1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 static bool lpfc_pldv_detect; 72 73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 75 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 77 static int lpfc_post_rcv_buf(struct lpfc_hba *); 78 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 80 static int lpfc_setup_endian_order(struct lpfc_hba *); 81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 82 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 84 static void lpfc_init_sgl_list(struct lpfc_hba *); 85 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 86 static void lpfc_free_active_sgl(struct lpfc_hba *); 87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 92 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 99 100 static struct scsi_transport_template *lpfc_transport_template = NULL; 101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 102 static DEFINE_IDR(lpfc_hba_index); 103 #define LPFC_NVMET_BUF_POST 254 104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 105 106 /** 107 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 108 * @phba: pointer to lpfc hba data structure. 109 * 110 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 111 * mailbox command. It retrieves the revision information from the HBA and 112 * collects the Vital Product Data (VPD) about the HBA for preparing the 113 * configuration of the HBA. 114 * 115 * Return codes: 116 * 0 - success. 117 * -ERESTART - requests the SLI layer to reset the HBA and try again. 118 * Any other value - indicates an error. 119 **/ 120 int 121 lpfc_config_port_prep(struct lpfc_hba *phba) 122 { 123 lpfc_vpd_t *vp = &phba->vpd; 124 int i = 0, rc; 125 LPFC_MBOXQ_t *pmb; 126 MAILBOX_t *mb; 127 char *lpfc_vpd_data = NULL; 128 uint16_t offset = 0; 129 static char licensed[56] = 130 "key unlock for use with gnu public licensed code only\0"; 131 static int init_key = 1; 132 133 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 134 if (!pmb) { 135 phba->link_state = LPFC_HBA_ERROR; 136 return -ENOMEM; 137 } 138 139 mb = &pmb->u.mb; 140 phba->link_state = LPFC_INIT_MBX_CMDS; 141 142 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 143 if (init_key) { 144 uint32_t *ptext = (uint32_t *) licensed; 145 146 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 147 *ptext = cpu_to_be32(*ptext); 148 init_key = 0; 149 } 150 151 lpfc_read_nv(phba, pmb); 152 memset((char*)mb->un.varRDnvp.rsvd3, 0, 153 sizeof (mb->un.varRDnvp.rsvd3)); 154 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 155 sizeof (licensed)); 156 157 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 158 159 if (rc != MBX_SUCCESS) { 160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 161 "0324 Config Port initialization " 162 "error, mbxCmd x%x READ_NVPARM, " 163 "mbxStatus x%x\n", 164 mb->mbxCommand, mb->mbxStatus); 165 mempool_free(pmb, phba->mbox_mem_pool); 166 return -ERESTART; 167 } 168 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 169 sizeof(phba->wwnn)); 170 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 171 sizeof(phba->wwpn)); 172 } 173 174 /* 175 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 176 * which was already set in lpfc_get_cfgparam() 177 */ 178 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 179 180 /* Setup and issue mailbox READ REV command */ 181 lpfc_read_rev(phba, pmb); 182 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 183 if (rc != MBX_SUCCESS) { 184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 185 "0439 Adapter failed to init, mbxCmd x%x " 186 "READ_REV, mbxStatus x%x\n", 187 mb->mbxCommand, mb->mbxStatus); 188 mempool_free( pmb, phba->mbox_mem_pool); 189 return -ERESTART; 190 } 191 192 193 /* 194 * The value of rr must be 1 since the driver set the cv field to 1. 195 * This setting requires the FW to set all revision fields. 196 */ 197 if (mb->un.varRdRev.rr == 0) { 198 vp->rev.rBit = 0; 199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 200 "0440 Adapter failed to init, READ_REV has " 201 "missing revision information.\n"); 202 mempool_free(pmb, phba->mbox_mem_pool); 203 return -ERESTART; 204 } 205 206 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 207 mempool_free(pmb, phba->mbox_mem_pool); 208 return -EINVAL; 209 } 210 211 /* Save information as VPD data */ 212 vp->rev.rBit = 1; 213 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 214 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 215 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 216 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 217 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 218 vp->rev.biuRev = mb->un.varRdRev.biuRev; 219 vp->rev.smRev = mb->un.varRdRev.smRev; 220 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 221 vp->rev.endecRev = mb->un.varRdRev.endecRev; 222 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 223 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 224 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 225 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 226 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 227 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 228 229 /* If the sli feature level is less then 9, we must 230 * tear down all RPIs and VPIs on link down if NPIV 231 * is enabled. 232 */ 233 if (vp->rev.feaLevelHigh < 9) 234 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 235 236 if (lpfc_is_LC_HBA(phba->pcidev->device)) 237 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 238 sizeof (phba->RandomData)); 239 240 /* Get adapter VPD information */ 241 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 242 if (!lpfc_vpd_data) 243 goto out_free_mbox; 244 do { 245 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 246 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 247 248 if (rc != MBX_SUCCESS) { 249 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 250 "0441 VPD not present on adapter, " 251 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 252 mb->mbxCommand, mb->mbxStatus); 253 mb->un.varDmp.word_cnt = 0; 254 } 255 /* dump mem may return a zero when finished or we got a 256 * mailbox error, either way we are done. 257 */ 258 if (mb->un.varDmp.word_cnt == 0) 259 break; 260 261 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 262 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 263 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 264 lpfc_vpd_data + offset, 265 mb->un.varDmp.word_cnt); 266 offset += mb->un.varDmp.word_cnt; 267 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 268 269 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 270 271 kfree(lpfc_vpd_data); 272 out_free_mbox: 273 mempool_free(pmb, phba->mbox_mem_pool); 274 return 0; 275 } 276 277 /** 278 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 279 * @phba: pointer to lpfc hba data structure. 280 * @pmboxq: pointer to the driver internal queue element for mailbox command. 281 * 282 * This is the completion handler for driver's configuring asynchronous event 283 * mailbox command to the device. If the mailbox command returns successfully, 284 * it will set internal async event support flag to 1; otherwise, it will 285 * set internal async event support flag to 0. 286 **/ 287 static void 288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 289 { 290 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 291 phba->temp_sensor_support = 1; 292 else 293 phba->temp_sensor_support = 0; 294 mempool_free(pmboxq, phba->mbox_mem_pool); 295 return; 296 } 297 298 /** 299 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 300 * @phba: pointer to lpfc hba data structure. 301 * @pmboxq: pointer to the driver internal queue element for mailbox command. 302 * 303 * This is the completion handler for dump mailbox command for getting 304 * wake up parameters. When this command complete, the response contain 305 * Option rom version of the HBA. This function translate the version number 306 * into a human readable string and store it in OptionROMVersion. 307 **/ 308 static void 309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 310 { 311 struct prog_id *prg; 312 uint32_t prog_id_word; 313 char dist = ' '; 314 /* character array used for decoding dist type. */ 315 char dist_char[] = "nabx"; 316 317 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 318 mempool_free(pmboxq, phba->mbox_mem_pool); 319 return; 320 } 321 322 prg = (struct prog_id *) &prog_id_word; 323 324 /* word 7 contain option rom version */ 325 prog_id_word = pmboxq->u.mb.un.varWords[7]; 326 327 /* Decode the Option rom version word to a readable string */ 328 if (prg->dist < 4) 329 dist = dist_char[prg->dist]; 330 331 if ((prg->dist == 3) && (prg->num == 0)) 332 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 333 prg->ver, prg->rev, prg->lev); 334 else 335 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 336 prg->ver, prg->rev, prg->lev, 337 dist, prg->num); 338 mempool_free(pmboxq, phba->mbox_mem_pool); 339 return; 340 } 341 342 /** 343 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 344 * @vport: pointer to lpfc vport data structure. 345 * 346 * 347 * Return codes 348 * None. 349 **/ 350 void 351 lpfc_update_vport_wwn(struct lpfc_vport *vport) 352 { 353 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 354 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 355 356 /* 357 * If the name is empty or there exists a soft name 358 * then copy the service params name, otherwise use the fc name 359 */ 360 if (vport->fc_nodename.u.wwn[0] == 0) 361 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 362 sizeof(struct lpfc_name)); 363 else 364 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 365 sizeof(struct lpfc_name)); 366 367 /* 368 * If the port name has changed, then set the Param changes flag 369 * to unreg the login 370 */ 371 if (vport->fc_portname.u.wwn[0] != 0 && 372 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 373 sizeof(struct lpfc_name))) 374 vport->vport_flag |= FAWWPN_PARAM_CHG; 375 376 if (vport->fc_portname.u.wwn[0] == 0 || 377 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 378 vport->vport_flag & FAWWPN_SET) { 379 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 380 sizeof(struct lpfc_name)); 381 vport->vport_flag &= ~FAWWPN_SET; 382 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 383 vport->vport_flag |= FAWWPN_SET; 384 } 385 else 386 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 387 sizeof(struct lpfc_name)); 388 } 389 390 /** 391 * lpfc_config_port_post - Perform lpfc initialization after config port 392 * @phba: pointer to lpfc hba data structure. 393 * 394 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 395 * command call. It performs all internal resource and state setups on the 396 * port: post IOCB buffers, enable appropriate host interrupt attentions, 397 * ELS ring timers, etc. 398 * 399 * Return codes 400 * 0 - success. 401 * Any other value - error. 402 **/ 403 int 404 lpfc_config_port_post(struct lpfc_hba *phba) 405 { 406 struct lpfc_vport *vport = phba->pport; 407 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 408 LPFC_MBOXQ_t *pmb; 409 MAILBOX_t *mb; 410 struct lpfc_dmabuf *mp; 411 struct lpfc_sli *psli = &phba->sli; 412 uint32_t status, timeout; 413 int i, j; 414 int rc; 415 416 spin_lock_irq(&phba->hbalock); 417 /* 418 * If the Config port completed correctly the HBA is not 419 * over heated any more. 420 */ 421 if (phba->over_temp_state == HBA_OVER_TEMP) 422 phba->over_temp_state = HBA_NORMAL_TEMP; 423 spin_unlock_irq(&phba->hbalock); 424 425 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 426 if (!pmb) { 427 phba->link_state = LPFC_HBA_ERROR; 428 return -ENOMEM; 429 } 430 mb = &pmb->u.mb; 431 432 /* Get login parameters for NID. */ 433 rc = lpfc_read_sparam(phba, pmb, 0); 434 if (rc) { 435 mempool_free(pmb, phba->mbox_mem_pool); 436 return -ENOMEM; 437 } 438 439 pmb->vport = vport; 440 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 442 "0448 Adapter failed init, mbxCmd x%x " 443 "READ_SPARM mbxStatus x%x\n", 444 mb->mbxCommand, mb->mbxStatus); 445 phba->link_state = LPFC_HBA_ERROR; 446 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 447 mempool_free(pmb, phba->mbox_mem_pool); 448 lpfc_mbuf_free(phba, mp->virt, mp->phys); 449 kfree(mp); 450 return -EIO; 451 } 452 453 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 454 455 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 456 lpfc_mbuf_free(phba, mp->virt, mp->phys); 457 kfree(mp); 458 pmb->ctx_buf = NULL; 459 lpfc_update_vport_wwn(vport); 460 461 /* Update the fc_host data structures with new wwn. */ 462 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 463 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 464 fc_host_max_npiv_vports(shost) = phba->max_vpi; 465 466 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 467 /* This should be consolidated into parse_vpd ? - mr */ 468 if (phba->SerialNumber[0] == 0) { 469 uint8_t *outptr; 470 471 outptr = &vport->fc_nodename.u.s.IEEE[0]; 472 for (i = 0; i < 12; i++) { 473 status = *outptr++; 474 j = ((status & 0xf0) >> 4); 475 if (j <= 9) 476 phba->SerialNumber[i] = 477 (char)((uint8_t) 0x30 + (uint8_t) j); 478 else 479 phba->SerialNumber[i] = 480 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 481 i++; 482 j = (status & 0xf); 483 if (j <= 9) 484 phba->SerialNumber[i] = 485 (char)((uint8_t) 0x30 + (uint8_t) j); 486 else 487 phba->SerialNumber[i] = 488 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 489 } 490 } 491 492 lpfc_read_config(phba, pmb); 493 pmb->vport = vport; 494 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 496 "0453 Adapter failed to init, mbxCmd x%x " 497 "READ_CONFIG, mbxStatus x%x\n", 498 mb->mbxCommand, mb->mbxStatus); 499 phba->link_state = LPFC_HBA_ERROR; 500 mempool_free( pmb, phba->mbox_mem_pool); 501 return -EIO; 502 } 503 504 /* Check if the port is disabled */ 505 lpfc_sli_read_link_ste(phba); 506 507 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 508 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 509 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 510 "3359 HBA queue depth changed from %d to %d\n", 511 phba->cfg_hba_queue_depth, 512 mb->un.varRdConfig.max_xri); 513 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 514 } 515 516 phba->lmt = mb->un.varRdConfig.lmt; 517 518 /* Get the default values for Model Name and Description */ 519 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 520 521 phba->link_state = LPFC_LINK_DOWN; 522 523 /* Only process IOCBs on ELS ring till hba_state is READY */ 524 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 525 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 526 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 527 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 528 529 /* Post receive buffers for desired rings */ 530 if (phba->sli_rev != 3) 531 lpfc_post_rcv_buf(phba); 532 533 /* 534 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 535 */ 536 if (phba->intr_type == MSIX) { 537 rc = lpfc_config_msi(phba, pmb); 538 if (rc) { 539 mempool_free(pmb, phba->mbox_mem_pool); 540 return -EIO; 541 } 542 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 543 if (rc != MBX_SUCCESS) { 544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 545 "0352 Config MSI mailbox command " 546 "failed, mbxCmd x%x, mbxStatus x%x\n", 547 pmb->u.mb.mbxCommand, 548 pmb->u.mb.mbxStatus); 549 mempool_free(pmb, phba->mbox_mem_pool); 550 return -EIO; 551 } 552 } 553 554 spin_lock_irq(&phba->hbalock); 555 /* Initialize ERATT handling flag */ 556 phba->hba_flag &= ~HBA_ERATT_HANDLED; 557 558 /* Enable appropriate host interrupts */ 559 if (lpfc_readl(phba->HCregaddr, &status)) { 560 spin_unlock_irq(&phba->hbalock); 561 return -EIO; 562 } 563 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 564 if (psli->num_rings > 0) 565 status |= HC_R0INT_ENA; 566 if (psli->num_rings > 1) 567 status |= HC_R1INT_ENA; 568 if (psli->num_rings > 2) 569 status |= HC_R2INT_ENA; 570 if (psli->num_rings > 3) 571 status |= HC_R3INT_ENA; 572 573 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 574 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 575 status &= ~(HC_R0INT_ENA); 576 577 writel(status, phba->HCregaddr); 578 readl(phba->HCregaddr); /* flush */ 579 spin_unlock_irq(&phba->hbalock); 580 581 /* Set up ring-0 (ELS) timer */ 582 timeout = phba->fc_ratov * 2; 583 mod_timer(&vport->els_tmofunc, 584 jiffies + msecs_to_jiffies(1000 * timeout)); 585 /* Set up heart beat (HB) timer */ 586 mod_timer(&phba->hb_tmofunc, 587 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 588 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 589 phba->last_completion_time = jiffies; 590 /* Set up error attention (ERATT) polling timer */ 591 mod_timer(&phba->eratt_poll, 592 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 593 594 if (phba->hba_flag & LINK_DISABLED) { 595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 596 "2598 Adapter Link is disabled.\n"); 597 lpfc_down_link(phba, pmb); 598 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 599 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 600 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 602 "2599 Adapter failed to issue DOWN_LINK" 603 " mbox command rc 0x%x\n", rc); 604 605 mempool_free(pmb, phba->mbox_mem_pool); 606 return -EIO; 607 } 608 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 609 mempool_free(pmb, phba->mbox_mem_pool); 610 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 611 if (rc) 612 return rc; 613 } 614 /* MBOX buffer will be freed in mbox compl */ 615 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 616 if (!pmb) { 617 phba->link_state = LPFC_HBA_ERROR; 618 return -ENOMEM; 619 } 620 621 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 622 pmb->mbox_cmpl = lpfc_config_async_cmpl; 623 pmb->vport = phba->pport; 624 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 625 626 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 627 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 628 "0456 Adapter failed to issue " 629 "ASYNCEVT_ENABLE mbox status x%x\n", 630 rc); 631 mempool_free(pmb, phba->mbox_mem_pool); 632 } 633 634 /* Get Option rom version */ 635 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 636 if (!pmb) { 637 phba->link_state = LPFC_HBA_ERROR; 638 return -ENOMEM; 639 } 640 641 lpfc_dump_wakeup_param(phba, pmb); 642 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 643 pmb->vport = phba->pport; 644 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 645 646 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 647 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 648 "0435 Adapter failed " 649 "to get Option ROM version status x%x\n", rc); 650 mempool_free(pmb, phba->mbox_mem_pool); 651 } 652 653 return 0; 654 } 655 656 /** 657 * lpfc_sli4_refresh_params - update driver copy of params. 658 * @phba: Pointer to HBA context object. 659 * 660 * This is called to refresh driver copy of dynamic fields from the 661 * common_get_sli4_parameters descriptor. 662 **/ 663 int 664 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 665 { 666 LPFC_MBOXQ_t *mboxq; 667 struct lpfc_mqe *mqe; 668 struct lpfc_sli4_parameters *mbx_sli4_parameters; 669 int length, rc; 670 671 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 672 if (!mboxq) 673 return -ENOMEM; 674 675 mqe = &mboxq->u.mqe; 676 /* Read the port's SLI4 Config Parameters */ 677 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 678 sizeof(struct lpfc_sli4_cfg_mhdr)); 679 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 680 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 681 length, LPFC_SLI4_MBX_EMBED); 682 683 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 684 if (unlikely(rc)) { 685 mempool_free(mboxq, phba->mbox_mem_pool); 686 return rc; 687 } 688 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 689 phba->sli4_hba.pc_sli4_params.mi_ver = 690 bf_get(cfg_mi_ver, mbx_sli4_parameters); 691 phba->sli4_hba.pc_sli4_params.cmf = 692 bf_get(cfg_cmf, mbx_sli4_parameters); 693 phba->sli4_hba.pc_sli4_params.pls = 694 bf_get(cfg_pvl, mbx_sli4_parameters); 695 696 mempool_free(mboxq, phba->mbox_mem_pool); 697 return rc; 698 } 699 700 /** 701 * lpfc_hba_init_link - Initialize the FC link 702 * @phba: pointer to lpfc hba data structure. 703 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 704 * 705 * This routine will issue the INIT_LINK mailbox command call. 706 * It is available to other drivers through the lpfc_hba data 707 * structure for use as a delayed link up mechanism with the 708 * module parameter lpfc_suppress_link_up. 709 * 710 * Return code 711 * 0 - success 712 * Any other value - error 713 **/ 714 static int 715 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 716 { 717 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 718 } 719 720 /** 721 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 722 * @phba: pointer to lpfc hba data structure. 723 * @fc_topology: desired fc topology. 724 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 725 * 726 * This routine will issue the INIT_LINK mailbox command call. 727 * It is available to other drivers through the lpfc_hba data 728 * structure for use as a delayed link up mechanism with the 729 * module parameter lpfc_suppress_link_up. 730 * 731 * Return code 732 * 0 - success 733 * Any other value - error 734 **/ 735 int 736 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 737 uint32_t flag) 738 { 739 struct lpfc_vport *vport = phba->pport; 740 LPFC_MBOXQ_t *pmb; 741 MAILBOX_t *mb; 742 int rc; 743 744 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 745 if (!pmb) { 746 phba->link_state = LPFC_HBA_ERROR; 747 return -ENOMEM; 748 } 749 mb = &pmb->u.mb; 750 pmb->vport = vport; 751 752 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 753 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 754 !(phba->lmt & LMT_1Gb)) || 755 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 756 !(phba->lmt & LMT_2Gb)) || 757 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 758 !(phba->lmt & LMT_4Gb)) || 759 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 760 !(phba->lmt & LMT_8Gb)) || 761 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 762 !(phba->lmt & LMT_10Gb)) || 763 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 764 !(phba->lmt & LMT_16Gb)) || 765 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 766 !(phba->lmt & LMT_32Gb)) || 767 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 768 !(phba->lmt & LMT_64Gb))) { 769 /* Reset link speed to auto */ 770 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 771 "1302 Invalid speed for this board:%d " 772 "Reset link speed to auto.\n", 773 phba->cfg_link_speed); 774 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 775 } 776 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 777 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 778 if (phba->sli_rev < LPFC_SLI_REV4) 779 lpfc_set_loopback_flag(phba); 780 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 781 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 783 "0498 Adapter failed to init, mbxCmd x%x " 784 "INIT_LINK, mbxStatus x%x\n", 785 mb->mbxCommand, mb->mbxStatus); 786 if (phba->sli_rev <= LPFC_SLI_REV3) { 787 /* Clear all interrupt enable conditions */ 788 writel(0, phba->HCregaddr); 789 readl(phba->HCregaddr); /* flush */ 790 /* Clear all pending interrupts */ 791 writel(0xffffffff, phba->HAregaddr); 792 readl(phba->HAregaddr); /* flush */ 793 } 794 phba->link_state = LPFC_HBA_ERROR; 795 if (rc != MBX_BUSY || flag == MBX_POLL) 796 mempool_free(pmb, phba->mbox_mem_pool); 797 return -EIO; 798 } 799 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 800 if (flag == MBX_POLL) 801 mempool_free(pmb, phba->mbox_mem_pool); 802 803 return 0; 804 } 805 806 /** 807 * lpfc_hba_down_link - this routine downs the FC link 808 * @phba: pointer to lpfc hba data structure. 809 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 810 * 811 * This routine will issue the DOWN_LINK mailbox command call. 812 * It is available to other drivers through the lpfc_hba data 813 * structure for use to stop the link. 814 * 815 * Return code 816 * 0 - success 817 * Any other value - error 818 **/ 819 static int 820 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 821 { 822 LPFC_MBOXQ_t *pmb; 823 int rc; 824 825 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 826 if (!pmb) { 827 phba->link_state = LPFC_HBA_ERROR; 828 return -ENOMEM; 829 } 830 831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 832 "0491 Adapter Link is disabled.\n"); 833 lpfc_down_link(phba, pmb); 834 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 835 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 836 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 838 "2522 Adapter failed to issue DOWN_LINK" 839 " mbox command rc 0x%x\n", rc); 840 841 mempool_free(pmb, phba->mbox_mem_pool); 842 return -EIO; 843 } 844 if (flag == MBX_POLL) 845 mempool_free(pmb, phba->mbox_mem_pool); 846 847 return 0; 848 } 849 850 /** 851 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 852 * @phba: pointer to lpfc HBA data structure. 853 * 854 * This routine will do LPFC uninitialization before the HBA is reset when 855 * bringing down the SLI Layer. 856 * 857 * Return codes 858 * 0 - success. 859 * Any other value - error. 860 **/ 861 int 862 lpfc_hba_down_prep(struct lpfc_hba *phba) 863 { 864 struct lpfc_vport **vports; 865 int i; 866 867 if (phba->sli_rev <= LPFC_SLI_REV3) { 868 /* Disable interrupts */ 869 writel(0, phba->HCregaddr); 870 readl(phba->HCregaddr); /* flush */ 871 } 872 873 if (phba->pport->load_flag & FC_UNLOADING) 874 lpfc_cleanup_discovery_resources(phba->pport); 875 else { 876 vports = lpfc_create_vport_work_array(phba); 877 if (vports != NULL) 878 for (i = 0; i <= phba->max_vports && 879 vports[i] != NULL; i++) 880 lpfc_cleanup_discovery_resources(vports[i]); 881 lpfc_destroy_vport_work_array(phba, vports); 882 } 883 return 0; 884 } 885 886 /** 887 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 888 * rspiocb which got deferred 889 * 890 * @phba: pointer to lpfc HBA data structure. 891 * 892 * This routine will cleanup completed slow path events after HBA is reset 893 * when bringing down the SLI Layer. 894 * 895 * 896 * Return codes 897 * void. 898 **/ 899 static void 900 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 901 { 902 struct lpfc_iocbq *rspiocbq; 903 struct hbq_dmabuf *dmabuf; 904 struct lpfc_cq_event *cq_event; 905 906 spin_lock_irq(&phba->hbalock); 907 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 908 spin_unlock_irq(&phba->hbalock); 909 910 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 911 /* Get the response iocb from the head of work queue */ 912 spin_lock_irq(&phba->hbalock); 913 list_remove_head(&phba->sli4_hba.sp_queue_event, 914 cq_event, struct lpfc_cq_event, list); 915 spin_unlock_irq(&phba->hbalock); 916 917 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 918 case CQE_CODE_COMPL_WQE: 919 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 920 cq_event); 921 lpfc_sli_release_iocbq(phba, rspiocbq); 922 break; 923 case CQE_CODE_RECEIVE: 924 case CQE_CODE_RECEIVE_V1: 925 dmabuf = container_of(cq_event, struct hbq_dmabuf, 926 cq_event); 927 lpfc_in_buf_free(phba, &dmabuf->dbuf); 928 } 929 } 930 } 931 932 /** 933 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 934 * @phba: pointer to lpfc HBA data structure. 935 * 936 * This routine will cleanup posted ELS buffers after the HBA is reset 937 * when bringing down the SLI Layer. 938 * 939 * 940 * Return codes 941 * void. 942 **/ 943 static void 944 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 945 { 946 struct lpfc_sli *psli = &phba->sli; 947 struct lpfc_sli_ring *pring; 948 struct lpfc_dmabuf *mp, *next_mp; 949 LIST_HEAD(buflist); 950 int count; 951 952 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 953 lpfc_sli_hbqbuf_free_all(phba); 954 else { 955 /* Cleanup preposted buffers on the ELS ring */ 956 pring = &psli->sli3_ring[LPFC_ELS_RING]; 957 spin_lock_irq(&phba->hbalock); 958 list_splice_init(&pring->postbufq, &buflist); 959 spin_unlock_irq(&phba->hbalock); 960 961 count = 0; 962 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 963 list_del(&mp->list); 964 count++; 965 lpfc_mbuf_free(phba, mp->virt, mp->phys); 966 kfree(mp); 967 } 968 969 spin_lock_irq(&phba->hbalock); 970 pring->postbufq_cnt -= count; 971 spin_unlock_irq(&phba->hbalock); 972 } 973 } 974 975 /** 976 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 977 * @phba: pointer to lpfc HBA data structure. 978 * 979 * This routine will cleanup the txcmplq after the HBA is reset when bringing 980 * down the SLI Layer. 981 * 982 * Return codes 983 * void 984 **/ 985 static void 986 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 987 { 988 struct lpfc_sli *psli = &phba->sli; 989 struct lpfc_queue *qp = NULL; 990 struct lpfc_sli_ring *pring; 991 LIST_HEAD(completions); 992 int i; 993 struct lpfc_iocbq *piocb, *next_iocb; 994 995 if (phba->sli_rev != LPFC_SLI_REV4) { 996 for (i = 0; i < psli->num_rings; i++) { 997 pring = &psli->sli3_ring[i]; 998 spin_lock_irq(&phba->hbalock); 999 /* At this point in time the HBA is either reset or DOA 1000 * Nothing should be on txcmplq as it will 1001 * NEVER complete. 1002 */ 1003 list_splice_init(&pring->txcmplq, &completions); 1004 pring->txcmplq_cnt = 0; 1005 spin_unlock_irq(&phba->hbalock); 1006 1007 lpfc_sli_abort_iocb_ring(phba, pring); 1008 } 1009 /* Cancel all the IOCBs from the completions list */ 1010 lpfc_sli_cancel_iocbs(phba, &completions, 1011 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1012 return; 1013 } 1014 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1015 pring = qp->pring; 1016 if (!pring) 1017 continue; 1018 spin_lock_irq(&pring->ring_lock); 1019 list_for_each_entry_safe(piocb, next_iocb, 1020 &pring->txcmplq, list) 1021 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1022 list_splice_init(&pring->txcmplq, &completions); 1023 pring->txcmplq_cnt = 0; 1024 spin_unlock_irq(&pring->ring_lock); 1025 lpfc_sli_abort_iocb_ring(phba, pring); 1026 } 1027 /* Cancel all the IOCBs from the completions list */ 1028 lpfc_sli_cancel_iocbs(phba, &completions, 1029 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1030 } 1031 1032 /** 1033 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1034 * @phba: pointer to lpfc HBA data structure. 1035 * 1036 * This routine will do uninitialization after the HBA is reset when bring 1037 * down the SLI Layer. 1038 * 1039 * Return codes 1040 * 0 - success. 1041 * Any other value - error. 1042 **/ 1043 static int 1044 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1045 { 1046 lpfc_hba_free_post_buf(phba); 1047 lpfc_hba_clean_txcmplq(phba); 1048 return 0; 1049 } 1050 1051 /** 1052 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1053 * @phba: pointer to lpfc HBA data structure. 1054 * 1055 * This routine will do uninitialization after the HBA is reset when bring 1056 * down the SLI Layer. 1057 * 1058 * Return codes 1059 * 0 - success. 1060 * Any other value - error. 1061 **/ 1062 static int 1063 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1064 { 1065 struct lpfc_io_buf *psb, *psb_next; 1066 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1067 struct lpfc_sli4_hdw_queue *qp; 1068 LIST_HEAD(aborts); 1069 LIST_HEAD(nvme_aborts); 1070 LIST_HEAD(nvmet_aborts); 1071 struct lpfc_sglq *sglq_entry = NULL; 1072 int cnt, idx; 1073 1074 1075 lpfc_sli_hbqbuf_free_all(phba); 1076 lpfc_hba_clean_txcmplq(phba); 1077 1078 /* At this point in time the HBA is either reset or DOA. Either 1079 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1080 * on the lpfc_els_sgl_list so that it can either be freed if the 1081 * driver is unloading or reposted if the driver is restarting 1082 * the port. 1083 */ 1084 1085 /* sgl_list_lock required because worker thread uses this 1086 * list. 1087 */ 1088 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1089 list_for_each_entry(sglq_entry, 1090 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1091 sglq_entry->state = SGL_FREED; 1092 1093 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1094 &phba->sli4_hba.lpfc_els_sgl_list); 1095 1096 1097 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1098 1099 /* abts_xxxx_buf_list_lock required because worker thread uses this 1100 * list. 1101 */ 1102 spin_lock_irq(&phba->hbalock); 1103 cnt = 0; 1104 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1105 qp = &phba->sli4_hba.hdwq[idx]; 1106 1107 spin_lock(&qp->abts_io_buf_list_lock); 1108 list_splice_init(&qp->lpfc_abts_io_buf_list, 1109 &aborts); 1110 1111 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1112 psb->pCmd = NULL; 1113 psb->status = IOSTAT_SUCCESS; 1114 cnt++; 1115 } 1116 spin_lock(&qp->io_buf_list_put_lock); 1117 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1118 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1119 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1120 qp->abts_scsi_io_bufs = 0; 1121 qp->abts_nvme_io_bufs = 0; 1122 spin_unlock(&qp->io_buf_list_put_lock); 1123 spin_unlock(&qp->abts_io_buf_list_lock); 1124 } 1125 spin_unlock_irq(&phba->hbalock); 1126 1127 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1128 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1129 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1130 &nvmet_aborts); 1131 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1132 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1133 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1134 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1135 } 1136 } 1137 1138 lpfc_sli4_free_sp_events(phba); 1139 return cnt; 1140 } 1141 1142 /** 1143 * lpfc_hba_down_post - Wrapper func for hba down post routine 1144 * @phba: pointer to lpfc HBA data structure. 1145 * 1146 * This routine wraps the actual SLI3 or SLI4 routine for performing 1147 * uninitialization after the HBA is reset when bring down the SLI Layer. 1148 * 1149 * Return codes 1150 * 0 - success. 1151 * Any other value - error. 1152 **/ 1153 int 1154 lpfc_hba_down_post(struct lpfc_hba *phba) 1155 { 1156 return (*phba->lpfc_hba_down_post)(phba); 1157 } 1158 1159 /** 1160 * lpfc_hb_timeout - The HBA-timer timeout handler 1161 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1162 * 1163 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1164 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1165 * work-port-events bitmap and the worker thread is notified. This timeout 1166 * event will be used by the worker thread to invoke the actual timeout 1167 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1168 * be performed in the timeout handler and the HBA timeout event bit shall 1169 * be cleared by the worker thread after it has taken the event bitmap out. 1170 **/ 1171 static void 1172 lpfc_hb_timeout(struct timer_list *t) 1173 { 1174 struct lpfc_hba *phba; 1175 uint32_t tmo_posted; 1176 unsigned long iflag; 1177 1178 phba = from_timer(phba, t, hb_tmofunc); 1179 1180 /* Check for heart beat timeout conditions */ 1181 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1182 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1183 if (!tmo_posted) 1184 phba->pport->work_port_events |= WORKER_HB_TMO; 1185 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1186 1187 /* Tell the worker thread there is work to do */ 1188 if (!tmo_posted) 1189 lpfc_worker_wake_up(phba); 1190 return; 1191 } 1192 1193 /** 1194 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1195 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1196 * 1197 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1198 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1199 * work-port-events bitmap and the worker thread is notified. This timeout 1200 * event will be used by the worker thread to invoke the actual timeout 1201 * handler routine, lpfc_rrq_handler. Any periodical operations will 1202 * be performed in the timeout handler and the RRQ timeout event bit shall 1203 * be cleared by the worker thread after it has taken the event bitmap out. 1204 **/ 1205 static void 1206 lpfc_rrq_timeout(struct timer_list *t) 1207 { 1208 struct lpfc_hba *phba; 1209 unsigned long iflag; 1210 1211 phba = from_timer(phba, t, rrq_tmr); 1212 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1213 if (!(phba->pport->load_flag & FC_UNLOADING)) 1214 phba->hba_flag |= HBA_RRQ_ACTIVE; 1215 else 1216 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1217 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1218 1219 if (!(phba->pport->load_flag & FC_UNLOADING)) 1220 lpfc_worker_wake_up(phba); 1221 } 1222 1223 /** 1224 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1225 * @phba: pointer to lpfc hba data structure. 1226 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1227 * 1228 * This is the callback function to the lpfc heart-beat mailbox command. 1229 * If configured, the lpfc driver issues the heart-beat mailbox command to 1230 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1231 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1232 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1233 * heart-beat outstanding state. Once the mailbox command comes back and 1234 * no error conditions detected, the heart-beat mailbox command timer is 1235 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1236 * state is cleared for the next heart-beat. If the timer expired with the 1237 * heart-beat outstanding state set, the driver will put the HBA offline. 1238 **/ 1239 static void 1240 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1241 { 1242 unsigned long drvr_flag; 1243 1244 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1245 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 1246 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1247 1248 /* Check and reset heart-beat timer if necessary */ 1249 mempool_free(pmboxq, phba->mbox_mem_pool); 1250 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1251 !(phba->link_state == LPFC_HBA_ERROR) && 1252 !(phba->pport->load_flag & FC_UNLOADING)) 1253 mod_timer(&phba->hb_tmofunc, 1254 jiffies + 1255 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1256 return; 1257 } 1258 1259 /* 1260 * lpfc_idle_stat_delay_work - idle_stat tracking 1261 * 1262 * This routine tracks per-cq idle_stat and determines polling decisions. 1263 * 1264 * Return codes: 1265 * None 1266 **/ 1267 static void 1268 lpfc_idle_stat_delay_work(struct work_struct *work) 1269 { 1270 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1271 struct lpfc_hba, 1272 idle_stat_delay_work); 1273 struct lpfc_queue *cq; 1274 struct lpfc_sli4_hdw_queue *hdwq; 1275 struct lpfc_idle_stat *idle_stat; 1276 u32 i, idle_percent; 1277 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1278 1279 if (phba->pport->load_flag & FC_UNLOADING) 1280 return; 1281 1282 if (phba->link_state == LPFC_HBA_ERROR || 1283 phba->pport->fc_flag & FC_OFFLINE_MODE || 1284 phba->cmf_active_mode != LPFC_CFG_OFF) 1285 goto requeue; 1286 1287 for_each_present_cpu(i) { 1288 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1289 cq = hdwq->io_cq; 1290 1291 /* Skip if we've already handled this cq's primary CPU */ 1292 if (cq->chann != i) 1293 continue; 1294 1295 idle_stat = &phba->sli4_hba.idle_stat[i]; 1296 1297 /* get_cpu_idle_time returns values as running counters. Thus, 1298 * to know the amount for this period, the prior counter values 1299 * need to be subtracted from the current counter values. 1300 * From there, the idle time stat can be calculated as a 1301 * percentage of 100 - the sum of the other consumption times. 1302 */ 1303 wall_idle = get_cpu_idle_time(i, &wall, 1); 1304 diff_idle = wall_idle - idle_stat->prev_idle; 1305 diff_wall = wall - idle_stat->prev_wall; 1306 1307 if (diff_wall <= diff_idle) 1308 busy_time = 0; 1309 else 1310 busy_time = diff_wall - diff_idle; 1311 1312 idle_percent = div64_u64(100 * busy_time, diff_wall); 1313 idle_percent = 100 - idle_percent; 1314 1315 if (idle_percent < 15) 1316 cq->poll_mode = LPFC_QUEUE_WORK; 1317 else 1318 cq->poll_mode = LPFC_IRQ_POLL; 1319 1320 idle_stat->prev_idle = wall_idle; 1321 idle_stat->prev_wall = wall; 1322 } 1323 1324 requeue: 1325 schedule_delayed_work(&phba->idle_stat_delay_work, 1326 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1327 } 1328 1329 static void 1330 lpfc_hb_eq_delay_work(struct work_struct *work) 1331 { 1332 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1333 struct lpfc_hba, eq_delay_work); 1334 struct lpfc_eq_intr_info *eqi, *eqi_new; 1335 struct lpfc_queue *eq, *eq_next; 1336 unsigned char *ena_delay = NULL; 1337 uint32_t usdelay; 1338 int i; 1339 1340 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1341 return; 1342 1343 if (phba->link_state == LPFC_HBA_ERROR || 1344 phba->pport->fc_flag & FC_OFFLINE_MODE) 1345 goto requeue; 1346 1347 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1348 GFP_KERNEL); 1349 if (!ena_delay) 1350 goto requeue; 1351 1352 for (i = 0; i < phba->cfg_irq_chann; i++) { 1353 /* Get the EQ corresponding to the IRQ vector */ 1354 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1355 if (!eq) 1356 continue; 1357 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1358 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1359 ena_delay[eq->last_cpu] = 1; 1360 } 1361 } 1362 1363 for_each_present_cpu(i) { 1364 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1365 if (ena_delay[i]) { 1366 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1367 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1368 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1369 } else { 1370 usdelay = 0; 1371 } 1372 1373 eqi->icnt = 0; 1374 1375 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1376 if (unlikely(eq->last_cpu != i)) { 1377 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1378 eq->last_cpu); 1379 list_move_tail(&eq->cpu_list, &eqi_new->list); 1380 continue; 1381 } 1382 if (usdelay != eq->q_mode) 1383 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1384 usdelay); 1385 } 1386 } 1387 1388 kfree(ena_delay); 1389 1390 requeue: 1391 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1392 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1393 } 1394 1395 /** 1396 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1397 * @phba: pointer to lpfc hba data structure. 1398 * 1399 * For each heartbeat, this routine does some heuristic methods to adjust 1400 * XRI distribution. The goal is to fully utilize free XRIs. 1401 **/ 1402 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1403 { 1404 u32 i; 1405 u32 hwq_count; 1406 1407 hwq_count = phba->cfg_hdw_queue; 1408 for (i = 0; i < hwq_count; i++) { 1409 /* Adjust XRIs in private pool */ 1410 lpfc_adjust_pvt_pool_count(phba, i); 1411 1412 /* Adjust high watermark */ 1413 lpfc_adjust_high_watermark(phba, i); 1414 1415 #ifdef LPFC_MXP_STAT 1416 /* Snapshot pbl, pvt and busy count */ 1417 lpfc_snapshot_mxp(phba, i); 1418 #endif 1419 } 1420 } 1421 1422 /** 1423 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1424 * @phba: pointer to lpfc hba data structure. 1425 * 1426 * If a HB mbox is not already in progrees, this routine will allocate 1427 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1428 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1429 **/ 1430 int 1431 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1432 { 1433 LPFC_MBOXQ_t *pmboxq; 1434 int retval; 1435 1436 /* Is a Heartbeat mbox already in progress */ 1437 if (phba->hba_flag & HBA_HBEAT_INP) 1438 return 0; 1439 1440 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1441 if (!pmboxq) 1442 return -ENOMEM; 1443 1444 lpfc_heart_beat(phba, pmboxq); 1445 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1446 pmboxq->vport = phba->pport; 1447 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1448 1449 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1450 mempool_free(pmboxq, phba->mbox_mem_pool); 1451 return -ENXIO; 1452 } 1453 phba->hba_flag |= HBA_HBEAT_INP; 1454 1455 return 0; 1456 } 1457 1458 /** 1459 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1460 * @phba: pointer to lpfc hba data structure. 1461 * 1462 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1463 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1464 * of the value of lpfc_enable_hba_heartbeat. 1465 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1466 * try to issue a MBX_HEARTBEAT mbox command. 1467 **/ 1468 void 1469 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1470 { 1471 if (phba->cfg_enable_hba_heartbeat) 1472 return; 1473 phba->hba_flag |= HBA_HBEAT_TMO; 1474 } 1475 1476 /** 1477 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1478 * @phba: pointer to lpfc hba data structure. 1479 * 1480 * This is the actual HBA-timer timeout handler to be invoked by the worker 1481 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1482 * handler performs any periodic operations needed for the device. If such 1483 * periodic event has already been attended to either in the interrupt handler 1484 * or by processing slow-ring or fast-ring events within the HBA-timer 1485 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1486 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1487 * is configured and there is no heart-beat mailbox command outstanding, a 1488 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1489 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1490 * to offline. 1491 **/ 1492 void 1493 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1494 { 1495 struct lpfc_vport **vports; 1496 struct lpfc_dmabuf *buf_ptr; 1497 int retval = 0; 1498 int i, tmo; 1499 struct lpfc_sli *psli = &phba->sli; 1500 LIST_HEAD(completions); 1501 1502 if (phba->cfg_xri_rebalancing) { 1503 /* Multi-XRI pools handler */ 1504 lpfc_hb_mxp_handler(phba); 1505 } 1506 1507 vports = lpfc_create_vport_work_array(phba); 1508 if (vports != NULL) 1509 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1510 lpfc_rcv_seq_check_edtov(vports[i]); 1511 lpfc_fdmi_change_check(vports[i]); 1512 } 1513 lpfc_destroy_vport_work_array(phba, vports); 1514 1515 if ((phba->link_state == LPFC_HBA_ERROR) || 1516 (phba->pport->load_flag & FC_UNLOADING) || 1517 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1518 return; 1519 1520 if (phba->elsbuf_cnt && 1521 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1522 spin_lock_irq(&phba->hbalock); 1523 list_splice_init(&phba->elsbuf, &completions); 1524 phba->elsbuf_cnt = 0; 1525 phba->elsbuf_prev_cnt = 0; 1526 spin_unlock_irq(&phba->hbalock); 1527 1528 while (!list_empty(&completions)) { 1529 list_remove_head(&completions, buf_ptr, 1530 struct lpfc_dmabuf, list); 1531 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1532 kfree(buf_ptr); 1533 } 1534 } 1535 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1536 1537 /* If there is no heart beat outstanding, issue a heartbeat command */ 1538 if (phba->cfg_enable_hba_heartbeat) { 1539 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1540 spin_lock_irq(&phba->pport->work_port_lock); 1541 if (time_after(phba->last_completion_time + 1542 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1543 jiffies)) { 1544 spin_unlock_irq(&phba->pport->work_port_lock); 1545 if (phba->hba_flag & HBA_HBEAT_INP) 1546 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1547 else 1548 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1549 goto out; 1550 } 1551 spin_unlock_irq(&phba->pport->work_port_lock); 1552 1553 /* Check if a MBX_HEARTBEAT is already in progress */ 1554 if (phba->hba_flag & HBA_HBEAT_INP) { 1555 /* 1556 * If heart beat timeout called with HBA_HBEAT_INP set 1557 * we need to give the hb mailbox cmd a chance to 1558 * complete or TMO. 1559 */ 1560 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1561 "0459 Adapter heartbeat still outstanding: " 1562 "last compl time was %d ms.\n", 1563 jiffies_to_msecs(jiffies 1564 - phba->last_completion_time)); 1565 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1566 } else { 1567 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1568 (list_empty(&psli->mboxq))) { 1569 1570 retval = lpfc_issue_hb_mbox(phba); 1571 if (retval) { 1572 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1573 goto out; 1574 } 1575 phba->skipped_hb = 0; 1576 } else if (time_before_eq(phba->last_completion_time, 1577 phba->skipped_hb)) { 1578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1579 "2857 Last completion time not " 1580 " updated in %d ms\n", 1581 jiffies_to_msecs(jiffies 1582 - phba->last_completion_time)); 1583 } else 1584 phba->skipped_hb = jiffies; 1585 1586 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1587 goto out; 1588 } 1589 } else { 1590 /* Check to see if we want to force a MBX_HEARTBEAT */ 1591 if (phba->hba_flag & HBA_HBEAT_TMO) { 1592 retval = lpfc_issue_hb_mbox(phba); 1593 if (retval) 1594 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1595 else 1596 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1597 goto out; 1598 } 1599 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1600 } 1601 out: 1602 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1603 } 1604 1605 /** 1606 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1607 * @phba: pointer to lpfc hba data structure. 1608 * 1609 * This routine is called to bring the HBA offline when HBA hardware error 1610 * other than Port Error 6 has been detected. 1611 **/ 1612 static void 1613 lpfc_offline_eratt(struct lpfc_hba *phba) 1614 { 1615 struct lpfc_sli *psli = &phba->sli; 1616 1617 spin_lock_irq(&phba->hbalock); 1618 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1619 spin_unlock_irq(&phba->hbalock); 1620 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1621 1622 lpfc_offline(phba); 1623 lpfc_reset_barrier(phba); 1624 spin_lock_irq(&phba->hbalock); 1625 lpfc_sli_brdreset(phba); 1626 spin_unlock_irq(&phba->hbalock); 1627 lpfc_hba_down_post(phba); 1628 lpfc_sli_brdready(phba, HS_MBRDY); 1629 lpfc_unblock_mgmt_io(phba); 1630 phba->link_state = LPFC_HBA_ERROR; 1631 return; 1632 } 1633 1634 /** 1635 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1636 * @phba: pointer to lpfc hba data structure. 1637 * 1638 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1639 * other than Port Error 6 has been detected. 1640 **/ 1641 void 1642 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1643 { 1644 spin_lock_irq(&phba->hbalock); 1645 if (phba->link_state == LPFC_HBA_ERROR && 1646 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1647 spin_unlock_irq(&phba->hbalock); 1648 return; 1649 } 1650 phba->link_state = LPFC_HBA_ERROR; 1651 spin_unlock_irq(&phba->hbalock); 1652 1653 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1654 lpfc_sli_flush_io_rings(phba); 1655 lpfc_offline(phba); 1656 lpfc_hba_down_post(phba); 1657 lpfc_unblock_mgmt_io(phba); 1658 } 1659 1660 /** 1661 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1662 * @phba: pointer to lpfc hba data structure. 1663 * 1664 * This routine is invoked to handle the deferred HBA hardware error 1665 * conditions. This type of error is indicated by HBA by setting ER1 1666 * and another ER bit in the host status register. The driver will 1667 * wait until the ER1 bit clears before handling the error condition. 1668 **/ 1669 static void 1670 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1671 { 1672 uint32_t old_host_status = phba->work_hs; 1673 struct lpfc_sli *psli = &phba->sli; 1674 1675 /* If the pci channel is offline, ignore possible errors, 1676 * since we cannot communicate with the pci card anyway. 1677 */ 1678 if (pci_channel_offline(phba->pcidev)) { 1679 spin_lock_irq(&phba->hbalock); 1680 phba->hba_flag &= ~DEFER_ERATT; 1681 spin_unlock_irq(&phba->hbalock); 1682 return; 1683 } 1684 1685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1686 "0479 Deferred Adapter Hardware Error " 1687 "Data: x%x x%x x%x\n", 1688 phba->work_hs, phba->work_status[0], 1689 phba->work_status[1]); 1690 1691 spin_lock_irq(&phba->hbalock); 1692 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1693 spin_unlock_irq(&phba->hbalock); 1694 1695 1696 /* 1697 * Firmware stops when it triggred erratt. That could cause the I/Os 1698 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1699 * SCSI layer retry it after re-establishing link. 1700 */ 1701 lpfc_sli_abort_fcp_rings(phba); 1702 1703 /* 1704 * There was a firmware error. Take the hba offline and then 1705 * attempt to restart it. 1706 */ 1707 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1708 lpfc_offline(phba); 1709 1710 /* Wait for the ER1 bit to clear.*/ 1711 while (phba->work_hs & HS_FFER1) { 1712 msleep(100); 1713 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1714 phba->work_hs = UNPLUG_ERR ; 1715 break; 1716 } 1717 /* If driver is unloading let the worker thread continue */ 1718 if (phba->pport->load_flag & FC_UNLOADING) { 1719 phba->work_hs = 0; 1720 break; 1721 } 1722 } 1723 1724 /* 1725 * This is to ptrotect against a race condition in which 1726 * first write to the host attention register clear the 1727 * host status register. 1728 */ 1729 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1730 phba->work_hs = old_host_status & ~HS_FFER1; 1731 1732 spin_lock_irq(&phba->hbalock); 1733 phba->hba_flag &= ~DEFER_ERATT; 1734 spin_unlock_irq(&phba->hbalock); 1735 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1736 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1737 } 1738 1739 static void 1740 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1741 { 1742 struct lpfc_board_event_header board_event; 1743 struct Scsi_Host *shost; 1744 1745 board_event.event_type = FC_REG_BOARD_EVENT; 1746 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1747 shost = lpfc_shost_from_vport(phba->pport); 1748 fc_host_post_vendor_event(shost, fc_get_event_number(), 1749 sizeof(board_event), 1750 (char *) &board_event, 1751 LPFC_NL_VENDOR_ID); 1752 } 1753 1754 /** 1755 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1756 * @phba: pointer to lpfc hba data structure. 1757 * 1758 * This routine is invoked to handle the following HBA hardware error 1759 * conditions: 1760 * 1 - HBA error attention interrupt 1761 * 2 - DMA ring index out of range 1762 * 3 - Mailbox command came back as unknown 1763 **/ 1764 static void 1765 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1766 { 1767 struct lpfc_vport *vport = phba->pport; 1768 struct lpfc_sli *psli = &phba->sli; 1769 uint32_t event_data; 1770 unsigned long temperature; 1771 struct temp_event temp_event_data; 1772 struct Scsi_Host *shost; 1773 1774 /* If the pci channel is offline, ignore possible errors, 1775 * since we cannot communicate with the pci card anyway. 1776 */ 1777 if (pci_channel_offline(phba->pcidev)) { 1778 spin_lock_irq(&phba->hbalock); 1779 phba->hba_flag &= ~DEFER_ERATT; 1780 spin_unlock_irq(&phba->hbalock); 1781 return; 1782 } 1783 1784 /* If resets are disabled then leave the HBA alone and return */ 1785 if (!phba->cfg_enable_hba_reset) 1786 return; 1787 1788 /* Send an internal error event to mgmt application */ 1789 lpfc_board_errevt_to_mgmt(phba); 1790 1791 if (phba->hba_flag & DEFER_ERATT) 1792 lpfc_handle_deferred_eratt(phba); 1793 1794 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1795 if (phba->work_hs & HS_FFER6) 1796 /* Re-establishing Link */ 1797 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1798 "1301 Re-establishing Link " 1799 "Data: x%x x%x x%x\n", 1800 phba->work_hs, phba->work_status[0], 1801 phba->work_status[1]); 1802 if (phba->work_hs & HS_FFER8) 1803 /* Device Zeroization */ 1804 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1805 "2861 Host Authentication device " 1806 "zeroization Data:x%x x%x x%x\n", 1807 phba->work_hs, phba->work_status[0], 1808 phba->work_status[1]); 1809 1810 spin_lock_irq(&phba->hbalock); 1811 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1812 spin_unlock_irq(&phba->hbalock); 1813 1814 /* 1815 * Firmware stops when it triggled erratt with HS_FFER6. 1816 * That could cause the I/Os dropped by the firmware. 1817 * Error iocb (I/O) on txcmplq and let the SCSI layer 1818 * retry it after re-establishing link. 1819 */ 1820 lpfc_sli_abort_fcp_rings(phba); 1821 1822 /* 1823 * There was a firmware error. Take the hba offline and then 1824 * attempt to restart it. 1825 */ 1826 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1827 lpfc_offline(phba); 1828 lpfc_sli_brdrestart(phba); 1829 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1830 lpfc_unblock_mgmt_io(phba); 1831 return; 1832 } 1833 lpfc_unblock_mgmt_io(phba); 1834 } else if (phba->work_hs & HS_CRIT_TEMP) { 1835 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1836 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1837 temp_event_data.event_code = LPFC_CRIT_TEMP; 1838 temp_event_data.data = (uint32_t)temperature; 1839 1840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1841 "0406 Adapter maximum temperature exceeded " 1842 "(%ld), taking this port offline " 1843 "Data: x%x x%x x%x\n", 1844 temperature, phba->work_hs, 1845 phba->work_status[0], phba->work_status[1]); 1846 1847 shost = lpfc_shost_from_vport(phba->pport); 1848 fc_host_post_vendor_event(shost, fc_get_event_number(), 1849 sizeof(temp_event_data), 1850 (char *) &temp_event_data, 1851 SCSI_NL_VID_TYPE_PCI 1852 | PCI_VENDOR_ID_EMULEX); 1853 1854 spin_lock_irq(&phba->hbalock); 1855 phba->over_temp_state = HBA_OVER_TEMP; 1856 spin_unlock_irq(&phba->hbalock); 1857 lpfc_offline_eratt(phba); 1858 1859 } else { 1860 /* The if clause above forces this code path when the status 1861 * failure is a value other than FFER6. Do not call the offline 1862 * twice. This is the adapter hardware error path. 1863 */ 1864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1865 "0457 Adapter Hardware Error " 1866 "Data: x%x x%x x%x\n", 1867 phba->work_hs, 1868 phba->work_status[0], phba->work_status[1]); 1869 1870 event_data = FC_REG_DUMP_EVENT; 1871 shost = lpfc_shost_from_vport(vport); 1872 fc_host_post_vendor_event(shost, fc_get_event_number(), 1873 sizeof(event_data), (char *) &event_data, 1874 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1875 1876 lpfc_offline_eratt(phba); 1877 } 1878 return; 1879 } 1880 1881 /** 1882 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1883 * @phba: pointer to lpfc hba data structure. 1884 * @mbx_action: flag for mailbox shutdown action. 1885 * @en_rn_msg: send reset/port recovery message. 1886 * This routine is invoked to perform an SLI4 port PCI function reset in 1887 * response to port status register polling attention. It waits for port 1888 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1889 * During this process, interrupt vectors are freed and later requested 1890 * for handling possible port resource change. 1891 **/ 1892 static int 1893 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1894 bool en_rn_msg) 1895 { 1896 int rc; 1897 uint32_t intr_mode; 1898 LPFC_MBOXQ_t *mboxq; 1899 1900 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1901 LPFC_SLI_INTF_IF_TYPE_2) { 1902 /* 1903 * On error status condition, driver need to wait for port 1904 * ready before performing reset. 1905 */ 1906 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1907 if (rc) 1908 return rc; 1909 } 1910 1911 /* need reset: attempt for port recovery */ 1912 if (en_rn_msg) 1913 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1914 "2887 Reset Needed: Attempting Port " 1915 "Recovery...\n"); 1916 1917 /* If we are no wait, the HBA has been reset and is not 1918 * functional, thus we should clear 1919 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1920 */ 1921 if (mbx_action == LPFC_MBX_NO_WAIT) { 1922 spin_lock_irq(&phba->hbalock); 1923 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1924 if (phba->sli.mbox_active) { 1925 mboxq = phba->sli.mbox_active; 1926 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1927 __lpfc_mbox_cmpl_put(phba, mboxq); 1928 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1929 phba->sli.mbox_active = NULL; 1930 } 1931 spin_unlock_irq(&phba->hbalock); 1932 } 1933 1934 lpfc_offline_prep(phba, mbx_action); 1935 lpfc_sli_flush_io_rings(phba); 1936 lpfc_offline(phba); 1937 /* release interrupt for possible resource change */ 1938 lpfc_sli4_disable_intr(phba); 1939 rc = lpfc_sli_brdrestart(phba); 1940 if (rc) { 1941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1942 "6309 Failed to restart board\n"); 1943 return rc; 1944 } 1945 /* request and enable interrupt */ 1946 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1947 if (intr_mode == LPFC_INTR_ERROR) { 1948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1949 "3175 Failed to enable interrupt\n"); 1950 return -EIO; 1951 } 1952 phba->intr_mode = intr_mode; 1953 rc = lpfc_online(phba); 1954 if (rc == 0) 1955 lpfc_unblock_mgmt_io(phba); 1956 1957 return rc; 1958 } 1959 1960 /** 1961 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1962 * @phba: pointer to lpfc hba data structure. 1963 * 1964 * This routine is invoked to handle the SLI4 HBA hardware error attention 1965 * conditions. 1966 **/ 1967 static void 1968 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1969 { 1970 struct lpfc_vport *vport = phba->pport; 1971 uint32_t event_data; 1972 struct Scsi_Host *shost; 1973 uint32_t if_type; 1974 struct lpfc_register portstat_reg = {0}; 1975 uint32_t reg_err1, reg_err2; 1976 uint32_t uerrlo_reg, uemasklo_reg; 1977 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1978 bool en_rn_msg = true; 1979 struct temp_event temp_event_data; 1980 struct lpfc_register portsmphr_reg; 1981 int rc, i; 1982 1983 /* If the pci channel is offline, ignore possible errors, since 1984 * we cannot communicate with the pci card anyway. 1985 */ 1986 if (pci_channel_offline(phba->pcidev)) { 1987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1988 "3166 pci channel is offline\n"); 1989 lpfc_sli_flush_io_rings(phba); 1990 return; 1991 } 1992 1993 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1994 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1995 switch (if_type) { 1996 case LPFC_SLI_INTF_IF_TYPE_0: 1997 pci_rd_rc1 = lpfc_readl( 1998 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1999 &uerrlo_reg); 2000 pci_rd_rc2 = lpfc_readl( 2001 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2002 &uemasklo_reg); 2003 /* consider PCI bus read error as pci_channel_offline */ 2004 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2005 return; 2006 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 2007 lpfc_sli4_offline_eratt(phba); 2008 return; 2009 } 2010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2011 "7623 Checking UE recoverable"); 2012 2013 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2014 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2015 &portsmphr_reg.word0)) 2016 continue; 2017 2018 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2019 &portsmphr_reg); 2020 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2021 LPFC_PORT_SEM_UE_RECOVERABLE) 2022 break; 2023 /*Sleep for 1Sec, before checking SEMAPHORE */ 2024 msleep(1000); 2025 } 2026 2027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2028 "4827 smphr_port_status x%x : Waited %dSec", 2029 smphr_port_status, i); 2030 2031 /* Recoverable UE, reset the HBA device */ 2032 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2033 LPFC_PORT_SEM_UE_RECOVERABLE) { 2034 for (i = 0; i < 20; i++) { 2035 msleep(1000); 2036 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2037 &portsmphr_reg.word0) && 2038 (LPFC_POST_STAGE_PORT_READY == 2039 bf_get(lpfc_port_smphr_port_status, 2040 &portsmphr_reg))) { 2041 rc = lpfc_sli4_port_sta_fn_reset(phba, 2042 LPFC_MBX_NO_WAIT, en_rn_msg); 2043 if (rc == 0) 2044 return; 2045 lpfc_printf_log(phba, KERN_ERR, 2046 LOG_TRACE_EVENT, 2047 "4215 Failed to recover UE"); 2048 break; 2049 } 2050 } 2051 } 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "7624 Firmware not ready: Failing UE recovery," 2054 " waited %dSec", i); 2055 phba->link_state = LPFC_HBA_ERROR; 2056 break; 2057 2058 case LPFC_SLI_INTF_IF_TYPE_2: 2059 case LPFC_SLI_INTF_IF_TYPE_6: 2060 pci_rd_rc1 = lpfc_readl( 2061 phba->sli4_hba.u.if_type2.STATUSregaddr, 2062 &portstat_reg.word0); 2063 /* consider PCI bus read error as pci_channel_offline */ 2064 if (pci_rd_rc1 == -EIO) { 2065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2066 "3151 PCI bus read access failure: x%x\n", 2067 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2068 lpfc_sli4_offline_eratt(phba); 2069 return; 2070 } 2071 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2072 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2073 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2075 "2889 Port Overtemperature event, " 2076 "taking port offline Data: x%x x%x\n", 2077 reg_err1, reg_err2); 2078 2079 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2080 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2081 temp_event_data.event_code = LPFC_CRIT_TEMP; 2082 temp_event_data.data = 0xFFFFFFFF; 2083 2084 shost = lpfc_shost_from_vport(phba->pport); 2085 fc_host_post_vendor_event(shost, fc_get_event_number(), 2086 sizeof(temp_event_data), 2087 (char *)&temp_event_data, 2088 SCSI_NL_VID_TYPE_PCI 2089 | PCI_VENDOR_ID_EMULEX); 2090 2091 spin_lock_irq(&phba->hbalock); 2092 phba->over_temp_state = HBA_OVER_TEMP; 2093 spin_unlock_irq(&phba->hbalock); 2094 lpfc_sli4_offline_eratt(phba); 2095 return; 2096 } 2097 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2098 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2099 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2100 "3143 Port Down: Firmware Update " 2101 "Detected\n"); 2102 en_rn_msg = false; 2103 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2104 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2106 "3144 Port Down: Debug Dump\n"); 2107 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2108 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2110 "3145 Port Down: Provisioning\n"); 2111 2112 /* If resets are disabled then leave the HBA alone and return */ 2113 if (!phba->cfg_enable_hba_reset) 2114 return; 2115 2116 /* Check port status register for function reset */ 2117 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2118 en_rn_msg); 2119 if (rc == 0) { 2120 /* don't report event on forced debug dump */ 2121 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2122 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2123 return; 2124 else 2125 break; 2126 } 2127 /* fall through for not able to recover */ 2128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2129 "3152 Unrecoverable error\n"); 2130 phba->link_state = LPFC_HBA_ERROR; 2131 break; 2132 case LPFC_SLI_INTF_IF_TYPE_1: 2133 default: 2134 break; 2135 } 2136 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2137 "3123 Report dump event to upper layer\n"); 2138 /* Send an internal error event to mgmt application */ 2139 lpfc_board_errevt_to_mgmt(phba); 2140 2141 event_data = FC_REG_DUMP_EVENT; 2142 shost = lpfc_shost_from_vport(vport); 2143 fc_host_post_vendor_event(shost, fc_get_event_number(), 2144 sizeof(event_data), (char *) &event_data, 2145 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2146 } 2147 2148 /** 2149 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2150 * @phba: pointer to lpfc HBA data structure. 2151 * 2152 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2153 * routine from the API jump table function pointer from the lpfc_hba struct. 2154 * 2155 * Return codes 2156 * 0 - success. 2157 * Any other value - error. 2158 **/ 2159 void 2160 lpfc_handle_eratt(struct lpfc_hba *phba) 2161 { 2162 (*phba->lpfc_handle_eratt)(phba); 2163 } 2164 2165 /** 2166 * lpfc_handle_latt - The HBA link event handler 2167 * @phba: pointer to lpfc hba data structure. 2168 * 2169 * This routine is invoked from the worker thread to handle a HBA host 2170 * attention link event. SLI3 only. 2171 **/ 2172 void 2173 lpfc_handle_latt(struct lpfc_hba *phba) 2174 { 2175 struct lpfc_vport *vport = phba->pport; 2176 struct lpfc_sli *psli = &phba->sli; 2177 LPFC_MBOXQ_t *pmb; 2178 volatile uint32_t control; 2179 struct lpfc_dmabuf *mp; 2180 int rc = 0; 2181 2182 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2183 if (!pmb) { 2184 rc = 1; 2185 goto lpfc_handle_latt_err_exit; 2186 } 2187 2188 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2189 if (!mp) { 2190 rc = 2; 2191 goto lpfc_handle_latt_free_pmb; 2192 } 2193 2194 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2195 if (!mp->virt) { 2196 rc = 3; 2197 goto lpfc_handle_latt_free_mp; 2198 } 2199 2200 /* Cleanup any outstanding ELS commands */ 2201 lpfc_els_flush_all_cmd(phba); 2202 2203 psli->slistat.link_event++; 2204 lpfc_read_topology(phba, pmb, mp); 2205 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2206 pmb->vport = vport; 2207 /* Block ELS IOCBs until we have processed this mbox command */ 2208 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2209 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2210 if (rc == MBX_NOT_FINISHED) { 2211 rc = 4; 2212 goto lpfc_handle_latt_free_mbuf; 2213 } 2214 2215 /* Clear Link Attention in HA REG */ 2216 spin_lock_irq(&phba->hbalock); 2217 writel(HA_LATT, phba->HAregaddr); 2218 readl(phba->HAregaddr); /* flush */ 2219 spin_unlock_irq(&phba->hbalock); 2220 2221 return; 2222 2223 lpfc_handle_latt_free_mbuf: 2224 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2225 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2226 lpfc_handle_latt_free_mp: 2227 kfree(mp); 2228 lpfc_handle_latt_free_pmb: 2229 mempool_free(pmb, phba->mbox_mem_pool); 2230 lpfc_handle_latt_err_exit: 2231 /* Enable Link attention interrupts */ 2232 spin_lock_irq(&phba->hbalock); 2233 psli->sli_flag |= LPFC_PROCESS_LA; 2234 control = readl(phba->HCregaddr); 2235 control |= HC_LAINT_ENA; 2236 writel(control, phba->HCregaddr); 2237 readl(phba->HCregaddr); /* flush */ 2238 2239 /* Clear Link Attention in HA REG */ 2240 writel(HA_LATT, phba->HAregaddr); 2241 readl(phba->HAregaddr); /* flush */ 2242 spin_unlock_irq(&phba->hbalock); 2243 lpfc_linkdown(phba); 2244 phba->link_state = LPFC_HBA_ERROR; 2245 2246 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2247 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2248 2249 return; 2250 } 2251 2252 /** 2253 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2254 * @phba: pointer to lpfc hba data structure. 2255 * @vpd: pointer to the vital product data. 2256 * @len: length of the vital product data in bytes. 2257 * 2258 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2259 * an array of characters. In this routine, the ModelName, ProgramType, and 2260 * ModelDesc, etc. fields of the phba data structure will be populated. 2261 * 2262 * Return codes 2263 * 0 - pointer to the VPD passed in is NULL 2264 * 1 - success 2265 **/ 2266 int 2267 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2268 { 2269 uint8_t lenlo, lenhi; 2270 int Length; 2271 int i, j; 2272 int finished = 0; 2273 int index = 0; 2274 2275 if (!vpd) 2276 return 0; 2277 2278 /* Vital Product */ 2279 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2280 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2281 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2282 (uint32_t) vpd[3]); 2283 while (!finished && (index < (len - 4))) { 2284 switch (vpd[index]) { 2285 case 0x82: 2286 case 0x91: 2287 index += 1; 2288 lenlo = vpd[index]; 2289 index += 1; 2290 lenhi = vpd[index]; 2291 index += 1; 2292 i = ((((unsigned short)lenhi) << 8) + lenlo); 2293 index += i; 2294 break; 2295 case 0x90: 2296 index += 1; 2297 lenlo = vpd[index]; 2298 index += 1; 2299 lenhi = vpd[index]; 2300 index += 1; 2301 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2302 if (Length > len - index) 2303 Length = len - index; 2304 while (Length > 0) { 2305 /* Look for Serial Number */ 2306 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2307 index += 2; 2308 i = vpd[index]; 2309 index += 1; 2310 j = 0; 2311 Length -= (3+i); 2312 while(i--) { 2313 phba->SerialNumber[j++] = vpd[index++]; 2314 if (j == 31) 2315 break; 2316 } 2317 phba->SerialNumber[j] = 0; 2318 continue; 2319 } 2320 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2321 phba->vpd_flag |= VPD_MODEL_DESC; 2322 index += 2; 2323 i = vpd[index]; 2324 index += 1; 2325 j = 0; 2326 Length -= (3+i); 2327 while(i--) { 2328 phba->ModelDesc[j++] = vpd[index++]; 2329 if (j == 255) 2330 break; 2331 } 2332 phba->ModelDesc[j] = 0; 2333 continue; 2334 } 2335 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2336 phba->vpd_flag |= VPD_MODEL_NAME; 2337 index += 2; 2338 i = vpd[index]; 2339 index += 1; 2340 j = 0; 2341 Length -= (3+i); 2342 while(i--) { 2343 phba->ModelName[j++] = vpd[index++]; 2344 if (j == 79) 2345 break; 2346 } 2347 phba->ModelName[j] = 0; 2348 continue; 2349 } 2350 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2351 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2352 index += 2; 2353 i = vpd[index]; 2354 index += 1; 2355 j = 0; 2356 Length -= (3+i); 2357 while(i--) { 2358 phba->ProgramType[j++] = vpd[index++]; 2359 if (j == 255) 2360 break; 2361 } 2362 phba->ProgramType[j] = 0; 2363 continue; 2364 } 2365 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2366 phba->vpd_flag |= VPD_PORT; 2367 index += 2; 2368 i = vpd[index]; 2369 index += 1; 2370 j = 0; 2371 Length -= (3+i); 2372 while(i--) { 2373 if ((phba->sli_rev == LPFC_SLI_REV4) && 2374 (phba->sli4_hba.pport_name_sta == 2375 LPFC_SLI4_PPNAME_GET)) { 2376 j++; 2377 index++; 2378 } else 2379 phba->Port[j++] = vpd[index++]; 2380 if (j == 19) 2381 break; 2382 } 2383 if ((phba->sli_rev != LPFC_SLI_REV4) || 2384 (phba->sli4_hba.pport_name_sta == 2385 LPFC_SLI4_PPNAME_NON)) 2386 phba->Port[j] = 0; 2387 continue; 2388 } 2389 else { 2390 index += 2; 2391 i = vpd[index]; 2392 index += 1; 2393 index += i; 2394 Length -= (3 + i); 2395 } 2396 } 2397 finished = 0; 2398 break; 2399 case 0x78: 2400 finished = 1; 2401 break; 2402 default: 2403 index ++; 2404 break; 2405 } 2406 } 2407 2408 return(1); 2409 } 2410 2411 /** 2412 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2413 * @phba: pointer to lpfc hba data structure. 2414 * @mdp: pointer to the data structure to hold the derived model name. 2415 * @descp: pointer to the data structure to hold the derived description. 2416 * 2417 * This routine retrieves HBA's description based on its registered PCI device 2418 * ID. The @descp passed into this function points to an array of 256 chars. It 2419 * shall be returned with the model name, maximum speed, and the host bus type. 2420 * The @mdp passed into this function points to an array of 80 chars. When the 2421 * function returns, the @mdp will be filled with the model name. 2422 **/ 2423 static void 2424 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2425 { 2426 lpfc_vpd_t *vp; 2427 uint16_t dev_id = phba->pcidev->device; 2428 int max_speed; 2429 int GE = 0; 2430 int oneConnect = 0; /* default is not a oneConnect */ 2431 struct { 2432 char *name; 2433 char *bus; 2434 char *function; 2435 } m = {"<Unknown>", "", ""}; 2436 2437 if (mdp && mdp[0] != '\0' 2438 && descp && descp[0] != '\0') 2439 return; 2440 2441 if (phba->lmt & LMT_64Gb) 2442 max_speed = 64; 2443 else if (phba->lmt & LMT_32Gb) 2444 max_speed = 32; 2445 else if (phba->lmt & LMT_16Gb) 2446 max_speed = 16; 2447 else if (phba->lmt & LMT_10Gb) 2448 max_speed = 10; 2449 else if (phba->lmt & LMT_8Gb) 2450 max_speed = 8; 2451 else if (phba->lmt & LMT_4Gb) 2452 max_speed = 4; 2453 else if (phba->lmt & LMT_2Gb) 2454 max_speed = 2; 2455 else if (phba->lmt & LMT_1Gb) 2456 max_speed = 1; 2457 else 2458 max_speed = 0; 2459 2460 vp = &phba->vpd; 2461 2462 switch (dev_id) { 2463 case PCI_DEVICE_ID_FIREFLY: 2464 m = (typeof(m)){"LP6000", "PCI", 2465 "Obsolete, Unsupported Fibre Channel Adapter"}; 2466 break; 2467 case PCI_DEVICE_ID_SUPERFLY: 2468 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2469 m = (typeof(m)){"LP7000", "PCI", ""}; 2470 else 2471 m = (typeof(m)){"LP7000E", "PCI", ""}; 2472 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2473 break; 2474 case PCI_DEVICE_ID_DRAGONFLY: 2475 m = (typeof(m)){"LP8000", "PCI", 2476 "Obsolete, Unsupported Fibre Channel Adapter"}; 2477 break; 2478 case PCI_DEVICE_ID_CENTAUR: 2479 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2480 m = (typeof(m)){"LP9002", "PCI", ""}; 2481 else 2482 m = (typeof(m)){"LP9000", "PCI", ""}; 2483 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2484 break; 2485 case PCI_DEVICE_ID_RFLY: 2486 m = (typeof(m)){"LP952", "PCI", 2487 "Obsolete, Unsupported Fibre Channel Adapter"}; 2488 break; 2489 case PCI_DEVICE_ID_PEGASUS: 2490 m = (typeof(m)){"LP9802", "PCI-X", 2491 "Obsolete, Unsupported Fibre Channel Adapter"}; 2492 break; 2493 case PCI_DEVICE_ID_THOR: 2494 m = (typeof(m)){"LP10000", "PCI-X", 2495 "Obsolete, Unsupported Fibre Channel Adapter"}; 2496 break; 2497 case PCI_DEVICE_ID_VIPER: 2498 m = (typeof(m)){"LPX1000", "PCI-X", 2499 "Obsolete, Unsupported Fibre Channel Adapter"}; 2500 break; 2501 case PCI_DEVICE_ID_PFLY: 2502 m = (typeof(m)){"LP982", "PCI-X", 2503 "Obsolete, Unsupported Fibre Channel Adapter"}; 2504 break; 2505 case PCI_DEVICE_ID_TFLY: 2506 m = (typeof(m)){"LP1050", "PCI-X", 2507 "Obsolete, Unsupported Fibre Channel Adapter"}; 2508 break; 2509 case PCI_DEVICE_ID_HELIOS: 2510 m = (typeof(m)){"LP11000", "PCI-X2", 2511 "Obsolete, Unsupported Fibre Channel Adapter"}; 2512 break; 2513 case PCI_DEVICE_ID_HELIOS_SCSP: 2514 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2515 "Obsolete, Unsupported Fibre Channel Adapter"}; 2516 break; 2517 case PCI_DEVICE_ID_HELIOS_DCSP: 2518 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2519 "Obsolete, Unsupported Fibre Channel Adapter"}; 2520 break; 2521 case PCI_DEVICE_ID_NEPTUNE: 2522 m = (typeof(m)){"LPe1000", "PCIe", 2523 "Obsolete, Unsupported Fibre Channel Adapter"}; 2524 break; 2525 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2526 m = (typeof(m)){"LPe1000-SP", "PCIe", 2527 "Obsolete, Unsupported Fibre Channel Adapter"}; 2528 break; 2529 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2530 m = (typeof(m)){"LPe1002-SP", "PCIe", 2531 "Obsolete, Unsupported Fibre Channel Adapter"}; 2532 break; 2533 case PCI_DEVICE_ID_BMID: 2534 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2535 break; 2536 case PCI_DEVICE_ID_BSMB: 2537 m = (typeof(m)){"LP111", "PCI-X2", 2538 "Obsolete, Unsupported Fibre Channel Adapter"}; 2539 break; 2540 case PCI_DEVICE_ID_ZEPHYR: 2541 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2542 break; 2543 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2544 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2545 break; 2546 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2547 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2548 GE = 1; 2549 break; 2550 case PCI_DEVICE_ID_ZMID: 2551 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2552 break; 2553 case PCI_DEVICE_ID_ZSMB: 2554 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2555 break; 2556 case PCI_DEVICE_ID_LP101: 2557 m = (typeof(m)){"LP101", "PCI-X", 2558 "Obsolete, Unsupported Fibre Channel Adapter"}; 2559 break; 2560 case PCI_DEVICE_ID_LP10000S: 2561 m = (typeof(m)){"LP10000-S", "PCI", 2562 "Obsolete, Unsupported Fibre Channel Adapter"}; 2563 break; 2564 case PCI_DEVICE_ID_LP11000S: 2565 m = (typeof(m)){"LP11000-S", "PCI-X2", 2566 "Obsolete, Unsupported Fibre Channel Adapter"}; 2567 break; 2568 case PCI_DEVICE_ID_LPE11000S: 2569 m = (typeof(m)){"LPe11000-S", "PCIe", 2570 "Obsolete, Unsupported Fibre Channel Adapter"}; 2571 break; 2572 case PCI_DEVICE_ID_SAT: 2573 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2574 break; 2575 case PCI_DEVICE_ID_SAT_MID: 2576 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2577 break; 2578 case PCI_DEVICE_ID_SAT_SMB: 2579 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2580 break; 2581 case PCI_DEVICE_ID_SAT_DCSP: 2582 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2583 break; 2584 case PCI_DEVICE_ID_SAT_SCSP: 2585 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2586 break; 2587 case PCI_DEVICE_ID_SAT_S: 2588 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2589 break; 2590 case PCI_DEVICE_ID_HORNET: 2591 m = (typeof(m)){"LP21000", "PCIe", 2592 "Obsolete, Unsupported FCoE Adapter"}; 2593 GE = 1; 2594 break; 2595 case PCI_DEVICE_ID_PROTEUS_VF: 2596 m = (typeof(m)){"LPev12000", "PCIe IOV", 2597 "Obsolete, Unsupported Fibre Channel Adapter"}; 2598 break; 2599 case PCI_DEVICE_ID_PROTEUS_PF: 2600 m = (typeof(m)){"LPev12000", "PCIe IOV", 2601 "Obsolete, Unsupported Fibre Channel Adapter"}; 2602 break; 2603 case PCI_DEVICE_ID_PROTEUS_S: 2604 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2605 "Obsolete, Unsupported Fibre Channel Adapter"}; 2606 break; 2607 case PCI_DEVICE_ID_TIGERSHARK: 2608 oneConnect = 1; 2609 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2610 break; 2611 case PCI_DEVICE_ID_TOMCAT: 2612 oneConnect = 1; 2613 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2614 break; 2615 case PCI_DEVICE_ID_FALCON: 2616 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2617 "EmulexSecure Fibre"}; 2618 break; 2619 case PCI_DEVICE_ID_BALIUS: 2620 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2621 "Obsolete, Unsupported Fibre Channel Adapter"}; 2622 break; 2623 case PCI_DEVICE_ID_LANCER_FC: 2624 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2625 break; 2626 case PCI_DEVICE_ID_LANCER_FC_VF: 2627 m = (typeof(m)){"LPe16000", "PCIe", 2628 "Obsolete, Unsupported Fibre Channel Adapter"}; 2629 break; 2630 case PCI_DEVICE_ID_LANCER_FCOE: 2631 oneConnect = 1; 2632 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2633 break; 2634 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2635 oneConnect = 1; 2636 m = (typeof(m)){"OCe15100", "PCIe", 2637 "Obsolete, Unsupported FCoE"}; 2638 break; 2639 case PCI_DEVICE_ID_LANCER_G6_FC: 2640 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2641 break; 2642 case PCI_DEVICE_ID_LANCER_G7_FC: 2643 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2644 break; 2645 case PCI_DEVICE_ID_LANCER_G7P_FC: 2646 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2647 break; 2648 case PCI_DEVICE_ID_SKYHAWK: 2649 case PCI_DEVICE_ID_SKYHAWK_VF: 2650 oneConnect = 1; 2651 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2652 break; 2653 default: 2654 m = (typeof(m)){"Unknown", "", ""}; 2655 break; 2656 } 2657 2658 if (mdp && mdp[0] == '\0') 2659 snprintf(mdp, 79,"%s", m.name); 2660 /* 2661 * oneConnect hba requires special processing, they are all initiators 2662 * and we put the port number on the end 2663 */ 2664 if (descp && descp[0] == '\0') { 2665 if (oneConnect) 2666 snprintf(descp, 255, 2667 "Emulex OneConnect %s, %s Initiator %s", 2668 m.name, m.function, 2669 phba->Port); 2670 else if (max_speed == 0) 2671 snprintf(descp, 255, 2672 "Emulex %s %s %s", 2673 m.name, m.bus, m.function); 2674 else 2675 snprintf(descp, 255, 2676 "Emulex %s %d%s %s %s", 2677 m.name, max_speed, (GE) ? "GE" : "Gb", 2678 m.bus, m.function); 2679 } 2680 } 2681 2682 /** 2683 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2684 * @phba: pointer to lpfc hba data structure. 2685 * @pring: pointer to a IOCB ring. 2686 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2687 * 2688 * This routine posts a given number of IOCBs with the associated DMA buffer 2689 * descriptors specified by the cnt argument to the given IOCB ring. 2690 * 2691 * Return codes 2692 * The number of IOCBs NOT able to be posted to the IOCB ring. 2693 **/ 2694 int 2695 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2696 { 2697 IOCB_t *icmd; 2698 struct lpfc_iocbq *iocb; 2699 struct lpfc_dmabuf *mp1, *mp2; 2700 2701 cnt += pring->missbufcnt; 2702 2703 /* While there are buffers to post */ 2704 while (cnt > 0) { 2705 /* Allocate buffer for command iocb */ 2706 iocb = lpfc_sli_get_iocbq(phba); 2707 if (iocb == NULL) { 2708 pring->missbufcnt = cnt; 2709 return cnt; 2710 } 2711 icmd = &iocb->iocb; 2712 2713 /* 2 buffers can be posted per command */ 2714 /* Allocate buffer to post */ 2715 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2716 if (mp1) 2717 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2718 if (!mp1 || !mp1->virt) { 2719 kfree(mp1); 2720 lpfc_sli_release_iocbq(phba, iocb); 2721 pring->missbufcnt = cnt; 2722 return cnt; 2723 } 2724 2725 INIT_LIST_HEAD(&mp1->list); 2726 /* Allocate buffer to post */ 2727 if (cnt > 1) { 2728 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2729 if (mp2) 2730 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2731 &mp2->phys); 2732 if (!mp2 || !mp2->virt) { 2733 kfree(mp2); 2734 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2735 kfree(mp1); 2736 lpfc_sli_release_iocbq(phba, iocb); 2737 pring->missbufcnt = cnt; 2738 return cnt; 2739 } 2740 2741 INIT_LIST_HEAD(&mp2->list); 2742 } else { 2743 mp2 = NULL; 2744 } 2745 2746 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2747 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2748 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2749 icmd->ulpBdeCount = 1; 2750 cnt--; 2751 if (mp2) { 2752 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2753 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2754 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2755 cnt--; 2756 icmd->ulpBdeCount = 2; 2757 } 2758 2759 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2760 icmd->ulpLe = 1; 2761 2762 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2763 IOCB_ERROR) { 2764 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2765 kfree(mp1); 2766 cnt++; 2767 if (mp2) { 2768 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2769 kfree(mp2); 2770 cnt++; 2771 } 2772 lpfc_sli_release_iocbq(phba, iocb); 2773 pring->missbufcnt = cnt; 2774 return cnt; 2775 } 2776 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2777 if (mp2) 2778 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2779 } 2780 pring->missbufcnt = 0; 2781 return 0; 2782 } 2783 2784 /** 2785 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2786 * @phba: pointer to lpfc hba data structure. 2787 * 2788 * This routine posts initial receive IOCB buffers to the ELS ring. The 2789 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2790 * set to 64 IOCBs. SLI3 only. 2791 * 2792 * Return codes 2793 * 0 - success (currently always success) 2794 **/ 2795 static int 2796 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2797 { 2798 struct lpfc_sli *psli = &phba->sli; 2799 2800 /* Ring 0, ELS / CT buffers */ 2801 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2802 /* Ring 2 - FCP no buffers needed */ 2803 2804 return 0; 2805 } 2806 2807 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2808 2809 /** 2810 * lpfc_sha_init - Set up initial array of hash table entries 2811 * @HashResultPointer: pointer to an array as hash table. 2812 * 2813 * This routine sets up the initial values to the array of hash table entries 2814 * for the LC HBAs. 2815 **/ 2816 static void 2817 lpfc_sha_init(uint32_t * HashResultPointer) 2818 { 2819 HashResultPointer[0] = 0x67452301; 2820 HashResultPointer[1] = 0xEFCDAB89; 2821 HashResultPointer[2] = 0x98BADCFE; 2822 HashResultPointer[3] = 0x10325476; 2823 HashResultPointer[4] = 0xC3D2E1F0; 2824 } 2825 2826 /** 2827 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2828 * @HashResultPointer: pointer to an initial/result hash table. 2829 * @HashWorkingPointer: pointer to an working hash table. 2830 * 2831 * This routine iterates an initial hash table pointed by @HashResultPointer 2832 * with the values from the working hash table pointeed by @HashWorkingPointer. 2833 * The results are putting back to the initial hash table, returned through 2834 * the @HashResultPointer as the result hash table. 2835 **/ 2836 static void 2837 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2838 { 2839 int t; 2840 uint32_t TEMP; 2841 uint32_t A, B, C, D, E; 2842 t = 16; 2843 do { 2844 HashWorkingPointer[t] = 2845 S(1, 2846 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2847 8] ^ 2848 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2849 } while (++t <= 79); 2850 t = 0; 2851 A = HashResultPointer[0]; 2852 B = HashResultPointer[1]; 2853 C = HashResultPointer[2]; 2854 D = HashResultPointer[3]; 2855 E = HashResultPointer[4]; 2856 2857 do { 2858 if (t < 20) { 2859 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2860 } else if (t < 40) { 2861 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2862 } else if (t < 60) { 2863 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2864 } else { 2865 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2866 } 2867 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2868 E = D; 2869 D = C; 2870 C = S(30, B); 2871 B = A; 2872 A = TEMP; 2873 } while (++t <= 79); 2874 2875 HashResultPointer[0] += A; 2876 HashResultPointer[1] += B; 2877 HashResultPointer[2] += C; 2878 HashResultPointer[3] += D; 2879 HashResultPointer[4] += E; 2880 2881 } 2882 2883 /** 2884 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2885 * @RandomChallenge: pointer to the entry of host challenge random number array. 2886 * @HashWorking: pointer to the entry of the working hash array. 2887 * 2888 * This routine calculates the working hash array referred by @HashWorking 2889 * from the challenge random numbers associated with the host, referred by 2890 * @RandomChallenge. The result is put into the entry of the working hash 2891 * array and returned by reference through @HashWorking. 2892 **/ 2893 static void 2894 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2895 { 2896 *HashWorking = (*RandomChallenge ^ *HashWorking); 2897 } 2898 2899 /** 2900 * lpfc_hba_init - Perform special handling for LC HBA initialization 2901 * @phba: pointer to lpfc hba data structure. 2902 * @hbainit: pointer to an array of unsigned 32-bit integers. 2903 * 2904 * This routine performs the special handling for LC HBA initialization. 2905 **/ 2906 void 2907 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2908 { 2909 int t; 2910 uint32_t *HashWorking; 2911 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2912 2913 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2914 if (!HashWorking) 2915 return; 2916 2917 HashWorking[0] = HashWorking[78] = *pwwnn++; 2918 HashWorking[1] = HashWorking[79] = *pwwnn; 2919 2920 for (t = 0; t < 7; t++) 2921 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2922 2923 lpfc_sha_init(hbainit); 2924 lpfc_sha_iterate(hbainit, HashWorking); 2925 kfree(HashWorking); 2926 } 2927 2928 /** 2929 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2930 * @vport: pointer to a virtual N_Port data structure. 2931 * 2932 * This routine performs the necessary cleanups before deleting the @vport. 2933 * It invokes the discovery state machine to perform necessary state 2934 * transitions and to release the ndlps associated with the @vport. Note, 2935 * the physical port is treated as @vport 0. 2936 **/ 2937 void 2938 lpfc_cleanup(struct lpfc_vport *vport) 2939 { 2940 struct lpfc_hba *phba = vport->phba; 2941 struct lpfc_nodelist *ndlp, *next_ndlp; 2942 int i = 0; 2943 2944 if (phba->link_state > LPFC_LINK_DOWN) 2945 lpfc_port_link_failure(vport); 2946 2947 /* Clean up VMID resources */ 2948 if (lpfc_is_vmid_enabled(phba)) 2949 lpfc_vmid_vport_cleanup(vport); 2950 2951 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2952 if (vport->port_type != LPFC_PHYSICAL_PORT && 2953 ndlp->nlp_DID == Fabric_DID) { 2954 /* Just free up ndlp with Fabric_DID for vports */ 2955 lpfc_nlp_put(ndlp); 2956 continue; 2957 } 2958 2959 if (ndlp->nlp_DID == Fabric_Cntl_DID && 2960 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2961 lpfc_nlp_put(ndlp); 2962 continue; 2963 } 2964 2965 /* Fabric Ports not in UNMAPPED state are cleaned up in the 2966 * DEVICE_RM event. 2967 */ 2968 if (ndlp->nlp_type & NLP_FABRIC && 2969 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 2970 lpfc_disc_state_machine(vport, ndlp, NULL, 2971 NLP_EVT_DEVICE_RECOVERY); 2972 2973 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 2974 lpfc_disc_state_machine(vport, ndlp, NULL, 2975 NLP_EVT_DEVICE_RM); 2976 } 2977 2978 /* This is a special case flush to return all 2979 * IOs before entering this loop. There are 2980 * two points in the code where a flush is 2981 * avoided if the FC_UNLOADING flag is set. 2982 * one is in the multipool destroy, 2983 * (this prevents a crash) and the other is 2984 * in the nvme abort handler, ( also prevents 2985 * a crash). Both of these exceptions are 2986 * cases where the slot is still accessible. 2987 * The flush here is only when the pci slot 2988 * is offline. 2989 */ 2990 if (vport->load_flag & FC_UNLOADING && 2991 pci_channel_offline(phba->pcidev)) 2992 lpfc_sli_flush_io_rings(vport->phba); 2993 2994 /* At this point, ALL ndlp's should be gone 2995 * because of the previous NLP_EVT_DEVICE_RM. 2996 * Lets wait for this to happen, if needed. 2997 */ 2998 while (!list_empty(&vport->fc_nodes)) { 2999 if (i++ > 3000) { 3000 lpfc_printf_vlog(vport, KERN_ERR, 3001 LOG_TRACE_EVENT, 3002 "0233 Nodelist not empty\n"); 3003 list_for_each_entry_safe(ndlp, next_ndlp, 3004 &vport->fc_nodes, nlp_listp) { 3005 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3006 LOG_DISCOVERY, 3007 "0282 did:x%x ndlp:x%px " 3008 "refcnt:%d xflags x%x nflag x%x\n", 3009 ndlp->nlp_DID, (void *)ndlp, 3010 kref_read(&ndlp->kref), 3011 ndlp->fc4_xpt_flags, 3012 ndlp->nlp_flag); 3013 } 3014 break; 3015 } 3016 3017 /* Wait for any activity on ndlps to settle */ 3018 msleep(10); 3019 } 3020 lpfc_cleanup_vports_rrqs(vport, NULL); 3021 } 3022 3023 /** 3024 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3025 * @vport: pointer to a virtual N_Port data structure. 3026 * 3027 * This routine stops all the timers associated with a @vport. This function 3028 * is invoked before disabling or deleting a @vport. Note that the physical 3029 * port is treated as @vport 0. 3030 **/ 3031 void 3032 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3033 { 3034 del_timer_sync(&vport->els_tmofunc); 3035 del_timer_sync(&vport->delayed_disc_tmo); 3036 lpfc_can_disctmo(vport); 3037 return; 3038 } 3039 3040 /** 3041 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3042 * @phba: pointer to lpfc hba data structure. 3043 * 3044 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3045 * caller of this routine should already hold the host lock. 3046 **/ 3047 void 3048 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3049 { 3050 /* Clear pending FCF rediscovery wait flag */ 3051 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3052 3053 /* Now, try to stop the timer */ 3054 del_timer(&phba->fcf.redisc_wait); 3055 } 3056 3057 /** 3058 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3059 * @phba: pointer to lpfc hba data structure. 3060 * 3061 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3062 * checks whether the FCF rediscovery wait timer is pending with the host 3063 * lock held before proceeding with disabling the timer and clearing the 3064 * wait timer pendig flag. 3065 **/ 3066 void 3067 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3068 { 3069 spin_lock_irq(&phba->hbalock); 3070 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3071 /* FCF rediscovery timer already fired or stopped */ 3072 spin_unlock_irq(&phba->hbalock); 3073 return; 3074 } 3075 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3076 /* Clear failover in progress flags */ 3077 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3078 spin_unlock_irq(&phba->hbalock); 3079 } 3080 3081 /** 3082 * lpfc_cmf_stop - Stop CMF processing 3083 * @phba: pointer to lpfc hba data structure. 3084 * 3085 * This is called when the link goes down or if CMF mode is turned OFF. 3086 * It is also called when going offline or unloaded just before the 3087 * congestion info buffer is unregistered. 3088 **/ 3089 void 3090 lpfc_cmf_stop(struct lpfc_hba *phba) 3091 { 3092 int cpu; 3093 struct lpfc_cgn_stat *cgs; 3094 3095 /* We only do something if CMF is enabled */ 3096 if (!phba->sli4_hba.pc_sli4_params.cmf) 3097 return; 3098 3099 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3100 "6221 Stop CMF / Cancel Timer\n"); 3101 3102 /* Cancel the CMF timer */ 3103 hrtimer_cancel(&phba->cmf_timer); 3104 3105 /* Zero CMF counters */ 3106 atomic_set(&phba->cmf_busy, 0); 3107 for_each_present_cpu(cpu) { 3108 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3109 atomic64_set(&cgs->total_bytes, 0); 3110 atomic64_set(&cgs->rcv_bytes, 0); 3111 atomic_set(&cgs->rx_io_cnt, 0); 3112 atomic64_set(&cgs->rx_latency, 0); 3113 } 3114 atomic_set(&phba->cmf_bw_wait, 0); 3115 3116 /* Resume any blocked IO - Queue unblock on workqueue */ 3117 queue_work(phba->wq, &phba->unblock_request_work); 3118 } 3119 3120 static inline uint64_t 3121 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3122 { 3123 uint64_t rate = lpfc_sli_port_speed_get(phba); 3124 3125 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3126 } 3127 3128 void 3129 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3130 { 3131 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3132 "6223 Signal CMF init\n"); 3133 3134 /* Use the new fc_linkspeed to recalculate */ 3135 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3136 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3137 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3138 phba->cmf_interval_rate, 1000); 3139 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3140 3141 /* This is a signal to firmware to sync up CMF BW with link speed */ 3142 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3143 } 3144 3145 /** 3146 * lpfc_cmf_start - Start CMF processing 3147 * @phba: pointer to lpfc hba data structure. 3148 * 3149 * This is called when the link comes up or if CMF mode is turned OFF 3150 * to Monitor or Managed. 3151 **/ 3152 void 3153 lpfc_cmf_start(struct lpfc_hba *phba) 3154 { 3155 struct lpfc_cgn_stat *cgs; 3156 int cpu; 3157 3158 /* We only do something if CMF is enabled */ 3159 if (!phba->sli4_hba.pc_sli4_params.cmf || 3160 phba->cmf_active_mode == LPFC_CFG_OFF) 3161 return; 3162 3163 /* Reinitialize congestion buffer info */ 3164 lpfc_init_congestion_buf(phba); 3165 3166 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3167 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3168 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3169 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3170 3171 atomic_set(&phba->cmf_busy, 0); 3172 for_each_present_cpu(cpu) { 3173 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3174 atomic64_set(&cgs->total_bytes, 0); 3175 atomic64_set(&cgs->rcv_bytes, 0); 3176 atomic_set(&cgs->rx_io_cnt, 0); 3177 atomic64_set(&cgs->rx_latency, 0); 3178 } 3179 phba->cmf_latency.tv_sec = 0; 3180 phba->cmf_latency.tv_nsec = 0; 3181 3182 lpfc_cmf_signal_init(phba); 3183 3184 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3185 "6222 Start CMF / Timer\n"); 3186 3187 phba->cmf_timer_cnt = 0; 3188 hrtimer_start(&phba->cmf_timer, 3189 ktime_set(0, LPFC_CMF_INTERVAL * 1000000), 3190 HRTIMER_MODE_REL); 3191 /* Setup for latency check in IO cmpl routines */ 3192 ktime_get_real_ts64(&phba->cmf_latency); 3193 3194 atomic_set(&phba->cmf_bw_wait, 0); 3195 atomic_set(&phba->cmf_stop_io, 0); 3196 } 3197 3198 /** 3199 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3200 * @phba: pointer to lpfc hba data structure. 3201 * 3202 * This routine stops all the timers associated with a HBA. This function is 3203 * invoked before either putting a HBA offline or unloading the driver. 3204 **/ 3205 void 3206 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3207 { 3208 if (phba->pport) 3209 lpfc_stop_vport_timers(phba->pport); 3210 cancel_delayed_work_sync(&phba->eq_delay_work); 3211 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3212 del_timer_sync(&phba->sli.mbox_tmo); 3213 del_timer_sync(&phba->fabric_block_timer); 3214 del_timer_sync(&phba->eratt_poll); 3215 del_timer_sync(&phba->hb_tmofunc); 3216 if (phba->sli_rev == LPFC_SLI_REV4) { 3217 del_timer_sync(&phba->rrq_tmr); 3218 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 3219 } 3220 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 3221 3222 switch (phba->pci_dev_grp) { 3223 case LPFC_PCI_DEV_LP: 3224 /* Stop any LightPulse device specific driver timers */ 3225 del_timer_sync(&phba->fcp_poll_timer); 3226 break; 3227 case LPFC_PCI_DEV_OC: 3228 /* Stop any OneConnect device specific driver timers */ 3229 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3230 break; 3231 default: 3232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3233 "0297 Invalid device group (x%x)\n", 3234 phba->pci_dev_grp); 3235 break; 3236 } 3237 return; 3238 } 3239 3240 /** 3241 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3242 * @phba: pointer to lpfc hba data structure. 3243 * @mbx_action: flag for mailbox no wait action. 3244 * 3245 * This routine marks a HBA's management interface as blocked. Once the HBA's 3246 * management interface is marked as blocked, all the user space access to 3247 * the HBA, whether they are from sysfs interface or libdfc interface will 3248 * all be blocked. The HBA is set to block the management interface when the 3249 * driver prepares the HBA interface for online or offline. 3250 **/ 3251 static void 3252 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3253 { 3254 unsigned long iflag; 3255 uint8_t actcmd = MBX_HEARTBEAT; 3256 unsigned long timeout; 3257 3258 spin_lock_irqsave(&phba->hbalock, iflag); 3259 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3260 spin_unlock_irqrestore(&phba->hbalock, iflag); 3261 if (mbx_action == LPFC_MBX_NO_WAIT) 3262 return; 3263 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3264 spin_lock_irqsave(&phba->hbalock, iflag); 3265 if (phba->sli.mbox_active) { 3266 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3267 /* Determine how long we might wait for the active mailbox 3268 * command to be gracefully completed by firmware. 3269 */ 3270 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3271 phba->sli.mbox_active) * 1000) + jiffies; 3272 } 3273 spin_unlock_irqrestore(&phba->hbalock, iflag); 3274 3275 /* Wait for the outstnading mailbox command to complete */ 3276 while (phba->sli.mbox_active) { 3277 /* Check active mailbox complete status every 2ms */ 3278 msleep(2); 3279 if (time_after(jiffies, timeout)) { 3280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3281 "2813 Mgmt IO is Blocked %x " 3282 "- mbox cmd %x still active\n", 3283 phba->sli.sli_flag, actcmd); 3284 break; 3285 } 3286 } 3287 } 3288 3289 /** 3290 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3291 * @phba: pointer to lpfc hba data structure. 3292 * 3293 * Allocate RPIs for all active remote nodes. This is needed whenever 3294 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3295 * is to fixup the temporary rpi assignments. 3296 **/ 3297 void 3298 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3299 { 3300 struct lpfc_nodelist *ndlp, *next_ndlp; 3301 struct lpfc_vport **vports; 3302 int i, rpi; 3303 3304 if (phba->sli_rev != LPFC_SLI_REV4) 3305 return; 3306 3307 vports = lpfc_create_vport_work_array(phba); 3308 if (vports == NULL) 3309 return; 3310 3311 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3312 if (vports[i]->load_flag & FC_UNLOADING) 3313 continue; 3314 3315 list_for_each_entry_safe(ndlp, next_ndlp, 3316 &vports[i]->fc_nodes, 3317 nlp_listp) { 3318 rpi = lpfc_sli4_alloc_rpi(phba); 3319 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3320 /* TODO print log? */ 3321 continue; 3322 } 3323 ndlp->nlp_rpi = rpi; 3324 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3325 LOG_NODE | LOG_DISCOVERY, 3326 "0009 Assign RPI x%x to ndlp x%px " 3327 "DID:x%06x flg:x%x\n", 3328 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3329 ndlp->nlp_flag); 3330 } 3331 } 3332 lpfc_destroy_vport_work_array(phba, vports); 3333 } 3334 3335 /** 3336 * lpfc_create_expedite_pool - create expedite pool 3337 * @phba: pointer to lpfc hba data structure. 3338 * 3339 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3340 * to expedite pool. Mark them as expedite. 3341 **/ 3342 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3343 { 3344 struct lpfc_sli4_hdw_queue *qp; 3345 struct lpfc_io_buf *lpfc_ncmd; 3346 struct lpfc_io_buf *lpfc_ncmd_next; 3347 struct lpfc_epd_pool *epd_pool; 3348 unsigned long iflag; 3349 3350 epd_pool = &phba->epd_pool; 3351 qp = &phba->sli4_hba.hdwq[0]; 3352 3353 spin_lock_init(&epd_pool->lock); 3354 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3355 spin_lock(&epd_pool->lock); 3356 INIT_LIST_HEAD(&epd_pool->list); 3357 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3358 &qp->lpfc_io_buf_list_put, list) { 3359 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3360 lpfc_ncmd->expedite = true; 3361 qp->put_io_bufs--; 3362 epd_pool->count++; 3363 if (epd_pool->count >= XRI_BATCH) 3364 break; 3365 } 3366 spin_unlock(&epd_pool->lock); 3367 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3368 } 3369 3370 /** 3371 * lpfc_destroy_expedite_pool - destroy expedite pool 3372 * @phba: pointer to lpfc hba data structure. 3373 * 3374 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3375 * of HWQ 0. Clear the mark. 3376 **/ 3377 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3378 { 3379 struct lpfc_sli4_hdw_queue *qp; 3380 struct lpfc_io_buf *lpfc_ncmd; 3381 struct lpfc_io_buf *lpfc_ncmd_next; 3382 struct lpfc_epd_pool *epd_pool; 3383 unsigned long iflag; 3384 3385 epd_pool = &phba->epd_pool; 3386 qp = &phba->sli4_hba.hdwq[0]; 3387 3388 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3389 spin_lock(&epd_pool->lock); 3390 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3391 &epd_pool->list, list) { 3392 list_move_tail(&lpfc_ncmd->list, 3393 &qp->lpfc_io_buf_list_put); 3394 lpfc_ncmd->flags = false; 3395 qp->put_io_bufs++; 3396 epd_pool->count--; 3397 } 3398 spin_unlock(&epd_pool->lock); 3399 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3400 } 3401 3402 /** 3403 * lpfc_create_multixri_pools - create multi-XRI pools 3404 * @phba: pointer to lpfc hba data structure. 3405 * 3406 * This routine initialize public, private per HWQ. Then, move XRIs from 3407 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3408 * Initialized. 3409 **/ 3410 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3411 { 3412 u32 i, j; 3413 u32 hwq_count; 3414 u32 count_per_hwq; 3415 struct lpfc_io_buf *lpfc_ncmd; 3416 struct lpfc_io_buf *lpfc_ncmd_next; 3417 unsigned long iflag; 3418 struct lpfc_sli4_hdw_queue *qp; 3419 struct lpfc_multixri_pool *multixri_pool; 3420 struct lpfc_pbl_pool *pbl_pool; 3421 struct lpfc_pvt_pool *pvt_pool; 3422 3423 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3424 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3425 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3426 phba->sli4_hba.io_xri_cnt); 3427 3428 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3429 lpfc_create_expedite_pool(phba); 3430 3431 hwq_count = phba->cfg_hdw_queue; 3432 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3433 3434 for (i = 0; i < hwq_count; i++) { 3435 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3436 3437 if (!multixri_pool) { 3438 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3439 "1238 Failed to allocate memory for " 3440 "multixri_pool\n"); 3441 3442 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3443 lpfc_destroy_expedite_pool(phba); 3444 3445 j = 0; 3446 while (j < i) { 3447 qp = &phba->sli4_hba.hdwq[j]; 3448 kfree(qp->p_multixri_pool); 3449 j++; 3450 } 3451 phba->cfg_xri_rebalancing = 0; 3452 return; 3453 } 3454 3455 qp = &phba->sli4_hba.hdwq[i]; 3456 qp->p_multixri_pool = multixri_pool; 3457 3458 multixri_pool->xri_limit = count_per_hwq; 3459 multixri_pool->rrb_next_hwqid = i; 3460 3461 /* Deal with public free xri pool */ 3462 pbl_pool = &multixri_pool->pbl_pool; 3463 spin_lock_init(&pbl_pool->lock); 3464 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3465 spin_lock(&pbl_pool->lock); 3466 INIT_LIST_HEAD(&pbl_pool->list); 3467 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3468 &qp->lpfc_io_buf_list_put, list) { 3469 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3470 qp->put_io_bufs--; 3471 pbl_pool->count++; 3472 } 3473 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3474 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3475 pbl_pool->count, i); 3476 spin_unlock(&pbl_pool->lock); 3477 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3478 3479 /* Deal with private free xri pool */ 3480 pvt_pool = &multixri_pool->pvt_pool; 3481 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3482 pvt_pool->low_watermark = XRI_BATCH; 3483 spin_lock_init(&pvt_pool->lock); 3484 spin_lock_irqsave(&pvt_pool->lock, iflag); 3485 INIT_LIST_HEAD(&pvt_pool->list); 3486 pvt_pool->count = 0; 3487 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3488 } 3489 } 3490 3491 /** 3492 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3493 * @phba: pointer to lpfc hba data structure. 3494 * 3495 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3496 **/ 3497 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3498 { 3499 u32 i; 3500 u32 hwq_count; 3501 struct lpfc_io_buf *lpfc_ncmd; 3502 struct lpfc_io_buf *lpfc_ncmd_next; 3503 unsigned long iflag; 3504 struct lpfc_sli4_hdw_queue *qp; 3505 struct lpfc_multixri_pool *multixri_pool; 3506 struct lpfc_pbl_pool *pbl_pool; 3507 struct lpfc_pvt_pool *pvt_pool; 3508 3509 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3510 lpfc_destroy_expedite_pool(phba); 3511 3512 if (!(phba->pport->load_flag & FC_UNLOADING)) 3513 lpfc_sli_flush_io_rings(phba); 3514 3515 hwq_count = phba->cfg_hdw_queue; 3516 3517 for (i = 0; i < hwq_count; i++) { 3518 qp = &phba->sli4_hba.hdwq[i]; 3519 multixri_pool = qp->p_multixri_pool; 3520 if (!multixri_pool) 3521 continue; 3522 3523 qp->p_multixri_pool = NULL; 3524 3525 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3526 3527 /* Deal with public free xri pool */ 3528 pbl_pool = &multixri_pool->pbl_pool; 3529 spin_lock(&pbl_pool->lock); 3530 3531 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3532 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3533 pbl_pool->count, i); 3534 3535 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3536 &pbl_pool->list, list) { 3537 list_move_tail(&lpfc_ncmd->list, 3538 &qp->lpfc_io_buf_list_put); 3539 qp->put_io_bufs++; 3540 pbl_pool->count--; 3541 } 3542 3543 INIT_LIST_HEAD(&pbl_pool->list); 3544 pbl_pool->count = 0; 3545 3546 spin_unlock(&pbl_pool->lock); 3547 3548 /* Deal with private free xri pool */ 3549 pvt_pool = &multixri_pool->pvt_pool; 3550 spin_lock(&pvt_pool->lock); 3551 3552 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3553 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3554 pvt_pool->count, i); 3555 3556 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3557 &pvt_pool->list, list) { 3558 list_move_tail(&lpfc_ncmd->list, 3559 &qp->lpfc_io_buf_list_put); 3560 qp->put_io_bufs++; 3561 pvt_pool->count--; 3562 } 3563 3564 INIT_LIST_HEAD(&pvt_pool->list); 3565 pvt_pool->count = 0; 3566 3567 spin_unlock(&pvt_pool->lock); 3568 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3569 3570 kfree(multixri_pool); 3571 } 3572 } 3573 3574 /** 3575 * lpfc_online - Initialize and bring a HBA online 3576 * @phba: pointer to lpfc hba data structure. 3577 * 3578 * This routine initializes the HBA and brings a HBA online. During this 3579 * process, the management interface is blocked to prevent user space access 3580 * to the HBA interfering with the driver initialization. 3581 * 3582 * Return codes 3583 * 0 - successful 3584 * 1 - failed 3585 **/ 3586 int 3587 lpfc_online(struct lpfc_hba *phba) 3588 { 3589 struct lpfc_vport *vport; 3590 struct lpfc_vport **vports; 3591 int i, error = 0; 3592 bool vpis_cleared = false; 3593 3594 if (!phba) 3595 return 0; 3596 vport = phba->pport; 3597 3598 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3599 return 0; 3600 3601 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3602 "0458 Bring Adapter online\n"); 3603 3604 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3605 3606 if (phba->sli_rev == LPFC_SLI_REV4) { 3607 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3608 lpfc_unblock_mgmt_io(phba); 3609 return 1; 3610 } 3611 spin_lock_irq(&phba->hbalock); 3612 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3613 vpis_cleared = true; 3614 spin_unlock_irq(&phba->hbalock); 3615 3616 /* Reestablish the local initiator port. 3617 * The offline process destroyed the previous lport. 3618 */ 3619 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3620 !phba->nvmet_support) { 3621 error = lpfc_nvme_create_localport(phba->pport); 3622 if (error) 3623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3624 "6132 NVME restore reg failed " 3625 "on nvmei error x%x\n", error); 3626 } 3627 } else { 3628 lpfc_sli_queue_init(phba); 3629 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3630 lpfc_unblock_mgmt_io(phba); 3631 return 1; 3632 } 3633 } 3634 3635 vports = lpfc_create_vport_work_array(phba); 3636 if (vports != NULL) { 3637 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3638 struct Scsi_Host *shost; 3639 shost = lpfc_shost_from_vport(vports[i]); 3640 spin_lock_irq(shost->host_lock); 3641 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3642 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3643 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3644 if (phba->sli_rev == LPFC_SLI_REV4) { 3645 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3646 if ((vpis_cleared) && 3647 (vports[i]->port_type != 3648 LPFC_PHYSICAL_PORT)) 3649 vports[i]->vpi = 0; 3650 } 3651 spin_unlock_irq(shost->host_lock); 3652 } 3653 } 3654 lpfc_destroy_vport_work_array(phba, vports); 3655 3656 if (phba->cfg_xri_rebalancing) 3657 lpfc_create_multixri_pools(phba); 3658 3659 lpfc_cpuhp_add(phba); 3660 3661 lpfc_unblock_mgmt_io(phba); 3662 return 0; 3663 } 3664 3665 /** 3666 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3667 * @phba: pointer to lpfc hba data structure. 3668 * 3669 * This routine marks a HBA's management interface as not blocked. Once the 3670 * HBA's management interface is marked as not blocked, all the user space 3671 * access to the HBA, whether they are from sysfs interface or libdfc 3672 * interface will be allowed. The HBA is set to block the management interface 3673 * when the driver prepares the HBA interface for online or offline and then 3674 * set to unblock the management interface afterwards. 3675 **/ 3676 void 3677 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3678 { 3679 unsigned long iflag; 3680 3681 spin_lock_irqsave(&phba->hbalock, iflag); 3682 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3683 spin_unlock_irqrestore(&phba->hbalock, iflag); 3684 } 3685 3686 /** 3687 * lpfc_offline_prep - Prepare a HBA to be brought offline 3688 * @phba: pointer to lpfc hba data structure. 3689 * @mbx_action: flag for mailbox shutdown action. 3690 * 3691 * This routine is invoked to prepare a HBA to be brought offline. It performs 3692 * unregistration login to all the nodes on all vports and flushes the mailbox 3693 * queue to make it ready to be brought offline. 3694 **/ 3695 void 3696 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3697 { 3698 struct lpfc_vport *vport = phba->pport; 3699 struct lpfc_nodelist *ndlp, *next_ndlp; 3700 struct lpfc_vport **vports; 3701 struct Scsi_Host *shost; 3702 int i; 3703 int offline; 3704 bool hba_pci_err; 3705 3706 if (vport->fc_flag & FC_OFFLINE_MODE) 3707 return; 3708 3709 lpfc_block_mgmt_io(phba, mbx_action); 3710 3711 lpfc_linkdown(phba); 3712 3713 offline = pci_channel_offline(phba->pcidev); 3714 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3715 3716 /* Issue an unreg_login to all nodes on all vports */ 3717 vports = lpfc_create_vport_work_array(phba); 3718 if (vports != NULL) { 3719 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3720 if (vports[i]->load_flag & FC_UNLOADING) 3721 continue; 3722 shost = lpfc_shost_from_vport(vports[i]); 3723 spin_lock_irq(shost->host_lock); 3724 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3725 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3726 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3727 spin_unlock_irq(shost->host_lock); 3728 3729 shost = lpfc_shost_from_vport(vports[i]); 3730 list_for_each_entry_safe(ndlp, next_ndlp, 3731 &vports[i]->fc_nodes, 3732 nlp_listp) { 3733 3734 spin_lock_irq(&ndlp->lock); 3735 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3736 spin_unlock_irq(&ndlp->lock); 3737 3738 if (offline || hba_pci_err) { 3739 spin_lock_irq(&ndlp->lock); 3740 ndlp->nlp_flag &= ~(NLP_UNREG_INP | 3741 NLP_RPI_REGISTERED); 3742 spin_unlock_irq(&ndlp->lock); 3743 if (phba->sli_rev == LPFC_SLI_REV4) 3744 lpfc_sli_rpi_release(vports[i], 3745 ndlp); 3746 } else { 3747 lpfc_unreg_rpi(vports[i], ndlp); 3748 } 3749 /* 3750 * Whenever an SLI4 port goes offline, free the 3751 * RPI. Get a new RPI when the adapter port 3752 * comes back online. 3753 */ 3754 if (phba->sli_rev == LPFC_SLI_REV4) { 3755 lpfc_printf_vlog(vports[i], KERN_INFO, 3756 LOG_NODE | LOG_DISCOVERY, 3757 "0011 Free RPI x%x on " 3758 "ndlp: x%px did x%x\n", 3759 ndlp->nlp_rpi, ndlp, 3760 ndlp->nlp_DID); 3761 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3762 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3763 } 3764 3765 if (ndlp->nlp_type & NLP_FABRIC) { 3766 lpfc_disc_state_machine(vports[i], ndlp, 3767 NULL, NLP_EVT_DEVICE_RECOVERY); 3768 3769 /* Don't remove the node unless the node 3770 * has been unregistered with the 3771 * transport, and we're not in recovery 3772 * before dev_loss_tmo triggered. 3773 * Otherwise, let dev_loss take care of 3774 * the node. 3775 */ 3776 if (!(ndlp->save_flags & 3777 NLP_IN_RECOV_POST_DEV_LOSS) && 3778 !(ndlp->fc4_xpt_flags & 3779 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3780 lpfc_disc_state_machine 3781 (vports[i], ndlp, 3782 NULL, 3783 NLP_EVT_DEVICE_RM); 3784 } 3785 } 3786 } 3787 } 3788 lpfc_destroy_vport_work_array(phba, vports); 3789 3790 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3791 3792 if (phba->wq) 3793 flush_workqueue(phba->wq); 3794 } 3795 3796 /** 3797 * lpfc_offline - Bring a HBA offline 3798 * @phba: pointer to lpfc hba data structure. 3799 * 3800 * This routine actually brings a HBA offline. It stops all the timers 3801 * associated with the HBA, brings down the SLI layer, and eventually 3802 * marks the HBA as in offline state for the upper layer protocol. 3803 **/ 3804 void 3805 lpfc_offline(struct lpfc_hba *phba) 3806 { 3807 struct Scsi_Host *shost; 3808 struct lpfc_vport **vports; 3809 int i; 3810 3811 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3812 return; 3813 3814 /* stop port and all timers associated with this hba */ 3815 lpfc_stop_port(phba); 3816 3817 /* Tear down the local and target port registrations. The 3818 * nvme transports need to cleanup. 3819 */ 3820 lpfc_nvmet_destroy_targetport(phba); 3821 lpfc_nvme_destroy_localport(phba->pport); 3822 3823 vports = lpfc_create_vport_work_array(phba); 3824 if (vports != NULL) 3825 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3826 lpfc_stop_vport_timers(vports[i]); 3827 lpfc_destroy_vport_work_array(phba, vports); 3828 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3829 "0460 Bring Adapter offline\n"); 3830 /* Bring down the SLI Layer and cleanup. The HBA is offline 3831 now. */ 3832 lpfc_sli_hba_down(phba); 3833 spin_lock_irq(&phba->hbalock); 3834 phba->work_ha = 0; 3835 spin_unlock_irq(&phba->hbalock); 3836 vports = lpfc_create_vport_work_array(phba); 3837 if (vports != NULL) 3838 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3839 shost = lpfc_shost_from_vport(vports[i]); 3840 spin_lock_irq(shost->host_lock); 3841 vports[i]->work_port_events = 0; 3842 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3843 spin_unlock_irq(shost->host_lock); 3844 } 3845 lpfc_destroy_vport_work_array(phba, vports); 3846 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3847 * in hba_unset 3848 */ 3849 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3850 __lpfc_cpuhp_remove(phba); 3851 3852 if (phba->cfg_xri_rebalancing) 3853 lpfc_destroy_multixri_pools(phba); 3854 } 3855 3856 /** 3857 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3858 * @phba: pointer to lpfc hba data structure. 3859 * 3860 * This routine is to free all the SCSI buffers and IOCBs from the driver 3861 * list back to kernel. It is called from lpfc_pci_remove_one to free 3862 * the internal resources before the device is removed from the system. 3863 **/ 3864 static void 3865 lpfc_scsi_free(struct lpfc_hba *phba) 3866 { 3867 struct lpfc_io_buf *sb, *sb_next; 3868 3869 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3870 return; 3871 3872 spin_lock_irq(&phba->hbalock); 3873 3874 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3875 3876 spin_lock(&phba->scsi_buf_list_put_lock); 3877 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3878 list) { 3879 list_del(&sb->list); 3880 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3881 sb->dma_handle); 3882 kfree(sb); 3883 phba->total_scsi_bufs--; 3884 } 3885 spin_unlock(&phba->scsi_buf_list_put_lock); 3886 3887 spin_lock(&phba->scsi_buf_list_get_lock); 3888 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3889 list) { 3890 list_del(&sb->list); 3891 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3892 sb->dma_handle); 3893 kfree(sb); 3894 phba->total_scsi_bufs--; 3895 } 3896 spin_unlock(&phba->scsi_buf_list_get_lock); 3897 spin_unlock_irq(&phba->hbalock); 3898 } 3899 3900 /** 3901 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3902 * @phba: pointer to lpfc hba data structure. 3903 * 3904 * This routine is to free all the IO buffers and IOCBs from the driver 3905 * list back to kernel. It is called from lpfc_pci_remove_one to free 3906 * the internal resources before the device is removed from the system. 3907 **/ 3908 void 3909 lpfc_io_free(struct lpfc_hba *phba) 3910 { 3911 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3912 struct lpfc_sli4_hdw_queue *qp; 3913 int idx; 3914 3915 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3916 qp = &phba->sli4_hba.hdwq[idx]; 3917 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3918 spin_lock(&qp->io_buf_list_put_lock); 3919 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3920 &qp->lpfc_io_buf_list_put, 3921 list) { 3922 list_del(&lpfc_ncmd->list); 3923 qp->put_io_bufs--; 3924 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3925 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3926 if (phba->cfg_xpsgl && !phba->nvmet_support) 3927 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3928 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3929 kfree(lpfc_ncmd); 3930 qp->total_io_bufs--; 3931 } 3932 spin_unlock(&qp->io_buf_list_put_lock); 3933 3934 spin_lock(&qp->io_buf_list_get_lock); 3935 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3936 &qp->lpfc_io_buf_list_get, 3937 list) { 3938 list_del(&lpfc_ncmd->list); 3939 qp->get_io_bufs--; 3940 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3941 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3942 if (phba->cfg_xpsgl && !phba->nvmet_support) 3943 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3944 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3945 kfree(lpfc_ncmd); 3946 qp->total_io_bufs--; 3947 } 3948 spin_unlock(&qp->io_buf_list_get_lock); 3949 } 3950 } 3951 3952 /** 3953 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3954 * @phba: pointer to lpfc hba data structure. 3955 * 3956 * This routine first calculates the sizes of the current els and allocated 3957 * scsi sgl lists, and then goes through all sgls to updates the physical 3958 * XRIs assigned due to port function reset. During port initialization, the 3959 * current els and allocated scsi sgl lists are 0s. 3960 * 3961 * Return codes 3962 * 0 - successful (for now, it always returns 0) 3963 **/ 3964 int 3965 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3966 { 3967 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3968 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3969 LIST_HEAD(els_sgl_list); 3970 int rc; 3971 3972 /* 3973 * update on pci function's els xri-sgl list 3974 */ 3975 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3976 3977 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3978 /* els xri-sgl expanded */ 3979 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3980 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3981 "3157 ELS xri-sgl count increased from " 3982 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3983 els_xri_cnt); 3984 /* allocate the additional els sgls */ 3985 for (i = 0; i < xri_cnt; i++) { 3986 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3987 GFP_KERNEL); 3988 if (sglq_entry == NULL) { 3989 lpfc_printf_log(phba, KERN_ERR, 3990 LOG_TRACE_EVENT, 3991 "2562 Failure to allocate an " 3992 "ELS sgl entry:%d\n", i); 3993 rc = -ENOMEM; 3994 goto out_free_mem; 3995 } 3996 sglq_entry->buff_type = GEN_BUFF_TYPE; 3997 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3998 &sglq_entry->phys); 3999 if (sglq_entry->virt == NULL) { 4000 kfree(sglq_entry); 4001 lpfc_printf_log(phba, KERN_ERR, 4002 LOG_TRACE_EVENT, 4003 "2563 Failure to allocate an " 4004 "ELS mbuf:%d\n", i); 4005 rc = -ENOMEM; 4006 goto out_free_mem; 4007 } 4008 sglq_entry->sgl = sglq_entry->virt; 4009 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4010 sglq_entry->state = SGL_FREED; 4011 list_add_tail(&sglq_entry->list, &els_sgl_list); 4012 } 4013 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4014 list_splice_init(&els_sgl_list, 4015 &phba->sli4_hba.lpfc_els_sgl_list); 4016 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4017 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4018 /* els xri-sgl shrinked */ 4019 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4020 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4021 "3158 ELS xri-sgl count decreased from " 4022 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4023 els_xri_cnt); 4024 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4025 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4026 &els_sgl_list); 4027 /* release extra els sgls from list */ 4028 for (i = 0; i < xri_cnt; i++) { 4029 list_remove_head(&els_sgl_list, 4030 sglq_entry, struct lpfc_sglq, list); 4031 if (sglq_entry) { 4032 __lpfc_mbuf_free(phba, sglq_entry->virt, 4033 sglq_entry->phys); 4034 kfree(sglq_entry); 4035 } 4036 } 4037 list_splice_init(&els_sgl_list, 4038 &phba->sli4_hba.lpfc_els_sgl_list); 4039 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4040 } else 4041 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4042 "3163 ELS xri-sgl count unchanged: %d\n", 4043 els_xri_cnt); 4044 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4045 4046 /* update xris to els sgls on the list */ 4047 sglq_entry = NULL; 4048 sglq_entry_next = NULL; 4049 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4050 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4051 lxri = lpfc_sli4_next_xritag(phba); 4052 if (lxri == NO_XRI) { 4053 lpfc_printf_log(phba, KERN_ERR, 4054 LOG_TRACE_EVENT, 4055 "2400 Failed to allocate xri for " 4056 "ELS sgl\n"); 4057 rc = -ENOMEM; 4058 goto out_free_mem; 4059 } 4060 sglq_entry->sli4_lxritag = lxri; 4061 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4062 } 4063 return 0; 4064 4065 out_free_mem: 4066 lpfc_free_els_sgl_list(phba); 4067 return rc; 4068 } 4069 4070 /** 4071 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4072 * @phba: pointer to lpfc hba data structure. 4073 * 4074 * This routine first calculates the sizes of the current els and allocated 4075 * scsi sgl lists, and then goes through all sgls to updates the physical 4076 * XRIs assigned due to port function reset. During port initialization, the 4077 * current els and allocated scsi sgl lists are 0s. 4078 * 4079 * Return codes 4080 * 0 - successful (for now, it always returns 0) 4081 **/ 4082 int 4083 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4084 { 4085 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4086 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4087 uint16_t nvmet_xri_cnt; 4088 LIST_HEAD(nvmet_sgl_list); 4089 int rc; 4090 4091 /* 4092 * update on pci function's nvmet xri-sgl list 4093 */ 4094 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4095 4096 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4097 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4098 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4099 /* els xri-sgl expanded */ 4100 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4102 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4103 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4104 /* allocate the additional nvmet sgls */ 4105 for (i = 0; i < xri_cnt; i++) { 4106 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4107 GFP_KERNEL); 4108 if (sglq_entry == NULL) { 4109 lpfc_printf_log(phba, KERN_ERR, 4110 LOG_TRACE_EVENT, 4111 "6303 Failure to allocate an " 4112 "NVMET sgl entry:%d\n", i); 4113 rc = -ENOMEM; 4114 goto out_free_mem; 4115 } 4116 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4117 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4118 &sglq_entry->phys); 4119 if (sglq_entry->virt == NULL) { 4120 kfree(sglq_entry); 4121 lpfc_printf_log(phba, KERN_ERR, 4122 LOG_TRACE_EVENT, 4123 "6304 Failure to allocate an " 4124 "NVMET buf:%d\n", i); 4125 rc = -ENOMEM; 4126 goto out_free_mem; 4127 } 4128 sglq_entry->sgl = sglq_entry->virt; 4129 memset(sglq_entry->sgl, 0, 4130 phba->cfg_sg_dma_buf_size); 4131 sglq_entry->state = SGL_FREED; 4132 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4133 } 4134 spin_lock_irq(&phba->hbalock); 4135 spin_lock(&phba->sli4_hba.sgl_list_lock); 4136 list_splice_init(&nvmet_sgl_list, 4137 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4138 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4139 spin_unlock_irq(&phba->hbalock); 4140 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4141 /* nvmet xri-sgl shrunk */ 4142 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4143 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4144 "6305 NVMET xri-sgl count decreased from " 4145 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4146 nvmet_xri_cnt); 4147 spin_lock_irq(&phba->hbalock); 4148 spin_lock(&phba->sli4_hba.sgl_list_lock); 4149 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4150 &nvmet_sgl_list); 4151 /* release extra nvmet sgls from list */ 4152 for (i = 0; i < xri_cnt; i++) { 4153 list_remove_head(&nvmet_sgl_list, 4154 sglq_entry, struct lpfc_sglq, list); 4155 if (sglq_entry) { 4156 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4157 sglq_entry->phys); 4158 kfree(sglq_entry); 4159 } 4160 } 4161 list_splice_init(&nvmet_sgl_list, 4162 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4163 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4164 spin_unlock_irq(&phba->hbalock); 4165 } else 4166 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4167 "6306 NVMET xri-sgl count unchanged: %d\n", 4168 nvmet_xri_cnt); 4169 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4170 4171 /* update xris to nvmet sgls on the list */ 4172 sglq_entry = NULL; 4173 sglq_entry_next = NULL; 4174 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4175 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4176 lxri = lpfc_sli4_next_xritag(phba); 4177 if (lxri == NO_XRI) { 4178 lpfc_printf_log(phba, KERN_ERR, 4179 LOG_TRACE_EVENT, 4180 "6307 Failed to allocate xri for " 4181 "NVMET sgl\n"); 4182 rc = -ENOMEM; 4183 goto out_free_mem; 4184 } 4185 sglq_entry->sli4_lxritag = lxri; 4186 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4187 } 4188 return 0; 4189 4190 out_free_mem: 4191 lpfc_free_nvmet_sgl_list(phba); 4192 return rc; 4193 } 4194 4195 int 4196 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4197 { 4198 LIST_HEAD(blist); 4199 struct lpfc_sli4_hdw_queue *qp; 4200 struct lpfc_io_buf *lpfc_cmd; 4201 struct lpfc_io_buf *iobufp, *prev_iobufp; 4202 int idx, cnt, xri, inserted; 4203 4204 cnt = 0; 4205 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4206 qp = &phba->sli4_hba.hdwq[idx]; 4207 spin_lock_irq(&qp->io_buf_list_get_lock); 4208 spin_lock(&qp->io_buf_list_put_lock); 4209 4210 /* Take everything off the get and put lists */ 4211 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4212 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4213 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4214 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4215 cnt += qp->get_io_bufs + qp->put_io_bufs; 4216 qp->get_io_bufs = 0; 4217 qp->put_io_bufs = 0; 4218 qp->total_io_bufs = 0; 4219 spin_unlock(&qp->io_buf_list_put_lock); 4220 spin_unlock_irq(&qp->io_buf_list_get_lock); 4221 } 4222 4223 /* 4224 * Take IO buffers off blist and put on cbuf sorted by XRI. 4225 * This is because POST_SGL takes a sequential range of XRIs 4226 * to post to the firmware. 4227 */ 4228 for (idx = 0; idx < cnt; idx++) { 4229 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4230 if (!lpfc_cmd) 4231 return cnt; 4232 if (idx == 0) { 4233 list_add_tail(&lpfc_cmd->list, cbuf); 4234 continue; 4235 } 4236 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4237 inserted = 0; 4238 prev_iobufp = NULL; 4239 list_for_each_entry(iobufp, cbuf, list) { 4240 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4241 if (prev_iobufp) 4242 list_add(&lpfc_cmd->list, 4243 &prev_iobufp->list); 4244 else 4245 list_add(&lpfc_cmd->list, cbuf); 4246 inserted = 1; 4247 break; 4248 } 4249 prev_iobufp = iobufp; 4250 } 4251 if (!inserted) 4252 list_add_tail(&lpfc_cmd->list, cbuf); 4253 } 4254 return cnt; 4255 } 4256 4257 int 4258 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4259 { 4260 struct lpfc_sli4_hdw_queue *qp; 4261 struct lpfc_io_buf *lpfc_cmd; 4262 int idx, cnt; 4263 4264 qp = phba->sli4_hba.hdwq; 4265 cnt = 0; 4266 while (!list_empty(cbuf)) { 4267 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4268 list_remove_head(cbuf, lpfc_cmd, 4269 struct lpfc_io_buf, list); 4270 if (!lpfc_cmd) 4271 return cnt; 4272 cnt++; 4273 qp = &phba->sli4_hba.hdwq[idx]; 4274 lpfc_cmd->hdwq_no = idx; 4275 lpfc_cmd->hdwq = qp; 4276 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4277 spin_lock(&qp->io_buf_list_put_lock); 4278 list_add_tail(&lpfc_cmd->list, 4279 &qp->lpfc_io_buf_list_put); 4280 qp->put_io_bufs++; 4281 qp->total_io_bufs++; 4282 spin_unlock(&qp->io_buf_list_put_lock); 4283 } 4284 } 4285 return cnt; 4286 } 4287 4288 /** 4289 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4290 * @phba: pointer to lpfc hba data structure. 4291 * 4292 * This routine first calculates the sizes of the current els and allocated 4293 * scsi sgl lists, and then goes through all sgls to updates the physical 4294 * XRIs assigned due to port function reset. During port initialization, the 4295 * current els and allocated scsi sgl lists are 0s. 4296 * 4297 * Return codes 4298 * 0 - successful (for now, it always returns 0) 4299 **/ 4300 int 4301 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4302 { 4303 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4304 uint16_t i, lxri, els_xri_cnt; 4305 uint16_t io_xri_cnt, io_xri_max; 4306 LIST_HEAD(io_sgl_list); 4307 int rc, cnt; 4308 4309 /* 4310 * update on pci function's allocated nvme xri-sgl list 4311 */ 4312 4313 /* maximum number of xris available for nvme buffers */ 4314 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4315 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4316 phba->sli4_hba.io_xri_max = io_xri_max; 4317 4318 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4319 "6074 Current allocated XRI sgl count:%d, " 4320 "maximum XRI count:%d\n", 4321 phba->sli4_hba.io_xri_cnt, 4322 phba->sli4_hba.io_xri_max); 4323 4324 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4325 4326 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4327 /* max nvme xri shrunk below the allocated nvme buffers */ 4328 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4329 phba->sli4_hba.io_xri_max; 4330 /* release the extra allocated nvme buffers */ 4331 for (i = 0; i < io_xri_cnt; i++) { 4332 list_remove_head(&io_sgl_list, lpfc_ncmd, 4333 struct lpfc_io_buf, list); 4334 if (lpfc_ncmd) { 4335 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4336 lpfc_ncmd->data, 4337 lpfc_ncmd->dma_handle); 4338 kfree(lpfc_ncmd); 4339 } 4340 } 4341 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4342 } 4343 4344 /* update xris associated to remaining allocated nvme buffers */ 4345 lpfc_ncmd = NULL; 4346 lpfc_ncmd_next = NULL; 4347 phba->sli4_hba.io_xri_cnt = cnt; 4348 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4349 &io_sgl_list, list) { 4350 lxri = lpfc_sli4_next_xritag(phba); 4351 if (lxri == NO_XRI) { 4352 lpfc_printf_log(phba, KERN_ERR, 4353 LOG_TRACE_EVENT, 4354 "6075 Failed to allocate xri for " 4355 "nvme buffer\n"); 4356 rc = -ENOMEM; 4357 goto out_free_mem; 4358 } 4359 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4360 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4361 } 4362 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4363 return 0; 4364 4365 out_free_mem: 4366 lpfc_io_free(phba); 4367 return rc; 4368 } 4369 4370 /** 4371 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4372 * @phba: Pointer to lpfc hba data structure. 4373 * @num_to_alloc: The requested number of buffers to allocate. 4374 * 4375 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4376 * the nvme buffer contains all the necessary information needed to initiate 4377 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4378 * them on a list, it post them to the port by using SGL block post. 4379 * 4380 * Return codes: 4381 * int - number of IO buffers that were allocated and posted. 4382 * 0 = failure, less than num_to_alloc is a partial failure. 4383 **/ 4384 int 4385 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4386 { 4387 struct lpfc_io_buf *lpfc_ncmd; 4388 struct lpfc_iocbq *pwqeq; 4389 uint16_t iotag, lxri = 0; 4390 int bcnt, num_posted; 4391 LIST_HEAD(prep_nblist); 4392 LIST_HEAD(post_nblist); 4393 LIST_HEAD(nvme_nblist); 4394 4395 phba->sli4_hba.io_xri_cnt = 0; 4396 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4397 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4398 if (!lpfc_ncmd) 4399 break; 4400 /* 4401 * Get memory from the pci pool to map the virt space to 4402 * pci bus space for an I/O. The DMA buffer includes the 4403 * number of SGE's necessary to support the sg_tablesize. 4404 */ 4405 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4406 GFP_KERNEL, 4407 &lpfc_ncmd->dma_handle); 4408 if (!lpfc_ncmd->data) { 4409 kfree(lpfc_ncmd); 4410 break; 4411 } 4412 4413 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4414 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4415 } else { 4416 /* 4417 * 4K Page alignment is CRITICAL to BlockGuard, double 4418 * check to be sure. 4419 */ 4420 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4421 (((unsigned long)(lpfc_ncmd->data) & 4422 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4423 lpfc_printf_log(phba, KERN_ERR, 4424 LOG_TRACE_EVENT, 4425 "3369 Memory alignment err: " 4426 "addr=%lx\n", 4427 (unsigned long)lpfc_ncmd->data); 4428 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4429 lpfc_ncmd->data, 4430 lpfc_ncmd->dma_handle); 4431 kfree(lpfc_ncmd); 4432 break; 4433 } 4434 } 4435 4436 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4437 4438 lxri = lpfc_sli4_next_xritag(phba); 4439 if (lxri == NO_XRI) { 4440 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4441 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4442 kfree(lpfc_ncmd); 4443 break; 4444 } 4445 pwqeq = &lpfc_ncmd->cur_iocbq; 4446 4447 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4448 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4449 if (iotag == 0) { 4450 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4451 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4452 kfree(lpfc_ncmd); 4453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4454 "6121 Failed to allocate IOTAG for" 4455 " XRI:0x%x\n", lxri); 4456 lpfc_sli4_free_xri(phba, lxri); 4457 break; 4458 } 4459 pwqeq->sli4_lxritag = lxri; 4460 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4461 pwqeq->context1 = lpfc_ncmd; 4462 4463 /* Initialize local short-hand pointers. */ 4464 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4465 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4466 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4467 spin_lock_init(&lpfc_ncmd->buf_lock); 4468 4469 /* add the nvme buffer to a post list */ 4470 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4471 phba->sli4_hba.io_xri_cnt++; 4472 } 4473 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4474 "6114 Allocate %d out of %d requested new NVME " 4475 "buffers\n", bcnt, num_to_alloc); 4476 4477 /* post the list of nvme buffer sgls to port if available */ 4478 if (!list_empty(&post_nblist)) 4479 num_posted = lpfc_sli4_post_io_sgl_list( 4480 phba, &post_nblist, bcnt); 4481 else 4482 num_posted = 0; 4483 4484 return num_posted; 4485 } 4486 4487 static uint64_t 4488 lpfc_get_wwpn(struct lpfc_hba *phba) 4489 { 4490 uint64_t wwn; 4491 int rc; 4492 LPFC_MBOXQ_t *mboxq; 4493 MAILBOX_t *mb; 4494 4495 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4496 GFP_KERNEL); 4497 if (!mboxq) 4498 return (uint64_t)-1; 4499 4500 /* First get WWN of HBA instance */ 4501 lpfc_read_nv(phba, mboxq); 4502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4503 if (rc != MBX_SUCCESS) { 4504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4505 "6019 Mailbox failed , mbxCmd x%x " 4506 "READ_NV, mbxStatus x%x\n", 4507 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4508 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4509 mempool_free(mboxq, phba->mbox_mem_pool); 4510 return (uint64_t) -1; 4511 } 4512 mb = &mboxq->u.mb; 4513 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4514 /* wwn is WWPN of HBA instance */ 4515 mempool_free(mboxq, phba->mbox_mem_pool); 4516 if (phba->sli_rev == LPFC_SLI_REV4) 4517 return be64_to_cpu(wwn); 4518 else 4519 return rol64(wwn, 32); 4520 } 4521 4522 /** 4523 * lpfc_vmid_res_alloc - Allocates resources for VMID 4524 * @phba: pointer to lpfc hba data structure. 4525 * @vport: pointer to vport data structure 4526 * 4527 * This routine allocated the resources needed for the VMID. 4528 * 4529 * Return codes 4530 * 0 on Success 4531 * Non-0 on Failure 4532 */ 4533 static int 4534 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4535 { 4536 /* VMID feature is supported only on SLI4 */ 4537 if (phba->sli_rev == LPFC_SLI_REV3) { 4538 phba->cfg_vmid_app_header = 0; 4539 phba->cfg_vmid_priority_tagging = 0; 4540 } 4541 4542 if (lpfc_is_vmid_enabled(phba)) { 4543 vport->vmid = 4544 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4545 GFP_KERNEL); 4546 if (!vport->vmid) 4547 return -ENOMEM; 4548 4549 rwlock_init(&vport->vmid_lock); 4550 4551 /* Set the VMID parameters for the vport */ 4552 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4553 vport->vmid_inactivity_timeout = 4554 phba->cfg_vmid_inactivity_timeout; 4555 vport->max_vmid = phba->cfg_max_vmid; 4556 vport->cur_vmid_cnt = 0; 4557 4558 vport->vmid_priority_range = bitmap_zalloc 4559 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4560 4561 if (!vport->vmid_priority_range) { 4562 kfree(vport->vmid); 4563 return -ENOMEM; 4564 } 4565 4566 hash_init(vport->hash_table); 4567 } 4568 return 0; 4569 } 4570 4571 /** 4572 * lpfc_create_port - Create an FC port 4573 * @phba: pointer to lpfc hba data structure. 4574 * @instance: a unique integer ID to this FC port. 4575 * @dev: pointer to the device data structure. 4576 * 4577 * This routine creates a FC port for the upper layer protocol. The FC port 4578 * can be created on top of either a physical port or a virtual port provided 4579 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4580 * and associates the FC port created before adding the shost into the SCSI 4581 * layer. 4582 * 4583 * Return codes 4584 * @vport - pointer to the virtual N_Port data structure. 4585 * NULL - port create failed. 4586 **/ 4587 struct lpfc_vport * 4588 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4589 { 4590 struct lpfc_vport *vport; 4591 struct Scsi_Host *shost = NULL; 4592 struct scsi_host_template *template; 4593 int error = 0; 4594 int i; 4595 uint64_t wwn; 4596 bool use_no_reset_hba = false; 4597 int rc; 4598 4599 if (lpfc_no_hba_reset_cnt) { 4600 if (phba->sli_rev < LPFC_SLI_REV4 && 4601 dev == &phba->pcidev->dev) { 4602 /* Reset the port first */ 4603 lpfc_sli_brdrestart(phba); 4604 rc = lpfc_sli_chipset_init(phba); 4605 if (rc) 4606 return NULL; 4607 } 4608 wwn = lpfc_get_wwpn(phba); 4609 } 4610 4611 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4612 if (wwn == lpfc_no_hba_reset[i]) { 4613 lpfc_printf_log(phba, KERN_ERR, 4614 LOG_TRACE_EVENT, 4615 "6020 Setting use_no_reset port=%llx\n", 4616 wwn); 4617 use_no_reset_hba = true; 4618 break; 4619 } 4620 } 4621 4622 /* Seed template for SCSI host registration */ 4623 if (dev == &phba->pcidev->dev) { 4624 template = &phba->port_template; 4625 4626 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4627 /* Seed physical port template */ 4628 memcpy(template, &lpfc_template, sizeof(*template)); 4629 4630 if (use_no_reset_hba) 4631 /* template is for a no reset SCSI Host */ 4632 template->eh_host_reset_handler = NULL; 4633 4634 /* Template for all vports this physical port creates */ 4635 memcpy(&phba->vport_template, &lpfc_template, 4636 sizeof(*template)); 4637 phba->vport_template.shost_groups = lpfc_vport_groups; 4638 phba->vport_template.eh_bus_reset_handler = NULL; 4639 phba->vport_template.eh_host_reset_handler = NULL; 4640 phba->vport_template.vendor_id = 0; 4641 4642 /* Initialize the host templates with updated value */ 4643 if (phba->sli_rev == LPFC_SLI_REV4) { 4644 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4645 phba->vport_template.sg_tablesize = 4646 phba->cfg_scsi_seg_cnt; 4647 } else { 4648 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4649 phba->vport_template.sg_tablesize = 4650 phba->cfg_sg_seg_cnt; 4651 } 4652 4653 } else { 4654 /* NVMET is for physical port only */ 4655 memcpy(template, &lpfc_template_nvme, 4656 sizeof(*template)); 4657 } 4658 } else { 4659 template = &phba->vport_template; 4660 } 4661 4662 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4663 if (!shost) 4664 goto out; 4665 4666 vport = (struct lpfc_vport *) shost->hostdata; 4667 vport->phba = phba; 4668 vport->load_flag |= FC_LOADING; 4669 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4670 vport->fc_rscn_flush = 0; 4671 lpfc_get_vport_cfgparam(vport); 4672 4673 /* Adjust value in vport */ 4674 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4675 4676 shost->unique_id = instance; 4677 shost->max_id = LPFC_MAX_TARGET; 4678 shost->max_lun = vport->cfg_max_luns; 4679 shost->this_id = -1; 4680 shost->max_cmd_len = 16; 4681 4682 if (phba->sli_rev == LPFC_SLI_REV4) { 4683 if (!phba->cfg_fcp_mq_threshold || 4684 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4685 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4686 4687 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4688 phba->cfg_fcp_mq_threshold); 4689 4690 shost->dma_boundary = 4691 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4692 4693 if (phba->cfg_xpsgl && !phba->nvmet_support) 4694 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4695 else 4696 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4697 } else 4698 /* SLI-3 has a limited number of hardware queues (3), 4699 * thus there is only one for FCP processing. 4700 */ 4701 shost->nr_hw_queues = 1; 4702 4703 /* 4704 * Set initial can_queue value since 0 is no longer supported and 4705 * scsi_add_host will fail. This will be adjusted later based on the 4706 * max xri value determined in hba setup. 4707 */ 4708 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4709 if (dev != &phba->pcidev->dev) { 4710 shost->transportt = lpfc_vport_transport_template; 4711 vport->port_type = LPFC_NPIV_PORT; 4712 } else { 4713 shost->transportt = lpfc_transport_template; 4714 vport->port_type = LPFC_PHYSICAL_PORT; 4715 } 4716 4717 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4718 "9081 CreatePort TMPLATE type %x TBLsize %d " 4719 "SEGcnt %d/%d\n", 4720 vport->port_type, shost->sg_tablesize, 4721 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4722 4723 /* Allocate the resources for VMID */ 4724 rc = lpfc_vmid_res_alloc(phba, vport); 4725 4726 if (rc) 4727 goto out; 4728 4729 /* Initialize all internally managed lists. */ 4730 INIT_LIST_HEAD(&vport->fc_nodes); 4731 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4732 spin_lock_init(&vport->work_port_lock); 4733 4734 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4735 4736 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4737 4738 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4739 4740 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4741 lpfc_setup_bg(phba, shost); 4742 4743 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4744 if (error) 4745 goto out_put_shost; 4746 4747 spin_lock_irq(&phba->port_list_lock); 4748 list_add_tail(&vport->listentry, &phba->port_list); 4749 spin_unlock_irq(&phba->port_list_lock); 4750 return vport; 4751 4752 out_put_shost: 4753 kfree(vport->vmid); 4754 bitmap_free(vport->vmid_priority_range); 4755 scsi_host_put(shost); 4756 out: 4757 return NULL; 4758 } 4759 4760 /** 4761 * destroy_port - destroy an FC port 4762 * @vport: pointer to an lpfc virtual N_Port data structure. 4763 * 4764 * This routine destroys a FC port from the upper layer protocol. All the 4765 * resources associated with the port are released. 4766 **/ 4767 void 4768 destroy_port(struct lpfc_vport *vport) 4769 { 4770 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4771 struct lpfc_hba *phba = vport->phba; 4772 4773 lpfc_debugfs_terminate(vport); 4774 fc_remove_host(shost); 4775 scsi_remove_host(shost); 4776 4777 spin_lock_irq(&phba->port_list_lock); 4778 list_del_init(&vport->listentry); 4779 spin_unlock_irq(&phba->port_list_lock); 4780 4781 lpfc_cleanup(vport); 4782 return; 4783 } 4784 4785 /** 4786 * lpfc_get_instance - Get a unique integer ID 4787 * 4788 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4789 * uses the kernel idr facility to perform the task. 4790 * 4791 * Return codes: 4792 * instance - a unique integer ID allocated as the new instance. 4793 * -1 - lpfc get instance failed. 4794 **/ 4795 int 4796 lpfc_get_instance(void) 4797 { 4798 int ret; 4799 4800 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4801 return ret < 0 ? -1 : ret; 4802 } 4803 4804 /** 4805 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4806 * @shost: pointer to SCSI host data structure. 4807 * @time: elapsed time of the scan in jiffies. 4808 * 4809 * This routine is called by the SCSI layer with a SCSI host to determine 4810 * whether the scan host is finished. 4811 * 4812 * Note: there is no scan_start function as adapter initialization will have 4813 * asynchronously kicked off the link initialization. 4814 * 4815 * Return codes 4816 * 0 - SCSI host scan is not over yet. 4817 * 1 - SCSI host scan is over. 4818 **/ 4819 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4820 { 4821 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4822 struct lpfc_hba *phba = vport->phba; 4823 int stat = 0; 4824 4825 spin_lock_irq(shost->host_lock); 4826 4827 if (vport->load_flag & FC_UNLOADING) { 4828 stat = 1; 4829 goto finished; 4830 } 4831 if (time >= msecs_to_jiffies(30 * 1000)) { 4832 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4833 "0461 Scanning longer than 30 " 4834 "seconds. Continuing initialization\n"); 4835 stat = 1; 4836 goto finished; 4837 } 4838 if (time >= msecs_to_jiffies(15 * 1000) && 4839 phba->link_state <= LPFC_LINK_DOWN) { 4840 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4841 "0465 Link down longer than 15 " 4842 "seconds. Continuing initialization\n"); 4843 stat = 1; 4844 goto finished; 4845 } 4846 4847 if (vport->port_state != LPFC_VPORT_READY) 4848 goto finished; 4849 if (vport->num_disc_nodes || vport->fc_prli_sent) 4850 goto finished; 4851 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4852 goto finished; 4853 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4854 goto finished; 4855 4856 stat = 1; 4857 4858 finished: 4859 spin_unlock_irq(shost->host_lock); 4860 return stat; 4861 } 4862 4863 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4864 { 4865 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4866 struct lpfc_hba *phba = vport->phba; 4867 4868 fc_host_supported_speeds(shost) = 0; 4869 /* 4870 * Avoid reporting supported link speed for FCoE as it can't be 4871 * controlled via FCoE. 4872 */ 4873 if (phba->hba_flag & HBA_FCOE_MODE) 4874 return; 4875 4876 if (phba->lmt & LMT_256Gb) 4877 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4878 if (phba->lmt & LMT_128Gb) 4879 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4880 if (phba->lmt & LMT_64Gb) 4881 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4882 if (phba->lmt & LMT_32Gb) 4883 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4884 if (phba->lmt & LMT_16Gb) 4885 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4886 if (phba->lmt & LMT_10Gb) 4887 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4888 if (phba->lmt & LMT_8Gb) 4889 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4890 if (phba->lmt & LMT_4Gb) 4891 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4892 if (phba->lmt & LMT_2Gb) 4893 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4894 if (phba->lmt & LMT_1Gb) 4895 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4896 } 4897 4898 /** 4899 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4900 * @shost: pointer to SCSI host data structure. 4901 * 4902 * This routine initializes a given SCSI host attributes on a FC port. The 4903 * SCSI host can be either on top of a physical port or a virtual port. 4904 **/ 4905 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4906 { 4907 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4908 struct lpfc_hba *phba = vport->phba; 4909 /* 4910 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4911 */ 4912 4913 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4914 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4915 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4916 4917 memset(fc_host_supported_fc4s(shost), 0, 4918 sizeof(fc_host_supported_fc4s(shost))); 4919 fc_host_supported_fc4s(shost)[2] = 1; 4920 fc_host_supported_fc4s(shost)[7] = 1; 4921 4922 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4923 sizeof fc_host_symbolic_name(shost)); 4924 4925 lpfc_host_supported_speeds_set(shost); 4926 4927 fc_host_maxframe_size(shost) = 4928 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4929 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4930 4931 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4932 4933 /* This value is also unchanging */ 4934 memset(fc_host_active_fc4s(shost), 0, 4935 sizeof(fc_host_active_fc4s(shost))); 4936 fc_host_active_fc4s(shost)[2] = 1; 4937 fc_host_active_fc4s(shost)[7] = 1; 4938 4939 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4940 spin_lock_irq(shost->host_lock); 4941 vport->load_flag &= ~FC_LOADING; 4942 spin_unlock_irq(shost->host_lock); 4943 } 4944 4945 /** 4946 * lpfc_stop_port_s3 - Stop SLI3 device port 4947 * @phba: pointer to lpfc hba data structure. 4948 * 4949 * This routine is invoked to stop an SLI3 device port, it stops the device 4950 * from generating interrupts and stops the device driver's timers for the 4951 * device. 4952 **/ 4953 static void 4954 lpfc_stop_port_s3(struct lpfc_hba *phba) 4955 { 4956 /* Clear all interrupt enable conditions */ 4957 writel(0, phba->HCregaddr); 4958 readl(phba->HCregaddr); /* flush */ 4959 /* Clear all pending interrupts */ 4960 writel(0xffffffff, phba->HAregaddr); 4961 readl(phba->HAregaddr); /* flush */ 4962 4963 /* Reset some HBA SLI setup states */ 4964 lpfc_stop_hba_timers(phba); 4965 phba->pport->work_port_events = 0; 4966 } 4967 4968 /** 4969 * lpfc_stop_port_s4 - Stop SLI4 device port 4970 * @phba: pointer to lpfc hba data structure. 4971 * 4972 * This routine is invoked to stop an SLI4 device port, it stops the device 4973 * from generating interrupts and stops the device driver's timers for the 4974 * device. 4975 **/ 4976 static void 4977 lpfc_stop_port_s4(struct lpfc_hba *phba) 4978 { 4979 /* Reset some HBA SLI4 setup states */ 4980 lpfc_stop_hba_timers(phba); 4981 if (phba->pport) 4982 phba->pport->work_port_events = 0; 4983 phba->sli4_hba.intr_enable = 0; 4984 } 4985 4986 /** 4987 * lpfc_stop_port - Wrapper function for stopping hba port 4988 * @phba: Pointer to HBA context object. 4989 * 4990 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4991 * the API jump table function pointer from the lpfc_hba struct. 4992 **/ 4993 void 4994 lpfc_stop_port(struct lpfc_hba *phba) 4995 { 4996 phba->lpfc_stop_port(phba); 4997 4998 if (phba->wq) 4999 flush_workqueue(phba->wq); 5000 } 5001 5002 /** 5003 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5004 * @phba: Pointer to hba for which this call is being executed. 5005 * 5006 * This routine starts the timer waiting for the FCF rediscovery to complete. 5007 **/ 5008 void 5009 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5010 { 5011 unsigned long fcf_redisc_wait_tmo = 5012 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5013 /* Start fcf rediscovery wait period timer */ 5014 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5015 spin_lock_irq(&phba->hbalock); 5016 /* Allow action to new fcf asynchronous event */ 5017 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5018 /* Mark the FCF rediscovery pending state */ 5019 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5020 spin_unlock_irq(&phba->hbalock); 5021 } 5022 5023 /** 5024 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5025 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5026 * 5027 * This routine is invoked when waiting for FCF table rediscover has been 5028 * timed out. If new FCF record(s) has (have) been discovered during the 5029 * wait period, a new FCF event shall be added to the FCOE async event 5030 * list, and then worker thread shall be waked up for processing from the 5031 * worker thread context. 5032 **/ 5033 static void 5034 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5035 { 5036 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 5037 5038 /* Don't send FCF rediscovery event if timer cancelled */ 5039 spin_lock_irq(&phba->hbalock); 5040 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5041 spin_unlock_irq(&phba->hbalock); 5042 return; 5043 } 5044 /* Clear FCF rediscovery timer pending flag */ 5045 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5046 /* FCF rediscovery event to worker thread */ 5047 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5048 spin_unlock_irq(&phba->hbalock); 5049 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5050 "2776 FCF rediscover quiescent timer expired\n"); 5051 /* wake up worker thread */ 5052 lpfc_worker_wake_up(phba); 5053 } 5054 5055 /** 5056 * lpfc_vmid_poll - VMID timeout detection 5057 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5058 * 5059 * This routine is invoked when there is no I/O on by a VM for the specified 5060 * amount of time. When this situation is detected, the VMID has to be 5061 * deregistered from the switch and all the local resources freed. The VMID 5062 * will be reassigned to the VM once the I/O begins. 5063 **/ 5064 static void 5065 lpfc_vmid_poll(struct timer_list *t) 5066 { 5067 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 5068 u32 wake_up = 0; 5069 5070 /* check if there is a need to issue QFPA */ 5071 if (phba->pport->vmid_priority_tagging) { 5072 wake_up = 1; 5073 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5074 } 5075 5076 /* Is the vmid inactivity timer enabled */ 5077 if (phba->pport->vmid_inactivity_timeout || 5078 phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) { 5079 wake_up = 1; 5080 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5081 } 5082 5083 if (wake_up) 5084 lpfc_worker_wake_up(phba); 5085 5086 /* restart the timer for the next iteration */ 5087 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * 5088 LPFC_VMID_TIMER)); 5089 } 5090 5091 /** 5092 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5093 * @phba: pointer to lpfc hba data structure. 5094 * @acqe_link: pointer to the async link completion queue entry. 5095 * 5096 * This routine is to parse the SLI4 link-attention link fault code. 5097 **/ 5098 static void 5099 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5100 struct lpfc_acqe_link *acqe_link) 5101 { 5102 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5103 case LPFC_ASYNC_LINK_FAULT_NONE: 5104 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5105 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5106 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5107 break; 5108 default: 5109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5110 "0398 Unknown link fault code: x%x\n", 5111 bf_get(lpfc_acqe_link_fault, acqe_link)); 5112 break; 5113 } 5114 } 5115 5116 /** 5117 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5118 * @phba: pointer to lpfc hba data structure. 5119 * @acqe_link: pointer to the async link completion queue entry. 5120 * 5121 * This routine is to parse the SLI4 link attention type and translate it 5122 * into the base driver's link attention type coding. 5123 * 5124 * Return: Link attention type in terms of base driver's coding. 5125 **/ 5126 static uint8_t 5127 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5128 struct lpfc_acqe_link *acqe_link) 5129 { 5130 uint8_t att_type; 5131 5132 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5133 case LPFC_ASYNC_LINK_STATUS_DOWN: 5134 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5135 att_type = LPFC_ATT_LINK_DOWN; 5136 break; 5137 case LPFC_ASYNC_LINK_STATUS_UP: 5138 /* Ignore physical link up events - wait for logical link up */ 5139 att_type = LPFC_ATT_RESERVED; 5140 break; 5141 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5142 att_type = LPFC_ATT_LINK_UP; 5143 break; 5144 default: 5145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5146 "0399 Invalid link attention type: x%x\n", 5147 bf_get(lpfc_acqe_link_status, acqe_link)); 5148 att_type = LPFC_ATT_RESERVED; 5149 break; 5150 } 5151 return att_type; 5152 } 5153 5154 /** 5155 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5156 * @phba: pointer to lpfc hba data structure. 5157 * 5158 * This routine is to get an SLI3 FC port's link speed in Mbps. 5159 * 5160 * Return: link speed in terms of Mbps. 5161 **/ 5162 uint32_t 5163 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5164 { 5165 uint32_t link_speed; 5166 5167 if (!lpfc_is_link_up(phba)) 5168 return 0; 5169 5170 if (phba->sli_rev <= LPFC_SLI_REV3) { 5171 switch (phba->fc_linkspeed) { 5172 case LPFC_LINK_SPEED_1GHZ: 5173 link_speed = 1000; 5174 break; 5175 case LPFC_LINK_SPEED_2GHZ: 5176 link_speed = 2000; 5177 break; 5178 case LPFC_LINK_SPEED_4GHZ: 5179 link_speed = 4000; 5180 break; 5181 case LPFC_LINK_SPEED_8GHZ: 5182 link_speed = 8000; 5183 break; 5184 case LPFC_LINK_SPEED_10GHZ: 5185 link_speed = 10000; 5186 break; 5187 case LPFC_LINK_SPEED_16GHZ: 5188 link_speed = 16000; 5189 break; 5190 default: 5191 link_speed = 0; 5192 } 5193 } else { 5194 if (phba->sli4_hba.link_state.logical_speed) 5195 link_speed = 5196 phba->sli4_hba.link_state.logical_speed; 5197 else 5198 link_speed = phba->sli4_hba.link_state.speed; 5199 } 5200 return link_speed; 5201 } 5202 5203 /** 5204 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5205 * @phba: pointer to lpfc hba data structure. 5206 * @evt_code: asynchronous event code. 5207 * @speed_code: asynchronous event link speed code. 5208 * 5209 * This routine is to parse the giving SLI4 async event link speed code into 5210 * value of Mbps for the link speed. 5211 * 5212 * Return: link speed in terms of Mbps. 5213 **/ 5214 static uint32_t 5215 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5216 uint8_t speed_code) 5217 { 5218 uint32_t port_speed; 5219 5220 switch (evt_code) { 5221 case LPFC_TRAILER_CODE_LINK: 5222 switch (speed_code) { 5223 case LPFC_ASYNC_LINK_SPEED_ZERO: 5224 port_speed = 0; 5225 break; 5226 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5227 port_speed = 10; 5228 break; 5229 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5230 port_speed = 100; 5231 break; 5232 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5233 port_speed = 1000; 5234 break; 5235 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5236 port_speed = 10000; 5237 break; 5238 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5239 port_speed = 20000; 5240 break; 5241 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5242 port_speed = 25000; 5243 break; 5244 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5245 port_speed = 40000; 5246 break; 5247 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5248 port_speed = 100000; 5249 break; 5250 default: 5251 port_speed = 0; 5252 } 5253 break; 5254 case LPFC_TRAILER_CODE_FC: 5255 switch (speed_code) { 5256 case LPFC_FC_LA_SPEED_UNKNOWN: 5257 port_speed = 0; 5258 break; 5259 case LPFC_FC_LA_SPEED_1G: 5260 port_speed = 1000; 5261 break; 5262 case LPFC_FC_LA_SPEED_2G: 5263 port_speed = 2000; 5264 break; 5265 case LPFC_FC_LA_SPEED_4G: 5266 port_speed = 4000; 5267 break; 5268 case LPFC_FC_LA_SPEED_8G: 5269 port_speed = 8000; 5270 break; 5271 case LPFC_FC_LA_SPEED_10G: 5272 port_speed = 10000; 5273 break; 5274 case LPFC_FC_LA_SPEED_16G: 5275 port_speed = 16000; 5276 break; 5277 case LPFC_FC_LA_SPEED_32G: 5278 port_speed = 32000; 5279 break; 5280 case LPFC_FC_LA_SPEED_64G: 5281 port_speed = 64000; 5282 break; 5283 case LPFC_FC_LA_SPEED_128G: 5284 port_speed = 128000; 5285 break; 5286 case LPFC_FC_LA_SPEED_256G: 5287 port_speed = 256000; 5288 break; 5289 default: 5290 port_speed = 0; 5291 } 5292 break; 5293 default: 5294 port_speed = 0; 5295 } 5296 return port_speed; 5297 } 5298 5299 /** 5300 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5301 * @phba: pointer to lpfc hba data structure. 5302 * @acqe_link: pointer to the async link completion queue entry. 5303 * 5304 * This routine is to handle the SLI4 asynchronous FCoE link event. 5305 **/ 5306 static void 5307 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5308 struct lpfc_acqe_link *acqe_link) 5309 { 5310 struct lpfc_dmabuf *mp; 5311 LPFC_MBOXQ_t *pmb; 5312 MAILBOX_t *mb; 5313 struct lpfc_mbx_read_top *la; 5314 uint8_t att_type; 5315 int rc; 5316 5317 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5318 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5319 return; 5320 phba->fcoe_eventtag = acqe_link->event_tag; 5321 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5322 if (!pmb) { 5323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5324 "0395 The mboxq allocation failed\n"); 5325 return; 5326 } 5327 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5328 if (!mp) { 5329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5330 "0396 The lpfc_dmabuf allocation failed\n"); 5331 goto out_free_pmb; 5332 } 5333 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5334 if (!mp->virt) { 5335 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5336 "0397 The mbuf allocation failed\n"); 5337 goto out_free_dmabuf; 5338 } 5339 5340 /* Cleanup any outstanding ELS commands */ 5341 lpfc_els_flush_all_cmd(phba); 5342 5343 /* Block ELS IOCBs until we have done process link event */ 5344 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5345 5346 /* Update link event statistics */ 5347 phba->sli.slistat.link_event++; 5348 5349 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5350 lpfc_read_topology(phba, pmb, mp); 5351 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5352 pmb->vport = phba->pport; 5353 5354 /* Keep the link status for extra SLI4 state machine reference */ 5355 phba->sli4_hba.link_state.speed = 5356 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5357 bf_get(lpfc_acqe_link_speed, acqe_link)); 5358 phba->sli4_hba.link_state.duplex = 5359 bf_get(lpfc_acqe_link_duplex, acqe_link); 5360 phba->sli4_hba.link_state.status = 5361 bf_get(lpfc_acqe_link_status, acqe_link); 5362 phba->sli4_hba.link_state.type = 5363 bf_get(lpfc_acqe_link_type, acqe_link); 5364 phba->sli4_hba.link_state.number = 5365 bf_get(lpfc_acqe_link_number, acqe_link); 5366 phba->sli4_hba.link_state.fault = 5367 bf_get(lpfc_acqe_link_fault, acqe_link); 5368 phba->sli4_hba.link_state.logical_speed = 5369 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5370 5371 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5372 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5373 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5374 "Logical speed:%dMbps Fault:%d\n", 5375 phba->sli4_hba.link_state.speed, 5376 phba->sli4_hba.link_state.topology, 5377 phba->sli4_hba.link_state.status, 5378 phba->sli4_hba.link_state.type, 5379 phba->sli4_hba.link_state.number, 5380 phba->sli4_hba.link_state.logical_speed, 5381 phba->sli4_hba.link_state.fault); 5382 /* 5383 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5384 * topology info. Note: Optional for non FC-AL ports. 5385 */ 5386 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5387 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5388 if (rc == MBX_NOT_FINISHED) { 5389 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5390 goto out_free_dmabuf; 5391 } 5392 return; 5393 } 5394 /* 5395 * For FCoE Mode: fill in all the topology information we need and call 5396 * the READ_TOPOLOGY completion routine to continue without actually 5397 * sending the READ_TOPOLOGY mailbox command to the port. 5398 */ 5399 /* Initialize completion status */ 5400 mb = &pmb->u.mb; 5401 mb->mbxStatus = MBX_SUCCESS; 5402 5403 /* Parse port fault information field */ 5404 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5405 5406 /* Parse and translate link attention fields */ 5407 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5408 la->eventTag = acqe_link->event_tag; 5409 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5410 bf_set(lpfc_mbx_read_top_link_spd, la, 5411 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5412 5413 /* Fake the the following irrelvant fields */ 5414 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5415 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5416 bf_set(lpfc_mbx_read_top_il, la, 0); 5417 bf_set(lpfc_mbx_read_top_pb, la, 0); 5418 bf_set(lpfc_mbx_read_top_fa, la, 0); 5419 bf_set(lpfc_mbx_read_top_mm, la, 0); 5420 5421 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5422 lpfc_mbx_cmpl_read_topology(phba, pmb); 5423 5424 return; 5425 5426 out_free_dmabuf: 5427 kfree(mp); 5428 out_free_pmb: 5429 mempool_free(pmb, phba->mbox_mem_pool); 5430 } 5431 5432 /** 5433 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5434 * topology. 5435 * @phba: pointer to lpfc hba data structure. 5436 * @speed_code: asynchronous event link speed code. 5437 * 5438 * This routine is to parse the giving SLI4 async event link speed code into 5439 * value of Read topology link speed. 5440 * 5441 * Return: link speed in terms of Read topology. 5442 **/ 5443 static uint8_t 5444 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5445 { 5446 uint8_t port_speed; 5447 5448 switch (speed_code) { 5449 case LPFC_FC_LA_SPEED_1G: 5450 port_speed = LPFC_LINK_SPEED_1GHZ; 5451 break; 5452 case LPFC_FC_LA_SPEED_2G: 5453 port_speed = LPFC_LINK_SPEED_2GHZ; 5454 break; 5455 case LPFC_FC_LA_SPEED_4G: 5456 port_speed = LPFC_LINK_SPEED_4GHZ; 5457 break; 5458 case LPFC_FC_LA_SPEED_8G: 5459 port_speed = LPFC_LINK_SPEED_8GHZ; 5460 break; 5461 case LPFC_FC_LA_SPEED_16G: 5462 port_speed = LPFC_LINK_SPEED_16GHZ; 5463 break; 5464 case LPFC_FC_LA_SPEED_32G: 5465 port_speed = LPFC_LINK_SPEED_32GHZ; 5466 break; 5467 case LPFC_FC_LA_SPEED_64G: 5468 port_speed = LPFC_LINK_SPEED_64GHZ; 5469 break; 5470 case LPFC_FC_LA_SPEED_128G: 5471 port_speed = LPFC_LINK_SPEED_128GHZ; 5472 break; 5473 case LPFC_FC_LA_SPEED_256G: 5474 port_speed = LPFC_LINK_SPEED_256GHZ; 5475 break; 5476 default: 5477 port_speed = 0; 5478 break; 5479 } 5480 5481 return port_speed; 5482 } 5483 5484 void 5485 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5486 { 5487 struct rxtable_entry *entry; 5488 int cnt = 0, head, tail, last, start; 5489 5490 head = atomic_read(&phba->rxtable_idx_head); 5491 tail = atomic_read(&phba->rxtable_idx_tail); 5492 if (!phba->rxtable || head == tail) { 5493 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 5494 "4411 Rxtable is empty\n"); 5495 return; 5496 } 5497 last = tail; 5498 start = head; 5499 5500 /* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */ 5501 while (start != last) { 5502 if (start) 5503 start--; 5504 else 5505 start = LPFC_MAX_RXMONITOR_ENTRY - 1; 5506 entry = &phba->rxtable[start]; 5507 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5508 "4410 %02d: MBPI %lld Xmit %lld Cmpl %lld " 5509 "Lat %lld ASz %lld Info %02d BWUtil %d " 5510 "Int %d slot %d\n", 5511 cnt, entry->max_bytes_per_interval, 5512 entry->total_bytes, entry->rcv_bytes, 5513 entry->avg_io_latency, entry->avg_io_size, 5514 entry->cmf_info, entry->timer_utilization, 5515 entry->timer_interval, start); 5516 cnt++; 5517 if (cnt >= LPFC_MAX_RXMONITOR_DUMP) 5518 return; 5519 } 5520 } 5521 5522 /** 5523 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5524 * @phba: pointer to lpfc hba data structure. 5525 * @dtag: FPIN descriptor received 5526 * 5527 * Increment the FPIN received counter/time when it happens. 5528 */ 5529 void 5530 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5531 { 5532 struct lpfc_cgn_info *cp; 5533 struct tm broken; 5534 struct timespec64 cur_time; 5535 u32 cnt; 5536 u16 value; 5537 5538 /* Make sure we have a congestion info buffer */ 5539 if (!phba->cgn_i) 5540 return; 5541 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5542 ktime_get_real_ts64(&cur_time); 5543 time64_to_tm(cur_time.tv_sec, 0, &broken); 5544 5545 /* Update congestion statistics */ 5546 switch (dtag) { 5547 case ELS_DTAG_LNK_INTEGRITY: 5548 cnt = le32_to_cpu(cp->link_integ_notification); 5549 cnt++; 5550 cp->link_integ_notification = cpu_to_le32(cnt); 5551 5552 cp->cgn_stat_lnk_month = broken.tm_mon + 1; 5553 cp->cgn_stat_lnk_day = broken.tm_mday; 5554 cp->cgn_stat_lnk_year = broken.tm_year - 100; 5555 cp->cgn_stat_lnk_hour = broken.tm_hour; 5556 cp->cgn_stat_lnk_min = broken.tm_min; 5557 cp->cgn_stat_lnk_sec = broken.tm_sec; 5558 break; 5559 case ELS_DTAG_DELIVERY: 5560 cnt = le32_to_cpu(cp->delivery_notification); 5561 cnt++; 5562 cp->delivery_notification = cpu_to_le32(cnt); 5563 5564 cp->cgn_stat_del_month = broken.tm_mon + 1; 5565 cp->cgn_stat_del_day = broken.tm_mday; 5566 cp->cgn_stat_del_year = broken.tm_year - 100; 5567 cp->cgn_stat_del_hour = broken.tm_hour; 5568 cp->cgn_stat_del_min = broken.tm_min; 5569 cp->cgn_stat_del_sec = broken.tm_sec; 5570 break; 5571 case ELS_DTAG_PEER_CONGEST: 5572 cnt = le32_to_cpu(cp->cgn_peer_notification); 5573 cnt++; 5574 cp->cgn_peer_notification = cpu_to_le32(cnt); 5575 5576 cp->cgn_stat_peer_month = broken.tm_mon + 1; 5577 cp->cgn_stat_peer_day = broken.tm_mday; 5578 cp->cgn_stat_peer_year = broken.tm_year - 100; 5579 cp->cgn_stat_peer_hour = broken.tm_hour; 5580 cp->cgn_stat_peer_min = broken.tm_min; 5581 cp->cgn_stat_peer_sec = broken.tm_sec; 5582 break; 5583 case ELS_DTAG_CONGESTION: 5584 cnt = le32_to_cpu(cp->cgn_notification); 5585 cnt++; 5586 cp->cgn_notification = cpu_to_le32(cnt); 5587 5588 cp->cgn_stat_cgn_month = broken.tm_mon + 1; 5589 cp->cgn_stat_cgn_day = broken.tm_mday; 5590 cp->cgn_stat_cgn_year = broken.tm_year - 100; 5591 cp->cgn_stat_cgn_hour = broken.tm_hour; 5592 cp->cgn_stat_cgn_min = broken.tm_min; 5593 cp->cgn_stat_cgn_sec = broken.tm_sec; 5594 } 5595 if (phba->cgn_fpin_frequency && 5596 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5597 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5598 cp->cgn_stat_npm = value; 5599 } 5600 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5601 LPFC_CGN_CRC32_SEED); 5602 cp->cgn_info_crc = cpu_to_le32(value); 5603 } 5604 5605 /** 5606 * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer 5607 * @phba: pointer to lpfc hba data structure. 5608 * 5609 * Save the congestion event data every minute. 5610 * On the hour collapse all the minute data into hour data. Every day 5611 * collapse all the hour data into daily data. Separate driver 5612 * and fabrc congestion event counters that will be saved out 5613 * to the registered congestion buffer every minute. 5614 */ 5615 static void 5616 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba) 5617 { 5618 struct lpfc_cgn_info *cp; 5619 struct tm broken; 5620 struct timespec64 cur_time; 5621 uint32_t i, index; 5622 uint16_t value, mvalue; 5623 uint64_t bps; 5624 uint32_t mbps; 5625 uint32_t dvalue, wvalue, lvalue, avalue; 5626 uint64_t latsum; 5627 __le16 *ptr; 5628 __le32 *lptr; 5629 __le16 *mptr; 5630 5631 /* Make sure we have a congestion info buffer */ 5632 if (!phba->cgn_i) 5633 return; 5634 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5635 5636 if (time_before(jiffies, phba->cgn_evt_timestamp)) 5637 return; 5638 phba->cgn_evt_timestamp = jiffies + 5639 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5640 phba->cgn_evt_minute++; 5641 5642 /* We should get to this point in the routine on 1 minute intervals */ 5643 5644 ktime_get_real_ts64(&cur_time); 5645 time64_to_tm(cur_time.tv_sec, 0, &broken); 5646 5647 if (phba->cgn_fpin_frequency && 5648 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5649 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5650 cp->cgn_stat_npm = value; 5651 } 5652 5653 /* Read and clear the latency counters for this minute */ 5654 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5655 latsum = atomic64_read(&phba->cgn_latency_evt); 5656 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5657 atomic64_set(&phba->cgn_latency_evt, 0); 5658 5659 /* We need to store MB/sec bandwidth in the congestion information. 5660 * block_cnt is count of 512 byte blocks for the entire minute, 5661 * bps will get bytes per sec before finally converting to MB/sec. 5662 */ 5663 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5664 phba->rx_block_cnt = 0; 5665 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5666 5667 /* Every minute */ 5668 /* cgn parameters */ 5669 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5670 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5671 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5672 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5673 5674 /* Fill in default LUN qdepth */ 5675 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5676 cp->cgn_lunq = cpu_to_le16(value); 5677 5678 /* Record congestion buffer info - every minute 5679 * cgn_driver_evt_cnt (Driver events) 5680 * cgn_fabric_warn_cnt (Congestion Warnings) 5681 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5682 * cgn_fabric_alarm_cnt (Congestion Alarms) 5683 */ 5684 index = ++cp->cgn_index_minute; 5685 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5686 cp->cgn_index_minute = 0; 5687 index = 0; 5688 } 5689 5690 /* Get the number of driver events in this sample and reset counter */ 5691 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5692 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5693 5694 /* Get the number of warning events - FPIN and Signal for this minute */ 5695 wvalue = 0; 5696 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5697 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5698 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5699 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5700 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5701 5702 /* Get the number of alarm events - FPIN and Signal for this minute */ 5703 avalue = 0; 5704 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5705 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5706 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5707 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5708 5709 /* Collect the driver, warning, alarm and latency counts for this 5710 * minute into the driver congestion buffer. 5711 */ 5712 ptr = &cp->cgn_drvr_min[index]; 5713 value = (uint16_t)dvalue; 5714 *ptr = cpu_to_le16(value); 5715 5716 ptr = &cp->cgn_warn_min[index]; 5717 value = (uint16_t)wvalue; 5718 *ptr = cpu_to_le16(value); 5719 5720 ptr = &cp->cgn_alarm_min[index]; 5721 value = (uint16_t)avalue; 5722 *ptr = cpu_to_le16(value); 5723 5724 lptr = &cp->cgn_latency_min[index]; 5725 if (lvalue) { 5726 lvalue = (uint32_t)div_u64(latsum, lvalue); 5727 *lptr = cpu_to_le32(lvalue); 5728 } else { 5729 *lptr = 0; 5730 } 5731 5732 /* Collect the bandwidth value into the driver's congesion buffer. */ 5733 mptr = &cp->cgn_bw_min[index]; 5734 *mptr = cpu_to_le16(mvalue); 5735 5736 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5737 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5738 index, dvalue, wvalue, *lptr, mvalue, avalue); 5739 5740 /* Every hour */ 5741 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5742 /* Record congestion buffer info - every hour 5743 * Collapse all minutes into an hour 5744 */ 5745 index = ++cp->cgn_index_hour; 5746 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5747 cp->cgn_index_hour = 0; 5748 index = 0; 5749 } 5750 5751 dvalue = 0; 5752 wvalue = 0; 5753 lvalue = 0; 5754 avalue = 0; 5755 mvalue = 0; 5756 mbps = 0; 5757 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5758 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5759 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5760 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5761 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5762 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5763 } 5764 if (lvalue) /* Avg of latency averages */ 5765 lvalue /= LPFC_MIN_HOUR; 5766 if (mbps) /* Avg of Bandwidth averages */ 5767 mvalue = mbps / LPFC_MIN_HOUR; 5768 5769 lptr = &cp->cgn_drvr_hr[index]; 5770 *lptr = cpu_to_le32(dvalue); 5771 lptr = &cp->cgn_warn_hr[index]; 5772 *lptr = cpu_to_le32(wvalue); 5773 lptr = &cp->cgn_latency_hr[index]; 5774 *lptr = cpu_to_le32(lvalue); 5775 mptr = &cp->cgn_bw_hr[index]; 5776 *mptr = cpu_to_le16(mvalue); 5777 lptr = &cp->cgn_alarm_hr[index]; 5778 *lptr = cpu_to_le32(avalue); 5779 5780 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5781 "2419 Congestion Info - hour " 5782 "(%d): %d %d %d %d %d\n", 5783 index, dvalue, wvalue, lvalue, mvalue, avalue); 5784 } 5785 5786 /* Every day */ 5787 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5788 /* Record congestion buffer info - every hour 5789 * Collapse all hours into a day. Rotate days 5790 * after LPFC_MAX_CGN_DAYS. 5791 */ 5792 index = ++cp->cgn_index_day; 5793 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5794 cp->cgn_index_day = 0; 5795 index = 0; 5796 } 5797 5798 /* Anytime we overwrite daily index 0, after we wrap, 5799 * we will be overwriting the oldest day, so we must 5800 * update the congestion data start time for that day. 5801 * That start time should have previously been saved after 5802 * we wrote the last days worth of data. 5803 */ 5804 if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) { 5805 time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken); 5806 5807 cp->cgn_info_month = broken.tm_mon + 1; 5808 cp->cgn_info_day = broken.tm_mday; 5809 cp->cgn_info_year = broken.tm_year - 100; 5810 cp->cgn_info_hour = broken.tm_hour; 5811 cp->cgn_info_minute = broken.tm_min; 5812 cp->cgn_info_second = broken.tm_sec; 5813 5814 lpfc_printf_log 5815 (phba, KERN_INFO, LOG_CGN_MGMT, 5816 "2646 CGNInfo idx0 Start Time: " 5817 "%d/%d/%d %d:%d:%d\n", 5818 cp->cgn_info_day, cp->cgn_info_month, 5819 cp->cgn_info_year, cp->cgn_info_hour, 5820 cp->cgn_info_minute, cp->cgn_info_second); 5821 } 5822 5823 dvalue = 0; 5824 wvalue = 0; 5825 lvalue = 0; 5826 mvalue = 0; 5827 mbps = 0; 5828 avalue = 0; 5829 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5830 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5831 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5832 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5833 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5834 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5835 } 5836 if (lvalue) /* Avg of latency averages */ 5837 lvalue /= LPFC_HOUR_DAY; 5838 if (mbps) /* Avg of Bandwidth averages */ 5839 mvalue = mbps / LPFC_HOUR_DAY; 5840 5841 lptr = &cp->cgn_drvr_day[index]; 5842 *lptr = cpu_to_le32(dvalue); 5843 lptr = &cp->cgn_warn_day[index]; 5844 *lptr = cpu_to_le32(wvalue); 5845 lptr = &cp->cgn_latency_day[index]; 5846 *lptr = cpu_to_le32(lvalue); 5847 mptr = &cp->cgn_bw_day[index]; 5848 *mptr = cpu_to_le16(mvalue); 5849 lptr = &cp->cgn_alarm_day[index]; 5850 *lptr = cpu_to_le32(avalue); 5851 5852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5853 "2420 Congestion Info - daily (%d): " 5854 "%d %d %d %d %d\n", 5855 index, dvalue, wvalue, lvalue, mvalue, avalue); 5856 5857 /* We just wrote LPFC_MAX_CGN_DAYS of data, 5858 * so we are wrapped on any data after this. 5859 * Save this as the start time for the next day. 5860 */ 5861 if (index == (LPFC_MAX_CGN_DAYS - 1)) { 5862 phba->hba_flag |= HBA_CGN_DAY_WRAP; 5863 ktime_get_real_ts64(&phba->cgn_daily_ts); 5864 } 5865 } 5866 5867 /* Use the frequency found in the last rcv'ed FPIN */ 5868 value = phba->cgn_fpin_frequency; 5869 if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) 5870 cp->cgn_warn_freq = cpu_to_le16(value); 5871 if (phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) 5872 cp->cgn_alarm_freq = cpu_to_le16(value); 5873 5874 /* Frequency (in ms) Signal Warning/Signal Congestion Notifications 5875 * are received by the HBA 5876 */ 5877 value = phba->cgn_sig_freq; 5878 5879 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5880 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5881 cp->cgn_warn_freq = cpu_to_le16(value); 5882 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5883 cp->cgn_alarm_freq = cpu_to_le16(value); 5884 5885 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5886 LPFC_CGN_CRC32_SEED); 5887 cp->cgn_info_crc = cpu_to_le32(lvalue); 5888 } 5889 5890 /** 5891 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5892 * @phba: The Hba for which this call is being executed. 5893 * 5894 * The routine calculates the latency from the beginning of the CMF timer 5895 * interval to the current point in time. It is called from IO completion 5896 * when we exceed our Bandwidth limitation for the time interval. 5897 */ 5898 uint32_t 5899 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5900 { 5901 struct timespec64 cmpl_time; 5902 uint32_t msec = 0; 5903 5904 ktime_get_real_ts64(&cmpl_time); 5905 5906 /* This routine works on a ms granularity so sec and usec are 5907 * converted accordingly. 5908 */ 5909 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5910 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5911 NSEC_PER_MSEC; 5912 } else { 5913 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5914 msec = (cmpl_time.tv_sec - 5915 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5916 msec += ((cmpl_time.tv_nsec - 5917 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5918 } else { 5919 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5920 1) * MSEC_PER_SEC; 5921 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5922 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5923 } 5924 } 5925 return msec; 5926 } 5927 5928 /** 5929 * lpfc_cmf_timer - This is the timer function for one congestion 5930 * rate interval. 5931 * @timer: Pointer to the high resolution timer that expired 5932 */ 5933 static enum hrtimer_restart 5934 lpfc_cmf_timer(struct hrtimer *timer) 5935 { 5936 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5937 cmf_timer); 5938 struct rxtable_entry *entry; 5939 uint32_t io_cnt; 5940 uint32_t head, tail; 5941 uint32_t busy, max_read; 5942 uint64_t total, rcv, lat, mbpi, extra, cnt; 5943 int timer_interval = LPFC_CMF_INTERVAL; 5944 uint32_t ms; 5945 struct lpfc_cgn_stat *cgs; 5946 int cpu; 5947 5948 /* Only restart the timer if congestion mgmt is on */ 5949 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5950 !phba->cmf_latency.tv_sec) { 5951 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5952 "6224 CMF timer exit: %d %lld\n", 5953 phba->cmf_active_mode, 5954 (uint64_t)phba->cmf_latency.tv_sec); 5955 return HRTIMER_NORESTART; 5956 } 5957 5958 /* If pport is not ready yet, just exit and wait for 5959 * the next timer cycle to hit. 5960 */ 5961 if (!phba->pport) 5962 goto skip; 5963 5964 /* Do not block SCSI IO while in the timer routine since 5965 * total_bytes will be cleared 5966 */ 5967 atomic_set(&phba->cmf_stop_io, 1); 5968 5969 /* First we need to calculate the actual ms between 5970 * the last timer interrupt and this one. We ask for 5971 * LPFC_CMF_INTERVAL, however the actual time may 5972 * vary depending on system overhead. 5973 */ 5974 ms = lpfc_calc_cmf_latency(phba); 5975 5976 5977 /* Immediately after we calculate the time since the last 5978 * timer interrupt, set the start time for the next 5979 * interrupt 5980 */ 5981 ktime_get_real_ts64(&phba->cmf_latency); 5982 5983 phba->cmf_link_byte_count = 5984 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 5985 5986 /* Collect all the stats from the prior timer interval */ 5987 total = 0; 5988 io_cnt = 0; 5989 lat = 0; 5990 rcv = 0; 5991 for_each_present_cpu(cpu) { 5992 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 5993 total += atomic64_xchg(&cgs->total_bytes, 0); 5994 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 5995 lat += atomic64_xchg(&cgs->rx_latency, 0); 5996 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 5997 } 5998 5999 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6000 * returned from the last CMF_SYNC_WQE issued, from 6001 * cmf_last_sync_bw. This will be the target BW for 6002 * this next timer interval. 6003 */ 6004 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6005 phba->link_state != LPFC_LINK_DOWN && 6006 phba->hba_flag & HBA_SETUP) { 6007 mbpi = phba->cmf_last_sync_bw; 6008 phba->cmf_last_sync_bw = 0; 6009 extra = 0; 6010 6011 /* Calculate any extra bytes needed to account for the 6012 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6013 * calculate the adjustment needed for total to reflect 6014 * a full LPFC_CMF_INTERVAL. 6015 */ 6016 if (ms && ms < LPFC_CMF_INTERVAL) { 6017 cnt = div_u64(total, ms); /* bytes per ms */ 6018 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6019 6020 /* If the timeout is scheduled to be shorter, 6021 * this value may skew the data, so cap it at mbpi. 6022 */ 6023 if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi) 6024 cnt = mbpi; 6025 6026 extra = cnt - total; 6027 } 6028 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6029 } else { 6030 /* For Monitor mode or link down we want mbpi 6031 * to be the full link speed 6032 */ 6033 mbpi = phba->cmf_link_byte_count; 6034 extra = 0; 6035 } 6036 phba->cmf_timer_cnt++; 6037 6038 if (io_cnt) { 6039 /* Update congestion info buffer latency in us */ 6040 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6041 atomic64_add(lat, &phba->cgn_latency_evt); 6042 } 6043 busy = atomic_xchg(&phba->cmf_busy, 0); 6044 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6045 6046 /* Calculate MBPI for the next timer interval */ 6047 if (mbpi) { 6048 if (mbpi > phba->cmf_link_byte_count || 6049 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6050 mbpi = phba->cmf_link_byte_count; 6051 6052 /* Change max_bytes_per_interval to what the prior 6053 * CMF_SYNC_WQE cmpl indicated. 6054 */ 6055 if (mbpi != phba->cmf_max_bytes_per_interval) 6056 phba->cmf_max_bytes_per_interval = mbpi; 6057 } 6058 6059 /* Save rxmonitor information for debug */ 6060 if (phba->rxtable) { 6061 head = atomic_xchg(&phba->rxtable_idx_head, 6062 LPFC_RXMONITOR_TABLE_IN_USE); 6063 entry = &phba->rxtable[head]; 6064 entry->total_bytes = total; 6065 entry->cmf_bytes = total + extra; 6066 entry->rcv_bytes = rcv; 6067 entry->cmf_busy = busy; 6068 entry->cmf_info = phba->cmf_active_info; 6069 if (io_cnt) { 6070 entry->avg_io_latency = div_u64(lat, io_cnt); 6071 entry->avg_io_size = div_u64(rcv, io_cnt); 6072 } else { 6073 entry->avg_io_latency = 0; 6074 entry->avg_io_size = 0; 6075 } 6076 entry->max_read_cnt = max_read; 6077 entry->io_cnt = io_cnt; 6078 entry->max_bytes_per_interval = mbpi; 6079 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6080 entry->timer_utilization = phba->cmf_last_ts; 6081 else 6082 entry->timer_utilization = ms; 6083 entry->timer_interval = ms; 6084 phba->cmf_last_ts = 0; 6085 6086 /* Increment rxtable index */ 6087 head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY; 6088 tail = atomic_read(&phba->rxtable_idx_tail); 6089 if (head == tail) { 6090 tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY; 6091 atomic_set(&phba->rxtable_idx_tail, tail); 6092 } 6093 atomic_set(&phba->rxtable_idx_head, head); 6094 } 6095 6096 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6097 /* If Monitor mode, check if we are oversubscribed 6098 * against the full line rate. 6099 */ 6100 if (mbpi && total > mbpi) 6101 atomic_inc(&phba->cgn_driver_evt_cnt); 6102 } 6103 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6104 6105 /* Each minute save Fabric and Driver congestion information */ 6106 lpfc_cgn_save_evt_cnt(phba); 6107 6108 phba->hba_flag &= ~HBA_SHORT_CMF; 6109 6110 /* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the 6111 * minute, adjust our next timer interval, if needed, to ensure a 6112 * 1 minute granularity when we get the next timer interrupt. 6113 */ 6114 if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL), 6115 phba->cgn_evt_timestamp)) { 6116 timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp - 6117 jiffies); 6118 if (timer_interval <= 0) 6119 timer_interval = LPFC_CMF_INTERVAL; 6120 else 6121 phba->hba_flag |= HBA_SHORT_CMF; 6122 6123 /* If we adjust timer_interval, max_bytes_per_interval 6124 * needs to be adjusted as well. 6125 */ 6126 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 6127 timer_interval, 1000); 6128 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) 6129 phba->cmf_max_bytes_per_interval = 6130 phba->cmf_link_byte_count; 6131 } 6132 6133 /* Since total_bytes has already been zero'ed, its okay to unblock 6134 * after max_bytes_per_interval is setup. 6135 */ 6136 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6137 queue_work(phba->wq, &phba->unblock_request_work); 6138 6139 /* SCSI IO is now unblocked */ 6140 atomic_set(&phba->cmf_stop_io, 0); 6141 6142 skip: 6143 hrtimer_forward_now(timer, 6144 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6145 return HRTIMER_RESTART; 6146 } 6147 6148 #define trunk_link_status(__idx)\ 6149 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6150 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6151 "Link up" : "Link down") : "NA" 6152 /* Did port __idx reported an error */ 6153 #define trunk_port_fault(__idx)\ 6154 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6155 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6156 6157 static void 6158 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6159 struct lpfc_acqe_fc_la *acqe_fc) 6160 { 6161 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6162 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6163 6164 phba->sli4_hba.link_state.speed = 6165 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6166 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6167 6168 phba->sli4_hba.link_state.logical_speed = 6169 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6170 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6171 phba->fc_linkspeed = 6172 lpfc_async_link_speed_to_read_top( 6173 phba, 6174 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6175 6176 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6177 phba->trunk_link.link0.state = 6178 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6179 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6180 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6181 } 6182 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6183 phba->trunk_link.link1.state = 6184 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6185 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6186 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6187 } 6188 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6189 phba->trunk_link.link2.state = 6190 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6191 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6192 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6193 } 6194 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6195 phba->trunk_link.link3.state = 6196 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6197 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6198 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6199 } 6200 6201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6202 "2910 Async FC Trunking Event - Speed:%d\n" 6203 "\tLogical speed:%d " 6204 "port0: %s port1: %s port2: %s port3: %s\n", 6205 phba->sli4_hba.link_state.speed, 6206 phba->sli4_hba.link_state.logical_speed, 6207 trunk_link_status(0), trunk_link_status(1), 6208 trunk_link_status(2), trunk_link_status(3)); 6209 6210 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6211 lpfc_cmf_signal_init(phba); 6212 6213 if (port_fault) 6214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6215 "3202 trunk error:0x%x (%s) seen on port0:%s " 6216 /* 6217 * SLI-4: We have only 0xA error codes 6218 * defined as of now. print an appropriate 6219 * message in case driver needs to be updated. 6220 */ 6221 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6222 "UNDEFINED. update driver." : trunk_errmsg[err], 6223 trunk_port_fault(0), trunk_port_fault(1), 6224 trunk_port_fault(2), trunk_port_fault(3)); 6225 } 6226 6227 6228 /** 6229 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6230 * @phba: pointer to lpfc hba data structure. 6231 * @acqe_fc: pointer to the async fc completion queue entry. 6232 * 6233 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6234 * that the event was received and then issue a read_topology mailbox command so 6235 * that the rest of the driver will treat it the same as SLI3. 6236 **/ 6237 static void 6238 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6239 { 6240 struct lpfc_dmabuf *mp; 6241 LPFC_MBOXQ_t *pmb; 6242 MAILBOX_t *mb; 6243 struct lpfc_mbx_read_top *la; 6244 int rc; 6245 6246 if (bf_get(lpfc_trailer_type, acqe_fc) != 6247 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6249 "2895 Non FC link Event detected.(%d)\n", 6250 bf_get(lpfc_trailer_type, acqe_fc)); 6251 return; 6252 } 6253 6254 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6255 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6256 lpfc_update_trunk_link_status(phba, acqe_fc); 6257 return; 6258 } 6259 6260 /* Keep the link status for extra SLI4 state machine reference */ 6261 phba->sli4_hba.link_state.speed = 6262 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6263 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6264 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6265 phba->sli4_hba.link_state.topology = 6266 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6267 phba->sli4_hba.link_state.status = 6268 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6269 phba->sli4_hba.link_state.type = 6270 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6271 phba->sli4_hba.link_state.number = 6272 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6273 phba->sli4_hba.link_state.fault = 6274 bf_get(lpfc_acqe_link_fault, acqe_fc); 6275 6276 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6277 LPFC_FC_LA_TYPE_LINK_DOWN) 6278 phba->sli4_hba.link_state.logical_speed = 0; 6279 else if (!phba->sli4_hba.conf_trunk) 6280 phba->sli4_hba.link_state.logical_speed = 6281 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6282 6283 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6284 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6285 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6286 "%dMbps Fault:%d\n", 6287 phba->sli4_hba.link_state.speed, 6288 phba->sli4_hba.link_state.topology, 6289 phba->sli4_hba.link_state.status, 6290 phba->sli4_hba.link_state.type, 6291 phba->sli4_hba.link_state.number, 6292 phba->sli4_hba.link_state.logical_speed, 6293 phba->sli4_hba.link_state.fault); 6294 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6295 if (!pmb) { 6296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6297 "2897 The mboxq allocation failed\n"); 6298 return; 6299 } 6300 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 6301 if (!mp) { 6302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6303 "2898 The lpfc_dmabuf allocation failed\n"); 6304 goto out_free_pmb; 6305 } 6306 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 6307 if (!mp->virt) { 6308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6309 "2899 The mbuf allocation failed\n"); 6310 goto out_free_dmabuf; 6311 } 6312 6313 /* Cleanup any outstanding ELS commands */ 6314 lpfc_els_flush_all_cmd(phba); 6315 6316 /* Block ELS IOCBs until we have done process link event */ 6317 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6318 6319 /* Update link event statistics */ 6320 phba->sli.slistat.link_event++; 6321 6322 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6323 lpfc_read_topology(phba, pmb, mp); 6324 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6325 pmb->vport = phba->pport; 6326 6327 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6328 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6329 6330 switch (phba->sli4_hba.link_state.status) { 6331 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6332 phba->link_flag |= LS_MDS_LINK_DOWN; 6333 break; 6334 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6335 phba->link_flag |= LS_MDS_LOOPBACK; 6336 break; 6337 default: 6338 break; 6339 } 6340 6341 /* Initialize completion status */ 6342 mb = &pmb->u.mb; 6343 mb->mbxStatus = MBX_SUCCESS; 6344 6345 /* Parse port fault information field */ 6346 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6347 6348 /* Parse and translate link attention fields */ 6349 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6350 la->eventTag = acqe_fc->event_tag; 6351 6352 if (phba->sli4_hba.link_state.status == 6353 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6354 bf_set(lpfc_mbx_read_top_att_type, la, 6355 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6356 } else { 6357 bf_set(lpfc_mbx_read_top_att_type, la, 6358 LPFC_FC_LA_TYPE_LINK_DOWN); 6359 } 6360 /* Invoke the mailbox command callback function */ 6361 lpfc_mbx_cmpl_read_topology(phba, pmb); 6362 6363 return; 6364 } 6365 6366 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6367 if (rc == MBX_NOT_FINISHED) { 6368 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6369 goto out_free_dmabuf; 6370 } 6371 return; 6372 6373 out_free_dmabuf: 6374 kfree(mp); 6375 out_free_pmb: 6376 mempool_free(pmb, phba->mbox_mem_pool); 6377 } 6378 6379 /** 6380 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6381 * @phba: pointer to lpfc hba data structure. 6382 * @acqe_sli: pointer to the async SLI completion queue entry. 6383 * 6384 * This routine is to handle the SLI4 asynchronous SLI events. 6385 **/ 6386 static void 6387 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6388 { 6389 char port_name; 6390 char message[128]; 6391 uint8_t status; 6392 uint8_t evt_type; 6393 uint8_t operational = 0; 6394 struct temp_event temp_event_data; 6395 struct lpfc_acqe_misconfigured_event *misconfigured; 6396 struct lpfc_acqe_cgn_signal *cgn_signal; 6397 struct Scsi_Host *shost; 6398 struct lpfc_vport **vports; 6399 int rc, i, cnt; 6400 6401 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6402 6403 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6404 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6405 "x%08x x%08x x%08x\n", evt_type, 6406 acqe_sli->event_data1, acqe_sli->event_data2, 6407 acqe_sli->reserved, acqe_sli->trailer); 6408 6409 port_name = phba->Port[0]; 6410 if (port_name == 0x00) 6411 port_name = '?'; /* get port name is empty */ 6412 6413 switch (evt_type) { 6414 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6415 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6416 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6417 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6418 6419 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6420 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6421 acqe_sli->event_data1, port_name); 6422 6423 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6424 shost = lpfc_shost_from_vport(phba->pport); 6425 fc_host_post_vendor_event(shost, fc_get_event_number(), 6426 sizeof(temp_event_data), 6427 (char *)&temp_event_data, 6428 SCSI_NL_VID_TYPE_PCI 6429 | PCI_VENDOR_ID_EMULEX); 6430 break; 6431 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6432 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6433 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6434 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6435 6436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6437 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6438 acqe_sli->event_data1, port_name); 6439 6440 shost = lpfc_shost_from_vport(phba->pport); 6441 fc_host_post_vendor_event(shost, fc_get_event_number(), 6442 sizeof(temp_event_data), 6443 (char *)&temp_event_data, 6444 SCSI_NL_VID_TYPE_PCI 6445 | PCI_VENDOR_ID_EMULEX); 6446 break; 6447 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6448 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6449 &acqe_sli->event_data1; 6450 6451 /* fetch the status for this port */ 6452 switch (phba->sli4_hba.lnk_info.lnk_no) { 6453 case LPFC_LINK_NUMBER_0: 6454 status = bf_get(lpfc_sli_misconfigured_port0_state, 6455 &misconfigured->theEvent); 6456 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6457 &misconfigured->theEvent); 6458 break; 6459 case LPFC_LINK_NUMBER_1: 6460 status = bf_get(lpfc_sli_misconfigured_port1_state, 6461 &misconfigured->theEvent); 6462 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6463 &misconfigured->theEvent); 6464 break; 6465 case LPFC_LINK_NUMBER_2: 6466 status = bf_get(lpfc_sli_misconfigured_port2_state, 6467 &misconfigured->theEvent); 6468 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6469 &misconfigured->theEvent); 6470 break; 6471 case LPFC_LINK_NUMBER_3: 6472 status = bf_get(lpfc_sli_misconfigured_port3_state, 6473 &misconfigured->theEvent); 6474 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6475 &misconfigured->theEvent); 6476 break; 6477 default: 6478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6479 "3296 " 6480 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6481 "event: Invalid link %d", 6482 phba->sli4_hba.lnk_info.lnk_no); 6483 return; 6484 } 6485 6486 /* Skip if optic state unchanged */ 6487 if (phba->sli4_hba.lnk_info.optic_state == status) 6488 return; 6489 6490 switch (status) { 6491 case LPFC_SLI_EVENT_STATUS_VALID: 6492 sprintf(message, "Physical Link is functional"); 6493 break; 6494 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6495 sprintf(message, "Optics faulted/incorrectly " 6496 "installed/not installed - Reseat optics, " 6497 "if issue not resolved, replace."); 6498 break; 6499 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6500 sprintf(message, 6501 "Optics of two types installed - Remove one " 6502 "optic or install matching pair of optics."); 6503 break; 6504 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6505 sprintf(message, "Incompatible optics - Replace with " 6506 "compatible optics for card to function."); 6507 break; 6508 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6509 sprintf(message, "Unqualified optics - Replace with " 6510 "Avago optics for Warranty and Technical " 6511 "Support - Link is%s operational", 6512 (operational) ? " not" : ""); 6513 break; 6514 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6515 sprintf(message, "Uncertified optics - Replace with " 6516 "Avago-certified optics to enable link " 6517 "operation - Link is%s operational", 6518 (operational) ? " not" : ""); 6519 break; 6520 default: 6521 /* firmware is reporting a status we don't know about */ 6522 sprintf(message, "Unknown event status x%02x", status); 6523 break; 6524 } 6525 6526 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6527 rc = lpfc_sli4_read_config(phba); 6528 if (rc) { 6529 phba->lmt = 0; 6530 lpfc_printf_log(phba, KERN_ERR, 6531 LOG_TRACE_EVENT, 6532 "3194 Unable to retrieve supported " 6533 "speeds, rc = 0x%x\n", rc); 6534 } 6535 rc = lpfc_sli4_refresh_params(phba); 6536 if (rc) { 6537 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6538 "3174 Unable to update pls support, " 6539 "rc x%x\n", rc); 6540 } 6541 vports = lpfc_create_vport_work_array(phba); 6542 if (vports != NULL) { 6543 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6544 i++) { 6545 shost = lpfc_shost_from_vport(vports[i]); 6546 lpfc_host_supported_speeds_set(shost); 6547 } 6548 } 6549 lpfc_destroy_vport_work_array(phba, vports); 6550 6551 phba->sli4_hba.lnk_info.optic_state = status; 6552 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6553 "3176 Port Name %c %s\n", port_name, message); 6554 break; 6555 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6556 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6557 "3192 Remote DPort Test Initiated - " 6558 "Event Data1:x%08x Event Data2: x%08x\n", 6559 acqe_sli->event_data1, acqe_sli->event_data2); 6560 break; 6561 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6562 /* Call FW to obtain active parms */ 6563 lpfc_sli4_cgn_parm_chg_evt(phba); 6564 break; 6565 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6566 /* Misconfigured WWN. Reports that the SLI Port is configured 6567 * to use FA-WWN, but the attached device doesn’t support it. 6568 * No driver action is required. 6569 * Event Data1 - N.A, Event Data2 - N.A 6570 */ 6571 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 6572 "2699 Misconfigured FA-WWN - Attached device does " 6573 "not support FA-WWN\n"); 6574 break; 6575 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6576 /* EEPROM failure. No driver action is required */ 6577 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6578 "2518 EEPROM failure - " 6579 "Event Data1: x%08x Event Data2: x%08x\n", 6580 acqe_sli->event_data1, acqe_sli->event_data2); 6581 break; 6582 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6583 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6584 break; 6585 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6586 &acqe_sli->event_data1; 6587 phba->cgn_acqe_cnt++; 6588 6589 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6590 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6591 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6592 6593 /* no threshold for CMF, even 1 signal will trigger an event */ 6594 6595 /* Alarm overrides warning, so check that first */ 6596 if (cgn_signal->alarm_cnt) { 6597 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6598 /* Keep track of alarm cnt for cgn_info */ 6599 atomic_add(cgn_signal->alarm_cnt, 6600 &phba->cgn_fabric_alarm_cnt); 6601 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6602 atomic_add(cgn_signal->alarm_cnt, 6603 &phba->cgn_sync_alarm_cnt); 6604 } 6605 } else if (cnt) { 6606 /* signal action needs to be taken */ 6607 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6608 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6609 /* Keep track of warning cnt for cgn_info */ 6610 atomic_add(cnt, &phba->cgn_fabric_warn_cnt); 6611 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6612 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6613 } 6614 } 6615 break; 6616 default: 6617 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6618 "3193 Unrecognized SLI event, type: 0x%x", 6619 evt_type); 6620 break; 6621 } 6622 } 6623 6624 /** 6625 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6626 * @vport: pointer to vport data structure. 6627 * 6628 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6629 * response to a CVL event. 6630 * 6631 * Return the pointer to the ndlp with the vport if successful, otherwise 6632 * return NULL. 6633 **/ 6634 static struct lpfc_nodelist * 6635 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6636 { 6637 struct lpfc_nodelist *ndlp; 6638 struct Scsi_Host *shost; 6639 struct lpfc_hba *phba; 6640 6641 if (!vport) 6642 return NULL; 6643 phba = vport->phba; 6644 if (!phba) 6645 return NULL; 6646 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6647 if (!ndlp) { 6648 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6649 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6650 if (!ndlp) 6651 return NULL; 6652 /* Set the node type */ 6653 ndlp->nlp_type |= NLP_FABRIC; 6654 /* Put ndlp onto node list */ 6655 lpfc_enqueue_node(vport, ndlp); 6656 } 6657 if ((phba->pport->port_state < LPFC_FLOGI) && 6658 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6659 return NULL; 6660 /* If virtual link is not yet instantiated ignore CVL */ 6661 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6662 && (vport->port_state != LPFC_VPORT_FAILED)) 6663 return NULL; 6664 shost = lpfc_shost_from_vport(vport); 6665 if (!shost) 6666 return NULL; 6667 lpfc_linkdown_port(vport); 6668 lpfc_cleanup_pending_mbox(vport); 6669 spin_lock_irq(shost->host_lock); 6670 vport->fc_flag |= FC_VPORT_CVL_RCVD; 6671 spin_unlock_irq(shost->host_lock); 6672 6673 return ndlp; 6674 } 6675 6676 /** 6677 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6678 * @phba: pointer to lpfc hba data structure. 6679 * 6680 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6681 * response to a FCF dead event. 6682 **/ 6683 static void 6684 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6685 { 6686 struct lpfc_vport **vports; 6687 int i; 6688 6689 vports = lpfc_create_vport_work_array(phba); 6690 if (vports) 6691 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6692 lpfc_sli4_perform_vport_cvl(vports[i]); 6693 lpfc_destroy_vport_work_array(phba, vports); 6694 } 6695 6696 /** 6697 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6698 * @phba: pointer to lpfc hba data structure. 6699 * @acqe_fip: pointer to the async fcoe completion queue entry. 6700 * 6701 * This routine is to handle the SLI4 asynchronous fcoe event. 6702 **/ 6703 static void 6704 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6705 struct lpfc_acqe_fip *acqe_fip) 6706 { 6707 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6708 int rc; 6709 struct lpfc_vport *vport; 6710 struct lpfc_nodelist *ndlp; 6711 int active_vlink_present; 6712 struct lpfc_vport **vports; 6713 int i; 6714 6715 phba->fc_eventTag = acqe_fip->event_tag; 6716 phba->fcoe_eventtag = acqe_fip->event_tag; 6717 switch (event_type) { 6718 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6719 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6720 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6722 "2546 New FCF event, evt_tag:x%x, " 6723 "index:x%x\n", 6724 acqe_fip->event_tag, 6725 acqe_fip->index); 6726 else 6727 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6728 LOG_DISCOVERY, 6729 "2788 FCF param modified event, " 6730 "evt_tag:x%x, index:x%x\n", 6731 acqe_fip->event_tag, 6732 acqe_fip->index); 6733 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6734 /* 6735 * During period of FCF discovery, read the FCF 6736 * table record indexed by the event to update 6737 * FCF roundrobin failover eligible FCF bmask. 6738 */ 6739 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6740 LOG_DISCOVERY, 6741 "2779 Read FCF (x%x) for updating " 6742 "roundrobin FCF failover bmask\n", 6743 acqe_fip->index); 6744 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6745 } 6746 6747 /* If the FCF discovery is in progress, do nothing. */ 6748 spin_lock_irq(&phba->hbalock); 6749 if (phba->hba_flag & FCF_TS_INPROG) { 6750 spin_unlock_irq(&phba->hbalock); 6751 break; 6752 } 6753 /* If fast FCF failover rescan event is pending, do nothing */ 6754 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6755 spin_unlock_irq(&phba->hbalock); 6756 break; 6757 } 6758 6759 /* If the FCF has been in discovered state, do nothing. */ 6760 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6761 spin_unlock_irq(&phba->hbalock); 6762 break; 6763 } 6764 spin_unlock_irq(&phba->hbalock); 6765 6766 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6767 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6768 "2770 Start FCF table scan per async FCF " 6769 "event, evt_tag:x%x, index:x%x\n", 6770 acqe_fip->event_tag, acqe_fip->index); 6771 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6772 LPFC_FCOE_FCF_GET_FIRST); 6773 if (rc) 6774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6775 "2547 Issue FCF scan read FCF mailbox " 6776 "command failed (x%x)\n", rc); 6777 break; 6778 6779 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6781 "2548 FCF Table full count 0x%x tag 0x%x\n", 6782 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6783 acqe_fip->event_tag); 6784 break; 6785 6786 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6787 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6788 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6789 "2549 FCF (x%x) disconnected from network, " 6790 "tag:x%x\n", acqe_fip->index, 6791 acqe_fip->event_tag); 6792 /* 6793 * If we are in the middle of FCF failover process, clear 6794 * the corresponding FCF bit in the roundrobin bitmap. 6795 */ 6796 spin_lock_irq(&phba->hbalock); 6797 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6798 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6799 spin_unlock_irq(&phba->hbalock); 6800 /* Update FLOGI FCF failover eligible FCF bmask */ 6801 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6802 break; 6803 } 6804 spin_unlock_irq(&phba->hbalock); 6805 6806 /* If the event is not for currently used fcf do nothing */ 6807 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6808 break; 6809 6810 /* 6811 * Otherwise, request the port to rediscover the entire FCF 6812 * table for a fast recovery from case that the current FCF 6813 * is no longer valid as we are not in the middle of FCF 6814 * failover process already. 6815 */ 6816 spin_lock_irq(&phba->hbalock); 6817 /* Mark the fast failover process in progress */ 6818 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6819 spin_unlock_irq(&phba->hbalock); 6820 6821 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6822 "2771 Start FCF fast failover process due to " 6823 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6824 "\n", acqe_fip->event_tag, acqe_fip->index); 6825 rc = lpfc_sli4_redisc_fcf_table(phba); 6826 if (rc) { 6827 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6828 LOG_TRACE_EVENT, 6829 "2772 Issue FCF rediscover mailbox " 6830 "command failed, fail through to FCF " 6831 "dead event\n"); 6832 spin_lock_irq(&phba->hbalock); 6833 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6834 spin_unlock_irq(&phba->hbalock); 6835 /* 6836 * Last resort will fail over by treating this 6837 * as a link down to FCF registration. 6838 */ 6839 lpfc_sli4_fcf_dead_failthrough(phba); 6840 } else { 6841 /* Reset FCF roundrobin bmask for new discovery */ 6842 lpfc_sli4_clear_fcf_rr_bmask(phba); 6843 /* 6844 * Handling fast FCF failover to a DEAD FCF event is 6845 * considered equalivant to receiving CVL to all vports. 6846 */ 6847 lpfc_sli4_perform_all_vport_cvl(phba); 6848 } 6849 break; 6850 case LPFC_FIP_EVENT_TYPE_CVL: 6851 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6852 lpfc_printf_log(phba, KERN_ERR, 6853 LOG_TRACE_EVENT, 6854 "2718 Clear Virtual Link Received for VPI 0x%x" 6855 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6856 6857 vport = lpfc_find_vport_by_vpid(phba, 6858 acqe_fip->index); 6859 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6860 if (!ndlp) 6861 break; 6862 active_vlink_present = 0; 6863 6864 vports = lpfc_create_vport_work_array(phba); 6865 if (vports) { 6866 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6867 i++) { 6868 if ((!(vports[i]->fc_flag & 6869 FC_VPORT_CVL_RCVD)) && 6870 (vports[i]->port_state > LPFC_FDISC)) { 6871 active_vlink_present = 1; 6872 break; 6873 } 6874 } 6875 lpfc_destroy_vport_work_array(phba, vports); 6876 } 6877 6878 /* 6879 * Don't re-instantiate if vport is marked for deletion. 6880 * If we are here first then vport_delete is going to wait 6881 * for discovery to complete. 6882 */ 6883 if (!(vport->load_flag & FC_UNLOADING) && 6884 active_vlink_present) { 6885 /* 6886 * If there are other active VLinks present, 6887 * re-instantiate the Vlink using FDISC. 6888 */ 6889 mod_timer(&ndlp->nlp_delayfunc, 6890 jiffies + msecs_to_jiffies(1000)); 6891 spin_lock_irq(&ndlp->lock); 6892 ndlp->nlp_flag |= NLP_DELAY_TMO; 6893 spin_unlock_irq(&ndlp->lock); 6894 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6895 vport->port_state = LPFC_FDISC; 6896 } else { 6897 /* 6898 * Otherwise, we request port to rediscover 6899 * the entire FCF table for a fast recovery 6900 * from possible case that the current FCF 6901 * is no longer valid if we are not already 6902 * in the FCF failover process. 6903 */ 6904 spin_lock_irq(&phba->hbalock); 6905 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6906 spin_unlock_irq(&phba->hbalock); 6907 break; 6908 } 6909 /* Mark the fast failover process in progress */ 6910 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6911 spin_unlock_irq(&phba->hbalock); 6912 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6913 LOG_DISCOVERY, 6914 "2773 Start FCF failover per CVL, " 6915 "evt_tag:x%x\n", acqe_fip->event_tag); 6916 rc = lpfc_sli4_redisc_fcf_table(phba); 6917 if (rc) { 6918 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6919 LOG_TRACE_EVENT, 6920 "2774 Issue FCF rediscover " 6921 "mailbox command failed, " 6922 "through to CVL event\n"); 6923 spin_lock_irq(&phba->hbalock); 6924 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6925 spin_unlock_irq(&phba->hbalock); 6926 /* 6927 * Last resort will be re-try on the 6928 * the current registered FCF entry. 6929 */ 6930 lpfc_retry_pport_discovery(phba); 6931 } else 6932 /* 6933 * Reset FCF roundrobin bmask for new 6934 * discovery. 6935 */ 6936 lpfc_sli4_clear_fcf_rr_bmask(phba); 6937 } 6938 break; 6939 default: 6940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6941 "0288 Unknown FCoE event type 0x%x event tag " 6942 "0x%x\n", event_type, acqe_fip->event_tag); 6943 break; 6944 } 6945 } 6946 6947 /** 6948 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6949 * @phba: pointer to lpfc hba data structure. 6950 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6951 * 6952 * This routine is to handle the SLI4 asynchronous dcbx event. 6953 **/ 6954 static void 6955 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6956 struct lpfc_acqe_dcbx *acqe_dcbx) 6957 { 6958 phba->fc_eventTag = acqe_dcbx->event_tag; 6959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6960 "0290 The SLI4 DCBX asynchronous event is not " 6961 "handled yet\n"); 6962 } 6963 6964 /** 6965 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6966 * @phba: pointer to lpfc hba data structure. 6967 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6968 * 6969 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6970 * is an asynchronous notified of a logical link speed change. The Port 6971 * reports the logical link speed in units of 10Mbps. 6972 **/ 6973 static void 6974 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 6975 struct lpfc_acqe_grp5 *acqe_grp5) 6976 { 6977 uint16_t prev_ll_spd; 6978 6979 phba->fc_eventTag = acqe_grp5->event_tag; 6980 phba->fcoe_eventtag = acqe_grp5->event_tag; 6981 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 6982 phba->sli4_hba.link_state.logical_speed = 6983 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 6984 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6985 "2789 GRP5 Async Event: Updating logical link speed " 6986 "from %dMbps to %dMbps\n", prev_ll_spd, 6987 phba->sli4_hba.link_state.logical_speed); 6988 } 6989 6990 /** 6991 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 6992 * @phba: pointer to lpfc hba data structure. 6993 * 6994 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 6995 * is an asynchronous notification of a request to reset CM stats. 6996 **/ 6997 static void 6998 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 6999 { 7000 if (!phba->cgn_i) 7001 return; 7002 lpfc_init_congestion_stat(phba); 7003 } 7004 7005 /** 7006 * lpfc_cgn_params_val - Validate FW congestion parameters. 7007 * @phba: pointer to lpfc hba data structure. 7008 * @p_cfg_param: pointer to FW provided congestion parameters. 7009 * 7010 * This routine validates the congestion parameters passed 7011 * by the FW to the driver via an ACQE event. 7012 **/ 7013 static void 7014 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7015 { 7016 spin_lock_irq(&phba->hbalock); 7017 7018 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7019 LPFC_CFG_MONITOR)) { 7020 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7021 "6225 CMF mode param out of range: %d\n", 7022 p_cfg_param->cgn_param_mode); 7023 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7024 } 7025 7026 spin_unlock_irq(&phba->hbalock); 7027 } 7028 7029 /** 7030 * lpfc_cgn_params_parse - Process a FW cong parm change event 7031 * @phba: pointer to lpfc hba data structure. 7032 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7033 * @len: the size of pdata in bytes. 7034 * 7035 * This routine validates the congestion management buffer signature 7036 * from the FW, validates the contents and makes corrections for 7037 * valid, in-range values. If the signature magic is correct and 7038 * after parameter validation, the contents are copied to the driver's 7039 * @phba structure. If the magic is incorrect, an error message is 7040 * logged. 7041 **/ 7042 static void 7043 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7044 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7045 { 7046 struct lpfc_cgn_info *cp; 7047 uint32_t crc, oldmode; 7048 7049 /* Make sure the FW has encoded the correct magic number to 7050 * validate the congestion parameter in FW memory. 7051 */ 7052 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7053 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7054 "4668 FW cgn parm buffer data: " 7055 "magic 0x%x version %d mode %d " 7056 "level0 %d level1 %d " 7057 "level2 %d byte13 %d " 7058 "byte14 %d byte15 %d " 7059 "byte11 %d byte12 %d activeMode %d\n", 7060 p_cgn_param->cgn_param_magic, 7061 p_cgn_param->cgn_param_version, 7062 p_cgn_param->cgn_param_mode, 7063 p_cgn_param->cgn_param_level0, 7064 p_cgn_param->cgn_param_level1, 7065 p_cgn_param->cgn_param_level2, 7066 p_cgn_param->byte13, 7067 p_cgn_param->byte14, 7068 p_cgn_param->byte15, 7069 p_cgn_param->byte11, 7070 p_cgn_param->byte12, 7071 phba->cmf_active_mode); 7072 7073 oldmode = phba->cmf_active_mode; 7074 7075 /* Any parameters out of range are corrected to defaults 7076 * by this routine. No need to fail. 7077 */ 7078 lpfc_cgn_params_val(phba, p_cgn_param); 7079 7080 /* Parameters are verified, move them into driver storage */ 7081 spin_lock_irq(&phba->hbalock); 7082 memcpy(&phba->cgn_p, p_cgn_param, 7083 sizeof(struct lpfc_cgn_param)); 7084 7085 /* Update parameters in congestion info buffer now */ 7086 if (phba->cgn_i) { 7087 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7088 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7089 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7090 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7091 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7092 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7093 LPFC_CGN_CRC32_SEED); 7094 cp->cgn_info_crc = cpu_to_le32(crc); 7095 } 7096 spin_unlock_irq(&phba->hbalock); 7097 7098 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7099 7100 switch (oldmode) { 7101 case LPFC_CFG_OFF: 7102 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7103 /* Turning CMF on */ 7104 lpfc_cmf_start(phba); 7105 7106 if (phba->link_state >= LPFC_LINK_UP) { 7107 phba->cgn_reg_fpin = 7108 phba->cgn_init_reg_fpin; 7109 phba->cgn_reg_signal = 7110 phba->cgn_init_reg_signal; 7111 lpfc_issue_els_edc(phba->pport, 0); 7112 } 7113 } 7114 break; 7115 case LPFC_CFG_MANAGED: 7116 switch (phba->cgn_p.cgn_param_mode) { 7117 case LPFC_CFG_OFF: 7118 /* Turning CMF off */ 7119 lpfc_cmf_stop(phba); 7120 if (phba->link_state >= LPFC_LINK_UP) 7121 lpfc_issue_els_edc(phba->pport, 0); 7122 break; 7123 case LPFC_CFG_MONITOR: 7124 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7125 "4661 Switch from MANAGED to " 7126 "`MONITOR mode\n"); 7127 phba->cmf_max_bytes_per_interval = 7128 phba->cmf_link_byte_count; 7129 7130 /* Resume blocked IO - unblock on workqueue */ 7131 queue_work(phba->wq, 7132 &phba->unblock_request_work); 7133 break; 7134 } 7135 break; 7136 case LPFC_CFG_MONITOR: 7137 switch (phba->cgn_p.cgn_param_mode) { 7138 case LPFC_CFG_OFF: 7139 /* Turning CMF off */ 7140 lpfc_cmf_stop(phba); 7141 if (phba->link_state >= LPFC_LINK_UP) 7142 lpfc_issue_els_edc(phba->pport, 0); 7143 break; 7144 case LPFC_CFG_MANAGED: 7145 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7146 "4662 Switch from MONITOR to " 7147 "MANAGED mode\n"); 7148 lpfc_cmf_signal_init(phba); 7149 break; 7150 } 7151 break; 7152 } 7153 } else { 7154 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7155 "4669 FW cgn parm buf wrong magic 0x%x " 7156 "version %d\n", p_cgn_param->cgn_param_magic, 7157 p_cgn_param->cgn_param_version); 7158 } 7159 } 7160 7161 /** 7162 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7163 * @phba: pointer to lpfc hba data structure. 7164 * 7165 * This routine issues a read_object mailbox command to 7166 * get the congestion management parameters from the FW 7167 * parses it and updates the driver maintained values. 7168 * 7169 * Returns 7170 * 0 if the object was empty 7171 * -Eval if an error was encountered 7172 * Count if bytes were read from object 7173 **/ 7174 int 7175 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7176 { 7177 int ret = 0; 7178 struct lpfc_cgn_param *p_cgn_param = NULL; 7179 u32 *pdata = NULL; 7180 u32 len = 0; 7181 7182 /* Find out if the FW has a new set of congestion parameters. */ 7183 len = sizeof(struct lpfc_cgn_param); 7184 pdata = kzalloc(len, GFP_KERNEL); 7185 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7186 pdata, len); 7187 7188 /* 0 means no data. A negative means error. A positive means 7189 * bytes were copied. 7190 */ 7191 if (!ret) { 7192 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7193 "4670 CGN RD OBJ returns no data\n"); 7194 goto rd_obj_err; 7195 } else if (ret < 0) { 7196 /* Some error. Just exit and return it to the caller.*/ 7197 goto rd_obj_err; 7198 } 7199 7200 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7201 "6234 READ CGN PARAMS Successful %d\n", len); 7202 7203 /* Parse data pointer over len and update the phba congestion 7204 * parameters with values passed back. The receive rate values 7205 * may have been altered in FW, but take no action here. 7206 */ 7207 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7208 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7209 7210 rd_obj_err: 7211 kfree(pdata); 7212 return ret; 7213 } 7214 7215 /** 7216 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7217 * @phba: pointer to lpfc hba data structure. 7218 * 7219 * The FW generated Async ACQE SLI event calls this routine when 7220 * the event type is an SLI Internal Port Event and the Event Code 7221 * indicates a change to the FW maintained congestion parameters. 7222 * 7223 * This routine executes a Read_Object mailbox call to obtain the 7224 * current congestion parameters maintained in FW and corrects 7225 * the driver's active congestion parameters. 7226 * 7227 * The acqe event is not passed because there is no further data 7228 * required. 7229 * 7230 * Returns nonzero error if event processing encountered an error. 7231 * Zero otherwise for success. 7232 **/ 7233 static int 7234 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7235 { 7236 int ret = 0; 7237 7238 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7239 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7240 "4664 Cgn Evt when E2E off. Drop event\n"); 7241 return -EACCES; 7242 } 7243 7244 /* If the event is claiming an empty object, it's ok. A write 7245 * could have cleared it. Only error is a negative return 7246 * status. 7247 */ 7248 ret = lpfc_sli4_cgn_params_read(phba); 7249 if (ret < 0) { 7250 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7251 "4667 Error reading Cgn Params (%d)\n", 7252 ret); 7253 } else if (!ret) { 7254 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7255 "4673 CGN Event empty object.\n"); 7256 } 7257 return ret; 7258 } 7259 7260 /** 7261 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7262 * @phba: pointer to lpfc hba data structure. 7263 * 7264 * This routine is invoked by the worker thread to process all the pending 7265 * SLI4 asynchronous events. 7266 **/ 7267 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7268 { 7269 struct lpfc_cq_event *cq_event; 7270 unsigned long iflags; 7271 7272 /* First, declare the async event has been handled */ 7273 spin_lock_irqsave(&phba->hbalock, iflags); 7274 phba->hba_flag &= ~ASYNC_EVENT; 7275 spin_unlock_irqrestore(&phba->hbalock, iflags); 7276 7277 /* Now, handle all the async events */ 7278 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7279 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7280 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7281 cq_event, struct lpfc_cq_event, list); 7282 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7283 iflags); 7284 7285 /* Process the asynchronous event */ 7286 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7287 case LPFC_TRAILER_CODE_LINK: 7288 lpfc_sli4_async_link_evt(phba, 7289 &cq_event->cqe.acqe_link); 7290 break; 7291 case LPFC_TRAILER_CODE_FCOE: 7292 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7293 break; 7294 case LPFC_TRAILER_CODE_DCBX: 7295 lpfc_sli4_async_dcbx_evt(phba, 7296 &cq_event->cqe.acqe_dcbx); 7297 break; 7298 case LPFC_TRAILER_CODE_GRP5: 7299 lpfc_sli4_async_grp5_evt(phba, 7300 &cq_event->cqe.acqe_grp5); 7301 break; 7302 case LPFC_TRAILER_CODE_FC: 7303 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7304 break; 7305 case LPFC_TRAILER_CODE_SLI: 7306 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7307 break; 7308 case LPFC_TRAILER_CODE_CMSTAT: 7309 lpfc_sli4_async_cmstat_evt(phba); 7310 break; 7311 default: 7312 lpfc_printf_log(phba, KERN_ERR, 7313 LOG_TRACE_EVENT, 7314 "1804 Invalid asynchronous event code: " 7315 "x%x\n", bf_get(lpfc_trailer_code, 7316 &cq_event->cqe.mcqe_cmpl)); 7317 break; 7318 } 7319 7320 /* Free the completion event processed to the free pool */ 7321 lpfc_sli4_cq_event_release(phba, cq_event); 7322 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7323 } 7324 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7325 } 7326 7327 /** 7328 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7329 * @phba: pointer to lpfc hba data structure. 7330 * 7331 * This routine is invoked by the worker thread to process FCF table 7332 * rediscovery pending completion event. 7333 **/ 7334 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7335 { 7336 int rc; 7337 7338 spin_lock_irq(&phba->hbalock); 7339 /* Clear FCF rediscovery timeout event */ 7340 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7341 /* Clear driver fast failover FCF record flag */ 7342 phba->fcf.failover_rec.flag = 0; 7343 /* Set state for FCF fast failover */ 7344 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7345 spin_unlock_irq(&phba->hbalock); 7346 7347 /* Scan FCF table from the first entry to re-discover SAN */ 7348 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7349 "2777 Start post-quiescent FCF table scan\n"); 7350 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7351 if (rc) 7352 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7353 "2747 Issue FCF scan read FCF mailbox " 7354 "command failed 0x%x\n", rc); 7355 } 7356 7357 /** 7358 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7359 * @phba: pointer to lpfc hba data structure. 7360 * @dev_grp: The HBA PCI-Device group number. 7361 * 7362 * This routine is invoked to set up the per HBA PCI-Device group function 7363 * API jump table entries. 7364 * 7365 * Return: 0 if success, otherwise -ENODEV 7366 **/ 7367 int 7368 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7369 { 7370 int rc; 7371 7372 /* Set up lpfc PCI-device group */ 7373 phba->pci_dev_grp = dev_grp; 7374 7375 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7376 if (dev_grp == LPFC_PCI_DEV_OC) 7377 phba->sli_rev = LPFC_SLI_REV4; 7378 7379 /* Set up device INIT API function jump table */ 7380 rc = lpfc_init_api_table_setup(phba, dev_grp); 7381 if (rc) 7382 return -ENODEV; 7383 /* Set up SCSI API function jump table */ 7384 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7385 if (rc) 7386 return -ENODEV; 7387 /* Set up SLI API function jump table */ 7388 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7389 if (rc) 7390 return -ENODEV; 7391 /* Set up MBOX API function jump table */ 7392 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7393 if (rc) 7394 return -ENODEV; 7395 7396 return 0; 7397 } 7398 7399 /** 7400 * lpfc_log_intr_mode - Log the active interrupt mode 7401 * @phba: pointer to lpfc hba data structure. 7402 * @intr_mode: active interrupt mode adopted. 7403 * 7404 * This routine it invoked to log the currently used active interrupt mode 7405 * to the device. 7406 **/ 7407 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7408 { 7409 switch (intr_mode) { 7410 case 0: 7411 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7412 "0470 Enable INTx interrupt mode.\n"); 7413 break; 7414 case 1: 7415 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7416 "0481 Enabled MSI interrupt mode.\n"); 7417 break; 7418 case 2: 7419 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7420 "0480 Enabled MSI-X interrupt mode.\n"); 7421 break; 7422 default: 7423 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7424 "0482 Illegal interrupt mode.\n"); 7425 break; 7426 } 7427 return; 7428 } 7429 7430 /** 7431 * lpfc_enable_pci_dev - Enable a generic PCI device. 7432 * @phba: pointer to lpfc hba data structure. 7433 * 7434 * This routine is invoked to enable the PCI device that is common to all 7435 * PCI devices. 7436 * 7437 * Return codes 7438 * 0 - successful 7439 * other values - error 7440 **/ 7441 static int 7442 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7443 { 7444 struct pci_dev *pdev; 7445 7446 /* Obtain PCI device reference */ 7447 if (!phba->pcidev) 7448 goto out_error; 7449 else 7450 pdev = phba->pcidev; 7451 /* Enable PCI device */ 7452 if (pci_enable_device_mem(pdev)) 7453 goto out_error; 7454 /* Request PCI resource for the device */ 7455 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7456 goto out_disable_device; 7457 /* Set up device as PCI master and save state for EEH */ 7458 pci_set_master(pdev); 7459 pci_try_set_mwi(pdev); 7460 pci_save_state(pdev); 7461 7462 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7463 if (pci_is_pcie(pdev)) 7464 pdev->needs_freset = 1; 7465 7466 return 0; 7467 7468 out_disable_device: 7469 pci_disable_device(pdev); 7470 out_error: 7471 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7472 "1401 Failed to enable pci device\n"); 7473 return -ENODEV; 7474 } 7475 7476 /** 7477 * lpfc_disable_pci_dev - Disable a generic PCI device. 7478 * @phba: pointer to lpfc hba data structure. 7479 * 7480 * This routine is invoked to disable the PCI device that is common to all 7481 * PCI devices. 7482 **/ 7483 static void 7484 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7485 { 7486 struct pci_dev *pdev; 7487 7488 /* Obtain PCI device reference */ 7489 if (!phba->pcidev) 7490 return; 7491 else 7492 pdev = phba->pcidev; 7493 /* Release PCI resource and disable PCI device */ 7494 pci_release_mem_regions(pdev); 7495 pci_disable_device(pdev); 7496 7497 return; 7498 } 7499 7500 /** 7501 * lpfc_reset_hba - Reset a hba 7502 * @phba: pointer to lpfc hba data structure. 7503 * 7504 * This routine is invoked to reset a hba device. It brings the HBA 7505 * offline, performs a board restart, and then brings the board back 7506 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7507 * on outstanding mailbox commands. 7508 **/ 7509 void 7510 lpfc_reset_hba(struct lpfc_hba *phba) 7511 { 7512 /* If resets are disabled then set error state and return. */ 7513 if (!phba->cfg_enable_hba_reset) { 7514 phba->link_state = LPFC_HBA_ERROR; 7515 return; 7516 } 7517 7518 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7519 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7520 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7521 } else { 7522 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7523 lpfc_sli_flush_io_rings(phba); 7524 } 7525 lpfc_offline(phba); 7526 lpfc_sli_brdrestart(phba); 7527 lpfc_online(phba); 7528 lpfc_unblock_mgmt_io(phba); 7529 } 7530 7531 /** 7532 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7533 * @phba: pointer to lpfc hba data structure. 7534 * 7535 * This function enables the PCI SR-IOV virtual functions to a physical 7536 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7537 * enable the number of virtual functions to the physical function. As 7538 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7539 * API call does not considered as an error condition for most of the device. 7540 **/ 7541 uint16_t 7542 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7543 { 7544 struct pci_dev *pdev = phba->pcidev; 7545 uint16_t nr_virtfn; 7546 int pos; 7547 7548 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7549 if (pos == 0) 7550 return 0; 7551 7552 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7553 return nr_virtfn; 7554 } 7555 7556 /** 7557 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7558 * @phba: pointer to lpfc hba data structure. 7559 * @nr_vfn: number of virtual functions to be enabled. 7560 * 7561 * This function enables the PCI SR-IOV virtual functions to a physical 7562 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7563 * enable the number of virtual functions to the physical function. As 7564 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7565 * API call does not considered as an error condition for most of the device. 7566 **/ 7567 int 7568 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7569 { 7570 struct pci_dev *pdev = phba->pcidev; 7571 uint16_t max_nr_vfn; 7572 int rc; 7573 7574 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7575 if (nr_vfn > max_nr_vfn) { 7576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7577 "3057 Requested vfs (%d) greater than " 7578 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7579 return -EINVAL; 7580 } 7581 7582 rc = pci_enable_sriov(pdev, nr_vfn); 7583 if (rc) { 7584 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7585 "2806 Failed to enable sriov on this device " 7586 "with vfn number nr_vf:%d, rc:%d\n", 7587 nr_vfn, rc); 7588 } else 7589 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7590 "2807 Successful enable sriov on this device " 7591 "with vfn number nr_vf:%d\n", nr_vfn); 7592 return rc; 7593 } 7594 7595 static void 7596 lpfc_unblock_requests_work(struct work_struct *work) 7597 { 7598 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7599 unblock_request_work); 7600 7601 lpfc_unblock_requests(phba); 7602 } 7603 7604 /** 7605 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7606 * @phba: pointer to lpfc hba data structure. 7607 * 7608 * This routine is invoked to set up the driver internal resources before the 7609 * device specific resource setup to support the HBA device it attached to. 7610 * 7611 * Return codes 7612 * 0 - successful 7613 * other values - error 7614 **/ 7615 static int 7616 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7617 { 7618 struct lpfc_sli *psli = &phba->sli; 7619 7620 /* 7621 * Driver resources common to all SLI revisions 7622 */ 7623 atomic_set(&phba->fast_event_count, 0); 7624 atomic_set(&phba->dbg_log_idx, 0); 7625 atomic_set(&phba->dbg_log_cnt, 0); 7626 atomic_set(&phba->dbg_log_dmping, 0); 7627 spin_lock_init(&phba->hbalock); 7628 7629 /* Initialize port_list spinlock */ 7630 spin_lock_init(&phba->port_list_lock); 7631 INIT_LIST_HEAD(&phba->port_list); 7632 7633 INIT_LIST_HEAD(&phba->work_list); 7634 init_waitqueue_head(&phba->wait_4_mlo_m_q); 7635 7636 /* Initialize the wait queue head for the kernel thread */ 7637 init_waitqueue_head(&phba->work_waitq); 7638 7639 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7640 "1403 Protocols supported %s %s %s\n", 7641 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7642 "SCSI" : " "), 7643 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7644 "NVME" : " "), 7645 (phba->nvmet_support ? "NVMET" : " ")); 7646 7647 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7648 spin_lock_init(&phba->scsi_buf_list_get_lock); 7649 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7650 spin_lock_init(&phba->scsi_buf_list_put_lock); 7651 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7652 7653 /* Initialize the fabric iocb list */ 7654 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7655 7656 /* Initialize list to save ELS buffers */ 7657 INIT_LIST_HEAD(&phba->elsbuf); 7658 7659 /* Initialize FCF connection rec list */ 7660 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7661 7662 /* Initialize OAS configuration list */ 7663 spin_lock_init(&phba->devicelock); 7664 INIT_LIST_HEAD(&phba->luns); 7665 7666 /* MBOX heartbeat timer */ 7667 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7668 /* Fabric block timer */ 7669 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7670 /* EA polling mode timer */ 7671 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7672 /* Heartbeat timer */ 7673 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7674 7675 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7676 7677 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7678 lpfc_idle_stat_delay_work); 7679 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7680 return 0; 7681 } 7682 7683 /** 7684 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7685 * @phba: pointer to lpfc hba data structure. 7686 * 7687 * This routine is invoked to set up the driver internal resources specific to 7688 * support the SLI-3 HBA device it attached to. 7689 * 7690 * Return codes 7691 * 0 - successful 7692 * other values - error 7693 **/ 7694 static int 7695 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7696 { 7697 int rc, entry_sz; 7698 7699 /* 7700 * Initialize timers used by driver 7701 */ 7702 7703 /* FCP polling mode timer */ 7704 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7705 7706 /* Host attention work mask setup */ 7707 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7708 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7709 7710 /* Get all the module params for configuring this host */ 7711 lpfc_get_cfgparam(phba); 7712 /* Set up phase-1 common device driver resources */ 7713 7714 rc = lpfc_setup_driver_resource_phase1(phba); 7715 if (rc) 7716 return -ENODEV; 7717 7718 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 7719 phba->menlo_flag |= HBA_MENLO_SUPPORT; 7720 /* check for menlo minimum sg count */ 7721 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 7722 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 7723 } 7724 7725 if (!phba->sli.sli3_ring) 7726 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7727 sizeof(struct lpfc_sli_ring), 7728 GFP_KERNEL); 7729 if (!phba->sli.sli3_ring) 7730 return -ENOMEM; 7731 7732 /* 7733 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7734 * used to create the sg_dma_buf_pool must be dynamically calculated. 7735 */ 7736 7737 if (phba->sli_rev == LPFC_SLI_REV4) 7738 entry_sz = sizeof(struct sli4_sge); 7739 else 7740 entry_sz = sizeof(struct ulp_bde64); 7741 7742 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7743 if (phba->cfg_enable_bg) { 7744 /* 7745 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7746 * the FCP rsp, and a BDE for each. Sice we have no control 7747 * over how many protection data segments the SCSI Layer 7748 * will hand us (ie: there could be one for every block 7749 * in the IO), we just allocate enough BDEs to accomidate 7750 * our max amount and we need to limit lpfc_sg_seg_cnt to 7751 * minimize the risk of running out. 7752 */ 7753 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7754 sizeof(struct fcp_rsp) + 7755 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7756 7757 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7758 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7759 7760 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7761 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7762 } else { 7763 /* 7764 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7765 * the FCP rsp, a BDE for each, and a BDE for up to 7766 * cfg_sg_seg_cnt data segments. 7767 */ 7768 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7769 sizeof(struct fcp_rsp) + 7770 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7771 7772 /* Total BDEs in BPL for scsi_sg_list */ 7773 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7774 } 7775 7776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7777 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7778 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7779 phba->cfg_total_seg_cnt); 7780 7781 phba->max_vpi = LPFC_MAX_VPI; 7782 /* This will be set to correct value after config_port mbox */ 7783 phba->max_vports = 0; 7784 7785 /* 7786 * Initialize the SLI Layer to run with lpfc HBAs. 7787 */ 7788 lpfc_sli_setup(phba); 7789 lpfc_sli_queue_init(phba); 7790 7791 /* Allocate device driver memory */ 7792 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7793 return -ENOMEM; 7794 7795 phba->lpfc_sg_dma_buf_pool = 7796 dma_pool_create("lpfc_sg_dma_buf_pool", 7797 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7798 BPL_ALIGN_SZ, 0); 7799 7800 if (!phba->lpfc_sg_dma_buf_pool) 7801 goto fail_free_mem; 7802 7803 phba->lpfc_cmd_rsp_buf_pool = 7804 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7805 &phba->pcidev->dev, 7806 sizeof(struct fcp_cmnd) + 7807 sizeof(struct fcp_rsp), 7808 BPL_ALIGN_SZ, 0); 7809 7810 if (!phba->lpfc_cmd_rsp_buf_pool) 7811 goto fail_free_dma_buf_pool; 7812 7813 /* 7814 * Enable sr-iov virtual functions if supported and configured 7815 * through the module parameter. 7816 */ 7817 if (phba->cfg_sriov_nr_virtfn > 0) { 7818 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7819 phba->cfg_sriov_nr_virtfn); 7820 if (rc) { 7821 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7822 "2808 Requested number of SR-IOV " 7823 "virtual functions (%d) is not " 7824 "supported\n", 7825 phba->cfg_sriov_nr_virtfn); 7826 phba->cfg_sriov_nr_virtfn = 0; 7827 } 7828 } 7829 7830 return 0; 7831 7832 fail_free_dma_buf_pool: 7833 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7834 phba->lpfc_sg_dma_buf_pool = NULL; 7835 fail_free_mem: 7836 lpfc_mem_free(phba); 7837 return -ENOMEM; 7838 } 7839 7840 /** 7841 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7842 * @phba: pointer to lpfc hba data structure. 7843 * 7844 * This routine is invoked to unset the driver internal resources set up 7845 * specific for supporting the SLI-3 HBA device it attached to. 7846 **/ 7847 static void 7848 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7849 { 7850 /* Free device driver memory allocated */ 7851 lpfc_mem_free_all(phba); 7852 7853 return; 7854 } 7855 7856 /** 7857 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7858 * @phba: pointer to lpfc hba data structure. 7859 * 7860 * This routine is invoked to set up the driver internal resources specific to 7861 * support the SLI-4 HBA device it attached to. 7862 * 7863 * Return codes 7864 * 0 - successful 7865 * other values - error 7866 **/ 7867 static int 7868 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7869 { 7870 LPFC_MBOXQ_t *mboxq; 7871 MAILBOX_t *mb; 7872 int rc, i, max_buf_size; 7873 int longs; 7874 int extra; 7875 uint64_t wwn; 7876 u32 if_type; 7877 u32 if_fam; 7878 7879 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7880 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7881 phba->sli4_hba.curr_disp_cpu = 0; 7882 7883 /* Get all the module params for configuring this host */ 7884 lpfc_get_cfgparam(phba); 7885 7886 /* Set up phase-1 common device driver resources */ 7887 rc = lpfc_setup_driver_resource_phase1(phba); 7888 if (rc) 7889 return -ENODEV; 7890 7891 /* Before proceed, wait for POST done and device ready */ 7892 rc = lpfc_sli4_post_status_check(phba); 7893 if (rc) 7894 return -ENODEV; 7895 7896 /* Allocate all driver workqueues here */ 7897 7898 /* The lpfc_wq workqueue for deferred irq use */ 7899 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7900 7901 /* 7902 * Initialize timers used by driver 7903 */ 7904 7905 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7906 7907 /* FCF rediscover timer */ 7908 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7909 7910 /* CMF congestion timer */ 7911 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7912 phba->cmf_timer.function = lpfc_cmf_timer; 7913 7914 /* 7915 * Control structure for handling external multi-buffer mailbox 7916 * command pass-through. 7917 */ 7918 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7919 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7920 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7921 7922 phba->max_vpi = LPFC_MAX_VPI; 7923 7924 /* This will be set to correct value after the read_config mbox */ 7925 phba->max_vports = 0; 7926 7927 /* Program the default value of vlan_id and fc_map */ 7928 phba->valid_vlan = 0; 7929 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7930 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7931 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7932 7933 /* 7934 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7935 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7936 * The WQ create will allocate the ring. 7937 */ 7938 7939 /* Initialize buffer queue management fields */ 7940 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7941 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7942 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7943 7944 /* for VMID idle timeout if VMID is enabled */ 7945 if (lpfc_is_vmid_enabled(phba)) 7946 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7947 7948 /* 7949 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 7950 */ 7951 /* Initialize the Abort buffer list used by driver */ 7952 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 7953 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 7954 7955 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 7956 /* Initialize the Abort nvme buffer list used by driver */ 7957 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 7958 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7959 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 7960 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 7961 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 7962 } 7963 7964 /* This abort list used by worker thread */ 7965 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 7966 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 7967 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 7968 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 7969 7970 /* 7971 * Initialize driver internal slow-path work queues 7972 */ 7973 7974 /* Driver internel slow-path CQ Event pool */ 7975 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 7976 /* Response IOCB work queue list */ 7977 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 7978 /* Asynchronous event CQ Event work queue list */ 7979 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 7980 /* Slow-path XRI aborted CQ Event work queue list */ 7981 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 7982 /* Receive queue CQ Event work queue list */ 7983 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 7984 7985 /* Initialize extent block lists. */ 7986 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 7987 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 7988 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 7989 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 7990 7991 /* Initialize mboxq lists. If the early init routines fail 7992 * these lists need to be correctly initialized. 7993 */ 7994 INIT_LIST_HEAD(&phba->sli.mboxq); 7995 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 7996 7997 /* initialize optic_state to 0xFF */ 7998 phba->sli4_hba.lnk_info.optic_state = 0xff; 7999 8000 /* Allocate device driver memory */ 8001 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8002 if (rc) 8003 return -ENOMEM; 8004 8005 /* IF Type 2 ports get initialized now. */ 8006 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8007 LPFC_SLI_INTF_IF_TYPE_2) { 8008 rc = lpfc_pci_function_reset(phba); 8009 if (unlikely(rc)) { 8010 rc = -ENODEV; 8011 goto out_free_mem; 8012 } 8013 phba->temp_sensor_support = 1; 8014 } 8015 8016 /* Create the bootstrap mailbox command */ 8017 rc = lpfc_create_bootstrap_mbox(phba); 8018 if (unlikely(rc)) 8019 goto out_free_mem; 8020 8021 /* Set up the host's endian order with the device. */ 8022 rc = lpfc_setup_endian_order(phba); 8023 if (unlikely(rc)) 8024 goto out_free_bsmbx; 8025 8026 /* Set up the hba's configuration parameters. */ 8027 rc = lpfc_sli4_read_config(phba); 8028 if (unlikely(rc)) 8029 goto out_free_bsmbx; 8030 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8031 if (unlikely(rc)) 8032 goto out_free_bsmbx; 8033 8034 /* IF Type 0 ports get initialized now. */ 8035 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8036 LPFC_SLI_INTF_IF_TYPE_0) { 8037 rc = lpfc_pci_function_reset(phba); 8038 if (unlikely(rc)) 8039 goto out_free_bsmbx; 8040 } 8041 8042 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8043 GFP_KERNEL); 8044 if (!mboxq) { 8045 rc = -ENOMEM; 8046 goto out_free_bsmbx; 8047 } 8048 8049 /* Check for NVMET being configured */ 8050 phba->nvmet_support = 0; 8051 if (lpfc_enable_nvmet_cnt) { 8052 8053 /* First get WWN of HBA instance */ 8054 lpfc_read_nv(phba, mboxq); 8055 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8056 if (rc != MBX_SUCCESS) { 8057 lpfc_printf_log(phba, KERN_ERR, 8058 LOG_TRACE_EVENT, 8059 "6016 Mailbox failed , mbxCmd x%x " 8060 "READ_NV, mbxStatus x%x\n", 8061 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8062 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8063 mempool_free(mboxq, phba->mbox_mem_pool); 8064 rc = -EIO; 8065 goto out_free_bsmbx; 8066 } 8067 mb = &mboxq->u.mb; 8068 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8069 sizeof(uint64_t)); 8070 wwn = cpu_to_be64(wwn); 8071 phba->sli4_hba.wwnn.u.name = wwn; 8072 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8073 sizeof(uint64_t)); 8074 /* wwn is WWPN of HBA instance */ 8075 wwn = cpu_to_be64(wwn); 8076 phba->sli4_hba.wwpn.u.name = wwn; 8077 8078 /* Check to see if it matches any module parameter */ 8079 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8080 if (wwn == lpfc_enable_nvmet[i]) { 8081 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8082 if (lpfc_nvmet_mem_alloc(phba)) 8083 break; 8084 8085 phba->nvmet_support = 1; /* a match */ 8086 8087 lpfc_printf_log(phba, KERN_ERR, 8088 LOG_TRACE_EVENT, 8089 "6017 NVME Target %016llx\n", 8090 wwn); 8091 #else 8092 lpfc_printf_log(phba, KERN_ERR, 8093 LOG_TRACE_EVENT, 8094 "6021 Can't enable NVME Target." 8095 " NVME_TARGET_FC infrastructure" 8096 " is not in kernel\n"); 8097 #endif 8098 /* Not supported for NVMET */ 8099 phba->cfg_xri_rebalancing = 0; 8100 if (phba->irq_chann_mode == NHT_MODE) { 8101 phba->cfg_irq_chann = 8102 phba->sli4_hba.num_present_cpu; 8103 phba->cfg_hdw_queue = 8104 phba->sli4_hba.num_present_cpu; 8105 phba->irq_chann_mode = NORMAL_MODE; 8106 } 8107 break; 8108 } 8109 } 8110 } 8111 8112 lpfc_nvme_mod_param_dep(phba); 8113 8114 /* 8115 * Get sli4 parameters that override parameters from Port capabilities. 8116 * If this call fails, it isn't critical unless the SLI4 parameters come 8117 * back in conflict. 8118 */ 8119 rc = lpfc_get_sli4_parameters(phba, mboxq); 8120 if (rc) { 8121 if_type = bf_get(lpfc_sli_intf_if_type, 8122 &phba->sli4_hba.sli_intf); 8123 if_fam = bf_get(lpfc_sli_intf_sli_family, 8124 &phba->sli4_hba.sli_intf); 8125 if (phba->sli4_hba.extents_in_use && 8126 phba->sli4_hba.rpi_hdrs_in_use) { 8127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8128 "2999 Unsupported SLI4 Parameters " 8129 "Extents and RPI headers enabled.\n"); 8130 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8131 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8132 mempool_free(mboxq, phba->mbox_mem_pool); 8133 rc = -EIO; 8134 goto out_free_bsmbx; 8135 } 8136 } 8137 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8138 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8139 mempool_free(mboxq, phba->mbox_mem_pool); 8140 rc = -EIO; 8141 goto out_free_bsmbx; 8142 } 8143 } 8144 8145 /* 8146 * 1 for cmd, 1 for rsp, NVME adds an extra one 8147 * for boundary conditions in its max_sgl_segment template. 8148 */ 8149 extra = 2; 8150 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8151 extra++; 8152 8153 /* 8154 * It doesn't matter what family our adapter is in, we are 8155 * limited to 2 Pages, 512 SGEs, for our SGL. 8156 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8157 */ 8158 max_buf_size = (2 * SLI4_PAGE_SIZE); 8159 8160 /* 8161 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8162 * used to create the sg_dma_buf_pool must be calculated. 8163 */ 8164 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8165 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8166 8167 /* 8168 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8169 * the FCP rsp, and a SGE. Sice we have no control 8170 * over how many protection segments the SCSI Layer 8171 * will hand us (ie: there could be one for every block 8172 * in the IO), just allocate enough SGEs to accomidate 8173 * our max amount and we need to limit lpfc_sg_seg_cnt 8174 * to minimize the risk of running out. 8175 */ 8176 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8177 sizeof(struct fcp_rsp) + max_buf_size; 8178 8179 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8180 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8181 8182 /* 8183 * If supporting DIF, reduce the seg count for scsi to 8184 * allow room for the DIF sges. 8185 */ 8186 if (phba->cfg_enable_bg && 8187 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8188 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8189 else 8190 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8191 8192 } else { 8193 /* 8194 * The scsi_buf for a regular I/O holds the FCP cmnd, 8195 * the FCP rsp, a SGE for each, and a SGE for up to 8196 * cfg_sg_seg_cnt data segments. 8197 */ 8198 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8199 sizeof(struct fcp_rsp) + 8200 ((phba->cfg_sg_seg_cnt + extra) * 8201 sizeof(struct sli4_sge)); 8202 8203 /* Total SGEs for scsi_sg_list */ 8204 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8205 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8206 8207 /* 8208 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8209 * need to post 1 page for the SGL. 8210 */ 8211 } 8212 8213 if (phba->cfg_xpsgl && !phba->nvmet_support) 8214 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8215 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8216 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8217 else 8218 phba->cfg_sg_dma_buf_size = 8219 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8220 8221 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8222 sizeof(struct sli4_sge); 8223 8224 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8225 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8226 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8227 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8228 "6300 Reducing NVME sg segment " 8229 "cnt to %d\n", 8230 LPFC_MAX_NVME_SEG_CNT); 8231 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8232 } else 8233 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8234 } 8235 8236 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8237 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8238 "total:%d scsi:%d nvme:%d\n", 8239 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8240 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8241 phba->cfg_nvme_seg_cnt); 8242 8243 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8244 i = phba->cfg_sg_dma_buf_size; 8245 else 8246 i = SLI4_PAGE_SIZE; 8247 8248 phba->lpfc_sg_dma_buf_pool = 8249 dma_pool_create("lpfc_sg_dma_buf_pool", 8250 &phba->pcidev->dev, 8251 phba->cfg_sg_dma_buf_size, 8252 i, 0); 8253 if (!phba->lpfc_sg_dma_buf_pool) 8254 goto out_free_bsmbx; 8255 8256 phba->lpfc_cmd_rsp_buf_pool = 8257 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8258 &phba->pcidev->dev, 8259 sizeof(struct fcp_cmnd) + 8260 sizeof(struct fcp_rsp), 8261 i, 0); 8262 if (!phba->lpfc_cmd_rsp_buf_pool) 8263 goto out_free_sg_dma_buf; 8264 8265 mempool_free(mboxq, phba->mbox_mem_pool); 8266 8267 /* Verify OAS is supported */ 8268 lpfc_sli4_oas_verify(phba); 8269 8270 /* Verify RAS support on adapter */ 8271 lpfc_sli4_ras_init(phba); 8272 8273 /* Verify all the SLI4 queues */ 8274 rc = lpfc_sli4_queue_verify(phba); 8275 if (rc) 8276 goto out_free_cmd_rsp_buf; 8277 8278 /* Create driver internal CQE event pool */ 8279 rc = lpfc_sli4_cq_event_pool_create(phba); 8280 if (rc) 8281 goto out_free_cmd_rsp_buf; 8282 8283 /* Initialize sgl lists per host */ 8284 lpfc_init_sgl_list(phba); 8285 8286 /* Allocate and initialize active sgl array */ 8287 rc = lpfc_init_active_sgl_array(phba); 8288 if (rc) { 8289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8290 "1430 Failed to initialize sgl list.\n"); 8291 goto out_destroy_cq_event_pool; 8292 } 8293 rc = lpfc_sli4_init_rpi_hdrs(phba); 8294 if (rc) { 8295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8296 "1432 Failed to initialize rpi headers.\n"); 8297 goto out_free_active_sgl; 8298 } 8299 8300 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8301 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8302 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8303 GFP_KERNEL); 8304 if (!phba->fcf.fcf_rr_bmask) { 8305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8306 "2759 Failed allocate memory for FCF round " 8307 "robin failover bmask\n"); 8308 rc = -ENOMEM; 8309 goto out_remove_rpi_hdrs; 8310 } 8311 8312 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8313 sizeof(struct lpfc_hba_eq_hdl), 8314 GFP_KERNEL); 8315 if (!phba->sli4_hba.hba_eq_hdl) { 8316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8317 "2572 Failed allocate memory for " 8318 "fast-path per-EQ handle array\n"); 8319 rc = -ENOMEM; 8320 goto out_free_fcf_rr_bmask; 8321 } 8322 8323 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8324 sizeof(struct lpfc_vector_map_info), 8325 GFP_KERNEL); 8326 if (!phba->sli4_hba.cpu_map) { 8327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8328 "3327 Failed allocate memory for msi-x " 8329 "interrupt vector mapping\n"); 8330 rc = -ENOMEM; 8331 goto out_free_hba_eq_hdl; 8332 } 8333 8334 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8335 if (!phba->sli4_hba.eq_info) { 8336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8337 "3321 Failed allocation for per_cpu stats\n"); 8338 rc = -ENOMEM; 8339 goto out_free_hba_cpu_map; 8340 } 8341 8342 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8343 sizeof(*phba->sli4_hba.idle_stat), 8344 GFP_KERNEL); 8345 if (!phba->sli4_hba.idle_stat) { 8346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8347 "3390 Failed allocation for idle_stat\n"); 8348 rc = -ENOMEM; 8349 goto out_free_hba_eq_info; 8350 } 8351 8352 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8353 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8354 if (!phba->sli4_hba.c_stat) { 8355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8356 "3332 Failed allocating per cpu hdwq stats\n"); 8357 rc = -ENOMEM; 8358 goto out_free_hba_idle_stat; 8359 } 8360 #endif 8361 8362 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8363 if (!phba->cmf_stat) { 8364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8365 "3331 Failed allocating per cpu cgn stats\n"); 8366 rc = -ENOMEM; 8367 goto out_free_hba_hdwq_info; 8368 } 8369 8370 /* 8371 * Enable sr-iov virtual functions if supported and configured 8372 * through the module parameter. 8373 */ 8374 if (phba->cfg_sriov_nr_virtfn > 0) { 8375 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8376 phba->cfg_sriov_nr_virtfn); 8377 if (rc) { 8378 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8379 "3020 Requested number of SR-IOV " 8380 "virtual functions (%d) is not " 8381 "supported\n", 8382 phba->cfg_sriov_nr_virtfn); 8383 phba->cfg_sriov_nr_virtfn = 0; 8384 } 8385 } 8386 8387 return 0; 8388 8389 out_free_hba_hdwq_info: 8390 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8391 free_percpu(phba->sli4_hba.c_stat); 8392 out_free_hba_idle_stat: 8393 #endif 8394 kfree(phba->sli4_hba.idle_stat); 8395 out_free_hba_eq_info: 8396 free_percpu(phba->sli4_hba.eq_info); 8397 out_free_hba_cpu_map: 8398 kfree(phba->sli4_hba.cpu_map); 8399 out_free_hba_eq_hdl: 8400 kfree(phba->sli4_hba.hba_eq_hdl); 8401 out_free_fcf_rr_bmask: 8402 kfree(phba->fcf.fcf_rr_bmask); 8403 out_remove_rpi_hdrs: 8404 lpfc_sli4_remove_rpi_hdrs(phba); 8405 out_free_active_sgl: 8406 lpfc_free_active_sgl(phba); 8407 out_destroy_cq_event_pool: 8408 lpfc_sli4_cq_event_pool_destroy(phba); 8409 out_free_cmd_rsp_buf: 8410 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8411 phba->lpfc_cmd_rsp_buf_pool = NULL; 8412 out_free_sg_dma_buf: 8413 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8414 phba->lpfc_sg_dma_buf_pool = NULL; 8415 out_free_bsmbx: 8416 lpfc_destroy_bootstrap_mbox(phba); 8417 out_free_mem: 8418 lpfc_mem_free(phba); 8419 return rc; 8420 } 8421 8422 /** 8423 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8424 * @phba: pointer to lpfc hba data structure. 8425 * 8426 * This routine is invoked to unset the driver internal resources set up 8427 * specific for supporting the SLI-4 HBA device it attached to. 8428 **/ 8429 static void 8430 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8431 { 8432 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8433 8434 free_percpu(phba->sli4_hba.eq_info); 8435 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8436 free_percpu(phba->sli4_hba.c_stat); 8437 #endif 8438 free_percpu(phba->cmf_stat); 8439 kfree(phba->sli4_hba.idle_stat); 8440 8441 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8442 kfree(phba->sli4_hba.cpu_map); 8443 phba->sli4_hba.num_possible_cpu = 0; 8444 phba->sli4_hba.num_present_cpu = 0; 8445 phba->sli4_hba.curr_disp_cpu = 0; 8446 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8447 8448 /* Free memory allocated for fast-path work queue handles */ 8449 kfree(phba->sli4_hba.hba_eq_hdl); 8450 8451 /* Free the allocated rpi headers. */ 8452 lpfc_sli4_remove_rpi_hdrs(phba); 8453 lpfc_sli4_remove_rpis(phba); 8454 8455 /* Free eligible FCF index bmask */ 8456 kfree(phba->fcf.fcf_rr_bmask); 8457 8458 /* Free the ELS sgl list */ 8459 lpfc_free_active_sgl(phba); 8460 lpfc_free_els_sgl_list(phba); 8461 lpfc_free_nvmet_sgl_list(phba); 8462 8463 /* Free the completion queue EQ event pool */ 8464 lpfc_sli4_cq_event_release_all(phba); 8465 lpfc_sli4_cq_event_pool_destroy(phba); 8466 8467 /* Release resource identifiers. */ 8468 lpfc_sli4_dealloc_resource_identifiers(phba); 8469 8470 /* Free the bsmbx region. */ 8471 lpfc_destroy_bootstrap_mbox(phba); 8472 8473 /* Free the SLI Layer memory with SLI4 HBAs */ 8474 lpfc_mem_free_all(phba); 8475 8476 /* Free the current connect table */ 8477 list_for_each_entry_safe(conn_entry, next_conn_entry, 8478 &phba->fcf_conn_rec_list, list) { 8479 list_del_init(&conn_entry->list); 8480 kfree(conn_entry); 8481 } 8482 8483 return; 8484 } 8485 8486 /** 8487 * lpfc_init_api_table_setup - Set up init api function jump table 8488 * @phba: The hba struct for which this call is being executed. 8489 * @dev_grp: The HBA PCI-Device group number. 8490 * 8491 * This routine sets up the device INIT interface API function jump table 8492 * in @phba struct. 8493 * 8494 * Returns: 0 - success, -ENODEV - failure. 8495 **/ 8496 int 8497 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8498 { 8499 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8500 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8501 phba->lpfc_selective_reset = lpfc_selective_reset; 8502 switch (dev_grp) { 8503 case LPFC_PCI_DEV_LP: 8504 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8505 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8506 phba->lpfc_stop_port = lpfc_stop_port_s3; 8507 break; 8508 case LPFC_PCI_DEV_OC: 8509 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8510 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8511 phba->lpfc_stop_port = lpfc_stop_port_s4; 8512 break; 8513 default: 8514 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8515 "1431 Invalid HBA PCI-device group: 0x%x\n", 8516 dev_grp); 8517 return -ENODEV; 8518 } 8519 return 0; 8520 } 8521 8522 /** 8523 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8524 * @phba: pointer to lpfc hba data structure. 8525 * 8526 * This routine is invoked to set up the driver internal resources after the 8527 * device specific resource setup to support the HBA device it attached to. 8528 * 8529 * Return codes 8530 * 0 - successful 8531 * other values - error 8532 **/ 8533 static int 8534 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8535 { 8536 int error; 8537 8538 /* Startup the kernel thread for this host adapter. */ 8539 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8540 "lpfc_worker_%d", phba->brd_no); 8541 if (IS_ERR(phba->worker_thread)) { 8542 error = PTR_ERR(phba->worker_thread); 8543 return error; 8544 } 8545 8546 return 0; 8547 } 8548 8549 /** 8550 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8551 * @phba: pointer to lpfc hba data structure. 8552 * 8553 * This routine is invoked to unset the driver internal resources set up after 8554 * the device specific resource setup for supporting the HBA device it 8555 * attached to. 8556 **/ 8557 static void 8558 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8559 { 8560 if (phba->wq) { 8561 destroy_workqueue(phba->wq); 8562 phba->wq = NULL; 8563 } 8564 8565 /* Stop kernel worker thread */ 8566 if (phba->worker_thread) 8567 kthread_stop(phba->worker_thread); 8568 } 8569 8570 /** 8571 * lpfc_free_iocb_list - Free iocb list. 8572 * @phba: pointer to lpfc hba data structure. 8573 * 8574 * This routine is invoked to free the driver's IOCB list and memory. 8575 **/ 8576 void 8577 lpfc_free_iocb_list(struct lpfc_hba *phba) 8578 { 8579 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8580 8581 spin_lock_irq(&phba->hbalock); 8582 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8583 &phba->lpfc_iocb_list, list) { 8584 list_del(&iocbq_entry->list); 8585 kfree(iocbq_entry); 8586 phba->total_iocbq_bufs--; 8587 } 8588 spin_unlock_irq(&phba->hbalock); 8589 8590 return; 8591 } 8592 8593 /** 8594 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8595 * @phba: pointer to lpfc hba data structure. 8596 * @iocb_count: number of requested iocbs 8597 * 8598 * This routine is invoked to allocate and initizlize the driver's IOCB 8599 * list and set up the IOCB tag array accordingly. 8600 * 8601 * Return codes 8602 * 0 - successful 8603 * other values - error 8604 **/ 8605 int 8606 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8607 { 8608 struct lpfc_iocbq *iocbq_entry = NULL; 8609 uint16_t iotag; 8610 int i; 8611 8612 /* Initialize and populate the iocb list per host. */ 8613 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8614 for (i = 0; i < iocb_count; i++) { 8615 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8616 if (iocbq_entry == NULL) { 8617 printk(KERN_ERR "%s: only allocated %d iocbs of " 8618 "expected %d count. Unloading driver.\n", 8619 __func__, i, iocb_count); 8620 goto out_free_iocbq; 8621 } 8622 8623 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8624 if (iotag == 0) { 8625 kfree(iocbq_entry); 8626 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8627 "Unloading driver.\n", __func__); 8628 goto out_free_iocbq; 8629 } 8630 iocbq_entry->sli4_lxritag = NO_XRI; 8631 iocbq_entry->sli4_xritag = NO_XRI; 8632 8633 spin_lock_irq(&phba->hbalock); 8634 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8635 phba->total_iocbq_bufs++; 8636 spin_unlock_irq(&phba->hbalock); 8637 } 8638 8639 return 0; 8640 8641 out_free_iocbq: 8642 lpfc_free_iocb_list(phba); 8643 8644 return -ENOMEM; 8645 } 8646 8647 /** 8648 * lpfc_free_sgl_list - Free a given sgl list. 8649 * @phba: pointer to lpfc hba data structure. 8650 * @sglq_list: pointer to the head of sgl list. 8651 * 8652 * This routine is invoked to free a give sgl list and memory. 8653 **/ 8654 void 8655 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8656 { 8657 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8658 8659 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8660 list_del(&sglq_entry->list); 8661 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8662 kfree(sglq_entry); 8663 } 8664 } 8665 8666 /** 8667 * lpfc_free_els_sgl_list - Free els sgl list. 8668 * @phba: pointer to lpfc hba data structure. 8669 * 8670 * This routine is invoked to free the driver's els sgl list and memory. 8671 **/ 8672 static void 8673 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8674 { 8675 LIST_HEAD(sglq_list); 8676 8677 /* Retrieve all els sgls from driver list */ 8678 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8679 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8680 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8681 8682 /* Now free the sgl list */ 8683 lpfc_free_sgl_list(phba, &sglq_list); 8684 } 8685 8686 /** 8687 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8688 * @phba: pointer to lpfc hba data structure. 8689 * 8690 * This routine is invoked to free the driver's nvmet sgl list and memory. 8691 **/ 8692 static void 8693 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8694 { 8695 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8696 LIST_HEAD(sglq_list); 8697 8698 /* Retrieve all nvmet sgls from driver list */ 8699 spin_lock_irq(&phba->hbalock); 8700 spin_lock(&phba->sli4_hba.sgl_list_lock); 8701 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8702 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8703 spin_unlock_irq(&phba->hbalock); 8704 8705 /* Now free the sgl list */ 8706 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8707 list_del(&sglq_entry->list); 8708 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8709 kfree(sglq_entry); 8710 } 8711 8712 /* Update the nvmet_xri_cnt to reflect no current sgls. 8713 * The next initialization cycle sets the count and allocates 8714 * the sgls over again. 8715 */ 8716 phba->sli4_hba.nvmet_xri_cnt = 0; 8717 } 8718 8719 /** 8720 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8721 * @phba: pointer to lpfc hba data structure. 8722 * 8723 * This routine is invoked to allocate the driver's active sgl memory. 8724 * This array will hold the sglq_entry's for active IOs. 8725 **/ 8726 static int 8727 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8728 { 8729 int size; 8730 size = sizeof(struct lpfc_sglq *); 8731 size *= phba->sli4_hba.max_cfg_param.max_xri; 8732 8733 phba->sli4_hba.lpfc_sglq_active_list = 8734 kzalloc(size, GFP_KERNEL); 8735 if (!phba->sli4_hba.lpfc_sglq_active_list) 8736 return -ENOMEM; 8737 return 0; 8738 } 8739 8740 /** 8741 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8742 * @phba: pointer to lpfc hba data structure. 8743 * 8744 * This routine is invoked to walk through the array of active sglq entries 8745 * and free all of the resources. 8746 * This is just a place holder for now. 8747 **/ 8748 static void 8749 lpfc_free_active_sgl(struct lpfc_hba *phba) 8750 { 8751 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8752 } 8753 8754 /** 8755 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8756 * @phba: pointer to lpfc hba data structure. 8757 * 8758 * This routine is invoked to allocate and initizlize the driver's sgl 8759 * list and set up the sgl xritag tag array accordingly. 8760 * 8761 **/ 8762 static void 8763 lpfc_init_sgl_list(struct lpfc_hba *phba) 8764 { 8765 /* Initialize and populate the sglq list per host/VF. */ 8766 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8767 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8768 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8769 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8770 8771 /* els xri-sgl book keeping */ 8772 phba->sli4_hba.els_xri_cnt = 0; 8773 8774 /* nvme xri-buffer book keeping */ 8775 phba->sli4_hba.io_xri_cnt = 0; 8776 } 8777 8778 /** 8779 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8780 * @phba: pointer to lpfc hba data structure. 8781 * 8782 * This routine is invoked to post rpi header templates to the 8783 * port for those SLI4 ports that do not support extents. This routine 8784 * posts a PAGE_SIZE memory region to the port to hold up to 8785 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8786 * and should be called only when interrupts are disabled. 8787 * 8788 * Return codes 8789 * 0 - successful 8790 * -ERROR - otherwise. 8791 **/ 8792 int 8793 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8794 { 8795 int rc = 0; 8796 struct lpfc_rpi_hdr *rpi_hdr; 8797 8798 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8799 if (!phba->sli4_hba.rpi_hdrs_in_use) 8800 return rc; 8801 if (phba->sli4_hba.extents_in_use) 8802 return -EIO; 8803 8804 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8805 if (!rpi_hdr) { 8806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8807 "0391 Error during rpi post operation\n"); 8808 lpfc_sli4_remove_rpis(phba); 8809 rc = -ENODEV; 8810 } 8811 8812 return rc; 8813 } 8814 8815 /** 8816 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8817 * @phba: pointer to lpfc hba data structure. 8818 * 8819 * This routine is invoked to allocate a single 4KB memory region to 8820 * support rpis and stores them in the phba. This single region 8821 * provides support for up to 64 rpis. The region is used globally 8822 * by the device. 8823 * 8824 * Returns: 8825 * A valid rpi hdr on success. 8826 * A NULL pointer on any failure. 8827 **/ 8828 struct lpfc_rpi_hdr * 8829 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8830 { 8831 uint16_t rpi_limit, curr_rpi_range; 8832 struct lpfc_dmabuf *dmabuf; 8833 struct lpfc_rpi_hdr *rpi_hdr; 8834 8835 /* 8836 * If the SLI4 port supports extents, posting the rpi header isn't 8837 * required. Set the expected maximum count and let the actual value 8838 * get set when extents are fully allocated. 8839 */ 8840 if (!phba->sli4_hba.rpi_hdrs_in_use) 8841 return NULL; 8842 if (phba->sli4_hba.extents_in_use) 8843 return NULL; 8844 8845 /* The limit on the logical index is just the max_rpi count. */ 8846 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8847 8848 spin_lock_irq(&phba->hbalock); 8849 /* 8850 * Establish the starting RPI in this header block. The starting 8851 * rpi is normalized to a zero base because the physical rpi is 8852 * port based. 8853 */ 8854 curr_rpi_range = phba->sli4_hba.next_rpi; 8855 spin_unlock_irq(&phba->hbalock); 8856 8857 /* Reached full RPI range */ 8858 if (curr_rpi_range == rpi_limit) 8859 return NULL; 8860 8861 /* 8862 * First allocate the protocol header region for the port. The 8863 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8864 */ 8865 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8866 if (!dmabuf) 8867 return NULL; 8868 8869 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8870 LPFC_HDR_TEMPLATE_SIZE, 8871 &dmabuf->phys, GFP_KERNEL); 8872 if (!dmabuf->virt) { 8873 rpi_hdr = NULL; 8874 goto err_free_dmabuf; 8875 } 8876 8877 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8878 rpi_hdr = NULL; 8879 goto err_free_coherent; 8880 } 8881 8882 /* Save the rpi header data for cleanup later. */ 8883 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8884 if (!rpi_hdr) 8885 goto err_free_coherent; 8886 8887 rpi_hdr->dmabuf = dmabuf; 8888 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8889 rpi_hdr->page_count = 1; 8890 spin_lock_irq(&phba->hbalock); 8891 8892 /* The rpi_hdr stores the logical index only. */ 8893 rpi_hdr->start_rpi = curr_rpi_range; 8894 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8895 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8896 8897 spin_unlock_irq(&phba->hbalock); 8898 return rpi_hdr; 8899 8900 err_free_coherent: 8901 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8902 dmabuf->virt, dmabuf->phys); 8903 err_free_dmabuf: 8904 kfree(dmabuf); 8905 return NULL; 8906 } 8907 8908 /** 8909 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8910 * @phba: pointer to lpfc hba data structure. 8911 * 8912 * This routine is invoked to remove all memory resources allocated 8913 * to support rpis for SLI4 ports not supporting extents. This routine 8914 * presumes the caller has released all rpis consumed by fabric or port 8915 * logins and is prepared to have the header pages removed. 8916 **/ 8917 void 8918 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8919 { 8920 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8921 8922 if (!phba->sli4_hba.rpi_hdrs_in_use) 8923 goto exit; 8924 8925 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8926 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8927 list_del(&rpi_hdr->list); 8928 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 8929 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 8930 kfree(rpi_hdr->dmabuf); 8931 kfree(rpi_hdr); 8932 } 8933 exit: 8934 /* There are no rpis available to the port now. */ 8935 phba->sli4_hba.next_rpi = 0; 8936 } 8937 8938 /** 8939 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 8940 * @pdev: pointer to pci device data structure. 8941 * 8942 * This routine is invoked to allocate the driver hba data structure for an 8943 * HBA device. If the allocation is successful, the phba reference to the 8944 * PCI device data structure is set. 8945 * 8946 * Return codes 8947 * pointer to @phba - successful 8948 * NULL - error 8949 **/ 8950 static struct lpfc_hba * 8951 lpfc_hba_alloc(struct pci_dev *pdev) 8952 { 8953 struct lpfc_hba *phba; 8954 8955 /* Allocate memory for HBA structure */ 8956 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 8957 if (!phba) { 8958 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 8959 return NULL; 8960 } 8961 8962 /* Set reference to PCI device in HBA structure */ 8963 phba->pcidev = pdev; 8964 8965 /* Assign an unused board number */ 8966 phba->brd_no = lpfc_get_instance(); 8967 if (phba->brd_no < 0) { 8968 kfree(phba); 8969 return NULL; 8970 } 8971 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 8972 8973 spin_lock_init(&phba->ct_ev_lock); 8974 INIT_LIST_HEAD(&phba->ct_ev_waiters); 8975 8976 return phba; 8977 } 8978 8979 /** 8980 * lpfc_hba_free - Free driver hba data structure with a device. 8981 * @phba: pointer to lpfc hba data structure. 8982 * 8983 * This routine is invoked to free the driver hba data structure with an 8984 * HBA device. 8985 **/ 8986 static void 8987 lpfc_hba_free(struct lpfc_hba *phba) 8988 { 8989 if (phba->sli_rev == LPFC_SLI_REV4) 8990 kfree(phba->sli4_hba.hdwq); 8991 8992 /* Release the driver assigned board number */ 8993 idr_remove(&lpfc_hba_index, phba->brd_no); 8994 8995 /* Free memory allocated with sli3 rings */ 8996 kfree(phba->sli.sli3_ring); 8997 phba->sli.sli3_ring = NULL; 8998 8999 kfree(phba); 9000 return; 9001 } 9002 9003 /** 9004 * lpfc_create_shost - Create hba physical port with associated scsi host. 9005 * @phba: pointer to lpfc hba data structure. 9006 * 9007 * This routine is invoked to create HBA physical port and associate a SCSI 9008 * host with it. 9009 * 9010 * Return codes 9011 * 0 - successful 9012 * other values - error 9013 **/ 9014 static int 9015 lpfc_create_shost(struct lpfc_hba *phba) 9016 { 9017 struct lpfc_vport *vport; 9018 struct Scsi_Host *shost; 9019 9020 /* Initialize HBA FC structure */ 9021 phba->fc_edtov = FF_DEF_EDTOV; 9022 phba->fc_ratov = FF_DEF_RATOV; 9023 phba->fc_altov = FF_DEF_ALTOV; 9024 phba->fc_arbtov = FF_DEF_ARBTOV; 9025 9026 atomic_set(&phba->sdev_cnt, 0); 9027 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9028 if (!vport) 9029 return -ENODEV; 9030 9031 shost = lpfc_shost_from_vport(vport); 9032 phba->pport = vport; 9033 9034 if (phba->nvmet_support) { 9035 /* Only 1 vport (pport) will support NVME target */ 9036 phba->targetport = NULL; 9037 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9039 "6076 NVME Target Found\n"); 9040 } 9041 9042 lpfc_debugfs_initialize(vport); 9043 /* Put reference to SCSI host to driver's device private data */ 9044 pci_set_drvdata(phba->pcidev, shost); 9045 9046 /* 9047 * At this point we are fully registered with PSA. In addition, 9048 * any initial discovery should be completed. 9049 */ 9050 vport->load_flag |= FC_ALLOW_FDMI; 9051 if (phba->cfg_enable_SmartSAN || 9052 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 9053 9054 /* Setup appropriate attribute masks */ 9055 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9056 if (phba->cfg_enable_SmartSAN) 9057 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9058 else 9059 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9060 } 9061 return 0; 9062 } 9063 9064 /** 9065 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9066 * @phba: pointer to lpfc hba data structure. 9067 * 9068 * This routine is invoked to destroy HBA physical port and the associated 9069 * SCSI host. 9070 **/ 9071 static void 9072 lpfc_destroy_shost(struct lpfc_hba *phba) 9073 { 9074 struct lpfc_vport *vport = phba->pport; 9075 9076 /* Destroy physical port that associated with the SCSI host */ 9077 destroy_port(vport); 9078 9079 return; 9080 } 9081 9082 /** 9083 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9084 * @phba: pointer to lpfc hba data structure. 9085 * @shost: the shost to be used to detect Block guard settings. 9086 * 9087 * This routine sets up the local Block guard protocol settings for @shost. 9088 * This routine also allocates memory for debugging bg buffers. 9089 **/ 9090 static void 9091 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9092 { 9093 uint32_t old_mask; 9094 uint32_t old_guard; 9095 9096 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9097 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9098 "1478 Registering BlockGuard with the " 9099 "SCSI layer\n"); 9100 9101 old_mask = phba->cfg_prot_mask; 9102 old_guard = phba->cfg_prot_guard; 9103 9104 /* Only allow supported values */ 9105 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9106 SHOST_DIX_TYPE0_PROTECTION | 9107 SHOST_DIX_TYPE1_PROTECTION); 9108 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9109 SHOST_DIX_GUARD_CRC); 9110 9111 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9112 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9113 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9114 9115 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9116 if ((old_mask != phba->cfg_prot_mask) || 9117 (old_guard != phba->cfg_prot_guard)) 9118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9119 "1475 Registering BlockGuard with the " 9120 "SCSI layer: mask %d guard %d\n", 9121 phba->cfg_prot_mask, 9122 phba->cfg_prot_guard); 9123 9124 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9125 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9126 } else 9127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9128 "1479 Not Registering BlockGuard with the SCSI " 9129 "layer, Bad protection parameters: %d %d\n", 9130 old_mask, old_guard); 9131 } 9132 } 9133 9134 /** 9135 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9136 * @phba: pointer to lpfc hba data structure. 9137 * 9138 * This routine is invoked to perform all the necessary post initialization 9139 * setup for the device. 9140 **/ 9141 static void 9142 lpfc_post_init_setup(struct lpfc_hba *phba) 9143 { 9144 struct Scsi_Host *shost; 9145 struct lpfc_adapter_event_header adapter_event; 9146 9147 /* Get the default values for Model Name and Description */ 9148 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9149 9150 /* 9151 * hba setup may have changed the hba_queue_depth so we need to 9152 * adjust the value of can_queue. 9153 */ 9154 shost = pci_get_drvdata(phba->pcidev); 9155 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9156 9157 lpfc_host_attrib_init(shost); 9158 9159 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9160 spin_lock_irq(shost->host_lock); 9161 lpfc_poll_start_timer(phba); 9162 spin_unlock_irq(shost->host_lock); 9163 } 9164 9165 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9166 "0428 Perform SCSI scan\n"); 9167 /* Send board arrival event to upper layer */ 9168 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9169 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9170 fc_host_post_vendor_event(shost, fc_get_event_number(), 9171 sizeof(adapter_event), 9172 (char *) &adapter_event, 9173 LPFC_NL_VENDOR_ID); 9174 return; 9175 } 9176 9177 /** 9178 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9179 * @phba: pointer to lpfc hba data structure. 9180 * 9181 * This routine is invoked to set up the PCI device memory space for device 9182 * with SLI-3 interface spec. 9183 * 9184 * Return codes 9185 * 0 - successful 9186 * other values - error 9187 **/ 9188 static int 9189 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9190 { 9191 struct pci_dev *pdev = phba->pcidev; 9192 unsigned long bar0map_len, bar2map_len; 9193 int i, hbq_count; 9194 void *ptr; 9195 int error; 9196 9197 if (!pdev) 9198 return -ENODEV; 9199 9200 /* Set the device DMA mask size */ 9201 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9202 if (error) 9203 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9204 if (error) 9205 return error; 9206 error = -ENODEV; 9207 9208 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9209 * required by each mapping. 9210 */ 9211 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9212 bar0map_len = pci_resource_len(pdev, 0); 9213 9214 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9215 bar2map_len = pci_resource_len(pdev, 2); 9216 9217 /* Map HBA SLIM to a kernel virtual address. */ 9218 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9219 if (!phba->slim_memmap_p) { 9220 dev_printk(KERN_ERR, &pdev->dev, 9221 "ioremap failed for SLIM memory.\n"); 9222 goto out; 9223 } 9224 9225 /* Map HBA Control Registers to a kernel virtual address. */ 9226 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9227 if (!phba->ctrl_regs_memmap_p) { 9228 dev_printk(KERN_ERR, &pdev->dev, 9229 "ioremap failed for HBA control registers.\n"); 9230 goto out_iounmap_slim; 9231 } 9232 9233 /* Allocate memory for SLI-2 structures */ 9234 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9235 &phba->slim2p.phys, GFP_KERNEL); 9236 if (!phba->slim2p.virt) 9237 goto out_iounmap; 9238 9239 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9240 phba->mbox_ext = (phba->slim2p.virt + 9241 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9242 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9243 phba->IOCBs = (phba->slim2p.virt + 9244 offsetof(struct lpfc_sli2_slim, IOCBs)); 9245 9246 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9247 lpfc_sli_hbq_size(), 9248 &phba->hbqslimp.phys, 9249 GFP_KERNEL); 9250 if (!phba->hbqslimp.virt) 9251 goto out_free_slim; 9252 9253 hbq_count = lpfc_sli_hbq_count(); 9254 ptr = phba->hbqslimp.virt; 9255 for (i = 0; i < hbq_count; ++i) { 9256 phba->hbqs[i].hbq_virt = ptr; 9257 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9258 ptr += (lpfc_hbq_defs[i]->entry_count * 9259 sizeof(struct lpfc_hbq_entry)); 9260 } 9261 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9262 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9263 9264 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9265 9266 phba->MBslimaddr = phba->slim_memmap_p; 9267 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9268 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9269 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9270 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9271 9272 return 0; 9273 9274 out_free_slim: 9275 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9276 phba->slim2p.virt, phba->slim2p.phys); 9277 out_iounmap: 9278 iounmap(phba->ctrl_regs_memmap_p); 9279 out_iounmap_slim: 9280 iounmap(phba->slim_memmap_p); 9281 out: 9282 return error; 9283 } 9284 9285 /** 9286 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9287 * @phba: pointer to lpfc hba data structure. 9288 * 9289 * This routine is invoked to unset the PCI device memory space for device 9290 * with SLI-3 interface spec. 9291 **/ 9292 static void 9293 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9294 { 9295 struct pci_dev *pdev; 9296 9297 /* Obtain PCI device reference */ 9298 if (!phba->pcidev) 9299 return; 9300 else 9301 pdev = phba->pcidev; 9302 9303 /* Free coherent DMA memory allocated */ 9304 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9305 phba->hbqslimp.virt, phba->hbqslimp.phys); 9306 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9307 phba->slim2p.virt, phba->slim2p.phys); 9308 9309 /* I/O memory unmap */ 9310 iounmap(phba->ctrl_regs_memmap_p); 9311 iounmap(phba->slim_memmap_p); 9312 9313 return; 9314 } 9315 9316 /** 9317 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9318 * @phba: pointer to lpfc hba data structure. 9319 * 9320 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9321 * done and check status. 9322 * 9323 * Return 0 if successful, otherwise -ENODEV. 9324 **/ 9325 int 9326 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9327 { 9328 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9329 struct lpfc_register reg_data; 9330 int i, port_error = 0; 9331 uint32_t if_type; 9332 9333 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9334 memset(®_data, 0, sizeof(reg_data)); 9335 if (!phba->sli4_hba.PSMPHRregaddr) 9336 return -ENODEV; 9337 9338 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9339 for (i = 0; i < 3000; i++) { 9340 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9341 &portsmphr_reg.word0) || 9342 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9343 /* Port has a fatal POST error, break out */ 9344 port_error = -ENODEV; 9345 break; 9346 } 9347 if (LPFC_POST_STAGE_PORT_READY == 9348 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9349 break; 9350 msleep(10); 9351 } 9352 9353 /* 9354 * If there was a port error during POST, then don't proceed with 9355 * other register reads as the data may not be valid. Just exit. 9356 */ 9357 if (port_error) { 9358 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9359 "1408 Port Failed POST - portsmphr=0x%x, " 9360 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9361 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9362 portsmphr_reg.word0, 9363 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9364 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9365 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9366 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9367 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9368 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9369 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9370 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9371 } else { 9372 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9373 "2534 Device Info: SLIFamily=0x%x, " 9374 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9375 "SLIHint_2=0x%x, FT=0x%x\n", 9376 bf_get(lpfc_sli_intf_sli_family, 9377 &phba->sli4_hba.sli_intf), 9378 bf_get(lpfc_sli_intf_slirev, 9379 &phba->sli4_hba.sli_intf), 9380 bf_get(lpfc_sli_intf_if_type, 9381 &phba->sli4_hba.sli_intf), 9382 bf_get(lpfc_sli_intf_sli_hint1, 9383 &phba->sli4_hba.sli_intf), 9384 bf_get(lpfc_sli_intf_sli_hint2, 9385 &phba->sli4_hba.sli_intf), 9386 bf_get(lpfc_sli_intf_func_type, 9387 &phba->sli4_hba.sli_intf)); 9388 /* 9389 * Check for other Port errors during the initialization 9390 * process. Fail the load if the port did not come up 9391 * correctly. 9392 */ 9393 if_type = bf_get(lpfc_sli_intf_if_type, 9394 &phba->sli4_hba.sli_intf); 9395 switch (if_type) { 9396 case LPFC_SLI_INTF_IF_TYPE_0: 9397 phba->sli4_hba.ue_mask_lo = 9398 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9399 phba->sli4_hba.ue_mask_hi = 9400 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9401 uerrlo_reg.word0 = 9402 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9403 uerrhi_reg.word0 = 9404 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9405 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9406 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9407 lpfc_printf_log(phba, KERN_ERR, 9408 LOG_TRACE_EVENT, 9409 "1422 Unrecoverable Error " 9410 "Detected during POST " 9411 "uerr_lo_reg=0x%x, " 9412 "uerr_hi_reg=0x%x, " 9413 "ue_mask_lo_reg=0x%x, " 9414 "ue_mask_hi_reg=0x%x\n", 9415 uerrlo_reg.word0, 9416 uerrhi_reg.word0, 9417 phba->sli4_hba.ue_mask_lo, 9418 phba->sli4_hba.ue_mask_hi); 9419 port_error = -ENODEV; 9420 } 9421 break; 9422 case LPFC_SLI_INTF_IF_TYPE_2: 9423 case LPFC_SLI_INTF_IF_TYPE_6: 9424 /* Final checks. The port status should be clean. */ 9425 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9426 ®_data.word0) || 9427 (bf_get(lpfc_sliport_status_err, ®_data) && 9428 !bf_get(lpfc_sliport_status_rn, ®_data))) { 9429 phba->work_status[0] = 9430 readl(phba->sli4_hba.u.if_type2. 9431 ERR1regaddr); 9432 phba->work_status[1] = 9433 readl(phba->sli4_hba.u.if_type2. 9434 ERR2regaddr); 9435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9436 "2888 Unrecoverable port error " 9437 "following POST: port status reg " 9438 "0x%x, port_smphr reg 0x%x, " 9439 "error 1=0x%x, error 2=0x%x\n", 9440 reg_data.word0, 9441 portsmphr_reg.word0, 9442 phba->work_status[0], 9443 phba->work_status[1]); 9444 port_error = -ENODEV; 9445 break; 9446 } 9447 9448 if (lpfc_pldv_detect && 9449 bf_get(lpfc_sli_intf_sli_family, 9450 &phba->sli4_hba.sli_intf) == 9451 LPFC_SLI_INTF_FAMILY_G6) 9452 pci_write_config_byte(phba->pcidev, 9453 LPFC_SLI_INTF, CFG_PLD); 9454 break; 9455 case LPFC_SLI_INTF_IF_TYPE_1: 9456 default: 9457 break; 9458 } 9459 } 9460 return port_error; 9461 } 9462 9463 /** 9464 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9465 * @phba: pointer to lpfc hba data structure. 9466 * @if_type: The SLI4 interface type getting configured. 9467 * 9468 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9469 * memory map. 9470 **/ 9471 static void 9472 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9473 { 9474 switch (if_type) { 9475 case LPFC_SLI_INTF_IF_TYPE_0: 9476 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9477 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9478 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9479 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9480 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9481 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9482 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9483 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9484 phba->sli4_hba.SLIINTFregaddr = 9485 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9486 break; 9487 case LPFC_SLI_INTF_IF_TYPE_2: 9488 phba->sli4_hba.u.if_type2.EQDregaddr = 9489 phba->sli4_hba.conf_regs_memmap_p + 9490 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9491 phba->sli4_hba.u.if_type2.ERR1regaddr = 9492 phba->sli4_hba.conf_regs_memmap_p + 9493 LPFC_CTL_PORT_ER1_OFFSET; 9494 phba->sli4_hba.u.if_type2.ERR2regaddr = 9495 phba->sli4_hba.conf_regs_memmap_p + 9496 LPFC_CTL_PORT_ER2_OFFSET; 9497 phba->sli4_hba.u.if_type2.CTRLregaddr = 9498 phba->sli4_hba.conf_regs_memmap_p + 9499 LPFC_CTL_PORT_CTL_OFFSET; 9500 phba->sli4_hba.u.if_type2.STATUSregaddr = 9501 phba->sli4_hba.conf_regs_memmap_p + 9502 LPFC_CTL_PORT_STA_OFFSET; 9503 phba->sli4_hba.SLIINTFregaddr = 9504 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9505 phba->sli4_hba.PSMPHRregaddr = 9506 phba->sli4_hba.conf_regs_memmap_p + 9507 LPFC_CTL_PORT_SEM_OFFSET; 9508 phba->sli4_hba.RQDBregaddr = 9509 phba->sli4_hba.conf_regs_memmap_p + 9510 LPFC_ULP0_RQ_DOORBELL; 9511 phba->sli4_hba.WQDBregaddr = 9512 phba->sli4_hba.conf_regs_memmap_p + 9513 LPFC_ULP0_WQ_DOORBELL; 9514 phba->sli4_hba.CQDBregaddr = 9515 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9516 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9517 phba->sli4_hba.MQDBregaddr = 9518 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9519 phba->sli4_hba.BMBXregaddr = 9520 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9521 break; 9522 case LPFC_SLI_INTF_IF_TYPE_6: 9523 phba->sli4_hba.u.if_type2.EQDregaddr = 9524 phba->sli4_hba.conf_regs_memmap_p + 9525 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9526 phba->sli4_hba.u.if_type2.ERR1regaddr = 9527 phba->sli4_hba.conf_regs_memmap_p + 9528 LPFC_CTL_PORT_ER1_OFFSET; 9529 phba->sli4_hba.u.if_type2.ERR2regaddr = 9530 phba->sli4_hba.conf_regs_memmap_p + 9531 LPFC_CTL_PORT_ER2_OFFSET; 9532 phba->sli4_hba.u.if_type2.CTRLregaddr = 9533 phba->sli4_hba.conf_regs_memmap_p + 9534 LPFC_CTL_PORT_CTL_OFFSET; 9535 phba->sli4_hba.u.if_type2.STATUSregaddr = 9536 phba->sli4_hba.conf_regs_memmap_p + 9537 LPFC_CTL_PORT_STA_OFFSET; 9538 phba->sli4_hba.PSMPHRregaddr = 9539 phba->sli4_hba.conf_regs_memmap_p + 9540 LPFC_CTL_PORT_SEM_OFFSET; 9541 phba->sli4_hba.BMBXregaddr = 9542 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9543 break; 9544 case LPFC_SLI_INTF_IF_TYPE_1: 9545 default: 9546 dev_printk(KERN_ERR, &phba->pcidev->dev, 9547 "FATAL - unsupported SLI4 interface type - %d\n", 9548 if_type); 9549 break; 9550 } 9551 } 9552 9553 /** 9554 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9555 * @phba: pointer to lpfc hba data structure. 9556 * @if_type: sli if type to operate on. 9557 * 9558 * This routine is invoked to set up SLI4 BAR1 register memory map. 9559 **/ 9560 static void 9561 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9562 { 9563 switch (if_type) { 9564 case LPFC_SLI_INTF_IF_TYPE_0: 9565 phba->sli4_hba.PSMPHRregaddr = 9566 phba->sli4_hba.ctrl_regs_memmap_p + 9567 LPFC_SLIPORT_IF0_SMPHR; 9568 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9569 LPFC_HST_ISR0; 9570 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9571 LPFC_HST_IMR0; 9572 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9573 LPFC_HST_ISCR0; 9574 break; 9575 case LPFC_SLI_INTF_IF_TYPE_6: 9576 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9577 LPFC_IF6_RQ_DOORBELL; 9578 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9579 LPFC_IF6_WQ_DOORBELL; 9580 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9581 LPFC_IF6_CQ_DOORBELL; 9582 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9583 LPFC_IF6_EQ_DOORBELL; 9584 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9585 LPFC_IF6_MQ_DOORBELL; 9586 break; 9587 case LPFC_SLI_INTF_IF_TYPE_2: 9588 case LPFC_SLI_INTF_IF_TYPE_1: 9589 default: 9590 dev_err(&phba->pcidev->dev, 9591 "FATAL - unsupported SLI4 interface type - %d\n", 9592 if_type); 9593 break; 9594 } 9595 } 9596 9597 /** 9598 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9599 * @phba: pointer to lpfc hba data structure. 9600 * @vf: virtual function number 9601 * 9602 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9603 * based on the given viftual function number, @vf. 9604 * 9605 * Return 0 if successful, otherwise -ENODEV. 9606 **/ 9607 static int 9608 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9609 { 9610 if (vf > LPFC_VIR_FUNC_MAX) 9611 return -ENODEV; 9612 9613 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9614 vf * LPFC_VFR_PAGE_SIZE + 9615 LPFC_ULP0_RQ_DOORBELL); 9616 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9617 vf * LPFC_VFR_PAGE_SIZE + 9618 LPFC_ULP0_WQ_DOORBELL); 9619 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9620 vf * LPFC_VFR_PAGE_SIZE + 9621 LPFC_EQCQ_DOORBELL); 9622 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9623 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9624 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9625 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9626 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9627 return 0; 9628 } 9629 9630 /** 9631 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9632 * @phba: pointer to lpfc hba data structure. 9633 * 9634 * This routine is invoked to create the bootstrap mailbox 9635 * region consistent with the SLI-4 interface spec. This 9636 * routine allocates all memory necessary to communicate 9637 * mailbox commands to the port and sets up all alignment 9638 * needs. No locks are expected to be held when calling 9639 * this routine. 9640 * 9641 * Return codes 9642 * 0 - successful 9643 * -ENOMEM - could not allocated memory. 9644 **/ 9645 static int 9646 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9647 { 9648 uint32_t bmbx_size; 9649 struct lpfc_dmabuf *dmabuf; 9650 struct dma_address *dma_address; 9651 uint32_t pa_addr; 9652 uint64_t phys_addr; 9653 9654 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9655 if (!dmabuf) 9656 return -ENOMEM; 9657 9658 /* 9659 * The bootstrap mailbox region is comprised of 2 parts 9660 * plus an alignment restriction of 16 bytes. 9661 */ 9662 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9663 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9664 &dmabuf->phys, GFP_KERNEL); 9665 if (!dmabuf->virt) { 9666 kfree(dmabuf); 9667 return -ENOMEM; 9668 } 9669 9670 /* 9671 * Initialize the bootstrap mailbox pointers now so that the register 9672 * operations are simple later. The mailbox dma address is required 9673 * to be 16-byte aligned. Also align the virtual memory as each 9674 * maibox is copied into the bmbx mailbox region before issuing the 9675 * command to the port. 9676 */ 9677 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9678 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9679 9680 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9681 LPFC_ALIGN_16_BYTE); 9682 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9683 LPFC_ALIGN_16_BYTE); 9684 9685 /* 9686 * Set the high and low physical addresses now. The SLI4 alignment 9687 * requirement is 16 bytes and the mailbox is posted to the port 9688 * as two 30-bit addresses. The other data is a bit marking whether 9689 * the 30-bit address is the high or low address. 9690 * Upcast bmbx aphys to 64bits so shift instruction compiles 9691 * clean on 32 bit machines. 9692 */ 9693 dma_address = &phba->sli4_hba.bmbx.dma_address; 9694 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9695 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9696 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9697 LPFC_BMBX_BIT1_ADDR_HI); 9698 9699 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9700 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9701 LPFC_BMBX_BIT1_ADDR_LO); 9702 return 0; 9703 } 9704 9705 /** 9706 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9707 * @phba: pointer to lpfc hba data structure. 9708 * 9709 * This routine is invoked to teardown the bootstrap mailbox 9710 * region and release all host resources. This routine requires 9711 * the caller to ensure all mailbox commands recovered, no 9712 * additional mailbox comands are sent, and interrupts are disabled 9713 * before calling this routine. 9714 * 9715 **/ 9716 static void 9717 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9718 { 9719 dma_free_coherent(&phba->pcidev->dev, 9720 phba->sli4_hba.bmbx.bmbx_size, 9721 phba->sli4_hba.bmbx.dmabuf->virt, 9722 phba->sli4_hba.bmbx.dmabuf->phys); 9723 9724 kfree(phba->sli4_hba.bmbx.dmabuf); 9725 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9726 } 9727 9728 static const char * const lpfc_topo_to_str[] = { 9729 "Loop then P2P", 9730 "Loopback", 9731 "P2P Only", 9732 "Unsupported", 9733 "Loop Only", 9734 "Unsupported", 9735 "P2P then Loop", 9736 }; 9737 9738 #define LINK_FLAGS_DEF 0x0 9739 #define LINK_FLAGS_P2P 0x1 9740 #define LINK_FLAGS_LOOP 0x2 9741 /** 9742 * lpfc_map_topology - Map the topology read from READ_CONFIG 9743 * @phba: pointer to lpfc hba data structure. 9744 * @rd_config: pointer to read config data 9745 * 9746 * This routine is invoked to map the topology values as read 9747 * from the read config mailbox command. If the persistent 9748 * topology feature is supported, the firmware will provide the 9749 * saved topology information to be used in INIT_LINK 9750 **/ 9751 static void 9752 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9753 { 9754 u8 ptv, tf, pt; 9755 9756 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9757 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9758 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9759 9760 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9761 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9762 ptv, tf, pt); 9763 if (!ptv) { 9764 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9765 "2019 FW does not support persistent topology " 9766 "Using driver parameter defined value [%s]", 9767 lpfc_topo_to_str[phba->cfg_topology]); 9768 return; 9769 } 9770 /* FW supports persistent topology - override module parameter value */ 9771 phba->hba_flag |= HBA_PERSISTENT_TOPO; 9772 9773 /* if ASIC_GEN_NUM >= 0xC) */ 9774 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9775 LPFC_SLI_INTF_IF_TYPE_6) || 9776 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9777 LPFC_SLI_INTF_FAMILY_G6)) { 9778 if (!tf) { 9779 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9780 ? FLAGS_TOPOLOGY_MODE_LOOP 9781 : FLAGS_TOPOLOGY_MODE_PT_PT); 9782 } else { 9783 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 9784 } 9785 } else { /* G5 */ 9786 if (tf) { 9787 /* If topology failover set - pt is '0' or '1' */ 9788 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9789 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9790 } else { 9791 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9792 ? FLAGS_TOPOLOGY_MODE_PT_PT 9793 : FLAGS_TOPOLOGY_MODE_LOOP); 9794 } 9795 } 9796 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 9797 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9798 "2020 Using persistent topology value [%s]", 9799 lpfc_topo_to_str[phba->cfg_topology]); 9800 } else { 9801 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9802 "2021 Invalid topology values from FW " 9803 "Using driver parameter defined value [%s]", 9804 lpfc_topo_to_str[phba->cfg_topology]); 9805 } 9806 } 9807 9808 /** 9809 * lpfc_sli4_read_config - Get the config parameters. 9810 * @phba: pointer to lpfc hba data structure. 9811 * 9812 * This routine is invoked to read the configuration parameters from the HBA. 9813 * The configuration parameters are used to set the base and maximum values 9814 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9815 * allocation for the port. 9816 * 9817 * Return codes 9818 * 0 - successful 9819 * -ENOMEM - No available memory 9820 * -EIO - The mailbox failed to complete successfully. 9821 **/ 9822 int 9823 lpfc_sli4_read_config(struct lpfc_hba *phba) 9824 { 9825 LPFC_MBOXQ_t *pmb; 9826 struct lpfc_mbx_read_config *rd_config; 9827 union lpfc_sli4_cfg_shdr *shdr; 9828 uint32_t shdr_status, shdr_add_status; 9829 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9830 struct lpfc_rsrc_desc_fcfcoe *desc; 9831 char *pdesc_0; 9832 uint16_t forced_link_speed; 9833 uint32_t if_type, qmin; 9834 int length, i, rc = 0, rc2; 9835 9836 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9837 if (!pmb) { 9838 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9839 "2011 Unable to allocate memory for issuing " 9840 "SLI_CONFIG_SPECIAL mailbox command\n"); 9841 return -ENOMEM; 9842 } 9843 9844 lpfc_read_config(phba, pmb); 9845 9846 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9847 if (rc != MBX_SUCCESS) { 9848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9849 "2012 Mailbox failed , mbxCmd x%x " 9850 "READ_CONFIG, mbxStatus x%x\n", 9851 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9852 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9853 rc = -EIO; 9854 } else { 9855 rd_config = &pmb->u.mqe.un.rd_config; 9856 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9857 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9858 phba->sli4_hba.lnk_info.lnk_tp = 9859 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9860 phba->sli4_hba.lnk_info.lnk_no = 9861 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9862 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9863 "3081 lnk_type:%d, lnk_numb:%d\n", 9864 phba->sli4_hba.lnk_info.lnk_tp, 9865 phba->sli4_hba.lnk_info.lnk_no); 9866 } else 9867 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9868 "3082 Mailbox (x%x) returned ldv:x0\n", 9869 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9870 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9871 phba->bbcredit_support = 1; 9872 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9873 } 9874 9875 phba->sli4_hba.conf_trunk = 9876 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9877 phba->sli4_hba.extents_in_use = 9878 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9879 phba->sli4_hba.max_cfg_param.max_xri = 9880 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9881 /* Reduce resource usage in kdump environment */ 9882 if (is_kdump_kernel() && 9883 phba->sli4_hba.max_cfg_param.max_xri > 512) 9884 phba->sli4_hba.max_cfg_param.max_xri = 512; 9885 phba->sli4_hba.max_cfg_param.xri_base = 9886 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9887 phba->sli4_hba.max_cfg_param.max_vpi = 9888 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9889 /* Limit the max we support */ 9890 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9891 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9892 phba->sli4_hba.max_cfg_param.vpi_base = 9893 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9894 phba->sli4_hba.max_cfg_param.max_rpi = 9895 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 9896 phba->sli4_hba.max_cfg_param.rpi_base = 9897 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 9898 phba->sli4_hba.max_cfg_param.max_vfi = 9899 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 9900 phba->sli4_hba.max_cfg_param.vfi_base = 9901 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 9902 phba->sli4_hba.max_cfg_param.max_fcfi = 9903 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 9904 phba->sli4_hba.max_cfg_param.max_eq = 9905 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 9906 phba->sli4_hba.max_cfg_param.max_rq = 9907 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 9908 phba->sli4_hba.max_cfg_param.max_wq = 9909 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 9910 phba->sli4_hba.max_cfg_param.max_cq = 9911 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 9912 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 9913 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 9914 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 9915 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 9916 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 9917 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 9918 phba->max_vports = phba->max_vpi; 9919 9920 /* Next decide on FPIN or Signal E2E CGN support 9921 * For congestion alarms and warnings valid combination are: 9922 * 1. FPIN alarms / FPIN warnings 9923 * 2. Signal alarms / Signal warnings 9924 * 3. FPIN alarms / Signal warnings 9925 * 4. Signal alarms / FPIN warnings 9926 * 9927 * Initialize the adapter frequency to 100 mSecs 9928 */ 9929 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 9930 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 9931 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 9932 9933 if (lpfc_use_cgn_signal) { 9934 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 9935 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 9936 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 9937 } 9938 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 9939 /* MUST support both alarm and warning 9940 * because EDC does not support alarm alone. 9941 */ 9942 if (phba->cgn_reg_signal != 9943 EDC_CG_SIG_WARN_ONLY) { 9944 /* Must support both or none */ 9945 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 9946 phba->cgn_reg_signal = 9947 EDC_CG_SIG_NOTSUPPORTED; 9948 } else { 9949 phba->cgn_reg_signal = 9950 EDC_CG_SIG_WARN_ALARM; 9951 phba->cgn_reg_fpin = 9952 LPFC_CGN_FPIN_NONE; 9953 } 9954 } 9955 } 9956 9957 /* Set the congestion initial signal and fpin values. */ 9958 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 9959 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 9960 9961 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 9962 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 9963 phba->cgn_reg_signal, phba->cgn_reg_fpin); 9964 9965 lpfc_map_topology(phba, rd_config); 9966 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9967 "2003 cfg params Extents? %d " 9968 "XRI(B:%d M:%d), " 9969 "VPI(B:%d M:%d) " 9970 "VFI(B:%d M:%d) " 9971 "RPI(B:%d M:%d) " 9972 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 9973 phba->sli4_hba.extents_in_use, 9974 phba->sli4_hba.max_cfg_param.xri_base, 9975 phba->sli4_hba.max_cfg_param.max_xri, 9976 phba->sli4_hba.max_cfg_param.vpi_base, 9977 phba->sli4_hba.max_cfg_param.max_vpi, 9978 phba->sli4_hba.max_cfg_param.vfi_base, 9979 phba->sli4_hba.max_cfg_param.max_vfi, 9980 phba->sli4_hba.max_cfg_param.rpi_base, 9981 phba->sli4_hba.max_cfg_param.max_rpi, 9982 phba->sli4_hba.max_cfg_param.max_fcfi, 9983 phba->sli4_hba.max_cfg_param.max_eq, 9984 phba->sli4_hba.max_cfg_param.max_cq, 9985 phba->sli4_hba.max_cfg_param.max_wq, 9986 phba->sli4_hba.max_cfg_param.max_rq, 9987 phba->lmt); 9988 9989 /* 9990 * Calculate queue resources based on how 9991 * many WQ/CQ/EQs are available. 9992 */ 9993 qmin = phba->sli4_hba.max_cfg_param.max_wq; 9994 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 9995 qmin = phba->sli4_hba.max_cfg_param.max_cq; 9996 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 9997 qmin = phba->sli4_hba.max_cfg_param.max_eq; 9998 /* 9999 * Whats left after this can go toward NVME / FCP. 10000 * The minus 4 accounts for ELS, NVME LS, MBOX 10001 * plus one extra. When configured for 10002 * NVMET, FCP io channel WQs are not created. 10003 */ 10004 qmin -= 4; 10005 10006 /* Check to see if there is enough for NVME */ 10007 if ((phba->cfg_irq_chann > qmin) || 10008 (phba->cfg_hdw_queue > qmin)) { 10009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10010 "2005 Reducing Queues - " 10011 "FW resource limitation: " 10012 "WQ %d CQ %d EQ %d: min %d: " 10013 "IRQ %d HDWQ %d\n", 10014 phba->sli4_hba.max_cfg_param.max_wq, 10015 phba->sli4_hba.max_cfg_param.max_cq, 10016 phba->sli4_hba.max_cfg_param.max_eq, 10017 qmin, phba->cfg_irq_chann, 10018 phba->cfg_hdw_queue); 10019 10020 if (phba->cfg_irq_chann > qmin) 10021 phba->cfg_irq_chann = qmin; 10022 if (phba->cfg_hdw_queue > qmin) 10023 phba->cfg_hdw_queue = qmin; 10024 } 10025 } 10026 10027 if (rc) 10028 goto read_cfg_out; 10029 10030 /* Update link speed if forced link speed is supported */ 10031 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10032 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10033 forced_link_speed = 10034 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10035 if (forced_link_speed) { 10036 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 10037 10038 switch (forced_link_speed) { 10039 case LINK_SPEED_1G: 10040 phba->cfg_link_speed = 10041 LPFC_USER_LINK_SPEED_1G; 10042 break; 10043 case LINK_SPEED_2G: 10044 phba->cfg_link_speed = 10045 LPFC_USER_LINK_SPEED_2G; 10046 break; 10047 case LINK_SPEED_4G: 10048 phba->cfg_link_speed = 10049 LPFC_USER_LINK_SPEED_4G; 10050 break; 10051 case LINK_SPEED_8G: 10052 phba->cfg_link_speed = 10053 LPFC_USER_LINK_SPEED_8G; 10054 break; 10055 case LINK_SPEED_10G: 10056 phba->cfg_link_speed = 10057 LPFC_USER_LINK_SPEED_10G; 10058 break; 10059 case LINK_SPEED_16G: 10060 phba->cfg_link_speed = 10061 LPFC_USER_LINK_SPEED_16G; 10062 break; 10063 case LINK_SPEED_32G: 10064 phba->cfg_link_speed = 10065 LPFC_USER_LINK_SPEED_32G; 10066 break; 10067 case LINK_SPEED_64G: 10068 phba->cfg_link_speed = 10069 LPFC_USER_LINK_SPEED_64G; 10070 break; 10071 case 0xffff: 10072 phba->cfg_link_speed = 10073 LPFC_USER_LINK_SPEED_AUTO; 10074 break; 10075 default: 10076 lpfc_printf_log(phba, KERN_ERR, 10077 LOG_TRACE_EVENT, 10078 "0047 Unrecognized link " 10079 "speed : %d\n", 10080 forced_link_speed); 10081 phba->cfg_link_speed = 10082 LPFC_USER_LINK_SPEED_AUTO; 10083 } 10084 } 10085 } 10086 10087 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10088 length = phba->sli4_hba.max_cfg_param.max_xri - 10089 lpfc_sli4_get_els_iocb_cnt(phba); 10090 if (phba->cfg_hba_queue_depth > length) { 10091 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10092 "3361 HBA queue depth changed from %d to %d\n", 10093 phba->cfg_hba_queue_depth, length); 10094 phba->cfg_hba_queue_depth = length; 10095 } 10096 10097 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10098 LPFC_SLI_INTF_IF_TYPE_2) 10099 goto read_cfg_out; 10100 10101 /* get the pf# and vf# for SLI4 if_type 2 port */ 10102 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10103 sizeof(struct lpfc_sli4_cfg_mhdr)); 10104 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10105 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10106 length, LPFC_SLI4_MBX_EMBED); 10107 10108 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10109 shdr = (union lpfc_sli4_cfg_shdr *) 10110 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10111 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10112 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10113 if (rc2 || shdr_status || shdr_add_status) { 10114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10115 "3026 Mailbox failed , mbxCmd x%x " 10116 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10117 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10118 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10119 goto read_cfg_out; 10120 } 10121 10122 /* search for fc_fcoe resrouce descriptor */ 10123 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10124 10125 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10126 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10127 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10128 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10129 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10130 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10131 goto read_cfg_out; 10132 10133 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10134 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10135 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10136 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10137 phba->sli4_hba.iov.pf_number = 10138 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10139 phba->sli4_hba.iov.vf_number = 10140 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10141 break; 10142 } 10143 } 10144 10145 if (i < LPFC_RSRC_DESC_MAX_NUM) 10146 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10147 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10148 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10149 phba->sli4_hba.iov.vf_number); 10150 else 10151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10152 "3028 GET_FUNCTION_CONFIG: failed to find " 10153 "Resource Descriptor:x%x\n", 10154 LPFC_RSRC_DESC_TYPE_FCFCOE); 10155 10156 read_cfg_out: 10157 mempool_free(pmb, phba->mbox_mem_pool); 10158 return rc; 10159 } 10160 10161 /** 10162 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10163 * @phba: pointer to lpfc hba data structure. 10164 * 10165 * This routine is invoked to setup the port-side endian order when 10166 * the port if_type is 0. This routine has no function for other 10167 * if_types. 10168 * 10169 * Return codes 10170 * 0 - successful 10171 * -ENOMEM - No available memory 10172 * -EIO - The mailbox failed to complete successfully. 10173 **/ 10174 static int 10175 lpfc_setup_endian_order(struct lpfc_hba *phba) 10176 { 10177 LPFC_MBOXQ_t *mboxq; 10178 uint32_t if_type, rc = 0; 10179 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10180 HOST_ENDIAN_HIGH_WORD1}; 10181 10182 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10183 switch (if_type) { 10184 case LPFC_SLI_INTF_IF_TYPE_0: 10185 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10186 GFP_KERNEL); 10187 if (!mboxq) { 10188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10189 "0492 Unable to allocate memory for " 10190 "issuing SLI_CONFIG_SPECIAL mailbox " 10191 "command\n"); 10192 return -ENOMEM; 10193 } 10194 10195 /* 10196 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10197 * two words to contain special data values and no other data. 10198 */ 10199 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10200 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10201 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10202 if (rc != MBX_SUCCESS) { 10203 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10204 "0493 SLI_CONFIG_SPECIAL mailbox " 10205 "failed with status x%x\n", 10206 rc); 10207 rc = -EIO; 10208 } 10209 mempool_free(mboxq, phba->mbox_mem_pool); 10210 break; 10211 case LPFC_SLI_INTF_IF_TYPE_6: 10212 case LPFC_SLI_INTF_IF_TYPE_2: 10213 case LPFC_SLI_INTF_IF_TYPE_1: 10214 default: 10215 break; 10216 } 10217 return rc; 10218 } 10219 10220 /** 10221 * lpfc_sli4_queue_verify - Verify and update EQ counts 10222 * @phba: pointer to lpfc hba data structure. 10223 * 10224 * This routine is invoked to check the user settable queue counts for EQs. 10225 * After this routine is called the counts will be set to valid values that 10226 * adhere to the constraints of the system's interrupt vectors and the port's 10227 * queue resources. 10228 * 10229 * Return codes 10230 * 0 - successful 10231 * -ENOMEM - No available memory 10232 **/ 10233 static int 10234 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10235 { 10236 /* 10237 * Sanity check for configured queue parameters against the run-time 10238 * device parameters 10239 */ 10240 10241 if (phba->nvmet_support) { 10242 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10243 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10244 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10245 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10246 } 10247 10248 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10249 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10250 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10251 phba->cfg_nvmet_mrq); 10252 10253 /* Get EQ depth from module parameter, fake the default for now */ 10254 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10255 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10256 10257 /* Get CQ depth from module parameter, fake the default for now */ 10258 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10259 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10260 return 0; 10261 } 10262 10263 static int 10264 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10265 { 10266 struct lpfc_queue *qdesc; 10267 u32 wqesize; 10268 int cpu; 10269 10270 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10271 /* Create Fast Path IO CQs */ 10272 if (phba->enab_exp_wqcq_pages) 10273 /* Increase the CQ size when WQEs contain an embedded cdb */ 10274 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10275 phba->sli4_hba.cq_esize, 10276 LPFC_CQE_EXP_COUNT, cpu); 10277 10278 else 10279 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10280 phba->sli4_hba.cq_esize, 10281 phba->sli4_hba.cq_ecount, cpu); 10282 if (!qdesc) { 10283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10284 "0499 Failed allocate fast-path IO CQ (%d)\n", 10285 idx); 10286 return 1; 10287 } 10288 qdesc->qe_valid = 1; 10289 qdesc->hdwq = idx; 10290 qdesc->chann = cpu; 10291 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10292 10293 /* Create Fast Path IO WQs */ 10294 if (phba->enab_exp_wqcq_pages) { 10295 /* Increase the WQ size when WQEs contain an embedded cdb */ 10296 wqesize = (phba->fcp_embed_io) ? 10297 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10298 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10299 wqesize, 10300 LPFC_WQE_EXP_COUNT, cpu); 10301 } else 10302 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10303 phba->sli4_hba.wq_esize, 10304 phba->sli4_hba.wq_ecount, cpu); 10305 10306 if (!qdesc) { 10307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10308 "0503 Failed allocate fast-path IO WQ (%d)\n", 10309 idx); 10310 return 1; 10311 } 10312 qdesc->hdwq = idx; 10313 qdesc->chann = cpu; 10314 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10315 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10316 return 0; 10317 } 10318 10319 /** 10320 * lpfc_sli4_queue_create - Create all the SLI4 queues 10321 * @phba: pointer to lpfc hba data structure. 10322 * 10323 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10324 * operation. For each SLI4 queue type, the parameters such as queue entry 10325 * count (queue depth) shall be taken from the module parameter. For now, 10326 * we just use some constant number as place holder. 10327 * 10328 * Return codes 10329 * 0 - successful 10330 * -ENOMEM - No availble memory 10331 * -EIO - The mailbox failed to complete successfully. 10332 **/ 10333 int 10334 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10335 { 10336 struct lpfc_queue *qdesc; 10337 int idx, cpu, eqcpu; 10338 struct lpfc_sli4_hdw_queue *qp; 10339 struct lpfc_vector_map_info *cpup; 10340 struct lpfc_vector_map_info *eqcpup; 10341 struct lpfc_eq_intr_info *eqi; 10342 10343 /* 10344 * Create HBA Record arrays. 10345 * Both NVME and FCP will share that same vectors / EQs 10346 */ 10347 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10348 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10349 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10350 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10351 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10352 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10353 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10354 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10355 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10356 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10357 10358 if (!phba->sli4_hba.hdwq) { 10359 phba->sli4_hba.hdwq = kcalloc( 10360 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10361 GFP_KERNEL); 10362 if (!phba->sli4_hba.hdwq) { 10363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10364 "6427 Failed allocate memory for " 10365 "fast-path Hardware Queue array\n"); 10366 goto out_error; 10367 } 10368 /* Prepare hardware queues to take IO buffers */ 10369 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10370 qp = &phba->sli4_hba.hdwq[idx]; 10371 spin_lock_init(&qp->io_buf_list_get_lock); 10372 spin_lock_init(&qp->io_buf_list_put_lock); 10373 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10374 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10375 qp->get_io_bufs = 0; 10376 qp->put_io_bufs = 0; 10377 qp->total_io_bufs = 0; 10378 spin_lock_init(&qp->abts_io_buf_list_lock); 10379 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10380 qp->abts_scsi_io_bufs = 0; 10381 qp->abts_nvme_io_bufs = 0; 10382 INIT_LIST_HEAD(&qp->sgl_list); 10383 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10384 spin_lock_init(&qp->hdwq_lock); 10385 } 10386 } 10387 10388 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10389 if (phba->nvmet_support) { 10390 phba->sli4_hba.nvmet_cqset = kcalloc( 10391 phba->cfg_nvmet_mrq, 10392 sizeof(struct lpfc_queue *), 10393 GFP_KERNEL); 10394 if (!phba->sli4_hba.nvmet_cqset) { 10395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10396 "3121 Fail allocate memory for " 10397 "fast-path CQ set array\n"); 10398 goto out_error; 10399 } 10400 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10401 phba->cfg_nvmet_mrq, 10402 sizeof(struct lpfc_queue *), 10403 GFP_KERNEL); 10404 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10405 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10406 "3122 Fail allocate memory for " 10407 "fast-path RQ set hdr array\n"); 10408 goto out_error; 10409 } 10410 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10411 phba->cfg_nvmet_mrq, 10412 sizeof(struct lpfc_queue *), 10413 GFP_KERNEL); 10414 if (!phba->sli4_hba.nvmet_mrq_data) { 10415 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10416 "3124 Fail allocate memory for " 10417 "fast-path RQ set data array\n"); 10418 goto out_error; 10419 } 10420 } 10421 } 10422 10423 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10424 10425 /* Create HBA Event Queues (EQs) */ 10426 for_each_present_cpu(cpu) { 10427 /* We only want to create 1 EQ per vector, even though 10428 * multiple CPUs might be using that vector. so only 10429 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10430 */ 10431 cpup = &phba->sli4_hba.cpu_map[cpu]; 10432 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10433 continue; 10434 10435 /* Get a ptr to the Hardware Queue associated with this CPU */ 10436 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10437 10438 /* Allocate an EQ */ 10439 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10440 phba->sli4_hba.eq_esize, 10441 phba->sli4_hba.eq_ecount, cpu); 10442 if (!qdesc) { 10443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10444 "0497 Failed allocate EQ (%d)\n", 10445 cpup->hdwq); 10446 goto out_error; 10447 } 10448 qdesc->qe_valid = 1; 10449 qdesc->hdwq = cpup->hdwq; 10450 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10451 qdesc->last_cpu = qdesc->chann; 10452 10453 /* Save the allocated EQ in the Hardware Queue */ 10454 qp->hba_eq = qdesc; 10455 10456 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10457 list_add(&qdesc->cpu_list, &eqi->list); 10458 } 10459 10460 /* Now we need to populate the other Hardware Queues, that share 10461 * an IRQ vector, with the associated EQ ptr. 10462 */ 10463 for_each_present_cpu(cpu) { 10464 cpup = &phba->sli4_hba.cpu_map[cpu]; 10465 10466 /* Check for EQ already allocated in previous loop */ 10467 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10468 continue; 10469 10470 /* Check for multiple CPUs per hdwq */ 10471 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10472 if (qp->hba_eq) 10473 continue; 10474 10475 /* We need to share an EQ for this hdwq */ 10476 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10477 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10478 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10479 } 10480 10481 /* Allocate IO Path SLI4 CQ/WQs */ 10482 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10483 if (lpfc_alloc_io_wq_cq(phba, idx)) 10484 goto out_error; 10485 } 10486 10487 if (phba->nvmet_support) { 10488 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10489 cpu = lpfc_find_cpu_handle(phba, idx, 10490 LPFC_FIND_BY_HDWQ); 10491 qdesc = lpfc_sli4_queue_alloc(phba, 10492 LPFC_DEFAULT_PAGE_SIZE, 10493 phba->sli4_hba.cq_esize, 10494 phba->sli4_hba.cq_ecount, 10495 cpu); 10496 if (!qdesc) { 10497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10498 "3142 Failed allocate NVME " 10499 "CQ Set (%d)\n", idx); 10500 goto out_error; 10501 } 10502 qdesc->qe_valid = 1; 10503 qdesc->hdwq = idx; 10504 qdesc->chann = cpu; 10505 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10506 } 10507 } 10508 10509 /* 10510 * Create Slow Path Completion Queues (CQs) 10511 */ 10512 10513 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10514 /* Create slow-path Mailbox Command Complete Queue */ 10515 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10516 phba->sli4_hba.cq_esize, 10517 phba->sli4_hba.cq_ecount, cpu); 10518 if (!qdesc) { 10519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10520 "0500 Failed allocate slow-path mailbox CQ\n"); 10521 goto out_error; 10522 } 10523 qdesc->qe_valid = 1; 10524 phba->sli4_hba.mbx_cq = qdesc; 10525 10526 /* Create slow-path ELS Complete Queue */ 10527 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10528 phba->sli4_hba.cq_esize, 10529 phba->sli4_hba.cq_ecount, cpu); 10530 if (!qdesc) { 10531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10532 "0501 Failed allocate slow-path ELS CQ\n"); 10533 goto out_error; 10534 } 10535 qdesc->qe_valid = 1; 10536 qdesc->chann = cpu; 10537 phba->sli4_hba.els_cq = qdesc; 10538 10539 10540 /* 10541 * Create Slow Path Work Queues (WQs) 10542 */ 10543 10544 /* Create Mailbox Command Queue */ 10545 10546 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10547 phba->sli4_hba.mq_esize, 10548 phba->sli4_hba.mq_ecount, cpu); 10549 if (!qdesc) { 10550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10551 "0505 Failed allocate slow-path MQ\n"); 10552 goto out_error; 10553 } 10554 qdesc->chann = cpu; 10555 phba->sli4_hba.mbx_wq = qdesc; 10556 10557 /* 10558 * Create ELS Work Queues 10559 */ 10560 10561 /* Create slow-path ELS Work Queue */ 10562 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10563 phba->sli4_hba.wq_esize, 10564 phba->sli4_hba.wq_ecount, cpu); 10565 if (!qdesc) { 10566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10567 "0504 Failed allocate slow-path ELS WQ\n"); 10568 goto out_error; 10569 } 10570 qdesc->chann = cpu; 10571 phba->sli4_hba.els_wq = qdesc; 10572 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10573 10574 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10575 /* Create NVME LS Complete Queue */ 10576 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10577 phba->sli4_hba.cq_esize, 10578 phba->sli4_hba.cq_ecount, cpu); 10579 if (!qdesc) { 10580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10581 "6079 Failed allocate NVME LS CQ\n"); 10582 goto out_error; 10583 } 10584 qdesc->chann = cpu; 10585 qdesc->qe_valid = 1; 10586 phba->sli4_hba.nvmels_cq = qdesc; 10587 10588 /* Create NVME LS Work Queue */ 10589 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10590 phba->sli4_hba.wq_esize, 10591 phba->sli4_hba.wq_ecount, cpu); 10592 if (!qdesc) { 10593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10594 "6080 Failed allocate NVME LS WQ\n"); 10595 goto out_error; 10596 } 10597 qdesc->chann = cpu; 10598 phba->sli4_hba.nvmels_wq = qdesc; 10599 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10600 } 10601 10602 /* 10603 * Create Receive Queue (RQ) 10604 */ 10605 10606 /* Create Receive Queue for header */ 10607 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10608 phba->sli4_hba.rq_esize, 10609 phba->sli4_hba.rq_ecount, cpu); 10610 if (!qdesc) { 10611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10612 "0506 Failed allocate receive HRQ\n"); 10613 goto out_error; 10614 } 10615 phba->sli4_hba.hdr_rq = qdesc; 10616 10617 /* Create Receive Queue for data */ 10618 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10619 phba->sli4_hba.rq_esize, 10620 phba->sli4_hba.rq_ecount, cpu); 10621 if (!qdesc) { 10622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10623 "0507 Failed allocate receive DRQ\n"); 10624 goto out_error; 10625 } 10626 phba->sli4_hba.dat_rq = qdesc; 10627 10628 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10629 phba->nvmet_support) { 10630 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10631 cpu = lpfc_find_cpu_handle(phba, idx, 10632 LPFC_FIND_BY_HDWQ); 10633 /* Create NVMET Receive Queue for header */ 10634 qdesc = lpfc_sli4_queue_alloc(phba, 10635 LPFC_DEFAULT_PAGE_SIZE, 10636 phba->sli4_hba.rq_esize, 10637 LPFC_NVMET_RQE_DEF_COUNT, 10638 cpu); 10639 if (!qdesc) { 10640 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10641 "3146 Failed allocate " 10642 "receive HRQ\n"); 10643 goto out_error; 10644 } 10645 qdesc->hdwq = idx; 10646 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10647 10648 /* Only needed for header of RQ pair */ 10649 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10650 GFP_KERNEL, 10651 cpu_to_node(cpu)); 10652 if (qdesc->rqbp == NULL) { 10653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10654 "6131 Failed allocate " 10655 "Header RQBP\n"); 10656 goto out_error; 10657 } 10658 10659 /* Put list in known state in case driver load fails. */ 10660 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10661 10662 /* Create NVMET Receive Queue for data */ 10663 qdesc = lpfc_sli4_queue_alloc(phba, 10664 LPFC_DEFAULT_PAGE_SIZE, 10665 phba->sli4_hba.rq_esize, 10666 LPFC_NVMET_RQE_DEF_COUNT, 10667 cpu); 10668 if (!qdesc) { 10669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10670 "3156 Failed allocate " 10671 "receive DRQ\n"); 10672 goto out_error; 10673 } 10674 qdesc->hdwq = idx; 10675 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10676 } 10677 } 10678 10679 /* Clear NVME stats */ 10680 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10681 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10682 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10683 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10684 } 10685 } 10686 10687 /* Clear SCSI stats */ 10688 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10689 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10690 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10691 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10692 } 10693 } 10694 10695 return 0; 10696 10697 out_error: 10698 lpfc_sli4_queue_destroy(phba); 10699 return -ENOMEM; 10700 } 10701 10702 static inline void 10703 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10704 { 10705 if (*qp != NULL) { 10706 lpfc_sli4_queue_free(*qp); 10707 *qp = NULL; 10708 } 10709 } 10710 10711 static inline void 10712 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10713 { 10714 int idx; 10715 10716 if (*qs == NULL) 10717 return; 10718 10719 for (idx = 0; idx < max; idx++) 10720 __lpfc_sli4_release_queue(&(*qs)[idx]); 10721 10722 kfree(*qs); 10723 *qs = NULL; 10724 } 10725 10726 static inline void 10727 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10728 { 10729 struct lpfc_sli4_hdw_queue *hdwq; 10730 struct lpfc_queue *eq; 10731 uint32_t idx; 10732 10733 hdwq = phba->sli4_hba.hdwq; 10734 10735 /* Loop thru all Hardware Queues */ 10736 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10737 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10738 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10739 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10740 hdwq[idx].hba_eq = NULL; 10741 hdwq[idx].io_cq = NULL; 10742 hdwq[idx].io_wq = NULL; 10743 if (phba->cfg_xpsgl && !phba->nvmet_support) 10744 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10745 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10746 } 10747 /* Loop thru all IRQ vectors */ 10748 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10749 /* Free the EQ corresponding to the IRQ vector */ 10750 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10751 lpfc_sli4_queue_free(eq); 10752 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10753 } 10754 } 10755 10756 /** 10757 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10758 * @phba: pointer to lpfc hba data structure. 10759 * 10760 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10761 * operation. 10762 * 10763 * Return codes 10764 * 0 - successful 10765 * -ENOMEM - No available memory 10766 * -EIO - The mailbox failed to complete successfully. 10767 **/ 10768 void 10769 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10770 { 10771 /* 10772 * Set FREE_INIT before beginning to free the queues. 10773 * Wait until the users of queues to acknowledge to 10774 * release queues by clearing FREE_WAIT. 10775 */ 10776 spin_lock_irq(&phba->hbalock); 10777 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10778 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10779 spin_unlock_irq(&phba->hbalock); 10780 msleep(20); 10781 spin_lock_irq(&phba->hbalock); 10782 } 10783 spin_unlock_irq(&phba->hbalock); 10784 10785 lpfc_sli4_cleanup_poll_list(phba); 10786 10787 /* Release HBA eqs */ 10788 if (phba->sli4_hba.hdwq) 10789 lpfc_sli4_release_hdwq(phba); 10790 10791 if (phba->nvmet_support) { 10792 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10793 phba->cfg_nvmet_mrq); 10794 10795 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10796 phba->cfg_nvmet_mrq); 10797 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10798 phba->cfg_nvmet_mrq); 10799 } 10800 10801 /* Release mailbox command work queue */ 10802 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10803 10804 /* Release ELS work queue */ 10805 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10806 10807 /* Release ELS work queue */ 10808 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10809 10810 /* Release unsolicited receive queue */ 10811 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10812 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10813 10814 /* Release ELS complete queue */ 10815 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10816 10817 /* Release NVME LS complete queue */ 10818 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10819 10820 /* Release mailbox command complete queue */ 10821 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10822 10823 /* Everything on this list has been freed */ 10824 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10825 10826 /* Done with freeing the queues */ 10827 spin_lock_irq(&phba->hbalock); 10828 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10829 spin_unlock_irq(&phba->hbalock); 10830 } 10831 10832 int 10833 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10834 { 10835 struct lpfc_rqb *rqbp; 10836 struct lpfc_dmabuf *h_buf; 10837 struct rqb_dmabuf *rqb_buffer; 10838 10839 rqbp = rq->rqbp; 10840 while (!list_empty(&rqbp->rqb_buffer_list)) { 10841 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10842 struct lpfc_dmabuf, list); 10843 10844 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10845 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10846 rqbp->buffer_count--; 10847 } 10848 return 1; 10849 } 10850 10851 static int 10852 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10853 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10854 int qidx, uint32_t qtype) 10855 { 10856 struct lpfc_sli_ring *pring; 10857 int rc; 10858 10859 if (!eq || !cq || !wq) { 10860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10861 "6085 Fast-path %s (%d) not allocated\n", 10862 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10863 return -ENOMEM; 10864 } 10865 10866 /* create the Cq first */ 10867 rc = lpfc_cq_create(phba, cq, eq, 10868 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10869 if (rc) { 10870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10871 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10872 qidx, (uint32_t)rc); 10873 return rc; 10874 } 10875 10876 if (qtype != LPFC_MBOX) { 10877 /* Setup cq_map for fast lookup */ 10878 if (cq_map) 10879 *cq_map = cq->queue_id; 10880 10881 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10882 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10883 qidx, cq->queue_id, qidx, eq->queue_id); 10884 10885 /* create the wq */ 10886 rc = lpfc_wq_create(phba, wq, cq, qtype); 10887 if (rc) { 10888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10889 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10890 qidx, (uint32_t)rc); 10891 /* no need to tear down cq - caller will do so */ 10892 return rc; 10893 } 10894 10895 /* Bind this CQ/WQ to the NVME ring */ 10896 pring = wq->pring; 10897 pring->sli.sli4.wqp = (void *)wq; 10898 cq->pring = pring; 10899 10900 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10901 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 10902 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 10903 } else { 10904 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 10905 if (rc) { 10906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10907 "0539 Failed setup of slow-path MQ: " 10908 "rc = 0x%x\n", rc); 10909 /* no need to tear down cq - caller will do so */ 10910 return rc; 10911 } 10912 10913 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10914 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 10915 phba->sli4_hba.mbx_wq->queue_id, 10916 phba->sli4_hba.mbx_cq->queue_id); 10917 } 10918 10919 return 0; 10920 } 10921 10922 /** 10923 * lpfc_setup_cq_lookup - Setup the CQ lookup table 10924 * @phba: pointer to lpfc hba data structure. 10925 * 10926 * This routine will populate the cq_lookup table by all 10927 * available CQ queue_id's. 10928 **/ 10929 static void 10930 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 10931 { 10932 struct lpfc_queue *eq, *childq; 10933 int qidx; 10934 10935 memset(phba->sli4_hba.cq_lookup, 0, 10936 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 10937 /* Loop thru all IRQ vectors */ 10938 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 10939 /* Get the EQ corresponding to the IRQ vector */ 10940 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 10941 if (!eq) 10942 continue; 10943 /* Loop through all CQs associated with that EQ */ 10944 list_for_each_entry(childq, &eq->child_list, list) { 10945 if (childq->queue_id > phba->sli4_hba.cq_max) 10946 continue; 10947 if (childq->subtype == LPFC_IO) 10948 phba->sli4_hba.cq_lookup[childq->queue_id] = 10949 childq; 10950 } 10951 } 10952 } 10953 10954 /** 10955 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 10956 * @phba: pointer to lpfc hba data structure. 10957 * 10958 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 10959 * operation. 10960 * 10961 * Return codes 10962 * 0 - successful 10963 * -ENOMEM - No available memory 10964 * -EIO - The mailbox failed to complete successfully. 10965 **/ 10966 int 10967 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 10968 { 10969 uint32_t shdr_status, shdr_add_status; 10970 union lpfc_sli4_cfg_shdr *shdr; 10971 struct lpfc_vector_map_info *cpup; 10972 struct lpfc_sli4_hdw_queue *qp; 10973 LPFC_MBOXQ_t *mboxq; 10974 int qidx, cpu; 10975 uint32_t length, usdelay; 10976 int rc = -ENOMEM; 10977 10978 /* Check for dual-ULP support */ 10979 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10980 if (!mboxq) { 10981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10982 "3249 Unable to allocate memory for " 10983 "QUERY_FW_CFG mailbox command\n"); 10984 return -ENOMEM; 10985 } 10986 length = (sizeof(struct lpfc_mbx_query_fw_config) - 10987 sizeof(struct lpfc_sli4_cfg_mhdr)); 10988 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10989 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 10990 length, LPFC_SLI4_MBX_EMBED); 10991 10992 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10993 10994 shdr = (union lpfc_sli4_cfg_shdr *) 10995 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10996 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10998 if (shdr_status || shdr_add_status || rc) { 10999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11000 "3250 QUERY_FW_CFG mailbox failed with status " 11001 "x%x add_status x%x, mbx status x%x\n", 11002 shdr_status, shdr_add_status, rc); 11003 mempool_free(mboxq, phba->mbox_mem_pool); 11004 rc = -ENXIO; 11005 goto out_error; 11006 } 11007 11008 phba->sli4_hba.fw_func_mode = 11009 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11010 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 11011 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 11012 phba->sli4_hba.physical_port = 11013 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11014 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11015 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 11016 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 11017 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 11018 11019 mempool_free(mboxq, phba->mbox_mem_pool); 11020 11021 /* 11022 * Set up HBA Event Queues (EQs) 11023 */ 11024 qp = phba->sli4_hba.hdwq; 11025 11026 /* Set up HBA event queue */ 11027 if (!qp) { 11028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11029 "3147 Fast-path EQs not allocated\n"); 11030 rc = -ENOMEM; 11031 goto out_error; 11032 } 11033 11034 /* Loop thru all IRQ vectors */ 11035 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11036 /* Create HBA Event Queues (EQs) in order */ 11037 for_each_present_cpu(cpu) { 11038 cpup = &phba->sli4_hba.cpu_map[cpu]; 11039 11040 /* Look for the CPU thats using that vector with 11041 * LPFC_CPU_FIRST_IRQ set. 11042 */ 11043 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11044 continue; 11045 if (qidx != cpup->eq) 11046 continue; 11047 11048 /* Create an EQ for that vector */ 11049 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11050 phba->cfg_fcp_imax); 11051 if (rc) { 11052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11053 "0523 Failed setup of fast-path" 11054 " EQ (%d), rc = 0x%x\n", 11055 cpup->eq, (uint32_t)rc); 11056 goto out_destroy; 11057 } 11058 11059 /* Save the EQ for that vector in the hba_eq_hdl */ 11060 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11061 qp[cpup->hdwq].hba_eq; 11062 11063 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11064 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11065 cpup->eq, 11066 qp[cpup->hdwq].hba_eq->queue_id); 11067 } 11068 } 11069 11070 /* Loop thru all Hardware Queues */ 11071 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11072 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11073 cpup = &phba->sli4_hba.cpu_map[cpu]; 11074 11075 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11076 rc = lpfc_create_wq_cq(phba, 11077 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11078 qp[qidx].io_cq, 11079 qp[qidx].io_wq, 11080 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11081 qidx, 11082 LPFC_IO); 11083 if (rc) { 11084 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11085 "0535 Failed to setup fastpath " 11086 "IO WQ/CQ (%d), rc = 0x%x\n", 11087 qidx, (uint32_t)rc); 11088 goto out_destroy; 11089 } 11090 } 11091 11092 /* 11093 * Set up Slow Path Complete Queues (CQs) 11094 */ 11095 11096 /* Set up slow-path MBOX CQ/MQ */ 11097 11098 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11100 "0528 %s not allocated\n", 11101 phba->sli4_hba.mbx_cq ? 11102 "Mailbox WQ" : "Mailbox CQ"); 11103 rc = -ENOMEM; 11104 goto out_destroy; 11105 } 11106 11107 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11108 phba->sli4_hba.mbx_cq, 11109 phba->sli4_hba.mbx_wq, 11110 NULL, 0, LPFC_MBOX); 11111 if (rc) { 11112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11113 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11114 (uint32_t)rc); 11115 goto out_destroy; 11116 } 11117 if (phba->nvmet_support) { 11118 if (!phba->sli4_hba.nvmet_cqset) { 11119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11120 "3165 Fast-path NVME CQ Set " 11121 "array not allocated\n"); 11122 rc = -ENOMEM; 11123 goto out_destroy; 11124 } 11125 if (phba->cfg_nvmet_mrq > 1) { 11126 rc = lpfc_cq_create_set(phba, 11127 phba->sli4_hba.nvmet_cqset, 11128 qp, 11129 LPFC_WCQ, LPFC_NVMET); 11130 if (rc) { 11131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11132 "3164 Failed setup of NVME CQ " 11133 "Set, rc = 0x%x\n", 11134 (uint32_t)rc); 11135 goto out_destroy; 11136 } 11137 } else { 11138 /* Set up NVMET Receive Complete Queue */ 11139 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11140 qp[0].hba_eq, 11141 LPFC_WCQ, LPFC_NVMET); 11142 if (rc) { 11143 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11144 "6089 Failed setup NVMET CQ: " 11145 "rc = 0x%x\n", (uint32_t)rc); 11146 goto out_destroy; 11147 } 11148 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11149 11150 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11151 "6090 NVMET CQ setup: cq-id=%d, " 11152 "parent eq-id=%d\n", 11153 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11154 qp[0].hba_eq->queue_id); 11155 } 11156 } 11157 11158 /* Set up slow-path ELS WQ/CQ */ 11159 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11161 "0530 ELS %s not allocated\n", 11162 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11163 rc = -ENOMEM; 11164 goto out_destroy; 11165 } 11166 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11167 phba->sli4_hba.els_cq, 11168 phba->sli4_hba.els_wq, 11169 NULL, 0, LPFC_ELS); 11170 if (rc) { 11171 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11172 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11173 (uint32_t)rc); 11174 goto out_destroy; 11175 } 11176 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11177 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11178 phba->sli4_hba.els_wq->queue_id, 11179 phba->sli4_hba.els_cq->queue_id); 11180 11181 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11182 /* Set up NVME LS Complete Queue */ 11183 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11185 "6091 LS %s not allocated\n", 11186 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11187 rc = -ENOMEM; 11188 goto out_destroy; 11189 } 11190 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11191 phba->sli4_hba.nvmels_cq, 11192 phba->sli4_hba.nvmels_wq, 11193 NULL, 0, LPFC_NVME_LS); 11194 if (rc) { 11195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11196 "0526 Failed setup of NVVME LS WQ/CQ: " 11197 "rc = 0x%x\n", (uint32_t)rc); 11198 goto out_destroy; 11199 } 11200 11201 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11202 "6096 ELS WQ setup: wq-id=%d, " 11203 "parent cq-id=%d\n", 11204 phba->sli4_hba.nvmels_wq->queue_id, 11205 phba->sli4_hba.nvmels_cq->queue_id); 11206 } 11207 11208 /* 11209 * Create NVMET Receive Queue (RQ) 11210 */ 11211 if (phba->nvmet_support) { 11212 if ((!phba->sli4_hba.nvmet_cqset) || 11213 (!phba->sli4_hba.nvmet_mrq_hdr) || 11214 (!phba->sli4_hba.nvmet_mrq_data)) { 11215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11216 "6130 MRQ CQ Queues not " 11217 "allocated\n"); 11218 rc = -ENOMEM; 11219 goto out_destroy; 11220 } 11221 if (phba->cfg_nvmet_mrq > 1) { 11222 rc = lpfc_mrq_create(phba, 11223 phba->sli4_hba.nvmet_mrq_hdr, 11224 phba->sli4_hba.nvmet_mrq_data, 11225 phba->sli4_hba.nvmet_cqset, 11226 LPFC_NVMET); 11227 if (rc) { 11228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11229 "6098 Failed setup of NVMET " 11230 "MRQ: rc = 0x%x\n", 11231 (uint32_t)rc); 11232 goto out_destroy; 11233 } 11234 11235 } else { 11236 rc = lpfc_rq_create(phba, 11237 phba->sli4_hba.nvmet_mrq_hdr[0], 11238 phba->sli4_hba.nvmet_mrq_data[0], 11239 phba->sli4_hba.nvmet_cqset[0], 11240 LPFC_NVMET); 11241 if (rc) { 11242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11243 "6057 Failed setup of NVMET " 11244 "Receive Queue: rc = 0x%x\n", 11245 (uint32_t)rc); 11246 goto out_destroy; 11247 } 11248 11249 lpfc_printf_log( 11250 phba, KERN_INFO, LOG_INIT, 11251 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11252 "dat-rq-id=%d parent cq-id=%d\n", 11253 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11254 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11255 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11256 11257 } 11258 } 11259 11260 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11262 "0540 Receive Queue not allocated\n"); 11263 rc = -ENOMEM; 11264 goto out_destroy; 11265 } 11266 11267 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11268 phba->sli4_hba.els_cq, LPFC_USOL); 11269 if (rc) { 11270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11271 "0541 Failed setup of Receive Queue: " 11272 "rc = 0x%x\n", (uint32_t)rc); 11273 goto out_destroy; 11274 } 11275 11276 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11277 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11278 "parent cq-id=%d\n", 11279 phba->sli4_hba.hdr_rq->queue_id, 11280 phba->sli4_hba.dat_rq->queue_id, 11281 phba->sli4_hba.els_cq->queue_id); 11282 11283 if (phba->cfg_fcp_imax) 11284 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11285 else 11286 usdelay = 0; 11287 11288 for (qidx = 0; qidx < phba->cfg_irq_chann; 11289 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11290 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11291 usdelay); 11292 11293 if (phba->sli4_hba.cq_max) { 11294 kfree(phba->sli4_hba.cq_lookup); 11295 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11296 sizeof(struct lpfc_queue *), GFP_KERNEL); 11297 if (!phba->sli4_hba.cq_lookup) { 11298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11299 "0549 Failed setup of CQ Lookup table: " 11300 "size 0x%x\n", phba->sli4_hba.cq_max); 11301 rc = -ENOMEM; 11302 goto out_destroy; 11303 } 11304 lpfc_setup_cq_lookup(phba); 11305 } 11306 return 0; 11307 11308 out_destroy: 11309 lpfc_sli4_queue_unset(phba); 11310 out_error: 11311 return rc; 11312 } 11313 11314 /** 11315 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11316 * @phba: pointer to lpfc hba data structure. 11317 * 11318 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11319 * operation. 11320 * 11321 * Return codes 11322 * 0 - successful 11323 * -ENOMEM - No available memory 11324 * -EIO - The mailbox failed to complete successfully. 11325 **/ 11326 void 11327 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11328 { 11329 struct lpfc_sli4_hdw_queue *qp; 11330 struct lpfc_queue *eq; 11331 int qidx; 11332 11333 /* Unset mailbox command work queue */ 11334 if (phba->sli4_hba.mbx_wq) 11335 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11336 11337 /* Unset NVME LS work queue */ 11338 if (phba->sli4_hba.nvmels_wq) 11339 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11340 11341 /* Unset ELS work queue */ 11342 if (phba->sli4_hba.els_wq) 11343 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11344 11345 /* Unset unsolicited receive queue */ 11346 if (phba->sli4_hba.hdr_rq) 11347 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11348 phba->sli4_hba.dat_rq); 11349 11350 /* Unset mailbox command complete queue */ 11351 if (phba->sli4_hba.mbx_cq) 11352 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11353 11354 /* Unset ELS complete queue */ 11355 if (phba->sli4_hba.els_cq) 11356 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11357 11358 /* Unset NVME LS complete queue */ 11359 if (phba->sli4_hba.nvmels_cq) 11360 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11361 11362 if (phba->nvmet_support) { 11363 /* Unset NVMET MRQ queue */ 11364 if (phba->sli4_hba.nvmet_mrq_hdr) { 11365 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11366 lpfc_rq_destroy( 11367 phba, 11368 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11369 phba->sli4_hba.nvmet_mrq_data[qidx]); 11370 } 11371 11372 /* Unset NVMET CQ Set complete queue */ 11373 if (phba->sli4_hba.nvmet_cqset) { 11374 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11375 lpfc_cq_destroy( 11376 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11377 } 11378 } 11379 11380 /* Unset fast-path SLI4 queues */ 11381 if (phba->sli4_hba.hdwq) { 11382 /* Loop thru all Hardware Queues */ 11383 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11384 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11385 qp = &phba->sli4_hba.hdwq[qidx]; 11386 lpfc_wq_destroy(phba, qp->io_wq); 11387 lpfc_cq_destroy(phba, qp->io_cq); 11388 } 11389 /* Loop thru all IRQ vectors */ 11390 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11391 /* Destroy the EQ corresponding to the IRQ vector */ 11392 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11393 lpfc_eq_destroy(phba, eq); 11394 } 11395 } 11396 11397 kfree(phba->sli4_hba.cq_lookup); 11398 phba->sli4_hba.cq_lookup = NULL; 11399 phba->sli4_hba.cq_max = 0; 11400 } 11401 11402 /** 11403 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11404 * @phba: pointer to lpfc hba data structure. 11405 * 11406 * This routine is invoked to allocate and set up a pool of completion queue 11407 * events. The body of the completion queue event is a completion queue entry 11408 * CQE. For now, this pool is used for the interrupt service routine to queue 11409 * the following HBA completion queue events for the worker thread to process: 11410 * - Mailbox asynchronous events 11411 * - Receive queue completion unsolicited events 11412 * Later, this can be used for all the slow-path events. 11413 * 11414 * Return codes 11415 * 0 - successful 11416 * -ENOMEM - No available memory 11417 **/ 11418 static int 11419 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11420 { 11421 struct lpfc_cq_event *cq_event; 11422 int i; 11423 11424 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11425 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11426 if (!cq_event) 11427 goto out_pool_create_fail; 11428 list_add_tail(&cq_event->list, 11429 &phba->sli4_hba.sp_cqe_event_pool); 11430 } 11431 return 0; 11432 11433 out_pool_create_fail: 11434 lpfc_sli4_cq_event_pool_destroy(phba); 11435 return -ENOMEM; 11436 } 11437 11438 /** 11439 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11440 * @phba: pointer to lpfc hba data structure. 11441 * 11442 * This routine is invoked to free the pool of completion queue events at 11443 * driver unload time. Note that, it is the responsibility of the driver 11444 * cleanup routine to free all the outstanding completion-queue events 11445 * allocated from this pool back into the pool before invoking this routine 11446 * to destroy the pool. 11447 **/ 11448 static void 11449 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11450 { 11451 struct lpfc_cq_event *cq_event, *next_cq_event; 11452 11453 list_for_each_entry_safe(cq_event, next_cq_event, 11454 &phba->sli4_hba.sp_cqe_event_pool, list) { 11455 list_del(&cq_event->list); 11456 kfree(cq_event); 11457 } 11458 } 11459 11460 /** 11461 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11462 * @phba: pointer to lpfc hba data structure. 11463 * 11464 * This routine is the lock free version of the API invoked to allocate a 11465 * completion-queue event from the free pool. 11466 * 11467 * Return: Pointer to the newly allocated completion-queue event if successful 11468 * NULL otherwise. 11469 **/ 11470 struct lpfc_cq_event * 11471 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11472 { 11473 struct lpfc_cq_event *cq_event = NULL; 11474 11475 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11476 struct lpfc_cq_event, list); 11477 return cq_event; 11478 } 11479 11480 /** 11481 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11482 * @phba: pointer to lpfc hba data structure. 11483 * 11484 * This routine is the lock version of the API invoked to allocate a 11485 * completion-queue event from the free pool. 11486 * 11487 * Return: Pointer to the newly allocated completion-queue event if successful 11488 * NULL otherwise. 11489 **/ 11490 struct lpfc_cq_event * 11491 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11492 { 11493 struct lpfc_cq_event *cq_event; 11494 unsigned long iflags; 11495 11496 spin_lock_irqsave(&phba->hbalock, iflags); 11497 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11498 spin_unlock_irqrestore(&phba->hbalock, iflags); 11499 return cq_event; 11500 } 11501 11502 /** 11503 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11504 * @phba: pointer to lpfc hba data structure. 11505 * @cq_event: pointer to the completion queue event to be freed. 11506 * 11507 * This routine is the lock free version of the API invoked to release a 11508 * completion-queue event back into the free pool. 11509 **/ 11510 void 11511 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11512 struct lpfc_cq_event *cq_event) 11513 { 11514 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11515 } 11516 11517 /** 11518 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11519 * @phba: pointer to lpfc hba data structure. 11520 * @cq_event: pointer to the completion queue event to be freed. 11521 * 11522 * This routine is the lock version of the API invoked to release a 11523 * completion-queue event back into the free pool. 11524 **/ 11525 void 11526 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11527 struct lpfc_cq_event *cq_event) 11528 { 11529 unsigned long iflags; 11530 spin_lock_irqsave(&phba->hbalock, iflags); 11531 __lpfc_sli4_cq_event_release(phba, cq_event); 11532 spin_unlock_irqrestore(&phba->hbalock, iflags); 11533 } 11534 11535 /** 11536 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11537 * @phba: pointer to lpfc hba data structure. 11538 * 11539 * This routine is to free all the pending completion-queue events to the 11540 * back into the free pool for device reset. 11541 **/ 11542 static void 11543 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11544 { 11545 LIST_HEAD(cq_event_list); 11546 struct lpfc_cq_event *cq_event; 11547 unsigned long iflags; 11548 11549 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11550 11551 /* Pending ELS XRI abort events */ 11552 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11553 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11554 &cq_event_list); 11555 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11556 11557 /* Pending asynnc events */ 11558 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11559 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11560 &cq_event_list); 11561 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11562 11563 while (!list_empty(&cq_event_list)) { 11564 list_remove_head(&cq_event_list, cq_event, 11565 struct lpfc_cq_event, list); 11566 lpfc_sli4_cq_event_release(phba, cq_event); 11567 } 11568 } 11569 11570 /** 11571 * lpfc_pci_function_reset - Reset pci function. 11572 * @phba: pointer to lpfc hba data structure. 11573 * 11574 * This routine is invoked to request a PCI function reset. It will destroys 11575 * all resources assigned to the PCI function which originates this request. 11576 * 11577 * Return codes 11578 * 0 - successful 11579 * -ENOMEM - No available memory 11580 * -EIO - The mailbox failed to complete successfully. 11581 **/ 11582 int 11583 lpfc_pci_function_reset(struct lpfc_hba *phba) 11584 { 11585 LPFC_MBOXQ_t *mboxq; 11586 uint32_t rc = 0, if_type; 11587 uint32_t shdr_status, shdr_add_status; 11588 uint32_t rdy_chk; 11589 uint32_t port_reset = 0; 11590 union lpfc_sli4_cfg_shdr *shdr; 11591 struct lpfc_register reg_data; 11592 uint16_t devid; 11593 11594 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11595 switch (if_type) { 11596 case LPFC_SLI_INTF_IF_TYPE_0: 11597 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11598 GFP_KERNEL); 11599 if (!mboxq) { 11600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11601 "0494 Unable to allocate memory for " 11602 "issuing SLI_FUNCTION_RESET mailbox " 11603 "command\n"); 11604 return -ENOMEM; 11605 } 11606 11607 /* Setup PCI function reset mailbox-ioctl command */ 11608 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11609 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11610 LPFC_SLI4_MBX_EMBED); 11611 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11612 shdr = (union lpfc_sli4_cfg_shdr *) 11613 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11614 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11615 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11616 &shdr->response); 11617 mempool_free(mboxq, phba->mbox_mem_pool); 11618 if (shdr_status || shdr_add_status || rc) { 11619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11620 "0495 SLI_FUNCTION_RESET mailbox " 11621 "failed with status x%x add_status x%x," 11622 " mbx status x%x\n", 11623 shdr_status, shdr_add_status, rc); 11624 rc = -ENXIO; 11625 } 11626 break; 11627 case LPFC_SLI_INTF_IF_TYPE_2: 11628 case LPFC_SLI_INTF_IF_TYPE_6: 11629 wait: 11630 /* 11631 * Poll the Port Status Register and wait for RDY for 11632 * up to 30 seconds. If the port doesn't respond, treat 11633 * it as an error. 11634 */ 11635 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11636 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11637 STATUSregaddr, ®_data.word0)) { 11638 rc = -ENODEV; 11639 goto out; 11640 } 11641 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11642 break; 11643 msleep(20); 11644 } 11645 11646 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11647 phba->work_status[0] = readl( 11648 phba->sli4_hba.u.if_type2.ERR1regaddr); 11649 phba->work_status[1] = readl( 11650 phba->sli4_hba.u.if_type2.ERR2regaddr); 11651 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11652 "2890 Port not ready, port status reg " 11653 "0x%x error 1=0x%x, error 2=0x%x\n", 11654 reg_data.word0, 11655 phba->work_status[0], 11656 phba->work_status[1]); 11657 rc = -ENODEV; 11658 goto out; 11659 } 11660 11661 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11662 lpfc_pldv_detect = true; 11663 11664 if (!port_reset) { 11665 /* 11666 * Reset the port now 11667 */ 11668 reg_data.word0 = 0; 11669 bf_set(lpfc_sliport_ctrl_end, ®_data, 11670 LPFC_SLIPORT_LITTLE_ENDIAN); 11671 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11672 LPFC_SLIPORT_INIT_PORT); 11673 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11674 CTRLregaddr); 11675 /* flush */ 11676 pci_read_config_word(phba->pcidev, 11677 PCI_DEVICE_ID, &devid); 11678 11679 port_reset = 1; 11680 msleep(20); 11681 goto wait; 11682 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11683 rc = -ENODEV; 11684 goto out; 11685 } 11686 break; 11687 11688 case LPFC_SLI_INTF_IF_TYPE_1: 11689 default: 11690 break; 11691 } 11692 11693 out: 11694 /* Catch the not-ready port failure after a port reset. */ 11695 if (rc) { 11696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11697 "3317 HBA not functional: IP Reset Failed " 11698 "try: echo fw_reset > board_mode\n"); 11699 rc = -ENODEV; 11700 } 11701 11702 return rc; 11703 } 11704 11705 /** 11706 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11707 * @phba: pointer to lpfc hba data structure. 11708 * 11709 * This routine is invoked to set up the PCI device memory space for device 11710 * with SLI-4 interface spec. 11711 * 11712 * Return codes 11713 * 0 - successful 11714 * other values - error 11715 **/ 11716 static int 11717 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11718 { 11719 struct pci_dev *pdev = phba->pcidev; 11720 unsigned long bar0map_len, bar1map_len, bar2map_len; 11721 int error; 11722 uint32_t if_type; 11723 11724 if (!pdev) 11725 return -ENODEV; 11726 11727 /* Set the device DMA mask size */ 11728 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11729 if (error) 11730 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11731 if (error) 11732 return error; 11733 11734 /* 11735 * The BARs and register set definitions and offset locations are 11736 * dependent on the if_type. 11737 */ 11738 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11739 &phba->sli4_hba.sli_intf.word0)) { 11740 return -ENODEV; 11741 } 11742 11743 /* There is no SLI3 failback for SLI4 devices. */ 11744 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11745 LPFC_SLI_INTF_VALID) { 11746 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11747 "2894 SLI_INTF reg contents invalid " 11748 "sli_intf reg 0x%x\n", 11749 phba->sli4_hba.sli_intf.word0); 11750 return -ENODEV; 11751 } 11752 11753 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11754 /* 11755 * Get the bus address of SLI4 device Bar regions and the 11756 * number of bytes required by each mapping. The mapping of the 11757 * particular PCI BARs regions is dependent on the type of 11758 * SLI4 device. 11759 */ 11760 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11761 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11762 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11763 11764 /* 11765 * Map SLI4 PCI Config Space Register base to a kernel virtual 11766 * addr 11767 */ 11768 phba->sli4_hba.conf_regs_memmap_p = 11769 ioremap(phba->pci_bar0_map, bar0map_len); 11770 if (!phba->sli4_hba.conf_regs_memmap_p) { 11771 dev_printk(KERN_ERR, &pdev->dev, 11772 "ioremap failed for SLI4 PCI config " 11773 "registers.\n"); 11774 return -ENODEV; 11775 } 11776 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11777 /* Set up BAR0 PCI config space register memory map */ 11778 lpfc_sli4_bar0_register_memmap(phba, if_type); 11779 } else { 11780 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11781 bar0map_len = pci_resource_len(pdev, 1); 11782 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11783 dev_printk(KERN_ERR, &pdev->dev, 11784 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11785 return -ENODEV; 11786 } 11787 phba->sli4_hba.conf_regs_memmap_p = 11788 ioremap(phba->pci_bar0_map, bar0map_len); 11789 if (!phba->sli4_hba.conf_regs_memmap_p) { 11790 dev_printk(KERN_ERR, &pdev->dev, 11791 "ioremap failed for SLI4 PCI config " 11792 "registers.\n"); 11793 return -ENODEV; 11794 } 11795 lpfc_sli4_bar0_register_memmap(phba, if_type); 11796 } 11797 11798 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11799 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11800 /* 11801 * Map SLI4 if type 0 HBA Control Register base to a 11802 * kernel virtual address and setup the registers. 11803 */ 11804 phba->pci_bar1_map = pci_resource_start(pdev, 11805 PCI_64BIT_BAR2); 11806 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11807 phba->sli4_hba.ctrl_regs_memmap_p = 11808 ioremap(phba->pci_bar1_map, 11809 bar1map_len); 11810 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11811 dev_err(&pdev->dev, 11812 "ioremap failed for SLI4 HBA " 11813 "control registers.\n"); 11814 error = -ENOMEM; 11815 goto out_iounmap_conf; 11816 } 11817 phba->pci_bar2_memmap_p = 11818 phba->sli4_hba.ctrl_regs_memmap_p; 11819 lpfc_sli4_bar1_register_memmap(phba, if_type); 11820 } else { 11821 error = -ENOMEM; 11822 goto out_iounmap_conf; 11823 } 11824 } 11825 11826 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11827 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11828 /* 11829 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11830 * virtual address and setup the registers. 11831 */ 11832 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11833 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11834 phba->sli4_hba.drbl_regs_memmap_p = 11835 ioremap(phba->pci_bar1_map, bar1map_len); 11836 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11837 dev_err(&pdev->dev, 11838 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11839 error = -ENOMEM; 11840 goto out_iounmap_conf; 11841 } 11842 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11843 lpfc_sli4_bar1_register_memmap(phba, if_type); 11844 } 11845 11846 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11847 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11848 /* 11849 * Map SLI4 if type 0 HBA Doorbell Register base to 11850 * a kernel virtual address and setup the registers. 11851 */ 11852 phba->pci_bar2_map = pci_resource_start(pdev, 11853 PCI_64BIT_BAR4); 11854 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11855 phba->sli4_hba.drbl_regs_memmap_p = 11856 ioremap(phba->pci_bar2_map, 11857 bar2map_len); 11858 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11859 dev_err(&pdev->dev, 11860 "ioremap failed for SLI4 HBA" 11861 " doorbell registers.\n"); 11862 error = -ENOMEM; 11863 goto out_iounmap_ctrl; 11864 } 11865 phba->pci_bar4_memmap_p = 11866 phba->sli4_hba.drbl_regs_memmap_p; 11867 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11868 if (error) 11869 goto out_iounmap_all; 11870 } else { 11871 error = -ENOMEM; 11872 goto out_iounmap_all; 11873 } 11874 } 11875 11876 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11877 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11878 /* 11879 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11880 * virtual address and setup the registers. 11881 */ 11882 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11883 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11884 phba->sli4_hba.dpp_regs_memmap_p = 11885 ioremap(phba->pci_bar2_map, bar2map_len); 11886 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11887 dev_err(&pdev->dev, 11888 "ioremap failed for SLI4 HBA dpp registers.\n"); 11889 error = -ENOMEM; 11890 goto out_iounmap_ctrl; 11891 } 11892 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11893 } 11894 11895 /* Set up the EQ/CQ register handeling functions now */ 11896 switch (if_type) { 11897 case LPFC_SLI_INTF_IF_TYPE_0: 11898 case LPFC_SLI_INTF_IF_TYPE_2: 11899 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 11900 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 11901 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 11902 break; 11903 case LPFC_SLI_INTF_IF_TYPE_6: 11904 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 11905 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 11906 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 11907 break; 11908 default: 11909 break; 11910 } 11911 11912 return 0; 11913 11914 out_iounmap_all: 11915 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11916 out_iounmap_ctrl: 11917 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 11918 out_iounmap_conf: 11919 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11920 11921 return error; 11922 } 11923 11924 /** 11925 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 11926 * @phba: pointer to lpfc hba data structure. 11927 * 11928 * This routine is invoked to unset the PCI device memory space for device 11929 * with SLI-4 interface spec. 11930 **/ 11931 static void 11932 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 11933 { 11934 uint32_t if_type; 11935 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11936 11937 switch (if_type) { 11938 case LPFC_SLI_INTF_IF_TYPE_0: 11939 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11940 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 11941 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11942 break; 11943 case LPFC_SLI_INTF_IF_TYPE_2: 11944 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11945 break; 11946 case LPFC_SLI_INTF_IF_TYPE_6: 11947 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 11948 iounmap(phba->sli4_hba.conf_regs_memmap_p); 11949 if (phba->sli4_hba.dpp_regs_memmap_p) 11950 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 11951 break; 11952 case LPFC_SLI_INTF_IF_TYPE_1: 11953 default: 11954 dev_printk(KERN_ERR, &phba->pcidev->dev, 11955 "FATAL - unsupported SLI4 interface type - %d\n", 11956 if_type); 11957 break; 11958 } 11959 } 11960 11961 /** 11962 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 11963 * @phba: pointer to lpfc hba data structure. 11964 * 11965 * This routine is invoked to enable the MSI-X interrupt vectors to device 11966 * with SLI-3 interface specs. 11967 * 11968 * Return codes 11969 * 0 - successful 11970 * other values - error 11971 **/ 11972 static int 11973 lpfc_sli_enable_msix(struct lpfc_hba *phba) 11974 { 11975 int rc; 11976 LPFC_MBOXQ_t *pmb; 11977 11978 /* Set up MSI-X multi-message vectors */ 11979 rc = pci_alloc_irq_vectors(phba->pcidev, 11980 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 11981 if (rc < 0) { 11982 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11983 "0420 PCI enable MSI-X failed (%d)\n", rc); 11984 goto vec_fail_out; 11985 } 11986 11987 /* 11988 * Assign MSI-X vectors to interrupt handlers 11989 */ 11990 11991 /* vector-0 is associated to slow-path handler */ 11992 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 11993 &lpfc_sli_sp_intr_handler, 0, 11994 LPFC_SP_DRIVER_HANDLER_NAME, phba); 11995 if (rc) { 11996 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11997 "0421 MSI-X slow-path request_irq failed " 11998 "(%d)\n", rc); 11999 goto msi_fail_out; 12000 } 12001 12002 /* vector-1 is associated to fast-path handler */ 12003 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12004 &lpfc_sli_fp_intr_handler, 0, 12005 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12006 12007 if (rc) { 12008 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12009 "0429 MSI-X fast-path request_irq failed " 12010 "(%d)\n", rc); 12011 goto irq_fail_out; 12012 } 12013 12014 /* 12015 * Configure HBA MSI-X attention conditions to messages 12016 */ 12017 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12018 12019 if (!pmb) { 12020 rc = -ENOMEM; 12021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12022 "0474 Unable to allocate memory for issuing " 12023 "MBOX_CONFIG_MSI command\n"); 12024 goto mem_fail_out; 12025 } 12026 rc = lpfc_config_msi(phba, pmb); 12027 if (rc) 12028 goto mbx_fail_out; 12029 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12030 if (rc != MBX_SUCCESS) { 12031 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12032 "0351 Config MSI mailbox command failed, " 12033 "mbxCmd x%x, mbxStatus x%x\n", 12034 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12035 goto mbx_fail_out; 12036 } 12037 12038 /* Free memory allocated for mailbox command */ 12039 mempool_free(pmb, phba->mbox_mem_pool); 12040 return rc; 12041 12042 mbx_fail_out: 12043 /* Free memory allocated for mailbox command */ 12044 mempool_free(pmb, phba->mbox_mem_pool); 12045 12046 mem_fail_out: 12047 /* free the irq already requested */ 12048 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12049 12050 irq_fail_out: 12051 /* free the irq already requested */ 12052 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12053 12054 msi_fail_out: 12055 /* Unconfigure MSI-X capability structure */ 12056 pci_free_irq_vectors(phba->pcidev); 12057 12058 vec_fail_out: 12059 return rc; 12060 } 12061 12062 /** 12063 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12064 * @phba: pointer to lpfc hba data structure. 12065 * 12066 * This routine is invoked to enable the MSI interrupt mode to device with 12067 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12068 * enable the MSI vector. The device driver is responsible for calling the 12069 * request_irq() to register MSI vector with a interrupt the handler, which 12070 * is done in this function. 12071 * 12072 * Return codes 12073 * 0 - successful 12074 * other values - error 12075 */ 12076 static int 12077 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12078 { 12079 int rc; 12080 12081 rc = pci_enable_msi(phba->pcidev); 12082 if (!rc) 12083 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12084 "0462 PCI enable MSI mode success.\n"); 12085 else { 12086 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12087 "0471 PCI enable MSI mode failed (%d)\n", rc); 12088 return rc; 12089 } 12090 12091 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12092 0, LPFC_DRIVER_NAME, phba); 12093 if (rc) { 12094 pci_disable_msi(phba->pcidev); 12095 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12096 "0478 MSI request_irq failed (%d)\n", rc); 12097 } 12098 return rc; 12099 } 12100 12101 /** 12102 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12103 * @phba: pointer to lpfc hba data structure. 12104 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12105 * 12106 * This routine is invoked to enable device interrupt and associate driver's 12107 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12108 * spec. Depends on the interrupt mode configured to the driver, the driver 12109 * will try to fallback from the configured interrupt mode to an interrupt 12110 * mode which is supported by the platform, kernel, and device in the order 12111 * of: 12112 * MSI-X -> MSI -> IRQ. 12113 * 12114 * Return codes 12115 * 0 - successful 12116 * other values - error 12117 **/ 12118 static uint32_t 12119 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12120 { 12121 uint32_t intr_mode = LPFC_INTR_ERROR; 12122 int retval; 12123 12124 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12125 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12126 if (retval) 12127 return intr_mode; 12128 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 12129 12130 if (cfg_mode == 2) { 12131 /* Now, try to enable MSI-X interrupt mode */ 12132 retval = lpfc_sli_enable_msix(phba); 12133 if (!retval) { 12134 /* Indicate initialization to MSI-X mode */ 12135 phba->intr_type = MSIX; 12136 intr_mode = 2; 12137 } 12138 } 12139 12140 /* Fallback to MSI if MSI-X initialization failed */ 12141 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12142 retval = lpfc_sli_enable_msi(phba); 12143 if (!retval) { 12144 /* Indicate initialization to MSI mode */ 12145 phba->intr_type = MSI; 12146 intr_mode = 1; 12147 } 12148 } 12149 12150 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12151 if (phba->intr_type == NONE) { 12152 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12153 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12154 if (!retval) { 12155 /* Indicate initialization to INTx mode */ 12156 phba->intr_type = INTx; 12157 intr_mode = 0; 12158 } 12159 } 12160 return intr_mode; 12161 } 12162 12163 /** 12164 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12165 * @phba: pointer to lpfc hba data structure. 12166 * 12167 * This routine is invoked to disable device interrupt and disassociate the 12168 * driver's interrupt handler(s) from interrupt vector(s) to device with 12169 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12170 * release the interrupt vector(s) for the message signaled interrupt. 12171 **/ 12172 static void 12173 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12174 { 12175 int nr_irqs, i; 12176 12177 if (phba->intr_type == MSIX) 12178 nr_irqs = LPFC_MSIX_VECTORS; 12179 else 12180 nr_irqs = 1; 12181 12182 for (i = 0; i < nr_irqs; i++) 12183 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12184 pci_free_irq_vectors(phba->pcidev); 12185 12186 /* Reset interrupt management states */ 12187 phba->intr_type = NONE; 12188 phba->sli.slistat.sli_intr = 0; 12189 } 12190 12191 /** 12192 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12193 * @phba: pointer to lpfc hba data structure. 12194 * @id: EQ vector index or Hardware Queue index 12195 * @match: LPFC_FIND_BY_EQ = match by EQ 12196 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12197 * Return the CPU that matches the selection criteria 12198 */ 12199 static uint16_t 12200 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12201 { 12202 struct lpfc_vector_map_info *cpup; 12203 int cpu; 12204 12205 /* Loop through all CPUs */ 12206 for_each_present_cpu(cpu) { 12207 cpup = &phba->sli4_hba.cpu_map[cpu]; 12208 12209 /* If we are matching by EQ, there may be multiple CPUs using 12210 * using the same vector, so select the one with 12211 * LPFC_CPU_FIRST_IRQ set. 12212 */ 12213 if ((match == LPFC_FIND_BY_EQ) && 12214 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12215 (cpup->eq == id)) 12216 return cpu; 12217 12218 /* If matching by HDWQ, select the first CPU that matches */ 12219 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12220 return cpu; 12221 } 12222 return 0; 12223 } 12224 12225 #ifdef CONFIG_X86 12226 /** 12227 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12228 * @phba: pointer to lpfc hba data structure. 12229 * @cpu: CPU map index 12230 * @phys_id: CPU package physical id 12231 * @core_id: CPU core id 12232 */ 12233 static int 12234 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12235 uint16_t phys_id, uint16_t core_id) 12236 { 12237 struct lpfc_vector_map_info *cpup; 12238 int idx; 12239 12240 for_each_present_cpu(idx) { 12241 cpup = &phba->sli4_hba.cpu_map[idx]; 12242 /* Does the cpup match the one we are looking for */ 12243 if ((cpup->phys_id == phys_id) && 12244 (cpup->core_id == core_id) && 12245 (cpu != idx)) 12246 return 1; 12247 } 12248 return 0; 12249 } 12250 #endif 12251 12252 /* 12253 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12254 * @phba: pointer to lpfc hba data structure. 12255 * @eqidx: index for eq and irq vector 12256 * @flag: flags to set for vector_map structure 12257 * @cpu: cpu used to index vector_map structure 12258 * 12259 * The routine assigns eq info into vector_map structure 12260 */ 12261 static inline void 12262 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12263 unsigned int cpu) 12264 { 12265 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12266 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12267 12268 cpup->eq = eqidx; 12269 cpup->flag |= flag; 12270 12271 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12272 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12273 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12274 } 12275 12276 /** 12277 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12278 * @phba: pointer to lpfc hba data structure. 12279 * 12280 * The routine initializes the cpu_map array structure 12281 */ 12282 static void 12283 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12284 { 12285 struct lpfc_vector_map_info *cpup; 12286 struct lpfc_eq_intr_info *eqi; 12287 int cpu; 12288 12289 for_each_possible_cpu(cpu) { 12290 cpup = &phba->sli4_hba.cpu_map[cpu]; 12291 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12292 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12293 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12294 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12295 cpup->flag = 0; 12296 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12297 INIT_LIST_HEAD(&eqi->list); 12298 eqi->icnt = 0; 12299 } 12300 } 12301 12302 /** 12303 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12304 * @phba: pointer to lpfc hba data structure. 12305 * 12306 * The routine initializes the hba_eq_hdl array structure 12307 */ 12308 static void 12309 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12310 { 12311 struct lpfc_hba_eq_hdl *eqhdl; 12312 int i; 12313 12314 for (i = 0; i < phba->cfg_irq_chann; i++) { 12315 eqhdl = lpfc_get_eq_hdl(i); 12316 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 12317 eqhdl->phba = phba; 12318 } 12319 } 12320 12321 /** 12322 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12323 * @phba: pointer to lpfc hba data structure. 12324 * @vectors: number of msix vectors allocated. 12325 * 12326 * The routine will figure out the CPU affinity assignment for every 12327 * MSI-X vector allocated for the HBA. 12328 * In addition, the CPU to IO channel mapping will be calculated 12329 * and the phba->sli4_hba.cpu_map array will reflect this. 12330 */ 12331 static void 12332 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12333 { 12334 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12335 int max_phys_id, min_phys_id; 12336 int max_core_id, min_core_id; 12337 struct lpfc_vector_map_info *cpup; 12338 struct lpfc_vector_map_info *new_cpup; 12339 #ifdef CONFIG_X86 12340 struct cpuinfo_x86 *cpuinfo; 12341 #endif 12342 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12343 struct lpfc_hdwq_stat *c_stat; 12344 #endif 12345 12346 max_phys_id = 0; 12347 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12348 max_core_id = 0; 12349 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12350 12351 /* Update CPU map with physical id and core id of each CPU */ 12352 for_each_present_cpu(cpu) { 12353 cpup = &phba->sli4_hba.cpu_map[cpu]; 12354 #ifdef CONFIG_X86 12355 cpuinfo = &cpu_data(cpu); 12356 cpup->phys_id = cpuinfo->phys_proc_id; 12357 cpup->core_id = cpuinfo->cpu_core_id; 12358 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12359 cpup->flag |= LPFC_CPU_MAP_HYPER; 12360 #else 12361 /* No distinction between CPUs for other platforms */ 12362 cpup->phys_id = 0; 12363 cpup->core_id = cpu; 12364 #endif 12365 12366 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12367 "3328 CPU %d physid %d coreid %d flag x%x\n", 12368 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12369 12370 if (cpup->phys_id > max_phys_id) 12371 max_phys_id = cpup->phys_id; 12372 if (cpup->phys_id < min_phys_id) 12373 min_phys_id = cpup->phys_id; 12374 12375 if (cpup->core_id > max_core_id) 12376 max_core_id = cpup->core_id; 12377 if (cpup->core_id < min_core_id) 12378 min_core_id = cpup->core_id; 12379 } 12380 12381 /* After looking at each irq vector assigned to this pcidev, its 12382 * possible to see that not ALL CPUs have been accounted for. 12383 * Next we will set any unassigned (unaffinitized) cpu map 12384 * entries to a IRQ on the same phys_id. 12385 */ 12386 first_cpu = cpumask_first(cpu_present_mask); 12387 start_cpu = first_cpu; 12388 12389 for_each_present_cpu(cpu) { 12390 cpup = &phba->sli4_hba.cpu_map[cpu]; 12391 12392 /* Is this CPU entry unassigned */ 12393 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12394 /* Mark CPU as IRQ not assigned by the kernel */ 12395 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12396 12397 /* If so, find a new_cpup thats on the the SAME 12398 * phys_id as cpup. start_cpu will start where we 12399 * left off so all unassigned entries don't get assgined 12400 * the IRQ of the first entry. 12401 */ 12402 new_cpu = start_cpu; 12403 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12404 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12405 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12406 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12407 (new_cpup->phys_id == cpup->phys_id)) 12408 goto found_same; 12409 new_cpu = cpumask_next( 12410 new_cpu, cpu_present_mask); 12411 if (new_cpu == nr_cpumask_bits) 12412 new_cpu = first_cpu; 12413 } 12414 /* At this point, we leave the CPU as unassigned */ 12415 continue; 12416 found_same: 12417 /* We found a matching phys_id, so copy the IRQ info */ 12418 cpup->eq = new_cpup->eq; 12419 12420 /* Bump start_cpu to the next slot to minmize the 12421 * chance of having multiple unassigned CPU entries 12422 * selecting the same IRQ. 12423 */ 12424 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12425 if (start_cpu == nr_cpumask_bits) 12426 start_cpu = first_cpu; 12427 12428 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12429 "3337 Set Affinity: CPU %d " 12430 "eq %d from peer cpu %d same " 12431 "phys_id (%d)\n", 12432 cpu, cpup->eq, new_cpu, 12433 cpup->phys_id); 12434 } 12435 } 12436 12437 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12438 start_cpu = first_cpu; 12439 12440 for_each_present_cpu(cpu) { 12441 cpup = &phba->sli4_hba.cpu_map[cpu]; 12442 12443 /* Is this entry unassigned */ 12444 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12445 /* Mark it as IRQ not assigned by the kernel */ 12446 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12447 12448 /* If so, find a new_cpup thats on ANY phys_id 12449 * as the cpup. start_cpu will start where we 12450 * left off so all unassigned entries don't get 12451 * assigned the IRQ of the first entry. 12452 */ 12453 new_cpu = start_cpu; 12454 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12455 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12456 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12457 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12458 goto found_any; 12459 new_cpu = cpumask_next( 12460 new_cpu, cpu_present_mask); 12461 if (new_cpu == nr_cpumask_bits) 12462 new_cpu = first_cpu; 12463 } 12464 /* We should never leave an entry unassigned */ 12465 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12466 "3339 Set Affinity: CPU %d " 12467 "eq %d UNASSIGNED\n", 12468 cpup->hdwq, cpup->eq); 12469 continue; 12470 found_any: 12471 /* We found an available entry, copy the IRQ info */ 12472 cpup->eq = new_cpup->eq; 12473 12474 /* Bump start_cpu to the next slot to minmize the 12475 * chance of having multiple unassigned CPU entries 12476 * selecting the same IRQ. 12477 */ 12478 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12479 if (start_cpu == nr_cpumask_bits) 12480 start_cpu = first_cpu; 12481 12482 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12483 "3338 Set Affinity: CPU %d " 12484 "eq %d from peer cpu %d (%d/%d)\n", 12485 cpu, cpup->eq, new_cpu, 12486 new_cpup->phys_id, new_cpup->core_id); 12487 } 12488 } 12489 12490 /* Assign hdwq indices that are unique across all cpus in the map 12491 * that are also FIRST_CPUs. 12492 */ 12493 idx = 0; 12494 for_each_present_cpu(cpu) { 12495 cpup = &phba->sli4_hba.cpu_map[cpu]; 12496 12497 /* Only FIRST IRQs get a hdwq index assignment. */ 12498 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12499 continue; 12500 12501 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12502 cpup->hdwq = idx; 12503 idx++; 12504 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12505 "3333 Set Affinity: CPU %d (phys %d core %d): " 12506 "hdwq %d eq %d flg x%x\n", 12507 cpu, cpup->phys_id, cpup->core_id, 12508 cpup->hdwq, cpup->eq, cpup->flag); 12509 } 12510 /* Associate a hdwq with each cpu_map entry 12511 * This will be 1 to 1 - hdwq to cpu, unless there are less 12512 * hardware queues then CPUs. For that case we will just round-robin 12513 * the available hardware queues as they get assigned to CPUs. 12514 * The next_idx is the idx from the FIRST_CPU loop above to account 12515 * for irq_chann < hdwq. The idx is used for round-robin assignments 12516 * and needs to start at 0. 12517 */ 12518 next_idx = idx; 12519 start_cpu = 0; 12520 idx = 0; 12521 for_each_present_cpu(cpu) { 12522 cpup = &phba->sli4_hba.cpu_map[cpu]; 12523 12524 /* FIRST cpus are already mapped. */ 12525 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12526 continue; 12527 12528 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12529 * of the unassigned cpus to the next idx so that all 12530 * hdw queues are fully utilized. 12531 */ 12532 if (next_idx < phba->cfg_hdw_queue) { 12533 cpup->hdwq = next_idx; 12534 next_idx++; 12535 continue; 12536 } 12537 12538 /* Not a First CPU and all hdw_queues are used. Reuse a 12539 * Hardware Queue for another CPU, so be smart about it 12540 * and pick one that has its IRQ/EQ mapped to the same phys_id 12541 * (CPU package) and core_id. 12542 */ 12543 new_cpu = start_cpu; 12544 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12545 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12546 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12547 new_cpup->phys_id == cpup->phys_id && 12548 new_cpup->core_id == cpup->core_id) { 12549 goto found_hdwq; 12550 } 12551 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12552 if (new_cpu == nr_cpumask_bits) 12553 new_cpu = first_cpu; 12554 } 12555 12556 /* If we can't match both phys_id and core_id, 12557 * settle for just a phys_id match. 12558 */ 12559 new_cpu = start_cpu; 12560 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12561 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12562 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12563 new_cpup->phys_id == cpup->phys_id) 12564 goto found_hdwq; 12565 12566 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12567 if (new_cpu == nr_cpumask_bits) 12568 new_cpu = first_cpu; 12569 } 12570 12571 /* Otherwise just round robin on cfg_hdw_queue */ 12572 cpup->hdwq = idx % phba->cfg_hdw_queue; 12573 idx++; 12574 goto logit; 12575 found_hdwq: 12576 /* We found an available entry, copy the IRQ info */ 12577 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12578 if (start_cpu == nr_cpumask_bits) 12579 start_cpu = first_cpu; 12580 cpup->hdwq = new_cpup->hdwq; 12581 logit: 12582 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12583 "3335 Set Affinity: CPU %d (phys %d core %d): " 12584 "hdwq %d eq %d flg x%x\n", 12585 cpu, cpup->phys_id, cpup->core_id, 12586 cpup->hdwq, cpup->eq, cpup->flag); 12587 } 12588 12589 /* 12590 * Initialize the cpu_map slots for not-present cpus in case 12591 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12592 */ 12593 idx = 0; 12594 for_each_possible_cpu(cpu) { 12595 cpup = &phba->sli4_hba.cpu_map[cpu]; 12596 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12597 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12598 c_stat->hdwq_no = cpup->hdwq; 12599 #endif 12600 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12601 continue; 12602 12603 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12604 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12605 c_stat->hdwq_no = cpup->hdwq; 12606 #endif 12607 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12608 "3340 Set Affinity: not present " 12609 "CPU %d hdwq %d\n", 12610 cpu, cpup->hdwq); 12611 } 12612 12613 /* The cpu_map array will be used later during initialization 12614 * when EQ / CQ / WQs are allocated and configured. 12615 */ 12616 return; 12617 } 12618 12619 /** 12620 * lpfc_cpuhp_get_eq 12621 * 12622 * @phba: pointer to lpfc hba data structure. 12623 * @cpu: cpu going offline 12624 * @eqlist: eq list to append to 12625 */ 12626 static int 12627 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12628 struct list_head *eqlist) 12629 { 12630 const struct cpumask *maskp; 12631 struct lpfc_queue *eq; 12632 struct cpumask *tmp; 12633 u16 idx; 12634 12635 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12636 if (!tmp) 12637 return -ENOMEM; 12638 12639 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12640 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12641 if (!maskp) 12642 continue; 12643 /* 12644 * if irq is not affinitized to the cpu going 12645 * then we don't need to poll the eq attached 12646 * to it. 12647 */ 12648 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12649 continue; 12650 /* get the cpus that are online and are affini- 12651 * tized to this irq vector. If the count is 12652 * more than 1 then cpuhp is not going to shut- 12653 * down this vector. Since this cpu has not 12654 * gone offline yet, we need >1. 12655 */ 12656 cpumask_and(tmp, maskp, cpu_online_mask); 12657 if (cpumask_weight(tmp) > 1) 12658 continue; 12659 12660 /* Now that we have an irq to shutdown, get the eq 12661 * mapped to this irq. Note: multiple hdwq's in 12662 * the software can share an eq, but eventually 12663 * only eq will be mapped to this vector 12664 */ 12665 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12666 list_add(&eq->_poll_list, eqlist); 12667 } 12668 kfree(tmp); 12669 return 0; 12670 } 12671 12672 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12673 { 12674 if (phba->sli_rev != LPFC_SLI_REV4) 12675 return; 12676 12677 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12678 &phba->cpuhp); 12679 /* 12680 * unregistering the instance doesn't stop the polling 12681 * timer. Wait for the poll timer to retire. 12682 */ 12683 synchronize_rcu(); 12684 del_timer_sync(&phba->cpuhp_poll_timer); 12685 } 12686 12687 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12688 { 12689 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 12690 return; 12691 12692 __lpfc_cpuhp_remove(phba); 12693 } 12694 12695 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12696 { 12697 if (phba->sli_rev != LPFC_SLI_REV4) 12698 return; 12699 12700 rcu_read_lock(); 12701 12702 if (!list_empty(&phba->poll_list)) 12703 mod_timer(&phba->cpuhp_poll_timer, 12704 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12705 12706 rcu_read_unlock(); 12707 12708 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12709 &phba->cpuhp); 12710 } 12711 12712 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12713 { 12714 if (phba->pport->load_flag & FC_UNLOADING) { 12715 *retval = -EAGAIN; 12716 return true; 12717 } 12718 12719 if (phba->sli_rev != LPFC_SLI_REV4) { 12720 *retval = 0; 12721 return true; 12722 } 12723 12724 /* proceed with the hotplug */ 12725 return false; 12726 } 12727 12728 /** 12729 * lpfc_irq_set_aff - set IRQ affinity 12730 * @eqhdl: EQ handle 12731 * @cpu: cpu to set affinity 12732 * 12733 **/ 12734 static inline void 12735 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12736 { 12737 cpumask_clear(&eqhdl->aff_mask); 12738 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12739 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12740 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12741 } 12742 12743 /** 12744 * lpfc_irq_clear_aff - clear IRQ affinity 12745 * @eqhdl: EQ handle 12746 * 12747 **/ 12748 static inline void 12749 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12750 { 12751 cpumask_clear(&eqhdl->aff_mask); 12752 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12753 } 12754 12755 /** 12756 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12757 * @phba: pointer to HBA context object. 12758 * @cpu: cpu going offline/online 12759 * @offline: true, cpu is going offline. false, cpu is coming online. 12760 * 12761 * If cpu is going offline, we'll try our best effort to find the next 12762 * online cpu on the phba's original_mask and migrate all offlining IRQ 12763 * affinities. 12764 * 12765 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12766 * 12767 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12768 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12769 * 12770 **/ 12771 static void 12772 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12773 { 12774 struct lpfc_vector_map_info *cpup; 12775 struct cpumask *aff_mask; 12776 unsigned int cpu_select, cpu_next, idx; 12777 const struct cpumask *orig_mask; 12778 12779 if (phba->irq_chann_mode == NORMAL_MODE) 12780 return; 12781 12782 orig_mask = &phba->sli4_hba.irq_aff_mask; 12783 12784 if (!cpumask_test_cpu(cpu, orig_mask)) 12785 return; 12786 12787 cpup = &phba->sli4_hba.cpu_map[cpu]; 12788 12789 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12790 return; 12791 12792 if (offline) { 12793 /* Find next online CPU on original mask */ 12794 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 12795 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12796 12797 /* Found a valid CPU */ 12798 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12799 /* Go through each eqhdl and ensure offlining 12800 * cpu aff_mask is migrated 12801 */ 12802 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12803 aff_mask = lpfc_get_aff_mask(idx); 12804 12805 /* Migrate affinity */ 12806 if (cpumask_test_cpu(cpu, aff_mask)) 12807 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12808 cpu_select); 12809 } 12810 } else { 12811 /* Rely on irqbalance if no online CPUs left on NUMA */ 12812 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12813 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12814 } 12815 } else { 12816 /* Migrate affinity back to this CPU */ 12817 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12818 } 12819 } 12820 12821 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12822 { 12823 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12824 struct lpfc_queue *eq, *next; 12825 LIST_HEAD(eqlist); 12826 int retval; 12827 12828 if (!phba) { 12829 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12830 return 0; 12831 } 12832 12833 if (__lpfc_cpuhp_checks(phba, &retval)) 12834 return retval; 12835 12836 lpfc_irq_rebalance(phba, cpu, true); 12837 12838 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12839 if (retval) 12840 return retval; 12841 12842 /* start polling on these eq's */ 12843 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12844 list_del_init(&eq->_poll_list); 12845 lpfc_sli4_start_polling(eq); 12846 } 12847 12848 return 0; 12849 } 12850 12851 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12852 { 12853 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12854 struct lpfc_queue *eq, *next; 12855 unsigned int n; 12856 int retval; 12857 12858 if (!phba) { 12859 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12860 return 0; 12861 } 12862 12863 if (__lpfc_cpuhp_checks(phba, &retval)) 12864 return retval; 12865 12866 lpfc_irq_rebalance(phba, cpu, false); 12867 12868 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12869 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12870 if (n == cpu) 12871 lpfc_sli4_stop_polling(eq); 12872 } 12873 12874 return 0; 12875 } 12876 12877 /** 12878 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12879 * @phba: pointer to lpfc hba data structure. 12880 * 12881 * This routine is invoked to enable the MSI-X interrupt vectors to device 12882 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12883 * to cpus on the system. 12884 * 12885 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12886 * the number of cpus on the same numa node as this adapter. The vectors are 12887 * allocated without requesting OS affinity mapping. A vector will be 12888 * allocated and assigned to each online and offline cpu. If the cpu is 12889 * online, then affinity will be set to that cpu. If the cpu is offline, then 12890 * affinity will be set to the nearest peer cpu within the numa node that is 12891 * online. If there are no online cpus within the numa node, affinity is not 12892 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12893 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12894 * configured. 12895 * 12896 * If numa mode is not enabled and there is more than 1 vector allocated, then 12897 * the driver relies on the managed irq interface where the OS assigns vector to 12898 * cpu affinity. The driver will then use that affinity mapping to setup its 12899 * cpu mapping table. 12900 * 12901 * Return codes 12902 * 0 - successful 12903 * other values - error 12904 **/ 12905 static int 12906 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12907 { 12908 int vectors, rc, index; 12909 char *name; 12910 const struct cpumask *aff_mask = NULL; 12911 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 12912 struct lpfc_vector_map_info *cpup; 12913 struct lpfc_hba_eq_hdl *eqhdl; 12914 const struct cpumask *maskp; 12915 unsigned int flags = PCI_IRQ_MSIX; 12916 12917 /* Set up MSI-X multi-message vectors */ 12918 vectors = phba->cfg_irq_chann; 12919 12920 if (phba->irq_chann_mode != NORMAL_MODE) 12921 aff_mask = &phba->sli4_hba.irq_aff_mask; 12922 12923 if (aff_mask) { 12924 cpu_cnt = cpumask_weight(aff_mask); 12925 vectors = min(phba->cfg_irq_chann, cpu_cnt); 12926 12927 /* cpu: iterates over aff_mask including offline or online 12928 * cpu_select: iterates over online aff_mask to set affinity 12929 */ 12930 cpu = cpumask_first(aff_mask); 12931 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 12932 } else { 12933 flags |= PCI_IRQ_AFFINITY; 12934 } 12935 12936 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 12937 if (rc < 0) { 12938 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12939 "0484 PCI enable MSI-X failed (%d)\n", rc); 12940 goto vec_fail_out; 12941 } 12942 vectors = rc; 12943 12944 /* Assign MSI-X vectors to interrupt handlers */ 12945 for (index = 0; index < vectors; index++) { 12946 eqhdl = lpfc_get_eq_hdl(index); 12947 name = eqhdl->handler_name; 12948 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 12949 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 12950 LPFC_DRIVER_HANDLER_NAME"%d", index); 12951 12952 eqhdl->idx = index; 12953 rc = request_irq(pci_irq_vector(phba->pcidev, index), 12954 &lpfc_sli4_hba_intr_handler, 0, 12955 name, eqhdl); 12956 if (rc) { 12957 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12958 "0486 MSI-X fast-path (%d) " 12959 "request_irq failed (%d)\n", index, rc); 12960 goto cfg_fail_out; 12961 } 12962 12963 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 12964 12965 if (aff_mask) { 12966 /* If found a neighboring online cpu, set affinity */ 12967 if (cpu_select < nr_cpu_ids) 12968 lpfc_irq_set_aff(eqhdl, cpu_select); 12969 12970 /* Assign EQ to cpu_map */ 12971 lpfc_assign_eq_map_info(phba, index, 12972 LPFC_CPU_FIRST_IRQ, 12973 cpu); 12974 12975 /* Iterate to next offline or online cpu in aff_mask */ 12976 cpu = cpumask_next(cpu, aff_mask); 12977 12978 /* Find next online cpu in aff_mask to set affinity */ 12979 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 12980 } else if (vectors == 1) { 12981 cpu = cpumask_first(cpu_present_mask); 12982 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 12983 cpu); 12984 } else { 12985 maskp = pci_irq_get_affinity(phba->pcidev, index); 12986 12987 /* Loop through all CPUs associated with vector index */ 12988 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 12989 cpup = &phba->sli4_hba.cpu_map[cpu]; 12990 12991 /* If this is the first CPU thats assigned to 12992 * this vector, set LPFC_CPU_FIRST_IRQ. 12993 * 12994 * With certain platforms its possible that irq 12995 * vectors are affinitized to all the cpu's. 12996 * This can result in each cpu_map.eq to be set 12997 * to the last vector, resulting in overwrite 12998 * of all the previous cpu_map.eq. Ensure that 12999 * each vector receives a place in cpu_map. 13000 * Later call to lpfc_cpu_affinity_check will 13001 * ensure we are nicely balanced out. 13002 */ 13003 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13004 continue; 13005 lpfc_assign_eq_map_info(phba, index, 13006 LPFC_CPU_FIRST_IRQ, 13007 cpu); 13008 break; 13009 } 13010 } 13011 } 13012 13013 if (vectors != phba->cfg_irq_chann) { 13014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13015 "3238 Reducing IO channels to match number of " 13016 "MSI-X vectors, requested %d got %d\n", 13017 phba->cfg_irq_chann, vectors); 13018 if (phba->cfg_irq_chann > vectors) 13019 phba->cfg_irq_chann = vectors; 13020 } 13021 13022 return rc; 13023 13024 cfg_fail_out: 13025 /* free the irq already requested */ 13026 for (--index; index >= 0; index--) { 13027 eqhdl = lpfc_get_eq_hdl(index); 13028 lpfc_irq_clear_aff(eqhdl); 13029 free_irq(eqhdl->irq, eqhdl); 13030 } 13031 13032 /* Unconfigure MSI-X capability structure */ 13033 pci_free_irq_vectors(phba->pcidev); 13034 13035 vec_fail_out: 13036 return rc; 13037 } 13038 13039 /** 13040 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13041 * @phba: pointer to lpfc hba data structure. 13042 * 13043 * This routine is invoked to enable the MSI interrupt mode to device with 13044 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13045 * called to enable the MSI vector. The device driver is responsible for 13046 * calling the request_irq() to register MSI vector with a interrupt the 13047 * handler, which is done in this function. 13048 * 13049 * Return codes 13050 * 0 - successful 13051 * other values - error 13052 **/ 13053 static int 13054 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13055 { 13056 int rc, index; 13057 unsigned int cpu; 13058 struct lpfc_hba_eq_hdl *eqhdl; 13059 13060 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13061 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13062 if (rc > 0) 13063 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13064 "0487 PCI enable MSI mode success.\n"); 13065 else { 13066 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13067 "0488 PCI enable MSI mode failed (%d)\n", rc); 13068 return rc ? rc : -1; 13069 } 13070 13071 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13072 0, LPFC_DRIVER_NAME, phba); 13073 if (rc) { 13074 pci_free_irq_vectors(phba->pcidev); 13075 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13076 "0490 MSI request_irq failed (%d)\n", rc); 13077 return rc; 13078 } 13079 13080 eqhdl = lpfc_get_eq_hdl(0); 13081 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 13082 13083 cpu = cpumask_first(cpu_present_mask); 13084 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13085 13086 for (index = 0; index < phba->cfg_irq_chann; index++) { 13087 eqhdl = lpfc_get_eq_hdl(index); 13088 eqhdl->idx = index; 13089 } 13090 13091 return 0; 13092 } 13093 13094 /** 13095 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13096 * @phba: pointer to lpfc hba data structure. 13097 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13098 * 13099 * This routine is invoked to enable device interrupt and associate driver's 13100 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13101 * interface spec. Depends on the interrupt mode configured to the driver, 13102 * the driver will try to fallback from the configured interrupt mode to an 13103 * interrupt mode which is supported by the platform, kernel, and device in 13104 * the order of: 13105 * MSI-X -> MSI -> IRQ. 13106 * 13107 * Return codes 13108 * 0 - successful 13109 * other values - error 13110 **/ 13111 static uint32_t 13112 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13113 { 13114 uint32_t intr_mode = LPFC_INTR_ERROR; 13115 int retval, idx; 13116 13117 if (cfg_mode == 2) { 13118 /* Preparation before conf_msi mbox cmd */ 13119 retval = 0; 13120 if (!retval) { 13121 /* Now, try to enable MSI-X interrupt mode */ 13122 retval = lpfc_sli4_enable_msix(phba); 13123 if (!retval) { 13124 /* Indicate initialization to MSI-X mode */ 13125 phba->intr_type = MSIX; 13126 intr_mode = 2; 13127 } 13128 } 13129 } 13130 13131 /* Fallback to MSI if MSI-X initialization failed */ 13132 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13133 retval = lpfc_sli4_enable_msi(phba); 13134 if (!retval) { 13135 /* Indicate initialization to MSI mode */ 13136 phba->intr_type = MSI; 13137 intr_mode = 1; 13138 } 13139 } 13140 13141 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13142 if (phba->intr_type == NONE) { 13143 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13144 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13145 if (!retval) { 13146 struct lpfc_hba_eq_hdl *eqhdl; 13147 unsigned int cpu; 13148 13149 /* Indicate initialization to INTx mode */ 13150 phba->intr_type = INTx; 13151 intr_mode = 0; 13152 13153 eqhdl = lpfc_get_eq_hdl(0); 13154 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 13155 13156 cpu = cpumask_first(cpu_present_mask); 13157 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13158 cpu); 13159 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13160 eqhdl = lpfc_get_eq_hdl(idx); 13161 eqhdl->idx = idx; 13162 } 13163 } 13164 } 13165 return intr_mode; 13166 } 13167 13168 /** 13169 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13170 * @phba: pointer to lpfc hba data structure. 13171 * 13172 * This routine is invoked to disable device interrupt and disassociate 13173 * the driver's interrupt handler(s) from interrupt vector(s) to device 13174 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13175 * will release the interrupt vector(s) for the message signaled interrupt. 13176 **/ 13177 static void 13178 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13179 { 13180 /* Disable the currently initialized interrupt mode */ 13181 if (phba->intr_type == MSIX) { 13182 int index; 13183 struct lpfc_hba_eq_hdl *eqhdl; 13184 13185 /* Free up MSI-X multi-message vectors */ 13186 for (index = 0; index < phba->cfg_irq_chann; index++) { 13187 eqhdl = lpfc_get_eq_hdl(index); 13188 lpfc_irq_clear_aff(eqhdl); 13189 free_irq(eqhdl->irq, eqhdl); 13190 } 13191 } else { 13192 free_irq(phba->pcidev->irq, phba); 13193 } 13194 13195 pci_free_irq_vectors(phba->pcidev); 13196 13197 /* Reset interrupt management states */ 13198 phba->intr_type = NONE; 13199 phba->sli.slistat.sli_intr = 0; 13200 } 13201 13202 /** 13203 * lpfc_unset_hba - Unset SLI3 hba device initialization 13204 * @phba: pointer to lpfc hba data structure. 13205 * 13206 * This routine is invoked to unset the HBA device initialization steps to 13207 * a device with SLI-3 interface spec. 13208 **/ 13209 static void 13210 lpfc_unset_hba(struct lpfc_hba *phba) 13211 { 13212 struct lpfc_vport *vport = phba->pport; 13213 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 13214 13215 spin_lock_irq(shost->host_lock); 13216 vport->load_flag |= FC_UNLOADING; 13217 spin_unlock_irq(shost->host_lock); 13218 13219 kfree(phba->vpi_bmask); 13220 kfree(phba->vpi_ids); 13221 13222 lpfc_stop_hba_timers(phba); 13223 13224 phba->pport->work_port_events = 0; 13225 13226 lpfc_sli_hba_down(phba); 13227 13228 lpfc_sli_brdrestart(phba); 13229 13230 lpfc_sli_disable_intr(phba); 13231 13232 return; 13233 } 13234 13235 /** 13236 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13237 * @phba: Pointer to HBA context object. 13238 * 13239 * This function is called in the SLI4 code path to wait for completion 13240 * of device's XRIs exchange busy. It will check the XRI exchange busy 13241 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13242 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13243 * I/Os every 30 seconds, log error message, and wait forever. Only when 13244 * all XRI exchange busy complete, the driver unload shall proceed with 13245 * invoking the function reset ioctl mailbox command to the CNA and the 13246 * the rest of the driver unload resource release. 13247 **/ 13248 static void 13249 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13250 { 13251 struct lpfc_sli4_hdw_queue *qp; 13252 int idx, ccnt; 13253 int wait_time = 0; 13254 int io_xri_cmpl = 1; 13255 int nvmet_xri_cmpl = 1; 13256 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13257 13258 /* Driver just aborted IOs during the hba_unset process. Pause 13259 * here to give the HBA time to complete the IO and get entries 13260 * into the abts lists. 13261 */ 13262 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13263 13264 /* Wait for NVME pending IO to flush back to transport. */ 13265 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13266 lpfc_nvme_wait_for_io_drain(phba); 13267 13268 ccnt = 0; 13269 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13270 qp = &phba->sli4_hba.hdwq[idx]; 13271 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13272 if (!io_xri_cmpl) /* if list is NOT empty */ 13273 ccnt++; 13274 } 13275 if (ccnt) 13276 io_xri_cmpl = 0; 13277 13278 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13279 nvmet_xri_cmpl = 13280 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13281 } 13282 13283 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13284 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13285 if (!nvmet_xri_cmpl) 13286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13287 "6424 NVMET XRI exchange busy " 13288 "wait time: %d seconds.\n", 13289 wait_time/1000); 13290 if (!io_xri_cmpl) 13291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13292 "6100 IO XRI exchange busy " 13293 "wait time: %d seconds.\n", 13294 wait_time/1000); 13295 if (!els_xri_cmpl) 13296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13297 "2878 ELS XRI exchange busy " 13298 "wait time: %d seconds.\n", 13299 wait_time/1000); 13300 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13301 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13302 } else { 13303 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13304 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13305 } 13306 13307 ccnt = 0; 13308 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13309 qp = &phba->sli4_hba.hdwq[idx]; 13310 io_xri_cmpl = list_empty( 13311 &qp->lpfc_abts_io_buf_list); 13312 if (!io_xri_cmpl) /* if list is NOT empty */ 13313 ccnt++; 13314 } 13315 if (ccnt) 13316 io_xri_cmpl = 0; 13317 13318 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13319 nvmet_xri_cmpl = list_empty( 13320 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13321 } 13322 els_xri_cmpl = 13323 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13324 13325 } 13326 } 13327 13328 /** 13329 * lpfc_sli4_hba_unset - Unset the fcoe hba 13330 * @phba: Pointer to HBA context object. 13331 * 13332 * This function is called in the SLI4 code path to reset the HBA's FCoE 13333 * function. The caller is not required to hold any lock. This routine 13334 * issues PCI function reset mailbox command to reset the FCoE function. 13335 * At the end of the function, it calls lpfc_hba_down_post function to 13336 * free any pending commands. 13337 **/ 13338 static void 13339 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13340 { 13341 int wait_cnt = 0; 13342 LPFC_MBOXQ_t *mboxq; 13343 struct pci_dev *pdev = phba->pcidev; 13344 13345 lpfc_stop_hba_timers(phba); 13346 hrtimer_cancel(&phba->cmf_timer); 13347 13348 if (phba->pport) 13349 phba->sli4_hba.intr_enable = 0; 13350 13351 /* 13352 * Gracefully wait out the potential current outstanding asynchronous 13353 * mailbox command. 13354 */ 13355 13356 /* First, block any pending async mailbox command from posted */ 13357 spin_lock_irq(&phba->hbalock); 13358 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13359 spin_unlock_irq(&phba->hbalock); 13360 /* Now, trying to wait it out if we can */ 13361 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13362 msleep(10); 13363 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13364 break; 13365 } 13366 /* Forcefully release the outstanding mailbox command if timed out */ 13367 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13368 spin_lock_irq(&phba->hbalock); 13369 mboxq = phba->sli.mbox_active; 13370 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13371 __lpfc_mbox_cmpl_put(phba, mboxq); 13372 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13373 phba->sli.mbox_active = NULL; 13374 spin_unlock_irq(&phba->hbalock); 13375 } 13376 13377 /* Abort all iocbs associated with the hba */ 13378 lpfc_sli_hba_iocb_abort(phba); 13379 13380 if (!pci_channel_offline(phba->pcidev)) 13381 /* Wait for completion of device XRI exchange busy */ 13382 lpfc_sli4_xri_exchange_busy_wait(phba); 13383 13384 /* per-phba callback de-registration for hotplug event */ 13385 if (phba->pport) 13386 lpfc_cpuhp_remove(phba); 13387 13388 /* Disable PCI subsystem interrupt */ 13389 lpfc_sli4_disable_intr(phba); 13390 13391 /* Disable SR-IOV if enabled */ 13392 if (phba->cfg_sriov_nr_virtfn) 13393 pci_disable_sriov(pdev); 13394 13395 /* Stop kthread signal shall trigger work_done one more time */ 13396 kthread_stop(phba->worker_thread); 13397 13398 /* Disable FW logging to host memory */ 13399 lpfc_ras_stop_fwlog(phba); 13400 13401 /* Reset SLI4 HBA FCoE function */ 13402 lpfc_pci_function_reset(phba); 13403 13404 /* release all queue allocated resources. */ 13405 lpfc_sli4_queue_destroy(phba); 13406 13407 /* Free RAS DMA memory */ 13408 if (phba->ras_fwlog.ras_enabled) 13409 lpfc_sli4_ras_dma_free(phba); 13410 13411 /* Stop the SLI4 device port */ 13412 if (phba->pport) 13413 phba->pport->work_port_events = 0; 13414 } 13415 13416 static uint32_t 13417 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13418 { 13419 uint32_t msb = 0; 13420 uint32_t bit; 13421 13422 for (bit = 0; bit < 8; bit++) { 13423 msb = (crc >> 31) & 1; 13424 crc <<= 1; 13425 13426 if (msb ^ (byte & 1)) { 13427 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13428 crc |= 1; 13429 } 13430 byte >>= 1; 13431 } 13432 return crc; 13433 } 13434 13435 static uint32_t 13436 lpfc_cgn_reverse_bits(uint32_t wd) 13437 { 13438 uint32_t result = 0; 13439 uint32_t i; 13440 13441 for (i = 0; i < 32; i++) { 13442 result <<= 1; 13443 result |= (1 & (wd >> i)); 13444 } 13445 return result; 13446 } 13447 13448 /* 13449 * The routine corresponds with the algorithm the HBA firmware 13450 * uses to validate the data integrity. 13451 */ 13452 uint32_t 13453 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13454 { 13455 uint32_t i; 13456 uint32_t result; 13457 uint8_t *data = (uint8_t *)ptr; 13458 13459 for (i = 0; i < byteLen; ++i) 13460 crc = lpfc_cgn_crc32(crc, data[i]); 13461 13462 result = ~lpfc_cgn_reverse_bits(crc); 13463 return result; 13464 } 13465 13466 void 13467 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13468 { 13469 struct lpfc_cgn_info *cp; 13470 struct timespec64 cmpl_time; 13471 struct tm broken; 13472 uint16_t size; 13473 uint32_t crc; 13474 13475 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13476 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13477 13478 if (!phba->cgn_i) 13479 return; 13480 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13481 13482 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13483 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13484 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13485 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13486 13487 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13488 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13489 atomic64_set(&phba->cgn_latency_evt, 0); 13490 phba->cgn_evt_minute = 0; 13491 phba->hba_flag &= ~HBA_CGN_DAY_WRAP; 13492 13493 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13494 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13495 cp->cgn_info_version = LPFC_CGN_INFO_V3; 13496 13497 /* cgn parameters */ 13498 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13499 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13500 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13501 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13502 13503 ktime_get_real_ts64(&cmpl_time); 13504 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13505 13506 cp->cgn_info_month = broken.tm_mon + 1; 13507 cp->cgn_info_day = broken.tm_mday; 13508 cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */ 13509 cp->cgn_info_hour = broken.tm_hour; 13510 cp->cgn_info_minute = broken.tm_min; 13511 cp->cgn_info_second = broken.tm_sec; 13512 13513 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13514 "2643 CGNInfo Init: Start Time " 13515 "%d/%d/%d %d:%d:%d\n", 13516 cp->cgn_info_day, cp->cgn_info_month, 13517 cp->cgn_info_year, cp->cgn_info_hour, 13518 cp->cgn_info_minute, cp->cgn_info_second); 13519 13520 /* Fill in default LUN qdepth */ 13521 if (phba->pport) { 13522 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13523 cp->cgn_lunq = cpu_to_le16(size); 13524 } 13525 13526 /* last used Index initialized to 0xff already */ 13527 13528 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13529 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13530 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13531 cp->cgn_info_crc = cpu_to_le32(crc); 13532 13533 phba->cgn_evt_timestamp = jiffies + 13534 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13535 } 13536 13537 void 13538 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13539 { 13540 struct lpfc_cgn_info *cp; 13541 struct timespec64 cmpl_time; 13542 struct tm broken; 13543 uint32_t crc; 13544 13545 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13546 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13547 13548 if (!phba->cgn_i) 13549 return; 13550 13551 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13552 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13553 13554 ktime_get_real_ts64(&cmpl_time); 13555 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13556 13557 cp->cgn_stat_month = broken.tm_mon + 1; 13558 cp->cgn_stat_day = broken.tm_mday; 13559 cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */ 13560 cp->cgn_stat_hour = broken.tm_hour; 13561 cp->cgn_stat_minute = broken.tm_min; 13562 13563 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13564 "2647 CGNstat Init: Start Time " 13565 "%d/%d/%d %d:%d\n", 13566 cp->cgn_stat_day, cp->cgn_stat_month, 13567 cp->cgn_stat_year, cp->cgn_stat_hour, 13568 cp->cgn_stat_minute); 13569 13570 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13571 cp->cgn_info_crc = cpu_to_le32(crc); 13572 } 13573 13574 /** 13575 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13576 * @phba: Pointer to hba context object. 13577 * @reg: flag to determine register or unregister. 13578 */ 13579 static int 13580 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13581 { 13582 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13583 union lpfc_sli4_cfg_shdr *shdr; 13584 uint32_t shdr_status, shdr_add_status; 13585 LPFC_MBOXQ_t *mboxq; 13586 int length, rc; 13587 13588 if (!phba->cgn_i) 13589 return -ENXIO; 13590 13591 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13592 if (!mboxq) { 13593 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13594 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13595 "HBA state x%x reg %d\n", 13596 phba->pport->port_state, reg); 13597 return -ENOMEM; 13598 } 13599 13600 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13601 sizeof(struct lpfc_sli4_cfg_mhdr)); 13602 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13603 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13604 LPFC_SLI4_MBX_EMBED); 13605 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13606 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13607 if (reg > 0) 13608 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13609 else 13610 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13611 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13612 reg_congestion_buf->addr_lo = 13613 putPaddrLow(phba->cgn_i->phys); 13614 reg_congestion_buf->addr_hi = 13615 putPaddrHigh(phba->cgn_i->phys); 13616 13617 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13618 shdr = (union lpfc_sli4_cfg_shdr *) 13619 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13620 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13621 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13622 &shdr->response); 13623 mempool_free(mboxq, phba->mbox_mem_pool); 13624 if (shdr_status || shdr_add_status || rc) { 13625 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13626 "2642 REG_CONGESTION_BUF mailbox " 13627 "failed with status x%x add_status x%x," 13628 " mbx status x%x reg %d\n", 13629 shdr_status, shdr_add_status, rc, reg); 13630 return -ENXIO; 13631 } 13632 return 0; 13633 } 13634 13635 int 13636 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13637 { 13638 lpfc_cmf_stop(phba); 13639 return __lpfc_reg_congestion_buf(phba, 0); 13640 } 13641 13642 int 13643 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13644 { 13645 return __lpfc_reg_congestion_buf(phba, 1); 13646 } 13647 13648 /** 13649 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13650 * @phba: Pointer to HBA context object. 13651 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13652 * 13653 * This function is called in the SLI4 code path to read the port's 13654 * sli4 capabilities. 13655 * 13656 * This function may be be called from any context that can block-wait 13657 * for the completion. The expectation is that this routine is called 13658 * typically from probe_one or from the online routine. 13659 **/ 13660 int 13661 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13662 { 13663 int rc; 13664 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13665 struct lpfc_pc_sli4_params *sli4_params; 13666 uint32_t mbox_tmo; 13667 int length; 13668 bool exp_wqcq_pages = true; 13669 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13670 13671 /* 13672 * By default, the driver assumes the SLI4 port requires RPI 13673 * header postings. The SLI4_PARAM response will correct this 13674 * assumption. 13675 */ 13676 phba->sli4_hba.rpi_hdrs_in_use = 1; 13677 13678 /* Read the port's SLI4 Config Parameters */ 13679 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13680 sizeof(struct lpfc_sli4_cfg_mhdr)); 13681 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13682 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13683 length, LPFC_SLI4_MBX_EMBED); 13684 if (!phba->sli4_hba.intr_enable) 13685 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13686 else { 13687 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13688 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13689 } 13690 if (unlikely(rc)) 13691 return rc; 13692 sli4_params = &phba->sli4_hba.pc_sli4_params; 13693 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13694 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13695 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13696 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13697 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13698 mbx_sli4_parameters); 13699 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13700 mbx_sli4_parameters); 13701 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13702 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13703 else 13704 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13705 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13706 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13707 mbx_sli4_parameters); 13708 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13709 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13710 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13711 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13712 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13713 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13714 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13715 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13716 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13717 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13718 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13719 mbx_sli4_parameters); 13720 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13721 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13722 mbx_sli4_parameters); 13723 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13724 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13725 13726 /* Check for Extended Pre-Registered SGL support */ 13727 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13728 13729 /* Check for firmware nvme support */ 13730 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13731 bf_get(cfg_xib, mbx_sli4_parameters)); 13732 13733 if (rc) { 13734 /* Save this to indicate the Firmware supports NVME */ 13735 sli4_params->nvme = 1; 13736 13737 /* Firmware NVME support, check driver FC4 NVME support */ 13738 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13739 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13740 "6133 Disabling NVME support: " 13741 "FC4 type not supported: x%x\n", 13742 phba->cfg_enable_fc4_type); 13743 goto fcponly; 13744 } 13745 } else { 13746 /* No firmware NVME support, check driver FC4 NVME support */ 13747 sli4_params->nvme = 0; 13748 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13749 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13750 "6101 Disabling NVME support: Not " 13751 "supported by firmware (%d %d) x%x\n", 13752 bf_get(cfg_nvme, mbx_sli4_parameters), 13753 bf_get(cfg_xib, mbx_sli4_parameters), 13754 phba->cfg_enable_fc4_type); 13755 fcponly: 13756 phba->nvmet_support = 0; 13757 phba->cfg_nvmet_mrq = 0; 13758 phba->cfg_nvme_seg_cnt = 0; 13759 13760 /* If no FC4 type support, move to just SCSI support */ 13761 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13762 return -ENODEV; 13763 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13764 } 13765 } 13766 13767 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13768 * accommodate 512K and 1M IOs in a single nvme buf. 13769 */ 13770 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13771 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13772 13773 /* Enable embedded Payload BDE if support is indicated */ 13774 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13775 phba->cfg_enable_pbde = 1; 13776 else 13777 phba->cfg_enable_pbde = 0; 13778 13779 /* 13780 * To support Suppress Response feature we must satisfy 3 conditions. 13781 * lpfc_suppress_rsp module parameter must be set (default). 13782 * In SLI4-Parameters Descriptor: 13783 * Extended Inline Buffers (XIB) must be supported. 13784 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13785 * (double negative). 13786 */ 13787 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13788 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13789 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13790 else 13791 phba->cfg_suppress_rsp = 0; 13792 13793 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13794 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13795 13796 /* Make sure that sge_supp_len can be handled by the driver */ 13797 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13798 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13799 13800 /* 13801 * Check whether the adapter supports an embedded copy of the 13802 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13803 * to use this option, 128-byte WQEs must be used. 13804 */ 13805 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13806 phba->fcp_embed_io = 1; 13807 else 13808 phba->fcp_embed_io = 0; 13809 13810 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13811 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13812 bf_get(cfg_xib, mbx_sli4_parameters), 13813 phba->cfg_enable_pbde, 13814 phba->fcp_embed_io, sli4_params->nvme, 13815 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13816 13817 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13818 LPFC_SLI_INTF_IF_TYPE_2) && 13819 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13820 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13821 exp_wqcq_pages = false; 13822 13823 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13824 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13825 exp_wqcq_pages && 13826 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13827 phba->enab_exp_wqcq_pages = 1; 13828 else 13829 phba->enab_exp_wqcq_pages = 0; 13830 /* 13831 * Check if the SLI port supports MDS Diagnostics 13832 */ 13833 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13834 phba->mds_diags_support = 1; 13835 else 13836 phba->mds_diags_support = 0; 13837 13838 /* 13839 * Check if the SLI port supports NSLER 13840 */ 13841 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13842 phba->nsler = 1; 13843 else 13844 phba->nsler = 0; 13845 13846 return 0; 13847 } 13848 13849 /** 13850 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13851 * @pdev: pointer to PCI device 13852 * @pid: pointer to PCI device identifier 13853 * 13854 * This routine is to be called to attach a device with SLI-3 interface spec 13855 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13856 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13857 * information of the device and driver to see if the driver state that it can 13858 * support this kind of device. If the match is successful, the driver core 13859 * invokes this routine. If this routine determines it can claim the HBA, it 13860 * does all the initialization that it needs to do to handle the HBA properly. 13861 * 13862 * Return code 13863 * 0 - driver can claim the device 13864 * negative value - driver can not claim the device 13865 **/ 13866 static int 13867 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13868 { 13869 struct lpfc_hba *phba; 13870 struct lpfc_vport *vport = NULL; 13871 struct Scsi_Host *shost = NULL; 13872 int error; 13873 uint32_t cfg_mode, intr_mode; 13874 13875 /* Allocate memory for HBA structure */ 13876 phba = lpfc_hba_alloc(pdev); 13877 if (!phba) 13878 return -ENOMEM; 13879 13880 /* Perform generic PCI device enabling operation */ 13881 error = lpfc_enable_pci_dev(phba); 13882 if (error) 13883 goto out_free_phba; 13884 13885 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13886 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13887 if (error) 13888 goto out_disable_pci_dev; 13889 13890 /* Set up SLI-3 specific device PCI memory space */ 13891 error = lpfc_sli_pci_mem_setup(phba); 13892 if (error) { 13893 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13894 "1402 Failed to set up pci memory space.\n"); 13895 goto out_disable_pci_dev; 13896 } 13897 13898 /* Set up SLI-3 specific device driver resources */ 13899 error = lpfc_sli_driver_resource_setup(phba); 13900 if (error) { 13901 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13902 "1404 Failed to set up driver resource.\n"); 13903 goto out_unset_pci_mem_s3; 13904 } 13905 13906 /* Initialize and populate the iocb list per host */ 13907 13908 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13909 if (error) { 13910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13911 "1405 Failed to initialize iocb list.\n"); 13912 goto out_unset_driver_resource_s3; 13913 } 13914 13915 /* Set up common device driver resources */ 13916 error = lpfc_setup_driver_resource_phase2(phba); 13917 if (error) { 13918 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13919 "1406 Failed to set up driver resource.\n"); 13920 goto out_free_iocb_list; 13921 } 13922 13923 /* Get the default values for Model Name and Description */ 13924 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13925 13926 /* Create SCSI host to the physical port */ 13927 error = lpfc_create_shost(phba); 13928 if (error) { 13929 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13930 "1407 Failed to create scsi host.\n"); 13931 goto out_unset_driver_resource; 13932 } 13933 13934 /* Configure sysfs attributes */ 13935 vport = phba->pport; 13936 error = lpfc_alloc_sysfs_attr(vport); 13937 if (error) { 13938 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13939 "1476 Failed to allocate sysfs attr\n"); 13940 goto out_destroy_shost; 13941 } 13942 13943 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13944 /* Now, trying to enable interrupt and bring up the device */ 13945 cfg_mode = phba->cfg_use_msi; 13946 while (true) { 13947 /* Put device to a known state before enabling interrupt */ 13948 lpfc_stop_port(phba); 13949 /* Configure and enable interrupt */ 13950 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 13951 if (intr_mode == LPFC_INTR_ERROR) { 13952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13953 "0431 Failed to enable interrupt.\n"); 13954 error = -ENODEV; 13955 goto out_free_sysfs_attr; 13956 } 13957 /* SLI-3 HBA setup */ 13958 if (lpfc_sli_hba_setup(phba)) { 13959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13960 "1477 Failed to set up hba\n"); 13961 error = -ENODEV; 13962 goto out_remove_device; 13963 } 13964 13965 /* Wait 50ms for the interrupts of previous mailbox commands */ 13966 msleep(50); 13967 /* Check active interrupts on message signaled interrupts */ 13968 if (intr_mode == 0 || 13969 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 13970 /* Log the current active interrupt mode */ 13971 phba->intr_mode = intr_mode; 13972 lpfc_log_intr_mode(phba, intr_mode); 13973 break; 13974 } else { 13975 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13976 "0447 Configure interrupt mode (%d) " 13977 "failed active interrupt test.\n", 13978 intr_mode); 13979 /* Disable the current interrupt mode */ 13980 lpfc_sli_disable_intr(phba); 13981 /* Try next level of interrupt mode */ 13982 cfg_mode = --intr_mode; 13983 } 13984 } 13985 13986 /* Perform post initialization setup */ 13987 lpfc_post_init_setup(phba); 13988 13989 /* Check if there are static vports to be created. */ 13990 lpfc_create_static_vport(phba); 13991 13992 return 0; 13993 13994 out_remove_device: 13995 lpfc_unset_hba(phba); 13996 out_free_sysfs_attr: 13997 lpfc_free_sysfs_attr(vport); 13998 out_destroy_shost: 13999 lpfc_destroy_shost(phba); 14000 out_unset_driver_resource: 14001 lpfc_unset_driver_resource_phase2(phba); 14002 out_free_iocb_list: 14003 lpfc_free_iocb_list(phba); 14004 out_unset_driver_resource_s3: 14005 lpfc_sli_driver_resource_unset(phba); 14006 out_unset_pci_mem_s3: 14007 lpfc_sli_pci_mem_unset(phba); 14008 out_disable_pci_dev: 14009 lpfc_disable_pci_dev(phba); 14010 if (shost) 14011 scsi_host_put(shost); 14012 out_free_phba: 14013 lpfc_hba_free(phba); 14014 return error; 14015 } 14016 14017 /** 14018 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14019 * @pdev: pointer to PCI device 14020 * 14021 * This routine is to be called to disattach a device with SLI-3 interface 14022 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14023 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14024 * device to be removed from the PCI subsystem properly. 14025 **/ 14026 static void 14027 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14028 { 14029 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14030 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14031 struct lpfc_vport **vports; 14032 struct lpfc_hba *phba = vport->phba; 14033 int i; 14034 14035 spin_lock_irq(&phba->hbalock); 14036 vport->load_flag |= FC_UNLOADING; 14037 spin_unlock_irq(&phba->hbalock); 14038 14039 lpfc_free_sysfs_attr(vport); 14040 14041 /* Release all the vports against this physical port */ 14042 vports = lpfc_create_vport_work_array(phba); 14043 if (vports != NULL) 14044 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14045 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14046 continue; 14047 fc_vport_terminate(vports[i]->fc_vport); 14048 } 14049 lpfc_destroy_vport_work_array(phba, vports); 14050 14051 /* Remove FC host with the physical port */ 14052 fc_remove_host(shost); 14053 scsi_remove_host(shost); 14054 14055 /* Clean up all nodes, mailboxes and IOs. */ 14056 lpfc_cleanup(vport); 14057 14058 /* 14059 * Bring down the SLI Layer. This step disable all interrupts, 14060 * clears the rings, discards all mailbox commands, and resets 14061 * the HBA. 14062 */ 14063 14064 /* HBA interrupt will be disabled after this call */ 14065 lpfc_sli_hba_down(phba); 14066 /* Stop kthread signal shall trigger work_done one more time */ 14067 kthread_stop(phba->worker_thread); 14068 /* Final cleanup of txcmplq and reset the HBA */ 14069 lpfc_sli_brdrestart(phba); 14070 14071 kfree(phba->vpi_bmask); 14072 kfree(phba->vpi_ids); 14073 14074 lpfc_stop_hba_timers(phba); 14075 spin_lock_irq(&phba->port_list_lock); 14076 list_del_init(&vport->listentry); 14077 spin_unlock_irq(&phba->port_list_lock); 14078 14079 lpfc_debugfs_terminate(vport); 14080 14081 /* Disable SR-IOV if enabled */ 14082 if (phba->cfg_sriov_nr_virtfn) 14083 pci_disable_sriov(pdev); 14084 14085 /* Disable interrupt */ 14086 lpfc_sli_disable_intr(phba); 14087 14088 scsi_host_put(shost); 14089 14090 /* 14091 * Call scsi_free before mem_free since scsi bufs are released to their 14092 * corresponding pools here. 14093 */ 14094 lpfc_scsi_free(phba); 14095 lpfc_free_iocb_list(phba); 14096 14097 lpfc_mem_free_all(phba); 14098 14099 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14100 phba->hbqslimp.virt, phba->hbqslimp.phys); 14101 14102 /* Free resources associated with SLI2 interface */ 14103 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14104 phba->slim2p.virt, phba->slim2p.phys); 14105 14106 /* unmap adapter SLIM and Control Registers */ 14107 iounmap(phba->ctrl_regs_memmap_p); 14108 iounmap(phba->slim_memmap_p); 14109 14110 lpfc_hba_free(phba); 14111 14112 pci_release_mem_regions(pdev); 14113 pci_disable_device(pdev); 14114 } 14115 14116 /** 14117 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14118 * @dev_d: pointer to device 14119 * 14120 * This routine is to be called from the kernel's PCI subsystem to support 14121 * system Power Management (PM) to device with SLI-3 interface spec. When 14122 * PM invokes this method, it quiesces the device by stopping the driver's 14123 * worker thread for the device, turning off device's interrupt and DMA, 14124 * and bring the device offline. Note that as the driver implements the 14125 * minimum PM requirements to a power-aware driver's PM support for the 14126 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14127 * to the suspend() method call will be treated as SUSPEND and the driver will 14128 * fully reinitialize its device during resume() method call, the driver will 14129 * set device to PCI_D3hot state in PCI config space instead of setting it 14130 * according to the @msg provided by the PM. 14131 * 14132 * Return code 14133 * 0 - driver suspended the device 14134 * Error otherwise 14135 **/ 14136 static int __maybe_unused 14137 lpfc_pci_suspend_one_s3(struct device *dev_d) 14138 { 14139 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14140 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14141 14142 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14143 "0473 PCI device Power Management suspend.\n"); 14144 14145 /* Bring down the device */ 14146 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14147 lpfc_offline(phba); 14148 kthread_stop(phba->worker_thread); 14149 14150 /* Disable interrupt from device */ 14151 lpfc_sli_disable_intr(phba); 14152 14153 return 0; 14154 } 14155 14156 /** 14157 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14158 * @dev_d: pointer to device 14159 * 14160 * This routine is to be called from the kernel's PCI subsystem to support 14161 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14162 * invokes this method, it restores the device's PCI config space state and 14163 * fully reinitializes the device and brings it online. Note that as the 14164 * driver implements the minimum PM requirements to a power-aware driver's 14165 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14166 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14167 * driver will fully reinitialize its device during resume() method call, 14168 * the device will be set to PCI_D0 directly in PCI config space before 14169 * restoring the state. 14170 * 14171 * Return code 14172 * 0 - driver suspended the device 14173 * Error otherwise 14174 **/ 14175 static int __maybe_unused 14176 lpfc_pci_resume_one_s3(struct device *dev_d) 14177 { 14178 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14179 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14180 uint32_t intr_mode; 14181 int error; 14182 14183 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14184 "0452 PCI device Power Management resume.\n"); 14185 14186 /* Startup the kernel thread for this host adapter. */ 14187 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14188 "lpfc_worker_%d", phba->brd_no); 14189 if (IS_ERR(phba->worker_thread)) { 14190 error = PTR_ERR(phba->worker_thread); 14191 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14192 "0434 PM resume failed to start worker " 14193 "thread: error=x%x.\n", error); 14194 return error; 14195 } 14196 14197 /* Init cpu_map array */ 14198 lpfc_cpu_map_array_init(phba); 14199 /* Init hba_eq_hdl array */ 14200 lpfc_hba_eq_hdl_array_init(phba); 14201 /* Configure and enable interrupt */ 14202 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14203 if (intr_mode == LPFC_INTR_ERROR) { 14204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14205 "0430 PM resume Failed to enable interrupt\n"); 14206 return -EIO; 14207 } else 14208 phba->intr_mode = intr_mode; 14209 14210 /* Restart HBA and bring it online */ 14211 lpfc_sli_brdrestart(phba); 14212 lpfc_online(phba); 14213 14214 /* Log the current active interrupt mode */ 14215 lpfc_log_intr_mode(phba, phba->intr_mode); 14216 14217 return 0; 14218 } 14219 14220 /** 14221 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14222 * @phba: pointer to lpfc hba data structure. 14223 * 14224 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14225 * aborts all the outstanding SCSI I/Os to the pci device. 14226 **/ 14227 static void 14228 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14229 { 14230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14231 "2723 PCI channel I/O abort preparing for recovery\n"); 14232 14233 /* 14234 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14235 * and let the SCSI mid-layer to retry them to recover. 14236 */ 14237 lpfc_sli_abort_fcp_rings(phba); 14238 } 14239 14240 /** 14241 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14242 * @phba: pointer to lpfc hba data structure. 14243 * 14244 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14245 * disables the device interrupt and pci device, and aborts the internal FCP 14246 * pending I/Os. 14247 **/ 14248 static void 14249 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14250 { 14251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14252 "2710 PCI channel disable preparing for reset\n"); 14253 14254 /* Block any management I/Os to the device */ 14255 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14256 14257 /* Block all SCSI devices' I/Os on the host */ 14258 lpfc_scsi_dev_block(phba); 14259 14260 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14261 lpfc_sli_flush_io_rings(phba); 14262 14263 /* stop all timers */ 14264 lpfc_stop_hba_timers(phba); 14265 14266 /* Disable interrupt and pci device */ 14267 lpfc_sli_disable_intr(phba); 14268 pci_disable_device(phba->pcidev); 14269 } 14270 14271 /** 14272 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14273 * @phba: pointer to lpfc hba data structure. 14274 * 14275 * This routine is called to prepare the SLI3 device for PCI slot permanently 14276 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14277 * pending I/Os. 14278 **/ 14279 static void 14280 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14281 { 14282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14283 "2711 PCI channel permanent disable for failure\n"); 14284 /* Block all SCSI devices' I/Os on the host */ 14285 lpfc_scsi_dev_block(phba); 14286 lpfc_sli4_prep_dev_for_reset(phba); 14287 14288 /* stop all timers */ 14289 lpfc_stop_hba_timers(phba); 14290 14291 /* Clean up all driver's outstanding SCSI I/Os */ 14292 lpfc_sli_flush_io_rings(phba); 14293 } 14294 14295 /** 14296 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14297 * @pdev: pointer to PCI device. 14298 * @state: the current PCI connection state. 14299 * 14300 * This routine is called from the PCI subsystem for I/O error handling to 14301 * device with SLI-3 interface spec. This function is called by the PCI 14302 * subsystem after a PCI bus error affecting this device has been detected. 14303 * When this function is invoked, it will need to stop all the I/Os and 14304 * interrupt(s) to the device. Once that is done, it will return 14305 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14306 * as desired. 14307 * 14308 * Return codes 14309 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14310 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14311 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14312 **/ 14313 static pci_ers_result_t 14314 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14315 { 14316 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14317 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14318 14319 switch (state) { 14320 case pci_channel_io_normal: 14321 /* Non-fatal error, prepare for recovery */ 14322 lpfc_sli_prep_dev_for_recover(phba); 14323 return PCI_ERS_RESULT_CAN_RECOVER; 14324 case pci_channel_io_frozen: 14325 /* Fatal error, prepare for slot reset */ 14326 lpfc_sli_prep_dev_for_reset(phba); 14327 return PCI_ERS_RESULT_NEED_RESET; 14328 case pci_channel_io_perm_failure: 14329 /* Permanent failure, prepare for device down */ 14330 lpfc_sli_prep_dev_for_perm_failure(phba); 14331 return PCI_ERS_RESULT_DISCONNECT; 14332 default: 14333 /* Unknown state, prepare and request slot reset */ 14334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14335 "0472 Unknown PCI error state: x%x\n", state); 14336 lpfc_sli_prep_dev_for_reset(phba); 14337 return PCI_ERS_RESULT_NEED_RESET; 14338 } 14339 } 14340 14341 /** 14342 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14343 * @pdev: pointer to PCI device. 14344 * 14345 * This routine is called from the PCI subsystem for error handling to 14346 * device with SLI-3 interface spec. This is called after PCI bus has been 14347 * reset to restart the PCI card from scratch, as if from a cold-boot. 14348 * During the PCI subsystem error recovery, after driver returns 14349 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14350 * recovery and then call this routine before calling the .resume method 14351 * to recover the device. This function will initialize the HBA device, 14352 * enable the interrupt, but it will just put the HBA to offline state 14353 * without passing any I/O traffic. 14354 * 14355 * Return codes 14356 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14357 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14358 */ 14359 static pci_ers_result_t 14360 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14361 { 14362 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14363 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14364 struct lpfc_sli *psli = &phba->sli; 14365 uint32_t intr_mode; 14366 14367 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14368 if (pci_enable_device_mem(pdev)) { 14369 printk(KERN_ERR "lpfc: Cannot re-enable " 14370 "PCI device after reset.\n"); 14371 return PCI_ERS_RESULT_DISCONNECT; 14372 } 14373 14374 pci_restore_state(pdev); 14375 14376 /* 14377 * As the new kernel behavior of pci_restore_state() API call clears 14378 * device saved_state flag, need to save the restored state again. 14379 */ 14380 pci_save_state(pdev); 14381 14382 if (pdev->is_busmaster) 14383 pci_set_master(pdev); 14384 14385 spin_lock_irq(&phba->hbalock); 14386 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14387 spin_unlock_irq(&phba->hbalock); 14388 14389 /* Configure and enable interrupt */ 14390 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14391 if (intr_mode == LPFC_INTR_ERROR) { 14392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14393 "0427 Cannot re-enable interrupt after " 14394 "slot reset.\n"); 14395 return PCI_ERS_RESULT_DISCONNECT; 14396 } else 14397 phba->intr_mode = intr_mode; 14398 14399 /* Take device offline, it will perform cleanup */ 14400 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14401 lpfc_offline(phba); 14402 lpfc_sli_brdrestart(phba); 14403 14404 /* Log the current active interrupt mode */ 14405 lpfc_log_intr_mode(phba, phba->intr_mode); 14406 14407 return PCI_ERS_RESULT_RECOVERED; 14408 } 14409 14410 /** 14411 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14412 * @pdev: pointer to PCI device 14413 * 14414 * This routine is called from the PCI subsystem for error handling to device 14415 * with SLI-3 interface spec. It is called when kernel error recovery tells 14416 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14417 * error recovery. After this call, traffic can start to flow from this device 14418 * again. 14419 */ 14420 static void 14421 lpfc_io_resume_s3(struct pci_dev *pdev) 14422 { 14423 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14424 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14425 14426 /* Bring device online, it will be no-op for non-fatal error resume */ 14427 lpfc_online(phba); 14428 } 14429 14430 /** 14431 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14432 * @phba: pointer to lpfc hba data structure. 14433 * 14434 * returns the number of ELS/CT IOCBs to reserve 14435 **/ 14436 int 14437 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14438 { 14439 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14440 14441 if (phba->sli_rev == LPFC_SLI_REV4) { 14442 if (max_xri <= 100) 14443 return 10; 14444 else if (max_xri <= 256) 14445 return 25; 14446 else if (max_xri <= 512) 14447 return 50; 14448 else if (max_xri <= 1024) 14449 return 100; 14450 else if (max_xri <= 1536) 14451 return 150; 14452 else if (max_xri <= 2048) 14453 return 200; 14454 else 14455 return 250; 14456 } else 14457 return 0; 14458 } 14459 14460 /** 14461 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14462 * @phba: pointer to lpfc hba data structure. 14463 * 14464 * returns the number of ELS/CT + NVMET IOCBs to reserve 14465 **/ 14466 int 14467 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14468 { 14469 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14470 14471 if (phba->nvmet_support) 14472 max_xri += LPFC_NVMET_BUF_POST; 14473 return max_xri; 14474 } 14475 14476 14477 static int 14478 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14479 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14480 const struct firmware *fw) 14481 { 14482 int rc; 14483 u8 sli_family; 14484 14485 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14486 /* Three cases: (1) FW was not supported on the detected adapter. 14487 * (2) FW update has been locked out administratively. 14488 * (3) Some other error during FW update. 14489 * In each case, an unmaskable message is written to the console 14490 * for admin diagnosis. 14491 */ 14492 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14493 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14494 magic_number != MAGIC_NUMBER_G6) || 14495 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14496 magic_number != MAGIC_NUMBER_G7) || 14497 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14498 magic_number != MAGIC_NUMBER_G7P)) { 14499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14500 "3030 This firmware version is not supported on" 14501 " this HBA model. Device:%x Magic:%x Type:%x " 14502 "ID:%x Size %d %zd\n", 14503 phba->pcidev->device, magic_number, ftype, fid, 14504 fsize, fw->size); 14505 rc = -EINVAL; 14506 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14508 "3021 Firmware downloads have been prohibited " 14509 "by a system configuration setting on " 14510 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14511 "%zd\n", 14512 phba->pcidev->device, magic_number, ftype, fid, 14513 fsize, fw->size); 14514 rc = -EACCES; 14515 } else { 14516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14517 "3022 FW Download failed. Add Status x%x " 14518 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14519 "%zd\n", 14520 offset, phba->pcidev->device, magic_number, 14521 ftype, fid, fsize, fw->size); 14522 rc = -EIO; 14523 } 14524 return rc; 14525 } 14526 14527 /** 14528 * lpfc_write_firmware - attempt to write a firmware image to the port 14529 * @fw: pointer to firmware image returned from request_firmware. 14530 * @context: pointer to firmware image returned from request_firmware. 14531 * 14532 **/ 14533 static void 14534 lpfc_write_firmware(const struct firmware *fw, void *context) 14535 { 14536 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14537 char fwrev[FW_REV_STR_SIZE]; 14538 struct lpfc_grp_hdr *image; 14539 struct list_head dma_buffer_list; 14540 int i, rc = 0; 14541 struct lpfc_dmabuf *dmabuf, *next; 14542 uint32_t offset = 0, temp_offset = 0; 14543 uint32_t magic_number, ftype, fid, fsize; 14544 14545 /* It can be null in no-wait mode, sanity check */ 14546 if (!fw) { 14547 rc = -ENXIO; 14548 goto out; 14549 } 14550 image = (struct lpfc_grp_hdr *)fw->data; 14551 14552 magic_number = be32_to_cpu(image->magic_number); 14553 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14554 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14555 fsize = be32_to_cpu(image->size); 14556 14557 INIT_LIST_HEAD(&dma_buffer_list); 14558 lpfc_decode_firmware_rev(phba, fwrev, 1); 14559 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14561 "3023 Updating Firmware, Current Version:%s " 14562 "New Version:%s\n", 14563 fwrev, image->revision); 14564 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14565 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14566 GFP_KERNEL); 14567 if (!dmabuf) { 14568 rc = -ENOMEM; 14569 goto release_out; 14570 } 14571 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14572 SLI4_PAGE_SIZE, 14573 &dmabuf->phys, 14574 GFP_KERNEL); 14575 if (!dmabuf->virt) { 14576 kfree(dmabuf); 14577 rc = -ENOMEM; 14578 goto release_out; 14579 } 14580 list_add_tail(&dmabuf->list, &dma_buffer_list); 14581 } 14582 while (offset < fw->size) { 14583 temp_offset = offset; 14584 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14585 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14586 memcpy(dmabuf->virt, 14587 fw->data + temp_offset, 14588 fw->size - temp_offset); 14589 temp_offset = fw->size; 14590 break; 14591 } 14592 memcpy(dmabuf->virt, fw->data + temp_offset, 14593 SLI4_PAGE_SIZE); 14594 temp_offset += SLI4_PAGE_SIZE; 14595 } 14596 rc = lpfc_wr_object(phba, &dma_buffer_list, 14597 (fw->size - offset), &offset); 14598 if (rc) { 14599 rc = lpfc_log_write_firmware_error(phba, offset, 14600 magic_number, 14601 ftype, 14602 fid, 14603 fsize, 14604 fw); 14605 goto release_out; 14606 } 14607 } 14608 rc = offset; 14609 } else 14610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14611 "3029 Skipped Firmware update, Current " 14612 "Version:%s New Version:%s\n", 14613 fwrev, image->revision); 14614 14615 release_out: 14616 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14617 list_del(&dmabuf->list); 14618 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14619 dmabuf->virt, dmabuf->phys); 14620 kfree(dmabuf); 14621 } 14622 release_firmware(fw); 14623 out: 14624 if (rc < 0) 14625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14626 "3062 Firmware update error, status %d.\n", rc); 14627 else 14628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14629 "3024 Firmware update success: size %d.\n", rc); 14630 } 14631 14632 /** 14633 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14634 * @phba: pointer to lpfc hba data structure. 14635 * @fw_upgrade: which firmware to update. 14636 * 14637 * This routine is called to perform Linux generic firmware upgrade on device 14638 * that supports such feature. 14639 **/ 14640 int 14641 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14642 { 14643 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 14644 int ret; 14645 const struct firmware *fw; 14646 14647 /* Only supported on SLI4 interface type 2 for now */ 14648 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14649 LPFC_SLI_INTF_IF_TYPE_2) 14650 return -EPERM; 14651 14652 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 14653 14654 if (fw_upgrade == INT_FW_UPGRADE) { 14655 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14656 file_name, &phba->pcidev->dev, 14657 GFP_KERNEL, (void *)phba, 14658 lpfc_write_firmware); 14659 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14660 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14661 if (!ret) 14662 lpfc_write_firmware(fw, (void *)phba); 14663 } else { 14664 ret = -EINVAL; 14665 } 14666 14667 return ret; 14668 } 14669 14670 /** 14671 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14672 * @pdev: pointer to PCI device 14673 * @pid: pointer to PCI device identifier 14674 * 14675 * This routine is called from the kernel's PCI subsystem to device with 14676 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14677 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14678 * information of the device and driver to see if the driver state that it 14679 * can support this kind of device. If the match is successful, the driver 14680 * core invokes this routine. If this routine determines it can claim the HBA, 14681 * it does all the initialization that it needs to do to handle the HBA 14682 * properly. 14683 * 14684 * Return code 14685 * 0 - driver can claim the device 14686 * negative value - driver can not claim the device 14687 **/ 14688 static int 14689 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14690 { 14691 struct lpfc_hba *phba; 14692 struct lpfc_vport *vport = NULL; 14693 struct Scsi_Host *shost = NULL; 14694 int error; 14695 uint32_t cfg_mode, intr_mode; 14696 14697 /* Allocate memory for HBA structure */ 14698 phba = lpfc_hba_alloc(pdev); 14699 if (!phba) 14700 return -ENOMEM; 14701 14702 INIT_LIST_HEAD(&phba->poll_list); 14703 14704 /* Perform generic PCI device enabling operation */ 14705 error = lpfc_enable_pci_dev(phba); 14706 if (error) 14707 goto out_free_phba; 14708 14709 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14710 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14711 if (error) 14712 goto out_disable_pci_dev; 14713 14714 /* Set up SLI-4 specific device PCI memory space */ 14715 error = lpfc_sli4_pci_mem_setup(phba); 14716 if (error) { 14717 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14718 "1410 Failed to set up pci memory space.\n"); 14719 goto out_disable_pci_dev; 14720 } 14721 14722 /* Set up SLI-4 Specific device driver resources */ 14723 error = lpfc_sli4_driver_resource_setup(phba); 14724 if (error) { 14725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14726 "1412 Failed to set up driver resource.\n"); 14727 goto out_unset_pci_mem_s4; 14728 } 14729 14730 INIT_LIST_HEAD(&phba->active_rrq_list); 14731 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14732 14733 /* Set up common device driver resources */ 14734 error = lpfc_setup_driver_resource_phase2(phba); 14735 if (error) { 14736 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14737 "1414 Failed to set up driver resource.\n"); 14738 goto out_unset_driver_resource_s4; 14739 } 14740 14741 /* Get the default values for Model Name and Description */ 14742 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14743 14744 /* Now, trying to enable interrupt and bring up the device */ 14745 cfg_mode = phba->cfg_use_msi; 14746 14747 /* Put device to a known state before enabling interrupt */ 14748 phba->pport = NULL; 14749 lpfc_stop_port(phba); 14750 14751 /* Init cpu_map array */ 14752 lpfc_cpu_map_array_init(phba); 14753 14754 /* Init hba_eq_hdl array */ 14755 lpfc_hba_eq_hdl_array_init(phba); 14756 14757 /* Configure and enable interrupt */ 14758 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14759 if (intr_mode == LPFC_INTR_ERROR) { 14760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14761 "0426 Failed to enable interrupt.\n"); 14762 error = -ENODEV; 14763 goto out_unset_driver_resource; 14764 } 14765 /* Default to single EQ for non-MSI-X */ 14766 if (phba->intr_type != MSIX) { 14767 phba->cfg_irq_chann = 1; 14768 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14769 if (phba->nvmet_support) 14770 phba->cfg_nvmet_mrq = 1; 14771 } 14772 } 14773 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14774 14775 /* Create SCSI host to the physical port */ 14776 error = lpfc_create_shost(phba); 14777 if (error) { 14778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14779 "1415 Failed to create scsi host.\n"); 14780 goto out_disable_intr; 14781 } 14782 vport = phba->pport; 14783 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14784 14785 /* Configure sysfs attributes */ 14786 error = lpfc_alloc_sysfs_attr(vport); 14787 if (error) { 14788 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14789 "1416 Failed to allocate sysfs attr\n"); 14790 goto out_destroy_shost; 14791 } 14792 14793 /* Set up SLI-4 HBA */ 14794 if (lpfc_sli4_hba_setup(phba)) { 14795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14796 "1421 Failed to set up hba\n"); 14797 error = -ENODEV; 14798 goto out_free_sysfs_attr; 14799 } 14800 14801 /* Log the current active interrupt mode */ 14802 phba->intr_mode = intr_mode; 14803 lpfc_log_intr_mode(phba, intr_mode); 14804 14805 /* Perform post initialization setup */ 14806 lpfc_post_init_setup(phba); 14807 14808 /* NVME support in FW earlier in the driver load corrects the 14809 * FC4 type making a check for nvme_support unnecessary. 14810 */ 14811 if (phba->nvmet_support == 0) { 14812 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14813 /* Create NVME binding with nvme_fc_transport. This 14814 * ensures the vport is initialized. If the localport 14815 * create fails, it should not unload the driver to 14816 * support field issues. 14817 */ 14818 error = lpfc_nvme_create_localport(vport); 14819 if (error) { 14820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14821 "6004 NVME registration " 14822 "failed, error x%x\n", 14823 error); 14824 } 14825 } 14826 } 14827 14828 /* check for firmware upgrade or downgrade */ 14829 if (phba->cfg_request_firmware_upgrade) 14830 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14831 14832 /* Check if there are static vports to be created. */ 14833 lpfc_create_static_vport(phba); 14834 14835 /* Enable RAS FW log support */ 14836 lpfc_sli4_ras_setup(phba); 14837 14838 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14839 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14840 14841 return 0; 14842 14843 out_free_sysfs_attr: 14844 lpfc_free_sysfs_attr(vport); 14845 out_destroy_shost: 14846 lpfc_destroy_shost(phba); 14847 out_disable_intr: 14848 lpfc_sli4_disable_intr(phba); 14849 out_unset_driver_resource: 14850 lpfc_unset_driver_resource_phase2(phba); 14851 out_unset_driver_resource_s4: 14852 lpfc_sli4_driver_resource_unset(phba); 14853 out_unset_pci_mem_s4: 14854 lpfc_sli4_pci_mem_unset(phba); 14855 out_disable_pci_dev: 14856 lpfc_disable_pci_dev(phba); 14857 if (shost) 14858 scsi_host_put(shost); 14859 out_free_phba: 14860 lpfc_hba_free(phba); 14861 return error; 14862 } 14863 14864 /** 14865 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14866 * @pdev: pointer to PCI device 14867 * 14868 * This routine is called from the kernel's PCI subsystem to device with 14869 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14870 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14871 * device to be removed from the PCI subsystem properly. 14872 **/ 14873 static void 14874 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14875 { 14876 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14877 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14878 struct lpfc_vport **vports; 14879 struct lpfc_hba *phba = vport->phba; 14880 int i; 14881 14882 /* Mark the device unloading flag */ 14883 spin_lock_irq(&phba->hbalock); 14884 vport->load_flag |= FC_UNLOADING; 14885 spin_unlock_irq(&phba->hbalock); 14886 if (phba->cgn_i) 14887 lpfc_unreg_congestion_buf(phba); 14888 14889 lpfc_free_sysfs_attr(vport); 14890 14891 /* Release all the vports against this physical port */ 14892 vports = lpfc_create_vport_work_array(phba); 14893 if (vports != NULL) 14894 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14895 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14896 continue; 14897 fc_vport_terminate(vports[i]->fc_vport); 14898 } 14899 lpfc_destroy_vport_work_array(phba, vports); 14900 14901 /* Remove FC host with the physical port */ 14902 fc_remove_host(shost); 14903 scsi_remove_host(shost); 14904 14905 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14906 * localports are destroyed after to cleanup all transport memory. 14907 */ 14908 lpfc_cleanup(vport); 14909 lpfc_nvmet_destroy_targetport(phba); 14910 lpfc_nvme_destroy_localport(vport); 14911 14912 /* De-allocate multi-XRI pools */ 14913 if (phba->cfg_xri_rebalancing) 14914 lpfc_destroy_multixri_pools(phba); 14915 14916 /* 14917 * Bring down the SLI Layer. This step disables all interrupts, 14918 * clears the rings, discards all mailbox commands, and resets 14919 * the HBA FCoE function. 14920 */ 14921 lpfc_debugfs_terminate(vport); 14922 14923 lpfc_stop_hba_timers(phba); 14924 spin_lock_irq(&phba->port_list_lock); 14925 list_del_init(&vport->listentry); 14926 spin_unlock_irq(&phba->port_list_lock); 14927 14928 /* Perform scsi free before driver resource_unset since scsi 14929 * buffers are released to their corresponding pools here. 14930 */ 14931 lpfc_io_free(phba); 14932 lpfc_free_iocb_list(phba); 14933 lpfc_sli4_hba_unset(phba); 14934 14935 lpfc_unset_driver_resource_phase2(phba); 14936 lpfc_sli4_driver_resource_unset(phba); 14937 14938 /* Unmap adapter Control and Doorbell registers */ 14939 lpfc_sli4_pci_mem_unset(phba); 14940 14941 /* Release PCI resources and disable device's PCI function */ 14942 scsi_host_put(shost); 14943 lpfc_disable_pci_dev(phba); 14944 14945 /* Finally, free the driver's device data structure */ 14946 lpfc_hba_free(phba); 14947 14948 return; 14949 } 14950 14951 /** 14952 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 14953 * @dev_d: pointer to device 14954 * 14955 * This routine is called from the kernel's PCI subsystem to support system 14956 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 14957 * this method, it quiesces the device by stopping the driver's worker 14958 * thread for the device, turning off device's interrupt and DMA, and bring 14959 * the device offline. Note that as the driver implements the minimum PM 14960 * requirements to a power-aware driver's PM support for suspend/resume -- all 14961 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 14962 * method call will be treated as SUSPEND and the driver will fully 14963 * reinitialize its device during resume() method call, the driver will set 14964 * device to PCI_D3hot state in PCI config space instead of setting it 14965 * according to the @msg provided by the PM. 14966 * 14967 * Return code 14968 * 0 - driver suspended the device 14969 * Error otherwise 14970 **/ 14971 static int __maybe_unused 14972 lpfc_pci_suspend_one_s4(struct device *dev_d) 14973 { 14974 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14975 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14976 14977 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14978 "2843 PCI device Power Management suspend.\n"); 14979 14980 /* Bring down the device */ 14981 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14982 lpfc_offline(phba); 14983 kthread_stop(phba->worker_thread); 14984 14985 /* Disable interrupt from device */ 14986 lpfc_sli4_disable_intr(phba); 14987 lpfc_sli4_queue_destroy(phba); 14988 14989 return 0; 14990 } 14991 14992 /** 14993 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 14994 * @dev_d: pointer to device 14995 * 14996 * This routine is called from the kernel's PCI subsystem to support system 14997 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 14998 * this method, it restores the device's PCI config space state and fully 14999 * reinitializes the device and brings it online. Note that as the driver 15000 * implements the minimum PM requirements to a power-aware driver's PM for 15001 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15002 * to the suspend() method call will be treated as SUSPEND and the driver 15003 * will fully reinitialize its device during resume() method call, the device 15004 * will be set to PCI_D0 directly in PCI config space before restoring the 15005 * state. 15006 * 15007 * Return code 15008 * 0 - driver suspended the device 15009 * Error otherwise 15010 **/ 15011 static int __maybe_unused 15012 lpfc_pci_resume_one_s4(struct device *dev_d) 15013 { 15014 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15015 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15016 uint32_t intr_mode; 15017 int error; 15018 15019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15020 "0292 PCI device Power Management resume.\n"); 15021 15022 /* Startup the kernel thread for this host adapter. */ 15023 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15024 "lpfc_worker_%d", phba->brd_no); 15025 if (IS_ERR(phba->worker_thread)) { 15026 error = PTR_ERR(phba->worker_thread); 15027 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15028 "0293 PM resume failed to start worker " 15029 "thread: error=x%x.\n", error); 15030 return error; 15031 } 15032 15033 /* Configure and enable interrupt */ 15034 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15035 if (intr_mode == LPFC_INTR_ERROR) { 15036 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15037 "0294 PM resume Failed to enable interrupt\n"); 15038 return -EIO; 15039 } else 15040 phba->intr_mode = intr_mode; 15041 15042 /* Restart HBA and bring it online */ 15043 lpfc_sli_brdrestart(phba); 15044 lpfc_online(phba); 15045 15046 /* Log the current active interrupt mode */ 15047 lpfc_log_intr_mode(phba, phba->intr_mode); 15048 15049 return 0; 15050 } 15051 15052 /** 15053 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15054 * @phba: pointer to lpfc hba data structure. 15055 * 15056 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15057 * aborts all the outstanding SCSI I/Os to the pci device. 15058 **/ 15059 static void 15060 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15061 { 15062 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15063 "2828 PCI channel I/O abort preparing for recovery\n"); 15064 /* 15065 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15066 * and let the SCSI mid-layer to retry them to recover. 15067 */ 15068 lpfc_sli_abort_fcp_rings(phba); 15069 } 15070 15071 /** 15072 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15073 * @phba: pointer to lpfc hba data structure. 15074 * 15075 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15076 * disables the device interrupt and pci device, and aborts the internal FCP 15077 * pending I/Os. 15078 **/ 15079 static void 15080 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15081 { 15082 int offline = pci_channel_offline(phba->pcidev); 15083 15084 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15085 "2826 PCI channel disable preparing for reset offline" 15086 " %d\n", offline); 15087 15088 /* Block any management I/Os to the device */ 15089 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15090 15091 15092 /* HBA_PCI_ERR was set in io_error_detect */ 15093 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15094 /* Flush all driver's outstanding I/Os as we are to reset */ 15095 lpfc_sli_flush_io_rings(phba); 15096 lpfc_offline(phba); 15097 15098 /* stop all timers */ 15099 lpfc_stop_hba_timers(phba); 15100 15101 lpfc_sli4_queue_destroy(phba); 15102 /* Disable interrupt and pci device */ 15103 lpfc_sli4_disable_intr(phba); 15104 pci_disable_device(phba->pcidev); 15105 } 15106 15107 /** 15108 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15109 * @phba: pointer to lpfc hba data structure. 15110 * 15111 * This routine is called to prepare the SLI4 device for PCI slot permanently 15112 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15113 * pending I/Os. 15114 **/ 15115 static void 15116 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15117 { 15118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15119 "2827 PCI channel permanent disable for failure\n"); 15120 15121 /* Block all SCSI devices' I/Os on the host */ 15122 lpfc_scsi_dev_block(phba); 15123 15124 /* stop all timers */ 15125 lpfc_stop_hba_timers(phba); 15126 15127 /* Clean up all driver's outstanding I/Os */ 15128 lpfc_sli_flush_io_rings(phba); 15129 } 15130 15131 /** 15132 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15133 * @pdev: pointer to PCI device. 15134 * @state: the current PCI connection state. 15135 * 15136 * This routine is called from the PCI subsystem for error handling to device 15137 * with SLI-4 interface spec. This function is called by the PCI subsystem 15138 * after a PCI bus error affecting this device has been detected. When this 15139 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15140 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15141 * for the PCI subsystem to perform proper recovery as desired. 15142 * 15143 * Return codes 15144 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15145 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15146 **/ 15147 static pci_ers_result_t 15148 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15149 { 15150 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15151 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15152 bool hba_pci_err; 15153 15154 switch (state) { 15155 case pci_channel_io_normal: 15156 /* Non-fatal error, prepare for recovery */ 15157 lpfc_sli4_prep_dev_for_recover(phba); 15158 return PCI_ERS_RESULT_CAN_RECOVER; 15159 case pci_channel_io_frozen: 15160 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15161 /* Fatal error, prepare for slot reset */ 15162 if (!hba_pci_err) 15163 lpfc_sli4_prep_dev_for_reset(phba); 15164 else 15165 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15166 "2832 Already handling PCI error " 15167 "state: x%x\n", state); 15168 return PCI_ERS_RESULT_NEED_RESET; 15169 case pci_channel_io_perm_failure: 15170 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15171 /* Permanent failure, prepare for device down */ 15172 lpfc_sli4_prep_dev_for_perm_failure(phba); 15173 return PCI_ERS_RESULT_DISCONNECT; 15174 default: 15175 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15176 if (!hba_pci_err) 15177 lpfc_sli4_prep_dev_for_reset(phba); 15178 /* Unknown state, prepare and request slot reset */ 15179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15180 "2825 Unknown PCI error state: x%x\n", state); 15181 lpfc_sli4_prep_dev_for_reset(phba); 15182 return PCI_ERS_RESULT_NEED_RESET; 15183 } 15184 } 15185 15186 /** 15187 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15188 * @pdev: pointer to PCI device. 15189 * 15190 * This routine is called from the PCI subsystem for error handling to device 15191 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15192 * restart the PCI card from scratch, as if from a cold-boot. During the 15193 * PCI subsystem error recovery, after the driver returns 15194 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15195 * recovery and then call this routine before calling the .resume method to 15196 * recover the device. This function will initialize the HBA device, enable 15197 * the interrupt, but it will just put the HBA to offline state without 15198 * passing any I/O traffic. 15199 * 15200 * Return codes 15201 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15202 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15203 */ 15204 static pci_ers_result_t 15205 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15206 { 15207 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15208 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15209 struct lpfc_sli *psli = &phba->sli; 15210 uint32_t intr_mode; 15211 bool hba_pci_err; 15212 15213 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15214 if (pci_enable_device_mem(pdev)) { 15215 printk(KERN_ERR "lpfc: Cannot re-enable " 15216 "PCI device after reset.\n"); 15217 return PCI_ERS_RESULT_DISCONNECT; 15218 } 15219 15220 pci_restore_state(pdev); 15221 15222 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15223 if (!hba_pci_err) 15224 dev_info(&pdev->dev, 15225 "hba_pci_err was not set, recovering slot reset.\n"); 15226 /* 15227 * As the new kernel behavior of pci_restore_state() API call clears 15228 * device saved_state flag, need to save the restored state again. 15229 */ 15230 pci_save_state(pdev); 15231 15232 if (pdev->is_busmaster) 15233 pci_set_master(pdev); 15234 15235 spin_lock_irq(&phba->hbalock); 15236 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15237 spin_unlock_irq(&phba->hbalock); 15238 15239 /* Init cpu_map array */ 15240 lpfc_cpu_map_array_init(phba); 15241 /* Configure and enable interrupt */ 15242 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15243 if (intr_mode == LPFC_INTR_ERROR) { 15244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15245 "2824 Cannot re-enable interrupt after " 15246 "slot reset.\n"); 15247 return PCI_ERS_RESULT_DISCONNECT; 15248 } else 15249 phba->intr_mode = intr_mode; 15250 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15251 15252 /* Log the current active interrupt mode */ 15253 lpfc_log_intr_mode(phba, phba->intr_mode); 15254 15255 return PCI_ERS_RESULT_RECOVERED; 15256 } 15257 15258 /** 15259 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15260 * @pdev: pointer to PCI device 15261 * 15262 * This routine is called from the PCI subsystem for error handling to device 15263 * with SLI-4 interface spec. It is called when kernel error recovery tells 15264 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15265 * error recovery. After this call, traffic can start to flow from this device 15266 * again. 15267 **/ 15268 static void 15269 lpfc_io_resume_s4(struct pci_dev *pdev) 15270 { 15271 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15272 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15273 15274 /* 15275 * In case of slot reset, as function reset is performed through 15276 * mailbox command which needs DMA to be enabled, this operation 15277 * has to be moved to the io resume phase. Taking device offline 15278 * will perform the necessary cleanup. 15279 */ 15280 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15281 /* Perform device reset */ 15282 lpfc_sli_brdrestart(phba); 15283 /* Bring the device back online */ 15284 lpfc_online(phba); 15285 } 15286 } 15287 15288 /** 15289 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15290 * @pdev: pointer to PCI device 15291 * @pid: pointer to PCI device identifier 15292 * 15293 * This routine is to be registered to the kernel's PCI subsystem. When an 15294 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15295 * at PCI device-specific information of the device and driver to see if the 15296 * driver state that it can support this kind of device. If the match is 15297 * successful, the driver core invokes this routine. This routine dispatches 15298 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15299 * do all the initialization that it needs to do to handle the HBA device 15300 * properly. 15301 * 15302 * Return code 15303 * 0 - driver can claim the device 15304 * negative value - driver can not claim the device 15305 **/ 15306 static int 15307 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15308 { 15309 int rc; 15310 struct lpfc_sli_intf intf; 15311 15312 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15313 return -ENODEV; 15314 15315 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15316 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15317 rc = lpfc_pci_probe_one_s4(pdev, pid); 15318 else 15319 rc = lpfc_pci_probe_one_s3(pdev, pid); 15320 15321 return rc; 15322 } 15323 15324 /** 15325 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15326 * @pdev: pointer to PCI device 15327 * 15328 * This routine is to be registered to the kernel's PCI subsystem. When an 15329 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15330 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15331 * remove routine, which will perform all the necessary cleanup for the 15332 * device to be removed from the PCI subsystem properly. 15333 **/ 15334 static void 15335 lpfc_pci_remove_one(struct pci_dev *pdev) 15336 { 15337 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15338 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15339 15340 switch (phba->pci_dev_grp) { 15341 case LPFC_PCI_DEV_LP: 15342 lpfc_pci_remove_one_s3(pdev); 15343 break; 15344 case LPFC_PCI_DEV_OC: 15345 lpfc_pci_remove_one_s4(pdev); 15346 break; 15347 default: 15348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15349 "1424 Invalid PCI device group: 0x%x\n", 15350 phba->pci_dev_grp); 15351 break; 15352 } 15353 return; 15354 } 15355 15356 /** 15357 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15358 * @dev: pointer to device 15359 * 15360 * This routine is to be registered to the kernel's PCI subsystem to support 15361 * system Power Management (PM). When PM invokes this method, it dispatches 15362 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15363 * suspend the device. 15364 * 15365 * Return code 15366 * 0 - driver suspended the device 15367 * Error otherwise 15368 **/ 15369 static int __maybe_unused 15370 lpfc_pci_suspend_one(struct device *dev) 15371 { 15372 struct Scsi_Host *shost = dev_get_drvdata(dev); 15373 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15374 int rc = -ENODEV; 15375 15376 switch (phba->pci_dev_grp) { 15377 case LPFC_PCI_DEV_LP: 15378 rc = lpfc_pci_suspend_one_s3(dev); 15379 break; 15380 case LPFC_PCI_DEV_OC: 15381 rc = lpfc_pci_suspend_one_s4(dev); 15382 break; 15383 default: 15384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15385 "1425 Invalid PCI device group: 0x%x\n", 15386 phba->pci_dev_grp); 15387 break; 15388 } 15389 return rc; 15390 } 15391 15392 /** 15393 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15394 * @dev: pointer to device 15395 * 15396 * This routine is to be registered to the kernel's PCI subsystem to support 15397 * system Power Management (PM). When PM invokes this method, it dispatches 15398 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15399 * resume the device. 15400 * 15401 * Return code 15402 * 0 - driver suspended the device 15403 * Error otherwise 15404 **/ 15405 static int __maybe_unused 15406 lpfc_pci_resume_one(struct device *dev) 15407 { 15408 struct Scsi_Host *shost = dev_get_drvdata(dev); 15409 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15410 int rc = -ENODEV; 15411 15412 switch (phba->pci_dev_grp) { 15413 case LPFC_PCI_DEV_LP: 15414 rc = lpfc_pci_resume_one_s3(dev); 15415 break; 15416 case LPFC_PCI_DEV_OC: 15417 rc = lpfc_pci_resume_one_s4(dev); 15418 break; 15419 default: 15420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15421 "1426 Invalid PCI device group: 0x%x\n", 15422 phba->pci_dev_grp); 15423 break; 15424 } 15425 return rc; 15426 } 15427 15428 /** 15429 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15430 * @pdev: pointer to PCI device. 15431 * @state: the current PCI connection state. 15432 * 15433 * This routine is registered to the PCI subsystem for error handling. This 15434 * function is called by the PCI subsystem after a PCI bus error affecting 15435 * this device has been detected. When this routine is invoked, it dispatches 15436 * the action to the proper SLI-3 or SLI-4 device error detected handling 15437 * routine, which will perform the proper error detected operation. 15438 * 15439 * Return codes 15440 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15441 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15442 **/ 15443 static pci_ers_result_t 15444 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15445 { 15446 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15447 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15448 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15449 15450 if (phba->link_state == LPFC_HBA_ERROR && 15451 phba->hba_flag & HBA_IOQ_FLUSH) 15452 return PCI_ERS_RESULT_NEED_RESET; 15453 15454 switch (phba->pci_dev_grp) { 15455 case LPFC_PCI_DEV_LP: 15456 rc = lpfc_io_error_detected_s3(pdev, state); 15457 break; 15458 case LPFC_PCI_DEV_OC: 15459 rc = lpfc_io_error_detected_s4(pdev, state); 15460 break; 15461 default: 15462 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15463 "1427 Invalid PCI device group: 0x%x\n", 15464 phba->pci_dev_grp); 15465 break; 15466 } 15467 return rc; 15468 } 15469 15470 /** 15471 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15472 * @pdev: pointer to PCI device. 15473 * 15474 * This routine is registered to the PCI subsystem for error handling. This 15475 * function is called after PCI bus has been reset to restart the PCI card 15476 * from scratch, as if from a cold-boot. When this routine is invoked, it 15477 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15478 * routine, which will perform the proper device reset. 15479 * 15480 * Return codes 15481 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15482 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15483 **/ 15484 static pci_ers_result_t 15485 lpfc_io_slot_reset(struct pci_dev *pdev) 15486 { 15487 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15488 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15489 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15490 15491 switch (phba->pci_dev_grp) { 15492 case LPFC_PCI_DEV_LP: 15493 rc = lpfc_io_slot_reset_s3(pdev); 15494 break; 15495 case LPFC_PCI_DEV_OC: 15496 rc = lpfc_io_slot_reset_s4(pdev); 15497 break; 15498 default: 15499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15500 "1428 Invalid PCI device group: 0x%x\n", 15501 phba->pci_dev_grp); 15502 break; 15503 } 15504 return rc; 15505 } 15506 15507 /** 15508 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15509 * @pdev: pointer to PCI device 15510 * 15511 * This routine is registered to the PCI subsystem for error handling. It 15512 * is called when kernel error recovery tells the lpfc driver that it is 15513 * OK to resume normal PCI operation after PCI bus error recovery. When 15514 * this routine is invoked, it dispatches the action to the proper SLI-3 15515 * or SLI-4 device io_resume routine, which will resume the device operation. 15516 **/ 15517 static void 15518 lpfc_io_resume(struct pci_dev *pdev) 15519 { 15520 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15521 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15522 15523 switch (phba->pci_dev_grp) { 15524 case LPFC_PCI_DEV_LP: 15525 lpfc_io_resume_s3(pdev); 15526 break; 15527 case LPFC_PCI_DEV_OC: 15528 lpfc_io_resume_s4(pdev); 15529 break; 15530 default: 15531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15532 "1429 Invalid PCI device group: 0x%x\n", 15533 phba->pci_dev_grp); 15534 break; 15535 } 15536 return; 15537 } 15538 15539 /** 15540 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15541 * @phba: pointer to lpfc hba data structure. 15542 * 15543 * This routine checks to see if OAS is supported for this adapter. If 15544 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15545 * the enable oas flag is cleared and the pool created for OAS device data 15546 * is destroyed. 15547 * 15548 **/ 15549 static void 15550 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15551 { 15552 15553 if (!phba->cfg_EnableXLane) 15554 return; 15555 15556 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15557 phba->cfg_fof = 1; 15558 } else { 15559 phba->cfg_fof = 0; 15560 mempool_destroy(phba->device_data_mem_pool); 15561 phba->device_data_mem_pool = NULL; 15562 } 15563 15564 return; 15565 } 15566 15567 /** 15568 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15569 * @phba: pointer to lpfc hba data structure. 15570 * 15571 * This routine checks to see if RAS is supported by the adapter. Check the 15572 * function through which RAS support enablement is to be done. 15573 **/ 15574 void 15575 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15576 { 15577 /* if ASIC_GEN_NUM >= 0xC) */ 15578 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15579 LPFC_SLI_INTF_IF_TYPE_6) || 15580 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15581 LPFC_SLI_INTF_FAMILY_G6)) { 15582 phba->ras_fwlog.ras_hwsupport = true; 15583 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15584 phba->cfg_ras_fwlog_buffsize) 15585 phba->ras_fwlog.ras_enabled = true; 15586 else 15587 phba->ras_fwlog.ras_enabled = false; 15588 } else { 15589 phba->ras_fwlog.ras_hwsupport = false; 15590 } 15591 } 15592 15593 15594 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15595 15596 static const struct pci_error_handlers lpfc_err_handler = { 15597 .error_detected = lpfc_io_error_detected, 15598 .slot_reset = lpfc_io_slot_reset, 15599 .resume = lpfc_io_resume, 15600 }; 15601 15602 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15603 lpfc_pci_suspend_one, 15604 lpfc_pci_resume_one); 15605 15606 static struct pci_driver lpfc_driver = { 15607 .name = LPFC_DRIVER_NAME, 15608 .id_table = lpfc_id_table, 15609 .probe = lpfc_pci_probe_one, 15610 .remove = lpfc_pci_remove_one, 15611 .shutdown = lpfc_pci_remove_one, 15612 .driver.pm = &lpfc_pci_pm_ops_one, 15613 .err_handler = &lpfc_err_handler, 15614 }; 15615 15616 static const struct file_operations lpfc_mgmt_fop = { 15617 .owner = THIS_MODULE, 15618 }; 15619 15620 static struct miscdevice lpfc_mgmt_dev = { 15621 .minor = MISC_DYNAMIC_MINOR, 15622 .name = "lpfcmgmt", 15623 .fops = &lpfc_mgmt_fop, 15624 }; 15625 15626 /** 15627 * lpfc_init - lpfc module initialization routine 15628 * 15629 * This routine is to be invoked when the lpfc module is loaded into the 15630 * kernel. The special kernel macro module_init() is used to indicate the 15631 * role of this routine to the kernel as lpfc module entry point. 15632 * 15633 * Return codes 15634 * 0 - successful 15635 * -ENOMEM - FC attach transport failed 15636 * all others - failed 15637 */ 15638 static int __init 15639 lpfc_init(void) 15640 { 15641 int error = 0; 15642 15643 pr_info(LPFC_MODULE_DESC "\n"); 15644 pr_info(LPFC_COPYRIGHT "\n"); 15645 15646 error = misc_register(&lpfc_mgmt_dev); 15647 if (error) 15648 printk(KERN_ERR "Could not register lpfcmgmt device, " 15649 "misc_register returned with status %d", error); 15650 15651 error = -ENOMEM; 15652 lpfc_transport_functions.vport_create = lpfc_vport_create; 15653 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15654 lpfc_transport_template = 15655 fc_attach_transport(&lpfc_transport_functions); 15656 if (lpfc_transport_template == NULL) 15657 goto unregister; 15658 lpfc_vport_transport_template = 15659 fc_attach_transport(&lpfc_vport_transport_functions); 15660 if (lpfc_vport_transport_template == NULL) { 15661 fc_release_transport(lpfc_transport_template); 15662 goto unregister; 15663 } 15664 lpfc_wqe_cmd_template(); 15665 lpfc_nvmet_cmd_template(); 15666 15667 /* Initialize in case vector mapping is needed */ 15668 lpfc_present_cpu = num_present_cpus(); 15669 15670 lpfc_pldv_detect = false; 15671 15672 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15673 "lpfc/sli4:online", 15674 lpfc_cpu_online, lpfc_cpu_offline); 15675 if (error < 0) 15676 goto cpuhp_failure; 15677 lpfc_cpuhp_state = error; 15678 15679 error = pci_register_driver(&lpfc_driver); 15680 if (error) 15681 goto unwind; 15682 15683 return error; 15684 15685 unwind: 15686 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15687 cpuhp_failure: 15688 fc_release_transport(lpfc_transport_template); 15689 fc_release_transport(lpfc_vport_transport_template); 15690 unregister: 15691 misc_deregister(&lpfc_mgmt_dev); 15692 15693 return error; 15694 } 15695 15696 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15697 { 15698 unsigned int start_idx; 15699 unsigned int dbg_cnt; 15700 unsigned int temp_idx; 15701 int i; 15702 int j = 0; 15703 unsigned long rem_nsec, iflags; 15704 bool log_verbose = false; 15705 struct lpfc_vport *port_iterator; 15706 15707 /* Don't dump messages if we explicitly set log_verbose for the 15708 * physical port or any vport. 15709 */ 15710 if (phba->cfg_log_verbose) 15711 return; 15712 15713 spin_lock_irqsave(&phba->port_list_lock, iflags); 15714 list_for_each_entry(port_iterator, &phba->port_list, listentry) { 15715 if (port_iterator->load_flag & FC_UNLOADING) 15716 continue; 15717 if (scsi_host_get(lpfc_shost_from_vport(port_iterator))) { 15718 if (port_iterator->cfg_log_verbose) 15719 log_verbose = true; 15720 15721 scsi_host_put(lpfc_shost_from_vport(port_iterator)); 15722 15723 if (log_verbose) { 15724 spin_unlock_irqrestore(&phba->port_list_lock, 15725 iflags); 15726 return; 15727 } 15728 } 15729 } 15730 spin_unlock_irqrestore(&phba->port_list_lock, iflags); 15731 15732 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15733 return; 15734 15735 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15736 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15737 if (!dbg_cnt) 15738 goto out; 15739 temp_idx = start_idx; 15740 if (dbg_cnt >= DBG_LOG_SZ) { 15741 dbg_cnt = DBG_LOG_SZ; 15742 temp_idx -= 1; 15743 } else { 15744 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15745 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15746 } else { 15747 if (start_idx < dbg_cnt) 15748 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15749 else 15750 start_idx -= dbg_cnt; 15751 } 15752 } 15753 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15754 start_idx, temp_idx, dbg_cnt); 15755 15756 for (i = 0; i < dbg_cnt; i++) { 15757 if ((start_idx + i) < DBG_LOG_SZ) 15758 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15759 else 15760 temp_idx = j++; 15761 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15762 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15763 temp_idx, 15764 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15765 rem_nsec / 1000, 15766 phba->dbg_log[temp_idx].log); 15767 } 15768 out: 15769 atomic_set(&phba->dbg_log_cnt, 0); 15770 atomic_set(&phba->dbg_log_dmping, 0); 15771 } 15772 15773 __printf(2, 3) 15774 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15775 { 15776 unsigned int idx; 15777 va_list args; 15778 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15779 struct va_format vaf; 15780 15781 15782 va_start(args, fmt); 15783 if (unlikely(dbg_dmping)) { 15784 vaf.fmt = fmt; 15785 vaf.va = &args; 15786 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15787 va_end(args); 15788 return; 15789 } 15790 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15791 DBG_LOG_SZ; 15792 15793 atomic_inc(&phba->dbg_log_cnt); 15794 15795 vscnprintf(phba->dbg_log[idx].log, 15796 sizeof(phba->dbg_log[idx].log), fmt, args); 15797 va_end(args); 15798 15799 phba->dbg_log[idx].t_ns = local_clock(); 15800 } 15801 15802 /** 15803 * lpfc_exit - lpfc module removal routine 15804 * 15805 * This routine is invoked when the lpfc module is removed from the kernel. 15806 * The special kernel macro module_exit() is used to indicate the role of 15807 * this routine to the kernel as lpfc module exit point. 15808 */ 15809 static void __exit 15810 lpfc_exit(void) 15811 { 15812 misc_deregister(&lpfc_mgmt_dev); 15813 pci_unregister_driver(&lpfc_driver); 15814 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15815 fc_release_transport(lpfc_transport_template); 15816 fc_release_transport(lpfc_vport_transport_template); 15817 idr_destroy(&lpfc_hba_index); 15818 } 15819 15820 module_init(lpfc_init); 15821 module_exit(lpfc_exit); 15822 MODULE_LICENSE("GPL"); 15823 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15824 MODULE_AUTHOR("Broadcom"); 15825 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15826