xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 8dd3cdea)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	if (prg->dist < 4)
328 		dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
353 	u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
354 
355 	/*
356 	 * If the name is empty or there exists a soft name
357 	 * then copy the service params name, otherwise use the fc name
358 	 */
359 	if (vport->fc_nodename.u.wwn[0] == 0)
360 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
361 			sizeof(struct lpfc_name));
362 	else
363 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
364 			sizeof(struct lpfc_name));
365 
366 	/*
367 	 * If the port name has changed, then set the Param changes flag
368 	 * to unreg the login
369 	 */
370 	if (vport->fc_portname.u.wwn[0] != 0 &&
371 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
372 			sizeof(struct lpfc_name)))
373 		vport->vport_flag |= FAWWPN_PARAM_CHG;
374 
375 	if (vport->fc_portname.u.wwn[0] == 0 ||
376 	    (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
377 	    vport->vport_flag & FAWWPN_SET) {
378 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
379 			sizeof(struct lpfc_name));
380 		vport->vport_flag &= ~FAWWPN_SET;
381 		if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
382 			vport->vport_flag |= FAWWPN_SET;
383 	}
384 	else
385 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
386 			sizeof(struct lpfc_name));
387 }
388 
389 /**
390  * lpfc_config_port_post - Perform lpfc initialization after config port
391  * @phba: pointer to lpfc hba data structure.
392  *
393  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
394  * command call. It performs all internal resource and state setups on the
395  * port: post IOCB buffers, enable appropriate host interrupt attentions,
396  * ELS ring timers, etc.
397  *
398  * Return codes
399  *   0 - success.
400  *   Any other value - error.
401  **/
402 int
403 lpfc_config_port_post(struct lpfc_hba *phba)
404 {
405 	struct lpfc_vport *vport = phba->pport;
406 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
407 	LPFC_MBOXQ_t *pmb;
408 	MAILBOX_t *mb;
409 	struct lpfc_dmabuf *mp;
410 	struct lpfc_sli *psli = &phba->sli;
411 	uint32_t status, timeout;
412 	int i, j;
413 	int rc;
414 
415 	spin_lock_irq(&phba->hbalock);
416 	/*
417 	 * If the Config port completed correctly the HBA is not
418 	 * over heated any more.
419 	 */
420 	if (phba->over_temp_state == HBA_OVER_TEMP)
421 		phba->over_temp_state = HBA_NORMAL_TEMP;
422 	spin_unlock_irq(&phba->hbalock);
423 
424 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
425 	if (!pmb) {
426 		phba->link_state = LPFC_HBA_ERROR;
427 		return -ENOMEM;
428 	}
429 	mb = &pmb->u.mb;
430 
431 	/* Get login parameters for NID.  */
432 	rc = lpfc_read_sparam(phba, pmb, 0);
433 	if (rc) {
434 		mempool_free(pmb, phba->mbox_mem_pool);
435 		return -ENOMEM;
436 	}
437 
438 	pmb->vport = vport;
439 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
440 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
441 				"0448 Adapter failed init, mbxCmd x%x "
442 				"READ_SPARM mbxStatus x%x\n",
443 				mb->mbxCommand, mb->mbxStatus);
444 		phba->link_state = LPFC_HBA_ERROR;
445 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
446 		mempool_free(pmb, phba->mbox_mem_pool);
447 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
448 		kfree(mp);
449 		return -EIO;
450 	}
451 
452 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
453 
454 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
455 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
456 	kfree(mp);
457 	pmb->ctx_buf = NULL;
458 	lpfc_update_vport_wwn(vport);
459 
460 	/* Update the fc_host data structures with new wwn. */
461 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
462 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
463 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
464 
465 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
466 	/* This should be consolidated into parse_vpd ? - mr */
467 	if (phba->SerialNumber[0] == 0) {
468 		uint8_t *outptr;
469 
470 		outptr = &vport->fc_nodename.u.s.IEEE[0];
471 		for (i = 0; i < 12; i++) {
472 			status = *outptr++;
473 			j = ((status & 0xf0) >> 4);
474 			if (j <= 9)
475 				phba->SerialNumber[i] =
476 				    (char)((uint8_t) 0x30 + (uint8_t) j);
477 			else
478 				phba->SerialNumber[i] =
479 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
480 			i++;
481 			j = (status & 0xf);
482 			if (j <= 9)
483 				phba->SerialNumber[i] =
484 				    (char)((uint8_t) 0x30 + (uint8_t) j);
485 			else
486 				phba->SerialNumber[i] =
487 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
488 		}
489 	}
490 
491 	lpfc_read_config(phba, pmb);
492 	pmb->vport = vport;
493 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
495 				"0453 Adapter failed to init, mbxCmd x%x "
496 				"READ_CONFIG, mbxStatus x%x\n",
497 				mb->mbxCommand, mb->mbxStatus);
498 		phba->link_state = LPFC_HBA_ERROR;
499 		mempool_free( pmb, phba->mbox_mem_pool);
500 		return -EIO;
501 	}
502 
503 	/* Check if the port is disabled */
504 	lpfc_sli_read_link_ste(phba);
505 
506 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
507 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
508 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
509 				"3359 HBA queue depth changed from %d to %d\n",
510 				phba->cfg_hba_queue_depth,
511 				mb->un.varRdConfig.max_xri);
512 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
513 	}
514 
515 	phba->lmt = mb->un.varRdConfig.lmt;
516 
517 	/* Get the default values for Model Name and Description */
518 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
519 
520 	phba->link_state = LPFC_LINK_DOWN;
521 
522 	/* Only process IOCBs on ELS ring till hba_state is READY */
523 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
524 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
525 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
526 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
527 
528 	/* Post receive buffers for desired rings */
529 	if (phba->sli_rev != 3)
530 		lpfc_post_rcv_buf(phba);
531 
532 	/*
533 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
534 	 */
535 	if (phba->intr_type == MSIX) {
536 		rc = lpfc_config_msi(phba, pmb);
537 		if (rc) {
538 			mempool_free(pmb, phba->mbox_mem_pool);
539 			return -EIO;
540 		}
541 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
542 		if (rc != MBX_SUCCESS) {
543 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
544 					"0352 Config MSI mailbox command "
545 					"failed, mbxCmd x%x, mbxStatus x%x\n",
546 					pmb->u.mb.mbxCommand,
547 					pmb->u.mb.mbxStatus);
548 			mempool_free(pmb, phba->mbox_mem_pool);
549 			return -EIO;
550 		}
551 	}
552 
553 	spin_lock_irq(&phba->hbalock);
554 	/* Initialize ERATT handling flag */
555 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
556 
557 	/* Enable appropriate host interrupts */
558 	if (lpfc_readl(phba->HCregaddr, &status)) {
559 		spin_unlock_irq(&phba->hbalock);
560 		return -EIO;
561 	}
562 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
563 	if (psli->num_rings > 0)
564 		status |= HC_R0INT_ENA;
565 	if (psli->num_rings > 1)
566 		status |= HC_R1INT_ENA;
567 	if (psli->num_rings > 2)
568 		status |= HC_R2INT_ENA;
569 	if (psli->num_rings > 3)
570 		status |= HC_R3INT_ENA;
571 
572 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
573 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
574 		status &= ~(HC_R0INT_ENA);
575 
576 	writel(status, phba->HCregaddr);
577 	readl(phba->HCregaddr); /* flush */
578 	spin_unlock_irq(&phba->hbalock);
579 
580 	/* Set up ring-0 (ELS) timer */
581 	timeout = phba->fc_ratov * 2;
582 	mod_timer(&vport->els_tmofunc,
583 		  jiffies + msecs_to_jiffies(1000 * timeout));
584 	/* Set up heart beat (HB) timer */
585 	mod_timer(&phba->hb_tmofunc,
586 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
587 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
588 	phba->last_completion_time = jiffies;
589 	/* Set up error attention (ERATT) polling timer */
590 	mod_timer(&phba->eratt_poll,
591 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
592 
593 	if (phba->hba_flag & LINK_DISABLED) {
594 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
595 				"2598 Adapter Link is disabled.\n");
596 		lpfc_down_link(phba, pmb);
597 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
598 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
599 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
600 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
601 					"2599 Adapter failed to issue DOWN_LINK"
602 					" mbox command rc 0x%x\n", rc);
603 
604 			mempool_free(pmb, phba->mbox_mem_pool);
605 			return -EIO;
606 		}
607 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
608 		mempool_free(pmb, phba->mbox_mem_pool);
609 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
610 		if (rc)
611 			return rc;
612 	}
613 	/* MBOX buffer will be freed in mbox compl */
614 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
615 	if (!pmb) {
616 		phba->link_state = LPFC_HBA_ERROR;
617 		return -ENOMEM;
618 	}
619 
620 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
621 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
622 	pmb->vport = phba->pport;
623 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
624 
625 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
626 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
627 				"0456 Adapter failed to issue "
628 				"ASYNCEVT_ENABLE mbox status x%x\n",
629 				rc);
630 		mempool_free(pmb, phba->mbox_mem_pool);
631 	}
632 
633 	/* Get Option rom version */
634 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
635 	if (!pmb) {
636 		phba->link_state = LPFC_HBA_ERROR;
637 		return -ENOMEM;
638 	}
639 
640 	lpfc_dump_wakeup_param(phba, pmb);
641 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
642 	pmb->vport = phba->pport;
643 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
644 
645 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
646 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
647 				"0435 Adapter failed "
648 				"to get Option ROM version status x%x\n", rc);
649 		mempool_free(pmb, phba->mbox_mem_pool);
650 	}
651 
652 	return 0;
653 }
654 
655 /**
656  * lpfc_sli4_refresh_params - update driver copy of params.
657  * @phba: Pointer to HBA context object.
658  *
659  * This is called to refresh driver copy of dynamic fields from the
660  * common_get_sli4_parameters descriptor.
661  **/
662 int
663 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
664 {
665 	LPFC_MBOXQ_t *mboxq;
666 	struct lpfc_mqe *mqe;
667 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
668 	int length, rc;
669 
670 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
671 	if (!mboxq)
672 		return -ENOMEM;
673 
674 	mqe = &mboxq->u.mqe;
675 	/* Read the port's SLI4 Config Parameters */
676 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
677 		  sizeof(struct lpfc_sli4_cfg_mhdr));
678 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
679 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
680 			 length, LPFC_SLI4_MBX_EMBED);
681 
682 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
683 	if (unlikely(rc)) {
684 		mempool_free(mboxq, phba->mbox_mem_pool);
685 		return rc;
686 	}
687 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
688 	phba->sli4_hba.pc_sli4_params.mi_ver =
689 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
690 	phba->sli4_hba.pc_sli4_params.cmf =
691 			bf_get(cfg_cmf, mbx_sli4_parameters);
692 	phba->sli4_hba.pc_sli4_params.pls =
693 			bf_get(cfg_pvl, mbx_sli4_parameters);
694 
695 	mempool_free(mboxq, phba->mbox_mem_pool);
696 	return rc;
697 }
698 
699 /**
700  * lpfc_hba_init_link - Initialize the FC link
701  * @phba: pointer to lpfc hba data structure.
702  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
703  *
704  * This routine will issue the INIT_LINK mailbox command call.
705  * It is available to other drivers through the lpfc_hba data
706  * structure for use as a delayed link up mechanism with the
707  * module parameter lpfc_suppress_link_up.
708  *
709  * Return code
710  *		0 - success
711  *		Any other value - error
712  **/
713 static int
714 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
715 {
716 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
717 }
718 
719 /**
720  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
721  * @phba: pointer to lpfc hba data structure.
722  * @fc_topology: desired fc topology.
723  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
724  *
725  * This routine will issue the INIT_LINK mailbox command call.
726  * It is available to other drivers through the lpfc_hba data
727  * structure for use as a delayed link up mechanism with the
728  * module parameter lpfc_suppress_link_up.
729  *
730  * Return code
731  *              0 - success
732  *              Any other value - error
733  **/
734 int
735 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
736 			       uint32_t flag)
737 {
738 	struct lpfc_vport *vport = phba->pport;
739 	LPFC_MBOXQ_t *pmb;
740 	MAILBOX_t *mb;
741 	int rc;
742 
743 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
744 	if (!pmb) {
745 		phba->link_state = LPFC_HBA_ERROR;
746 		return -ENOMEM;
747 	}
748 	mb = &pmb->u.mb;
749 	pmb->vport = vport;
750 
751 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
752 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
753 	     !(phba->lmt & LMT_1Gb)) ||
754 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
755 	     !(phba->lmt & LMT_2Gb)) ||
756 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
757 	     !(phba->lmt & LMT_4Gb)) ||
758 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
759 	     !(phba->lmt & LMT_8Gb)) ||
760 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
761 	     !(phba->lmt & LMT_10Gb)) ||
762 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
763 	     !(phba->lmt & LMT_16Gb)) ||
764 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
765 	     !(phba->lmt & LMT_32Gb)) ||
766 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
767 	     !(phba->lmt & LMT_64Gb))) {
768 		/* Reset link speed to auto */
769 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
770 				"1302 Invalid speed for this board:%d "
771 				"Reset link speed to auto.\n",
772 				phba->cfg_link_speed);
773 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
774 	}
775 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
776 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
777 	if (phba->sli_rev < LPFC_SLI_REV4)
778 		lpfc_set_loopback_flag(phba);
779 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
780 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
781 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
782 				"0498 Adapter failed to init, mbxCmd x%x "
783 				"INIT_LINK, mbxStatus x%x\n",
784 				mb->mbxCommand, mb->mbxStatus);
785 		if (phba->sli_rev <= LPFC_SLI_REV3) {
786 			/* Clear all interrupt enable conditions */
787 			writel(0, phba->HCregaddr);
788 			readl(phba->HCregaddr); /* flush */
789 			/* Clear all pending interrupts */
790 			writel(0xffffffff, phba->HAregaddr);
791 			readl(phba->HAregaddr); /* flush */
792 		}
793 		phba->link_state = LPFC_HBA_ERROR;
794 		if (rc != MBX_BUSY || flag == MBX_POLL)
795 			mempool_free(pmb, phba->mbox_mem_pool);
796 		return -EIO;
797 	}
798 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
799 	if (flag == MBX_POLL)
800 		mempool_free(pmb, phba->mbox_mem_pool);
801 
802 	return 0;
803 }
804 
805 /**
806  * lpfc_hba_down_link - this routine downs the FC link
807  * @phba: pointer to lpfc hba data structure.
808  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
809  *
810  * This routine will issue the DOWN_LINK mailbox command call.
811  * It is available to other drivers through the lpfc_hba data
812  * structure for use to stop the link.
813  *
814  * Return code
815  *		0 - success
816  *		Any other value - error
817  **/
818 static int
819 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
820 {
821 	LPFC_MBOXQ_t *pmb;
822 	int rc;
823 
824 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
825 	if (!pmb) {
826 		phba->link_state = LPFC_HBA_ERROR;
827 		return -ENOMEM;
828 	}
829 
830 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
831 			"0491 Adapter Link is disabled.\n");
832 	lpfc_down_link(phba, pmb);
833 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
834 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
835 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
836 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
837 				"2522 Adapter failed to issue DOWN_LINK"
838 				" mbox command rc 0x%x\n", rc);
839 
840 		mempool_free(pmb, phba->mbox_mem_pool);
841 		return -EIO;
842 	}
843 	if (flag == MBX_POLL)
844 		mempool_free(pmb, phba->mbox_mem_pool);
845 
846 	return 0;
847 }
848 
849 /**
850  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
851  * @phba: pointer to lpfc HBA data structure.
852  *
853  * This routine will do LPFC uninitialization before the HBA is reset when
854  * bringing down the SLI Layer.
855  *
856  * Return codes
857  *   0 - success.
858  *   Any other value - error.
859  **/
860 int
861 lpfc_hba_down_prep(struct lpfc_hba *phba)
862 {
863 	struct lpfc_vport **vports;
864 	int i;
865 
866 	if (phba->sli_rev <= LPFC_SLI_REV3) {
867 		/* Disable interrupts */
868 		writel(0, phba->HCregaddr);
869 		readl(phba->HCregaddr); /* flush */
870 	}
871 
872 	if (phba->pport->load_flag & FC_UNLOADING)
873 		lpfc_cleanup_discovery_resources(phba->pport);
874 	else {
875 		vports = lpfc_create_vport_work_array(phba);
876 		if (vports != NULL)
877 			for (i = 0; i <= phba->max_vports &&
878 				vports[i] != NULL; i++)
879 				lpfc_cleanup_discovery_resources(vports[i]);
880 		lpfc_destroy_vport_work_array(phba, vports);
881 	}
882 	return 0;
883 }
884 
885 /**
886  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
887  * rspiocb which got deferred
888  *
889  * @phba: pointer to lpfc HBA data structure.
890  *
891  * This routine will cleanup completed slow path events after HBA is reset
892  * when bringing down the SLI Layer.
893  *
894  *
895  * Return codes
896  *   void.
897  **/
898 static void
899 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
900 {
901 	struct lpfc_iocbq *rspiocbq;
902 	struct hbq_dmabuf *dmabuf;
903 	struct lpfc_cq_event *cq_event;
904 
905 	spin_lock_irq(&phba->hbalock);
906 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
907 	spin_unlock_irq(&phba->hbalock);
908 
909 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
910 		/* Get the response iocb from the head of work queue */
911 		spin_lock_irq(&phba->hbalock);
912 		list_remove_head(&phba->sli4_hba.sp_queue_event,
913 				 cq_event, struct lpfc_cq_event, list);
914 		spin_unlock_irq(&phba->hbalock);
915 
916 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
917 		case CQE_CODE_COMPL_WQE:
918 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
919 						 cq_event);
920 			lpfc_sli_release_iocbq(phba, rspiocbq);
921 			break;
922 		case CQE_CODE_RECEIVE:
923 		case CQE_CODE_RECEIVE_V1:
924 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
925 					      cq_event);
926 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
927 		}
928 	}
929 }
930 
931 /**
932  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
933  * @phba: pointer to lpfc HBA data structure.
934  *
935  * This routine will cleanup posted ELS buffers after the HBA is reset
936  * when bringing down the SLI Layer.
937  *
938  *
939  * Return codes
940  *   void.
941  **/
942 static void
943 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
944 {
945 	struct lpfc_sli *psli = &phba->sli;
946 	struct lpfc_sli_ring *pring;
947 	struct lpfc_dmabuf *mp, *next_mp;
948 	LIST_HEAD(buflist);
949 	int count;
950 
951 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
952 		lpfc_sli_hbqbuf_free_all(phba);
953 	else {
954 		/* Cleanup preposted buffers on the ELS ring */
955 		pring = &psli->sli3_ring[LPFC_ELS_RING];
956 		spin_lock_irq(&phba->hbalock);
957 		list_splice_init(&pring->postbufq, &buflist);
958 		spin_unlock_irq(&phba->hbalock);
959 
960 		count = 0;
961 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
962 			list_del(&mp->list);
963 			count++;
964 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
965 			kfree(mp);
966 		}
967 
968 		spin_lock_irq(&phba->hbalock);
969 		pring->postbufq_cnt -= count;
970 		spin_unlock_irq(&phba->hbalock);
971 	}
972 }
973 
974 /**
975  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
976  * @phba: pointer to lpfc HBA data structure.
977  *
978  * This routine will cleanup the txcmplq after the HBA is reset when bringing
979  * down the SLI Layer.
980  *
981  * Return codes
982  *   void
983  **/
984 static void
985 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
986 {
987 	struct lpfc_sli *psli = &phba->sli;
988 	struct lpfc_queue *qp = NULL;
989 	struct lpfc_sli_ring *pring;
990 	LIST_HEAD(completions);
991 	int i;
992 	struct lpfc_iocbq *piocb, *next_iocb;
993 
994 	if (phba->sli_rev != LPFC_SLI_REV4) {
995 		for (i = 0; i < psli->num_rings; i++) {
996 			pring = &psli->sli3_ring[i];
997 			spin_lock_irq(&phba->hbalock);
998 			/* At this point in time the HBA is either reset or DOA
999 			 * Nothing should be on txcmplq as it will
1000 			 * NEVER complete.
1001 			 */
1002 			list_splice_init(&pring->txcmplq, &completions);
1003 			pring->txcmplq_cnt = 0;
1004 			spin_unlock_irq(&phba->hbalock);
1005 
1006 			lpfc_sli_abort_iocb_ring(phba, pring);
1007 		}
1008 		/* Cancel all the IOCBs from the completions list */
1009 		lpfc_sli_cancel_iocbs(phba, &completions,
1010 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1011 		return;
1012 	}
1013 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1014 		pring = qp->pring;
1015 		if (!pring)
1016 			continue;
1017 		spin_lock_irq(&pring->ring_lock);
1018 		list_for_each_entry_safe(piocb, next_iocb,
1019 					 &pring->txcmplq, list)
1020 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1021 		list_splice_init(&pring->txcmplq, &completions);
1022 		pring->txcmplq_cnt = 0;
1023 		spin_unlock_irq(&pring->ring_lock);
1024 		lpfc_sli_abort_iocb_ring(phba, pring);
1025 	}
1026 	/* Cancel all the IOCBs from the completions list */
1027 	lpfc_sli_cancel_iocbs(phba, &completions,
1028 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1029 }
1030 
1031 /**
1032  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1033  * @phba: pointer to lpfc HBA data structure.
1034  *
1035  * This routine will do uninitialization after the HBA is reset when bring
1036  * down the SLI Layer.
1037  *
1038  * Return codes
1039  *   0 - success.
1040  *   Any other value - error.
1041  **/
1042 static int
1043 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1044 {
1045 	lpfc_hba_free_post_buf(phba);
1046 	lpfc_hba_clean_txcmplq(phba);
1047 	return 0;
1048 }
1049 
1050 /**
1051  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1052  * @phba: pointer to lpfc HBA data structure.
1053  *
1054  * This routine will do uninitialization after the HBA is reset when bring
1055  * down the SLI Layer.
1056  *
1057  * Return codes
1058  *   0 - success.
1059  *   Any other value - error.
1060  **/
1061 static int
1062 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1063 {
1064 	struct lpfc_io_buf *psb, *psb_next;
1065 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1066 	struct lpfc_sli4_hdw_queue *qp;
1067 	LIST_HEAD(aborts);
1068 	LIST_HEAD(nvme_aborts);
1069 	LIST_HEAD(nvmet_aborts);
1070 	struct lpfc_sglq *sglq_entry = NULL;
1071 	int cnt, idx;
1072 
1073 
1074 	lpfc_sli_hbqbuf_free_all(phba);
1075 	lpfc_hba_clean_txcmplq(phba);
1076 
1077 	/* At this point in time the HBA is either reset or DOA. Either
1078 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1079 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1080 	 * driver is unloading or reposted if the driver is restarting
1081 	 * the port.
1082 	 */
1083 
1084 	/* sgl_list_lock required because worker thread uses this
1085 	 * list.
1086 	 */
1087 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1088 	list_for_each_entry(sglq_entry,
1089 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1090 		sglq_entry->state = SGL_FREED;
1091 
1092 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1093 			&phba->sli4_hba.lpfc_els_sgl_list);
1094 
1095 
1096 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1097 
1098 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1099 	 * list.
1100 	 */
1101 	spin_lock_irq(&phba->hbalock);
1102 	cnt = 0;
1103 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1104 		qp = &phba->sli4_hba.hdwq[idx];
1105 
1106 		spin_lock(&qp->abts_io_buf_list_lock);
1107 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1108 				 &aborts);
1109 
1110 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1111 			psb->pCmd = NULL;
1112 			psb->status = IOSTAT_SUCCESS;
1113 			cnt++;
1114 		}
1115 		spin_lock(&qp->io_buf_list_put_lock);
1116 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1117 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1118 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1119 		qp->abts_scsi_io_bufs = 0;
1120 		qp->abts_nvme_io_bufs = 0;
1121 		spin_unlock(&qp->io_buf_list_put_lock);
1122 		spin_unlock(&qp->abts_io_buf_list_lock);
1123 	}
1124 	spin_unlock_irq(&phba->hbalock);
1125 
1126 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1127 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1128 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1129 				 &nvmet_aborts);
1130 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1131 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1132 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1133 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1134 		}
1135 	}
1136 
1137 	lpfc_sli4_free_sp_events(phba);
1138 	return cnt;
1139 }
1140 
1141 /**
1142  * lpfc_hba_down_post - Wrapper func for hba down post routine
1143  * @phba: pointer to lpfc HBA data structure.
1144  *
1145  * This routine wraps the actual SLI3 or SLI4 routine for performing
1146  * uninitialization after the HBA is reset when bring down the SLI Layer.
1147  *
1148  * Return codes
1149  *   0 - success.
1150  *   Any other value - error.
1151  **/
1152 int
1153 lpfc_hba_down_post(struct lpfc_hba *phba)
1154 {
1155 	return (*phba->lpfc_hba_down_post)(phba);
1156 }
1157 
1158 /**
1159  * lpfc_hb_timeout - The HBA-timer timeout handler
1160  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1161  *
1162  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1163  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1164  * work-port-events bitmap and the worker thread is notified. This timeout
1165  * event will be used by the worker thread to invoke the actual timeout
1166  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1167  * be performed in the timeout handler and the HBA timeout event bit shall
1168  * be cleared by the worker thread after it has taken the event bitmap out.
1169  **/
1170 static void
1171 lpfc_hb_timeout(struct timer_list *t)
1172 {
1173 	struct lpfc_hba *phba;
1174 	uint32_t tmo_posted;
1175 	unsigned long iflag;
1176 
1177 	phba = from_timer(phba, t, hb_tmofunc);
1178 
1179 	/* Check for heart beat timeout conditions */
1180 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1181 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1182 	if (!tmo_posted)
1183 		phba->pport->work_port_events |= WORKER_HB_TMO;
1184 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1185 
1186 	/* Tell the worker thread there is work to do */
1187 	if (!tmo_posted)
1188 		lpfc_worker_wake_up(phba);
1189 	return;
1190 }
1191 
1192 /**
1193  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1194  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1195  *
1196  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1197  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1198  * work-port-events bitmap and the worker thread is notified. This timeout
1199  * event will be used by the worker thread to invoke the actual timeout
1200  * handler routine, lpfc_rrq_handler. Any periodical operations will
1201  * be performed in the timeout handler and the RRQ timeout event bit shall
1202  * be cleared by the worker thread after it has taken the event bitmap out.
1203  **/
1204 static void
1205 lpfc_rrq_timeout(struct timer_list *t)
1206 {
1207 	struct lpfc_hba *phba;
1208 	unsigned long iflag;
1209 
1210 	phba = from_timer(phba, t, rrq_tmr);
1211 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1212 	if (!(phba->pport->load_flag & FC_UNLOADING))
1213 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1214 	else
1215 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1216 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1217 
1218 	if (!(phba->pport->load_flag & FC_UNLOADING))
1219 		lpfc_worker_wake_up(phba);
1220 }
1221 
1222 /**
1223  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1224  * @phba: pointer to lpfc hba data structure.
1225  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1226  *
1227  * This is the callback function to the lpfc heart-beat mailbox command.
1228  * If configured, the lpfc driver issues the heart-beat mailbox command to
1229  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1230  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1231  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1232  * heart-beat outstanding state. Once the mailbox command comes back and
1233  * no error conditions detected, the heart-beat mailbox command timer is
1234  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1235  * state is cleared for the next heart-beat. If the timer expired with the
1236  * heart-beat outstanding state set, the driver will put the HBA offline.
1237  **/
1238 static void
1239 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1240 {
1241 	unsigned long drvr_flag;
1242 
1243 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1244 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1245 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1246 
1247 	/* Check and reset heart-beat timer if necessary */
1248 	mempool_free(pmboxq, phba->mbox_mem_pool);
1249 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1250 		!(phba->link_state == LPFC_HBA_ERROR) &&
1251 		!(phba->pport->load_flag & FC_UNLOADING))
1252 		mod_timer(&phba->hb_tmofunc,
1253 			  jiffies +
1254 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1255 	return;
1256 }
1257 
1258 /*
1259  * lpfc_idle_stat_delay_work - idle_stat tracking
1260  *
1261  * This routine tracks per-cq idle_stat and determines polling decisions.
1262  *
1263  * Return codes:
1264  *   None
1265  **/
1266 static void
1267 lpfc_idle_stat_delay_work(struct work_struct *work)
1268 {
1269 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1270 					     struct lpfc_hba,
1271 					     idle_stat_delay_work);
1272 	struct lpfc_queue *cq;
1273 	struct lpfc_sli4_hdw_queue *hdwq;
1274 	struct lpfc_idle_stat *idle_stat;
1275 	u32 i, idle_percent;
1276 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1277 
1278 	if (phba->pport->load_flag & FC_UNLOADING)
1279 		return;
1280 
1281 	if (phba->link_state == LPFC_HBA_ERROR ||
1282 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1283 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1284 		goto requeue;
1285 
1286 	for_each_present_cpu(i) {
1287 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1288 		cq = hdwq->io_cq;
1289 
1290 		/* Skip if we've already handled this cq's primary CPU */
1291 		if (cq->chann != i)
1292 			continue;
1293 
1294 		idle_stat = &phba->sli4_hba.idle_stat[i];
1295 
1296 		/* get_cpu_idle_time returns values as running counters. Thus,
1297 		 * to know the amount for this period, the prior counter values
1298 		 * need to be subtracted from the current counter values.
1299 		 * From there, the idle time stat can be calculated as a
1300 		 * percentage of 100 - the sum of the other consumption times.
1301 		 */
1302 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1303 		diff_idle = wall_idle - idle_stat->prev_idle;
1304 		diff_wall = wall - idle_stat->prev_wall;
1305 
1306 		if (diff_wall <= diff_idle)
1307 			busy_time = 0;
1308 		else
1309 			busy_time = diff_wall - diff_idle;
1310 
1311 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1312 		idle_percent = 100 - idle_percent;
1313 
1314 		if (idle_percent < 15)
1315 			cq->poll_mode = LPFC_QUEUE_WORK;
1316 		else
1317 			cq->poll_mode = LPFC_IRQ_POLL;
1318 
1319 		idle_stat->prev_idle = wall_idle;
1320 		idle_stat->prev_wall = wall;
1321 	}
1322 
1323 requeue:
1324 	schedule_delayed_work(&phba->idle_stat_delay_work,
1325 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1326 }
1327 
1328 static void
1329 lpfc_hb_eq_delay_work(struct work_struct *work)
1330 {
1331 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1332 					     struct lpfc_hba, eq_delay_work);
1333 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1334 	struct lpfc_queue *eq, *eq_next;
1335 	unsigned char *ena_delay = NULL;
1336 	uint32_t usdelay;
1337 	int i;
1338 
1339 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1340 		return;
1341 
1342 	if (phba->link_state == LPFC_HBA_ERROR ||
1343 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1344 		goto requeue;
1345 
1346 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1347 			    GFP_KERNEL);
1348 	if (!ena_delay)
1349 		goto requeue;
1350 
1351 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1352 		/* Get the EQ corresponding to the IRQ vector */
1353 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1354 		if (!eq)
1355 			continue;
1356 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1357 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1358 			ena_delay[eq->last_cpu] = 1;
1359 		}
1360 	}
1361 
1362 	for_each_present_cpu(i) {
1363 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1364 		if (ena_delay[i]) {
1365 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1366 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1367 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1368 		} else {
1369 			usdelay = 0;
1370 		}
1371 
1372 		eqi->icnt = 0;
1373 
1374 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1375 			if (unlikely(eq->last_cpu != i)) {
1376 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1377 						      eq->last_cpu);
1378 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1379 				continue;
1380 			}
1381 			if (usdelay != eq->q_mode)
1382 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1383 							 usdelay);
1384 		}
1385 	}
1386 
1387 	kfree(ena_delay);
1388 
1389 requeue:
1390 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1391 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1392 }
1393 
1394 /**
1395  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1396  * @phba: pointer to lpfc hba data structure.
1397  *
1398  * For each heartbeat, this routine does some heuristic methods to adjust
1399  * XRI distribution. The goal is to fully utilize free XRIs.
1400  **/
1401 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1402 {
1403 	u32 i;
1404 	u32 hwq_count;
1405 
1406 	hwq_count = phba->cfg_hdw_queue;
1407 	for (i = 0; i < hwq_count; i++) {
1408 		/* Adjust XRIs in private pool */
1409 		lpfc_adjust_pvt_pool_count(phba, i);
1410 
1411 		/* Adjust high watermark */
1412 		lpfc_adjust_high_watermark(phba, i);
1413 
1414 #ifdef LPFC_MXP_STAT
1415 		/* Snapshot pbl, pvt and busy count */
1416 		lpfc_snapshot_mxp(phba, i);
1417 #endif
1418 	}
1419 }
1420 
1421 /**
1422  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1423  * @phba: pointer to lpfc hba data structure.
1424  *
1425  * If a HB mbox is not already in progrees, this routine will allocate
1426  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1427  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1428  **/
1429 int
1430 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1431 {
1432 	LPFC_MBOXQ_t *pmboxq;
1433 	int retval;
1434 
1435 	/* Is a Heartbeat mbox already in progress */
1436 	if (phba->hba_flag & HBA_HBEAT_INP)
1437 		return 0;
1438 
1439 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1440 	if (!pmboxq)
1441 		return -ENOMEM;
1442 
1443 	lpfc_heart_beat(phba, pmboxq);
1444 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1445 	pmboxq->vport = phba->pport;
1446 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1447 
1448 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1449 		mempool_free(pmboxq, phba->mbox_mem_pool);
1450 		return -ENXIO;
1451 	}
1452 	phba->hba_flag |= HBA_HBEAT_INP;
1453 
1454 	return 0;
1455 }
1456 
1457 /**
1458  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1459  * @phba: pointer to lpfc hba data structure.
1460  *
1461  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1462  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1463  * of the value of lpfc_enable_hba_heartbeat.
1464  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1465  * try to issue a MBX_HEARTBEAT mbox command.
1466  **/
1467 void
1468 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1469 {
1470 	if (phba->cfg_enable_hba_heartbeat)
1471 		return;
1472 	phba->hba_flag |= HBA_HBEAT_TMO;
1473 }
1474 
1475 /**
1476  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1477  * @phba: pointer to lpfc hba data structure.
1478  *
1479  * This is the actual HBA-timer timeout handler to be invoked by the worker
1480  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1481  * handler performs any periodic operations needed for the device. If such
1482  * periodic event has already been attended to either in the interrupt handler
1483  * or by processing slow-ring or fast-ring events within the HBA-timer
1484  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1485  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1486  * is configured and there is no heart-beat mailbox command outstanding, a
1487  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1488  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1489  * to offline.
1490  **/
1491 void
1492 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1493 {
1494 	struct lpfc_vport **vports;
1495 	struct lpfc_dmabuf *buf_ptr;
1496 	int retval = 0;
1497 	int i, tmo;
1498 	struct lpfc_sli *psli = &phba->sli;
1499 	LIST_HEAD(completions);
1500 
1501 	if (phba->cfg_xri_rebalancing) {
1502 		/* Multi-XRI pools handler */
1503 		lpfc_hb_mxp_handler(phba);
1504 	}
1505 
1506 	vports = lpfc_create_vport_work_array(phba);
1507 	if (vports != NULL)
1508 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1509 			lpfc_rcv_seq_check_edtov(vports[i]);
1510 			lpfc_fdmi_change_check(vports[i]);
1511 		}
1512 	lpfc_destroy_vport_work_array(phba, vports);
1513 
1514 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1515 		(phba->pport->load_flag & FC_UNLOADING) ||
1516 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1517 		return;
1518 
1519 	if (phba->elsbuf_cnt &&
1520 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1521 		spin_lock_irq(&phba->hbalock);
1522 		list_splice_init(&phba->elsbuf, &completions);
1523 		phba->elsbuf_cnt = 0;
1524 		phba->elsbuf_prev_cnt = 0;
1525 		spin_unlock_irq(&phba->hbalock);
1526 
1527 		while (!list_empty(&completions)) {
1528 			list_remove_head(&completions, buf_ptr,
1529 				struct lpfc_dmabuf, list);
1530 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1531 			kfree(buf_ptr);
1532 		}
1533 	}
1534 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1535 
1536 	/* If there is no heart beat outstanding, issue a heartbeat command */
1537 	if (phba->cfg_enable_hba_heartbeat) {
1538 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1539 		spin_lock_irq(&phba->pport->work_port_lock);
1540 		if (time_after(phba->last_completion_time +
1541 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1542 				jiffies)) {
1543 			spin_unlock_irq(&phba->pport->work_port_lock);
1544 			if (phba->hba_flag & HBA_HBEAT_INP)
1545 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1546 			else
1547 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1548 			goto out;
1549 		}
1550 		spin_unlock_irq(&phba->pport->work_port_lock);
1551 
1552 		/* Check if a MBX_HEARTBEAT is already in progress */
1553 		if (phba->hba_flag & HBA_HBEAT_INP) {
1554 			/*
1555 			 * If heart beat timeout called with HBA_HBEAT_INP set
1556 			 * we need to give the hb mailbox cmd a chance to
1557 			 * complete or TMO.
1558 			 */
1559 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1560 				"0459 Adapter heartbeat still outstanding: "
1561 				"last compl time was %d ms.\n",
1562 				jiffies_to_msecs(jiffies
1563 					 - phba->last_completion_time));
1564 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1565 		} else {
1566 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1567 				(list_empty(&psli->mboxq))) {
1568 
1569 				retval = lpfc_issue_hb_mbox(phba);
1570 				if (retval) {
1571 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1572 					goto out;
1573 				}
1574 				phba->skipped_hb = 0;
1575 			} else if (time_before_eq(phba->last_completion_time,
1576 					phba->skipped_hb)) {
1577 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1578 					"2857 Last completion time not "
1579 					" updated in %d ms\n",
1580 					jiffies_to_msecs(jiffies
1581 						 - phba->last_completion_time));
1582 			} else
1583 				phba->skipped_hb = jiffies;
1584 
1585 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1586 			goto out;
1587 		}
1588 	} else {
1589 		/* Check to see if we want to force a MBX_HEARTBEAT */
1590 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1591 			retval = lpfc_issue_hb_mbox(phba);
1592 			if (retval)
1593 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1594 			else
1595 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1596 			goto out;
1597 		}
1598 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1599 	}
1600 out:
1601 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1602 }
1603 
1604 /**
1605  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1606  * @phba: pointer to lpfc hba data structure.
1607  *
1608  * This routine is called to bring the HBA offline when HBA hardware error
1609  * other than Port Error 6 has been detected.
1610  **/
1611 static void
1612 lpfc_offline_eratt(struct lpfc_hba *phba)
1613 {
1614 	struct lpfc_sli   *psli = &phba->sli;
1615 
1616 	spin_lock_irq(&phba->hbalock);
1617 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1618 	spin_unlock_irq(&phba->hbalock);
1619 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1620 
1621 	lpfc_offline(phba);
1622 	lpfc_reset_barrier(phba);
1623 	spin_lock_irq(&phba->hbalock);
1624 	lpfc_sli_brdreset(phba);
1625 	spin_unlock_irq(&phba->hbalock);
1626 	lpfc_hba_down_post(phba);
1627 	lpfc_sli_brdready(phba, HS_MBRDY);
1628 	lpfc_unblock_mgmt_io(phba);
1629 	phba->link_state = LPFC_HBA_ERROR;
1630 	return;
1631 }
1632 
1633 /**
1634  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1635  * @phba: pointer to lpfc hba data structure.
1636  *
1637  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1638  * other than Port Error 6 has been detected.
1639  **/
1640 void
1641 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1642 {
1643 	spin_lock_irq(&phba->hbalock);
1644 	if (phba->link_state == LPFC_HBA_ERROR &&
1645 	    phba->hba_flag & HBA_PCI_ERR) {
1646 		spin_unlock_irq(&phba->hbalock);
1647 		return;
1648 	}
1649 	phba->link_state = LPFC_HBA_ERROR;
1650 	spin_unlock_irq(&phba->hbalock);
1651 
1652 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1653 	lpfc_sli_flush_io_rings(phba);
1654 	lpfc_offline(phba);
1655 	lpfc_hba_down_post(phba);
1656 	lpfc_unblock_mgmt_io(phba);
1657 }
1658 
1659 /**
1660  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1661  * @phba: pointer to lpfc hba data structure.
1662  *
1663  * This routine is invoked to handle the deferred HBA hardware error
1664  * conditions. This type of error is indicated by HBA by setting ER1
1665  * and another ER bit in the host status register. The driver will
1666  * wait until the ER1 bit clears before handling the error condition.
1667  **/
1668 static void
1669 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1670 {
1671 	uint32_t old_host_status = phba->work_hs;
1672 	struct lpfc_sli *psli = &phba->sli;
1673 
1674 	/* If the pci channel is offline, ignore possible errors,
1675 	 * since we cannot communicate with the pci card anyway.
1676 	 */
1677 	if (pci_channel_offline(phba->pcidev)) {
1678 		spin_lock_irq(&phba->hbalock);
1679 		phba->hba_flag &= ~DEFER_ERATT;
1680 		spin_unlock_irq(&phba->hbalock);
1681 		return;
1682 	}
1683 
1684 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1685 			"0479 Deferred Adapter Hardware Error "
1686 			"Data: x%x x%x x%x\n",
1687 			phba->work_hs, phba->work_status[0],
1688 			phba->work_status[1]);
1689 
1690 	spin_lock_irq(&phba->hbalock);
1691 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1692 	spin_unlock_irq(&phba->hbalock);
1693 
1694 
1695 	/*
1696 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1697 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1698 	 * SCSI layer retry it after re-establishing link.
1699 	 */
1700 	lpfc_sli_abort_fcp_rings(phba);
1701 
1702 	/*
1703 	 * There was a firmware error. Take the hba offline and then
1704 	 * attempt to restart it.
1705 	 */
1706 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1707 	lpfc_offline(phba);
1708 
1709 	/* Wait for the ER1 bit to clear.*/
1710 	while (phba->work_hs & HS_FFER1) {
1711 		msleep(100);
1712 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1713 			phba->work_hs = UNPLUG_ERR ;
1714 			break;
1715 		}
1716 		/* If driver is unloading let the worker thread continue */
1717 		if (phba->pport->load_flag & FC_UNLOADING) {
1718 			phba->work_hs = 0;
1719 			break;
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * This is to ptrotect against a race condition in which
1725 	 * first write to the host attention register clear the
1726 	 * host status register.
1727 	 */
1728 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1729 		phba->work_hs = old_host_status & ~HS_FFER1;
1730 
1731 	spin_lock_irq(&phba->hbalock);
1732 	phba->hba_flag &= ~DEFER_ERATT;
1733 	spin_unlock_irq(&phba->hbalock);
1734 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1735 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1736 }
1737 
1738 static void
1739 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1740 {
1741 	struct lpfc_board_event_header board_event;
1742 	struct Scsi_Host *shost;
1743 
1744 	board_event.event_type = FC_REG_BOARD_EVENT;
1745 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1746 	shost = lpfc_shost_from_vport(phba->pport);
1747 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1748 				  sizeof(board_event),
1749 				  (char *) &board_event,
1750 				  LPFC_NL_VENDOR_ID);
1751 }
1752 
1753 /**
1754  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1755  * @phba: pointer to lpfc hba data structure.
1756  *
1757  * This routine is invoked to handle the following HBA hardware error
1758  * conditions:
1759  * 1 - HBA error attention interrupt
1760  * 2 - DMA ring index out of range
1761  * 3 - Mailbox command came back as unknown
1762  **/
1763 static void
1764 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1765 {
1766 	struct lpfc_vport *vport = phba->pport;
1767 	struct lpfc_sli   *psli = &phba->sli;
1768 	uint32_t event_data;
1769 	unsigned long temperature;
1770 	struct temp_event temp_event_data;
1771 	struct Scsi_Host  *shost;
1772 
1773 	/* If the pci channel is offline, ignore possible errors,
1774 	 * since we cannot communicate with the pci card anyway.
1775 	 */
1776 	if (pci_channel_offline(phba->pcidev)) {
1777 		spin_lock_irq(&phba->hbalock);
1778 		phba->hba_flag &= ~DEFER_ERATT;
1779 		spin_unlock_irq(&phba->hbalock);
1780 		return;
1781 	}
1782 
1783 	/* If resets are disabled then leave the HBA alone and return */
1784 	if (!phba->cfg_enable_hba_reset)
1785 		return;
1786 
1787 	/* Send an internal error event to mgmt application */
1788 	lpfc_board_errevt_to_mgmt(phba);
1789 
1790 	if (phba->hba_flag & DEFER_ERATT)
1791 		lpfc_handle_deferred_eratt(phba);
1792 
1793 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1794 		if (phba->work_hs & HS_FFER6)
1795 			/* Re-establishing Link */
1796 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1797 					"1301 Re-establishing Link "
1798 					"Data: x%x x%x x%x\n",
1799 					phba->work_hs, phba->work_status[0],
1800 					phba->work_status[1]);
1801 		if (phba->work_hs & HS_FFER8)
1802 			/* Device Zeroization */
1803 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1804 					"2861 Host Authentication device "
1805 					"zeroization Data:x%x x%x x%x\n",
1806 					phba->work_hs, phba->work_status[0],
1807 					phba->work_status[1]);
1808 
1809 		spin_lock_irq(&phba->hbalock);
1810 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1811 		spin_unlock_irq(&phba->hbalock);
1812 
1813 		/*
1814 		* Firmware stops when it triggled erratt with HS_FFER6.
1815 		* That could cause the I/Os dropped by the firmware.
1816 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1817 		* retry it after re-establishing link.
1818 		*/
1819 		lpfc_sli_abort_fcp_rings(phba);
1820 
1821 		/*
1822 		 * There was a firmware error.  Take the hba offline and then
1823 		 * attempt to restart it.
1824 		 */
1825 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1826 		lpfc_offline(phba);
1827 		lpfc_sli_brdrestart(phba);
1828 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1829 			lpfc_unblock_mgmt_io(phba);
1830 			return;
1831 		}
1832 		lpfc_unblock_mgmt_io(phba);
1833 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1834 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1835 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1836 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1837 		temp_event_data.data = (uint32_t)temperature;
1838 
1839 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1840 				"0406 Adapter maximum temperature exceeded "
1841 				"(%ld), taking this port offline "
1842 				"Data: x%x x%x x%x\n",
1843 				temperature, phba->work_hs,
1844 				phba->work_status[0], phba->work_status[1]);
1845 
1846 		shost = lpfc_shost_from_vport(phba->pport);
1847 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1848 					  sizeof(temp_event_data),
1849 					  (char *) &temp_event_data,
1850 					  SCSI_NL_VID_TYPE_PCI
1851 					  | PCI_VENDOR_ID_EMULEX);
1852 
1853 		spin_lock_irq(&phba->hbalock);
1854 		phba->over_temp_state = HBA_OVER_TEMP;
1855 		spin_unlock_irq(&phba->hbalock);
1856 		lpfc_offline_eratt(phba);
1857 
1858 	} else {
1859 		/* The if clause above forces this code path when the status
1860 		 * failure is a value other than FFER6. Do not call the offline
1861 		 * twice. This is the adapter hardware error path.
1862 		 */
1863 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1864 				"0457 Adapter Hardware Error "
1865 				"Data: x%x x%x x%x\n",
1866 				phba->work_hs,
1867 				phba->work_status[0], phba->work_status[1]);
1868 
1869 		event_data = FC_REG_DUMP_EVENT;
1870 		shost = lpfc_shost_from_vport(vport);
1871 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1872 				sizeof(event_data), (char *) &event_data,
1873 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1874 
1875 		lpfc_offline_eratt(phba);
1876 	}
1877 	return;
1878 }
1879 
1880 /**
1881  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1882  * @phba: pointer to lpfc hba data structure.
1883  * @mbx_action: flag for mailbox shutdown action.
1884  * @en_rn_msg: send reset/port recovery message.
1885  * This routine is invoked to perform an SLI4 port PCI function reset in
1886  * response to port status register polling attention. It waits for port
1887  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1888  * During this process, interrupt vectors are freed and later requested
1889  * for handling possible port resource change.
1890  **/
1891 static int
1892 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1893 			    bool en_rn_msg)
1894 {
1895 	int rc;
1896 	uint32_t intr_mode;
1897 	LPFC_MBOXQ_t *mboxq;
1898 
1899 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1900 	    LPFC_SLI_INTF_IF_TYPE_2) {
1901 		/*
1902 		 * On error status condition, driver need to wait for port
1903 		 * ready before performing reset.
1904 		 */
1905 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1906 		if (rc)
1907 			return rc;
1908 	}
1909 
1910 	/* need reset: attempt for port recovery */
1911 	if (en_rn_msg)
1912 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1913 				"2887 Reset Needed: Attempting Port "
1914 				"Recovery...\n");
1915 
1916 	/* If we are no wait, the HBA has been reset and is not
1917 	 * functional, thus we should clear
1918 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1919 	 */
1920 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1921 		spin_lock_irq(&phba->hbalock);
1922 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1923 		if (phba->sli.mbox_active) {
1924 			mboxq = phba->sli.mbox_active;
1925 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1926 			__lpfc_mbox_cmpl_put(phba, mboxq);
1927 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1928 			phba->sli.mbox_active = NULL;
1929 		}
1930 		spin_unlock_irq(&phba->hbalock);
1931 	}
1932 
1933 	lpfc_offline_prep(phba, mbx_action);
1934 	lpfc_sli_flush_io_rings(phba);
1935 	lpfc_offline(phba);
1936 	/* release interrupt for possible resource change */
1937 	lpfc_sli4_disable_intr(phba);
1938 	rc = lpfc_sli_brdrestart(phba);
1939 	if (rc) {
1940 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1941 				"6309 Failed to restart board\n");
1942 		return rc;
1943 	}
1944 	/* request and enable interrupt */
1945 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1946 	if (intr_mode == LPFC_INTR_ERROR) {
1947 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1948 				"3175 Failed to enable interrupt\n");
1949 		return -EIO;
1950 	}
1951 	phba->intr_mode = intr_mode;
1952 	rc = lpfc_online(phba);
1953 	if (rc == 0)
1954 		lpfc_unblock_mgmt_io(phba);
1955 
1956 	return rc;
1957 }
1958 
1959 /**
1960  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1961  * @phba: pointer to lpfc hba data structure.
1962  *
1963  * This routine is invoked to handle the SLI4 HBA hardware error attention
1964  * conditions.
1965  **/
1966 static void
1967 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1968 {
1969 	struct lpfc_vport *vport = phba->pport;
1970 	uint32_t event_data;
1971 	struct Scsi_Host *shost;
1972 	uint32_t if_type;
1973 	struct lpfc_register portstat_reg = {0};
1974 	uint32_t reg_err1, reg_err2;
1975 	uint32_t uerrlo_reg, uemasklo_reg;
1976 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1977 	bool en_rn_msg = true;
1978 	struct temp_event temp_event_data;
1979 	struct lpfc_register portsmphr_reg;
1980 	int rc, i;
1981 
1982 	/* If the pci channel is offline, ignore possible errors, since
1983 	 * we cannot communicate with the pci card anyway.
1984 	 */
1985 	if (pci_channel_offline(phba->pcidev)) {
1986 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1987 				"3166 pci channel is offline\n");
1988 		return;
1989 	}
1990 
1991 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
1992 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
1993 	switch (if_type) {
1994 	case LPFC_SLI_INTF_IF_TYPE_0:
1995 		pci_rd_rc1 = lpfc_readl(
1996 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
1997 				&uerrlo_reg);
1998 		pci_rd_rc2 = lpfc_readl(
1999 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2000 				&uemasklo_reg);
2001 		/* consider PCI bus read error as pci_channel_offline */
2002 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2003 			return;
2004 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2005 			lpfc_sli4_offline_eratt(phba);
2006 			return;
2007 		}
2008 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2009 				"7623 Checking UE recoverable");
2010 
2011 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2012 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2013 				       &portsmphr_reg.word0))
2014 				continue;
2015 
2016 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2017 						   &portsmphr_reg);
2018 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2019 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2020 				break;
2021 			/*Sleep for 1Sec, before checking SEMAPHORE */
2022 			msleep(1000);
2023 		}
2024 
2025 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2026 				"4827 smphr_port_status x%x : Waited %dSec",
2027 				smphr_port_status, i);
2028 
2029 		/* Recoverable UE, reset the HBA device */
2030 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2031 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2032 			for (i = 0; i < 20; i++) {
2033 				msleep(1000);
2034 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2035 				    &portsmphr_reg.word0) &&
2036 				    (LPFC_POST_STAGE_PORT_READY ==
2037 				     bf_get(lpfc_port_smphr_port_status,
2038 				     &portsmphr_reg))) {
2039 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2040 						LPFC_MBX_NO_WAIT, en_rn_msg);
2041 					if (rc == 0)
2042 						return;
2043 					lpfc_printf_log(phba, KERN_ERR,
2044 						LOG_TRACE_EVENT,
2045 						"4215 Failed to recover UE");
2046 					break;
2047 				}
2048 			}
2049 		}
2050 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2051 				"7624 Firmware not ready: Failing UE recovery,"
2052 				" waited %dSec", i);
2053 		phba->link_state = LPFC_HBA_ERROR;
2054 		break;
2055 
2056 	case LPFC_SLI_INTF_IF_TYPE_2:
2057 	case LPFC_SLI_INTF_IF_TYPE_6:
2058 		pci_rd_rc1 = lpfc_readl(
2059 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2060 				&portstat_reg.word0);
2061 		/* consider PCI bus read error as pci_channel_offline */
2062 		if (pci_rd_rc1 == -EIO) {
2063 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2064 				"3151 PCI bus read access failure: x%x\n",
2065 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2066 			lpfc_sli4_offline_eratt(phba);
2067 			return;
2068 		}
2069 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2070 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2071 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2072 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 					"2889 Port Overtemperature event, "
2074 					"taking port offline Data: x%x x%x\n",
2075 					reg_err1, reg_err2);
2076 
2077 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2078 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2079 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2080 			temp_event_data.data = 0xFFFFFFFF;
2081 
2082 			shost = lpfc_shost_from_vport(phba->pport);
2083 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2084 						  sizeof(temp_event_data),
2085 						  (char *)&temp_event_data,
2086 						  SCSI_NL_VID_TYPE_PCI
2087 						  | PCI_VENDOR_ID_EMULEX);
2088 
2089 			spin_lock_irq(&phba->hbalock);
2090 			phba->over_temp_state = HBA_OVER_TEMP;
2091 			spin_unlock_irq(&phba->hbalock);
2092 			lpfc_sli4_offline_eratt(phba);
2093 			return;
2094 		}
2095 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2096 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2097 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2098 					"3143 Port Down: Firmware Update "
2099 					"Detected\n");
2100 			en_rn_msg = false;
2101 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2102 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2103 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2104 					"3144 Port Down: Debug Dump\n");
2105 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2106 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2107 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2108 					"3145 Port Down: Provisioning\n");
2109 
2110 		/* If resets are disabled then leave the HBA alone and return */
2111 		if (!phba->cfg_enable_hba_reset)
2112 			return;
2113 
2114 		/* Check port status register for function reset */
2115 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2116 				en_rn_msg);
2117 		if (rc == 0) {
2118 			/* don't report event on forced debug dump */
2119 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2120 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2121 				return;
2122 			else
2123 				break;
2124 		}
2125 		/* fall through for not able to recover */
2126 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2127 				"3152 Unrecoverable error\n");
2128 		phba->link_state = LPFC_HBA_ERROR;
2129 		break;
2130 	case LPFC_SLI_INTF_IF_TYPE_1:
2131 	default:
2132 		break;
2133 	}
2134 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2135 			"3123 Report dump event to upper layer\n");
2136 	/* Send an internal error event to mgmt application */
2137 	lpfc_board_errevt_to_mgmt(phba);
2138 
2139 	event_data = FC_REG_DUMP_EVENT;
2140 	shost = lpfc_shost_from_vport(vport);
2141 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2142 				  sizeof(event_data), (char *) &event_data,
2143 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2144 }
2145 
2146 /**
2147  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2148  * @phba: pointer to lpfc HBA data structure.
2149  *
2150  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2151  * routine from the API jump table function pointer from the lpfc_hba struct.
2152  *
2153  * Return codes
2154  *   0 - success.
2155  *   Any other value - error.
2156  **/
2157 void
2158 lpfc_handle_eratt(struct lpfc_hba *phba)
2159 {
2160 	(*phba->lpfc_handle_eratt)(phba);
2161 }
2162 
2163 /**
2164  * lpfc_handle_latt - The HBA link event handler
2165  * @phba: pointer to lpfc hba data structure.
2166  *
2167  * This routine is invoked from the worker thread to handle a HBA host
2168  * attention link event. SLI3 only.
2169  **/
2170 void
2171 lpfc_handle_latt(struct lpfc_hba *phba)
2172 {
2173 	struct lpfc_vport *vport = phba->pport;
2174 	struct lpfc_sli   *psli = &phba->sli;
2175 	LPFC_MBOXQ_t *pmb;
2176 	volatile uint32_t control;
2177 	struct lpfc_dmabuf *mp;
2178 	int rc = 0;
2179 
2180 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2181 	if (!pmb) {
2182 		rc = 1;
2183 		goto lpfc_handle_latt_err_exit;
2184 	}
2185 
2186 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2187 	if (!mp) {
2188 		rc = 2;
2189 		goto lpfc_handle_latt_free_pmb;
2190 	}
2191 
2192 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2193 	if (!mp->virt) {
2194 		rc = 3;
2195 		goto lpfc_handle_latt_free_mp;
2196 	}
2197 
2198 	/* Cleanup any outstanding ELS commands */
2199 	lpfc_els_flush_all_cmd(phba);
2200 
2201 	psli->slistat.link_event++;
2202 	lpfc_read_topology(phba, pmb, mp);
2203 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2204 	pmb->vport = vport;
2205 	/* Block ELS IOCBs until we have processed this mbox command */
2206 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2207 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2208 	if (rc == MBX_NOT_FINISHED) {
2209 		rc = 4;
2210 		goto lpfc_handle_latt_free_mbuf;
2211 	}
2212 
2213 	/* Clear Link Attention in HA REG */
2214 	spin_lock_irq(&phba->hbalock);
2215 	writel(HA_LATT, phba->HAregaddr);
2216 	readl(phba->HAregaddr); /* flush */
2217 	spin_unlock_irq(&phba->hbalock);
2218 
2219 	return;
2220 
2221 lpfc_handle_latt_free_mbuf:
2222 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2223 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
2224 lpfc_handle_latt_free_mp:
2225 	kfree(mp);
2226 lpfc_handle_latt_free_pmb:
2227 	mempool_free(pmb, phba->mbox_mem_pool);
2228 lpfc_handle_latt_err_exit:
2229 	/* Enable Link attention interrupts */
2230 	spin_lock_irq(&phba->hbalock);
2231 	psli->sli_flag |= LPFC_PROCESS_LA;
2232 	control = readl(phba->HCregaddr);
2233 	control |= HC_LAINT_ENA;
2234 	writel(control, phba->HCregaddr);
2235 	readl(phba->HCregaddr); /* flush */
2236 
2237 	/* Clear Link Attention in HA REG */
2238 	writel(HA_LATT, phba->HAregaddr);
2239 	readl(phba->HAregaddr); /* flush */
2240 	spin_unlock_irq(&phba->hbalock);
2241 	lpfc_linkdown(phba);
2242 	phba->link_state = LPFC_HBA_ERROR;
2243 
2244 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2245 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2246 
2247 	return;
2248 }
2249 
2250 /**
2251  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2252  * @phba: pointer to lpfc hba data structure.
2253  * @vpd: pointer to the vital product data.
2254  * @len: length of the vital product data in bytes.
2255  *
2256  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2257  * an array of characters. In this routine, the ModelName, ProgramType, and
2258  * ModelDesc, etc. fields of the phba data structure will be populated.
2259  *
2260  * Return codes
2261  *   0 - pointer to the VPD passed in is NULL
2262  *   1 - success
2263  **/
2264 int
2265 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2266 {
2267 	uint8_t lenlo, lenhi;
2268 	int Length;
2269 	int i, j;
2270 	int finished = 0;
2271 	int index = 0;
2272 
2273 	if (!vpd)
2274 		return 0;
2275 
2276 	/* Vital Product */
2277 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2278 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2279 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2280 			(uint32_t) vpd[3]);
2281 	while (!finished && (index < (len - 4))) {
2282 		switch (vpd[index]) {
2283 		case 0x82:
2284 		case 0x91:
2285 			index += 1;
2286 			lenlo = vpd[index];
2287 			index += 1;
2288 			lenhi = vpd[index];
2289 			index += 1;
2290 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2291 			index += i;
2292 			break;
2293 		case 0x90:
2294 			index += 1;
2295 			lenlo = vpd[index];
2296 			index += 1;
2297 			lenhi = vpd[index];
2298 			index += 1;
2299 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2300 			if (Length > len - index)
2301 				Length = len - index;
2302 			while (Length > 0) {
2303 			/* Look for Serial Number */
2304 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2305 				index += 2;
2306 				i = vpd[index];
2307 				index += 1;
2308 				j = 0;
2309 				Length -= (3+i);
2310 				while(i--) {
2311 					phba->SerialNumber[j++] = vpd[index++];
2312 					if (j == 31)
2313 						break;
2314 				}
2315 				phba->SerialNumber[j] = 0;
2316 				continue;
2317 			}
2318 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2319 				phba->vpd_flag |= VPD_MODEL_DESC;
2320 				index += 2;
2321 				i = vpd[index];
2322 				index += 1;
2323 				j = 0;
2324 				Length -= (3+i);
2325 				while(i--) {
2326 					phba->ModelDesc[j++] = vpd[index++];
2327 					if (j == 255)
2328 						break;
2329 				}
2330 				phba->ModelDesc[j] = 0;
2331 				continue;
2332 			}
2333 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2334 				phba->vpd_flag |= VPD_MODEL_NAME;
2335 				index += 2;
2336 				i = vpd[index];
2337 				index += 1;
2338 				j = 0;
2339 				Length -= (3+i);
2340 				while(i--) {
2341 					phba->ModelName[j++] = vpd[index++];
2342 					if (j == 79)
2343 						break;
2344 				}
2345 				phba->ModelName[j] = 0;
2346 				continue;
2347 			}
2348 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2349 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2350 				index += 2;
2351 				i = vpd[index];
2352 				index += 1;
2353 				j = 0;
2354 				Length -= (3+i);
2355 				while(i--) {
2356 					phba->ProgramType[j++] = vpd[index++];
2357 					if (j == 255)
2358 						break;
2359 				}
2360 				phba->ProgramType[j] = 0;
2361 				continue;
2362 			}
2363 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2364 				phba->vpd_flag |= VPD_PORT;
2365 				index += 2;
2366 				i = vpd[index];
2367 				index += 1;
2368 				j = 0;
2369 				Length -= (3+i);
2370 				while(i--) {
2371 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2372 					    (phba->sli4_hba.pport_name_sta ==
2373 					     LPFC_SLI4_PPNAME_GET)) {
2374 						j++;
2375 						index++;
2376 					} else
2377 						phba->Port[j++] = vpd[index++];
2378 					if (j == 19)
2379 						break;
2380 				}
2381 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2382 				    (phba->sli4_hba.pport_name_sta ==
2383 				     LPFC_SLI4_PPNAME_NON))
2384 					phba->Port[j] = 0;
2385 				continue;
2386 			}
2387 			else {
2388 				index += 2;
2389 				i = vpd[index];
2390 				index += 1;
2391 				index += i;
2392 				Length -= (3 + i);
2393 			}
2394 		}
2395 		finished = 0;
2396 		break;
2397 		case 0x78:
2398 			finished = 1;
2399 			break;
2400 		default:
2401 			index ++;
2402 			break;
2403 		}
2404 	}
2405 
2406 	return(1);
2407 }
2408 
2409 /**
2410  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2411  * @phba: pointer to lpfc hba data structure.
2412  * @mdp: pointer to the data structure to hold the derived model name.
2413  * @descp: pointer to the data structure to hold the derived description.
2414  *
2415  * This routine retrieves HBA's description based on its registered PCI device
2416  * ID. The @descp passed into this function points to an array of 256 chars. It
2417  * shall be returned with the model name, maximum speed, and the host bus type.
2418  * The @mdp passed into this function points to an array of 80 chars. When the
2419  * function returns, the @mdp will be filled with the model name.
2420  **/
2421 static void
2422 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2423 {
2424 	lpfc_vpd_t *vp;
2425 	uint16_t dev_id = phba->pcidev->device;
2426 	int max_speed;
2427 	int GE = 0;
2428 	int oneConnect = 0; /* default is not a oneConnect */
2429 	struct {
2430 		char *name;
2431 		char *bus;
2432 		char *function;
2433 	} m = {"<Unknown>", "", ""};
2434 
2435 	if (mdp && mdp[0] != '\0'
2436 		&& descp && descp[0] != '\0')
2437 		return;
2438 
2439 	if (phba->lmt & LMT_64Gb)
2440 		max_speed = 64;
2441 	else if (phba->lmt & LMT_32Gb)
2442 		max_speed = 32;
2443 	else if (phba->lmt & LMT_16Gb)
2444 		max_speed = 16;
2445 	else if (phba->lmt & LMT_10Gb)
2446 		max_speed = 10;
2447 	else if (phba->lmt & LMT_8Gb)
2448 		max_speed = 8;
2449 	else if (phba->lmt & LMT_4Gb)
2450 		max_speed = 4;
2451 	else if (phba->lmt & LMT_2Gb)
2452 		max_speed = 2;
2453 	else if (phba->lmt & LMT_1Gb)
2454 		max_speed = 1;
2455 	else
2456 		max_speed = 0;
2457 
2458 	vp = &phba->vpd;
2459 
2460 	switch (dev_id) {
2461 	case PCI_DEVICE_ID_FIREFLY:
2462 		m = (typeof(m)){"LP6000", "PCI",
2463 				"Obsolete, Unsupported Fibre Channel Adapter"};
2464 		break;
2465 	case PCI_DEVICE_ID_SUPERFLY:
2466 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2467 			m = (typeof(m)){"LP7000", "PCI", ""};
2468 		else
2469 			m = (typeof(m)){"LP7000E", "PCI", ""};
2470 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2471 		break;
2472 	case PCI_DEVICE_ID_DRAGONFLY:
2473 		m = (typeof(m)){"LP8000", "PCI",
2474 				"Obsolete, Unsupported Fibre Channel Adapter"};
2475 		break;
2476 	case PCI_DEVICE_ID_CENTAUR:
2477 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2478 			m = (typeof(m)){"LP9002", "PCI", ""};
2479 		else
2480 			m = (typeof(m)){"LP9000", "PCI", ""};
2481 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2482 		break;
2483 	case PCI_DEVICE_ID_RFLY:
2484 		m = (typeof(m)){"LP952", "PCI",
2485 				"Obsolete, Unsupported Fibre Channel Adapter"};
2486 		break;
2487 	case PCI_DEVICE_ID_PEGASUS:
2488 		m = (typeof(m)){"LP9802", "PCI-X",
2489 				"Obsolete, Unsupported Fibre Channel Adapter"};
2490 		break;
2491 	case PCI_DEVICE_ID_THOR:
2492 		m = (typeof(m)){"LP10000", "PCI-X",
2493 				"Obsolete, Unsupported Fibre Channel Adapter"};
2494 		break;
2495 	case PCI_DEVICE_ID_VIPER:
2496 		m = (typeof(m)){"LPX1000",  "PCI-X",
2497 				"Obsolete, Unsupported Fibre Channel Adapter"};
2498 		break;
2499 	case PCI_DEVICE_ID_PFLY:
2500 		m = (typeof(m)){"LP982", "PCI-X",
2501 				"Obsolete, Unsupported Fibre Channel Adapter"};
2502 		break;
2503 	case PCI_DEVICE_ID_TFLY:
2504 		m = (typeof(m)){"LP1050", "PCI-X",
2505 				"Obsolete, Unsupported Fibre Channel Adapter"};
2506 		break;
2507 	case PCI_DEVICE_ID_HELIOS:
2508 		m = (typeof(m)){"LP11000", "PCI-X2",
2509 				"Obsolete, Unsupported Fibre Channel Adapter"};
2510 		break;
2511 	case PCI_DEVICE_ID_HELIOS_SCSP:
2512 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2513 				"Obsolete, Unsupported Fibre Channel Adapter"};
2514 		break;
2515 	case PCI_DEVICE_ID_HELIOS_DCSP:
2516 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2517 				"Obsolete, Unsupported Fibre Channel Adapter"};
2518 		break;
2519 	case PCI_DEVICE_ID_NEPTUNE:
2520 		m = (typeof(m)){"LPe1000", "PCIe",
2521 				"Obsolete, Unsupported Fibre Channel Adapter"};
2522 		break;
2523 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2524 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2525 				"Obsolete, Unsupported Fibre Channel Adapter"};
2526 		break;
2527 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2528 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2529 				"Obsolete, Unsupported Fibre Channel Adapter"};
2530 		break;
2531 	case PCI_DEVICE_ID_BMID:
2532 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2533 		break;
2534 	case PCI_DEVICE_ID_BSMB:
2535 		m = (typeof(m)){"LP111", "PCI-X2",
2536 				"Obsolete, Unsupported Fibre Channel Adapter"};
2537 		break;
2538 	case PCI_DEVICE_ID_ZEPHYR:
2539 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2540 		break;
2541 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2542 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2543 		break;
2544 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2545 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2546 		GE = 1;
2547 		break;
2548 	case PCI_DEVICE_ID_ZMID:
2549 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2550 		break;
2551 	case PCI_DEVICE_ID_ZSMB:
2552 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2553 		break;
2554 	case PCI_DEVICE_ID_LP101:
2555 		m = (typeof(m)){"LP101", "PCI-X",
2556 				"Obsolete, Unsupported Fibre Channel Adapter"};
2557 		break;
2558 	case PCI_DEVICE_ID_LP10000S:
2559 		m = (typeof(m)){"LP10000-S", "PCI",
2560 				"Obsolete, Unsupported Fibre Channel Adapter"};
2561 		break;
2562 	case PCI_DEVICE_ID_LP11000S:
2563 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2564 				"Obsolete, Unsupported Fibre Channel Adapter"};
2565 		break;
2566 	case PCI_DEVICE_ID_LPE11000S:
2567 		m = (typeof(m)){"LPe11000-S", "PCIe",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_SAT:
2571 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2572 		break;
2573 	case PCI_DEVICE_ID_SAT_MID:
2574 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2575 		break;
2576 	case PCI_DEVICE_ID_SAT_SMB:
2577 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2578 		break;
2579 	case PCI_DEVICE_ID_SAT_DCSP:
2580 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2581 		break;
2582 	case PCI_DEVICE_ID_SAT_SCSP:
2583 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2584 		break;
2585 	case PCI_DEVICE_ID_SAT_S:
2586 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2587 		break;
2588 	case PCI_DEVICE_ID_HORNET:
2589 		m = (typeof(m)){"LP21000", "PCIe",
2590 				"Obsolete, Unsupported FCoE Adapter"};
2591 		GE = 1;
2592 		break;
2593 	case PCI_DEVICE_ID_PROTEUS_VF:
2594 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2595 				"Obsolete, Unsupported Fibre Channel Adapter"};
2596 		break;
2597 	case PCI_DEVICE_ID_PROTEUS_PF:
2598 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2599 				"Obsolete, Unsupported Fibre Channel Adapter"};
2600 		break;
2601 	case PCI_DEVICE_ID_PROTEUS_S:
2602 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2603 				"Obsolete, Unsupported Fibre Channel Adapter"};
2604 		break;
2605 	case PCI_DEVICE_ID_TIGERSHARK:
2606 		oneConnect = 1;
2607 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2608 		break;
2609 	case PCI_DEVICE_ID_TOMCAT:
2610 		oneConnect = 1;
2611 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2612 		break;
2613 	case PCI_DEVICE_ID_FALCON:
2614 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2615 				"EmulexSecure Fibre"};
2616 		break;
2617 	case PCI_DEVICE_ID_BALIUS:
2618 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2619 				"Obsolete, Unsupported Fibre Channel Adapter"};
2620 		break;
2621 	case PCI_DEVICE_ID_LANCER_FC:
2622 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2623 		break;
2624 	case PCI_DEVICE_ID_LANCER_FC_VF:
2625 		m = (typeof(m)){"LPe16000", "PCIe",
2626 				"Obsolete, Unsupported Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_LANCER_FCOE:
2629 		oneConnect = 1;
2630 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2631 		break;
2632 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2633 		oneConnect = 1;
2634 		m = (typeof(m)){"OCe15100", "PCIe",
2635 				"Obsolete, Unsupported FCoE"};
2636 		break;
2637 	case PCI_DEVICE_ID_LANCER_G6_FC:
2638 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2639 		break;
2640 	case PCI_DEVICE_ID_LANCER_G7_FC:
2641 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2642 		break;
2643 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2644 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2645 		break;
2646 	case PCI_DEVICE_ID_SKYHAWK:
2647 	case PCI_DEVICE_ID_SKYHAWK_VF:
2648 		oneConnect = 1;
2649 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2650 		break;
2651 	default:
2652 		m = (typeof(m)){"Unknown", "", ""};
2653 		break;
2654 	}
2655 
2656 	if (mdp && mdp[0] == '\0')
2657 		snprintf(mdp, 79,"%s", m.name);
2658 	/*
2659 	 * oneConnect hba requires special processing, they are all initiators
2660 	 * and we put the port number on the end
2661 	 */
2662 	if (descp && descp[0] == '\0') {
2663 		if (oneConnect)
2664 			snprintf(descp, 255,
2665 				"Emulex OneConnect %s, %s Initiator %s",
2666 				m.name, m.function,
2667 				phba->Port);
2668 		else if (max_speed == 0)
2669 			snprintf(descp, 255,
2670 				"Emulex %s %s %s",
2671 				m.name, m.bus, m.function);
2672 		else
2673 			snprintf(descp, 255,
2674 				"Emulex %s %d%s %s %s",
2675 				m.name, max_speed, (GE) ? "GE" : "Gb",
2676 				m.bus, m.function);
2677 	}
2678 }
2679 
2680 /**
2681  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2682  * @phba: pointer to lpfc hba data structure.
2683  * @pring: pointer to a IOCB ring.
2684  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2685  *
2686  * This routine posts a given number of IOCBs with the associated DMA buffer
2687  * descriptors specified by the cnt argument to the given IOCB ring.
2688  *
2689  * Return codes
2690  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2691  **/
2692 int
2693 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2694 {
2695 	IOCB_t *icmd;
2696 	struct lpfc_iocbq *iocb;
2697 	struct lpfc_dmabuf *mp1, *mp2;
2698 
2699 	cnt += pring->missbufcnt;
2700 
2701 	/* While there are buffers to post */
2702 	while (cnt > 0) {
2703 		/* Allocate buffer for  command iocb */
2704 		iocb = lpfc_sli_get_iocbq(phba);
2705 		if (iocb == NULL) {
2706 			pring->missbufcnt = cnt;
2707 			return cnt;
2708 		}
2709 		icmd = &iocb->iocb;
2710 
2711 		/* 2 buffers can be posted per command */
2712 		/* Allocate buffer to post */
2713 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2714 		if (mp1)
2715 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2716 		if (!mp1 || !mp1->virt) {
2717 			kfree(mp1);
2718 			lpfc_sli_release_iocbq(phba, iocb);
2719 			pring->missbufcnt = cnt;
2720 			return cnt;
2721 		}
2722 
2723 		INIT_LIST_HEAD(&mp1->list);
2724 		/* Allocate buffer to post */
2725 		if (cnt > 1) {
2726 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2727 			if (mp2)
2728 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2729 							    &mp2->phys);
2730 			if (!mp2 || !mp2->virt) {
2731 				kfree(mp2);
2732 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2733 				kfree(mp1);
2734 				lpfc_sli_release_iocbq(phba, iocb);
2735 				pring->missbufcnt = cnt;
2736 				return cnt;
2737 			}
2738 
2739 			INIT_LIST_HEAD(&mp2->list);
2740 		} else {
2741 			mp2 = NULL;
2742 		}
2743 
2744 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2745 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2746 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2747 		icmd->ulpBdeCount = 1;
2748 		cnt--;
2749 		if (mp2) {
2750 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2751 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2752 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2753 			cnt--;
2754 			icmd->ulpBdeCount = 2;
2755 		}
2756 
2757 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2758 		icmd->ulpLe = 1;
2759 
2760 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2761 		    IOCB_ERROR) {
2762 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2763 			kfree(mp1);
2764 			cnt++;
2765 			if (mp2) {
2766 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2767 				kfree(mp2);
2768 				cnt++;
2769 			}
2770 			lpfc_sli_release_iocbq(phba, iocb);
2771 			pring->missbufcnt = cnt;
2772 			return cnt;
2773 		}
2774 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2775 		if (mp2)
2776 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2777 	}
2778 	pring->missbufcnt = 0;
2779 	return 0;
2780 }
2781 
2782 /**
2783  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2784  * @phba: pointer to lpfc hba data structure.
2785  *
2786  * This routine posts initial receive IOCB buffers to the ELS ring. The
2787  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2788  * set to 64 IOCBs. SLI3 only.
2789  *
2790  * Return codes
2791  *   0 - success (currently always success)
2792  **/
2793 static int
2794 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2795 {
2796 	struct lpfc_sli *psli = &phba->sli;
2797 
2798 	/* Ring 0, ELS / CT buffers */
2799 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2800 	/* Ring 2 - FCP no buffers needed */
2801 
2802 	return 0;
2803 }
2804 
2805 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2806 
2807 /**
2808  * lpfc_sha_init - Set up initial array of hash table entries
2809  * @HashResultPointer: pointer to an array as hash table.
2810  *
2811  * This routine sets up the initial values to the array of hash table entries
2812  * for the LC HBAs.
2813  **/
2814 static void
2815 lpfc_sha_init(uint32_t * HashResultPointer)
2816 {
2817 	HashResultPointer[0] = 0x67452301;
2818 	HashResultPointer[1] = 0xEFCDAB89;
2819 	HashResultPointer[2] = 0x98BADCFE;
2820 	HashResultPointer[3] = 0x10325476;
2821 	HashResultPointer[4] = 0xC3D2E1F0;
2822 }
2823 
2824 /**
2825  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2826  * @HashResultPointer: pointer to an initial/result hash table.
2827  * @HashWorkingPointer: pointer to an working hash table.
2828  *
2829  * This routine iterates an initial hash table pointed by @HashResultPointer
2830  * with the values from the working hash table pointeed by @HashWorkingPointer.
2831  * The results are putting back to the initial hash table, returned through
2832  * the @HashResultPointer as the result hash table.
2833  **/
2834 static void
2835 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2836 {
2837 	int t;
2838 	uint32_t TEMP;
2839 	uint32_t A, B, C, D, E;
2840 	t = 16;
2841 	do {
2842 		HashWorkingPointer[t] =
2843 		    S(1,
2844 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2845 								     8] ^
2846 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2847 	} while (++t <= 79);
2848 	t = 0;
2849 	A = HashResultPointer[0];
2850 	B = HashResultPointer[1];
2851 	C = HashResultPointer[2];
2852 	D = HashResultPointer[3];
2853 	E = HashResultPointer[4];
2854 
2855 	do {
2856 		if (t < 20) {
2857 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2858 		} else if (t < 40) {
2859 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2860 		} else if (t < 60) {
2861 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2862 		} else {
2863 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2864 		}
2865 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2866 		E = D;
2867 		D = C;
2868 		C = S(30, B);
2869 		B = A;
2870 		A = TEMP;
2871 	} while (++t <= 79);
2872 
2873 	HashResultPointer[0] += A;
2874 	HashResultPointer[1] += B;
2875 	HashResultPointer[2] += C;
2876 	HashResultPointer[3] += D;
2877 	HashResultPointer[4] += E;
2878 
2879 }
2880 
2881 /**
2882  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2883  * @RandomChallenge: pointer to the entry of host challenge random number array.
2884  * @HashWorking: pointer to the entry of the working hash array.
2885  *
2886  * This routine calculates the working hash array referred by @HashWorking
2887  * from the challenge random numbers associated with the host, referred by
2888  * @RandomChallenge. The result is put into the entry of the working hash
2889  * array and returned by reference through @HashWorking.
2890  **/
2891 static void
2892 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2893 {
2894 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2895 }
2896 
2897 /**
2898  * lpfc_hba_init - Perform special handling for LC HBA initialization
2899  * @phba: pointer to lpfc hba data structure.
2900  * @hbainit: pointer to an array of unsigned 32-bit integers.
2901  *
2902  * This routine performs the special handling for LC HBA initialization.
2903  **/
2904 void
2905 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2906 {
2907 	int t;
2908 	uint32_t *HashWorking;
2909 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2910 
2911 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2912 	if (!HashWorking)
2913 		return;
2914 
2915 	HashWorking[0] = HashWorking[78] = *pwwnn++;
2916 	HashWorking[1] = HashWorking[79] = *pwwnn;
2917 
2918 	for (t = 0; t < 7; t++)
2919 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2920 
2921 	lpfc_sha_init(hbainit);
2922 	lpfc_sha_iterate(hbainit, HashWorking);
2923 	kfree(HashWorking);
2924 }
2925 
2926 /**
2927  * lpfc_cleanup - Performs vport cleanups before deleting a vport
2928  * @vport: pointer to a virtual N_Port data structure.
2929  *
2930  * This routine performs the necessary cleanups before deleting the @vport.
2931  * It invokes the discovery state machine to perform necessary state
2932  * transitions and to release the ndlps associated with the @vport. Note,
2933  * the physical port is treated as @vport 0.
2934  **/
2935 void
2936 lpfc_cleanup(struct lpfc_vport *vport)
2937 {
2938 	struct lpfc_hba   *phba = vport->phba;
2939 	struct lpfc_nodelist *ndlp, *next_ndlp;
2940 	int i = 0;
2941 
2942 	if (phba->link_state > LPFC_LINK_DOWN)
2943 		lpfc_port_link_failure(vport);
2944 
2945 	/* Clean up VMID resources */
2946 	if (lpfc_is_vmid_enabled(phba))
2947 		lpfc_vmid_vport_cleanup(vport);
2948 
2949 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2950 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
2951 		    ndlp->nlp_DID == Fabric_DID) {
2952 			/* Just free up ndlp with Fabric_DID for vports */
2953 			lpfc_nlp_put(ndlp);
2954 			continue;
2955 		}
2956 
2957 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2958 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2959 			lpfc_nlp_put(ndlp);
2960 			continue;
2961 		}
2962 
2963 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
2964 		 * DEVICE_RM event.
2965 		 */
2966 		if (ndlp->nlp_type & NLP_FABRIC &&
2967 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2968 			lpfc_disc_state_machine(vport, ndlp, NULL,
2969 					NLP_EVT_DEVICE_RECOVERY);
2970 
2971 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2972 			lpfc_disc_state_machine(vport, ndlp, NULL,
2973 					NLP_EVT_DEVICE_RM);
2974 	}
2975 
2976 	/* At this point, ALL ndlp's should be gone
2977 	 * because of the previous NLP_EVT_DEVICE_RM.
2978 	 * Lets wait for this to happen, if needed.
2979 	 */
2980 	while (!list_empty(&vport->fc_nodes)) {
2981 		if (i++ > 3000) {
2982 			lpfc_printf_vlog(vport, KERN_ERR,
2983 					 LOG_TRACE_EVENT,
2984 				"0233 Nodelist not empty\n");
2985 			list_for_each_entry_safe(ndlp, next_ndlp,
2986 						&vport->fc_nodes, nlp_listp) {
2987 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2988 						 LOG_TRACE_EVENT,
2989 						 "0282 did:x%x ndlp:x%px "
2990 						 "refcnt:%d xflags x%x nflag x%x\n",
2991 						 ndlp->nlp_DID, (void *)ndlp,
2992 						 kref_read(&ndlp->kref),
2993 						 ndlp->fc4_xpt_flags,
2994 						 ndlp->nlp_flag);
2995 			}
2996 			break;
2997 		}
2998 
2999 		/* Wait for any activity on ndlps to settle */
3000 		msleep(10);
3001 	}
3002 	lpfc_cleanup_vports_rrqs(vport, NULL);
3003 }
3004 
3005 /**
3006  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3007  * @vport: pointer to a virtual N_Port data structure.
3008  *
3009  * This routine stops all the timers associated with a @vport. This function
3010  * is invoked before disabling or deleting a @vport. Note that the physical
3011  * port is treated as @vport 0.
3012  **/
3013 void
3014 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3015 {
3016 	del_timer_sync(&vport->els_tmofunc);
3017 	del_timer_sync(&vport->delayed_disc_tmo);
3018 	lpfc_can_disctmo(vport);
3019 	return;
3020 }
3021 
3022 /**
3023  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3024  * @phba: pointer to lpfc hba data structure.
3025  *
3026  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3027  * caller of this routine should already hold the host lock.
3028  **/
3029 void
3030 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3031 {
3032 	/* Clear pending FCF rediscovery wait flag */
3033 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3034 
3035 	/* Now, try to stop the timer */
3036 	del_timer(&phba->fcf.redisc_wait);
3037 }
3038 
3039 /**
3040  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3041  * @phba: pointer to lpfc hba data structure.
3042  *
3043  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3044  * checks whether the FCF rediscovery wait timer is pending with the host
3045  * lock held before proceeding with disabling the timer and clearing the
3046  * wait timer pendig flag.
3047  **/
3048 void
3049 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3050 {
3051 	spin_lock_irq(&phba->hbalock);
3052 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3053 		/* FCF rediscovery timer already fired or stopped */
3054 		spin_unlock_irq(&phba->hbalock);
3055 		return;
3056 	}
3057 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3058 	/* Clear failover in progress flags */
3059 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3060 	spin_unlock_irq(&phba->hbalock);
3061 }
3062 
3063 /**
3064  * lpfc_cmf_stop - Stop CMF processing
3065  * @phba: pointer to lpfc hba data structure.
3066  *
3067  * This is called when the link goes down or if CMF mode is turned OFF.
3068  * It is also called when going offline or unloaded just before the
3069  * congestion info buffer is unregistered.
3070  **/
3071 void
3072 lpfc_cmf_stop(struct lpfc_hba *phba)
3073 {
3074 	int cpu;
3075 	struct lpfc_cgn_stat *cgs;
3076 
3077 	/* We only do something if CMF is enabled */
3078 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3079 		return;
3080 
3081 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3082 			"6221 Stop CMF / Cancel Timer\n");
3083 
3084 	/* Cancel the CMF timer */
3085 	hrtimer_cancel(&phba->cmf_timer);
3086 
3087 	/* Zero CMF counters */
3088 	atomic_set(&phba->cmf_busy, 0);
3089 	for_each_present_cpu(cpu) {
3090 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3091 		atomic64_set(&cgs->total_bytes, 0);
3092 		atomic64_set(&cgs->rcv_bytes, 0);
3093 		atomic_set(&cgs->rx_io_cnt, 0);
3094 		atomic64_set(&cgs->rx_latency, 0);
3095 	}
3096 	atomic_set(&phba->cmf_bw_wait, 0);
3097 
3098 	/* Resume any blocked IO - Queue unblock on workqueue */
3099 	queue_work(phba->wq, &phba->unblock_request_work);
3100 }
3101 
3102 static inline uint64_t
3103 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3104 {
3105 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3106 
3107 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3108 }
3109 
3110 void
3111 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3112 {
3113 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3114 			"6223 Signal CMF init\n");
3115 
3116 	/* Use the new fc_linkspeed to recalculate */
3117 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3118 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3119 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3120 					    phba->cmf_interval_rate, 1000);
3121 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3122 
3123 	/* This is a signal to firmware to sync up CMF BW with link speed */
3124 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3125 }
3126 
3127 /**
3128  * lpfc_cmf_start - Start CMF processing
3129  * @phba: pointer to lpfc hba data structure.
3130  *
3131  * This is called when the link comes up or if CMF mode is turned OFF
3132  * to Monitor or Managed.
3133  **/
3134 void
3135 lpfc_cmf_start(struct lpfc_hba *phba)
3136 {
3137 	struct lpfc_cgn_stat *cgs;
3138 	int cpu;
3139 
3140 	/* We only do something if CMF is enabled */
3141 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3142 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3143 		return;
3144 
3145 	/* Reinitialize congestion buffer info */
3146 	lpfc_init_congestion_buf(phba);
3147 
3148 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3149 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3150 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3151 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3152 
3153 	atomic_set(&phba->cmf_busy, 0);
3154 	for_each_present_cpu(cpu) {
3155 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3156 		atomic64_set(&cgs->total_bytes, 0);
3157 		atomic64_set(&cgs->rcv_bytes, 0);
3158 		atomic_set(&cgs->rx_io_cnt, 0);
3159 		atomic64_set(&cgs->rx_latency, 0);
3160 	}
3161 	phba->cmf_latency.tv_sec = 0;
3162 	phba->cmf_latency.tv_nsec = 0;
3163 
3164 	lpfc_cmf_signal_init(phba);
3165 
3166 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3167 			"6222 Start CMF / Timer\n");
3168 
3169 	phba->cmf_timer_cnt = 0;
3170 	hrtimer_start(&phba->cmf_timer,
3171 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3172 		      HRTIMER_MODE_REL);
3173 	/* Setup for latency check in IO cmpl routines */
3174 	ktime_get_real_ts64(&phba->cmf_latency);
3175 
3176 	atomic_set(&phba->cmf_bw_wait, 0);
3177 	atomic_set(&phba->cmf_stop_io, 0);
3178 }
3179 
3180 /**
3181  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3182  * @phba: pointer to lpfc hba data structure.
3183  *
3184  * This routine stops all the timers associated with a HBA. This function is
3185  * invoked before either putting a HBA offline or unloading the driver.
3186  **/
3187 void
3188 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3189 {
3190 	if (phba->pport)
3191 		lpfc_stop_vport_timers(phba->pport);
3192 	cancel_delayed_work_sync(&phba->eq_delay_work);
3193 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3194 	del_timer_sync(&phba->sli.mbox_tmo);
3195 	del_timer_sync(&phba->fabric_block_timer);
3196 	del_timer_sync(&phba->eratt_poll);
3197 	del_timer_sync(&phba->hb_tmofunc);
3198 	if (phba->sli_rev == LPFC_SLI_REV4) {
3199 		del_timer_sync(&phba->rrq_tmr);
3200 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3201 	}
3202 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3203 
3204 	switch (phba->pci_dev_grp) {
3205 	case LPFC_PCI_DEV_LP:
3206 		/* Stop any LightPulse device specific driver timers */
3207 		del_timer_sync(&phba->fcp_poll_timer);
3208 		break;
3209 	case LPFC_PCI_DEV_OC:
3210 		/* Stop any OneConnect device specific driver timers */
3211 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3212 		break;
3213 	default:
3214 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3215 				"0297 Invalid device group (x%x)\n",
3216 				phba->pci_dev_grp);
3217 		break;
3218 	}
3219 	return;
3220 }
3221 
3222 /**
3223  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3224  * @phba: pointer to lpfc hba data structure.
3225  * @mbx_action: flag for mailbox no wait action.
3226  *
3227  * This routine marks a HBA's management interface as blocked. Once the HBA's
3228  * management interface is marked as blocked, all the user space access to
3229  * the HBA, whether they are from sysfs interface or libdfc interface will
3230  * all be blocked. The HBA is set to block the management interface when the
3231  * driver prepares the HBA interface for online or offline.
3232  **/
3233 static void
3234 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3235 {
3236 	unsigned long iflag;
3237 	uint8_t actcmd = MBX_HEARTBEAT;
3238 	unsigned long timeout;
3239 
3240 	spin_lock_irqsave(&phba->hbalock, iflag);
3241 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3242 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3243 	if (mbx_action == LPFC_MBX_NO_WAIT)
3244 		return;
3245 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3246 	spin_lock_irqsave(&phba->hbalock, iflag);
3247 	if (phba->sli.mbox_active) {
3248 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3249 		/* Determine how long we might wait for the active mailbox
3250 		 * command to be gracefully completed by firmware.
3251 		 */
3252 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3253 				phba->sli.mbox_active) * 1000) + jiffies;
3254 	}
3255 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3256 
3257 	/* Wait for the outstnading mailbox command to complete */
3258 	while (phba->sli.mbox_active) {
3259 		/* Check active mailbox complete status every 2ms */
3260 		msleep(2);
3261 		if (time_after(jiffies, timeout)) {
3262 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3263 					"2813 Mgmt IO is Blocked %x "
3264 					"- mbox cmd %x still active\n",
3265 					phba->sli.sli_flag, actcmd);
3266 			break;
3267 		}
3268 	}
3269 }
3270 
3271 /**
3272  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3273  * @phba: pointer to lpfc hba data structure.
3274  *
3275  * Allocate RPIs for all active remote nodes. This is needed whenever
3276  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3277  * is to fixup the temporary rpi assignments.
3278  **/
3279 void
3280 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3281 {
3282 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3283 	struct lpfc_vport **vports;
3284 	int i, rpi;
3285 
3286 	if (phba->sli_rev != LPFC_SLI_REV4)
3287 		return;
3288 
3289 	vports = lpfc_create_vport_work_array(phba);
3290 	if (vports == NULL)
3291 		return;
3292 
3293 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3294 		if (vports[i]->load_flag & FC_UNLOADING)
3295 			continue;
3296 
3297 		list_for_each_entry_safe(ndlp, next_ndlp,
3298 					 &vports[i]->fc_nodes,
3299 					 nlp_listp) {
3300 			rpi = lpfc_sli4_alloc_rpi(phba);
3301 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3302 				/* TODO print log? */
3303 				continue;
3304 			}
3305 			ndlp->nlp_rpi = rpi;
3306 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3307 					 LOG_NODE | LOG_DISCOVERY,
3308 					 "0009 Assign RPI x%x to ndlp x%px "
3309 					 "DID:x%06x flg:x%x\n",
3310 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3311 					 ndlp->nlp_flag);
3312 		}
3313 	}
3314 	lpfc_destroy_vport_work_array(phba, vports);
3315 }
3316 
3317 /**
3318  * lpfc_create_expedite_pool - create expedite pool
3319  * @phba: pointer to lpfc hba data structure.
3320  *
3321  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3322  * to expedite pool. Mark them as expedite.
3323  **/
3324 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3325 {
3326 	struct lpfc_sli4_hdw_queue *qp;
3327 	struct lpfc_io_buf *lpfc_ncmd;
3328 	struct lpfc_io_buf *lpfc_ncmd_next;
3329 	struct lpfc_epd_pool *epd_pool;
3330 	unsigned long iflag;
3331 
3332 	epd_pool = &phba->epd_pool;
3333 	qp = &phba->sli4_hba.hdwq[0];
3334 
3335 	spin_lock_init(&epd_pool->lock);
3336 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3337 	spin_lock(&epd_pool->lock);
3338 	INIT_LIST_HEAD(&epd_pool->list);
3339 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3340 				 &qp->lpfc_io_buf_list_put, list) {
3341 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3342 		lpfc_ncmd->expedite = true;
3343 		qp->put_io_bufs--;
3344 		epd_pool->count++;
3345 		if (epd_pool->count >= XRI_BATCH)
3346 			break;
3347 	}
3348 	spin_unlock(&epd_pool->lock);
3349 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3350 }
3351 
3352 /**
3353  * lpfc_destroy_expedite_pool - destroy expedite pool
3354  * @phba: pointer to lpfc hba data structure.
3355  *
3356  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3357  * of HWQ 0. Clear the mark.
3358  **/
3359 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3360 {
3361 	struct lpfc_sli4_hdw_queue *qp;
3362 	struct lpfc_io_buf *lpfc_ncmd;
3363 	struct lpfc_io_buf *lpfc_ncmd_next;
3364 	struct lpfc_epd_pool *epd_pool;
3365 	unsigned long iflag;
3366 
3367 	epd_pool = &phba->epd_pool;
3368 	qp = &phba->sli4_hba.hdwq[0];
3369 
3370 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3371 	spin_lock(&epd_pool->lock);
3372 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3373 				 &epd_pool->list, list) {
3374 		list_move_tail(&lpfc_ncmd->list,
3375 			       &qp->lpfc_io_buf_list_put);
3376 		lpfc_ncmd->flags = false;
3377 		qp->put_io_bufs++;
3378 		epd_pool->count--;
3379 	}
3380 	spin_unlock(&epd_pool->lock);
3381 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3382 }
3383 
3384 /**
3385  * lpfc_create_multixri_pools - create multi-XRI pools
3386  * @phba: pointer to lpfc hba data structure.
3387  *
3388  * This routine initialize public, private per HWQ. Then, move XRIs from
3389  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3390  * Initialized.
3391  **/
3392 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3393 {
3394 	u32 i, j;
3395 	u32 hwq_count;
3396 	u32 count_per_hwq;
3397 	struct lpfc_io_buf *lpfc_ncmd;
3398 	struct lpfc_io_buf *lpfc_ncmd_next;
3399 	unsigned long iflag;
3400 	struct lpfc_sli4_hdw_queue *qp;
3401 	struct lpfc_multixri_pool *multixri_pool;
3402 	struct lpfc_pbl_pool *pbl_pool;
3403 	struct lpfc_pvt_pool *pvt_pool;
3404 
3405 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3406 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3407 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3408 			phba->sli4_hba.io_xri_cnt);
3409 
3410 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3411 		lpfc_create_expedite_pool(phba);
3412 
3413 	hwq_count = phba->cfg_hdw_queue;
3414 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3415 
3416 	for (i = 0; i < hwq_count; i++) {
3417 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3418 
3419 		if (!multixri_pool) {
3420 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3421 					"1238 Failed to allocate memory for "
3422 					"multixri_pool\n");
3423 
3424 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3425 				lpfc_destroy_expedite_pool(phba);
3426 
3427 			j = 0;
3428 			while (j < i) {
3429 				qp = &phba->sli4_hba.hdwq[j];
3430 				kfree(qp->p_multixri_pool);
3431 				j++;
3432 			}
3433 			phba->cfg_xri_rebalancing = 0;
3434 			return;
3435 		}
3436 
3437 		qp = &phba->sli4_hba.hdwq[i];
3438 		qp->p_multixri_pool = multixri_pool;
3439 
3440 		multixri_pool->xri_limit = count_per_hwq;
3441 		multixri_pool->rrb_next_hwqid = i;
3442 
3443 		/* Deal with public free xri pool */
3444 		pbl_pool = &multixri_pool->pbl_pool;
3445 		spin_lock_init(&pbl_pool->lock);
3446 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3447 		spin_lock(&pbl_pool->lock);
3448 		INIT_LIST_HEAD(&pbl_pool->list);
3449 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3450 					 &qp->lpfc_io_buf_list_put, list) {
3451 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3452 			qp->put_io_bufs--;
3453 			pbl_pool->count++;
3454 		}
3455 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3456 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3457 				pbl_pool->count, i);
3458 		spin_unlock(&pbl_pool->lock);
3459 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3460 
3461 		/* Deal with private free xri pool */
3462 		pvt_pool = &multixri_pool->pvt_pool;
3463 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3464 		pvt_pool->low_watermark = XRI_BATCH;
3465 		spin_lock_init(&pvt_pool->lock);
3466 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3467 		INIT_LIST_HEAD(&pvt_pool->list);
3468 		pvt_pool->count = 0;
3469 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3470 	}
3471 }
3472 
3473 /**
3474  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3475  * @phba: pointer to lpfc hba data structure.
3476  *
3477  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3478  **/
3479 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3480 {
3481 	u32 i;
3482 	u32 hwq_count;
3483 	struct lpfc_io_buf *lpfc_ncmd;
3484 	struct lpfc_io_buf *lpfc_ncmd_next;
3485 	unsigned long iflag;
3486 	struct lpfc_sli4_hdw_queue *qp;
3487 	struct lpfc_multixri_pool *multixri_pool;
3488 	struct lpfc_pbl_pool *pbl_pool;
3489 	struct lpfc_pvt_pool *pvt_pool;
3490 
3491 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3492 		lpfc_destroy_expedite_pool(phba);
3493 
3494 	if (!(phba->pport->load_flag & FC_UNLOADING))
3495 		lpfc_sli_flush_io_rings(phba);
3496 
3497 	hwq_count = phba->cfg_hdw_queue;
3498 
3499 	for (i = 0; i < hwq_count; i++) {
3500 		qp = &phba->sli4_hba.hdwq[i];
3501 		multixri_pool = qp->p_multixri_pool;
3502 		if (!multixri_pool)
3503 			continue;
3504 
3505 		qp->p_multixri_pool = NULL;
3506 
3507 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3508 
3509 		/* Deal with public free xri pool */
3510 		pbl_pool = &multixri_pool->pbl_pool;
3511 		spin_lock(&pbl_pool->lock);
3512 
3513 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3514 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3515 				pbl_pool->count, i);
3516 
3517 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3518 					 &pbl_pool->list, list) {
3519 			list_move_tail(&lpfc_ncmd->list,
3520 				       &qp->lpfc_io_buf_list_put);
3521 			qp->put_io_bufs++;
3522 			pbl_pool->count--;
3523 		}
3524 
3525 		INIT_LIST_HEAD(&pbl_pool->list);
3526 		pbl_pool->count = 0;
3527 
3528 		spin_unlock(&pbl_pool->lock);
3529 
3530 		/* Deal with private free xri pool */
3531 		pvt_pool = &multixri_pool->pvt_pool;
3532 		spin_lock(&pvt_pool->lock);
3533 
3534 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3535 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3536 				pvt_pool->count, i);
3537 
3538 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3539 					 &pvt_pool->list, list) {
3540 			list_move_tail(&lpfc_ncmd->list,
3541 				       &qp->lpfc_io_buf_list_put);
3542 			qp->put_io_bufs++;
3543 			pvt_pool->count--;
3544 		}
3545 
3546 		INIT_LIST_HEAD(&pvt_pool->list);
3547 		pvt_pool->count = 0;
3548 
3549 		spin_unlock(&pvt_pool->lock);
3550 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3551 
3552 		kfree(multixri_pool);
3553 	}
3554 }
3555 
3556 /**
3557  * lpfc_online - Initialize and bring a HBA online
3558  * @phba: pointer to lpfc hba data structure.
3559  *
3560  * This routine initializes the HBA and brings a HBA online. During this
3561  * process, the management interface is blocked to prevent user space access
3562  * to the HBA interfering with the driver initialization.
3563  *
3564  * Return codes
3565  *   0 - successful
3566  *   1 - failed
3567  **/
3568 int
3569 lpfc_online(struct lpfc_hba *phba)
3570 {
3571 	struct lpfc_vport *vport;
3572 	struct lpfc_vport **vports;
3573 	int i, error = 0;
3574 	bool vpis_cleared = false;
3575 
3576 	if (!phba)
3577 		return 0;
3578 	vport = phba->pport;
3579 
3580 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3581 		return 0;
3582 
3583 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3584 			"0458 Bring Adapter online\n");
3585 
3586 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3587 
3588 	if (phba->sli_rev == LPFC_SLI_REV4) {
3589 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3590 			lpfc_unblock_mgmt_io(phba);
3591 			return 1;
3592 		}
3593 		spin_lock_irq(&phba->hbalock);
3594 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3595 			vpis_cleared = true;
3596 		spin_unlock_irq(&phba->hbalock);
3597 
3598 		/* Reestablish the local initiator port.
3599 		 * The offline process destroyed the previous lport.
3600 		 */
3601 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3602 				!phba->nvmet_support) {
3603 			error = lpfc_nvme_create_localport(phba->pport);
3604 			if (error)
3605 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3606 					"6132 NVME restore reg failed "
3607 					"on nvmei error x%x\n", error);
3608 		}
3609 	} else {
3610 		lpfc_sli_queue_init(phba);
3611 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3612 			lpfc_unblock_mgmt_io(phba);
3613 			return 1;
3614 		}
3615 	}
3616 
3617 	vports = lpfc_create_vport_work_array(phba);
3618 	if (vports != NULL) {
3619 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3620 			struct Scsi_Host *shost;
3621 			shost = lpfc_shost_from_vport(vports[i]);
3622 			spin_lock_irq(shost->host_lock);
3623 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3624 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3625 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3626 			if (phba->sli_rev == LPFC_SLI_REV4) {
3627 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3628 				if ((vpis_cleared) &&
3629 				    (vports[i]->port_type !=
3630 					LPFC_PHYSICAL_PORT))
3631 					vports[i]->vpi = 0;
3632 			}
3633 			spin_unlock_irq(shost->host_lock);
3634 		}
3635 	}
3636 	lpfc_destroy_vport_work_array(phba, vports);
3637 
3638 	if (phba->cfg_xri_rebalancing)
3639 		lpfc_create_multixri_pools(phba);
3640 
3641 	lpfc_cpuhp_add(phba);
3642 
3643 	lpfc_unblock_mgmt_io(phba);
3644 	return 0;
3645 }
3646 
3647 /**
3648  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3649  * @phba: pointer to lpfc hba data structure.
3650  *
3651  * This routine marks a HBA's management interface as not blocked. Once the
3652  * HBA's management interface is marked as not blocked, all the user space
3653  * access to the HBA, whether they are from sysfs interface or libdfc
3654  * interface will be allowed. The HBA is set to block the management interface
3655  * when the driver prepares the HBA interface for online or offline and then
3656  * set to unblock the management interface afterwards.
3657  **/
3658 void
3659 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3660 {
3661 	unsigned long iflag;
3662 
3663 	spin_lock_irqsave(&phba->hbalock, iflag);
3664 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3665 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3666 }
3667 
3668 /**
3669  * lpfc_offline_prep - Prepare a HBA to be brought offline
3670  * @phba: pointer to lpfc hba data structure.
3671  * @mbx_action: flag for mailbox shutdown action.
3672  *
3673  * This routine is invoked to prepare a HBA to be brought offline. It performs
3674  * unregistration login to all the nodes on all vports and flushes the mailbox
3675  * queue to make it ready to be brought offline.
3676  **/
3677 void
3678 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3679 {
3680 	struct lpfc_vport *vport = phba->pport;
3681 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3682 	struct lpfc_vport **vports;
3683 	struct Scsi_Host *shost;
3684 	int i;
3685 	int offline = 0;
3686 
3687 	if (vport->fc_flag & FC_OFFLINE_MODE)
3688 		return;
3689 
3690 	lpfc_block_mgmt_io(phba, mbx_action);
3691 
3692 	lpfc_linkdown(phba);
3693 
3694 	offline =  pci_channel_offline(phba->pcidev);
3695 
3696 	/* Issue an unreg_login to all nodes on all vports */
3697 	vports = lpfc_create_vport_work_array(phba);
3698 	if (vports != NULL) {
3699 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3700 			if (vports[i]->load_flag & FC_UNLOADING)
3701 				continue;
3702 			shost = lpfc_shost_from_vport(vports[i]);
3703 			spin_lock_irq(shost->host_lock);
3704 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3705 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3706 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3707 			spin_unlock_irq(shost->host_lock);
3708 
3709 			shost =	lpfc_shost_from_vport(vports[i]);
3710 			list_for_each_entry_safe(ndlp, next_ndlp,
3711 						 &vports[i]->fc_nodes,
3712 						 nlp_listp) {
3713 
3714 				spin_lock_irq(&ndlp->lock);
3715 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3716 				spin_unlock_irq(&ndlp->lock);
3717 
3718 				if (offline) {
3719 					spin_lock_irq(&ndlp->lock);
3720 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3721 							    NLP_RPI_REGISTERED);
3722 					spin_unlock_irq(&ndlp->lock);
3723 				} else {
3724 					lpfc_unreg_rpi(vports[i], ndlp);
3725 				}
3726 				/*
3727 				 * Whenever an SLI4 port goes offline, free the
3728 				 * RPI. Get a new RPI when the adapter port
3729 				 * comes back online.
3730 				 */
3731 				if (phba->sli_rev == LPFC_SLI_REV4) {
3732 					lpfc_printf_vlog(vports[i], KERN_INFO,
3733 						 LOG_NODE | LOG_DISCOVERY,
3734 						 "0011 Free RPI x%x on "
3735 						 "ndlp: x%px did x%x\n",
3736 						 ndlp->nlp_rpi, ndlp,
3737 						 ndlp->nlp_DID);
3738 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3739 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3740 				}
3741 
3742 				if (ndlp->nlp_type & NLP_FABRIC) {
3743 					lpfc_disc_state_machine(vports[i], ndlp,
3744 						NULL, NLP_EVT_DEVICE_RECOVERY);
3745 
3746 					/* Don't remove the node unless the node
3747 					 * has been unregistered with the
3748 					 * transport, and we're not in recovery
3749 					 * before dev_loss_tmo triggered.
3750 					 * Otherwise, let dev_loss take care of
3751 					 * the node.
3752 					 */
3753 					if (!(ndlp->save_flags &
3754 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3755 					    !(ndlp->fc4_xpt_flags &
3756 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3757 						lpfc_disc_state_machine
3758 							(vports[i], ndlp,
3759 							 NULL,
3760 							 NLP_EVT_DEVICE_RM);
3761 				}
3762 			}
3763 		}
3764 	}
3765 	lpfc_destroy_vport_work_array(phba, vports);
3766 
3767 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3768 
3769 	if (phba->wq)
3770 		flush_workqueue(phba->wq);
3771 }
3772 
3773 /**
3774  * lpfc_offline - Bring a HBA offline
3775  * @phba: pointer to lpfc hba data structure.
3776  *
3777  * This routine actually brings a HBA offline. It stops all the timers
3778  * associated with the HBA, brings down the SLI layer, and eventually
3779  * marks the HBA as in offline state for the upper layer protocol.
3780  **/
3781 void
3782 lpfc_offline(struct lpfc_hba *phba)
3783 {
3784 	struct Scsi_Host  *shost;
3785 	struct lpfc_vport **vports;
3786 	int i;
3787 
3788 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3789 		return;
3790 
3791 	/* stop port and all timers associated with this hba */
3792 	lpfc_stop_port(phba);
3793 
3794 	/* Tear down the local and target port registrations.  The
3795 	 * nvme transports need to cleanup.
3796 	 */
3797 	lpfc_nvmet_destroy_targetport(phba);
3798 	lpfc_nvme_destroy_localport(phba->pport);
3799 
3800 	vports = lpfc_create_vport_work_array(phba);
3801 	if (vports != NULL)
3802 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3803 			lpfc_stop_vport_timers(vports[i]);
3804 	lpfc_destroy_vport_work_array(phba, vports);
3805 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3806 			"0460 Bring Adapter offline\n");
3807 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3808 	   now.  */
3809 	lpfc_sli_hba_down(phba);
3810 	spin_lock_irq(&phba->hbalock);
3811 	phba->work_ha = 0;
3812 	spin_unlock_irq(&phba->hbalock);
3813 	vports = lpfc_create_vport_work_array(phba);
3814 	if (vports != NULL)
3815 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3816 			shost = lpfc_shost_from_vport(vports[i]);
3817 			spin_lock_irq(shost->host_lock);
3818 			vports[i]->work_port_events = 0;
3819 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3820 			spin_unlock_irq(shost->host_lock);
3821 		}
3822 	lpfc_destroy_vport_work_array(phba, vports);
3823 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3824 	 * in hba_unset
3825 	 */
3826 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3827 		__lpfc_cpuhp_remove(phba);
3828 
3829 	if (phba->cfg_xri_rebalancing)
3830 		lpfc_destroy_multixri_pools(phba);
3831 }
3832 
3833 /**
3834  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3835  * @phba: pointer to lpfc hba data structure.
3836  *
3837  * This routine is to free all the SCSI buffers and IOCBs from the driver
3838  * list back to kernel. It is called from lpfc_pci_remove_one to free
3839  * the internal resources before the device is removed from the system.
3840  **/
3841 static void
3842 lpfc_scsi_free(struct lpfc_hba *phba)
3843 {
3844 	struct lpfc_io_buf *sb, *sb_next;
3845 
3846 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3847 		return;
3848 
3849 	spin_lock_irq(&phba->hbalock);
3850 
3851 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3852 
3853 	spin_lock(&phba->scsi_buf_list_put_lock);
3854 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3855 				 list) {
3856 		list_del(&sb->list);
3857 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3858 			      sb->dma_handle);
3859 		kfree(sb);
3860 		phba->total_scsi_bufs--;
3861 	}
3862 	spin_unlock(&phba->scsi_buf_list_put_lock);
3863 
3864 	spin_lock(&phba->scsi_buf_list_get_lock);
3865 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3866 				 list) {
3867 		list_del(&sb->list);
3868 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3869 			      sb->dma_handle);
3870 		kfree(sb);
3871 		phba->total_scsi_bufs--;
3872 	}
3873 	spin_unlock(&phba->scsi_buf_list_get_lock);
3874 	spin_unlock_irq(&phba->hbalock);
3875 }
3876 
3877 /**
3878  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3879  * @phba: pointer to lpfc hba data structure.
3880  *
3881  * This routine is to free all the IO buffers and IOCBs from the driver
3882  * list back to kernel. It is called from lpfc_pci_remove_one to free
3883  * the internal resources before the device is removed from the system.
3884  **/
3885 void
3886 lpfc_io_free(struct lpfc_hba *phba)
3887 {
3888 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3889 	struct lpfc_sli4_hdw_queue *qp;
3890 	int idx;
3891 
3892 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3893 		qp = &phba->sli4_hba.hdwq[idx];
3894 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3895 		spin_lock(&qp->io_buf_list_put_lock);
3896 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3897 					 &qp->lpfc_io_buf_list_put,
3898 					 list) {
3899 			list_del(&lpfc_ncmd->list);
3900 			qp->put_io_bufs--;
3901 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3902 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3903 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3904 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3905 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3906 			kfree(lpfc_ncmd);
3907 			qp->total_io_bufs--;
3908 		}
3909 		spin_unlock(&qp->io_buf_list_put_lock);
3910 
3911 		spin_lock(&qp->io_buf_list_get_lock);
3912 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3913 					 &qp->lpfc_io_buf_list_get,
3914 					 list) {
3915 			list_del(&lpfc_ncmd->list);
3916 			qp->get_io_bufs--;
3917 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3918 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3919 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3920 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3921 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3922 			kfree(lpfc_ncmd);
3923 			qp->total_io_bufs--;
3924 		}
3925 		spin_unlock(&qp->io_buf_list_get_lock);
3926 	}
3927 }
3928 
3929 /**
3930  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3931  * @phba: pointer to lpfc hba data structure.
3932  *
3933  * This routine first calculates the sizes of the current els and allocated
3934  * scsi sgl lists, and then goes through all sgls to updates the physical
3935  * XRIs assigned due to port function reset. During port initialization, the
3936  * current els and allocated scsi sgl lists are 0s.
3937  *
3938  * Return codes
3939  *   0 - successful (for now, it always returns 0)
3940  **/
3941 int
3942 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3943 {
3944 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3945 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
3946 	LIST_HEAD(els_sgl_list);
3947 	int rc;
3948 
3949 	/*
3950 	 * update on pci function's els xri-sgl list
3951 	 */
3952 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3953 
3954 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3955 		/* els xri-sgl expanded */
3956 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3957 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3958 				"3157 ELS xri-sgl count increased from "
3959 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3960 				els_xri_cnt);
3961 		/* allocate the additional els sgls */
3962 		for (i = 0; i < xri_cnt; i++) {
3963 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3964 					     GFP_KERNEL);
3965 			if (sglq_entry == NULL) {
3966 				lpfc_printf_log(phba, KERN_ERR,
3967 						LOG_TRACE_EVENT,
3968 						"2562 Failure to allocate an "
3969 						"ELS sgl entry:%d\n", i);
3970 				rc = -ENOMEM;
3971 				goto out_free_mem;
3972 			}
3973 			sglq_entry->buff_type = GEN_BUFF_TYPE;
3974 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3975 							   &sglq_entry->phys);
3976 			if (sglq_entry->virt == NULL) {
3977 				kfree(sglq_entry);
3978 				lpfc_printf_log(phba, KERN_ERR,
3979 						LOG_TRACE_EVENT,
3980 						"2563 Failure to allocate an "
3981 						"ELS mbuf:%d\n", i);
3982 				rc = -ENOMEM;
3983 				goto out_free_mem;
3984 			}
3985 			sglq_entry->sgl = sglq_entry->virt;
3986 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3987 			sglq_entry->state = SGL_FREED;
3988 			list_add_tail(&sglq_entry->list, &els_sgl_list);
3989 		}
3990 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3991 		list_splice_init(&els_sgl_list,
3992 				 &phba->sli4_hba.lpfc_els_sgl_list);
3993 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3994 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
3995 		/* els xri-sgl shrinked */
3996 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
3997 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3998 				"3158 ELS xri-sgl count decreased from "
3999 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4000 				els_xri_cnt);
4001 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4002 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4003 				 &els_sgl_list);
4004 		/* release extra els sgls from list */
4005 		for (i = 0; i < xri_cnt; i++) {
4006 			list_remove_head(&els_sgl_list,
4007 					 sglq_entry, struct lpfc_sglq, list);
4008 			if (sglq_entry) {
4009 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4010 						 sglq_entry->phys);
4011 				kfree(sglq_entry);
4012 			}
4013 		}
4014 		list_splice_init(&els_sgl_list,
4015 				 &phba->sli4_hba.lpfc_els_sgl_list);
4016 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4017 	} else
4018 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4019 				"3163 ELS xri-sgl count unchanged: %d\n",
4020 				els_xri_cnt);
4021 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4022 
4023 	/* update xris to els sgls on the list */
4024 	sglq_entry = NULL;
4025 	sglq_entry_next = NULL;
4026 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4027 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4028 		lxri = lpfc_sli4_next_xritag(phba);
4029 		if (lxri == NO_XRI) {
4030 			lpfc_printf_log(phba, KERN_ERR,
4031 					LOG_TRACE_EVENT,
4032 					"2400 Failed to allocate xri for "
4033 					"ELS sgl\n");
4034 			rc = -ENOMEM;
4035 			goto out_free_mem;
4036 		}
4037 		sglq_entry->sli4_lxritag = lxri;
4038 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4039 	}
4040 	return 0;
4041 
4042 out_free_mem:
4043 	lpfc_free_els_sgl_list(phba);
4044 	return rc;
4045 }
4046 
4047 /**
4048  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4049  * @phba: pointer to lpfc hba data structure.
4050  *
4051  * This routine first calculates the sizes of the current els and allocated
4052  * scsi sgl lists, and then goes through all sgls to updates the physical
4053  * XRIs assigned due to port function reset. During port initialization, the
4054  * current els and allocated scsi sgl lists are 0s.
4055  *
4056  * Return codes
4057  *   0 - successful (for now, it always returns 0)
4058  **/
4059 int
4060 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4061 {
4062 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4063 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4064 	uint16_t nvmet_xri_cnt;
4065 	LIST_HEAD(nvmet_sgl_list);
4066 	int rc;
4067 
4068 	/*
4069 	 * update on pci function's nvmet xri-sgl list
4070 	 */
4071 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4072 
4073 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4074 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4075 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4076 		/* els xri-sgl expanded */
4077 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4078 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4079 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4080 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4081 		/* allocate the additional nvmet sgls */
4082 		for (i = 0; i < xri_cnt; i++) {
4083 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4084 					     GFP_KERNEL);
4085 			if (sglq_entry == NULL) {
4086 				lpfc_printf_log(phba, KERN_ERR,
4087 						LOG_TRACE_EVENT,
4088 						"6303 Failure to allocate an "
4089 						"NVMET sgl entry:%d\n", i);
4090 				rc = -ENOMEM;
4091 				goto out_free_mem;
4092 			}
4093 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4094 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4095 							   &sglq_entry->phys);
4096 			if (sglq_entry->virt == NULL) {
4097 				kfree(sglq_entry);
4098 				lpfc_printf_log(phba, KERN_ERR,
4099 						LOG_TRACE_EVENT,
4100 						"6304 Failure to allocate an "
4101 						"NVMET buf:%d\n", i);
4102 				rc = -ENOMEM;
4103 				goto out_free_mem;
4104 			}
4105 			sglq_entry->sgl = sglq_entry->virt;
4106 			memset(sglq_entry->sgl, 0,
4107 			       phba->cfg_sg_dma_buf_size);
4108 			sglq_entry->state = SGL_FREED;
4109 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4110 		}
4111 		spin_lock_irq(&phba->hbalock);
4112 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4113 		list_splice_init(&nvmet_sgl_list,
4114 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4115 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4116 		spin_unlock_irq(&phba->hbalock);
4117 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4118 		/* nvmet xri-sgl shrunk */
4119 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4120 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4121 				"6305 NVMET xri-sgl count decreased from "
4122 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4123 				nvmet_xri_cnt);
4124 		spin_lock_irq(&phba->hbalock);
4125 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4126 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4127 				 &nvmet_sgl_list);
4128 		/* release extra nvmet sgls from list */
4129 		for (i = 0; i < xri_cnt; i++) {
4130 			list_remove_head(&nvmet_sgl_list,
4131 					 sglq_entry, struct lpfc_sglq, list);
4132 			if (sglq_entry) {
4133 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4134 						    sglq_entry->phys);
4135 				kfree(sglq_entry);
4136 			}
4137 		}
4138 		list_splice_init(&nvmet_sgl_list,
4139 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4140 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4141 		spin_unlock_irq(&phba->hbalock);
4142 	} else
4143 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4144 				"6306 NVMET xri-sgl count unchanged: %d\n",
4145 				nvmet_xri_cnt);
4146 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4147 
4148 	/* update xris to nvmet sgls on the list */
4149 	sglq_entry = NULL;
4150 	sglq_entry_next = NULL;
4151 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4152 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4153 		lxri = lpfc_sli4_next_xritag(phba);
4154 		if (lxri == NO_XRI) {
4155 			lpfc_printf_log(phba, KERN_ERR,
4156 					LOG_TRACE_EVENT,
4157 					"6307 Failed to allocate xri for "
4158 					"NVMET sgl\n");
4159 			rc = -ENOMEM;
4160 			goto out_free_mem;
4161 		}
4162 		sglq_entry->sli4_lxritag = lxri;
4163 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4164 	}
4165 	return 0;
4166 
4167 out_free_mem:
4168 	lpfc_free_nvmet_sgl_list(phba);
4169 	return rc;
4170 }
4171 
4172 int
4173 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4174 {
4175 	LIST_HEAD(blist);
4176 	struct lpfc_sli4_hdw_queue *qp;
4177 	struct lpfc_io_buf *lpfc_cmd;
4178 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4179 	int idx, cnt, xri, inserted;
4180 
4181 	cnt = 0;
4182 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4183 		qp = &phba->sli4_hba.hdwq[idx];
4184 		spin_lock_irq(&qp->io_buf_list_get_lock);
4185 		spin_lock(&qp->io_buf_list_put_lock);
4186 
4187 		/* Take everything off the get and put lists */
4188 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4189 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4190 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4191 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4192 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4193 		qp->get_io_bufs = 0;
4194 		qp->put_io_bufs = 0;
4195 		qp->total_io_bufs = 0;
4196 		spin_unlock(&qp->io_buf_list_put_lock);
4197 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4198 	}
4199 
4200 	/*
4201 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4202 	 * This is because POST_SGL takes a sequential range of XRIs
4203 	 * to post to the firmware.
4204 	 */
4205 	for (idx = 0; idx < cnt; idx++) {
4206 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4207 		if (!lpfc_cmd)
4208 			return cnt;
4209 		if (idx == 0) {
4210 			list_add_tail(&lpfc_cmd->list, cbuf);
4211 			continue;
4212 		}
4213 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4214 		inserted = 0;
4215 		prev_iobufp = NULL;
4216 		list_for_each_entry(iobufp, cbuf, list) {
4217 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4218 				if (prev_iobufp)
4219 					list_add(&lpfc_cmd->list,
4220 						 &prev_iobufp->list);
4221 				else
4222 					list_add(&lpfc_cmd->list, cbuf);
4223 				inserted = 1;
4224 				break;
4225 			}
4226 			prev_iobufp = iobufp;
4227 		}
4228 		if (!inserted)
4229 			list_add_tail(&lpfc_cmd->list, cbuf);
4230 	}
4231 	return cnt;
4232 }
4233 
4234 int
4235 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4236 {
4237 	struct lpfc_sli4_hdw_queue *qp;
4238 	struct lpfc_io_buf *lpfc_cmd;
4239 	int idx, cnt;
4240 
4241 	qp = phba->sli4_hba.hdwq;
4242 	cnt = 0;
4243 	while (!list_empty(cbuf)) {
4244 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4245 			list_remove_head(cbuf, lpfc_cmd,
4246 					 struct lpfc_io_buf, list);
4247 			if (!lpfc_cmd)
4248 				return cnt;
4249 			cnt++;
4250 			qp = &phba->sli4_hba.hdwq[idx];
4251 			lpfc_cmd->hdwq_no = idx;
4252 			lpfc_cmd->hdwq = qp;
4253 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4254 			spin_lock(&qp->io_buf_list_put_lock);
4255 			list_add_tail(&lpfc_cmd->list,
4256 				      &qp->lpfc_io_buf_list_put);
4257 			qp->put_io_bufs++;
4258 			qp->total_io_bufs++;
4259 			spin_unlock(&qp->io_buf_list_put_lock);
4260 		}
4261 	}
4262 	return cnt;
4263 }
4264 
4265 /**
4266  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4267  * @phba: pointer to lpfc hba data structure.
4268  *
4269  * This routine first calculates the sizes of the current els and allocated
4270  * scsi sgl lists, and then goes through all sgls to updates the physical
4271  * XRIs assigned due to port function reset. During port initialization, the
4272  * current els and allocated scsi sgl lists are 0s.
4273  *
4274  * Return codes
4275  *   0 - successful (for now, it always returns 0)
4276  **/
4277 int
4278 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4279 {
4280 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4281 	uint16_t i, lxri, els_xri_cnt;
4282 	uint16_t io_xri_cnt, io_xri_max;
4283 	LIST_HEAD(io_sgl_list);
4284 	int rc, cnt;
4285 
4286 	/*
4287 	 * update on pci function's allocated nvme xri-sgl list
4288 	 */
4289 
4290 	/* maximum number of xris available for nvme buffers */
4291 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4292 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4293 	phba->sli4_hba.io_xri_max = io_xri_max;
4294 
4295 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4296 			"6074 Current allocated XRI sgl count:%d, "
4297 			"maximum XRI count:%d\n",
4298 			phba->sli4_hba.io_xri_cnt,
4299 			phba->sli4_hba.io_xri_max);
4300 
4301 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4302 
4303 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4304 		/* max nvme xri shrunk below the allocated nvme buffers */
4305 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4306 					phba->sli4_hba.io_xri_max;
4307 		/* release the extra allocated nvme buffers */
4308 		for (i = 0; i < io_xri_cnt; i++) {
4309 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4310 					 struct lpfc_io_buf, list);
4311 			if (lpfc_ncmd) {
4312 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4313 					      lpfc_ncmd->data,
4314 					      lpfc_ncmd->dma_handle);
4315 				kfree(lpfc_ncmd);
4316 			}
4317 		}
4318 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4319 	}
4320 
4321 	/* update xris associated to remaining allocated nvme buffers */
4322 	lpfc_ncmd = NULL;
4323 	lpfc_ncmd_next = NULL;
4324 	phba->sli4_hba.io_xri_cnt = cnt;
4325 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4326 				 &io_sgl_list, list) {
4327 		lxri = lpfc_sli4_next_xritag(phba);
4328 		if (lxri == NO_XRI) {
4329 			lpfc_printf_log(phba, KERN_ERR,
4330 					LOG_TRACE_EVENT,
4331 					"6075 Failed to allocate xri for "
4332 					"nvme buffer\n");
4333 			rc = -ENOMEM;
4334 			goto out_free_mem;
4335 		}
4336 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4337 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4338 	}
4339 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4340 	return 0;
4341 
4342 out_free_mem:
4343 	lpfc_io_free(phba);
4344 	return rc;
4345 }
4346 
4347 /**
4348  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4349  * @phba: Pointer to lpfc hba data structure.
4350  * @num_to_alloc: The requested number of buffers to allocate.
4351  *
4352  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4353  * the nvme buffer contains all the necessary information needed to initiate
4354  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4355  * them on a list, it post them to the port by using SGL block post.
4356  *
4357  * Return codes:
4358  *   int - number of IO buffers that were allocated and posted.
4359  *   0 = failure, less than num_to_alloc is a partial failure.
4360  **/
4361 int
4362 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4363 {
4364 	struct lpfc_io_buf *lpfc_ncmd;
4365 	struct lpfc_iocbq *pwqeq;
4366 	uint16_t iotag, lxri = 0;
4367 	int bcnt, num_posted;
4368 	LIST_HEAD(prep_nblist);
4369 	LIST_HEAD(post_nblist);
4370 	LIST_HEAD(nvme_nblist);
4371 
4372 	phba->sli4_hba.io_xri_cnt = 0;
4373 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4374 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4375 		if (!lpfc_ncmd)
4376 			break;
4377 		/*
4378 		 * Get memory from the pci pool to map the virt space to
4379 		 * pci bus space for an I/O. The DMA buffer includes the
4380 		 * number of SGE's necessary to support the sg_tablesize.
4381 		 */
4382 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4383 						  GFP_KERNEL,
4384 						  &lpfc_ncmd->dma_handle);
4385 		if (!lpfc_ncmd->data) {
4386 			kfree(lpfc_ncmd);
4387 			break;
4388 		}
4389 
4390 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4391 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4392 		} else {
4393 			/*
4394 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4395 			 * check to be sure.
4396 			 */
4397 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4398 			    (((unsigned long)(lpfc_ncmd->data) &
4399 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4400 				lpfc_printf_log(phba, KERN_ERR,
4401 						LOG_TRACE_EVENT,
4402 						"3369 Memory alignment err: "
4403 						"addr=%lx\n",
4404 						(unsigned long)lpfc_ncmd->data);
4405 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4406 					      lpfc_ncmd->data,
4407 					      lpfc_ncmd->dma_handle);
4408 				kfree(lpfc_ncmd);
4409 				break;
4410 			}
4411 		}
4412 
4413 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4414 
4415 		lxri = lpfc_sli4_next_xritag(phba);
4416 		if (lxri == NO_XRI) {
4417 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4418 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4419 			kfree(lpfc_ncmd);
4420 			break;
4421 		}
4422 		pwqeq = &lpfc_ncmd->cur_iocbq;
4423 
4424 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4425 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4426 		if (iotag == 0) {
4427 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4428 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4429 			kfree(lpfc_ncmd);
4430 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4431 					"6121 Failed to allocate IOTAG for"
4432 					" XRI:0x%x\n", lxri);
4433 			lpfc_sli4_free_xri(phba, lxri);
4434 			break;
4435 		}
4436 		pwqeq->sli4_lxritag = lxri;
4437 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4438 		pwqeq->context1 = lpfc_ncmd;
4439 
4440 		/* Initialize local short-hand pointers. */
4441 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4442 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4443 		lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4444 		spin_lock_init(&lpfc_ncmd->buf_lock);
4445 
4446 		/* add the nvme buffer to a post list */
4447 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4448 		phba->sli4_hba.io_xri_cnt++;
4449 	}
4450 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4451 			"6114 Allocate %d out of %d requested new NVME "
4452 			"buffers\n", bcnt, num_to_alloc);
4453 
4454 	/* post the list of nvme buffer sgls to port if available */
4455 	if (!list_empty(&post_nblist))
4456 		num_posted = lpfc_sli4_post_io_sgl_list(
4457 				phba, &post_nblist, bcnt);
4458 	else
4459 		num_posted = 0;
4460 
4461 	return num_posted;
4462 }
4463 
4464 static uint64_t
4465 lpfc_get_wwpn(struct lpfc_hba *phba)
4466 {
4467 	uint64_t wwn;
4468 	int rc;
4469 	LPFC_MBOXQ_t *mboxq;
4470 	MAILBOX_t *mb;
4471 
4472 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4473 						GFP_KERNEL);
4474 	if (!mboxq)
4475 		return (uint64_t)-1;
4476 
4477 	/* First get WWN of HBA instance */
4478 	lpfc_read_nv(phba, mboxq);
4479 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4480 	if (rc != MBX_SUCCESS) {
4481 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4482 				"6019 Mailbox failed , mbxCmd x%x "
4483 				"READ_NV, mbxStatus x%x\n",
4484 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4485 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4486 		mempool_free(mboxq, phba->mbox_mem_pool);
4487 		return (uint64_t) -1;
4488 	}
4489 	mb = &mboxq->u.mb;
4490 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4491 	/* wwn is WWPN of HBA instance */
4492 	mempool_free(mboxq, phba->mbox_mem_pool);
4493 	if (phba->sli_rev == LPFC_SLI_REV4)
4494 		return be64_to_cpu(wwn);
4495 	else
4496 		return rol64(wwn, 32);
4497 }
4498 
4499 /**
4500  * lpfc_vmid_res_alloc - Allocates resources for VMID
4501  * @phba: pointer to lpfc hba data structure.
4502  * @vport: pointer to vport data structure
4503  *
4504  * This routine allocated the resources needed for the VMID.
4505  *
4506  * Return codes
4507  *	0 on Success
4508  *	Non-0 on Failure
4509  */
4510 static int
4511 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4512 {
4513 	/* VMID feature is supported only on SLI4 */
4514 	if (phba->sli_rev == LPFC_SLI_REV3) {
4515 		phba->cfg_vmid_app_header = 0;
4516 		phba->cfg_vmid_priority_tagging = 0;
4517 	}
4518 
4519 	if (lpfc_is_vmid_enabled(phba)) {
4520 		vport->vmid =
4521 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4522 			    GFP_KERNEL);
4523 		if (!vport->vmid)
4524 			return -ENOMEM;
4525 
4526 		rwlock_init(&vport->vmid_lock);
4527 
4528 		/* Set the VMID parameters for the vport */
4529 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4530 		vport->vmid_inactivity_timeout =
4531 		    phba->cfg_vmid_inactivity_timeout;
4532 		vport->max_vmid = phba->cfg_max_vmid;
4533 		vport->cur_vmid_cnt = 0;
4534 
4535 		vport->vmid_priority_range = bitmap_zalloc
4536 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4537 
4538 		if (!vport->vmid_priority_range) {
4539 			kfree(vport->vmid);
4540 			return -ENOMEM;
4541 		}
4542 
4543 		hash_init(vport->hash_table);
4544 	}
4545 	return 0;
4546 }
4547 
4548 /**
4549  * lpfc_create_port - Create an FC port
4550  * @phba: pointer to lpfc hba data structure.
4551  * @instance: a unique integer ID to this FC port.
4552  * @dev: pointer to the device data structure.
4553  *
4554  * This routine creates a FC port for the upper layer protocol. The FC port
4555  * can be created on top of either a physical port or a virtual port provided
4556  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4557  * and associates the FC port created before adding the shost into the SCSI
4558  * layer.
4559  *
4560  * Return codes
4561  *   @vport - pointer to the virtual N_Port data structure.
4562  *   NULL - port create failed.
4563  **/
4564 struct lpfc_vport *
4565 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4566 {
4567 	struct lpfc_vport *vport;
4568 	struct Scsi_Host  *shost = NULL;
4569 	struct scsi_host_template *template;
4570 	int error = 0;
4571 	int i;
4572 	uint64_t wwn;
4573 	bool use_no_reset_hba = false;
4574 	int rc;
4575 
4576 	if (lpfc_no_hba_reset_cnt) {
4577 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4578 		    dev == &phba->pcidev->dev) {
4579 			/* Reset the port first */
4580 			lpfc_sli_brdrestart(phba);
4581 			rc = lpfc_sli_chipset_init(phba);
4582 			if (rc)
4583 				return NULL;
4584 		}
4585 		wwn = lpfc_get_wwpn(phba);
4586 	}
4587 
4588 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4589 		if (wwn == lpfc_no_hba_reset[i]) {
4590 			lpfc_printf_log(phba, KERN_ERR,
4591 					LOG_TRACE_EVENT,
4592 					"6020 Setting use_no_reset port=%llx\n",
4593 					wwn);
4594 			use_no_reset_hba = true;
4595 			break;
4596 		}
4597 	}
4598 
4599 	/* Seed template for SCSI host registration */
4600 	if (dev == &phba->pcidev->dev) {
4601 		template = &phba->port_template;
4602 
4603 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4604 			/* Seed physical port template */
4605 			memcpy(template, &lpfc_template, sizeof(*template));
4606 
4607 			if (use_no_reset_hba)
4608 				/* template is for a no reset SCSI Host */
4609 				template->eh_host_reset_handler = NULL;
4610 
4611 			/* Template for all vports this physical port creates */
4612 			memcpy(&phba->vport_template, &lpfc_template,
4613 			       sizeof(*template));
4614 			phba->vport_template.shost_groups = lpfc_vport_groups;
4615 			phba->vport_template.eh_bus_reset_handler = NULL;
4616 			phba->vport_template.eh_host_reset_handler = NULL;
4617 			phba->vport_template.vendor_id = 0;
4618 
4619 			/* Initialize the host templates with updated value */
4620 			if (phba->sli_rev == LPFC_SLI_REV4) {
4621 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4622 				phba->vport_template.sg_tablesize =
4623 					phba->cfg_scsi_seg_cnt;
4624 			} else {
4625 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4626 				phba->vport_template.sg_tablesize =
4627 					phba->cfg_sg_seg_cnt;
4628 			}
4629 
4630 		} else {
4631 			/* NVMET is for physical port only */
4632 			memcpy(template, &lpfc_template_nvme,
4633 			       sizeof(*template));
4634 		}
4635 	} else {
4636 		template = &phba->vport_template;
4637 	}
4638 
4639 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4640 	if (!shost)
4641 		goto out;
4642 
4643 	vport = (struct lpfc_vport *) shost->hostdata;
4644 	vport->phba = phba;
4645 	vport->load_flag |= FC_LOADING;
4646 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4647 	vport->fc_rscn_flush = 0;
4648 	lpfc_get_vport_cfgparam(vport);
4649 
4650 	/* Adjust value in vport */
4651 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4652 
4653 	shost->unique_id = instance;
4654 	shost->max_id = LPFC_MAX_TARGET;
4655 	shost->max_lun = vport->cfg_max_luns;
4656 	shost->this_id = -1;
4657 	shost->max_cmd_len = 16;
4658 
4659 	if (phba->sli_rev == LPFC_SLI_REV4) {
4660 		if (!phba->cfg_fcp_mq_threshold ||
4661 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4662 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4663 
4664 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4665 					    phba->cfg_fcp_mq_threshold);
4666 
4667 		shost->dma_boundary =
4668 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4669 
4670 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4671 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4672 		else
4673 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4674 	} else
4675 		/* SLI-3 has a limited number of hardware queues (3),
4676 		 * thus there is only one for FCP processing.
4677 		 */
4678 		shost->nr_hw_queues = 1;
4679 
4680 	/*
4681 	 * Set initial can_queue value since 0 is no longer supported and
4682 	 * scsi_add_host will fail. This will be adjusted later based on the
4683 	 * max xri value determined in hba setup.
4684 	 */
4685 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4686 	if (dev != &phba->pcidev->dev) {
4687 		shost->transportt = lpfc_vport_transport_template;
4688 		vport->port_type = LPFC_NPIV_PORT;
4689 	} else {
4690 		shost->transportt = lpfc_transport_template;
4691 		vport->port_type = LPFC_PHYSICAL_PORT;
4692 	}
4693 
4694 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4695 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4696 			"SEGcnt %d/%d\n",
4697 			vport->port_type, shost->sg_tablesize,
4698 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4699 
4700 	/* Allocate the resources for VMID */
4701 	rc = lpfc_vmid_res_alloc(phba, vport);
4702 
4703 	if (rc)
4704 		goto out;
4705 
4706 	/* Initialize all internally managed lists. */
4707 	INIT_LIST_HEAD(&vport->fc_nodes);
4708 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4709 	spin_lock_init(&vport->work_port_lock);
4710 
4711 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4712 
4713 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4714 
4715 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4716 
4717 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4718 		lpfc_setup_bg(phba, shost);
4719 
4720 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4721 	if (error)
4722 		goto out_put_shost;
4723 
4724 	spin_lock_irq(&phba->port_list_lock);
4725 	list_add_tail(&vport->listentry, &phba->port_list);
4726 	spin_unlock_irq(&phba->port_list_lock);
4727 	return vport;
4728 
4729 out_put_shost:
4730 	kfree(vport->vmid);
4731 	bitmap_free(vport->vmid_priority_range);
4732 	scsi_host_put(shost);
4733 out:
4734 	return NULL;
4735 }
4736 
4737 /**
4738  * destroy_port -  destroy an FC port
4739  * @vport: pointer to an lpfc virtual N_Port data structure.
4740  *
4741  * This routine destroys a FC port from the upper layer protocol. All the
4742  * resources associated with the port are released.
4743  **/
4744 void
4745 destroy_port(struct lpfc_vport *vport)
4746 {
4747 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4748 	struct lpfc_hba  *phba = vport->phba;
4749 
4750 	lpfc_debugfs_terminate(vport);
4751 	fc_remove_host(shost);
4752 	scsi_remove_host(shost);
4753 
4754 	spin_lock_irq(&phba->port_list_lock);
4755 	list_del_init(&vport->listentry);
4756 	spin_unlock_irq(&phba->port_list_lock);
4757 
4758 	lpfc_cleanup(vport);
4759 	return;
4760 }
4761 
4762 /**
4763  * lpfc_get_instance - Get a unique integer ID
4764  *
4765  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4766  * uses the kernel idr facility to perform the task.
4767  *
4768  * Return codes:
4769  *   instance - a unique integer ID allocated as the new instance.
4770  *   -1 - lpfc get instance failed.
4771  **/
4772 int
4773 lpfc_get_instance(void)
4774 {
4775 	int ret;
4776 
4777 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4778 	return ret < 0 ? -1 : ret;
4779 }
4780 
4781 /**
4782  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4783  * @shost: pointer to SCSI host data structure.
4784  * @time: elapsed time of the scan in jiffies.
4785  *
4786  * This routine is called by the SCSI layer with a SCSI host to determine
4787  * whether the scan host is finished.
4788  *
4789  * Note: there is no scan_start function as adapter initialization will have
4790  * asynchronously kicked off the link initialization.
4791  *
4792  * Return codes
4793  *   0 - SCSI host scan is not over yet.
4794  *   1 - SCSI host scan is over.
4795  **/
4796 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4797 {
4798 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4799 	struct lpfc_hba   *phba = vport->phba;
4800 	int stat = 0;
4801 
4802 	spin_lock_irq(shost->host_lock);
4803 
4804 	if (vport->load_flag & FC_UNLOADING) {
4805 		stat = 1;
4806 		goto finished;
4807 	}
4808 	if (time >= msecs_to_jiffies(30 * 1000)) {
4809 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4810 				"0461 Scanning longer than 30 "
4811 				"seconds.  Continuing initialization\n");
4812 		stat = 1;
4813 		goto finished;
4814 	}
4815 	if (time >= msecs_to_jiffies(15 * 1000) &&
4816 	    phba->link_state <= LPFC_LINK_DOWN) {
4817 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4818 				"0465 Link down longer than 15 "
4819 				"seconds.  Continuing initialization\n");
4820 		stat = 1;
4821 		goto finished;
4822 	}
4823 
4824 	if (vport->port_state != LPFC_VPORT_READY)
4825 		goto finished;
4826 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4827 		goto finished;
4828 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4829 		goto finished;
4830 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4831 		goto finished;
4832 
4833 	stat = 1;
4834 
4835 finished:
4836 	spin_unlock_irq(shost->host_lock);
4837 	return stat;
4838 }
4839 
4840 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4841 {
4842 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4843 	struct lpfc_hba   *phba = vport->phba;
4844 
4845 	fc_host_supported_speeds(shost) = 0;
4846 	/*
4847 	 * Avoid reporting supported link speed for FCoE as it can't be
4848 	 * controlled via FCoE.
4849 	 */
4850 	if (phba->hba_flag & HBA_FCOE_MODE)
4851 		return;
4852 
4853 	if (phba->lmt & LMT_256Gb)
4854 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4855 	if (phba->lmt & LMT_128Gb)
4856 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4857 	if (phba->lmt & LMT_64Gb)
4858 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4859 	if (phba->lmt & LMT_32Gb)
4860 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4861 	if (phba->lmt & LMT_16Gb)
4862 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4863 	if (phba->lmt & LMT_10Gb)
4864 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4865 	if (phba->lmt & LMT_8Gb)
4866 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4867 	if (phba->lmt & LMT_4Gb)
4868 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4869 	if (phba->lmt & LMT_2Gb)
4870 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4871 	if (phba->lmt & LMT_1Gb)
4872 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4873 }
4874 
4875 /**
4876  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4877  * @shost: pointer to SCSI host data structure.
4878  *
4879  * This routine initializes a given SCSI host attributes on a FC port. The
4880  * SCSI host can be either on top of a physical port or a virtual port.
4881  **/
4882 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4883 {
4884 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4885 	struct lpfc_hba   *phba = vport->phba;
4886 	/*
4887 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
4888 	 */
4889 
4890 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4891 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4892 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
4893 
4894 	memset(fc_host_supported_fc4s(shost), 0,
4895 	       sizeof(fc_host_supported_fc4s(shost)));
4896 	fc_host_supported_fc4s(shost)[2] = 1;
4897 	fc_host_supported_fc4s(shost)[7] = 1;
4898 
4899 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4900 				 sizeof fc_host_symbolic_name(shost));
4901 
4902 	lpfc_host_supported_speeds_set(shost);
4903 
4904 	fc_host_maxframe_size(shost) =
4905 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4906 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4907 
4908 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4909 
4910 	/* This value is also unchanging */
4911 	memset(fc_host_active_fc4s(shost), 0,
4912 	       sizeof(fc_host_active_fc4s(shost)));
4913 	fc_host_active_fc4s(shost)[2] = 1;
4914 	fc_host_active_fc4s(shost)[7] = 1;
4915 
4916 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
4917 	spin_lock_irq(shost->host_lock);
4918 	vport->load_flag &= ~FC_LOADING;
4919 	spin_unlock_irq(shost->host_lock);
4920 }
4921 
4922 /**
4923  * lpfc_stop_port_s3 - Stop SLI3 device port
4924  * @phba: pointer to lpfc hba data structure.
4925  *
4926  * This routine is invoked to stop an SLI3 device port, it stops the device
4927  * from generating interrupts and stops the device driver's timers for the
4928  * device.
4929  **/
4930 static void
4931 lpfc_stop_port_s3(struct lpfc_hba *phba)
4932 {
4933 	/* Clear all interrupt enable conditions */
4934 	writel(0, phba->HCregaddr);
4935 	readl(phba->HCregaddr); /* flush */
4936 	/* Clear all pending interrupts */
4937 	writel(0xffffffff, phba->HAregaddr);
4938 	readl(phba->HAregaddr); /* flush */
4939 
4940 	/* Reset some HBA SLI setup states */
4941 	lpfc_stop_hba_timers(phba);
4942 	phba->pport->work_port_events = 0;
4943 }
4944 
4945 /**
4946  * lpfc_stop_port_s4 - Stop SLI4 device port
4947  * @phba: pointer to lpfc hba data structure.
4948  *
4949  * This routine is invoked to stop an SLI4 device port, it stops the device
4950  * from generating interrupts and stops the device driver's timers for the
4951  * device.
4952  **/
4953 static void
4954 lpfc_stop_port_s4(struct lpfc_hba *phba)
4955 {
4956 	/* Reset some HBA SLI4 setup states */
4957 	lpfc_stop_hba_timers(phba);
4958 	if (phba->pport)
4959 		phba->pport->work_port_events = 0;
4960 	phba->sli4_hba.intr_enable = 0;
4961 }
4962 
4963 /**
4964  * lpfc_stop_port - Wrapper function for stopping hba port
4965  * @phba: Pointer to HBA context object.
4966  *
4967  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4968  * the API jump table function pointer from the lpfc_hba struct.
4969  **/
4970 void
4971 lpfc_stop_port(struct lpfc_hba *phba)
4972 {
4973 	phba->lpfc_stop_port(phba);
4974 
4975 	if (phba->wq)
4976 		flush_workqueue(phba->wq);
4977 }
4978 
4979 /**
4980  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4981  * @phba: Pointer to hba for which this call is being executed.
4982  *
4983  * This routine starts the timer waiting for the FCF rediscovery to complete.
4984  **/
4985 void
4986 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4987 {
4988 	unsigned long fcf_redisc_wait_tmo =
4989 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
4990 	/* Start fcf rediscovery wait period timer */
4991 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
4992 	spin_lock_irq(&phba->hbalock);
4993 	/* Allow action to new fcf asynchronous event */
4994 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
4995 	/* Mark the FCF rediscovery pending state */
4996 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
4997 	spin_unlock_irq(&phba->hbalock);
4998 }
4999 
5000 /**
5001  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5002  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5003  *
5004  * This routine is invoked when waiting for FCF table rediscover has been
5005  * timed out. If new FCF record(s) has (have) been discovered during the
5006  * wait period, a new FCF event shall be added to the FCOE async event
5007  * list, and then worker thread shall be waked up for processing from the
5008  * worker thread context.
5009  **/
5010 static void
5011 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5012 {
5013 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5014 
5015 	/* Don't send FCF rediscovery event if timer cancelled */
5016 	spin_lock_irq(&phba->hbalock);
5017 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5018 		spin_unlock_irq(&phba->hbalock);
5019 		return;
5020 	}
5021 	/* Clear FCF rediscovery timer pending flag */
5022 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5023 	/* FCF rediscovery event to worker thread */
5024 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5025 	spin_unlock_irq(&phba->hbalock);
5026 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5027 			"2776 FCF rediscover quiescent timer expired\n");
5028 	/* wake up worker thread */
5029 	lpfc_worker_wake_up(phba);
5030 }
5031 
5032 /**
5033  * lpfc_vmid_poll - VMID timeout detection
5034  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5035  *
5036  * This routine is invoked when there is no I/O on by a VM for the specified
5037  * amount of time. When this situation is detected, the VMID has to be
5038  * deregistered from the switch and all the local resources freed. The VMID
5039  * will be reassigned to the VM once the I/O begins.
5040  **/
5041 static void
5042 lpfc_vmid_poll(struct timer_list *t)
5043 {
5044 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5045 	u32 wake_up = 0;
5046 
5047 	/* check if there is a need to issue QFPA */
5048 	if (phba->pport->vmid_priority_tagging) {
5049 		wake_up = 1;
5050 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5051 	}
5052 
5053 	/* Is the vmid inactivity timer enabled */
5054 	if (phba->pport->vmid_inactivity_timeout ||
5055 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5056 		wake_up = 1;
5057 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5058 	}
5059 
5060 	if (wake_up)
5061 		lpfc_worker_wake_up(phba);
5062 
5063 	/* restart the timer for the next iteration */
5064 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5065 							LPFC_VMID_TIMER));
5066 }
5067 
5068 /**
5069  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5070  * @phba: pointer to lpfc hba data structure.
5071  * @acqe_link: pointer to the async link completion queue entry.
5072  *
5073  * This routine is to parse the SLI4 link-attention link fault code.
5074  **/
5075 static void
5076 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5077 			   struct lpfc_acqe_link *acqe_link)
5078 {
5079 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5080 	case LPFC_ASYNC_LINK_FAULT_NONE:
5081 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5082 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5083 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5084 		break;
5085 	default:
5086 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5087 				"0398 Unknown link fault code: x%x\n",
5088 				bf_get(lpfc_acqe_link_fault, acqe_link));
5089 		break;
5090 	}
5091 }
5092 
5093 /**
5094  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5095  * @phba: pointer to lpfc hba data structure.
5096  * @acqe_link: pointer to the async link completion queue entry.
5097  *
5098  * This routine is to parse the SLI4 link attention type and translate it
5099  * into the base driver's link attention type coding.
5100  *
5101  * Return: Link attention type in terms of base driver's coding.
5102  **/
5103 static uint8_t
5104 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5105 			  struct lpfc_acqe_link *acqe_link)
5106 {
5107 	uint8_t att_type;
5108 
5109 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5110 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5111 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5112 		att_type = LPFC_ATT_LINK_DOWN;
5113 		break;
5114 	case LPFC_ASYNC_LINK_STATUS_UP:
5115 		/* Ignore physical link up events - wait for logical link up */
5116 		att_type = LPFC_ATT_RESERVED;
5117 		break;
5118 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5119 		att_type = LPFC_ATT_LINK_UP;
5120 		break;
5121 	default:
5122 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5123 				"0399 Invalid link attention type: x%x\n",
5124 				bf_get(lpfc_acqe_link_status, acqe_link));
5125 		att_type = LPFC_ATT_RESERVED;
5126 		break;
5127 	}
5128 	return att_type;
5129 }
5130 
5131 /**
5132  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5133  * @phba: pointer to lpfc hba data structure.
5134  *
5135  * This routine is to get an SLI3 FC port's link speed in Mbps.
5136  *
5137  * Return: link speed in terms of Mbps.
5138  **/
5139 uint32_t
5140 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5141 {
5142 	uint32_t link_speed;
5143 
5144 	if (!lpfc_is_link_up(phba))
5145 		return 0;
5146 
5147 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5148 		switch (phba->fc_linkspeed) {
5149 		case LPFC_LINK_SPEED_1GHZ:
5150 			link_speed = 1000;
5151 			break;
5152 		case LPFC_LINK_SPEED_2GHZ:
5153 			link_speed = 2000;
5154 			break;
5155 		case LPFC_LINK_SPEED_4GHZ:
5156 			link_speed = 4000;
5157 			break;
5158 		case LPFC_LINK_SPEED_8GHZ:
5159 			link_speed = 8000;
5160 			break;
5161 		case LPFC_LINK_SPEED_10GHZ:
5162 			link_speed = 10000;
5163 			break;
5164 		case LPFC_LINK_SPEED_16GHZ:
5165 			link_speed = 16000;
5166 			break;
5167 		default:
5168 			link_speed = 0;
5169 		}
5170 	} else {
5171 		if (phba->sli4_hba.link_state.logical_speed)
5172 			link_speed =
5173 			      phba->sli4_hba.link_state.logical_speed;
5174 		else
5175 			link_speed = phba->sli4_hba.link_state.speed;
5176 	}
5177 	return link_speed;
5178 }
5179 
5180 /**
5181  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5182  * @phba: pointer to lpfc hba data structure.
5183  * @evt_code: asynchronous event code.
5184  * @speed_code: asynchronous event link speed code.
5185  *
5186  * This routine is to parse the giving SLI4 async event link speed code into
5187  * value of Mbps for the link speed.
5188  *
5189  * Return: link speed in terms of Mbps.
5190  **/
5191 static uint32_t
5192 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5193 			   uint8_t speed_code)
5194 {
5195 	uint32_t port_speed;
5196 
5197 	switch (evt_code) {
5198 	case LPFC_TRAILER_CODE_LINK:
5199 		switch (speed_code) {
5200 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5201 			port_speed = 0;
5202 			break;
5203 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5204 			port_speed = 10;
5205 			break;
5206 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5207 			port_speed = 100;
5208 			break;
5209 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5210 			port_speed = 1000;
5211 			break;
5212 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5213 			port_speed = 10000;
5214 			break;
5215 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5216 			port_speed = 20000;
5217 			break;
5218 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5219 			port_speed = 25000;
5220 			break;
5221 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5222 			port_speed = 40000;
5223 			break;
5224 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5225 			port_speed = 100000;
5226 			break;
5227 		default:
5228 			port_speed = 0;
5229 		}
5230 		break;
5231 	case LPFC_TRAILER_CODE_FC:
5232 		switch (speed_code) {
5233 		case LPFC_FC_LA_SPEED_UNKNOWN:
5234 			port_speed = 0;
5235 			break;
5236 		case LPFC_FC_LA_SPEED_1G:
5237 			port_speed = 1000;
5238 			break;
5239 		case LPFC_FC_LA_SPEED_2G:
5240 			port_speed = 2000;
5241 			break;
5242 		case LPFC_FC_LA_SPEED_4G:
5243 			port_speed = 4000;
5244 			break;
5245 		case LPFC_FC_LA_SPEED_8G:
5246 			port_speed = 8000;
5247 			break;
5248 		case LPFC_FC_LA_SPEED_10G:
5249 			port_speed = 10000;
5250 			break;
5251 		case LPFC_FC_LA_SPEED_16G:
5252 			port_speed = 16000;
5253 			break;
5254 		case LPFC_FC_LA_SPEED_32G:
5255 			port_speed = 32000;
5256 			break;
5257 		case LPFC_FC_LA_SPEED_64G:
5258 			port_speed = 64000;
5259 			break;
5260 		case LPFC_FC_LA_SPEED_128G:
5261 			port_speed = 128000;
5262 			break;
5263 		case LPFC_FC_LA_SPEED_256G:
5264 			port_speed = 256000;
5265 			break;
5266 		default:
5267 			port_speed = 0;
5268 		}
5269 		break;
5270 	default:
5271 		port_speed = 0;
5272 	}
5273 	return port_speed;
5274 }
5275 
5276 /**
5277  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5278  * @phba: pointer to lpfc hba data structure.
5279  * @acqe_link: pointer to the async link completion queue entry.
5280  *
5281  * This routine is to handle the SLI4 asynchronous FCoE link event.
5282  **/
5283 static void
5284 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5285 			 struct lpfc_acqe_link *acqe_link)
5286 {
5287 	struct lpfc_dmabuf *mp;
5288 	LPFC_MBOXQ_t *pmb;
5289 	MAILBOX_t *mb;
5290 	struct lpfc_mbx_read_top *la;
5291 	uint8_t att_type;
5292 	int rc;
5293 
5294 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5295 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5296 		return;
5297 	phba->fcoe_eventtag = acqe_link->event_tag;
5298 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5299 	if (!pmb) {
5300 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5301 				"0395 The mboxq allocation failed\n");
5302 		return;
5303 	}
5304 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5305 	if (!mp) {
5306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5307 				"0396 The lpfc_dmabuf allocation failed\n");
5308 		goto out_free_pmb;
5309 	}
5310 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5311 	if (!mp->virt) {
5312 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5313 				"0397 The mbuf allocation failed\n");
5314 		goto out_free_dmabuf;
5315 	}
5316 
5317 	/* Cleanup any outstanding ELS commands */
5318 	lpfc_els_flush_all_cmd(phba);
5319 
5320 	/* Block ELS IOCBs until we have done process link event */
5321 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5322 
5323 	/* Update link event statistics */
5324 	phba->sli.slistat.link_event++;
5325 
5326 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5327 	lpfc_read_topology(phba, pmb, mp);
5328 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5329 	pmb->vport = phba->pport;
5330 
5331 	/* Keep the link status for extra SLI4 state machine reference */
5332 	phba->sli4_hba.link_state.speed =
5333 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5334 				bf_get(lpfc_acqe_link_speed, acqe_link));
5335 	phba->sli4_hba.link_state.duplex =
5336 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5337 	phba->sli4_hba.link_state.status =
5338 				bf_get(lpfc_acqe_link_status, acqe_link);
5339 	phba->sli4_hba.link_state.type =
5340 				bf_get(lpfc_acqe_link_type, acqe_link);
5341 	phba->sli4_hba.link_state.number =
5342 				bf_get(lpfc_acqe_link_number, acqe_link);
5343 	phba->sli4_hba.link_state.fault =
5344 				bf_get(lpfc_acqe_link_fault, acqe_link);
5345 	phba->sli4_hba.link_state.logical_speed =
5346 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5347 
5348 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5349 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5350 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5351 			"Logical speed:%dMbps Fault:%d\n",
5352 			phba->sli4_hba.link_state.speed,
5353 			phba->sli4_hba.link_state.topology,
5354 			phba->sli4_hba.link_state.status,
5355 			phba->sli4_hba.link_state.type,
5356 			phba->sli4_hba.link_state.number,
5357 			phba->sli4_hba.link_state.logical_speed,
5358 			phba->sli4_hba.link_state.fault);
5359 	/*
5360 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5361 	 * topology info. Note: Optional for non FC-AL ports.
5362 	 */
5363 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5364 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5365 		if (rc == MBX_NOT_FINISHED) {
5366 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
5367 			goto out_free_dmabuf;
5368 		}
5369 		return;
5370 	}
5371 	/*
5372 	 * For FCoE Mode: fill in all the topology information we need and call
5373 	 * the READ_TOPOLOGY completion routine to continue without actually
5374 	 * sending the READ_TOPOLOGY mailbox command to the port.
5375 	 */
5376 	/* Initialize completion status */
5377 	mb = &pmb->u.mb;
5378 	mb->mbxStatus = MBX_SUCCESS;
5379 
5380 	/* Parse port fault information field */
5381 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5382 
5383 	/* Parse and translate link attention fields */
5384 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5385 	la->eventTag = acqe_link->event_tag;
5386 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5387 	bf_set(lpfc_mbx_read_top_link_spd, la,
5388 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5389 
5390 	/* Fake the the following irrelvant fields */
5391 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5392 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5393 	bf_set(lpfc_mbx_read_top_il, la, 0);
5394 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5395 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5396 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5397 
5398 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5399 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5400 
5401 	return;
5402 
5403 out_free_dmabuf:
5404 	kfree(mp);
5405 out_free_pmb:
5406 	mempool_free(pmb, phba->mbox_mem_pool);
5407 }
5408 
5409 /**
5410  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5411  * topology.
5412  * @phba: pointer to lpfc hba data structure.
5413  * @speed_code: asynchronous event link speed code.
5414  *
5415  * This routine is to parse the giving SLI4 async event link speed code into
5416  * value of Read topology link speed.
5417  *
5418  * Return: link speed in terms of Read topology.
5419  **/
5420 static uint8_t
5421 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5422 {
5423 	uint8_t port_speed;
5424 
5425 	switch (speed_code) {
5426 	case LPFC_FC_LA_SPEED_1G:
5427 		port_speed = LPFC_LINK_SPEED_1GHZ;
5428 		break;
5429 	case LPFC_FC_LA_SPEED_2G:
5430 		port_speed = LPFC_LINK_SPEED_2GHZ;
5431 		break;
5432 	case LPFC_FC_LA_SPEED_4G:
5433 		port_speed = LPFC_LINK_SPEED_4GHZ;
5434 		break;
5435 	case LPFC_FC_LA_SPEED_8G:
5436 		port_speed = LPFC_LINK_SPEED_8GHZ;
5437 		break;
5438 	case LPFC_FC_LA_SPEED_16G:
5439 		port_speed = LPFC_LINK_SPEED_16GHZ;
5440 		break;
5441 	case LPFC_FC_LA_SPEED_32G:
5442 		port_speed = LPFC_LINK_SPEED_32GHZ;
5443 		break;
5444 	case LPFC_FC_LA_SPEED_64G:
5445 		port_speed = LPFC_LINK_SPEED_64GHZ;
5446 		break;
5447 	case LPFC_FC_LA_SPEED_128G:
5448 		port_speed = LPFC_LINK_SPEED_128GHZ;
5449 		break;
5450 	case LPFC_FC_LA_SPEED_256G:
5451 		port_speed = LPFC_LINK_SPEED_256GHZ;
5452 		break;
5453 	default:
5454 		port_speed = 0;
5455 		break;
5456 	}
5457 
5458 	return port_speed;
5459 }
5460 
5461 void
5462 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5463 {
5464 	struct rxtable_entry *entry;
5465 	int cnt = 0, head, tail, last, start;
5466 
5467 	head = atomic_read(&phba->rxtable_idx_head);
5468 	tail = atomic_read(&phba->rxtable_idx_tail);
5469 	if (!phba->rxtable || head == tail) {
5470 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
5471 				"4411 Rxtable is empty\n");
5472 		return;
5473 	}
5474 	last = tail;
5475 	start = head;
5476 
5477 	/* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */
5478 	while (start != last) {
5479 		if (start)
5480 			start--;
5481 		else
5482 			start = LPFC_MAX_RXMONITOR_ENTRY - 1;
5483 		entry = &phba->rxtable[start];
5484 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5485 				"4410 %02d: MBPI %lld Xmit %lld Cmpl %lld "
5486 				"Lat %lld ASz %lld Info %02d BWUtil %d "
5487 				"Int %d slot %d\n",
5488 				cnt, entry->max_bytes_per_interval,
5489 				entry->total_bytes, entry->rcv_bytes,
5490 				entry->avg_io_latency, entry->avg_io_size,
5491 				entry->cmf_info, entry->timer_utilization,
5492 				entry->timer_interval, start);
5493 		cnt++;
5494 		if (cnt >= LPFC_MAX_RXMONITOR_DUMP)
5495 			return;
5496 	}
5497 }
5498 
5499 /**
5500  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5501  * @phba: pointer to lpfc hba data structure.
5502  * @dtag: FPIN descriptor received
5503  *
5504  * Increment the FPIN received counter/time when it happens.
5505  */
5506 void
5507 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5508 {
5509 	struct lpfc_cgn_info *cp;
5510 	struct tm broken;
5511 	struct timespec64 cur_time;
5512 	u32 cnt;
5513 	u16 value;
5514 
5515 	/* Make sure we have a congestion info buffer */
5516 	if (!phba->cgn_i)
5517 		return;
5518 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5519 	ktime_get_real_ts64(&cur_time);
5520 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5521 
5522 	/* Update congestion statistics */
5523 	switch (dtag) {
5524 	case ELS_DTAG_LNK_INTEGRITY:
5525 		cnt = le32_to_cpu(cp->link_integ_notification);
5526 		cnt++;
5527 		cp->link_integ_notification = cpu_to_le32(cnt);
5528 
5529 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5530 		cp->cgn_stat_lnk_day = broken.tm_mday;
5531 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5532 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5533 		cp->cgn_stat_lnk_min = broken.tm_min;
5534 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5535 		break;
5536 	case ELS_DTAG_DELIVERY:
5537 		cnt = le32_to_cpu(cp->delivery_notification);
5538 		cnt++;
5539 		cp->delivery_notification = cpu_to_le32(cnt);
5540 
5541 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5542 		cp->cgn_stat_del_day = broken.tm_mday;
5543 		cp->cgn_stat_del_year = broken.tm_year - 100;
5544 		cp->cgn_stat_del_hour = broken.tm_hour;
5545 		cp->cgn_stat_del_min = broken.tm_min;
5546 		cp->cgn_stat_del_sec = broken.tm_sec;
5547 		break;
5548 	case ELS_DTAG_PEER_CONGEST:
5549 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5550 		cnt++;
5551 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5552 
5553 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5554 		cp->cgn_stat_peer_day = broken.tm_mday;
5555 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5556 		cp->cgn_stat_peer_hour = broken.tm_hour;
5557 		cp->cgn_stat_peer_min = broken.tm_min;
5558 		cp->cgn_stat_peer_sec = broken.tm_sec;
5559 		break;
5560 	case ELS_DTAG_CONGESTION:
5561 		cnt = le32_to_cpu(cp->cgn_notification);
5562 		cnt++;
5563 		cp->cgn_notification = cpu_to_le32(cnt);
5564 
5565 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5566 		cp->cgn_stat_cgn_day = broken.tm_mday;
5567 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5568 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5569 		cp->cgn_stat_cgn_min = broken.tm_min;
5570 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5571 	}
5572 	if (phba->cgn_fpin_frequency &&
5573 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5574 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5575 		cp->cgn_stat_npm = value;
5576 	}
5577 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5578 				    LPFC_CGN_CRC32_SEED);
5579 	cp->cgn_info_crc = cpu_to_le32(value);
5580 }
5581 
5582 /**
5583  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5584  * @phba: pointer to lpfc hba data structure.
5585  *
5586  * Save the congestion event data every minute.
5587  * On the hour collapse all the minute data into hour data. Every day
5588  * collapse all the hour data into daily data. Separate driver
5589  * and fabrc congestion event counters that will be saved out
5590  * to the registered congestion buffer every minute.
5591  */
5592 static void
5593 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5594 {
5595 	struct lpfc_cgn_info *cp;
5596 	struct tm broken;
5597 	struct timespec64 cur_time;
5598 	uint32_t i, index;
5599 	uint16_t value, mvalue;
5600 	uint64_t bps;
5601 	uint32_t mbps;
5602 	uint32_t dvalue, wvalue, lvalue, avalue;
5603 	uint64_t latsum;
5604 	__le16 *ptr;
5605 	__le32 *lptr;
5606 	__le16 *mptr;
5607 
5608 	/* Make sure we have a congestion info buffer */
5609 	if (!phba->cgn_i)
5610 		return;
5611 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5612 
5613 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5614 		return;
5615 	phba->cgn_evt_timestamp = jiffies +
5616 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5617 	phba->cgn_evt_minute++;
5618 
5619 	/* We should get to this point in the routine on 1 minute intervals */
5620 
5621 	ktime_get_real_ts64(&cur_time);
5622 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5623 
5624 	if (phba->cgn_fpin_frequency &&
5625 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5626 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5627 		cp->cgn_stat_npm = value;
5628 	}
5629 
5630 	/* Read and clear the latency counters for this minute */
5631 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5632 	latsum = atomic64_read(&phba->cgn_latency_evt);
5633 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5634 	atomic64_set(&phba->cgn_latency_evt, 0);
5635 
5636 	/* We need to store MB/sec bandwidth in the congestion information.
5637 	 * block_cnt is count of 512 byte blocks for the entire minute,
5638 	 * bps will get bytes per sec before finally converting to MB/sec.
5639 	 */
5640 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5641 	phba->rx_block_cnt = 0;
5642 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5643 
5644 	/* Every minute */
5645 	/* cgn parameters */
5646 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5647 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5648 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5649 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5650 
5651 	/* Fill in default LUN qdepth */
5652 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5653 	cp->cgn_lunq = cpu_to_le16(value);
5654 
5655 	/* Record congestion buffer info - every minute
5656 	 * cgn_driver_evt_cnt (Driver events)
5657 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5658 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5659 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5660 	 */
5661 	index = ++cp->cgn_index_minute;
5662 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5663 		cp->cgn_index_minute = 0;
5664 		index = 0;
5665 	}
5666 
5667 	/* Get the number of driver events in this sample and reset counter */
5668 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5669 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5670 
5671 	/* Get the number of warning events - FPIN and Signal for this minute */
5672 	wvalue = 0;
5673 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5674 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5675 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5676 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5677 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5678 
5679 	/* Get the number of alarm events - FPIN and Signal for this minute */
5680 	avalue = 0;
5681 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5682 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5683 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5684 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5685 
5686 	/* Collect the driver, warning, alarm and latency counts for this
5687 	 * minute into the driver congestion buffer.
5688 	 */
5689 	ptr = &cp->cgn_drvr_min[index];
5690 	value = (uint16_t)dvalue;
5691 	*ptr = cpu_to_le16(value);
5692 
5693 	ptr = &cp->cgn_warn_min[index];
5694 	value = (uint16_t)wvalue;
5695 	*ptr = cpu_to_le16(value);
5696 
5697 	ptr = &cp->cgn_alarm_min[index];
5698 	value = (uint16_t)avalue;
5699 	*ptr = cpu_to_le16(value);
5700 
5701 	lptr = &cp->cgn_latency_min[index];
5702 	if (lvalue) {
5703 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5704 		*lptr = cpu_to_le32(lvalue);
5705 	} else {
5706 		*lptr = 0;
5707 	}
5708 
5709 	/* Collect the bandwidth value into the driver's congesion buffer. */
5710 	mptr = &cp->cgn_bw_min[index];
5711 	*mptr = cpu_to_le16(mvalue);
5712 
5713 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5714 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5715 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5716 
5717 	/* Every hour */
5718 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5719 		/* Record congestion buffer info - every hour
5720 		 * Collapse all minutes into an hour
5721 		 */
5722 		index = ++cp->cgn_index_hour;
5723 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5724 			cp->cgn_index_hour = 0;
5725 			index = 0;
5726 		}
5727 
5728 		dvalue = 0;
5729 		wvalue = 0;
5730 		lvalue = 0;
5731 		avalue = 0;
5732 		mvalue = 0;
5733 		mbps = 0;
5734 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5735 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5736 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5737 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5738 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5739 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5740 		}
5741 		if (lvalue)		/* Avg of latency averages */
5742 			lvalue /= LPFC_MIN_HOUR;
5743 		if (mbps)		/* Avg of Bandwidth averages */
5744 			mvalue = mbps / LPFC_MIN_HOUR;
5745 
5746 		lptr = &cp->cgn_drvr_hr[index];
5747 		*lptr = cpu_to_le32(dvalue);
5748 		lptr = &cp->cgn_warn_hr[index];
5749 		*lptr = cpu_to_le32(wvalue);
5750 		lptr = &cp->cgn_latency_hr[index];
5751 		*lptr = cpu_to_le32(lvalue);
5752 		mptr = &cp->cgn_bw_hr[index];
5753 		*mptr = cpu_to_le16(mvalue);
5754 		lptr = &cp->cgn_alarm_hr[index];
5755 		*lptr = cpu_to_le32(avalue);
5756 
5757 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5758 				"2419 Congestion Info - hour "
5759 				"(%d): %d %d %d %d %d\n",
5760 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5761 	}
5762 
5763 	/* Every day */
5764 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5765 		/* Record congestion buffer info - every hour
5766 		 * Collapse all hours into a day. Rotate days
5767 		 * after LPFC_MAX_CGN_DAYS.
5768 		 */
5769 		index = ++cp->cgn_index_day;
5770 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5771 			cp->cgn_index_day = 0;
5772 			index = 0;
5773 		}
5774 
5775 		/* Anytime we overwrite daily index 0, after we wrap,
5776 		 * we will be overwriting the oldest day, so we must
5777 		 * update the congestion data start time for that day.
5778 		 * That start time should have previously been saved after
5779 		 * we wrote the last days worth of data.
5780 		 */
5781 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5782 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5783 
5784 			cp->cgn_info_month = broken.tm_mon + 1;
5785 			cp->cgn_info_day = broken.tm_mday;
5786 			cp->cgn_info_year = broken.tm_year - 100;
5787 			cp->cgn_info_hour = broken.tm_hour;
5788 			cp->cgn_info_minute = broken.tm_min;
5789 			cp->cgn_info_second = broken.tm_sec;
5790 
5791 			lpfc_printf_log
5792 				(phba, KERN_INFO, LOG_CGN_MGMT,
5793 				"2646 CGNInfo idx0 Start Time: "
5794 				"%d/%d/%d %d:%d:%d\n",
5795 				cp->cgn_info_day, cp->cgn_info_month,
5796 				cp->cgn_info_year, cp->cgn_info_hour,
5797 				cp->cgn_info_minute, cp->cgn_info_second);
5798 		}
5799 
5800 		dvalue = 0;
5801 		wvalue = 0;
5802 		lvalue = 0;
5803 		mvalue = 0;
5804 		mbps = 0;
5805 		avalue = 0;
5806 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5807 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5808 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5809 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5810 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5811 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5812 		}
5813 		if (lvalue)		/* Avg of latency averages */
5814 			lvalue /= LPFC_HOUR_DAY;
5815 		if (mbps)		/* Avg of Bandwidth averages */
5816 			mvalue = mbps / LPFC_HOUR_DAY;
5817 
5818 		lptr = &cp->cgn_drvr_day[index];
5819 		*lptr = cpu_to_le32(dvalue);
5820 		lptr = &cp->cgn_warn_day[index];
5821 		*lptr = cpu_to_le32(wvalue);
5822 		lptr = &cp->cgn_latency_day[index];
5823 		*lptr = cpu_to_le32(lvalue);
5824 		mptr = &cp->cgn_bw_day[index];
5825 		*mptr = cpu_to_le16(mvalue);
5826 		lptr = &cp->cgn_alarm_day[index];
5827 		*lptr = cpu_to_le32(avalue);
5828 
5829 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5830 				"2420 Congestion Info - daily (%d): "
5831 				"%d %d %d %d %d\n",
5832 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5833 
5834 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5835 		 * so we are wrapped on any data after this.
5836 		 * Save this as the start time for the next day.
5837 		 */
5838 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5839 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5840 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5841 		}
5842 	}
5843 
5844 	/* Use the frequency found in the last rcv'ed FPIN */
5845 	value = phba->cgn_fpin_frequency;
5846 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN)
5847 		cp->cgn_warn_freq = cpu_to_le16(value);
5848 	if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM)
5849 		cp->cgn_alarm_freq = cpu_to_le16(value);
5850 
5851 	/* Frequency (in ms) Signal Warning/Signal Congestion Notifications
5852 	 * are received by the HBA
5853 	 */
5854 	value = phba->cgn_sig_freq;
5855 
5856 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5857 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5858 		cp->cgn_warn_freq = cpu_to_le16(value);
5859 	if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5860 		cp->cgn_alarm_freq = cpu_to_le16(value);
5861 
5862 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5863 				     LPFC_CGN_CRC32_SEED);
5864 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5865 }
5866 
5867 /**
5868  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5869  * @phba: The Hba for which this call is being executed.
5870  *
5871  * The routine calculates the latency from the beginning of the CMF timer
5872  * interval to the current point in time. It is called from IO completion
5873  * when we exceed our Bandwidth limitation for the time interval.
5874  */
5875 uint32_t
5876 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5877 {
5878 	struct timespec64 cmpl_time;
5879 	uint32_t msec = 0;
5880 
5881 	ktime_get_real_ts64(&cmpl_time);
5882 
5883 	/* This routine works on a ms granularity so sec and usec are
5884 	 * converted accordingly.
5885 	 */
5886 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5887 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5888 			NSEC_PER_MSEC;
5889 	} else {
5890 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5891 			msec = (cmpl_time.tv_sec -
5892 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5893 			msec += ((cmpl_time.tv_nsec -
5894 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5895 		} else {
5896 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5897 				1) * MSEC_PER_SEC;
5898 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5899 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5900 		}
5901 	}
5902 	return msec;
5903 }
5904 
5905 /**
5906  * lpfc_cmf_timer -  This is the timer function for one congestion
5907  * rate interval.
5908  * @timer: Pointer to the high resolution timer that expired
5909  */
5910 static enum hrtimer_restart
5911 lpfc_cmf_timer(struct hrtimer *timer)
5912 {
5913 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5914 					     cmf_timer);
5915 	struct rxtable_entry *entry;
5916 	uint32_t io_cnt;
5917 	uint32_t head, tail;
5918 	uint32_t busy, max_read;
5919 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5920 	int timer_interval = LPFC_CMF_INTERVAL;
5921 	uint32_t ms;
5922 	struct lpfc_cgn_stat *cgs;
5923 	int cpu;
5924 
5925 	/* Only restart the timer if congestion mgmt is on */
5926 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5927 	    !phba->cmf_latency.tv_sec) {
5928 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5929 				"6224 CMF timer exit: %d %lld\n",
5930 				phba->cmf_active_mode,
5931 				(uint64_t)phba->cmf_latency.tv_sec);
5932 		return HRTIMER_NORESTART;
5933 	}
5934 
5935 	/* If pport is not ready yet, just exit and wait for
5936 	 * the next timer cycle to hit.
5937 	 */
5938 	if (!phba->pport)
5939 		goto skip;
5940 
5941 	/* Do not block SCSI IO while in the timer routine since
5942 	 * total_bytes will be cleared
5943 	 */
5944 	atomic_set(&phba->cmf_stop_io, 1);
5945 
5946 	/* First we need to calculate the actual ms between
5947 	 * the last timer interrupt and this one. We ask for
5948 	 * LPFC_CMF_INTERVAL, however the actual time may
5949 	 * vary depending on system overhead.
5950 	 */
5951 	ms = lpfc_calc_cmf_latency(phba);
5952 
5953 
5954 	/* Immediately after we calculate the time since the last
5955 	 * timer interrupt, set the start time for the next
5956 	 * interrupt
5957 	 */
5958 	ktime_get_real_ts64(&phba->cmf_latency);
5959 
5960 	phba->cmf_link_byte_count =
5961 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5962 
5963 	/* Collect all the stats from the prior timer interval */
5964 	total = 0;
5965 	io_cnt = 0;
5966 	lat = 0;
5967 	rcv = 0;
5968 	for_each_present_cpu(cpu) {
5969 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5970 		total += atomic64_xchg(&cgs->total_bytes, 0);
5971 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5972 		lat += atomic64_xchg(&cgs->rx_latency, 0);
5973 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5974 	}
5975 
5976 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
5977 	 * returned from the last CMF_SYNC_WQE issued, from
5978 	 * cmf_last_sync_bw. This will be the target BW for
5979 	 * this next timer interval.
5980 	 */
5981 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5982 	    phba->link_state != LPFC_LINK_DOWN &&
5983 	    phba->hba_flag & HBA_SETUP) {
5984 		mbpi = phba->cmf_last_sync_bw;
5985 		phba->cmf_last_sync_bw = 0;
5986 		extra = 0;
5987 
5988 		/* Calculate any extra bytes needed to account for the
5989 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
5990 		 * calculate the adjustment needed for total to reflect
5991 		 * a full LPFC_CMF_INTERVAL.
5992 		 */
5993 		if (ms && ms < LPFC_CMF_INTERVAL) {
5994 			cnt = div_u64(total, ms); /* bytes per ms */
5995 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
5996 
5997 			/* If the timeout is scheduled to be shorter,
5998 			 * this value may skew the data, so cap it at mbpi.
5999 			 */
6000 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6001 				cnt = mbpi;
6002 
6003 			extra = cnt - total;
6004 		}
6005 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6006 	} else {
6007 		/* For Monitor mode or link down we want mbpi
6008 		 * to be the full link speed
6009 		 */
6010 		mbpi = phba->cmf_link_byte_count;
6011 		extra = 0;
6012 	}
6013 	phba->cmf_timer_cnt++;
6014 
6015 	if (io_cnt) {
6016 		/* Update congestion info buffer latency in us */
6017 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6018 		atomic64_add(lat, &phba->cgn_latency_evt);
6019 	}
6020 	busy = atomic_xchg(&phba->cmf_busy, 0);
6021 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6022 
6023 	/* Calculate MBPI for the next timer interval */
6024 	if (mbpi) {
6025 		if (mbpi > phba->cmf_link_byte_count ||
6026 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6027 			mbpi = phba->cmf_link_byte_count;
6028 
6029 		/* Change max_bytes_per_interval to what the prior
6030 		 * CMF_SYNC_WQE cmpl indicated.
6031 		 */
6032 		if (mbpi != phba->cmf_max_bytes_per_interval)
6033 			phba->cmf_max_bytes_per_interval = mbpi;
6034 	}
6035 
6036 	/* Save rxmonitor information for debug */
6037 	if (phba->rxtable) {
6038 		head = atomic_xchg(&phba->rxtable_idx_head,
6039 				   LPFC_RXMONITOR_TABLE_IN_USE);
6040 		entry = &phba->rxtable[head];
6041 		entry->total_bytes = total;
6042 		entry->cmf_bytes = total + extra;
6043 		entry->rcv_bytes = rcv;
6044 		entry->cmf_busy = busy;
6045 		entry->cmf_info = phba->cmf_active_info;
6046 		if (io_cnt) {
6047 			entry->avg_io_latency = div_u64(lat, io_cnt);
6048 			entry->avg_io_size = div_u64(rcv, io_cnt);
6049 		} else {
6050 			entry->avg_io_latency = 0;
6051 			entry->avg_io_size = 0;
6052 		}
6053 		entry->max_read_cnt = max_read;
6054 		entry->io_cnt = io_cnt;
6055 		entry->max_bytes_per_interval = mbpi;
6056 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6057 			entry->timer_utilization = phba->cmf_last_ts;
6058 		else
6059 			entry->timer_utilization = ms;
6060 		entry->timer_interval = ms;
6061 		phba->cmf_last_ts = 0;
6062 
6063 		/* Increment rxtable index */
6064 		head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6065 		tail = atomic_read(&phba->rxtable_idx_tail);
6066 		if (head == tail) {
6067 			tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY;
6068 			atomic_set(&phba->rxtable_idx_tail, tail);
6069 		}
6070 		atomic_set(&phba->rxtable_idx_head, head);
6071 	}
6072 
6073 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6074 		/* If Monitor mode, check if we are oversubscribed
6075 		 * against the full line rate.
6076 		 */
6077 		if (mbpi && total > mbpi)
6078 			atomic_inc(&phba->cgn_driver_evt_cnt);
6079 	}
6080 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6081 
6082 	/* Each minute save Fabric and Driver congestion information */
6083 	lpfc_cgn_save_evt_cnt(phba);
6084 
6085 	phba->hba_flag &= ~HBA_SHORT_CMF;
6086 
6087 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6088 	 * minute, adjust our next timer interval, if needed, to ensure a
6089 	 * 1 minute granularity when we get the next timer interrupt.
6090 	 */
6091 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6092 		       phba->cgn_evt_timestamp)) {
6093 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6094 						  jiffies);
6095 		if (timer_interval <= 0)
6096 			timer_interval = LPFC_CMF_INTERVAL;
6097 		else
6098 			phba->hba_flag |= HBA_SHORT_CMF;
6099 
6100 		/* If we adjust timer_interval, max_bytes_per_interval
6101 		 * needs to be adjusted as well.
6102 		 */
6103 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6104 						    timer_interval, 1000);
6105 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6106 			phba->cmf_max_bytes_per_interval =
6107 				phba->cmf_link_byte_count;
6108 	}
6109 
6110 	/* Since total_bytes has already been zero'ed, its okay to unblock
6111 	 * after max_bytes_per_interval is setup.
6112 	 */
6113 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6114 		queue_work(phba->wq, &phba->unblock_request_work);
6115 
6116 	/* SCSI IO is now unblocked */
6117 	atomic_set(&phba->cmf_stop_io, 0);
6118 
6119 skip:
6120 	hrtimer_forward_now(timer,
6121 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6122 	return HRTIMER_RESTART;
6123 }
6124 
6125 #define trunk_link_status(__idx)\
6126 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6127 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6128 		"Link up" : "Link down") : "NA"
6129 /* Did port __idx reported an error */
6130 #define trunk_port_fault(__idx)\
6131 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6132 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6133 
6134 static void
6135 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6136 			      struct lpfc_acqe_fc_la *acqe_fc)
6137 {
6138 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6139 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6140 
6141 	phba->sli4_hba.link_state.speed =
6142 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6143 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6144 
6145 	phba->sli4_hba.link_state.logical_speed =
6146 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6147 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6148 	phba->fc_linkspeed =
6149 		 lpfc_async_link_speed_to_read_top(
6150 				phba,
6151 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6152 
6153 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6154 		phba->trunk_link.link0.state =
6155 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6156 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6157 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6158 	}
6159 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6160 		phba->trunk_link.link1.state =
6161 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6162 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6163 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6164 	}
6165 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6166 		phba->trunk_link.link2.state =
6167 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6168 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6169 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6170 	}
6171 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6172 		phba->trunk_link.link3.state =
6173 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6174 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6175 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6176 	}
6177 
6178 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6179 			"2910 Async FC Trunking Event - Speed:%d\n"
6180 			"\tLogical speed:%d "
6181 			"port0: %s port1: %s port2: %s port3: %s\n",
6182 			phba->sli4_hba.link_state.speed,
6183 			phba->sli4_hba.link_state.logical_speed,
6184 			trunk_link_status(0), trunk_link_status(1),
6185 			trunk_link_status(2), trunk_link_status(3));
6186 
6187 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6188 		lpfc_cmf_signal_init(phba);
6189 
6190 	if (port_fault)
6191 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6192 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6193 				/*
6194 				 * SLI-4: We have only 0xA error codes
6195 				 * defined as of now. print an appropriate
6196 				 * message in case driver needs to be updated.
6197 				 */
6198 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6199 				"UNDEFINED. update driver." : trunk_errmsg[err],
6200 				trunk_port_fault(0), trunk_port_fault(1),
6201 				trunk_port_fault(2), trunk_port_fault(3));
6202 }
6203 
6204 
6205 /**
6206  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6207  * @phba: pointer to lpfc hba data structure.
6208  * @acqe_fc: pointer to the async fc completion queue entry.
6209  *
6210  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6211  * that the event was received and then issue a read_topology mailbox command so
6212  * that the rest of the driver will treat it the same as SLI3.
6213  **/
6214 static void
6215 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6216 {
6217 	struct lpfc_dmabuf *mp;
6218 	LPFC_MBOXQ_t *pmb;
6219 	MAILBOX_t *mb;
6220 	struct lpfc_mbx_read_top *la;
6221 	int rc;
6222 
6223 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6224 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6225 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6226 				"2895 Non FC link Event detected.(%d)\n",
6227 				bf_get(lpfc_trailer_type, acqe_fc));
6228 		return;
6229 	}
6230 
6231 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6232 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6233 		lpfc_update_trunk_link_status(phba, acqe_fc);
6234 		return;
6235 	}
6236 
6237 	/* Keep the link status for extra SLI4 state machine reference */
6238 	phba->sli4_hba.link_state.speed =
6239 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6240 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6241 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6242 	phba->sli4_hba.link_state.topology =
6243 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6244 	phba->sli4_hba.link_state.status =
6245 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6246 	phba->sli4_hba.link_state.type =
6247 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6248 	phba->sli4_hba.link_state.number =
6249 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6250 	phba->sli4_hba.link_state.fault =
6251 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6252 
6253 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6254 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6255 		phba->sli4_hba.link_state.logical_speed = 0;
6256 	else if	(!phba->sli4_hba.conf_trunk)
6257 		phba->sli4_hba.link_state.logical_speed =
6258 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6259 
6260 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6261 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6262 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6263 			"%dMbps Fault:%d\n",
6264 			phba->sli4_hba.link_state.speed,
6265 			phba->sli4_hba.link_state.topology,
6266 			phba->sli4_hba.link_state.status,
6267 			phba->sli4_hba.link_state.type,
6268 			phba->sli4_hba.link_state.number,
6269 			phba->sli4_hba.link_state.logical_speed,
6270 			phba->sli4_hba.link_state.fault);
6271 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6272 	if (!pmb) {
6273 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6274 				"2897 The mboxq allocation failed\n");
6275 		return;
6276 	}
6277 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6278 	if (!mp) {
6279 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6280 				"2898 The lpfc_dmabuf allocation failed\n");
6281 		goto out_free_pmb;
6282 	}
6283 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6284 	if (!mp->virt) {
6285 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6286 				"2899 The mbuf allocation failed\n");
6287 		goto out_free_dmabuf;
6288 	}
6289 
6290 	/* Cleanup any outstanding ELS commands */
6291 	lpfc_els_flush_all_cmd(phba);
6292 
6293 	/* Block ELS IOCBs until we have done process link event */
6294 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6295 
6296 	/* Update link event statistics */
6297 	phba->sli.slistat.link_event++;
6298 
6299 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6300 	lpfc_read_topology(phba, pmb, mp);
6301 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6302 	pmb->vport = phba->pport;
6303 
6304 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6305 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6306 
6307 		switch (phba->sli4_hba.link_state.status) {
6308 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6309 			phba->link_flag |= LS_MDS_LINK_DOWN;
6310 			break;
6311 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6312 			phba->link_flag |= LS_MDS_LOOPBACK;
6313 			break;
6314 		default:
6315 			break;
6316 		}
6317 
6318 		/* Initialize completion status */
6319 		mb = &pmb->u.mb;
6320 		mb->mbxStatus = MBX_SUCCESS;
6321 
6322 		/* Parse port fault information field */
6323 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6324 
6325 		/* Parse and translate link attention fields */
6326 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6327 		la->eventTag = acqe_fc->event_tag;
6328 
6329 		if (phba->sli4_hba.link_state.status ==
6330 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6331 			bf_set(lpfc_mbx_read_top_att_type, la,
6332 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6333 		} else {
6334 			bf_set(lpfc_mbx_read_top_att_type, la,
6335 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6336 		}
6337 		/* Invoke the mailbox command callback function */
6338 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6339 
6340 		return;
6341 	}
6342 
6343 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6344 	if (rc == MBX_NOT_FINISHED) {
6345 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
6346 		goto out_free_dmabuf;
6347 	}
6348 	return;
6349 
6350 out_free_dmabuf:
6351 	kfree(mp);
6352 out_free_pmb:
6353 	mempool_free(pmb, phba->mbox_mem_pool);
6354 }
6355 
6356 /**
6357  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6358  * @phba: pointer to lpfc hba data structure.
6359  * @acqe_sli: pointer to the async SLI completion queue entry.
6360  *
6361  * This routine is to handle the SLI4 asynchronous SLI events.
6362  **/
6363 static void
6364 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6365 {
6366 	char port_name;
6367 	char message[128];
6368 	uint8_t status;
6369 	uint8_t evt_type;
6370 	uint8_t operational = 0;
6371 	struct temp_event temp_event_data;
6372 	struct lpfc_acqe_misconfigured_event *misconfigured;
6373 	struct lpfc_acqe_cgn_signal *cgn_signal;
6374 	struct Scsi_Host  *shost;
6375 	struct lpfc_vport **vports;
6376 	int rc, i, cnt;
6377 
6378 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6379 
6380 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6381 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6382 			"x%08x x%08x x%08x\n", evt_type,
6383 			acqe_sli->event_data1, acqe_sli->event_data2,
6384 			acqe_sli->reserved, acqe_sli->trailer);
6385 
6386 	port_name = phba->Port[0];
6387 	if (port_name == 0x00)
6388 		port_name = '?'; /* get port name is empty */
6389 
6390 	switch (evt_type) {
6391 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6392 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6393 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6394 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6395 
6396 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6397 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6398 				acqe_sli->event_data1, port_name);
6399 
6400 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6401 		shost = lpfc_shost_from_vport(phba->pport);
6402 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6403 					  sizeof(temp_event_data),
6404 					  (char *)&temp_event_data,
6405 					  SCSI_NL_VID_TYPE_PCI
6406 					  | PCI_VENDOR_ID_EMULEX);
6407 		break;
6408 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6409 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6410 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6411 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6412 
6413 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6414 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6415 				acqe_sli->event_data1, port_name);
6416 
6417 		shost = lpfc_shost_from_vport(phba->pport);
6418 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6419 					  sizeof(temp_event_data),
6420 					  (char *)&temp_event_data,
6421 					  SCSI_NL_VID_TYPE_PCI
6422 					  | PCI_VENDOR_ID_EMULEX);
6423 		break;
6424 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6425 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6426 					&acqe_sli->event_data1;
6427 
6428 		/* fetch the status for this port */
6429 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6430 		case LPFC_LINK_NUMBER_0:
6431 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6432 					&misconfigured->theEvent);
6433 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6434 					&misconfigured->theEvent);
6435 			break;
6436 		case LPFC_LINK_NUMBER_1:
6437 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6438 					&misconfigured->theEvent);
6439 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6440 					&misconfigured->theEvent);
6441 			break;
6442 		case LPFC_LINK_NUMBER_2:
6443 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6444 					&misconfigured->theEvent);
6445 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6446 					&misconfigured->theEvent);
6447 			break;
6448 		case LPFC_LINK_NUMBER_3:
6449 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6450 					&misconfigured->theEvent);
6451 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6452 					&misconfigured->theEvent);
6453 			break;
6454 		default:
6455 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6456 					"3296 "
6457 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6458 					"event: Invalid link %d",
6459 					phba->sli4_hba.lnk_info.lnk_no);
6460 			return;
6461 		}
6462 
6463 		/* Skip if optic state unchanged */
6464 		if (phba->sli4_hba.lnk_info.optic_state == status)
6465 			return;
6466 
6467 		switch (status) {
6468 		case LPFC_SLI_EVENT_STATUS_VALID:
6469 			sprintf(message, "Physical Link is functional");
6470 			break;
6471 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6472 			sprintf(message, "Optics faulted/incorrectly "
6473 				"installed/not installed - Reseat optics, "
6474 				"if issue not resolved, replace.");
6475 			break;
6476 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6477 			sprintf(message,
6478 				"Optics of two types installed - Remove one "
6479 				"optic or install matching pair of optics.");
6480 			break;
6481 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6482 			sprintf(message, "Incompatible optics - Replace with "
6483 				"compatible optics for card to function.");
6484 			break;
6485 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6486 			sprintf(message, "Unqualified optics - Replace with "
6487 				"Avago optics for Warranty and Technical "
6488 				"Support - Link is%s operational",
6489 				(operational) ? " not" : "");
6490 			break;
6491 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6492 			sprintf(message, "Uncertified optics - Replace with "
6493 				"Avago-certified optics to enable link "
6494 				"operation - Link is%s operational",
6495 				(operational) ? " not" : "");
6496 			break;
6497 		default:
6498 			/* firmware is reporting a status we don't know about */
6499 			sprintf(message, "Unknown event status x%02x", status);
6500 			break;
6501 		}
6502 
6503 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6504 		rc = lpfc_sli4_read_config(phba);
6505 		if (rc) {
6506 			phba->lmt = 0;
6507 			lpfc_printf_log(phba, KERN_ERR,
6508 					LOG_TRACE_EVENT,
6509 					"3194 Unable to retrieve supported "
6510 					"speeds, rc = 0x%x\n", rc);
6511 		}
6512 		rc = lpfc_sli4_refresh_params(phba);
6513 		if (rc) {
6514 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6515 					"3174 Unable to update pls support, "
6516 					"rc x%x\n", rc);
6517 		}
6518 		vports = lpfc_create_vport_work_array(phba);
6519 		if (vports != NULL) {
6520 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6521 					i++) {
6522 				shost = lpfc_shost_from_vport(vports[i]);
6523 				lpfc_host_supported_speeds_set(shost);
6524 			}
6525 		}
6526 		lpfc_destroy_vport_work_array(phba, vports);
6527 
6528 		phba->sli4_hba.lnk_info.optic_state = status;
6529 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6530 				"3176 Port Name %c %s\n", port_name, message);
6531 		break;
6532 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6533 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6534 				"3192 Remote DPort Test Initiated - "
6535 				"Event Data1:x%08x Event Data2: x%08x\n",
6536 				acqe_sli->event_data1, acqe_sli->event_data2);
6537 		break;
6538 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6539 		/* Call FW to obtain active parms */
6540 		lpfc_sli4_cgn_parm_chg_evt(phba);
6541 		break;
6542 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6543 		/* Misconfigured WWN. Reports that the SLI Port is configured
6544 		 * to use FA-WWN, but the attached device doesn’t support it.
6545 		 * No driver action is required.
6546 		 * Event Data1 - N.A, Event Data2 - N.A
6547 		 */
6548 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6549 			     "2699 Misconfigured FA-WWN - Attached device does "
6550 			     "not support FA-WWN\n");
6551 		break;
6552 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6553 		/* EEPROM failure. No driver action is required */
6554 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6555 			     "2518 EEPROM failure - "
6556 			     "Event Data1: x%08x Event Data2: x%08x\n",
6557 			     acqe_sli->event_data1, acqe_sli->event_data2);
6558 		break;
6559 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6560 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6561 			break;
6562 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6563 					&acqe_sli->event_data1;
6564 		phba->cgn_acqe_cnt++;
6565 
6566 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6567 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6568 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6569 
6570 		/* no threshold for CMF, even 1 signal will trigger an event */
6571 
6572 		/* Alarm overrides warning, so check that first */
6573 		if (cgn_signal->alarm_cnt) {
6574 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6575 				/* Keep track of alarm cnt for cgn_info */
6576 				atomic_add(cgn_signal->alarm_cnt,
6577 					   &phba->cgn_fabric_alarm_cnt);
6578 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6579 				atomic_add(cgn_signal->alarm_cnt,
6580 					   &phba->cgn_sync_alarm_cnt);
6581 			}
6582 		} else if (cnt) {
6583 			/* signal action needs to be taken */
6584 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6585 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6586 				/* Keep track of warning cnt for cgn_info */
6587 				atomic_add(cnt, &phba->cgn_fabric_warn_cnt);
6588 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6589 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6590 			}
6591 		}
6592 		break;
6593 	default:
6594 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6595 				"3193 Unrecognized SLI event, type: 0x%x",
6596 				evt_type);
6597 		break;
6598 	}
6599 }
6600 
6601 /**
6602  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6603  * @vport: pointer to vport data structure.
6604  *
6605  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6606  * response to a CVL event.
6607  *
6608  * Return the pointer to the ndlp with the vport if successful, otherwise
6609  * return NULL.
6610  **/
6611 static struct lpfc_nodelist *
6612 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6613 {
6614 	struct lpfc_nodelist *ndlp;
6615 	struct Scsi_Host *shost;
6616 	struct lpfc_hba *phba;
6617 
6618 	if (!vport)
6619 		return NULL;
6620 	phba = vport->phba;
6621 	if (!phba)
6622 		return NULL;
6623 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6624 	if (!ndlp) {
6625 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6626 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6627 		if (!ndlp)
6628 			return NULL;
6629 		/* Set the node type */
6630 		ndlp->nlp_type |= NLP_FABRIC;
6631 		/* Put ndlp onto node list */
6632 		lpfc_enqueue_node(vport, ndlp);
6633 	}
6634 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6635 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6636 		return NULL;
6637 	/* If virtual link is not yet instantiated ignore CVL */
6638 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6639 		&& (vport->port_state != LPFC_VPORT_FAILED))
6640 		return NULL;
6641 	shost = lpfc_shost_from_vport(vport);
6642 	if (!shost)
6643 		return NULL;
6644 	lpfc_linkdown_port(vport);
6645 	lpfc_cleanup_pending_mbox(vport);
6646 	spin_lock_irq(shost->host_lock);
6647 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6648 	spin_unlock_irq(shost->host_lock);
6649 
6650 	return ndlp;
6651 }
6652 
6653 /**
6654  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6655  * @phba: pointer to lpfc hba data structure.
6656  *
6657  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6658  * response to a FCF dead event.
6659  **/
6660 static void
6661 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6662 {
6663 	struct lpfc_vport **vports;
6664 	int i;
6665 
6666 	vports = lpfc_create_vport_work_array(phba);
6667 	if (vports)
6668 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6669 			lpfc_sli4_perform_vport_cvl(vports[i]);
6670 	lpfc_destroy_vport_work_array(phba, vports);
6671 }
6672 
6673 /**
6674  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6675  * @phba: pointer to lpfc hba data structure.
6676  * @acqe_fip: pointer to the async fcoe completion queue entry.
6677  *
6678  * This routine is to handle the SLI4 asynchronous fcoe event.
6679  **/
6680 static void
6681 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6682 			struct lpfc_acqe_fip *acqe_fip)
6683 {
6684 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6685 	int rc;
6686 	struct lpfc_vport *vport;
6687 	struct lpfc_nodelist *ndlp;
6688 	int active_vlink_present;
6689 	struct lpfc_vport **vports;
6690 	int i;
6691 
6692 	phba->fc_eventTag = acqe_fip->event_tag;
6693 	phba->fcoe_eventtag = acqe_fip->event_tag;
6694 	switch (event_type) {
6695 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6696 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6697 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6698 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6699 					"2546 New FCF event, evt_tag:x%x, "
6700 					"index:x%x\n",
6701 					acqe_fip->event_tag,
6702 					acqe_fip->index);
6703 		else
6704 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6705 					LOG_DISCOVERY,
6706 					"2788 FCF param modified event, "
6707 					"evt_tag:x%x, index:x%x\n",
6708 					acqe_fip->event_tag,
6709 					acqe_fip->index);
6710 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6711 			/*
6712 			 * During period of FCF discovery, read the FCF
6713 			 * table record indexed by the event to update
6714 			 * FCF roundrobin failover eligible FCF bmask.
6715 			 */
6716 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6717 					LOG_DISCOVERY,
6718 					"2779 Read FCF (x%x) for updating "
6719 					"roundrobin FCF failover bmask\n",
6720 					acqe_fip->index);
6721 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6722 		}
6723 
6724 		/* If the FCF discovery is in progress, do nothing. */
6725 		spin_lock_irq(&phba->hbalock);
6726 		if (phba->hba_flag & FCF_TS_INPROG) {
6727 			spin_unlock_irq(&phba->hbalock);
6728 			break;
6729 		}
6730 		/* If fast FCF failover rescan event is pending, do nothing */
6731 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6732 			spin_unlock_irq(&phba->hbalock);
6733 			break;
6734 		}
6735 
6736 		/* If the FCF has been in discovered state, do nothing. */
6737 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6738 			spin_unlock_irq(&phba->hbalock);
6739 			break;
6740 		}
6741 		spin_unlock_irq(&phba->hbalock);
6742 
6743 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6744 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6745 				"2770 Start FCF table scan per async FCF "
6746 				"event, evt_tag:x%x, index:x%x\n",
6747 				acqe_fip->event_tag, acqe_fip->index);
6748 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6749 						     LPFC_FCOE_FCF_GET_FIRST);
6750 		if (rc)
6751 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6752 					"2547 Issue FCF scan read FCF mailbox "
6753 					"command failed (x%x)\n", rc);
6754 		break;
6755 
6756 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6757 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6758 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6759 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6760 				acqe_fip->event_tag);
6761 		break;
6762 
6763 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6764 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6765 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6766 				"2549 FCF (x%x) disconnected from network, "
6767 				 "tag:x%x\n", acqe_fip->index,
6768 				 acqe_fip->event_tag);
6769 		/*
6770 		 * If we are in the middle of FCF failover process, clear
6771 		 * the corresponding FCF bit in the roundrobin bitmap.
6772 		 */
6773 		spin_lock_irq(&phba->hbalock);
6774 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6775 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6776 			spin_unlock_irq(&phba->hbalock);
6777 			/* Update FLOGI FCF failover eligible FCF bmask */
6778 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6779 			break;
6780 		}
6781 		spin_unlock_irq(&phba->hbalock);
6782 
6783 		/* If the event is not for currently used fcf do nothing */
6784 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6785 			break;
6786 
6787 		/*
6788 		 * Otherwise, request the port to rediscover the entire FCF
6789 		 * table for a fast recovery from case that the current FCF
6790 		 * is no longer valid as we are not in the middle of FCF
6791 		 * failover process already.
6792 		 */
6793 		spin_lock_irq(&phba->hbalock);
6794 		/* Mark the fast failover process in progress */
6795 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6796 		spin_unlock_irq(&phba->hbalock);
6797 
6798 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6799 				"2771 Start FCF fast failover process due to "
6800 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6801 				"\n", acqe_fip->event_tag, acqe_fip->index);
6802 		rc = lpfc_sli4_redisc_fcf_table(phba);
6803 		if (rc) {
6804 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6805 					LOG_TRACE_EVENT,
6806 					"2772 Issue FCF rediscover mailbox "
6807 					"command failed, fail through to FCF "
6808 					"dead event\n");
6809 			spin_lock_irq(&phba->hbalock);
6810 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6811 			spin_unlock_irq(&phba->hbalock);
6812 			/*
6813 			 * Last resort will fail over by treating this
6814 			 * as a link down to FCF registration.
6815 			 */
6816 			lpfc_sli4_fcf_dead_failthrough(phba);
6817 		} else {
6818 			/* Reset FCF roundrobin bmask for new discovery */
6819 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6820 			/*
6821 			 * Handling fast FCF failover to a DEAD FCF event is
6822 			 * considered equalivant to receiving CVL to all vports.
6823 			 */
6824 			lpfc_sli4_perform_all_vport_cvl(phba);
6825 		}
6826 		break;
6827 	case LPFC_FIP_EVENT_TYPE_CVL:
6828 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6829 		lpfc_printf_log(phba, KERN_ERR,
6830 				LOG_TRACE_EVENT,
6831 			"2718 Clear Virtual Link Received for VPI 0x%x"
6832 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6833 
6834 		vport = lpfc_find_vport_by_vpid(phba,
6835 						acqe_fip->index);
6836 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6837 		if (!ndlp)
6838 			break;
6839 		active_vlink_present = 0;
6840 
6841 		vports = lpfc_create_vport_work_array(phba);
6842 		if (vports) {
6843 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6844 					i++) {
6845 				if ((!(vports[i]->fc_flag &
6846 					FC_VPORT_CVL_RCVD)) &&
6847 					(vports[i]->port_state > LPFC_FDISC)) {
6848 					active_vlink_present = 1;
6849 					break;
6850 				}
6851 			}
6852 			lpfc_destroy_vport_work_array(phba, vports);
6853 		}
6854 
6855 		/*
6856 		 * Don't re-instantiate if vport is marked for deletion.
6857 		 * If we are here first then vport_delete is going to wait
6858 		 * for discovery to complete.
6859 		 */
6860 		if (!(vport->load_flag & FC_UNLOADING) &&
6861 					active_vlink_present) {
6862 			/*
6863 			 * If there are other active VLinks present,
6864 			 * re-instantiate the Vlink using FDISC.
6865 			 */
6866 			mod_timer(&ndlp->nlp_delayfunc,
6867 				  jiffies + msecs_to_jiffies(1000));
6868 			spin_lock_irq(&ndlp->lock);
6869 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6870 			spin_unlock_irq(&ndlp->lock);
6871 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6872 			vport->port_state = LPFC_FDISC;
6873 		} else {
6874 			/*
6875 			 * Otherwise, we request port to rediscover
6876 			 * the entire FCF table for a fast recovery
6877 			 * from possible case that the current FCF
6878 			 * is no longer valid if we are not already
6879 			 * in the FCF failover process.
6880 			 */
6881 			spin_lock_irq(&phba->hbalock);
6882 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6883 				spin_unlock_irq(&phba->hbalock);
6884 				break;
6885 			}
6886 			/* Mark the fast failover process in progress */
6887 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6888 			spin_unlock_irq(&phba->hbalock);
6889 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6890 					LOG_DISCOVERY,
6891 					"2773 Start FCF failover per CVL, "
6892 					"evt_tag:x%x\n", acqe_fip->event_tag);
6893 			rc = lpfc_sli4_redisc_fcf_table(phba);
6894 			if (rc) {
6895 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6896 						LOG_TRACE_EVENT,
6897 						"2774 Issue FCF rediscover "
6898 						"mailbox command failed, "
6899 						"through to CVL event\n");
6900 				spin_lock_irq(&phba->hbalock);
6901 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6902 				spin_unlock_irq(&phba->hbalock);
6903 				/*
6904 				 * Last resort will be re-try on the
6905 				 * the current registered FCF entry.
6906 				 */
6907 				lpfc_retry_pport_discovery(phba);
6908 			} else
6909 				/*
6910 				 * Reset FCF roundrobin bmask for new
6911 				 * discovery.
6912 				 */
6913 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6914 		}
6915 		break;
6916 	default:
6917 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6918 				"0288 Unknown FCoE event type 0x%x event tag "
6919 				"0x%x\n", event_type, acqe_fip->event_tag);
6920 		break;
6921 	}
6922 }
6923 
6924 /**
6925  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6926  * @phba: pointer to lpfc hba data structure.
6927  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6928  *
6929  * This routine is to handle the SLI4 asynchronous dcbx event.
6930  **/
6931 static void
6932 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6933 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6934 {
6935 	phba->fc_eventTag = acqe_dcbx->event_tag;
6936 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6937 			"0290 The SLI4 DCBX asynchronous event is not "
6938 			"handled yet\n");
6939 }
6940 
6941 /**
6942  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6943  * @phba: pointer to lpfc hba data structure.
6944  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6945  *
6946  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6947  * is an asynchronous notified of a logical link speed change.  The Port
6948  * reports the logical link speed in units of 10Mbps.
6949  **/
6950 static void
6951 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6952 			 struct lpfc_acqe_grp5 *acqe_grp5)
6953 {
6954 	uint16_t prev_ll_spd;
6955 
6956 	phba->fc_eventTag = acqe_grp5->event_tag;
6957 	phba->fcoe_eventtag = acqe_grp5->event_tag;
6958 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6959 	phba->sli4_hba.link_state.logical_speed =
6960 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6961 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6962 			"2789 GRP5 Async Event: Updating logical link speed "
6963 			"from %dMbps to %dMbps\n", prev_ll_spd,
6964 			phba->sli4_hba.link_state.logical_speed);
6965 }
6966 
6967 /**
6968  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6969  * @phba: pointer to lpfc hba data structure.
6970  *
6971  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6972  * is an asynchronous notification of a request to reset CM stats.
6973  **/
6974 static void
6975 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6976 {
6977 	if (!phba->cgn_i)
6978 		return;
6979 	lpfc_init_congestion_stat(phba);
6980 }
6981 
6982 /**
6983  * lpfc_cgn_params_val - Validate FW congestion parameters.
6984  * @phba: pointer to lpfc hba data structure.
6985  * @p_cfg_param: pointer to FW provided congestion parameters.
6986  *
6987  * This routine validates the congestion parameters passed
6988  * by the FW to the driver via an ACQE event.
6989  **/
6990 static void
6991 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
6992 {
6993 	spin_lock_irq(&phba->hbalock);
6994 
6995 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
6996 			     LPFC_CFG_MONITOR)) {
6997 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
6998 				"6225 CMF mode param out of range: %d\n",
6999 				 p_cfg_param->cgn_param_mode);
7000 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7001 	}
7002 
7003 	spin_unlock_irq(&phba->hbalock);
7004 }
7005 
7006 /**
7007  * lpfc_cgn_params_parse - Process a FW cong parm change event
7008  * @phba: pointer to lpfc hba data structure.
7009  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7010  * @len: the size of pdata in bytes.
7011  *
7012  * This routine validates the congestion management buffer signature
7013  * from the FW, validates the contents and makes corrections for
7014  * valid, in-range values.  If the signature magic is correct and
7015  * after parameter validation, the contents are copied to the driver's
7016  * @phba structure. If the magic is incorrect, an error message is
7017  * logged.
7018  **/
7019 static void
7020 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7021 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7022 {
7023 	struct lpfc_cgn_info *cp;
7024 	uint32_t crc, oldmode;
7025 
7026 	/* Make sure the FW has encoded the correct magic number to
7027 	 * validate the congestion parameter in FW memory.
7028 	 */
7029 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7030 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7031 				"4668 FW cgn parm buffer data: "
7032 				"magic 0x%x version %d mode %d "
7033 				"level0 %d level1 %d "
7034 				"level2 %d byte13 %d "
7035 				"byte14 %d byte15 %d "
7036 				"byte11 %d byte12 %d activeMode %d\n",
7037 				p_cgn_param->cgn_param_magic,
7038 				p_cgn_param->cgn_param_version,
7039 				p_cgn_param->cgn_param_mode,
7040 				p_cgn_param->cgn_param_level0,
7041 				p_cgn_param->cgn_param_level1,
7042 				p_cgn_param->cgn_param_level2,
7043 				p_cgn_param->byte13,
7044 				p_cgn_param->byte14,
7045 				p_cgn_param->byte15,
7046 				p_cgn_param->byte11,
7047 				p_cgn_param->byte12,
7048 				phba->cmf_active_mode);
7049 
7050 		oldmode = phba->cmf_active_mode;
7051 
7052 		/* Any parameters out of range are corrected to defaults
7053 		 * by this routine.  No need to fail.
7054 		 */
7055 		lpfc_cgn_params_val(phba, p_cgn_param);
7056 
7057 		/* Parameters are verified, move them into driver storage */
7058 		spin_lock_irq(&phba->hbalock);
7059 		memcpy(&phba->cgn_p, p_cgn_param,
7060 		       sizeof(struct lpfc_cgn_param));
7061 
7062 		/* Update parameters in congestion info buffer now */
7063 		if (phba->cgn_i) {
7064 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7065 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7066 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7067 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7068 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7069 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7070 						  LPFC_CGN_CRC32_SEED);
7071 			cp->cgn_info_crc = cpu_to_le32(crc);
7072 		}
7073 		spin_unlock_irq(&phba->hbalock);
7074 
7075 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7076 
7077 		switch (oldmode) {
7078 		case LPFC_CFG_OFF:
7079 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7080 				/* Turning CMF on */
7081 				lpfc_cmf_start(phba);
7082 
7083 				if (phba->link_state >= LPFC_LINK_UP) {
7084 					phba->cgn_reg_fpin =
7085 						phba->cgn_init_reg_fpin;
7086 					phba->cgn_reg_signal =
7087 						phba->cgn_init_reg_signal;
7088 					lpfc_issue_els_edc(phba->pport, 0);
7089 				}
7090 			}
7091 			break;
7092 		case LPFC_CFG_MANAGED:
7093 			switch (phba->cgn_p.cgn_param_mode) {
7094 			case LPFC_CFG_OFF:
7095 				/* Turning CMF off */
7096 				lpfc_cmf_stop(phba);
7097 				if (phba->link_state >= LPFC_LINK_UP)
7098 					lpfc_issue_els_edc(phba->pport, 0);
7099 				break;
7100 			case LPFC_CFG_MONITOR:
7101 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7102 						"4661 Switch from MANAGED to "
7103 						"`MONITOR mode\n");
7104 				phba->cmf_max_bytes_per_interval =
7105 					phba->cmf_link_byte_count;
7106 
7107 				/* Resume blocked IO - unblock on workqueue */
7108 				queue_work(phba->wq,
7109 					   &phba->unblock_request_work);
7110 				break;
7111 			}
7112 			break;
7113 		case LPFC_CFG_MONITOR:
7114 			switch (phba->cgn_p.cgn_param_mode) {
7115 			case LPFC_CFG_OFF:
7116 				/* Turning CMF off */
7117 				lpfc_cmf_stop(phba);
7118 				if (phba->link_state >= LPFC_LINK_UP)
7119 					lpfc_issue_els_edc(phba->pport, 0);
7120 				break;
7121 			case LPFC_CFG_MANAGED:
7122 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7123 						"4662 Switch from MONITOR to "
7124 						"MANAGED mode\n");
7125 				lpfc_cmf_signal_init(phba);
7126 				break;
7127 			}
7128 			break;
7129 		}
7130 	} else {
7131 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7132 				"4669 FW cgn parm buf wrong magic 0x%x "
7133 				"version %d\n", p_cgn_param->cgn_param_magic,
7134 				p_cgn_param->cgn_param_version);
7135 	}
7136 }
7137 
7138 /**
7139  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7140  * @phba: pointer to lpfc hba data structure.
7141  *
7142  * This routine issues a read_object mailbox command to
7143  * get the congestion management parameters from the FW
7144  * parses it and updates the driver maintained values.
7145  *
7146  * Returns
7147  *  0     if the object was empty
7148  *  -Eval if an error was encountered
7149  *  Count if bytes were read from object
7150  **/
7151 int
7152 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7153 {
7154 	int ret = 0;
7155 	struct lpfc_cgn_param *p_cgn_param = NULL;
7156 	u32 *pdata = NULL;
7157 	u32 len = 0;
7158 
7159 	/* Find out if the FW has a new set of congestion parameters. */
7160 	len = sizeof(struct lpfc_cgn_param);
7161 	pdata = kzalloc(len, GFP_KERNEL);
7162 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7163 			       pdata, len);
7164 
7165 	/* 0 means no data.  A negative means error.  A positive means
7166 	 * bytes were copied.
7167 	 */
7168 	if (!ret) {
7169 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7170 				"4670 CGN RD OBJ returns no data\n");
7171 		goto rd_obj_err;
7172 	} else if (ret < 0) {
7173 		/* Some error.  Just exit and return it to the caller.*/
7174 		goto rd_obj_err;
7175 	}
7176 
7177 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7178 			"6234 READ CGN PARAMS Successful %d\n", len);
7179 
7180 	/* Parse data pointer over len and update the phba congestion
7181 	 * parameters with values passed back.  The receive rate values
7182 	 * may have been altered in FW, but take no action here.
7183 	 */
7184 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7185 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7186 
7187  rd_obj_err:
7188 	kfree(pdata);
7189 	return ret;
7190 }
7191 
7192 /**
7193  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7194  * @phba: pointer to lpfc hba data structure.
7195  *
7196  * The FW generated Async ACQE SLI event calls this routine when
7197  * the event type is an SLI Internal Port Event and the Event Code
7198  * indicates a change to the FW maintained congestion parameters.
7199  *
7200  * This routine executes a Read_Object mailbox call to obtain the
7201  * current congestion parameters maintained in FW and corrects
7202  * the driver's active congestion parameters.
7203  *
7204  * The acqe event is not passed because there is no further data
7205  * required.
7206  *
7207  * Returns nonzero error if event processing encountered an error.
7208  * Zero otherwise for success.
7209  **/
7210 static int
7211 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7212 {
7213 	int ret = 0;
7214 
7215 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7216 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7217 				"4664 Cgn Evt when E2E off. Drop event\n");
7218 		return -EACCES;
7219 	}
7220 
7221 	/* If the event is claiming an empty object, it's ok.  A write
7222 	 * could have cleared it.  Only error is a negative return
7223 	 * status.
7224 	 */
7225 	ret = lpfc_sli4_cgn_params_read(phba);
7226 	if (ret < 0) {
7227 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7228 				"4667 Error reading Cgn Params (%d)\n",
7229 				ret);
7230 	} else if (!ret) {
7231 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7232 				"4673 CGN Event empty object.\n");
7233 	}
7234 	return ret;
7235 }
7236 
7237 /**
7238  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7239  * @phba: pointer to lpfc hba data structure.
7240  *
7241  * This routine is invoked by the worker thread to process all the pending
7242  * SLI4 asynchronous events.
7243  **/
7244 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7245 {
7246 	struct lpfc_cq_event *cq_event;
7247 	unsigned long iflags;
7248 
7249 	/* First, declare the async event has been handled */
7250 	spin_lock_irqsave(&phba->hbalock, iflags);
7251 	phba->hba_flag &= ~ASYNC_EVENT;
7252 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7253 
7254 	/* Now, handle all the async events */
7255 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7256 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7257 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7258 				 cq_event, struct lpfc_cq_event, list);
7259 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7260 				       iflags);
7261 
7262 		/* Process the asynchronous event */
7263 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7264 		case LPFC_TRAILER_CODE_LINK:
7265 			lpfc_sli4_async_link_evt(phba,
7266 						 &cq_event->cqe.acqe_link);
7267 			break;
7268 		case LPFC_TRAILER_CODE_FCOE:
7269 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7270 			break;
7271 		case LPFC_TRAILER_CODE_DCBX:
7272 			lpfc_sli4_async_dcbx_evt(phba,
7273 						 &cq_event->cqe.acqe_dcbx);
7274 			break;
7275 		case LPFC_TRAILER_CODE_GRP5:
7276 			lpfc_sli4_async_grp5_evt(phba,
7277 						 &cq_event->cqe.acqe_grp5);
7278 			break;
7279 		case LPFC_TRAILER_CODE_FC:
7280 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7281 			break;
7282 		case LPFC_TRAILER_CODE_SLI:
7283 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7284 			break;
7285 		case LPFC_TRAILER_CODE_CMSTAT:
7286 			lpfc_sli4_async_cmstat_evt(phba);
7287 			break;
7288 		default:
7289 			lpfc_printf_log(phba, KERN_ERR,
7290 					LOG_TRACE_EVENT,
7291 					"1804 Invalid asynchronous event code: "
7292 					"x%x\n", bf_get(lpfc_trailer_code,
7293 					&cq_event->cqe.mcqe_cmpl));
7294 			break;
7295 		}
7296 
7297 		/* Free the completion event processed to the free pool */
7298 		lpfc_sli4_cq_event_release(phba, cq_event);
7299 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7300 	}
7301 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7302 }
7303 
7304 /**
7305  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7306  * @phba: pointer to lpfc hba data structure.
7307  *
7308  * This routine is invoked by the worker thread to process FCF table
7309  * rediscovery pending completion event.
7310  **/
7311 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7312 {
7313 	int rc;
7314 
7315 	spin_lock_irq(&phba->hbalock);
7316 	/* Clear FCF rediscovery timeout event */
7317 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7318 	/* Clear driver fast failover FCF record flag */
7319 	phba->fcf.failover_rec.flag = 0;
7320 	/* Set state for FCF fast failover */
7321 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7322 	spin_unlock_irq(&phba->hbalock);
7323 
7324 	/* Scan FCF table from the first entry to re-discover SAN */
7325 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7326 			"2777 Start post-quiescent FCF table scan\n");
7327 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7328 	if (rc)
7329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7330 				"2747 Issue FCF scan read FCF mailbox "
7331 				"command failed 0x%x\n", rc);
7332 }
7333 
7334 /**
7335  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7336  * @phba: pointer to lpfc hba data structure.
7337  * @dev_grp: The HBA PCI-Device group number.
7338  *
7339  * This routine is invoked to set up the per HBA PCI-Device group function
7340  * API jump table entries.
7341  *
7342  * Return: 0 if success, otherwise -ENODEV
7343  **/
7344 int
7345 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7346 {
7347 	int rc;
7348 
7349 	/* Set up lpfc PCI-device group */
7350 	phba->pci_dev_grp = dev_grp;
7351 
7352 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7353 	if (dev_grp == LPFC_PCI_DEV_OC)
7354 		phba->sli_rev = LPFC_SLI_REV4;
7355 
7356 	/* Set up device INIT API function jump table */
7357 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7358 	if (rc)
7359 		return -ENODEV;
7360 	/* Set up SCSI API function jump table */
7361 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7362 	if (rc)
7363 		return -ENODEV;
7364 	/* Set up SLI API function jump table */
7365 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7366 	if (rc)
7367 		return -ENODEV;
7368 	/* Set up MBOX API function jump table */
7369 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7370 	if (rc)
7371 		return -ENODEV;
7372 
7373 	return 0;
7374 }
7375 
7376 /**
7377  * lpfc_log_intr_mode - Log the active interrupt mode
7378  * @phba: pointer to lpfc hba data structure.
7379  * @intr_mode: active interrupt mode adopted.
7380  *
7381  * This routine it invoked to log the currently used active interrupt mode
7382  * to the device.
7383  **/
7384 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7385 {
7386 	switch (intr_mode) {
7387 	case 0:
7388 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7389 				"0470 Enable INTx interrupt mode.\n");
7390 		break;
7391 	case 1:
7392 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7393 				"0481 Enabled MSI interrupt mode.\n");
7394 		break;
7395 	case 2:
7396 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7397 				"0480 Enabled MSI-X interrupt mode.\n");
7398 		break;
7399 	default:
7400 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7401 				"0482 Illegal interrupt mode.\n");
7402 		break;
7403 	}
7404 	return;
7405 }
7406 
7407 /**
7408  * lpfc_enable_pci_dev - Enable a generic PCI device.
7409  * @phba: pointer to lpfc hba data structure.
7410  *
7411  * This routine is invoked to enable the PCI device that is common to all
7412  * PCI devices.
7413  *
7414  * Return codes
7415  * 	0 - successful
7416  * 	other values - error
7417  **/
7418 static int
7419 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7420 {
7421 	struct pci_dev *pdev;
7422 
7423 	/* Obtain PCI device reference */
7424 	if (!phba->pcidev)
7425 		goto out_error;
7426 	else
7427 		pdev = phba->pcidev;
7428 	/* Enable PCI device */
7429 	if (pci_enable_device_mem(pdev))
7430 		goto out_error;
7431 	/* Request PCI resource for the device */
7432 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7433 		goto out_disable_device;
7434 	/* Set up device as PCI master and save state for EEH */
7435 	pci_set_master(pdev);
7436 	pci_try_set_mwi(pdev);
7437 	pci_save_state(pdev);
7438 
7439 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7440 	if (pci_is_pcie(pdev))
7441 		pdev->needs_freset = 1;
7442 
7443 	return 0;
7444 
7445 out_disable_device:
7446 	pci_disable_device(pdev);
7447 out_error:
7448 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7449 			"1401 Failed to enable pci device\n");
7450 	return -ENODEV;
7451 }
7452 
7453 /**
7454  * lpfc_disable_pci_dev - Disable a generic PCI device.
7455  * @phba: pointer to lpfc hba data structure.
7456  *
7457  * This routine is invoked to disable the PCI device that is common to all
7458  * PCI devices.
7459  **/
7460 static void
7461 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7462 {
7463 	struct pci_dev *pdev;
7464 
7465 	/* Obtain PCI device reference */
7466 	if (!phba->pcidev)
7467 		return;
7468 	else
7469 		pdev = phba->pcidev;
7470 	/* Release PCI resource and disable PCI device */
7471 	pci_release_mem_regions(pdev);
7472 	pci_disable_device(pdev);
7473 
7474 	return;
7475 }
7476 
7477 /**
7478  * lpfc_reset_hba - Reset a hba
7479  * @phba: pointer to lpfc hba data structure.
7480  *
7481  * This routine is invoked to reset a hba device. It brings the HBA
7482  * offline, performs a board restart, and then brings the board back
7483  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7484  * on outstanding mailbox commands.
7485  **/
7486 void
7487 lpfc_reset_hba(struct lpfc_hba *phba)
7488 {
7489 	/* If resets are disabled then set error state and return. */
7490 	if (!phba->cfg_enable_hba_reset) {
7491 		phba->link_state = LPFC_HBA_ERROR;
7492 		return;
7493 	}
7494 
7495 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7496 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7497 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7498 	} else {
7499 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7500 		lpfc_sli_flush_io_rings(phba);
7501 	}
7502 	lpfc_offline(phba);
7503 	lpfc_sli_brdrestart(phba);
7504 	lpfc_online(phba);
7505 	lpfc_unblock_mgmt_io(phba);
7506 }
7507 
7508 /**
7509  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7510  * @phba: pointer to lpfc hba data structure.
7511  *
7512  * This function enables the PCI SR-IOV virtual functions to a physical
7513  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7514  * enable the number of virtual functions to the physical function. As
7515  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7516  * API call does not considered as an error condition for most of the device.
7517  **/
7518 uint16_t
7519 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7520 {
7521 	struct pci_dev *pdev = phba->pcidev;
7522 	uint16_t nr_virtfn;
7523 	int pos;
7524 
7525 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7526 	if (pos == 0)
7527 		return 0;
7528 
7529 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7530 	return nr_virtfn;
7531 }
7532 
7533 /**
7534  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7535  * @phba: pointer to lpfc hba data structure.
7536  * @nr_vfn: number of virtual functions to be enabled.
7537  *
7538  * This function enables the PCI SR-IOV virtual functions to a physical
7539  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7540  * enable the number of virtual functions to the physical function. As
7541  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7542  * API call does not considered as an error condition for most of the device.
7543  **/
7544 int
7545 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7546 {
7547 	struct pci_dev *pdev = phba->pcidev;
7548 	uint16_t max_nr_vfn;
7549 	int rc;
7550 
7551 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7552 	if (nr_vfn > max_nr_vfn) {
7553 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7554 				"3057 Requested vfs (%d) greater than "
7555 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7556 		return -EINVAL;
7557 	}
7558 
7559 	rc = pci_enable_sriov(pdev, nr_vfn);
7560 	if (rc) {
7561 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7562 				"2806 Failed to enable sriov on this device "
7563 				"with vfn number nr_vf:%d, rc:%d\n",
7564 				nr_vfn, rc);
7565 	} else
7566 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7567 				"2807 Successful enable sriov on this device "
7568 				"with vfn number nr_vf:%d\n", nr_vfn);
7569 	return rc;
7570 }
7571 
7572 static void
7573 lpfc_unblock_requests_work(struct work_struct *work)
7574 {
7575 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7576 					     unblock_request_work);
7577 
7578 	lpfc_unblock_requests(phba);
7579 }
7580 
7581 /**
7582  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7583  * @phba: pointer to lpfc hba data structure.
7584  *
7585  * This routine is invoked to set up the driver internal resources before the
7586  * device specific resource setup to support the HBA device it attached to.
7587  *
7588  * Return codes
7589  *	0 - successful
7590  *	other values - error
7591  **/
7592 static int
7593 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7594 {
7595 	struct lpfc_sli *psli = &phba->sli;
7596 
7597 	/*
7598 	 * Driver resources common to all SLI revisions
7599 	 */
7600 	atomic_set(&phba->fast_event_count, 0);
7601 	atomic_set(&phba->dbg_log_idx, 0);
7602 	atomic_set(&phba->dbg_log_cnt, 0);
7603 	atomic_set(&phba->dbg_log_dmping, 0);
7604 	spin_lock_init(&phba->hbalock);
7605 
7606 	/* Initialize port_list spinlock */
7607 	spin_lock_init(&phba->port_list_lock);
7608 	INIT_LIST_HEAD(&phba->port_list);
7609 
7610 	INIT_LIST_HEAD(&phba->work_list);
7611 	init_waitqueue_head(&phba->wait_4_mlo_m_q);
7612 
7613 	/* Initialize the wait queue head for the kernel thread */
7614 	init_waitqueue_head(&phba->work_waitq);
7615 
7616 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7617 			"1403 Protocols supported %s %s %s\n",
7618 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7619 				"SCSI" : " "),
7620 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7621 				"NVME" : " "),
7622 			(phba->nvmet_support ? "NVMET" : " "));
7623 
7624 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7625 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7626 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7627 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7628 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7629 
7630 	/* Initialize the fabric iocb list */
7631 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7632 
7633 	/* Initialize list to save ELS buffers */
7634 	INIT_LIST_HEAD(&phba->elsbuf);
7635 
7636 	/* Initialize FCF connection rec list */
7637 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7638 
7639 	/* Initialize OAS configuration list */
7640 	spin_lock_init(&phba->devicelock);
7641 	INIT_LIST_HEAD(&phba->luns);
7642 
7643 	/* MBOX heartbeat timer */
7644 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7645 	/* Fabric block timer */
7646 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7647 	/* EA polling mode timer */
7648 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7649 	/* Heartbeat timer */
7650 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7651 
7652 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7653 
7654 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7655 			  lpfc_idle_stat_delay_work);
7656 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7657 	return 0;
7658 }
7659 
7660 /**
7661  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7662  * @phba: pointer to lpfc hba data structure.
7663  *
7664  * This routine is invoked to set up the driver internal resources specific to
7665  * support the SLI-3 HBA device it attached to.
7666  *
7667  * Return codes
7668  * 0 - successful
7669  * other values - error
7670  **/
7671 static int
7672 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7673 {
7674 	int rc, entry_sz;
7675 
7676 	/*
7677 	 * Initialize timers used by driver
7678 	 */
7679 
7680 	/* FCP polling mode timer */
7681 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7682 
7683 	/* Host attention work mask setup */
7684 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7685 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7686 
7687 	/* Get all the module params for configuring this host */
7688 	lpfc_get_cfgparam(phba);
7689 	/* Set up phase-1 common device driver resources */
7690 
7691 	rc = lpfc_setup_driver_resource_phase1(phba);
7692 	if (rc)
7693 		return -ENODEV;
7694 
7695 	if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7696 		phba->menlo_flag |= HBA_MENLO_SUPPORT;
7697 		/* check for menlo minimum sg count */
7698 		if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7699 			phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7700 	}
7701 
7702 	if (!phba->sli.sli3_ring)
7703 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7704 					      sizeof(struct lpfc_sli_ring),
7705 					      GFP_KERNEL);
7706 	if (!phba->sli.sli3_ring)
7707 		return -ENOMEM;
7708 
7709 	/*
7710 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7711 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7712 	 */
7713 
7714 	if (phba->sli_rev == LPFC_SLI_REV4)
7715 		entry_sz = sizeof(struct sli4_sge);
7716 	else
7717 		entry_sz = sizeof(struct ulp_bde64);
7718 
7719 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7720 	if (phba->cfg_enable_bg) {
7721 		/*
7722 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7723 		 * the FCP rsp, and a BDE for each. Sice we have no control
7724 		 * over how many protection data segments the SCSI Layer
7725 		 * will hand us (ie: there could be one for every block
7726 		 * in the IO), we just allocate enough BDEs to accomidate
7727 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7728 		 * minimize the risk of running out.
7729 		 */
7730 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7731 			sizeof(struct fcp_rsp) +
7732 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7733 
7734 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7735 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7736 
7737 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7738 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7739 	} else {
7740 		/*
7741 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7742 		 * the FCP rsp, a BDE for each, and a BDE for up to
7743 		 * cfg_sg_seg_cnt data segments.
7744 		 */
7745 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7746 			sizeof(struct fcp_rsp) +
7747 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7748 
7749 		/* Total BDEs in BPL for scsi_sg_list */
7750 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7751 	}
7752 
7753 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7754 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7755 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7756 			phba->cfg_total_seg_cnt);
7757 
7758 	phba->max_vpi = LPFC_MAX_VPI;
7759 	/* This will be set to correct value after config_port mbox */
7760 	phba->max_vports = 0;
7761 
7762 	/*
7763 	 * Initialize the SLI Layer to run with lpfc HBAs.
7764 	 */
7765 	lpfc_sli_setup(phba);
7766 	lpfc_sli_queue_init(phba);
7767 
7768 	/* Allocate device driver memory */
7769 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7770 		return -ENOMEM;
7771 
7772 	phba->lpfc_sg_dma_buf_pool =
7773 		dma_pool_create("lpfc_sg_dma_buf_pool",
7774 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7775 				BPL_ALIGN_SZ, 0);
7776 
7777 	if (!phba->lpfc_sg_dma_buf_pool)
7778 		goto fail_free_mem;
7779 
7780 	phba->lpfc_cmd_rsp_buf_pool =
7781 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7782 					&phba->pcidev->dev,
7783 					sizeof(struct fcp_cmnd) +
7784 					sizeof(struct fcp_rsp),
7785 					BPL_ALIGN_SZ, 0);
7786 
7787 	if (!phba->lpfc_cmd_rsp_buf_pool)
7788 		goto fail_free_dma_buf_pool;
7789 
7790 	/*
7791 	 * Enable sr-iov virtual functions if supported and configured
7792 	 * through the module parameter.
7793 	 */
7794 	if (phba->cfg_sriov_nr_virtfn > 0) {
7795 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7796 						 phba->cfg_sriov_nr_virtfn);
7797 		if (rc) {
7798 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7799 					"2808 Requested number of SR-IOV "
7800 					"virtual functions (%d) is not "
7801 					"supported\n",
7802 					phba->cfg_sriov_nr_virtfn);
7803 			phba->cfg_sriov_nr_virtfn = 0;
7804 		}
7805 	}
7806 
7807 	return 0;
7808 
7809 fail_free_dma_buf_pool:
7810 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7811 	phba->lpfc_sg_dma_buf_pool = NULL;
7812 fail_free_mem:
7813 	lpfc_mem_free(phba);
7814 	return -ENOMEM;
7815 }
7816 
7817 /**
7818  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7819  * @phba: pointer to lpfc hba data structure.
7820  *
7821  * This routine is invoked to unset the driver internal resources set up
7822  * specific for supporting the SLI-3 HBA device it attached to.
7823  **/
7824 static void
7825 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7826 {
7827 	/* Free device driver memory allocated */
7828 	lpfc_mem_free_all(phba);
7829 
7830 	return;
7831 }
7832 
7833 /**
7834  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7835  * @phba: pointer to lpfc hba data structure.
7836  *
7837  * This routine is invoked to set up the driver internal resources specific to
7838  * support the SLI-4 HBA device it attached to.
7839  *
7840  * Return codes
7841  * 	0 - successful
7842  * 	other values - error
7843  **/
7844 static int
7845 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7846 {
7847 	LPFC_MBOXQ_t *mboxq;
7848 	MAILBOX_t *mb;
7849 	int rc, i, max_buf_size;
7850 	int longs;
7851 	int extra;
7852 	uint64_t wwn;
7853 	u32 if_type;
7854 	u32 if_fam;
7855 
7856 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7857 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7858 	phba->sli4_hba.curr_disp_cpu = 0;
7859 
7860 	/* Get all the module params for configuring this host */
7861 	lpfc_get_cfgparam(phba);
7862 
7863 	/* Set up phase-1 common device driver resources */
7864 	rc = lpfc_setup_driver_resource_phase1(phba);
7865 	if (rc)
7866 		return -ENODEV;
7867 
7868 	/* Before proceed, wait for POST done and device ready */
7869 	rc = lpfc_sli4_post_status_check(phba);
7870 	if (rc)
7871 		return -ENODEV;
7872 
7873 	/* Allocate all driver workqueues here */
7874 
7875 	/* The lpfc_wq workqueue for deferred irq use */
7876 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7877 
7878 	/*
7879 	 * Initialize timers used by driver
7880 	 */
7881 
7882 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7883 
7884 	/* FCF rediscover timer */
7885 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7886 
7887 	/* CMF congestion timer */
7888 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7889 	phba->cmf_timer.function = lpfc_cmf_timer;
7890 
7891 	/*
7892 	 * Control structure for handling external multi-buffer mailbox
7893 	 * command pass-through.
7894 	 */
7895 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7896 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7897 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7898 
7899 	phba->max_vpi = LPFC_MAX_VPI;
7900 
7901 	/* This will be set to correct value after the read_config mbox */
7902 	phba->max_vports = 0;
7903 
7904 	/* Program the default value of vlan_id and fc_map */
7905 	phba->valid_vlan = 0;
7906 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7907 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7908 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7909 
7910 	/*
7911 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7912 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7913 	 * The WQ create will allocate the ring.
7914 	 */
7915 
7916 	/* Initialize buffer queue management fields */
7917 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7918 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7919 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7920 
7921 	/* for VMID idle timeout if VMID is enabled */
7922 	if (lpfc_is_vmid_enabled(phba))
7923 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7924 
7925 	/*
7926 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7927 	 */
7928 	/* Initialize the Abort buffer list used by driver */
7929 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7930 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7931 
7932 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7933 		/* Initialize the Abort nvme buffer list used by driver */
7934 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7935 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7936 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7937 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7938 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7939 	}
7940 
7941 	/* This abort list used by worker thread */
7942 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7943 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7944 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7945 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7946 
7947 	/*
7948 	 * Initialize driver internal slow-path work queues
7949 	 */
7950 
7951 	/* Driver internel slow-path CQ Event pool */
7952 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7953 	/* Response IOCB work queue list */
7954 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7955 	/* Asynchronous event CQ Event work queue list */
7956 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7957 	/* Slow-path XRI aborted CQ Event work queue list */
7958 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7959 	/* Receive queue CQ Event work queue list */
7960 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7961 
7962 	/* Initialize extent block lists. */
7963 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7964 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7965 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7966 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7967 
7968 	/* Initialize mboxq lists. If the early init routines fail
7969 	 * these lists need to be correctly initialized.
7970 	 */
7971 	INIT_LIST_HEAD(&phba->sli.mboxq);
7972 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7973 
7974 	/* initialize optic_state to 0xFF */
7975 	phba->sli4_hba.lnk_info.optic_state = 0xff;
7976 
7977 	/* Allocate device driver memory */
7978 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7979 	if (rc)
7980 		return -ENOMEM;
7981 
7982 	/* IF Type 2 ports get initialized now. */
7983 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7984 	    LPFC_SLI_INTF_IF_TYPE_2) {
7985 		rc = lpfc_pci_function_reset(phba);
7986 		if (unlikely(rc)) {
7987 			rc = -ENODEV;
7988 			goto out_free_mem;
7989 		}
7990 		phba->temp_sensor_support = 1;
7991 	}
7992 
7993 	/* Create the bootstrap mailbox command */
7994 	rc = lpfc_create_bootstrap_mbox(phba);
7995 	if (unlikely(rc))
7996 		goto out_free_mem;
7997 
7998 	/* Set up the host's endian order with the device. */
7999 	rc = lpfc_setup_endian_order(phba);
8000 	if (unlikely(rc))
8001 		goto out_free_bsmbx;
8002 
8003 	/* Set up the hba's configuration parameters. */
8004 	rc = lpfc_sli4_read_config(phba);
8005 	if (unlikely(rc))
8006 		goto out_free_bsmbx;
8007 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8008 	if (unlikely(rc))
8009 		goto out_free_bsmbx;
8010 
8011 	/* IF Type 0 ports get initialized now. */
8012 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8013 	    LPFC_SLI_INTF_IF_TYPE_0) {
8014 		rc = lpfc_pci_function_reset(phba);
8015 		if (unlikely(rc))
8016 			goto out_free_bsmbx;
8017 	}
8018 
8019 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8020 						       GFP_KERNEL);
8021 	if (!mboxq) {
8022 		rc = -ENOMEM;
8023 		goto out_free_bsmbx;
8024 	}
8025 
8026 	/* Check for NVMET being configured */
8027 	phba->nvmet_support = 0;
8028 	if (lpfc_enable_nvmet_cnt) {
8029 
8030 		/* First get WWN of HBA instance */
8031 		lpfc_read_nv(phba, mboxq);
8032 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8033 		if (rc != MBX_SUCCESS) {
8034 			lpfc_printf_log(phba, KERN_ERR,
8035 					LOG_TRACE_EVENT,
8036 					"6016 Mailbox failed , mbxCmd x%x "
8037 					"READ_NV, mbxStatus x%x\n",
8038 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8039 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8040 			mempool_free(mboxq, phba->mbox_mem_pool);
8041 			rc = -EIO;
8042 			goto out_free_bsmbx;
8043 		}
8044 		mb = &mboxq->u.mb;
8045 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8046 		       sizeof(uint64_t));
8047 		wwn = cpu_to_be64(wwn);
8048 		phba->sli4_hba.wwnn.u.name = wwn;
8049 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8050 		       sizeof(uint64_t));
8051 		/* wwn is WWPN of HBA instance */
8052 		wwn = cpu_to_be64(wwn);
8053 		phba->sli4_hba.wwpn.u.name = wwn;
8054 
8055 		/* Check to see if it matches any module parameter */
8056 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8057 			if (wwn == lpfc_enable_nvmet[i]) {
8058 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8059 				if (lpfc_nvmet_mem_alloc(phba))
8060 					break;
8061 
8062 				phba->nvmet_support = 1; /* a match */
8063 
8064 				lpfc_printf_log(phba, KERN_ERR,
8065 						LOG_TRACE_EVENT,
8066 						"6017 NVME Target %016llx\n",
8067 						wwn);
8068 #else
8069 				lpfc_printf_log(phba, KERN_ERR,
8070 						LOG_TRACE_EVENT,
8071 						"6021 Can't enable NVME Target."
8072 						" NVME_TARGET_FC infrastructure"
8073 						" is not in kernel\n");
8074 #endif
8075 				/* Not supported for NVMET */
8076 				phba->cfg_xri_rebalancing = 0;
8077 				if (phba->irq_chann_mode == NHT_MODE) {
8078 					phba->cfg_irq_chann =
8079 						phba->sli4_hba.num_present_cpu;
8080 					phba->cfg_hdw_queue =
8081 						phba->sli4_hba.num_present_cpu;
8082 					phba->irq_chann_mode = NORMAL_MODE;
8083 				}
8084 				break;
8085 			}
8086 		}
8087 	}
8088 
8089 	lpfc_nvme_mod_param_dep(phba);
8090 
8091 	/*
8092 	 * Get sli4 parameters that override parameters from Port capabilities.
8093 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8094 	 * back in conflict.
8095 	 */
8096 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8097 	if (rc) {
8098 		if_type = bf_get(lpfc_sli_intf_if_type,
8099 				 &phba->sli4_hba.sli_intf);
8100 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8101 				&phba->sli4_hba.sli_intf);
8102 		if (phba->sli4_hba.extents_in_use &&
8103 		    phba->sli4_hba.rpi_hdrs_in_use) {
8104 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8105 					"2999 Unsupported SLI4 Parameters "
8106 					"Extents and RPI headers enabled.\n");
8107 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8108 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8109 				mempool_free(mboxq, phba->mbox_mem_pool);
8110 				rc = -EIO;
8111 				goto out_free_bsmbx;
8112 			}
8113 		}
8114 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8115 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8116 			mempool_free(mboxq, phba->mbox_mem_pool);
8117 			rc = -EIO;
8118 			goto out_free_bsmbx;
8119 		}
8120 	}
8121 
8122 	/*
8123 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8124 	 * for boundary conditions in its max_sgl_segment template.
8125 	 */
8126 	extra = 2;
8127 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8128 		extra++;
8129 
8130 	/*
8131 	 * It doesn't matter what family our adapter is in, we are
8132 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8133 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8134 	 */
8135 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8136 
8137 	/*
8138 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8139 	 * used to create the sg_dma_buf_pool must be calculated.
8140 	 */
8141 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8142 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8143 
8144 		/*
8145 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8146 		 * the FCP rsp, and a SGE. Sice we have no control
8147 		 * over how many protection segments the SCSI Layer
8148 		 * will hand us (ie: there could be one for every block
8149 		 * in the IO), just allocate enough SGEs to accomidate
8150 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8151 		 * to minimize the risk of running out.
8152 		 */
8153 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8154 				sizeof(struct fcp_rsp) + max_buf_size;
8155 
8156 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8157 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8158 
8159 		/*
8160 		 * If supporting DIF, reduce the seg count for scsi to
8161 		 * allow room for the DIF sges.
8162 		 */
8163 		if (phba->cfg_enable_bg &&
8164 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8165 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8166 		else
8167 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8168 
8169 	} else {
8170 		/*
8171 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8172 		 * the FCP rsp, a SGE for each, and a SGE for up to
8173 		 * cfg_sg_seg_cnt data segments.
8174 		 */
8175 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8176 				sizeof(struct fcp_rsp) +
8177 				((phba->cfg_sg_seg_cnt + extra) *
8178 				sizeof(struct sli4_sge));
8179 
8180 		/* Total SGEs for scsi_sg_list */
8181 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8182 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8183 
8184 		/*
8185 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8186 		 * need to post 1 page for the SGL.
8187 		 */
8188 	}
8189 
8190 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8191 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8192 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8193 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8194 	else
8195 		phba->cfg_sg_dma_buf_size =
8196 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8197 
8198 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8199 			       sizeof(struct sli4_sge);
8200 
8201 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8202 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8203 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8204 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8205 					"6300 Reducing NVME sg segment "
8206 					"cnt to %d\n",
8207 					LPFC_MAX_NVME_SEG_CNT);
8208 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8209 		} else
8210 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8211 	}
8212 
8213 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8214 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8215 			"total:%d scsi:%d nvme:%d\n",
8216 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8217 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8218 			phba->cfg_nvme_seg_cnt);
8219 
8220 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8221 		i = phba->cfg_sg_dma_buf_size;
8222 	else
8223 		i = SLI4_PAGE_SIZE;
8224 
8225 	phba->lpfc_sg_dma_buf_pool =
8226 			dma_pool_create("lpfc_sg_dma_buf_pool",
8227 					&phba->pcidev->dev,
8228 					phba->cfg_sg_dma_buf_size,
8229 					i, 0);
8230 	if (!phba->lpfc_sg_dma_buf_pool)
8231 		goto out_free_bsmbx;
8232 
8233 	phba->lpfc_cmd_rsp_buf_pool =
8234 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8235 					&phba->pcidev->dev,
8236 					sizeof(struct fcp_cmnd) +
8237 					sizeof(struct fcp_rsp),
8238 					i, 0);
8239 	if (!phba->lpfc_cmd_rsp_buf_pool)
8240 		goto out_free_sg_dma_buf;
8241 
8242 	mempool_free(mboxq, phba->mbox_mem_pool);
8243 
8244 	/* Verify OAS is supported */
8245 	lpfc_sli4_oas_verify(phba);
8246 
8247 	/* Verify RAS support on adapter */
8248 	lpfc_sli4_ras_init(phba);
8249 
8250 	/* Verify all the SLI4 queues */
8251 	rc = lpfc_sli4_queue_verify(phba);
8252 	if (rc)
8253 		goto out_free_cmd_rsp_buf;
8254 
8255 	/* Create driver internal CQE event pool */
8256 	rc = lpfc_sli4_cq_event_pool_create(phba);
8257 	if (rc)
8258 		goto out_free_cmd_rsp_buf;
8259 
8260 	/* Initialize sgl lists per host */
8261 	lpfc_init_sgl_list(phba);
8262 
8263 	/* Allocate and initialize active sgl array */
8264 	rc = lpfc_init_active_sgl_array(phba);
8265 	if (rc) {
8266 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8267 				"1430 Failed to initialize sgl list.\n");
8268 		goto out_destroy_cq_event_pool;
8269 	}
8270 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8271 	if (rc) {
8272 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8273 				"1432 Failed to initialize rpi headers.\n");
8274 		goto out_free_active_sgl;
8275 	}
8276 
8277 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8278 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8279 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8280 					 GFP_KERNEL);
8281 	if (!phba->fcf.fcf_rr_bmask) {
8282 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8283 				"2759 Failed allocate memory for FCF round "
8284 				"robin failover bmask\n");
8285 		rc = -ENOMEM;
8286 		goto out_remove_rpi_hdrs;
8287 	}
8288 
8289 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8290 					    sizeof(struct lpfc_hba_eq_hdl),
8291 					    GFP_KERNEL);
8292 	if (!phba->sli4_hba.hba_eq_hdl) {
8293 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8294 				"2572 Failed allocate memory for "
8295 				"fast-path per-EQ handle array\n");
8296 		rc = -ENOMEM;
8297 		goto out_free_fcf_rr_bmask;
8298 	}
8299 
8300 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8301 					sizeof(struct lpfc_vector_map_info),
8302 					GFP_KERNEL);
8303 	if (!phba->sli4_hba.cpu_map) {
8304 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8305 				"3327 Failed allocate memory for msi-x "
8306 				"interrupt vector mapping\n");
8307 		rc = -ENOMEM;
8308 		goto out_free_hba_eq_hdl;
8309 	}
8310 
8311 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8312 	if (!phba->sli4_hba.eq_info) {
8313 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8314 				"3321 Failed allocation for per_cpu stats\n");
8315 		rc = -ENOMEM;
8316 		goto out_free_hba_cpu_map;
8317 	}
8318 
8319 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8320 					   sizeof(*phba->sli4_hba.idle_stat),
8321 					   GFP_KERNEL);
8322 	if (!phba->sli4_hba.idle_stat) {
8323 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8324 				"3390 Failed allocation for idle_stat\n");
8325 		rc = -ENOMEM;
8326 		goto out_free_hba_eq_info;
8327 	}
8328 
8329 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8330 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8331 	if (!phba->sli4_hba.c_stat) {
8332 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8333 				"3332 Failed allocating per cpu hdwq stats\n");
8334 		rc = -ENOMEM;
8335 		goto out_free_hba_idle_stat;
8336 	}
8337 #endif
8338 
8339 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8340 	if (!phba->cmf_stat) {
8341 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8342 				"3331 Failed allocating per cpu cgn stats\n");
8343 		rc = -ENOMEM;
8344 		goto out_free_hba_hdwq_info;
8345 	}
8346 
8347 	/*
8348 	 * Enable sr-iov virtual functions if supported and configured
8349 	 * through the module parameter.
8350 	 */
8351 	if (phba->cfg_sriov_nr_virtfn > 0) {
8352 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8353 						 phba->cfg_sriov_nr_virtfn);
8354 		if (rc) {
8355 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8356 					"3020 Requested number of SR-IOV "
8357 					"virtual functions (%d) is not "
8358 					"supported\n",
8359 					phba->cfg_sriov_nr_virtfn);
8360 			phba->cfg_sriov_nr_virtfn = 0;
8361 		}
8362 	}
8363 
8364 	return 0;
8365 
8366 out_free_hba_hdwq_info:
8367 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8368 	free_percpu(phba->sli4_hba.c_stat);
8369 out_free_hba_idle_stat:
8370 #endif
8371 	kfree(phba->sli4_hba.idle_stat);
8372 out_free_hba_eq_info:
8373 	free_percpu(phba->sli4_hba.eq_info);
8374 out_free_hba_cpu_map:
8375 	kfree(phba->sli4_hba.cpu_map);
8376 out_free_hba_eq_hdl:
8377 	kfree(phba->sli4_hba.hba_eq_hdl);
8378 out_free_fcf_rr_bmask:
8379 	kfree(phba->fcf.fcf_rr_bmask);
8380 out_remove_rpi_hdrs:
8381 	lpfc_sli4_remove_rpi_hdrs(phba);
8382 out_free_active_sgl:
8383 	lpfc_free_active_sgl(phba);
8384 out_destroy_cq_event_pool:
8385 	lpfc_sli4_cq_event_pool_destroy(phba);
8386 out_free_cmd_rsp_buf:
8387 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8388 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8389 out_free_sg_dma_buf:
8390 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8391 	phba->lpfc_sg_dma_buf_pool = NULL;
8392 out_free_bsmbx:
8393 	lpfc_destroy_bootstrap_mbox(phba);
8394 out_free_mem:
8395 	lpfc_mem_free(phba);
8396 	return rc;
8397 }
8398 
8399 /**
8400  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8401  * @phba: pointer to lpfc hba data structure.
8402  *
8403  * This routine is invoked to unset the driver internal resources set up
8404  * specific for supporting the SLI-4 HBA device it attached to.
8405  **/
8406 static void
8407 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8408 {
8409 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8410 
8411 	free_percpu(phba->sli4_hba.eq_info);
8412 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8413 	free_percpu(phba->sli4_hba.c_stat);
8414 #endif
8415 	free_percpu(phba->cmf_stat);
8416 	kfree(phba->sli4_hba.idle_stat);
8417 
8418 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8419 	kfree(phba->sli4_hba.cpu_map);
8420 	phba->sli4_hba.num_possible_cpu = 0;
8421 	phba->sli4_hba.num_present_cpu = 0;
8422 	phba->sli4_hba.curr_disp_cpu = 0;
8423 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8424 
8425 	/* Free memory allocated for fast-path work queue handles */
8426 	kfree(phba->sli4_hba.hba_eq_hdl);
8427 
8428 	/* Free the allocated rpi headers. */
8429 	lpfc_sli4_remove_rpi_hdrs(phba);
8430 	lpfc_sli4_remove_rpis(phba);
8431 
8432 	/* Free eligible FCF index bmask */
8433 	kfree(phba->fcf.fcf_rr_bmask);
8434 
8435 	/* Free the ELS sgl list */
8436 	lpfc_free_active_sgl(phba);
8437 	lpfc_free_els_sgl_list(phba);
8438 	lpfc_free_nvmet_sgl_list(phba);
8439 
8440 	/* Free the completion queue EQ event pool */
8441 	lpfc_sli4_cq_event_release_all(phba);
8442 	lpfc_sli4_cq_event_pool_destroy(phba);
8443 
8444 	/* Release resource identifiers. */
8445 	lpfc_sli4_dealloc_resource_identifiers(phba);
8446 
8447 	/* Free the bsmbx region. */
8448 	lpfc_destroy_bootstrap_mbox(phba);
8449 
8450 	/* Free the SLI Layer memory with SLI4 HBAs */
8451 	lpfc_mem_free_all(phba);
8452 
8453 	/* Free the current connect table */
8454 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8455 		&phba->fcf_conn_rec_list, list) {
8456 		list_del_init(&conn_entry->list);
8457 		kfree(conn_entry);
8458 	}
8459 
8460 	return;
8461 }
8462 
8463 /**
8464  * lpfc_init_api_table_setup - Set up init api function jump table
8465  * @phba: The hba struct for which this call is being executed.
8466  * @dev_grp: The HBA PCI-Device group number.
8467  *
8468  * This routine sets up the device INIT interface API function jump table
8469  * in @phba struct.
8470  *
8471  * Returns: 0 - success, -ENODEV - failure.
8472  **/
8473 int
8474 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8475 {
8476 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8477 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8478 	phba->lpfc_selective_reset = lpfc_selective_reset;
8479 	switch (dev_grp) {
8480 	case LPFC_PCI_DEV_LP:
8481 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8482 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8483 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8484 		break;
8485 	case LPFC_PCI_DEV_OC:
8486 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8487 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8488 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8489 		break;
8490 	default:
8491 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8492 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8493 				dev_grp);
8494 		return -ENODEV;
8495 	}
8496 	return 0;
8497 }
8498 
8499 /**
8500  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8501  * @phba: pointer to lpfc hba data structure.
8502  *
8503  * This routine is invoked to set up the driver internal resources after the
8504  * device specific resource setup to support the HBA device it attached to.
8505  *
8506  * Return codes
8507  * 	0 - successful
8508  * 	other values - error
8509  **/
8510 static int
8511 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8512 {
8513 	int error;
8514 
8515 	/* Startup the kernel thread for this host adapter. */
8516 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8517 					  "lpfc_worker_%d", phba->brd_no);
8518 	if (IS_ERR(phba->worker_thread)) {
8519 		error = PTR_ERR(phba->worker_thread);
8520 		return error;
8521 	}
8522 
8523 	return 0;
8524 }
8525 
8526 /**
8527  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8528  * @phba: pointer to lpfc hba data structure.
8529  *
8530  * This routine is invoked to unset the driver internal resources set up after
8531  * the device specific resource setup for supporting the HBA device it
8532  * attached to.
8533  **/
8534 static void
8535 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8536 {
8537 	if (phba->wq) {
8538 		destroy_workqueue(phba->wq);
8539 		phba->wq = NULL;
8540 	}
8541 
8542 	/* Stop kernel worker thread */
8543 	if (phba->worker_thread)
8544 		kthread_stop(phba->worker_thread);
8545 }
8546 
8547 /**
8548  * lpfc_free_iocb_list - Free iocb list.
8549  * @phba: pointer to lpfc hba data structure.
8550  *
8551  * This routine is invoked to free the driver's IOCB list and memory.
8552  **/
8553 void
8554 lpfc_free_iocb_list(struct lpfc_hba *phba)
8555 {
8556 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8557 
8558 	spin_lock_irq(&phba->hbalock);
8559 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8560 				 &phba->lpfc_iocb_list, list) {
8561 		list_del(&iocbq_entry->list);
8562 		kfree(iocbq_entry);
8563 		phba->total_iocbq_bufs--;
8564 	}
8565 	spin_unlock_irq(&phba->hbalock);
8566 
8567 	return;
8568 }
8569 
8570 /**
8571  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8572  * @phba: pointer to lpfc hba data structure.
8573  * @iocb_count: number of requested iocbs
8574  *
8575  * This routine is invoked to allocate and initizlize the driver's IOCB
8576  * list and set up the IOCB tag array accordingly.
8577  *
8578  * Return codes
8579  *	0 - successful
8580  *	other values - error
8581  **/
8582 int
8583 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8584 {
8585 	struct lpfc_iocbq *iocbq_entry = NULL;
8586 	uint16_t iotag;
8587 	int i;
8588 
8589 	/* Initialize and populate the iocb list per host.  */
8590 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8591 	for (i = 0; i < iocb_count; i++) {
8592 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8593 		if (iocbq_entry == NULL) {
8594 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8595 				"expected %d count. Unloading driver.\n",
8596 				__func__, i, iocb_count);
8597 			goto out_free_iocbq;
8598 		}
8599 
8600 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8601 		if (iotag == 0) {
8602 			kfree(iocbq_entry);
8603 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8604 				"Unloading driver.\n", __func__);
8605 			goto out_free_iocbq;
8606 		}
8607 		iocbq_entry->sli4_lxritag = NO_XRI;
8608 		iocbq_entry->sli4_xritag = NO_XRI;
8609 
8610 		spin_lock_irq(&phba->hbalock);
8611 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8612 		phba->total_iocbq_bufs++;
8613 		spin_unlock_irq(&phba->hbalock);
8614 	}
8615 
8616 	return 0;
8617 
8618 out_free_iocbq:
8619 	lpfc_free_iocb_list(phba);
8620 
8621 	return -ENOMEM;
8622 }
8623 
8624 /**
8625  * lpfc_free_sgl_list - Free a given sgl list.
8626  * @phba: pointer to lpfc hba data structure.
8627  * @sglq_list: pointer to the head of sgl list.
8628  *
8629  * This routine is invoked to free a give sgl list and memory.
8630  **/
8631 void
8632 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8633 {
8634 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8635 
8636 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8637 		list_del(&sglq_entry->list);
8638 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8639 		kfree(sglq_entry);
8640 	}
8641 }
8642 
8643 /**
8644  * lpfc_free_els_sgl_list - Free els sgl list.
8645  * @phba: pointer to lpfc hba data structure.
8646  *
8647  * This routine is invoked to free the driver's els sgl list and memory.
8648  **/
8649 static void
8650 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8651 {
8652 	LIST_HEAD(sglq_list);
8653 
8654 	/* Retrieve all els sgls from driver list */
8655 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8656 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8657 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8658 
8659 	/* Now free the sgl list */
8660 	lpfc_free_sgl_list(phba, &sglq_list);
8661 }
8662 
8663 /**
8664  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8665  * @phba: pointer to lpfc hba data structure.
8666  *
8667  * This routine is invoked to free the driver's nvmet sgl list and memory.
8668  **/
8669 static void
8670 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8671 {
8672 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8673 	LIST_HEAD(sglq_list);
8674 
8675 	/* Retrieve all nvmet sgls from driver list */
8676 	spin_lock_irq(&phba->hbalock);
8677 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8678 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8679 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8680 	spin_unlock_irq(&phba->hbalock);
8681 
8682 	/* Now free the sgl list */
8683 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8684 		list_del(&sglq_entry->list);
8685 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8686 		kfree(sglq_entry);
8687 	}
8688 
8689 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8690 	 * The next initialization cycle sets the count and allocates
8691 	 * the sgls over again.
8692 	 */
8693 	phba->sli4_hba.nvmet_xri_cnt = 0;
8694 }
8695 
8696 /**
8697  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8698  * @phba: pointer to lpfc hba data structure.
8699  *
8700  * This routine is invoked to allocate the driver's active sgl memory.
8701  * This array will hold the sglq_entry's for active IOs.
8702  **/
8703 static int
8704 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8705 {
8706 	int size;
8707 	size = sizeof(struct lpfc_sglq *);
8708 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8709 
8710 	phba->sli4_hba.lpfc_sglq_active_list =
8711 		kzalloc(size, GFP_KERNEL);
8712 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8713 		return -ENOMEM;
8714 	return 0;
8715 }
8716 
8717 /**
8718  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8719  * @phba: pointer to lpfc hba data structure.
8720  *
8721  * This routine is invoked to walk through the array of active sglq entries
8722  * and free all of the resources.
8723  * This is just a place holder for now.
8724  **/
8725 static void
8726 lpfc_free_active_sgl(struct lpfc_hba *phba)
8727 {
8728 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8729 }
8730 
8731 /**
8732  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8733  * @phba: pointer to lpfc hba data structure.
8734  *
8735  * This routine is invoked to allocate and initizlize the driver's sgl
8736  * list and set up the sgl xritag tag array accordingly.
8737  *
8738  **/
8739 static void
8740 lpfc_init_sgl_list(struct lpfc_hba *phba)
8741 {
8742 	/* Initialize and populate the sglq list per host/VF. */
8743 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8744 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8745 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8746 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8747 
8748 	/* els xri-sgl book keeping */
8749 	phba->sli4_hba.els_xri_cnt = 0;
8750 
8751 	/* nvme xri-buffer book keeping */
8752 	phba->sli4_hba.io_xri_cnt = 0;
8753 }
8754 
8755 /**
8756  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8757  * @phba: pointer to lpfc hba data structure.
8758  *
8759  * This routine is invoked to post rpi header templates to the
8760  * port for those SLI4 ports that do not support extents.  This routine
8761  * posts a PAGE_SIZE memory region to the port to hold up to
8762  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8763  * and should be called only when interrupts are disabled.
8764  *
8765  * Return codes
8766  * 	0 - successful
8767  *	-ERROR - otherwise.
8768  **/
8769 int
8770 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8771 {
8772 	int rc = 0;
8773 	struct lpfc_rpi_hdr *rpi_hdr;
8774 
8775 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8776 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8777 		return rc;
8778 	if (phba->sli4_hba.extents_in_use)
8779 		return -EIO;
8780 
8781 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8782 	if (!rpi_hdr) {
8783 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8784 				"0391 Error during rpi post operation\n");
8785 		lpfc_sli4_remove_rpis(phba);
8786 		rc = -ENODEV;
8787 	}
8788 
8789 	return rc;
8790 }
8791 
8792 /**
8793  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8794  * @phba: pointer to lpfc hba data structure.
8795  *
8796  * This routine is invoked to allocate a single 4KB memory region to
8797  * support rpis and stores them in the phba.  This single region
8798  * provides support for up to 64 rpis.  The region is used globally
8799  * by the device.
8800  *
8801  * Returns:
8802  *   A valid rpi hdr on success.
8803  *   A NULL pointer on any failure.
8804  **/
8805 struct lpfc_rpi_hdr *
8806 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8807 {
8808 	uint16_t rpi_limit, curr_rpi_range;
8809 	struct lpfc_dmabuf *dmabuf;
8810 	struct lpfc_rpi_hdr *rpi_hdr;
8811 
8812 	/*
8813 	 * If the SLI4 port supports extents, posting the rpi header isn't
8814 	 * required.  Set the expected maximum count and let the actual value
8815 	 * get set when extents are fully allocated.
8816 	 */
8817 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8818 		return NULL;
8819 	if (phba->sli4_hba.extents_in_use)
8820 		return NULL;
8821 
8822 	/* The limit on the logical index is just the max_rpi count. */
8823 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8824 
8825 	spin_lock_irq(&phba->hbalock);
8826 	/*
8827 	 * Establish the starting RPI in this header block.  The starting
8828 	 * rpi is normalized to a zero base because the physical rpi is
8829 	 * port based.
8830 	 */
8831 	curr_rpi_range = phba->sli4_hba.next_rpi;
8832 	spin_unlock_irq(&phba->hbalock);
8833 
8834 	/* Reached full RPI range */
8835 	if (curr_rpi_range == rpi_limit)
8836 		return NULL;
8837 
8838 	/*
8839 	 * First allocate the protocol header region for the port.  The
8840 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8841 	 */
8842 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8843 	if (!dmabuf)
8844 		return NULL;
8845 
8846 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8847 					  LPFC_HDR_TEMPLATE_SIZE,
8848 					  &dmabuf->phys, GFP_KERNEL);
8849 	if (!dmabuf->virt) {
8850 		rpi_hdr = NULL;
8851 		goto err_free_dmabuf;
8852 	}
8853 
8854 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8855 		rpi_hdr = NULL;
8856 		goto err_free_coherent;
8857 	}
8858 
8859 	/* Save the rpi header data for cleanup later. */
8860 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8861 	if (!rpi_hdr)
8862 		goto err_free_coherent;
8863 
8864 	rpi_hdr->dmabuf = dmabuf;
8865 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8866 	rpi_hdr->page_count = 1;
8867 	spin_lock_irq(&phba->hbalock);
8868 
8869 	/* The rpi_hdr stores the logical index only. */
8870 	rpi_hdr->start_rpi = curr_rpi_range;
8871 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8872 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8873 
8874 	spin_unlock_irq(&phba->hbalock);
8875 	return rpi_hdr;
8876 
8877  err_free_coherent:
8878 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8879 			  dmabuf->virt, dmabuf->phys);
8880  err_free_dmabuf:
8881 	kfree(dmabuf);
8882 	return NULL;
8883 }
8884 
8885 /**
8886  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8887  * @phba: pointer to lpfc hba data structure.
8888  *
8889  * This routine is invoked to remove all memory resources allocated
8890  * to support rpis for SLI4 ports not supporting extents. This routine
8891  * presumes the caller has released all rpis consumed by fabric or port
8892  * logins and is prepared to have the header pages removed.
8893  **/
8894 void
8895 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8896 {
8897 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8898 
8899 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8900 		goto exit;
8901 
8902 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8903 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8904 		list_del(&rpi_hdr->list);
8905 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8906 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8907 		kfree(rpi_hdr->dmabuf);
8908 		kfree(rpi_hdr);
8909 	}
8910  exit:
8911 	/* There are no rpis available to the port now. */
8912 	phba->sli4_hba.next_rpi = 0;
8913 }
8914 
8915 /**
8916  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8917  * @pdev: pointer to pci device data structure.
8918  *
8919  * This routine is invoked to allocate the driver hba data structure for an
8920  * HBA device. If the allocation is successful, the phba reference to the
8921  * PCI device data structure is set.
8922  *
8923  * Return codes
8924  *      pointer to @phba - successful
8925  *      NULL - error
8926  **/
8927 static struct lpfc_hba *
8928 lpfc_hba_alloc(struct pci_dev *pdev)
8929 {
8930 	struct lpfc_hba *phba;
8931 
8932 	/* Allocate memory for HBA structure */
8933 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8934 	if (!phba) {
8935 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
8936 		return NULL;
8937 	}
8938 
8939 	/* Set reference to PCI device in HBA structure */
8940 	phba->pcidev = pdev;
8941 
8942 	/* Assign an unused board number */
8943 	phba->brd_no = lpfc_get_instance();
8944 	if (phba->brd_no < 0) {
8945 		kfree(phba);
8946 		return NULL;
8947 	}
8948 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8949 
8950 	spin_lock_init(&phba->ct_ev_lock);
8951 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
8952 
8953 	return phba;
8954 }
8955 
8956 /**
8957  * lpfc_hba_free - Free driver hba data structure with a device.
8958  * @phba: pointer to lpfc hba data structure.
8959  *
8960  * This routine is invoked to free the driver hba data structure with an
8961  * HBA device.
8962  **/
8963 static void
8964 lpfc_hba_free(struct lpfc_hba *phba)
8965 {
8966 	if (phba->sli_rev == LPFC_SLI_REV4)
8967 		kfree(phba->sli4_hba.hdwq);
8968 
8969 	/* Release the driver assigned board number */
8970 	idr_remove(&lpfc_hba_index, phba->brd_no);
8971 
8972 	/* Free memory allocated with sli3 rings */
8973 	kfree(phba->sli.sli3_ring);
8974 	phba->sli.sli3_ring = NULL;
8975 
8976 	kfree(phba);
8977 	return;
8978 }
8979 
8980 /**
8981  * lpfc_create_shost - Create hba physical port with associated scsi host.
8982  * @phba: pointer to lpfc hba data structure.
8983  *
8984  * This routine is invoked to create HBA physical port and associate a SCSI
8985  * host with it.
8986  *
8987  * Return codes
8988  *      0 - successful
8989  *      other values - error
8990  **/
8991 static int
8992 lpfc_create_shost(struct lpfc_hba *phba)
8993 {
8994 	struct lpfc_vport *vport;
8995 	struct Scsi_Host  *shost;
8996 
8997 	/* Initialize HBA FC structure */
8998 	phba->fc_edtov = FF_DEF_EDTOV;
8999 	phba->fc_ratov = FF_DEF_RATOV;
9000 	phba->fc_altov = FF_DEF_ALTOV;
9001 	phba->fc_arbtov = FF_DEF_ARBTOV;
9002 
9003 	atomic_set(&phba->sdev_cnt, 0);
9004 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9005 	if (!vport)
9006 		return -ENODEV;
9007 
9008 	shost = lpfc_shost_from_vport(vport);
9009 	phba->pport = vport;
9010 
9011 	if (phba->nvmet_support) {
9012 		/* Only 1 vport (pport) will support NVME target */
9013 		phba->targetport = NULL;
9014 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9015 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9016 				"6076 NVME Target Found\n");
9017 	}
9018 
9019 	lpfc_debugfs_initialize(vport);
9020 	/* Put reference to SCSI host to driver's device private data */
9021 	pci_set_drvdata(phba->pcidev, shost);
9022 
9023 	/*
9024 	 * At this point we are fully registered with PSA. In addition,
9025 	 * any initial discovery should be completed.
9026 	 */
9027 	vport->load_flag |= FC_ALLOW_FDMI;
9028 	if (phba->cfg_enable_SmartSAN ||
9029 	    (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
9030 
9031 		/* Setup appropriate attribute masks */
9032 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9033 		if (phba->cfg_enable_SmartSAN)
9034 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9035 		else
9036 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9037 	}
9038 	return 0;
9039 }
9040 
9041 /**
9042  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9043  * @phba: pointer to lpfc hba data structure.
9044  *
9045  * This routine is invoked to destroy HBA physical port and the associated
9046  * SCSI host.
9047  **/
9048 static void
9049 lpfc_destroy_shost(struct lpfc_hba *phba)
9050 {
9051 	struct lpfc_vport *vport = phba->pport;
9052 
9053 	/* Destroy physical port that associated with the SCSI host */
9054 	destroy_port(vport);
9055 
9056 	return;
9057 }
9058 
9059 /**
9060  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9061  * @phba: pointer to lpfc hba data structure.
9062  * @shost: the shost to be used to detect Block guard settings.
9063  *
9064  * This routine sets up the local Block guard protocol settings for @shost.
9065  * This routine also allocates memory for debugging bg buffers.
9066  **/
9067 static void
9068 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9069 {
9070 	uint32_t old_mask;
9071 	uint32_t old_guard;
9072 
9073 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9074 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9075 				"1478 Registering BlockGuard with the "
9076 				"SCSI layer\n");
9077 
9078 		old_mask = phba->cfg_prot_mask;
9079 		old_guard = phba->cfg_prot_guard;
9080 
9081 		/* Only allow supported values */
9082 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9083 			SHOST_DIX_TYPE0_PROTECTION |
9084 			SHOST_DIX_TYPE1_PROTECTION);
9085 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9086 					 SHOST_DIX_GUARD_CRC);
9087 
9088 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9089 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9090 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9091 
9092 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9093 			if ((old_mask != phba->cfg_prot_mask) ||
9094 				(old_guard != phba->cfg_prot_guard))
9095 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9096 					"1475 Registering BlockGuard with the "
9097 					"SCSI layer: mask %d  guard %d\n",
9098 					phba->cfg_prot_mask,
9099 					phba->cfg_prot_guard);
9100 
9101 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9102 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9103 		} else
9104 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9105 				"1479 Not Registering BlockGuard with the SCSI "
9106 				"layer, Bad protection parameters: %d %d\n",
9107 				old_mask, old_guard);
9108 	}
9109 }
9110 
9111 /**
9112  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9113  * @phba: pointer to lpfc hba data structure.
9114  *
9115  * This routine is invoked to perform all the necessary post initialization
9116  * setup for the device.
9117  **/
9118 static void
9119 lpfc_post_init_setup(struct lpfc_hba *phba)
9120 {
9121 	struct Scsi_Host  *shost;
9122 	struct lpfc_adapter_event_header adapter_event;
9123 
9124 	/* Get the default values for Model Name and Description */
9125 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9126 
9127 	/*
9128 	 * hba setup may have changed the hba_queue_depth so we need to
9129 	 * adjust the value of can_queue.
9130 	 */
9131 	shost = pci_get_drvdata(phba->pcidev);
9132 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9133 
9134 	lpfc_host_attrib_init(shost);
9135 
9136 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9137 		spin_lock_irq(shost->host_lock);
9138 		lpfc_poll_start_timer(phba);
9139 		spin_unlock_irq(shost->host_lock);
9140 	}
9141 
9142 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9143 			"0428 Perform SCSI scan\n");
9144 	/* Send board arrival event to upper layer */
9145 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9146 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9147 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9148 				  sizeof(adapter_event),
9149 				  (char *) &adapter_event,
9150 				  LPFC_NL_VENDOR_ID);
9151 	return;
9152 }
9153 
9154 /**
9155  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9156  * @phba: pointer to lpfc hba data structure.
9157  *
9158  * This routine is invoked to set up the PCI device memory space for device
9159  * with SLI-3 interface spec.
9160  *
9161  * Return codes
9162  * 	0 - successful
9163  * 	other values - error
9164  **/
9165 static int
9166 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9167 {
9168 	struct pci_dev *pdev = phba->pcidev;
9169 	unsigned long bar0map_len, bar2map_len;
9170 	int i, hbq_count;
9171 	void *ptr;
9172 	int error;
9173 
9174 	if (!pdev)
9175 		return -ENODEV;
9176 
9177 	/* Set the device DMA mask size */
9178 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9179 	if (error)
9180 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9181 	if (error)
9182 		return error;
9183 	error = -ENODEV;
9184 
9185 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9186 	 * required by each mapping.
9187 	 */
9188 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9189 	bar0map_len = pci_resource_len(pdev, 0);
9190 
9191 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9192 	bar2map_len = pci_resource_len(pdev, 2);
9193 
9194 	/* Map HBA SLIM to a kernel virtual address. */
9195 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9196 	if (!phba->slim_memmap_p) {
9197 		dev_printk(KERN_ERR, &pdev->dev,
9198 			   "ioremap failed for SLIM memory.\n");
9199 		goto out;
9200 	}
9201 
9202 	/* Map HBA Control Registers to a kernel virtual address. */
9203 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9204 	if (!phba->ctrl_regs_memmap_p) {
9205 		dev_printk(KERN_ERR, &pdev->dev,
9206 			   "ioremap failed for HBA control registers.\n");
9207 		goto out_iounmap_slim;
9208 	}
9209 
9210 	/* Allocate memory for SLI-2 structures */
9211 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9212 					       &phba->slim2p.phys, GFP_KERNEL);
9213 	if (!phba->slim2p.virt)
9214 		goto out_iounmap;
9215 
9216 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9217 	phba->mbox_ext = (phba->slim2p.virt +
9218 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9219 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9220 	phba->IOCBs = (phba->slim2p.virt +
9221 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9222 
9223 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9224 						 lpfc_sli_hbq_size(),
9225 						 &phba->hbqslimp.phys,
9226 						 GFP_KERNEL);
9227 	if (!phba->hbqslimp.virt)
9228 		goto out_free_slim;
9229 
9230 	hbq_count = lpfc_sli_hbq_count();
9231 	ptr = phba->hbqslimp.virt;
9232 	for (i = 0; i < hbq_count; ++i) {
9233 		phba->hbqs[i].hbq_virt = ptr;
9234 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9235 		ptr += (lpfc_hbq_defs[i]->entry_count *
9236 			sizeof(struct lpfc_hbq_entry));
9237 	}
9238 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9239 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9240 
9241 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9242 
9243 	phba->MBslimaddr = phba->slim_memmap_p;
9244 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9245 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9246 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9247 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9248 
9249 	return 0;
9250 
9251 out_free_slim:
9252 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9253 			  phba->slim2p.virt, phba->slim2p.phys);
9254 out_iounmap:
9255 	iounmap(phba->ctrl_regs_memmap_p);
9256 out_iounmap_slim:
9257 	iounmap(phba->slim_memmap_p);
9258 out:
9259 	return error;
9260 }
9261 
9262 /**
9263  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9264  * @phba: pointer to lpfc hba data structure.
9265  *
9266  * This routine is invoked to unset the PCI device memory space for device
9267  * with SLI-3 interface spec.
9268  **/
9269 static void
9270 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9271 {
9272 	struct pci_dev *pdev;
9273 
9274 	/* Obtain PCI device reference */
9275 	if (!phba->pcidev)
9276 		return;
9277 	else
9278 		pdev = phba->pcidev;
9279 
9280 	/* Free coherent DMA memory allocated */
9281 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9282 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9283 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9284 			  phba->slim2p.virt, phba->slim2p.phys);
9285 
9286 	/* I/O memory unmap */
9287 	iounmap(phba->ctrl_regs_memmap_p);
9288 	iounmap(phba->slim_memmap_p);
9289 
9290 	return;
9291 }
9292 
9293 /**
9294  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9295  * @phba: pointer to lpfc hba data structure.
9296  *
9297  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9298  * done and check status.
9299  *
9300  * Return 0 if successful, otherwise -ENODEV.
9301  **/
9302 int
9303 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9304 {
9305 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9306 	struct lpfc_register reg_data;
9307 	int i, port_error = 0;
9308 	uint32_t if_type;
9309 
9310 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9311 	memset(&reg_data, 0, sizeof(reg_data));
9312 	if (!phba->sli4_hba.PSMPHRregaddr)
9313 		return -ENODEV;
9314 
9315 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9316 	for (i = 0; i < 3000; i++) {
9317 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9318 			&portsmphr_reg.word0) ||
9319 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9320 			/* Port has a fatal POST error, break out */
9321 			port_error = -ENODEV;
9322 			break;
9323 		}
9324 		if (LPFC_POST_STAGE_PORT_READY ==
9325 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9326 			break;
9327 		msleep(10);
9328 	}
9329 
9330 	/*
9331 	 * If there was a port error during POST, then don't proceed with
9332 	 * other register reads as the data may not be valid.  Just exit.
9333 	 */
9334 	if (port_error) {
9335 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9336 			"1408 Port Failed POST - portsmphr=0x%x, "
9337 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9338 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9339 			portsmphr_reg.word0,
9340 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9341 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9342 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9343 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9344 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9345 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9346 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9347 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9348 	} else {
9349 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9350 				"2534 Device Info: SLIFamily=0x%x, "
9351 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9352 				"SLIHint_2=0x%x, FT=0x%x\n",
9353 				bf_get(lpfc_sli_intf_sli_family,
9354 				       &phba->sli4_hba.sli_intf),
9355 				bf_get(lpfc_sli_intf_slirev,
9356 				       &phba->sli4_hba.sli_intf),
9357 				bf_get(lpfc_sli_intf_if_type,
9358 				       &phba->sli4_hba.sli_intf),
9359 				bf_get(lpfc_sli_intf_sli_hint1,
9360 				       &phba->sli4_hba.sli_intf),
9361 				bf_get(lpfc_sli_intf_sli_hint2,
9362 				       &phba->sli4_hba.sli_intf),
9363 				bf_get(lpfc_sli_intf_func_type,
9364 				       &phba->sli4_hba.sli_intf));
9365 		/*
9366 		 * Check for other Port errors during the initialization
9367 		 * process.  Fail the load if the port did not come up
9368 		 * correctly.
9369 		 */
9370 		if_type = bf_get(lpfc_sli_intf_if_type,
9371 				 &phba->sli4_hba.sli_intf);
9372 		switch (if_type) {
9373 		case LPFC_SLI_INTF_IF_TYPE_0:
9374 			phba->sli4_hba.ue_mask_lo =
9375 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9376 			phba->sli4_hba.ue_mask_hi =
9377 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9378 			uerrlo_reg.word0 =
9379 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9380 			uerrhi_reg.word0 =
9381 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9382 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9383 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9384 				lpfc_printf_log(phba, KERN_ERR,
9385 						LOG_TRACE_EVENT,
9386 						"1422 Unrecoverable Error "
9387 						"Detected during POST "
9388 						"uerr_lo_reg=0x%x, "
9389 						"uerr_hi_reg=0x%x, "
9390 						"ue_mask_lo_reg=0x%x, "
9391 						"ue_mask_hi_reg=0x%x\n",
9392 						uerrlo_reg.word0,
9393 						uerrhi_reg.word0,
9394 						phba->sli4_hba.ue_mask_lo,
9395 						phba->sli4_hba.ue_mask_hi);
9396 				port_error = -ENODEV;
9397 			}
9398 			break;
9399 		case LPFC_SLI_INTF_IF_TYPE_2:
9400 		case LPFC_SLI_INTF_IF_TYPE_6:
9401 			/* Final checks.  The port status should be clean. */
9402 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9403 				&reg_data.word0) ||
9404 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9405 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9406 				phba->work_status[0] =
9407 					readl(phba->sli4_hba.u.if_type2.
9408 					      ERR1regaddr);
9409 				phba->work_status[1] =
9410 					readl(phba->sli4_hba.u.if_type2.
9411 					      ERR2regaddr);
9412 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9413 					"2888 Unrecoverable port error "
9414 					"following POST: port status reg "
9415 					"0x%x, port_smphr reg 0x%x, "
9416 					"error 1=0x%x, error 2=0x%x\n",
9417 					reg_data.word0,
9418 					portsmphr_reg.word0,
9419 					phba->work_status[0],
9420 					phba->work_status[1]);
9421 				port_error = -ENODEV;
9422 				break;
9423 			}
9424 
9425 			if (lpfc_pldv_detect &&
9426 			    bf_get(lpfc_sli_intf_sli_family,
9427 				   &phba->sli4_hba.sli_intf) ==
9428 					LPFC_SLI_INTF_FAMILY_G6)
9429 				pci_write_config_byte(phba->pcidev,
9430 						      LPFC_SLI_INTF, CFG_PLD);
9431 			break;
9432 		case LPFC_SLI_INTF_IF_TYPE_1:
9433 		default:
9434 			break;
9435 		}
9436 	}
9437 	return port_error;
9438 }
9439 
9440 /**
9441  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9442  * @phba: pointer to lpfc hba data structure.
9443  * @if_type:  The SLI4 interface type getting configured.
9444  *
9445  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9446  * memory map.
9447  **/
9448 static void
9449 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9450 {
9451 	switch (if_type) {
9452 	case LPFC_SLI_INTF_IF_TYPE_0:
9453 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9454 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9455 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9456 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9457 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9458 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9459 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9460 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9461 		phba->sli4_hba.SLIINTFregaddr =
9462 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9463 		break;
9464 	case LPFC_SLI_INTF_IF_TYPE_2:
9465 		phba->sli4_hba.u.if_type2.EQDregaddr =
9466 			phba->sli4_hba.conf_regs_memmap_p +
9467 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9468 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9469 			phba->sli4_hba.conf_regs_memmap_p +
9470 						LPFC_CTL_PORT_ER1_OFFSET;
9471 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9472 			phba->sli4_hba.conf_regs_memmap_p +
9473 						LPFC_CTL_PORT_ER2_OFFSET;
9474 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9475 			phba->sli4_hba.conf_regs_memmap_p +
9476 						LPFC_CTL_PORT_CTL_OFFSET;
9477 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9478 			phba->sli4_hba.conf_regs_memmap_p +
9479 						LPFC_CTL_PORT_STA_OFFSET;
9480 		phba->sli4_hba.SLIINTFregaddr =
9481 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9482 		phba->sli4_hba.PSMPHRregaddr =
9483 			phba->sli4_hba.conf_regs_memmap_p +
9484 						LPFC_CTL_PORT_SEM_OFFSET;
9485 		phba->sli4_hba.RQDBregaddr =
9486 			phba->sli4_hba.conf_regs_memmap_p +
9487 						LPFC_ULP0_RQ_DOORBELL;
9488 		phba->sli4_hba.WQDBregaddr =
9489 			phba->sli4_hba.conf_regs_memmap_p +
9490 						LPFC_ULP0_WQ_DOORBELL;
9491 		phba->sli4_hba.CQDBregaddr =
9492 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9493 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9494 		phba->sli4_hba.MQDBregaddr =
9495 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9496 		phba->sli4_hba.BMBXregaddr =
9497 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9498 		break;
9499 	case LPFC_SLI_INTF_IF_TYPE_6:
9500 		phba->sli4_hba.u.if_type2.EQDregaddr =
9501 			phba->sli4_hba.conf_regs_memmap_p +
9502 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9503 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9504 			phba->sli4_hba.conf_regs_memmap_p +
9505 						LPFC_CTL_PORT_ER1_OFFSET;
9506 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9507 			phba->sli4_hba.conf_regs_memmap_p +
9508 						LPFC_CTL_PORT_ER2_OFFSET;
9509 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9510 			phba->sli4_hba.conf_regs_memmap_p +
9511 						LPFC_CTL_PORT_CTL_OFFSET;
9512 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9513 			phba->sli4_hba.conf_regs_memmap_p +
9514 						LPFC_CTL_PORT_STA_OFFSET;
9515 		phba->sli4_hba.PSMPHRregaddr =
9516 			phba->sli4_hba.conf_regs_memmap_p +
9517 						LPFC_CTL_PORT_SEM_OFFSET;
9518 		phba->sli4_hba.BMBXregaddr =
9519 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9520 		break;
9521 	case LPFC_SLI_INTF_IF_TYPE_1:
9522 	default:
9523 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9524 			   "FATAL - unsupported SLI4 interface type - %d\n",
9525 			   if_type);
9526 		break;
9527 	}
9528 }
9529 
9530 /**
9531  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9532  * @phba: pointer to lpfc hba data structure.
9533  * @if_type: sli if type to operate on.
9534  *
9535  * This routine is invoked to set up SLI4 BAR1 register memory map.
9536  **/
9537 static void
9538 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9539 {
9540 	switch (if_type) {
9541 	case LPFC_SLI_INTF_IF_TYPE_0:
9542 		phba->sli4_hba.PSMPHRregaddr =
9543 			phba->sli4_hba.ctrl_regs_memmap_p +
9544 			LPFC_SLIPORT_IF0_SMPHR;
9545 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9546 			LPFC_HST_ISR0;
9547 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9548 			LPFC_HST_IMR0;
9549 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9550 			LPFC_HST_ISCR0;
9551 		break;
9552 	case LPFC_SLI_INTF_IF_TYPE_6:
9553 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9554 			LPFC_IF6_RQ_DOORBELL;
9555 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9556 			LPFC_IF6_WQ_DOORBELL;
9557 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9558 			LPFC_IF6_CQ_DOORBELL;
9559 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9560 			LPFC_IF6_EQ_DOORBELL;
9561 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9562 			LPFC_IF6_MQ_DOORBELL;
9563 		break;
9564 	case LPFC_SLI_INTF_IF_TYPE_2:
9565 	case LPFC_SLI_INTF_IF_TYPE_1:
9566 	default:
9567 		dev_err(&phba->pcidev->dev,
9568 			   "FATAL - unsupported SLI4 interface type - %d\n",
9569 			   if_type);
9570 		break;
9571 	}
9572 }
9573 
9574 /**
9575  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9576  * @phba: pointer to lpfc hba data structure.
9577  * @vf: virtual function number
9578  *
9579  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9580  * based on the given viftual function number, @vf.
9581  *
9582  * Return 0 if successful, otherwise -ENODEV.
9583  **/
9584 static int
9585 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9586 {
9587 	if (vf > LPFC_VIR_FUNC_MAX)
9588 		return -ENODEV;
9589 
9590 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9591 				vf * LPFC_VFR_PAGE_SIZE +
9592 					LPFC_ULP0_RQ_DOORBELL);
9593 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9594 				vf * LPFC_VFR_PAGE_SIZE +
9595 					LPFC_ULP0_WQ_DOORBELL);
9596 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9597 				vf * LPFC_VFR_PAGE_SIZE +
9598 					LPFC_EQCQ_DOORBELL);
9599 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9600 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9601 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9602 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9603 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9604 	return 0;
9605 }
9606 
9607 /**
9608  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9609  * @phba: pointer to lpfc hba data structure.
9610  *
9611  * This routine is invoked to create the bootstrap mailbox
9612  * region consistent with the SLI-4 interface spec.  This
9613  * routine allocates all memory necessary to communicate
9614  * mailbox commands to the port and sets up all alignment
9615  * needs.  No locks are expected to be held when calling
9616  * this routine.
9617  *
9618  * Return codes
9619  * 	0 - successful
9620  * 	-ENOMEM - could not allocated memory.
9621  **/
9622 static int
9623 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9624 {
9625 	uint32_t bmbx_size;
9626 	struct lpfc_dmabuf *dmabuf;
9627 	struct dma_address *dma_address;
9628 	uint32_t pa_addr;
9629 	uint64_t phys_addr;
9630 
9631 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9632 	if (!dmabuf)
9633 		return -ENOMEM;
9634 
9635 	/*
9636 	 * The bootstrap mailbox region is comprised of 2 parts
9637 	 * plus an alignment restriction of 16 bytes.
9638 	 */
9639 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9640 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9641 					  &dmabuf->phys, GFP_KERNEL);
9642 	if (!dmabuf->virt) {
9643 		kfree(dmabuf);
9644 		return -ENOMEM;
9645 	}
9646 
9647 	/*
9648 	 * Initialize the bootstrap mailbox pointers now so that the register
9649 	 * operations are simple later.  The mailbox dma address is required
9650 	 * to be 16-byte aligned.  Also align the virtual memory as each
9651 	 * maibox is copied into the bmbx mailbox region before issuing the
9652 	 * command to the port.
9653 	 */
9654 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9655 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9656 
9657 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9658 					      LPFC_ALIGN_16_BYTE);
9659 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9660 					      LPFC_ALIGN_16_BYTE);
9661 
9662 	/*
9663 	 * Set the high and low physical addresses now.  The SLI4 alignment
9664 	 * requirement is 16 bytes and the mailbox is posted to the port
9665 	 * as two 30-bit addresses.  The other data is a bit marking whether
9666 	 * the 30-bit address is the high or low address.
9667 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9668 	 * clean on 32 bit machines.
9669 	 */
9670 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9671 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9672 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9673 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9674 					   LPFC_BMBX_BIT1_ADDR_HI);
9675 
9676 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9677 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9678 					   LPFC_BMBX_BIT1_ADDR_LO);
9679 	return 0;
9680 }
9681 
9682 /**
9683  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9684  * @phba: pointer to lpfc hba data structure.
9685  *
9686  * This routine is invoked to teardown the bootstrap mailbox
9687  * region and release all host resources. This routine requires
9688  * the caller to ensure all mailbox commands recovered, no
9689  * additional mailbox comands are sent, and interrupts are disabled
9690  * before calling this routine.
9691  *
9692  **/
9693 static void
9694 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9695 {
9696 	dma_free_coherent(&phba->pcidev->dev,
9697 			  phba->sli4_hba.bmbx.bmbx_size,
9698 			  phba->sli4_hba.bmbx.dmabuf->virt,
9699 			  phba->sli4_hba.bmbx.dmabuf->phys);
9700 
9701 	kfree(phba->sli4_hba.bmbx.dmabuf);
9702 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9703 }
9704 
9705 static const char * const lpfc_topo_to_str[] = {
9706 	"Loop then P2P",
9707 	"Loopback",
9708 	"P2P Only",
9709 	"Unsupported",
9710 	"Loop Only",
9711 	"Unsupported",
9712 	"P2P then Loop",
9713 };
9714 
9715 #define	LINK_FLAGS_DEF	0x0
9716 #define	LINK_FLAGS_P2P	0x1
9717 #define	LINK_FLAGS_LOOP	0x2
9718 /**
9719  * lpfc_map_topology - Map the topology read from READ_CONFIG
9720  * @phba: pointer to lpfc hba data structure.
9721  * @rd_config: pointer to read config data
9722  *
9723  * This routine is invoked to map the topology values as read
9724  * from the read config mailbox command. If the persistent
9725  * topology feature is supported, the firmware will provide the
9726  * saved topology information to be used in INIT_LINK
9727  **/
9728 static void
9729 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9730 {
9731 	u8 ptv, tf, pt;
9732 
9733 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9734 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9735 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9736 
9737 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9738 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9739 			 ptv, tf, pt);
9740 	if (!ptv) {
9741 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9742 				"2019 FW does not support persistent topology "
9743 				"Using driver parameter defined value [%s]",
9744 				lpfc_topo_to_str[phba->cfg_topology]);
9745 		return;
9746 	}
9747 	/* FW supports persistent topology - override module parameter value */
9748 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9749 
9750 	/* if ASIC_GEN_NUM >= 0xC) */
9751 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9752 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9753 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9754 		    LPFC_SLI_INTF_FAMILY_G6)) {
9755 		if (!tf) {
9756 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9757 					? FLAGS_TOPOLOGY_MODE_LOOP
9758 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9759 		} else {
9760 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9761 		}
9762 	} else { /* G5 */
9763 		if (tf) {
9764 			/* If topology failover set - pt is '0' or '1' */
9765 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9766 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9767 		} else {
9768 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9769 					? FLAGS_TOPOLOGY_MODE_PT_PT
9770 					: FLAGS_TOPOLOGY_MODE_LOOP);
9771 		}
9772 	}
9773 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9774 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9775 				"2020 Using persistent topology value [%s]",
9776 				lpfc_topo_to_str[phba->cfg_topology]);
9777 	} else {
9778 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9779 				"2021 Invalid topology values from FW "
9780 				"Using driver parameter defined value [%s]",
9781 				lpfc_topo_to_str[phba->cfg_topology]);
9782 	}
9783 }
9784 
9785 /**
9786  * lpfc_sli4_read_config - Get the config parameters.
9787  * @phba: pointer to lpfc hba data structure.
9788  *
9789  * This routine is invoked to read the configuration parameters from the HBA.
9790  * The configuration parameters are used to set the base and maximum values
9791  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9792  * allocation for the port.
9793  *
9794  * Return codes
9795  * 	0 - successful
9796  * 	-ENOMEM - No available memory
9797  *      -EIO - The mailbox failed to complete successfully.
9798  **/
9799 int
9800 lpfc_sli4_read_config(struct lpfc_hba *phba)
9801 {
9802 	LPFC_MBOXQ_t *pmb;
9803 	struct lpfc_mbx_read_config *rd_config;
9804 	union  lpfc_sli4_cfg_shdr *shdr;
9805 	uint32_t shdr_status, shdr_add_status;
9806 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9807 	struct lpfc_rsrc_desc_fcfcoe *desc;
9808 	char *pdesc_0;
9809 	uint16_t forced_link_speed;
9810 	uint32_t if_type, qmin;
9811 	int length, i, rc = 0, rc2;
9812 
9813 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9814 	if (!pmb) {
9815 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9816 				"2011 Unable to allocate memory for issuing "
9817 				"SLI_CONFIG_SPECIAL mailbox command\n");
9818 		return -ENOMEM;
9819 	}
9820 
9821 	lpfc_read_config(phba, pmb);
9822 
9823 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9824 	if (rc != MBX_SUCCESS) {
9825 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9826 				"2012 Mailbox failed , mbxCmd x%x "
9827 				"READ_CONFIG, mbxStatus x%x\n",
9828 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9829 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9830 		rc = -EIO;
9831 	} else {
9832 		rd_config = &pmb->u.mqe.un.rd_config;
9833 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9834 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9835 			phba->sli4_hba.lnk_info.lnk_tp =
9836 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9837 			phba->sli4_hba.lnk_info.lnk_no =
9838 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9839 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9840 					"3081 lnk_type:%d, lnk_numb:%d\n",
9841 					phba->sli4_hba.lnk_info.lnk_tp,
9842 					phba->sli4_hba.lnk_info.lnk_no);
9843 		} else
9844 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9845 					"3082 Mailbox (x%x) returned ldv:x0\n",
9846 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9847 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9848 			phba->bbcredit_support = 1;
9849 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9850 		}
9851 
9852 		phba->sli4_hba.conf_trunk =
9853 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9854 		phba->sli4_hba.extents_in_use =
9855 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9856 		phba->sli4_hba.max_cfg_param.max_xri =
9857 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9858 		/* Reduce resource usage in kdump environment */
9859 		if (is_kdump_kernel() &&
9860 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9861 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9862 		phba->sli4_hba.max_cfg_param.xri_base =
9863 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9864 		phba->sli4_hba.max_cfg_param.max_vpi =
9865 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9866 		/* Limit the max we support */
9867 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9868 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9869 		phba->sli4_hba.max_cfg_param.vpi_base =
9870 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9871 		phba->sli4_hba.max_cfg_param.max_rpi =
9872 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9873 		phba->sli4_hba.max_cfg_param.rpi_base =
9874 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9875 		phba->sli4_hba.max_cfg_param.max_vfi =
9876 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9877 		phba->sli4_hba.max_cfg_param.vfi_base =
9878 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9879 		phba->sli4_hba.max_cfg_param.max_fcfi =
9880 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9881 		phba->sli4_hba.max_cfg_param.max_eq =
9882 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9883 		phba->sli4_hba.max_cfg_param.max_rq =
9884 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9885 		phba->sli4_hba.max_cfg_param.max_wq =
9886 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9887 		phba->sli4_hba.max_cfg_param.max_cq =
9888 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9889 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9890 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9891 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9892 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9893 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9894 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9895 		phba->max_vports = phba->max_vpi;
9896 
9897 		/* Next decide on FPIN or Signal E2E CGN support
9898 		 * For congestion alarms and warnings valid combination are:
9899 		 * 1. FPIN alarms / FPIN warnings
9900 		 * 2. Signal alarms / Signal warnings
9901 		 * 3. FPIN alarms / Signal warnings
9902 		 * 4. Signal alarms / FPIN warnings
9903 		 *
9904 		 * Initialize the adapter frequency to 100 mSecs
9905 		 */
9906 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9907 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9908 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9909 
9910 		if (lpfc_use_cgn_signal) {
9911 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9912 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9913 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9914 			}
9915 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9916 				/* MUST support both alarm and warning
9917 				 * because EDC does not support alarm alone.
9918 				 */
9919 				if (phba->cgn_reg_signal !=
9920 				    EDC_CG_SIG_WARN_ONLY) {
9921 					/* Must support both or none */
9922 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9923 					phba->cgn_reg_signal =
9924 						EDC_CG_SIG_NOTSUPPORTED;
9925 				} else {
9926 					phba->cgn_reg_signal =
9927 						EDC_CG_SIG_WARN_ALARM;
9928 					phba->cgn_reg_fpin =
9929 						LPFC_CGN_FPIN_NONE;
9930 				}
9931 			}
9932 		}
9933 
9934 		/* Set the congestion initial signal and fpin values. */
9935 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9936 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9937 
9938 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9939 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9940 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
9941 
9942 		lpfc_map_topology(phba, rd_config);
9943 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9944 				"2003 cfg params Extents? %d "
9945 				"XRI(B:%d M:%d), "
9946 				"VPI(B:%d M:%d) "
9947 				"VFI(B:%d M:%d) "
9948 				"RPI(B:%d M:%d) "
9949 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9950 				phba->sli4_hba.extents_in_use,
9951 				phba->sli4_hba.max_cfg_param.xri_base,
9952 				phba->sli4_hba.max_cfg_param.max_xri,
9953 				phba->sli4_hba.max_cfg_param.vpi_base,
9954 				phba->sli4_hba.max_cfg_param.max_vpi,
9955 				phba->sli4_hba.max_cfg_param.vfi_base,
9956 				phba->sli4_hba.max_cfg_param.max_vfi,
9957 				phba->sli4_hba.max_cfg_param.rpi_base,
9958 				phba->sli4_hba.max_cfg_param.max_rpi,
9959 				phba->sli4_hba.max_cfg_param.max_fcfi,
9960 				phba->sli4_hba.max_cfg_param.max_eq,
9961 				phba->sli4_hba.max_cfg_param.max_cq,
9962 				phba->sli4_hba.max_cfg_param.max_wq,
9963 				phba->sli4_hba.max_cfg_param.max_rq,
9964 				phba->lmt);
9965 
9966 		/*
9967 		 * Calculate queue resources based on how
9968 		 * many WQ/CQ/EQs are available.
9969 		 */
9970 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
9971 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9972 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
9973 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9974 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
9975 		/*
9976 		 * Whats left after this can go toward NVME / FCP.
9977 		 * The minus 4 accounts for ELS, NVME LS, MBOX
9978 		 * plus one extra. When configured for
9979 		 * NVMET, FCP io channel WQs are not created.
9980 		 */
9981 		qmin -= 4;
9982 
9983 		/* Check to see if there is enough for NVME */
9984 		if ((phba->cfg_irq_chann > qmin) ||
9985 		    (phba->cfg_hdw_queue > qmin)) {
9986 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9987 					"2005 Reducing Queues - "
9988 					"FW resource limitation: "
9989 					"WQ %d CQ %d EQ %d: min %d: "
9990 					"IRQ %d HDWQ %d\n",
9991 					phba->sli4_hba.max_cfg_param.max_wq,
9992 					phba->sli4_hba.max_cfg_param.max_cq,
9993 					phba->sli4_hba.max_cfg_param.max_eq,
9994 					qmin, phba->cfg_irq_chann,
9995 					phba->cfg_hdw_queue);
9996 
9997 			if (phba->cfg_irq_chann > qmin)
9998 				phba->cfg_irq_chann = qmin;
9999 			if (phba->cfg_hdw_queue > qmin)
10000 				phba->cfg_hdw_queue = qmin;
10001 		}
10002 	}
10003 
10004 	if (rc)
10005 		goto read_cfg_out;
10006 
10007 	/* Update link speed if forced link speed is supported */
10008 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10009 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10010 		forced_link_speed =
10011 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10012 		if (forced_link_speed) {
10013 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10014 
10015 			switch (forced_link_speed) {
10016 			case LINK_SPEED_1G:
10017 				phba->cfg_link_speed =
10018 					LPFC_USER_LINK_SPEED_1G;
10019 				break;
10020 			case LINK_SPEED_2G:
10021 				phba->cfg_link_speed =
10022 					LPFC_USER_LINK_SPEED_2G;
10023 				break;
10024 			case LINK_SPEED_4G:
10025 				phba->cfg_link_speed =
10026 					LPFC_USER_LINK_SPEED_4G;
10027 				break;
10028 			case LINK_SPEED_8G:
10029 				phba->cfg_link_speed =
10030 					LPFC_USER_LINK_SPEED_8G;
10031 				break;
10032 			case LINK_SPEED_10G:
10033 				phba->cfg_link_speed =
10034 					LPFC_USER_LINK_SPEED_10G;
10035 				break;
10036 			case LINK_SPEED_16G:
10037 				phba->cfg_link_speed =
10038 					LPFC_USER_LINK_SPEED_16G;
10039 				break;
10040 			case LINK_SPEED_32G:
10041 				phba->cfg_link_speed =
10042 					LPFC_USER_LINK_SPEED_32G;
10043 				break;
10044 			case LINK_SPEED_64G:
10045 				phba->cfg_link_speed =
10046 					LPFC_USER_LINK_SPEED_64G;
10047 				break;
10048 			case 0xffff:
10049 				phba->cfg_link_speed =
10050 					LPFC_USER_LINK_SPEED_AUTO;
10051 				break;
10052 			default:
10053 				lpfc_printf_log(phba, KERN_ERR,
10054 						LOG_TRACE_EVENT,
10055 						"0047 Unrecognized link "
10056 						"speed : %d\n",
10057 						forced_link_speed);
10058 				phba->cfg_link_speed =
10059 					LPFC_USER_LINK_SPEED_AUTO;
10060 			}
10061 		}
10062 	}
10063 
10064 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10065 	length = phba->sli4_hba.max_cfg_param.max_xri -
10066 			lpfc_sli4_get_els_iocb_cnt(phba);
10067 	if (phba->cfg_hba_queue_depth > length) {
10068 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10069 				"3361 HBA queue depth changed from %d to %d\n",
10070 				phba->cfg_hba_queue_depth, length);
10071 		phba->cfg_hba_queue_depth = length;
10072 	}
10073 
10074 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10075 	    LPFC_SLI_INTF_IF_TYPE_2)
10076 		goto read_cfg_out;
10077 
10078 	/* get the pf# and vf# for SLI4 if_type 2 port */
10079 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10080 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10081 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10082 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10083 			 length, LPFC_SLI4_MBX_EMBED);
10084 
10085 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10086 	shdr = (union lpfc_sli4_cfg_shdr *)
10087 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10088 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10089 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10090 	if (rc2 || shdr_status || shdr_add_status) {
10091 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10092 				"3026 Mailbox failed , mbxCmd x%x "
10093 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10094 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10095 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10096 		goto read_cfg_out;
10097 	}
10098 
10099 	/* search for fc_fcoe resrouce descriptor */
10100 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10101 
10102 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10103 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10104 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10105 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10106 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10107 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10108 		goto read_cfg_out;
10109 
10110 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10111 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10112 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10113 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10114 			phba->sli4_hba.iov.pf_number =
10115 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10116 			phba->sli4_hba.iov.vf_number =
10117 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10118 			break;
10119 		}
10120 	}
10121 
10122 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10123 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10124 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10125 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10126 				phba->sli4_hba.iov.vf_number);
10127 	else
10128 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10129 				"3028 GET_FUNCTION_CONFIG: failed to find "
10130 				"Resource Descriptor:x%x\n",
10131 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10132 
10133 read_cfg_out:
10134 	mempool_free(pmb, phba->mbox_mem_pool);
10135 	return rc;
10136 }
10137 
10138 /**
10139  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10140  * @phba: pointer to lpfc hba data structure.
10141  *
10142  * This routine is invoked to setup the port-side endian order when
10143  * the port if_type is 0.  This routine has no function for other
10144  * if_types.
10145  *
10146  * Return codes
10147  * 	0 - successful
10148  * 	-ENOMEM - No available memory
10149  *      -EIO - The mailbox failed to complete successfully.
10150  **/
10151 static int
10152 lpfc_setup_endian_order(struct lpfc_hba *phba)
10153 {
10154 	LPFC_MBOXQ_t *mboxq;
10155 	uint32_t if_type, rc = 0;
10156 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10157 				      HOST_ENDIAN_HIGH_WORD1};
10158 
10159 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10160 	switch (if_type) {
10161 	case LPFC_SLI_INTF_IF_TYPE_0:
10162 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10163 						       GFP_KERNEL);
10164 		if (!mboxq) {
10165 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10166 					"0492 Unable to allocate memory for "
10167 					"issuing SLI_CONFIG_SPECIAL mailbox "
10168 					"command\n");
10169 			return -ENOMEM;
10170 		}
10171 
10172 		/*
10173 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10174 		 * two words to contain special data values and no other data.
10175 		 */
10176 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10177 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10178 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10179 		if (rc != MBX_SUCCESS) {
10180 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10181 					"0493 SLI_CONFIG_SPECIAL mailbox "
10182 					"failed with status x%x\n",
10183 					rc);
10184 			rc = -EIO;
10185 		}
10186 		mempool_free(mboxq, phba->mbox_mem_pool);
10187 		break;
10188 	case LPFC_SLI_INTF_IF_TYPE_6:
10189 	case LPFC_SLI_INTF_IF_TYPE_2:
10190 	case LPFC_SLI_INTF_IF_TYPE_1:
10191 	default:
10192 		break;
10193 	}
10194 	return rc;
10195 }
10196 
10197 /**
10198  * lpfc_sli4_queue_verify - Verify and update EQ counts
10199  * @phba: pointer to lpfc hba data structure.
10200  *
10201  * This routine is invoked to check the user settable queue counts for EQs.
10202  * After this routine is called the counts will be set to valid values that
10203  * adhere to the constraints of the system's interrupt vectors and the port's
10204  * queue resources.
10205  *
10206  * Return codes
10207  *      0 - successful
10208  *      -ENOMEM - No available memory
10209  **/
10210 static int
10211 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10212 {
10213 	/*
10214 	 * Sanity check for configured queue parameters against the run-time
10215 	 * device parameters
10216 	 */
10217 
10218 	if (phba->nvmet_support) {
10219 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10220 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10221 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10222 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10223 	}
10224 
10225 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10226 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10227 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10228 			phba->cfg_nvmet_mrq);
10229 
10230 	/* Get EQ depth from module parameter, fake the default for now */
10231 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10232 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10233 
10234 	/* Get CQ depth from module parameter, fake the default for now */
10235 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10236 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10237 	return 0;
10238 }
10239 
10240 static int
10241 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10242 {
10243 	struct lpfc_queue *qdesc;
10244 	u32 wqesize;
10245 	int cpu;
10246 
10247 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10248 	/* Create Fast Path IO CQs */
10249 	if (phba->enab_exp_wqcq_pages)
10250 		/* Increase the CQ size when WQEs contain an embedded cdb */
10251 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10252 					      phba->sli4_hba.cq_esize,
10253 					      LPFC_CQE_EXP_COUNT, cpu);
10254 
10255 	else
10256 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10257 					      phba->sli4_hba.cq_esize,
10258 					      phba->sli4_hba.cq_ecount, cpu);
10259 	if (!qdesc) {
10260 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10261 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10262 				idx);
10263 		return 1;
10264 	}
10265 	qdesc->qe_valid = 1;
10266 	qdesc->hdwq = idx;
10267 	qdesc->chann = cpu;
10268 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10269 
10270 	/* Create Fast Path IO WQs */
10271 	if (phba->enab_exp_wqcq_pages) {
10272 		/* Increase the WQ size when WQEs contain an embedded cdb */
10273 		wqesize = (phba->fcp_embed_io) ?
10274 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10275 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10276 					      wqesize,
10277 					      LPFC_WQE_EXP_COUNT, cpu);
10278 	} else
10279 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10280 					      phba->sli4_hba.wq_esize,
10281 					      phba->sli4_hba.wq_ecount, cpu);
10282 
10283 	if (!qdesc) {
10284 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10285 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10286 				idx);
10287 		return 1;
10288 	}
10289 	qdesc->hdwq = idx;
10290 	qdesc->chann = cpu;
10291 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10292 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10293 	return 0;
10294 }
10295 
10296 /**
10297  * lpfc_sli4_queue_create - Create all the SLI4 queues
10298  * @phba: pointer to lpfc hba data structure.
10299  *
10300  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10301  * operation. For each SLI4 queue type, the parameters such as queue entry
10302  * count (queue depth) shall be taken from the module parameter. For now,
10303  * we just use some constant number as place holder.
10304  *
10305  * Return codes
10306  *      0 - successful
10307  *      -ENOMEM - No availble memory
10308  *      -EIO - The mailbox failed to complete successfully.
10309  **/
10310 int
10311 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10312 {
10313 	struct lpfc_queue *qdesc;
10314 	int idx, cpu, eqcpu;
10315 	struct lpfc_sli4_hdw_queue *qp;
10316 	struct lpfc_vector_map_info *cpup;
10317 	struct lpfc_vector_map_info *eqcpup;
10318 	struct lpfc_eq_intr_info *eqi;
10319 
10320 	/*
10321 	 * Create HBA Record arrays.
10322 	 * Both NVME and FCP will share that same vectors / EQs
10323 	 */
10324 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10325 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10326 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10327 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10328 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10329 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10330 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10331 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10332 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10333 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10334 
10335 	if (!phba->sli4_hba.hdwq) {
10336 		phba->sli4_hba.hdwq = kcalloc(
10337 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10338 			GFP_KERNEL);
10339 		if (!phba->sli4_hba.hdwq) {
10340 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10341 					"6427 Failed allocate memory for "
10342 					"fast-path Hardware Queue array\n");
10343 			goto out_error;
10344 		}
10345 		/* Prepare hardware queues to take IO buffers */
10346 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10347 			qp = &phba->sli4_hba.hdwq[idx];
10348 			spin_lock_init(&qp->io_buf_list_get_lock);
10349 			spin_lock_init(&qp->io_buf_list_put_lock);
10350 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10351 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10352 			qp->get_io_bufs = 0;
10353 			qp->put_io_bufs = 0;
10354 			qp->total_io_bufs = 0;
10355 			spin_lock_init(&qp->abts_io_buf_list_lock);
10356 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10357 			qp->abts_scsi_io_bufs = 0;
10358 			qp->abts_nvme_io_bufs = 0;
10359 			INIT_LIST_HEAD(&qp->sgl_list);
10360 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10361 			spin_lock_init(&qp->hdwq_lock);
10362 		}
10363 	}
10364 
10365 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10366 		if (phba->nvmet_support) {
10367 			phba->sli4_hba.nvmet_cqset = kcalloc(
10368 					phba->cfg_nvmet_mrq,
10369 					sizeof(struct lpfc_queue *),
10370 					GFP_KERNEL);
10371 			if (!phba->sli4_hba.nvmet_cqset) {
10372 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10373 					"3121 Fail allocate memory for "
10374 					"fast-path CQ set array\n");
10375 				goto out_error;
10376 			}
10377 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10378 					phba->cfg_nvmet_mrq,
10379 					sizeof(struct lpfc_queue *),
10380 					GFP_KERNEL);
10381 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10382 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10383 					"3122 Fail allocate memory for "
10384 					"fast-path RQ set hdr array\n");
10385 				goto out_error;
10386 			}
10387 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10388 					phba->cfg_nvmet_mrq,
10389 					sizeof(struct lpfc_queue *),
10390 					GFP_KERNEL);
10391 			if (!phba->sli4_hba.nvmet_mrq_data) {
10392 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10393 					"3124 Fail allocate memory for "
10394 					"fast-path RQ set data array\n");
10395 				goto out_error;
10396 			}
10397 		}
10398 	}
10399 
10400 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10401 
10402 	/* Create HBA Event Queues (EQs) */
10403 	for_each_present_cpu(cpu) {
10404 		/* We only want to create 1 EQ per vector, even though
10405 		 * multiple CPUs might be using that vector. so only
10406 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10407 		 */
10408 		cpup = &phba->sli4_hba.cpu_map[cpu];
10409 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10410 			continue;
10411 
10412 		/* Get a ptr to the Hardware Queue associated with this CPU */
10413 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10414 
10415 		/* Allocate an EQ */
10416 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10417 					      phba->sli4_hba.eq_esize,
10418 					      phba->sli4_hba.eq_ecount, cpu);
10419 		if (!qdesc) {
10420 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10421 					"0497 Failed allocate EQ (%d)\n",
10422 					cpup->hdwq);
10423 			goto out_error;
10424 		}
10425 		qdesc->qe_valid = 1;
10426 		qdesc->hdwq = cpup->hdwq;
10427 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10428 		qdesc->last_cpu = qdesc->chann;
10429 
10430 		/* Save the allocated EQ in the Hardware Queue */
10431 		qp->hba_eq = qdesc;
10432 
10433 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10434 		list_add(&qdesc->cpu_list, &eqi->list);
10435 	}
10436 
10437 	/* Now we need to populate the other Hardware Queues, that share
10438 	 * an IRQ vector, with the associated EQ ptr.
10439 	 */
10440 	for_each_present_cpu(cpu) {
10441 		cpup = &phba->sli4_hba.cpu_map[cpu];
10442 
10443 		/* Check for EQ already allocated in previous loop */
10444 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10445 			continue;
10446 
10447 		/* Check for multiple CPUs per hdwq */
10448 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10449 		if (qp->hba_eq)
10450 			continue;
10451 
10452 		/* We need to share an EQ for this hdwq */
10453 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10454 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10455 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10456 	}
10457 
10458 	/* Allocate IO Path SLI4 CQ/WQs */
10459 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10460 		if (lpfc_alloc_io_wq_cq(phba, idx))
10461 			goto out_error;
10462 	}
10463 
10464 	if (phba->nvmet_support) {
10465 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10466 			cpu = lpfc_find_cpu_handle(phba, idx,
10467 						   LPFC_FIND_BY_HDWQ);
10468 			qdesc = lpfc_sli4_queue_alloc(phba,
10469 						      LPFC_DEFAULT_PAGE_SIZE,
10470 						      phba->sli4_hba.cq_esize,
10471 						      phba->sli4_hba.cq_ecount,
10472 						      cpu);
10473 			if (!qdesc) {
10474 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10475 						"3142 Failed allocate NVME "
10476 						"CQ Set (%d)\n", idx);
10477 				goto out_error;
10478 			}
10479 			qdesc->qe_valid = 1;
10480 			qdesc->hdwq = idx;
10481 			qdesc->chann = cpu;
10482 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10483 		}
10484 	}
10485 
10486 	/*
10487 	 * Create Slow Path Completion Queues (CQs)
10488 	 */
10489 
10490 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10491 	/* Create slow-path Mailbox Command Complete Queue */
10492 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10493 				      phba->sli4_hba.cq_esize,
10494 				      phba->sli4_hba.cq_ecount, cpu);
10495 	if (!qdesc) {
10496 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10497 				"0500 Failed allocate slow-path mailbox CQ\n");
10498 		goto out_error;
10499 	}
10500 	qdesc->qe_valid = 1;
10501 	phba->sli4_hba.mbx_cq = qdesc;
10502 
10503 	/* Create slow-path ELS Complete Queue */
10504 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10505 				      phba->sli4_hba.cq_esize,
10506 				      phba->sli4_hba.cq_ecount, cpu);
10507 	if (!qdesc) {
10508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509 				"0501 Failed allocate slow-path ELS CQ\n");
10510 		goto out_error;
10511 	}
10512 	qdesc->qe_valid = 1;
10513 	qdesc->chann = cpu;
10514 	phba->sli4_hba.els_cq = qdesc;
10515 
10516 
10517 	/*
10518 	 * Create Slow Path Work Queues (WQs)
10519 	 */
10520 
10521 	/* Create Mailbox Command Queue */
10522 
10523 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10524 				      phba->sli4_hba.mq_esize,
10525 				      phba->sli4_hba.mq_ecount, cpu);
10526 	if (!qdesc) {
10527 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10528 				"0505 Failed allocate slow-path MQ\n");
10529 		goto out_error;
10530 	}
10531 	qdesc->chann = cpu;
10532 	phba->sli4_hba.mbx_wq = qdesc;
10533 
10534 	/*
10535 	 * Create ELS Work Queues
10536 	 */
10537 
10538 	/* Create slow-path ELS Work Queue */
10539 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10540 				      phba->sli4_hba.wq_esize,
10541 				      phba->sli4_hba.wq_ecount, cpu);
10542 	if (!qdesc) {
10543 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10544 				"0504 Failed allocate slow-path ELS WQ\n");
10545 		goto out_error;
10546 	}
10547 	qdesc->chann = cpu;
10548 	phba->sli4_hba.els_wq = qdesc;
10549 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10550 
10551 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10552 		/* Create NVME LS Complete Queue */
10553 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10554 					      phba->sli4_hba.cq_esize,
10555 					      phba->sli4_hba.cq_ecount, cpu);
10556 		if (!qdesc) {
10557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10558 					"6079 Failed allocate NVME LS CQ\n");
10559 			goto out_error;
10560 		}
10561 		qdesc->chann = cpu;
10562 		qdesc->qe_valid = 1;
10563 		phba->sli4_hba.nvmels_cq = qdesc;
10564 
10565 		/* Create NVME LS Work Queue */
10566 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10567 					      phba->sli4_hba.wq_esize,
10568 					      phba->sli4_hba.wq_ecount, cpu);
10569 		if (!qdesc) {
10570 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10571 					"6080 Failed allocate NVME LS WQ\n");
10572 			goto out_error;
10573 		}
10574 		qdesc->chann = cpu;
10575 		phba->sli4_hba.nvmels_wq = qdesc;
10576 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10577 	}
10578 
10579 	/*
10580 	 * Create Receive Queue (RQ)
10581 	 */
10582 
10583 	/* Create Receive Queue for header */
10584 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10585 				      phba->sli4_hba.rq_esize,
10586 				      phba->sli4_hba.rq_ecount, cpu);
10587 	if (!qdesc) {
10588 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10589 				"0506 Failed allocate receive HRQ\n");
10590 		goto out_error;
10591 	}
10592 	phba->sli4_hba.hdr_rq = qdesc;
10593 
10594 	/* Create Receive Queue for data */
10595 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10596 				      phba->sli4_hba.rq_esize,
10597 				      phba->sli4_hba.rq_ecount, cpu);
10598 	if (!qdesc) {
10599 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10600 				"0507 Failed allocate receive DRQ\n");
10601 		goto out_error;
10602 	}
10603 	phba->sli4_hba.dat_rq = qdesc;
10604 
10605 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10606 	    phba->nvmet_support) {
10607 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10608 			cpu = lpfc_find_cpu_handle(phba, idx,
10609 						   LPFC_FIND_BY_HDWQ);
10610 			/* Create NVMET Receive Queue for header */
10611 			qdesc = lpfc_sli4_queue_alloc(phba,
10612 						      LPFC_DEFAULT_PAGE_SIZE,
10613 						      phba->sli4_hba.rq_esize,
10614 						      LPFC_NVMET_RQE_DEF_COUNT,
10615 						      cpu);
10616 			if (!qdesc) {
10617 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10618 						"3146 Failed allocate "
10619 						"receive HRQ\n");
10620 				goto out_error;
10621 			}
10622 			qdesc->hdwq = idx;
10623 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10624 
10625 			/* Only needed for header of RQ pair */
10626 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10627 						   GFP_KERNEL,
10628 						   cpu_to_node(cpu));
10629 			if (qdesc->rqbp == NULL) {
10630 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10631 						"6131 Failed allocate "
10632 						"Header RQBP\n");
10633 				goto out_error;
10634 			}
10635 
10636 			/* Put list in known state in case driver load fails. */
10637 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10638 
10639 			/* Create NVMET Receive Queue for data */
10640 			qdesc = lpfc_sli4_queue_alloc(phba,
10641 						      LPFC_DEFAULT_PAGE_SIZE,
10642 						      phba->sli4_hba.rq_esize,
10643 						      LPFC_NVMET_RQE_DEF_COUNT,
10644 						      cpu);
10645 			if (!qdesc) {
10646 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10647 						"3156 Failed allocate "
10648 						"receive DRQ\n");
10649 				goto out_error;
10650 			}
10651 			qdesc->hdwq = idx;
10652 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10653 		}
10654 	}
10655 
10656 	/* Clear NVME stats */
10657 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10658 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10659 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10660 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10661 		}
10662 	}
10663 
10664 	/* Clear SCSI stats */
10665 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10666 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10667 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10668 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10669 		}
10670 	}
10671 
10672 	return 0;
10673 
10674 out_error:
10675 	lpfc_sli4_queue_destroy(phba);
10676 	return -ENOMEM;
10677 }
10678 
10679 static inline void
10680 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10681 {
10682 	if (*qp != NULL) {
10683 		lpfc_sli4_queue_free(*qp);
10684 		*qp = NULL;
10685 	}
10686 }
10687 
10688 static inline void
10689 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10690 {
10691 	int idx;
10692 
10693 	if (*qs == NULL)
10694 		return;
10695 
10696 	for (idx = 0; idx < max; idx++)
10697 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10698 
10699 	kfree(*qs);
10700 	*qs = NULL;
10701 }
10702 
10703 static inline void
10704 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10705 {
10706 	struct lpfc_sli4_hdw_queue *hdwq;
10707 	struct lpfc_queue *eq;
10708 	uint32_t idx;
10709 
10710 	hdwq = phba->sli4_hba.hdwq;
10711 
10712 	/* Loop thru all Hardware Queues */
10713 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10714 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10715 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10716 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10717 		hdwq[idx].hba_eq = NULL;
10718 		hdwq[idx].io_cq = NULL;
10719 		hdwq[idx].io_wq = NULL;
10720 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10721 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10722 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10723 	}
10724 	/* Loop thru all IRQ vectors */
10725 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10726 		/* Free the EQ corresponding to the IRQ vector */
10727 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10728 		lpfc_sli4_queue_free(eq);
10729 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10730 	}
10731 }
10732 
10733 /**
10734  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10735  * @phba: pointer to lpfc hba data structure.
10736  *
10737  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10738  * operation.
10739  *
10740  * Return codes
10741  *      0 - successful
10742  *      -ENOMEM - No available memory
10743  *      -EIO - The mailbox failed to complete successfully.
10744  **/
10745 void
10746 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10747 {
10748 	/*
10749 	 * Set FREE_INIT before beginning to free the queues.
10750 	 * Wait until the users of queues to acknowledge to
10751 	 * release queues by clearing FREE_WAIT.
10752 	 */
10753 	spin_lock_irq(&phba->hbalock);
10754 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10755 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10756 		spin_unlock_irq(&phba->hbalock);
10757 		msleep(20);
10758 		spin_lock_irq(&phba->hbalock);
10759 	}
10760 	spin_unlock_irq(&phba->hbalock);
10761 
10762 	lpfc_sli4_cleanup_poll_list(phba);
10763 
10764 	/* Release HBA eqs */
10765 	if (phba->sli4_hba.hdwq)
10766 		lpfc_sli4_release_hdwq(phba);
10767 
10768 	if (phba->nvmet_support) {
10769 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10770 					 phba->cfg_nvmet_mrq);
10771 
10772 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10773 					 phba->cfg_nvmet_mrq);
10774 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10775 					 phba->cfg_nvmet_mrq);
10776 	}
10777 
10778 	/* Release mailbox command work queue */
10779 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10780 
10781 	/* Release ELS work queue */
10782 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10783 
10784 	/* Release ELS work queue */
10785 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10786 
10787 	/* Release unsolicited receive queue */
10788 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10789 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10790 
10791 	/* Release ELS complete queue */
10792 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10793 
10794 	/* Release NVME LS complete queue */
10795 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10796 
10797 	/* Release mailbox command complete queue */
10798 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10799 
10800 	/* Everything on this list has been freed */
10801 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10802 
10803 	/* Done with freeing the queues */
10804 	spin_lock_irq(&phba->hbalock);
10805 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10806 	spin_unlock_irq(&phba->hbalock);
10807 }
10808 
10809 int
10810 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10811 {
10812 	struct lpfc_rqb *rqbp;
10813 	struct lpfc_dmabuf *h_buf;
10814 	struct rqb_dmabuf *rqb_buffer;
10815 
10816 	rqbp = rq->rqbp;
10817 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10818 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10819 				 struct lpfc_dmabuf, list);
10820 
10821 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10822 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10823 		rqbp->buffer_count--;
10824 	}
10825 	return 1;
10826 }
10827 
10828 static int
10829 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10830 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10831 	int qidx, uint32_t qtype)
10832 {
10833 	struct lpfc_sli_ring *pring;
10834 	int rc;
10835 
10836 	if (!eq || !cq || !wq) {
10837 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10838 			"6085 Fast-path %s (%d) not allocated\n",
10839 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10840 		return -ENOMEM;
10841 	}
10842 
10843 	/* create the Cq first */
10844 	rc = lpfc_cq_create(phba, cq, eq,
10845 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10846 	if (rc) {
10847 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10848 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10849 				qidx, (uint32_t)rc);
10850 		return rc;
10851 	}
10852 
10853 	if (qtype != LPFC_MBOX) {
10854 		/* Setup cq_map for fast lookup */
10855 		if (cq_map)
10856 			*cq_map = cq->queue_id;
10857 
10858 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10859 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10860 			qidx, cq->queue_id, qidx, eq->queue_id);
10861 
10862 		/* create the wq */
10863 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10864 		if (rc) {
10865 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10866 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10867 				qidx, (uint32_t)rc);
10868 			/* no need to tear down cq - caller will do so */
10869 			return rc;
10870 		}
10871 
10872 		/* Bind this CQ/WQ to the NVME ring */
10873 		pring = wq->pring;
10874 		pring->sli.sli4.wqp = (void *)wq;
10875 		cq->pring = pring;
10876 
10877 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10878 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10879 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10880 	} else {
10881 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10882 		if (rc) {
10883 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10884 					"0539 Failed setup of slow-path MQ: "
10885 					"rc = 0x%x\n", rc);
10886 			/* no need to tear down cq - caller will do so */
10887 			return rc;
10888 		}
10889 
10890 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10891 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10892 			phba->sli4_hba.mbx_wq->queue_id,
10893 			phba->sli4_hba.mbx_cq->queue_id);
10894 	}
10895 
10896 	return 0;
10897 }
10898 
10899 /**
10900  * lpfc_setup_cq_lookup - Setup the CQ lookup table
10901  * @phba: pointer to lpfc hba data structure.
10902  *
10903  * This routine will populate the cq_lookup table by all
10904  * available CQ queue_id's.
10905  **/
10906 static void
10907 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10908 {
10909 	struct lpfc_queue *eq, *childq;
10910 	int qidx;
10911 
10912 	memset(phba->sli4_hba.cq_lookup, 0,
10913 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10914 	/* Loop thru all IRQ vectors */
10915 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10916 		/* Get the EQ corresponding to the IRQ vector */
10917 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10918 		if (!eq)
10919 			continue;
10920 		/* Loop through all CQs associated with that EQ */
10921 		list_for_each_entry(childq, &eq->child_list, list) {
10922 			if (childq->queue_id > phba->sli4_hba.cq_max)
10923 				continue;
10924 			if (childq->subtype == LPFC_IO)
10925 				phba->sli4_hba.cq_lookup[childq->queue_id] =
10926 					childq;
10927 		}
10928 	}
10929 }
10930 
10931 /**
10932  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10933  * @phba: pointer to lpfc hba data structure.
10934  *
10935  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10936  * operation.
10937  *
10938  * Return codes
10939  *      0 - successful
10940  *      -ENOMEM - No available memory
10941  *      -EIO - The mailbox failed to complete successfully.
10942  **/
10943 int
10944 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10945 {
10946 	uint32_t shdr_status, shdr_add_status;
10947 	union lpfc_sli4_cfg_shdr *shdr;
10948 	struct lpfc_vector_map_info *cpup;
10949 	struct lpfc_sli4_hdw_queue *qp;
10950 	LPFC_MBOXQ_t *mboxq;
10951 	int qidx, cpu;
10952 	uint32_t length, usdelay;
10953 	int rc = -ENOMEM;
10954 
10955 	/* Check for dual-ULP support */
10956 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10957 	if (!mboxq) {
10958 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10959 				"3249 Unable to allocate memory for "
10960 				"QUERY_FW_CFG mailbox command\n");
10961 		return -ENOMEM;
10962 	}
10963 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
10964 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10965 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10966 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10967 			 length, LPFC_SLI4_MBX_EMBED);
10968 
10969 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10970 
10971 	shdr = (union lpfc_sli4_cfg_shdr *)
10972 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10973 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10974 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10975 	if (shdr_status || shdr_add_status || rc) {
10976 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10977 				"3250 QUERY_FW_CFG mailbox failed with status "
10978 				"x%x add_status x%x, mbx status x%x\n",
10979 				shdr_status, shdr_add_status, rc);
10980 		mempool_free(mboxq, phba->mbox_mem_pool);
10981 		rc = -ENXIO;
10982 		goto out_error;
10983 	}
10984 
10985 	phba->sli4_hba.fw_func_mode =
10986 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10987 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
10988 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
10989 	phba->sli4_hba.physical_port =
10990 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
10991 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10992 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
10993 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
10994 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
10995 
10996 	mempool_free(mboxq, phba->mbox_mem_pool);
10997 
10998 	/*
10999 	 * Set up HBA Event Queues (EQs)
11000 	 */
11001 	qp = phba->sli4_hba.hdwq;
11002 
11003 	/* Set up HBA event queue */
11004 	if (!qp) {
11005 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11006 				"3147 Fast-path EQs not allocated\n");
11007 		rc = -ENOMEM;
11008 		goto out_error;
11009 	}
11010 
11011 	/* Loop thru all IRQ vectors */
11012 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11013 		/* Create HBA Event Queues (EQs) in order */
11014 		for_each_present_cpu(cpu) {
11015 			cpup = &phba->sli4_hba.cpu_map[cpu];
11016 
11017 			/* Look for the CPU thats using that vector with
11018 			 * LPFC_CPU_FIRST_IRQ set.
11019 			 */
11020 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11021 				continue;
11022 			if (qidx != cpup->eq)
11023 				continue;
11024 
11025 			/* Create an EQ for that vector */
11026 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11027 					    phba->cfg_fcp_imax);
11028 			if (rc) {
11029 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11030 						"0523 Failed setup of fast-path"
11031 						" EQ (%d), rc = 0x%x\n",
11032 						cpup->eq, (uint32_t)rc);
11033 				goto out_destroy;
11034 			}
11035 
11036 			/* Save the EQ for that vector in the hba_eq_hdl */
11037 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11038 				qp[cpup->hdwq].hba_eq;
11039 
11040 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11041 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11042 					cpup->eq,
11043 					qp[cpup->hdwq].hba_eq->queue_id);
11044 		}
11045 	}
11046 
11047 	/* Loop thru all Hardware Queues */
11048 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11049 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11050 		cpup = &phba->sli4_hba.cpu_map[cpu];
11051 
11052 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11053 		rc = lpfc_create_wq_cq(phba,
11054 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11055 				       qp[qidx].io_cq,
11056 				       qp[qidx].io_wq,
11057 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11058 				       qidx,
11059 				       LPFC_IO);
11060 		if (rc) {
11061 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11062 					"0535 Failed to setup fastpath "
11063 					"IO WQ/CQ (%d), rc = 0x%x\n",
11064 					qidx, (uint32_t)rc);
11065 			goto out_destroy;
11066 		}
11067 	}
11068 
11069 	/*
11070 	 * Set up Slow Path Complete Queues (CQs)
11071 	 */
11072 
11073 	/* Set up slow-path MBOX CQ/MQ */
11074 
11075 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11076 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11077 				"0528 %s not allocated\n",
11078 				phba->sli4_hba.mbx_cq ?
11079 				"Mailbox WQ" : "Mailbox CQ");
11080 		rc = -ENOMEM;
11081 		goto out_destroy;
11082 	}
11083 
11084 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11085 			       phba->sli4_hba.mbx_cq,
11086 			       phba->sli4_hba.mbx_wq,
11087 			       NULL, 0, LPFC_MBOX);
11088 	if (rc) {
11089 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11090 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11091 			(uint32_t)rc);
11092 		goto out_destroy;
11093 	}
11094 	if (phba->nvmet_support) {
11095 		if (!phba->sli4_hba.nvmet_cqset) {
11096 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11097 					"3165 Fast-path NVME CQ Set "
11098 					"array not allocated\n");
11099 			rc = -ENOMEM;
11100 			goto out_destroy;
11101 		}
11102 		if (phba->cfg_nvmet_mrq > 1) {
11103 			rc = lpfc_cq_create_set(phba,
11104 					phba->sli4_hba.nvmet_cqset,
11105 					qp,
11106 					LPFC_WCQ, LPFC_NVMET);
11107 			if (rc) {
11108 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11109 						"3164 Failed setup of NVME CQ "
11110 						"Set, rc = 0x%x\n",
11111 						(uint32_t)rc);
11112 				goto out_destroy;
11113 			}
11114 		} else {
11115 			/* Set up NVMET Receive Complete Queue */
11116 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11117 					    qp[0].hba_eq,
11118 					    LPFC_WCQ, LPFC_NVMET);
11119 			if (rc) {
11120 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11121 						"6089 Failed setup NVMET CQ: "
11122 						"rc = 0x%x\n", (uint32_t)rc);
11123 				goto out_destroy;
11124 			}
11125 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11126 
11127 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11128 					"6090 NVMET CQ setup: cq-id=%d, "
11129 					"parent eq-id=%d\n",
11130 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11131 					qp[0].hba_eq->queue_id);
11132 		}
11133 	}
11134 
11135 	/* Set up slow-path ELS WQ/CQ */
11136 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11137 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11138 				"0530 ELS %s not allocated\n",
11139 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11140 		rc = -ENOMEM;
11141 		goto out_destroy;
11142 	}
11143 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11144 			       phba->sli4_hba.els_cq,
11145 			       phba->sli4_hba.els_wq,
11146 			       NULL, 0, LPFC_ELS);
11147 	if (rc) {
11148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11149 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11150 				(uint32_t)rc);
11151 		goto out_destroy;
11152 	}
11153 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11154 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11155 			phba->sli4_hba.els_wq->queue_id,
11156 			phba->sli4_hba.els_cq->queue_id);
11157 
11158 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11159 		/* Set up NVME LS Complete Queue */
11160 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11161 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11162 					"6091 LS %s not allocated\n",
11163 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11164 			rc = -ENOMEM;
11165 			goto out_destroy;
11166 		}
11167 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11168 				       phba->sli4_hba.nvmels_cq,
11169 				       phba->sli4_hba.nvmels_wq,
11170 				       NULL, 0, LPFC_NVME_LS);
11171 		if (rc) {
11172 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11173 					"0526 Failed setup of NVVME LS WQ/CQ: "
11174 					"rc = 0x%x\n", (uint32_t)rc);
11175 			goto out_destroy;
11176 		}
11177 
11178 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11179 				"6096 ELS WQ setup: wq-id=%d, "
11180 				"parent cq-id=%d\n",
11181 				phba->sli4_hba.nvmels_wq->queue_id,
11182 				phba->sli4_hba.nvmels_cq->queue_id);
11183 	}
11184 
11185 	/*
11186 	 * Create NVMET Receive Queue (RQ)
11187 	 */
11188 	if (phba->nvmet_support) {
11189 		if ((!phba->sli4_hba.nvmet_cqset) ||
11190 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11191 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11192 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11193 					"6130 MRQ CQ Queues not "
11194 					"allocated\n");
11195 			rc = -ENOMEM;
11196 			goto out_destroy;
11197 		}
11198 		if (phba->cfg_nvmet_mrq > 1) {
11199 			rc = lpfc_mrq_create(phba,
11200 					     phba->sli4_hba.nvmet_mrq_hdr,
11201 					     phba->sli4_hba.nvmet_mrq_data,
11202 					     phba->sli4_hba.nvmet_cqset,
11203 					     LPFC_NVMET);
11204 			if (rc) {
11205 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11206 						"6098 Failed setup of NVMET "
11207 						"MRQ: rc = 0x%x\n",
11208 						(uint32_t)rc);
11209 				goto out_destroy;
11210 			}
11211 
11212 		} else {
11213 			rc = lpfc_rq_create(phba,
11214 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11215 					    phba->sli4_hba.nvmet_mrq_data[0],
11216 					    phba->sli4_hba.nvmet_cqset[0],
11217 					    LPFC_NVMET);
11218 			if (rc) {
11219 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11220 						"6057 Failed setup of NVMET "
11221 						"Receive Queue: rc = 0x%x\n",
11222 						(uint32_t)rc);
11223 				goto out_destroy;
11224 			}
11225 
11226 			lpfc_printf_log(
11227 				phba, KERN_INFO, LOG_INIT,
11228 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11229 				"dat-rq-id=%d parent cq-id=%d\n",
11230 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11231 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11232 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11233 
11234 		}
11235 	}
11236 
11237 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11238 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11239 				"0540 Receive Queue not allocated\n");
11240 		rc = -ENOMEM;
11241 		goto out_destroy;
11242 	}
11243 
11244 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11245 			    phba->sli4_hba.els_cq, LPFC_USOL);
11246 	if (rc) {
11247 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11248 				"0541 Failed setup of Receive Queue: "
11249 				"rc = 0x%x\n", (uint32_t)rc);
11250 		goto out_destroy;
11251 	}
11252 
11253 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11254 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11255 			"parent cq-id=%d\n",
11256 			phba->sli4_hba.hdr_rq->queue_id,
11257 			phba->sli4_hba.dat_rq->queue_id,
11258 			phba->sli4_hba.els_cq->queue_id);
11259 
11260 	if (phba->cfg_fcp_imax)
11261 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11262 	else
11263 		usdelay = 0;
11264 
11265 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11266 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11267 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11268 					 usdelay);
11269 
11270 	if (phba->sli4_hba.cq_max) {
11271 		kfree(phba->sli4_hba.cq_lookup);
11272 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11273 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11274 		if (!phba->sli4_hba.cq_lookup) {
11275 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11276 					"0549 Failed setup of CQ Lookup table: "
11277 					"size 0x%x\n", phba->sli4_hba.cq_max);
11278 			rc = -ENOMEM;
11279 			goto out_destroy;
11280 		}
11281 		lpfc_setup_cq_lookup(phba);
11282 	}
11283 	return 0;
11284 
11285 out_destroy:
11286 	lpfc_sli4_queue_unset(phba);
11287 out_error:
11288 	return rc;
11289 }
11290 
11291 /**
11292  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11293  * @phba: pointer to lpfc hba data structure.
11294  *
11295  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11296  * operation.
11297  *
11298  * Return codes
11299  *      0 - successful
11300  *      -ENOMEM - No available memory
11301  *      -EIO - The mailbox failed to complete successfully.
11302  **/
11303 void
11304 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11305 {
11306 	struct lpfc_sli4_hdw_queue *qp;
11307 	struct lpfc_queue *eq;
11308 	int qidx;
11309 
11310 	/* Unset mailbox command work queue */
11311 	if (phba->sli4_hba.mbx_wq)
11312 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11313 
11314 	/* Unset NVME LS work queue */
11315 	if (phba->sli4_hba.nvmels_wq)
11316 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11317 
11318 	/* Unset ELS work queue */
11319 	if (phba->sli4_hba.els_wq)
11320 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11321 
11322 	/* Unset unsolicited receive queue */
11323 	if (phba->sli4_hba.hdr_rq)
11324 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11325 				phba->sli4_hba.dat_rq);
11326 
11327 	/* Unset mailbox command complete queue */
11328 	if (phba->sli4_hba.mbx_cq)
11329 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11330 
11331 	/* Unset ELS complete queue */
11332 	if (phba->sli4_hba.els_cq)
11333 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11334 
11335 	/* Unset NVME LS complete queue */
11336 	if (phba->sli4_hba.nvmels_cq)
11337 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11338 
11339 	if (phba->nvmet_support) {
11340 		/* Unset NVMET MRQ queue */
11341 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11342 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11343 				lpfc_rq_destroy(
11344 					phba,
11345 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11346 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11347 		}
11348 
11349 		/* Unset NVMET CQ Set complete queue */
11350 		if (phba->sli4_hba.nvmet_cqset) {
11351 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11352 				lpfc_cq_destroy(
11353 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11354 		}
11355 	}
11356 
11357 	/* Unset fast-path SLI4 queues */
11358 	if (phba->sli4_hba.hdwq) {
11359 		/* Loop thru all Hardware Queues */
11360 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11361 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11362 			qp = &phba->sli4_hba.hdwq[qidx];
11363 			lpfc_wq_destroy(phba, qp->io_wq);
11364 			lpfc_cq_destroy(phba, qp->io_cq);
11365 		}
11366 		/* Loop thru all IRQ vectors */
11367 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11368 			/* Destroy the EQ corresponding to the IRQ vector */
11369 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11370 			lpfc_eq_destroy(phba, eq);
11371 		}
11372 	}
11373 
11374 	kfree(phba->sli4_hba.cq_lookup);
11375 	phba->sli4_hba.cq_lookup = NULL;
11376 	phba->sli4_hba.cq_max = 0;
11377 }
11378 
11379 /**
11380  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11381  * @phba: pointer to lpfc hba data structure.
11382  *
11383  * This routine is invoked to allocate and set up a pool of completion queue
11384  * events. The body of the completion queue event is a completion queue entry
11385  * CQE. For now, this pool is used for the interrupt service routine to queue
11386  * the following HBA completion queue events for the worker thread to process:
11387  *   - Mailbox asynchronous events
11388  *   - Receive queue completion unsolicited events
11389  * Later, this can be used for all the slow-path events.
11390  *
11391  * Return codes
11392  *      0 - successful
11393  *      -ENOMEM - No available memory
11394  **/
11395 static int
11396 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11397 {
11398 	struct lpfc_cq_event *cq_event;
11399 	int i;
11400 
11401 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11402 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11403 		if (!cq_event)
11404 			goto out_pool_create_fail;
11405 		list_add_tail(&cq_event->list,
11406 			      &phba->sli4_hba.sp_cqe_event_pool);
11407 	}
11408 	return 0;
11409 
11410 out_pool_create_fail:
11411 	lpfc_sli4_cq_event_pool_destroy(phba);
11412 	return -ENOMEM;
11413 }
11414 
11415 /**
11416  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11417  * @phba: pointer to lpfc hba data structure.
11418  *
11419  * This routine is invoked to free the pool of completion queue events at
11420  * driver unload time. Note that, it is the responsibility of the driver
11421  * cleanup routine to free all the outstanding completion-queue events
11422  * allocated from this pool back into the pool before invoking this routine
11423  * to destroy the pool.
11424  **/
11425 static void
11426 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11427 {
11428 	struct lpfc_cq_event *cq_event, *next_cq_event;
11429 
11430 	list_for_each_entry_safe(cq_event, next_cq_event,
11431 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11432 		list_del(&cq_event->list);
11433 		kfree(cq_event);
11434 	}
11435 }
11436 
11437 /**
11438  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11439  * @phba: pointer to lpfc hba data structure.
11440  *
11441  * This routine is the lock free version of the API invoked to allocate a
11442  * completion-queue event from the free pool.
11443  *
11444  * Return: Pointer to the newly allocated completion-queue event if successful
11445  *         NULL otherwise.
11446  **/
11447 struct lpfc_cq_event *
11448 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11449 {
11450 	struct lpfc_cq_event *cq_event = NULL;
11451 
11452 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11453 			 struct lpfc_cq_event, list);
11454 	return cq_event;
11455 }
11456 
11457 /**
11458  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11459  * @phba: pointer to lpfc hba data structure.
11460  *
11461  * This routine is the lock version of the API invoked to allocate a
11462  * completion-queue event from the free pool.
11463  *
11464  * Return: Pointer to the newly allocated completion-queue event if successful
11465  *         NULL otherwise.
11466  **/
11467 struct lpfc_cq_event *
11468 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11469 {
11470 	struct lpfc_cq_event *cq_event;
11471 	unsigned long iflags;
11472 
11473 	spin_lock_irqsave(&phba->hbalock, iflags);
11474 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11475 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11476 	return cq_event;
11477 }
11478 
11479 /**
11480  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11481  * @phba: pointer to lpfc hba data structure.
11482  * @cq_event: pointer to the completion queue event to be freed.
11483  *
11484  * This routine is the lock free version of the API invoked to release a
11485  * completion-queue event back into the free pool.
11486  **/
11487 void
11488 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11489 			     struct lpfc_cq_event *cq_event)
11490 {
11491 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11492 }
11493 
11494 /**
11495  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11496  * @phba: pointer to lpfc hba data structure.
11497  * @cq_event: pointer to the completion queue event to be freed.
11498  *
11499  * This routine is the lock version of the API invoked to release a
11500  * completion-queue event back into the free pool.
11501  **/
11502 void
11503 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11504 			   struct lpfc_cq_event *cq_event)
11505 {
11506 	unsigned long iflags;
11507 	spin_lock_irqsave(&phba->hbalock, iflags);
11508 	__lpfc_sli4_cq_event_release(phba, cq_event);
11509 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11510 }
11511 
11512 /**
11513  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11514  * @phba: pointer to lpfc hba data structure.
11515  *
11516  * This routine is to free all the pending completion-queue events to the
11517  * back into the free pool for device reset.
11518  **/
11519 static void
11520 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11521 {
11522 	LIST_HEAD(cq_event_list);
11523 	struct lpfc_cq_event *cq_event;
11524 	unsigned long iflags;
11525 
11526 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11527 
11528 	/* Pending ELS XRI abort events */
11529 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11530 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11531 			 &cq_event_list);
11532 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11533 
11534 	/* Pending asynnc events */
11535 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11536 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11537 			 &cq_event_list);
11538 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11539 
11540 	while (!list_empty(&cq_event_list)) {
11541 		list_remove_head(&cq_event_list, cq_event,
11542 				 struct lpfc_cq_event, list);
11543 		lpfc_sli4_cq_event_release(phba, cq_event);
11544 	}
11545 }
11546 
11547 /**
11548  * lpfc_pci_function_reset - Reset pci function.
11549  * @phba: pointer to lpfc hba data structure.
11550  *
11551  * This routine is invoked to request a PCI function reset. It will destroys
11552  * all resources assigned to the PCI function which originates this request.
11553  *
11554  * Return codes
11555  *      0 - successful
11556  *      -ENOMEM - No available memory
11557  *      -EIO - The mailbox failed to complete successfully.
11558  **/
11559 int
11560 lpfc_pci_function_reset(struct lpfc_hba *phba)
11561 {
11562 	LPFC_MBOXQ_t *mboxq;
11563 	uint32_t rc = 0, if_type;
11564 	uint32_t shdr_status, shdr_add_status;
11565 	uint32_t rdy_chk;
11566 	uint32_t port_reset = 0;
11567 	union lpfc_sli4_cfg_shdr *shdr;
11568 	struct lpfc_register reg_data;
11569 	uint16_t devid;
11570 
11571 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11572 	switch (if_type) {
11573 	case LPFC_SLI_INTF_IF_TYPE_0:
11574 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11575 						       GFP_KERNEL);
11576 		if (!mboxq) {
11577 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11578 					"0494 Unable to allocate memory for "
11579 					"issuing SLI_FUNCTION_RESET mailbox "
11580 					"command\n");
11581 			return -ENOMEM;
11582 		}
11583 
11584 		/* Setup PCI function reset mailbox-ioctl command */
11585 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11586 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11587 				 LPFC_SLI4_MBX_EMBED);
11588 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11589 		shdr = (union lpfc_sli4_cfg_shdr *)
11590 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11591 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11592 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11593 					 &shdr->response);
11594 		mempool_free(mboxq, phba->mbox_mem_pool);
11595 		if (shdr_status || shdr_add_status || rc) {
11596 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11597 					"0495 SLI_FUNCTION_RESET mailbox "
11598 					"failed with status x%x add_status x%x,"
11599 					" mbx status x%x\n",
11600 					shdr_status, shdr_add_status, rc);
11601 			rc = -ENXIO;
11602 		}
11603 		break;
11604 	case LPFC_SLI_INTF_IF_TYPE_2:
11605 	case LPFC_SLI_INTF_IF_TYPE_6:
11606 wait:
11607 		/*
11608 		 * Poll the Port Status Register and wait for RDY for
11609 		 * up to 30 seconds. If the port doesn't respond, treat
11610 		 * it as an error.
11611 		 */
11612 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11613 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11614 				STATUSregaddr, &reg_data.word0)) {
11615 				rc = -ENODEV;
11616 				goto out;
11617 			}
11618 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11619 				break;
11620 			msleep(20);
11621 		}
11622 
11623 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11624 			phba->work_status[0] = readl(
11625 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11626 			phba->work_status[1] = readl(
11627 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11628 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11629 					"2890 Port not ready, port status reg "
11630 					"0x%x error 1=0x%x, error 2=0x%x\n",
11631 					reg_data.word0,
11632 					phba->work_status[0],
11633 					phba->work_status[1]);
11634 			rc = -ENODEV;
11635 			goto out;
11636 		}
11637 
11638 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11639 			lpfc_pldv_detect = true;
11640 
11641 		if (!port_reset) {
11642 			/*
11643 			 * Reset the port now
11644 			 */
11645 			reg_data.word0 = 0;
11646 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11647 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11648 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11649 			       LPFC_SLIPORT_INIT_PORT);
11650 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11651 			       CTRLregaddr);
11652 			/* flush */
11653 			pci_read_config_word(phba->pcidev,
11654 					     PCI_DEVICE_ID, &devid);
11655 
11656 			port_reset = 1;
11657 			msleep(20);
11658 			goto wait;
11659 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11660 			rc = -ENODEV;
11661 			goto out;
11662 		}
11663 		break;
11664 
11665 	case LPFC_SLI_INTF_IF_TYPE_1:
11666 	default:
11667 		break;
11668 	}
11669 
11670 out:
11671 	/* Catch the not-ready port failure after a port reset. */
11672 	if (rc) {
11673 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11674 				"3317 HBA not functional: IP Reset Failed "
11675 				"try: echo fw_reset > board_mode\n");
11676 		rc = -ENODEV;
11677 	}
11678 
11679 	return rc;
11680 }
11681 
11682 /**
11683  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11684  * @phba: pointer to lpfc hba data structure.
11685  *
11686  * This routine is invoked to set up the PCI device memory space for device
11687  * with SLI-4 interface spec.
11688  *
11689  * Return codes
11690  * 	0 - successful
11691  * 	other values - error
11692  **/
11693 static int
11694 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11695 {
11696 	struct pci_dev *pdev = phba->pcidev;
11697 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11698 	int error;
11699 	uint32_t if_type;
11700 
11701 	if (!pdev)
11702 		return -ENODEV;
11703 
11704 	/* Set the device DMA mask size */
11705 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11706 	if (error)
11707 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11708 	if (error)
11709 		return error;
11710 
11711 	/*
11712 	 * The BARs and register set definitions and offset locations are
11713 	 * dependent on the if_type.
11714 	 */
11715 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11716 				  &phba->sli4_hba.sli_intf.word0)) {
11717 		return -ENODEV;
11718 	}
11719 
11720 	/* There is no SLI3 failback for SLI4 devices. */
11721 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11722 	    LPFC_SLI_INTF_VALID) {
11723 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11724 				"2894 SLI_INTF reg contents invalid "
11725 				"sli_intf reg 0x%x\n",
11726 				phba->sli4_hba.sli_intf.word0);
11727 		return -ENODEV;
11728 	}
11729 
11730 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11731 	/*
11732 	 * Get the bus address of SLI4 device Bar regions and the
11733 	 * number of bytes required by each mapping. The mapping of the
11734 	 * particular PCI BARs regions is dependent on the type of
11735 	 * SLI4 device.
11736 	 */
11737 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11738 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11739 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11740 
11741 		/*
11742 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11743 		 * addr
11744 		 */
11745 		phba->sli4_hba.conf_regs_memmap_p =
11746 			ioremap(phba->pci_bar0_map, bar0map_len);
11747 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11748 			dev_printk(KERN_ERR, &pdev->dev,
11749 				   "ioremap failed for SLI4 PCI config "
11750 				   "registers.\n");
11751 			return -ENODEV;
11752 		}
11753 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11754 		/* Set up BAR0 PCI config space register memory map */
11755 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11756 	} else {
11757 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11758 		bar0map_len = pci_resource_len(pdev, 1);
11759 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11760 			dev_printk(KERN_ERR, &pdev->dev,
11761 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11762 			return -ENODEV;
11763 		}
11764 		phba->sli4_hba.conf_regs_memmap_p =
11765 				ioremap(phba->pci_bar0_map, bar0map_len);
11766 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11767 			dev_printk(KERN_ERR, &pdev->dev,
11768 				"ioremap failed for SLI4 PCI config "
11769 				"registers.\n");
11770 			return -ENODEV;
11771 		}
11772 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11773 	}
11774 
11775 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11776 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11777 			/*
11778 			 * Map SLI4 if type 0 HBA Control Register base to a
11779 			 * kernel virtual address and setup the registers.
11780 			 */
11781 			phba->pci_bar1_map = pci_resource_start(pdev,
11782 								PCI_64BIT_BAR2);
11783 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11784 			phba->sli4_hba.ctrl_regs_memmap_p =
11785 					ioremap(phba->pci_bar1_map,
11786 						bar1map_len);
11787 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11788 				dev_err(&pdev->dev,
11789 					   "ioremap failed for SLI4 HBA "
11790 					    "control registers.\n");
11791 				error = -ENOMEM;
11792 				goto out_iounmap_conf;
11793 			}
11794 			phba->pci_bar2_memmap_p =
11795 					 phba->sli4_hba.ctrl_regs_memmap_p;
11796 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11797 		} else {
11798 			error = -ENOMEM;
11799 			goto out_iounmap_conf;
11800 		}
11801 	}
11802 
11803 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11804 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11805 		/*
11806 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11807 		 * virtual address and setup the registers.
11808 		 */
11809 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11810 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11811 		phba->sli4_hba.drbl_regs_memmap_p =
11812 				ioremap(phba->pci_bar1_map, bar1map_len);
11813 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11814 			dev_err(&pdev->dev,
11815 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11816 			error = -ENOMEM;
11817 			goto out_iounmap_conf;
11818 		}
11819 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11820 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11821 	}
11822 
11823 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11824 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11825 			/*
11826 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11827 			 * a kernel virtual address and setup the registers.
11828 			 */
11829 			phba->pci_bar2_map = pci_resource_start(pdev,
11830 								PCI_64BIT_BAR4);
11831 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11832 			phba->sli4_hba.drbl_regs_memmap_p =
11833 					ioremap(phba->pci_bar2_map,
11834 						bar2map_len);
11835 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11836 				dev_err(&pdev->dev,
11837 					   "ioremap failed for SLI4 HBA"
11838 					   " doorbell registers.\n");
11839 				error = -ENOMEM;
11840 				goto out_iounmap_ctrl;
11841 			}
11842 			phba->pci_bar4_memmap_p =
11843 					phba->sli4_hba.drbl_regs_memmap_p;
11844 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11845 			if (error)
11846 				goto out_iounmap_all;
11847 		} else {
11848 			error = -ENOMEM;
11849 			goto out_iounmap_all;
11850 		}
11851 	}
11852 
11853 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11854 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11855 		/*
11856 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11857 		 * virtual address and setup the registers.
11858 		 */
11859 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11860 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11861 		phba->sli4_hba.dpp_regs_memmap_p =
11862 				ioremap(phba->pci_bar2_map, bar2map_len);
11863 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11864 			dev_err(&pdev->dev,
11865 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11866 			error = -ENOMEM;
11867 			goto out_iounmap_ctrl;
11868 		}
11869 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11870 	}
11871 
11872 	/* Set up the EQ/CQ register handeling functions now */
11873 	switch (if_type) {
11874 	case LPFC_SLI_INTF_IF_TYPE_0:
11875 	case LPFC_SLI_INTF_IF_TYPE_2:
11876 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11877 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11878 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11879 		break;
11880 	case LPFC_SLI_INTF_IF_TYPE_6:
11881 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11882 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11883 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11884 		break;
11885 	default:
11886 		break;
11887 	}
11888 
11889 	return 0;
11890 
11891 out_iounmap_all:
11892 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11893 out_iounmap_ctrl:
11894 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11895 out_iounmap_conf:
11896 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
11897 
11898 	return error;
11899 }
11900 
11901 /**
11902  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11903  * @phba: pointer to lpfc hba data structure.
11904  *
11905  * This routine is invoked to unset the PCI device memory space for device
11906  * with SLI-4 interface spec.
11907  **/
11908 static void
11909 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11910 {
11911 	uint32_t if_type;
11912 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11913 
11914 	switch (if_type) {
11915 	case LPFC_SLI_INTF_IF_TYPE_0:
11916 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11917 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11918 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11919 		break;
11920 	case LPFC_SLI_INTF_IF_TYPE_2:
11921 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11922 		break;
11923 	case LPFC_SLI_INTF_IF_TYPE_6:
11924 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11925 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11926 		if (phba->sli4_hba.dpp_regs_memmap_p)
11927 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11928 		break;
11929 	case LPFC_SLI_INTF_IF_TYPE_1:
11930 	default:
11931 		dev_printk(KERN_ERR, &phba->pcidev->dev,
11932 			   "FATAL - unsupported SLI4 interface type - %d\n",
11933 			   if_type);
11934 		break;
11935 	}
11936 }
11937 
11938 /**
11939  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11940  * @phba: pointer to lpfc hba data structure.
11941  *
11942  * This routine is invoked to enable the MSI-X interrupt vectors to device
11943  * with SLI-3 interface specs.
11944  *
11945  * Return codes
11946  *   0 - successful
11947  *   other values - error
11948  **/
11949 static int
11950 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11951 {
11952 	int rc;
11953 	LPFC_MBOXQ_t *pmb;
11954 
11955 	/* Set up MSI-X multi-message vectors */
11956 	rc = pci_alloc_irq_vectors(phba->pcidev,
11957 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11958 	if (rc < 0) {
11959 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11960 				"0420 PCI enable MSI-X failed (%d)\n", rc);
11961 		goto vec_fail_out;
11962 	}
11963 
11964 	/*
11965 	 * Assign MSI-X vectors to interrupt handlers
11966 	 */
11967 
11968 	/* vector-0 is associated to slow-path handler */
11969 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11970 			 &lpfc_sli_sp_intr_handler, 0,
11971 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11972 	if (rc) {
11973 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11974 				"0421 MSI-X slow-path request_irq failed "
11975 				"(%d)\n", rc);
11976 		goto msi_fail_out;
11977 	}
11978 
11979 	/* vector-1 is associated to fast-path handler */
11980 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11981 			 &lpfc_sli_fp_intr_handler, 0,
11982 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11983 
11984 	if (rc) {
11985 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11986 				"0429 MSI-X fast-path request_irq failed "
11987 				"(%d)\n", rc);
11988 		goto irq_fail_out;
11989 	}
11990 
11991 	/*
11992 	 * Configure HBA MSI-X attention conditions to messages
11993 	 */
11994 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11995 
11996 	if (!pmb) {
11997 		rc = -ENOMEM;
11998 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11999 				"0474 Unable to allocate memory for issuing "
12000 				"MBOX_CONFIG_MSI command\n");
12001 		goto mem_fail_out;
12002 	}
12003 	rc = lpfc_config_msi(phba, pmb);
12004 	if (rc)
12005 		goto mbx_fail_out;
12006 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12007 	if (rc != MBX_SUCCESS) {
12008 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12009 				"0351 Config MSI mailbox command failed, "
12010 				"mbxCmd x%x, mbxStatus x%x\n",
12011 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12012 		goto mbx_fail_out;
12013 	}
12014 
12015 	/* Free memory allocated for mailbox command */
12016 	mempool_free(pmb, phba->mbox_mem_pool);
12017 	return rc;
12018 
12019 mbx_fail_out:
12020 	/* Free memory allocated for mailbox command */
12021 	mempool_free(pmb, phba->mbox_mem_pool);
12022 
12023 mem_fail_out:
12024 	/* free the irq already requested */
12025 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12026 
12027 irq_fail_out:
12028 	/* free the irq already requested */
12029 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12030 
12031 msi_fail_out:
12032 	/* Unconfigure MSI-X capability structure */
12033 	pci_free_irq_vectors(phba->pcidev);
12034 
12035 vec_fail_out:
12036 	return rc;
12037 }
12038 
12039 /**
12040  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12041  * @phba: pointer to lpfc hba data structure.
12042  *
12043  * This routine is invoked to enable the MSI interrupt mode to device with
12044  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12045  * enable the MSI vector. The device driver is responsible for calling the
12046  * request_irq() to register MSI vector with a interrupt the handler, which
12047  * is done in this function.
12048  *
12049  * Return codes
12050  * 	0 - successful
12051  * 	other values - error
12052  */
12053 static int
12054 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12055 {
12056 	int rc;
12057 
12058 	rc = pci_enable_msi(phba->pcidev);
12059 	if (!rc)
12060 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12061 				"0462 PCI enable MSI mode success.\n");
12062 	else {
12063 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12064 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12065 		return rc;
12066 	}
12067 
12068 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12069 			 0, LPFC_DRIVER_NAME, phba);
12070 	if (rc) {
12071 		pci_disable_msi(phba->pcidev);
12072 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12073 				"0478 MSI request_irq failed (%d)\n", rc);
12074 	}
12075 	return rc;
12076 }
12077 
12078 /**
12079  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12080  * @phba: pointer to lpfc hba data structure.
12081  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12082  *
12083  * This routine is invoked to enable device interrupt and associate driver's
12084  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12085  * spec. Depends on the interrupt mode configured to the driver, the driver
12086  * will try to fallback from the configured interrupt mode to an interrupt
12087  * mode which is supported by the platform, kernel, and device in the order
12088  * of:
12089  * MSI-X -> MSI -> IRQ.
12090  *
12091  * Return codes
12092  *   0 - successful
12093  *   other values - error
12094  **/
12095 static uint32_t
12096 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12097 {
12098 	uint32_t intr_mode = LPFC_INTR_ERROR;
12099 	int retval;
12100 
12101 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12102 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12103 	if (retval)
12104 		return intr_mode;
12105 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12106 
12107 	if (cfg_mode == 2) {
12108 		/* Now, try to enable MSI-X interrupt mode */
12109 		retval = lpfc_sli_enable_msix(phba);
12110 		if (!retval) {
12111 			/* Indicate initialization to MSI-X mode */
12112 			phba->intr_type = MSIX;
12113 			intr_mode = 2;
12114 		}
12115 	}
12116 
12117 	/* Fallback to MSI if MSI-X initialization failed */
12118 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12119 		retval = lpfc_sli_enable_msi(phba);
12120 		if (!retval) {
12121 			/* Indicate initialization to MSI mode */
12122 			phba->intr_type = MSI;
12123 			intr_mode = 1;
12124 		}
12125 	}
12126 
12127 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12128 	if (phba->intr_type == NONE) {
12129 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12130 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12131 		if (!retval) {
12132 			/* Indicate initialization to INTx mode */
12133 			phba->intr_type = INTx;
12134 			intr_mode = 0;
12135 		}
12136 	}
12137 	return intr_mode;
12138 }
12139 
12140 /**
12141  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12142  * @phba: pointer to lpfc hba data structure.
12143  *
12144  * This routine is invoked to disable device interrupt and disassociate the
12145  * driver's interrupt handler(s) from interrupt vector(s) to device with
12146  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12147  * release the interrupt vector(s) for the message signaled interrupt.
12148  **/
12149 static void
12150 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12151 {
12152 	int nr_irqs, i;
12153 
12154 	if (phba->intr_type == MSIX)
12155 		nr_irqs = LPFC_MSIX_VECTORS;
12156 	else
12157 		nr_irqs = 1;
12158 
12159 	for (i = 0; i < nr_irqs; i++)
12160 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12161 	pci_free_irq_vectors(phba->pcidev);
12162 
12163 	/* Reset interrupt management states */
12164 	phba->intr_type = NONE;
12165 	phba->sli.slistat.sli_intr = 0;
12166 }
12167 
12168 /**
12169  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12170  * @phba: pointer to lpfc hba data structure.
12171  * @id: EQ vector index or Hardware Queue index
12172  * @match: LPFC_FIND_BY_EQ = match by EQ
12173  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12174  * Return the CPU that matches the selection criteria
12175  */
12176 static uint16_t
12177 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12178 {
12179 	struct lpfc_vector_map_info *cpup;
12180 	int cpu;
12181 
12182 	/* Loop through all CPUs */
12183 	for_each_present_cpu(cpu) {
12184 		cpup = &phba->sli4_hba.cpu_map[cpu];
12185 
12186 		/* If we are matching by EQ, there may be multiple CPUs using
12187 		 * using the same vector, so select the one with
12188 		 * LPFC_CPU_FIRST_IRQ set.
12189 		 */
12190 		if ((match == LPFC_FIND_BY_EQ) &&
12191 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12192 		    (cpup->eq == id))
12193 			return cpu;
12194 
12195 		/* If matching by HDWQ, select the first CPU that matches */
12196 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12197 			return cpu;
12198 	}
12199 	return 0;
12200 }
12201 
12202 #ifdef CONFIG_X86
12203 /**
12204  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12205  * @phba: pointer to lpfc hba data structure.
12206  * @cpu: CPU map index
12207  * @phys_id: CPU package physical id
12208  * @core_id: CPU core id
12209  */
12210 static int
12211 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12212 		uint16_t phys_id, uint16_t core_id)
12213 {
12214 	struct lpfc_vector_map_info *cpup;
12215 	int idx;
12216 
12217 	for_each_present_cpu(idx) {
12218 		cpup = &phba->sli4_hba.cpu_map[idx];
12219 		/* Does the cpup match the one we are looking for */
12220 		if ((cpup->phys_id == phys_id) &&
12221 		    (cpup->core_id == core_id) &&
12222 		    (cpu != idx))
12223 			return 1;
12224 	}
12225 	return 0;
12226 }
12227 #endif
12228 
12229 /*
12230  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12231  * @phba: pointer to lpfc hba data structure.
12232  * @eqidx: index for eq and irq vector
12233  * @flag: flags to set for vector_map structure
12234  * @cpu: cpu used to index vector_map structure
12235  *
12236  * The routine assigns eq info into vector_map structure
12237  */
12238 static inline void
12239 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12240 			unsigned int cpu)
12241 {
12242 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12243 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12244 
12245 	cpup->eq = eqidx;
12246 	cpup->flag |= flag;
12247 
12248 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12249 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12250 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12251 }
12252 
12253 /**
12254  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12255  * @phba: pointer to lpfc hba data structure.
12256  *
12257  * The routine initializes the cpu_map array structure
12258  */
12259 static void
12260 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12261 {
12262 	struct lpfc_vector_map_info *cpup;
12263 	struct lpfc_eq_intr_info *eqi;
12264 	int cpu;
12265 
12266 	for_each_possible_cpu(cpu) {
12267 		cpup = &phba->sli4_hba.cpu_map[cpu];
12268 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12269 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12270 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12271 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12272 		cpup->flag = 0;
12273 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12274 		INIT_LIST_HEAD(&eqi->list);
12275 		eqi->icnt = 0;
12276 	}
12277 }
12278 
12279 /**
12280  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12281  * @phba: pointer to lpfc hba data structure.
12282  *
12283  * The routine initializes the hba_eq_hdl array structure
12284  */
12285 static void
12286 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12287 {
12288 	struct lpfc_hba_eq_hdl *eqhdl;
12289 	int i;
12290 
12291 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12292 		eqhdl = lpfc_get_eq_hdl(i);
12293 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12294 		eqhdl->phba = phba;
12295 	}
12296 }
12297 
12298 /**
12299  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12300  * @phba: pointer to lpfc hba data structure.
12301  * @vectors: number of msix vectors allocated.
12302  *
12303  * The routine will figure out the CPU affinity assignment for every
12304  * MSI-X vector allocated for the HBA.
12305  * In addition, the CPU to IO channel mapping will be calculated
12306  * and the phba->sli4_hba.cpu_map array will reflect this.
12307  */
12308 static void
12309 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12310 {
12311 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12312 	int max_phys_id, min_phys_id;
12313 	int max_core_id, min_core_id;
12314 	struct lpfc_vector_map_info *cpup;
12315 	struct lpfc_vector_map_info *new_cpup;
12316 #ifdef CONFIG_X86
12317 	struct cpuinfo_x86 *cpuinfo;
12318 #endif
12319 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12320 	struct lpfc_hdwq_stat *c_stat;
12321 #endif
12322 
12323 	max_phys_id = 0;
12324 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12325 	max_core_id = 0;
12326 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12327 
12328 	/* Update CPU map with physical id and core id of each CPU */
12329 	for_each_present_cpu(cpu) {
12330 		cpup = &phba->sli4_hba.cpu_map[cpu];
12331 #ifdef CONFIG_X86
12332 		cpuinfo = &cpu_data(cpu);
12333 		cpup->phys_id = cpuinfo->phys_proc_id;
12334 		cpup->core_id = cpuinfo->cpu_core_id;
12335 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12336 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12337 #else
12338 		/* No distinction between CPUs for other platforms */
12339 		cpup->phys_id = 0;
12340 		cpup->core_id = cpu;
12341 #endif
12342 
12343 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12344 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12345 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12346 
12347 		if (cpup->phys_id > max_phys_id)
12348 			max_phys_id = cpup->phys_id;
12349 		if (cpup->phys_id < min_phys_id)
12350 			min_phys_id = cpup->phys_id;
12351 
12352 		if (cpup->core_id > max_core_id)
12353 			max_core_id = cpup->core_id;
12354 		if (cpup->core_id < min_core_id)
12355 			min_core_id = cpup->core_id;
12356 	}
12357 
12358 	/* After looking at each irq vector assigned to this pcidev, its
12359 	 * possible to see that not ALL CPUs have been accounted for.
12360 	 * Next we will set any unassigned (unaffinitized) cpu map
12361 	 * entries to a IRQ on the same phys_id.
12362 	 */
12363 	first_cpu = cpumask_first(cpu_present_mask);
12364 	start_cpu = first_cpu;
12365 
12366 	for_each_present_cpu(cpu) {
12367 		cpup = &phba->sli4_hba.cpu_map[cpu];
12368 
12369 		/* Is this CPU entry unassigned */
12370 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12371 			/* Mark CPU as IRQ not assigned by the kernel */
12372 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12373 
12374 			/* If so, find a new_cpup thats on the the SAME
12375 			 * phys_id as cpup. start_cpu will start where we
12376 			 * left off so all unassigned entries don't get assgined
12377 			 * the IRQ of the first entry.
12378 			 */
12379 			new_cpu = start_cpu;
12380 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12381 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12382 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12383 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12384 				    (new_cpup->phys_id == cpup->phys_id))
12385 					goto found_same;
12386 				new_cpu = cpumask_next(
12387 					new_cpu, cpu_present_mask);
12388 				if (new_cpu == nr_cpumask_bits)
12389 					new_cpu = first_cpu;
12390 			}
12391 			/* At this point, we leave the CPU as unassigned */
12392 			continue;
12393 found_same:
12394 			/* We found a matching phys_id, so copy the IRQ info */
12395 			cpup->eq = new_cpup->eq;
12396 
12397 			/* Bump start_cpu to the next slot to minmize the
12398 			 * chance of having multiple unassigned CPU entries
12399 			 * selecting the same IRQ.
12400 			 */
12401 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12402 			if (start_cpu == nr_cpumask_bits)
12403 				start_cpu = first_cpu;
12404 
12405 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12406 					"3337 Set Affinity: CPU %d "
12407 					"eq %d from peer cpu %d same "
12408 					"phys_id (%d)\n",
12409 					cpu, cpup->eq, new_cpu,
12410 					cpup->phys_id);
12411 		}
12412 	}
12413 
12414 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12415 	start_cpu = first_cpu;
12416 
12417 	for_each_present_cpu(cpu) {
12418 		cpup = &phba->sli4_hba.cpu_map[cpu];
12419 
12420 		/* Is this entry unassigned */
12421 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12422 			/* Mark it as IRQ not assigned by the kernel */
12423 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12424 
12425 			/* If so, find a new_cpup thats on ANY phys_id
12426 			 * as the cpup. start_cpu will start where we
12427 			 * left off so all unassigned entries don't get
12428 			 * assigned the IRQ of the first entry.
12429 			 */
12430 			new_cpu = start_cpu;
12431 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12432 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12433 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12434 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12435 					goto found_any;
12436 				new_cpu = cpumask_next(
12437 					new_cpu, cpu_present_mask);
12438 				if (new_cpu == nr_cpumask_bits)
12439 					new_cpu = first_cpu;
12440 			}
12441 			/* We should never leave an entry unassigned */
12442 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12443 					"3339 Set Affinity: CPU %d "
12444 					"eq %d UNASSIGNED\n",
12445 					cpup->hdwq, cpup->eq);
12446 			continue;
12447 found_any:
12448 			/* We found an available entry, copy the IRQ info */
12449 			cpup->eq = new_cpup->eq;
12450 
12451 			/* Bump start_cpu to the next slot to minmize the
12452 			 * chance of having multiple unassigned CPU entries
12453 			 * selecting the same IRQ.
12454 			 */
12455 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12456 			if (start_cpu == nr_cpumask_bits)
12457 				start_cpu = first_cpu;
12458 
12459 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12460 					"3338 Set Affinity: CPU %d "
12461 					"eq %d from peer cpu %d (%d/%d)\n",
12462 					cpu, cpup->eq, new_cpu,
12463 					new_cpup->phys_id, new_cpup->core_id);
12464 		}
12465 	}
12466 
12467 	/* Assign hdwq indices that are unique across all cpus in the map
12468 	 * that are also FIRST_CPUs.
12469 	 */
12470 	idx = 0;
12471 	for_each_present_cpu(cpu) {
12472 		cpup = &phba->sli4_hba.cpu_map[cpu];
12473 
12474 		/* Only FIRST IRQs get a hdwq index assignment. */
12475 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12476 			continue;
12477 
12478 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12479 		cpup->hdwq = idx;
12480 		idx++;
12481 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12482 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12483 				"hdwq %d eq %d flg x%x\n",
12484 				cpu, cpup->phys_id, cpup->core_id,
12485 				cpup->hdwq, cpup->eq, cpup->flag);
12486 	}
12487 	/* Associate a hdwq with each cpu_map entry
12488 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12489 	 * hardware queues then CPUs. For that case we will just round-robin
12490 	 * the available hardware queues as they get assigned to CPUs.
12491 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12492 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12493 	 * and needs to start at 0.
12494 	 */
12495 	next_idx = idx;
12496 	start_cpu = 0;
12497 	idx = 0;
12498 	for_each_present_cpu(cpu) {
12499 		cpup = &phba->sli4_hba.cpu_map[cpu];
12500 
12501 		/* FIRST cpus are already mapped. */
12502 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12503 			continue;
12504 
12505 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12506 		 * of the unassigned cpus to the next idx so that all
12507 		 * hdw queues are fully utilized.
12508 		 */
12509 		if (next_idx < phba->cfg_hdw_queue) {
12510 			cpup->hdwq = next_idx;
12511 			next_idx++;
12512 			continue;
12513 		}
12514 
12515 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12516 		 * Hardware Queue for another CPU, so be smart about it
12517 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12518 		 * (CPU package) and core_id.
12519 		 */
12520 		new_cpu = start_cpu;
12521 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12522 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12523 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12524 			    new_cpup->phys_id == cpup->phys_id &&
12525 			    new_cpup->core_id == cpup->core_id) {
12526 				goto found_hdwq;
12527 			}
12528 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12529 			if (new_cpu == nr_cpumask_bits)
12530 				new_cpu = first_cpu;
12531 		}
12532 
12533 		/* If we can't match both phys_id and core_id,
12534 		 * settle for just a phys_id match.
12535 		 */
12536 		new_cpu = start_cpu;
12537 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12538 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12539 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12540 			    new_cpup->phys_id == cpup->phys_id)
12541 				goto found_hdwq;
12542 
12543 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12544 			if (new_cpu == nr_cpumask_bits)
12545 				new_cpu = first_cpu;
12546 		}
12547 
12548 		/* Otherwise just round robin on cfg_hdw_queue */
12549 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12550 		idx++;
12551 		goto logit;
12552  found_hdwq:
12553 		/* We found an available entry, copy the IRQ info */
12554 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12555 		if (start_cpu == nr_cpumask_bits)
12556 			start_cpu = first_cpu;
12557 		cpup->hdwq = new_cpup->hdwq;
12558  logit:
12559 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12560 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12561 				"hdwq %d eq %d flg x%x\n",
12562 				cpu, cpup->phys_id, cpup->core_id,
12563 				cpup->hdwq, cpup->eq, cpup->flag);
12564 	}
12565 
12566 	/*
12567 	 * Initialize the cpu_map slots for not-present cpus in case
12568 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12569 	 */
12570 	idx = 0;
12571 	for_each_possible_cpu(cpu) {
12572 		cpup = &phba->sli4_hba.cpu_map[cpu];
12573 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12574 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12575 		c_stat->hdwq_no = cpup->hdwq;
12576 #endif
12577 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12578 			continue;
12579 
12580 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12581 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12582 		c_stat->hdwq_no = cpup->hdwq;
12583 #endif
12584 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12585 				"3340 Set Affinity: not present "
12586 				"CPU %d hdwq %d\n",
12587 				cpu, cpup->hdwq);
12588 	}
12589 
12590 	/* The cpu_map array will be used later during initialization
12591 	 * when EQ / CQ / WQs are allocated and configured.
12592 	 */
12593 	return;
12594 }
12595 
12596 /**
12597  * lpfc_cpuhp_get_eq
12598  *
12599  * @phba:   pointer to lpfc hba data structure.
12600  * @cpu:    cpu going offline
12601  * @eqlist: eq list to append to
12602  */
12603 static int
12604 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12605 		  struct list_head *eqlist)
12606 {
12607 	const struct cpumask *maskp;
12608 	struct lpfc_queue *eq;
12609 	struct cpumask *tmp;
12610 	u16 idx;
12611 
12612 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12613 	if (!tmp)
12614 		return -ENOMEM;
12615 
12616 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12617 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12618 		if (!maskp)
12619 			continue;
12620 		/*
12621 		 * if irq is not affinitized to the cpu going
12622 		 * then we don't need to poll the eq attached
12623 		 * to it.
12624 		 */
12625 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12626 			continue;
12627 		/* get the cpus that are online and are affini-
12628 		 * tized to this irq vector.  If the count is
12629 		 * more than 1 then cpuhp is not going to shut-
12630 		 * down this vector.  Since this cpu has not
12631 		 * gone offline yet, we need >1.
12632 		 */
12633 		cpumask_and(tmp, maskp, cpu_online_mask);
12634 		if (cpumask_weight(tmp) > 1)
12635 			continue;
12636 
12637 		/* Now that we have an irq to shutdown, get the eq
12638 		 * mapped to this irq.  Note: multiple hdwq's in
12639 		 * the software can share an eq, but eventually
12640 		 * only eq will be mapped to this vector
12641 		 */
12642 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12643 		list_add(&eq->_poll_list, eqlist);
12644 	}
12645 	kfree(tmp);
12646 	return 0;
12647 }
12648 
12649 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12650 {
12651 	if (phba->sli_rev != LPFC_SLI_REV4)
12652 		return;
12653 
12654 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12655 					    &phba->cpuhp);
12656 	/*
12657 	 * unregistering the instance doesn't stop the polling
12658 	 * timer. Wait for the poll timer to retire.
12659 	 */
12660 	synchronize_rcu();
12661 	del_timer_sync(&phba->cpuhp_poll_timer);
12662 }
12663 
12664 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12665 {
12666 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12667 		return;
12668 
12669 	__lpfc_cpuhp_remove(phba);
12670 }
12671 
12672 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12673 {
12674 	if (phba->sli_rev != LPFC_SLI_REV4)
12675 		return;
12676 
12677 	rcu_read_lock();
12678 
12679 	if (!list_empty(&phba->poll_list))
12680 		mod_timer(&phba->cpuhp_poll_timer,
12681 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12682 
12683 	rcu_read_unlock();
12684 
12685 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12686 					 &phba->cpuhp);
12687 }
12688 
12689 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12690 {
12691 	if (phba->pport->load_flag & FC_UNLOADING) {
12692 		*retval = -EAGAIN;
12693 		return true;
12694 	}
12695 
12696 	if (phba->sli_rev != LPFC_SLI_REV4) {
12697 		*retval = 0;
12698 		return true;
12699 	}
12700 
12701 	/* proceed with the hotplug */
12702 	return false;
12703 }
12704 
12705 /**
12706  * lpfc_irq_set_aff - set IRQ affinity
12707  * @eqhdl: EQ handle
12708  * @cpu: cpu to set affinity
12709  *
12710  **/
12711 static inline void
12712 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12713 {
12714 	cpumask_clear(&eqhdl->aff_mask);
12715 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12716 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12717 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12718 }
12719 
12720 /**
12721  * lpfc_irq_clear_aff - clear IRQ affinity
12722  * @eqhdl: EQ handle
12723  *
12724  **/
12725 static inline void
12726 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12727 {
12728 	cpumask_clear(&eqhdl->aff_mask);
12729 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12730 }
12731 
12732 /**
12733  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12734  * @phba: pointer to HBA context object.
12735  * @cpu: cpu going offline/online
12736  * @offline: true, cpu is going offline. false, cpu is coming online.
12737  *
12738  * If cpu is going offline, we'll try our best effort to find the next
12739  * online cpu on the phba's original_mask and migrate all offlining IRQ
12740  * affinities.
12741  *
12742  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12743  *
12744  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12745  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12746  *
12747  **/
12748 static void
12749 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12750 {
12751 	struct lpfc_vector_map_info *cpup;
12752 	struct cpumask *aff_mask;
12753 	unsigned int cpu_select, cpu_next, idx;
12754 	const struct cpumask *orig_mask;
12755 
12756 	if (phba->irq_chann_mode == NORMAL_MODE)
12757 		return;
12758 
12759 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12760 
12761 	if (!cpumask_test_cpu(cpu, orig_mask))
12762 		return;
12763 
12764 	cpup = &phba->sli4_hba.cpu_map[cpu];
12765 
12766 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12767 		return;
12768 
12769 	if (offline) {
12770 		/* Find next online CPU on original mask */
12771 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12772 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12773 
12774 		/* Found a valid CPU */
12775 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12776 			/* Go through each eqhdl and ensure offlining
12777 			 * cpu aff_mask is migrated
12778 			 */
12779 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12780 				aff_mask = lpfc_get_aff_mask(idx);
12781 
12782 				/* Migrate affinity */
12783 				if (cpumask_test_cpu(cpu, aff_mask))
12784 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12785 							 cpu_select);
12786 			}
12787 		} else {
12788 			/* Rely on irqbalance if no online CPUs left on NUMA */
12789 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12790 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12791 		}
12792 	} else {
12793 		/* Migrate affinity back to this CPU */
12794 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12795 	}
12796 }
12797 
12798 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12799 {
12800 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12801 	struct lpfc_queue *eq, *next;
12802 	LIST_HEAD(eqlist);
12803 	int retval;
12804 
12805 	if (!phba) {
12806 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12807 		return 0;
12808 	}
12809 
12810 	if (__lpfc_cpuhp_checks(phba, &retval))
12811 		return retval;
12812 
12813 	lpfc_irq_rebalance(phba, cpu, true);
12814 
12815 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12816 	if (retval)
12817 		return retval;
12818 
12819 	/* start polling on these eq's */
12820 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12821 		list_del_init(&eq->_poll_list);
12822 		lpfc_sli4_start_polling(eq);
12823 	}
12824 
12825 	return 0;
12826 }
12827 
12828 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12829 {
12830 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12831 	struct lpfc_queue *eq, *next;
12832 	unsigned int n;
12833 	int retval;
12834 
12835 	if (!phba) {
12836 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12837 		return 0;
12838 	}
12839 
12840 	if (__lpfc_cpuhp_checks(phba, &retval))
12841 		return retval;
12842 
12843 	lpfc_irq_rebalance(phba, cpu, false);
12844 
12845 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12846 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12847 		if (n == cpu)
12848 			lpfc_sli4_stop_polling(eq);
12849 	}
12850 
12851 	return 0;
12852 }
12853 
12854 /**
12855  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12856  * @phba: pointer to lpfc hba data structure.
12857  *
12858  * This routine is invoked to enable the MSI-X interrupt vectors to device
12859  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12860  * to cpus on the system.
12861  *
12862  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12863  * the number of cpus on the same numa node as this adapter.  The vectors are
12864  * allocated without requesting OS affinity mapping.  A vector will be
12865  * allocated and assigned to each online and offline cpu.  If the cpu is
12866  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12867  * affinity will be set to the nearest peer cpu within the numa node that is
12868  * online.  If there are no online cpus within the numa node, affinity is not
12869  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12870  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12871  * configured.
12872  *
12873  * If numa mode is not enabled and there is more than 1 vector allocated, then
12874  * the driver relies on the managed irq interface where the OS assigns vector to
12875  * cpu affinity.  The driver will then use that affinity mapping to setup its
12876  * cpu mapping table.
12877  *
12878  * Return codes
12879  * 0 - successful
12880  * other values - error
12881  **/
12882 static int
12883 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12884 {
12885 	int vectors, rc, index;
12886 	char *name;
12887 	const struct cpumask *aff_mask = NULL;
12888 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12889 	struct lpfc_vector_map_info *cpup;
12890 	struct lpfc_hba_eq_hdl *eqhdl;
12891 	const struct cpumask *maskp;
12892 	unsigned int flags = PCI_IRQ_MSIX;
12893 
12894 	/* Set up MSI-X multi-message vectors */
12895 	vectors = phba->cfg_irq_chann;
12896 
12897 	if (phba->irq_chann_mode != NORMAL_MODE)
12898 		aff_mask = &phba->sli4_hba.irq_aff_mask;
12899 
12900 	if (aff_mask) {
12901 		cpu_cnt = cpumask_weight(aff_mask);
12902 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
12903 
12904 		/* cpu: iterates over aff_mask including offline or online
12905 		 * cpu_select: iterates over online aff_mask to set affinity
12906 		 */
12907 		cpu = cpumask_first(aff_mask);
12908 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12909 	} else {
12910 		flags |= PCI_IRQ_AFFINITY;
12911 	}
12912 
12913 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12914 	if (rc < 0) {
12915 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12916 				"0484 PCI enable MSI-X failed (%d)\n", rc);
12917 		goto vec_fail_out;
12918 	}
12919 	vectors = rc;
12920 
12921 	/* Assign MSI-X vectors to interrupt handlers */
12922 	for (index = 0; index < vectors; index++) {
12923 		eqhdl = lpfc_get_eq_hdl(index);
12924 		name = eqhdl->handler_name;
12925 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12926 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12927 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
12928 
12929 		eqhdl->idx = index;
12930 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
12931 			 &lpfc_sli4_hba_intr_handler, 0,
12932 			 name, eqhdl);
12933 		if (rc) {
12934 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12935 					"0486 MSI-X fast-path (%d) "
12936 					"request_irq failed (%d)\n", index, rc);
12937 			goto cfg_fail_out;
12938 		}
12939 
12940 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12941 
12942 		if (aff_mask) {
12943 			/* If found a neighboring online cpu, set affinity */
12944 			if (cpu_select < nr_cpu_ids)
12945 				lpfc_irq_set_aff(eqhdl, cpu_select);
12946 
12947 			/* Assign EQ to cpu_map */
12948 			lpfc_assign_eq_map_info(phba, index,
12949 						LPFC_CPU_FIRST_IRQ,
12950 						cpu);
12951 
12952 			/* Iterate to next offline or online cpu in aff_mask */
12953 			cpu = cpumask_next(cpu, aff_mask);
12954 
12955 			/* Find next online cpu in aff_mask to set affinity */
12956 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12957 		} else if (vectors == 1) {
12958 			cpu = cpumask_first(cpu_present_mask);
12959 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12960 						cpu);
12961 		} else {
12962 			maskp = pci_irq_get_affinity(phba->pcidev, index);
12963 
12964 			/* Loop through all CPUs associated with vector index */
12965 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12966 				cpup = &phba->sli4_hba.cpu_map[cpu];
12967 
12968 				/* If this is the first CPU thats assigned to
12969 				 * this vector, set LPFC_CPU_FIRST_IRQ.
12970 				 *
12971 				 * With certain platforms its possible that irq
12972 				 * vectors are affinitized to all the cpu's.
12973 				 * This can result in each cpu_map.eq to be set
12974 				 * to the last vector, resulting in overwrite
12975 				 * of all the previous cpu_map.eq.  Ensure that
12976 				 * each vector receives a place in cpu_map.
12977 				 * Later call to lpfc_cpu_affinity_check will
12978 				 * ensure we are nicely balanced out.
12979 				 */
12980 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12981 					continue;
12982 				lpfc_assign_eq_map_info(phba, index,
12983 							LPFC_CPU_FIRST_IRQ,
12984 							cpu);
12985 				break;
12986 			}
12987 		}
12988 	}
12989 
12990 	if (vectors != phba->cfg_irq_chann) {
12991 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12992 				"3238 Reducing IO channels to match number of "
12993 				"MSI-X vectors, requested %d got %d\n",
12994 				phba->cfg_irq_chann, vectors);
12995 		if (phba->cfg_irq_chann > vectors)
12996 			phba->cfg_irq_chann = vectors;
12997 	}
12998 
12999 	return rc;
13000 
13001 cfg_fail_out:
13002 	/* free the irq already requested */
13003 	for (--index; index >= 0; index--) {
13004 		eqhdl = lpfc_get_eq_hdl(index);
13005 		lpfc_irq_clear_aff(eqhdl);
13006 		free_irq(eqhdl->irq, eqhdl);
13007 	}
13008 
13009 	/* Unconfigure MSI-X capability structure */
13010 	pci_free_irq_vectors(phba->pcidev);
13011 
13012 vec_fail_out:
13013 	return rc;
13014 }
13015 
13016 /**
13017  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13018  * @phba: pointer to lpfc hba data structure.
13019  *
13020  * This routine is invoked to enable the MSI interrupt mode to device with
13021  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13022  * called to enable the MSI vector. The device driver is responsible for
13023  * calling the request_irq() to register MSI vector with a interrupt the
13024  * handler, which is done in this function.
13025  *
13026  * Return codes
13027  * 	0 - successful
13028  * 	other values - error
13029  **/
13030 static int
13031 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13032 {
13033 	int rc, index;
13034 	unsigned int cpu;
13035 	struct lpfc_hba_eq_hdl *eqhdl;
13036 
13037 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13038 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13039 	if (rc > 0)
13040 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13041 				"0487 PCI enable MSI mode success.\n");
13042 	else {
13043 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13044 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13045 		return rc ? rc : -1;
13046 	}
13047 
13048 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13049 			 0, LPFC_DRIVER_NAME, phba);
13050 	if (rc) {
13051 		pci_free_irq_vectors(phba->pcidev);
13052 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13053 				"0490 MSI request_irq failed (%d)\n", rc);
13054 		return rc;
13055 	}
13056 
13057 	eqhdl = lpfc_get_eq_hdl(0);
13058 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13059 
13060 	cpu = cpumask_first(cpu_present_mask);
13061 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13062 
13063 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13064 		eqhdl = lpfc_get_eq_hdl(index);
13065 		eqhdl->idx = index;
13066 	}
13067 
13068 	return 0;
13069 }
13070 
13071 /**
13072  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13073  * @phba: pointer to lpfc hba data structure.
13074  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13075  *
13076  * This routine is invoked to enable device interrupt and associate driver's
13077  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13078  * interface spec. Depends on the interrupt mode configured to the driver,
13079  * the driver will try to fallback from the configured interrupt mode to an
13080  * interrupt mode which is supported by the platform, kernel, and device in
13081  * the order of:
13082  * MSI-X -> MSI -> IRQ.
13083  *
13084  * Return codes
13085  * 	0 - successful
13086  * 	other values - error
13087  **/
13088 static uint32_t
13089 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13090 {
13091 	uint32_t intr_mode = LPFC_INTR_ERROR;
13092 	int retval, idx;
13093 
13094 	if (cfg_mode == 2) {
13095 		/* Preparation before conf_msi mbox cmd */
13096 		retval = 0;
13097 		if (!retval) {
13098 			/* Now, try to enable MSI-X interrupt mode */
13099 			retval = lpfc_sli4_enable_msix(phba);
13100 			if (!retval) {
13101 				/* Indicate initialization to MSI-X mode */
13102 				phba->intr_type = MSIX;
13103 				intr_mode = 2;
13104 			}
13105 		}
13106 	}
13107 
13108 	/* Fallback to MSI if MSI-X initialization failed */
13109 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13110 		retval = lpfc_sli4_enable_msi(phba);
13111 		if (!retval) {
13112 			/* Indicate initialization to MSI mode */
13113 			phba->intr_type = MSI;
13114 			intr_mode = 1;
13115 		}
13116 	}
13117 
13118 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13119 	if (phba->intr_type == NONE) {
13120 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13121 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13122 		if (!retval) {
13123 			struct lpfc_hba_eq_hdl *eqhdl;
13124 			unsigned int cpu;
13125 
13126 			/* Indicate initialization to INTx mode */
13127 			phba->intr_type = INTx;
13128 			intr_mode = 0;
13129 
13130 			eqhdl = lpfc_get_eq_hdl(0);
13131 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13132 
13133 			cpu = cpumask_first(cpu_present_mask);
13134 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13135 						cpu);
13136 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13137 				eqhdl = lpfc_get_eq_hdl(idx);
13138 				eqhdl->idx = idx;
13139 			}
13140 		}
13141 	}
13142 	return intr_mode;
13143 }
13144 
13145 /**
13146  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13147  * @phba: pointer to lpfc hba data structure.
13148  *
13149  * This routine is invoked to disable device interrupt and disassociate
13150  * the driver's interrupt handler(s) from interrupt vector(s) to device
13151  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13152  * will release the interrupt vector(s) for the message signaled interrupt.
13153  **/
13154 static void
13155 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13156 {
13157 	/* Disable the currently initialized interrupt mode */
13158 	if (phba->intr_type == MSIX) {
13159 		int index;
13160 		struct lpfc_hba_eq_hdl *eqhdl;
13161 
13162 		/* Free up MSI-X multi-message vectors */
13163 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13164 			eqhdl = lpfc_get_eq_hdl(index);
13165 			lpfc_irq_clear_aff(eqhdl);
13166 			free_irq(eqhdl->irq, eqhdl);
13167 		}
13168 	} else {
13169 		free_irq(phba->pcidev->irq, phba);
13170 	}
13171 
13172 	pci_free_irq_vectors(phba->pcidev);
13173 
13174 	/* Reset interrupt management states */
13175 	phba->intr_type = NONE;
13176 	phba->sli.slistat.sli_intr = 0;
13177 }
13178 
13179 /**
13180  * lpfc_unset_hba - Unset SLI3 hba device initialization
13181  * @phba: pointer to lpfc hba data structure.
13182  *
13183  * This routine is invoked to unset the HBA device initialization steps to
13184  * a device with SLI-3 interface spec.
13185  **/
13186 static void
13187 lpfc_unset_hba(struct lpfc_hba *phba)
13188 {
13189 	struct lpfc_vport *vport = phba->pport;
13190 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13191 
13192 	spin_lock_irq(shost->host_lock);
13193 	vport->load_flag |= FC_UNLOADING;
13194 	spin_unlock_irq(shost->host_lock);
13195 
13196 	kfree(phba->vpi_bmask);
13197 	kfree(phba->vpi_ids);
13198 
13199 	lpfc_stop_hba_timers(phba);
13200 
13201 	phba->pport->work_port_events = 0;
13202 
13203 	lpfc_sli_hba_down(phba);
13204 
13205 	lpfc_sli_brdrestart(phba);
13206 
13207 	lpfc_sli_disable_intr(phba);
13208 
13209 	return;
13210 }
13211 
13212 /**
13213  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13214  * @phba: Pointer to HBA context object.
13215  *
13216  * This function is called in the SLI4 code path to wait for completion
13217  * of device's XRIs exchange busy. It will check the XRI exchange busy
13218  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13219  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13220  * I/Os every 30 seconds, log error message, and wait forever. Only when
13221  * all XRI exchange busy complete, the driver unload shall proceed with
13222  * invoking the function reset ioctl mailbox command to the CNA and the
13223  * the rest of the driver unload resource release.
13224  **/
13225 static void
13226 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13227 {
13228 	struct lpfc_sli4_hdw_queue *qp;
13229 	int idx, ccnt;
13230 	int wait_time = 0;
13231 	int io_xri_cmpl = 1;
13232 	int nvmet_xri_cmpl = 1;
13233 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13234 
13235 	/* Driver just aborted IOs during the hba_unset process.  Pause
13236 	 * here to give the HBA time to complete the IO and get entries
13237 	 * into the abts lists.
13238 	 */
13239 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13240 
13241 	/* Wait for NVME pending IO to flush back to transport. */
13242 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13243 		lpfc_nvme_wait_for_io_drain(phba);
13244 
13245 	ccnt = 0;
13246 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13247 		qp = &phba->sli4_hba.hdwq[idx];
13248 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13249 		if (!io_xri_cmpl) /* if list is NOT empty */
13250 			ccnt++;
13251 	}
13252 	if (ccnt)
13253 		io_xri_cmpl = 0;
13254 
13255 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13256 		nvmet_xri_cmpl =
13257 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13258 	}
13259 
13260 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13261 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13262 			if (!nvmet_xri_cmpl)
13263 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13264 						"6424 NVMET XRI exchange busy "
13265 						"wait time: %d seconds.\n",
13266 						wait_time/1000);
13267 			if (!io_xri_cmpl)
13268 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13269 						"6100 IO XRI exchange busy "
13270 						"wait time: %d seconds.\n",
13271 						wait_time/1000);
13272 			if (!els_xri_cmpl)
13273 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13274 						"2878 ELS XRI exchange busy "
13275 						"wait time: %d seconds.\n",
13276 						wait_time/1000);
13277 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13278 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13279 		} else {
13280 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13281 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13282 		}
13283 
13284 		ccnt = 0;
13285 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13286 			qp = &phba->sli4_hba.hdwq[idx];
13287 			io_xri_cmpl = list_empty(
13288 			    &qp->lpfc_abts_io_buf_list);
13289 			if (!io_xri_cmpl) /* if list is NOT empty */
13290 				ccnt++;
13291 		}
13292 		if (ccnt)
13293 			io_xri_cmpl = 0;
13294 
13295 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13296 			nvmet_xri_cmpl = list_empty(
13297 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13298 		}
13299 		els_xri_cmpl =
13300 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13301 
13302 	}
13303 }
13304 
13305 /**
13306  * lpfc_sli4_hba_unset - Unset the fcoe hba
13307  * @phba: Pointer to HBA context object.
13308  *
13309  * This function is called in the SLI4 code path to reset the HBA's FCoE
13310  * function. The caller is not required to hold any lock. This routine
13311  * issues PCI function reset mailbox command to reset the FCoE function.
13312  * At the end of the function, it calls lpfc_hba_down_post function to
13313  * free any pending commands.
13314  **/
13315 static void
13316 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13317 {
13318 	int wait_cnt = 0;
13319 	LPFC_MBOXQ_t *mboxq;
13320 	struct pci_dev *pdev = phba->pcidev;
13321 
13322 	lpfc_stop_hba_timers(phba);
13323 	hrtimer_cancel(&phba->cmf_timer);
13324 
13325 	if (phba->pport)
13326 		phba->sli4_hba.intr_enable = 0;
13327 
13328 	/*
13329 	 * Gracefully wait out the potential current outstanding asynchronous
13330 	 * mailbox command.
13331 	 */
13332 
13333 	/* First, block any pending async mailbox command from posted */
13334 	spin_lock_irq(&phba->hbalock);
13335 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13336 	spin_unlock_irq(&phba->hbalock);
13337 	/* Now, trying to wait it out if we can */
13338 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13339 		msleep(10);
13340 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13341 			break;
13342 	}
13343 	/* Forcefully release the outstanding mailbox command if timed out */
13344 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13345 		spin_lock_irq(&phba->hbalock);
13346 		mboxq = phba->sli.mbox_active;
13347 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13348 		__lpfc_mbox_cmpl_put(phba, mboxq);
13349 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13350 		phba->sli.mbox_active = NULL;
13351 		spin_unlock_irq(&phba->hbalock);
13352 	}
13353 
13354 	/* Abort all iocbs associated with the hba */
13355 	lpfc_sli_hba_iocb_abort(phba);
13356 
13357 	/* Wait for completion of device XRI exchange busy */
13358 	lpfc_sli4_xri_exchange_busy_wait(phba);
13359 
13360 	/* per-phba callback de-registration for hotplug event */
13361 	if (phba->pport)
13362 		lpfc_cpuhp_remove(phba);
13363 
13364 	/* Disable PCI subsystem interrupt */
13365 	lpfc_sli4_disable_intr(phba);
13366 
13367 	/* Disable SR-IOV if enabled */
13368 	if (phba->cfg_sriov_nr_virtfn)
13369 		pci_disable_sriov(pdev);
13370 
13371 	/* Stop kthread signal shall trigger work_done one more time */
13372 	kthread_stop(phba->worker_thread);
13373 
13374 	/* Disable FW logging to host memory */
13375 	lpfc_ras_stop_fwlog(phba);
13376 
13377 	/* Unset the queues shared with the hardware then release all
13378 	 * allocated resources.
13379 	 */
13380 	lpfc_sli4_queue_unset(phba);
13381 	lpfc_sli4_queue_destroy(phba);
13382 
13383 	/* Reset SLI4 HBA FCoE function */
13384 	lpfc_pci_function_reset(phba);
13385 
13386 	/* Free RAS DMA memory */
13387 	if (phba->ras_fwlog.ras_enabled)
13388 		lpfc_sli4_ras_dma_free(phba);
13389 
13390 	/* Stop the SLI4 device port */
13391 	if (phba->pport)
13392 		phba->pport->work_port_events = 0;
13393 }
13394 
13395 static uint32_t
13396 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13397 {
13398 	uint32_t msb = 0;
13399 	uint32_t bit;
13400 
13401 	for (bit = 0; bit < 8; bit++) {
13402 		msb = (crc >> 31) & 1;
13403 		crc <<= 1;
13404 
13405 		if (msb ^ (byte & 1)) {
13406 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13407 			crc |= 1;
13408 		}
13409 		byte >>= 1;
13410 	}
13411 	return crc;
13412 }
13413 
13414 static uint32_t
13415 lpfc_cgn_reverse_bits(uint32_t wd)
13416 {
13417 	uint32_t result = 0;
13418 	uint32_t i;
13419 
13420 	for (i = 0; i < 32; i++) {
13421 		result <<= 1;
13422 		result |= (1 & (wd >> i));
13423 	}
13424 	return result;
13425 }
13426 
13427 /*
13428  * The routine corresponds with the algorithm the HBA firmware
13429  * uses to validate the data integrity.
13430  */
13431 uint32_t
13432 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13433 {
13434 	uint32_t  i;
13435 	uint32_t result;
13436 	uint8_t  *data = (uint8_t *)ptr;
13437 
13438 	for (i = 0; i < byteLen; ++i)
13439 		crc = lpfc_cgn_crc32(crc, data[i]);
13440 
13441 	result = ~lpfc_cgn_reverse_bits(crc);
13442 	return result;
13443 }
13444 
13445 void
13446 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13447 {
13448 	struct lpfc_cgn_info *cp;
13449 	struct timespec64 cmpl_time;
13450 	struct tm broken;
13451 	uint16_t size;
13452 	uint32_t crc;
13453 
13454 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13455 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13456 
13457 	if (!phba->cgn_i)
13458 		return;
13459 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13460 
13461 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13462 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13463 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13464 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13465 
13466 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13467 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13468 	atomic64_set(&phba->cgn_latency_evt, 0);
13469 	phba->cgn_evt_minute = 0;
13470 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13471 
13472 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13473 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13474 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13475 
13476 	/* cgn parameters */
13477 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13478 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13479 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13480 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13481 
13482 	ktime_get_real_ts64(&cmpl_time);
13483 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13484 
13485 	cp->cgn_info_month = broken.tm_mon + 1;
13486 	cp->cgn_info_day = broken.tm_mday;
13487 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13488 	cp->cgn_info_hour = broken.tm_hour;
13489 	cp->cgn_info_minute = broken.tm_min;
13490 	cp->cgn_info_second = broken.tm_sec;
13491 
13492 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13493 			"2643 CGNInfo Init: Start Time "
13494 			"%d/%d/%d %d:%d:%d\n",
13495 			cp->cgn_info_day, cp->cgn_info_month,
13496 			cp->cgn_info_year, cp->cgn_info_hour,
13497 			cp->cgn_info_minute, cp->cgn_info_second);
13498 
13499 	/* Fill in default LUN qdepth */
13500 	if (phba->pport) {
13501 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13502 		cp->cgn_lunq = cpu_to_le16(size);
13503 	}
13504 
13505 	/* last used Index initialized to 0xff already */
13506 
13507 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13508 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13509 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13510 	cp->cgn_info_crc = cpu_to_le32(crc);
13511 
13512 	phba->cgn_evt_timestamp = jiffies +
13513 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13514 }
13515 
13516 void
13517 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13518 {
13519 	struct lpfc_cgn_info *cp;
13520 	struct timespec64 cmpl_time;
13521 	struct tm broken;
13522 	uint32_t crc;
13523 
13524 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13525 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13526 
13527 	if (!phba->cgn_i)
13528 		return;
13529 
13530 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13531 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13532 
13533 	ktime_get_real_ts64(&cmpl_time);
13534 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13535 
13536 	cp->cgn_stat_month = broken.tm_mon + 1;
13537 	cp->cgn_stat_day = broken.tm_mday;
13538 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13539 	cp->cgn_stat_hour = broken.tm_hour;
13540 	cp->cgn_stat_minute = broken.tm_min;
13541 
13542 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13543 			"2647 CGNstat Init: Start Time "
13544 			"%d/%d/%d %d:%d\n",
13545 			cp->cgn_stat_day, cp->cgn_stat_month,
13546 			cp->cgn_stat_year, cp->cgn_stat_hour,
13547 			cp->cgn_stat_minute);
13548 
13549 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13550 	cp->cgn_info_crc = cpu_to_le32(crc);
13551 }
13552 
13553 /**
13554  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13555  * @phba: Pointer to hba context object.
13556  * @reg: flag to determine register or unregister.
13557  */
13558 static int
13559 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13560 {
13561 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13562 	union  lpfc_sli4_cfg_shdr *shdr;
13563 	uint32_t shdr_status, shdr_add_status;
13564 	LPFC_MBOXQ_t *mboxq;
13565 	int length, rc;
13566 
13567 	if (!phba->cgn_i)
13568 		return -ENXIO;
13569 
13570 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13571 	if (!mboxq) {
13572 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13573 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13574 				"HBA state x%x reg %d\n",
13575 				phba->pport->port_state, reg);
13576 		return -ENOMEM;
13577 	}
13578 
13579 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13580 		sizeof(struct lpfc_sli4_cfg_mhdr));
13581 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13582 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13583 			 LPFC_SLI4_MBX_EMBED);
13584 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13585 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13586 	if (reg > 0)
13587 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13588 	else
13589 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13590 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13591 	reg_congestion_buf->addr_lo =
13592 		putPaddrLow(phba->cgn_i->phys);
13593 	reg_congestion_buf->addr_hi =
13594 		putPaddrHigh(phba->cgn_i->phys);
13595 
13596 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13597 	shdr = (union lpfc_sli4_cfg_shdr *)
13598 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13599 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13600 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13601 				 &shdr->response);
13602 	mempool_free(mboxq, phba->mbox_mem_pool);
13603 	if (shdr_status || shdr_add_status || rc) {
13604 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13605 				"2642 REG_CONGESTION_BUF mailbox "
13606 				"failed with status x%x add_status x%x,"
13607 				" mbx status x%x reg %d\n",
13608 				shdr_status, shdr_add_status, rc, reg);
13609 		return -ENXIO;
13610 	}
13611 	return 0;
13612 }
13613 
13614 int
13615 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13616 {
13617 	lpfc_cmf_stop(phba);
13618 	return __lpfc_reg_congestion_buf(phba, 0);
13619 }
13620 
13621 int
13622 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13623 {
13624 	return __lpfc_reg_congestion_buf(phba, 1);
13625 }
13626 
13627 /**
13628  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13629  * @phba: Pointer to HBA context object.
13630  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13631  *
13632  * This function is called in the SLI4 code path to read the port's
13633  * sli4 capabilities.
13634  *
13635  * This function may be be called from any context that can block-wait
13636  * for the completion.  The expectation is that this routine is called
13637  * typically from probe_one or from the online routine.
13638  **/
13639 int
13640 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13641 {
13642 	int rc;
13643 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13644 	struct lpfc_pc_sli4_params *sli4_params;
13645 	uint32_t mbox_tmo;
13646 	int length;
13647 	bool exp_wqcq_pages = true;
13648 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13649 
13650 	/*
13651 	 * By default, the driver assumes the SLI4 port requires RPI
13652 	 * header postings.  The SLI4_PARAM response will correct this
13653 	 * assumption.
13654 	 */
13655 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13656 
13657 	/* Read the port's SLI4 Config Parameters */
13658 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13659 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13660 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13661 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13662 			 length, LPFC_SLI4_MBX_EMBED);
13663 	if (!phba->sli4_hba.intr_enable)
13664 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13665 	else {
13666 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13667 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13668 	}
13669 	if (unlikely(rc))
13670 		return rc;
13671 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13672 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13673 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13674 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13675 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13676 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13677 					     mbx_sli4_parameters);
13678 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13679 					     mbx_sli4_parameters);
13680 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13681 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13682 	else
13683 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13684 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13685 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13686 					   mbx_sli4_parameters);
13687 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13688 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13689 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13690 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13691 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13692 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13693 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13694 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13695 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13696 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13697 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13698 					    mbx_sli4_parameters);
13699 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13700 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13701 					   mbx_sli4_parameters);
13702 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13703 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13704 
13705 	/* Check for Extended Pre-Registered SGL support */
13706 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13707 
13708 	/* Check for firmware nvme support */
13709 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13710 		     bf_get(cfg_xib, mbx_sli4_parameters));
13711 
13712 	if (rc) {
13713 		/* Save this to indicate the Firmware supports NVME */
13714 		sli4_params->nvme = 1;
13715 
13716 		/* Firmware NVME support, check driver FC4 NVME support */
13717 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13718 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13719 					"6133 Disabling NVME support: "
13720 					"FC4 type not supported: x%x\n",
13721 					phba->cfg_enable_fc4_type);
13722 			goto fcponly;
13723 		}
13724 	} else {
13725 		/* No firmware NVME support, check driver FC4 NVME support */
13726 		sli4_params->nvme = 0;
13727 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13728 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13729 					"6101 Disabling NVME support: Not "
13730 					"supported by firmware (%d %d) x%x\n",
13731 					bf_get(cfg_nvme, mbx_sli4_parameters),
13732 					bf_get(cfg_xib, mbx_sli4_parameters),
13733 					phba->cfg_enable_fc4_type);
13734 fcponly:
13735 			phba->nvmet_support = 0;
13736 			phba->cfg_nvmet_mrq = 0;
13737 			phba->cfg_nvme_seg_cnt = 0;
13738 
13739 			/* If no FC4 type support, move to just SCSI support */
13740 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13741 				return -ENODEV;
13742 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13743 		}
13744 	}
13745 
13746 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13747 	 * accommodate 512K and 1M IOs in a single nvme buf.
13748 	 */
13749 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13750 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13751 
13752 	/* Enable embedded Payload BDE if support is indicated */
13753 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13754 		phba->cfg_enable_pbde = 1;
13755 	else
13756 		phba->cfg_enable_pbde = 0;
13757 
13758 	/*
13759 	 * To support Suppress Response feature we must satisfy 3 conditions.
13760 	 * lpfc_suppress_rsp module parameter must be set (default).
13761 	 * In SLI4-Parameters Descriptor:
13762 	 * Extended Inline Buffers (XIB) must be supported.
13763 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13764 	 * (double negative).
13765 	 */
13766 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13767 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13768 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13769 	else
13770 		phba->cfg_suppress_rsp = 0;
13771 
13772 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13773 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13774 
13775 	/* Make sure that sge_supp_len can be handled by the driver */
13776 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13777 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13778 
13779 	/*
13780 	 * Check whether the adapter supports an embedded copy of the
13781 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13782 	 * to use this option, 128-byte WQEs must be used.
13783 	 */
13784 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13785 		phba->fcp_embed_io = 1;
13786 	else
13787 		phba->fcp_embed_io = 0;
13788 
13789 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13790 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13791 			bf_get(cfg_xib, mbx_sli4_parameters),
13792 			phba->cfg_enable_pbde,
13793 			phba->fcp_embed_io, sli4_params->nvme,
13794 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13795 
13796 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13797 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13798 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13799 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13800 		exp_wqcq_pages = false;
13801 
13802 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13803 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13804 	    exp_wqcq_pages &&
13805 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13806 		phba->enab_exp_wqcq_pages = 1;
13807 	else
13808 		phba->enab_exp_wqcq_pages = 0;
13809 	/*
13810 	 * Check if the SLI port supports MDS Diagnostics
13811 	 */
13812 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13813 		phba->mds_diags_support = 1;
13814 	else
13815 		phba->mds_diags_support = 0;
13816 
13817 	/*
13818 	 * Check if the SLI port supports NSLER
13819 	 */
13820 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13821 		phba->nsler = 1;
13822 	else
13823 		phba->nsler = 0;
13824 
13825 	return 0;
13826 }
13827 
13828 /**
13829  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13830  * @pdev: pointer to PCI device
13831  * @pid: pointer to PCI device identifier
13832  *
13833  * This routine is to be called to attach a device with SLI-3 interface spec
13834  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13835  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13836  * information of the device and driver to see if the driver state that it can
13837  * support this kind of device. If the match is successful, the driver core
13838  * invokes this routine. If this routine determines it can claim the HBA, it
13839  * does all the initialization that it needs to do to handle the HBA properly.
13840  *
13841  * Return code
13842  * 	0 - driver can claim the device
13843  * 	negative value - driver can not claim the device
13844  **/
13845 static int
13846 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13847 {
13848 	struct lpfc_hba   *phba;
13849 	struct lpfc_vport *vport = NULL;
13850 	struct Scsi_Host  *shost = NULL;
13851 	int error;
13852 	uint32_t cfg_mode, intr_mode;
13853 
13854 	/* Allocate memory for HBA structure */
13855 	phba = lpfc_hba_alloc(pdev);
13856 	if (!phba)
13857 		return -ENOMEM;
13858 
13859 	/* Perform generic PCI device enabling operation */
13860 	error = lpfc_enable_pci_dev(phba);
13861 	if (error)
13862 		goto out_free_phba;
13863 
13864 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13865 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13866 	if (error)
13867 		goto out_disable_pci_dev;
13868 
13869 	/* Set up SLI-3 specific device PCI memory space */
13870 	error = lpfc_sli_pci_mem_setup(phba);
13871 	if (error) {
13872 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13873 				"1402 Failed to set up pci memory space.\n");
13874 		goto out_disable_pci_dev;
13875 	}
13876 
13877 	/* Set up SLI-3 specific device driver resources */
13878 	error = lpfc_sli_driver_resource_setup(phba);
13879 	if (error) {
13880 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13881 				"1404 Failed to set up driver resource.\n");
13882 		goto out_unset_pci_mem_s3;
13883 	}
13884 
13885 	/* Initialize and populate the iocb list per host */
13886 
13887 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13888 	if (error) {
13889 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13890 				"1405 Failed to initialize iocb list.\n");
13891 		goto out_unset_driver_resource_s3;
13892 	}
13893 
13894 	/* Set up common device driver resources */
13895 	error = lpfc_setup_driver_resource_phase2(phba);
13896 	if (error) {
13897 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13898 				"1406 Failed to set up driver resource.\n");
13899 		goto out_free_iocb_list;
13900 	}
13901 
13902 	/* Get the default values for Model Name and Description */
13903 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13904 
13905 	/* Create SCSI host to the physical port */
13906 	error = lpfc_create_shost(phba);
13907 	if (error) {
13908 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13909 				"1407 Failed to create scsi host.\n");
13910 		goto out_unset_driver_resource;
13911 	}
13912 
13913 	/* Configure sysfs attributes */
13914 	vport = phba->pport;
13915 	error = lpfc_alloc_sysfs_attr(vport);
13916 	if (error) {
13917 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13918 				"1476 Failed to allocate sysfs attr\n");
13919 		goto out_destroy_shost;
13920 	}
13921 
13922 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13923 	/* Now, trying to enable interrupt and bring up the device */
13924 	cfg_mode = phba->cfg_use_msi;
13925 	while (true) {
13926 		/* Put device to a known state before enabling interrupt */
13927 		lpfc_stop_port(phba);
13928 		/* Configure and enable interrupt */
13929 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13930 		if (intr_mode == LPFC_INTR_ERROR) {
13931 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13932 					"0431 Failed to enable interrupt.\n");
13933 			error = -ENODEV;
13934 			goto out_free_sysfs_attr;
13935 		}
13936 		/* SLI-3 HBA setup */
13937 		if (lpfc_sli_hba_setup(phba)) {
13938 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13939 					"1477 Failed to set up hba\n");
13940 			error = -ENODEV;
13941 			goto out_remove_device;
13942 		}
13943 
13944 		/* Wait 50ms for the interrupts of previous mailbox commands */
13945 		msleep(50);
13946 		/* Check active interrupts on message signaled interrupts */
13947 		if (intr_mode == 0 ||
13948 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13949 			/* Log the current active interrupt mode */
13950 			phba->intr_mode = intr_mode;
13951 			lpfc_log_intr_mode(phba, intr_mode);
13952 			break;
13953 		} else {
13954 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13955 					"0447 Configure interrupt mode (%d) "
13956 					"failed active interrupt test.\n",
13957 					intr_mode);
13958 			/* Disable the current interrupt mode */
13959 			lpfc_sli_disable_intr(phba);
13960 			/* Try next level of interrupt mode */
13961 			cfg_mode = --intr_mode;
13962 		}
13963 	}
13964 
13965 	/* Perform post initialization setup */
13966 	lpfc_post_init_setup(phba);
13967 
13968 	/* Check if there are static vports to be created. */
13969 	lpfc_create_static_vport(phba);
13970 
13971 	return 0;
13972 
13973 out_remove_device:
13974 	lpfc_unset_hba(phba);
13975 out_free_sysfs_attr:
13976 	lpfc_free_sysfs_attr(vport);
13977 out_destroy_shost:
13978 	lpfc_destroy_shost(phba);
13979 out_unset_driver_resource:
13980 	lpfc_unset_driver_resource_phase2(phba);
13981 out_free_iocb_list:
13982 	lpfc_free_iocb_list(phba);
13983 out_unset_driver_resource_s3:
13984 	lpfc_sli_driver_resource_unset(phba);
13985 out_unset_pci_mem_s3:
13986 	lpfc_sli_pci_mem_unset(phba);
13987 out_disable_pci_dev:
13988 	lpfc_disable_pci_dev(phba);
13989 	if (shost)
13990 		scsi_host_put(shost);
13991 out_free_phba:
13992 	lpfc_hba_free(phba);
13993 	return error;
13994 }
13995 
13996 /**
13997  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
13998  * @pdev: pointer to PCI device
13999  *
14000  * This routine is to be called to disattach a device with SLI-3 interface
14001  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14002  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14003  * device to be removed from the PCI subsystem properly.
14004  **/
14005 static void
14006 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14007 {
14008 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14009 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14010 	struct lpfc_vport **vports;
14011 	struct lpfc_hba   *phba = vport->phba;
14012 	int i;
14013 
14014 	spin_lock_irq(&phba->hbalock);
14015 	vport->load_flag |= FC_UNLOADING;
14016 	spin_unlock_irq(&phba->hbalock);
14017 
14018 	lpfc_free_sysfs_attr(vport);
14019 
14020 	/* Release all the vports against this physical port */
14021 	vports = lpfc_create_vport_work_array(phba);
14022 	if (vports != NULL)
14023 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14024 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14025 				continue;
14026 			fc_vport_terminate(vports[i]->fc_vport);
14027 		}
14028 	lpfc_destroy_vport_work_array(phba, vports);
14029 
14030 	/* Remove FC host with the physical port */
14031 	fc_remove_host(shost);
14032 	scsi_remove_host(shost);
14033 
14034 	/* Clean up all nodes, mailboxes and IOs. */
14035 	lpfc_cleanup(vport);
14036 
14037 	/*
14038 	 * Bring down the SLI Layer. This step disable all interrupts,
14039 	 * clears the rings, discards all mailbox commands, and resets
14040 	 * the HBA.
14041 	 */
14042 
14043 	/* HBA interrupt will be disabled after this call */
14044 	lpfc_sli_hba_down(phba);
14045 	/* Stop kthread signal shall trigger work_done one more time */
14046 	kthread_stop(phba->worker_thread);
14047 	/* Final cleanup of txcmplq and reset the HBA */
14048 	lpfc_sli_brdrestart(phba);
14049 
14050 	kfree(phba->vpi_bmask);
14051 	kfree(phba->vpi_ids);
14052 
14053 	lpfc_stop_hba_timers(phba);
14054 	spin_lock_irq(&phba->port_list_lock);
14055 	list_del_init(&vport->listentry);
14056 	spin_unlock_irq(&phba->port_list_lock);
14057 
14058 	lpfc_debugfs_terminate(vport);
14059 
14060 	/* Disable SR-IOV if enabled */
14061 	if (phba->cfg_sriov_nr_virtfn)
14062 		pci_disable_sriov(pdev);
14063 
14064 	/* Disable interrupt */
14065 	lpfc_sli_disable_intr(phba);
14066 
14067 	scsi_host_put(shost);
14068 
14069 	/*
14070 	 * Call scsi_free before mem_free since scsi bufs are released to their
14071 	 * corresponding pools here.
14072 	 */
14073 	lpfc_scsi_free(phba);
14074 	lpfc_free_iocb_list(phba);
14075 
14076 	lpfc_mem_free_all(phba);
14077 
14078 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14079 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14080 
14081 	/* Free resources associated with SLI2 interface */
14082 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14083 			  phba->slim2p.virt, phba->slim2p.phys);
14084 
14085 	/* unmap adapter SLIM and Control Registers */
14086 	iounmap(phba->ctrl_regs_memmap_p);
14087 	iounmap(phba->slim_memmap_p);
14088 
14089 	lpfc_hba_free(phba);
14090 
14091 	pci_release_mem_regions(pdev);
14092 	pci_disable_device(pdev);
14093 }
14094 
14095 /**
14096  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14097  * @dev_d: pointer to device
14098  *
14099  * This routine is to be called from the kernel's PCI subsystem to support
14100  * system Power Management (PM) to device with SLI-3 interface spec. When
14101  * PM invokes this method, it quiesces the device by stopping the driver's
14102  * worker thread for the device, turning off device's interrupt and DMA,
14103  * and bring the device offline. Note that as the driver implements the
14104  * minimum PM requirements to a power-aware driver's PM support for the
14105  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14106  * to the suspend() method call will be treated as SUSPEND and the driver will
14107  * fully reinitialize its device during resume() method call, the driver will
14108  * set device to PCI_D3hot state in PCI config space instead of setting it
14109  * according to the @msg provided by the PM.
14110  *
14111  * Return code
14112  * 	0 - driver suspended the device
14113  * 	Error otherwise
14114  **/
14115 static int __maybe_unused
14116 lpfc_pci_suspend_one_s3(struct device *dev_d)
14117 {
14118 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14119 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14120 
14121 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14122 			"0473 PCI device Power Management suspend.\n");
14123 
14124 	/* Bring down the device */
14125 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14126 	lpfc_offline(phba);
14127 	kthread_stop(phba->worker_thread);
14128 
14129 	/* Disable interrupt from device */
14130 	lpfc_sli_disable_intr(phba);
14131 
14132 	return 0;
14133 }
14134 
14135 /**
14136  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14137  * @dev_d: pointer to device
14138  *
14139  * This routine is to be called from the kernel's PCI subsystem to support
14140  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14141  * invokes this method, it restores the device's PCI config space state and
14142  * fully reinitializes the device and brings it online. Note that as the
14143  * driver implements the minimum PM requirements to a power-aware driver's
14144  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14145  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14146  * driver will fully reinitialize its device during resume() method call,
14147  * the device will be set to PCI_D0 directly in PCI config space before
14148  * restoring the state.
14149  *
14150  * Return code
14151  * 	0 - driver suspended the device
14152  * 	Error otherwise
14153  **/
14154 static int __maybe_unused
14155 lpfc_pci_resume_one_s3(struct device *dev_d)
14156 {
14157 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14158 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14159 	uint32_t intr_mode;
14160 	int error;
14161 
14162 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14163 			"0452 PCI device Power Management resume.\n");
14164 
14165 	/* Startup the kernel thread for this host adapter. */
14166 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14167 					"lpfc_worker_%d", phba->brd_no);
14168 	if (IS_ERR(phba->worker_thread)) {
14169 		error = PTR_ERR(phba->worker_thread);
14170 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14171 				"0434 PM resume failed to start worker "
14172 				"thread: error=x%x.\n", error);
14173 		return error;
14174 	}
14175 
14176 	/* Init cpu_map array */
14177 	lpfc_cpu_map_array_init(phba);
14178 	/* Init hba_eq_hdl array */
14179 	lpfc_hba_eq_hdl_array_init(phba);
14180 	/* Configure and enable interrupt */
14181 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14182 	if (intr_mode == LPFC_INTR_ERROR) {
14183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14184 				"0430 PM resume Failed to enable interrupt\n");
14185 		return -EIO;
14186 	} else
14187 		phba->intr_mode = intr_mode;
14188 
14189 	/* Restart HBA and bring it online */
14190 	lpfc_sli_brdrestart(phba);
14191 	lpfc_online(phba);
14192 
14193 	/* Log the current active interrupt mode */
14194 	lpfc_log_intr_mode(phba, phba->intr_mode);
14195 
14196 	return 0;
14197 }
14198 
14199 /**
14200  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14201  * @phba: pointer to lpfc hba data structure.
14202  *
14203  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14204  * aborts all the outstanding SCSI I/Os to the pci device.
14205  **/
14206 static void
14207 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14208 {
14209 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14210 			"2723 PCI channel I/O abort preparing for recovery\n");
14211 
14212 	/*
14213 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14214 	 * and let the SCSI mid-layer to retry them to recover.
14215 	 */
14216 	lpfc_sli_abort_fcp_rings(phba);
14217 }
14218 
14219 /**
14220  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14221  * @phba: pointer to lpfc hba data structure.
14222  *
14223  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14224  * disables the device interrupt and pci device, and aborts the internal FCP
14225  * pending I/Os.
14226  **/
14227 static void
14228 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14229 {
14230 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14231 			"2710 PCI channel disable preparing for reset\n");
14232 
14233 	/* Block any management I/Os to the device */
14234 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14235 
14236 	/* Block all SCSI devices' I/Os on the host */
14237 	lpfc_scsi_dev_block(phba);
14238 
14239 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14240 	lpfc_sli_flush_io_rings(phba);
14241 
14242 	/* stop all timers */
14243 	lpfc_stop_hba_timers(phba);
14244 
14245 	/* Disable interrupt and pci device */
14246 	lpfc_sli_disable_intr(phba);
14247 	pci_disable_device(phba->pcidev);
14248 }
14249 
14250 /**
14251  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14252  * @phba: pointer to lpfc hba data structure.
14253  *
14254  * This routine is called to prepare the SLI3 device for PCI slot permanently
14255  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14256  * pending I/Os.
14257  **/
14258 static void
14259 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14260 {
14261 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14262 			"2711 PCI channel permanent disable for failure\n");
14263 	/* Block all SCSI devices' I/Os on the host */
14264 	lpfc_scsi_dev_block(phba);
14265 
14266 	/* stop all timers */
14267 	lpfc_stop_hba_timers(phba);
14268 
14269 	/* Clean up all driver's outstanding SCSI I/Os */
14270 	lpfc_sli_flush_io_rings(phba);
14271 }
14272 
14273 /**
14274  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14275  * @pdev: pointer to PCI device.
14276  * @state: the current PCI connection state.
14277  *
14278  * This routine is called from the PCI subsystem for I/O error handling to
14279  * device with SLI-3 interface spec. This function is called by the PCI
14280  * subsystem after a PCI bus error affecting this device has been detected.
14281  * When this function is invoked, it will need to stop all the I/Os and
14282  * interrupt(s) to the device. Once that is done, it will return
14283  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14284  * as desired.
14285  *
14286  * Return codes
14287  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14288  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14289  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14290  **/
14291 static pci_ers_result_t
14292 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14293 {
14294 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14295 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14296 
14297 	switch (state) {
14298 	case pci_channel_io_normal:
14299 		/* Non-fatal error, prepare for recovery */
14300 		lpfc_sli_prep_dev_for_recover(phba);
14301 		return PCI_ERS_RESULT_CAN_RECOVER;
14302 	case pci_channel_io_frozen:
14303 		/* Fatal error, prepare for slot reset */
14304 		lpfc_sli_prep_dev_for_reset(phba);
14305 		return PCI_ERS_RESULT_NEED_RESET;
14306 	case pci_channel_io_perm_failure:
14307 		/* Permanent failure, prepare for device down */
14308 		lpfc_sli_prep_dev_for_perm_failure(phba);
14309 		return PCI_ERS_RESULT_DISCONNECT;
14310 	default:
14311 		/* Unknown state, prepare and request slot reset */
14312 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14313 				"0472 Unknown PCI error state: x%x\n", state);
14314 		lpfc_sli_prep_dev_for_reset(phba);
14315 		return PCI_ERS_RESULT_NEED_RESET;
14316 	}
14317 }
14318 
14319 /**
14320  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14321  * @pdev: pointer to PCI device.
14322  *
14323  * This routine is called from the PCI subsystem for error handling to
14324  * device with SLI-3 interface spec. This is called after PCI bus has been
14325  * reset to restart the PCI card from scratch, as if from a cold-boot.
14326  * During the PCI subsystem error recovery, after driver returns
14327  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14328  * recovery and then call this routine before calling the .resume method
14329  * to recover the device. This function will initialize the HBA device,
14330  * enable the interrupt, but it will just put the HBA to offline state
14331  * without passing any I/O traffic.
14332  *
14333  * Return codes
14334  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14335  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14336  */
14337 static pci_ers_result_t
14338 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14339 {
14340 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14341 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14342 	struct lpfc_sli *psli = &phba->sli;
14343 	uint32_t intr_mode;
14344 
14345 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14346 	if (pci_enable_device_mem(pdev)) {
14347 		printk(KERN_ERR "lpfc: Cannot re-enable "
14348 			"PCI device after reset.\n");
14349 		return PCI_ERS_RESULT_DISCONNECT;
14350 	}
14351 
14352 	pci_restore_state(pdev);
14353 
14354 	/*
14355 	 * As the new kernel behavior of pci_restore_state() API call clears
14356 	 * device saved_state flag, need to save the restored state again.
14357 	 */
14358 	pci_save_state(pdev);
14359 
14360 	if (pdev->is_busmaster)
14361 		pci_set_master(pdev);
14362 
14363 	spin_lock_irq(&phba->hbalock);
14364 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14365 	spin_unlock_irq(&phba->hbalock);
14366 
14367 	/* Configure and enable interrupt */
14368 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14369 	if (intr_mode == LPFC_INTR_ERROR) {
14370 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14371 				"0427 Cannot re-enable interrupt after "
14372 				"slot reset.\n");
14373 		return PCI_ERS_RESULT_DISCONNECT;
14374 	} else
14375 		phba->intr_mode = intr_mode;
14376 
14377 	/* Take device offline, it will perform cleanup */
14378 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14379 	lpfc_offline(phba);
14380 	lpfc_sli_brdrestart(phba);
14381 
14382 	/* Log the current active interrupt mode */
14383 	lpfc_log_intr_mode(phba, phba->intr_mode);
14384 
14385 	return PCI_ERS_RESULT_RECOVERED;
14386 }
14387 
14388 /**
14389  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14390  * @pdev: pointer to PCI device
14391  *
14392  * This routine is called from the PCI subsystem for error handling to device
14393  * with SLI-3 interface spec. It is called when kernel error recovery tells
14394  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14395  * error recovery. After this call, traffic can start to flow from this device
14396  * again.
14397  */
14398 static void
14399 lpfc_io_resume_s3(struct pci_dev *pdev)
14400 {
14401 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14402 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14403 
14404 	/* Bring device online, it will be no-op for non-fatal error resume */
14405 	lpfc_online(phba);
14406 }
14407 
14408 /**
14409  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14410  * @phba: pointer to lpfc hba data structure.
14411  *
14412  * returns the number of ELS/CT IOCBs to reserve
14413  **/
14414 int
14415 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14416 {
14417 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14418 
14419 	if (phba->sli_rev == LPFC_SLI_REV4) {
14420 		if (max_xri <= 100)
14421 			return 10;
14422 		else if (max_xri <= 256)
14423 			return 25;
14424 		else if (max_xri <= 512)
14425 			return 50;
14426 		else if (max_xri <= 1024)
14427 			return 100;
14428 		else if (max_xri <= 1536)
14429 			return 150;
14430 		else if (max_xri <= 2048)
14431 			return 200;
14432 		else
14433 			return 250;
14434 	} else
14435 		return 0;
14436 }
14437 
14438 /**
14439  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14440  * @phba: pointer to lpfc hba data structure.
14441  *
14442  * returns the number of ELS/CT + NVMET IOCBs to reserve
14443  **/
14444 int
14445 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14446 {
14447 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14448 
14449 	if (phba->nvmet_support)
14450 		max_xri += LPFC_NVMET_BUF_POST;
14451 	return max_xri;
14452 }
14453 
14454 
14455 static int
14456 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14457 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14458 	const struct firmware *fw)
14459 {
14460 	int rc;
14461 	u8 sli_family;
14462 
14463 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14464 	/* Three cases:  (1) FW was not supported on the detected adapter.
14465 	 * (2) FW update has been locked out administratively.
14466 	 * (3) Some other error during FW update.
14467 	 * In each case, an unmaskable message is written to the console
14468 	 * for admin diagnosis.
14469 	 */
14470 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14471 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14472 	     magic_number != MAGIC_NUMBER_G6) ||
14473 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14474 	     magic_number != MAGIC_NUMBER_G7) ||
14475 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14476 	     magic_number != MAGIC_NUMBER_G7P)) {
14477 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14478 				"3030 This firmware version is not supported on"
14479 				" this HBA model. Device:%x Magic:%x Type:%x "
14480 				"ID:%x Size %d %zd\n",
14481 				phba->pcidev->device, magic_number, ftype, fid,
14482 				fsize, fw->size);
14483 		rc = -EINVAL;
14484 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14485 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14486 				"3021 Firmware downloads have been prohibited "
14487 				"by a system configuration setting on "
14488 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14489 				"%zd\n",
14490 				phba->pcidev->device, magic_number, ftype, fid,
14491 				fsize, fw->size);
14492 		rc = -EACCES;
14493 	} else {
14494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14495 				"3022 FW Download failed. Add Status x%x "
14496 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14497 				"%zd\n",
14498 				offset, phba->pcidev->device, magic_number,
14499 				ftype, fid, fsize, fw->size);
14500 		rc = -EIO;
14501 	}
14502 	return rc;
14503 }
14504 
14505 /**
14506  * lpfc_write_firmware - attempt to write a firmware image to the port
14507  * @fw: pointer to firmware image returned from request_firmware.
14508  * @context: pointer to firmware image returned from request_firmware.
14509  *
14510  **/
14511 static void
14512 lpfc_write_firmware(const struct firmware *fw, void *context)
14513 {
14514 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14515 	char fwrev[FW_REV_STR_SIZE];
14516 	struct lpfc_grp_hdr *image;
14517 	struct list_head dma_buffer_list;
14518 	int i, rc = 0;
14519 	struct lpfc_dmabuf *dmabuf, *next;
14520 	uint32_t offset = 0, temp_offset = 0;
14521 	uint32_t magic_number, ftype, fid, fsize;
14522 
14523 	/* It can be null in no-wait mode, sanity check */
14524 	if (!fw) {
14525 		rc = -ENXIO;
14526 		goto out;
14527 	}
14528 	image = (struct lpfc_grp_hdr *)fw->data;
14529 
14530 	magic_number = be32_to_cpu(image->magic_number);
14531 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14532 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14533 	fsize = be32_to_cpu(image->size);
14534 
14535 	INIT_LIST_HEAD(&dma_buffer_list);
14536 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14537 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14538 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14539 				"3023 Updating Firmware, Current Version:%s "
14540 				"New Version:%s\n",
14541 				fwrev, image->revision);
14542 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14543 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14544 					 GFP_KERNEL);
14545 			if (!dmabuf) {
14546 				rc = -ENOMEM;
14547 				goto release_out;
14548 			}
14549 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14550 							  SLI4_PAGE_SIZE,
14551 							  &dmabuf->phys,
14552 							  GFP_KERNEL);
14553 			if (!dmabuf->virt) {
14554 				kfree(dmabuf);
14555 				rc = -ENOMEM;
14556 				goto release_out;
14557 			}
14558 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14559 		}
14560 		while (offset < fw->size) {
14561 			temp_offset = offset;
14562 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14563 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14564 					memcpy(dmabuf->virt,
14565 					       fw->data + temp_offset,
14566 					       fw->size - temp_offset);
14567 					temp_offset = fw->size;
14568 					break;
14569 				}
14570 				memcpy(dmabuf->virt, fw->data + temp_offset,
14571 				       SLI4_PAGE_SIZE);
14572 				temp_offset += SLI4_PAGE_SIZE;
14573 			}
14574 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14575 				    (fw->size - offset), &offset);
14576 			if (rc) {
14577 				rc = lpfc_log_write_firmware_error(phba, offset,
14578 								   magic_number,
14579 								   ftype,
14580 								   fid,
14581 								   fsize,
14582 								   fw);
14583 				goto release_out;
14584 			}
14585 		}
14586 		rc = offset;
14587 	} else
14588 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14589 				"3029 Skipped Firmware update, Current "
14590 				"Version:%s New Version:%s\n",
14591 				fwrev, image->revision);
14592 
14593 release_out:
14594 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14595 		list_del(&dmabuf->list);
14596 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14597 				  dmabuf->virt, dmabuf->phys);
14598 		kfree(dmabuf);
14599 	}
14600 	release_firmware(fw);
14601 out:
14602 	if (rc < 0)
14603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14604 				"3062 Firmware update error, status %d.\n", rc);
14605 	else
14606 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14607 				"3024 Firmware update success: size %d.\n", rc);
14608 }
14609 
14610 /**
14611  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14612  * @phba: pointer to lpfc hba data structure.
14613  * @fw_upgrade: which firmware to update.
14614  *
14615  * This routine is called to perform Linux generic firmware upgrade on device
14616  * that supports such feature.
14617  **/
14618 int
14619 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14620 {
14621 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14622 	int ret;
14623 	const struct firmware *fw;
14624 
14625 	/* Only supported on SLI4 interface type 2 for now */
14626 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14627 	    LPFC_SLI_INTF_IF_TYPE_2)
14628 		return -EPERM;
14629 
14630 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14631 
14632 	if (fw_upgrade == INT_FW_UPGRADE) {
14633 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14634 					file_name, &phba->pcidev->dev,
14635 					GFP_KERNEL, (void *)phba,
14636 					lpfc_write_firmware);
14637 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14638 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14639 		if (!ret)
14640 			lpfc_write_firmware(fw, (void *)phba);
14641 	} else {
14642 		ret = -EINVAL;
14643 	}
14644 
14645 	return ret;
14646 }
14647 
14648 /**
14649  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14650  * @pdev: pointer to PCI device
14651  * @pid: pointer to PCI device identifier
14652  *
14653  * This routine is called from the kernel's PCI subsystem to device with
14654  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14655  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14656  * information of the device and driver to see if the driver state that it
14657  * can support this kind of device. If the match is successful, the driver
14658  * core invokes this routine. If this routine determines it can claim the HBA,
14659  * it does all the initialization that it needs to do to handle the HBA
14660  * properly.
14661  *
14662  * Return code
14663  * 	0 - driver can claim the device
14664  * 	negative value - driver can not claim the device
14665  **/
14666 static int
14667 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14668 {
14669 	struct lpfc_hba   *phba;
14670 	struct lpfc_vport *vport = NULL;
14671 	struct Scsi_Host  *shost = NULL;
14672 	int error;
14673 	uint32_t cfg_mode, intr_mode;
14674 
14675 	/* Allocate memory for HBA structure */
14676 	phba = lpfc_hba_alloc(pdev);
14677 	if (!phba)
14678 		return -ENOMEM;
14679 
14680 	INIT_LIST_HEAD(&phba->poll_list);
14681 
14682 	/* Perform generic PCI device enabling operation */
14683 	error = lpfc_enable_pci_dev(phba);
14684 	if (error)
14685 		goto out_free_phba;
14686 
14687 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14688 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14689 	if (error)
14690 		goto out_disable_pci_dev;
14691 
14692 	/* Set up SLI-4 specific device PCI memory space */
14693 	error = lpfc_sli4_pci_mem_setup(phba);
14694 	if (error) {
14695 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14696 				"1410 Failed to set up pci memory space.\n");
14697 		goto out_disable_pci_dev;
14698 	}
14699 
14700 	/* Set up SLI-4 Specific device driver resources */
14701 	error = lpfc_sli4_driver_resource_setup(phba);
14702 	if (error) {
14703 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14704 				"1412 Failed to set up driver resource.\n");
14705 		goto out_unset_pci_mem_s4;
14706 	}
14707 
14708 	INIT_LIST_HEAD(&phba->active_rrq_list);
14709 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14710 
14711 	/* Set up common device driver resources */
14712 	error = lpfc_setup_driver_resource_phase2(phba);
14713 	if (error) {
14714 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14715 				"1414 Failed to set up driver resource.\n");
14716 		goto out_unset_driver_resource_s4;
14717 	}
14718 
14719 	/* Get the default values for Model Name and Description */
14720 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14721 
14722 	/* Now, trying to enable interrupt and bring up the device */
14723 	cfg_mode = phba->cfg_use_msi;
14724 
14725 	/* Put device to a known state before enabling interrupt */
14726 	phba->pport = NULL;
14727 	lpfc_stop_port(phba);
14728 
14729 	/* Init cpu_map array */
14730 	lpfc_cpu_map_array_init(phba);
14731 
14732 	/* Init hba_eq_hdl array */
14733 	lpfc_hba_eq_hdl_array_init(phba);
14734 
14735 	/* Configure and enable interrupt */
14736 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14737 	if (intr_mode == LPFC_INTR_ERROR) {
14738 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14739 				"0426 Failed to enable interrupt.\n");
14740 		error = -ENODEV;
14741 		goto out_unset_driver_resource;
14742 	}
14743 	/* Default to single EQ for non-MSI-X */
14744 	if (phba->intr_type != MSIX) {
14745 		phba->cfg_irq_chann = 1;
14746 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14747 			if (phba->nvmet_support)
14748 				phba->cfg_nvmet_mrq = 1;
14749 		}
14750 	}
14751 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14752 
14753 	/* Create SCSI host to the physical port */
14754 	error = lpfc_create_shost(phba);
14755 	if (error) {
14756 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14757 				"1415 Failed to create scsi host.\n");
14758 		goto out_disable_intr;
14759 	}
14760 	vport = phba->pport;
14761 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14762 
14763 	/* Configure sysfs attributes */
14764 	error = lpfc_alloc_sysfs_attr(vport);
14765 	if (error) {
14766 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14767 				"1416 Failed to allocate sysfs attr\n");
14768 		goto out_destroy_shost;
14769 	}
14770 
14771 	/* Set up SLI-4 HBA */
14772 	if (lpfc_sli4_hba_setup(phba)) {
14773 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14774 				"1421 Failed to set up hba\n");
14775 		error = -ENODEV;
14776 		goto out_free_sysfs_attr;
14777 	}
14778 
14779 	/* Log the current active interrupt mode */
14780 	phba->intr_mode = intr_mode;
14781 	lpfc_log_intr_mode(phba, intr_mode);
14782 
14783 	/* Perform post initialization setup */
14784 	lpfc_post_init_setup(phba);
14785 
14786 	/* NVME support in FW earlier in the driver load corrects the
14787 	 * FC4 type making a check for nvme_support unnecessary.
14788 	 */
14789 	if (phba->nvmet_support == 0) {
14790 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14791 			/* Create NVME binding with nvme_fc_transport. This
14792 			 * ensures the vport is initialized.  If the localport
14793 			 * create fails, it should not unload the driver to
14794 			 * support field issues.
14795 			 */
14796 			error = lpfc_nvme_create_localport(vport);
14797 			if (error) {
14798 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14799 						"6004 NVME registration "
14800 						"failed, error x%x\n",
14801 						error);
14802 			}
14803 		}
14804 	}
14805 
14806 	/* check for firmware upgrade or downgrade */
14807 	if (phba->cfg_request_firmware_upgrade)
14808 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14809 
14810 	/* Check if there are static vports to be created. */
14811 	lpfc_create_static_vport(phba);
14812 
14813 	/* Enable RAS FW log support */
14814 	lpfc_sli4_ras_setup(phba);
14815 
14816 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14817 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14818 
14819 	return 0;
14820 
14821 out_free_sysfs_attr:
14822 	lpfc_free_sysfs_attr(vport);
14823 out_destroy_shost:
14824 	lpfc_destroy_shost(phba);
14825 out_disable_intr:
14826 	lpfc_sli4_disable_intr(phba);
14827 out_unset_driver_resource:
14828 	lpfc_unset_driver_resource_phase2(phba);
14829 out_unset_driver_resource_s4:
14830 	lpfc_sli4_driver_resource_unset(phba);
14831 out_unset_pci_mem_s4:
14832 	lpfc_sli4_pci_mem_unset(phba);
14833 out_disable_pci_dev:
14834 	lpfc_disable_pci_dev(phba);
14835 	if (shost)
14836 		scsi_host_put(shost);
14837 out_free_phba:
14838 	lpfc_hba_free(phba);
14839 	return error;
14840 }
14841 
14842 /**
14843  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14844  * @pdev: pointer to PCI device
14845  *
14846  * This routine is called from the kernel's PCI subsystem to device with
14847  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14848  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14849  * device to be removed from the PCI subsystem properly.
14850  **/
14851 static void
14852 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14853 {
14854 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14855 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14856 	struct lpfc_vport **vports;
14857 	struct lpfc_hba *phba = vport->phba;
14858 	int i;
14859 
14860 	/* Mark the device unloading flag */
14861 	spin_lock_irq(&phba->hbalock);
14862 	vport->load_flag |= FC_UNLOADING;
14863 	spin_unlock_irq(&phba->hbalock);
14864 	if (phba->cgn_i)
14865 		lpfc_unreg_congestion_buf(phba);
14866 
14867 	lpfc_free_sysfs_attr(vport);
14868 
14869 	/* Release all the vports against this physical port */
14870 	vports = lpfc_create_vport_work_array(phba);
14871 	if (vports != NULL)
14872 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14873 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14874 				continue;
14875 			fc_vport_terminate(vports[i]->fc_vport);
14876 		}
14877 	lpfc_destroy_vport_work_array(phba, vports);
14878 
14879 	/* Remove FC host with the physical port */
14880 	fc_remove_host(shost);
14881 	scsi_remove_host(shost);
14882 
14883 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14884 	 * localports are destroyed after to cleanup all transport memory.
14885 	 */
14886 	lpfc_cleanup(vport);
14887 	lpfc_nvmet_destroy_targetport(phba);
14888 	lpfc_nvme_destroy_localport(vport);
14889 
14890 	/* De-allocate multi-XRI pools */
14891 	if (phba->cfg_xri_rebalancing)
14892 		lpfc_destroy_multixri_pools(phba);
14893 
14894 	/*
14895 	 * Bring down the SLI Layer. This step disables all interrupts,
14896 	 * clears the rings, discards all mailbox commands, and resets
14897 	 * the HBA FCoE function.
14898 	 */
14899 	lpfc_debugfs_terminate(vport);
14900 
14901 	lpfc_stop_hba_timers(phba);
14902 	spin_lock_irq(&phba->port_list_lock);
14903 	list_del_init(&vport->listentry);
14904 	spin_unlock_irq(&phba->port_list_lock);
14905 
14906 	/* Perform scsi free before driver resource_unset since scsi
14907 	 * buffers are released to their corresponding pools here.
14908 	 */
14909 	lpfc_io_free(phba);
14910 	lpfc_free_iocb_list(phba);
14911 	lpfc_sli4_hba_unset(phba);
14912 
14913 	lpfc_unset_driver_resource_phase2(phba);
14914 	lpfc_sli4_driver_resource_unset(phba);
14915 
14916 	/* Unmap adapter Control and Doorbell registers */
14917 	lpfc_sli4_pci_mem_unset(phba);
14918 
14919 	/* Release PCI resources and disable device's PCI function */
14920 	scsi_host_put(shost);
14921 	lpfc_disable_pci_dev(phba);
14922 
14923 	/* Finally, free the driver's device data structure */
14924 	lpfc_hba_free(phba);
14925 
14926 	return;
14927 }
14928 
14929 /**
14930  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14931  * @dev_d: pointer to device
14932  *
14933  * This routine is called from the kernel's PCI subsystem to support system
14934  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14935  * this method, it quiesces the device by stopping the driver's worker
14936  * thread for the device, turning off device's interrupt and DMA, and bring
14937  * the device offline. Note that as the driver implements the minimum PM
14938  * requirements to a power-aware driver's PM support for suspend/resume -- all
14939  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14940  * method call will be treated as SUSPEND and the driver will fully
14941  * reinitialize its device during resume() method call, the driver will set
14942  * device to PCI_D3hot state in PCI config space instead of setting it
14943  * according to the @msg provided by the PM.
14944  *
14945  * Return code
14946  * 	0 - driver suspended the device
14947  * 	Error otherwise
14948  **/
14949 static int __maybe_unused
14950 lpfc_pci_suspend_one_s4(struct device *dev_d)
14951 {
14952 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14953 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14954 
14955 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14956 			"2843 PCI device Power Management suspend.\n");
14957 
14958 	/* Bring down the device */
14959 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14960 	lpfc_offline(phba);
14961 	kthread_stop(phba->worker_thread);
14962 
14963 	/* Disable interrupt from device */
14964 	lpfc_sli4_disable_intr(phba);
14965 	lpfc_sli4_queue_destroy(phba);
14966 
14967 	return 0;
14968 }
14969 
14970 /**
14971  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14972  * @dev_d: pointer to device
14973  *
14974  * This routine is called from the kernel's PCI subsystem to support system
14975  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14976  * this method, it restores the device's PCI config space state and fully
14977  * reinitializes the device and brings it online. Note that as the driver
14978  * implements the minimum PM requirements to a power-aware driver's PM for
14979  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14980  * to the suspend() method call will be treated as SUSPEND and the driver
14981  * will fully reinitialize its device during resume() method call, the device
14982  * will be set to PCI_D0 directly in PCI config space before restoring the
14983  * state.
14984  *
14985  * Return code
14986  * 	0 - driver suspended the device
14987  * 	Error otherwise
14988  **/
14989 static int __maybe_unused
14990 lpfc_pci_resume_one_s4(struct device *dev_d)
14991 {
14992 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14993 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14994 	uint32_t intr_mode;
14995 	int error;
14996 
14997 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14998 			"0292 PCI device Power Management resume.\n");
14999 
15000 	 /* Startup the kernel thread for this host adapter. */
15001 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15002 					"lpfc_worker_%d", phba->brd_no);
15003 	if (IS_ERR(phba->worker_thread)) {
15004 		error = PTR_ERR(phba->worker_thread);
15005 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15006 				"0293 PM resume failed to start worker "
15007 				"thread: error=x%x.\n", error);
15008 		return error;
15009 	}
15010 
15011 	/* Configure and enable interrupt */
15012 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15013 	if (intr_mode == LPFC_INTR_ERROR) {
15014 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15015 				"0294 PM resume Failed to enable interrupt\n");
15016 		return -EIO;
15017 	} else
15018 		phba->intr_mode = intr_mode;
15019 
15020 	/* Restart HBA and bring it online */
15021 	lpfc_sli_brdrestart(phba);
15022 	lpfc_online(phba);
15023 
15024 	/* Log the current active interrupt mode */
15025 	lpfc_log_intr_mode(phba, phba->intr_mode);
15026 
15027 	return 0;
15028 }
15029 
15030 /**
15031  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15032  * @phba: pointer to lpfc hba data structure.
15033  *
15034  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15035  * aborts all the outstanding SCSI I/Os to the pci device.
15036  **/
15037 static void
15038 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15039 {
15040 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15041 			"2828 PCI channel I/O abort preparing for recovery\n");
15042 	/*
15043 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15044 	 * and let the SCSI mid-layer to retry them to recover.
15045 	 */
15046 	lpfc_sli_abort_fcp_rings(phba);
15047 }
15048 
15049 /**
15050  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15051  * @phba: pointer to lpfc hba data structure.
15052  *
15053  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15054  * disables the device interrupt and pci device, and aborts the internal FCP
15055  * pending I/Os.
15056  **/
15057 static void
15058 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15059 {
15060 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15061 			"2826 PCI channel disable preparing for reset\n");
15062 
15063 	/* Block any management I/Os to the device */
15064 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15065 
15066 	/* Block all SCSI devices' I/Os on the host */
15067 	lpfc_scsi_dev_block(phba);
15068 
15069 	/* Flush all driver's outstanding I/Os as we are to reset */
15070 	lpfc_sli_flush_io_rings(phba);
15071 
15072 	/* stop all timers */
15073 	lpfc_stop_hba_timers(phba);
15074 
15075 	/* Disable interrupt and pci device */
15076 	lpfc_sli4_disable_intr(phba);
15077 	lpfc_sli4_queue_destroy(phba);
15078 	pci_disable_device(phba->pcidev);
15079 }
15080 
15081 /**
15082  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15083  * @phba: pointer to lpfc hba data structure.
15084  *
15085  * This routine is called to prepare the SLI4 device for PCI slot permanently
15086  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15087  * pending I/Os.
15088  **/
15089 static void
15090 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15091 {
15092 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15093 			"2827 PCI channel permanent disable for failure\n");
15094 
15095 	/* Block all SCSI devices' I/Os on the host */
15096 	lpfc_scsi_dev_block(phba);
15097 
15098 	/* stop all timers */
15099 	lpfc_stop_hba_timers(phba);
15100 
15101 	/* Clean up all driver's outstanding I/Os */
15102 	lpfc_sli_flush_io_rings(phba);
15103 }
15104 
15105 /**
15106  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15107  * @pdev: pointer to PCI device.
15108  * @state: the current PCI connection state.
15109  *
15110  * This routine is called from the PCI subsystem for error handling to device
15111  * with SLI-4 interface spec. This function is called by the PCI subsystem
15112  * after a PCI bus error affecting this device has been detected. When this
15113  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15114  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15115  * for the PCI subsystem to perform proper recovery as desired.
15116  *
15117  * Return codes
15118  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15119  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15120  **/
15121 static pci_ers_result_t
15122 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15123 {
15124 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15125 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15126 
15127 	switch (state) {
15128 	case pci_channel_io_normal:
15129 		/* Non-fatal error, prepare for recovery */
15130 		lpfc_sli4_prep_dev_for_recover(phba);
15131 		return PCI_ERS_RESULT_CAN_RECOVER;
15132 	case pci_channel_io_frozen:
15133 		phba->hba_flag |= HBA_PCI_ERR;
15134 		/* Fatal error, prepare for slot reset */
15135 		lpfc_sli4_prep_dev_for_reset(phba);
15136 		return PCI_ERS_RESULT_NEED_RESET;
15137 	case pci_channel_io_perm_failure:
15138 		phba->hba_flag |= HBA_PCI_ERR;
15139 		/* Permanent failure, prepare for device down */
15140 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15141 		return PCI_ERS_RESULT_DISCONNECT;
15142 	default:
15143 		phba->hba_flag |= HBA_PCI_ERR;
15144 		/* Unknown state, prepare and request slot reset */
15145 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15146 				"2825 Unknown PCI error state: x%x\n", state);
15147 		lpfc_sli4_prep_dev_for_reset(phba);
15148 		return PCI_ERS_RESULT_NEED_RESET;
15149 	}
15150 }
15151 
15152 /**
15153  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15154  * @pdev: pointer to PCI device.
15155  *
15156  * This routine is called from the PCI subsystem for error handling to device
15157  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15158  * restart the PCI card from scratch, as if from a cold-boot. During the
15159  * PCI subsystem error recovery, after the driver returns
15160  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15161  * recovery and then call this routine before calling the .resume method to
15162  * recover the device. This function will initialize the HBA device, enable
15163  * the interrupt, but it will just put the HBA to offline state without
15164  * passing any I/O traffic.
15165  *
15166  * Return codes
15167  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15168  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15169  */
15170 static pci_ers_result_t
15171 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15172 {
15173 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15174 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15175 	struct lpfc_sli *psli = &phba->sli;
15176 	uint32_t intr_mode;
15177 
15178 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15179 	if (pci_enable_device_mem(pdev)) {
15180 		printk(KERN_ERR "lpfc: Cannot re-enable "
15181 			"PCI device after reset.\n");
15182 		return PCI_ERS_RESULT_DISCONNECT;
15183 	}
15184 
15185 	pci_restore_state(pdev);
15186 
15187 	phba->hba_flag &= ~HBA_PCI_ERR;
15188 	/*
15189 	 * As the new kernel behavior of pci_restore_state() API call clears
15190 	 * device saved_state flag, need to save the restored state again.
15191 	 */
15192 	pci_save_state(pdev);
15193 
15194 	if (pdev->is_busmaster)
15195 		pci_set_master(pdev);
15196 
15197 	spin_lock_irq(&phba->hbalock);
15198 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15199 	spin_unlock_irq(&phba->hbalock);
15200 
15201 	/* Configure and enable interrupt */
15202 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15203 	if (intr_mode == LPFC_INTR_ERROR) {
15204 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15205 				"2824 Cannot re-enable interrupt after "
15206 				"slot reset.\n");
15207 		return PCI_ERS_RESULT_DISCONNECT;
15208 	} else
15209 		phba->intr_mode = intr_mode;
15210 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15211 
15212 	/* Log the current active interrupt mode */
15213 	lpfc_log_intr_mode(phba, phba->intr_mode);
15214 
15215 	return PCI_ERS_RESULT_RECOVERED;
15216 }
15217 
15218 /**
15219  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15220  * @pdev: pointer to PCI device
15221  *
15222  * This routine is called from the PCI subsystem for error handling to device
15223  * with SLI-4 interface spec. It is called when kernel error recovery tells
15224  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15225  * error recovery. After this call, traffic can start to flow from this device
15226  * again.
15227  **/
15228 static void
15229 lpfc_io_resume_s4(struct pci_dev *pdev)
15230 {
15231 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15232 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15233 
15234 	/*
15235 	 * In case of slot reset, as function reset is performed through
15236 	 * mailbox command which needs DMA to be enabled, this operation
15237 	 * has to be moved to the io resume phase. Taking device offline
15238 	 * will perform the necessary cleanup.
15239 	 */
15240 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15241 		/* Perform device reset */
15242 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15243 		lpfc_offline(phba);
15244 		lpfc_sli_brdrestart(phba);
15245 		/* Bring the device back online */
15246 		lpfc_online(phba);
15247 	}
15248 }
15249 
15250 /**
15251  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15252  * @pdev: pointer to PCI device
15253  * @pid: pointer to PCI device identifier
15254  *
15255  * This routine is to be registered to the kernel's PCI subsystem. When an
15256  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15257  * at PCI device-specific information of the device and driver to see if the
15258  * driver state that it can support this kind of device. If the match is
15259  * successful, the driver core invokes this routine. This routine dispatches
15260  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15261  * do all the initialization that it needs to do to handle the HBA device
15262  * properly.
15263  *
15264  * Return code
15265  * 	0 - driver can claim the device
15266  * 	negative value - driver can not claim the device
15267  **/
15268 static int
15269 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15270 {
15271 	int rc;
15272 	struct lpfc_sli_intf intf;
15273 
15274 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15275 		return -ENODEV;
15276 
15277 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15278 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15279 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15280 	else
15281 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15282 
15283 	return rc;
15284 }
15285 
15286 /**
15287  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15288  * @pdev: pointer to PCI device
15289  *
15290  * This routine is to be registered to the kernel's PCI subsystem. When an
15291  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15292  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15293  * remove routine, which will perform all the necessary cleanup for the
15294  * device to be removed from the PCI subsystem properly.
15295  **/
15296 static void
15297 lpfc_pci_remove_one(struct pci_dev *pdev)
15298 {
15299 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15300 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15301 
15302 	switch (phba->pci_dev_grp) {
15303 	case LPFC_PCI_DEV_LP:
15304 		lpfc_pci_remove_one_s3(pdev);
15305 		break;
15306 	case LPFC_PCI_DEV_OC:
15307 		lpfc_pci_remove_one_s4(pdev);
15308 		break;
15309 	default:
15310 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15311 				"1424 Invalid PCI device group: 0x%x\n",
15312 				phba->pci_dev_grp);
15313 		break;
15314 	}
15315 	return;
15316 }
15317 
15318 /**
15319  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15320  * @dev: pointer to device
15321  *
15322  * This routine is to be registered to the kernel's PCI subsystem to support
15323  * system Power Management (PM). When PM invokes this method, it dispatches
15324  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15325  * suspend the device.
15326  *
15327  * Return code
15328  * 	0 - driver suspended the device
15329  * 	Error otherwise
15330  **/
15331 static int __maybe_unused
15332 lpfc_pci_suspend_one(struct device *dev)
15333 {
15334 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15335 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15336 	int rc = -ENODEV;
15337 
15338 	switch (phba->pci_dev_grp) {
15339 	case LPFC_PCI_DEV_LP:
15340 		rc = lpfc_pci_suspend_one_s3(dev);
15341 		break;
15342 	case LPFC_PCI_DEV_OC:
15343 		rc = lpfc_pci_suspend_one_s4(dev);
15344 		break;
15345 	default:
15346 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15347 				"1425 Invalid PCI device group: 0x%x\n",
15348 				phba->pci_dev_grp);
15349 		break;
15350 	}
15351 	return rc;
15352 }
15353 
15354 /**
15355  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15356  * @dev: pointer to device
15357  *
15358  * This routine is to be registered to the kernel's PCI subsystem to support
15359  * system Power Management (PM). When PM invokes this method, it dispatches
15360  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15361  * resume the device.
15362  *
15363  * Return code
15364  * 	0 - driver suspended the device
15365  * 	Error otherwise
15366  **/
15367 static int __maybe_unused
15368 lpfc_pci_resume_one(struct device *dev)
15369 {
15370 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15371 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15372 	int rc = -ENODEV;
15373 
15374 	switch (phba->pci_dev_grp) {
15375 	case LPFC_PCI_DEV_LP:
15376 		rc = lpfc_pci_resume_one_s3(dev);
15377 		break;
15378 	case LPFC_PCI_DEV_OC:
15379 		rc = lpfc_pci_resume_one_s4(dev);
15380 		break;
15381 	default:
15382 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15383 				"1426 Invalid PCI device group: 0x%x\n",
15384 				phba->pci_dev_grp);
15385 		break;
15386 	}
15387 	return rc;
15388 }
15389 
15390 /**
15391  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15392  * @pdev: pointer to PCI device.
15393  * @state: the current PCI connection state.
15394  *
15395  * This routine is registered to the PCI subsystem for error handling. This
15396  * function is called by the PCI subsystem after a PCI bus error affecting
15397  * this device has been detected. When this routine is invoked, it dispatches
15398  * the action to the proper SLI-3 or SLI-4 device error detected handling
15399  * routine, which will perform the proper error detected operation.
15400  *
15401  * Return codes
15402  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15403  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15404  **/
15405 static pci_ers_result_t
15406 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15407 {
15408 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15409 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15410 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15411 
15412 	if (phba->link_state == LPFC_HBA_ERROR &&
15413 	    phba->hba_flag & HBA_IOQ_FLUSH)
15414 		return PCI_ERS_RESULT_NEED_RESET;
15415 
15416 	switch (phba->pci_dev_grp) {
15417 	case LPFC_PCI_DEV_LP:
15418 		rc = lpfc_io_error_detected_s3(pdev, state);
15419 		break;
15420 	case LPFC_PCI_DEV_OC:
15421 		rc = lpfc_io_error_detected_s4(pdev, state);
15422 		break;
15423 	default:
15424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15425 				"1427 Invalid PCI device group: 0x%x\n",
15426 				phba->pci_dev_grp);
15427 		break;
15428 	}
15429 	return rc;
15430 }
15431 
15432 /**
15433  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15434  * @pdev: pointer to PCI device.
15435  *
15436  * This routine is registered to the PCI subsystem for error handling. This
15437  * function is called after PCI bus has been reset to restart the PCI card
15438  * from scratch, as if from a cold-boot. When this routine is invoked, it
15439  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15440  * routine, which will perform the proper device reset.
15441  *
15442  * Return codes
15443  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15444  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15445  **/
15446 static pci_ers_result_t
15447 lpfc_io_slot_reset(struct pci_dev *pdev)
15448 {
15449 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15450 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15451 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15452 
15453 	switch (phba->pci_dev_grp) {
15454 	case LPFC_PCI_DEV_LP:
15455 		rc = lpfc_io_slot_reset_s3(pdev);
15456 		break;
15457 	case LPFC_PCI_DEV_OC:
15458 		rc = lpfc_io_slot_reset_s4(pdev);
15459 		break;
15460 	default:
15461 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15462 				"1428 Invalid PCI device group: 0x%x\n",
15463 				phba->pci_dev_grp);
15464 		break;
15465 	}
15466 	return rc;
15467 }
15468 
15469 /**
15470  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15471  * @pdev: pointer to PCI device
15472  *
15473  * This routine is registered to the PCI subsystem for error handling. It
15474  * is called when kernel error recovery tells the lpfc driver that it is
15475  * OK to resume normal PCI operation after PCI bus error recovery. When
15476  * this routine is invoked, it dispatches the action to the proper SLI-3
15477  * or SLI-4 device io_resume routine, which will resume the device operation.
15478  **/
15479 static void
15480 lpfc_io_resume(struct pci_dev *pdev)
15481 {
15482 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15483 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15484 
15485 	switch (phba->pci_dev_grp) {
15486 	case LPFC_PCI_DEV_LP:
15487 		lpfc_io_resume_s3(pdev);
15488 		break;
15489 	case LPFC_PCI_DEV_OC:
15490 		lpfc_io_resume_s4(pdev);
15491 		break;
15492 	default:
15493 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15494 				"1429 Invalid PCI device group: 0x%x\n",
15495 				phba->pci_dev_grp);
15496 		break;
15497 	}
15498 	return;
15499 }
15500 
15501 /**
15502  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15503  * @phba: pointer to lpfc hba data structure.
15504  *
15505  * This routine checks to see if OAS is supported for this adapter. If
15506  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15507  * the enable oas flag is cleared and the pool created for OAS device data
15508  * is destroyed.
15509  *
15510  **/
15511 static void
15512 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15513 {
15514 
15515 	if (!phba->cfg_EnableXLane)
15516 		return;
15517 
15518 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15519 		phba->cfg_fof = 1;
15520 	} else {
15521 		phba->cfg_fof = 0;
15522 		mempool_destroy(phba->device_data_mem_pool);
15523 		phba->device_data_mem_pool = NULL;
15524 	}
15525 
15526 	return;
15527 }
15528 
15529 /**
15530  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15531  * @phba: pointer to lpfc hba data structure.
15532  *
15533  * This routine checks to see if RAS is supported by the adapter. Check the
15534  * function through which RAS support enablement is to be done.
15535  **/
15536 void
15537 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15538 {
15539 	/* if ASIC_GEN_NUM >= 0xC) */
15540 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15541 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15542 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15543 		    LPFC_SLI_INTF_FAMILY_G6)) {
15544 		phba->ras_fwlog.ras_hwsupport = true;
15545 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15546 		    phba->cfg_ras_fwlog_buffsize)
15547 			phba->ras_fwlog.ras_enabled = true;
15548 		else
15549 			phba->ras_fwlog.ras_enabled = false;
15550 	} else {
15551 		phba->ras_fwlog.ras_hwsupport = false;
15552 	}
15553 }
15554 
15555 
15556 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15557 
15558 static const struct pci_error_handlers lpfc_err_handler = {
15559 	.error_detected = lpfc_io_error_detected,
15560 	.slot_reset = lpfc_io_slot_reset,
15561 	.resume = lpfc_io_resume,
15562 };
15563 
15564 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15565 			 lpfc_pci_suspend_one,
15566 			 lpfc_pci_resume_one);
15567 
15568 static struct pci_driver lpfc_driver = {
15569 	.name		= LPFC_DRIVER_NAME,
15570 	.id_table	= lpfc_id_table,
15571 	.probe		= lpfc_pci_probe_one,
15572 	.remove		= lpfc_pci_remove_one,
15573 	.shutdown	= lpfc_pci_remove_one,
15574 	.driver.pm	= &lpfc_pci_pm_ops_one,
15575 	.err_handler    = &lpfc_err_handler,
15576 };
15577 
15578 static const struct file_operations lpfc_mgmt_fop = {
15579 	.owner = THIS_MODULE,
15580 };
15581 
15582 static struct miscdevice lpfc_mgmt_dev = {
15583 	.minor = MISC_DYNAMIC_MINOR,
15584 	.name = "lpfcmgmt",
15585 	.fops = &lpfc_mgmt_fop,
15586 };
15587 
15588 /**
15589  * lpfc_init - lpfc module initialization routine
15590  *
15591  * This routine is to be invoked when the lpfc module is loaded into the
15592  * kernel. The special kernel macro module_init() is used to indicate the
15593  * role of this routine to the kernel as lpfc module entry point.
15594  *
15595  * Return codes
15596  *   0 - successful
15597  *   -ENOMEM - FC attach transport failed
15598  *   all others - failed
15599  */
15600 static int __init
15601 lpfc_init(void)
15602 {
15603 	int error = 0;
15604 
15605 	pr_info(LPFC_MODULE_DESC "\n");
15606 	pr_info(LPFC_COPYRIGHT "\n");
15607 
15608 	error = misc_register(&lpfc_mgmt_dev);
15609 	if (error)
15610 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15611 			"misc_register returned with status %d", error);
15612 
15613 	error = -ENOMEM;
15614 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15615 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15616 	lpfc_transport_template =
15617 				fc_attach_transport(&lpfc_transport_functions);
15618 	if (lpfc_transport_template == NULL)
15619 		goto unregister;
15620 	lpfc_vport_transport_template =
15621 		fc_attach_transport(&lpfc_vport_transport_functions);
15622 	if (lpfc_vport_transport_template == NULL) {
15623 		fc_release_transport(lpfc_transport_template);
15624 		goto unregister;
15625 	}
15626 	lpfc_wqe_cmd_template();
15627 	lpfc_nvmet_cmd_template();
15628 
15629 	/* Initialize in case vector mapping is needed */
15630 	lpfc_present_cpu = num_present_cpus();
15631 
15632 	lpfc_pldv_detect = false;
15633 
15634 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15635 					"lpfc/sli4:online",
15636 					lpfc_cpu_online, lpfc_cpu_offline);
15637 	if (error < 0)
15638 		goto cpuhp_failure;
15639 	lpfc_cpuhp_state = error;
15640 
15641 	error = pci_register_driver(&lpfc_driver);
15642 	if (error)
15643 		goto unwind;
15644 
15645 	return error;
15646 
15647 unwind:
15648 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15649 cpuhp_failure:
15650 	fc_release_transport(lpfc_transport_template);
15651 	fc_release_transport(lpfc_vport_transport_template);
15652 unregister:
15653 	misc_deregister(&lpfc_mgmt_dev);
15654 
15655 	return error;
15656 }
15657 
15658 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15659 {
15660 	unsigned int start_idx;
15661 	unsigned int dbg_cnt;
15662 	unsigned int temp_idx;
15663 	int i;
15664 	int j = 0;
15665 	unsigned long rem_nsec, iflags;
15666 	bool log_verbose = false;
15667 	struct lpfc_vport *port_iterator;
15668 
15669 	/* Don't dump messages if we explicitly set log_verbose for the
15670 	 * physical port or any vport.
15671 	 */
15672 	if (phba->cfg_log_verbose)
15673 		return;
15674 
15675 	spin_lock_irqsave(&phba->port_list_lock, iflags);
15676 	list_for_each_entry(port_iterator, &phba->port_list, listentry) {
15677 		if (port_iterator->load_flag & FC_UNLOADING)
15678 			continue;
15679 		if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) {
15680 			if (port_iterator->cfg_log_verbose)
15681 				log_verbose = true;
15682 
15683 			scsi_host_put(lpfc_shost_from_vport(port_iterator));
15684 
15685 			if (log_verbose) {
15686 				spin_unlock_irqrestore(&phba->port_list_lock,
15687 						       iflags);
15688 				return;
15689 			}
15690 		}
15691 	}
15692 	spin_unlock_irqrestore(&phba->port_list_lock, iflags);
15693 
15694 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15695 		return;
15696 
15697 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15698 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15699 	if (!dbg_cnt)
15700 		goto out;
15701 	temp_idx = start_idx;
15702 	if (dbg_cnt >= DBG_LOG_SZ) {
15703 		dbg_cnt = DBG_LOG_SZ;
15704 		temp_idx -= 1;
15705 	} else {
15706 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15707 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15708 		} else {
15709 			if (start_idx < dbg_cnt)
15710 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15711 			else
15712 				start_idx -= dbg_cnt;
15713 		}
15714 	}
15715 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15716 		 start_idx, temp_idx, dbg_cnt);
15717 
15718 	for (i = 0; i < dbg_cnt; i++) {
15719 		if ((start_idx + i) < DBG_LOG_SZ)
15720 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15721 		else
15722 			temp_idx = j++;
15723 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15724 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15725 			 temp_idx,
15726 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15727 			 rem_nsec / 1000,
15728 			 phba->dbg_log[temp_idx].log);
15729 	}
15730 out:
15731 	atomic_set(&phba->dbg_log_cnt, 0);
15732 	atomic_set(&phba->dbg_log_dmping, 0);
15733 }
15734 
15735 __printf(2, 3)
15736 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15737 {
15738 	unsigned int idx;
15739 	va_list args;
15740 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15741 	struct va_format vaf;
15742 
15743 
15744 	va_start(args, fmt);
15745 	if (unlikely(dbg_dmping)) {
15746 		vaf.fmt = fmt;
15747 		vaf.va = &args;
15748 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15749 		va_end(args);
15750 		return;
15751 	}
15752 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15753 		DBG_LOG_SZ;
15754 
15755 	atomic_inc(&phba->dbg_log_cnt);
15756 
15757 	vscnprintf(phba->dbg_log[idx].log,
15758 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15759 	va_end(args);
15760 
15761 	phba->dbg_log[idx].t_ns = local_clock();
15762 }
15763 
15764 /**
15765  * lpfc_exit - lpfc module removal routine
15766  *
15767  * This routine is invoked when the lpfc module is removed from the kernel.
15768  * The special kernel macro module_exit() is used to indicate the role of
15769  * this routine to the kernel as lpfc module exit point.
15770  */
15771 static void __exit
15772 lpfc_exit(void)
15773 {
15774 	misc_deregister(&lpfc_mgmt_dev);
15775 	pci_unregister_driver(&lpfc_driver);
15776 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15777 	fc_release_transport(lpfc_transport_template);
15778 	fc_release_transport(lpfc_vport_transport_template);
15779 	idr_destroy(&lpfc_hba_index);
15780 }
15781 
15782 module_init(lpfc_init);
15783 module_exit(lpfc_exit);
15784 MODULE_LICENSE("GPL");
15785 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15786 MODULE_AUTHOR("Broadcom");
15787 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15788