_destroy;
11178 		}
11179 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11180 				       phba->sli4_hba.nvmels_cq,
11181 				       phba->sli4_hba.nvmels_wq,
11182 				       NULL, 0, LPFC_NVME_LS);
11183 		if (rc) {
11184 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11185 					"0526 Failed setup of NVVME LS WQ/CQ: "
11186 					"rc = 0x%x\n", (uint32_t)rc);
11187 			goto out_destroy;
11188 		}
11189 
11190 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11191 				"6096 ELS WQ setup: wq-id=%d, "
11192 				"parent cq-id=%d\n",
11193 				phba->sli4_hba.nvmels_wq->queue_id,
11194 				phba->sli4_hba.nvmels_cq->queue_id);
11195 	}
11196 
11197 	/*
11198 	 * Create NVMET Receive Queue (RQ)
11199 	 */
11200 	if (phba->nvmet_support) {
11201 		if ((!phba->sli4_hba.nvmet_cqset) ||
11202 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11203 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11204 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11205 					"6130 MRQ CQ Queues not "
11206 					"allocated\n");
11207 			rc = -ENOMEM;
11208 			goto out_destroy;
11209 		}
11210 		if (phba->cfg_nvmet_mrq > 1) {
11211 			rc = lpfc_mrq_create(phba,
11212 					     phba->sli4_hba.nvmet_mrq_hdr,
11213 					     phba->sli4_hba.nvmet_mrq_data,
11214 					     phba->sli4_hba.nvmet_cqset,
11215 					     LPFC_NVMET);
11216 			if (rc) {
11217 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11218 						"6098 Failed setup of NVMET "
11219 						"MRQ: rc = 0x%x\n",
11220 						(uint32_t)rc);
11221 				goto out_destroy;
11222 			}
11223 
11224 		} else {
11225 			rc = lpfc_rq_create(phba,
11226 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11227 					    phba->sli4_hba.nvmet_mrq_data[0],
11228 					    phba->sli4_hba.nvmet_cqset[0],
11229 					    LPFC_NVMET);
11230 			if (rc) {
11231 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11232 						"6057 Failed setup of NVMET "
11233 						"Receive Queue: rc = 0x%x\n",
11234 						(uint32_t)rc);
11235 				goto out_destroy;
11236 			}
11237 
11238 			lpfc_printf_log(
11239 				phba, KERN_INFO, LOG_INIT,
11240 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11241 				"dat-rq-id=%d parent cq-id=%d\n",
11242 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11243 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11244 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11245 
11246 		}
11247 	}
11248 
11249 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11250 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11251 				"0540 Receive Queue not allocated\n");
11252 		rc = -ENOMEM;
11253 		goto out_destroy;
11254 	}
11255 
11256 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11257 			    phba->sli4_hba.els_cq, LPFC_USOL);
11258 	if (rc) {
11259 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11260 				"0541 Failed setup of Receive Queue: "
11261 				"rc = 0x%x\n", (uint32_t)rc);
11262 		goto out_destroy;
11263 	}
11264 
11265 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11266 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11267 			"parent cq-id=%d\n",
11268 			phba->sli4_hba.hdr_rq->queue_id,
11269 			phba->sli4_hba.dat_rq->queue_id,
11270 			phba->sli4_hba.els_cq->queue_id);
11271 
11272 	if (phba->cfg_fcp_imax)
11273 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11274 	else
11275 		usdelay = 0;
11276 
11277 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11278 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11279 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11280 					 usdelay);
11281 
11282 	if (phba->sli4_hba.cq_max) {
11283 		kfree(phba->sli4_hba.cq_lookup);
11284 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11285 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11286 		if (!phba->sli4_hba.cq_lookup) {
11287 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11288 					"0549 Failed setup of CQ Lookup table: "
11289 					"size 0x%x\n", phba->sli4_hba.cq_max);
11290 			rc = -ENOMEM;
11291 			goto out_destroy;
11292 		}
11293 		lpfc_setup_cq_lookup(phba);
11294 	}
11295 	return 0;
11296 
11297 out_destroy:
11298 	lpfc_sli4_queue_unset(phba);
11299 out_error:
11300 	return rc;
11301 }
11302 
11303 /**
11304  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11305  * @phba: pointer to lpfc hba data structure.
11306  *
11307  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11308  * operation.
11309  *
11310  * Return codes
11311  *      0 - successful
11312  *      -ENOMEM - No available memory
11313  *      -EIO - The mailbox failed to complete successfully.
11314  **/
11315 void
11316 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11317 {
11318 	struct lpfc_sli4_hdw_queue *qp;
11319 	struct lpfc_queue *eq;
11320 	int qidx;
11321 
11322 	/* Unset mailbox command work queue */
11323 	if (phba->sli4_hba.mbx_wq)
11324 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11325 
11326 	/* Unset NVME LS work queue */
11327 	if (phba->sli4_hba.nvmels_wq)
11328 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11329 
11330 	/* Unset ELS work queue */
11331 	if (phba->sli4_hba.els_wq)
11332 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11333 
11334 	/* Unset unsolicited receive queue */
11335 	if (phba->sli4_hba.hdr_rq)
11336 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11337 				phba->sli4_hba.dat_rq);
11338 
11339 	/* Unset mailbox command complete queue */
11340 	if (phba->sli4_hba.mbx_cq)
11341 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11342 
11343 	/* Unset ELS complete queue */
11344 	if (phba->sli4_hba.els_cq)
11345 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11346 
11347 	/* Unset NVME LS complete queue */
11348 	if (phba->sli4_hba.nvmels_cq)
11349 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11350 
11351 	if (phba->nvmet_support) {
11352 		/* Unset NVMET MRQ queue */
11353 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11354 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11355 				lpfc_rq_destroy(
11356 					phba,
11357 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11358 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11359 		}
11360 
11361 		/* Unset NVMET CQ Set complete queue */
11362 		if (phba->sli4_hba.nvmet_cqset) {
11363 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11364 				lpfc_cq_destroy(
11365 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11366 		}
11367 	}
11368 
11369 	/* Unset fast-path SLI4 queues */
11370 	if (phba->sli4_hba.hdwq) {
11371 		/* Loop thru all Hardware Queues */
11372 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11373 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11374 			qp = &phba->sli4_hba.hdwq[qidx];
11375 			lpfc_wq_destroy(phba, qp->io_wq);
11376 			lpfc_cq_destroy(phba, qp->io_cq);
11377 		}
11378 		/* Loop thru all IRQ vectors */
11379 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11380 			/* Destroy the EQ corresponding to the IRQ vector */
11381 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11382 			lpfc_eq_destroy(phba, eq);
11383 		}
11384 	}
11385 
11386 	kfree(phba->sli4_hba.cq_lookup);
11387 	phba->sli4_hba.cq_lookup = NULL;
11388 	phba->sli4_hba.cq_max = 0;
11389 }
11390 
11391 /**
11392  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11393  * @phba: pointer to lpfc hba data structure.
11394  *
11395  * This routine is invoked to allocate and set up a pool of completion queue
11396  * events. The body of the completion queue event is a completion queue entry
11397  * CQE. For now, this pool is used for the interrupt service routine to queue
11398  * the following HBA completion queue events for the worker thread to process:
11399  *   - Mailbox asynchronous events
11400  *   - Receive queue completion unsolicited events
11401  * Later, this can be used for all the slow-path events.
11402  *
11403  * Return codes
11404  *      0 - successful
11405  *      -ENOMEM - No available memory
11406  **/
11407 static int
11408 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11409 {
11410 	struct lpfc_cq_event *cq_event;
11411 	int i;
11412 
11413 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11414 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11415 		if (!cq_event)
11416 			goto out_pool_create_fail;
11417 		list_add_tail(&cq_event->list,
11418 			      &phba->sli4_hba.sp_cqe_event_pool);
11419 	}
11420 	return 0;
11421 
11422 out_pool_create_fail:
11423 	lpfc_sli4_cq_event_pool_destroy(phba);
11424 	return -ENOMEM;
11425 }
11426 
11427 /**
11428  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11429  * @phba: pointer to lpfc hba data structure.
11430  *
11431  * This routine is invoked to free the pool of completion queue events at
11432  * driver unload time. Note that, it is the responsibility of the driver
11433  * cleanup routine to free all the outstanding completion-queue events
11434  * allocated from this pool back into the pool before invoking this routine
11435  * to destroy the pool.
11436  **/
11437 static void
11438 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11439 {
11440 	struct lpfc_cq_event *cq_event, *next_cq_event;
11441 
11442 	list_for_each_entry_safe(cq_event, next_cq_event,
11443 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11444 		list_del(&cq_event->list);
11445 		kfree(cq_event);
11446 	}
11447 }
11448 
11449 /**
11450  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11451  * @phba: pointer to lpfc hba data structure.
11452  *
11453  * This routine is the lock free version of the API invoked to allocate a
11454  * completion-queue event from the free pool.
11455  *
11456  * Return: Pointer to the newly allocated completion-queue event if successful
11457  *         NULL otherwise.
11458  **/
11459 struct lpfc_cq_event *
11460 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11461 {
11462 	struct lpfc_cq_event *cq_event = NULL;
11463 
11464 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11465 			 struct lpfc_cq_event, list);
11466 	return cq_event;
11467 }
11468 
11469 /**
11470  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11471  * @phba: pointer to lpfc hba data structure.
11472  *
11473  * This routine is the lock version of the API invoked to allocate a
11474  * completion-queue event from the free pool.
11475  *
11476  * Return: Pointer to the newly allocated completion-queue event if successful
11477  *         NULL otherwise.
11478  **/
11479 struct lpfc_cq_event *
11480 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11481 {
11482 	struct lpfc_cq_event *cq_event;
11483 	unsigned long iflags;
11484 
11485 	spin_lock_irqsave(&phba->hbalock, iflags);
11486 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11487 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11488 	return cq_event;
11489 }
11490 
11491 /**
11492  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11493  * @phba: pointer to lpfc hba data structure.
11494  * @cq_event: pointer to the completion queue event to be freed.
11495  *
11496  * This routine is the lock free version of the API invoked to release a
11497  * completion-queue event back into the free pool.
11498  **/
11499 void
11500 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11501 			     struct lpfc_cq_event *cq_event)
11502 {
11503 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11504 }
11505 
11506 /**
11507  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11508  * @phba: pointer to lpfc hba data structure.
11509  * @cq_event: pointer to the completion queue event to be freed.
11510  *
11511  * This routine is the lock version of the API invoked to release a
11512  * completion-queue event back into the free pool.
11513  **/
11514 void
11515 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11516 			   struct lpfc_cq_event *cq_event)
11517 {
11518 	unsigned long iflags;
11519 	spin_lock_irqsave(&phba->hbalock, iflags);
11520 	__lpfc_sli4_cq_event_release(phba, cq_event);
11521 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11522 }
11523 
11524 /**
11525  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11526  * @phba: pointer to lpfc hba data structure.
11527  *
11528  * This routine is to free all the pending completion-queue events to the
11529  * back into the free pool for device reset.
11530  **/
11531 static void
11532 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11533 {
11534 	LIST_HEAD(cq_event_list);
11535 	struct lpfc_cq_event *cq_event;
11536 	unsigned long iflags;
11537 
11538 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11539 
11540 	/* Pending ELS XRI abort events */
11541 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11542 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11543 			 &cq_event_list);
11544 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11545 
11546 	/* Pending asynnc events */
11547 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11548 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11549 			 &cq_event_list);
11550 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11551 
11552 	while (!list_empty(&cq_event_list)) {
11553 		list_remove_head(&cq_event_list, cq_event,
11554 				 struct lpfc_cq_event, list);
11555 		lpfc_sli4_cq_event_release(phba, cq_event);
11556 	}
11557 }
11558 
11559 /**
11560  * lpfc_pci_function_reset - Reset pci function.
11561  * @phba: pointer to lpfc hba data structure.
11562  *
11563  * This routine is invoked to request a PCI function reset. It will destroys
11564  * all resources assigned to the PCI function which originates this request.
11565  *
11566  * Return codes
11567  *      0 - successful
11568  *      -ENOMEM - No available memory
11569  *      -EIO - The mailbox failed to complete successfully.
11570  **/
11571 int
11572 lpfc_pci_function_reset(struct lpfc_hba *phba)
11573 {
11574 	LPFC_MBOXQ_t *mboxq;
11575 	uint32_t rc = 0, if_type;
11576 	uint32_t shdr_status, shdr_add_status;
11577 	uint32_t rdy_chk;
11578 	uint32_t port_reset = 0;
11579 	union lpfc_sli4_cfg_shdr *shdr;
11580 	struct lpfc_register reg_data;
11581 	uint16_t devid;
11582 
11583 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11584 	switch (if_type) {
11585 	case LPFC_SLI_INTF_IF_TYPE_0:
11586 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11587 						       GFP_KERNEL);
11588 		if (!mboxq) {
11589 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11590 					"0494 Unable to allocate memory for "
11591 					"issuing SLI_FUNCTION_RESET mailbox "
11592 					"command\n");
11593 			return -ENOMEM;
11594 		}
11595 
11596 		/* Setup PCI function reset mailbox-ioctl command */
11597 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11598 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11599 				 LPFC_SLI4_MBX_EMBED);
11600 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11601 		shdr = (union lpfc_sli4_cfg_shdr *)
11602 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11603 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11604 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11605 					 &shdr->response);
11606 		mempool_free(mboxq, phba->mbox_mem_pool);
11607 		if (shdr_status || shdr_add_status || rc) {
11608 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11609 					"0495 SLI_FUNCTION_RESET mailbox "
11610 					"failed with status x%x add_status x%x,"
11611 					" mbx status x%x\n",
11612 					shdr_status, shdr_add_status, rc);
11613 			rc = -ENXIO;
11614 		}
11615 		break;
11616 	case LPFC_SLI_INTF_IF_TYPE_2:
11617 	case LPFC_SLI_INTF_IF_TYPE_6:
11618 wait:
11619 		/*
11620 		 * Poll the Port Status Register and wait for RDY for
11621 		 * up to 30 seconds. If the port doesn't respond, treat
11622 		 * it as an error.
11623 		 */
11624 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11625 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11626 				STATUSregaddr, &reg_data.word0)) {
11627 				rc = -ENODEV;
11628 				goto out;
11629 			}
11630 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11631 				break;
11632 			msleep(20);
11633 		}
11634 
11635 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11636 			phba->work_status[0] = readl(
11637 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11638 			phba->work_status[1] = readl(
11639 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11640 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11641 					"2890 Port not ready, port status reg "
11642 					"0x%x error 1=0x%x, error 2=0x%x\n",
11643 					reg_data.word0,
11644 					phba->work_status[0],
11645 					phba->work_status[1]);
11646 			rc = -ENODEV;
11647 			goto out;
11648 		}
11649 
11650 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11651 			lpfc_pldv_detect = true;
11652 
11653 		if (!port_reset) {
11654 			/*
11655 			 * Reset the port now
11656 			 */
11657 			reg_data.word0 = 0;
11658 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11659 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11660 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11661 			       LPFC_SLIPORT_INIT_PORT);
11662 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11663 			       CTRLregaddr);
11664 			/* flush */
11665 			pci_read_config_word(phba->pcidev,
11666 					     PCI_DEVICE_ID, &devid);
11667 
11668 			port_reset = 1;
11669 			msleep(20);
11670 			goto wait;
11671 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11672 			rc = -ENODEV;
11673 			goto out;
11674 		}
11675 		break;
11676 
11677 	case LPFC_SLI_INTF_IF_TYPE_1:
11678 	default:
11679 		break;
11680 	}
11681 
11682 out:
11683 	/* Catch the not-ready port failure after a port reset. */
11684 	if (rc) {
11685 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11686 				"3317 HBA not functional: IP Reset Failed "
11687 				"try: echo fw_reset > board_mode\n");
11688 		rc = -ENODEV;
11689 	}
11690 
11691 	return rc;
11692 }
11693 
11694 /**
11695  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11696  * @phba: pointer to lpfc hba data structure.
11697  *
11698  * This routine is invoked to set up the PCI device memory space for device
11699  * with SLI-4 interface spec.
11700  *
11701  * Return codes
11702  * 	0 - successful
11703  * 	other values - error
11704  **/
11705 static int
11706 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11707 {
11708 	struct pci_dev *pdev = phba->pcidev;
11709 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11710 	int error;
11711 	uint32_t if_type;
11712 
11713 	if (!pdev)
11714 		return -ENODEV;
11715 
11716 	/* Set the device DMA mask size */
11717 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11718 	if (error)
11719 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11720 	if (error)
11721 		return error;
11722 
11723 	/*
11724 	 * The BARs and register set definitions and offset locations are
11725 	 * dependent on the if_type.
11726 	 */
11727 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11728 				  &phba->sli4_hba.sli_intf.word0)) {
11729 		return -ENODEV;
11730 	}
11731 
11732 	/* There is no SLI3 failback for SLI4 devices. */
11733 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11734 	    LPFC_SLI_INTF_VALID) {
11735 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11736 				"2894 SLI_INTF reg contents invalid "
11737 				"sli_intf reg 0x%x\n",
11738 				phba->sli4_hba.sli_intf.word0);
11739 		return -ENODEV;
11740 	}
11741 
11742 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11743 	/*
11744 	 * Get the bus address of SLI4 device Bar regions and the
11745 	 * number of bytes required by each mapping. The mapping of the
11746 	 * particular PCI BARs regions is dependent on the type of
11747 	 * SLI4 device.
11748 	 */
11749 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11750 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11751 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11752 
11753 		/*
11754 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11755 		 * addr
11756 		 */
11757 		phba->sli4_hba.conf_regs_memmap_p =
11758 			ioremap(phba->pci_bar0_map, bar0map_len);
11759 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11760 			dev_printk(KERN_ERR, &pdev->dev,
11761 				   "ioremap failed for SLI4 PCI config "
11762 				   "registers.\n");
11763 			return -ENODEV;
11764 		}
11765 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11766 		/* Set up BAR0 PCI config space register memory map */
11767 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11768 	} else {
11769 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11770 		bar0map_len = pci_resource_len(pdev, 1);
11771 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11772 			dev_printk(KERN_ERR, &pdev->dev,
11773 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11774 			return -ENODEV;
11775 		}
11776 		phba->sli4_hba.conf_regs_memmap_p =
11777 				ioremap(phba->pci_bar0_map, bar0map_len);
11778 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11779 			dev_printk(KERN_ERR, &pdev->dev,
11780 				"ioremap failed for SLI4 PCI config "
11781 				"registers.\n");
11782 			return -ENODEV;
11783 		}
11784 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11785 	}
11786 
11787 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11788 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11789 			/*
11790 			 * Map SLI4 if type 0 HBA Control Register base to a
11791 			 * kernel virtual address and setup the registers.
11792 			 */
11793 			phba->pci_bar1_map = pci_resource_start(pdev,
11794 								PCI_64BIT_BAR2);
11795 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11796 			phba->sli4_hba.ctrl_regs_memmap_p =
11797 					ioremap(phba->pci_bar1_map,
11798 						bar1map_len);
11799 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11800 				dev_err(&pdev->dev,
11801 					   "ioremap failed for SLI4 HBA "
11802 					    "control registers.\n");
11803 				error = -ENOMEM;
11804 				goto out_iounmap_conf;
11805 			}
11806 			phba->pci_bar2_memmap_p =
11807 					 phba->sli4_hba.ctrl_regs_memmap_p;
11808 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11809 		} else {
11810 			error = -ENOMEM;
11811 			goto out_iounmap_conf;
11812 		}
11813 	}
11814 
11815 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11816 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11817 		/*
11818 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11819 		 * virtual address and setup the registers.
11820 		 */
11821 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11822 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11823 		phba->sli4_hba.drbl_regs_memmap_p =
11824 				ioremap(phba->pci_bar1_map, bar1map_len);
11825 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11826 			dev_err(&pdev->dev,
11827 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11828 			error = -ENOMEM;
11829 			goto out_iounmap_conf;
11830 		}
11831 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11832 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11833 	}
11834 
11835 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11836 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11837 			/*
11838 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11839 			 * a kernel virtual address and setup the registers.
11840 			 */
11841 			phba->pci_bar2_map = pci_resource_start(pdev,
11842 								PCI_64BIT_BAR4);
11843 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11844 			phba->sli4_hba.drbl_regs_memmap_p =
11845 					ioremap(phba->pci_bar2_map,
11846 						bar2map_len);
11847 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11848 				dev_err(&pdev->dev,
11849 					   "ioremap failed for SLI4 HBA"
11850 					   " doorbell registers.\n");
11851 				error = -ENOMEM;
11852 				goto out_iounmap_ctrl;
11853 			}
11854 			phba->pci_bar4_memmap_p =
11855 					phba->sli4_hba.drbl_regs_memmap_p;
11856 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11857 			if (error)
11858 				goto out_iounmap_all;
11859 		} else {
11860 			error = -ENOMEM;
11861 			goto out_iounmap_all;
11862 		}
11863 	}
11864 
11865 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11866 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11867 		/*
11868 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11869 		 * virtual address and setup the registers.
11870 		 */
11871 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11872 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11873 		phba->sli4_hba.dpp_regs_memmap_p =
11874 				ioremap(phba->pci_bar2_map, bar2map_len);
11875 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11876 			dev_err(&pdev->dev,
11877 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11878 			error = -ENOMEM;
11879 			goto out_iounmap_ctrl;
11880 		}
11881 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11882 	}
11883 
11884 	/* Set up the EQ/CQ register handeling functions now */
11885 	switch (if_type) {
11886 	case LPFC_SLI_INTF_IF_TYPE_0:
11887 	case LPFC_SLI_INTF_IF_TYPE_2:
11888 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11889 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11890 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11891 		break;
11892 	case LPFC_SLI_INTF_IF_TYPE_6:
11893 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11894 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11895 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11896 		break;
11897 	default:
11898 		break;
11899 	}
11900 
11901 	return 0;
11902 
11903 out_iounmap_all:
11904 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11905 out_iounmap_ctrl:
11906 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11907 out_iounmap_conf:
11908 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
11909 
11910 	return error;
11911 }
11912 
11913 /**
11914  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11915  * @phba: pointer to lpfc hba data structure.
11916  *
11917  * This routine is invoked to unset the PCI device memory space for device
11918  * with SLI-4 interface spec.
11919  **/
11920 static void
11921 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11922 {
11923 	uint32_t if_type;
11924 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11925 
11926 	switch (if_type) {
11927 	case LPFC_SLI_INTF_IF_TYPE_0:
11928 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11929 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11930 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11931 		break;
11932 	case LPFC_SLI_INTF_IF_TYPE_2:
11933 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11934 		break;
11935 	case LPFC_SLI_INTF_IF_TYPE_6:
11936 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11937 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11938 		if (phba->sli4_hba.dpp_regs_memmap_p)
11939 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11940 		break;
11941 	case LPFC_SLI_INTF_IF_TYPE_1:
11942 	default:
11943 		dev_printk(KERN_ERR, &phba->pcidev->dev,
11944 			   "FATAL - unsupported SLI4 interface type - %d\n",
11945 			   if_type);
11946 		break;
11947 	}
11948 }
11949 
11950 /**
11951  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11952  * @phba: pointer to lpfc hba data structure.
11953  *
11954  * This routine is invoked to enable the MSI-X interrupt vectors to device
11955  * with SLI-3 interface specs.
11956  *
11957  * Return codes
11958  *   0 - successful
11959  *   other values - error
11960  **/
11961 static int
11962 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11963 {
11964 	int rc;
11965 	LPFC_MBOXQ_t *pmb;
11966 
11967 	/* Set up MSI-X multi-message vectors */
11968 	rc = pci_alloc_irq_vectors(phba->pcidev,
11969 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11970 	if (rc < 0) {
11971 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11972 				"0420 PCI enable MSI-X failed (%d)\n", rc);
11973 		goto vec_fail_out;
11974 	}
11975 
11976 	/*
11977 	 * Assign MSI-X vectors to interrupt handlers
11978 	 */
11979 
11980 	/* vector-0 is associated to slow-path handler */
11981 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11982 			 &lpfc_sli_sp_intr_handler, 0,
11983 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11984 	if (rc) {
11985 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11986 				"0421 MSI-X slow-path request_irq failed "
11987 				"(%d)\n", rc);
11988 		goto msi_fail_out;
11989 	}
11990 
11991 	/* vector-1 is associated to fast-path handler */
11992 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11993 			 &lpfc_sli_fp_intr_handler, 0,
11994 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11995 
11996 	if (rc) {
11997 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11998 				"0429 MSI-X fast-path request_irq failed "
11999 				"(%d)\n", rc);
12000 		goto irq_fail_out;
12001 	}
12002 
12003 	/*
12004 	 * Configure HBA MSI-X attention conditions to messages
12005 	 */
12006 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12007 
12008 	if (!pmb) {
12009 		rc = -ENOMEM;
12010 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12011 				"0474 Unable to allocate memory for issuing "
12012 				"MBOX_CONFIG_MSI command\n");
12013 		goto mem_fail_out;
12014 	}
12015 	rc = lpfc_config_msi(phba, pmb);
12016 	if (rc)
12017 		goto mbx_fail_out;
12018 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12019 	if (rc != MBX_SUCCESS) {
12020 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12021 				"0351 Config MSI mailbox command failed, "
12022 				"mbxCmd x%x, mbxStatus x%x\n",
12023 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12024 		goto mbx_fail_out;
12025 	}
12026 
12027 	/* Free memory allocated for mailbox command */
12028 	mempool_free(pmb, phba->mbox_mem_pool);
12029 	return rc;
12030 
12031 mbx_fail_out:
12032 	/* Free memory allocated for mailbox command */
12033 	mempool_free(pmb, phba->mbox_mem_pool);
12034 
12035 mem_fail_out:
12036 	/* free the irq already requested */
12037 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12038 
12039 irq_fail_out:
12040 	/* free the irq already requested */
12041 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12042 
12043 msi_fail_out:
12044 	/* Unconfigure MSI-X capability structure */
12045 	pci_free_irq_vectors(phba->pcidev);
12046 
12047 vec_fail_out:
12048 	return rc;
12049 }
12050 
12051 /**
12052  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12053  * @phba: pointer to lpfc hba data structure.
12054  *
12055  * This routine is invoked to enable the MSI interrupt mode to device with
12056  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12057  * enable the MSI vector. The device driver is responsible for calling the
12058  * request_irq() to register MSI vector with a interrupt the handler, which
12059  * is done in this function.
12060  *
12061  * Return codes
12062  * 	0 - successful
12063  * 	other values - error
12064  */
12065 static int
12066 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12067 {
12068 	int rc;
12069 
12070 	rc = pci_enable_msi(phba->pcidev);
12071 	if (!rc)
12072 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12073 				"0462 PCI enable MSI mode success.\n");
12074 	else {
12075 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12076 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12077 		return rc;
12078 	}
12079 
12080 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12081 			 0, LPFC_DRIVER_NAME, phba);
12082 	if (rc) {
12083 		pci_disable_msi(phba->pcidev);
12084 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12085 				"0478 MSI request_irq failed (%d)\n", rc);
12086 	}
12087 	return rc;
12088 }
12089 
12090 /**
12091  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12092  * @phba: pointer to lpfc hba data structure.
12093  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12094  *
12095  * This routine is invoked to enable device interrupt and associate driver's
12096  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12097  * spec. Depends on the interrupt mode configured to the driver, the driver
12098  * will try to fallback from the configured interrupt mode to an interrupt
12099  * mode which is supported by the platform, kernel, and device in the order
12100  * of:
12101  * MSI-X -> MSI -> IRQ.
12102  *
12103  * Return codes
12104  *   0 - successful
12105  *   other values - error
12106  **/
12107 static uint32_t
12108 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12109 {
12110 	uint32_t intr_mode = LPFC_INTR_ERROR;
12111 	int retval;
12112 
12113 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12114 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12115 	if (retval)
12116 		return intr_mode;
12117 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12118 
12119 	if (cfg_mode == 2) {
12120 		/* Now, try to enable MSI-X interrupt mode */
12121 		retval = lpfc_sli_enable_msix(phba);
12122 		if (!retval) {
12123 			/* Indicate initialization to MSI-X mode */
12124 			phba->intr_type = MSIX;
12125 			intr_mode = 2;
12126 		}
12127 	}
12128 
12129 	/* Fallback to MSI if MSI-X initialization failed */
12130 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12131 		retval = lpfc_sli_enable_msi(phba);
12132 		if (!retval) {
12133 			/* Indicate initialization to MSI mode */
12134 			phba->intr_type = MSI;
12135 			intr_mode = 1;
12136 		}
12137 	}
12138 
12139 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12140 	if (phba->intr_type == NONE) {
12141 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12142 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12143 		if (!retval) {
12144 			/* Indicate initialization to INTx mode */
12145 			phba->intr_type = INTx;
12146 			intr_mode = 0;
12147 		}
12148 	}
12149 	return intr_mode;
12150 }
12151 
12152 /**
12153  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12154  * @phba: pointer to lpfc hba data structure.
12155  *
12156  * This routine is invoked to disable device interrupt and disassociate the
12157  * driver's interrupt handler(s) from interrupt vector(s) to device with
12158  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12159  * release the interrupt vector(s) for the message signaled interrupt.
12160  **/
12161 static void
12162 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12163 {
12164 	int nr_irqs, i;
12165 
12166 	if (phba->intr_type == MSIX)
12167 		nr_irqs = LPFC_MSIX_VECTORS;
12168 	else
12169 		nr_irqs = 1;
12170 
12171 	for (i = 0; i < nr_irqs; i++)
12172 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12173 	pci_free_irq_vectors(phba->pcidev);
12174 
12175 	/* Reset interrupt management states */
12176 	phba->intr_type = NONE;
12177 	phba->sli.slistat.sli_intr = 0;
12178 }
12179 
12180 /**
12181  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12182  * @phba: pointer to lpfc hba data structure.
12183  * @id: EQ vector index or Hardware Queue index
12184  * @match: LPFC_FIND_BY_EQ = match by EQ
12185  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12186  * Return the CPU that matches the selection criteria
12187  */
12188 static uint16_t
12189 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12190 {
12191 	struct lpfc_vector_map_info *cpup;
12192 	int cpu;
12193 
12194 	/* Loop through all CPUs */
12195 	for_each_present_cpu(cpu) {
12196 		cpup = &phba->sli4_hba.cpu_map[cpu];
12197 
12198 		/* If we are matching by EQ, there may be multiple CPUs using
12199 		 * using the same vector, so select the one with
12200 		 * LPFC_CPU_FIRST_IRQ set.
12201 		 */
12202 		if ((match == LPFC_FIND_BY_EQ) &&
12203 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12204 		    (cpup->eq == id))
12205 			return cpu;
12206 
12207 		/* If matching by HDWQ, select the first CPU that matches */
12208 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12209 			return cpu;
12210 	}
12211 	return 0;
12212 }
12213 
12214 #ifdef CONFIG_X86
12215 /**
12216  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12217  * @phba: pointer to lpfc hba data structure.
12218  * @cpu: CPU map index
12219  * @phys_id: CPU package physical id
12220  * @core_id: CPU core id
12221  */
12222 static int
12223 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12224 		uint16_t phys_id, uint16_t core_id)
12225 {
12226 	struct lpfc_vector_map_info *cpup;
12227 	int idx;
12228 
12229 	for_each_present_cpu(idx) {
12230 		cpup = &phba->sli4_hba.cpu_map[idx];
12231 		/* Does the cpup match the one we are looking for */
12232 		if ((cpup->phys_id == phys_id) &&
12233 		    (cpup->core_id == core_id) &&
12234 		    (cpu != idx))
12235 			return 1;
12236 	}
12237 	return 0;
12238 }
12239 #endif
12240 
12241 /*
12242  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12243  * @phba: pointer to lpfc hba data structure.
12244  * @eqidx: index for eq and irq vector
12245  * @flag: flags to set for vector_map structure
12246  * @cpu: cpu used to index vector_map structure
12247  *
12248  * The routine assigns eq info into vector_map structure
12249  */
12250 static inline void
12251 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12252 			unsigned int cpu)
12253 {
12254 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12255 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12256 
12257 	cpup->eq = eqidx;
12258 	cpup->flag |= flag;
12259 
12260 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12261 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12262 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12263 }
12264 
12265 /**
12266  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12267  * @phba: pointer to lpfc hba data structure.
12268  *
12269  * The routine initializes the cpu_map array structure
12270  */
12271 static void
12272 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12273 {
12274 	struct lpfc_vector_map_info *cpup;
12275 	struct lpfc_eq_intr_info *eqi;
12276 	int cpu;
12277 
12278 	for_each_possible_cpu(cpu) {
12279 		cpup = &phba->sli4_hba.cpu_map[cpu];
12280 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12281 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12282 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12283 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12284 		cpup->flag = 0;
12285 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12286 		INIT_LIST_HEAD(&eqi->list);
12287 		eqi->icnt = 0;
12288 	}
12289 }
12290 
12291 /**
12292  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12293  * @phba: pointer to lpfc hba data structure.
12294  *
12295  * The routine initializes the hba_eq_hdl array structure
12296  */
12297 static void
12298 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12299 {
12300 	struct lpfc_hba_eq_hdl *eqhdl;
12301 	int i;
12302 
12303 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12304 		eqhdl = lpfc_get_eq_hdl(i);
12305 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12306 		eqhdl->phba = phba;
12307 	}
12308 }
12309 
12310 /**
12311  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12312  * @phba: pointer to lpfc hba data structure.
12313  * @vectors: number of msix vectors allocated.
12314  *
12315  * The routine will figure out the CPU affinity assignment for every
12316  * MSI-X vector allocated for the HBA.
12317  * In addition, the CPU to IO channel mapping will be calculated
12318  * and the phba->sli4_hba.cpu_map array will reflect this.
12319  */
12320 static void
12321 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12322 {
12323 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12324 	int max_phys_id, min_phys_id;
12325 	int max_core_id, min_core_id;
12326 	struct lpfc_vector_map_info *cpup;
12327 	struct lpfc_vector_map_info *new_cpup;
12328 #ifdef CONFIG_X86
12329 	struct cpuinfo_x86 *cpuinfo;
12330 #endif
12331 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12332 	struct lpfc_hdwq_stat *c_stat;
12333 #endif
12334 
12335 	max_phys_id = 0;
12336 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12337 	max_core_id = 0;
12338 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12339 
12340 	/* Update CPU map with physical id and core id of each CPU */
12341 	for_each_present_cpu(cpu) {
12342 		cpup = &phba->sli4_hba.cpu_map[cpu];
12343 #ifdef CONFIG_X86
12344 		cpuinfo = &cpu_data(cpu);
12345 		cpup->phys_id = cpuinfo->phys_proc_id;
12346 		cpup->core_id = cpuinfo->cpu_core_id;
12347 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12348 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12349 #else
12350 		/* No distinction between CPUs for other platforms */
12351 		cpup->phys_id = 0;
12352 		cpup->core_id = cpu;
12353 #endif
12354 
12355 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12356 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12357 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12358 
12359 		if (cpup->phys_id > max_phys_id)
12360 			max_phys_id = cpup->phys_id;
12361 		if (cpup->phys_id < min_phys_id)
12362 			min_phys_id = cpup->phys_id;
12363 
12364 		if (cpup->core_id > max_core_id)
12365 			max_core_id = cpup->core_id;
12366 		if (cpup->core_id < min_core_id)
12367 			min_core_id = cpup->core_id;
12368 	}
12369 
12370 	/* After looking at each irq vector assigned to this pcidev, its
12371 	 * possible to see that not ALL CPUs have been accounted for.
12372 	 * Next we will set any unassigned (unaffinitized) cpu map
12373 	 * entries to a IRQ on the same phys_id.
12374 	 */
12375 	first_cpu = cpumask_first(cpu_present_mask);
12376 	start_cpu = first_cpu;
12377 
12378 	for_each_present_cpu(cpu) {
12379 		cpup = &phba->sli4_hba.cpu_map[cpu];
12380 
12381 		/* Is this CPU entry unassigned */
12382 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12383 			/* Mark CPU as IRQ not assigned by the kernel */
12384 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12385 
12386 			/* If so, find a new_cpup thats on the the SAME
12387 			 * phys_id as cpup. start_cpu will start where we
12388 			 * left off so all unassigned entries don't get assgined
12389 			 * the IRQ of the first entry.
12390 			 */
12391 			new_cpu = start_cpu;
12392 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12393 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12394 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12395 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12396 				    (new_cpup->phys_id == cpup->phys_id))
12397 					goto found_same;
12398 				new_cpu = cpumask_next(
12399 					new_cpu, cpu_present_mask);
12400 				if (new_cpu == nr_cpumask_bits)
12401 					new_cpu = first_cpu;
12402 			}
12403 			/* At this point, we leave the CPU as unassigned */
12404 			continue;
12405 found_same:
12406 			/* We found a matching phys_id, so copy the IRQ info */
12407 			cpup->eq = new_cpup->eq;
12408 
12409 			/* Bump start_cpu to the next slot to minmize the
12410 			 * chance of having multiple unassigned CPU entries
12411 			 * selecting the same IRQ.
12412 			 */
12413 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12414 			if (start_cpu == nr_cpumask_bits)
12415 				start_cpu = first_cpu;
12416 
12417 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12418 					"3337 Set Affinity: CPU %d "
12419 					"eq %d from peer cpu %d same "
12420 					"phys_id (%d)\n",
12421 					cpu, cpup->eq, new_cpu,
12422 					cpup->phys_id);
12423 		}
12424 	}
12425 
12426 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12427 	start_cpu = first_cpu;
12428 
12429 	for_each_present_cpu(cpu) {
12430 		cpup = &phba->sli4_hba.cpu_map[cpu];
12431 
12432 		/* Is this entry unassigned */
12433 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12434 			/* Mark it as IRQ not assigned by the kernel */
12435 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12436 
12437 			/* If so, find a new_cpup thats on ANY phys_id
12438 			 * as the cpup. start_cpu will start where we
12439 			 * left off so all unassigned entries don't get
12440 			 * assigned the IRQ of the first entry.
12441 			 */
12442 			new_cpu = start_cpu;
12443 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12444 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12445 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12446 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12447 					goto found_any;
12448 				new_cpu = cpumask_next(
12449 					new_cpu, cpu_present_mask);
12450 				if (new_cpu == nr_cpumask_bits)
12451 					new_cpu = first_cpu;
12452 			}
12453 			/* We should never leave an entry unassigned */
12454 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12455 					"3339 Set Affinity: CPU %d "
12456 					"eq %d UNASSIGNED\n",
12457 					cpup->hdwq, cpup->eq);
12458 			continue;
12459 found_any:
12460 			/* We found an available entry, copy the IRQ info */
12461 			cpup->eq = new_cpup->eq;
12462 
12463 			/* Bump start_cpu to the next slot to minmize the
12464 			 * chance of having multiple unassigned CPU entries
12465 			 * selecting the same IRQ.
12466 			 */
12467 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12468 			if (start_cpu == nr_cpumask_bits)
12469 				start_cpu = first_cpu;
12470 
12471 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12472 					"3338 Set Affinity: CPU %d "
12473 					"eq %d from peer cpu %d (%d/%d)\n",
12474 					cpu, cpup->eq, new_cpu,
12475 					new_cpup->phys_id, new_cpup->core_id);
12476 		}
12477 	}
12478 
12479 	/* Assign hdwq indices that are unique across all cpus in the map
12480 	 * that are also FIRST_CPUs.
12481 	 */
12482 	idx = 0;
12483 	for_each_present_cpu(cpu) {
12484 		cpup = &phba->sli4_hba.cpu_map[cpu];
12485 
12486 		/* Only FIRST IRQs get a hdwq index assignment. */
12487 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12488 			continue;
12489 
12490 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12491 		cpup->hdwq = idx;
12492 		idx++;
12493 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12494 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12495 				"hdwq %d eq %d flg x%x\n",
12496 				cpu, cpup->phys_id, cpup->core_id,
12497 				cpup->hdwq, cpup->eq, cpup->flag);
12498 	}
12499 	/* Associate a hdwq with each cpu_map entry
12500 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12501 	 * hardware queues then CPUs. For that case we will just round-robin
12502 	 * the available hardware queues as they get assigned to CPUs.
12503 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12504 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12505 	 * and needs to start at 0.
12506 	 */
12507 	next_idx = idx;
12508 	start_cpu = 0;
12509 	idx = 0;
12510 	for_each_present_cpu(cpu) {
12511 		cpup = &phba->sli4_hba.cpu_map[cpu];
12512 
12513 		/* FIRST cpus are already mapped. */
12514 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12515 			continue;
12516 
12517 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12518 		 * of the unassigned cpus to the next idx so that all
12519 		 * hdw queues are fully utilized.
12520 		 */
12521 		if (next_idx < phba->cfg_hdw_queue) {
12522 			cpup->hdwq = next_idx;
12523 			next_idx++;
12524 			continue;
12525 		}
12526 
12527 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12528 		 * Hardware Queue for another CPU, so be smart about it
12529 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12530 		 * (CPU package) and core_id.
12531 		 */
12532 		new_cpu = start_cpu;
12533 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12534 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12535 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12536 			    new_cpup->phys_id == cpup->phys_id &&
12537 			    new_cpup->core_id == cpup->core_id) {
12538 				goto found_hdwq;
12539 			}
12540 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12541 			if (new_cpu == nr_cpumask_bits)
12542 				new_cpu = first_cpu;
12543 		}
12544 
12545 		/* If we can't match both phys_id and core_id,
12546 		 * settle for just a phys_id match.
12547 		 */
12548 		new_cpu = start_cpu;
12549 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12550 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12551 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12552 			    new_cpup->phys_id == cpup->phys_id)
12553 				goto found_hdwq;
12554 
12555 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12556 			if (new_cpu == nr_cpumask_bits)
12557 				new_cpu = first_cpu;
12558 		}
12559 
12560 		/* Otherwise just round robin on cfg_hdw_queue */
12561 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12562 		idx++;
12563 		goto logit;
12564  found_hdwq:
12565 		/* We found an available entry, copy the IRQ info */
12566 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12567 		if (start_cpu == nr_cpumask_bits)
12568 			start_cpu = first_cpu;
12569 		cpup->hdwq = new_cpup->hdwq;
12570  logit:
12571 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12572 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12573 				"hdwq %d eq %d flg x%x\n",
12574 				cpu, cpup->phys_id, cpup->core_id,
12575 				cpup->hdwq, cpup->eq, cpup->flag);
12576 	}
12577 
12578 	/*
12579 	 * Initialize the cpu_map slots for not-present cpus in case
12580 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12581 	 */
12582 	idx = 0;
12583 	for_each_possible_cpu(cpu) {
12584 		cpup = &phba->sli4_hba.cpu_map[cpu];
12585 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12586 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12587 		c_stat->hdwq_no = cpup->hdwq;
12588 #endif
12589 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12590 			continue;
12591 
12592 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12593 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12594 		c_stat->hdwq_no = cpup->hdwq;
12595 #endif
12596 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12597 				"3340 Set Affinity: not present "
12598 				"CPU %d hdwq %d\n",
12599 				cpu, cpup->hdwq);
12600 	}
12601 
12602 	/* The cpu_map array will be used later during initialization
12603 	 * when EQ / CQ / WQs are allocated and configured.
12604 	 */
12605 	return;
12606 }
12607 
12608 /**
12609  * lpfc_cpuhp_get_eq
12610  *
12611  * @phba:   pointer to lpfc hba data structure.
12612  * @cpu:    cpu going offline
12613  * @eqlist: eq list to append to
12614  */
12615 static int
12616 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12617 		  struct list_head *eqlist)
12618 {
12619 	const struct cpumask *maskp;
12620 	struct lpfc_queue *eq;
12621 	struct cpumask *tmp;
12622 	u16 idx;
12623 
12624 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12625 	if (!tmp)
12626 		return -ENOMEM;
12627 
12628 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12629 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12630 		if (!maskp)
12631 			continue;
12632 		/*
12633 		 * if irq is not affinitized to the cpu going
12634 		 * then we don't need to poll the eq attached
12635 		 * to it.
12636 		 */
12637 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12638 			continue;
12639 		/* get the cpus that are online and are affini-
12640 		 * tized to this irq vector.  If the count is
12641 		 * more than 1 then cpuhp is not going to shut-
12642 		 * down this vector.  Since this cpu has not
12643 		 * gone offline yet, we need >1.
12644 		 */
12645 		cpumask_and(tmp, maskp, cpu_online_mask);
12646 		if (cpumask_weight(tmp) > 1)
12647 			continue;
12648 
12649 		/* Now that we have an irq to shutdown, get the eq
12650 		 * mapped to this irq.  Note: multiple hdwq's in
12651 		 * the software can share an eq, but eventually
12652 		 * only eq will be mapped to this vector
12653 		 */
12654 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12655 		list_add(&eq->_poll_list, eqlist);
12656 	}
12657 	kfree(tmp);
12658 	return 0;
12659 }
12660 
12661 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12662 {
12663 	if (phba->sli_rev != LPFC_SLI_REV4)
12664 		return;
12665 
12666 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12667 					    &phba->cpuhp);
12668 	/*
12669 	 * unregistering the instance doesn't stop the polling
12670 	 * timer. Wait for the poll timer to retire.
12671 	 */
12672 	synchronize_rcu();
12673 	del_timer_sync(&phba->cpuhp_poll_timer);
12674 }
12675 
12676 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12677 {
12678 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12679 		return;
12680 
12681 	__lpfc_cpuhp_remove(phba);
12682 }
12683 
12684 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12685 {
12686 	if (phba->sli_rev != LPFC_SLI_REV4)
12687 		return;
12688 
12689 	rcu_read_lock();
12690 
12691 	if (!list_empty(&phba->poll_list))
12692 		mod_timer(&phba->cpuhp_poll_timer,
12693 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12694 
12695 	rcu_read_unlock();
12696 
12697 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12698 					 &phba->cpuhp);
12699 }
12700 
12701 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12702 {
12703 	if (phba->pport->load_flag & FC_UNLOADING) {
12704 		*retval = -EAGAIN;
12705 		return true;
12706 	}
12707 
12708 	if (phba->sli_rev != LPFC_SLI_REV4) {
12709 		*retval = 0;
12710 		return true;
12711 	}
12712 
12713 	/* proceed with the hotplug */
12714 	return false;
12715 }
12716 
12717 /**
12718  * lpfc_irq_set_aff - set IRQ affinity
12719  * @eqhdl: EQ handle
12720  * @cpu: cpu to set affinity
12721  *
12722  **/
12723 static inline void
12724 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12725 {
12726 	cpumask_clear(&eqhdl->aff_mask);
12727 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12728 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12729 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12730 }
12731 
12732 /**
12733  * lpfc_irq_clear_aff - clear IRQ affinity
12734  * @eqhdl: EQ handle
12735  *
12736  **/
12737 static inline void
12738 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12739 {
12740 	cpumask_clear(&eqhdl->aff_mask);
12741 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12742 }
12743 
12744 /**
12745  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12746  * @phba: pointer to HBA context object.
12747  * @cpu: cpu going offline/online
12748  * @offline: true, cpu is going offline. false, cpu is coming online.
12749  *
12750  * If cpu is going offline, we'll try our best effort to find the next
12751  * online cpu on the phba's original_mask and migrate all offlining IRQ
12752  * affinities.
12753  *
12754  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12755  *
12756  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12757  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12758  *
12759  **/
12760 static void
12761 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12762 {
12763 	struct lpfc_vector_map_info *cpup;
12764 	struct cpumask *aff_mask;
12765 	unsigned int cpu_select, cpu_next, idx;
12766 	const struct cpumask *orig_mask;
12767 
12768 	if (phba->irq_chann_mode == NORMAL_MODE)
12769 		return;
12770 
12771 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12772 
12773 	if (!cpumask_test_cpu(cpu, orig_mask))
12774 		return;
12775 
12776 	cpup = &phba->sli4_hba.cpu_map[cpu];
12777 
12778 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12779 		return;
12780 
12781 	if (offline) {
12782 		/* Find next online CPU on original mask */
12783 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12784 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12785 
12786 		/* Found a valid CPU */
12787 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12788 			/* Go through each eqhdl and ensure offlining
12789 			 * cpu aff_mask is migrated
12790 			 */
12791 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12792 				aff_mask = lpfc_get_aff_mask(idx);
12793 
12794 				/* Migrate affinity */
12795 				if (cpumask_test_cpu(cpu, aff_mask))
12796 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12797 							 cpu_select);
12798 			}
12799 		} else {
12800 			/* Rely on irqbalance if no online CPUs left on NUMA */
12801 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12802 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12803 		}
12804 	} else {
12805 		/* Migrate affinity back to this CPU */
12806 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12807 	}
12808 }
12809 
12810 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12811 {
12812 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12813 	struct lpfc_queue *eq, *next;
12814 	LIST_HEAD(eqlist);
12815 	int retval;
12816 
12817 	if (!phba) {
12818 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12819 		return 0;
12820 	}
12821 
12822 	if (__lpfc_cpuhp_checks(phba, &retval))
12823 		return retval;
12824 
12825 	lpfc_irq_rebalance(phba, cpu, true);
12826 
12827 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12828 	if (retval)
12829 		return retval;
12830 
12831 	/* start polling on these eq's */
12832 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12833 		list_del_init(&eq->_poll_list);
12834 		lpfc_sli4_start_polling(eq);
12835 	}
12836 
12837 	return 0;
12838 }
12839 
12840 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12841 {
12842 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12843 	struct lpfc_queue *eq, *next;
12844 	unsigned int n;
12845 	int retval;
12846 
12847 	if (!phba) {
12848 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12849 		return 0;
12850 	}
12851 
12852 	if (__lpfc_cpuhp_checks(phba, &retval))
12853 		return retval;
12854 
12855 	lpfc_irq_rebalance(phba, cpu, false);
12856 
12857 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12858 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12859 		if (n == cpu)
12860 			lpfc_sli4_stop_polling(eq);
12861 	}
12862 
12863 	return 0;
12864 }
12865 
12866 /**
12867  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12868  * @phba: pointer to lpfc hba data structure.
12869  *
12870  * This routine is invoked to enable the MSI-X interrupt vectors to device
12871  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12872  * to cpus on the system.
12873  *
12874  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12875  * the number of cpus on the same numa node as this adapter.  The vectors are
12876  * allocated without requesting OS affinity mapping.  A vector will be
12877  * allocated and assigned to each online and offline cpu.  If the cpu is
12878  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12879  * affinity will be set to the nearest peer cpu within the numa node that is
12880  * online.  If there are no online cpus within the numa node, affinity is not
12881  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12882  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12883  * configured.
12884  *
12885  * If numa mode is not enabled and there is more than 1 vector allocated, then
12886  * the driver relies on the managed irq interface where the OS assigns vector to
12887  * cpu affinity.  The driver will then use that affinity mapping to setup its
12888  * cpu mapping table.
12889  *
12890  * Return codes
12891  * 0 - successful
12892  * other values - error
12893  **/
12894 static int
12895 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12896 {
12897 	int vectors, rc, index;
12898 	char *name;
12899 	const struct cpumask *aff_mask = NULL;
12900 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12901 	struct lpfc_vector_map_info *cpup;
12902 	struct lpfc_hba_eq_hdl *eqhdl;
12903 	const struct cpumask *maskp;
12904 	unsigned int flags = PCI_IRQ_MSIX;
12905 
12906 	/* Set up MSI-X multi-message vectors */
12907 	vectors = phba->cfg_irq_chann;
12908 
12909 	if (phba->irq_chann_mode != NORMAL_MODE)
12910 		aff_mask = &phba->sli4_hba.irq_aff_mask;
12911 
12912 	if (aff_mask) {
12913 		cpu_cnt = cpumask_weight(aff_mask);
12914 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
12915 
12916 		/* cpu: iterates over aff_mask including offline or online
12917 		 * cpu_select: iterates over online aff_mask to set affinity
12918 		 */
12919 		cpu = cpumask_first(aff_mask);
12920 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12921 	} else {
12922 		flags |= PCI_IRQ_AFFINITY;
12923 	}
12924 
12925 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12926 	if (rc < 0) {
12927 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12928 				"0484 PCI enable MSI-X failed (%d)\n", rc);
12929 		goto vec_fail_out;
12930 	}
12931 	vectors = rc;
12932 
12933 	/* Assign MSI-X vectors to interrupt handlers */
12934 	for (index = 0; index < vectors; index++) {
12935 		eqhdl = lpfc_get_eq_hdl(index);
12936 		name = eqhdl->handler_name;
12937 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12938 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12939 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
12940 
12941 		eqhdl->idx = index;
12942 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
12943 			 &lpfc_sli4_hba_intr_handler, 0,
12944 			 name, eqhdl);
12945 		if (rc) {
12946 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12947 					"0486 MSI-X fast-path (%d) "
12948 					"request_irq failed (%d)\n", index, rc);
12949 			goto cfg_fail_out;
12950 		}
12951 
12952 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12953 
12954 		if (aff_mask) {
12955 			/* If found a neighboring online cpu, set affinity */
12956 			if (cpu_select < nr_cpu_ids)
12957 				lpfc_irq_set_aff(eqhdl, cpu_select);
12958 
12959 			/* Assign EQ to cpu_map */
12960 			lpfc_assign_eq_map_info(phba, index,
12961 						LPFC_CPU_FIRST_IRQ,
12962 						cpu);
12963 
12964 			/* Iterate to next offline or online cpu in aff_mask */
12965 			cpu = cpumask_next(cpu, aff_mask);
12966 
12967 			/* Find next online cpu in aff_mask to set affinity */
12968 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12969 		} else if (vectors == 1) {
12970 			cpu = cpumask_first(cpu_present_mask);
12971 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12972 						cpu);
12973 		} else {
12974 			maskp = pci_irq_get_affinity(phba->pcidev, index);
12975 
12976 			/* Loop through all CPUs associated with vector index */
12977 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12978 				cpup = &phba->sli4_hba.cpu_map[cpu];
12979 
12980 				/* If this is the first CPU thats assigned to
12981 				 * this vector, set LPFC_CPU_FIRST_IRQ.
12982 				 *
12983 				 * With certain platforms its possible that irq
12984 				 * vectors are affinitized to all the cpu's.
12985 				 * This can result in each cpu_map.eq to be set
12986 				 * to the last vector, resulting in overwrite
12987 				 * of all the previous cpu_map.eq.  Ensure that
12988 				 * each vector receives a place in cpu_map.
12989 				 * Later call to lpfc_cpu_affinity_check will
12990 				 * ensure we are nicely balanced out.
12991 				 */
12992 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12993 					continue;
12994 				lpfc_assign_eq_map_info(phba, index,
12995 							LPFC_CPU_FIRST_IRQ,
12996 							cpu);
12997 				break;
12998 			}
12999 		}
13000 	}
13001 
13002 	if (vectors != phba->cfg_irq_chann) {
13003 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13004 				"3238 Reducing IO channels to match number of "
13005 				"MSI-X vectors, requested %d got %d\n",
13006 				phba->cfg_irq_chann, vectors);
13007 		if (phba->cfg_irq_chann > vectors)
13008 			phba->cfg_irq_chann = vectors;
13009 	}
13010 
13011 	return rc;
13012 
13013 cfg_fail_out:
13014 	/* free the irq already requested */
13015 	for (--index; index >= 0; index--) {
13016 		eqhdl = lpfc_get_eq_hdl(index);
13017 		lpfc_irq_clear_aff(eqhdl);
13018 		free_irq(eqhdl->irq, eqhdl);
13019 	}
13020 
13021 	/* Unconfigure MSI-X capability structure */
13022 	pci_free_irq_vectors(phba->pcidev);
13023 
13024 vec_fail_out:
13025 	return rc;
13026 }
13027 
13028 /**
13029  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13030  * @phba: pointer to lpfc hba data structure.
13031  *
13032  * This routine is invoked to enable the MSI interrupt mode to device with
13033  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13034  * called to enable the MSI vector. The device driver is responsible for
13035  * calling the request_irq() to register MSI vector with a interrupt the
13036  * handler, which is done in this function.
13037  *
13038  * Return codes
13039  * 	0 - successful
13040  * 	other values - error
13041  **/
13042 static int
13043 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13044 {
13045 	int rc, index;
13046 	unsigned int cpu;
13047 	struct lpfc_hba_eq_hdl *eqhdl;
13048 
13049 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13050 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13051 	if (rc > 0)
13052 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13053 				"0487 PCI enable MSI mode success.\n");
13054 	else {
13055 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13056 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13057 		return rc ? rc : -1;
13058 	}
13059 
13060 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13061 			 0, LPFC_DRIVER_NAME, phba);
13062 	if (rc) {
13063 		pci_free_irq_vectors(phba->pcidev);
13064 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13065 				"0490 MSI request_irq failed (%d)\n", rc);
13066 		return rc;
13067 	}
13068 
13069 	eqhdl = lpfc_get_eq_hdl(0);
13070 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13071 
13072 	cpu = cpumask_first(cpu_present_mask);
13073 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13074 
13075 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13076 		eqhdl = lpfc_get_eq_hdl(index);
13077 		eqhdl->idx = index;
13078 	}
13079 
13080 	return 0;
13081 }
13082 
13083 /**
13084  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13085  * @phba: pointer to lpfc hba data structure.
13086  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13087  *
13088  * This routine is invoked to enable device interrupt and associate driver's
13089  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13090  * interface spec. Depends on the interrupt mode configured to the driver,
13091  * the driver will try to fallback from the configured interrupt mode to an
13092  * interrupt mode which is supported by the platform, kernel, and device in
13093  * the order of:
13094  * MSI-X -> MSI -> IRQ.
13095  *
13096  * Return codes
13097  * 	0 - successful
13098  * 	other values - error
13099  **/
13100 static uint32_t
13101 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13102 {
13103 	uint32_t intr_mode = LPFC_INTR_ERROR;
13104 	int retval, idx;
13105 
13106 	if (cfg_mode == 2) {
13107 		/* Preparation before conf_msi mbox cmd */
13108 		retval = 0;
13109 		if (!retval) {
13110 			/* Now, try to enable MSI-X interrupt mode */
13111 			retval = lpfc_sli4_enable_msix(phba);
13112 			if (!retval) {
13113 				/* Indicate initialization to MSI-X mode */
13114 				phba->intr_type = MSIX;
13115 				intr_mode = 2;
13116 			}
13117 		}
13118 	}
13119 
13120 	/* Fallback to MSI if MSI-X initialization failed */
13121 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13122 		retval = lpfc_sli4_enable_msi(phba);
13123 		if (!retval) {
13124 			/* Indicate initialization to MSI mode */
13125 			phba->intr_type = MSI;
13126 			intr_mode = 1;
13127 		}
13128 	}
13129 
13130 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13131 	if (phba->intr_type == NONE) {
13132 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13133 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13134 		if (!retval) {
13135 			struct lpfc_hba_eq_hdl *eqhdl;
13136 			unsigned int cpu;
13137 
13138 			/* Indicate initialization to INTx mode */
13139 			phba->intr_type = INTx;
13140 			intr_mode = 0;
13141 
13142 			eqhdl = lpfc_get_eq_hdl(0);
13143 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13144 
13145 			cpu = cpumask_first(cpu_present_mask);
13146 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13147 						cpu);
13148 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13149 				eqhdl = lpfc_get_eq_hdl(idx);
13150 				eqhdl->idx = idx;
13151 			}
13152 		}
13153 	}
13154 	return intr_mode;
13155 }
13156 
13157 /**
13158  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13159  * @phba: pointer to lpfc hba data structure.
13160  *
13161  * This routine is invoked to disable device interrupt and disassociate
13162  * the driver's interrupt handler(s) from interrupt vector(s) to device
13163  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13164  * will release the interrupt vector(s) for the message signaled interrupt.
13165  **/
13166 static void
13167 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13168 {
13169 	/* Disable the currently initialized interrupt mode */
13170 	if (phba->intr_type == MSIX) {
13171 		int index;
13172 		struct lpfc_hba_eq_hdl *eqhdl;
13173 
13174 		/* Free up MSI-X multi-message vectors */
13175 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13176 			eqhdl = lpfc_get_eq_hdl(index);
13177 			lpfc_irq_clear_aff(eqhdl);
13178 			free_irq(eqhdl->irq, eqhdl);
13179 		}
13180 	} else {
13181 		free_irq(phba->pcidev->irq, phba);
13182 	}
13183 
13184 	pci_free_irq_vectors(phba->pcidev);
13185 
13186 	/* Reset interrupt management states */
13187 	phba->intr_type = NONE;
13188 	phba->sli.slistat.sli_intr = 0;
13189 }
13190 
13191 /**
13192  * lpfc_unset_hba - Unset SLI3 hba device initialization
13193  * @phba: pointer to lpfc hba data structure.
13194  *
13195  * This routine is invoked to unset the HBA device initialization steps to
13196  * a device with SLI-3 interface spec.
13197  **/
13198 static void
13199 lpfc_unset_hba(struct lpfc_hba *phba)
13200 {
13201 	struct lpfc_vport *vport = phba->pport;
13202 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13203 
13204 	spin_lock_irq(shost->host_lock);
13205 	vport->load_flag |= FC_UNLOADING;
13206 	spin_unlock_irq(shost->host_lock);
13207 
13208 	kfree(phba->vpi_bmask);
13209 	kfree(phba->vpi_ids);
13210 
13211 	lpfc_stop_hba_timers(phba);
13212 
13213 	phba->pport->work_port_events = 0;
13214 
13215 	lpfc_sli_hba_down(phba);
13216 
13217 	lpfc_sli_brdrestart(phba);
13218 
13219 	lpfc_sli_disable_intr(phba);
13220 
13221 	return;
13222 }
13223 
13224 /**
13225  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13226  * @phba: Pointer to HBA context object.
13227  *
13228  * This function is called in the SLI4 code path to wait for completion
13229  * of device's XRIs exchange busy. It will check the XRI exchange busy
13230  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13231  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13232  * I/Os every 30 seconds, log error message, and wait forever. Only when
13233  * all XRI exchange busy complete, the driver unload shall proceed with
13234  * invoking the function reset ioctl mailbox command to the CNA and the
13235  * the rest of the driver unload resource release.
13236  **/
13237 static void
13238 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13239 {
13240 	struct lpfc_sli4_hdw_queue *qp;
13241 	int idx, ccnt;
13242 	int wait_time = 0;
13243 	int io_xri_cmpl = 1;
13244 	int nvmet_xri_cmpl = 1;
13245 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13246 
13247 	/* Driver just aborted IOs during the hba_unset process.  Pause
13248 	 * here to give the HBA time to complete the IO and get entries
13249 	 * into the abts lists.
13250 	 */
13251 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13252 
13253 	/* Wait for NVME pending IO to flush back to transport. */
13254 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13255 		lpfc_nvme_wait_for_io_drain(phba);
13256 
13257 	ccnt = 0;
13258 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13259 		qp = &phba->sli4_hba.hdwq[idx];
13260 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13261 		if (!io_xri_cmpl) /* if list is NOT empty */
13262 			ccnt++;
13263 	}
13264 	if (ccnt)
13265 		io_xri_cmpl = 0;
13266 
13267 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13268 		nvmet_xri_cmpl =
13269 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13270 	}
13271 
13272 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13273 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13274 			if (!nvmet_xri_cmpl)
13275 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13276 						"6424 NVMET XRI exchange busy "
13277 						"wait time: %d seconds.\n",
13278 						wait_time/1000);
13279 			if (!io_xri_cmpl)
13280 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13281 						"6100 IO XRI exchange busy "
13282 						"wait time: %d seconds.\n",
13283 						wait_time/1000);
13284 			if (!els_xri_cmpl)
13285 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13286 						"2878 ELS XRI exchange busy "
13287 						"wait time: %d seconds.\n",
13288 						wait_time/1000);
13289 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13290 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13291 		} else {
13292 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13293 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13294 		}
13295 
13296 		ccnt = 0;
13297 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13298 			qp = &phba->sli4_hba.hdwq[idx];
13299 			io_xri_cmpl = list_empty(
13300 			    &qp->lpfc_abts_io_buf_list);
13301 			if (!io_xri_cmpl) /* if list is NOT empty */
13302 				ccnt++;
13303 		}
13304 		if (ccnt)
13305 			io_xri_cmpl = 0;
13306 
13307 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13308 			nvmet_xri_cmpl = list_empty(
13309 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13310 		}
13311 		els_xri_cmpl =
13312 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13313 
13314 	}
13315 }
13316 
13317 /**
13318  * lpfc_sli4_hba_unset - Unset the fcoe hba
13319  * @phba: Pointer to HBA context object.
13320  *
13321  * This function is called in the SLI4 code path to reset the HBA's FCoE
13322  * function. The caller is not required to hold any lock. This routine
13323  * issues PCI function reset mailbox command to reset the FCoE function.
13324  * At the end of the function, it calls lpfc_hba_down_post function to
13325  * free any pending commands.
13326  **/
13327 static void
13328 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13329 {
13330 	int wait_cnt = 0;
13331 	LPFC_MBOXQ_t *mboxq;
13332 	struct pci_dev *pdev = phba->pcidev;
13333 
13334 	lpfc_stop_hba_timers(phba);
13335 	hrtimer_cancel(&phba->cmf_timer);
13336 
13337 	if (phba->pport)
13338 		phba->sli4_hba.intr_enable = 0;
13339 
13340 	/*
13341 	 * Gracefully wait out the potential current outstanding asynchronous
13342 	 * mailbox command.
13343 	 */
13344 
13345 	/* First, block any pending async mailbox command from posted */
13346 	spin_lock_irq(&phba->hbalock);
13347 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13348 	spin_unlock_irq(&phba->hbalock);
13349 	/* Now, trying to wait it out if we can */
13350 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13351 		msleep(10);
13352 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13353 			break;
13354 	}
13355 	/* Forcefully release the outstanding mailbox command if timed out */
13356 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13357 		spin_lock_irq(&phba->hbalock);
13358 		mboxq = phba->sli.mbox_active;
13359 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13360 		__lpfc_mbox_cmpl_put(phba, mboxq);
13361 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13362 		phba->sli.mbox_active = NULL;
13363 		spin_unlock_irq(&phba->hbalock);
13364 	}
13365 
13366 	/* Abort all iocbs associated with the hba */
13367 	lpfc_sli_hba_iocb_abort(phba);
13368 
13369 	/* Wait for completion of device XRI exchange busy */
13370 	lpfc_sli4_xri_exchange_busy_wait(phba);
13371 
13372 	/* per-phba callback de-registration for hotplug event */
13373 	if (phba->pport)
13374 		lpfc_cpuhp_remove(phba);
13375 
13376 	/* Disable PCI subsystem interrupt */
13377 	lpfc_sli4_disable_intr(phba);
13378 
13379 	/* Disable SR-IOV if enabled */
13380 	if (phba->cfg_sriov_nr_virtfn)
13381 		pci_disable_sriov(pdev);
13382 
13383 	/* Stop kthread signal shall trigger work_done one more time */
13384 	kthread_stop(phba->worker_thread);
13385 
13386 	/* Disable FW logging to host memory */
13387 	lpfc_ras_stop_fwlog(phba);
13388 
13389 	/* Unset the queues shared with the hardware then release all
13390 	 * allocated resources.
13391 	 */
13392 	lpfc_sli4_queue_unset(phba);
13393 	lpfc_sli4_queue_destroy(phba);
13394 
13395 	/* Reset SLI4 HBA FCoE function */
13396 	lpfc_pci_function_reset(phba);
13397 
13398 	/* Free RAS DMA memory */
13399 	if (phba->ras_fwlog.ras_enabled)
13400 		lpfc_sli4_ras_dma_free(phba);
13401 
13402 	/* Stop the SLI4 device port */
13403 	if (phba->pport)
13404 		phba->pport->work_port_events = 0;
13405 }
13406 
13407 static uint32_t
13408 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13409 {
13410 	uint32_t msb = 0;
13411 	uint32_t bit;
13412 
13413 	for (bit = 0; bit < 8; bit++) {
13414 		msb = (crc >> 31) & 1;
13415 		crc <<= 1;
13416 
13417 		if (msb ^ (byte & 1)) {
13418 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13419 			crc |= 1;
13420 		}
13421 		byte >>= 1;
13422 	}
13423 	return crc;
13424 }
13425 
13426 static uint32_t
13427 lpfc_cgn_reverse_bits(uint32_t wd)
13428 {
13429 	uint32_t result = 0;
13430 	uint32_t i;
13431 
13432 	for (i = 0; i < 32; i++) {
13433 		result <<= 1;
13434 		result |= (1 & (wd >> i));
13435 	}
13436 	return result;
13437 }
13438 
13439 /*
13440  * The routine corresponds with the algorithm the HBA firmware
13441  * uses to validate the data integrity.
13442  */
13443 uint32_t
13444 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13445 {
13446 	uint32_t  i;
13447 	uint32_t result;
13448 	uint8_t  *data = (uint8_t *)ptr;
13449 
13450 	for (i = 0; i < byteLen; ++i)
13451 		crc = lpfc_cgn_crc32(crc, data[i]);
13452 
13453 	result = ~lpfc_cgn_reverse_bits(crc);
13454 	return result;
13455 }
13456 
13457 void
13458 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13459 {
13460 	struct lpfc_cgn_info *cp;
13461 	struct timespec64 cmpl_time;
13462 	struct tm broken;
13463 	uint16_t size;
13464 	uint32_t crc;
13465 
13466 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13467 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13468 
13469 	if (!phba->cgn_i)
13470 		return;
13471 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13472 
13473 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13474 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13475 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13476 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13477 
13478 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13479 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13480 	atomic64_set(&phba->cgn_latency_evt, 0);
13481 	phba->cgn_evt_minute = 0;
13482 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13483 
13484 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13485 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13486 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13487 
13488 	/* cgn parameters */
13489 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13490 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13491 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13492 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13493 
13494 	ktime_get_real_ts64(&cmpl_time);
13495 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13496 
13497 	cp->cgn_info_month = broken.tm_mon + 1;
13498 	cp->cgn_info_day = broken.tm_mday;
13499 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13500 	cp->cgn_info_hour = broken.tm_hour;
13501 	cp->cgn_info_minute = broken.tm_min;
13502 	cp->cgn_info_second = broken.tm_sec;
13503 
13504 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13505 			"2643 CGNInfo Init: Start Time "
13506 			"%d/%d/%d %d:%d:%d\n",
13507 			cp->cgn_info_day, cp->cgn_info_month,
13508 			cp->cgn_info_year, cp->cgn_info_hour,
13509 			cp->cgn_info_minute, cp->cgn_info_second);
13510 
13511 	/* Fill in default LUN qdepth */
13512 	if (phba->pport) {
13513 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13514 		cp->cgn_lunq = cpu_to_le16(size);
13515 	}
13516 
13517 	/* last used Index initialized to 0xff already */
13518 
13519 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13520 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13521 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13522 	cp->cgn_info_crc = cpu_to_le32(crc);
13523 
13524 	phba->cgn_evt_timestamp = jiffies +
13525 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13526 }
13527 
13528 void
13529 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13530 {
13531 	struct lpfc_cgn_info *cp;
13532 	struct timespec64 cmpl_time;
13533 	struct tm broken;
13534 	uint32_t crc;
13535 
13536 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13537 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13538 
13539 	if (!phba->cgn_i)
13540 		return;
13541 
13542 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13543 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13544 
13545 	ktime_get_real_ts64(&cmpl_time);
13546 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13547 
13548 	cp->cgn_stat_month = broken.tm_mon + 1;
13549 	cp->cgn_stat_day = broken.tm_mday;
13550 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13551 	cp->cgn_stat_hour = broken.tm_hour;
13552 	cp->cgn_stat_minute = broken.tm_min;
13553 
13554 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13555 			"2647 CGNstat Init: Start Time "
13556 			"%d/%d/%d %d:%d\n",
13557 			cp->cgn_stat_day, cp->cgn_stat_month,
13558 			cp->cgn_stat_year, cp->cgn_stat_hour,
13559 			cp->cgn_stat_minute);
13560 
13561 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13562 	cp->cgn_info_crc = cpu_to_le32(crc);
13563 }
13564 
13565 /**
13566  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13567  * @phba: Pointer to hba context object.
13568  * @reg: flag to determine register or unregister.
13569  */
13570 static int
13571 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13572 {
13573 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13574 	union  lpfc_sli4_cfg_shdr *shdr;
13575 	uint32_t shdr_status, shdr_add_status;
13576 	LPFC_MBOXQ_t *mboxq;
13577 	int length, rc;
13578 
13579 	if (!phba->cgn_i)
13580 		return -ENXIO;
13581 
13582 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13583 	if (!mboxq) {
13584 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13585 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13586 				"HBA state x%x reg %d\n",
13587 				phba->pport->port_state, reg);
13588 		return -ENOMEM;
13589 	}
13590 
13591 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13592 		sizeof(struct lpfc_sli4_cfg_mhdr));
13593 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13594 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13595 			 LPFC_SLI4_MBX_EMBED);
13596 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13597 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13598 	if (reg > 0)
13599 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13600 	else
13601 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13602 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13603 	reg_congestion_buf->addr_lo =
13604 		putPaddrLow(phba->cgn_i->phys);
13605 	reg_congestion_buf->addr_hi =
13606 		putPaddrHigh(phba->cgn_i->phys);
13607 
13608 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13609 	shdr = (union lpfc_sli4_cfg_shdr *)
13610 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13611 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13612 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13613 				 &shdr->response);
13614 	mempool_free(mboxq, phba->mbox_mem_pool);
13615 	if (shdr_status || shdr_add_status || rc) {
13616 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13617 				"2642 REG_CONGESTION_BUF mailbox "
13618 				"failed with status x%x add_status x%x,"
13619 				" mbx status x%x reg %d\n",
13620 				shdr_status, shdr_add_status, rc, reg);
13621 		return -ENXIO;
13622 	}
13623 	return 0;
13624 }
13625 
13626 int
13627 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13628 {
13629 	lpfc_cmf_stop(phba);
13630 	return __lpfc_reg_congestion_buf(phba, 0);
13631 }
13632 
13633 int
13634 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13635 {
13636 	return __lpfc_reg_congestion_buf(phba, 1);
13637 }
13638 
13639 /**
13640  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13641  * @phba: Pointer to HBA context object.
13642  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13643  *
13644  * This function is called in the SLI4 code path to read the port's
13645  * sli4 capabilities.
13646  *
13647  * This function may be be called from any context that can block-wait
13648  * for the completion.  The expectation is that this routine is called
13649  * typically from probe_one or from the online routine.
13650  **/
13651 int
13652 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13653 {
13654 	int rc;
13655 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13656 	struct lpfc_pc_sli4_params *sli4_params;
13657 	uint32_t mbox_tmo;
13658 	int length;
13659 	bool exp_wqcq_pages = true;
13660 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13661 
13662 	/*
13663 	 * By default, the driver assumes the SLI4 port requires RPI
13664 	 * header postings.  The SLI4_PARAM response will correct this
13665 	 * assumption.
13666 	 */
13667 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13668 
13669 	/* Read the port's SLI4 Config Parameters */
13670 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13671 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13672 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13673 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13674 			 length, LPFC_SLI4_MBX_EMBED);
13675 	if (!phba->sli4_hba.intr_enable)
13676 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13677 	else {
13678 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13679 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13680 	}
13681 	if (unlikely(rc))
13682 		return rc;
13683 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13684 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13685 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13686 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13687 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13688 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13689 					     mbx_sli4_parameters);
13690 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13691 					     mbx_sli4_parameters);
13692 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13693 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13694 	else
13695 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13696 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13697 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13698 					   mbx_sli4_parameters);
13699 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13700 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13701 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13702 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13703 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13704 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13705 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13706 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13707 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13708 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13709 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13710 					    mbx_sli4_parameters);
13711 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13712 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13713 					   mbx_sli4_parameters);
13714 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13715 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13716 
13717 	/* Check for Extended Pre-Registered SGL support */
13718 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13719 
13720 	/* Check for firmware nvme support */
13721 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13722 		     bf_get(cfg_xib, mbx_sli4_parameters));
13723 
13724 	if (rc) {
13725 		/* Save this to indicate the Firmware supports NVME */
13726 		sli4_params->nvme = 1;
13727 
13728 		/* Firmware NVME support, check driver FC4 NVME support */
13729 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13730 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13731 					"6133 Disabling NVME support: "
13732 					"FC4 type not supported: x%x\n",
13733 					phba->cfg_enable_fc4_type);
13734 			goto fcponly;
13735 		}
13736 	} else {
13737 		/* No firmware NVME support, check driver FC4 NVME support */
13738 		sli4_params->nvme = 0;
13739 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13740 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13741 					"6101 Disabling NVME support: Not "
13742 					"supported by firmware (%d %d) x%x\n",
13743 					bf_get(cfg_nvme, mbx_sli4_parameters),
13744 					bf_get(cfg_xib, mbx_sli4_parameters),
13745 					phba->cfg_enable_fc4_type);
13746 fcponly:
13747 			phba->nvmet_support = 0;
13748 			phba->cfg_nvmet_mrq = 0;
13749 			phba->cfg_nvme_seg_cnt = 0;
13750 
13751 			/* If no FC4 type support, move to just SCSI support */
13752 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13753 				return -ENODEV;
13754 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13755 		}
13756 	}
13757 
13758 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13759 	 * accommodate 512K and 1M IOs in a single nvme buf.
13760 	 */
13761 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13762 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13763 
13764 	/* Enable embedded Payload BDE if support is indicated */
13765 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13766 		phba->cfg_enable_pbde = 1;
13767 	else
13768 		phba->cfg_enable_pbde = 0;
13769 
13770 	/*
13771 	 * To support Suppress Response feature we must satisfy 3 conditions.
13772 	 * lpfc_suppress_rsp module parameter must be set (default).
13773 	 * In SLI4-Parameters Descriptor:
13774 	 * Extended Inline Buffers (XIB) must be supported.
13775 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13776 	 * (double negative).
13777 	 */
13778 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13779 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13780 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13781 	else
13782 		phba->cfg_suppress_rsp = 0;
13783 
13784 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13785 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13786 
13787 	/* Make sure that sge_supp_len can be handled by the driver */
13788 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13789 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13790 
13791 	/*
13792 	 * Check whether the adapter supports an embedded copy of the
13793 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13794 	 * to use this option, 128-byte WQEs must be used.
13795 	 */
13796 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13797 		phba->fcp_embed_io = 1;
13798 	else
13799 		phba->fcp_embed_io = 0;
13800 
13801 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13802 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13803 			bf_get(cfg_xib, mbx_sli4_parameters),
13804 			phba->cfg_enable_pbde,
13805 			phba->fcp_embed_io, sli4_params->nvme,
13806 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13807 
13808 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13809 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13810 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13811 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13812 		exp_wqcq_pages = false;
13813 
13814 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13815 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13816 	    exp_wqcq_pages &&
13817 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13818 		phba->enab_exp_wqcq_pages = 1;
13819 	else
13820 		phba->enab_exp_wqcq_pages = 0;
13821 	/*
13822 	 * Check if the SLI port supports MDS Diagnostics
13823 	 */
13824 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13825 		phba->mds_diags_support = 1;
13826 	else
13827 		phba->mds_diags_support = 0;
13828 
13829 	/*
13830 	 * Check if the SLI port supports NSLER
13831 	 */
13832 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13833 		phba->nsler = 1;
13834 	else
13835 		phba->nsler = 0;
13836 
13837 	return 0;
13838 }
13839 
13840 /**
13841  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13842  * @pdev: pointer to PCI device
13843  * @pid: pointer to PCI device identifier
13844  *
13845  * This routine is to be called to attach a device with SLI-3 interface spec
13846  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13847  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13848  * information of the device and driver to see if the driver state that it can
13849  * support this kind of device. If the match is successful, the driver core
13850  * invokes this routine. If this routine determines it can claim the HBA, it
13851  * does all the initialization that it needs to do to handle the HBA properly.
13852  *
13853  * Return code
13854  * 	0 - driver can claim the device
13855  * 	negative value - driver can not claim the device
13856  **/
13857 static int
13858 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13859 {
13860 	struct lpfc_hba   *phba;
13861 	struct lpfc_vport *vport = NULL;
13862 	struct Scsi_Host  *shost = NULL;
13863 	int error;
13864 	uint32_t cfg_mode, intr_mode;
13865 
13866 	/* Allocate memory for HBA structure */
13867 	phba = lpfc_hba_alloc(pdev);
13868 	if (!phba)
13869 		return -ENOMEM;
13870 
13871 	/* Perform generic PCI device enabling operation */
13872 	error = lpfc_enable_pci_dev(phba);
13873 	if (error)
13874 		goto out_free_phba;
13875 
13876 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13877 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13878 	if (error)
13879 		goto out_disable_pci_dev;
13880 
13881 	/* Set up SLI-3 specific device PCI memory space */
13882 	error = lpfc_sli_pci_mem_setup(phba);
13883 	if (error) {
13884 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13885 				"1402 Failed to set up pci memory space.\n");
13886 		goto out_disable_pci_dev;
13887 	}
13888 
13889 	/* Set up SLI-3 specific device driver resources */
13890 	error = lpfc_sli_driver_resource_setup(phba);
13891 	if (error) {
13892 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13893 				"1404 Failed to set up driver resource.\n");
13894 		goto out_unset_pci_mem_s3;
13895 	}
13896 
13897 	/* Initialize and populate the iocb list per host */
13898 
13899 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13900 	if (error) {
13901 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13902 				"1405 Failed to initialize iocb list.\n");
13903 		goto out_unset_driver_resource_s3;
13904 	}
13905 
13906 	/* Set up common device driver resources */
13907 	error = lpfc_setup_driver_resource_phase2(phba);
13908 	if (error) {
13909 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13910 				"1406 Failed to set up driver resource.\n");
13911 		goto out_free_iocb_list;
13912 	}
13913 
13914 	/* Get the default values for Model Name and Description */
13915 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13916 
13917 	/* Create SCSI host to the physical port */
13918 	error = lpfc_create_shost(phba);
13919 	if (error) {
13920 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13921 				"1407 Failed to create scsi host.\n");
13922 		goto out_unset_driver_resource;
13923 	}
13924 
13925 	/* Configure sysfs attributes */
13926 	vport = phba->pport;
13927 	error = lpfc_alloc_sysfs_attr(vport);
13928 	if (error) {
13929 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13930 				"1476 Failed to allocate sysfs attr\n");
13931 		goto out_destroy_shost;
13932 	}
13933 
13934 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13935 	/* Now, trying to enable interrupt and bring up the device */
13936 	cfg_mode = phba->cfg_use_msi;
13937 	while (true) {
13938 		/* Put device to a known state before enabling interrupt */
13939 		lpfc_stop_port(phba);
13940 		/* Configure and enable interrupt */
13941 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13942 		if (intr_mode == LPFC_INTR_ERROR) {
13943 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13944 					"0431 Failed to enable interrupt.\n");
13945 			error = -ENODEV;
13946 			goto out_free_sysfs_attr;
13947 		}
13948 		/* SLI-3 HBA setup */
13949 		if (lpfc_sli_hba_setup(phba)) {
13950 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13951 					"1477 Failed to set up hba\n");
13952 			error = -ENODEV;
13953 			goto out_remove_device;
13954 		}
13955 
13956 		/* Wait 50ms for the interrupts of previous mailbox commands */
13957 		msleep(50);
13958 		/* Check active interrupts on message signaled interrupts */
13959 		if (intr_mode == 0 ||
13960 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13961 			/* Log the current active interrupt mode */
13962 			phba->intr_mode = intr_mode;
13963 			lpfc_log_intr_mode(phba, intr_mode);
13964 			break;
13965 		} else {
13966 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13967 					"0447 Configure interrupt mode (%d) "
13968 					"failed active interrupt test.\n",
13969 					intr_mode);
13970 			/* Disable the current interrupt mode */
13971 			lpfc_sli_disable_intr(phba);
13972 			/* Try next level of interrupt mode */
13973 			cfg_mode = --intr_mode;
13974 		}
13975 	}
13976 
13977 	/* Perform post initialization setup */
13978 	lpfc_post_init_setup(phba);
13979 
13980 	/* Check if there are static vports to be created. */
13981 	lpfc_create_static_vport(phba);
13982 
13983 	return 0;
13984 
13985 out_remove_device:
13986 	lpfc_unset_hba(phba);
13987 out_free_sysfs_attr:
13988 	lpfc_free_sysfs_attr(vport);
13989 out_destroy_shost:
13990 	lpfc_destroy_shost(phba);
13991 out_unset_driver_resource:
13992 	lpfc_unset_driver_resource_phase2(phba);
13993 out_free_iocb_list:
13994 	lpfc_free_iocb_list(phba);
13995 out_unset_driver_resource_s3:
13996 	lpfc_sli_driver_resource_unset(phba);
13997 out_unset_pci_mem_s3:
13998 	lpfc_sli_pci_mem_unset(phba);
13999 out_disable_pci_dev:
14000 	lpfc_disable_pci_dev(phba);
14001 	if (shost)
14002 		scsi_host_put(shost);
14003 out_free_phba:
14004 	lpfc_hba_free(phba);
14005 	return error;
14006 }
14007 
14008 /**
14009  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14010  * @pdev: pointer to PCI device
14011  *
14012  * This routine is to be called to disattach a device with SLI-3 interface
14013  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14014  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14015  * device to be removed from the PCI subsystem properly.
14016  **/
14017 static void
14018 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14019 {
14020 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14021 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14022 	struct lpfc_vport **vports;
14023 	struct lpfc_hba   *phba = vport->phba;
14024 	int i;
14025 
14026 	spin_lock_irq(&phba->hbalock);
14027 	vport->load_flag |= FC_UNLOADING;
14028 	spin_unlock_irq(&phba->hbalock);
14029 
14030 	lpfc_free_sysfs_attr(vport);
14031 
14032 	/* Release all the vports against this physical port */
14033 	vports = lpfc_create_vport_work_array(phba);
14034 	if (vports != NULL)
14035 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14036 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14037 				continue;
14038 			fc_vport_terminate(vports[i]->fc_vport);
14039 		}
14040 	lpfc_destroy_vport_work_array(phba, vports);
14041 
14042 	/* Remove FC host with the physical port */
14043 	fc_remove_host(shost);
14044 	scsi_remove_host(shost);
14045 
14046 	/* Clean up all nodes, mailboxes and IOs. */
14047 	lpfc_cleanup(vport);
14048 
14049 	/*
14050 	 * Bring down the SLI Layer. This step disable all interrupts,
14051 	 * clears the rings, discards all mailbox commands, and resets
14052 	 * the HBA.
14053 	 */
14054 
14055 	/* HBA interrupt will be disabled after this call */
14056 	lpfc_sli_hba_down(phba);
14057 	/* Stop kthread signal shall trigger work_done one more time */
14058 	kthread_stop(phba->worker_thread);
14059 	/* Final cleanup of txcmplq and reset the HBA */
14060 	lpfc_sli_brdrestart(phba);
14061 
14062 	kfree(phba->vpi_bmask);
14063 	kfree(phba->vpi_ids);
14064 
14065 	lpfc_stop_hba_timers(phba);
14066 	spin_lock_irq(&phba->port_list_lock);
14067 	list_del_init(&vport->listentry);
14068 	spin_unlock_irq(&phba->port_list_lock);
14069 
14070 	lpfc_debugfs_terminate(vport);
14071 
14072 	/* Disable SR-IOV if enabled */
14073 	if (phba->cfg_sriov_nr_virtfn)
14074 		pci_disable_sriov(pdev);
14075 
14076 	/* Disable interrupt */
14077 	lpfc_sli_disable_intr(phba);
14078 
14079 	scsi_host_put(shost);
14080 
14081 	/*
14082 	 * Call scsi_free before mem_free since scsi bufs are released to their
14083 	 * corresponding pools here.
14084 	 */
14085 	lpfc_scsi_free(phba);
14086 	lpfc_free_iocb_list(phba);
14087 
14088 	lpfc_mem_free_all(phba);
14089 
14090 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14091 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14092 
14093 	/* Free resources associated with SLI2 interface */
14094 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14095 			  phba->slim2p.virt, phba->slim2p.phys);
14096 
14097 	/* unmap adapter SLIM and Control Registers */
14098 	iounmap(phba->ctrl_regs_memmap_p);
14099 	iounmap(phba->slim_memmap_p);
14100 
14101 	lpfc_hba_free(phba);
14102 
14103 	pci_release_mem_regions(pdev);
14104 	pci_disable_device(pdev);
14105 }
14106 
14107 /**
14108  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14109  * @dev_d: pointer to device
14110  *
14111  * This routine is to be called from the kernel's PCI subsystem to support
14112  * system Power Management (PM) to device with SLI-3 interface spec. When
14113  * PM invokes this method, it quiesces the device by stopping the driver's
14114  * worker thread for the device, turning off device's interrupt and DMA,
14115  * and bring the device offline. Note that as the driver implements the
14116  * minimum PM requirements to a power-aware driver's PM support for the
14117  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14118  * to the suspend() method call will be treated as SUSPEND and the driver will
14119  * fully reinitialize its device during resume() method call, the driver will
14120  * set device to PCI_D3hot state in PCI config space instead of setting it
14121  * according to the @msg provided by the PM.
14122  *
14123  * Return code
14124  * 	0 - driver suspended the device
14125  * 	Error otherwise
14126  **/
14127 static int __maybe_unused
14128 lpfc_pci_suspend_one_s3(struct device *dev_d)
14129 {
14130 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14131 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14132 
14133 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14134 			"0473 PCI device Power Management suspend.\n");
14135 
14136 	/* Bring down the device */
14137 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14138 	lpfc_offline(phba);
14139 	kthread_stop(phba->worker_thread);
14140 
14141 	/* Disable interrupt from device */
14142 	lpfc_sli_disable_intr(phba);
14143 
14144 	return 0;
14145 }
14146 
14147 /**
14148  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14149  * @dev_d: pointer to device
14150  *
14151  * This routine is to be called from the kernel's PCI subsystem to support
14152  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14153  * invokes this method, it restores the device's PCI config space state and
14154  * fully reinitializes the device and brings it online. Note that as the
14155  * driver implements the minimum PM requirements to a power-aware driver's
14156  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14157  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14158  * driver will fully reinitialize its device during resume() method call,
14159  * the device will be set to PCI_D0 directly in PCI config space before
14160  * restoring the state.
14161  *
14162  * Return code
14163  * 	0 - driver suspended the device
14164  * 	Error otherwise
14165  **/
14166 static int __maybe_unused
14167 lpfc_pci_resume_one_s3(struct device *dev_d)
14168 {
14169 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14170 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14171 	uint32_t intr_mode;
14172 	int error;
14173 
14174 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14175 			"0452 PCI device Power Management resume.\n");
14176 
14177 	/* Startup the kernel thread for this host adapter. */
14178 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14179 					"lpfc_worker_%d", phba->brd_no);
14180 	if (IS_ERR(phba->worker_thread)) {
14181 		error = PTR_ERR(phba->worker_thread);
14182 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14183 				"0434 PM resume failed to start worker "
14184 				"thread: error=x%x.\n", error);
14185 		return error;
14186 	}
14187 
14188 	/* Init cpu_map array */
14189 	lpfc_cpu_map_array_init(phba);
14190 	/* Init hba_eq_hdl array */
14191 	lpfc_hba_eq_hdl_array_init(phba);
14192 	/* Configure and enable interrupt */
14193 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14194 	if (intr_mode == LPFC_INTR_ERROR) {
14195 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14196 				"0430 PM resume Failed to enable interrupt\n");
14197 		return -EIO;
14198 	} else
14199 		phba->intr_mode = intr_mode;
14200 
14201 	/* Restart HBA and bring it online */
14202 	lpfc_sli_brdrestart(phba);
14203 	lpfc_online(phba);
14204 
14205 	/* Log the current active interrupt mode */
14206 	lpfc_log_intr_mode(phba, phba->intr_mode);
14207 
14208 	return 0;
14209 }
14210 
14211 /**
14212  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14213  * @phba: pointer to lpfc hba data structure.
14214  *
14215  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14216  * aborts all the outstanding SCSI I/Os to the pci device.
14217  **/
14218 static void
14219 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14220 {
14221 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14222 			"2723 PCI channel I/O abort preparing for recovery\n");
14223 
14224 	/*
14225 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14226 	 * and let the SCSI mid-layer to retry them to recover.
14227 	 */
14228 	lpfc_sli_abort_fcp_rings(phba);
14229 }
14230 
14231 /**
14232  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14233  * @phba: pointer to lpfc hba data structure.
14234  *
14235  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14236  * disables the device interrupt and pci device, and aborts the internal FCP
14237  * pending I/Os.
14238  **/
14239 static void
14240 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14241 {
14242 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14243 			"2710 PCI channel disable preparing for reset\n");
14244 
14245 	/* Block any management I/Os to the device */
14246 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14247 
14248 	/* Block all SCSI devices' I/Os on the host */
14249 	lpfc_scsi_dev_block(phba);
14250 
14251 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14252 	lpfc_sli_flush_io_rings(phba);
14253 
14254 	/* stop all timers */
14255 	lpfc_stop_hba_timers(phba);
14256 
14257 	/* Disable interrupt and pci device */
14258 	lpfc_sli_disable_intr(phba);
14259 	pci_disable_device(phba->pcidev);
14260 }
14261 
14262 /**
14263  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14264  * @phba: pointer to lpfc hba data structure.
14265  *
14266  * This routine is called to prepare the SLI3 device for PCI slot permanently
14267  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14268  * pending I/Os.
14269  **/
14270 static void
14271 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14272 {
14273 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14274 			"2711 PCI channel permanent disable for failure\n");
14275 	/* Block all SCSI devices' I/Os on the host */
14276 	lpfc_scsi_dev_block(phba);
14277 
14278 	/* stop all timers */
14279 	lpfc_stop_hba_timers(phba);
14280 
14281 	/* Clean up all driver's outstanding SCSI I/Os */
14282 	lpfc_sli_flush_io_rings(phba);
14283 }
14284 
14285 /**
14286  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14287  * @pdev: pointer to PCI device.
14288  * @state: the current PCI connection state.
14289  *
14290  * This routine is called from the PCI subsystem for I/O error handling to
14291  * device with SLI-3 interface spec. This function is called by the PCI
14292  * subsystem after a PCI bus error affecting this device has been detected.
14293  * When this function is invoked, it will need to stop all the I/Os and
14294  * interrupt(s) to the device. Once that is done, it will return
14295  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14296  * as desired.
14297  *
14298  * Return codes
14299  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14300  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14301  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14302  **/
14303 static pci_ers_result_t
14304 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14305 {
14306 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14307 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14308 
14309 	switch (state) {
14310 	case pci_channel_io_normal:
14311 		/* Non-fatal error, prepare for recovery */
14312 		lpfc_sli_prep_dev_for_recover(phba);
14313 		return PCI_ERS_RESULT_CAN_RECOVER;
14314 	case pci_channel_io_frozen:
14315 		/* Fatal error, prepare for slot reset */
14316 		lpfc_sli_prep_dev_for_reset(phba);
14317 		return PCI_ERS_RESULT_NEED_RESET;
14318 	case pci_channel_io_perm_failure:
14319 		/* Permanent failure, prepare for device down */
14320 		lpfc_sli_prep_dev_for_perm_failure(phba);
14321 		return PCI_ERS_RESULT_DISCONNECT;
14322 	default:
14323 		/* Unknown state, prepare and request slot reset */
14324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14325 				"0472 Unknown PCI error state: x%x\n", state);
14326 		lpfc_sli_prep_dev_for_reset(phba);
14327 		return PCI_ERS_RESULT_NEED_RESET;
14328 	}
14329 }
14330 
14331 /**
14332  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14333  * @pdev: pointer to PCI device.
14334  *
14335  * This routine is called from the PCI subsystem for error handling to
14336  * device with SLI-3 interface spec. This is called after PCI bus has been
14337  * reset to restart the PCI card from scratch, as if from a cold-boot.
14338  * During the PCI subsystem error recovery, after driver returns
14339  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14340  * recovery and then call this routine before calling the .resume method
14341  * to recover the device. This function will initialize the HBA device,
14342  * enable the interrupt, but it will just put the HBA to offline state
14343  * without passing any I/O traffic.
14344  *
14345  * Return codes
14346  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14347  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14348  */
14349 static pci_ers_result_t
14350 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14351 {
14352 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14353 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14354 	struct lpfc_sli *psli = &phba->sli;
14355 	uint32_t intr_mode;
14356 
14357 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14358 	if (pci_enable_device_mem(pdev)) {
14359 		printk(KERN_ERR "lpfc: Cannot re-enable "
14360 			"PCI device after reset.\n");
14361 		return PCI_ERS_RESULT_DISCONNECT;
14362 	}
14363 
14364 	pci_restore_state(pdev);
14365 
14366 	/*
14367 	 * As the new kernel behavior of pci_restore_state() API call clears
14368 	 * device saved_state flag, need to save the restored state again.
14369 	 */
14370 	pci_save_state(pdev);
14371 
14372 	if (pdev->is_busmaster)
14373 		pci_set_master(pdev);
14374 
14375 	spin_lock_irq(&phba->hbalock);
14376 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14377 	spin_unlock_irq(&phba->hbalock);
14378 
14379 	/* Configure and enable interrupt */
14380 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14381 	if (intr_mode == LPFC_INTR_ERROR) {
14382 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14383 				"0427 Cannot re-enable interrupt after "
14384 				"slot reset.\n");
14385 		return PCI_ERS_RESULT_DISCONNECT;
14386 	} else
14387 		phba->intr_mode = intr_mode;
14388 
14389 	/* Take device offline, it will perform cleanup */
14390 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14391 	lpfc_offline(phba);
14392 	lpfc_sli_brdrestart(phba);
14393 
14394 	/* Log the current active interrupt mode */
14395 	lpfc_log_intr_mode(phba, phba->intr_mode);
14396 
14397 	return PCI_ERS_RESULT_RECOVERED;
14398 }
14399 
14400 /**
14401  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14402  * @pdev: pointer to PCI device
14403  *
14404  * This routine is called from the PCI subsystem for error handling to device
14405  * with SLI-3 interface spec. It is called when kernel error recovery tells
14406  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14407  * error recovery. After this call, traffic can start to flow from this device
14408  * again.
14409  */
14410 static void
14411 lpfc_io_resume_s3(struct pci_dev *pdev)
14412 {
14413 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14414 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14415 
14416 	/* Bring device online, it will be no-op for non-fatal error resume */
14417 	lpfc_online(phba);
14418 }
14419 
14420 /**
14421  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14422  * @phba: pointer to lpfc hba data structure.
14423  *
14424  * returns the number of ELS/CT IOCBs to reserve
14425  **/
14426 int
14427 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14428 {
14429 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14430 
14431 	if (phba->sli_rev == LPFC_SLI_REV4) {
14432 		if (max_xri <= 100)
14433 			return 10;
14434 		else if (max_xri <= 256)
14435 			return 25;
14436 		else if (max_xri <= 512)
14437 			return 50;
14438 		else if (max_xri <= 1024)
14439 			return 100;
14440 		else if (max_xri <= 1536)
14441 			return 150;
14442 		else if (max_xri <= 2048)
14443 			return 200;
14444 		else
14445 			return 250;
14446 	} else
14447 		return 0;
14448 }
14449 
14450 /**
14451  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14452  * @phba: pointer to lpfc hba data structure.
14453  *
14454  * returns the number of ELS/CT + NVMET IOCBs to reserve
14455  **/
14456 int
14457 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14458 {
14459 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14460 
14461 	if (phba->nvmet_support)
14462 		max_xri += LPFC_NVMET_BUF_POST;
14463 	return max_xri;
14464 }
14465 
14466 
14467 static int
14468 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14469 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14470 	const struct firmware *fw)
14471 {
14472 	int rc;
14473 	u8 sli_family;
14474 
14475 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14476 	/* Three cases:  (1) FW was not supported on the detected adapter.
14477 	 * (2) FW update has been locked out administratively.
14478 	 * (3) Some other error during FW update.
14479 	 * In each case, an unmaskable message is written to the console
14480 	 * for admin diagnosis.
14481 	 */
14482 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14483 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14484 	     magic_number != MAGIC_NUMBER_G6) ||
14485 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14486 	     magic_number != MAGIC_NUMBER_G7) ||
14487 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14488 	     magic_number != MAGIC_NUMBER_G7P)) {
14489 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14490 				"3030 This firmware version is not supported on"
14491 				" this HBA model. Device:%x Magic:%x Type:%x "
14492 				"ID:%x Size %d %zd\n",
14493 				phba->pcidev->device, magic_number, ftype, fid,
14494 				fsize, fw->size);
14495 		rc = -EINVAL;
14496 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14497 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14498 				"3021 Firmware downloads have been prohibited "
14499 				"by a system configuration setting on "
14500 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14501 				"%zd\n",
14502 				phba->pcidev->device, magic_number, ftype, fid,
14503 				fsize, fw->size);
14504 		rc = -EACCES;
14505 	} else {
14506 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14507 				"3022 FW Download failed. Add Status x%x "
14508 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14509 				"%zd\n",
14510 				offset, phba->pcidev->device, magic_number,
14511 				ftype, fid, fsize, fw->size);
14512 		rc = -EIO;
14513 	}
14514 	return rc;
14515 }
14516 
14517 /**
14518  * lpfc_write_firmware - attempt to write a firmware image to the port
14519  * @fw: pointer to firmware image returned from request_firmware.
14520  * @context: pointer to firmware image returned from request_firmware.
14521  *
14522  **/
14523 static void
14524 lpfc_write_firmware(const struct firmware *fw, void *context)
14525 {
14526 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14527 	char fwrev[FW_REV_STR_SIZE];
14528 	struct lpfc_grp_hdr *image;
14529 	struct list_head dma_buffer_list;
14530 	int i, rc = 0;
14531 	struct lpfc_dmabuf *dmabuf, *next;
14532 	uint32_t offset = 0, temp_offset = 0;
14533 	uint32_t magic_number, ftype, fid, fsize;
14534 
14535 	/* It can be null in no-wait mode, sanity check */
14536 	if (!fw) {
14537 		rc = -ENXIO;
14538 		goto out;
14539 	}
14540 	image = (struct lpfc_grp_hdr *)fw->data;
14541 
14542 	magic_number = be32_to_cpu(image->magic_number);
14543 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14544 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14545 	fsize = be32_to_cpu(image->size);
14546 
14547 	INIT_LIST_HEAD(&dma_buffer_list);
14548 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14549 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14550 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14551 				"3023 Updating Firmware, Current Version:%s "
14552 				"New Version:%s\n",
14553 				fwrev, image->revision);
14554 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14555 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14556 					 GFP_KERNEL);
14557 			if (!dmabuf) {
14558 				rc = -ENOMEM;
14559 				goto release_out;
14560 			}
14561 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14562 							  SLI4_PAGE_SIZE,
14563 							  &dmabuf->phys,
14564 							  GFP_KERNEL);
14565 			if (!dmabuf->virt) {
14566 				kfree(dmabuf);
14567 				rc = -ENOMEM;
14568 				goto release_out;
14569 			}
14570 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14571 		}
14572 		while (offset < fw->size) {
14573 			temp_offset = offset;
14574 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14575 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14576 					memcpy(dmabuf->virt,
14577 					       fw->data + temp_offset,
14578 					       fw->size - temp_offset);
14579 					temp_offset = fw->size;
14580 					break;
14581 				}
14582 				memcpy(dmabuf->virt, fw->data + temp_offset,
14583 				       SLI4_PAGE_SIZE);
14584 				temp_offset += SLI4_PAGE_SIZE;
14585 			}
14586 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14587 				    (fw->size - offset), &offset);
14588 			if (rc) {
14589 				rc = lpfc_log_write_firmware_error(phba, offset,
14590 								   magic_number,
14591 								   ftype,
14592 								   fid,
14593 								   fsize,
14594 								   fw);
14595 				goto release_out;
14596 			}
14597 		}
14598 		rc = offset;
14599 	} else
14600 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14601 				"3029 Skipped Firmware update, Current "
14602 				"Version:%s New Version:%s\n",
14603 				fwrev, image->revision);
14604 
14605 release_out:
14606 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14607 		list_del(&dmabuf->list);
14608 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14609 				  dmabuf->virt, dmabuf->phys);
14610 		kfree(dmabuf);
14611 	}
14612 	release_firmware(fw);
14613 out:
14614 	if (rc < 0)
14615 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14616 				"3062 Firmware update error, status %d.\n", rc);
14617 	else
14618 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14619 				"3024 Firmware update success: size %d.\n", rc);
14620 }
14621 
14622 /**
14623  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14624  * @phba: pointer to lpfc hba data structure.
14625  * @fw_upgrade: which firmware to update.
14626  *
14627  * This routine is called to perform Linux generic firmware upgrade on device
14628  * that supports such feature.
14629  **/
14630 int
14631 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14632 {
14633 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14634 	int ret;
14635 	const struct firmware *fw;
14636 
14637 	/* Only supported on SLI4 interface type 2 for now */
14638 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14639 	    LPFC_SLI_INTF_IF_TYPE_2)
14640 		return -EPERM;
14641 
14642 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14643 
14644 	if (fw_upgrade == INT_FW_UPGRADE) {
14645 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14646 					file_name, &phba->pcidev->dev,
14647 					GFP_KERNEL, (void *)phba,
14648 					lpfc_write_firmware);
14649 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14650 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14651 		if (!ret)
14652 			lpfc_write_firmware(fw, (void *)phba);
14653 	} else {
14654 		ret = -EINVAL;
14655 	}
14656 
14657 	return ret;
14658 }
14659 
14660 /**
14661  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14662  * @pdev: pointer to PCI device
14663  * @pid: pointer to PCI device identifier
14664  *
14665  * This routine is called from the kernel's PCI subsystem to device with
14666  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14667  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14668  * information of the device and driver to see if the driver state that it
14669  * can support this kind of device. If the match is successful, the driver
14670  * core invokes this routine. If this routine determines it can claim the HBA,
14671  * it does all the initialization that it needs to do to handle the HBA
14672  * properly.
14673  *
14674  * Return code
14675  * 	0 - driver can claim the device
14676  * 	negative value - driver can not claim the device
14677  **/
14678 static int
14679 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14680 {
14681 	struct lpfc_hba   *phba;
14682 	struct lpfc_vport *vport = NULL;
14683 	struct Scsi_Host  *shost = NULL;
14684 	int error;
14685 	uint32_t cfg_mode, intr_mode;
14686 
14687 	/* Allocate memory for HBA structure */
14688 	phba = lpfc_hba_alloc(pdev);
14689 	if (!phba)
14690 		return -ENOMEM;
14691 
14692 	INIT_LIST_HEAD(&phba->poll_list);
14693 
14694 	/* Perform generic PCI device enabling operation */
14695 	error = lpfc_enable_pci_dev(phba);
14696 	if (error)
14697 		goto out_free_phba;
14698 
14699 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14700 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14701 	if (error)
14702 		goto out_disable_pci_dev;
14703 
14704 	/* Set up SLI-4 specific device PCI memory space */
14705 	error = lpfc_sli4_pci_mem_setup(phba);
14706 	if (error) {
14707 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14708 				"1410 Failed to set up pci memory space.\n");
14709 		goto out_disable_pci_dev;
14710 	}
14711 
14712 	/* Set up SLI-4 Specific device driver resources */
14713 	error = lpfc_sli4_driver_resource_setup(phba);
14714 	if (error) {
14715 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14716 				"1412 Failed to set up driver resource.\n");
14717 		goto out_unset_pci_mem_s4;
14718 	}
14719 
14720 	INIT_LIST_HEAD(&phba->active_rrq_list);
14721 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14722 
14723 	/* Set up common device driver resources */
14724 	error = lpfc_setup_driver_resource_phase2(phba);
14725 	if (error) {
14726 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14727 				"1414 Failed to set up driver resource.\n");
14728 		goto out_unset_driver_resource_s4;
14729 	}
14730 
14731 	/* Get the default values for Model Name and Description */
14732 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14733 
14734 	/* Now, trying to enable interrupt and bring up the device */
14735 	cfg_mode = phba->cfg_use_msi;
14736 
14737 	/* Put device to a known state before enabling interrupt */
14738 	phba->pport = NULL;
14739 	lpfc_stop_port(phba);
14740 
14741 	/* Init cpu_map array */
14742 	lpfc_cpu_map_array_init(phba);
14743 
14744 	/* Init hba_eq_hdl array */
14745 	lpfc_hba_eq_hdl_array_init(phba);
14746 
14747 	/* Configure and enable interrupt */
14748 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14749 	if (intr_mode == LPFC_INTR_ERROR) {
14750 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14751 				"0426 Failed to enable interrupt.\n");
14752 		error = -ENODEV;
14753 		goto out_unset_driver_resource;
14754 	}
14755 	/* Default to single EQ for non-MSI-X */
14756 	if (phba->intr_type != MSIX) {
14757 		phba->cfg_irq_chann = 1;
14758 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14759 			if (phba->nvmet_support)
14760 				phba->cfg_nvmet_mrq = 1;
14761 		}
14762 	}
14763 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14764 
14765 	/* Create SCSI host to the physical port */
14766 	error = lpfc_create_shost(phba);
14767 	if (error) {
14768 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14769 				"1415 Failed to create scsi host.\n");
14770 		goto out_disable_intr;
14771 	}
14772 	vport = phba->pport;
14773 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14774 
14775 	/* Configure sysfs attributes */
14776 	error = lpfc_alloc_sysfs_attr(vport);
14777 	if (error) {
14778 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14779 				"1416 Failed to allocate sysfs attr\n");
14780 		goto out_destroy_shost;
14781 	}
14782 
14783 	/* Set up SLI-4 HBA */
14784 	if (lpfc_sli4_hba_setup(phba)) {
14785 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14786 				"1421 Failed to set up hba\n");
14787 		error = -ENODEV;
14788 		goto out_free_sysfs_attr;
14789 	}
14790 
14791 	/* Log the current active interrupt mode */
14792 	phba->intr_mode = intr_mode;
14793 	lpfc_log_intr_mode(phba, intr_mode);
14794 
14795 	/* Perform post initialization setup */
14796 	lpfc_post_init_setup(phba);
14797 
14798 	/* NVME support in FW earlier in the driver load corrects the
14799 	 * FC4 type making a check for nvme_support unnecessary.
14800 	 */
14801 	if (phba->nvmet_support == 0) {
14802 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14803 			/* Create NVME binding with nvme_fc_transport. This
14804 			 * ensures the vport is initialized.  If the localport
14805 			 * create fails, it should not unload the driver to
14806 			 * support field issues.
14807 			 */
14808 			error = lpfc_nvme_create_localport(vport);
14809 			if (error) {
14810 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14811 						"6004 NVME registration "
14812 						"failed, error x%x\n",
14813 						error);
14814 			}
14815 		}
14816 	}
14817 
14818 	/* check for firmware upgrade or downgrade */
14819 	if (phba->cfg_request_firmware_upgrade)
14820 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14821 
14822 	/* Check if there are static vports to be created. */
14823 	lpfc_create_static_vport(phba);
14824 
14825 	/* Enable RAS FW log support */
14826 	lpfc_sli4_ras_setup(phba);
14827 
14828 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14829 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14830 
14831 	return 0;
14832 
14833 out_free_sysfs_attr:
14834 	lpfc_free_sysfs_attr(vport);
14835 out_destroy_shost:
14836 	lpfc_destroy_shost(phba);
14837 out_disable_intr:
14838 	lpfc_sli4_disable_intr(phba);
14839 out_unset_driver_resource:
14840 	lpfc_unset_driver_resource_phase2(phba);
14841 out_unset_driver_resource_s4:
14842 	lpfc_sli4_driver_resource_unset(phba);
14843 out_unset_pci_mem_s4:
14844 	lpfc_sli4_pci_mem_unset(phba);
14845 out_disable_pci_dev:
14846 	lpfc_disable_pci_dev(phba);
14847 	if (shost)
14848 		scsi_host_put(shost);
14849 out_free_phba:
14850 	lpfc_hba_free(phba);
14851 	return error;
14852 }
14853 
14854 /**
14855  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14856  * @pdev: pointer to PCI device
14857  *
14858  * This routine is called from the kernel's PCI subsystem to device with
14859  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14860  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14861  * device to be removed from the PCI subsystem properly.
14862  **/
14863 static void
14864 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14865 {
14866 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14867 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14868 	struct lpfc_vport **vports;
14869 	struct lpfc_hba *phba = vport->phba;
14870 	int i;
14871 
14872 	/* Mark the device unloading flag */
14873 	spin_lock_irq(&phba->hbalock);
14874 	vport->load_flag |= FC_UNLOADING;
14875 	spin_unlock_irq(&phba->hbalock);
14876 	if (phba->cgn_i)
14877 		lpfc_unreg_congestion_buf(phba);
14878 
14879 	lpfc_free_sysfs_attr(vport);
14880 
14881 	/* Release all the vports against this physical port */
14882 	vports = lpfc_create_vport_work_array(phba);
14883 	if (vports != NULL)
14884 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14885 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14886 				continue;
14887 			fc_vport_terminate(vports[i]->fc_vport);
14888 		}
14889 	lpfc_destroy_vport_work_array(phba, vports);
14890 
14891 	/* Remove FC host with the physical port */
14892 	fc_remove_host(shost);
14893 	scsi_remove_host(shost);
14894 
14895 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14896 	 * localports are destroyed after to cleanup all transport memory.
14897 	 */
14898 	lpfc_cleanup(vport);
14899 	lpfc_nvmet_destroy_targetport(phba);
14900 	lpfc_nvme_destroy_localport(vport);
14901 
14902 	/* De-allocate multi-XRI pools */
14903 	if (phba->cfg_xri_rebalancing)
14904 		lpfc_destroy_multixri_pools(phba);
14905 
14906 	/*
14907 	 * Bring down the SLI Layer. This step disables all interrupts,
14908 	 * clears the rings, discards all mailbox commands, and resets
14909 	 * the HBA FCoE function.
14910 	 */
14911 	lpfc_debugfs_terminate(vport);
14912 
14913 	lpfc_stop_hba_timers(phba);
14914 	spin_lock_irq(&phba->port_list_lock);
14915 	list_del_init(&vport->listentry);
14916 	spin_unlock_irq(&phba->port_list_lock);
14917 
14918 	/* Perform scsi free before driver resource_unset since scsi
14919 	 * buffers are released to their corresponding pools here.
14920 	 */
14921 	lpfc_io_free(phba);
14922 	lpfc_free_iocb_list(phba);
14923 	lpfc_sli4_hba_unset(phba);
14924 
14925 	lpfc_unset_driver_resource_phase2(phba);
14926 	lpfc_sli4_driver_resource_unset(phba);
14927 
14928 	/* Unmap adapter Control and Doorbell registers */
14929 	lpfc_sli4_pci_mem_unset(phba);
14930 
14931 	/* Release PCI resources and disable device's PCI function */
14932 	scsi_host_put(shost);
14933 	lpfc_disable_pci_dev(phba);
14934 
14935 	/* Finally, free the driver's device data structure */
14936 	lpfc_hba_free(phba);
14937 
14938 	return;
14939 }
14940 
14941 /**
14942  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14943  * @dev_d: pointer to device
14944  *
14945  * This routine is called from the kernel's PCI subsystem to support system
14946  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14947  * this method, it quiesces the device by stopping the driver's worker
14948  * thread for the device, turning off device's interrupt and DMA, and bring
14949  * the device offline. Note that as the driver implements the minimum PM
14950  * requirements to a power-aware driver's PM support for suspend/resume -- all
14951  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14952  * method call will be treated as SUSPEND and the driver will fully
14953  * reinitialize its device during resume() method call, the driver will set
14954  * device to PCI_D3hot state in PCI config space instead of setting it
14955  * according to the @msg provided by the PM.
14956  *
14957  * Return code
14958  * 	0 - driver suspended the device
14959  * 	Error otherwise
14960  **/
14961 static int __maybe_unused
14962 lpfc_pci_suspend_one_s4(struct device *dev_d)
14963 {
14964 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14965 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14966 
14967 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14968 			"2843 PCI device Power Management suspend.\n");
14969 
14970 	/* Bring down the device */
14971 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14972 	lpfc_offline(phba);
14973 	kthread_stop(phba->worker_thread);
14974 
14975 	/* Disable interrupt from device */
14976 	lpfc_sli4_disable_intr(phba);
14977 	lpfc_sli4_queue_destroy(phba);
14978 
14979 	return 0;
14980 }
14981 
14982 /**
14983  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14984  * @dev_d: pointer to device
14985  *
14986  * This routine is called from the kernel's PCI subsystem to support system
14987  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14988  * this method, it restores the device's PCI config space state and fully
14989  * reinitializes the device and brings it online. Note that as the driver
14990  * implements the minimum PM requirements to a power-aware driver's PM for
14991  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14992  * to the suspend() method call will be treated as SUSPEND and the driver
14993  * will fully reinitialize its device during resume() method call, the device
14994  * will be set to PCI_D0 directly in PCI config space before restoring the
14995  * state.
14996  *
14997  * Return code
14998  * 	0 - driver suspended the device
14999  * 	Error otherwise
15000  **/
15001 static int __maybe_unused
15002 lpfc_pci_resume_one_s4(struct device *dev_d)
15003 {
15004 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15005 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15006 	uint32_t intr_mode;
15007 	int error;
15008 
15009 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15010 			"0292 PCI device Power Management resume.\n");
15011 
15012 	 /* Startup the kernel thread for this host adapter. */
15013 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15014 					"lpfc_worker_%d", phba->brd_no);
15015 	if (IS_ERR(phba->worker_thread)) {
15016 		error = PTR_ERR(phba->worker_thread);
15017 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15018 				"0293 PM resume failed to start worker "
15019 				"thread: error=x%x.\n", error);
15020 		return error;
15021 	}
15022 
15023 	/* Configure and enable interrupt */
15024 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15025 	if (intr_mode == LPFC_INTR_ERROR) {
15026 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15027 				"0294 PM resume Failed to enable interrupt\n");
15028 		return -EIO;
15029 	} else
15030 		phba->intr_mode = intr_mode;
15031 
15032 	/* Restart HBA and bring it online */
15033 	lpfc_sli_brdrestart(phba);
15034 	lpfc_online(phba);
15035 
15036 	/* Log the current active interrupt mode */
15037 	lpfc_log_intr_mode(phba, phba->intr_mode);
15038 
15039 	return 0;
15040 }
15041 
15042 /**
15043  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15044  * @phba: pointer to lpfc hba data structure.
15045  *
15046  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15047  * aborts all the outstanding SCSI I/Os to the pci device.
15048  **/
15049 static void
15050 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15051 {
15052 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15053 			"2828 PCI channel I/O abort preparing for recovery\n");
15054 	/*
15055 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15056 	 * and let the SCSI mid-layer to retry them to recover.
15057 	 */
15058 	lpfc_sli_abort_fcp_rings(phba);
15059 }
15060 
15061 /**
15062  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15063  * @phba: pointer to lpfc hba data structure.
15064  *
15065  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15066  * disables the device interrupt and pci device, and aborts the internal FCP
15067  * pending I/Os.
15068  **/
15069 static void
15070 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15071 {
15072 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15073 			"2826 PCI channel disable preparing for reset\n");
15074 
15075 	/* Block any management I/Os to the device */
15076 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15077 
15078 	/* Block all SCSI devices' I/Os on the host */
15079 	lpfc_scsi_dev_block(phba);
15080 
15081 	/* Flush all driver's outstanding I/Os as we are to reset */
15082 	lpfc_sli_flush_io_rings(phba);
15083 
15084 	/* stop all timers */
15085 	lpfc_stop_hba_timers(phba);
15086 
15087 	/* Disable interrupt and pci device */
15088 	lpfc_sli4_disable_intr(phba);
15089 	lpfc_sli4_queue_destroy(phba);
15090 	pci_disable_device(phba->pcidev);
15091 }
15092 
15093 /**
15094  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15095  * @phba: pointer to lpfc hba data structure.
15096  *
15097  * This routine is called to prepare the SLI4 device for PCI slot permanently
15098  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15099  * pending I/Os.
15100  **/
15101 static void
15102 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15103 {
15104 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15105 			"2827 PCI channel permanent disable for failure\n");
15106 
15107 	/* Block all SCSI devices' I/Os on the host */
15108 	lpfc_scsi_dev_block(phba);
15109 
15110 	/* stop all timers */
15111 	lpfc_stop_hba_timers(phba);
15112 
15113 	/* Clean up all driver's outstanding I/Os */
15114 	lpfc_sli_flush_io_rings(phba);
15115 }
15116 
15117 /**
15118  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15119  * @pdev: pointer to PCI device.
15120  * @state: the current PCI connection state.
15121  *
15122  * This routine is called from the PCI subsystem for error handling to device
15123  * with SLI-4 interface spec. This function is called by the PCI subsystem
15124  * after a PCI bus error affecting this device has been detected. When this
15125  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15126  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15127  * for the PCI subsystem to perform proper recovery as desired.
15128  *
15129  * Return codes
15130  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15131  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15132  **/
15133 static pci_ers_result_t
15134 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15135 {
15136 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15137 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15138 
15139 	switch (state) {
15140 	case pci_channel_io_normal:
15141 		/* Non-fatal error, prepare for recovery */
15142 		lpfc_sli4_prep_dev_for_recover(phba);
15143 		return PCI_ERS_RESULT_CAN_RECOVER;
15144 	case pci_channel_io_frozen:
15145 		phba->hba_flag |= HBA_PCI_ERR;
15146 		/* Fatal error, prepare for slot reset */
15147 		lpfc_sli4_prep_dev_for_reset(phba);
15148 		return PCI_ERS_RESULT_NEED_RESET;
15149 	case pci_channel_io_perm_failure:
15150 		phba->hba_flag |= HBA_PCI_ERR;
15151 		/* Permanent failure, prepare for device down */
15152 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15153 		return PCI_ERS_RESULT_DISCONNECT;
15154 	default:
15155 		phba->hba_flag |= HBA_PCI_ERR;
15156 		/* Unknown state, prepare and request slot reset */
15157 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15158 				"2825 Unknown PCI error state: x%x\n", state);
15159 		lpfc_sli4_prep_dev_for_reset(phba);
15160 		return PCI_ERS_RESULT_NEED_RESET;
15161 	}
15162 }
15163 
15164 /**
15165  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15166  * @pdev: pointer to PCI device.
15167  *
15168  * This routine is called from the PCI subsystem for error handling to device
15169  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15170  * restart the PCI card from scratch, as if from a cold-boot. During the
15171  * PCI subsystem error recovery, after the driver returns
15172  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15173  * recovery and then call this routine before calling the .resume method to
15174  * recover the device. This function will initialize the HBA device, enable
15175  * the interrupt, but it will just put the HBA to offline state without
15176  * passing any I/O traffic.
15177  *
15178  * Return codes
15179  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15180  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15181  */
15182 static pci_ers_result_t
15183 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15184 {
15185 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15186 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15187 	struct lpfc_sli *psli = &phba->sli;
15188 	uint32_t intr_mode;
15189 
15190 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15191 	if (pci_enable_device_mem(pdev)) {
15192 		printk(KERN_ERR "lpfc: Cannot re-enable "
15193 			"PCI device after reset.\n");
15194 		return PCI_ERS_RESULT_DISCONNECT;
15195 	}
15196 
15197 	pci_restore_state(pdev);
15198 
15199 	phba->hba_flag &= ~HBA_PCI_ERR;
15200 	/*
15201 	 * As the new kernel behavior of pci_restore_state() API call clears
15202 	 * device saved_state flag, need to save the restored state again.
15203 	 */
15204 	pci_save_state(pdev);
15205 
15206 	if (pdev->is_busmaster)
15207 		pci_set_master(pdev);
15208 
15209 	spin_lock_irq(&phba->hbalock);
15210 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15211 	spin_unlock_irq(&phba->hbalock);
15212 
15213 	/* Configure and enable interrupt */
15214 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15215 	if (intr_mode == LPFC_INTR_ERROR) {
15216 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15217 				"2824 Cannot re-enable interrupt after "
15218 				"slot reset.\n");
15219 		return PCI_ERS_RESULT_DISCONNECT;
15220 	} else
15221 		phba->intr_mode = intr_mode;
15222 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15223 
15224 	/* Log the current active interrupt mode */
15225 	lpfc_log_intr_mode(phba, phba->intr_mode);
15226 
15227 	return PCI_ERS_RESULT_RECOVERED;
15228 }
15229 
15230 /**
15231  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15232  * @pdev: pointer to PCI device
15233  *
15234  * This routine is called from the PCI subsystem for error handling to device
15235  * with SLI-4 interface spec. It is called when kernel error recovery tells
15236  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15237  * error recovery. After this call, traffic can start to flow from this device
15238  * again.
15239  **/
15240 static void
15241 lpfc_io_resume_s4(struct pci_dev *pdev)
15242 {
15243 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15244 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15245 
15246 	/*
15247 	 * In case of slot reset, as function reset is performed through
15248 	 * mailbox command which needs DMA to be enabled, this operation
15249 	 * has to be moved to the io resume phase. Taking device offline
15250 	 * will perform the necessary cleanup.
15251 	 */
15252 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15253 		/* Perform device reset */
15254 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15255 		lpfc_offline(phba);
15256 		lpfc_sli_brdrestart(phba);
15257 		/* Bring the device back online */
15258 		lpfc_online(phba);
15259 	}
15260 }
15261 
15262 /**
15263  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15264  * @pdev: pointer to PCI device
15265  * @pid: pointer to PCI device identifier
15266  *
15267  * This routine is to be registered to the kernel's PCI subsystem. When an
15268  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15269  * at PCI device-specific information of the device and driver to see if the
15270  * driver state that it can support this kind of device. If the match is
15271  * successful, the driver core invokes this routine. This routine dispatches
15272  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15273  * do all the initialization that it needs to do to handle the HBA device
15274  * properly.
15275  *
15276  * Return code
15277  * 	0 - driver can claim the device
15278  * 	negative value - driver can not claim the device
15279  **/
15280 static int
15281 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15282 {
15283 	int rc;
15284 	struct lpfc_sli_intf intf;
15285 
15286 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15287 		return -ENODEV;
15288 
15289 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15290 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15291 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15292 	else
15293 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15294 
15295 	return rc;
15296 }
15297 
15298 /**
15299  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15300  * @pdev: pointer to PCI device
15301  *
15302  * This routine is to be registered to the kernel's PCI subsystem. When an
15303  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15304  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15305  * remove routine, which will perform all the necessary cleanup for the
15306  * device to be removed from the PCI subsystem properly.
15307  **/
15308 static void
15309 lpfc_pci_remove_one(struct pci_dev *pdev)
15310 {
15311 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15312 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15313 
15314 	switch (phba->pci_dev_grp) {
15315 	case LPFC_PCI_DEV_LP:
15316 		lpfc_pci_remove_one_s3(pdev);
15317 		break;
15318 	case LPFC_PCI_DEV_OC:
15319 		lpfc_pci_remove_one_s4(pdev);
15320 		break;
15321 	default:
15322 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15323 				"1424 Invalid PCI device group: 0x%x\n",
15324 				phba->pci_dev_grp);
15325 		break;
15326 	}
15327 	return;
15328 }
15329 
15330 /**
15331  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15332  * @dev: pointer to device
15333  *
15334  * This routine is to be registered to the kernel's PCI subsystem to support
15335  * system Power Management (PM). When PM invokes this method, it dispatches
15336  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15337  * suspend the device.
15338  *
15339  * Return code
15340  * 	0 - driver suspended the device
15341  * 	Error otherwise
15342  **/
15343 static int __maybe_unused
15344 lpfc_pci_suspend_one(struct device *dev)
15345 {
15346 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15347 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15348 	int rc = -ENODEV;
15349 
15350 	switch (phba->pci_dev_grp) {
15351 	case LPFC_PCI_DEV_LP:
15352 		rc = lpfc_pci_suspend_one_s3(dev);
15353 		break;
15354 	case LPFC_PCI_DEV_OC:
15355 		rc = lpfc_pci_suspend_one_s4(dev);
15356 		break;
15357 	default:
15358 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15359 				"1425 Invalid PCI device group: 0x%x\n",
15360 				phba->pci_dev_grp);
15361 		break;
15362 	}
15363 	return rc;
15364 }
15365 
15366 /**
15367  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15368  * @dev: pointer to device
15369  *
15370  * This routine is to be registered to the kernel's PCI subsystem to support
15371  * system Power Management (PM). When PM invokes this method, it dispatches
15372  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15373  * resume the device.
15374  *
15375  * Return code
15376  * 	0 - driver suspended the device
15377  * 	Error otherwise
15378  **/
15379 static int __maybe_unused
15380 lpfc_pci_resume_one(struct device *dev)
15381 {
15382 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15383 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15384 	int rc = -ENODEV;
15385 
15386 	switch (phba->pci_dev_grp) {
15387 	case LPFC_PCI_DEV_LP:
15388 		rc = lpfc_pci_resume_one_s3(dev);
15389 		break;
15390 	case LPFC_PCI_DEV_OC:
15391 		rc = lpfc_pci_resume_one_s4(dev);
15392 		break;
15393 	default:
15394 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15395 				"1426 Invalid PCI device group: 0x%x\n",
15396 				phba->pci_dev_grp);
15397 		break;
15398 	}
15399 	return rc;
15400 }
15401 
15402 /**
15403  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15404  * @pdev: pointer to PCI device.
15405  * @state: the current PCI connection state.
15406  *
15407  * This routine is registered to the PCI subsystem for error handling. This
15408  * function is called by the PCI subsystem after a PCI bus error affecting
15409  * this device has been detected. When this routine is invoked, it dispatches
15410  * the action to the proper SLI-3 or SLI-4 device error detected handling
15411  * routine, which will perform the proper error detected operation.
15412  *
15413  * Return codes
15414  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15415  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15416  **/
15417 static pci_ers_result_t
15418 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15419 {
15420 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15421 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15422 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15423 
15424 	if (phba->link_state == LPFC_HBA_ERROR &&
15425 	    phba->hba_flag & HBA_IOQ_FLUSH)
15426 		return PCI_ERS_RESULT_NEED_RESET;
15427 
15428 	switch (phba->pci_dev_grp) {
15429 	case LPFC_PCI_DEV_LP:
15430 		rc = lpfc_io_error_detected_s3(pdev, state);
15431 		break;
15432 	case LPFC_PCI_DEV_OC:
15433 		rc = lpfc_io_error_detected_s4(pdev, state);
15434 		break;
15435 	default:
15436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15437 				"1427 Invalid PCI device group: 0x%x\n",
15438 				phba->pci_dev_grp);
15439 		break;
15440 	}
15441 	return rc;
15442 }
15443 
15444 /**
15445  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15446  * @pdev: pointer to PCI device.
15447  *
15448  * This routine is registered to the PCI subsystem for error handling. This
15449  * function is called after PCI bus has been reset to restart the PCI card
15450  * from scratch, as if from a cold-boot. When this routine is invoked, it
15451  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15452  * routine, which will perform the proper device reset.
15453  *
15454  * Return codes
15455  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15456  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15457  **/
15458 static pci_ers_result_t
15459 lpfc_io_slot_reset(struct pci_dev *pdev)
15460 {
15461 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15462 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15463 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15464 
15465 	switch (phba->pci_dev_grp) {
15466 	case LPFC_PCI_DEV_LP:
15467 		rc = lpfc_io_slot_reset_s3(pdev);
15468 		break;
15469 	case LPFC_PCI_DEV_OC:
15470 		rc = lpfc_io_slot_reset_s4(pdev);
15471 		break;
15472 	default:
15473 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15474 				"1428 Invalid PCI device group: 0x%x\n",
15475 				phba->pci_dev_grp);
15476 		break;
15477 	}
15478 	return rc;
15479 }
15480 
15481 /**
15482  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15483  * @pdev: pointer to PCI device
15484  *
15485  * This routine is registered to the PCI subsystem for error handling. It
15486  * is called when kernel error recovery tells the lpfc driver that it is
15487  * OK to resume normal PCI operation after PCI bus error recovery. When
15488  * this routine is invoked, it dispatches the action to the proper SLI-3
15489  * or SLI-4 device io_resume routine, which will resume the device operation.
15490  **/
15491 static void
15492 lpfc_io_resume(struct pci_dev *pdev)
15493 {
15494 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15495 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15496 
15497 	switch (phba->pci_dev_grp) {
15498 	case LPFC_PCI_DEV_LP:
15499 		lpfc_io_resume_s3(pdev);
15500 		break;
15501 	case LPFC_PCI_DEV_OC:
15502 		lpfc_io_resume_s4(pdev);
15503 		break;
15504 	default:
15505 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15506 				"1429 Invalid PCI device group: 0x%x\n",
15507 				phba->pci_dev_grp);
15508 		break;
15509 	}
15510 	return;
15511 }
15512 
15513 /**
15514  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15515  * @phba: pointer to lpfc hba data structure.
15516  *
15517  * This routine checks to see if OAS is supported for this adapter. If
15518  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15519  * the enable oas flag is cleared and the pool created for OAS device data
15520  * is destroyed.
15521  *
15522  **/
15523 static void
15524 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15525 {
15526 
15527 	if (!phba->cfg_EnableXLane)
15528 		return;
15529 
15530 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15531 		phba->cfg_fof = 1;
15532 	} else {
15533 		phba->cfg_fof = 0;
15534 		mempool_destroy(phba->device_data_mem_pool);
15535 		phba->device_data_mem_pool = NULL;
15536 	}
15537 
15538 	return;
15539 }
15540 
15541 /**
15542  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15543  * @phba: pointer to lpfc hba data structure.
15544  *
15545  * This routine checks to see if RAS is supported by the adapter. Check the
15546  * function through which RAS support enablement is to be done.
15547  **/
15548 void
15549 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15550 {
15551 	/* if ASIC_GEN_NUM >= 0xC) */
15552 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15553 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15554 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15555 		    LPFC_SLI_INTF_FAMILY_G6)) {
15556 		phba->ras_fwlog.ras_hwsupport = true;
15557 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15558 		    phba->cfg_ras_fwlog_buffsize)
15559 			phba->ras_fwlog.ras_enabled = true;
15560 		else
15561 			phba->ras_fwlog.ras_enabled = false;
15562 	} else {
15563 		phba->ras_fwlog.ras_hwsupport = false;
15564 	}
15565 }
15566 
15567 
15568 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15569 
15570 static const struct pci_error_handlers lpfc_err_handler = {
15571 	.error_detected = lpfc_io_error_detected,
15572 	.slot_reset = lpfc_io_slot_reset,
15573 	.resume = lpfc_io_resume,
15574 };
15575 
15576 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15577 			 lpfc_pci_suspend_one,
15578 			 lpfc_pci_resume_one);
15579 
15580 static struct pci_driver lpfc_driver = {
15581 	.name		= LPFC_DRIVER_NAME,
15582 	.id_table	= lpfc_id_table,
15583 	.probe		= lpfc_pci_probe_one,
15584 	.remove		= lpfc_pci_remove_one,
15585 	.shutdown	= lpfc_pci_remove_one,
15586 	.driver.pm	= &lpfc_pci_pm_ops_one,
15587 	.err_handler    = &lpfc_err_handler,
15588 };
15589 
15590 static const struct file_operations lpfc_mgmt_fop = {
15591 	.owner = THIS_MODULE,
15592 };
15593 
15594 static struct miscdevice lpfc_mgmt_dev = {
15595 	.minor = MISC_DYNAMIC_MINOR,
15596 	.name = "lpfcmgmt",
15597 	.fops = &lpfc_mgmt_fop,
15598 };
15599 
15600 /**
15601  * lpfc_init - lpfc module initialization routine
15602  *
15603  * This routine is to be invoked when the lpfc module is loaded into the
15604  * kernel. The special kernel macro module_init() is used to indicate the
15605  * role of this routine to the kernel as lpfc module entry point.
15606  *
15607  * Return codes
15608  *   0 - successful
15609  *   -ENOMEM - FC attach transport failed
15610  *   all others - failed
15611  */
15612 static int __init
15613 lpfc_init(void)
15614 {
15615 	int error = 0;
15616 
15617 	pr_info(LPFC_MODULE_DESC "\n");
15618 	pr_info(LPFC_COPYRIGHT "\n");
15619 
15620 	error = misc_register(&lpfc_mgmt_dev);
15621 	if (error)
15622 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15623 			"misc_register returned with status %d", error);
15624 
15625 	error = -ENOMEM;
15626 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15627 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15628 	lpfc_transport_template =
15629 				fc_attach_transport(&lpfc_transport_functions);
15630 	if (lpfc_transport_template == NULL)
15631 		goto unregister;
15632 	lpfc_vport_transport_template =
15633 		fc_attach_transport(&lpfc_vport_transport_functions);
15634 	if (lpfc_vport_transport_template == NULL) {
15635 		fc_release_transport(lpfc_transport_template);
15636 		goto unregister;
15637 	}
15638 	lpfc_wqe_cmd_template();
15639 	lpfc_nvmet_cmd_template();
15640 
15641 	/* Initialize in case vector mapping is needed */
15642 	lpfc_present_cpu = num_present_cpus();
15643 
15644 	lpfc_pldv_detect = false;
15645 
15646 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15647 					"lpfc/sli4:online",
15648 					lpfc_cpu_online, lpfc_cpu_offline);
15649 	if (error < 0)
15650 		goto cpuhp_failure;
15651 	lpfc_cpuhp_state = error;
15652 
15653 	error = pci_register_driver(&lpfc_driver);
15654 	if (error)
15655 		goto unwind;
15656 
15657 	return error;
15658 
15659 unwind:
15660 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15661 cpuhp_failure:
15662 	fc_release_transport(lpfc_transport_template);
15663 	fc_release_transport(lpfc_vport_transport_template);
15664 unregister:
15665 	misc_deregister(&lpfc_mgmt_dev);
15666 
15667 	return error;
15668 }
15669 
15670 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15671 {
15672 	unsigned int start_idx;
15673 	unsigned int dbg_cnt;
15674 	unsigned int temp_idx;
15675 	int i;
15676 	int j = 0;
15677 	unsigned long rem_nsec, iflags;
15678 	bool log_verbose = false;
15679 	struct lpfc_vport *port_iterator;
15680 
15681 	/* Don't dump messages if we explicitly set log_verbose for the
15682 	 * physical port or any vport.
15683 	 */
15684 	if (phba->cfg_log_verbose)
15685 		return;
15686 
15687 	spin_lock_irqsave(&phba->port_list_lock, iflags);
15688 	list_for_each_entry(port_iterator, &phba->port_list, listentry) {
15689 		if (port_iterator->load_flag & FC_UNLOADING)
15690 			continue;
15691 		if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) {
15692 			if (port_iterator->cfg_log_verbose)
15693 				log_verbose = true;
15694 
15695 			scsi_host_put(lpfc_shost_from_vport(port_iterator));
15696 
15697 			if (log_verbose) {
15698 				spin_unlock_irqrestore(&phba->port_list_lock,
15699 						       iflags);
15700 				return;
15701 			}
15702 		}
15703 	}
15704 	spin_unlock_irqrestore(&phba->port_list_lock, iflags);
15705 
15706 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15707 		return;
15708 
15709 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15710 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15711 	if (!dbg_cnt)
15712 		goto out;
15713 	temp_idx = start_idx;
15714 	if (dbg_cnt >= DBG_LOG_SZ) {
15715 		dbg_cnt = DBG_LOG_SZ;
15716 		temp_idx -= 1;
15717 	} else {
15718 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15719 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15720 		} else {
15721 			if (start_idx < dbg_cnt)
15722 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15723 			else
15724 				start_idx -= dbg_cnt;
15725 		}
15726 	}
15727 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15728 		 start_idx, temp_idx, dbg_cnt);
15729 
15730 	for (i = 0; i < dbg_cnt; i++) {
15731 		if ((start_idx + i) < DBG_LOG_SZ)
15732 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15733 		else
15734 			temp_idx = j++;
15735 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15736 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15737 			 temp_idx,
15738 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15739 			 rem_nsec / 1000,
15740 			 phba->dbg_log[temp_idx].log);
15741 	}
15742 out:
15743 	atomic_set(&phba->dbg_log_cnt, 0);
15744 	atomic_set(&phba->dbg_log_dmping, 0);
15745 }
15746 
15747 __printf(2, 3)
15748 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15749 {
15750 	unsigned int idx;
15751 	va_list args;
15752 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15753 	struct va_format vaf;
15754 
15755 
15756 	va_start(args, fmt);
15757 	if (unlikely(dbg_dmping)) {
15758 		vaf.fmt = fmt;
15759 		vaf.va = &args;
15760 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15761 		va_end(args);
15762 		return;
15763 	}
15764 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15765 		DBG_LOG_SZ;
15766 
15767 	atomic_inc(&phba->dbg_log_cnt);
15768 
15769 	vscnprintf(phba->dbg_log[idx].log,
15770 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15771 	va_end(args);
15772 
15773 	phba->dbg_log[idx].t_ns = local_clock();
15774 }
15775 
15776 /**
15777  * lpfc_exit - lpfc module removal routine
15778  *
15779  * This routine is invoked when the lpfc module is removed from the kernel.
15780  * The special kernel macro module_exit() is used to indicate the role of
15781  * this routine to the kernel as lpfc module exit point.
15782  */
15783 static void __exit
15784 lpfc_exit(void)
15785 {
15786 	misc_deregister(&lpfc_mgmt_dev);
15787 	pci_unregister_driver(&lpfc_driver);
15788 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15789 	fc_release_transport(lpfc_transport_template);
15790 	fc_release_transport(lpfc_vport_transport_template);
15791 	idr_destroy(&lpfc_hba_index);
15792 }
15793 
15794 module_init(lpfc_init);
15795 module_exit(lpfc_exit);
15796 MODULE_LICENSE("GPL");
15797 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15798 MODULE_AUTHOR("Broadcom");
15799 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15800