xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 5626af8f)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 
105 /**
106  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
107  * @phba: pointer to lpfc hba data structure.
108  *
109  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
110  * mailbox command. It retrieves the revision information from the HBA and
111  * collects the Vital Product Data (VPD) about the HBA for preparing the
112  * configuration of the HBA.
113  *
114  * Return codes:
115  *   0 - success.
116  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
117  *   Any other value - indicates an error.
118  **/
119 int
120 lpfc_config_port_prep(struct lpfc_hba *phba)
121 {
122 	lpfc_vpd_t *vp = &phba->vpd;
123 	int i = 0, rc;
124 	LPFC_MBOXQ_t *pmb;
125 	MAILBOX_t *mb;
126 	char *lpfc_vpd_data = NULL;
127 	uint16_t offset = 0;
128 	static char licensed[56] =
129 		    "key unlock for use with gnu public licensed code only\0";
130 	static int init_key = 1;
131 
132 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
133 	if (!pmb) {
134 		phba->link_state = LPFC_HBA_ERROR;
135 		return -ENOMEM;
136 	}
137 
138 	mb = &pmb->u.mb;
139 	phba->link_state = LPFC_INIT_MBX_CMDS;
140 
141 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
142 		if (init_key) {
143 			uint32_t *ptext = (uint32_t *) licensed;
144 
145 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
146 				*ptext = cpu_to_be32(*ptext);
147 			init_key = 0;
148 		}
149 
150 		lpfc_read_nv(phba, pmb);
151 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
152 			sizeof (mb->un.varRDnvp.rsvd3));
153 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
154 			 sizeof (licensed));
155 
156 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
157 
158 		if (rc != MBX_SUCCESS) {
159 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
160 					"0324 Config Port initialization "
161 					"error, mbxCmd x%x READ_NVPARM, "
162 					"mbxStatus x%x\n",
163 					mb->mbxCommand, mb->mbxStatus);
164 			mempool_free(pmb, phba->mbox_mem_pool);
165 			return -ERESTART;
166 		}
167 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
168 		       sizeof(phba->wwnn));
169 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
170 		       sizeof(phba->wwpn));
171 	}
172 
173 	/*
174 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
175 	 * which was already set in lpfc_get_cfgparam()
176 	 */
177 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
178 
179 	/* Setup and issue mailbox READ REV command */
180 	lpfc_read_rev(phba, pmb);
181 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
182 	if (rc != MBX_SUCCESS) {
183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
184 				"0439 Adapter failed to init, mbxCmd x%x "
185 				"READ_REV, mbxStatus x%x\n",
186 				mb->mbxCommand, mb->mbxStatus);
187 		mempool_free( pmb, phba->mbox_mem_pool);
188 		return -ERESTART;
189 	}
190 
191 
192 	/*
193 	 * The value of rr must be 1 since the driver set the cv field to 1.
194 	 * This setting requires the FW to set all revision fields.
195 	 */
196 	if (mb->un.varRdRev.rr == 0) {
197 		vp->rev.rBit = 0;
198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
199 				"0440 Adapter failed to init, READ_REV has "
200 				"missing revision information.\n");
201 		mempool_free(pmb, phba->mbox_mem_pool);
202 		return -ERESTART;
203 	}
204 
205 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
206 		mempool_free(pmb, phba->mbox_mem_pool);
207 		return -EINVAL;
208 	}
209 
210 	/* Save information as VPD data */
211 	vp->rev.rBit = 1;
212 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
213 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
214 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
215 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
216 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
217 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
218 	vp->rev.smRev = mb->un.varRdRev.smRev;
219 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
220 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
221 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
222 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
223 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
224 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
225 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
226 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
227 
228 	/* If the sli feature level is less then 9, we must
229 	 * tear down all RPIs and VPIs on link down if NPIV
230 	 * is enabled.
231 	 */
232 	if (vp->rev.feaLevelHigh < 9)
233 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
234 
235 	if (lpfc_is_LC_HBA(phba->pcidev->device))
236 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
237 						sizeof (phba->RandomData));
238 
239 	/* Get adapter VPD information */
240 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
241 	if (!lpfc_vpd_data)
242 		goto out_free_mbox;
243 	do {
244 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
245 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
246 
247 		if (rc != MBX_SUCCESS) {
248 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
249 					"0441 VPD not present on adapter, "
250 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
251 					mb->mbxCommand, mb->mbxStatus);
252 			mb->un.varDmp.word_cnt = 0;
253 		}
254 		/* dump mem may return a zero when finished or we got a
255 		 * mailbox error, either way we are done.
256 		 */
257 		if (mb->un.varDmp.word_cnt == 0)
258 			break;
259 
260 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
261 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
262 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
263 				      lpfc_vpd_data + offset,
264 				      mb->un.varDmp.word_cnt);
265 		offset += mb->un.varDmp.word_cnt;
266 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
267 
268 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
269 
270 	kfree(lpfc_vpd_data);
271 out_free_mbox:
272 	mempool_free(pmb, phba->mbox_mem_pool);
273 	return 0;
274 }
275 
276 /**
277  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
278  * @phba: pointer to lpfc hba data structure.
279  * @pmboxq: pointer to the driver internal queue element for mailbox command.
280  *
281  * This is the completion handler for driver's configuring asynchronous event
282  * mailbox command to the device. If the mailbox command returns successfully,
283  * it will set internal async event support flag to 1; otherwise, it will
284  * set internal async event support flag to 0.
285  **/
286 static void
287 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
288 {
289 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
290 		phba->temp_sensor_support = 1;
291 	else
292 		phba->temp_sensor_support = 0;
293 	mempool_free(pmboxq, phba->mbox_mem_pool);
294 	return;
295 }
296 
297 /**
298  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
299  * @phba: pointer to lpfc hba data structure.
300  * @pmboxq: pointer to the driver internal queue element for mailbox command.
301  *
302  * This is the completion handler for dump mailbox command for getting
303  * wake up parameters. When this command complete, the response contain
304  * Option rom version of the HBA. This function translate the version number
305  * into a human readable string and store it in OptionROMVersion.
306  **/
307 static void
308 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
309 {
310 	struct prog_id *prg;
311 	uint32_t prog_id_word;
312 	char dist = ' ';
313 	/* character array used for decoding dist type. */
314 	char dist_char[] = "nabx";
315 
316 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
317 		mempool_free(pmboxq, phba->mbox_mem_pool);
318 		return;
319 	}
320 
321 	prg = (struct prog_id *) &prog_id_word;
322 
323 	/* word 7 contain option rom version */
324 	prog_id_word = pmboxq->u.mb.un.varWords[7];
325 
326 	/* Decode the Option rom version word to a readable string */
327 	dist = dist_char[prg->dist];
328 
329 	if ((prg->dist == 3) && (prg->num == 0))
330 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 			prg->ver, prg->rev, prg->lev);
332 	else
333 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 			prg->ver, prg->rev, prg->lev,
335 			dist, prg->num);
336 	mempool_free(pmboxq, phba->mbox_mem_pool);
337 	return;
338 }
339 
340 /**
341  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342  * @vport: pointer to lpfc vport data structure.
343  *
344  *
345  * Return codes
346  *   None.
347  **/
348 void
349 lpfc_update_vport_wwn(struct lpfc_vport *vport)
350 {
351 	struct lpfc_hba *phba = vport->phba;
352 
353 	/*
354 	 * If the name is empty or there exists a soft name
355 	 * then copy the service params name, otherwise use the fc name
356 	 */
357 	if (vport->fc_nodename.u.wwn[0] == 0)
358 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
359 			sizeof(struct lpfc_name));
360 	else
361 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
362 			sizeof(struct lpfc_name));
363 
364 	/*
365 	 * If the port name has changed, then set the Param changes flag
366 	 * to unreg the login
367 	 */
368 	if (vport->fc_portname.u.wwn[0] != 0 &&
369 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
370 		       sizeof(struct lpfc_name))) {
371 		vport->vport_flag |= FAWWPN_PARAM_CHG;
372 
373 		if (phba->sli_rev == LPFC_SLI_REV4 &&
374 		    vport->port_type == LPFC_PHYSICAL_PORT &&
375 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
376 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
377 				phba->sli4_hba.fawwpn_flag &=
378 						~LPFC_FAWWPN_FABRIC;
379 			lpfc_printf_log(phba, KERN_INFO,
380 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
381 					"2701 FA-PWWN change WWPN from %llx to "
382 					"%llx: vflag x%x fawwpn_flag x%x\n",
383 					wwn_to_u64(vport->fc_portname.u.wwn),
384 					wwn_to_u64
385 					   (vport->fc_sparam.portName.u.wwn),
386 					vport->vport_flag,
387 					phba->sli4_hba.fawwpn_flag);
388 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
389 			       sizeof(struct lpfc_name));
390 		}
391 	}
392 
393 	if (vport->fc_portname.u.wwn[0] == 0)
394 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
395 		       sizeof(struct lpfc_name));
396 	else
397 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
398 		       sizeof(struct lpfc_name));
399 }
400 
401 /**
402  * lpfc_config_port_post - Perform lpfc initialization after config port
403  * @phba: pointer to lpfc hba data structure.
404  *
405  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
406  * command call. It performs all internal resource and state setups on the
407  * port: post IOCB buffers, enable appropriate host interrupt attentions,
408  * ELS ring timers, etc.
409  *
410  * Return codes
411  *   0 - success.
412  *   Any other value - error.
413  **/
414 int
415 lpfc_config_port_post(struct lpfc_hba *phba)
416 {
417 	struct lpfc_vport *vport = phba->pport;
418 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
419 	LPFC_MBOXQ_t *pmb;
420 	MAILBOX_t *mb;
421 	struct lpfc_dmabuf *mp;
422 	struct lpfc_sli *psli = &phba->sli;
423 	uint32_t status, timeout;
424 	int i, j;
425 	int rc;
426 
427 	spin_lock_irq(&phba->hbalock);
428 	/*
429 	 * If the Config port completed correctly the HBA is not
430 	 * over heated any more.
431 	 */
432 	if (phba->over_temp_state == HBA_OVER_TEMP)
433 		phba->over_temp_state = HBA_NORMAL_TEMP;
434 	spin_unlock_irq(&phba->hbalock);
435 
436 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
437 	if (!pmb) {
438 		phba->link_state = LPFC_HBA_ERROR;
439 		return -ENOMEM;
440 	}
441 	mb = &pmb->u.mb;
442 
443 	/* Get login parameters for NID.  */
444 	rc = lpfc_read_sparam(phba, pmb, 0);
445 	if (rc) {
446 		mempool_free(pmb, phba->mbox_mem_pool);
447 		return -ENOMEM;
448 	}
449 
450 	pmb->vport = vport;
451 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
452 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
453 				"0448 Adapter failed init, mbxCmd x%x "
454 				"READ_SPARM mbxStatus x%x\n",
455 				mb->mbxCommand, mb->mbxStatus);
456 		phba->link_state = LPFC_HBA_ERROR;
457 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
458 		return -EIO;
459 	}
460 
461 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462 
463 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
464 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
465 	 * reused.
466 	 */
467 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
468 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
469 	kfree(mp);
470 	pmb->ctx_buf = NULL;
471 	lpfc_update_vport_wwn(vport);
472 
473 	/* Update the fc_host data structures with new wwn. */
474 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
475 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
476 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
477 
478 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
479 	/* This should be consolidated into parse_vpd ? - mr */
480 	if (phba->SerialNumber[0] == 0) {
481 		uint8_t *outptr;
482 
483 		outptr = &vport->fc_nodename.u.s.IEEE[0];
484 		for (i = 0; i < 12; i++) {
485 			status = *outptr++;
486 			j = ((status & 0xf0) >> 4);
487 			if (j <= 9)
488 				phba->SerialNumber[i] =
489 				    (char)((uint8_t) 0x30 + (uint8_t) j);
490 			else
491 				phba->SerialNumber[i] =
492 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
493 			i++;
494 			j = (status & 0xf);
495 			if (j <= 9)
496 				phba->SerialNumber[i] =
497 				    (char)((uint8_t) 0x30 + (uint8_t) j);
498 			else
499 				phba->SerialNumber[i] =
500 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
501 		}
502 	}
503 
504 	lpfc_read_config(phba, pmb);
505 	pmb->vport = vport;
506 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
507 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
508 				"0453 Adapter failed to init, mbxCmd x%x "
509 				"READ_CONFIG, mbxStatus x%x\n",
510 				mb->mbxCommand, mb->mbxStatus);
511 		phba->link_state = LPFC_HBA_ERROR;
512 		mempool_free( pmb, phba->mbox_mem_pool);
513 		return -EIO;
514 	}
515 
516 	/* Check if the port is disabled */
517 	lpfc_sli_read_link_ste(phba);
518 
519 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
520 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
521 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
522 				"3359 HBA queue depth changed from %d to %d\n",
523 				phba->cfg_hba_queue_depth,
524 				mb->un.varRdConfig.max_xri);
525 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
526 	}
527 
528 	phba->lmt = mb->un.varRdConfig.lmt;
529 
530 	/* Get the default values for Model Name and Description */
531 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
532 
533 	phba->link_state = LPFC_LINK_DOWN;
534 
535 	/* Only process IOCBs on ELS ring till hba_state is READY */
536 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
537 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
538 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
539 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
540 
541 	/* Post receive buffers for desired rings */
542 	if (phba->sli_rev != 3)
543 		lpfc_post_rcv_buf(phba);
544 
545 	/*
546 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
547 	 */
548 	if (phba->intr_type == MSIX) {
549 		rc = lpfc_config_msi(phba, pmb);
550 		if (rc) {
551 			mempool_free(pmb, phba->mbox_mem_pool);
552 			return -EIO;
553 		}
554 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
555 		if (rc != MBX_SUCCESS) {
556 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
557 					"0352 Config MSI mailbox command "
558 					"failed, mbxCmd x%x, mbxStatus x%x\n",
559 					pmb->u.mb.mbxCommand,
560 					pmb->u.mb.mbxStatus);
561 			mempool_free(pmb, phba->mbox_mem_pool);
562 			return -EIO;
563 		}
564 	}
565 
566 	spin_lock_irq(&phba->hbalock);
567 	/* Initialize ERATT handling flag */
568 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
569 
570 	/* Enable appropriate host interrupts */
571 	if (lpfc_readl(phba->HCregaddr, &status)) {
572 		spin_unlock_irq(&phba->hbalock);
573 		return -EIO;
574 	}
575 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
576 	if (psli->num_rings > 0)
577 		status |= HC_R0INT_ENA;
578 	if (psli->num_rings > 1)
579 		status |= HC_R1INT_ENA;
580 	if (psli->num_rings > 2)
581 		status |= HC_R2INT_ENA;
582 	if (psli->num_rings > 3)
583 		status |= HC_R3INT_ENA;
584 
585 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
586 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
587 		status &= ~(HC_R0INT_ENA);
588 
589 	writel(status, phba->HCregaddr);
590 	readl(phba->HCregaddr); /* flush */
591 	spin_unlock_irq(&phba->hbalock);
592 
593 	/* Set up ring-0 (ELS) timer */
594 	timeout = phba->fc_ratov * 2;
595 	mod_timer(&vport->els_tmofunc,
596 		  jiffies + msecs_to_jiffies(1000 * timeout));
597 	/* Set up heart beat (HB) timer */
598 	mod_timer(&phba->hb_tmofunc,
599 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
600 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
601 	phba->last_completion_time = jiffies;
602 	/* Set up error attention (ERATT) polling timer */
603 	mod_timer(&phba->eratt_poll,
604 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
605 
606 	if (phba->hba_flag & LINK_DISABLED) {
607 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
608 				"2598 Adapter Link is disabled.\n");
609 		lpfc_down_link(phba, pmb);
610 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
611 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
612 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
613 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
614 					"2599 Adapter failed to issue DOWN_LINK"
615 					" mbox command rc 0x%x\n", rc);
616 
617 			mempool_free(pmb, phba->mbox_mem_pool);
618 			return -EIO;
619 		}
620 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
621 		mempool_free(pmb, phba->mbox_mem_pool);
622 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
623 		if (rc)
624 			return rc;
625 	}
626 	/* MBOX buffer will be freed in mbox compl */
627 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
628 	if (!pmb) {
629 		phba->link_state = LPFC_HBA_ERROR;
630 		return -ENOMEM;
631 	}
632 
633 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
634 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
635 	pmb->vport = phba->pport;
636 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
637 
638 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
640 				"0456 Adapter failed to issue "
641 				"ASYNCEVT_ENABLE mbox status x%x\n",
642 				rc);
643 		mempool_free(pmb, phba->mbox_mem_pool);
644 	}
645 
646 	/* Get Option rom version */
647 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
648 	if (!pmb) {
649 		phba->link_state = LPFC_HBA_ERROR;
650 		return -ENOMEM;
651 	}
652 
653 	lpfc_dump_wakeup_param(phba, pmb);
654 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
655 	pmb->vport = phba->pport;
656 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
657 
658 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
659 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
660 				"0435 Adapter failed "
661 				"to get Option ROM version status x%x\n", rc);
662 		mempool_free(pmb, phba->mbox_mem_pool);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * lpfc_sli4_refresh_params - update driver copy of params.
670  * @phba: Pointer to HBA context object.
671  *
672  * This is called to refresh driver copy of dynamic fields from the
673  * common_get_sli4_parameters descriptor.
674  **/
675 int
676 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
677 {
678 	LPFC_MBOXQ_t *mboxq;
679 	struct lpfc_mqe *mqe;
680 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
681 	int length, rc;
682 
683 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
684 	if (!mboxq)
685 		return -ENOMEM;
686 
687 	mqe = &mboxq->u.mqe;
688 	/* Read the port's SLI4 Config Parameters */
689 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
690 		  sizeof(struct lpfc_sli4_cfg_mhdr));
691 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
692 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
693 			 length, LPFC_SLI4_MBX_EMBED);
694 
695 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
696 	if (unlikely(rc)) {
697 		mempool_free(mboxq, phba->mbox_mem_pool);
698 		return rc;
699 	}
700 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
701 	phba->sli4_hba.pc_sli4_params.mi_cap =
702 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
703 
704 	/* Are we forcing MI off via module parameter? */
705 	if (phba->cfg_enable_mi)
706 		phba->sli4_hba.pc_sli4_params.mi_ver =
707 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
708 	else
709 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
710 
711 	phba->sli4_hba.pc_sli4_params.cmf =
712 			bf_get(cfg_cmf, mbx_sli4_parameters);
713 	phba->sli4_hba.pc_sli4_params.pls =
714 			bf_get(cfg_pvl, mbx_sli4_parameters);
715 
716 	mempool_free(mboxq, phba->mbox_mem_pool);
717 	return rc;
718 }
719 
720 /**
721  * lpfc_hba_init_link - Initialize the FC link
722  * @phba: pointer to lpfc hba data structure.
723  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
724  *
725  * This routine will issue the INIT_LINK mailbox command call.
726  * It is available to other drivers through the lpfc_hba data
727  * structure for use as a delayed link up mechanism with the
728  * module parameter lpfc_suppress_link_up.
729  *
730  * Return code
731  *		0 - success
732  *		Any other value - error
733  **/
734 static int
735 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
736 {
737 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
738 }
739 
740 /**
741  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
742  * @phba: pointer to lpfc hba data structure.
743  * @fc_topology: desired fc topology.
744  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
745  *
746  * This routine will issue the INIT_LINK mailbox command call.
747  * It is available to other drivers through the lpfc_hba data
748  * structure for use as a delayed link up mechanism with the
749  * module parameter lpfc_suppress_link_up.
750  *
751  * Return code
752  *              0 - success
753  *              Any other value - error
754  **/
755 int
756 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
757 			       uint32_t flag)
758 {
759 	struct lpfc_vport *vport = phba->pport;
760 	LPFC_MBOXQ_t *pmb;
761 	MAILBOX_t *mb;
762 	int rc;
763 
764 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
765 	if (!pmb) {
766 		phba->link_state = LPFC_HBA_ERROR;
767 		return -ENOMEM;
768 	}
769 	mb = &pmb->u.mb;
770 	pmb->vport = vport;
771 
772 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
773 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
774 	     !(phba->lmt & LMT_1Gb)) ||
775 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
776 	     !(phba->lmt & LMT_2Gb)) ||
777 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
778 	     !(phba->lmt & LMT_4Gb)) ||
779 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
780 	     !(phba->lmt & LMT_8Gb)) ||
781 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
782 	     !(phba->lmt & LMT_10Gb)) ||
783 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
784 	     !(phba->lmt & LMT_16Gb)) ||
785 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
786 	     !(phba->lmt & LMT_32Gb)) ||
787 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
788 	     !(phba->lmt & LMT_64Gb))) {
789 		/* Reset link speed to auto */
790 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
791 				"1302 Invalid speed for this board:%d "
792 				"Reset link speed to auto.\n",
793 				phba->cfg_link_speed);
794 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
795 	}
796 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
797 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
798 	if (phba->sli_rev < LPFC_SLI_REV4)
799 		lpfc_set_loopback_flag(phba);
800 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
801 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
803 				"0498 Adapter failed to init, mbxCmd x%x "
804 				"INIT_LINK, mbxStatus x%x\n",
805 				mb->mbxCommand, mb->mbxStatus);
806 		if (phba->sli_rev <= LPFC_SLI_REV3) {
807 			/* Clear all interrupt enable conditions */
808 			writel(0, phba->HCregaddr);
809 			readl(phba->HCregaddr); /* flush */
810 			/* Clear all pending interrupts */
811 			writel(0xffffffff, phba->HAregaddr);
812 			readl(phba->HAregaddr); /* flush */
813 		}
814 		phba->link_state = LPFC_HBA_ERROR;
815 		if (rc != MBX_BUSY || flag == MBX_POLL)
816 			mempool_free(pmb, phba->mbox_mem_pool);
817 		return -EIO;
818 	}
819 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
820 	if (flag == MBX_POLL)
821 		mempool_free(pmb, phba->mbox_mem_pool);
822 
823 	return 0;
824 }
825 
826 /**
827  * lpfc_hba_down_link - this routine downs the FC link
828  * @phba: pointer to lpfc hba data structure.
829  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
830  *
831  * This routine will issue the DOWN_LINK mailbox command call.
832  * It is available to other drivers through the lpfc_hba data
833  * structure for use to stop the link.
834  *
835  * Return code
836  *		0 - success
837  *		Any other value - error
838  **/
839 static int
840 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
841 {
842 	LPFC_MBOXQ_t *pmb;
843 	int rc;
844 
845 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
846 	if (!pmb) {
847 		phba->link_state = LPFC_HBA_ERROR;
848 		return -ENOMEM;
849 	}
850 
851 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
852 			"0491 Adapter Link is disabled.\n");
853 	lpfc_down_link(phba, pmb);
854 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
855 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
856 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
857 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
858 				"2522 Adapter failed to issue DOWN_LINK"
859 				" mbox command rc 0x%x\n", rc);
860 
861 		mempool_free(pmb, phba->mbox_mem_pool);
862 		return -EIO;
863 	}
864 	if (flag == MBX_POLL)
865 		mempool_free(pmb, phba->mbox_mem_pool);
866 
867 	return 0;
868 }
869 
870 /**
871  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
872  * @phba: pointer to lpfc HBA data structure.
873  *
874  * This routine will do LPFC uninitialization before the HBA is reset when
875  * bringing down the SLI Layer.
876  *
877  * Return codes
878  *   0 - success.
879  *   Any other value - error.
880  **/
881 int
882 lpfc_hba_down_prep(struct lpfc_hba *phba)
883 {
884 	struct lpfc_vport **vports;
885 	int i;
886 
887 	if (phba->sli_rev <= LPFC_SLI_REV3) {
888 		/* Disable interrupts */
889 		writel(0, phba->HCregaddr);
890 		readl(phba->HCregaddr); /* flush */
891 	}
892 
893 	if (phba->pport->load_flag & FC_UNLOADING)
894 		lpfc_cleanup_discovery_resources(phba->pport);
895 	else {
896 		vports = lpfc_create_vport_work_array(phba);
897 		if (vports != NULL)
898 			for (i = 0; i <= phba->max_vports &&
899 				vports[i] != NULL; i++)
900 				lpfc_cleanup_discovery_resources(vports[i]);
901 		lpfc_destroy_vport_work_array(phba, vports);
902 	}
903 	return 0;
904 }
905 
906 /**
907  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
908  * rspiocb which got deferred
909  *
910  * @phba: pointer to lpfc HBA data structure.
911  *
912  * This routine will cleanup completed slow path events after HBA is reset
913  * when bringing down the SLI Layer.
914  *
915  *
916  * Return codes
917  *   void.
918  **/
919 static void
920 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
921 {
922 	struct lpfc_iocbq *rspiocbq;
923 	struct hbq_dmabuf *dmabuf;
924 	struct lpfc_cq_event *cq_event;
925 
926 	spin_lock_irq(&phba->hbalock);
927 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
928 	spin_unlock_irq(&phba->hbalock);
929 
930 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
931 		/* Get the response iocb from the head of work queue */
932 		spin_lock_irq(&phba->hbalock);
933 		list_remove_head(&phba->sli4_hba.sp_queue_event,
934 				 cq_event, struct lpfc_cq_event, list);
935 		spin_unlock_irq(&phba->hbalock);
936 
937 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
938 		case CQE_CODE_COMPL_WQE:
939 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
940 						 cq_event);
941 			lpfc_sli_release_iocbq(phba, rspiocbq);
942 			break;
943 		case CQE_CODE_RECEIVE:
944 		case CQE_CODE_RECEIVE_V1:
945 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
946 					      cq_event);
947 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
948 		}
949 	}
950 }
951 
952 /**
953  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
954  * @phba: pointer to lpfc HBA data structure.
955  *
956  * This routine will cleanup posted ELS buffers after the HBA is reset
957  * when bringing down the SLI Layer.
958  *
959  *
960  * Return codes
961  *   void.
962  **/
963 static void
964 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
965 {
966 	struct lpfc_sli *psli = &phba->sli;
967 	struct lpfc_sli_ring *pring;
968 	struct lpfc_dmabuf *mp, *next_mp;
969 	LIST_HEAD(buflist);
970 	int count;
971 
972 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
973 		lpfc_sli_hbqbuf_free_all(phba);
974 	else {
975 		/* Cleanup preposted buffers on the ELS ring */
976 		pring = &psli->sli3_ring[LPFC_ELS_RING];
977 		spin_lock_irq(&phba->hbalock);
978 		list_splice_init(&pring->postbufq, &buflist);
979 		spin_unlock_irq(&phba->hbalock);
980 
981 		count = 0;
982 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
983 			list_del(&mp->list);
984 			count++;
985 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
986 			kfree(mp);
987 		}
988 
989 		spin_lock_irq(&phba->hbalock);
990 		pring->postbufq_cnt -= count;
991 		spin_unlock_irq(&phba->hbalock);
992 	}
993 }
994 
995 /**
996  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
997  * @phba: pointer to lpfc HBA data structure.
998  *
999  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1000  * down the SLI Layer.
1001  *
1002  * Return codes
1003  *   void
1004  **/
1005 static void
1006 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1007 {
1008 	struct lpfc_sli *psli = &phba->sli;
1009 	struct lpfc_queue *qp = NULL;
1010 	struct lpfc_sli_ring *pring;
1011 	LIST_HEAD(completions);
1012 	int i;
1013 	struct lpfc_iocbq *piocb, *next_iocb;
1014 
1015 	if (phba->sli_rev != LPFC_SLI_REV4) {
1016 		for (i = 0; i < psli->num_rings; i++) {
1017 			pring = &psli->sli3_ring[i];
1018 			spin_lock_irq(&phba->hbalock);
1019 			/* At this point in time the HBA is either reset or DOA
1020 			 * Nothing should be on txcmplq as it will
1021 			 * NEVER complete.
1022 			 */
1023 			list_splice_init(&pring->txcmplq, &completions);
1024 			pring->txcmplq_cnt = 0;
1025 			spin_unlock_irq(&phba->hbalock);
1026 
1027 			lpfc_sli_abort_iocb_ring(phba, pring);
1028 		}
1029 		/* Cancel all the IOCBs from the completions list */
1030 		lpfc_sli_cancel_iocbs(phba, &completions,
1031 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1032 		return;
1033 	}
1034 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1035 		pring = qp->pring;
1036 		if (!pring)
1037 			continue;
1038 		spin_lock_irq(&pring->ring_lock);
1039 		list_for_each_entry_safe(piocb, next_iocb,
1040 					 &pring->txcmplq, list)
1041 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1042 		list_splice_init(&pring->txcmplq, &completions);
1043 		pring->txcmplq_cnt = 0;
1044 		spin_unlock_irq(&pring->ring_lock);
1045 		lpfc_sli_abort_iocb_ring(phba, pring);
1046 	}
1047 	/* Cancel all the IOCBs from the completions list */
1048 	lpfc_sli_cancel_iocbs(phba, &completions,
1049 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1050 }
1051 
1052 /**
1053  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1054  * @phba: pointer to lpfc HBA data structure.
1055  *
1056  * This routine will do uninitialization after the HBA is reset when bring
1057  * down the SLI Layer.
1058  *
1059  * Return codes
1060  *   0 - success.
1061  *   Any other value - error.
1062  **/
1063 static int
1064 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1065 {
1066 	lpfc_hba_free_post_buf(phba);
1067 	lpfc_hba_clean_txcmplq(phba);
1068 	return 0;
1069 }
1070 
1071 /**
1072  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1073  * @phba: pointer to lpfc HBA data structure.
1074  *
1075  * This routine will do uninitialization after the HBA is reset when bring
1076  * down the SLI Layer.
1077  *
1078  * Return codes
1079  *   0 - success.
1080  *   Any other value - error.
1081  **/
1082 static int
1083 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1084 {
1085 	struct lpfc_io_buf *psb, *psb_next;
1086 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1087 	struct lpfc_sli4_hdw_queue *qp;
1088 	LIST_HEAD(aborts);
1089 	LIST_HEAD(nvme_aborts);
1090 	LIST_HEAD(nvmet_aborts);
1091 	struct lpfc_sglq *sglq_entry = NULL;
1092 	int cnt, idx;
1093 
1094 
1095 	lpfc_sli_hbqbuf_free_all(phba);
1096 	lpfc_hba_clean_txcmplq(phba);
1097 
1098 	/* At this point in time the HBA is either reset or DOA. Either
1099 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1100 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1101 	 * driver is unloading or reposted if the driver is restarting
1102 	 * the port.
1103 	 */
1104 
1105 	/* sgl_list_lock required because worker thread uses this
1106 	 * list.
1107 	 */
1108 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1109 	list_for_each_entry(sglq_entry,
1110 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1111 		sglq_entry->state = SGL_FREED;
1112 
1113 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1114 			&phba->sli4_hba.lpfc_els_sgl_list);
1115 
1116 
1117 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1118 
1119 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1120 	 * list.
1121 	 */
1122 	spin_lock_irq(&phba->hbalock);
1123 	cnt = 0;
1124 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1125 		qp = &phba->sli4_hba.hdwq[idx];
1126 
1127 		spin_lock(&qp->abts_io_buf_list_lock);
1128 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1129 				 &aborts);
1130 
1131 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1132 			psb->pCmd = NULL;
1133 			psb->status = IOSTAT_SUCCESS;
1134 			cnt++;
1135 		}
1136 		spin_lock(&qp->io_buf_list_put_lock);
1137 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1138 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1139 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1140 		qp->abts_scsi_io_bufs = 0;
1141 		qp->abts_nvme_io_bufs = 0;
1142 		spin_unlock(&qp->io_buf_list_put_lock);
1143 		spin_unlock(&qp->abts_io_buf_list_lock);
1144 	}
1145 	spin_unlock_irq(&phba->hbalock);
1146 
1147 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1148 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1149 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1150 				 &nvmet_aborts);
1151 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1152 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1153 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1154 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1155 		}
1156 	}
1157 
1158 	lpfc_sli4_free_sp_events(phba);
1159 	return cnt;
1160 }
1161 
1162 /**
1163  * lpfc_hba_down_post - Wrapper func for hba down post routine
1164  * @phba: pointer to lpfc HBA data structure.
1165  *
1166  * This routine wraps the actual SLI3 or SLI4 routine for performing
1167  * uninitialization after the HBA is reset when bring down the SLI Layer.
1168  *
1169  * Return codes
1170  *   0 - success.
1171  *   Any other value - error.
1172  **/
1173 int
1174 lpfc_hba_down_post(struct lpfc_hba *phba)
1175 {
1176 	return (*phba->lpfc_hba_down_post)(phba);
1177 }
1178 
1179 /**
1180  * lpfc_hb_timeout - The HBA-timer timeout handler
1181  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1182  *
1183  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1184  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1185  * work-port-events bitmap and the worker thread is notified. This timeout
1186  * event will be used by the worker thread to invoke the actual timeout
1187  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1188  * be performed in the timeout handler and the HBA timeout event bit shall
1189  * be cleared by the worker thread after it has taken the event bitmap out.
1190  **/
1191 static void
1192 lpfc_hb_timeout(struct timer_list *t)
1193 {
1194 	struct lpfc_hba *phba;
1195 	uint32_t tmo_posted;
1196 	unsigned long iflag;
1197 
1198 	phba = from_timer(phba, t, hb_tmofunc);
1199 
1200 	/* Check for heart beat timeout conditions */
1201 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1202 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1203 	if (!tmo_posted)
1204 		phba->pport->work_port_events |= WORKER_HB_TMO;
1205 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1206 
1207 	/* Tell the worker thread there is work to do */
1208 	if (!tmo_posted)
1209 		lpfc_worker_wake_up(phba);
1210 	return;
1211 }
1212 
1213 /**
1214  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1215  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1216  *
1217  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1218  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1219  * work-port-events bitmap and the worker thread is notified. This timeout
1220  * event will be used by the worker thread to invoke the actual timeout
1221  * handler routine, lpfc_rrq_handler. Any periodical operations will
1222  * be performed in the timeout handler and the RRQ timeout event bit shall
1223  * be cleared by the worker thread after it has taken the event bitmap out.
1224  **/
1225 static void
1226 lpfc_rrq_timeout(struct timer_list *t)
1227 {
1228 	struct lpfc_hba *phba;
1229 	unsigned long iflag;
1230 
1231 	phba = from_timer(phba, t, rrq_tmr);
1232 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1233 	if (!(phba->pport->load_flag & FC_UNLOADING))
1234 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1235 	else
1236 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1237 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1238 
1239 	if (!(phba->pport->load_flag & FC_UNLOADING))
1240 		lpfc_worker_wake_up(phba);
1241 }
1242 
1243 /**
1244  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1245  * @phba: pointer to lpfc hba data structure.
1246  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1247  *
1248  * This is the callback function to the lpfc heart-beat mailbox command.
1249  * If configured, the lpfc driver issues the heart-beat mailbox command to
1250  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1251  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1252  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1253  * heart-beat outstanding state. Once the mailbox command comes back and
1254  * no error conditions detected, the heart-beat mailbox command timer is
1255  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1256  * state is cleared for the next heart-beat. If the timer expired with the
1257  * heart-beat outstanding state set, the driver will put the HBA offline.
1258  **/
1259 static void
1260 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1261 {
1262 	unsigned long drvr_flag;
1263 
1264 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1265 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1266 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1267 
1268 	/* Check and reset heart-beat timer if necessary */
1269 	mempool_free(pmboxq, phba->mbox_mem_pool);
1270 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1271 		!(phba->link_state == LPFC_HBA_ERROR) &&
1272 		!(phba->pport->load_flag & FC_UNLOADING))
1273 		mod_timer(&phba->hb_tmofunc,
1274 			  jiffies +
1275 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1276 	return;
1277 }
1278 
1279 /*
1280  * lpfc_idle_stat_delay_work - idle_stat tracking
1281  *
1282  * This routine tracks per-cq idle_stat and determines polling decisions.
1283  *
1284  * Return codes:
1285  *   None
1286  **/
1287 static void
1288 lpfc_idle_stat_delay_work(struct work_struct *work)
1289 {
1290 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1291 					     struct lpfc_hba,
1292 					     idle_stat_delay_work);
1293 	struct lpfc_queue *cq;
1294 	struct lpfc_sli4_hdw_queue *hdwq;
1295 	struct lpfc_idle_stat *idle_stat;
1296 	u32 i, idle_percent;
1297 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1298 
1299 	if (phba->pport->load_flag & FC_UNLOADING)
1300 		return;
1301 
1302 	if (phba->link_state == LPFC_HBA_ERROR ||
1303 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1304 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1305 		goto requeue;
1306 
1307 	for_each_present_cpu(i) {
1308 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1309 		cq = hdwq->io_cq;
1310 
1311 		/* Skip if we've already handled this cq's primary CPU */
1312 		if (cq->chann != i)
1313 			continue;
1314 
1315 		idle_stat = &phba->sli4_hba.idle_stat[i];
1316 
1317 		/* get_cpu_idle_time returns values as running counters. Thus,
1318 		 * to know the amount for this period, the prior counter values
1319 		 * need to be subtracted from the current counter values.
1320 		 * From there, the idle time stat can be calculated as a
1321 		 * percentage of 100 - the sum of the other consumption times.
1322 		 */
1323 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1324 		diff_idle = wall_idle - idle_stat->prev_idle;
1325 		diff_wall = wall - idle_stat->prev_wall;
1326 
1327 		if (diff_wall <= diff_idle)
1328 			busy_time = 0;
1329 		else
1330 			busy_time = diff_wall - diff_idle;
1331 
1332 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1333 		idle_percent = 100 - idle_percent;
1334 
1335 		if (idle_percent < 15)
1336 			cq->poll_mode = LPFC_QUEUE_WORK;
1337 		else
1338 			cq->poll_mode = LPFC_IRQ_POLL;
1339 
1340 		idle_stat->prev_idle = wall_idle;
1341 		idle_stat->prev_wall = wall;
1342 	}
1343 
1344 requeue:
1345 	schedule_delayed_work(&phba->idle_stat_delay_work,
1346 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1347 }
1348 
1349 static void
1350 lpfc_hb_eq_delay_work(struct work_struct *work)
1351 {
1352 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1353 					     struct lpfc_hba, eq_delay_work);
1354 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1355 	struct lpfc_queue *eq, *eq_next;
1356 	unsigned char *ena_delay = NULL;
1357 	uint32_t usdelay;
1358 	int i;
1359 
1360 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1361 		return;
1362 
1363 	if (phba->link_state == LPFC_HBA_ERROR ||
1364 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1365 		goto requeue;
1366 
1367 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1368 			    GFP_KERNEL);
1369 	if (!ena_delay)
1370 		goto requeue;
1371 
1372 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1373 		/* Get the EQ corresponding to the IRQ vector */
1374 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1375 		if (!eq)
1376 			continue;
1377 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1378 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1379 			ena_delay[eq->last_cpu] = 1;
1380 		}
1381 	}
1382 
1383 	for_each_present_cpu(i) {
1384 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1385 		if (ena_delay[i]) {
1386 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1387 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1388 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1389 		} else {
1390 			usdelay = 0;
1391 		}
1392 
1393 		eqi->icnt = 0;
1394 
1395 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1396 			if (unlikely(eq->last_cpu != i)) {
1397 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1398 						      eq->last_cpu);
1399 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1400 				continue;
1401 			}
1402 			if (usdelay != eq->q_mode)
1403 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1404 							 usdelay);
1405 		}
1406 	}
1407 
1408 	kfree(ena_delay);
1409 
1410 requeue:
1411 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1412 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1413 }
1414 
1415 /**
1416  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1417  * @phba: pointer to lpfc hba data structure.
1418  *
1419  * For each heartbeat, this routine does some heuristic methods to adjust
1420  * XRI distribution. The goal is to fully utilize free XRIs.
1421  **/
1422 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1423 {
1424 	u32 i;
1425 	u32 hwq_count;
1426 
1427 	hwq_count = phba->cfg_hdw_queue;
1428 	for (i = 0; i < hwq_count; i++) {
1429 		/* Adjust XRIs in private pool */
1430 		lpfc_adjust_pvt_pool_count(phba, i);
1431 
1432 		/* Adjust high watermark */
1433 		lpfc_adjust_high_watermark(phba, i);
1434 
1435 #ifdef LPFC_MXP_STAT
1436 		/* Snapshot pbl, pvt and busy count */
1437 		lpfc_snapshot_mxp(phba, i);
1438 #endif
1439 	}
1440 }
1441 
1442 /**
1443  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1444  * @phba: pointer to lpfc hba data structure.
1445  *
1446  * If a HB mbox is not already in progrees, this routine will allocate
1447  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1448  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1449  **/
1450 int
1451 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1452 {
1453 	LPFC_MBOXQ_t *pmboxq;
1454 	int retval;
1455 
1456 	/* Is a Heartbeat mbox already in progress */
1457 	if (phba->hba_flag & HBA_HBEAT_INP)
1458 		return 0;
1459 
1460 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1461 	if (!pmboxq)
1462 		return -ENOMEM;
1463 
1464 	lpfc_heart_beat(phba, pmboxq);
1465 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1466 	pmboxq->vport = phba->pport;
1467 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1468 
1469 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1470 		mempool_free(pmboxq, phba->mbox_mem_pool);
1471 		return -ENXIO;
1472 	}
1473 	phba->hba_flag |= HBA_HBEAT_INP;
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1480  * @phba: pointer to lpfc hba data structure.
1481  *
1482  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1483  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1484  * of the value of lpfc_enable_hba_heartbeat.
1485  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1486  * try to issue a MBX_HEARTBEAT mbox command.
1487  **/
1488 void
1489 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1490 {
1491 	if (phba->cfg_enable_hba_heartbeat)
1492 		return;
1493 	phba->hba_flag |= HBA_HBEAT_TMO;
1494 }
1495 
1496 /**
1497  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1498  * @phba: pointer to lpfc hba data structure.
1499  *
1500  * This is the actual HBA-timer timeout handler to be invoked by the worker
1501  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1502  * handler performs any periodic operations needed for the device. If such
1503  * periodic event has already been attended to either in the interrupt handler
1504  * or by processing slow-ring or fast-ring events within the HBA-timer
1505  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1506  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1507  * is configured and there is no heart-beat mailbox command outstanding, a
1508  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1509  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1510  * to offline.
1511  **/
1512 void
1513 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1514 {
1515 	struct lpfc_vport **vports;
1516 	struct lpfc_dmabuf *buf_ptr;
1517 	int retval = 0;
1518 	int i, tmo;
1519 	struct lpfc_sli *psli = &phba->sli;
1520 	LIST_HEAD(completions);
1521 
1522 	if (phba->cfg_xri_rebalancing) {
1523 		/* Multi-XRI pools handler */
1524 		lpfc_hb_mxp_handler(phba);
1525 	}
1526 
1527 	vports = lpfc_create_vport_work_array(phba);
1528 	if (vports != NULL)
1529 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1530 			lpfc_rcv_seq_check_edtov(vports[i]);
1531 			lpfc_fdmi_change_check(vports[i]);
1532 		}
1533 	lpfc_destroy_vport_work_array(phba, vports);
1534 
1535 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1536 		(phba->pport->load_flag & FC_UNLOADING) ||
1537 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1538 		return;
1539 
1540 	if (phba->elsbuf_cnt &&
1541 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1542 		spin_lock_irq(&phba->hbalock);
1543 		list_splice_init(&phba->elsbuf, &completions);
1544 		phba->elsbuf_cnt = 0;
1545 		phba->elsbuf_prev_cnt = 0;
1546 		spin_unlock_irq(&phba->hbalock);
1547 
1548 		while (!list_empty(&completions)) {
1549 			list_remove_head(&completions, buf_ptr,
1550 				struct lpfc_dmabuf, list);
1551 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1552 			kfree(buf_ptr);
1553 		}
1554 	}
1555 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1556 
1557 	/* If there is no heart beat outstanding, issue a heartbeat command */
1558 	if (phba->cfg_enable_hba_heartbeat) {
1559 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1560 		spin_lock_irq(&phba->pport->work_port_lock);
1561 		if (time_after(phba->last_completion_time +
1562 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1563 				jiffies)) {
1564 			spin_unlock_irq(&phba->pport->work_port_lock);
1565 			if (phba->hba_flag & HBA_HBEAT_INP)
1566 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1567 			else
1568 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1569 			goto out;
1570 		}
1571 		spin_unlock_irq(&phba->pport->work_port_lock);
1572 
1573 		/* Check if a MBX_HEARTBEAT is already in progress */
1574 		if (phba->hba_flag & HBA_HBEAT_INP) {
1575 			/*
1576 			 * If heart beat timeout called with HBA_HBEAT_INP set
1577 			 * we need to give the hb mailbox cmd a chance to
1578 			 * complete or TMO.
1579 			 */
1580 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1581 				"0459 Adapter heartbeat still outstanding: "
1582 				"last compl time was %d ms.\n",
1583 				jiffies_to_msecs(jiffies
1584 					 - phba->last_completion_time));
1585 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1586 		} else {
1587 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1588 				(list_empty(&psli->mboxq))) {
1589 
1590 				retval = lpfc_issue_hb_mbox(phba);
1591 				if (retval) {
1592 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1593 					goto out;
1594 				}
1595 				phba->skipped_hb = 0;
1596 			} else if (time_before_eq(phba->last_completion_time,
1597 					phba->skipped_hb)) {
1598 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1599 					"2857 Last completion time not "
1600 					" updated in %d ms\n",
1601 					jiffies_to_msecs(jiffies
1602 						 - phba->last_completion_time));
1603 			} else
1604 				phba->skipped_hb = jiffies;
1605 
1606 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1607 			goto out;
1608 		}
1609 	} else {
1610 		/* Check to see if we want to force a MBX_HEARTBEAT */
1611 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1612 			retval = lpfc_issue_hb_mbox(phba);
1613 			if (retval)
1614 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1615 			else
1616 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1617 			goto out;
1618 		}
1619 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1620 	}
1621 out:
1622 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1623 }
1624 
1625 /**
1626  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1627  * @phba: pointer to lpfc hba data structure.
1628  *
1629  * This routine is called to bring the HBA offline when HBA hardware error
1630  * other than Port Error 6 has been detected.
1631  **/
1632 static void
1633 lpfc_offline_eratt(struct lpfc_hba *phba)
1634 {
1635 	struct lpfc_sli   *psli = &phba->sli;
1636 
1637 	spin_lock_irq(&phba->hbalock);
1638 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1639 	spin_unlock_irq(&phba->hbalock);
1640 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1641 
1642 	lpfc_offline(phba);
1643 	lpfc_reset_barrier(phba);
1644 	spin_lock_irq(&phba->hbalock);
1645 	lpfc_sli_brdreset(phba);
1646 	spin_unlock_irq(&phba->hbalock);
1647 	lpfc_hba_down_post(phba);
1648 	lpfc_sli_brdready(phba, HS_MBRDY);
1649 	lpfc_unblock_mgmt_io(phba);
1650 	phba->link_state = LPFC_HBA_ERROR;
1651 	return;
1652 }
1653 
1654 /**
1655  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1656  * @phba: pointer to lpfc hba data structure.
1657  *
1658  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1659  * other than Port Error 6 has been detected.
1660  **/
1661 void
1662 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1663 {
1664 	spin_lock_irq(&phba->hbalock);
1665 	if (phba->link_state == LPFC_HBA_ERROR &&
1666 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1667 		spin_unlock_irq(&phba->hbalock);
1668 		return;
1669 	}
1670 	phba->link_state = LPFC_HBA_ERROR;
1671 	spin_unlock_irq(&phba->hbalock);
1672 
1673 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1674 	lpfc_sli_flush_io_rings(phba);
1675 	lpfc_offline(phba);
1676 	lpfc_hba_down_post(phba);
1677 	lpfc_unblock_mgmt_io(phba);
1678 }
1679 
1680 /**
1681  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1682  * @phba: pointer to lpfc hba data structure.
1683  *
1684  * This routine is invoked to handle the deferred HBA hardware error
1685  * conditions. This type of error is indicated by HBA by setting ER1
1686  * and another ER bit in the host status register. The driver will
1687  * wait until the ER1 bit clears before handling the error condition.
1688  **/
1689 static void
1690 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1691 {
1692 	uint32_t old_host_status = phba->work_hs;
1693 	struct lpfc_sli *psli = &phba->sli;
1694 
1695 	/* If the pci channel is offline, ignore possible errors,
1696 	 * since we cannot communicate with the pci card anyway.
1697 	 */
1698 	if (pci_channel_offline(phba->pcidev)) {
1699 		spin_lock_irq(&phba->hbalock);
1700 		phba->hba_flag &= ~DEFER_ERATT;
1701 		spin_unlock_irq(&phba->hbalock);
1702 		return;
1703 	}
1704 
1705 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1706 			"0479 Deferred Adapter Hardware Error "
1707 			"Data: x%x x%x x%x\n",
1708 			phba->work_hs, phba->work_status[0],
1709 			phba->work_status[1]);
1710 
1711 	spin_lock_irq(&phba->hbalock);
1712 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1713 	spin_unlock_irq(&phba->hbalock);
1714 
1715 
1716 	/*
1717 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1718 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1719 	 * SCSI layer retry it after re-establishing link.
1720 	 */
1721 	lpfc_sli_abort_fcp_rings(phba);
1722 
1723 	/*
1724 	 * There was a firmware error. Take the hba offline and then
1725 	 * attempt to restart it.
1726 	 */
1727 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1728 	lpfc_offline(phba);
1729 
1730 	/* Wait for the ER1 bit to clear.*/
1731 	while (phba->work_hs & HS_FFER1) {
1732 		msleep(100);
1733 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1734 			phba->work_hs = UNPLUG_ERR ;
1735 			break;
1736 		}
1737 		/* If driver is unloading let the worker thread continue */
1738 		if (phba->pport->load_flag & FC_UNLOADING) {
1739 			phba->work_hs = 0;
1740 			break;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * This is to ptrotect against a race condition in which
1746 	 * first write to the host attention register clear the
1747 	 * host status register.
1748 	 */
1749 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1750 		phba->work_hs = old_host_status & ~HS_FFER1;
1751 
1752 	spin_lock_irq(&phba->hbalock);
1753 	phba->hba_flag &= ~DEFER_ERATT;
1754 	spin_unlock_irq(&phba->hbalock);
1755 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1756 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1757 }
1758 
1759 static void
1760 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1761 {
1762 	struct lpfc_board_event_header board_event;
1763 	struct Scsi_Host *shost;
1764 
1765 	board_event.event_type = FC_REG_BOARD_EVENT;
1766 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1767 	shost = lpfc_shost_from_vport(phba->pport);
1768 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1769 				  sizeof(board_event),
1770 				  (char *) &board_event,
1771 				  LPFC_NL_VENDOR_ID);
1772 }
1773 
1774 /**
1775  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1776  * @phba: pointer to lpfc hba data structure.
1777  *
1778  * This routine is invoked to handle the following HBA hardware error
1779  * conditions:
1780  * 1 - HBA error attention interrupt
1781  * 2 - DMA ring index out of range
1782  * 3 - Mailbox command came back as unknown
1783  **/
1784 static void
1785 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1786 {
1787 	struct lpfc_vport *vport = phba->pport;
1788 	struct lpfc_sli   *psli = &phba->sli;
1789 	uint32_t event_data;
1790 	unsigned long temperature;
1791 	struct temp_event temp_event_data;
1792 	struct Scsi_Host  *shost;
1793 
1794 	/* If the pci channel is offline, ignore possible errors,
1795 	 * since we cannot communicate with the pci card anyway.
1796 	 */
1797 	if (pci_channel_offline(phba->pcidev)) {
1798 		spin_lock_irq(&phba->hbalock);
1799 		phba->hba_flag &= ~DEFER_ERATT;
1800 		spin_unlock_irq(&phba->hbalock);
1801 		return;
1802 	}
1803 
1804 	/* If resets are disabled then leave the HBA alone and return */
1805 	if (!phba->cfg_enable_hba_reset)
1806 		return;
1807 
1808 	/* Send an internal error event to mgmt application */
1809 	lpfc_board_errevt_to_mgmt(phba);
1810 
1811 	if (phba->hba_flag & DEFER_ERATT)
1812 		lpfc_handle_deferred_eratt(phba);
1813 
1814 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1815 		if (phba->work_hs & HS_FFER6)
1816 			/* Re-establishing Link */
1817 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1818 					"1301 Re-establishing Link "
1819 					"Data: x%x x%x x%x\n",
1820 					phba->work_hs, phba->work_status[0],
1821 					phba->work_status[1]);
1822 		if (phba->work_hs & HS_FFER8)
1823 			/* Device Zeroization */
1824 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1825 					"2861 Host Authentication device "
1826 					"zeroization Data:x%x x%x x%x\n",
1827 					phba->work_hs, phba->work_status[0],
1828 					phba->work_status[1]);
1829 
1830 		spin_lock_irq(&phba->hbalock);
1831 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1832 		spin_unlock_irq(&phba->hbalock);
1833 
1834 		/*
1835 		* Firmware stops when it triggled erratt with HS_FFER6.
1836 		* That could cause the I/Os dropped by the firmware.
1837 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1838 		* retry it after re-establishing link.
1839 		*/
1840 		lpfc_sli_abort_fcp_rings(phba);
1841 
1842 		/*
1843 		 * There was a firmware error.  Take the hba offline and then
1844 		 * attempt to restart it.
1845 		 */
1846 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1847 		lpfc_offline(phba);
1848 		lpfc_sli_brdrestart(phba);
1849 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1850 			lpfc_unblock_mgmt_io(phba);
1851 			return;
1852 		}
1853 		lpfc_unblock_mgmt_io(phba);
1854 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1855 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1856 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1857 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1858 		temp_event_data.data = (uint32_t)temperature;
1859 
1860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1861 				"0406 Adapter maximum temperature exceeded "
1862 				"(%ld), taking this port offline "
1863 				"Data: x%x x%x x%x\n",
1864 				temperature, phba->work_hs,
1865 				phba->work_status[0], phba->work_status[1]);
1866 
1867 		shost = lpfc_shost_from_vport(phba->pport);
1868 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1869 					  sizeof(temp_event_data),
1870 					  (char *) &temp_event_data,
1871 					  SCSI_NL_VID_TYPE_PCI
1872 					  | PCI_VENDOR_ID_EMULEX);
1873 
1874 		spin_lock_irq(&phba->hbalock);
1875 		phba->over_temp_state = HBA_OVER_TEMP;
1876 		spin_unlock_irq(&phba->hbalock);
1877 		lpfc_offline_eratt(phba);
1878 
1879 	} else {
1880 		/* The if clause above forces this code path when the status
1881 		 * failure is a value other than FFER6. Do not call the offline
1882 		 * twice. This is the adapter hardware error path.
1883 		 */
1884 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1885 				"0457 Adapter Hardware Error "
1886 				"Data: x%x x%x x%x\n",
1887 				phba->work_hs,
1888 				phba->work_status[0], phba->work_status[1]);
1889 
1890 		event_data = FC_REG_DUMP_EVENT;
1891 		shost = lpfc_shost_from_vport(vport);
1892 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1893 				sizeof(event_data), (char *) &event_data,
1894 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1895 
1896 		lpfc_offline_eratt(phba);
1897 	}
1898 	return;
1899 }
1900 
1901 /**
1902  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1903  * @phba: pointer to lpfc hba data structure.
1904  * @mbx_action: flag for mailbox shutdown action.
1905  * @en_rn_msg: send reset/port recovery message.
1906  * This routine is invoked to perform an SLI4 port PCI function reset in
1907  * response to port status register polling attention. It waits for port
1908  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1909  * During this process, interrupt vectors are freed and later requested
1910  * for handling possible port resource change.
1911  **/
1912 static int
1913 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1914 			    bool en_rn_msg)
1915 {
1916 	int rc;
1917 	uint32_t intr_mode;
1918 	LPFC_MBOXQ_t *mboxq;
1919 
1920 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1921 	    LPFC_SLI_INTF_IF_TYPE_2) {
1922 		/*
1923 		 * On error status condition, driver need to wait for port
1924 		 * ready before performing reset.
1925 		 */
1926 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1927 		if (rc)
1928 			return rc;
1929 	}
1930 
1931 	/* need reset: attempt for port recovery */
1932 	if (en_rn_msg)
1933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1934 				"2887 Reset Needed: Attempting Port "
1935 				"Recovery...\n");
1936 
1937 	/* If we are no wait, the HBA has been reset and is not
1938 	 * functional, thus we should clear
1939 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1940 	 */
1941 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1942 		spin_lock_irq(&phba->hbalock);
1943 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1944 		if (phba->sli.mbox_active) {
1945 			mboxq = phba->sli.mbox_active;
1946 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1947 			__lpfc_mbox_cmpl_put(phba, mboxq);
1948 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1949 			phba->sli.mbox_active = NULL;
1950 		}
1951 		spin_unlock_irq(&phba->hbalock);
1952 	}
1953 
1954 	lpfc_offline_prep(phba, mbx_action);
1955 	lpfc_sli_flush_io_rings(phba);
1956 	lpfc_offline(phba);
1957 	/* release interrupt for possible resource change */
1958 	lpfc_sli4_disable_intr(phba);
1959 	rc = lpfc_sli_brdrestart(phba);
1960 	if (rc) {
1961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1962 				"6309 Failed to restart board\n");
1963 		return rc;
1964 	}
1965 	/* request and enable interrupt */
1966 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1967 	if (intr_mode == LPFC_INTR_ERROR) {
1968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1969 				"3175 Failed to enable interrupt\n");
1970 		return -EIO;
1971 	}
1972 	phba->intr_mode = intr_mode;
1973 	rc = lpfc_online(phba);
1974 	if (rc == 0)
1975 		lpfc_unblock_mgmt_io(phba);
1976 
1977 	return rc;
1978 }
1979 
1980 /**
1981  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1982  * @phba: pointer to lpfc hba data structure.
1983  *
1984  * This routine is invoked to handle the SLI4 HBA hardware error attention
1985  * conditions.
1986  **/
1987 static void
1988 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1989 {
1990 	struct lpfc_vport *vport = phba->pport;
1991 	uint32_t event_data;
1992 	struct Scsi_Host *shost;
1993 	uint32_t if_type;
1994 	struct lpfc_register portstat_reg = {0};
1995 	uint32_t reg_err1, reg_err2;
1996 	uint32_t uerrlo_reg, uemasklo_reg;
1997 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1998 	bool en_rn_msg = true;
1999 	struct temp_event temp_event_data;
2000 	struct lpfc_register portsmphr_reg;
2001 	int rc, i;
2002 
2003 	/* If the pci channel is offline, ignore possible errors, since
2004 	 * we cannot communicate with the pci card anyway.
2005 	 */
2006 	if (pci_channel_offline(phba->pcidev)) {
2007 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2008 				"3166 pci channel is offline\n");
2009 		lpfc_sli_flush_io_rings(phba);
2010 		return;
2011 	}
2012 
2013 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2014 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2015 	switch (if_type) {
2016 	case LPFC_SLI_INTF_IF_TYPE_0:
2017 		pci_rd_rc1 = lpfc_readl(
2018 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2019 				&uerrlo_reg);
2020 		pci_rd_rc2 = lpfc_readl(
2021 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2022 				&uemasklo_reg);
2023 		/* consider PCI bus read error as pci_channel_offline */
2024 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2025 			return;
2026 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2027 			lpfc_sli4_offline_eratt(phba);
2028 			return;
2029 		}
2030 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2031 				"7623 Checking UE recoverable");
2032 
2033 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2034 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2035 				       &portsmphr_reg.word0))
2036 				continue;
2037 
2038 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2039 						   &portsmphr_reg);
2040 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2041 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2042 				break;
2043 			/*Sleep for 1Sec, before checking SEMAPHORE */
2044 			msleep(1000);
2045 		}
2046 
2047 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2048 				"4827 smphr_port_status x%x : Waited %dSec",
2049 				smphr_port_status, i);
2050 
2051 		/* Recoverable UE, reset the HBA device */
2052 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2053 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2054 			for (i = 0; i < 20; i++) {
2055 				msleep(1000);
2056 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2057 				    &portsmphr_reg.word0) &&
2058 				    (LPFC_POST_STAGE_PORT_READY ==
2059 				     bf_get(lpfc_port_smphr_port_status,
2060 				     &portsmphr_reg))) {
2061 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2062 						LPFC_MBX_NO_WAIT, en_rn_msg);
2063 					if (rc == 0)
2064 						return;
2065 					lpfc_printf_log(phba, KERN_ERR,
2066 						LOG_TRACE_EVENT,
2067 						"4215 Failed to recover UE");
2068 					break;
2069 				}
2070 			}
2071 		}
2072 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 				"7624 Firmware not ready: Failing UE recovery,"
2074 				" waited %dSec", i);
2075 		phba->link_state = LPFC_HBA_ERROR;
2076 		break;
2077 
2078 	case LPFC_SLI_INTF_IF_TYPE_2:
2079 	case LPFC_SLI_INTF_IF_TYPE_6:
2080 		pci_rd_rc1 = lpfc_readl(
2081 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2082 				&portstat_reg.word0);
2083 		/* consider PCI bus read error as pci_channel_offline */
2084 		if (pci_rd_rc1 == -EIO) {
2085 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2086 				"3151 PCI bus read access failure: x%x\n",
2087 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2088 			lpfc_sli4_offline_eratt(phba);
2089 			return;
2090 		}
2091 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2092 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2093 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2094 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2095 					"2889 Port Overtemperature event, "
2096 					"taking port offline Data: x%x x%x\n",
2097 					reg_err1, reg_err2);
2098 
2099 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2100 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2101 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2102 			temp_event_data.data = 0xFFFFFFFF;
2103 
2104 			shost = lpfc_shost_from_vport(phba->pport);
2105 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2106 						  sizeof(temp_event_data),
2107 						  (char *)&temp_event_data,
2108 						  SCSI_NL_VID_TYPE_PCI
2109 						  | PCI_VENDOR_ID_EMULEX);
2110 
2111 			spin_lock_irq(&phba->hbalock);
2112 			phba->over_temp_state = HBA_OVER_TEMP;
2113 			spin_unlock_irq(&phba->hbalock);
2114 			lpfc_sli4_offline_eratt(phba);
2115 			return;
2116 		}
2117 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2118 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2119 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2120 					"3143 Port Down: Firmware Update "
2121 					"Detected\n");
2122 			en_rn_msg = false;
2123 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2124 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2126 					"3144 Port Down: Debug Dump\n");
2127 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2128 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2129 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2130 					"3145 Port Down: Provisioning\n");
2131 
2132 		/* If resets are disabled then leave the HBA alone and return */
2133 		if (!phba->cfg_enable_hba_reset)
2134 			return;
2135 
2136 		/* Check port status register for function reset */
2137 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2138 				en_rn_msg);
2139 		if (rc == 0) {
2140 			/* don't report event on forced debug dump */
2141 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2142 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2143 				return;
2144 			else
2145 				break;
2146 		}
2147 		/* fall through for not able to recover */
2148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2149 				"3152 Unrecoverable error\n");
2150 		phba->link_state = LPFC_HBA_ERROR;
2151 		break;
2152 	case LPFC_SLI_INTF_IF_TYPE_1:
2153 	default:
2154 		break;
2155 	}
2156 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2157 			"3123 Report dump event to upper layer\n");
2158 	/* Send an internal error event to mgmt application */
2159 	lpfc_board_errevt_to_mgmt(phba);
2160 
2161 	event_data = FC_REG_DUMP_EVENT;
2162 	shost = lpfc_shost_from_vport(vport);
2163 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2164 				  sizeof(event_data), (char *) &event_data,
2165 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2166 }
2167 
2168 /**
2169  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2170  * @phba: pointer to lpfc HBA data structure.
2171  *
2172  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2173  * routine from the API jump table function pointer from the lpfc_hba struct.
2174  *
2175  * Return codes
2176  *   0 - success.
2177  *   Any other value - error.
2178  **/
2179 void
2180 lpfc_handle_eratt(struct lpfc_hba *phba)
2181 {
2182 	(*phba->lpfc_handle_eratt)(phba);
2183 }
2184 
2185 /**
2186  * lpfc_handle_latt - The HBA link event handler
2187  * @phba: pointer to lpfc hba data structure.
2188  *
2189  * This routine is invoked from the worker thread to handle a HBA host
2190  * attention link event. SLI3 only.
2191  **/
2192 void
2193 lpfc_handle_latt(struct lpfc_hba *phba)
2194 {
2195 	struct lpfc_vport *vport = phba->pport;
2196 	struct lpfc_sli   *psli = &phba->sli;
2197 	LPFC_MBOXQ_t *pmb;
2198 	volatile uint32_t control;
2199 	int rc = 0;
2200 
2201 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2202 	if (!pmb) {
2203 		rc = 1;
2204 		goto lpfc_handle_latt_err_exit;
2205 	}
2206 
2207 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2208 	if (rc) {
2209 		rc = 2;
2210 		mempool_free(pmb, phba->mbox_mem_pool);
2211 		goto lpfc_handle_latt_err_exit;
2212 	}
2213 
2214 	/* Cleanup any outstanding ELS commands */
2215 	lpfc_els_flush_all_cmd(phba);
2216 	psli->slistat.link_event++;
2217 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2218 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2219 	pmb->vport = vport;
2220 	/* Block ELS IOCBs until we have processed this mbox command */
2221 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2222 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2223 	if (rc == MBX_NOT_FINISHED) {
2224 		rc = 4;
2225 		goto lpfc_handle_latt_free_mbuf;
2226 	}
2227 
2228 	/* Clear Link Attention in HA REG */
2229 	spin_lock_irq(&phba->hbalock);
2230 	writel(HA_LATT, phba->HAregaddr);
2231 	readl(phba->HAregaddr); /* flush */
2232 	spin_unlock_irq(&phba->hbalock);
2233 
2234 	return;
2235 
2236 lpfc_handle_latt_free_mbuf:
2237 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2238 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2239 lpfc_handle_latt_err_exit:
2240 	/* Enable Link attention interrupts */
2241 	spin_lock_irq(&phba->hbalock);
2242 	psli->sli_flag |= LPFC_PROCESS_LA;
2243 	control = readl(phba->HCregaddr);
2244 	control |= HC_LAINT_ENA;
2245 	writel(control, phba->HCregaddr);
2246 	readl(phba->HCregaddr); /* flush */
2247 
2248 	/* Clear Link Attention in HA REG */
2249 	writel(HA_LATT, phba->HAregaddr);
2250 	readl(phba->HAregaddr); /* flush */
2251 	spin_unlock_irq(&phba->hbalock);
2252 	lpfc_linkdown(phba);
2253 	phba->link_state = LPFC_HBA_ERROR;
2254 
2255 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2256 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2257 
2258 	return;
2259 }
2260 
2261 static void
2262 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2263 {
2264 	int i, j;
2265 
2266 	while (length > 0) {
2267 		/* Look for Serial Number */
2268 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2269 			*pindex += 2;
2270 			i = vpd[*pindex];
2271 			*pindex += 1;
2272 			j = 0;
2273 			length -= (3+i);
2274 			while (i--) {
2275 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2276 				if (j == 31)
2277 					break;
2278 			}
2279 			phba->SerialNumber[j] = 0;
2280 			continue;
2281 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2282 			phba->vpd_flag |= VPD_MODEL_DESC;
2283 			*pindex += 2;
2284 			i = vpd[*pindex];
2285 			*pindex += 1;
2286 			j = 0;
2287 			length -= (3+i);
2288 			while (i--) {
2289 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2290 				if (j == 255)
2291 					break;
2292 			}
2293 			phba->ModelDesc[j] = 0;
2294 			continue;
2295 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2296 			phba->vpd_flag |= VPD_MODEL_NAME;
2297 			*pindex += 2;
2298 			i = vpd[*pindex];
2299 			*pindex += 1;
2300 			j = 0;
2301 			length -= (3+i);
2302 			while (i--) {
2303 				phba->ModelName[j++] = vpd[(*pindex)++];
2304 				if (j == 79)
2305 					break;
2306 			}
2307 			phba->ModelName[j] = 0;
2308 			continue;
2309 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2310 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2311 			*pindex += 2;
2312 			i = vpd[*pindex];
2313 			*pindex += 1;
2314 			j = 0;
2315 			length -= (3+i);
2316 			while (i--) {
2317 				phba->ProgramType[j++] = vpd[(*pindex)++];
2318 				if (j == 255)
2319 					break;
2320 			}
2321 			phba->ProgramType[j] = 0;
2322 			continue;
2323 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2324 			phba->vpd_flag |= VPD_PORT;
2325 			*pindex += 2;
2326 			i = vpd[*pindex];
2327 			*pindex += 1;
2328 			j = 0;
2329 			length -= (3 + i);
2330 			while (i--) {
2331 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2332 				    (phba->sli4_hba.pport_name_sta ==
2333 				     LPFC_SLI4_PPNAME_GET)) {
2334 					j++;
2335 					(*pindex)++;
2336 				} else
2337 					phba->Port[j++] = vpd[(*pindex)++];
2338 				if (j == 19)
2339 					break;
2340 			}
2341 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2342 			    (phba->sli4_hba.pport_name_sta ==
2343 			     LPFC_SLI4_PPNAME_NON))
2344 				phba->Port[j] = 0;
2345 			continue;
2346 		} else {
2347 			*pindex += 2;
2348 			i = vpd[*pindex];
2349 			*pindex += 1;
2350 			*pindex += i;
2351 			length -= (3 + i);
2352 		}
2353 	}
2354 }
2355 
2356 /**
2357  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2358  * @phba: pointer to lpfc hba data structure.
2359  * @vpd: pointer to the vital product data.
2360  * @len: length of the vital product data in bytes.
2361  *
2362  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2363  * an array of characters. In this routine, the ModelName, ProgramType, and
2364  * ModelDesc, etc. fields of the phba data structure will be populated.
2365  *
2366  * Return codes
2367  *   0 - pointer to the VPD passed in is NULL
2368  *   1 - success
2369  **/
2370 int
2371 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2372 {
2373 	uint8_t lenlo, lenhi;
2374 	int Length;
2375 	int i;
2376 	int finished = 0;
2377 	int index = 0;
2378 
2379 	if (!vpd)
2380 		return 0;
2381 
2382 	/* Vital Product */
2383 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2384 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2385 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2386 			(uint32_t) vpd[3]);
2387 	while (!finished && (index < (len - 4))) {
2388 		switch (vpd[index]) {
2389 		case 0x82:
2390 		case 0x91:
2391 			index += 1;
2392 			lenlo = vpd[index];
2393 			index += 1;
2394 			lenhi = vpd[index];
2395 			index += 1;
2396 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2397 			index += i;
2398 			break;
2399 		case 0x90:
2400 			index += 1;
2401 			lenlo = vpd[index];
2402 			index += 1;
2403 			lenhi = vpd[index];
2404 			index += 1;
2405 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2406 			if (Length > len - index)
2407 				Length = len - index;
2408 
2409 			lpfc_fill_vpd(phba, vpd, Length, &index);
2410 			finished = 0;
2411 			break;
2412 		case 0x78:
2413 			finished = 1;
2414 			break;
2415 		default:
2416 			index ++;
2417 			break;
2418 		}
2419 	}
2420 
2421 	return(1);
2422 }
2423 
2424 /**
2425  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2426  * @phba: pointer to lpfc hba data structure.
2427  * @mdp: pointer to the data structure to hold the derived model name.
2428  * @descp: pointer to the data structure to hold the derived description.
2429  *
2430  * This routine retrieves HBA's description based on its registered PCI device
2431  * ID. The @descp passed into this function points to an array of 256 chars. It
2432  * shall be returned with the model name, maximum speed, and the host bus type.
2433  * The @mdp passed into this function points to an array of 80 chars. When the
2434  * function returns, the @mdp will be filled with the model name.
2435  **/
2436 static void
2437 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2438 {
2439 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2440 	char *model = "<Unknown>";
2441 	int tbolt = 0;
2442 
2443 	switch (sub_dev_id) {
2444 	case PCI_DEVICE_ID_CLRY_161E:
2445 		model = "161E";
2446 		break;
2447 	case PCI_DEVICE_ID_CLRY_162E:
2448 		model = "162E";
2449 		break;
2450 	case PCI_DEVICE_ID_CLRY_164E:
2451 		model = "164E";
2452 		break;
2453 	case PCI_DEVICE_ID_CLRY_161P:
2454 		model = "161P";
2455 		break;
2456 	case PCI_DEVICE_ID_CLRY_162P:
2457 		model = "162P";
2458 		break;
2459 	case PCI_DEVICE_ID_CLRY_164P:
2460 		model = "164P";
2461 		break;
2462 	case PCI_DEVICE_ID_CLRY_321E:
2463 		model = "321E";
2464 		break;
2465 	case PCI_DEVICE_ID_CLRY_322E:
2466 		model = "322E";
2467 		break;
2468 	case PCI_DEVICE_ID_CLRY_324E:
2469 		model = "324E";
2470 		break;
2471 	case PCI_DEVICE_ID_CLRY_321P:
2472 		model = "321P";
2473 		break;
2474 	case PCI_DEVICE_ID_CLRY_322P:
2475 		model = "322P";
2476 		break;
2477 	case PCI_DEVICE_ID_CLRY_324P:
2478 		model = "324P";
2479 		break;
2480 	case PCI_DEVICE_ID_TLFC_2XX2:
2481 		model = "2XX2";
2482 		tbolt = 1;
2483 		break;
2484 	case PCI_DEVICE_ID_TLFC_3162:
2485 		model = "3162";
2486 		tbolt = 1;
2487 		break;
2488 	case PCI_DEVICE_ID_TLFC_3322:
2489 		model = "3322";
2490 		tbolt = 1;
2491 		break;
2492 	default:
2493 		model = "Unknown";
2494 		break;
2495 	}
2496 
2497 	if (mdp && mdp[0] == '\0')
2498 		snprintf(mdp, 79, "%s", model);
2499 
2500 	if (descp && descp[0] == '\0')
2501 		snprintf(descp, 255,
2502 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2503 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2504 			 model,
2505 			 phba->Port);
2506 }
2507 
2508 /**
2509  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2510  * @phba: pointer to lpfc hba data structure.
2511  * @mdp: pointer to the data structure to hold the derived model name.
2512  * @descp: pointer to the data structure to hold the derived description.
2513  *
2514  * This routine retrieves HBA's description based on its registered PCI device
2515  * ID. The @descp passed into this function points to an array of 256 chars. It
2516  * shall be returned with the model name, maximum speed, and the host bus type.
2517  * The @mdp passed into this function points to an array of 80 chars. When the
2518  * function returns, the @mdp will be filled with the model name.
2519  **/
2520 static void
2521 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2522 {
2523 	lpfc_vpd_t *vp;
2524 	uint16_t dev_id = phba->pcidev->device;
2525 	int max_speed;
2526 	int GE = 0;
2527 	int oneConnect = 0; /* default is not a oneConnect */
2528 	struct {
2529 		char *name;
2530 		char *bus;
2531 		char *function;
2532 	} m = {"<Unknown>", "", ""};
2533 
2534 	if (mdp && mdp[0] != '\0'
2535 		&& descp && descp[0] != '\0')
2536 		return;
2537 
2538 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2539 		lpfc_get_atto_model_desc(phba, mdp, descp);
2540 		return;
2541 	}
2542 
2543 	if (phba->lmt & LMT_64Gb)
2544 		max_speed = 64;
2545 	else if (phba->lmt & LMT_32Gb)
2546 		max_speed = 32;
2547 	else if (phba->lmt & LMT_16Gb)
2548 		max_speed = 16;
2549 	else if (phba->lmt & LMT_10Gb)
2550 		max_speed = 10;
2551 	else if (phba->lmt & LMT_8Gb)
2552 		max_speed = 8;
2553 	else if (phba->lmt & LMT_4Gb)
2554 		max_speed = 4;
2555 	else if (phba->lmt & LMT_2Gb)
2556 		max_speed = 2;
2557 	else if (phba->lmt & LMT_1Gb)
2558 		max_speed = 1;
2559 	else
2560 		max_speed = 0;
2561 
2562 	vp = &phba->vpd;
2563 
2564 	switch (dev_id) {
2565 	case PCI_DEVICE_ID_FIREFLY:
2566 		m = (typeof(m)){"LP6000", "PCI",
2567 				"Obsolete, Unsupported Fibre Channel Adapter"};
2568 		break;
2569 	case PCI_DEVICE_ID_SUPERFLY:
2570 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2571 			m = (typeof(m)){"LP7000", "PCI", ""};
2572 		else
2573 			m = (typeof(m)){"LP7000E", "PCI", ""};
2574 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2575 		break;
2576 	case PCI_DEVICE_ID_DRAGONFLY:
2577 		m = (typeof(m)){"LP8000", "PCI",
2578 				"Obsolete, Unsupported Fibre Channel Adapter"};
2579 		break;
2580 	case PCI_DEVICE_ID_CENTAUR:
2581 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2582 			m = (typeof(m)){"LP9002", "PCI", ""};
2583 		else
2584 			m = (typeof(m)){"LP9000", "PCI", ""};
2585 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2586 		break;
2587 	case PCI_DEVICE_ID_RFLY:
2588 		m = (typeof(m)){"LP952", "PCI",
2589 				"Obsolete, Unsupported Fibre Channel Adapter"};
2590 		break;
2591 	case PCI_DEVICE_ID_PEGASUS:
2592 		m = (typeof(m)){"LP9802", "PCI-X",
2593 				"Obsolete, Unsupported Fibre Channel Adapter"};
2594 		break;
2595 	case PCI_DEVICE_ID_THOR:
2596 		m = (typeof(m)){"LP10000", "PCI-X",
2597 				"Obsolete, Unsupported Fibre Channel Adapter"};
2598 		break;
2599 	case PCI_DEVICE_ID_VIPER:
2600 		m = (typeof(m)){"LPX1000",  "PCI-X",
2601 				"Obsolete, Unsupported Fibre Channel Adapter"};
2602 		break;
2603 	case PCI_DEVICE_ID_PFLY:
2604 		m = (typeof(m)){"LP982", "PCI-X",
2605 				"Obsolete, Unsupported Fibre Channel Adapter"};
2606 		break;
2607 	case PCI_DEVICE_ID_TFLY:
2608 		m = (typeof(m)){"LP1050", "PCI-X",
2609 				"Obsolete, Unsupported Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_HELIOS:
2612 		m = (typeof(m)){"LP11000", "PCI-X2",
2613 				"Obsolete, Unsupported Fibre Channel Adapter"};
2614 		break;
2615 	case PCI_DEVICE_ID_HELIOS_SCSP:
2616 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2617 				"Obsolete, Unsupported Fibre Channel Adapter"};
2618 		break;
2619 	case PCI_DEVICE_ID_HELIOS_DCSP:
2620 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2621 				"Obsolete, Unsupported Fibre Channel Adapter"};
2622 		break;
2623 	case PCI_DEVICE_ID_NEPTUNE:
2624 		m = (typeof(m)){"LPe1000", "PCIe",
2625 				"Obsolete, Unsupported Fibre Channel Adapter"};
2626 		break;
2627 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2628 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2629 				"Obsolete, Unsupported Fibre Channel Adapter"};
2630 		break;
2631 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2632 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2633 				"Obsolete, Unsupported Fibre Channel Adapter"};
2634 		break;
2635 	case PCI_DEVICE_ID_BMID:
2636 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2637 		break;
2638 	case PCI_DEVICE_ID_BSMB:
2639 		m = (typeof(m)){"LP111", "PCI-X2",
2640 				"Obsolete, Unsupported Fibre Channel Adapter"};
2641 		break;
2642 	case PCI_DEVICE_ID_ZEPHYR:
2643 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2644 		break;
2645 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2646 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2647 		break;
2648 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2649 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2650 		GE = 1;
2651 		break;
2652 	case PCI_DEVICE_ID_ZMID:
2653 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2654 		break;
2655 	case PCI_DEVICE_ID_ZSMB:
2656 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2657 		break;
2658 	case PCI_DEVICE_ID_LP101:
2659 		m = (typeof(m)){"LP101", "PCI-X",
2660 				"Obsolete, Unsupported Fibre Channel Adapter"};
2661 		break;
2662 	case PCI_DEVICE_ID_LP10000S:
2663 		m = (typeof(m)){"LP10000-S", "PCI",
2664 				"Obsolete, Unsupported Fibre Channel Adapter"};
2665 		break;
2666 	case PCI_DEVICE_ID_LP11000S:
2667 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2668 				"Obsolete, Unsupported Fibre Channel Adapter"};
2669 		break;
2670 	case PCI_DEVICE_ID_LPE11000S:
2671 		m = (typeof(m)){"LPe11000-S", "PCIe",
2672 				"Obsolete, Unsupported Fibre Channel Adapter"};
2673 		break;
2674 	case PCI_DEVICE_ID_SAT:
2675 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2676 		break;
2677 	case PCI_DEVICE_ID_SAT_MID:
2678 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2679 		break;
2680 	case PCI_DEVICE_ID_SAT_SMB:
2681 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2682 		break;
2683 	case PCI_DEVICE_ID_SAT_DCSP:
2684 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2685 		break;
2686 	case PCI_DEVICE_ID_SAT_SCSP:
2687 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2688 		break;
2689 	case PCI_DEVICE_ID_SAT_S:
2690 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2691 		break;
2692 	case PCI_DEVICE_ID_PROTEUS_VF:
2693 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2694 				"Obsolete, Unsupported Fibre Channel Adapter"};
2695 		break;
2696 	case PCI_DEVICE_ID_PROTEUS_PF:
2697 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2698 				"Obsolete, Unsupported Fibre Channel Adapter"};
2699 		break;
2700 	case PCI_DEVICE_ID_PROTEUS_S:
2701 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2702 				"Obsolete, Unsupported Fibre Channel Adapter"};
2703 		break;
2704 	case PCI_DEVICE_ID_TIGERSHARK:
2705 		oneConnect = 1;
2706 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2707 		break;
2708 	case PCI_DEVICE_ID_TOMCAT:
2709 		oneConnect = 1;
2710 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2711 		break;
2712 	case PCI_DEVICE_ID_FALCON:
2713 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2714 				"EmulexSecure Fibre"};
2715 		break;
2716 	case PCI_DEVICE_ID_BALIUS:
2717 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2718 				"Obsolete, Unsupported Fibre Channel Adapter"};
2719 		break;
2720 	case PCI_DEVICE_ID_LANCER_FC:
2721 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2722 		break;
2723 	case PCI_DEVICE_ID_LANCER_FC_VF:
2724 		m = (typeof(m)){"LPe16000", "PCIe",
2725 				"Obsolete, Unsupported Fibre Channel Adapter"};
2726 		break;
2727 	case PCI_DEVICE_ID_LANCER_FCOE:
2728 		oneConnect = 1;
2729 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2730 		break;
2731 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2732 		oneConnect = 1;
2733 		m = (typeof(m)){"OCe15100", "PCIe",
2734 				"Obsolete, Unsupported FCoE"};
2735 		break;
2736 	case PCI_DEVICE_ID_LANCER_G6_FC:
2737 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2738 		break;
2739 	case PCI_DEVICE_ID_LANCER_G7_FC:
2740 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2741 		break;
2742 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2743 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2744 		break;
2745 	case PCI_DEVICE_ID_SKYHAWK:
2746 	case PCI_DEVICE_ID_SKYHAWK_VF:
2747 		oneConnect = 1;
2748 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2749 		break;
2750 	default:
2751 		m = (typeof(m)){"Unknown", "", ""};
2752 		break;
2753 	}
2754 
2755 	if (mdp && mdp[0] == '\0')
2756 		snprintf(mdp, 79,"%s", m.name);
2757 	/*
2758 	 * oneConnect hba requires special processing, they are all initiators
2759 	 * and we put the port number on the end
2760 	 */
2761 	if (descp && descp[0] == '\0') {
2762 		if (oneConnect)
2763 			snprintf(descp, 255,
2764 				"Emulex OneConnect %s, %s Initiator %s",
2765 				m.name, m.function,
2766 				phba->Port);
2767 		else if (max_speed == 0)
2768 			snprintf(descp, 255,
2769 				"Emulex %s %s %s",
2770 				m.name, m.bus, m.function);
2771 		else
2772 			snprintf(descp, 255,
2773 				"Emulex %s %d%s %s %s",
2774 				m.name, max_speed, (GE) ? "GE" : "Gb",
2775 				m.bus, m.function);
2776 	}
2777 }
2778 
2779 /**
2780  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2781  * @phba: pointer to lpfc hba data structure.
2782  * @pring: pointer to a IOCB ring.
2783  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2784  *
2785  * This routine posts a given number of IOCBs with the associated DMA buffer
2786  * descriptors specified by the cnt argument to the given IOCB ring.
2787  *
2788  * Return codes
2789  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2790  **/
2791 int
2792 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2793 {
2794 	IOCB_t *icmd;
2795 	struct lpfc_iocbq *iocb;
2796 	struct lpfc_dmabuf *mp1, *mp2;
2797 
2798 	cnt += pring->missbufcnt;
2799 
2800 	/* While there are buffers to post */
2801 	while (cnt > 0) {
2802 		/* Allocate buffer for  command iocb */
2803 		iocb = lpfc_sli_get_iocbq(phba);
2804 		if (iocb == NULL) {
2805 			pring->missbufcnt = cnt;
2806 			return cnt;
2807 		}
2808 		icmd = &iocb->iocb;
2809 
2810 		/* 2 buffers can be posted per command */
2811 		/* Allocate buffer to post */
2812 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2813 		if (mp1)
2814 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2815 		if (!mp1 || !mp1->virt) {
2816 			kfree(mp1);
2817 			lpfc_sli_release_iocbq(phba, iocb);
2818 			pring->missbufcnt = cnt;
2819 			return cnt;
2820 		}
2821 
2822 		INIT_LIST_HEAD(&mp1->list);
2823 		/* Allocate buffer to post */
2824 		if (cnt > 1) {
2825 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2826 			if (mp2)
2827 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2828 							    &mp2->phys);
2829 			if (!mp2 || !mp2->virt) {
2830 				kfree(mp2);
2831 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2832 				kfree(mp1);
2833 				lpfc_sli_release_iocbq(phba, iocb);
2834 				pring->missbufcnt = cnt;
2835 				return cnt;
2836 			}
2837 
2838 			INIT_LIST_HEAD(&mp2->list);
2839 		} else {
2840 			mp2 = NULL;
2841 		}
2842 
2843 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2844 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2845 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2846 		icmd->ulpBdeCount = 1;
2847 		cnt--;
2848 		if (mp2) {
2849 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2850 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2851 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2852 			cnt--;
2853 			icmd->ulpBdeCount = 2;
2854 		}
2855 
2856 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2857 		icmd->ulpLe = 1;
2858 
2859 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2860 		    IOCB_ERROR) {
2861 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2862 			kfree(mp1);
2863 			cnt++;
2864 			if (mp2) {
2865 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2866 				kfree(mp2);
2867 				cnt++;
2868 			}
2869 			lpfc_sli_release_iocbq(phba, iocb);
2870 			pring->missbufcnt = cnt;
2871 			return cnt;
2872 		}
2873 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2874 		if (mp2)
2875 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2876 	}
2877 	pring->missbufcnt = 0;
2878 	return 0;
2879 }
2880 
2881 /**
2882  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2883  * @phba: pointer to lpfc hba data structure.
2884  *
2885  * This routine posts initial receive IOCB buffers to the ELS ring. The
2886  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2887  * set to 64 IOCBs. SLI3 only.
2888  *
2889  * Return codes
2890  *   0 - success (currently always success)
2891  **/
2892 static int
2893 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2894 {
2895 	struct lpfc_sli *psli = &phba->sli;
2896 
2897 	/* Ring 0, ELS / CT buffers */
2898 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2899 	/* Ring 2 - FCP no buffers needed */
2900 
2901 	return 0;
2902 }
2903 
2904 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2905 
2906 /**
2907  * lpfc_sha_init - Set up initial array of hash table entries
2908  * @HashResultPointer: pointer to an array as hash table.
2909  *
2910  * This routine sets up the initial values to the array of hash table entries
2911  * for the LC HBAs.
2912  **/
2913 static void
2914 lpfc_sha_init(uint32_t * HashResultPointer)
2915 {
2916 	HashResultPointer[0] = 0x67452301;
2917 	HashResultPointer[1] = 0xEFCDAB89;
2918 	HashResultPointer[2] = 0x98BADCFE;
2919 	HashResultPointer[3] = 0x10325476;
2920 	HashResultPointer[4] = 0xC3D2E1F0;
2921 }
2922 
2923 /**
2924  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2925  * @HashResultPointer: pointer to an initial/result hash table.
2926  * @HashWorkingPointer: pointer to an working hash table.
2927  *
2928  * This routine iterates an initial hash table pointed by @HashResultPointer
2929  * with the values from the working hash table pointeed by @HashWorkingPointer.
2930  * The results are putting back to the initial hash table, returned through
2931  * the @HashResultPointer as the result hash table.
2932  **/
2933 static void
2934 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2935 {
2936 	int t;
2937 	uint32_t TEMP;
2938 	uint32_t A, B, C, D, E;
2939 	t = 16;
2940 	do {
2941 		HashWorkingPointer[t] =
2942 		    S(1,
2943 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2944 								     8] ^
2945 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2946 	} while (++t <= 79);
2947 	t = 0;
2948 	A = HashResultPointer[0];
2949 	B = HashResultPointer[1];
2950 	C = HashResultPointer[2];
2951 	D = HashResultPointer[3];
2952 	E = HashResultPointer[4];
2953 
2954 	do {
2955 		if (t < 20) {
2956 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2957 		} else if (t < 40) {
2958 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2959 		} else if (t < 60) {
2960 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2961 		} else {
2962 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2963 		}
2964 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2965 		E = D;
2966 		D = C;
2967 		C = S(30, B);
2968 		B = A;
2969 		A = TEMP;
2970 	} while (++t <= 79);
2971 
2972 	HashResultPointer[0] += A;
2973 	HashResultPointer[1] += B;
2974 	HashResultPointer[2] += C;
2975 	HashResultPointer[3] += D;
2976 	HashResultPointer[4] += E;
2977 
2978 }
2979 
2980 /**
2981  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2982  * @RandomChallenge: pointer to the entry of host challenge random number array.
2983  * @HashWorking: pointer to the entry of the working hash array.
2984  *
2985  * This routine calculates the working hash array referred by @HashWorking
2986  * from the challenge random numbers associated with the host, referred by
2987  * @RandomChallenge. The result is put into the entry of the working hash
2988  * array and returned by reference through @HashWorking.
2989  **/
2990 static void
2991 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2992 {
2993 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2994 }
2995 
2996 /**
2997  * lpfc_hba_init - Perform special handling for LC HBA initialization
2998  * @phba: pointer to lpfc hba data structure.
2999  * @hbainit: pointer to an array of unsigned 32-bit integers.
3000  *
3001  * This routine performs the special handling for LC HBA initialization.
3002  **/
3003 void
3004 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3005 {
3006 	int t;
3007 	uint32_t *HashWorking;
3008 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3009 
3010 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3011 	if (!HashWorking)
3012 		return;
3013 
3014 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3015 	HashWorking[1] = HashWorking[79] = *pwwnn;
3016 
3017 	for (t = 0; t < 7; t++)
3018 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3019 
3020 	lpfc_sha_init(hbainit);
3021 	lpfc_sha_iterate(hbainit, HashWorking);
3022 	kfree(HashWorking);
3023 }
3024 
3025 /**
3026  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3027  * @vport: pointer to a virtual N_Port data structure.
3028  *
3029  * This routine performs the necessary cleanups before deleting the @vport.
3030  * It invokes the discovery state machine to perform necessary state
3031  * transitions and to release the ndlps associated with the @vport. Note,
3032  * the physical port is treated as @vport 0.
3033  **/
3034 void
3035 lpfc_cleanup(struct lpfc_vport *vport)
3036 {
3037 	struct lpfc_hba   *phba = vport->phba;
3038 	struct lpfc_nodelist *ndlp, *next_ndlp;
3039 	int i = 0;
3040 
3041 	if (phba->link_state > LPFC_LINK_DOWN)
3042 		lpfc_port_link_failure(vport);
3043 
3044 	/* Clean up VMID resources */
3045 	if (lpfc_is_vmid_enabled(phba))
3046 		lpfc_vmid_vport_cleanup(vport);
3047 
3048 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3049 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3050 		    ndlp->nlp_DID == Fabric_DID) {
3051 			/* Just free up ndlp with Fabric_DID for vports */
3052 			lpfc_nlp_put(ndlp);
3053 			continue;
3054 		}
3055 
3056 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3057 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3058 			lpfc_nlp_put(ndlp);
3059 			continue;
3060 		}
3061 
3062 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3063 		 * DEVICE_RM event.
3064 		 */
3065 		if (ndlp->nlp_type & NLP_FABRIC &&
3066 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3067 			lpfc_disc_state_machine(vport, ndlp, NULL,
3068 					NLP_EVT_DEVICE_RECOVERY);
3069 
3070 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3071 			lpfc_disc_state_machine(vport, ndlp, NULL,
3072 					NLP_EVT_DEVICE_RM);
3073 	}
3074 
3075 	/* This is a special case flush to return all
3076 	 * IOs before entering this loop. There are
3077 	 * two points in the code where a flush is
3078 	 * avoided if the FC_UNLOADING flag is set.
3079 	 * one is in the multipool destroy,
3080 	 * (this prevents a crash) and the other is
3081 	 * in the nvme abort handler, ( also prevents
3082 	 * a crash). Both of these exceptions are
3083 	 * cases where the slot is still accessible.
3084 	 * The flush here is only when the pci slot
3085 	 * is offline.
3086 	 */
3087 	if (vport->load_flag & FC_UNLOADING &&
3088 	    pci_channel_offline(phba->pcidev))
3089 		lpfc_sli_flush_io_rings(vport->phba);
3090 
3091 	/* At this point, ALL ndlp's should be gone
3092 	 * because of the previous NLP_EVT_DEVICE_RM.
3093 	 * Lets wait for this to happen, if needed.
3094 	 */
3095 	while (!list_empty(&vport->fc_nodes)) {
3096 		if (i++ > 3000) {
3097 			lpfc_printf_vlog(vport, KERN_ERR,
3098 					 LOG_TRACE_EVENT,
3099 				"0233 Nodelist not empty\n");
3100 			list_for_each_entry_safe(ndlp, next_ndlp,
3101 						&vport->fc_nodes, nlp_listp) {
3102 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3103 						 LOG_DISCOVERY,
3104 						 "0282 did:x%x ndlp:x%px "
3105 						 "refcnt:%d xflags x%x nflag x%x\n",
3106 						 ndlp->nlp_DID, (void *)ndlp,
3107 						 kref_read(&ndlp->kref),
3108 						 ndlp->fc4_xpt_flags,
3109 						 ndlp->nlp_flag);
3110 			}
3111 			break;
3112 		}
3113 
3114 		/* Wait for any activity on ndlps to settle */
3115 		msleep(10);
3116 	}
3117 	lpfc_cleanup_vports_rrqs(vport, NULL);
3118 }
3119 
3120 /**
3121  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3122  * @vport: pointer to a virtual N_Port data structure.
3123  *
3124  * This routine stops all the timers associated with a @vport. This function
3125  * is invoked before disabling or deleting a @vport. Note that the physical
3126  * port is treated as @vport 0.
3127  **/
3128 void
3129 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3130 {
3131 	del_timer_sync(&vport->els_tmofunc);
3132 	del_timer_sync(&vport->delayed_disc_tmo);
3133 	lpfc_can_disctmo(vport);
3134 	return;
3135 }
3136 
3137 /**
3138  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3139  * @phba: pointer to lpfc hba data structure.
3140  *
3141  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3142  * caller of this routine should already hold the host lock.
3143  **/
3144 void
3145 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3146 {
3147 	/* Clear pending FCF rediscovery wait flag */
3148 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3149 
3150 	/* Now, try to stop the timer */
3151 	del_timer(&phba->fcf.redisc_wait);
3152 }
3153 
3154 /**
3155  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3156  * @phba: pointer to lpfc hba data structure.
3157  *
3158  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3159  * checks whether the FCF rediscovery wait timer is pending with the host
3160  * lock held before proceeding with disabling the timer and clearing the
3161  * wait timer pendig flag.
3162  **/
3163 void
3164 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3165 {
3166 	spin_lock_irq(&phba->hbalock);
3167 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3168 		/* FCF rediscovery timer already fired or stopped */
3169 		spin_unlock_irq(&phba->hbalock);
3170 		return;
3171 	}
3172 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3173 	/* Clear failover in progress flags */
3174 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3175 	spin_unlock_irq(&phba->hbalock);
3176 }
3177 
3178 /**
3179  * lpfc_cmf_stop - Stop CMF processing
3180  * @phba: pointer to lpfc hba data structure.
3181  *
3182  * This is called when the link goes down or if CMF mode is turned OFF.
3183  * It is also called when going offline or unloaded just before the
3184  * congestion info buffer is unregistered.
3185  **/
3186 void
3187 lpfc_cmf_stop(struct lpfc_hba *phba)
3188 {
3189 	int cpu;
3190 	struct lpfc_cgn_stat *cgs;
3191 
3192 	/* We only do something if CMF is enabled */
3193 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3194 		return;
3195 
3196 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3197 			"6221 Stop CMF / Cancel Timer\n");
3198 
3199 	/* Cancel the CMF timer */
3200 	hrtimer_cancel(&phba->cmf_timer);
3201 
3202 	/* Zero CMF counters */
3203 	atomic_set(&phba->cmf_busy, 0);
3204 	for_each_present_cpu(cpu) {
3205 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3206 		atomic64_set(&cgs->total_bytes, 0);
3207 		atomic64_set(&cgs->rcv_bytes, 0);
3208 		atomic_set(&cgs->rx_io_cnt, 0);
3209 		atomic64_set(&cgs->rx_latency, 0);
3210 	}
3211 	atomic_set(&phba->cmf_bw_wait, 0);
3212 
3213 	/* Resume any blocked IO - Queue unblock on workqueue */
3214 	queue_work(phba->wq, &phba->unblock_request_work);
3215 }
3216 
3217 static inline uint64_t
3218 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3219 {
3220 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3221 
3222 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3223 }
3224 
3225 void
3226 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3227 {
3228 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3229 			"6223 Signal CMF init\n");
3230 
3231 	/* Use the new fc_linkspeed to recalculate */
3232 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3233 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3234 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3235 					    phba->cmf_interval_rate, 1000);
3236 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3237 
3238 	/* This is a signal to firmware to sync up CMF BW with link speed */
3239 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3240 }
3241 
3242 /**
3243  * lpfc_cmf_start - Start CMF processing
3244  * @phba: pointer to lpfc hba data structure.
3245  *
3246  * This is called when the link comes up or if CMF mode is turned OFF
3247  * to Monitor or Managed.
3248  **/
3249 void
3250 lpfc_cmf_start(struct lpfc_hba *phba)
3251 {
3252 	struct lpfc_cgn_stat *cgs;
3253 	int cpu;
3254 
3255 	/* We only do something if CMF is enabled */
3256 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3257 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3258 		return;
3259 
3260 	/* Reinitialize congestion buffer info */
3261 	lpfc_init_congestion_buf(phba);
3262 
3263 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3264 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3265 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3266 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3267 
3268 	atomic_set(&phba->cmf_busy, 0);
3269 	for_each_present_cpu(cpu) {
3270 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3271 		atomic64_set(&cgs->total_bytes, 0);
3272 		atomic64_set(&cgs->rcv_bytes, 0);
3273 		atomic_set(&cgs->rx_io_cnt, 0);
3274 		atomic64_set(&cgs->rx_latency, 0);
3275 	}
3276 	phba->cmf_latency.tv_sec = 0;
3277 	phba->cmf_latency.tv_nsec = 0;
3278 
3279 	lpfc_cmf_signal_init(phba);
3280 
3281 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3282 			"6222 Start CMF / Timer\n");
3283 
3284 	phba->cmf_timer_cnt = 0;
3285 	hrtimer_start(&phba->cmf_timer,
3286 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3287 		      HRTIMER_MODE_REL);
3288 	/* Setup for latency check in IO cmpl routines */
3289 	ktime_get_real_ts64(&phba->cmf_latency);
3290 
3291 	atomic_set(&phba->cmf_bw_wait, 0);
3292 	atomic_set(&phba->cmf_stop_io, 0);
3293 }
3294 
3295 /**
3296  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3297  * @phba: pointer to lpfc hba data structure.
3298  *
3299  * This routine stops all the timers associated with a HBA. This function is
3300  * invoked before either putting a HBA offline or unloading the driver.
3301  **/
3302 void
3303 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3304 {
3305 	if (phba->pport)
3306 		lpfc_stop_vport_timers(phba->pport);
3307 	cancel_delayed_work_sync(&phba->eq_delay_work);
3308 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3309 	del_timer_sync(&phba->sli.mbox_tmo);
3310 	del_timer_sync(&phba->fabric_block_timer);
3311 	del_timer_sync(&phba->eratt_poll);
3312 	del_timer_sync(&phba->hb_tmofunc);
3313 	if (phba->sli_rev == LPFC_SLI_REV4) {
3314 		del_timer_sync(&phba->rrq_tmr);
3315 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3316 	}
3317 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3318 
3319 	switch (phba->pci_dev_grp) {
3320 	case LPFC_PCI_DEV_LP:
3321 		/* Stop any LightPulse device specific driver timers */
3322 		del_timer_sync(&phba->fcp_poll_timer);
3323 		break;
3324 	case LPFC_PCI_DEV_OC:
3325 		/* Stop any OneConnect device specific driver timers */
3326 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3327 		break;
3328 	default:
3329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3330 				"0297 Invalid device group (x%x)\n",
3331 				phba->pci_dev_grp);
3332 		break;
3333 	}
3334 	return;
3335 }
3336 
3337 /**
3338  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3339  * @phba: pointer to lpfc hba data structure.
3340  * @mbx_action: flag for mailbox no wait action.
3341  *
3342  * This routine marks a HBA's management interface as blocked. Once the HBA's
3343  * management interface is marked as blocked, all the user space access to
3344  * the HBA, whether they are from sysfs interface or libdfc interface will
3345  * all be blocked. The HBA is set to block the management interface when the
3346  * driver prepares the HBA interface for online or offline.
3347  **/
3348 static void
3349 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3350 {
3351 	unsigned long iflag;
3352 	uint8_t actcmd = MBX_HEARTBEAT;
3353 	unsigned long timeout;
3354 
3355 	spin_lock_irqsave(&phba->hbalock, iflag);
3356 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3357 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3358 	if (mbx_action == LPFC_MBX_NO_WAIT)
3359 		return;
3360 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3361 	spin_lock_irqsave(&phba->hbalock, iflag);
3362 	if (phba->sli.mbox_active) {
3363 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3364 		/* Determine how long we might wait for the active mailbox
3365 		 * command to be gracefully completed by firmware.
3366 		 */
3367 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3368 				phba->sli.mbox_active) * 1000) + jiffies;
3369 	}
3370 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3371 
3372 	/* Wait for the outstnading mailbox command to complete */
3373 	while (phba->sli.mbox_active) {
3374 		/* Check active mailbox complete status every 2ms */
3375 		msleep(2);
3376 		if (time_after(jiffies, timeout)) {
3377 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3378 					"2813 Mgmt IO is Blocked %x "
3379 					"- mbox cmd %x still active\n",
3380 					phba->sli.sli_flag, actcmd);
3381 			break;
3382 		}
3383 	}
3384 }
3385 
3386 /**
3387  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3388  * @phba: pointer to lpfc hba data structure.
3389  *
3390  * Allocate RPIs for all active remote nodes. This is needed whenever
3391  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3392  * is to fixup the temporary rpi assignments.
3393  **/
3394 void
3395 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3396 {
3397 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3398 	struct lpfc_vport **vports;
3399 	int i, rpi;
3400 
3401 	if (phba->sli_rev != LPFC_SLI_REV4)
3402 		return;
3403 
3404 	vports = lpfc_create_vport_work_array(phba);
3405 	if (vports == NULL)
3406 		return;
3407 
3408 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3409 		if (vports[i]->load_flag & FC_UNLOADING)
3410 			continue;
3411 
3412 		list_for_each_entry_safe(ndlp, next_ndlp,
3413 					 &vports[i]->fc_nodes,
3414 					 nlp_listp) {
3415 			rpi = lpfc_sli4_alloc_rpi(phba);
3416 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3417 				/* TODO print log? */
3418 				continue;
3419 			}
3420 			ndlp->nlp_rpi = rpi;
3421 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3422 					 LOG_NODE | LOG_DISCOVERY,
3423 					 "0009 Assign RPI x%x to ndlp x%px "
3424 					 "DID:x%06x flg:x%x\n",
3425 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3426 					 ndlp->nlp_flag);
3427 		}
3428 	}
3429 	lpfc_destroy_vport_work_array(phba, vports);
3430 }
3431 
3432 /**
3433  * lpfc_create_expedite_pool - create expedite pool
3434  * @phba: pointer to lpfc hba data structure.
3435  *
3436  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3437  * to expedite pool. Mark them as expedite.
3438  **/
3439 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3440 {
3441 	struct lpfc_sli4_hdw_queue *qp;
3442 	struct lpfc_io_buf *lpfc_ncmd;
3443 	struct lpfc_io_buf *lpfc_ncmd_next;
3444 	struct lpfc_epd_pool *epd_pool;
3445 	unsigned long iflag;
3446 
3447 	epd_pool = &phba->epd_pool;
3448 	qp = &phba->sli4_hba.hdwq[0];
3449 
3450 	spin_lock_init(&epd_pool->lock);
3451 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3452 	spin_lock(&epd_pool->lock);
3453 	INIT_LIST_HEAD(&epd_pool->list);
3454 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3455 				 &qp->lpfc_io_buf_list_put, list) {
3456 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3457 		lpfc_ncmd->expedite = true;
3458 		qp->put_io_bufs--;
3459 		epd_pool->count++;
3460 		if (epd_pool->count >= XRI_BATCH)
3461 			break;
3462 	}
3463 	spin_unlock(&epd_pool->lock);
3464 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3465 }
3466 
3467 /**
3468  * lpfc_destroy_expedite_pool - destroy expedite pool
3469  * @phba: pointer to lpfc hba data structure.
3470  *
3471  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3472  * of HWQ 0. Clear the mark.
3473  **/
3474 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3475 {
3476 	struct lpfc_sli4_hdw_queue *qp;
3477 	struct lpfc_io_buf *lpfc_ncmd;
3478 	struct lpfc_io_buf *lpfc_ncmd_next;
3479 	struct lpfc_epd_pool *epd_pool;
3480 	unsigned long iflag;
3481 
3482 	epd_pool = &phba->epd_pool;
3483 	qp = &phba->sli4_hba.hdwq[0];
3484 
3485 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3486 	spin_lock(&epd_pool->lock);
3487 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3488 				 &epd_pool->list, list) {
3489 		list_move_tail(&lpfc_ncmd->list,
3490 			       &qp->lpfc_io_buf_list_put);
3491 		lpfc_ncmd->flags = false;
3492 		qp->put_io_bufs++;
3493 		epd_pool->count--;
3494 	}
3495 	spin_unlock(&epd_pool->lock);
3496 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3497 }
3498 
3499 /**
3500  * lpfc_create_multixri_pools - create multi-XRI pools
3501  * @phba: pointer to lpfc hba data structure.
3502  *
3503  * This routine initialize public, private per HWQ. Then, move XRIs from
3504  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3505  * Initialized.
3506  **/
3507 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3508 {
3509 	u32 i, j;
3510 	u32 hwq_count;
3511 	u32 count_per_hwq;
3512 	struct lpfc_io_buf *lpfc_ncmd;
3513 	struct lpfc_io_buf *lpfc_ncmd_next;
3514 	unsigned long iflag;
3515 	struct lpfc_sli4_hdw_queue *qp;
3516 	struct lpfc_multixri_pool *multixri_pool;
3517 	struct lpfc_pbl_pool *pbl_pool;
3518 	struct lpfc_pvt_pool *pvt_pool;
3519 
3520 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3521 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3522 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3523 			phba->sli4_hba.io_xri_cnt);
3524 
3525 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3526 		lpfc_create_expedite_pool(phba);
3527 
3528 	hwq_count = phba->cfg_hdw_queue;
3529 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3530 
3531 	for (i = 0; i < hwq_count; i++) {
3532 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3533 
3534 		if (!multixri_pool) {
3535 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3536 					"1238 Failed to allocate memory for "
3537 					"multixri_pool\n");
3538 
3539 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3540 				lpfc_destroy_expedite_pool(phba);
3541 
3542 			j = 0;
3543 			while (j < i) {
3544 				qp = &phba->sli4_hba.hdwq[j];
3545 				kfree(qp->p_multixri_pool);
3546 				j++;
3547 			}
3548 			phba->cfg_xri_rebalancing = 0;
3549 			return;
3550 		}
3551 
3552 		qp = &phba->sli4_hba.hdwq[i];
3553 		qp->p_multixri_pool = multixri_pool;
3554 
3555 		multixri_pool->xri_limit = count_per_hwq;
3556 		multixri_pool->rrb_next_hwqid = i;
3557 
3558 		/* Deal with public free xri pool */
3559 		pbl_pool = &multixri_pool->pbl_pool;
3560 		spin_lock_init(&pbl_pool->lock);
3561 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3562 		spin_lock(&pbl_pool->lock);
3563 		INIT_LIST_HEAD(&pbl_pool->list);
3564 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3565 					 &qp->lpfc_io_buf_list_put, list) {
3566 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3567 			qp->put_io_bufs--;
3568 			pbl_pool->count++;
3569 		}
3570 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3571 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3572 				pbl_pool->count, i);
3573 		spin_unlock(&pbl_pool->lock);
3574 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3575 
3576 		/* Deal with private free xri pool */
3577 		pvt_pool = &multixri_pool->pvt_pool;
3578 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3579 		pvt_pool->low_watermark = XRI_BATCH;
3580 		spin_lock_init(&pvt_pool->lock);
3581 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3582 		INIT_LIST_HEAD(&pvt_pool->list);
3583 		pvt_pool->count = 0;
3584 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3585 	}
3586 }
3587 
3588 /**
3589  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3590  * @phba: pointer to lpfc hba data structure.
3591  *
3592  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3593  **/
3594 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3595 {
3596 	u32 i;
3597 	u32 hwq_count;
3598 	struct lpfc_io_buf *lpfc_ncmd;
3599 	struct lpfc_io_buf *lpfc_ncmd_next;
3600 	unsigned long iflag;
3601 	struct lpfc_sli4_hdw_queue *qp;
3602 	struct lpfc_multixri_pool *multixri_pool;
3603 	struct lpfc_pbl_pool *pbl_pool;
3604 	struct lpfc_pvt_pool *pvt_pool;
3605 
3606 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3607 		lpfc_destroy_expedite_pool(phba);
3608 
3609 	if (!(phba->pport->load_flag & FC_UNLOADING))
3610 		lpfc_sli_flush_io_rings(phba);
3611 
3612 	hwq_count = phba->cfg_hdw_queue;
3613 
3614 	for (i = 0; i < hwq_count; i++) {
3615 		qp = &phba->sli4_hba.hdwq[i];
3616 		multixri_pool = qp->p_multixri_pool;
3617 		if (!multixri_pool)
3618 			continue;
3619 
3620 		qp->p_multixri_pool = NULL;
3621 
3622 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3623 
3624 		/* Deal with public free xri pool */
3625 		pbl_pool = &multixri_pool->pbl_pool;
3626 		spin_lock(&pbl_pool->lock);
3627 
3628 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3629 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3630 				pbl_pool->count, i);
3631 
3632 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3633 					 &pbl_pool->list, list) {
3634 			list_move_tail(&lpfc_ncmd->list,
3635 				       &qp->lpfc_io_buf_list_put);
3636 			qp->put_io_bufs++;
3637 			pbl_pool->count--;
3638 		}
3639 
3640 		INIT_LIST_HEAD(&pbl_pool->list);
3641 		pbl_pool->count = 0;
3642 
3643 		spin_unlock(&pbl_pool->lock);
3644 
3645 		/* Deal with private free xri pool */
3646 		pvt_pool = &multixri_pool->pvt_pool;
3647 		spin_lock(&pvt_pool->lock);
3648 
3649 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3650 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3651 				pvt_pool->count, i);
3652 
3653 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3654 					 &pvt_pool->list, list) {
3655 			list_move_tail(&lpfc_ncmd->list,
3656 				       &qp->lpfc_io_buf_list_put);
3657 			qp->put_io_bufs++;
3658 			pvt_pool->count--;
3659 		}
3660 
3661 		INIT_LIST_HEAD(&pvt_pool->list);
3662 		pvt_pool->count = 0;
3663 
3664 		spin_unlock(&pvt_pool->lock);
3665 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3666 
3667 		kfree(multixri_pool);
3668 	}
3669 }
3670 
3671 /**
3672  * lpfc_online - Initialize and bring a HBA online
3673  * @phba: pointer to lpfc hba data structure.
3674  *
3675  * This routine initializes the HBA and brings a HBA online. During this
3676  * process, the management interface is blocked to prevent user space access
3677  * to the HBA interfering with the driver initialization.
3678  *
3679  * Return codes
3680  *   0 - successful
3681  *   1 - failed
3682  **/
3683 int
3684 lpfc_online(struct lpfc_hba *phba)
3685 {
3686 	struct lpfc_vport *vport;
3687 	struct lpfc_vport **vports;
3688 	int i, error = 0;
3689 	bool vpis_cleared = false;
3690 
3691 	if (!phba)
3692 		return 0;
3693 	vport = phba->pport;
3694 
3695 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3696 		return 0;
3697 
3698 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3699 			"0458 Bring Adapter online\n");
3700 
3701 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3702 
3703 	if (phba->sli_rev == LPFC_SLI_REV4) {
3704 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3705 			lpfc_unblock_mgmt_io(phba);
3706 			return 1;
3707 		}
3708 		spin_lock_irq(&phba->hbalock);
3709 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3710 			vpis_cleared = true;
3711 		spin_unlock_irq(&phba->hbalock);
3712 
3713 		/* Reestablish the local initiator port.
3714 		 * The offline process destroyed the previous lport.
3715 		 */
3716 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3717 				!phba->nvmet_support) {
3718 			error = lpfc_nvme_create_localport(phba->pport);
3719 			if (error)
3720 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3721 					"6132 NVME restore reg failed "
3722 					"on nvmei error x%x\n", error);
3723 		}
3724 	} else {
3725 		lpfc_sli_queue_init(phba);
3726 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3727 			lpfc_unblock_mgmt_io(phba);
3728 			return 1;
3729 		}
3730 	}
3731 
3732 	vports = lpfc_create_vport_work_array(phba);
3733 	if (vports != NULL) {
3734 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3735 			struct Scsi_Host *shost;
3736 			shost = lpfc_shost_from_vport(vports[i]);
3737 			spin_lock_irq(shost->host_lock);
3738 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3739 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3740 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3741 			if (phba->sli_rev == LPFC_SLI_REV4) {
3742 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3743 				if ((vpis_cleared) &&
3744 				    (vports[i]->port_type !=
3745 					LPFC_PHYSICAL_PORT))
3746 					vports[i]->vpi = 0;
3747 			}
3748 			spin_unlock_irq(shost->host_lock);
3749 		}
3750 	}
3751 	lpfc_destroy_vport_work_array(phba, vports);
3752 
3753 	if (phba->cfg_xri_rebalancing)
3754 		lpfc_create_multixri_pools(phba);
3755 
3756 	lpfc_cpuhp_add(phba);
3757 
3758 	lpfc_unblock_mgmt_io(phba);
3759 	return 0;
3760 }
3761 
3762 /**
3763  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3764  * @phba: pointer to lpfc hba data structure.
3765  *
3766  * This routine marks a HBA's management interface as not blocked. Once the
3767  * HBA's management interface is marked as not blocked, all the user space
3768  * access to the HBA, whether they are from sysfs interface or libdfc
3769  * interface will be allowed. The HBA is set to block the management interface
3770  * when the driver prepares the HBA interface for online or offline and then
3771  * set to unblock the management interface afterwards.
3772  **/
3773 void
3774 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3775 {
3776 	unsigned long iflag;
3777 
3778 	spin_lock_irqsave(&phba->hbalock, iflag);
3779 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3780 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3781 }
3782 
3783 /**
3784  * lpfc_offline_prep - Prepare a HBA to be brought offline
3785  * @phba: pointer to lpfc hba data structure.
3786  * @mbx_action: flag for mailbox shutdown action.
3787  *
3788  * This routine is invoked to prepare a HBA to be brought offline. It performs
3789  * unregistration login to all the nodes on all vports and flushes the mailbox
3790  * queue to make it ready to be brought offline.
3791  **/
3792 void
3793 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3794 {
3795 	struct lpfc_vport *vport = phba->pport;
3796 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3797 	struct lpfc_vport **vports;
3798 	struct Scsi_Host *shost;
3799 	int i;
3800 	int offline;
3801 	bool hba_pci_err;
3802 
3803 	if (vport->fc_flag & FC_OFFLINE_MODE)
3804 		return;
3805 
3806 	lpfc_block_mgmt_io(phba, mbx_action);
3807 
3808 	lpfc_linkdown(phba);
3809 
3810 	offline =  pci_channel_offline(phba->pcidev);
3811 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3812 
3813 	/* Issue an unreg_login to all nodes on all vports */
3814 	vports = lpfc_create_vport_work_array(phba);
3815 	if (vports != NULL) {
3816 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3817 			if (vports[i]->load_flag & FC_UNLOADING)
3818 				continue;
3819 			shost = lpfc_shost_from_vport(vports[i]);
3820 			spin_lock_irq(shost->host_lock);
3821 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3822 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3823 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3824 			spin_unlock_irq(shost->host_lock);
3825 
3826 			shost =	lpfc_shost_from_vport(vports[i]);
3827 			list_for_each_entry_safe(ndlp, next_ndlp,
3828 						 &vports[i]->fc_nodes,
3829 						 nlp_listp) {
3830 
3831 				spin_lock_irq(&ndlp->lock);
3832 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3833 				spin_unlock_irq(&ndlp->lock);
3834 
3835 				if (offline || hba_pci_err) {
3836 					spin_lock_irq(&ndlp->lock);
3837 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3838 							    NLP_RPI_REGISTERED);
3839 					spin_unlock_irq(&ndlp->lock);
3840 					if (phba->sli_rev == LPFC_SLI_REV4)
3841 						lpfc_sli_rpi_release(vports[i],
3842 								     ndlp);
3843 				} else {
3844 					lpfc_unreg_rpi(vports[i], ndlp);
3845 				}
3846 				/*
3847 				 * Whenever an SLI4 port goes offline, free the
3848 				 * RPI. Get a new RPI when the adapter port
3849 				 * comes back online.
3850 				 */
3851 				if (phba->sli_rev == LPFC_SLI_REV4) {
3852 					lpfc_printf_vlog(vports[i], KERN_INFO,
3853 						 LOG_NODE | LOG_DISCOVERY,
3854 						 "0011 Free RPI x%x on "
3855 						 "ndlp: x%px did x%x\n",
3856 						 ndlp->nlp_rpi, ndlp,
3857 						 ndlp->nlp_DID);
3858 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3859 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3860 				}
3861 
3862 				if (ndlp->nlp_type & NLP_FABRIC) {
3863 					lpfc_disc_state_machine(vports[i], ndlp,
3864 						NULL, NLP_EVT_DEVICE_RECOVERY);
3865 
3866 					/* Don't remove the node unless the node
3867 					 * has been unregistered with the
3868 					 * transport, and we're not in recovery
3869 					 * before dev_loss_tmo triggered.
3870 					 * Otherwise, let dev_loss take care of
3871 					 * the node.
3872 					 */
3873 					if (!(ndlp->save_flags &
3874 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3875 					    !(ndlp->fc4_xpt_flags &
3876 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3877 						lpfc_disc_state_machine
3878 							(vports[i], ndlp,
3879 							 NULL,
3880 							 NLP_EVT_DEVICE_RM);
3881 				}
3882 			}
3883 		}
3884 	}
3885 	lpfc_destroy_vport_work_array(phba, vports);
3886 
3887 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3888 
3889 	if (phba->wq)
3890 		flush_workqueue(phba->wq);
3891 }
3892 
3893 /**
3894  * lpfc_offline - Bring a HBA offline
3895  * @phba: pointer to lpfc hba data structure.
3896  *
3897  * This routine actually brings a HBA offline. It stops all the timers
3898  * associated with the HBA, brings down the SLI layer, and eventually
3899  * marks the HBA as in offline state for the upper layer protocol.
3900  **/
3901 void
3902 lpfc_offline(struct lpfc_hba *phba)
3903 {
3904 	struct Scsi_Host  *shost;
3905 	struct lpfc_vport **vports;
3906 	int i;
3907 
3908 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3909 		return;
3910 
3911 	/* stop port and all timers associated with this hba */
3912 	lpfc_stop_port(phba);
3913 
3914 	/* Tear down the local and target port registrations.  The
3915 	 * nvme transports need to cleanup.
3916 	 */
3917 	lpfc_nvmet_destroy_targetport(phba);
3918 	lpfc_nvme_destroy_localport(phba->pport);
3919 
3920 	vports = lpfc_create_vport_work_array(phba);
3921 	if (vports != NULL)
3922 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3923 			lpfc_stop_vport_timers(vports[i]);
3924 	lpfc_destroy_vport_work_array(phba, vports);
3925 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3926 			"0460 Bring Adapter offline\n");
3927 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3928 	   now.  */
3929 	lpfc_sli_hba_down(phba);
3930 	spin_lock_irq(&phba->hbalock);
3931 	phba->work_ha = 0;
3932 	spin_unlock_irq(&phba->hbalock);
3933 	vports = lpfc_create_vport_work_array(phba);
3934 	if (vports != NULL)
3935 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3936 			shost = lpfc_shost_from_vport(vports[i]);
3937 			spin_lock_irq(shost->host_lock);
3938 			vports[i]->work_port_events = 0;
3939 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3940 			spin_unlock_irq(shost->host_lock);
3941 		}
3942 	lpfc_destroy_vport_work_array(phba, vports);
3943 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3944 	 * in hba_unset
3945 	 */
3946 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3947 		__lpfc_cpuhp_remove(phba);
3948 
3949 	if (phba->cfg_xri_rebalancing)
3950 		lpfc_destroy_multixri_pools(phba);
3951 }
3952 
3953 /**
3954  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3955  * @phba: pointer to lpfc hba data structure.
3956  *
3957  * This routine is to free all the SCSI buffers and IOCBs from the driver
3958  * list back to kernel. It is called from lpfc_pci_remove_one to free
3959  * the internal resources before the device is removed from the system.
3960  **/
3961 static void
3962 lpfc_scsi_free(struct lpfc_hba *phba)
3963 {
3964 	struct lpfc_io_buf *sb, *sb_next;
3965 
3966 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3967 		return;
3968 
3969 	spin_lock_irq(&phba->hbalock);
3970 
3971 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3972 
3973 	spin_lock(&phba->scsi_buf_list_put_lock);
3974 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3975 				 list) {
3976 		list_del(&sb->list);
3977 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3978 			      sb->dma_handle);
3979 		kfree(sb);
3980 		phba->total_scsi_bufs--;
3981 	}
3982 	spin_unlock(&phba->scsi_buf_list_put_lock);
3983 
3984 	spin_lock(&phba->scsi_buf_list_get_lock);
3985 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3986 				 list) {
3987 		list_del(&sb->list);
3988 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3989 			      sb->dma_handle);
3990 		kfree(sb);
3991 		phba->total_scsi_bufs--;
3992 	}
3993 	spin_unlock(&phba->scsi_buf_list_get_lock);
3994 	spin_unlock_irq(&phba->hbalock);
3995 }
3996 
3997 /**
3998  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3999  * @phba: pointer to lpfc hba data structure.
4000  *
4001  * This routine is to free all the IO buffers and IOCBs from the driver
4002  * list back to kernel. It is called from lpfc_pci_remove_one to free
4003  * the internal resources before the device is removed from the system.
4004  **/
4005 void
4006 lpfc_io_free(struct lpfc_hba *phba)
4007 {
4008 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4009 	struct lpfc_sli4_hdw_queue *qp;
4010 	int idx;
4011 
4012 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4013 		qp = &phba->sli4_hba.hdwq[idx];
4014 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4015 		spin_lock(&qp->io_buf_list_put_lock);
4016 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4017 					 &qp->lpfc_io_buf_list_put,
4018 					 list) {
4019 			list_del(&lpfc_ncmd->list);
4020 			qp->put_io_bufs--;
4021 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4022 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4023 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4024 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4025 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4026 			kfree(lpfc_ncmd);
4027 			qp->total_io_bufs--;
4028 		}
4029 		spin_unlock(&qp->io_buf_list_put_lock);
4030 
4031 		spin_lock(&qp->io_buf_list_get_lock);
4032 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4033 					 &qp->lpfc_io_buf_list_get,
4034 					 list) {
4035 			list_del(&lpfc_ncmd->list);
4036 			qp->get_io_bufs--;
4037 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4038 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4039 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4040 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4041 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4042 			kfree(lpfc_ncmd);
4043 			qp->total_io_bufs--;
4044 		}
4045 		spin_unlock(&qp->io_buf_list_get_lock);
4046 	}
4047 }
4048 
4049 /**
4050  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4051  * @phba: pointer to lpfc hba data structure.
4052  *
4053  * This routine first calculates the sizes of the current els and allocated
4054  * scsi sgl lists, and then goes through all sgls to updates the physical
4055  * XRIs assigned due to port function reset. During port initialization, the
4056  * current els and allocated scsi sgl lists are 0s.
4057  *
4058  * Return codes
4059  *   0 - successful (for now, it always returns 0)
4060  **/
4061 int
4062 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4063 {
4064 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4065 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4066 	LIST_HEAD(els_sgl_list);
4067 	int rc;
4068 
4069 	/*
4070 	 * update on pci function's els xri-sgl list
4071 	 */
4072 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4073 
4074 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4075 		/* els xri-sgl expanded */
4076 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4077 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4078 				"3157 ELS xri-sgl count increased from "
4079 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4080 				els_xri_cnt);
4081 		/* allocate the additional els sgls */
4082 		for (i = 0; i < xri_cnt; i++) {
4083 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4084 					     GFP_KERNEL);
4085 			if (sglq_entry == NULL) {
4086 				lpfc_printf_log(phba, KERN_ERR,
4087 						LOG_TRACE_EVENT,
4088 						"2562 Failure to allocate an "
4089 						"ELS sgl entry:%d\n", i);
4090 				rc = -ENOMEM;
4091 				goto out_free_mem;
4092 			}
4093 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4094 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4095 							   &sglq_entry->phys);
4096 			if (sglq_entry->virt == NULL) {
4097 				kfree(sglq_entry);
4098 				lpfc_printf_log(phba, KERN_ERR,
4099 						LOG_TRACE_EVENT,
4100 						"2563 Failure to allocate an "
4101 						"ELS mbuf:%d\n", i);
4102 				rc = -ENOMEM;
4103 				goto out_free_mem;
4104 			}
4105 			sglq_entry->sgl = sglq_entry->virt;
4106 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4107 			sglq_entry->state = SGL_FREED;
4108 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4109 		}
4110 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4111 		list_splice_init(&els_sgl_list,
4112 				 &phba->sli4_hba.lpfc_els_sgl_list);
4113 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4114 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4115 		/* els xri-sgl shrinked */
4116 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4117 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4118 				"3158 ELS xri-sgl count decreased from "
4119 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4120 				els_xri_cnt);
4121 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4122 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4123 				 &els_sgl_list);
4124 		/* release extra els sgls from list */
4125 		for (i = 0; i < xri_cnt; i++) {
4126 			list_remove_head(&els_sgl_list,
4127 					 sglq_entry, struct lpfc_sglq, list);
4128 			if (sglq_entry) {
4129 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4130 						 sglq_entry->phys);
4131 				kfree(sglq_entry);
4132 			}
4133 		}
4134 		list_splice_init(&els_sgl_list,
4135 				 &phba->sli4_hba.lpfc_els_sgl_list);
4136 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4137 	} else
4138 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4139 				"3163 ELS xri-sgl count unchanged: %d\n",
4140 				els_xri_cnt);
4141 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4142 
4143 	/* update xris to els sgls on the list */
4144 	sglq_entry = NULL;
4145 	sglq_entry_next = NULL;
4146 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4147 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4148 		lxri = lpfc_sli4_next_xritag(phba);
4149 		if (lxri == NO_XRI) {
4150 			lpfc_printf_log(phba, KERN_ERR,
4151 					LOG_TRACE_EVENT,
4152 					"2400 Failed to allocate xri for "
4153 					"ELS sgl\n");
4154 			rc = -ENOMEM;
4155 			goto out_free_mem;
4156 		}
4157 		sglq_entry->sli4_lxritag = lxri;
4158 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4159 	}
4160 	return 0;
4161 
4162 out_free_mem:
4163 	lpfc_free_els_sgl_list(phba);
4164 	return rc;
4165 }
4166 
4167 /**
4168  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4169  * @phba: pointer to lpfc hba data structure.
4170  *
4171  * This routine first calculates the sizes of the current els and allocated
4172  * scsi sgl lists, and then goes through all sgls to updates the physical
4173  * XRIs assigned due to port function reset. During port initialization, the
4174  * current els and allocated scsi sgl lists are 0s.
4175  *
4176  * Return codes
4177  *   0 - successful (for now, it always returns 0)
4178  **/
4179 int
4180 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4181 {
4182 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4183 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4184 	uint16_t nvmet_xri_cnt;
4185 	LIST_HEAD(nvmet_sgl_list);
4186 	int rc;
4187 
4188 	/*
4189 	 * update on pci function's nvmet xri-sgl list
4190 	 */
4191 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4192 
4193 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4194 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4195 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4196 		/* els xri-sgl expanded */
4197 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4198 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4199 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4200 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4201 		/* allocate the additional nvmet sgls */
4202 		for (i = 0; i < xri_cnt; i++) {
4203 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4204 					     GFP_KERNEL);
4205 			if (sglq_entry == NULL) {
4206 				lpfc_printf_log(phba, KERN_ERR,
4207 						LOG_TRACE_EVENT,
4208 						"6303 Failure to allocate an "
4209 						"NVMET sgl entry:%d\n", i);
4210 				rc = -ENOMEM;
4211 				goto out_free_mem;
4212 			}
4213 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4214 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4215 							   &sglq_entry->phys);
4216 			if (sglq_entry->virt == NULL) {
4217 				kfree(sglq_entry);
4218 				lpfc_printf_log(phba, KERN_ERR,
4219 						LOG_TRACE_EVENT,
4220 						"6304 Failure to allocate an "
4221 						"NVMET buf:%d\n", i);
4222 				rc = -ENOMEM;
4223 				goto out_free_mem;
4224 			}
4225 			sglq_entry->sgl = sglq_entry->virt;
4226 			memset(sglq_entry->sgl, 0,
4227 			       phba->cfg_sg_dma_buf_size);
4228 			sglq_entry->state = SGL_FREED;
4229 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4230 		}
4231 		spin_lock_irq(&phba->hbalock);
4232 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4233 		list_splice_init(&nvmet_sgl_list,
4234 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4235 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4236 		spin_unlock_irq(&phba->hbalock);
4237 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4238 		/* nvmet xri-sgl shrunk */
4239 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4240 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4241 				"6305 NVMET xri-sgl count decreased from "
4242 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4243 				nvmet_xri_cnt);
4244 		spin_lock_irq(&phba->hbalock);
4245 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4246 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4247 				 &nvmet_sgl_list);
4248 		/* release extra nvmet sgls from list */
4249 		for (i = 0; i < xri_cnt; i++) {
4250 			list_remove_head(&nvmet_sgl_list,
4251 					 sglq_entry, struct lpfc_sglq, list);
4252 			if (sglq_entry) {
4253 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4254 						    sglq_entry->phys);
4255 				kfree(sglq_entry);
4256 			}
4257 		}
4258 		list_splice_init(&nvmet_sgl_list,
4259 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4260 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4261 		spin_unlock_irq(&phba->hbalock);
4262 	} else
4263 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4264 				"6306 NVMET xri-sgl count unchanged: %d\n",
4265 				nvmet_xri_cnt);
4266 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4267 
4268 	/* update xris to nvmet sgls on the list */
4269 	sglq_entry = NULL;
4270 	sglq_entry_next = NULL;
4271 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4272 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4273 		lxri = lpfc_sli4_next_xritag(phba);
4274 		if (lxri == NO_XRI) {
4275 			lpfc_printf_log(phba, KERN_ERR,
4276 					LOG_TRACE_EVENT,
4277 					"6307 Failed to allocate xri for "
4278 					"NVMET sgl\n");
4279 			rc = -ENOMEM;
4280 			goto out_free_mem;
4281 		}
4282 		sglq_entry->sli4_lxritag = lxri;
4283 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4284 	}
4285 	return 0;
4286 
4287 out_free_mem:
4288 	lpfc_free_nvmet_sgl_list(phba);
4289 	return rc;
4290 }
4291 
4292 int
4293 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4294 {
4295 	LIST_HEAD(blist);
4296 	struct lpfc_sli4_hdw_queue *qp;
4297 	struct lpfc_io_buf *lpfc_cmd;
4298 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4299 	int idx, cnt, xri, inserted;
4300 
4301 	cnt = 0;
4302 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4303 		qp = &phba->sli4_hba.hdwq[idx];
4304 		spin_lock_irq(&qp->io_buf_list_get_lock);
4305 		spin_lock(&qp->io_buf_list_put_lock);
4306 
4307 		/* Take everything off the get and put lists */
4308 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4309 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4310 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4311 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4312 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4313 		qp->get_io_bufs = 0;
4314 		qp->put_io_bufs = 0;
4315 		qp->total_io_bufs = 0;
4316 		spin_unlock(&qp->io_buf_list_put_lock);
4317 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4318 	}
4319 
4320 	/*
4321 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4322 	 * This is because POST_SGL takes a sequential range of XRIs
4323 	 * to post to the firmware.
4324 	 */
4325 	for (idx = 0; idx < cnt; idx++) {
4326 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4327 		if (!lpfc_cmd)
4328 			return cnt;
4329 		if (idx == 0) {
4330 			list_add_tail(&lpfc_cmd->list, cbuf);
4331 			continue;
4332 		}
4333 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4334 		inserted = 0;
4335 		prev_iobufp = NULL;
4336 		list_for_each_entry(iobufp, cbuf, list) {
4337 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4338 				if (prev_iobufp)
4339 					list_add(&lpfc_cmd->list,
4340 						 &prev_iobufp->list);
4341 				else
4342 					list_add(&lpfc_cmd->list, cbuf);
4343 				inserted = 1;
4344 				break;
4345 			}
4346 			prev_iobufp = iobufp;
4347 		}
4348 		if (!inserted)
4349 			list_add_tail(&lpfc_cmd->list, cbuf);
4350 	}
4351 	return cnt;
4352 }
4353 
4354 int
4355 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4356 {
4357 	struct lpfc_sli4_hdw_queue *qp;
4358 	struct lpfc_io_buf *lpfc_cmd;
4359 	int idx, cnt;
4360 
4361 	qp = phba->sli4_hba.hdwq;
4362 	cnt = 0;
4363 	while (!list_empty(cbuf)) {
4364 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4365 			list_remove_head(cbuf, lpfc_cmd,
4366 					 struct lpfc_io_buf, list);
4367 			if (!lpfc_cmd)
4368 				return cnt;
4369 			cnt++;
4370 			qp = &phba->sli4_hba.hdwq[idx];
4371 			lpfc_cmd->hdwq_no = idx;
4372 			lpfc_cmd->hdwq = qp;
4373 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4374 			spin_lock(&qp->io_buf_list_put_lock);
4375 			list_add_tail(&lpfc_cmd->list,
4376 				      &qp->lpfc_io_buf_list_put);
4377 			qp->put_io_bufs++;
4378 			qp->total_io_bufs++;
4379 			spin_unlock(&qp->io_buf_list_put_lock);
4380 		}
4381 	}
4382 	return cnt;
4383 }
4384 
4385 /**
4386  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4387  * @phba: pointer to lpfc hba data structure.
4388  *
4389  * This routine first calculates the sizes of the current els and allocated
4390  * scsi sgl lists, and then goes through all sgls to updates the physical
4391  * XRIs assigned due to port function reset. During port initialization, the
4392  * current els and allocated scsi sgl lists are 0s.
4393  *
4394  * Return codes
4395  *   0 - successful (for now, it always returns 0)
4396  **/
4397 int
4398 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4399 {
4400 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4401 	uint16_t i, lxri, els_xri_cnt;
4402 	uint16_t io_xri_cnt, io_xri_max;
4403 	LIST_HEAD(io_sgl_list);
4404 	int rc, cnt;
4405 
4406 	/*
4407 	 * update on pci function's allocated nvme xri-sgl list
4408 	 */
4409 
4410 	/* maximum number of xris available for nvme buffers */
4411 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4412 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4413 	phba->sli4_hba.io_xri_max = io_xri_max;
4414 
4415 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4416 			"6074 Current allocated XRI sgl count:%d, "
4417 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4418 			phba->sli4_hba.io_xri_cnt,
4419 			phba->sli4_hba.io_xri_max,
4420 			els_xri_cnt);
4421 
4422 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4423 
4424 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4425 		/* max nvme xri shrunk below the allocated nvme buffers */
4426 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4427 					phba->sli4_hba.io_xri_max;
4428 		/* release the extra allocated nvme buffers */
4429 		for (i = 0; i < io_xri_cnt; i++) {
4430 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4431 					 struct lpfc_io_buf, list);
4432 			if (lpfc_ncmd) {
4433 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4434 					      lpfc_ncmd->data,
4435 					      lpfc_ncmd->dma_handle);
4436 				kfree(lpfc_ncmd);
4437 			}
4438 		}
4439 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4440 	}
4441 
4442 	/* update xris associated to remaining allocated nvme buffers */
4443 	lpfc_ncmd = NULL;
4444 	lpfc_ncmd_next = NULL;
4445 	phba->sli4_hba.io_xri_cnt = cnt;
4446 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4447 				 &io_sgl_list, list) {
4448 		lxri = lpfc_sli4_next_xritag(phba);
4449 		if (lxri == NO_XRI) {
4450 			lpfc_printf_log(phba, KERN_ERR,
4451 					LOG_TRACE_EVENT,
4452 					"6075 Failed to allocate xri for "
4453 					"nvme buffer\n");
4454 			rc = -ENOMEM;
4455 			goto out_free_mem;
4456 		}
4457 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4458 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4459 	}
4460 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4461 	return 0;
4462 
4463 out_free_mem:
4464 	lpfc_io_free(phba);
4465 	return rc;
4466 }
4467 
4468 /**
4469  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4470  * @phba: Pointer to lpfc hba data structure.
4471  * @num_to_alloc: The requested number of buffers to allocate.
4472  *
4473  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4474  * the nvme buffer contains all the necessary information needed to initiate
4475  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4476  * them on a list, it post them to the port by using SGL block post.
4477  *
4478  * Return codes:
4479  *   int - number of IO buffers that were allocated and posted.
4480  *   0 = failure, less than num_to_alloc is a partial failure.
4481  **/
4482 int
4483 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4484 {
4485 	struct lpfc_io_buf *lpfc_ncmd;
4486 	struct lpfc_iocbq *pwqeq;
4487 	uint16_t iotag, lxri = 0;
4488 	int bcnt, num_posted;
4489 	LIST_HEAD(prep_nblist);
4490 	LIST_HEAD(post_nblist);
4491 	LIST_HEAD(nvme_nblist);
4492 
4493 	phba->sli4_hba.io_xri_cnt = 0;
4494 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4495 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4496 		if (!lpfc_ncmd)
4497 			break;
4498 		/*
4499 		 * Get memory from the pci pool to map the virt space to
4500 		 * pci bus space for an I/O. The DMA buffer includes the
4501 		 * number of SGE's necessary to support the sg_tablesize.
4502 		 */
4503 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4504 						  GFP_KERNEL,
4505 						  &lpfc_ncmd->dma_handle);
4506 		if (!lpfc_ncmd->data) {
4507 			kfree(lpfc_ncmd);
4508 			break;
4509 		}
4510 
4511 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4512 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4513 		} else {
4514 			/*
4515 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4516 			 * check to be sure.
4517 			 */
4518 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4519 			    (((unsigned long)(lpfc_ncmd->data) &
4520 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4521 				lpfc_printf_log(phba, KERN_ERR,
4522 						LOG_TRACE_EVENT,
4523 						"3369 Memory alignment err: "
4524 						"addr=%lx\n",
4525 						(unsigned long)lpfc_ncmd->data);
4526 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4527 					      lpfc_ncmd->data,
4528 					      lpfc_ncmd->dma_handle);
4529 				kfree(lpfc_ncmd);
4530 				break;
4531 			}
4532 		}
4533 
4534 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4535 
4536 		lxri = lpfc_sli4_next_xritag(phba);
4537 		if (lxri == NO_XRI) {
4538 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4539 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4540 			kfree(lpfc_ncmd);
4541 			break;
4542 		}
4543 		pwqeq = &lpfc_ncmd->cur_iocbq;
4544 
4545 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4546 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4547 		if (iotag == 0) {
4548 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4549 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4550 			kfree(lpfc_ncmd);
4551 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4552 					"6121 Failed to allocate IOTAG for"
4553 					" XRI:0x%x\n", lxri);
4554 			lpfc_sli4_free_xri(phba, lxri);
4555 			break;
4556 		}
4557 		pwqeq->sli4_lxritag = lxri;
4558 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4559 
4560 		/* Initialize local short-hand pointers. */
4561 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4562 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4563 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4564 		spin_lock_init(&lpfc_ncmd->buf_lock);
4565 
4566 		/* add the nvme buffer to a post list */
4567 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4568 		phba->sli4_hba.io_xri_cnt++;
4569 	}
4570 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4571 			"6114 Allocate %d out of %d requested new NVME "
4572 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4573 			sizeof(*lpfc_ncmd));
4574 
4575 
4576 	/* post the list of nvme buffer sgls to port if available */
4577 	if (!list_empty(&post_nblist))
4578 		num_posted = lpfc_sli4_post_io_sgl_list(
4579 				phba, &post_nblist, bcnt);
4580 	else
4581 		num_posted = 0;
4582 
4583 	return num_posted;
4584 }
4585 
4586 static uint64_t
4587 lpfc_get_wwpn(struct lpfc_hba *phba)
4588 {
4589 	uint64_t wwn;
4590 	int rc;
4591 	LPFC_MBOXQ_t *mboxq;
4592 	MAILBOX_t *mb;
4593 
4594 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4595 						GFP_KERNEL);
4596 	if (!mboxq)
4597 		return (uint64_t)-1;
4598 
4599 	/* First get WWN of HBA instance */
4600 	lpfc_read_nv(phba, mboxq);
4601 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4602 	if (rc != MBX_SUCCESS) {
4603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4604 				"6019 Mailbox failed , mbxCmd x%x "
4605 				"READ_NV, mbxStatus x%x\n",
4606 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4607 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4608 		mempool_free(mboxq, phba->mbox_mem_pool);
4609 		return (uint64_t) -1;
4610 	}
4611 	mb = &mboxq->u.mb;
4612 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4613 	/* wwn is WWPN of HBA instance */
4614 	mempool_free(mboxq, phba->mbox_mem_pool);
4615 	if (phba->sli_rev == LPFC_SLI_REV4)
4616 		return be64_to_cpu(wwn);
4617 	else
4618 		return rol64(wwn, 32);
4619 }
4620 
4621 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4622 {
4623 	if (phba->sli_rev == LPFC_SLI_REV4)
4624 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4625 			return LPFC_MAX_SG_TABLESIZE;
4626 		else
4627 			return phba->cfg_scsi_seg_cnt;
4628 	else
4629 		return phba->cfg_sg_seg_cnt;
4630 }
4631 
4632 /**
4633  * lpfc_vmid_res_alloc - Allocates resources for VMID
4634  * @phba: pointer to lpfc hba data structure.
4635  * @vport: pointer to vport data structure
4636  *
4637  * This routine allocated the resources needed for the VMID.
4638  *
4639  * Return codes
4640  *	0 on Success
4641  *	Non-0 on Failure
4642  */
4643 static int
4644 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4645 {
4646 	/* VMID feature is supported only on SLI4 */
4647 	if (phba->sli_rev == LPFC_SLI_REV3) {
4648 		phba->cfg_vmid_app_header = 0;
4649 		phba->cfg_vmid_priority_tagging = 0;
4650 	}
4651 
4652 	if (lpfc_is_vmid_enabled(phba)) {
4653 		vport->vmid =
4654 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4655 			    GFP_KERNEL);
4656 		if (!vport->vmid)
4657 			return -ENOMEM;
4658 
4659 		rwlock_init(&vport->vmid_lock);
4660 
4661 		/* Set the VMID parameters for the vport */
4662 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4663 		vport->vmid_inactivity_timeout =
4664 		    phba->cfg_vmid_inactivity_timeout;
4665 		vport->max_vmid = phba->cfg_max_vmid;
4666 		vport->cur_vmid_cnt = 0;
4667 
4668 		vport->vmid_priority_range = bitmap_zalloc
4669 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4670 
4671 		if (!vport->vmid_priority_range) {
4672 			kfree(vport->vmid);
4673 			return -ENOMEM;
4674 		}
4675 
4676 		hash_init(vport->hash_table);
4677 	}
4678 	return 0;
4679 }
4680 
4681 /**
4682  * lpfc_create_port - Create an FC port
4683  * @phba: pointer to lpfc hba data structure.
4684  * @instance: a unique integer ID to this FC port.
4685  * @dev: pointer to the device data structure.
4686  *
4687  * This routine creates a FC port for the upper layer protocol. The FC port
4688  * can be created on top of either a physical port or a virtual port provided
4689  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4690  * and associates the FC port created before adding the shost into the SCSI
4691  * layer.
4692  *
4693  * Return codes
4694  *   @vport - pointer to the virtual N_Port data structure.
4695  *   NULL - port create failed.
4696  **/
4697 struct lpfc_vport *
4698 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4699 {
4700 	struct lpfc_vport *vport;
4701 	struct Scsi_Host  *shost = NULL;
4702 	struct scsi_host_template *template;
4703 	int error = 0;
4704 	int i;
4705 	uint64_t wwn;
4706 	bool use_no_reset_hba = false;
4707 	int rc;
4708 
4709 	if (lpfc_no_hba_reset_cnt) {
4710 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4711 		    dev == &phba->pcidev->dev) {
4712 			/* Reset the port first */
4713 			lpfc_sli_brdrestart(phba);
4714 			rc = lpfc_sli_chipset_init(phba);
4715 			if (rc)
4716 				return NULL;
4717 		}
4718 		wwn = lpfc_get_wwpn(phba);
4719 	}
4720 
4721 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4722 		if (wwn == lpfc_no_hba_reset[i]) {
4723 			lpfc_printf_log(phba, KERN_ERR,
4724 					LOG_TRACE_EVENT,
4725 					"6020 Setting use_no_reset port=%llx\n",
4726 					wwn);
4727 			use_no_reset_hba = true;
4728 			break;
4729 		}
4730 	}
4731 
4732 	/* Seed template for SCSI host registration */
4733 	if (dev == &phba->pcidev->dev) {
4734 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4735 			/* Seed physical port template */
4736 			template = &lpfc_template;
4737 
4738 			if (use_no_reset_hba)
4739 				/* template is for a no reset SCSI Host */
4740 				template->eh_host_reset_handler = NULL;
4741 
4742 			/* Seed updated value of sg_tablesize */
4743 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4744 		} else {
4745 			/* NVMET is for physical port only */
4746 			template = &lpfc_template_nvme;
4747 		}
4748 	} else {
4749 		/* Seed vport template */
4750 		template = &lpfc_vport_template;
4751 
4752 		/* Seed updated value of sg_tablesize */
4753 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4754 	}
4755 
4756 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4757 	if (!shost)
4758 		goto out;
4759 
4760 	vport = (struct lpfc_vport *) shost->hostdata;
4761 	vport->phba = phba;
4762 	vport->load_flag |= FC_LOADING;
4763 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4764 	vport->fc_rscn_flush = 0;
4765 	lpfc_get_vport_cfgparam(vport);
4766 
4767 	/* Adjust value in vport */
4768 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4769 
4770 	shost->unique_id = instance;
4771 	shost->max_id = LPFC_MAX_TARGET;
4772 	shost->max_lun = vport->cfg_max_luns;
4773 	shost->this_id = -1;
4774 	shost->max_cmd_len = 16;
4775 
4776 	if (phba->sli_rev == LPFC_SLI_REV4) {
4777 		if (!phba->cfg_fcp_mq_threshold ||
4778 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4779 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4780 
4781 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4782 					    phba->cfg_fcp_mq_threshold);
4783 
4784 		shost->dma_boundary =
4785 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4786 	} else
4787 		/* SLI-3 has a limited number of hardware queues (3),
4788 		 * thus there is only one for FCP processing.
4789 		 */
4790 		shost->nr_hw_queues = 1;
4791 
4792 	/*
4793 	 * Set initial can_queue value since 0 is no longer supported and
4794 	 * scsi_add_host will fail. This will be adjusted later based on the
4795 	 * max xri value determined in hba setup.
4796 	 */
4797 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4798 	if (dev != &phba->pcidev->dev) {
4799 		shost->transportt = lpfc_vport_transport_template;
4800 		vport->port_type = LPFC_NPIV_PORT;
4801 	} else {
4802 		shost->transportt = lpfc_transport_template;
4803 		vport->port_type = LPFC_PHYSICAL_PORT;
4804 	}
4805 
4806 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4807 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4808 			"SEGcnt %d/%d\n",
4809 			vport->port_type, shost->sg_tablesize,
4810 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4811 
4812 	/* Allocate the resources for VMID */
4813 	rc = lpfc_vmid_res_alloc(phba, vport);
4814 
4815 	if (rc)
4816 		goto out_put_shost;
4817 
4818 	/* Initialize all internally managed lists. */
4819 	INIT_LIST_HEAD(&vport->fc_nodes);
4820 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4821 	spin_lock_init(&vport->work_port_lock);
4822 
4823 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4824 
4825 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4826 
4827 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4828 
4829 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4830 		lpfc_setup_bg(phba, shost);
4831 
4832 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4833 	if (error)
4834 		goto out_free_vmid;
4835 
4836 	spin_lock_irq(&phba->port_list_lock);
4837 	list_add_tail(&vport->listentry, &phba->port_list);
4838 	spin_unlock_irq(&phba->port_list_lock);
4839 	return vport;
4840 
4841 out_free_vmid:
4842 	kfree(vport->vmid);
4843 	bitmap_free(vport->vmid_priority_range);
4844 out_put_shost:
4845 	scsi_host_put(shost);
4846 out:
4847 	return NULL;
4848 }
4849 
4850 /**
4851  * destroy_port -  destroy an FC port
4852  * @vport: pointer to an lpfc virtual N_Port data structure.
4853  *
4854  * This routine destroys a FC port from the upper layer protocol. All the
4855  * resources associated with the port are released.
4856  **/
4857 void
4858 destroy_port(struct lpfc_vport *vport)
4859 {
4860 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4861 	struct lpfc_hba  *phba = vport->phba;
4862 
4863 	lpfc_debugfs_terminate(vport);
4864 	fc_remove_host(shost);
4865 	scsi_remove_host(shost);
4866 
4867 	spin_lock_irq(&phba->port_list_lock);
4868 	list_del_init(&vport->listentry);
4869 	spin_unlock_irq(&phba->port_list_lock);
4870 
4871 	lpfc_cleanup(vport);
4872 	return;
4873 }
4874 
4875 /**
4876  * lpfc_get_instance - Get a unique integer ID
4877  *
4878  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4879  * uses the kernel idr facility to perform the task.
4880  *
4881  * Return codes:
4882  *   instance - a unique integer ID allocated as the new instance.
4883  *   -1 - lpfc get instance failed.
4884  **/
4885 int
4886 lpfc_get_instance(void)
4887 {
4888 	int ret;
4889 
4890 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4891 	return ret < 0 ? -1 : ret;
4892 }
4893 
4894 /**
4895  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4896  * @shost: pointer to SCSI host data structure.
4897  * @time: elapsed time of the scan in jiffies.
4898  *
4899  * This routine is called by the SCSI layer with a SCSI host to determine
4900  * whether the scan host is finished.
4901  *
4902  * Note: there is no scan_start function as adapter initialization will have
4903  * asynchronously kicked off the link initialization.
4904  *
4905  * Return codes
4906  *   0 - SCSI host scan is not over yet.
4907  *   1 - SCSI host scan is over.
4908  **/
4909 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4910 {
4911 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4912 	struct lpfc_hba   *phba = vport->phba;
4913 	int stat = 0;
4914 
4915 	spin_lock_irq(shost->host_lock);
4916 
4917 	if (vport->load_flag & FC_UNLOADING) {
4918 		stat = 1;
4919 		goto finished;
4920 	}
4921 	if (time >= msecs_to_jiffies(30 * 1000)) {
4922 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4923 				"0461 Scanning longer than 30 "
4924 				"seconds.  Continuing initialization\n");
4925 		stat = 1;
4926 		goto finished;
4927 	}
4928 	if (time >= msecs_to_jiffies(15 * 1000) &&
4929 	    phba->link_state <= LPFC_LINK_DOWN) {
4930 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4931 				"0465 Link down longer than 15 "
4932 				"seconds.  Continuing initialization\n");
4933 		stat = 1;
4934 		goto finished;
4935 	}
4936 
4937 	if (vport->port_state != LPFC_VPORT_READY)
4938 		goto finished;
4939 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4940 		goto finished;
4941 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4942 		goto finished;
4943 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4944 		goto finished;
4945 
4946 	stat = 1;
4947 
4948 finished:
4949 	spin_unlock_irq(shost->host_lock);
4950 	return stat;
4951 }
4952 
4953 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4954 {
4955 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4956 	struct lpfc_hba   *phba = vport->phba;
4957 
4958 	fc_host_supported_speeds(shost) = 0;
4959 	/*
4960 	 * Avoid reporting supported link speed for FCoE as it can't be
4961 	 * controlled via FCoE.
4962 	 */
4963 	if (phba->hba_flag & HBA_FCOE_MODE)
4964 		return;
4965 
4966 	if (phba->lmt & LMT_256Gb)
4967 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4968 	if (phba->lmt & LMT_128Gb)
4969 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4970 	if (phba->lmt & LMT_64Gb)
4971 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4972 	if (phba->lmt & LMT_32Gb)
4973 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4974 	if (phba->lmt & LMT_16Gb)
4975 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4976 	if (phba->lmt & LMT_10Gb)
4977 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4978 	if (phba->lmt & LMT_8Gb)
4979 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4980 	if (phba->lmt & LMT_4Gb)
4981 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4982 	if (phba->lmt & LMT_2Gb)
4983 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4984 	if (phba->lmt & LMT_1Gb)
4985 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4986 }
4987 
4988 /**
4989  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4990  * @shost: pointer to SCSI host data structure.
4991  *
4992  * This routine initializes a given SCSI host attributes on a FC port. The
4993  * SCSI host can be either on top of a physical port or a virtual port.
4994  **/
4995 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4996 {
4997 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4998 	struct lpfc_hba   *phba = vport->phba;
4999 	/*
5000 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5001 	 */
5002 
5003 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5004 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5005 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5006 
5007 	memset(fc_host_supported_fc4s(shost), 0,
5008 	       sizeof(fc_host_supported_fc4s(shost)));
5009 	fc_host_supported_fc4s(shost)[2] = 1;
5010 	fc_host_supported_fc4s(shost)[7] = 1;
5011 
5012 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5013 				 sizeof fc_host_symbolic_name(shost));
5014 
5015 	lpfc_host_supported_speeds_set(shost);
5016 
5017 	fc_host_maxframe_size(shost) =
5018 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5019 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5020 
5021 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5022 
5023 	/* This value is also unchanging */
5024 	memset(fc_host_active_fc4s(shost), 0,
5025 	       sizeof(fc_host_active_fc4s(shost)));
5026 	fc_host_active_fc4s(shost)[2] = 1;
5027 	fc_host_active_fc4s(shost)[7] = 1;
5028 
5029 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5030 	spin_lock_irq(shost->host_lock);
5031 	vport->load_flag &= ~FC_LOADING;
5032 	spin_unlock_irq(shost->host_lock);
5033 }
5034 
5035 /**
5036  * lpfc_stop_port_s3 - Stop SLI3 device port
5037  * @phba: pointer to lpfc hba data structure.
5038  *
5039  * This routine is invoked to stop an SLI3 device port, it stops the device
5040  * from generating interrupts and stops the device driver's timers for the
5041  * device.
5042  **/
5043 static void
5044 lpfc_stop_port_s3(struct lpfc_hba *phba)
5045 {
5046 	/* Clear all interrupt enable conditions */
5047 	writel(0, phba->HCregaddr);
5048 	readl(phba->HCregaddr); /* flush */
5049 	/* Clear all pending interrupts */
5050 	writel(0xffffffff, phba->HAregaddr);
5051 	readl(phba->HAregaddr); /* flush */
5052 
5053 	/* Reset some HBA SLI setup states */
5054 	lpfc_stop_hba_timers(phba);
5055 	phba->pport->work_port_events = 0;
5056 }
5057 
5058 /**
5059  * lpfc_stop_port_s4 - Stop SLI4 device port
5060  * @phba: pointer to lpfc hba data structure.
5061  *
5062  * This routine is invoked to stop an SLI4 device port, it stops the device
5063  * from generating interrupts and stops the device driver's timers for the
5064  * device.
5065  **/
5066 static void
5067 lpfc_stop_port_s4(struct lpfc_hba *phba)
5068 {
5069 	/* Reset some HBA SLI4 setup states */
5070 	lpfc_stop_hba_timers(phba);
5071 	if (phba->pport)
5072 		phba->pport->work_port_events = 0;
5073 	phba->sli4_hba.intr_enable = 0;
5074 }
5075 
5076 /**
5077  * lpfc_stop_port - Wrapper function for stopping hba port
5078  * @phba: Pointer to HBA context object.
5079  *
5080  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5081  * the API jump table function pointer from the lpfc_hba struct.
5082  **/
5083 void
5084 lpfc_stop_port(struct lpfc_hba *phba)
5085 {
5086 	phba->lpfc_stop_port(phba);
5087 
5088 	if (phba->wq)
5089 		flush_workqueue(phba->wq);
5090 }
5091 
5092 /**
5093  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5094  * @phba: Pointer to hba for which this call is being executed.
5095  *
5096  * This routine starts the timer waiting for the FCF rediscovery to complete.
5097  **/
5098 void
5099 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5100 {
5101 	unsigned long fcf_redisc_wait_tmo =
5102 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5103 	/* Start fcf rediscovery wait period timer */
5104 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5105 	spin_lock_irq(&phba->hbalock);
5106 	/* Allow action to new fcf asynchronous event */
5107 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5108 	/* Mark the FCF rediscovery pending state */
5109 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5110 	spin_unlock_irq(&phba->hbalock);
5111 }
5112 
5113 /**
5114  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5115  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5116  *
5117  * This routine is invoked when waiting for FCF table rediscover has been
5118  * timed out. If new FCF record(s) has (have) been discovered during the
5119  * wait period, a new FCF event shall be added to the FCOE async event
5120  * list, and then worker thread shall be waked up for processing from the
5121  * worker thread context.
5122  **/
5123 static void
5124 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5125 {
5126 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5127 
5128 	/* Don't send FCF rediscovery event if timer cancelled */
5129 	spin_lock_irq(&phba->hbalock);
5130 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5131 		spin_unlock_irq(&phba->hbalock);
5132 		return;
5133 	}
5134 	/* Clear FCF rediscovery timer pending flag */
5135 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5136 	/* FCF rediscovery event to worker thread */
5137 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5138 	spin_unlock_irq(&phba->hbalock);
5139 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5140 			"2776 FCF rediscover quiescent timer expired\n");
5141 	/* wake up worker thread */
5142 	lpfc_worker_wake_up(phba);
5143 }
5144 
5145 /**
5146  * lpfc_vmid_poll - VMID timeout detection
5147  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5148  *
5149  * This routine is invoked when there is no I/O on by a VM for the specified
5150  * amount of time. When this situation is detected, the VMID has to be
5151  * deregistered from the switch and all the local resources freed. The VMID
5152  * will be reassigned to the VM once the I/O begins.
5153  **/
5154 static void
5155 lpfc_vmid_poll(struct timer_list *t)
5156 {
5157 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5158 	u32 wake_up = 0;
5159 
5160 	/* check if there is a need to issue QFPA */
5161 	if (phba->pport->vmid_priority_tagging) {
5162 		wake_up = 1;
5163 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5164 	}
5165 
5166 	/* Is the vmid inactivity timer enabled */
5167 	if (phba->pport->vmid_inactivity_timeout ||
5168 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5169 		wake_up = 1;
5170 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5171 	}
5172 
5173 	if (wake_up)
5174 		lpfc_worker_wake_up(phba);
5175 
5176 	/* restart the timer for the next iteration */
5177 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5178 							LPFC_VMID_TIMER));
5179 }
5180 
5181 /**
5182  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5183  * @phba: pointer to lpfc hba data structure.
5184  * @acqe_link: pointer to the async link completion queue entry.
5185  *
5186  * This routine is to parse the SLI4 link-attention link fault code.
5187  **/
5188 static void
5189 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5190 			   struct lpfc_acqe_link *acqe_link)
5191 {
5192 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5193 	case LPFC_ASYNC_LINK_FAULT_NONE:
5194 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5195 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5196 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5197 		break;
5198 	default:
5199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5200 				"0398 Unknown link fault code: x%x\n",
5201 				bf_get(lpfc_acqe_link_fault, acqe_link));
5202 		break;
5203 	}
5204 }
5205 
5206 /**
5207  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5208  * @phba: pointer to lpfc hba data structure.
5209  * @acqe_link: pointer to the async link completion queue entry.
5210  *
5211  * This routine is to parse the SLI4 link attention type and translate it
5212  * into the base driver's link attention type coding.
5213  *
5214  * Return: Link attention type in terms of base driver's coding.
5215  **/
5216 static uint8_t
5217 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5218 			  struct lpfc_acqe_link *acqe_link)
5219 {
5220 	uint8_t att_type;
5221 
5222 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5223 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5224 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5225 		att_type = LPFC_ATT_LINK_DOWN;
5226 		break;
5227 	case LPFC_ASYNC_LINK_STATUS_UP:
5228 		/* Ignore physical link up events - wait for logical link up */
5229 		att_type = LPFC_ATT_RESERVED;
5230 		break;
5231 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5232 		att_type = LPFC_ATT_LINK_UP;
5233 		break;
5234 	default:
5235 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5236 				"0399 Invalid link attention type: x%x\n",
5237 				bf_get(lpfc_acqe_link_status, acqe_link));
5238 		att_type = LPFC_ATT_RESERVED;
5239 		break;
5240 	}
5241 	return att_type;
5242 }
5243 
5244 /**
5245  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5246  * @phba: pointer to lpfc hba data structure.
5247  *
5248  * This routine is to get an SLI3 FC port's link speed in Mbps.
5249  *
5250  * Return: link speed in terms of Mbps.
5251  **/
5252 uint32_t
5253 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5254 {
5255 	uint32_t link_speed;
5256 
5257 	if (!lpfc_is_link_up(phba))
5258 		return 0;
5259 
5260 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5261 		switch (phba->fc_linkspeed) {
5262 		case LPFC_LINK_SPEED_1GHZ:
5263 			link_speed = 1000;
5264 			break;
5265 		case LPFC_LINK_SPEED_2GHZ:
5266 			link_speed = 2000;
5267 			break;
5268 		case LPFC_LINK_SPEED_4GHZ:
5269 			link_speed = 4000;
5270 			break;
5271 		case LPFC_LINK_SPEED_8GHZ:
5272 			link_speed = 8000;
5273 			break;
5274 		case LPFC_LINK_SPEED_10GHZ:
5275 			link_speed = 10000;
5276 			break;
5277 		case LPFC_LINK_SPEED_16GHZ:
5278 			link_speed = 16000;
5279 			break;
5280 		default:
5281 			link_speed = 0;
5282 		}
5283 	} else {
5284 		if (phba->sli4_hba.link_state.logical_speed)
5285 			link_speed =
5286 			      phba->sli4_hba.link_state.logical_speed;
5287 		else
5288 			link_speed = phba->sli4_hba.link_state.speed;
5289 	}
5290 	return link_speed;
5291 }
5292 
5293 /**
5294  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5295  * @phba: pointer to lpfc hba data structure.
5296  * @evt_code: asynchronous event code.
5297  * @speed_code: asynchronous event link speed code.
5298  *
5299  * This routine is to parse the giving SLI4 async event link speed code into
5300  * value of Mbps for the link speed.
5301  *
5302  * Return: link speed in terms of Mbps.
5303  **/
5304 static uint32_t
5305 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5306 			   uint8_t speed_code)
5307 {
5308 	uint32_t port_speed;
5309 
5310 	switch (evt_code) {
5311 	case LPFC_TRAILER_CODE_LINK:
5312 		switch (speed_code) {
5313 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5314 			port_speed = 0;
5315 			break;
5316 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5317 			port_speed = 10;
5318 			break;
5319 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5320 			port_speed = 100;
5321 			break;
5322 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5323 			port_speed = 1000;
5324 			break;
5325 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5326 			port_speed = 10000;
5327 			break;
5328 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5329 			port_speed = 20000;
5330 			break;
5331 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5332 			port_speed = 25000;
5333 			break;
5334 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5335 			port_speed = 40000;
5336 			break;
5337 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5338 			port_speed = 100000;
5339 			break;
5340 		default:
5341 			port_speed = 0;
5342 		}
5343 		break;
5344 	case LPFC_TRAILER_CODE_FC:
5345 		switch (speed_code) {
5346 		case LPFC_FC_LA_SPEED_UNKNOWN:
5347 			port_speed = 0;
5348 			break;
5349 		case LPFC_FC_LA_SPEED_1G:
5350 			port_speed = 1000;
5351 			break;
5352 		case LPFC_FC_LA_SPEED_2G:
5353 			port_speed = 2000;
5354 			break;
5355 		case LPFC_FC_LA_SPEED_4G:
5356 			port_speed = 4000;
5357 			break;
5358 		case LPFC_FC_LA_SPEED_8G:
5359 			port_speed = 8000;
5360 			break;
5361 		case LPFC_FC_LA_SPEED_10G:
5362 			port_speed = 10000;
5363 			break;
5364 		case LPFC_FC_LA_SPEED_16G:
5365 			port_speed = 16000;
5366 			break;
5367 		case LPFC_FC_LA_SPEED_32G:
5368 			port_speed = 32000;
5369 			break;
5370 		case LPFC_FC_LA_SPEED_64G:
5371 			port_speed = 64000;
5372 			break;
5373 		case LPFC_FC_LA_SPEED_128G:
5374 			port_speed = 128000;
5375 			break;
5376 		case LPFC_FC_LA_SPEED_256G:
5377 			port_speed = 256000;
5378 			break;
5379 		default:
5380 			port_speed = 0;
5381 		}
5382 		break;
5383 	default:
5384 		port_speed = 0;
5385 	}
5386 	return port_speed;
5387 }
5388 
5389 /**
5390  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5391  * @phba: pointer to lpfc hba data structure.
5392  * @acqe_link: pointer to the async link completion queue entry.
5393  *
5394  * This routine is to handle the SLI4 asynchronous FCoE link event.
5395  **/
5396 static void
5397 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5398 			 struct lpfc_acqe_link *acqe_link)
5399 {
5400 	LPFC_MBOXQ_t *pmb;
5401 	MAILBOX_t *mb;
5402 	struct lpfc_mbx_read_top *la;
5403 	uint8_t att_type;
5404 	int rc;
5405 
5406 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5407 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5408 		return;
5409 	phba->fcoe_eventtag = acqe_link->event_tag;
5410 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5411 	if (!pmb) {
5412 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5413 				"0395 The mboxq allocation failed\n");
5414 		return;
5415 	}
5416 
5417 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5418 	if (rc) {
5419 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5420 				"0396 mailbox allocation failed\n");
5421 		goto out_free_pmb;
5422 	}
5423 
5424 	/* Cleanup any outstanding ELS commands */
5425 	lpfc_els_flush_all_cmd(phba);
5426 
5427 	/* Block ELS IOCBs until we have done process link event */
5428 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5429 
5430 	/* Update link event statistics */
5431 	phba->sli.slistat.link_event++;
5432 
5433 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5434 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5435 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5436 	pmb->vport = phba->pport;
5437 
5438 	/* Keep the link status for extra SLI4 state machine reference */
5439 	phba->sli4_hba.link_state.speed =
5440 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5441 				bf_get(lpfc_acqe_link_speed, acqe_link));
5442 	phba->sli4_hba.link_state.duplex =
5443 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5444 	phba->sli4_hba.link_state.status =
5445 				bf_get(lpfc_acqe_link_status, acqe_link);
5446 	phba->sli4_hba.link_state.type =
5447 				bf_get(lpfc_acqe_link_type, acqe_link);
5448 	phba->sli4_hba.link_state.number =
5449 				bf_get(lpfc_acqe_link_number, acqe_link);
5450 	phba->sli4_hba.link_state.fault =
5451 				bf_get(lpfc_acqe_link_fault, acqe_link);
5452 	phba->sli4_hba.link_state.logical_speed =
5453 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5454 
5455 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5456 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5457 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5458 			"Logical speed:%dMbps Fault:%d\n",
5459 			phba->sli4_hba.link_state.speed,
5460 			phba->sli4_hba.link_state.topology,
5461 			phba->sli4_hba.link_state.status,
5462 			phba->sli4_hba.link_state.type,
5463 			phba->sli4_hba.link_state.number,
5464 			phba->sli4_hba.link_state.logical_speed,
5465 			phba->sli4_hba.link_state.fault);
5466 	/*
5467 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5468 	 * topology info. Note: Optional for non FC-AL ports.
5469 	 */
5470 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5471 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5472 		if (rc == MBX_NOT_FINISHED)
5473 			goto out_free_pmb;
5474 		return;
5475 	}
5476 	/*
5477 	 * For FCoE Mode: fill in all the topology information we need and call
5478 	 * the READ_TOPOLOGY completion routine to continue without actually
5479 	 * sending the READ_TOPOLOGY mailbox command to the port.
5480 	 */
5481 	/* Initialize completion status */
5482 	mb = &pmb->u.mb;
5483 	mb->mbxStatus = MBX_SUCCESS;
5484 
5485 	/* Parse port fault information field */
5486 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5487 
5488 	/* Parse and translate link attention fields */
5489 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5490 	la->eventTag = acqe_link->event_tag;
5491 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5492 	bf_set(lpfc_mbx_read_top_link_spd, la,
5493 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5494 
5495 	/* Fake the the following irrelvant fields */
5496 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5497 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5498 	bf_set(lpfc_mbx_read_top_il, la, 0);
5499 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5500 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5501 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5502 
5503 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5504 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5505 
5506 	return;
5507 
5508 out_free_pmb:
5509 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5510 }
5511 
5512 /**
5513  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5514  * topology.
5515  * @phba: pointer to lpfc hba data structure.
5516  * @speed_code: asynchronous event link speed code.
5517  *
5518  * This routine is to parse the giving SLI4 async event link speed code into
5519  * value of Read topology link speed.
5520  *
5521  * Return: link speed in terms of Read topology.
5522  **/
5523 static uint8_t
5524 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5525 {
5526 	uint8_t port_speed;
5527 
5528 	switch (speed_code) {
5529 	case LPFC_FC_LA_SPEED_1G:
5530 		port_speed = LPFC_LINK_SPEED_1GHZ;
5531 		break;
5532 	case LPFC_FC_LA_SPEED_2G:
5533 		port_speed = LPFC_LINK_SPEED_2GHZ;
5534 		break;
5535 	case LPFC_FC_LA_SPEED_4G:
5536 		port_speed = LPFC_LINK_SPEED_4GHZ;
5537 		break;
5538 	case LPFC_FC_LA_SPEED_8G:
5539 		port_speed = LPFC_LINK_SPEED_8GHZ;
5540 		break;
5541 	case LPFC_FC_LA_SPEED_16G:
5542 		port_speed = LPFC_LINK_SPEED_16GHZ;
5543 		break;
5544 	case LPFC_FC_LA_SPEED_32G:
5545 		port_speed = LPFC_LINK_SPEED_32GHZ;
5546 		break;
5547 	case LPFC_FC_LA_SPEED_64G:
5548 		port_speed = LPFC_LINK_SPEED_64GHZ;
5549 		break;
5550 	case LPFC_FC_LA_SPEED_128G:
5551 		port_speed = LPFC_LINK_SPEED_128GHZ;
5552 		break;
5553 	case LPFC_FC_LA_SPEED_256G:
5554 		port_speed = LPFC_LINK_SPEED_256GHZ;
5555 		break;
5556 	default:
5557 		port_speed = 0;
5558 		break;
5559 	}
5560 
5561 	return port_speed;
5562 }
5563 
5564 void
5565 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5566 {
5567 	if (!phba->rx_monitor) {
5568 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5569 				"4411 Rx Monitor Info is empty.\n");
5570 	} else {
5571 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5572 				       LPFC_MAX_RXMONITOR_DUMP);
5573 	}
5574 }
5575 
5576 /**
5577  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5578  * @phba: pointer to lpfc hba data structure.
5579  * @dtag: FPIN descriptor received
5580  *
5581  * Increment the FPIN received counter/time when it happens.
5582  */
5583 void
5584 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5585 {
5586 	struct lpfc_cgn_info *cp;
5587 	struct tm broken;
5588 	struct timespec64 cur_time;
5589 	u32 cnt;
5590 	u32 value;
5591 
5592 	/* Make sure we have a congestion info buffer */
5593 	if (!phba->cgn_i)
5594 		return;
5595 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5596 	ktime_get_real_ts64(&cur_time);
5597 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5598 
5599 	/* Update congestion statistics */
5600 	switch (dtag) {
5601 	case ELS_DTAG_LNK_INTEGRITY:
5602 		cnt = le32_to_cpu(cp->link_integ_notification);
5603 		cnt++;
5604 		cp->link_integ_notification = cpu_to_le32(cnt);
5605 
5606 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5607 		cp->cgn_stat_lnk_day = broken.tm_mday;
5608 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5609 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5610 		cp->cgn_stat_lnk_min = broken.tm_min;
5611 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5612 		break;
5613 	case ELS_DTAG_DELIVERY:
5614 		cnt = le32_to_cpu(cp->delivery_notification);
5615 		cnt++;
5616 		cp->delivery_notification = cpu_to_le32(cnt);
5617 
5618 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5619 		cp->cgn_stat_del_day = broken.tm_mday;
5620 		cp->cgn_stat_del_year = broken.tm_year - 100;
5621 		cp->cgn_stat_del_hour = broken.tm_hour;
5622 		cp->cgn_stat_del_min = broken.tm_min;
5623 		cp->cgn_stat_del_sec = broken.tm_sec;
5624 		break;
5625 	case ELS_DTAG_PEER_CONGEST:
5626 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5627 		cnt++;
5628 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5629 
5630 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5631 		cp->cgn_stat_peer_day = broken.tm_mday;
5632 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5633 		cp->cgn_stat_peer_hour = broken.tm_hour;
5634 		cp->cgn_stat_peer_min = broken.tm_min;
5635 		cp->cgn_stat_peer_sec = broken.tm_sec;
5636 		break;
5637 	case ELS_DTAG_CONGESTION:
5638 		cnt = le32_to_cpu(cp->cgn_notification);
5639 		cnt++;
5640 		cp->cgn_notification = cpu_to_le32(cnt);
5641 
5642 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5643 		cp->cgn_stat_cgn_day = broken.tm_mday;
5644 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5645 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5646 		cp->cgn_stat_cgn_min = broken.tm_min;
5647 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5648 	}
5649 	if (phba->cgn_fpin_frequency &&
5650 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5651 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5652 		cp->cgn_stat_npm = value;
5653 	}
5654 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5655 				    LPFC_CGN_CRC32_SEED);
5656 	cp->cgn_info_crc = cpu_to_le32(value);
5657 }
5658 
5659 /**
5660  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5661  * @phba: pointer to lpfc hba data structure.
5662  *
5663  * Save the congestion event data every minute.
5664  * On the hour collapse all the minute data into hour data. Every day
5665  * collapse all the hour data into daily data. Separate driver
5666  * and fabrc congestion event counters that will be saved out
5667  * to the registered congestion buffer every minute.
5668  */
5669 static void
5670 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5671 {
5672 	struct lpfc_cgn_info *cp;
5673 	struct tm broken;
5674 	struct timespec64 cur_time;
5675 	uint32_t i, index;
5676 	uint16_t value, mvalue;
5677 	uint64_t bps;
5678 	uint32_t mbps;
5679 	uint32_t dvalue, wvalue, lvalue, avalue;
5680 	uint64_t latsum;
5681 	__le16 *ptr;
5682 	__le32 *lptr;
5683 	__le16 *mptr;
5684 
5685 	/* Make sure we have a congestion info buffer */
5686 	if (!phba->cgn_i)
5687 		return;
5688 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5689 
5690 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5691 		return;
5692 	phba->cgn_evt_timestamp = jiffies +
5693 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5694 	phba->cgn_evt_minute++;
5695 
5696 	/* We should get to this point in the routine on 1 minute intervals */
5697 
5698 	ktime_get_real_ts64(&cur_time);
5699 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5700 
5701 	if (phba->cgn_fpin_frequency &&
5702 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5703 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5704 		cp->cgn_stat_npm = value;
5705 	}
5706 
5707 	/* Read and clear the latency counters for this minute */
5708 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5709 	latsum = atomic64_read(&phba->cgn_latency_evt);
5710 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5711 	atomic64_set(&phba->cgn_latency_evt, 0);
5712 
5713 	/* We need to store MB/sec bandwidth in the congestion information.
5714 	 * block_cnt is count of 512 byte blocks for the entire minute,
5715 	 * bps will get bytes per sec before finally converting to MB/sec.
5716 	 */
5717 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5718 	phba->rx_block_cnt = 0;
5719 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5720 
5721 	/* Every minute */
5722 	/* cgn parameters */
5723 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5724 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5725 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5726 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5727 
5728 	/* Fill in default LUN qdepth */
5729 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5730 	cp->cgn_lunq = cpu_to_le16(value);
5731 
5732 	/* Record congestion buffer info - every minute
5733 	 * cgn_driver_evt_cnt (Driver events)
5734 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5735 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5736 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5737 	 */
5738 	index = ++cp->cgn_index_minute;
5739 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5740 		cp->cgn_index_minute = 0;
5741 		index = 0;
5742 	}
5743 
5744 	/* Get the number of driver events in this sample and reset counter */
5745 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5746 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5747 
5748 	/* Get the number of warning events - FPIN and Signal for this minute */
5749 	wvalue = 0;
5750 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5751 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5752 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5753 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5754 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5755 
5756 	/* Get the number of alarm events - FPIN and Signal for this minute */
5757 	avalue = 0;
5758 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5759 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5760 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5761 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5762 
5763 	/* Collect the driver, warning, alarm and latency counts for this
5764 	 * minute into the driver congestion buffer.
5765 	 */
5766 	ptr = &cp->cgn_drvr_min[index];
5767 	value = (uint16_t)dvalue;
5768 	*ptr = cpu_to_le16(value);
5769 
5770 	ptr = &cp->cgn_warn_min[index];
5771 	value = (uint16_t)wvalue;
5772 	*ptr = cpu_to_le16(value);
5773 
5774 	ptr = &cp->cgn_alarm_min[index];
5775 	value = (uint16_t)avalue;
5776 	*ptr = cpu_to_le16(value);
5777 
5778 	lptr = &cp->cgn_latency_min[index];
5779 	if (lvalue) {
5780 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5781 		*lptr = cpu_to_le32(lvalue);
5782 	} else {
5783 		*lptr = 0;
5784 	}
5785 
5786 	/* Collect the bandwidth value into the driver's congesion buffer. */
5787 	mptr = &cp->cgn_bw_min[index];
5788 	*mptr = cpu_to_le16(mvalue);
5789 
5790 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5791 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5792 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5793 
5794 	/* Every hour */
5795 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5796 		/* Record congestion buffer info - every hour
5797 		 * Collapse all minutes into an hour
5798 		 */
5799 		index = ++cp->cgn_index_hour;
5800 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5801 			cp->cgn_index_hour = 0;
5802 			index = 0;
5803 		}
5804 
5805 		dvalue = 0;
5806 		wvalue = 0;
5807 		lvalue = 0;
5808 		avalue = 0;
5809 		mvalue = 0;
5810 		mbps = 0;
5811 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5812 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5813 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5814 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5815 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5816 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5817 		}
5818 		if (lvalue)		/* Avg of latency averages */
5819 			lvalue /= LPFC_MIN_HOUR;
5820 		if (mbps)		/* Avg of Bandwidth averages */
5821 			mvalue = mbps / LPFC_MIN_HOUR;
5822 
5823 		lptr = &cp->cgn_drvr_hr[index];
5824 		*lptr = cpu_to_le32(dvalue);
5825 		lptr = &cp->cgn_warn_hr[index];
5826 		*lptr = cpu_to_le32(wvalue);
5827 		lptr = &cp->cgn_latency_hr[index];
5828 		*lptr = cpu_to_le32(lvalue);
5829 		mptr = &cp->cgn_bw_hr[index];
5830 		*mptr = cpu_to_le16(mvalue);
5831 		lptr = &cp->cgn_alarm_hr[index];
5832 		*lptr = cpu_to_le32(avalue);
5833 
5834 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5835 				"2419 Congestion Info - hour "
5836 				"(%d): %d %d %d %d %d\n",
5837 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5838 	}
5839 
5840 	/* Every day */
5841 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5842 		/* Record congestion buffer info - every hour
5843 		 * Collapse all hours into a day. Rotate days
5844 		 * after LPFC_MAX_CGN_DAYS.
5845 		 */
5846 		index = ++cp->cgn_index_day;
5847 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5848 			cp->cgn_index_day = 0;
5849 			index = 0;
5850 		}
5851 
5852 		/* Anytime we overwrite daily index 0, after we wrap,
5853 		 * we will be overwriting the oldest day, so we must
5854 		 * update the congestion data start time for that day.
5855 		 * That start time should have previously been saved after
5856 		 * we wrote the last days worth of data.
5857 		 */
5858 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5859 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5860 
5861 			cp->cgn_info_month = broken.tm_mon + 1;
5862 			cp->cgn_info_day = broken.tm_mday;
5863 			cp->cgn_info_year = broken.tm_year - 100;
5864 			cp->cgn_info_hour = broken.tm_hour;
5865 			cp->cgn_info_minute = broken.tm_min;
5866 			cp->cgn_info_second = broken.tm_sec;
5867 
5868 			lpfc_printf_log
5869 				(phba, KERN_INFO, LOG_CGN_MGMT,
5870 				"2646 CGNInfo idx0 Start Time: "
5871 				"%d/%d/%d %d:%d:%d\n",
5872 				cp->cgn_info_day, cp->cgn_info_month,
5873 				cp->cgn_info_year, cp->cgn_info_hour,
5874 				cp->cgn_info_minute, cp->cgn_info_second);
5875 		}
5876 
5877 		dvalue = 0;
5878 		wvalue = 0;
5879 		lvalue = 0;
5880 		mvalue = 0;
5881 		mbps = 0;
5882 		avalue = 0;
5883 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5884 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5885 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5886 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5887 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5888 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5889 		}
5890 		if (lvalue)		/* Avg of latency averages */
5891 			lvalue /= LPFC_HOUR_DAY;
5892 		if (mbps)		/* Avg of Bandwidth averages */
5893 			mvalue = mbps / LPFC_HOUR_DAY;
5894 
5895 		lptr = &cp->cgn_drvr_day[index];
5896 		*lptr = cpu_to_le32(dvalue);
5897 		lptr = &cp->cgn_warn_day[index];
5898 		*lptr = cpu_to_le32(wvalue);
5899 		lptr = &cp->cgn_latency_day[index];
5900 		*lptr = cpu_to_le32(lvalue);
5901 		mptr = &cp->cgn_bw_day[index];
5902 		*mptr = cpu_to_le16(mvalue);
5903 		lptr = &cp->cgn_alarm_day[index];
5904 		*lptr = cpu_to_le32(avalue);
5905 
5906 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5907 				"2420 Congestion Info - daily (%d): "
5908 				"%d %d %d %d %d\n",
5909 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5910 
5911 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5912 		 * so we are wrapped on any data after this.
5913 		 * Save this as the start time for the next day.
5914 		 */
5915 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5916 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5917 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5918 		}
5919 	}
5920 
5921 	/* Use the frequency found in the last rcv'ed FPIN */
5922 	value = phba->cgn_fpin_frequency;
5923 	cp->cgn_warn_freq = cpu_to_le16(value);
5924 	cp->cgn_alarm_freq = cpu_to_le16(value);
5925 
5926 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5927 				     LPFC_CGN_CRC32_SEED);
5928 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5929 }
5930 
5931 /**
5932  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5933  * @phba: The Hba for which this call is being executed.
5934  *
5935  * The routine calculates the latency from the beginning of the CMF timer
5936  * interval to the current point in time. It is called from IO completion
5937  * when we exceed our Bandwidth limitation for the time interval.
5938  */
5939 uint32_t
5940 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5941 {
5942 	struct timespec64 cmpl_time;
5943 	uint32_t msec = 0;
5944 
5945 	ktime_get_real_ts64(&cmpl_time);
5946 
5947 	/* This routine works on a ms granularity so sec and usec are
5948 	 * converted accordingly.
5949 	 */
5950 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5951 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5952 			NSEC_PER_MSEC;
5953 	} else {
5954 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5955 			msec = (cmpl_time.tv_sec -
5956 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5957 			msec += ((cmpl_time.tv_nsec -
5958 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5959 		} else {
5960 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5961 				1) * MSEC_PER_SEC;
5962 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5963 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5964 		}
5965 	}
5966 	return msec;
5967 }
5968 
5969 /**
5970  * lpfc_cmf_timer -  This is the timer function for one congestion
5971  * rate interval.
5972  * @timer: Pointer to the high resolution timer that expired
5973  */
5974 static enum hrtimer_restart
5975 lpfc_cmf_timer(struct hrtimer *timer)
5976 {
5977 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5978 					     cmf_timer);
5979 	struct rx_info_entry entry;
5980 	uint32_t io_cnt;
5981 	uint32_t busy, max_read;
5982 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5983 	int timer_interval = LPFC_CMF_INTERVAL;
5984 	uint32_t ms;
5985 	struct lpfc_cgn_stat *cgs;
5986 	int cpu;
5987 
5988 	/* Only restart the timer if congestion mgmt is on */
5989 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5990 	    !phba->cmf_latency.tv_sec) {
5991 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5992 				"6224 CMF timer exit: %d %lld\n",
5993 				phba->cmf_active_mode,
5994 				(uint64_t)phba->cmf_latency.tv_sec);
5995 		return HRTIMER_NORESTART;
5996 	}
5997 
5998 	/* If pport is not ready yet, just exit and wait for
5999 	 * the next timer cycle to hit.
6000 	 */
6001 	if (!phba->pport)
6002 		goto skip;
6003 
6004 	/* Do not block SCSI IO while in the timer routine since
6005 	 * total_bytes will be cleared
6006 	 */
6007 	atomic_set(&phba->cmf_stop_io, 1);
6008 
6009 	/* First we need to calculate the actual ms between
6010 	 * the last timer interrupt and this one. We ask for
6011 	 * LPFC_CMF_INTERVAL, however the actual time may
6012 	 * vary depending on system overhead.
6013 	 */
6014 	ms = lpfc_calc_cmf_latency(phba);
6015 
6016 
6017 	/* Immediately after we calculate the time since the last
6018 	 * timer interrupt, set the start time for the next
6019 	 * interrupt
6020 	 */
6021 	ktime_get_real_ts64(&phba->cmf_latency);
6022 
6023 	phba->cmf_link_byte_count =
6024 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6025 
6026 	/* Collect all the stats from the prior timer interval */
6027 	total = 0;
6028 	io_cnt = 0;
6029 	lat = 0;
6030 	rcv = 0;
6031 	for_each_present_cpu(cpu) {
6032 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6033 		total += atomic64_xchg(&cgs->total_bytes, 0);
6034 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6035 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6036 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6037 	}
6038 
6039 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6040 	 * returned from the last CMF_SYNC_WQE issued, from
6041 	 * cmf_last_sync_bw. This will be the target BW for
6042 	 * this next timer interval.
6043 	 */
6044 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6045 	    phba->link_state != LPFC_LINK_DOWN &&
6046 	    phba->hba_flag & HBA_SETUP) {
6047 		mbpi = phba->cmf_last_sync_bw;
6048 		phba->cmf_last_sync_bw = 0;
6049 		extra = 0;
6050 
6051 		/* Calculate any extra bytes needed to account for the
6052 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6053 		 * calculate the adjustment needed for total to reflect
6054 		 * a full LPFC_CMF_INTERVAL.
6055 		 */
6056 		if (ms && ms < LPFC_CMF_INTERVAL) {
6057 			cnt = div_u64(total, ms); /* bytes per ms */
6058 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6059 
6060 			/* If the timeout is scheduled to be shorter,
6061 			 * this value may skew the data, so cap it at mbpi.
6062 			 */
6063 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6064 				cnt = mbpi;
6065 
6066 			extra = cnt - total;
6067 		}
6068 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6069 	} else {
6070 		/* For Monitor mode or link down we want mbpi
6071 		 * to be the full link speed
6072 		 */
6073 		mbpi = phba->cmf_link_byte_count;
6074 		extra = 0;
6075 	}
6076 	phba->cmf_timer_cnt++;
6077 
6078 	if (io_cnt) {
6079 		/* Update congestion info buffer latency in us */
6080 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6081 		atomic64_add(lat, &phba->cgn_latency_evt);
6082 	}
6083 	busy = atomic_xchg(&phba->cmf_busy, 0);
6084 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6085 
6086 	/* Calculate MBPI for the next timer interval */
6087 	if (mbpi) {
6088 		if (mbpi > phba->cmf_link_byte_count ||
6089 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6090 			mbpi = phba->cmf_link_byte_count;
6091 
6092 		/* Change max_bytes_per_interval to what the prior
6093 		 * CMF_SYNC_WQE cmpl indicated.
6094 		 */
6095 		if (mbpi != phba->cmf_max_bytes_per_interval)
6096 			phba->cmf_max_bytes_per_interval = mbpi;
6097 	}
6098 
6099 	/* Save rxmonitor information for debug */
6100 	if (phba->rx_monitor) {
6101 		entry.total_bytes = total;
6102 		entry.cmf_bytes = total + extra;
6103 		entry.rcv_bytes = rcv;
6104 		entry.cmf_busy = busy;
6105 		entry.cmf_info = phba->cmf_active_info;
6106 		if (io_cnt) {
6107 			entry.avg_io_latency = div_u64(lat, io_cnt);
6108 			entry.avg_io_size = div_u64(rcv, io_cnt);
6109 		} else {
6110 			entry.avg_io_latency = 0;
6111 			entry.avg_io_size = 0;
6112 		}
6113 		entry.max_read_cnt = max_read;
6114 		entry.io_cnt = io_cnt;
6115 		entry.max_bytes_per_interval = mbpi;
6116 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6117 			entry.timer_utilization = phba->cmf_last_ts;
6118 		else
6119 			entry.timer_utilization = ms;
6120 		entry.timer_interval = ms;
6121 		phba->cmf_last_ts = 0;
6122 
6123 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6124 	}
6125 
6126 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6127 		/* If Monitor mode, check if we are oversubscribed
6128 		 * against the full line rate.
6129 		 */
6130 		if (mbpi && total > mbpi)
6131 			atomic_inc(&phba->cgn_driver_evt_cnt);
6132 	}
6133 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6134 
6135 	/* Each minute save Fabric and Driver congestion information */
6136 	lpfc_cgn_save_evt_cnt(phba);
6137 
6138 	phba->hba_flag &= ~HBA_SHORT_CMF;
6139 
6140 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6141 	 * minute, adjust our next timer interval, if needed, to ensure a
6142 	 * 1 minute granularity when we get the next timer interrupt.
6143 	 */
6144 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6145 		       phba->cgn_evt_timestamp)) {
6146 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6147 						  jiffies);
6148 		if (timer_interval <= 0)
6149 			timer_interval = LPFC_CMF_INTERVAL;
6150 		else
6151 			phba->hba_flag |= HBA_SHORT_CMF;
6152 
6153 		/* If we adjust timer_interval, max_bytes_per_interval
6154 		 * needs to be adjusted as well.
6155 		 */
6156 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6157 						    timer_interval, 1000);
6158 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6159 			phba->cmf_max_bytes_per_interval =
6160 				phba->cmf_link_byte_count;
6161 	}
6162 
6163 	/* Since total_bytes has already been zero'ed, its okay to unblock
6164 	 * after max_bytes_per_interval is setup.
6165 	 */
6166 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6167 		queue_work(phba->wq, &phba->unblock_request_work);
6168 
6169 	/* SCSI IO is now unblocked */
6170 	atomic_set(&phba->cmf_stop_io, 0);
6171 
6172 skip:
6173 	hrtimer_forward_now(timer,
6174 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6175 	return HRTIMER_RESTART;
6176 }
6177 
6178 #define trunk_link_status(__idx)\
6179 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6180 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6181 		"Link up" : "Link down") : "NA"
6182 /* Did port __idx reported an error */
6183 #define trunk_port_fault(__idx)\
6184 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6185 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6186 
6187 static void
6188 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6189 			      struct lpfc_acqe_fc_la *acqe_fc)
6190 {
6191 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6192 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6193 	u8 cnt = 0;
6194 
6195 	phba->sli4_hba.link_state.speed =
6196 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6197 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6198 
6199 	phba->sli4_hba.link_state.logical_speed =
6200 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6201 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6202 	phba->fc_linkspeed =
6203 		 lpfc_async_link_speed_to_read_top(
6204 				phba,
6205 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6206 
6207 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6208 		phba->trunk_link.link0.state =
6209 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6210 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6211 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6212 		cnt++;
6213 	}
6214 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6215 		phba->trunk_link.link1.state =
6216 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6217 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6218 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6219 		cnt++;
6220 	}
6221 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6222 		phba->trunk_link.link2.state =
6223 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6224 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6225 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6226 		cnt++;
6227 	}
6228 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6229 		phba->trunk_link.link3.state =
6230 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6231 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6232 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6233 		cnt++;
6234 	}
6235 
6236 	if (cnt)
6237 		phba->trunk_link.phy_lnk_speed =
6238 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6239 	else
6240 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6241 
6242 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6243 			"2910 Async FC Trunking Event - Speed:%d\n"
6244 			"\tLogical speed:%d "
6245 			"port0: %s port1: %s port2: %s port3: %s\n",
6246 			phba->sli4_hba.link_state.speed,
6247 			phba->sli4_hba.link_state.logical_speed,
6248 			trunk_link_status(0), trunk_link_status(1),
6249 			trunk_link_status(2), trunk_link_status(3));
6250 
6251 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6252 		lpfc_cmf_signal_init(phba);
6253 
6254 	if (port_fault)
6255 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6256 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6257 				/*
6258 				 * SLI-4: We have only 0xA error codes
6259 				 * defined as of now. print an appropriate
6260 				 * message in case driver needs to be updated.
6261 				 */
6262 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6263 				"UNDEFINED. update driver." : trunk_errmsg[err],
6264 				trunk_port_fault(0), trunk_port_fault(1),
6265 				trunk_port_fault(2), trunk_port_fault(3));
6266 }
6267 
6268 
6269 /**
6270  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6271  * @phba: pointer to lpfc hba data structure.
6272  * @acqe_fc: pointer to the async fc completion queue entry.
6273  *
6274  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6275  * that the event was received and then issue a read_topology mailbox command so
6276  * that the rest of the driver will treat it the same as SLI3.
6277  **/
6278 static void
6279 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6280 {
6281 	LPFC_MBOXQ_t *pmb;
6282 	MAILBOX_t *mb;
6283 	struct lpfc_mbx_read_top *la;
6284 	int rc;
6285 
6286 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6287 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6288 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6289 				"2895 Non FC link Event detected.(%d)\n",
6290 				bf_get(lpfc_trailer_type, acqe_fc));
6291 		return;
6292 	}
6293 
6294 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6295 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6296 		lpfc_update_trunk_link_status(phba, acqe_fc);
6297 		return;
6298 	}
6299 
6300 	/* Keep the link status for extra SLI4 state machine reference */
6301 	phba->sli4_hba.link_state.speed =
6302 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6303 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6304 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6305 	phba->sli4_hba.link_state.topology =
6306 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6307 	phba->sli4_hba.link_state.status =
6308 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6309 	phba->sli4_hba.link_state.type =
6310 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6311 	phba->sli4_hba.link_state.number =
6312 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6313 	phba->sli4_hba.link_state.fault =
6314 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6315 
6316 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6317 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6318 		phba->sli4_hba.link_state.logical_speed = 0;
6319 	else if (!phba->sli4_hba.conf_trunk)
6320 		phba->sli4_hba.link_state.logical_speed =
6321 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6322 
6323 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6324 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6325 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6326 			"%dMbps Fault:%d\n",
6327 			phba->sli4_hba.link_state.speed,
6328 			phba->sli4_hba.link_state.topology,
6329 			phba->sli4_hba.link_state.status,
6330 			phba->sli4_hba.link_state.type,
6331 			phba->sli4_hba.link_state.number,
6332 			phba->sli4_hba.link_state.logical_speed,
6333 			phba->sli4_hba.link_state.fault);
6334 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6335 	if (!pmb) {
6336 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6337 				"2897 The mboxq allocation failed\n");
6338 		return;
6339 	}
6340 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6341 	if (rc) {
6342 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6343 				"2898 The mboxq prep failed\n");
6344 		goto out_free_pmb;
6345 	}
6346 
6347 	/* Cleanup any outstanding ELS commands */
6348 	lpfc_els_flush_all_cmd(phba);
6349 
6350 	/* Block ELS IOCBs until we have done process link event */
6351 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6352 
6353 	/* Update link event statistics */
6354 	phba->sli.slistat.link_event++;
6355 
6356 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6357 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6358 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6359 	pmb->vport = phba->pport;
6360 
6361 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6362 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6363 
6364 		switch (phba->sli4_hba.link_state.status) {
6365 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6366 			phba->link_flag |= LS_MDS_LINK_DOWN;
6367 			break;
6368 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6369 			phba->link_flag |= LS_MDS_LOOPBACK;
6370 			break;
6371 		default:
6372 			break;
6373 		}
6374 
6375 		/* Initialize completion status */
6376 		mb = &pmb->u.mb;
6377 		mb->mbxStatus = MBX_SUCCESS;
6378 
6379 		/* Parse port fault information field */
6380 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6381 
6382 		/* Parse and translate link attention fields */
6383 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6384 		la->eventTag = acqe_fc->event_tag;
6385 
6386 		if (phba->sli4_hba.link_state.status ==
6387 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6388 			bf_set(lpfc_mbx_read_top_att_type, la,
6389 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6390 		} else {
6391 			bf_set(lpfc_mbx_read_top_att_type, la,
6392 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6393 		}
6394 		/* Invoke the mailbox command callback function */
6395 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6396 
6397 		return;
6398 	}
6399 
6400 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6401 	if (rc == MBX_NOT_FINISHED)
6402 		goto out_free_pmb;
6403 	return;
6404 
6405 out_free_pmb:
6406 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6407 }
6408 
6409 /**
6410  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6411  * @phba: pointer to lpfc hba data structure.
6412  * @acqe_sli: pointer to the async SLI completion queue entry.
6413  *
6414  * This routine is to handle the SLI4 asynchronous SLI events.
6415  **/
6416 static void
6417 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6418 {
6419 	char port_name;
6420 	char message[128];
6421 	uint8_t status;
6422 	uint8_t evt_type;
6423 	uint8_t operational = 0;
6424 	struct temp_event temp_event_data;
6425 	struct lpfc_acqe_misconfigured_event *misconfigured;
6426 	struct lpfc_acqe_cgn_signal *cgn_signal;
6427 	struct Scsi_Host  *shost;
6428 	struct lpfc_vport **vports;
6429 	int rc, i, cnt;
6430 
6431 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6432 
6433 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6434 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6435 			"x%08x x%08x x%08x\n", evt_type,
6436 			acqe_sli->event_data1, acqe_sli->event_data2,
6437 			acqe_sli->event_data3, acqe_sli->trailer);
6438 
6439 	port_name = phba->Port[0];
6440 	if (port_name == 0x00)
6441 		port_name = '?'; /* get port name is empty */
6442 
6443 	switch (evt_type) {
6444 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6445 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6446 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6447 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6448 
6449 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6450 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6451 				acqe_sli->event_data1, port_name);
6452 
6453 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6454 		shost = lpfc_shost_from_vport(phba->pport);
6455 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6456 					  sizeof(temp_event_data),
6457 					  (char *)&temp_event_data,
6458 					  SCSI_NL_VID_TYPE_PCI
6459 					  | PCI_VENDOR_ID_EMULEX);
6460 		break;
6461 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6462 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6463 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6464 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6465 
6466 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6467 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6468 				acqe_sli->event_data1, port_name);
6469 
6470 		shost = lpfc_shost_from_vport(phba->pport);
6471 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6472 					  sizeof(temp_event_data),
6473 					  (char *)&temp_event_data,
6474 					  SCSI_NL_VID_TYPE_PCI
6475 					  | PCI_VENDOR_ID_EMULEX);
6476 		break;
6477 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6478 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6479 					&acqe_sli->event_data1;
6480 
6481 		/* fetch the status for this port */
6482 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6483 		case LPFC_LINK_NUMBER_0:
6484 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6485 					&misconfigured->theEvent);
6486 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6487 					&misconfigured->theEvent);
6488 			break;
6489 		case LPFC_LINK_NUMBER_1:
6490 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6491 					&misconfigured->theEvent);
6492 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6493 					&misconfigured->theEvent);
6494 			break;
6495 		case LPFC_LINK_NUMBER_2:
6496 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6497 					&misconfigured->theEvent);
6498 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6499 					&misconfigured->theEvent);
6500 			break;
6501 		case LPFC_LINK_NUMBER_3:
6502 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6503 					&misconfigured->theEvent);
6504 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6505 					&misconfigured->theEvent);
6506 			break;
6507 		default:
6508 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6509 					"3296 "
6510 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6511 					"event: Invalid link %d",
6512 					phba->sli4_hba.lnk_info.lnk_no);
6513 			return;
6514 		}
6515 
6516 		/* Skip if optic state unchanged */
6517 		if (phba->sli4_hba.lnk_info.optic_state == status)
6518 			return;
6519 
6520 		switch (status) {
6521 		case LPFC_SLI_EVENT_STATUS_VALID:
6522 			sprintf(message, "Physical Link is functional");
6523 			break;
6524 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6525 			sprintf(message, "Optics faulted/incorrectly "
6526 				"installed/not installed - Reseat optics, "
6527 				"if issue not resolved, replace.");
6528 			break;
6529 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6530 			sprintf(message,
6531 				"Optics of two types installed - Remove one "
6532 				"optic or install matching pair of optics.");
6533 			break;
6534 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6535 			sprintf(message, "Incompatible optics - Replace with "
6536 				"compatible optics for card to function.");
6537 			break;
6538 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6539 			sprintf(message, "Unqualified optics - Replace with "
6540 				"Avago optics for Warranty and Technical "
6541 				"Support - Link is%s operational",
6542 				(operational) ? " not" : "");
6543 			break;
6544 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6545 			sprintf(message, "Uncertified optics - Replace with "
6546 				"Avago-certified optics to enable link "
6547 				"operation - Link is%s operational",
6548 				(operational) ? " not" : "");
6549 			break;
6550 		default:
6551 			/* firmware is reporting a status we don't know about */
6552 			sprintf(message, "Unknown event status x%02x", status);
6553 			break;
6554 		}
6555 
6556 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6557 		rc = lpfc_sli4_read_config(phba);
6558 		if (rc) {
6559 			phba->lmt = 0;
6560 			lpfc_printf_log(phba, KERN_ERR,
6561 					LOG_TRACE_EVENT,
6562 					"3194 Unable to retrieve supported "
6563 					"speeds, rc = 0x%x\n", rc);
6564 		}
6565 		rc = lpfc_sli4_refresh_params(phba);
6566 		if (rc) {
6567 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6568 					"3174 Unable to update pls support, "
6569 					"rc x%x\n", rc);
6570 		}
6571 		vports = lpfc_create_vport_work_array(phba);
6572 		if (vports != NULL) {
6573 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6574 					i++) {
6575 				shost = lpfc_shost_from_vport(vports[i]);
6576 				lpfc_host_supported_speeds_set(shost);
6577 			}
6578 		}
6579 		lpfc_destroy_vport_work_array(phba, vports);
6580 
6581 		phba->sli4_hba.lnk_info.optic_state = status;
6582 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6583 				"3176 Port Name %c %s\n", port_name, message);
6584 		break;
6585 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6586 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6587 				"3192 Remote DPort Test Initiated - "
6588 				"Event Data1:x%08x Event Data2: x%08x\n",
6589 				acqe_sli->event_data1, acqe_sli->event_data2);
6590 		break;
6591 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6592 		/* Call FW to obtain active parms */
6593 		lpfc_sli4_cgn_parm_chg_evt(phba);
6594 		break;
6595 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6596 		/* Misconfigured WWN. Reports that the SLI Port is configured
6597 		 * to use FA-WWN, but the attached device doesn’t support it.
6598 		 * Event Data1 - N.A, Event Data2 - N.A
6599 		 * This event only happens on the physical port.
6600 		 */
6601 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6602 			     "2699 Misconfigured FA-PWWN - Attached device "
6603 			     "does not support FA-PWWN\n");
6604 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6605 		memset(phba->pport->fc_portname.u.wwn, 0,
6606 		       sizeof(struct lpfc_name));
6607 		break;
6608 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6609 		/* EEPROM failure. No driver action is required */
6610 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6611 			     "2518 EEPROM failure - "
6612 			     "Event Data1: x%08x Event Data2: x%08x\n",
6613 			     acqe_sli->event_data1, acqe_sli->event_data2);
6614 		break;
6615 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6616 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6617 			break;
6618 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6619 					&acqe_sli->event_data1;
6620 		phba->cgn_acqe_cnt++;
6621 
6622 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6623 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6624 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6625 
6626 		/* no threshold for CMF, even 1 signal will trigger an event */
6627 
6628 		/* Alarm overrides warning, so check that first */
6629 		if (cgn_signal->alarm_cnt) {
6630 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6631 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6632 				atomic_add(cgn_signal->alarm_cnt,
6633 					   &phba->cgn_sync_alarm_cnt);
6634 			}
6635 		} else if (cnt) {
6636 			/* signal action needs to be taken */
6637 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6638 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6639 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6640 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6641 			}
6642 		}
6643 		break;
6644 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6645 		/* May be accompanied by a temperature event */
6646 		lpfc_printf_log(phba, KERN_INFO,
6647 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6648 				"2902 Remote Degrade Signaling: x%08x x%08x "
6649 				"x%08x\n",
6650 				acqe_sli->event_data1, acqe_sli->event_data2,
6651 				acqe_sli->event_data3);
6652 		break;
6653 	default:
6654 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6655 				"3193 Unrecognized SLI event, type: 0x%x",
6656 				evt_type);
6657 		break;
6658 	}
6659 }
6660 
6661 /**
6662  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6663  * @vport: pointer to vport data structure.
6664  *
6665  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6666  * response to a CVL event.
6667  *
6668  * Return the pointer to the ndlp with the vport if successful, otherwise
6669  * return NULL.
6670  **/
6671 static struct lpfc_nodelist *
6672 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6673 {
6674 	struct lpfc_nodelist *ndlp;
6675 	struct Scsi_Host *shost;
6676 	struct lpfc_hba *phba;
6677 
6678 	if (!vport)
6679 		return NULL;
6680 	phba = vport->phba;
6681 	if (!phba)
6682 		return NULL;
6683 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6684 	if (!ndlp) {
6685 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6686 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6687 		if (!ndlp)
6688 			return NULL;
6689 		/* Set the node type */
6690 		ndlp->nlp_type |= NLP_FABRIC;
6691 		/* Put ndlp onto node list */
6692 		lpfc_enqueue_node(vport, ndlp);
6693 	}
6694 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6695 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6696 		return NULL;
6697 	/* If virtual link is not yet instantiated ignore CVL */
6698 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6699 		&& (vport->port_state != LPFC_VPORT_FAILED))
6700 		return NULL;
6701 	shost = lpfc_shost_from_vport(vport);
6702 	if (!shost)
6703 		return NULL;
6704 	lpfc_linkdown_port(vport);
6705 	lpfc_cleanup_pending_mbox(vport);
6706 	spin_lock_irq(shost->host_lock);
6707 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6708 	spin_unlock_irq(shost->host_lock);
6709 
6710 	return ndlp;
6711 }
6712 
6713 /**
6714  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6715  * @phba: pointer to lpfc hba data structure.
6716  *
6717  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6718  * response to a FCF dead event.
6719  **/
6720 static void
6721 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6722 {
6723 	struct lpfc_vport **vports;
6724 	int i;
6725 
6726 	vports = lpfc_create_vport_work_array(phba);
6727 	if (vports)
6728 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6729 			lpfc_sli4_perform_vport_cvl(vports[i]);
6730 	lpfc_destroy_vport_work_array(phba, vports);
6731 }
6732 
6733 /**
6734  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6735  * @phba: pointer to lpfc hba data structure.
6736  * @acqe_fip: pointer to the async fcoe completion queue entry.
6737  *
6738  * This routine is to handle the SLI4 asynchronous fcoe event.
6739  **/
6740 static void
6741 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6742 			struct lpfc_acqe_fip *acqe_fip)
6743 {
6744 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6745 	int rc;
6746 	struct lpfc_vport *vport;
6747 	struct lpfc_nodelist *ndlp;
6748 	int active_vlink_present;
6749 	struct lpfc_vport **vports;
6750 	int i;
6751 
6752 	phba->fc_eventTag = acqe_fip->event_tag;
6753 	phba->fcoe_eventtag = acqe_fip->event_tag;
6754 	switch (event_type) {
6755 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6756 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6757 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6758 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6759 					"2546 New FCF event, evt_tag:x%x, "
6760 					"index:x%x\n",
6761 					acqe_fip->event_tag,
6762 					acqe_fip->index);
6763 		else
6764 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6765 					LOG_DISCOVERY,
6766 					"2788 FCF param modified event, "
6767 					"evt_tag:x%x, index:x%x\n",
6768 					acqe_fip->event_tag,
6769 					acqe_fip->index);
6770 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6771 			/*
6772 			 * During period of FCF discovery, read the FCF
6773 			 * table record indexed by the event to update
6774 			 * FCF roundrobin failover eligible FCF bmask.
6775 			 */
6776 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6777 					LOG_DISCOVERY,
6778 					"2779 Read FCF (x%x) for updating "
6779 					"roundrobin FCF failover bmask\n",
6780 					acqe_fip->index);
6781 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6782 		}
6783 
6784 		/* If the FCF discovery is in progress, do nothing. */
6785 		spin_lock_irq(&phba->hbalock);
6786 		if (phba->hba_flag & FCF_TS_INPROG) {
6787 			spin_unlock_irq(&phba->hbalock);
6788 			break;
6789 		}
6790 		/* If fast FCF failover rescan event is pending, do nothing */
6791 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6792 			spin_unlock_irq(&phba->hbalock);
6793 			break;
6794 		}
6795 
6796 		/* If the FCF has been in discovered state, do nothing. */
6797 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6798 			spin_unlock_irq(&phba->hbalock);
6799 			break;
6800 		}
6801 		spin_unlock_irq(&phba->hbalock);
6802 
6803 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6804 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6805 				"2770 Start FCF table scan per async FCF "
6806 				"event, evt_tag:x%x, index:x%x\n",
6807 				acqe_fip->event_tag, acqe_fip->index);
6808 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6809 						     LPFC_FCOE_FCF_GET_FIRST);
6810 		if (rc)
6811 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6812 					"2547 Issue FCF scan read FCF mailbox "
6813 					"command failed (x%x)\n", rc);
6814 		break;
6815 
6816 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6817 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6818 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6819 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6820 				acqe_fip->event_tag);
6821 		break;
6822 
6823 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6824 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6825 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6826 				"2549 FCF (x%x) disconnected from network, "
6827 				 "tag:x%x\n", acqe_fip->index,
6828 				 acqe_fip->event_tag);
6829 		/*
6830 		 * If we are in the middle of FCF failover process, clear
6831 		 * the corresponding FCF bit in the roundrobin bitmap.
6832 		 */
6833 		spin_lock_irq(&phba->hbalock);
6834 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6835 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6836 			spin_unlock_irq(&phba->hbalock);
6837 			/* Update FLOGI FCF failover eligible FCF bmask */
6838 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6839 			break;
6840 		}
6841 		spin_unlock_irq(&phba->hbalock);
6842 
6843 		/* If the event is not for currently used fcf do nothing */
6844 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6845 			break;
6846 
6847 		/*
6848 		 * Otherwise, request the port to rediscover the entire FCF
6849 		 * table for a fast recovery from case that the current FCF
6850 		 * is no longer valid as we are not in the middle of FCF
6851 		 * failover process already.
6852 		 */
6853 		spin_lock_irq(&phba->hbalock);
6854 		/* Mark the fast failover process in progress */
6855 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6856 		spin_unlock_irq(&phba->hbalock);
6857 
6858 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6859 				"2771 Start FCF fast failover process due to "
6860 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6861 				"\n", acqe_fip->event_tag, acqe_fip->index);
6862 		rc = lpfc_sli4_redisc_fcf_table(phba);
6863 		if (rc) {
6864 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6865 					LOG_TRACE_EVENT,
6866 					"2772 Issue FCF rediscover mailbox "
6867 					"command failed, fail through to FCF "
6868 					"dead event\n");
6869 			spin_lock_irq(&phba->hbalock);
6870 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6871 			spin_unlock_irq(&phba->hbalock);
6872 			/*
6873 			 * Last resort will fail over by treating this
6874 			 * as a link down to FCF registration.
6875 			 */
6876 			lpfc_sli4_fcf_dead_failthrough(phba);
6877 		} else {
6878 			/* Reset FCF roundrobin bmask for new discovery */
6879 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6880 			/*
6881 			 * Handling fast FCF failover to a DEAD FCF event is
6882 			 * considered equalivant to receiving CVL to all vports.
6883 			 */
6884 			lpfc_sli4_perform_all_vport_cvl(phba);
6885 		}
6886 		break;
6887 	case LPFC_FIP_EVENT_TYPE_CVL:
6888 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6889 		lpfc_printf_log(phba, KERN_ERR,
6890 				LOG_TRACE_EVENT,
6891 			"2718 Clear Virtual Link Received for VPI 0x%x"
6892 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6893 
6894 		vport = lpfc_find_vport_by_vpid(phba,
6895 						acqe_fip->index);
6896 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6897 		if (!ndlp)
6898 			break;
6899 		active_vlink_present = 0;
6900 
6901 		vports = lpfc_create_vport_work_array(phba);
6902 		if (vports) {
6903 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6904 					i++) {
6905 				if ((!(vports[i]->fc_flag &
6906 					FC_VPORT_CVL_RCVD)) &&
6907 					(vports[i]->port_state > LPFC_FDISC)) {
6908 					active_vlink_present = 1;
6909 					break;
6910 				}
6911 			}
6912 			lpfc_destroy_vport_work_array(phba, vports);
6913 		}
6914 
6915 		/*
6916 		 * Don't re-instantiate if vport is marked for deletion.
6917 		 * If we are here first then vport_delete is going to wait
6918 		 * for discovery to complete.
6919 		 */
6920 		if (!(vport->load_flag & FC_UNLOADING) &&
6921 					active_vlink_present) {
6922 			/*
6923 			 * If there are other active VLinks present,
6924 			 * re-instantiate the Vlink using FDISC.
6925 			 */
6926 			mod_timer(&ndlp->nlp_delayfunc,
6927 				  jiffies + msecs_to_jiffies(1000));
6928 			spin_lock_irq(&ndlp->lock);
6929 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6930 			spin_unlock_irq(&ndlp->lock);
6931 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6932 			vport->port_state = LPFC_FDISC;
6933 		} else {
6934 			/*
6935 			 * Otherwise, we request port to rediscover
6936 			 * the entire FCF table for a fast recovery
6937 			 * from possible case that the current FCF
6938 			 * is no longer valid if we are not already
6939 			 * in the FCF failover process.
6940 			 */
6941 			spin_lock_irq(&phba->hbalock);
6942 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6943 				spin_unlock_irq(&phba->hbalock);
6944 				break;
6945 			}
6946 			/* Mark the fast failover process in progress */
6947 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6948 			spin_unlock_irq(&phba->hbalock);
6949 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6950 					LOG_DISCOVERY,
6951 					"2773 Start FCF failover per CVL, "
6952 					"evt_tag:x%x\n", acqe_fip->event_tag);
6953 			rc = lpfc_sli4_redisc_fcf_table(phba);
6954 			if (rc) {
6955 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6956 						LOG_TRACE_EVENT,
6957 						"2774 Issue FCF rediscover "
6958 						"mailbox command failed, "
6959 						"through to CVL event\n");
6960 				spin_lock_irq(&phba->hbalock);
6961 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6962 				spin_unlock_irq(&phba->hbalock);
6963 				/*
6964 				 * Last resort will be re-try on the
6965 				 * the current registered FCF entry.
6966 				 */
6967 				lpfc_retry_pport_discovery(phba);
6968 			} else
6969 				/*
6970 				 * Reset FCF roundrobin bmask for new
6971 				 * discovery.
6972 				 */
6973 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6974 		}
6975 		break;
6976 	default:
6977 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6978 				"0288 Unknown FCoE event type 0x%x event tag "
6979 				"0x%x\n", event_type, acqe_fip->event_tag);
6980 		break;
6981 	}
6982 }
6983 
6984 /**
6985  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6986  * @phba: pointer to lpfc hba data structure.
6987  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6988  *
6989  * This routine is to handle the SLI4 asynchronous dcbx event.
6990  **/
6991 static void
6992 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6993 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6994 {
6995 	phba->fc_eventTag = acqe_dcbx->event_tag;
6996 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6997 			"0290 The SLI4 DCBX asynchronous event is not "
6998 			"handled yet\n");
6999 }
7000 
7001 /**
7002  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7003  * @phba: pointer to lpfc hba data structure.
7004  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7005  *
7006  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7007  * is an asynchronous notified of a logical link speed change.  The Port
7008  * reports the logical link speed in units of 10Mbps.
7009  **/
7010 static void
7011 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7012 			 struct lpfc_acqe_grp5 *acqe_grp5)
7013 {
7014 	uint16_t prev_ll_spd;
7015 
7016 	phba->fc_eventTag = acqe_grp5->event_tag;
7017 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7018 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7019 	phba->sli4_hba.link_state.logical_speed =
7020 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7021 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7022 			"2789 GRP5 Async Event: Updating logical link speed "
7023 			"from %dMbps to %dMbps\n", prev_ll_spd,
7024 			phba->sli4_hba.link_state.logical_speed);
7025 }
7026 
7027 /**
7028  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7029  * @phba: pointer to lpfc hba data structure.
7030  *
7031  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7032  * is an asynchronous notification of a request to reset CM stats.
7033  **/
7034 static void
7035 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7036 {
7037 	if (!phba->cgn_i)
7038 		return;
7039 	lpfc_init_congestion_stat(phba);
7040 }
7041 
7042 /**
7043  * lpfc_cgn_params_val - Validate FW congestion parameters.
7044  * @phba: pointer to lpfc hba data structure.
7045  * @p_cfg_param: pointer to FW provided congestion parameters.
7046  *
7047  * This routine validates the congestion parameters passed
7048  * by the FW to the driver via an ACQE event.
7049  **/
7050 static void
7051 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7052 {
7053 	spin_lock_irq(&phba->hbalock);
7054 
7055 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7056 			     LPFC_CFG_MONITOR)) {
7057 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7058 				"6225 CMF mode param out of range: %d\n",
7059 				 p_cfg_param->cgn_param_mode);
7060 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7061 	}
7062 
7063 	spin_unlock_irq(&phba->hbalock);
7064 }
7065 
7066 static const char * const lpfc_cmf_mode_to_str[] = {
7067 	"OFF",
7068 	"MANAGED",
7069 	"MONITOR",
7070 };
7071 
7072 /**
7073  * lpfc_cgn_params_parse - Process a FW cong parm change event
7074  * @phba: pointer to lpfc hba data structure.
7075  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7076  * @len: the size of pdata in bytes.
7077  *
7078  * This routine validates the congestion management buffer signature
7079  * from the FW, validates the contents and makes corrections for
7080  * valid, in-range values.  If the signature magic is correct and
7081  * after parameter validation, the contents are copied to the driver's
7082  * @phba structure. If the magic is incorrect, an error message is
7083  * logged.
7084  **/
7085 static void
7086 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7087 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7088 {
7089 	struct lpfc_cgn_info *cp;
7090 	uint32_t crc, oldmode;
7091 	char acr_string[4] = {0};
7092 
7093 	/* Make sure the FW has encoded the correct magic number to
7094 	 * validate the congestion parameter in FW memory.
7095 	 */
7096 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7097 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7098 				"4668 FW cgn parm buffer data: "
7099 				"magic 0x%x version %d mode %d "
7100 				"level0 %d level1 %d "
7101 				"level2 %d byte13 %d "
7102 				"byte14 %d byte15 %d "
7103 				"byte11 %d byte12 %d activeMode %d\n",
7104 				p_cgn_param->cgn_param_magic,
7105 				p_cgn_param->cgn_param_version,
7106 				p_cgn_param->cgn_param_mode,
7107 				p_cgn_param->cgn_param_level0,
7108 				p_cgn_param->cgn_param_level1,
7109 				p_cgn_param->cgn_param_level2,
7110 				p_cgn_param->byte13,
7111 				p_cgn_param->byte14,
7112 				p_cgn_param->byte15,
7113 				p_cgn_param->byte11,
7114 				p_cgn_param->byte12,
7115 				phba->cmf_active_mode);
7116 
7117 		oldmode = phba->cmf_active_mode;
7118 
7119 		/* Any parameters out of range are corrected to defaults
7120 		 * by this routine.  No need to fail.
7121 		 */
7122 		lpfc_cgn_params_val(phba, p_cgn_param);
7123 
7124 		/* Parameters are verified, move them into driver storage */
7125 		spin_lock_irq(&phba->hbalock);
7126 		memcpy(&phba->cgn_p, p_cgn_param,
7127 		       sizeof(struct lpfc_cgn_param));
7128 
7129 		/* Update parameters in congestion info buffer now */
7130 		if (phba->cgn_i) {
7131 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7132 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7133 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7134 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7135 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7136 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7137 						  LPFC_CGN_CRC32_SEED);
7138 			cp->cgn_info_crc = cpu_to_le32(crc);
7139 		}
7140 		spin_unlock_irq(&phba->hbalock);
7141 
7142 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7143 
7144 		switch (oldmode) {
7145 		case LPFC_CFG_OFF:
7146 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7147 				/* Turning CMF on */
7148 				lpfc_cmf_start(phba);
7149 
7150 				if (phba->link_state >= LPFC_LINK_UP) {
7151 					phba->cgn_reg_fpin =
7152 						phba->cgn_init_reg_fpin;
7153 					phba->cgn_reg_signal =
7154 						phba->cgn_init_reg_signal;
7155 					lpfc_issue_els_edc(phba->pport, 0);
7156 				}
7157 			}
7158 			break;
7159 		case LPFC_CFG_MANAGED:
7160 			switch (phba->cgn_p.cgn_param_mode) {
7161 			case LPFC_CFG_OFF:
7162 				/* Turning CMF off */
7163 				lpfc_cmf_stop(phba);
7164 				if (phba->link_state >= LPFC_LINK_UP)
7165 					lpfc_issue_els_edc(phba->pport, 0);
7166 				break;
7167 			case LPFC_CFG_MONITOR:
7168 				phba->cmf_max_bytes_per_interval =
7169 					phba->cmf_link_byte_count;
7170 
7171 				/* Resume blocked IO - unblock on workqueue */
7172 				queue_work(phba->wq,
7173 					   &phba->unblock_request_work);
7174 				break;
7175 			}
7176 			break;
7177 		case LPFC_CFG_MONITOR:
7178 			switch (phba->cgn_p.cgn_param_mode) {
7179 			case LPFC_CFG_OFF:
7180 				/* Turning CMF off */
7181 				lpfc_cmf_stop(phba);
7182 				if (phba->link_state >= LPFC_LINK_UP)
7183 					lpfc_issue_els_edc(phba->pport, 0);
7184 				break;
7185 			case LPFC_CFG_MANAGED:
7186 				lpfc_cmf_signal_init(phba);
7187 				break;
7188 			}
7189 			break;
7190 		}
7191 		if (oldmode != LPFC_CFG_OFF ||
7192 		    oldmode != phba->cgn_p.cgn_param_mode) {
7193 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7194 				scnprintf(acr_string, sizeof(acr_string), "%u",
7195 					  phba->cgn_p.cgn_param_level0);
7196 			else
7197 				scnprintf(acr_string, sizeof(acr_string), "NA");
7198 
7199 			dev_info(&phba->pcidev->dev, "%d: "
7200 				 "4663 CMF: Mode %s acr %s\n",
7201 				 phba->brd_no,
7202 				 lpfc_cmf_mode_to_str
7203 				 [phba->cgn_p.cgn_param_mode],
7204 				 acr_string);
7205 		}
7206 	} else {
7207 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7208 				"4669 FW cgn parm buf wrong magic 0x%x "
7209 				"version %d\n", p_cgn_param->cgn_param_magic,
7210 				p_cgn_param->cgn_param_version);
7211 	}
7212 }
7213 
7214 /**
7215  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7216  * @phba: pointer to lpfc hba data structure.
7217  *
7218  * This routine issues a read_object mailbox command to
7219  * get the congestion management parameters from the FW
7220  * parses it and updates the driver maintained values.
7221  *
7222  * Returns
7223  *  0     if the object was empty
7224  *  -Eval if an error was encountered
7225  *  Count if bytes were read from object
7226  **/
7227 int
7228 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7229 {
7230 	int ret = 0;
7231 	struct lpfc_cgn_param *p_cgn_param = NULL;
7232 	u32 *pdata = NULL;
7233 	u32 len = 0;
7234 
7235 	/* Find out if the FW has a new set of congestion parameters. */
7236 	len = sizeof(struct lpfc_cgn_param);
7237 	pdata = kzalloc(len, GFP_KERNEL);
7238 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7239 			       pdata, len);
7240 
7241 	/* 0 means no data.  A negative means error.  A positive means
7242 	 * bytes were copied.
7243 	 */
7244 	if (!ret) {
7245 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7246 				"4670 CGN RD OBJ returns no data\n");
7247 		goto rd_obj_err;
7248 	} else if (ret < 0) {
7249 		/* Some error.  Just exit and return it to the caller.*/
7250 		goto rd_obj_err;
7251 	}
7252 
7253 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7254 			"6234 READ CGN PARAMS Successful %d\n", len);
7255 
7256 	/* Parse data pointer over len and update the phba congestion
7257 	 * parameters with values passed back.  The receive rate values
7258 	 * may have been altered in FW, but take no action here.
7259 	 */
7260 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7261 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7262 
7263  rd_obj_err:
7264 	kfree(pdata);
7265 	return ret;
7266 }
7267 
7268 /**
7269  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7270  * @phba: pointer to lpfc hba data structure.
7271  *
7272  * The FW generated Async ACQE SLI event calls this routine when
7273  * the event type is an SLI Internal Port Event and the Event Code
7274  * indicates a change to the FW maintained congestion parameters.
7275  *
7276  * This routine executes a Read_Object mailbox call to obtain the
7277  * current congestion parameters maintained in FW and corrects
7278  * the driver's active congestion parameters.
7279  *
7280  * The acqe event is not passed because there is no further data
7281  * required.
7282  *
7283  * Returns nonzero error if event processing encountered an error.
7284  * Zero otherwise for success.
7285  **/
7286 static int
7287 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7288 {
7289 	int ret = 0;
7290 
7291 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7292 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7293 				"4664 Cgn Evt when E2E off. Drop event\n");
7294 		return -EACCES;
7295 	}
7296 
7297 	/* If the event is claiming an empty object, it's ok.  A write
7298 	 * could have cleared it.  Only error is a negative return
7299 	 * status.
7300 	 */
7301 	ret = lpfc_sli4_cgn_params_read(phba);
7302 	if (ret < 0) {
7303 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7304 				"4667 Error reading Cgn Params (%d)\n",
7305 				ret);
7306 	} else if (!ret) {
7307 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7308 				"4673 CGN Event empty object.\n");
7309 	}
7310 	return ret;
7311 }
7312 
7313 /**
7314  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7315  * @phba: pointer to lpfc hba data structure.
7316  *
7317  * This routine is invoked by the worker thread to process all the pending
7318  * SLI4 asynchronous events.
7319  **/
7320 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7321 {
7322 	struct lpfc_cq_event *cq_event;
7323 	unsigned long iflags;
7324 
7325 	/* First, declare the async event has been handled */
7326 	spin_lock_irqsave(&phba->hbalock, iflags);
7327 	phba->hba_flag &= ~ASYNC_EVENT;
7328 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7329 
7330 	/* Now, handle all the async events */
7331 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7332 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7333 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7334 				 cq_event, struct lpfc_cq_event, list);
7335 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7336 				       iflags);
7337 
7338 		/* Process the asynchronous event */
7339 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7340 		case LPFC_TRAILER_CODE_LINK:
7341 			lpfc_sli4_async_link_evt(phba,
7342 						 &cq_event->cqe.acqe_link);
7343 			break;
7344 		case LPFC_TRAILER_CODE_FCOE:
7345 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7346 			break;
7347 		case LPFC_TRAILER_CODE_DCBX:
7348 			lpfc_sli4_async_dcbx_evt(phba,
7349 						 &cq_event->cqe.acqe_dcbx);
7350 			break;
7351 		case LPFC_TRAILER_CODE_GRP5:
7352 			lpfc_sli4_async_grp5_evt(phba,
7353 						 &cq_event->cqe.acqe_grp5);
7354 			break;
7355 		case LPFC_TRAILER_CODE_FC:
7356 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7357 			break;
7358 		case LPFC_TRAILER_CODE_SLI:
7359 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7360 			break;
7361 		case LPFC_TRAILER_CODE_CMSTAT:
7362 			lpfc_sli4_async_cmstat_evt(phba);
7363 			break;
7364 		default:
7365 			lpfc_printf_log(phba, KERN_ERR,
7366 					LOG_TRACE_EVENT,
7367 					"1804 Invalid asynchronous event code: "
7368 					"x%x\n", bf_get(lpfc_trailer_code,
7369 					&cq_event->cqe.mcqe_cmpl));
7370 			break;
7371 		}
7372 
7373 		/* Free the completion event processed to the free pool */
7374 		lpfc_sli4_cq_event_release(phba, cq_event);
7375 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7376 	}
7377 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7378 }
7379 
7380 /**
7381  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7382  * @phba: pointer to lpfc hba data structure.
7383  *
7384  * This routine is invoked by the worker thread to process FCF table
7385  * rediscovery pending completion event.
7386  **/
7387 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7388 {
7389 	int rc;
7390 
7391 	spin_lock_irq(&phba->hbalock);
7392 	/* Clear FCF rediscovery timeout event */
7393 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7394 	/* Clear driver fast failover FCF record flag */
7395 	phba->fcf.failover_rec.flag = 0;
7396 	/* Set state for FCF fast failover */
7397 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7398 	spin_unlock_irq(&phba->hbalock);
7399 
7400 	/* Scan FCF table from the first entry to re-discover SAN */
7401 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7402 			"2777 Start post-quiescent FCF table scan\n");
7403 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7404 	if (rc)
7405 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7406 				"2747 Issue FCF scan read FCF mailbox "
7407 				"command failed 0x%x\n", rc);
7408 }
7409 
7410 /**
7411  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7412  * @phba: pointer to lpfc hba data structure.
7413  * @dev_grp: The HBA PCI-Device group number.
7414  *
7415  * This routine is invoked to set up the per HBA PCI-Device group function
7416  * API jump table entries.
7417  *
7418  * Return: 0 if success, otherwise -ENODEV
7419  **/
7420 int
7421 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7422 {
7423 	int rc;
7424 
7425 	/* Set up lpfc PCI-device group */
7426 	phba->pci_dev_grp = dev_grp;
7427 
7428 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7429 	if (dev_grp == LPFC_PCI_DEV_OC)
7430 		phba->sli_rev = LPFC_SLI_REV4;
7431 
7432 	/* Set up device INIT API function jump table */
7433 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7434 	if (rc)
7435 		return -ENODEV;
7436 	/* Set up SCSI API function jump table */
7437 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7438 	if (rc)
7439 		return -ENODEV;
7440 	/* Set up SLI API function jump table */
7441 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7442 	if (rc)
7443 		return -ENODEV;
7444 	/* Set up MBOX API function jump table */
7445 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7446 	if (rc)
7447 		return -ENODEV;
7448 
7449 	return 0;
7450 }
7451 
7452 /**
7453  * lpfc_log_intr_mode - Log the active interrupt mode
7454  * @phba: pointer to lpfc hba data structure.
7455  * @intr_mode: active interrupt mode adopted.
7456  *
7457  * This routine it invoked to log the currently used active interrupt mode
7458  * to the device.
7459  **/
7460 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7461 {
7462 	switch (intr_mode) {
7463 	case 0:
7464 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7465 				"0470 Enable INTx interrupt mode.\n");
7466 		break;
7467 	case 1:
7468 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7469 				"0481 Enabled MSI interrupt mode.\n");
7470 		break;
7471 	case 2:
7472 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7473 				"0480 Enabled MSI-X interrupt mode.\n");
7474 		break;
7475 	default:
7476 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7477 				"0482 Illegal interrupt mode.\n");
7478 		break;
7479 	}
7480 	return;
7481 }
7482 
7483 /**
7484  * lpfc_enable_pci_dev - Enable a generic PCI device.
7485  * @phba: pointer to lpfc hba data structure.
7486  *
7487  * This routine is invoked to enable the PCI device that is common to all
7488  * PCI devices.
7489  *
7490  * Return codes
7491  * 	0 - successful
7492  * 	other values - error
7493  **/
7494 static int
7495 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7496 {
7497 	struct pci_dev *pdev;
7498 
7499 	/* Obtain PCI device reference */
7500 	if (!phba->pcidev)
7501 		goto out_error;
7502 	else
7503 		pdev = phba->pcidev;
7504 	/* Enable PCI device */
7505 	if (pci_enable_device_mem(pdev))
7506 		goto out_error;
7507 	/* Request PCI resource for the device */
7508 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7509 		goto out_disable_device;
7510 	/* Set up device as PCI master and save state for EEH */
7511 	pci_set_master(pdev);
7512 	pci_try_set_mwi(pdev);
7513 	pci_save_state(pdev);
7514 
7515 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7516 	if (pci_is_pcie(pdev))
7517 		pdev->needs_freset = 1;
7518 
7519 	return 0;
7520 
7521 out_disable_device:
7522 	pci_disable_device(pdev);
7523 out_error:
7524 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7525 			"1401 Failed to enable pci device\n");
7526 	return -ENODEV;
7527 }
7528 
7529 /**
7530  * lpfc_disable_pci_dev - Disable a generic PCI device.
7531  * @phba: pointer to lpfc hba data structure.
7532  *
7533  * This routine is invoked to disable the PCI device that is common to all
7534  * PCI devices.
7535  **/
7536 static void
7537 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7538 {
7539 	struct pci_dev *pdev;
7540 
7541 	/* Obtain PCI device reference */
7542 	if (!phba->pcidev)
7543 		return;
7544 	else
7545 		pdev = phba->pcidev;
7546 	/* Release PCI resource and disable PCI device */
7547 	pci_release_mem_regions(pdev);
7548 	pci_disable_device(pdev);
7549 
7550 	return;
7551 }
7552 
7553 /**
7554  * lpfc_reset_hba - Reset a hba
7555  * @phba: pointer to lpfc hba data structure.
7556  *
7557  * This routine is invoked to reset a hba device. It brings the HBA
7558  * offline, performs a board restart, and then brings the board back
7559  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7560  * on outstanding mailbox commands.
7561  **/
7562 void
7563 lpfc_reset_hba(struct lpfc_hba *phba)
7564 {
7565 	/* If resets are disabled then set error state and return. */
7566 	if (!phba->cfg_enable_hba_reset) {
7567 		phba->link_state = LPFC_HBA_ERROR;
7568 		return;
7569 	}
7570 
7571 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7572 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7573 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7574 	} else {
7575 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7576 		lpfc_sli_flush_io_rings(phba);
7577 	}
7578 	lpfc_offline(phba);
7579 	lpfc_sli_brdrestart(phba);
7580 	lpfc_online(phba);
7581 	lpfc_unblock_mgmt_io(phba);
7582 }
7583 
7584 /**
7585  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7586  * @phba: pointer to lpfc hba data structure.
7587  *
7588  * This function enables the PCI SR-IOV virtual functions to a physical
7589  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7590  * enable the number of virtual functions to the physical function. As
7591  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7592  * API call does not considered as an error condition for most of the device.
7593  **/
7594 uint16_t
7595 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7596 {
7597 	struct pci_dev *pdev = phba->pcidev;
7598 	uint16_t nr_virtfn;
7599 	int pos;
7600 
7601 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7602 	if (pos == 0)
7603 		return 0;
7604 
7605 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7606 	return nr_virtfn;
7607 }
7608 
7609 /**
7610  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7611  * @phba: pointer to lpfc hba data structure.
7612  * @nr_vfn: number of virtual functions to be enabled.
7613  *
7614  * This function enables the PCI SR-IOV virtual functions to a physical
7615  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7616  * enable the number of virtual functions to the physical function. As
7617  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7618  * API call does not considered as an error condition for most of the device.
7619  **/
7620 int
7621 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7622 {
7623 	struct pci_dev *pdev = phba->pcidev;
7624 	uint16_t max_nr_vfn;
7625 	int rc;
7626 
7627 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7628 	if (nr_vfn > max_nr_vfn) {
7629 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7630 				"3057 Requested vfs (%d) greater than "
7631 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7632 		return -EINVAL;
7633 	}
7634 
7635 	rc = pci_enable_sriov(pdev, nr_vfn);
7636 	if (rc) {
7637 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7638 				"2806 Failed to enable sriov on this device "
7639 				"with vfn number nr_vf:%d, rc:%d\n",
7640 				nr_vfn, rc);
7641 	} else
7642 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7643 				"2807 Successful enable sriov on this device "
7644 				"with vfn number nr_vf:%d\n", nr_vfn);
7645 	return rc;
7646 }
7647 
7648 static void
7649 lpfc_unblock_requests_work(struct work_struct *work)
7650 {
7651 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7652 					     unblock_request_work);
7653 
7654 	lpfc_unblock_requests(phba);
7655 }
7656 
7657 /**
7658  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7659  * @phba: pointer to lpfc hba data structure.
7660  *
7661  * This routine is invoked to set up the driver internal resources before the
7662  * device specific resource setup to support the HBA device it attached to.
7663  *
7664  * Return codes
7665  *	0 - successful
7666  *	other values - error
7667  **/
7668 static int
7669 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7670 {
7671 	struct lpfc_sli *psli = &phba->sli;
7672 
7673 	/*
7674 	 * Driver resources common to all SLI revisions
7675 	 */
7676 	atomic_set(&phba->fast_event_count, 0);
7677 	atomic_set(&phba->dbg_log_idx, 0);
7678 	atomic_set(&phba->dbg_log_cnt, 0);
7679 	atomic_set(&phba->dbg_log_dmping, 0);
7680 	spin_lock_init(&phba->hbalock);
7681 
7682 	/* Initialize port_list spinlock */
7683 	spin_lock_init(&phba->port_list_lock);
7684 	INIT_LIST_HEAD(&phba->port_list);
7685 
7686 	INIT_LIST_HEAD(&phba->work_list);
7687 
7688 	/* Initialize the wait queue head for the kernel thread */
7689 	init_waitqueue_head(&phba->work_waitq);
7690 
7691 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7692 			"1403 Protocols supported %s %s %s\n",
7693 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7694 				"SCSI" : " "),
7695 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7696 				"NVME" : " "),
7697 			(phba->nvmet_support ? "NVMET" : " "));
7698 
7699 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7700 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7701 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7702 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7703 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7704 
7705 	/* Initialize the fabric iocb list */
7706 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7707 
7708 	/* Initialize list to save ELS buffers */
7709 	INIT_LIST_HEAD(&phba->elsbuf);
7710 
7711 	/* Initialize FCF connection rec list */
7712 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7713 
7714 	/* Initialize OAS configuration list */
7715 	spin_lock_init(&phba->devicelock);
7716 	INIT_LIST_HEAD(&phba->luns);
7717 
7718 	/* MBOX heartbeat timer */
7719 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7720 	/* Fabric block timer */
7721 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7722 	/* EA polling mode timer */
7723 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7724 	/* Heartbeat timer */
7725 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7726 
7727 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7728 
7729 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7730 			  lpfc_idle_stat_delay_work);
7731 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7732 	return 0;
7733 }
7734 
7735 /**
7736  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7737  * @phba: pointer to lpfc hba data structure.
7738  *
7739  * This routine is invoked to set up the driver internal resources specific to
7740  * support the SLI-3 HBA device it attached to.
7741  *
7742  * Return codes
7743  * 0 - successful
7744  * other values - error
7745  **/
7746 static int
7747 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7748 {
7749 	int rc, entry_sz;
7750 
7751 	/*
7752 	 * Initialize timers used by driver
7753 	 */
7754 
7755 	/* FCP polling mode timer */
7756 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7757 
7758 	/* Host attention work mask setup */
7759 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7760 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7761 
7762 	/* Get all the module params for configuring this host */
7763 	lpfc_get_cfgparam(phba);
7764 	/* Set up phase-1 common device driver resources */
7765 
7766 	rc = lpfc_setup_driver_resource_phase1(phba);
7767 	if (rc)
7768 		return -ENODEV;
7769 
7770 	if (!phba->sli.sli3_ring)
7771 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7772 					      sizeof(struct lpfc_sli_ring),
7773 					      GFP_KERNEL);
7774 	if (!phba->sli.sli3_ring)
7775 		return -ENOMEM;
7776 
7777 	/*
7778 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7779 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7780 	 */
7781 
7782 	if (phba->sli_rev == LPFC_SLI_REV4)
7783 		entry_sz = sizeof(struct sli4_sge);
7784 	else
7785 		entry_sz = sizeof(struct ulp_bde64);
7786 
7787 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7788 	if (phba->cfg_enable_bg) {
7789 		/*
7790 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7791 		 * the FCP rsp, and a BDE for each. Sice we have no control
7792 		 * over how many protection data segments the SCSI Layer
7793 		 * will hand us (ie: there could be one for every block
7794 		 * in the IO), we just allocate enough BDEs to accomidate
7795 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7796 		 * minimize the risk of running out.
7797 		 */
7798 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7799 			sizeof(struct fcp_rsp) +
7800 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7801 
7802 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7803 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7804 
7805 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7806 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7807 	} else {
7808 		/*
7809 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7810 		 * the FCP rsp, a BDE for each, and a BDE for up to
7811 		 * cfg_sg_seg_cnt data segments.
7812 		 */
7813 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7814 			sizeof(struct fcp_rsp) +
7815 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7816 
7817 		/* Total BDEs in BPL for scsi_sg_list */
7818 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7819 	}
7820 
7821 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7822 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7823 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7824 			phba->cfg_total_seg_cnt);
7825 
7826 	phba->max_vpi = LPFC_MAX_VPI;
7827 	/* This will be set to correct value after config_port mbox */
7828 	phba->max_vports = 0;
7829 
7830 	/*
7831 	 * Initialize the SLI Layer to run with lpfc HBAs.
7832 	 */
7833 	lpfc_sli_setup(phba);
7834 	lpfc_sli_queue_init(phba);
7835 
7836 	/* Allocate device driver memory */
7837 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7838 		return -ENOMEM;
7839 
7840 	phba->lpfc_sg_dma_buf_pool =
7841 		dma_pool_create("lpfc_sg_dma_buf_pool",
7842 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7843 				BPL_ALIGN_SZ, 0);
7844 
7845 	if (!phba->lpfc_sg_dma_buf_pool)
7846 		goto fail_free_mem;
7847 
7848 	phba->lpfc_cmd_rsp_buf_pool =
7849 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7850 					&phba->pcidev->dev,
7851 					sizeof(struct fcp_cmnd) +
7852 					sizeof(struct fcp_rsp),
7853 					BPL_ALIGN_SZ, 0);
7854 
7855 	if (!phba->lpfc_cmd_rsp_buf_pool)
7856 		goto fail_free_dma_buf_pool;
7857 
7858 	/*
7859 	 * Enable sr-iov virtual functions if supported and configured
7860 	 * through the module parameter.
7861 	 */
7862 	if (phba->cfg_sriov_nr_virtfn > 0) {
7863 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7864 						 phba->cfg_sriov_nr_virtfn);
7865 		if (rc) {
7866 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7867 					"2808 Requested number of SR-IOV "
7868 					"virtual functions (%d) is not "
7869 					"supported\n",
7870 					phba->cfg_sriov_nr_virtfn);
7871 			phba->cfg_sriov_nr_virtfn = 0;
7872 		}
7873 	}
7874 
7875 	return 0;
7876 
7877 fail_free_dma_buf_pool:
7878 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7879 	phba->lpfc_sg_dma_buf_pool = NULL;
7880 fail_free_mem:
7881 	lpfc_mem_free(phba);
7882 	return -ENOMEM;
7883 }
7884 
7885 /**
7886  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7887  * @phba: pointer to lpfc hba data structure.
7888  *
7889  * This routine is invoked to unset the driver internal resources set up
7890  * specific for supporting the SLI-3 HBA device it attached to.
7891  **/
7892 static void
7893 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7894 {
7895 	/* Free device driver memory allocated */
7896 	lpfc_mem_free_all(phba);
7897 
7898 	return;
7899 }
7900 
7901 /**
7902  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7903  * @phba: pointer to lpfc hba data structure.
7904  *
7905  * This routine is invoked to set up the driver internal resources specific to
7906  * support the SLI-4 HBA device it attached to.
7907  *
7908  * Return codes
7909  * 	0 - successful
7910  * 	other values - error
7911  **/
7912 static int
7913 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7914 {
7915 	LPFC_MBOXQ_t *mboxq;
7916 	MAILBOX_t *mb;
7917 	int rc, i, max_buf_size;
7918 	int longs;
7919 	int extra;
7920 	uint64_t wwn;
7921 	u32 if_type;
7922 	u32 if_fam;
7923 
7924 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7925 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7926 	phba->sli4_hba.curr_disp_cpu = 0;
7927 
7928 	/* Get all the module params for configuring this host */
7929 	lpfc_get_cfgparam(phba);
7930 
7931 	/* Set up phase-1 common device driver resources */
7932 	rc = lpfc_setup_driver_resource_phase1(phba);
7933 	if (rc)
7934 		return -ENODEV;
7935 
7936 	/* Before proceed, wait for POST done and device ready */
7937 	rc = lpfc_sli4_post_status_check(phba);
7938 	if (rc)
7939 		return -ENODEV;
7940 
7941 	/* Allocate all driver workqueues here */
7942 
7943 	/* The lpfc_wq workqueue for deferred irq use */
7944 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7945 	if (!phba->wq)
7946 		return -ENOMEM;
7947 
7948 	/*
7949 	 * Initialize timers used by driver
7950 	 */
7951 
7952 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7953 
7954 	/* FCF rediscover timer */
7955 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7956 
7957 	/* CMF congestion timer */
7958 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7959 	phba->cmf_timer.function = lpfc_cmf_timer;
7960 
7961 	/*
7962 	 * Control structure for handling external multi-buffer mailbox
7963 	 * command pass-through.
7964 	 */
7965 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7966 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7967 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7968 
7969 	phba->max_vpi = LPFC_MAX_VPI;
7970 
7971 	/* This will be set to correct value after the read_config mbox */
7972 	phba->max_vports = 0;
7973 
7974 	/* Program the default value of vlan_id and fc_map */
7975 	phba->valid_vlan = 0;
7976 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7977 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7978 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7979 
7980 	/*
7981 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7982 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7983 	 * The WQ create will allocate the ring.
7984 	 */
7985 
7986 	/* Initialize buffer queue management fields */
7987 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7988 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7989 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7990 
7991 	/* for VMID idle timeout if VMID is enabled */
7992 	if (lpfc_is_vmid_enabled(phba))
7993 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7994 
7995 	/*
7996 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7997 	 */
7998 	/* Initialize the Abort buffer list used by driver */
7999 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8000 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8001 
8002 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8003 		/* Initialize the Abort nvme buffer list used by driver */
8004 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8005 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8006 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8007 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8008 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8009 	}
8010 
8011 	/* This abort list used by worker thread */
8012 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8013 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8014 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8015 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8016 
8017 	/*
8018 	 * Initialize driver internal slow-path work queues
8019 	 */
8020 
8021 	/* Driver internel slow-path CQ Event pool */
8022 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8023 	/* Response IOCB work queue list */
8024 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8025 	/* Asynchronous event CQ Event work queue list */
8026 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8027 	/* Slow-path XRI aborted CQ Event work queue list */
8028 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8029 	/* Receive queue CQ Event work queue list */
8030 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8031 
8032 	/* Initialize extent block lists. */
8033 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8034 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8035 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8036 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8037 
8038 	/* Initialize mboxq lists. If the early init routines fail
8039 	 * these lists need to be correctly initialized.
8040 	 */
8041 	INIT_LIST_HEAD(&phba->sli.mboxq);
8042 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8043 
8044 	/* initialize optic_state to 0xFF */
8045 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8046 
8047 	/* Allocate device driver memory */
8048 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8049 	if (rc)
8050 		goto out_destroy_workqueue;
8051 
8052 	/* IF Type 2 ports get initialized now. */
8053 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8054 	    LPFC_SLI_INTF_IF_TYPE_2) {
8055 		rc = lpfc_pci_function_reset(phba);
8056 		if (unlikely(rc)) {
8057 			rc = -ENODEV;
8058 			goto out_free_mem;
8059 		}
8060 		phba->temp_sensor_support = 1;
8061 	}
8062 
8063 	/* Create the bootstrap mailbox command */
8064 	rc = lpfc_create_bootstrap_mbox(phba);
8065 	if (unlikely(rc))
8066 		goto out_free_mem;
8067 
8068 	/* Set up the host's endian order with the device. */
8069 	rc = lpfc_setup_endian_order(phba);
8070 	if (unlikely(rc))
8071 		goto out_free_bsmbx;
8072 
8073 	/* Set up the hba's configuration parameters. */
8074 	rc = lpfc_sli4_read_config(phba);
8075 	if (unlikely(rc))
8076 		goto out_free_bsmbx;
8077 
8078 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8079 		/* Right now the link is down, if FA-PWWN is configured the
8080 		 * firmware will try FLOGI before the driver gets a link up.
8081 		 * If it fails, the driver should get a MISCONFIGURED async
8082 		 * event which will clear this flag. The only notification
8083 		 * the driver gets is if it fails, if it succeeds there is no
8084 		 * notification given. Assume success.
8085 		 */
8086 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8087 	}
8088 
8089 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8090 	if (unlikely(rc))
8091 		goto out_free_bsmbx;
8092 
8093 	/* IF Type 0 ports get initialized now. */
8094 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8095 	    LPFC_SLI_INTF_IF_TYPE_0) {
8096 		rc = lpfc_pci_function_reset(phba);
8097 		if (unlikely(rc))
8098 			goto out_free_bsmbx;
8099 	}
8100 
8101 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8102 						       GFP_KERNEL);
8103 	if (!mboxq) {
8104 		rc = -ENOMEM;
8105 		goto out_free_bsmbx;
8106 	}
8107 
8108 	/* Check for NVMET being configured */
8109 	phba->nvmet_support = 0;
8110 	if (lpfc_enable_nvmet_cnt) {
8111 
8112 		/* First get WWN of HBA instance */
8113 		lpfc_read_nv(phba, mboxq);
8114 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8115 		if (rc != MBX_SUCCESS) {
8116 			lpfc_printf_log(phba, KERN_ERR,
8117 					LOG_TRACE_EVENT,
8118 					"6016 Mailbox failed , mbxCmd x%x "
8119 					"READ_NV, mbxStatus x%x\n",
8120 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8121 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8122 			mempool_free(mboxq, phba->mbox_mem_pool);
8123 			rc = -EIO;
8124 			goto out_free_bsmbx;
8125 		}
8126 		mb = &mboxq->u.mb;
8127 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8128 		       sizeof(uint64_t));
8129 		wwn = cpu_to_be64(wwn);
8130 		phba->sli4_hba.wwnn.u.name = wwn;
8131 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8132 		       sizeof(uint64_t));
8133 		/* wwn is WWPN of HBA instance */
8134 		wwn = cpu_to_be64(wwn);
8135 		phba->sli4_hba.wwpn.u.name = wwn;
8136 
8137 		/* Check to see if it matches any module parameter */
8138 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8139 			if (wwn == lpfc_enable_nvmet[i]) {
8140 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8141 				if (lpfc_nvmet_mem_alloc(phba))
8142 					break;
8143 
8144 				phba->nvmet_support = 1; /* a match */
8145 
8146 				lpfc_printf_log(phba, KERN_ERR,
8147 						LOG_TRACE_EVENT,
8148 						"6017 NVME Target %016llx\n",
8149 						wwn);
8150 #else
8151 				lpfc_printf_log(phba, KERN_ERR,
8152 						LOG_TRACE_EVENT,
8153 						"6021 Can't enable NVME Target."
8154 						" NVME_TARGET_FC infrastructure"
8155 						" is not in kernel\n");
8156 #endif
8157 				/* Not supported for NVMET */
8158 				phba->cfg_xri_rebalancing = 0;
8159 				if (phba->irq_chann_mode == NHT_MODE) {
8160 					phba->cfg_irq_chann =
8161 						phba->sli4_hba.num_present_cpu;
8162 					phba->cfg_hdw_queue =
8163 						phba->sli4_hba.num_present_cpu;
8164 					phba->irq_chann_mode = NORMAL_MODE;
8165 				}
8166 				break;
8167 			}
8168 		}
8169 	}
8170 
8171 	lpfc_nvme_mod_param_dep(phba);
8172 
8173 	/*
8174 	 * Get sli4 parameters that override parameters from Port capabilities.
8175 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8176 	 * back in conflict.
8177 	 */
8178 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8179 	if (rc) {
8180 		if_type = bf_get(lpfc_sli_intf_if_type,
8181 				 &phba->sli4_hba.sli_intf);
8182 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8183 				&phba->sli4_hba.sli_intf);
8184 		if (phba->sli4_hba.extents_in_use &&
8185 		    phba->sli4_hba.rpi_hdrs_in_use) {
8186 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8187 					"2999 Unsupported SLI4 Parameters "
8188 					"Extents and RPI headers enabled.\n");
8189 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8190 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8191 				mempool_free(mboxq, phba->mbox_mem_pool);
8192 				rc = -EIO;
8193 				goto out_free_bsmbx;
8194 			}
8195 		}
8196 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8197 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8198 			mempool_free(mboxq, phba->mbox_mem_pool);
8199 			rc = -EIO;
8200 			goto out_free_bsmbx;
8201 		}
8202 	}
8203 
8204 	/*
8205 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8206 	 * for boundary conditions in its max_sgl_segment template.
8207 	 */
8208 	extra = 2;
8209 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8210 		extra++;
8211 
8212 	/*
8213 	 * It doesn't matter what family our adapter is in, we are
8214 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8215 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8216 	 */
8217 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8218 
8219 	/*
8220 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8221 	 * used to create the sg_dma_buf_pool must be calculated.
8222 	 */
8223 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8224 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8225 
8226 		/*
8227 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8228 		 * the FCP rsp, and a SGE. Sice we have no control
8229 		 * over how many protection segments the SCSI Layer
8230 		 * will hand us (ie: there could be one for every block
8231 		 * in the IO), just allocate enough SGEs to accomidate
8232 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8233 		 * to minimize the risk of running out.
8234 		 */
8235 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8236 				sizeof(struct fcp_rsp) + max_buf_size;
8237 
8238 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8239 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8240 
8241 		/*
8242 		 * If supporting DIF, reduce the seg count for scsi to
8243 		 * allow room for the DIF sges.
8244 		 */
8245 		if (phba->cfg_enable_bg &&
8246 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8247 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8248 		else
8249 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8250 
8251 	} else {
8252 		/*
8253 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8254 		 * the FCP rsp, a SGE for each, and a SGE for up to
8255 		 * cfg_sg_seg_cnt data segments.
8256 		 */
8257 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8258 				sizeof(struct fcp_rsp) +
8259 				((phba->cfg_sg_seg_cnt + extra) *
8260 				sizeof(struct sli4_sge));
8261 
8262 		/* Total SGEs for scsi_sg_list */
8263 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8264 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8265 
8266 		/*
8267 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8268 		 * need to post 1 page for the SGL.
8269 		 */
8270 	}
8271 
8272 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8273 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8274 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8275 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8276 	else
8277 		phba->cfg_sg_dma_buf_size =
8278 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8279 
8280 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8281 			       sizeof(struct sli4_sge);
8282 
8283 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8284 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8285 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8286 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8287 					"6300 Reducing NVME sg segment "
8288 					"cnt to %d\n",
8289 					LPFC_MAX_NVME_SEG_CNT);
8290 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8291 		} else
8292 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8293 	}
8294 
8295 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8296 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8297 			"total:%d scsi:%d nvme:%d\n",
8298 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8299 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8300 			phba->cfg_nvme_seg_cnt);
8301 
8302 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8303 		i = phba->cfg_sg_dma_buf_size;
8304 	else
8305 		i = SLI4_PAGE_SIZE;
8306 
8307 	phba->lpfc_sg_dma_buf_pool =
8308 			dma_pool_create("lpfc_sg_dma_buf_pool",
8309 					&phba->pcidev->dev,
8310 					phba->cfg_sg_dma_buf_size,
8311 					i, 0);
8312 	if (!phba->lpfc_sg_dma_buf_pool) {
8313 		rc = -ENOMEM;
8314 		goto out_free_bsmbx;
8315 	}
8316 
8317 	phba->lpfc_cmd_rsp_buf_pool =
8318 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8319 					&phba->pcidev->dev,
8320 					sizeof(struct fcp_cmnd) +
8321 					sizeof(struct fcp_rsp),
8322 					i, 0);
8323 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8324 		rc = -ENOMEM;
8325 		goto out_free_sg_dma_buf;
8326 	}
8327 
8328 	mempool_free(mboxq, phba->mbox_mem_pool);
8329 
8330 	/* Verify OAS is supported */
8331 	lpfc_sli4_oas_verify(phba);
8332 
8333 	/* Verify RAS support on adapter */
8334 	lpfc_sli4_ras_init(phba);
8335 
8336 	/* Verify all the SLI4 queues */
8337 	rc = lpfc_sli4_queue_verify(phba);
8338 	if (rc)
8339 		goto out_free_cmd_rsp_buf;
8340 
8341 	/* Create driver internal CQE event pool */
8342 	rc = lpfc_sli4_cq_event_pool_create(phba);
8343 	if (rc)
8344 		goto out_free_cmd_rsp_buf;
8345 
8346 	/* Initialize sgl lists per host */
8347 	lpfc_init_sgl_list(phba);
8348 
8349 	/* Allocate and initialize active sgl array */
8350 	rc = lpfc_init_active_sgl_array(phba);
8351 	if (rc) {
8352 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8353 				"1430 Failed to initialize sgl list.\n");
8354 		goto out_destroy_cq_event_pool;
8355 	}
8356 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8357 	if (rc) {
8358 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8359 				"1432 Failed to initialize rpi headers.\n");
8360 		goto out_free_active_sgl;
8361 	}
8362 
8363 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8364 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8365 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8366 					 GFP_KERNEL);
8367 	if (!phba->fcf.fcf_rr_bmask) {
8368 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8369 				"2759 Failed allocate memory for FCF round "
8370 				"robin failover bmask\n");
8371 		rc = -ENOMEM;
8372 		goto out_remove_rpi_hdrs;
8373 	}
8374 
8375 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8376 					    sizeof(struct lpfc_hba_eq_hdl),
8377 					    GFP_KERNEL);
8378 	if (!phba->sli4_hba.hba_eq_hdl) {
8379 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8380 				"2572 Failed allocate memory for "
8381 				"fast-path per-EQ handle array\n");
8382 		rc = -ENOMEM;
8383 		goto out_free_fcf_rr_bmask;
8384 	}
8385 
8386 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8387 					sizeof(struct lpfc_vector_map_info),
8388 					GFP_KERNEL);
8389 	if (!phba->sli4_hba.cpu_map) {
8390 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8391 				"3327 Failed allocate memory for msi-x "
8392 				"interrupt vector mapping\n");
8393 		rc = -ENOMEM;
8394 		goto out_free_hba_eq_hdl;
8395 	}
8396 
8397 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8398 	if (!phba->sli4_hba.eq_info) {
8399 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8400 				"3321 Failed allocation for per_cpu stats\n");
8401 		rc = -ENOMEM;
8402 		goto out_free_hba_cpu_map;
8403 	}
8404 
8405 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8406 					   sizeof(*phba->sli4_hba.idle_stat),
8407 					   GFP_KERNEL);
8408 	if (!phba->sli4_hba.idle_stat) {
8409 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8410 				"3390 Failed allocation for idle_stat\n");
8411 		rc = -ENOMEM;
8412 		goto out_free_hba_eq_info;
8413 	}
8414 
8415 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8416 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8417 	if (!phba->sli4_hba.c_stat) {
8418 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8419 				"3332 Failed allocating per cpu hdwq stats\n");
8420 		rc = -ENOMEM;
8421 		goto out_free_hba_idle_stat;
8422 	}
8423 #endif
8424 
8425 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8426 	if (!phba->cmf_stat) {
8427 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8428 				"3331 Failed allocating per cpu cgn stats\n");
8429 		rc = -ENOMEM;
8430 		goto out_free_hba_hdwq_info;
8431 	}
8432 
8433 	/*
8434 	 * Enable sr-iov virtual functions if supported and configured
8435 	 * through the module parameter.
8436 	 */
8437 	if (phba->cfg_sriov_nr_virtfn > 0) {
8438 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8439 						 phba->cfg_sriov_nr_virtfn);
8440 		if (rc) {
8441 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8442 					"3020 Requested number of SR-IOV "
8443 					"virtual functions (%d) is not "
8444 					"supported\n",
8445 					phba->cfg_sriov_nr_virtfn);
8446 			phba->cfg_sriov_nr_virtfn = 0;
8447 		}
8448 	}
8449 
8450 	return 0;
8451 
8452 out_free_hba_hdwq_info:
8453 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8454 	free_percpu(phba->sli4_hba.c_stat);
8455 out_free_hba_idle_stat:
8456 #endif
8457 	kfree(phba->sli4_hba.idle_stat);
8458 out_free_hba_eq_info:
8459 	free_percpu(phba->sli4_hba.eq_info);
8460 out_free_hba_cpu_map:
8461 	kfree(phba->sli4_hba.cpu_map);
8462 out_free_hba_eq_hdl:
8463 	kfree(phba->sli4_hba.hba_eq_hdl);
8464 out_free_fcf_rr_bmask:
8465 	kfree(phba->fcf.fcf_rr_bmask);
8466 out_remove_rpi_hdrs:
8467 	lpfc_sli4_remove_rpi_hdrs(phba);
8468 out_free_active_sgl:
8469 	lpfc_free_active_sgl(phba);
8470 out_destroy_cq_event_pool:
8471 	lpfc_sli4_cq_event_pool_destroy(phba);
8472 out_free_cmd_rsp_buf:
8473 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8474 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8475 out_free_sg_dma_buf:
8476 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8477 	phba->lpfc_sg_dma_buf_pool = NULL;
8478 out_free_bsmbx:
8479 	lpfc_destroy_bootstrap_mbox(phba);
8480 out_free_mem:
8481 	lpfc_mem_free(phba);
8482 out_destroy_workqueue:
8483 	destroy_workqueue(phba->wq);
8484 	phba->wq = NULL;
8485 	return rc;
8486 }
8487 
8488 /**
8489  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8490  * @phba: pointer to lpfc hba data structure.
8491  *
8492  * This routine is invoked to unset the driver internal resources set up
8493  * specific for supporting the SLI-4 HBA device it attached to.
8494  **/
8495 static void
8496 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8497 {
8498 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8499 
8500 	free_percpu(phba->sli4_hba.eq_info);
8501 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8502 	free_percpu(phba->sli4_hba.c_stat);
8503 #endif
8504 	free_percpu(phba->cmf_stat);
8505 	kfree(phba->sli4_hba.idle_stat);
8506 
8507 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8508 	kfree(phba->sli4_hba.cpu_map);
8509 	phba->sli4_hba.num_possible_cpu = 0;
8510 	phba->sli4_hba.num_present_cpu = 0;
8511 	phba->sli4_hba.curr_disp_cpu = 0;
8512 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8513 
8514 	/* Free memory allocated for fast-path work queue handles */
8515 	kfree(phba->sli4_hba.hba_eq_hdl);
8516 
8517 	/* Free the allocated rpi headers. */
8518 	lpfc_sli4_remove_rpi_hdrs(phba);
8519 	lpfc_sli4_remove_rpis(phba);
8520 
8521 	/* Free eligible FCF index bmask */
8522 	kfree(phba->fcf.fcf_rr_bmask);
8523 
8524 	/* Free the ELS sgl list */
8525 	lpfc_free_active_sgl(phba);
8526 	lpfc_free_els_sgl_list(phba);
8527 	lpfc_free_nvmet_sgl_list(phba);
8528 
8529 	/* Free the completion queue EQ event pool */
8530 	lpfc_sli4_cq_event_release_all(phba);
8531 	lpfc_sli4_cq_event_pool_destroy(phba);
8532 
8533 	/* Release resource identifiers. */
8534 	lpfc_sli4_dealloc_resource_identifiers(phba);
8535 
8536 	/* Free the bsmbx region. */
8537 	lpfc_destroy_bootstrap_mbox(phba);
8538 
8539 	/* Free the SLI Layer memory with SLI4 HBAs */
8540 	lpfc_mem_free_all(phba);
8541 
8542 	/* Free the current connect table */
8543 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8544 		&phba->fcf_conn_rec_list, list) {
8545 		list_del_init(&conn_entry->list);
8546 		kfree(conn_entry);
8547 	}
8548 
8549 	return;
8550 }
8551 
8552 /**
8553  * lpfc_init_api_table_setup - Set up init api function jump table
8554  * @phba: The hba struct for which this call is being executed.
8555  * @dev_grp: The HBA PCI-Device group number.
8556  *
8557  * This routine sets up the device INIT interface API function jump table
8558  * in @phba struct.
8559  *
8560  * Returns: 0 - success, -ENODEV - failure.
8561  **/
8562 int
8563 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8564 {
8565 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8566 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8567 	phba->lpfc_selective_reset = lpfc_selective_reset;
8568 	switch (dev_grp) {
8569 	case LPFC_PCI_DEV_LP:
8570 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8571 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8572 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8573 		break;
8574 	case LPFC_PCI_DEV_OC:
8575 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8576 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8577 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8578 		break;
8579 	default:
8580 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8581 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8582 				dev_grp);
8583 		return -ENODEV;
8584 	}
8585 	return 0;
8586 }
8587 
8588 /**
8589  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8590  * @phba: pointer to lpfc hba data structure.
8591  *
8592  * This routine is invoked to set up the driver internal resources after the
8593  * device specific resource setup to support the HBA device it attached to.
8594  *
8595  * Return codes
8596  * 	0 - successful
8597  * 	other values - error
8598  **/
8599 static int
8600 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8601 {
8602 	int error;
8603 
8604 	/* Startup the kernel thread for this host adapter. */
8605 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8606 					  "lpfc_worker_%d", phba->brd_no);
8607 	if (IS_ERR(phba->worker_thread)) {
8608 		error = PTR_ERR(phba->worker_thread);
8609 		return error;
8610 	}
8611 
8612 	return 0;
8613 }
8614 
8615 /**
8616  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8617  * @phba: pointer to lpfc hba data structure.
8618  *
8619  * This routine is invoked to unset the driver internal resources set up after
8620  * the device specific resource setup for supporting the HBA device it
8621  * attached to.
8622  **/
8623 static void
8624 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8625 {
8626 	if (phba->wq) {
8627 		destroy_workqueue(phba->wq);
8628 		phba->wq = NULL;
8629 	}
8630 
8631 	/* Stop kernel worker thread */
8632 	if (phba->worker_thread)
8633 		kthread_stop(phba->worker_thread);
8634 }
8635 
8636 /**
8637  * lpfc_free_iocb_list - Free iocb list.
8638  * @phba: pointer to lpfc hba data structure.
8639  *
8640  * This routine is invoked to free the driver's IOCB list and memory.
8641  **/
8642 void
8643 lpfc_free_iocb_list(struct lpfc_hba *phba)
8644 {
8645 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8646 
8647 	spin_lock_irq(&phba->hbalock);
8648 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8649 				 &phba->lpfc_iocb_list, list) {
8650 		list_del(&iocbq_entry->list);
8651 		kfree(iocbq_entry);
8652 		phba->total_iocbq_bufs--;
8653 	}
8654 	spin_unlock_irq(&phba->hbalock);
8655 
8656 	return;
8657 }
8658 
8659 /**
8660  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8661  * @phba: pointer to lpfc hba data structure.
8662  * @iocb_count: number of requested iocbs
8663  *
8664  * This routine is invoked to allocate and initizlize the driver's IOCB
8665  * list and set up the IOCB tag array accordingly.
8666  *
8667  * Return codes
8668  *	0 - successful
8669  *	other values - error
8670  **/
8671 int
8672 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8673 {
8674 	struct lpfc_iocbq *iocbq_entry = NULL;
8675 	uint16_t iotag;
8676 	int i;
8677 
8678 	/* Initialize and populate the iocb list per host.  */
8679 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8680 	for (i = 0; i < iocb_count; i++) {
8681 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8682 		if (iocbq_entry == NULL) {
8683 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8684 				"expected %d count. Unloading driver.\n",
8685 				__func__, i, iocb_count);
8686 			goto out_free_iocbq;
8687 		}
8688 
8689 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8690 		if (iotag == 0) {
8691 			kfree(iocbq_entry);
8692 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8693 				"Unloading driver.\n", __func__);
8694 			goto out_free_iocbq;
8695 		}
8696 		iocbq_entry->sli4_lxritag = NO_XRI;
8697 		iocbq_entry->sli4_xritag = NO_XRI;
8698 
8699 		spin_lock_irq(&phba->hbalock);
8700 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8701 		phba->total_iocbq_bufs++;
8702 		spin_unlock_irq(&phba->hbalock);
8703 	}
8704 
8705 	return 0;
8706 
8707 out_free_iocbq:
8708 	lpfc_free_iocb_list(phba);
8709 
8710 	return -ENOMEM;
8711 }
8712 
8713 /**
8714  * lpfc_free_sgl_list - Free a given sgl list.
8715  * @phba: pointer to lpfc hba data structure.
8716  * @sglq_list: pointer to the head of sgl list.
8717  *
8718  * This routine is invoked to free a give sgl list and memory.
8719  **/
8720 void
8721 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8722 {
8723 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8724 
8725 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8726 		list_del(&sglq_entry->list);
8727 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8728 		kfree(sglq_entry);
8729 	}
8730 }
8731 
8732 /**
8733  * lpfc_free_els_sgl_list - Free els sgl list.
8734  * @phba: pointer to lpfc hba data structure.
8735  *
8736  * This routine is invoked to free the driver's els sgl list and memory.
8737  **/
8738 static void
8739 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8740 {
8741 	LIST_HEAD(sglq_list);
8742 
8743 	/* Retrieve all els sgls from driver list */
8744 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8745 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8746 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8747 
8748 	/* Now free the sgl list */
8749 	lpfc_free_sgl_list(phba, &sglq_list);
8750 }
8751 
8752 /**
8753  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8754  * @phba: pointer to lpfc hba data structure.
8755  *
8756  * This routine is invoked to free the driver's nvmet sgl list and memory.
8757  **/
8758 static void
8759 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8760 {
8761 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8762 	LIST_HEAD(sglq_list);
8763 
8764 	/* Retrieve all nvmet sgls from driver list */
8765 	spin_lock_irq(&phba->hbalock);
8766 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8767 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8768 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8769 	spin_unlock_irq(&phba->hbalock);
8770 
8771 	/* Now free the sgl list */
8772 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8773 		list_del(&sglq_entry->list);
8774 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8775 		kfree(sglq_entry);
8776 	}
8777 
8778 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8779 	 * The next initialization cycle sets the count and allocates
8780 	 * the sgls over again.
8781 	 */
8782 	phba->sli4_hba.nvmet_xri_cnt = 0;
8783 }
8784 
8785 /**
8786  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8787  * @phba: pointer to lpfc hba data structure.
8788  *
8789  * This routine is invoked to allocate the driver's active sgl memory.
8790  * This array will hold the sglq_entry's for active IOs.
8791  **/
8792 static int
8793 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8794 {
8795 	int size;
8796 	size = sizeof(struct lpfc_sglq *);
8797 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8798 
8799 	phba->sli4_hba.lpfc_sglq_active_list =
8800 		kzalloc(size, GFP_KERNEL);
8801 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8802 		return -ENOMEM;
8803 	return 0;
8804 }
8805 
8806 /**
8807  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8808  * @phba: pointer to lpfc hba data structure.
8809  *
8810  * This routine is invoked to walk through the array of active sglq entries
8811  * and free all of the resources.
8812  * This is just a place holder for now.
8813  **/
8814 static void
8815 lpfc_free_active_sgl(struct lpfc_hba *phba)
8816 {
8817 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8818 }
8819 
8820 /**
8821  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8822  * @phba: pointer to lpfc hba data structure.
8823  *
8824  * This routine is invoked to allocate and initizlize the driver's sgl
8825  * list and set up the sgl xritag tag array accordingly.
8826  *
8827  **/
8828 static void
8829 lpfc_init_sgl_list(struct lpfc_hba *phba)
8830 {
8831 	/* Initialize and populate the sglq list per host/VF. */
8832 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8833 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8834 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8835 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8836 
8837 	/* els xri-sgl book keeping */
8838 	phba->sli4_hba.els_xri_cnt = 0;
8839 
8840 	/* nvme xri-buffer book keeping */
8841 	phba->sli4_hba.io_xri_cnt = 0;
8842 }
8843 
8844 /**
8845  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8846  * @phba: pointer to lpfc hba data structure.
8847  *
8848  * This routine is invoked to post rpi header templates to the
8849  * port for those SLI4 ports that do not support extents.  This routine
8850  * posts a PAGE_SIZE memory region to the port to hold up to
8851  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8852  * and should be called only when interrupts are disabled.
8853  *
8854  * Return codes
8855  * 	0 - successful
8856  *	-ERROR - otherwise.
8857  **/
8858 int
8859 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8860 {
8861 	int rc = 0;
8862 	struct lpfc_rpi_hdr *rpi_hdr;
8863 
8864 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8865 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8866 		return rc;
8867 	if (phba->sli4_hba.extents_in_use)
8868 		return -EIO;
8869 
8870 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8871 	if (!rpi_hdr) {
8872 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8873 				"0391 Error during rpi post operation\n");
8874 		lpfc_sli4_remove_rpis(phba);
8875 		rc = -ENODEV;
8876 	}
8877 
8878 	return rc;
8879 }
8880 
8881 /**
8882  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8883  * @phba: pointer to lpfc hba data structure.
8884  *
8885  * This routine is invoked to allocate a single 4KB memory region to
8886  * support rpis and stores them in the phba.  This single region
8887  * provides support for up to 64 rpis.  The region is used globally
8888  * by the device.
8889  *
8890  * Returns:
8891  *   A valid rpi hdr on success.
8892  *   A NULL pointer on any failure.
8893  **/
8894 struct lpfc_rpi_hdr *
8895 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8896 {
8897 	uint16_t rpi_limit, curr_rpi_range;
8898 	struct lpfc_dmabuf *dmabuf;
8899 	struct lpfc_rpi_hdr *rpi_hdr;
8900 
8901 	/*
8902 	 * If the SLI4 port supports extents, posting the rpi header isn't
8903 	 * required.  Set the expected maximum count and let the actual value
8904 	 * get set when extents are fully allocated.
8905 	 */
8906 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8907 		return NULL;
8908 	if (phba->sli4_hba.extents_in_use)
8909 		return NULL;
8910 
8911 	/* The limit on the logical index is just the max_rpi count. */
8912 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8913 
8914 	spin_lock_irq(&phba->hbalock);
8915 	/*
8916 	 * Establish the starting RPI in this header block.  The starting
8917 	 * rpi is normalized to a zero base because the physical rpi is
8918 	 * port based.
8919 	 */
8920 	curr_rpi_range = phba->sli4_hba.next_rpi;
8921 	spin_unlock_irq(&phba->hbalock);
8922 
8923 	/* Reached full RPI range */
8924 	if (curr_rpi_range == rpi_limit)
8925 		return NULL;
8926 
8927 	/*
8928 	 * First allocate the protocol header region for the port.  The
8929 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8930 	 */
8931 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8932 	if (!dmabuf)
8933 		return NULL;
8934 
8935 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8936 					  LPFC_HDR_TEMPLATE_SIZE,
8937 					  &dmabuf->phys, GFP_KERNEL);
8938 	if (!dmabuf->virt) {
8939 		rpi_hdr = NULL;
8940 		goto err_free_dmabuf;
8941 	}
8942 
8943 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8944 		rpi_hdr = NULL;
8945 		goto err_free_coherent;
8946 	}
8947 
8948 	/* Save the rpi header data for cleanup later. */
8949 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8950 	if (!rpi_hdr)
8951 		goto err_free_coherent;
8952 
8953 	rpi_hdr->dmabuf = dmabuf;
8954 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8955 	rpi_hdr->page_count = 1;
8956 	spin_lock_irq(&phba->hbalock);
8957 
8958 	/* The rpi_hdr stores the logical index only. */
8959 	rpi_hdr->start_rpi = curr_rpi_range;
8960 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8961 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8962 
8963 	spin_unlock_irq(&phba->hbalock);
8964 	return rpi_hdr;
8965 
8966  err_free_coherent:
8967 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8968 			  dmabuf->virt, dmabuf->phys);
8969  err_free_dmabuf:
8970 	kfree(dmabuf);
8971 	return NULL;
8972 }
8973 
8974 /**
8975  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8976  * @phba: pointer to lpfc hba data structure.
8977  *
8978  * This routine is invoked to remove all memory resources allocated
8979  * to support rpis for SLI4 ports not supporting extents. This routine
8980  * presumes the caller has released all rpis consumed by fabric or port
8981  * logins and is prepared to have the header pages removed.
8982  **/
8983 void
8984 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8985 {
8986 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8987 
8988 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8989 		goto exit;
8990 
8991 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8992 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8993 		list_del(&rpi_hdr->list);
8994 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8995 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8996 		kfree(rpi_hdr->dmabuf);
8997 		kfree(rpi_hdr);
8998 	}
8999  exit:
9000 	/* There are no rpis available to the port now. */
9001 	phba->sli4_hba.next_rpi = 0;
9002 }
9003 
9004 /**
9005  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9006  * @pdev: pointer to pci device data structure.
9007  *
9008  * This routine is invoked to allocate the driver hba data structure for an
9009  * HBA device. If the allocation is successful, the phba reference to the
9010  * PCI device data structure is set.
9011  *
9012  * Return codes
9013  *      pointer to @phba - successful
9014  *      NULL - error
9015  **/
9016 static struct lpfc_hba *
9017 lpfc_hba_alloc(struct pci_dev *pdev)
9018 {
9019 	struct lpfc_hba *phba;
9020 
9021 	/* Allocate memory for HBA structure */
9022 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9023 	if (!phba) {
9024 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9025 		return NULL;
9026 	}
9027 
9028 	/* Set reference to PCI device in HBA structure */
9029 	phba->pcidev = pdev;
9030 
9031 	/* Assign an unused board number */
9032 	phba->brd_no = lpfc_get_instance();
9033 	if (phba->brd_no < 0) {
9034 		kfree(phba);
9035 		return NULL;
9036 	}
9037 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9038 
9039 	spin_lock_init(&phba->ct_ev_lock);
9040 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9041 
9042 	return phba;
9043 }
9044 
9045 /**
9046  * lpfc_hba_free - Free driver hba data structure with a device.
9047  * @phba: pointer to lpfc hba data structure.
9048  *
9049  * This routine is invoked to free the driver hba data structure with an
9050  * HBA device.
9051  **/
9052 static void
9053 lpfc_hba_free(struct lpfc_hba *phba)
9054 {
9055 	if (phba->sli_rev == LPFC_SLI_REV4)
9056 		kfree(phba->sli4_hba.hdwq);
9057 
9058 	/* Release the driver assigned board number */
9059 	idr_remove(&lpfc_hba_index, phba->brd_no);
9060 
9061 	/* Free memory allocated with sli3 rings */
9062 	kfree(phba->sli.sli3_ring);
9063 	phba->sli.sli3_ring = NULL;
9064 
9065 	kfree(phba);
9066 	return;
9067 }
9068 
9069 /**
9070  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9071  * @vport: pointer to lpfc vport data structure.
9072  *
9073  * This routine is will setup initial FDMI attribute masks for
9074  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9075  * to get these attributes first before falling back, the attribute
9076  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9077  **/
9078 void
9079 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9080 {
9081 	struct lpfc_hba *phba = vport->phba;
9082 
9083 	vport->load_flag |= FC_ALLOW_FDMI;
9084 	if (phba->cfg_enable_SmartSAN ||
9085 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9086 		/* Setup appropriate attribute masks */
9087 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9088 		if (phba->cfg_enable_SmartSAN)
9089 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9090 		else
9091 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9092 	}
9093 
9094 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9095 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9096 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9097 }
9098 
9099 /**
9100  * lpfc_create_shost - Create hba physical port with associated scsi host.
9101  * @phba: pointer to lpfc hba data structure.
9102  *
9103  * This routine is invoked to create HBA physical port and associate a SCSI
9104  * host with it.
9105  *
9106  * Return codes
9107  *      0 - successful
9108  *      other values - error
9109  **/
9110 static int
9111 lpfc_create_shost(struct lpfc_hba *phba)
9112 {
9113 	struct lpfc_vport *vport;
9114 	struct Scsi_Host  *shost;
9115 
9116 	/* Initialize HBA FC structure */
9117 	phba->fc_edtov = FF_DEF_EDTOV;
9118 	phba->fc_ratov = FF_DEF_RATOV;
9119 	phba->fc_altov = FF_DEF_ALTOV;
9120 	phba->fc_arbtov = FF_DEF_ARBTOV;
9121 
9122 	atomic_set(&phba->sdev_cnt, 0);
9123 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9124 	if (!vport)
9125 		return -ENODEV;
9126 
9127 	shost = lpfc_shost_from_vport(vport);
9128 	phba->pport = vport;
9129 
9130 	if (phba->nvmet_support) {
9131 		/* Only 1 vport (pport) will support NVME target */
9132 		phba->targetport = NULL;
9133 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9134 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9135 				"6076 NVME Target Found\n");
9136 	}
9137 
9138 	lpfc_debugfs_initialize(vport);
9139 	/* Put reference to SCSI host to driver's device private data */
9140 	pci_set_drvdata(phba->pcidev, shost);
9141 
9142 	lpfc_setup_fdmi_mask(vport);
9143 
9144 	/*
9145 	 * At this point we are fully registered with PSA. In addition,
9146 	 * any initial discovery should be completed.
9147 	 */
9148 	return 0;
9149 }
9150 
9151 /**
9152  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9153  * @phba: pointer to lpfc hba data structure.
9154  *
9155  * This routine is invoked to destroy HBA physical port and the associated
9156  * SCSI host.
9157  **/
9158 static void
9159 lpfc_destroy_shost(struct lpfc_hba *phba)
9160 {
9161 	struct lpfc_vport *vport = phba->pport;
9162 
9163 	/* Destroy physical port that associated with the SCSI host */
9164 	destroy_port(vport);
9165 
9166 	return;
9167 }
9168 
9169 /**
9170  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9171  * @phba: pointer to lpfc hba data structure.
9172  * @shost: the shost to be used to detect Block guard settings.
9173  *
9174  * This routine sets up the local Block guard protocol settings for @shost.
9175  * This routine also allocates memory for debugging bg buffers.
9176  **/
9177 static void
9178 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9179 {
9180 	uint32_t old_mask;
9181 	uint32_t old_guard;
9182 
9183 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9184 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9185 				"1478 Registering BlockGuard with the "
9186 				"SCSI layer\n");
9187 
9188 		old_mask = phba->cfg_prot_mask;
9189 		old_guard = phba->cfg_prot_guard;
9190 
9191 		/* Only allow supported values */
9192 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9193 			SHOST_DIX_TYPE0_PROTECTION |
9194 			SHOST_DIX_TYPE1_PROTECTION);
9195 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9196 					 SHOST_DIX_GUARD_CRC);
9197 
9198 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9199 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9200 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9201 
9202 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9203 			if ((old_mask != phba->cfg_prot_mask) ||
9204 				(old_guard != phba->cfg_prot_guard))
9205 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9206 					"1475 Registering BlockGuard with the "
9207 					"SCSI layer: mask %d  guard %d\n",
9208 					phba->cfg_prot_mask,
9209 					phba->cfg_prot_guard);
9210 
9211 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9212 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9213 		} else
9214 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9215 				"1479 Not Registering BlockGuard with the SCSI "
9216 				"layer, Bad protection parameters: %d %d\n",
9217 				old_mask, old_guard);
9218 	}
9219 }
9220 
9221 /**
9222  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9223  * @phba: pointer to lpfc hba data structure.
9224  *
9225  * This routine is invoked to perform all the necessary post initialization
9226  * setup for the device.
9227  **/
9228 static void
9229 lpfc_post_init_setup(struct lpfc_hba *phba)
9230 {
9231 	struct Scsi_Host  *shost;
9232 	struct lpfc_adapter_event_header adapter_event;
9233 
9234 	/* Get the default values for Model Name and Description */
9235 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9236 
9237 	/*
9238 	 * hba setup may have changed the hba_queue_depth so we need to
9239 	 * adjust the value of can_queue.
9240 	 */
9241 	shost = pci_get_drvdata(phba->pcidev);
9242 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9243 
9244 	lpfc_host_attrib_init(shost);
9245 
9246 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9247 		spin_lock_irq(shost->host_lock);
9248 		lpfc_poll_start_timer(phba);
9249 		spin_unlock_irq(shost->host_lock);
9250 	}
9251 
9252 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9253 			"0428 Perform SCSI scan\n");
9254 	/* Send board arrival event to upper layer */
9255 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9256 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9257 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9258 				  sizeof(adapter_event),
9259 				  (char *) &adapter_event,
9260 				  LPFC_NL_VENDOR_ID);
9261 	return;
9262 }
9263 
9264 /**
9265  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9266  * @phba: pointer to lpfc hba data structure.
9267  *
9268  * This routine is invoked to set up the PCI device memory space for device
9269  * with SLI-3 interface spec.
9270  *
9271  * Return codes
9272  * 	0 - successful
9273  * 	other values - error
9274  **/
9275 static int
9276 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9277 {
9278 	struct pci_dev *pdev = phba->pcidev;
9279 	unsigned long bar0map_len, bar2map_len;
9280 	int i, hbq_count;
9281 	void *ptr;
9282 	int error;
9283 
9284 	if (!pdev)
9285 		return -ENODEV;
9286 
9287 	/* Set the device DMA mask size */
9288 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9289 	if (error)
9290 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9291 	if (error)
9292 		return error;
9293 	error = -ENODEV;
9294 
9295 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9296 	 * required by each mapping.
9297 	 */
9298 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9299 	bar0map_len = pci_resource_len(pdev, 0);
9300 
9301 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9302 	bar2map_len = pci_resource_len(pdev, 2);
9303 
9304 	/* Map HBA SLIM to a kernel virtual address. */
9305 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9306 	if (!phba->slim_memmap_p) {
9307 		dev_printk(KERN_ERR, &pdev->dev,
9308 			   "ioremap failed for SLIM memory.\n");
9309 		goto out;
9310 	}
9311 
9312 	/* Map HBA Control Registers to a kernel virtual address. */
9313 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9314 	if (!phba->ctrl_regs_memmap_p) {
9315 		dev_printk(KERN_ERR, &pdev->dev,
9316 			   "ioremap failed for HBA control registers.\n");
9317 		goto out_iounmap_slim;
9318 	}
9319 
9320 	/* Allocate memory for SLI-2 structures */
9321 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9322 					       &phba->slim2p.phys, GFP_KERNEL);
9323 	if (!phba->slim2p.virt)
9324 		goto out_iounmap;
9325 
9326 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9327 	phba->mbox_ext = (phba->slim2p.virt +
9328 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9329 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9330 	phba->IOCBs = (phba->slim2p.virt +
9331 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9332 
9333 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9334 						 lpfc_sli_hbq_size(),
9335 						 &phba->hbqslimp.phys,
9336 						 GFP_KERNEL);
9337 	if (!phba->hbqslimp.virt)
9338 		goto out_free_slim;
9339 
9340 	hbq_count = lpfc_sli_hbq_count();
9341 	ptr = phba->hbqslimp.virt;
9342 	for (i = 0; i < hbq_count; ++i) {
9343 		phba->hbqs[i].hbq_virt = ptr;
9344 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9345 		ptr += (lpfc_hbq_defs[i]->entry_count *
9346 			sizeof(struct lpfc_hbq_entry));
9347 	}
9348 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9349 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9350 
9351 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9352 
9353 	phba->MBslimaddr = phba->slim_memmap_p;
9354 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9355 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9356 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9357 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9358 
9359 	return 0;
9360 
9361 out_free_slim:
9362 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9363 			  phba->slim2p.virt, phba->slim2p.phys);
9364 out_iounmap:
9365 	iounmap(phba->ctrl_regs_memmap_p);
9366 out_iounmap_slim:
9367 	iounmap(phba->slim_memmap_p);
9368 out:
9369 	return error;
9370 }
9371 
9372 /**
9373  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9374  * @phba: pointer to lpfc hba data structure.
9375  *
9376  * This routine is invoked to unset the PCI device memory space for device
9377  * with SLI-3 interface spec.
9378  **/
9379 static void
9380 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9381 {
9382 	struct pci_dev *pdev;
9383 
9384 	/* Obtain PCI device reference */
9385 	if (!phba->pcidev)
9386 		return;
9387 	else
9388 		pdev = phba->pcidev;
9389 
9390 	/* Free coherent DMA memory allocated */
9391 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9392 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9393 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9394 			  phba->slim2p.virt, phba->slim2p.phys);
9395 
9396 	/* I/O memory unmap */
9397 	iounmap(phba->ctrl_regs_memmap_p);
9398 	iounmap(phba->slim_memmap_p);
9399 
9400 	return;
9401 }
9402 
9403 /**
9404  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9405  * @phba: pointer to lpfc hba data structure.
9406  *
9407  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9408  * done and check status.
9409  *
9410  * Return 0 if successful, otherwise -ENODEV.
9411  **/
9412 int
9413 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9414 {
9415 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9416 	struct lpfc_register reg_data;
9417 	int i, port_error = 0;
9418 	uint32_t if_type;
9419 
9420 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9421 	memset(&reg_data, 0, sizeof(reg_data));
9422 	if (!phba->sli4_hba.PSMPHRregaddr)
9423 		return -ENODEV;
9424 
9425 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9426 	for (i = 0; i < 3000; i++) {
9427 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9428 			&portsmphr_reg.word0) ||
9429 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9430 			/* Port has a fatal POST error, break out */
9431 			port_error = -ENODEV;
9432 			break;
9433 		}
9434 		if (LPFC_POST_STAGE_PORT_READY ==
9435 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9436 			break;
9437 		msleep(10);
9438 	}
9439 
9440 	/*
9441 	 * If there was a port error during POST, then don't proceed with
9442 	 * other register reads as the data may not be valid.  Just exit.
9443 	 */
9444 	if (port_error) {
9445 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9446 			"1408 Port Failed POST - portsmphr=0x%x, "
9447 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9448 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9449 			portsmphr_reg.word0,
9450 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9451 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9452 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9453 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9454 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9455 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9457 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9458 	} else {
9459 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9460 				"2534 Device Info: SLIFamily=0x%x, "
9461 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9462 				"SLIHint_2=0x%x, FT=0x%x\n",
9463 				bf_get(lpfc_sli_intf_sli_family,
9464 				       &phba->sli4_hba.sli_intf),
9465 				bf_get(lpfc_sli_intf_slirev,
9466 				       &phba->sli4_hba.sli_intf),
9467 				bf_get(lpfc_sli_intf_if_type,
9468 				       &phba->sli4_hba.sli_intf),
9469 				bf_get(lpfc_sli_intf_sli_hint1,
9470 				       &phba->sli4_hba.sli_intf),
9471 				bf_get(lpfc_sli_intf_sli_hint2,
9472 				       &phba->sli4_hba.sli_intf),
9473 				bf_get(lpfc_sli_intf_func_type,
9474 				       &phba->sli4_hba.sli_intf));
9475 		/*
9476 		 * Check for other Port errors during the initialization
9477 		 * process.  Fail the load if the port did not come up
9478 		 * correctly.
9479 		 */
9480 		if_type = bf_get(lpfc_sli_intf_if_type,
9481 				 &phba->sli4_hba.sli_intf);
9482 		switch (if_type) {
9483 		case LPFC_SLI_INTF_IF_TYPE_0:
9484 			phba->sli4_hba.ue_mask_lo =
9485 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9486 			phba->sli4_hba.ue_mask_hi =
9487 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9488 			uerrlo_reg.word0 =
9489 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9490 			uerrhi_reg.word0 =
9491 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9492 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9493 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9494 				lpfc_printf_log(phba, KERN_ERR,
9495 						LOG_TRACE_EVENT,
9496 						"1422 Unrecoverable Error "
9497 						"Detected during POST "
9498 						"uerr_lo_reg=0x%x, "
9499 						"uerr_hi_reg=0x%x, "
9500 						"ue_mask_lo_reg=0x%x, "
9501 						"ue_mask_hi_reg=0x%x\n",
9502 						uerrlo_reg.word0,
9503 						uerrhi_reg.word0,
9504 						phba->sli4_hba.ue_mask_lo,
9505 						phba->sli4_hba.ue_mask_hi);
9506 				port_error = -ENODEV;
9507 			}
9508 			break;
9509 		case LPFC_SLI_INTF_IF_TYPE_2:
9510 		case LPFC_SLI_INTF_IF_TYPE_6:
9511 			/* Final checks.  The port status should be clean. */
9512 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9513 				&reg_data.word0) ||
9514 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9515 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9516 				phba->work_status[0] =
9517 					readl(phba->sli4_hba.u.if_type2.
9518 					      ERR1regaddr);
9519 				phba->work_status[1] =
9520 					readl(phba->sli4_hba.u.if_type2.
9521 					      ERR2regaddr);
9522 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9523 					"2888 Unrecoverable port error "
9524 					"following POST: port status reg "
9525 					"0x%x, port_smphr reg 0x%x, "
9526 					"error 1=0x%x, error 2=0x%x\n",
9527 					reg_data.word0,
9528 					portsmphr_reg.word0,
9529 					phba->work_status[0],
9530 					phba->work_status[1]);
9531 				port_error = -ENODEV;
9532 				break;
9533 			}
9534 
9535 			if (lpfc_pldv_detect &&
9536 			    bf_get(lpfc_sli_intf_sli_family,
9537 				   &phba->sli4_hba.sli_intf) ==
9538 					LPFC_SLI_INTF_FAMILY_G6)
9539 				pci_write_config_byte(phba->pcidev,
9540 						      LPFC_SLI_INTF, CFG_PLD);
9541 			break;
9542 		case LPFC_SLI_INTF_IF_TYPE_1:
9543 		default:
9544 			break;
9545 		}
9546 	}
9547 	return port_error;
9548 }
9549 
9550 /**
9551  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9552  * @phba: pointer to lpfc hba data structure.
9553  * @if_type:  The SLI4 interface type getting configured.
9554  *
9555  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9556  * memory map.
9557  **/
9558 static void
9559 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9560 {
9561 	switch (if_type) {
9562 	case LPFC_SLI_INTF_IF_TYPE_0:
9563 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9564 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9565 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9566 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9567 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9568 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9569 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9570 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9571 		phba->sli4_hba.SLIINTFregaddr =
9572 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9573 		break;
9574 	case LPFC_SLI_INTF_IF_TYPE_2:
9575 		phba->sli4_hba.u.if_type2.EQDregaddr =
9576 			phba->sli4_hba.conf_regs_memmap_p +
9577 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9578 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9579 			phba->sli4_hba.conf_regs_memmap_p +
9580 						LPFC_CTL_PORT_ER1_OFFSET;
9581 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9582 			phba->sli4_hba.conf_regs_memmap_p +
9583 						LPFC_CTL_PORT_ER2_OFFSET;
9584 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9585 			phba->sli4_hba.conf_regs_memmap_p +
9586 						LPFC_CTL_PORT_CTL_OFFSET;
9587 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9588 			phba->sli4_hba.conf_regs_memmap_p +
9589 						LPFC_CTL_PORT_STA_OFFSET;
9590 		phba->sli4_hba.SLIINTFregaddr =
9591 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9592 		phba->sli4_hba.PSMPHRregaddr =
9593 			phba->sli4_hba.conf_regs_memmap_p +
9594 						LPFC_CTL_PORT_SEM_OFFSET;
9595 		phba->sli4_hba.RQDBregaddr =
9596 			phba->sli4_hba.conf_regs_memmap_p +
9597 						LPFC_ULP0_RQ_DOORBELL;
9598 		phba->sli4_hba.WQDBregaddr =
9599 			phba->sli4_hba.conf_regs_memmap_p +
9600 						LPFC_ULP0_WQ_DOORBELL;
9601 		phba->sli4_hba.CQDBregaddr =
9602 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9603 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9604 		phba->sli4_hba.MQDBregaddr =
9605 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9606 		phba->sli4_hba.BMBXregaddr =
9607 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9608 		break;
9609 	case LPFC_SLI_INTF_IF_TYPE_6:
9610 		phba->sli4_hba.u.if_type2.EQDregaddr =
9611 			phba->sli4_hba.conf_regs_memmap_p +
9612 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9613 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9614 			phba->sli4_hba.conf_regs_memmap_p +
9615 						LPFC_CTL_PORT_ER1_OFFSET;
9616 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9617 			phba->sli4_hba.conf_regs_memmap_p +
9618 						LPFC_CTL_PORT_ER2_OFFSET;
9619 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9620 			phba->sli4_hba.conf_regs_memmap_p +
9621 						LPFC_CTL_PORT_CTL_OFFSET;
9622 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9623 			phba->sli4_hba.conf_regs_memmap_p +
9624 						LPFC_CTL_PORT_STA_OFFSET;
9625 		phba->sli4_hba.PSMPHRregaddr =
9626 			phba->sli4_hba.conf_regs_memmap_p +
9627 						LPFC_CTL_PORT_SEM_OFFSET;
9628 		phba->sli4_hba.BMBXregaddr =
9629 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9630 		break;
9631 	case LPFC_SLI_INTF_IF_TYPE_1:
9632 	default:
9633 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9634 			   "FATAL - unsupported SLI4 interface type - %d\n",
9635 			   if_type);
9636 		break;
9637 	}
9638 }
9639 
9640 /**
9641  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9642  * @phba: pointer to lpfc hba data structure.
9643  * @if_type: sli if type to operate on.
9644  *
9645  * This routine is invoked to set up SLI4 BAR1 register memory map.
9646  **/
9647 static void
9648 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9649 {
9650 	switch (if_type) {
9651 	case LPFC_SLI_INTF_IF_TYPE_0:
9652 		phba->sli4_hba.PSMPHRregaddr =
9653 			phba->sli4_hba.ctrl_regs_memmap_p +
9654 			LPFC_SLIPORT_IF0_SMPHR;
9655 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9656 			LPFC_HST_ISR0;
9657 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9658 			LPFC_HST_IMR0;
9659 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9660 			LPFC_HST_ISCR0;
9661 		break;
9662 	case LPFC_SLI_INTF_IF_TYPE_6:
9663 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9664 			LPFC_IF6_RQ_DOORBELL;
9665 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9666 			LPFC_IF6_WQ_DOORBELL;
9667 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9668 			LPFC_IF6_CQ_DOORBELL;
9669 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9670 			LPFC_IF6_EQ_DOORBELL;
9671 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9672 			LPFC_IF6_MQ_DOORBELL;
9673 		break;
9674 	case LPFC_SLI_INTF_IF_TYPE_2:
9675 	case LPFC_SLI_INTF_IF_TYPE_1:
9676 	default:
9677 		dev_err(&phba->pcidev->dev,
9678 			   "FATAL - unsupported SLI4 interface type - %d\n",
9679 			   if_type);
9680 		break;
9681 	}
9682 }
9683 
9684 /**
9685  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9686  * @phba: pointer to lpfc hba data structure.
9687  * @vf: virtual function number
9688  *
9689  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9690  * based on the given viftual function number, @vf.
9691  *
9692  * Return 0 if successful, otherwise -ENODEV.
9693  **/
9694 static int
9695 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9696 {
9697 	if (vf > LPFC_VIR_FUNC_MAX)
9698 		return -ENODEV;
9699 
9700 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9701 				vf * LPFC_VFR_PAGE_SIZE +
9702 					LPFC_ULP0_RQ_DOORBELL);
9703 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9704 				vf * LPFC_VFR_PAGE_SIZE +
9705 					LPFC_ULP0_WQ_DOORBELL);
9706 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9707 				vf * LPFC_VFR_PAGE_SIZE +
9708 					LPFC_EQCQ_DOORBELL);
9709 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9710 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9711 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9712 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9713 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9714 	return 0;
9715 }
9716 
9717 /**
9718  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9719  * @phba: pointer to lpfc hba data structure.
9720  *
9721  * This routine is invoked to create the bootstrap mailbox
9722  * region consistent with the SLI-4 interface spec.  This
9723  * routine allocates all memory necessary to communicate
9724  * mailbox commands to the port and sets up all alignment
9725  * needs.  No locks are expected to be held when calling
9726  * this routine.
9727  *
9728  * Return codes
9729  * 	0 - successful
9730  * 	-ENOMEM - could not allocated memory.
9731  **/
9732 static int
9733 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9734 {
9735 	uint32_t bmbx_size;
9736 	struct lpfc_dmabuf *dmabuf;
9737 	struct dma_address *dma_address;
9738 	uint32_t pa_addr;
9739 	uint64_t phys_addr;
9740 
9741 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9742 	if (!dmabuf)
9743 		return -ENOMEM;
9744 
9745 	/*
9746 	 * The bootstrap mailbox region is comprised of 2 parts
9747 	 * plus an alignment restriction of 16 bytes.
9748 	 */
9749 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9750 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9751 					  &dmabuf->phys, GFP_KERNEL);
9752 	if (!dmabuf->virt) {
9753 		kfree(dmabuf);
9754 		return -ENOMEM;
9755 	}
9756 
9757 	/*
9758 	 * Initialize the bootstrap mailbox pointers now so that the register
9759 	 * operations are simple later.  The mailbox dma address is required
9760 	 * to be 16-byte aligned.  Also align the virtual memory as each
9761 	 * maibox is copied into the bmbx mailbox region before issuing the
9762 	 * command to the port.
9763 	 */
9764 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9765 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9766 
9767 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9768 					      LPFC_ALIGN_16_BYTE);
9769 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9770 					      LPFC_ALIGN_16_BYTE);
9771 
9772 	/*
9773 	 * Set the high and low physical addresses now.  The SLI4 alignment
9774 	 * requirement is 16 bytes and the mailbox is posted to the port
9775 	 * as two 30-bit addresses.  The other data is a bit marking whether
9776 	 * the 30-bit address is the high or low address.
9777 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9778 	 * clean on 32 bit machines.
9779 	 */
9780 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9781 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9782 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9783 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9784 					   LPFC_BMBX_BIT1_ADDR_HI);
9785 
9786 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9787 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9788 					   LPFC_BMBX_BIT1_ADDR_LO);
9789 	return 0;
9790 }
9791 
9792 /**
9793  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9794  * @phba: pointer to lpfc hba data structure.
9795  *
9796  * This routine is invoked to teardown the bootstrap mailbox
9797  * region and release all host resources. This routine requires
9798  * the caller to ensure all mailbox commands recovered, no
9799  * additional mailbox comands are sent, and interrupts are disabled
9800  * before calling this routine.
9801  *
9802  **/
9803 static void
9804 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9805 {
9806 	dma_free_coherent(&phba->pcidev->dev,
9807 			  phba->sli4_hba.bmbx.bmbx_size,
9808 			  phba->sli4_hba.bmbx.dmabuf->virt,
9809 			  phba->sli4_hba.bmbx.dmabuf->phys);
9810 
9811 	kfree(phba->sli4_hba.bmbx.dmabuf);
9812 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9813 }
9814 
9815 static const char * const lpfc_topo_to_str[] = {
9816 	"Loop then P2P",
9817 	"Loopback",
9818 	"P2P Only",
9819 	"Unsupported",
9820 	"Loop Only",
9821 	"Unsupported",
9822 	"P2P then Loop",
9823 };
9824 
9825 #define	LINK_FLAGS_DEF	0x0
9826 #define	LINK_FLAGS_P2P	0x1
9827 #define	LINK_FLAGS_LOOP	0x2
9828 /**
9829  * lpfc_map_topology - Map the topology read from READ_CONFIG
9830  * @phba: pointer to lpfc hba data structure.
9831  * @rd_config: pointer to read config data
9832  *
9833  * This routine is invoked to map the topology values as read
9834  * from the read config mailbox command. If the persistent
9835  * topology feature is supported, the firmware will provide the
9836  * saved topology information to be used in INIT_LINK
9837  **/
9838 static void
9839 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9840 {
9841 	u8 ptv, tf, pt;
9842 
9843 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9844 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9845 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9846 
9847 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9848 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9849 			 ptv, tf, pt);
9850 	if (!ptv) {
9851 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9852 				"2019 FW does not support persistent topology "
9853 				"Using driver parameter defined value [%s]",
9854 				lpfc_topo_to_str[phba->cfg_topology]);
9855 		return;
9856 	}
9857 	/* FW supports persistent topology - override module parameter value */
9858 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9859 
9860 	/* if ASIC_GEN_NUM >= 0xC) */
9861 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9862 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9863 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9864 		    LPFC_SLI_INTF_FAMILY_G6)) {
9865 		if (!tf) {
9866 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9867 					? FLAGS_TOPOLOGY_MODE_LOOP
9868 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9869 		} else {
9870 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9871 		}
9872 	} else { /* G5 */
9873 		if (tf) {
9874 			/* If topology failover set - pt is '0' or '1' */
9875 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9876 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9877 		} else {
9878 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9879 					? FLAGS_TOPOLOGY_MODE_PT_PT
9880 					: FLAGS_TOPOLOGY_MODE_LOOP);
9881 		}
9882 	}
9883 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9884 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9885 				"2020 Using persistent topology value [%s]",
9886 				lpfc_topo_to_str[phba->cfg_topology]);
9887 	} else {
9888 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9889 				"2021 Invalid topology values from FW "
9890 				"Using driver parameter defined value [%s]",
9891 				lpfc_topo_to_str[phba->cfg_topology]);
9892 	}
9893 }
9894 
9895 /**
9896  * lpfc_sli4_read_config - Get the config parameters.
9897  * @phba: pointer to lpfc hba data structure.
9898  *
9899  * This routine is invoked to read the configuration parameters from the HBA.
9900  * The configuration parameters are used to set the base and maximum values
9901  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9902  * allocation for the port.
9903  *
9904  * Return codes
9905  * 	0 - successful
9906  * 	-ENOMEM - No available memory
9907  *      -EIO - The mailbox failed to complete successfully.
9908  **/
9909 int
9910 lpfc_sli4_read_config(struct lpfc_hba *phba)
9911 {
9912 	LPFC_MBOXQ_t *pmb;
9913 	struct lpfc_mbx_read_config *rd_config;
9914 	union  lpfc_sli4_cfg_shdr *shdr;
9915 	uint32_t shdr_status, shdr_add_status;
9916 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9917 	struct lpfc_rsrc_desc_fcfcoe *desc;
9918 	char *pdesc_0;
9919 	uint16_t forced_link_speed;
9920 	uint32_t if_type, qmin, fawwpn;
9921 	int length, i, rc = 0, rc2;
9922 
9923 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9924 	if (!pmb) {
9925 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9926 				"2011 Unable to allocate memory for issuing "
9927 				"SLI_CONFIG_SPECIAL mailbox command\n");
9928 		return -ENOMEM;
9929 	}
9930 
9931 	lpfc_read_config(phba, pmb);
9932 
9933 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9934 	if (rc != MBX_SUCCESS) {
9935 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9936 				"2012 Mailbox failed , mbxCmd x%x "
9937 				"READ_CONFIG, mbxStatus x%x\n",
9938 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9939 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9940 		rc = -EIO;
9941 	} else {
9942 		rd_config = &pmb->u.mqe.un.rd_config;
9943 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9944 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9945 			phba->sli4_hba.lnk_info.lnk_tp =
9946 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9947 			phba->sli4_hba.lnk_info.lnk_no =
9948 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9949 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9950 					"3081 lnk_type:%d, lnk_numb:%d\n",
9951 					phba->sli4_hba.lnk_info.lnk_tp,
9952 					phba->sli4_hba.lnk_info.lnk_no);
9953 		} else
9954 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9955 					"3082 Mailbox (x%x) returned ldv:x0\n",
9956 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9957 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9958 			phba->bbcredit_support = 1;
9959 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9960 		}
9961 
9962 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9963 
9964 		if (fawwpn) {
9965 			lpfc_printf_log(phba, KERN_INFO,
9966 					LOG_INIT | LOG_DISCOVERY,
9967 					"2702 READ_CONFIG: FA-PWWN is "
9968 					"configured on\n");
9969 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9970 		} else {
9971 			/* Clear FW configured flag, preserve driver flag */
9972 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9973 		}
9974 
9975 		phba->sli4_hba.conf_trunk =
9976 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9977 		phba->sli4_hba.extents_in_use =
9978 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9979 
9980 		phba->sli4_hba.max_cfg_param.max_xri =
9981 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9982 		/* Reduce resource usage in kdump environment */
9983 		if (is_kdump_kernel() &&
9984 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9985 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9986 		phba->sli4_hba.max_cfg_param.xri_base =
9987 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9988 		phba->sli4_hba.max_cfg_param.max_vpi =
9989 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9990 		/* Limit the max we support */
9991 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9992 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9993 		phba->sli4_hba.max_cfg_param.vpi_base =
9994 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9995 		phba->sli4_hba.max_cfg_param.max_rpi =
9996 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9997 		phba->sli4_hba.max_cfg_param.rpi_base =
9998 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9999 		phba->sli4_hba.max_cfg_param.max_vfi =
10000 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10001 		phba->sli4_hba.max_cfg_param.vfi_base =
10002 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10003 		phba->sli4_hba.max_cfg_param.max_fcfi =
10004 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10005 		phba->sli4_hba.max_cfg_param.max_eq =
10006 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10007 		phba->sli4_hba.max_cfg_param.max_rq =
10008 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10009 		phba->sli4_hba.max_cfg_param.max_wq =
10010 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10011 		phba->sli4_hba.max_cfg_param.max_cq =
10012 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10013 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10014 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10015 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10016 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10017 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10018 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10019 		phba->max_vports = phba->max_vpi;
10020 
10021 		/* Next decide on FPIN or Signal E2E CGN support
10022 		 * For congestion alarms and warnings valid combination are:
10023 		 * 1. FPIN alarms / FPIN warnings
10024 		 * 2. Signal alarms / Signal warnings
10025 		 * 3. FPIN alarms / Signal warnings
10026 		 * 4. Signal alarms / FPIN warnings
10027 		 *
10028 		 * Initialize the adapter frequency to 100 mSecs
10029 		 */
10030 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10031 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10032 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10033 
10034 		if (lpfc_use_cgn_signal) {
10035 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10036 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10037 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10038 			}
10039 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10040 				/* MUST support both alarm and warning
10041 				 * because EDC does not support alarm alone.
10042 				 */
10043 				if (phba->cgn_reg_signal !=
10044 				    EDC_CG_SIG_WARN_ONLY) {
10045 					/* Must support both or none */
10046 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10047 					phba->cgn_reg_signal =
10048 						EDC_CG_SIG_NOTSUPPORTED;
10049 				} else {
10050 					phba->cgn_reg_signal =
10051 						EDC_CG_SIG_WARN_ALARM;
10052 					phba->cgn_reg_fpin =
10053 						LPFC_CGN_FPIN_NONE;
10054 				}
10055 			}
10056 		}
10057 
10058 		/* Set the congestion initial signal and fpin values. */
10059 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10060 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10061 
10062 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10063 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10064 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10065 
10066 		lpfc_map_topology(phba, rd_config);
10067 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10068 				"2003 cfg params Extents? %d "
10069 				"XRI(B:%d M:%d), "
10070 				"VPI(B:%d M:%d) "
10071 				"VFI(B:%d M:%d) "
10072 				"RPI(B:%d M:%d) "
10073 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10074 				phba->sli4_hba.extents_in_use,
10075 				phba->sli4_hba.max_cfg_param.xri_base,
10076 				phba->sli4_hba.max_cfg_param.max_xri,
10077 				phba->sli4_hba.max_cfg_param.vpi_base,
10078 				phba->sli4_hba.max_cfg_param.max_vpi,
10079 				phba->sli4_hba.max_cfg_param.vfi_base,
10080 				phba->sli4_hba.max_cfg_param.max_vfi,
10081 				phba->sli4_hba.max_cfg_param.rpi_base,
10082 				phba->sli4_hba.max_cfg_param.max_rpi,
10083 				phba->sli4_hba.max_cfg_param.max_fcfi,
10084 				phba->sli4_hba.max_cfg_param.max_eq,
10085 				phba->sli4_hba.max_cfg_param.max_cq,
10086 				phba->sli4_hba.max_cfg_param.max_wq,
10087 				phba->sli4_hba.max_cfg_param.max_rq,
10088 				phba->lmt);
10089 
10090 		/*
10091 		 * Calculate queue resources based on how
10092 		 * many WQ/CQ/EQs are available.
10093 		 */
10094 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10095 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10096 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10097 		/*
10098 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10099 		 * the remainder can be used for NVME / FCP.
10100 		 */
10101 		qmin -= 4;
10102 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10103 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10104 
10105 		/* Check to see if there is enough for default cfg */
10106 		if ((phba->cfg_irq_chann > qmin) ||
10107 		    (phba->cfg_hdw_queue > qmin)) {
10108 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10109 					"2005 Reducing Queues - "
10110 					"FW resource limitation: "
10111 					"WQ %d CQ %d EQ %d: min %d: "
10112 					"IRQ %d HDWQ %d\n",
10113 					phba->sli4_hba.max_cfg_param.max_wq,
10114 					phba->sli4_hba.max_cfg_param.max_cq,
10115 					phba->sli4_hba.max_cfg_param.max_eq,
10116 					qmin, phba->cfg_irq_chann,
10117 					phba->cfg_hdw_queue);
10118 
10119 			if (phba->cfg_irq_chann > qmin)
10120 				phba->cfg_irq_chann = qmin;
10121 			if (phba->cfg_hdw_queue > qmin)
10122 				phba->cfg_hdw_queue = qmin;
10123 		}
10124 	}
10125 
10126 	if (rc)
10127 		goto read_cfg_out;
10128 
10129 	/* Update link speed if forced link speed is supported */
10130 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10131 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10132 		forced_link_speed =
10133 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10134 		if (forced_link_speed) {
10135 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10136 
10137 			switch (forced_link_speed) {
10138 			case LINK_SPEED_1G:
10139 				phba->cfg_link_speed =
10140 					LPFC_USER_LINK_SPEED_1G;
10141 				break;
10142 			case LINK_SPEED_2G:
10143 				phba->cfg_link_speed =
10144 					LPFC_USER_LINK_SPEED_2G;
10145 				break;
10146 			case LINK_SPEED_4G:
10147 				phba->cfg_link_speed =
10148 					LPFC_USER_LINK_SPEED_4G;
10149 				break;
10150 			case LINK_SPEED_8G:
10151 				phba->cfg_link_speed =
10152 					LPFC_USER_LINK_SPEED_8G;
10153 				break;
10154 			case LINK_SPEED_10G:
10155 				phba->cfg_link_speed =
10156 					LPFC_USER_LINK_SPEED_10G;
10157 				break;
10158 			case LINK_SPEED_16G:
10159 				phba->cfg_link_speed =
10160 					LPFC_USER_LINK_SPEED_16G;
10161 				break;
10162 			case LINK_SPEED_32G:
10163 				phba->cfg_link_speed =
10164 					LPFC_USER_LINK_SPEED_32G;
10165 				break;
10166 			case LINK_SPEED_64G:
10167 				phba->cfg_link_speed =
10168 					LPFC_USER_LINK_SPEED_64G;
10169 				break;
10170 			case 0xffff:
10171 				phba->cfg_link_speed =
10172 					LPFC_USER_LINK_SPEED_AUTO;
10173 				break;
10174 			default:
10175 				lpfc_printf_log(phba, KERN_ERR,
10176 						LOG_TRACE_EVENT,
10177 						"0047 Unrecognized link "
10178 						"speed : %d\n",
10179 						forced_link_speed);
10180 				phba->cfg_link_speed =
10181 					LPFC_USER_LINK_SPEED_AUTO;
10182 			}
10183 		}
10184 	}
10185 
10186 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10187 	length = phba->sli4_hba.max_cfg_param.max_xri -
10188 			lpfc_sli4_get_els_iocb_cnt(phba);
10189 	if (phba->cfg_hba_queue_depth > length) {
10190 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10191 				"3361 HBA queue depth changed from %d to %d\n",
10192 				phba->cfg_hba_queue_depth, length);
10193 		phba->cfg_hba_queue_depth = length;
10194 	}
10195 
10196 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10197 	    LPFC_SLI_INTF_IF_TYPE_2)
10198 		goto read_cfg_out;
10199 
10200 	/* get the pf# and vf# for SLI4 if_type 2 port */
10201 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10202 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10203 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10204 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10205 			 length, LPFC_SLI4_MBX_EMBED);
10206 
10207 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10208 	shdr = (union lpfc_sli4_cfg_shdr *)
10209 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10210 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10211 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10212 	if (rc2 || shdr_status || shdr_add_status) {
10213 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10214 				"3026 Mailbox failed , mbxCmd x%x "
10215 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10216 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10217 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10218 		goto read_cfg_out;
10219 	}
10220 
10221 	/* search for fc_fcoe resrouce descriptor */
10222 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10223 
10224 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10225 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10226 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10227 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10228 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10229 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10230 		goto read_cfg_out;
10231 
10232 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10233 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10234 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10235 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10236 			phba->sli4_hba.iov.pf_number =
10237 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10238 			phba->sli4_hba.iov.vf_number =
10239 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10240 			break;
10241 		}
10242 	}
10243 
10244 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10245 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10246 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10247 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10248 				phba->sli4_hba.iov.vf_number);
10249 	else
10250 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10251 				"3028 GET_FUNCTION_CONFIG: failed to find "
10252 				"Resource Descriptor:x%x\n",
10253 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10254 
10255 read_cfg_out:
10256 	mempool_free(pmb, phba->mbox_mem_pool);
10257 	return rc;
10258 }
10259 
10260 /**
10261  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10262  * @phba: pointer to lpfc hba data structure.
10263  *
10264  * This routine is invoked to setup the port-side endian order when
10265  * the port if_type is 0.  This routine has no function for other
10266  * if_types.
10267  *
10268  * Return codes
10269  * 	0 - successful
10270  * 	-ENOMEM - No available memory
10271  *      -EIO - The mailbox failed to complete successfully.
10272  **/
10273 static int
10274 lpfc_setup_endian_order(struct lpfc_hba *phba)
10275 {
10276 	LPFC_MBOXQ_t *mboxq;
10277 	uint32_t if_type, rc = 0;
10278 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10279 				      HOST_ENDIAN_HIGH_WORD1};
10280 
10281 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10282 	switch (if_type) {
10283 	case LPFC_SLI_INTF_IF_TYPE_0:
10284 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10285 						       GFP_KERNEL);
10286 		if (!mboxq) {
10287 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10288 					"0492 Unable to allocate memory for "
10289 					"issuing SLI_CONFIG_SPECIAL mailbox "
10290 					"command\n");
10291 			return -ENOMEM;
10292 		}
10293 
10294 		/*
10295 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10296 		 * two words to contain special data values and no other data.
10297 		 */
10298 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10299 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10300 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10301 		if (rc != MBX_SUCCESS) {
10302 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10303 					"0493 SLI_CONFIG_SPECIAL mailbox "
10304 					"failed with status x%x\n",
10305 					rc);
10306 			rc = -EIO;
10307 		}
10308 		mempool_free(mboxq, phba->mbox_mem_pool);
10309 		break;
10310 	case LPFC_SLI_INTF_IF_TYPE_6:
10311 	case LPFC_SLI_INTF_IF_TYPE_2:
10312 	case LPFC_SLI_INTF_IF_TYPE_1:
10313 	default:
10314 		break;
10315 	}
10316 	return rc;
10317 }
10318 
10319 /**
10320  * lpfc_sli4_queue_verify - Verify and update EQ counts
10321  * @phba: pointer to lpfc hba data structure.
10322  *
10323  * This routine is invoked to check the user settable queue counts for EQs.
10324  * After this routine is called the counts will be set to valid values that
10325  * adhere to the constraints of the system's interrupt vectors and the port's
10326  * queue resources.
10327  *
10328  * Return codes
10329  *      0 - successful
10330  *      -ENOMEM - No available memory
10331  **/
10332 static int
10333 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10334 {
10335 	/*
10336 	 * Sanity check for configured queue parameters against the run-time
10337 	 * device parameters
10338 	 */
10339 
10340 	if (phba->nvmet_support) {
10341 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10342 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10343 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10344 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10345 	}
10346 
10347 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10348 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10349 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10350 			phba->cfg_nvmet_mrq);
10351 
10352 	/* Get EQ depth from module parameter, fake the default for now */
10353 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10354 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10355 
10356 	/* Get CQ depth from module parameter, fake the default for now */
10357 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10358 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10359 	return 0;
10360 }
10361 
10362 static int
10363 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10364 {
10365 	struct lpfc_queue *qdesc;
10366 	u32 wqesize;
10367 	int cpu;
10368 
10369 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10370 	/* Create Fast Path IO CQs */
10371 	if (phba->enab_exp_wqcq_pages)
10372 		/* Increase the CQ size when WQEs contain an embedded cdb */
10373 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10374 					      phba->sli4_hba.cq_esize,
10375 					      LPFC_CQE_EXP_COUNT, cpu);
10376 
10377 	else
10378 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10379 					      phba->sli4_hba.cq_esize,
10380 					      phba->sli4_hba.cq_ecount, cpu);
10381 	if (!qdesc) {
10382 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10383 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10384 				idx);
10385 		return 1;
10386 	}
10387 	qdesc->qe_valid = 1;
10388 	qdesc->hdwq = idx;
10389 	qdesc->chann = cpu;
10390 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10391 
10392 	/* Create Fast Path IO WQs */
10393 	if (phba->enab_exp_wqcq_pages) {
10394 		/* Increase the WQ size when WQEs contain an embedded cdb */
10395 		wqesize = (phba->fcp_embed_io) ?
10396 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10397 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10398 					      wqesize,
10399 					      LPFC_WQE_EXP_COUNT, cpu);
10400 	} else
10401 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10402 					      phba->sli4_hba.wq_esize,
10403 					      phba->sli4_hba.wq_ecount, cpu);
10404 
10405 	if (!qdesc) {
10406 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10407 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10408 				idx);
10409 		return 1;
10410 	}
10411 	qdesc->hdwq = idx;
10412 	qdesc->chann = cpu;
10413 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10414 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10415 	return 0;
10416 }
10417 
10418 /**
10419  * lpfc_sli4_queue_create - Create all the SLI4 queues
10420  * @phba: pointer to lpfc hba data structure.
10421  *
10422  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10423  * operation. For each SLI4 queue type, the parameters such as queue entry
10424  * count (queue depth) shall be taken from the module parameter. For now,
10425  * we just use some constant number as place holder.
10426  *
10427  * Return codes
10428  *      0 - successful
10429  *      -ENOMEM - No availble memory
10430  *      -EIO - The mailbox failed to complete successfully.
10431  **/
10432 int
10433 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10434 {
10435 	struct lpfc_queue *qdesc;
10436 	int idx, cpu, eqcpu;
10437 	struct lpfc_sli4_hdw_queue *qp;
10438 	struct lpfc_vector_map_info *cpup;
10439 	struct lpfc_vector_map_info *eqcpup;
10440 	struct lpfc_eq_intr_info *eqi;
10441 
10442 	/*
10443 	 * Create HBA Record arrays.
10444 	 * Both NVME and FCP will share that same vectors / EQs
10445 	 */
10446 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10447 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10448 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10449 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10450 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10451 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10452 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10453 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10454 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10455 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10456 
10457 	if (!phba->sli4_hba.hdwq) {
10458 		phba->sli4_hba.hdwq = kcalloc(
10459 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10460 			GFP_KERNEL);
10461 		if (!phba->sli4_hba.hdwq) {
10462 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10463 					"6427 Failed allocate memory for "
10464 					"fast-path Hardware Queue array\n");
10465 			goto out_error;
10466 		}
10467 		/* Prepare hardware queues to take IO buffers */
10468 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10469 			qp = &phba->sli4_hba.hdwq[idx];
10470 			spin_lock_init(&qp->io_buf_list_get_lock);
10471 			spin_lock_init(&qp->io_buf_list_put_lock);
10472 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10473 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10474 			qp->get_io_bufs = 0;
10475 			qp->put_io_bufs = 0;
10476 			qp->total_io_bufs = 0;
10477 			spin_lock_init(&qp->abts_io_buf_list_lock);
10478 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10479 			qp->abts_scsi_io_bufs = 0;
10480 			qp->abts_nvme_io_bufs = 0;
10481 			INIT_LIST_HEAD(&qp->sgl_list);
10482 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10483 			spin_lock_init(&qp->hdwq_lock);
10484 		}
10485 	}
10486 
10487 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10488 		if (phba->nvmet_support) {
10489 			phba->sli4_hba.nvmet_cqset = kcalloc(
10490 					phba->cfg_nvmet_mrq,
10491 					sizeof(struct lpfc_queue *),
10492 					GFP_KERNEL);
10493 			if (!phba->sli4_hba.nvmet_cqset) {
10494 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10495 					"3121 Fail allocate memory for "
10496 					"fast-path CQ set array\n");
10497 				goto out_error;
10498 			}
10499 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10500 					phba->cfg_nvmet_mrq,
10501 					sizeof(struct lpfc_queue *),
10502 					GFP_KERNEL);
10503 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10504 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10505 					"3122 Fail allocate memory for "
10506 					"fast-path RQ set hdr array\n");
10507 				goto out_error;
10508 			}
10509 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10510 					phba->cfg_nvmet_mrq,
10511 					sizeof(struct lpfc_queue *),
10512 					GFP_KERNEL);
10513 			if (!phba->sli4_hba.nvmet_mrq_data) {
10514 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10515 					"3124 Fail allocate memory for "
10516 					"fast-path RQ set data array\n");
10517 				goto out_error;
10518 			}
10519 		}
10520 	}
10521 
10522 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10523 
10524 	/* Create HBA Event Queues (EQs) */
10525 	for_each_present_cpu(cpu) {
10526 		/* We only want to create 1 EQ per vector, even though
10527 		 * multiple CPUs might be using that vector. so only
10528 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10529 		 */
10530 		cpup = &phba->sli4_hba.cpu_map[cpu];
10531 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10532 			continue;
10533 
10534 		/* Get a ptr to the Hardware Queue associated with this CPU */
10535 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10536 
10537 		/* Allocate an EQ */
10538 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10539 					      phba->sli4_hba.eq_esize,
10540 					      phba->sli4_hba.eq_ecount, cpu);
10541 		if (!qdesc) {
10542 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10543 					"0497 Failed allocate EQ (%d)\n",
10544 					cpup->hdwq);
10545 			goto out_error;
10546 		}
10547 		qdesc->qe_valid = 1;
10548 		qdesc->hdwq = cpup->hdwq;
10549 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10550 		qdesc->last_cpu = qdesc->chann;
10551 
10552 		/* Save the allocated EQ in the Hardware Queue */
10553 		qp->hba_eq = qdesc;
10554 
10555 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10556 		list_add(&qdesc->cpu_list, &eqi->list);
10557 	}
10558 
10559 	/* Now we need to populate the other Hardware Queues, that share
10560 	 * an IRQ vector, with the associated EQ ptr.
10561 	 */
10562 	for_each_present_cpu(cpu) {
10563 		cpup = &phba->sli4_hba.cpu_map[cpu];
10564 
10565 		/* Check for EQ already allocated in previous loop */
10566 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10567 			continue;
10568 
10569 		/* Check for multiple CPUs per hdwq */
10570 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10571 		if (qp->hba_eq)
10572 			continue;
10573 
10574 		/* We need to share an EQ for this hdwq */
10575 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10576 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10577 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10578 	}
10579 
10580 	/* Allocate IO Path SLI4 CQ/WQs */
10581 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10582 		if (lpfc_alloc_io_wq_cq(phba, idx))
10583 			goto out_error;
10584 	}
10585 
10586 	if (phba->nvmet_support) {
10587 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10588 			cpu = lpfc_find_cpu_handle(phba, idx,
10589 						   LPFC_FIND_BY_HDWQ);
10590 			qdesc = lpfc_sli4_queue_alloc(phba,
10591 						      LPFC_DEFAULT_PAGE_SIZE,
10592 						      phba->sli4_hba.cq_esize,
10593 						      phba->sli4_hba.cq_ecount,
10594 						      cpu);
10595 			if (!qdesc) {
10596 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10597 						"3142 Failed allocate NVME "
10598 						"CQ Set (%d)\n", idx);
10599 				goto out_error;
10600 			}
10601 			qdesc->qe_valid = 1;
10602 			qdesc->hdwq = idx;
10603 			qdesc->chann = cpu;
10604 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10605 		}
10606 	}
10607 
10608 	/*
10609 	 * Create Slow Path Completion Queues (CQs)
10610 	 */
10611 
10612 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10613 	/* Create slow-path Mailbox Command Complete Queue */
10614 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10615 				      phba->sli4_hba.cq_esize,
10616 				      phba->sli4_hba.cq_ecount, cpu);
10617 	if (!qdesc) {
10618 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10619 				"0500 Failed allocate slow-path mailbox CQ\n");
10620 		goto out_error;
10621 	}
10622 	qdesc->qe_valid = 1;
10623 	phba->sli4_hba.mbx_cq = qdesc;
10624 
10625 	/* Create slow-path ELS Complete Queue */
10626 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10627 				      phba->sli4_hba.cq_esize,
10628 				      phba->sli4_hba.cq_ecount, cpu);
10629 	if (!qdesc) {
10630 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10631 				"0501 Failed allocate slow-path ELS CQ\n");
10632 		goto out_error;
10633 	}
10634 	qdesc->qe_valid = 1;
10635 	qdesc->chann = cpu;
10636 	phba->sli4_hba.els_cq = qdesc;
10637 
10638 
10639 	/*
10640 	 * Create Slow Path Work Queues (WQs)
10641 	 */
10642 
10643 	/* Create Mailbox Command Queue */
10644 
10645 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10646 				      phba->sli4_hba.mq_esize,
10647 				      phba->sli4_hba.mq_ecount, cpu);
10648 	if (!qdesc) {
10649 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10650 				"0505 Failed allocate slow-path MQ\n");
10651 		goto out_error;
10652 	}
10653 	qdesc->chann = cpu;
10654 	phba->sli4_hba.mbx_wq = qdesc;
10655 
10656 	/*
10657 	 * Create ELS Work Queues
10658 	 */
10659 
10660 	/* Create slow-path ELS Work Queue */
10661 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10662 				      phba->sli4_hba.wq_esize,
10663 				      phba->sli4_hba.wq_ecount, cpu);
10664 	if (!qdesc) {
10665 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10666 				"0504 Failed allocate slow-path ELS WQ\n");
10667 		goto out_error;
10668 	}
10669 	qdesc->chann = cpu;
10670 	phba->sli4_hba.els_wq = qdesc;
10671 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10672 
10673 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10674 		/* Create NVME LS Complete Queue */
10675 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10676 					      phba->sli4_hba.cq_esize,
10677 					      phba->sli4_hba.cq_ecount, cpu);
10678 		if (!qdesc) {
10679 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10680 					"6079 Failed allocate NVME LS CQ\n");
10681 			goto out_error;
10682 		}
10683 		qdesc->chann = cpu;
10684 		qdesc->qe_valid = 1;
10685 		phba->sli4_hba.nvmels_cq = qdesc;
10686 
10687 		/* Create NVME LS Work Queue */
10688 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10689 					      phba->sli4_hba.wq_esize,
10690 					      phba->sli4_hba.wq_ecount, cpu);
10691 		if (!qdesc) {
10692 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10693 					"6080 Failed allocate NVME LS WQ\n");
10694 			goto out_error;
10695 		}
10696 		qdesc->chann = cpu;
10697 		phba->sli4_hba.nvmels_wq = qdesc;
10698 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10699 	}
10700 
10701 	/*
10702 	 * Create Receive Queue (RQ)
10703 	 */
10704 
10705 	/* Create Receive Queue for header */
10706 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10707 				      phba->sli4_hba.rq_esize,
10708 				      phba->sli4_hba.rq_ecount, cpu);
10709 	if (!qdesc) {
10710 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10711 				"0506 Failed allocate receive HRQ\n");
10712 		goto out_error;
10713 	}
10714 	phba->sli4_hba.hdr_rq = qdesc;
10715 
10716 	/* Create Receive Queue for data */
10717 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10718 				      phba->sli4_hba.rq_esize,
10719 				      phba->sli4_hba.rq_ecount, cpu);
10720 	if (!qdesc) {
10721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10722 				"0507 Failed allocate receive DRQ\n");
10723 		goto out_error;
10724 	}
10725 	phba->sli4_hba.dat_rq = qdesc;
10726 
10727 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10728 	    phba->nvmet_support) {
10729 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10730 			cpu = lpfc_find_cpu_handle(phba, idx,
10731 						   LPFC_FIND_BY_HDWQ);
10732 			/* Create NVMET Receive Queue for header */
10733 			qdesc = lpfc_sli4_queue_alloc(phba,
10734 						      LPFC_DEFAULT_PAGE_SIZE,
10735 						      phba->sli4_hba.rq_esize,
10736 						      LPFC_NVMET_RQE_DEF_COUNT,
10737 						      cpu);
10738 			if (!qdesc) {
10739 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10740 						"3146 Failed allocate "
10741 						"receive HRQ\n");
10742 				goto out_error;
10743 			}
10744 			qdesc->hdwq = idx;
10745 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10746 
10747 			/* Only needed for header of RQ pair */
10748 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10749 						   GFP_KERNEL,
10750 						   cpu_to_node(cpu));
10751 			if (qdesc->rqbp == NULL) {
10752 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10753 						"6131 Failed allocate "
10754 						"Header RQBP\n");
10755 				goto out_error;
10756 			}
10757 
10758 			/* Put list in known state in case driver load fails. */
10759 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10760 
10761 			/* Create NVMET Receive Queue for data */
10762 			qdesc = lpfc_sli4_queue_alloc(phba,
10763 						      LPFC_DEFAULT_PAGE_SIZE,
10764 						      phba->sli4_hba.rq_esize,
10765 						      LPFC_NVMET_RQE_DEF_COUNT,
10766 						      cpu);
10767 			if (!qdesc) {
10768 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10769 						"3156 Failed allocate "
10770 						"receive DRQ\n");
10771 				goto out_error;
10772 			}
10773 			qdesc->hdwq = idx;
10774 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10775 		}
10776 	}
10777 
10778 	/* Clear NVME stats */
10779 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10780 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10781 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10782 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10783 		}
10784 	}
10785 
10786 	/* Clear SCSI stats */
10787 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10788 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10789 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10790 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10791 		}
10792 	}
10793 
10794 	return 0;
10795 
10796 out_error:
10797 	lpfc_sli4_queue_destroy(phba);
10798 	return -ENOMEM;
10799 }
10800 
10801 static inline void
10802 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10803 {
10804 	if (*qp != NULL) {
10805 		lpfc_sli4_queue_free(*qp);
10806 		*qp = NULL;
10807 	}
10808 }
10809 
10810 static inline void
10811 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10812 {
10813 	int idx;
10814 
10815 	if (*qs == NULL)
10816 		return;
10817 
10818 	for (idx = 0; idx < max; idx++)
10819 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10820 
10821 	kfree(*qs);
10822 	*qs = NULL;
10823 }
10824 
10825 static inline void
10826 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10827 {
10828 	struct lpfc_sli4_hdw_queue *hdwq;
10829 	struct lpfc_queue *eq;
10830 	uint32_t idx;
10831 
10832 	hdwq = phba->sli4_hba.hdwq;
10833 
10834 	/* Loop thru all Hardware Queues */
10835 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10836 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10837 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10838 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10839 		hdwq[idx].hba_eq = NULL;
10840 		hdwq[idx].io_cq = NULL;
10841 		hdwq[idx].io_wq = NULL;
10842 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10843 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10844 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10845 	}
10846 	/* Loop thru all IRQ vectors */
10847 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10848 		/* Free the EQ corresponding to the IRQ vector */
10849 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10850 		lpfc_sli4_queue_free(eq);
10851 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10852 	}
10853 }
10854 
10855 /**
10856  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10857  * @phba: pointer to lpfc hba data structure.
10858  *
10859  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10860  * operation.
10861  *
10862  * Return codes
10863  *      0 - successful
10864  *      -ENOMEM - No available memory
10865  *      -EIO - The mailbox failed to complete successfully.
10866  **/
10867 void
10868 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10869 {
10870 	/*
10871 	 * Set FREE_INIT before beginning to free the queues.
10872 	 * Wait until the users of queues to acknowledge to
10873 	 * release queues by clearing FREE_WAIT.
10874 	 */
10875 	spin_lock_irq(&phba->hbalock);
10876 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10877 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10878 		spin_unlock_irq(&phba->hbalock);
10879 		msleep(20);
10880 		spin_lock_irq(&phba->hbalock);
10881 	}
10882 	spin_unlock_irq(&phba->hbalock);
10883 
10884 	lpfc_sli4_cleanup_poll_list(phba);
10885 
10886 	/* Release HBA eqs */
10887 	if (phba->sli4_hba.hdwq)
10888 		lpfc_sli4_release_hdwq(phba);
10889 
10890 	if (phba->nvmet_support) {
10891 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10892 					 phba->cfg_nvmet_mrq);
10893 
10894 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10895 					 phba->cfg_nvmet_mrq);
10896 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10897 					 phba->cfg_nvmet_mrq);
10898 	}
10899 
10900 	/* Release mailbox command work queue */
10901 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10902 
10903 	/* Release ELS work queue */
10904 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10905 
10906 	/* Release ELS work queue */
10907 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10908 
10909 	/* Release unsolicited receive queue */
10910 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10911 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10912 
10913 	/* Release ELS complete queue */
10914 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10915 
10916 	/* Release NVME LS complete queue */
10917 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10918 
10919 	/* Release mailbox command complete queue */
10920 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10921 
10922 	/* Everything on this list has been freed */
10923 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10924 
10925 	/* Done with freeing the queues */
10926 	spin_lock_irq(&phba->hbalock);
10927 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10928 	spin_unlock_irq(&phba->hbalock);
10929 }
10930 
10931 int
10932 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10933 {
10934 	struct lpfc_rqb *rqbp;
10935 	struct lpfc_dmabuf *h_buf;
10936 	struct rqb_dmabuf *rqb_buffer;
10937 
10938 	rqbp = rq->rqbp;
10939 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10940 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10941 				 struct lpfc_dmabuf, list);
10942 
10943 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10944 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10945 		rqbp->buffer_count--;
10946 	}
10947 	return 1;
10948 }
10949 
10950 static int
10951 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10952 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10953 	int qidx, uint32_t qtype)
10954 {
10955 	struct lpfc_sli_ring *pring;
10956 	int rc;
10957 
10958 	if (!eq || !cq || !wq) {
10959 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10960 			"6085 Fast-path %s (%d) not allocated\n",
10961 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10962 		return -ENOMEM;
10963 	}
10964 
10965 	/* create the Cq first */
10966 	rc = lpfc_cq_create(phba, cq, eq,
10967 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10968 	if (rc) {
10969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10970 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10971 				qidx, (uint32_t)rc);
10972 		return rc;
10973 	}
10974 
10975 	if (qtype != LPFC_MBOX) {
10976 		/* Setup cq_map for fast lookup */
10977 		if (cq_map)
10978 			*cq_map = cq->queue_id;
10979 
10980 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10981 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10982 			qidx, cq->queue_id, qidx, eq->queue_id);
10983 
10984 		/* create the wq */
10985 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10986 		if (rc) {
10987 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10988 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10989 				qidx, (uint32_t)rc);
10990 			/* no need to tear down cq - caller will do so */
10991 			return rc;
10992 		}
10993 
10994 		/* Bind this CQ/WQ to the NVME ring */
10995 		pring = wq->pring;
10996 		pring->sli.sli4.wqp = (void *)wq;
10997 		cq->pring = pring;
10998 
10999 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11000 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11001 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11002 	} else {
11003 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11004 		if (rc) {
11005 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11006 					"0539 Failed setup of slow-path MQ: "
11007 					"rc = 0x%x\n", rc);
11008 			/* no need to tear down cq - caller will do so */
11009 			return rc;
11010 		}
11011 
11012 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11013 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11014 			phba->sli4_hba.mbx_wq->queue_id,
11015 			phba->sli4_hba.mbx_cq->queue_id);
11016 	}
11017 
11018 	return 0;
11019 }
11020 
11021 /**
11022  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11023  * @phba: pointer to lpfc hba data structure.
11024  *
11025  * This routine will populate the cq_lookup table by all
11026  * available CQ queue_id's.
11027  **/
11028 static void
11029 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11030 {
11031 	struct lpfc_queue *eq, *childq;
11032 	int qidx;
11033 
11034 	memset(phba->sli4_hba.cq_lookup, 0,
11035 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11036 	/* Loop thru all IRQ vectors */
11037 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11038 		/* Get the EQ corresponding to the IRQ vector */
11039 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11040 		if (!eq)
11041 			continue;
11042 		/* Loop through all CQs associated with that EQ */
11043 		list_for_each_entry(childq, &eq->child_list, list) {
11044 			if (childq->queue_id > phba->sli4_hba.cq_max)
11045 				continue;
11046 			if (childq->subtype == LPFC_IO)
11047 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11048 					childq;
11049 		}
11050 	}
11051 }
11052 
11053 /**
11054  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11055  * @phba: pointer to lpfc hba data structure.
11056  *
11057  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11058  * operation.
11059  *
11060  * Return codes
11061  *      0 - successful
11062  *      -ENOMEM - No available memory
11063  *      -EIO - The mailbox failed to complete successfully.
11064  **/
11065 int
11066 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11067 {
11068 	uint32_t shdr_status, shdr_add_status;
11069 	union lpfc_sli4_cfg_shdr *shdr;
11070 	struct lpfc_vector_map_info *cpup;
11071 	struct lpfc_sli4_hdw_queue *qp;
11072 	LPFC_MBOXQ_t *mboxq;
11073 	int qidx, cpu;
11074 	uint32_t length, usdelay;
11075 	int rc = -ENOMEM;
11076 
11077 	/* Check for dual-ULP support */
11078 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11079 	if (!mboxq) {
11080 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11081 				"3249 Unable to allocate memory for "
11082 				"QUERY_FW_CFG mailbox command\n");
11083 		return -ENOMEM;
11084 	}
11085 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11086 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11087 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11088 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11089 			 length, LPFC_SLI4_MBX_EMBED);
11090 
11091 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11092 
11093 	shdr = (union lpfc_sli4_cfg_shdr *)
11094 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11095 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11096 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11097 	if (shdr_status || shdr_add_status || rc) {
11098 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11099 				"3250 QUERY_FW_CFG mailbox failed with status "
11100 				"x%x add_status x%x, mbx status x%x\n",
11101 				shdr_status, shdr_add_status, rc);
11102 		mempool_free(mboxq, phba->mbox_mem_pool);
11103 		rc = -ENXIO;
11104 		goto out_error;
11105 	}
11106 
11107 	phba->sli4_hba.fw_func_mode =
11108 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11109 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11110 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11111 	phba->sli4_hba.physical_port =
11112 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11113 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11114 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11115 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11116 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11117 
11118 	mempool_free(mboxq, phba->mbox_mem_pool);
11119 
11120 	/*
11121 	 * Set up HBA Event Queues (EQs)
11122 	 */
11123 	qp = phba->sli4_hba.hdwq;
11124 
11125 	/* Set up HBA event queue */
11126 	if (!qp) {
11127 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11128 				"3147 Fast-path EQs not allocated\n");
11129 		rc = -ENOMEM;
11130 		goto out_error;
11131 	}
11132 
11133 	/* Loop thru all IRQ vectors */
11134 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11135 		/* Create HBA Event Queues (EQs) in order */
11136 		for_each_present_cpu(cpu) {
11137 			cpup = &phba->sli4_hba.cpu_map[cpu];
11138 
11139 			/* Look for the CPU thats using that vector with
11140 			 * LPFC_CPU_FIRST_IRQ set.
11141 			 */
11142 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11143 				continue;
11144 			if (qidx != cpup->eq)
11145 				continue;
11146 
11147 			/* Create an EQ for that vector */
11148 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11149 					    phba->cfg_fcp_imax);
11150 			if (rc) {
11151 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11152 						"0523 Failed setup of fast-path"
11153 						" EQ (%d), rc = 0x%x\n",
11154 						cpup->eq, (uint32_t)rc);
11155 				goto out_destroy;
11156 			}
11157 
11158 			/* Save the EQ for that vector in the hba_eq_hdl */
11159 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11160 				qp[cpup->hdwq].hba_eq;
11161 
11162 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11163 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11164 					cpup->eq,
11165 					qp[cpup->hdwq].hba_eq->queue_id);
11166 		}
11167 	}
11168 
11169 	/* Loop thru all Hardware Queues */
11170 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11171 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11172 		cpup = &phba->sli4_hba.cpu_map[cpu];
11173 
11174 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11175 		rc = lpfc_create_wq_cq(phba,
11176 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11177 				       qp[qidx].io_cq,
11178 				       qp[qidx].io_wq,
11179 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11180 				       qidx,
11181 				       LPFC_IO);
11182 		if (rc) {
11183 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11184 					"0535 Failed to setup fastpath "
11185 					"IO WQ/CQ (%d), rc = 0x%x\n",
11186 					qidx, (uint32_t)rc);
11187 			goto out_destroy;
11188 		}
11189 	}
11190 
11191 	/*
11192 	 * Set up Slow Path Complete Queues (CQs)
11193 	 */
11194 
11195 	/* Set up slow-path MBOX CQ/MQ */
11196 
11197 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11198 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11199 				"0528 %s not allocated\n",
11200 				phba->sli4_hba.mbx_cq ?
11201 				"Mailbox WQ" : "Mailbox CQ");
11202 		rc = -ENOMEM;
11203 		goto out_destroy;
11204 	}
11205 
11206 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11207 			       phba->sli4_hba.mbx_cq,
11208 			       phba->sli4_hba.mbx_wq,
11209 			       NULL, 0, LPFC_MBOX);
11210 	if (rc) {
11211 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11212 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11213 			(uint32_t)rc);
11214 		goto out_destroy;
11215 	}
11216 	if (phba->nvmet_support) {
11217 		if (!phba->sli4_hba.nvmet_cqset) {
11218 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11219 					"3165 Fast-path NVME CQ Set "
11220 					"array not allocated\n");
11221 			rc = -ENOMEM;
11222 			goto out_destroy;
11223 		}
11224 		if (phba->cfg_nvmet_mrq > 1) {
11225 			rc = lpfc_cq_create_set(phba,
11226 					phba->sli4_hba.nvmet_cqset,
11227 					qp,
11228 					LPFC_WCQ, LPFC_NVMET);
11229 			if (rc) {
11230 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11231 						"3164 Failed setup of NVME CQ "
11232 						"Set, rc = 0x%x\n",
11233 						(uint32_t)rc);
11234 				goto out_destroy;
11235 			}
11236 		} else {
11237 			/* Set up NVMET Receive Complete Queue */
11238 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11239 					    qp[0].hba_eq,
11240 					    LPFC_WCQ, LPFC_NVMET);
11241 			if (rc) {
11242 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11243 						"6089 Failed setup NVMET CQ: "
11244 						"rc = 0x%x\n", (uint32_t)rc);
11245 				goto out_destroy;
11246 			}
11247 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11248 
11249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11250 					"6090 NVMET CQ setup: cq-id=%d, "
11251 					"parent eq-id=%d\n",
11252 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11253 					qp[0].hba_eq->queue_id);
11254 		}
11255 	}
11256 
11257 	/* Set up slow-path ELS WQ/CQ */
11258 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11259 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11260 				"0530 ELS %s not allocated\n",
11261 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11262 		rc = -ENOMEM;
11263 		goto out_destroy;
11264 	}
11265 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11266 			       phba->sli4_hba.els_cq,
11267 			       phba->sli4_hba.els_wq,
11268 			       NULL, 0, LPFC_ELS);
11269 	if (rc) {
11270 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11271 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11272 				(uint32_t)rc);
11273 		goto out_destroy;
11274 	}
11275 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11276 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11277 			phba->sli4_hba.els_wq->queue_id,
11278 			phba->sli4_hba.els_cq->queue_id);
11279 
11280 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11281 		/* Set up NVME LS Complete Queue */
11282 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11283 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11284 					"6091 LS %s not allocated\n",
11285 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11286 			rc = -ENOMEM;
11287 			goto out_destroy;
11288 		}
11289 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11290 				       phba->sli4_hba.nvmels_cq,
11291 				       phba->sli4_hba.nvmels_wq,
11292 				       NULL, 0, LPFC_NVME_LS);
11293 		if (rc) {
11294 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11295 					"0526 Failed setup of NVVME LS WQ/CQ: "
11296 					"rc = 0x%x\n", (uint32_t)rc);
11297 			goto out_destroy;
11298 		}
11299 
11300 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11301 				"6096 ELS WQ setup: wq-id=%d, "
11302 				"parent cq-id=%d\n",
11303 				phba->sli4_hba.nvmels_wq->queue_id,
11304 				phba->sli4_hba.nvmels_cq->queue_id);
11305 	}
11306 
11307 	/*
11308 	 * Create NVMET Receive Queue (RQ)
11309 	 */
11310 	if (phba->nvmet_support) {
11311 		if ((!phba->sli4_hba.nvmet_cqset) ||
11312 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11313 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11314 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11315 					"6130 MRQ CQ Queues not "
11316 					"allocated\n");
11317 			rc = -ENOMEM;
11318 			goto out_destroy;
11319 		}
11320 		if (phba->cfg_nvmet_mrq > 1) {
11321 			rc = lpfc_mrq_create(phba,
11322 					     phba->sli4_hba.nvmet_mrq_hdr,
11323 					     phba->sli4_hba.nvmet_mrq_data,
11324 					     phba->sli4_hba.nvmet_cqset,
11325 					     LPFC_NVMET);
11326 			if (rc) {
11327 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11328 						"6098 Failed setup of NVMET "
11329 						"MRQ: rc = 0x%x\n",
11330 						(uint32_t)rc);
11331 				goto out_destroy;
11332 			}
11333 
11334 		} else {
11335 			rc = lpfc_rq_create(phba,
11336 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11337 					    phba->sli4_hba.nvmet_mrq_data[0],
11338 					    phba->sli4_hba.nvmet_cqset[0],
11339 					    LPFC_NVMET);
11340 			if (rc) {
11341 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11342 						"6057 Failed setup of NVMET "
11343 						"Receive Queue: rc = 0x%x\n",
11344 						(uint32_t)rc);
11345 				goto out_destroy;
11346 			}
11347 
11348 			lpfc_printf_log(
11349 				phba, KERN_INFO, LOG_INIT,
11350 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11351 				"dat-rq-id=%d parent cq-id=%d\n",
11352 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11353 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11354 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11355 
11356 		}
11357 	}
11358 
11359 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11361 				"0540 Receive Queue not allocated\n");
11362 		rc = -ENOMEM;
11363 		goto out_destroy;
11364 	}
11365 
11366 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11367 			    phba->sli4_hba.els_cq, LPFC_USOL);
11368 	if (rc) {
11369 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11370 				"0541 Failed setup of Receive Queue: "
11371 				"rc = 0x%x\n", (uint32_t)rc);
11372 		goto out_destroy;
11373 	}
11374 
11375 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11376 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11377 			"parent cq-id=%d\n",
11378 			phba->sli4_hba.hdr_rq->queue_id,
11379 			phba->sli4_hba.dat_rq->queue_id,
11380 			phba->sli4_hba.els_cq->queue_id);
11381 
11382 	if (phba->cfg_fcp_imax)
11383 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11384 	else
11385 		usdelay = 0;
11386 
11387 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11388 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11389 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11390 					 usdelay);
11391 
11392 	if (phba->sli4_hba.cq_max) {
11393 		kfree(phba->sli4_hba.cq_lookup);
11394 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11395 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11396 		if (!phba->sli4_hba.cq_lookup) {
11397 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11398 					"0549 Failed setup of CQ Lookup table: "
11399 					"size 0x%x\n", phba->sli4_hba.cq_max);
11400 			rc = -ENOMEM;
11401 			goto out_destroy;
11402 		}
11403 		lpfc_setup_cq_lookup(phba);
11404 	}
11405 	return 0;
11406 
11407 out_destroy:
11408 	lpfc_sli4_queue_unset(phba);
11409 out_error:
11410 	return rc;
11411 }
11412 
11413 /**
11414  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11415  * @phba: pointer to lpfc hba data structure.
11416  *
11417  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11418  * operation.
11419  *
11420  * Return codes
11421  *      0 - successful
11422  *      -ENOMEM - No available memory
11423  *      -EIO - The mailbox failed to complete successfully.
11424  **/
11425 void
11426 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11427 {
11428 	struct lpfc_sli4_hdw_queue *qp;
11429 	struct lpfc_queue *eq;
11430 	int qidx;
11431 
11432 	/* Unset mailbox command work queue */
11433 	if (phba->sli4_hba.mbx_wq)
11434 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11435 
11436 	/* Unset NVME LS work queue */
11437 	if (phba->sli4_hba.nvmels_wq)
11438 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11439 
11440 	/* Unset ELS work queue */
11441 	if (phba->sli4_hba.els_wq)
11442 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11443 
11444 	/* Unset unsolicited receive queue */
11445 	if (phba->sli4_hba.hdr_rq)
11446 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11447 				phba->sli4_hba.dat_rq);
11448 
11449 	/* Unset mailbox command complete queue */
11450 	if (phba->sli4_hba.mbx_cq)
11451 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11452 
11453 	/* Unset ELS complete queue */
11454 	if (phba->sli4_hba.els_cq)
11455 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11456 
11457 	/* Unset NVME LS complete queue */
11458 	if (phba->sli4_hba.nvmels_cq)
11459 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11460 
11461 	if (phba->nvmet_support) {
11462 		/* Unset NVMET MRQ queue */
11463 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11464 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11465 				lpfc_rq_destroy(
11466 					phba,
11467 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11468 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11469 		}
11470 
11471 		/* Unset NVMET CQ Set complete queue */
11472 		if (phba->sli4_hba.nvmet_cqset) {
11473 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11474 				lpfc_cq_destroy(
11475 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11476 		}
11477 	}
11478 
11479 	/* Unset fast-path SLI4 queues */
11480 	if (phba->sli4_hba.hdwq) {
11481 		/* Loop thru all Hardware Queues */
11482 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11483 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11484 			qp = &phba->sli4_hba.hdwq[qidx];
11485 			lpfc_wq_destroy(phba, qp->io_wq);
11486 			lpfc_cq_destroy(phba, qp->io_cq);
11487 		}
11488 		/* Loop thru all IRQ vectors */
11489 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11490 			/* Destroy the EQ corresponding to the IRQ vector */
11491 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11492 			lpfc_eq_destroy(phba, eq);
11493 		}
11494 	}
11495 
11496 	kfree(phba->sli4_hba.cq_lookup);
11497 	phba->sli4_hba.cq_lookup = NULL;
11498 	phba->sli4_hba.cq_max = 0;
11499 }
11500 
11501 /**
11502  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11503  * @phba: pointer to lpfc hba data structure.
11504  *
11505  * This routine is invoked to allocate and set up a pool of completion queue
11506  * events. The body of the completion queue event is a completion queue entry
11507  * CQE. For now, this pool is used for the interrupt service routine to queue
11508  * the following HBA completion queue events for the worker thread to process:
11509  *   - Mailbox asynchronous events
11510  *   - Receive queue completion unsolicited events
11511  * Later, this can be used for all the slow-path events.
11512  *
11513  * Return codes
11514  *      0 - successful
11515  *      -ENOMEM - No available memory
11516  **/
11517 static int
11518 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11519 {
11520 	struct lpfc_cq_event *cq_event;
11521 	int i;
11522 
11523 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11524 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11525 		if (!cq_event)
11526 			goto out_pool_create_fail;
11527 		list_add_tail(&cq_event->list,
11528 			      &phba->sli4_hba.sp_cqe_event_pool);
11529 	}
11530 	return 0;
11531 
11532 out_pool_create_fail:
11533 	lpfc_sli4_cq_event_pool_destroy(phba);
11534 	return -ENOMEM;
11535 }
11536 
11537 /**
11538  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11539  * @phba: pointer to lpfc hba data structure.
11540  *
11541  * This routine is invoked to free the pool of completion queue events at
11542  * driver unload time. Note that, it is the responsibility of the driver
11543  * cleanup routine to free all the outstanding completion-queue events
11544  * allocated from this pool back into the pool before invoking this routine
11545  * to destroy the pool.
11546  **/
11547 static void
11548 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11549 {
11550 	struct lpfc_cq_event *cq_event, *next_cq_event;
11551 
11552 	list_for_each_entry_safe(cq_event, next_cq_event,
11553 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11554 		list_del(&cq_event->list);
11555 		kfree(cq_event);
11556 	}
11557 }
11558 
11559 /**
11560  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11561  * @phba: pointer to lpfc hba data structure.
11562  *
11563  * This routine is the lock free version of the API invoked to allocate a
11564  * completion-queue event from the free pool.
11565  *
11566  * Return: Pointer to the newly allocated completion-queue event if successful
11567  *         NULL otherwise.
11568  **/
11569 struct lpfc_cq_event *
11570 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11571 {
11572 	struct lpfc_cq_event *cq_event = NULL;
11573 
11574 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11575 			 struct lpfc_cq_event, list);
11576 	return cq_event;
11577 }
11578 
11579 /**
11580  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11581  * @phba: pointer to lpfc hba data structure.
11582  *
11583  * This routine is the lock version of the API invoked to allocate a
11584  * completion-queue event from the free pool.
11585  *
11586  * Return: Pointer to the newly allocated completion-queue event if successful
11587  *         NULL otherwise.
11588  **/
11589 struct lpfc_cq_event *
11590 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11591 {
11592 	struct lpfc_cq_event *cq_event;
11593 	unsigned long iflags;
11594 
11595 	spin_lock_irqsave(&phba->hbalock, iflags);
11596 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11597 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11598 	return cq_event;
11599 }
11600 
11601 /**
11602  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11603  * @phba: pointer to lpfc hba data structure.
11604  * @cq_event: pointer to the completion queue event to be freed.
11605  *
11606  * This routine is the lock free version of the API invoked to release a
11607  * completion-queue event back into the free pool.
11608  **/
11609 void
11610 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11611 			     struct lpfc_cq_event *cq_event)
11612 {
11613 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11614 }
11615 
11616 /**
11617  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11618  * @phba: pointer to lpfc hba data structure.
11619  * @cq_event: pointer to the completion queue event to be freed.
11620  *
11621  * This routine is the lock version of the API invoked to release a
11622  * completion-queue event back into the free pool.
11623  **/
11624 void
11625 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11626 			   struct lpfc_cq_event *cq_event)
11627 {
11628 	unsigned long iflags;
11629 	spin_lock_irqsave(&phba->hbalock, iflags);
11630 	__lpfc_sli4_cq_event_release(phba, cq_event);
11631 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11632 }
11633 
11634 /**
11635  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11636  * @phba: pointer to lpfc hba data structure.
11637  *
11638  * This routine is to free all the pending completion-queue events to the
11639  * back into the free pool for device reset.
11640  **/
11641 static void
11642 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11643 {
11644 	LIST_HEAD(cq_event_list);
11645 	struct lpfc_cq_event *cq_event;
11646 	unsigned long iflags;
11647 
11648 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11649 
11650 	/* Pending ELS XRI abort events */
11651 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11652 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11653 			 &cq_event_list);
11654 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11655 
11656 	/* Pending asynnc events */
11657 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11658 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11659 			 &cq_event_list);
11660 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11661 
11662 	while (!list_empty(&cq_event_list)) {
11663 		list_remove_head(&cq_event_list, cq_event,
11664 				 struct lpfc_cq_event, list);
11665 		lpfc_sli4_cq_event_release(phba, cq_event);
11666 	}
11667 }
11668 
11669 /**
11670  * lpfc_pci_function_reset - Reset pci function.
11671  * @phba: pointer to lpfc hba data structure.
11672  *
11673  * This routine is invoked to request a PCI function reset. It will destroys
11674  * all resources assigned to the PCI function which originates this request.
11675  *
11676  * Return codes
11677  *      0 - successful
11678  *      -ENOMEM - No available memory
11679  *      -EIO - The mailbox failed to complete successfully.
11680  **/
11681 int
11682 lpfc_pci_function_reset(struct lpfc_hba *phba)
11683 {
11684 	LPFC_MBOXQ_t *mboxq;
11685 	uint32_t rc = 0, if_type;
11686 	uint32_t shdr_status, shdr_add_status;
11687 	uint32_t rdy_chk;
11688 	uint32_t port_reset = 0;
11689 	union lpfc_sli4_cfg_shdr *shdr;
11690 	struct lpfc_register reg_data;
11691 	uint16_t devid;
11692 
11693 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11694 	switch (if_type) {
11695 	case LPFC_SLI_INTF_IF_TYPE_0:
11696 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11697 						       GFP_KERNEL);
11698 		if (!mboxq) {
11699 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11700 					"0494 Unable to allocate memory for "
11701 					"issuing SLI_FUNCTION_RESET mailbox "
11702 					"command\n");
11703 			return -ENOMEM;
11704 		}
11705 
11706 		/* Setup PCI function reset mailbox-ioctl command */
11707 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11708 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11709 				 LPFC_SLI4_MBX_EMBED);
11710 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11711 		shdr = (union lpfc_sli4_cfg_shdr *)
11712 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11713 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11714 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11715 					 &shdr->response);
11716 		mempool_free(mboxq, phba->mbox_mem_pool);
11717 		if (shdr_status || shdr_add_status || rc) {
11718 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11719 					"0495 SLI_FUNCTION_RESET mailbox "
11720 					"failed with status x%x add_status x%x,"
11721 					" mbx status x%x\n",
11722 					shdr_status, shdr_add_status, rc);
11723 			rc = -ENXIO;
11724 		}
11725 		break;
11726 	case LPFC_SLI_INTF_IF_TYPE_2:
11727 	case LPFC_SLI_INTF_IF_TYPE_6:
11728 wait:
11729 		/*
11730 		 * Poll the Port Status Register and wait for RDY for
11731 		 * up to 30 seconds. If the port doesn't respond, treat
11732 		 * it as an error.
11733 		 */
11734 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11735 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11736 				STATUSregaddr, &reg_data.word0)) {
11737 				rc = -ENODEV;
11738 				goto out;
11739 			}
11740 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11741 				break;
11742 			msleep(20);
11743 		}
11744 
11745 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11746 			phba->work_status[0] = readl(
11747 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11748 			phba->work_status[1] = readl(
11749 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11750 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11751 					"2890 Port not ready, port status reg "
11752 					"0x%x error 1=0x%x, error 2=0x%x\n",
11753 					reg_data.word0,
11754 					phba->work_status[0],
11755 					phba->work_status[1]);
11756 			rc = -ENODEV;
11757 			goto out;
11758 		}
11759 
11760 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11761 			lpfc_pldv_detect = true;
11762 
11763 		if (!port_reset) {
11764 			/*
11765 			 * Reset the port now
11766 			 */
11767 			reg_data.word0 = 0;
11768 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11769 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11770 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11771 			       LPFC_SLIPORT_INIT_PORT);
11772 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11773 			       CTRLregaddr);
11774 			/* flush */
11775 			pci_read_config_word(phba->pcidev,
11776 					     PCI_DEVICE_ID, &devid);
11777 
11778 			port_reset = 1;
11779 			msleep(20);
11780 			goto wait;
11781 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11782 			rc = -ENODEV;
11783 			goto out;
11784 		}
11785 		break;
11786 
11787 	case LPFC_SLI_INTF_IF_TYPE_1:
11788 	default:
11789 		break;
11790 	}
11791 
11792 out:
11793 	/* Catch the not-ready port failure after a port reset. */
11794 	if (rc) {
11795 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11796 				"3317 HBA not functional: IP Reset Failed "
11797 				"try: echo fw_reset > board_mode\n");
11798 		rc = -ENODEV;
11799 	}
11800 
11801 	return rc;
11802 }
11803 
11804 /**
11805  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11806  * @phba: pointer to lpfc hba data structure.
11807  *
11808  * This routine is invoked to set up the PCI device memory space for device
11809  * with SLI-4 interface spec.
11810  *
11811  * Return codes
11812  * 	0 - successful
11813  * 	other values - error
11814  **/
11815 static int
11816 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11817 {
11818 	struct pci_dev *pdev = phba->pcidev;
11819 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11820 	int error;
11821 	uint32_t if_type;
11822 
11823 	if (!pdev)
11824 		return -ENODEV;
11825 
11826 	/* Set the device DMA mask size */
11827 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11828 	if (error)
11829 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11830 	if (error)
11831 		return error;
11832 
11833 	/*
11834 	 * The BARs and register set definitions and offset locations are
11835 	 * dependent on the if_type.
11836 	 */
11837 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11838 				  &phba->sli4_hba.sli_intf.word0)) {
11839 		return -ENODEV;
11840 	}
11841 
11842 	/* There is no SLI3 failback for SLI4 devices. */
11843 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11844 	    LPFC_SLI_INTF_VALID) {
11845 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11846 				"2894 SLI_INTF reg contents invalid "
11847 				"sli_intf reg 0x%x\n",
11848 				phba->sli4_hba.sli_intf.word0);
11849 		return -ENODEV;
11850 	}
11851 
11852 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11853 	/*
11854 	 * Get the bus address of SLI4 device Bar regions and the
11855 	 * number of bytes required by each mapping. The mapping of the
11856 	 * particular PCI BARs regions is dependent on the type of
11857 	 * SLI4 device.
11858 	 */
11859 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11860 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11861 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11862 
11863 		/*
11864 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11865 		 * addr
11866 		 */
11867 		phba->sli4_hba.conf_regs_memmap_p =
11868 			ioremap(phba->pci_bar0_map, bar0map_len);
11869 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11870 			dev_printk(KERN_ERR, &pdev->dev,
11871 				   "ioremap failed for SLI4 PCI config "
11872 				   "registers.\n");
11873 			return -ENODEV;
11874 		}
11875 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11876 		/* Set up BAR0 PCI config space register memory map */
11877 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11878 	} else {
11879 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11880 		bar0map_len = pci_resource_len(pdev, 1);
11881 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11882 			dev_printk(KERN_ERR, &pdev->dev,
11883 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11884 			return -ENODEV;
11885 		}
11886 		phba->sli4_hba.conf_regs_memmap_p =
11887 				ioremap(phba->pci_bar0_map, bar0map_len);
11888 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11889 			dev_printk(KERN_ERR, &pdev->dev,
11890 				"ioremap failed for SLI4 PCI config "
11891 				"registers.\n");
11892 			return -ENODEV;
11893 		}
11894 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11895 	}
11896 
11897 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11898 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11899 			/*
11900 			 * Map SLI4 if type 0 HBA Control Register base to a
11901 			 * kernel virtual address and setup the registers.
11902 			 */
11903 			phba->pci_bar1_map = pci_resource_start(pdev,
11904 								PCI_64BIT_BAR2);
11905 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11906 			phba->sli4_hba.ctrl_regs_memmap_p =
11907 					ioremap(phba->pci_bar1_map,
11908 						bar1map_len);
11909 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11910 				dev_err(&pdev->dev,
11911 					   "ioremap failed for SLI4 HBA "
11912 					    "control registers.\n");
11913 				error = -ENOMEM;
11914 				goto out_iounmap_conf;
11915 			}
11916 			phba->pci_bar2_memmap_p =
11917 					 phba->sli4_hba.ctrl_regs_memmap_p;
11918 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11919 		} else {
11920 			error = -ENOMEM;
11921 			goto out_iounmap_conf;
11922 		}
11923 	}
11924 
11925 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11926 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11927 		/*
11928 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11929 		 * virtual address and setup the registers.
11930 		 */
11931 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11932 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11933 		phba->sli4_hba.drbl_regs_memmap_p =
11934 				ioremap(phba->pci_bar1_map, bar1map_len);
11935 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11936 			dev_err(&pdev->dev,
11937 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11938 			error = -ENOMEM;
11939 			goto out_iounmap_conf;
11940 		}
11941 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11942 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11943 	}
11944 
11945 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11946 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11947 			/*
11948 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11949 			 * a kernel virtual address and setup the registers.
11950 			 */
11951 			phba->pci_bar2_map = pci_resource_start(pdev,
11952 								PCI_64BIT_BAR4);
11953 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11954 			phba->sli4_hba.drbl_regs_memmap_p =
11955 					ioremap(phba->pci_bar2_map,
11956 						bar2map_len);
11957 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11958 				dev_err(&pdev->dev,
11959 					   "ioremap failed for SLI4 HBA"
11960 					   " doorbell registers.\n");
11961 				error = -ENOMEM;
11962 				goto out_iounmap_ctrl;
11963 			}
11964 			phba->pci_bar4_memmap_p =
11965 					phba->sli4_hba.drbl_regs_memmap_p;
11966 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11967 			if (error)
11968 				goto out_iounmap_all;
11969 		} else {
11970 			error = -ENOMEM;
11971 			goto out_iounmap_all;
11972 		}
11973 	}
11974 
11975 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11976 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11977 		/*
11978 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11979 		 * virtual address and setup the registers.
11980 		 */
11981 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11982 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11983 		phba->sli4_hba.dpp_regs_memmap_p =
11984 				ioremap(phba->pci_bar2_map, bar2map_len);
11985 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11986 			dev_err(&pdev->dev,
11987 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11988 			error = -ENOMEM;
11989 			goto out_iounmap_ctrl;
11990 		}
11991 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11992 	}
11993 
11994 	/* Set up the EQ/CQ register handeling functions now */
11995 	switch (if_type) {
11996 	case LPFC_SLI_INTF_IF_TYPE_0:
11997 	case LPFC_SLI_INTF_IF_TYPE_2:
11998 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11999 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12000 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12001 		break;
12002 	case LPFC_SLI_INTF_IF_TYPE_6:
12003 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12004 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12005 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12006 		break;
12007 	default:
12008 		break;
12009 	}
12010 
12011 	return 0;
12012 
12013 out_iounmap_all:
12014 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12015 out_iounmap_ctrl:
12016 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12017 out_iounmap_conf:
12018 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12019 
12020 	return error;
12021 }
12022 
12023 /**
12024  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12025  * @phba: pointer to lpfc hba data structure.
12026  *
12027  * This routine is invoked to unset the PCI device memory space for device
12028  * with SLI-4 interface spec.
12029  **/
12030 static void
12031 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12032 {
12033 	uint32_t if_type;
12034 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12035 
12036 	switch (if_type) {
12037 	case LPFC_SLI_INTF_IF_TYPE_0:
12038 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12039 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12040 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12041 		break;
12042 	case LPFC_SLI_INTF_IF_TYPE_2:
12043 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12044 		break;
12045 	case LPFC_SLI_INTF_IF_TYPE_6:
12046 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12047 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12048 		if (phba->sli4_hba.dpp_regs_memmap_p)
12049 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12050 		break;
12051 	case LPFC_SLI_INTF_IF_TYPE_1:
12052 	default:
12053 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12054 			   "FATAL - unsupported SLI4 interface type - %d\n",
12055 			   if_type);
12056 		break;
12057 	}
12058 }
12059 
12060 /**
12061  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12062  * @phba: pointer to lpfc hba data structure.
12063  *
12064  * This routine is invoked to enable the MSI-X interrupt vectors to device
12065  * with SLI-3 interface specs.
12066  *
12067  * Return codes
12068  *   0 - successful
12069  *   other values - error
12070  **/
12071 static int
12072 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12073 {
12074 	int rc;
12075 	LPFC_MBOXQ_t *pmb;
12076 
12077 	/* Set up MSI-X multi-message vectors */
12078 	rc = pci_alloc_irq_vectors(phba->pcidev,
12079 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12080 	if (rc < 0) {
12081 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12082 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12083 		goto vec_fail_out;
12084 	}
12085 
12086 	/*
12087 	 * Assign MSI-X vectors to interrupt handlers
12088 	 */
12089 
12090 	/* vector-0 is associated to slow-path handler */
12091 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12092 			 &lpfc_sli_sp_intr_handler, 0,
12093 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12094 	if (rc) {
12095 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12096 				"0421 MSI-X slow-path request_irq failed "
12097 				"(%d)\n", rc);
12098 		goto msi_fail_out;
12099 	}
12100 
12101 	/* vector-1 is associated to fast-path handler */
12102 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12103 			 &lpfc_sli_fp_intr_handler, 0,
12104 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12105 
12106 	if (rc) {
12107 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12108 				"0429 MSI-X fast-path request_irq failed "
12109 				"(%d)\n", rc);
12110 		goto irq_fail_out;
12111 	}
12112 
12113 	/*
12114 	 * Configure HBA MSI-X attention conditions to messages
12115 	 */
12116 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12117 
12118 	if (!pmb) {
12119 		rc = -ENOMEM;
12120 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12121 				"0474 Unable to allocate memory for issuing "
12122 				"MBOX_CONFIG_MSI command\n");
12123 		goto mem_fail_out;
12124 	}
12125 	rc = lpfc_config_msi(phba, pmb);
12126 	if (rc)
12127 		goto mbx_fail_out;
12128 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12129 	if (rc != MBX_SUCCESS) {
12130 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12131 				"0351 Config MSI mailbox command failed, "
12132 				"mbxCmd x%x, mbxStatus x%x\n",
12133 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12134 		goto mbx_fail_out;
12135 	}
12136 
12137 	/* Free memory allocated for mailbox command */
12138 	mempool_free(pmb, phba->mbox_mem_pool);
12139 	return rc;
12140 
12141 mbx_fail_out:
12142 	/* Free memory allocated for mailbox command */
12143 	mempool_free(pmb, phba->mbox_mem_pool);
12144 
12145 mem_fail_out:
12146 	/* free the irq already requested */
12147 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12148 
12149 irq_fail_out:
12150 	/* free the irq already requested */
12151 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12152 
12153 msi_fail_out:
12154 	/* Unconfigure MSI-X capability structure */
12155 	pci_free_irq_vectors(phba->pcidev);
12156 
12157 vec_fail_out:
12158 	return rc;
12159 }
12160 
12161 /**
12162  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12163  * @phba: pointer to lpfc hba data structure.
12164  *
12165  * This routine is invoked to enable the MSI interrupt mode to device with
12166  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12167  * enable the MSI vector. The device driver is responsible for calling the
12168  * request_irq() to register MSI vector with a interrupt the handler, which
12169  * is done in this function.
12170  *
12171  * Return codes
12172  * 	0 - successful
12173  * 	other values - error
12174  */
12175 static int
12176 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12177 {
12178 	int rc;
12179 
12180 	rc = pci_enable_msi(phba->pcidev);
12181 	if (!rc)
12182 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12183 				"0012 PCI enable MSI mode success.\n");
12184 	else {
12185 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12186 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12187 		return rc;
12188 	}
12189 
12190 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12191 			 0, LPFC_DRIVER_NAME, phba);
12192 	if (rc) {
12193 		pci_disable_msi(phba->pcidev);
12194 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12195 				"0478 MSI request_irq failed (%d)\n", rc);
12196 	}
12197 	return rc;
12198 }
12199 
12200 /**
12201  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12202  * @phba: pointer to lpfc hba data structure.
12203  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12204  *
12205  * This routine is invoked to enable device interrupt and associate driver's
12206  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12207  * spec. Depends on the interrupt mode configured to the driver, the driver
12208  * will try to fallback from the configured interrupt mode to an interrupt
12209  * mode which is supported by the platform, kernel, and device in the order
12210  * of:
12211  * MSI-X -> MSI -> IRQ.
12212  *
12213  * Return codes
12214  *   0 - successful
12215  *   other values - error
12216  **/
12217 static uint32_t
12218 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12219 {
12220 	uint32_t intr_mode = LPFC_INTR_ERROR;
12221 	int retval;
12222 
12223 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12224 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12225 	if (retval)
12226 		return intr_mode;
12227 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12228 
12229 	if (cfg_mode == 2) {
12230 		/* Now, try to enable MSI-X interrupt mode */
12231 		retval = lpfc_sli_enable_msix(phba);
12232 		if (!retval) {
12233 			/* Indicate initialization to MSI-X mode */
12234 			phba->intr_type = MSIX;
12235 			intr_mode = 2;
12236 		}
12237 	}
12238 
12239 	/* Fallback to MSI if MSI-X initialization failed */
12240 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12241 		retval = lpfc_sli_enable_msi(phba);
12242 		if (!retval) {
12243 			/* Indicate initialization to MSI mode */
12244 			phba->intr_type = MSI;
12245 			intr_mode = 1;
12246 		}
12247 	}
12248 
12249 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12250 	if (phba->intr_type == NONE) {
12251 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12252 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12253 		if (!retval) {
12254 			/* Indicate initialization to INTx mode */
12255 			phba->intr_type = INTx;
12256 			intr_mode = 0;
12257 		}
12258 	}
12259 	return intr_mode;
12260 }
12261 
12262 /**
12263  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12264  * @phba: pointer to lpfc hba data structure.
12265  *
12266  * This routine is invoked to disable device interrupt and disassociate the
12267  * driver's interrupt handler(s) from interrupt vector(s) to device with
12268  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12269  * release the interrupt vector(s) for the message signaled interrupt.
12270  **/
12271 static void
12272 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12273 {
12274 	int nr_irqs, i;
12275 
12276 	if (phba->intr_type == MSIX)
12277 		nr_irqs = LPFC_MSIX_VECTORS;
12278 	else
12279 		nr_irqs = 1;
12280 
12281 	for (i = 0; i < nr_irqs; i++)
12282 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12283 	pci_free_irq_vectors(phba->pcidev);
12284 
12285 	/* Reset interrupt management states */
12286 	phba->intr_type = NONE;
12287 	phba->sli.slistat.sli_intr = 0;
12288 }
12289 
12290 /**
12291  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12292  * @phba: pointer to lpfc hba data structure.
12293  * @id: EQ vector index or Hardware Queue index
12294  * @match: LPFC_FIND_BY_EQ = match by EQ
12295  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12296  * Return the CPU that matches the selection criteria
12297  */
12298 static uint16_t
12299 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12300 {
12301 	struct lpfc_vector_map_info *cpup;
12302 	int cpu;
12303 
12304 	/* Loop through all CPUs */
12305 	for_each_present_cpu(cpu) {
12306 		cpup = &phba->sli4_hba.cpu_map[cpu];
12307 
12308 		/* If we are matching by EQ, there may be multiple CPUs using
12309 		 * using the same vector, so select the one with
12310 		 * LPFC_CPU_FIRST_IRQ set.
12311 		 */
12312 		if ((match == LPFC_FIND_BY_EQ) &&
12313 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12314 		    (cpup->eq == id))
12315 			return cpu;
12316 
12317 		/* If matching by HDWQ, select the first CPU that matches */
12318 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12319 			return cpu;
12320 	}
12321 	return 0;
12322 }
12323 
12324 #ifdef CONFIG_X86
12325 /**
12326  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12327  * @phba: pointer to lpfc hba data structure.
12328  * @cpu: CPU map index
12329  * @phys_id: CPU package physical id
12330  * @core_id: CPU core id
12331  */
12332 static int
12333 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12334 		uint16_t phys_id, uint16_t core_id)
12335 {
12336 	struct lpfc_vector_map_info *cpup;
12337 	int idx;
12338 
12339 	for_each_present_cpu(idx) {
12340 		cpup = &phba->sli4_hba.cpu_map[idx];
12341 		/* Does the cpup match the one we are looking for */
12342 		if ((cpup->phys_id == phys_id) &&
12343 		    (cpup->core_id == core_id) &&
12344 		    (cpu != idx))
12345 			return 1;
12346 	}
12347 	return 0;
12348 }
12349 #endif
12350 
12351 /*
12352  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12353  * @phba: pointer to lpfc hba data structure.
12354  * @eqidx: index for eq and irq vector
12355  * @flag: flags to set for vector_map structure
12356  * @cpu: cpu used to index vector_map structure
12357  *
12358  * The routine assigns eq info into vector_map structure
12359  */
12360 static inline void
12361 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12362 			unsigned int cpu)
12363 {
12364 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12365 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12366 
12367 	cpup->eq = eqidx;
12368 	cpup->flag |= flag;
12369 
12370 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12371 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12372 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12373 }
12374 
12375 /**
12376  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12377  * @phba: pointer to lpfc hba data structure.
12378  *
12379  * The routine initializes the cpu_map array structure
12380  */
12381 static void
12382 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12383 {
12384 	struct lpfc_vector_map_info *cpup;
12385 	struct lpfc_eq_intr_info *eqi;
12386 	int cpu;
12387 
12388 	for_each_possible_cpu(cpu) {
12389 		cpup = &phba->sli4_hba.cpu_map[cpu];
12390 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12391 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12392 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12393 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12394 		cpup->flag = 0;
12395 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12396 		INIT_LIST_HEAD(&eqi->list);
12397 		eqi->icnt = 0;
12398 	}
12399 }
12400 
12401 /**
12402  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12403  * @phba: pointer to lpfc hba data structure.
12404  *
12405  * The routine initializes the hba_eq_hdl array structure
12406  */
12407 static void
12408 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12409 {
12410 	struct lpfc_hba_eq_hdl *eqhdl;
12411 	int i;
12412 
12413 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12414 		eqhdl = lpfc_get_eq_hdl(i);
12415 		eqhdl->irq = LPFC_IRQ_EMPTY;
12416 		eqhdl->phba = phba;
12417 	}
12418 }
12419 
12420 /**
12421  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12422  * @phba: pointer to lpfc hba data structure.
12423  * @vectors: number of msix vectors allocated.
12424  *
12425  * The routine will figure out the CPU affinity assignment for every
12426  * MSI-X vector allocated for the HBA.
12427  * In addition, the CPU to IO channel mapping will be calculated
12428  * and the phba->sli4_hba.cpu_map array will reflect this.
12429  */
12430 static void
12431 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12432 {
12433 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12434 	int max_phys_id, min_phys_id;
12435 	int max_core_id, min_core_id;
12436 	struct lpfc_vector_map_info *cpup;
12437 	struct lpfc_vector_map_info *new_cpup;
12438 #ifdef CONFIG_X86
12439 	struct cpuinfo_x86 *cpuinfo;
12440 #endif
12441 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12442 	struct lpfc_hdwq_stat *c_stat;
12443 #endif
12444 
12445 	max_phys_id = 0;
12446 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12447 	max_core_id = 0;
12448 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12449 
12450 	/* Update CPU map with physical id and core id of each CPU */
12451 	for_each_present_cpu(cpu) {
12452 		cpup = &phba->sli4_hba.cpu_map[cpu];
12453 #ifdef CONFIG_X86
12454 		cpuinfo = &cpu_data(cpu);
12455 		cpup->phys_id = cpuinfo->phys_proc_id;
12456 		cpup->core_id = cpuinfo->cpu_core_id;
12457 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12458 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12459 #else
12460 		/* No distinction between CPUs for other platforms */
12461 		cpup->phys_id = 0;
12462 		cpup->core_id = cpu;
12463 #endif
12464 
12465 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12466 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12467 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12468 
12469 		if (cpup->phys_id > max_phys_id)
12470 			max_phys_id = cpup->phys_id;
12471 		if (cpup->phys_id < min_phys_id)
12472 			min_phys_id = cpup->phys_id;
12473 
12474 		if (cpup->core_id > max_core_id)
12475 			max_core_id = cpup->core_id;
12476 		if (cpup->core_id < min_core_id)
12477 			min_core_id = cpup->core_id;
12478 	}
12479 
12480 	/* After looking at each irq vector assigned to this pcidev, its
12481 	 * possible to see that not ALL CPUs have been accounted for.
12482 	 * Next we will set any unassigned (unaffinitized) cpu map
12483 	 * entries to a IRQ on the same phys_id.
12484 	 */
12485 	first_cpu = cpumask_first(cpu_present_mask);
12486 	start_cpu = first_cpu;
12487 
12488 	for_each_present_cpu(cpu) {
12489 		cpup = &phba->sli4_hba.cpu_map[cpu];
12490 
12491 		/* Is this CPU entry unassigned */
12492 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12493 			/* Mark CPU as IRQ not assigned by the kernel */
12494 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12495 
12496 			/* If so, find a new_cpup thats on the the SAME
12497 			 * phys_id as cpup. start_cpu will start where we
12498 			 * left off so all unassigned entries don't get assgined
12499 			 * the IRQ of the first entry.
12500 			 */
12501 			new_cpu = start_cpu;
12502 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12503 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12504 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12505 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12506 				    (new_cpup->phys_id == cpup->phys_id))
12507 					goto found_same;
12508 				new_cpu = cpumask_next(
12509 					new_cpu, cpu_present_mask);
12510 				if (new_cpu == nr_cpumask_bits)
12511 					new_cpu = first_cpu;
12512 			}
12513 			/* At this point, we leave the CPU as unassigned */
12514 			continue;
12515 found_same:
12516 			/* We found a matching phys_id, so copy the IRQ info */
12517 			cpup->eq = new_cpup->eq;
12518 
12519 			/* Bump start_cpu to the next slot to minmize the
12520 			 * chance of having multiple unassigned CPU entries
12521 			 * selecting the same IRQ.
12522 			 */
12523 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12524 			if (start_cpu == nr_cpumask_bits)
12525 				start_cpu = first_cpu;
12526 
12527 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12528 					"3337 Set Affinity: CPU %d "
12529 					"eq %d from peer cpu %d same "
12530 					"phys_id (%d)\n",
12531 					cpu, cpup->eq, new_cpu,
12532 					cpup->phys_id);
12533 		}
12534 	}
12535 
12536 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12537 	start_cpu = first_cpu;
12538 
12539 	for_each_present_cpu(cpu) {
12540 		cpup = &phba->sli4_hba.cpu_map[cpu];
12541 
12542 		/* Is this entry unassigned */
12543 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12544 			/* Mark it as IRQ not assigned by the kernel */
12545 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12546 
12547 			/* If so, find a new_cpup thats on ANY phys_id
12548 			 * as the cpup. start_cpu will start where we
12549 			 * left off so all unassigned entries don't get
12550 			 * assigned the IRQ of the first entry.
12551 			 */
12552 			new_cpu = start_cpu;
12553 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12554 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12555 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12556 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12557 					goto found_any;
12558 				new_cpu = cpumask_next(
12559 					new_cpu, cpu_present_mask);
12560 				if (new_cpu == nr_cpumask_bits)
12561 					new_cpu = first_cpu;
12562 			}
12563 			/* We should never leave an entry unassigned */
12564 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12565 					"3339 Set Affinity: CPU %d "
12566 					"eq %d UNASSIGNED\n",
12567 					cpup->hdwq, cpup->eq);
12568 			continue;
12569 found_any:
12570 			/* We found an available entry, copy the IRQ info */
12571 			cpup->eq = new_cpup->eq;
12572 
12573 			/* Bump start_cpu to the next slot to minmize the
12574 			 * chance of having multiple unassigned CPU entries
12575 			 * selecting the same IRQ.
12576 			 */
12577 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12578 			if (start_cpu == nr_cpumask_bits)
12579 				start_cpu = first_cpu;
12580 
12581 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12582 					"3338 Set Affinity: CPU %d "
12583 					"eq %d from peer cpu %d (%d/%d)\n",
12584 					cpu, cpup->eq, new_cpu,
12585 					new_cpup->phys_id, new_cpup->core_id);
12586 		}
12587 	}
12588 
12589 	/* Assign hdwq indices that are unique across all cpus in the map
12590 	 * that are also FIRST_CPUs.
12591 	 */
12592 	idx = 0;
12593 	for_each_present_cpu(cpu) {
12594 		cpup = &phba->sli4_hba.cpu_map[cpu];
12595 
12596 		/* Only FIRST IRQs get a hdwq index assignment. */
12597 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12598 			continue;
12599 
12600 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12601 		cpup->hdwq = idx;
12602 		idx++;
12603 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12604 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12605 				"hdwq %d eq %d flg x%x\n",
12606 				cpu, cpup->phys_id, cpup->core_id,
12607 				cpup->hdwq, cpup->eq, cpup->flag);
12608 	}
12609 	/* Associate a hdwq with each cpu_map entry
12610 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12611 	 * hardware queues then CPUs. For that case we will just round-robin
12612 	 * the available hardware queues as they get assigned to CPUs.
12613 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12614 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12615 	 * and needs to start at 0.
12616 	 */
12617 	next_idx = idx;
12618 	start_cpu = 0;
12619 	idx = 0;
12620 	for_each_present_cpu(cpu) {
12621 		cpup = &phba->sli4_hba.cpu_map[cpu];
12622 
12623 		/* FIRST cpus are already mapped. */
12624 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12625 			continue;
12626 
12627 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12628 		 * of the unassigned cpus to the next idx so that all
12629 		 * hdw queues are fully utilized.
12630 		 */
12631 		if (next_idx < phba->cfg_hdw_queue) {
12632 			cpup->hdwq = next_idx;
12633 			next_idx++;
12634 			continue;
12635 		}
12636 
12637 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12638 		 * Hardware Queue for another CPU, so be smart about it
12639 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12640 		 * (CPU package) and core_id.
12641 		 */
12642 		new_cpu = start_cpu;
12643 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12644 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12645 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12646 			    new_cpup->phys_id == cpup->phys_id &&
12647 			    new_cpup->core_id == cpup->core_id) {
12648 				goto found_hdwq;
12649 			}
12650 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12651 			if (new_cpu == nr_cpumask_bits)
12652 				new_cpu = first_cpu;
12653 		}
12654 
12655 		/* If we can't match both phys_id and core_id,
12656 		 * settle for just a phys_id match.
12657 		 */
12658 		new_cpu = start_cpu;
12659 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12660 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12661 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12662 			    new_cpup->phys_id == cpup->phys_id)
12663 				goto found_hdwq;
12664 
12665 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12666 			if (new_cpu == nr_cpumask_bits)
12667 				new_cpu = first_cpu;
12668 		}
12669 
12670 		/* Otherwise just round robin on cfg_hdw_queue */
12671 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12672 		idx++;
12673 		goto logit;
12674  found_hdwq:
12675 		/* We found an available entry, copy the IRQ info */
12676 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12677 		if (start_cpu == nr_cpumask_bits)
12678 			start_cpu = first_cpu;
12679 		cpup->hdwq = new_cpup->hdwq;
12680  logit:
12681 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12682 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12683 				"hdwq %d eq %d flg x%x\n",
12684 				cpu, cpup->phys_id, cpup->core_id,
12685 				cpup->hdwq, cpup->eq, cpup->flag);
12686 	}
12687 
12688 	/*
12689 	 * Initialize the cpu_map slots for not-present cpus in case
12690 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12691 	 */
12692 	idx = 0;
12693 	for_each_possible_cpu(cpu) {
12694 		cpup = &phba->sli4_hba.cpu_map[cpu];
12695 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12696 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12697 		c_stat->hdwq_no = cpup->hdwq;
12698 #endif
12699 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12700 			continue;
12701 
12702 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12703 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12704 		c_stat->hdwq_no = cpup->hdwq;
12705 #endif
12706 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12707 				"3340 Set Affinity: not present "
12708 				"CPU %d hdwq %d\n",
12709 				cpu, cpup->hdwq);
12710 	}
12711 
12712 	/* The cpu_map array will be used later during initialization
12713 	 * when EQ / CQ / WQs are allocated and configured.
12714 	 */
12715 	return;
12716 }
12717 
12718 /**
12719  * lpfc_cpuhp_get_eq
12720  *
12721  * @phba:   pointer to lpfc hba data structure.
12722  * @cpu:    cpu going offline
12723  * @eqlist: eq list to append to
12724  */
12725 static int
12726 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12727 		  struct list_head *eqlist)
12728 {
12729 	const struct cpumask *maskp;
12730 	struct lpfc_queue *eq;
12731 	struct cpumask *tmp;
12732 	u16 idx;
12733 
12734 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12735 	if (!tmp)
12736 		return -ENOMEM;
12737 
12738 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12739 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12740 		if (!maskp)
12741 			continue;
12742 		/*
12743 		 * if irq is not affinitized to the cpu going
12744 		 * then we don't need to poll the eq attached
12745 		 * to it.
12746 		 */
12747 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12748 			continue;
12749 		/* get the cpus that are online and are affini-
12750 		 * tized to this irq vector.  If the count is
12751 		 * more than 1 then cpuhp is not going to shut-
12752 		 * down this vector.  Since this cpu has not
12753 		 * gone offline yet, we need >1.
12754 		 */
12755 		cpumask_and(tmp, maskp, cpu_online_mask);
12756 		if (cpumask_weight(tmp) > 1)
12757 			continue;
12758 
12759 		/* Now that we have an irq to shutdown, get the eq
12760 		 * mapped to this irq.  Note: multiple hdwq's in
12761 		 * the software can share an eq, but eventually
12762 		 * only eq will be mapped to this vector
12763 		 */
12764 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12765 		list_add(&eq->_poll_list, eqlist);
12766 	}
12767 	kfree(tmp);
12768 	return 0;
12769 }
12770 
12771 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12772 {
12773 	if (phba->sli_rev != LPFC_SLI_REV4)
12774 		return;
12775 
12776 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12777 					    &phba->cpuhp);
12778 	/*
12779 	 * unregistering the instance doesn't stop the polling
12780 	 * timer. Wait for the poll timer to retire.
12781 	 */
12782 	synchronize_rcu();
12783 	del_timer_sync(&phba->cpuhp_poll_timer);
12784 }
12785 
12786 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12787 {
12788 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12789 		return;
12790 
12791 	__lpfc_cpuhp_remove(phba);
12792 }
12793 
12794 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12795 {
12796 	if (phba->sli_rev != LPFC_SLI_REV4)
12797 		return;
12798 
12799 	rcu_read_lock();
12800 
12801 	if (!list_empty(&phba->poll_list))
12802 		mod_timer(&phba->cpuhp_poll_timer,
12803 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12804 
12805 	rcu_read_unlock();
12806 
12807 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12808 					 &phba->cpuhp);
12809 }
12810 
12811 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12812 {
12813 	if (phba->pport->load_flag & FC_UNLOADING) {
12814 		*retval = -EAGAIN;
12815 		return true;
12816 	}
12817 
12818 	if (phba->sli_rev != LPFC_SLI_REV4) {
12819 		*retval = 0;
12820 		return true;
12821 	}
12822 
12823 	/* proceed with the hotplug */
12824 	return false;
12825 }
12826 
12827 /**
12828  * lpfc_irq_set_aff - set IRQ affinity
12829  * @eqhdl: EQ handle
12830  * @cpu: cpu to set affinity
12831  *
12832  **/
12833 static inline void
12834 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12835 {
12836 	cpumask_clear(&eqhdl->aff_mask);
12837 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12838 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12839 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12840 }
12841 
12842 /**
12843  * lpfc_irq_clear_aff - clear IRQ affinity
12844  * @eqhdl: EQ handle
12845  *
12846  **/
12847 static inline void
12848 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12849 {
12850 	cpumask_clear(&eqhdl->aff_mask);
12851 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12852 }
12853 
12854 /**
12855  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12856  * @phba: pointer to HBA context object.
12857  * @cpu: cpu going offline/online
12858  * @offline: true, cpu is going offline. false, cpu is coming online.
12859  *
12860  * If cpu is going offline, we'll try our best effort to find the next
12861  * online cpu on the phba's original_mask and migrate all offlining IRQ
12862  * affinities.
12863  *
12864  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12865  *
12866  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12867  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12868  *
12869  **/
12870 static void
12871 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12872 {
12873 	struct lpfc_vector_map_info *cpup;
12874 	struct cpumask *aff_mask;
12875 	unsigned int cpu_select, cpu_next, idx;
12876 	const struct cpumask *orig_mask;
12877 
12878 	if (phba->irq_chann_mode == NORMAL_MODE)
12879 		return;
12880 
12881 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12882 
12883 	if (!cpumask_test_cpu(cpu, orig_mask))
12884 		return;
12885 
12886 	cpup = &phba->sli4_hba.cpu_map[cpu];
12887 
12888 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12889 		return;
12890 
12891 	if (offline) {
12892 		/* Find next online CPU on original mask */
12893 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12894 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12895 
12896 		/* Found a valid CPU */
12897 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12898 			/* Go through each eqhdl and ensure offlining
12899 			 * cpu aff_mask is migrated
12900 			 */
12901 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12902 				aff_mask = lpfc_get_aff_mask(idx);
12903 
12904 				/* Migrate affinity */
12905 				if (cpumask_test_cpu(cpu, aff_mask))
12906 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12907 							 cpu_select);
12908 			}
12909 		} else {
12910 			/* Rely on irqbalance if no online CPUs left on NUMA */
12911 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12912 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12913 		}
12914 	} else {
12915 		/* Migrate affinity back to this CPU */
12916 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12917 	}
12918 }
12919 
12920 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12921 {
12922 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12923 	struct lpfc_queue *eq, *next;
12924 	LIST_HEAD(eqlist);
12925 	int retval;
12926 
12927 	if (!phba) {
12928 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12929 		return 0;
12930 	}
12931 
12932 	if (__lpfc_cpuhp_checks(phba, &retval))
12933 		return retval;
12934 
12935 	lpfc_irq_rebalance(phba, cpu, true);
12936 
12937 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12938 	if (retval)
12939 		return retval;
12940 
12941 	/* start polling on these eq's */
12942 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12943 		list_del_init(&eq->_poll_list);
12944 		lpfc_sli4_start_polling(eq);
12945 	}
12946 
12947 	return 0;
12948 }
12949 
12950 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12951 {
12952 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12953 	struct lpfc_queue *eq, *next;
12954 	unsigned int n;
12955 	int retval;
12956 
12957 	if (!phba) {
12958 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12959 		return 0;
12960 	}
12961 
12962 	if (__lpfc_cpuhp_checks(phba, &retval))
12963 		return retval;
12964 
12965 	lpfc_irq_rebalance(phba, cpu, false);
12966 
12967 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12968 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12969 		if (n == cpu)
12970 			lpfc_sli4_stop_polling(eq);
12971 	}
12972 
12973 	return 0;
12974 }
12975 
12976 /**
12977  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12978  * @phba: pointer to lpfc hba data structure.
12979  *
12980  * This routine is invoked to enable the MSI-X interrupt vectors to device
12981  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12982  * to cpus on the system.
12983  *
12984  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12985  * the number of cpus on the same numa node as this adapter.  The vectors are
12986  * allocated without requesting OS affinity mapping.  A vector will be
12987  * allocated and assigned to each online and offline cpu.  If the cpu is
12988  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12989  * affinity will be set to the nearest peer cpu within the numa node that is
12990  * online.  If there are no online cpus within the numa node, affinity is not
12991  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12992  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12993  * configured.
12994  *
12995  * If numa mode is not enabled and there is more than 1 vector allocated, then
12996  * the driver relies on the managed irq interface where the OS assigns vector to
12997  * cpu affinity.  The driver will then use that affinity mapping to setup its
12998  * cpu mapping table.
12999  *
13000  * Return codes
13001  * 0 - successful
13002  * other values - error
13003  **/
13004 static int
13005 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13006 {
13007 	int vectors, rc, index;
13008 	char *name;
13009 	const struct cpumask *aff_mask = NULL;
13010 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13011 	struct lpfc_vector_map_info *cpup;
13012 	struct lpfc_hba_eq_hdl *eqhdl;
13013 	const struct cpumask *maskp;
13014 	unsigned int flags = PCI_IRQ_MSIX;
13015 
13016 	/* Set up MSI-X multi-message vectors */
13017 	vectors = phba->cfg_irq_chann;
13018 
13019 	if (phba->irq_chann_mode != NORMAL_MODE)
13020 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13021 
13022 	if (aff_mask) {
13023 		cpu_cnt = cpumask_weight(aff_mask);
13024 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13025 
13026 		/* cpu: iterates over aff_mask including offline or online
13027 		 * cpu_select: iterates over online aff_mask to set affinity
13028 		 */
13029 		cpu = cpumask_first(aff_mask);
13030 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13031 	} else {
13032 		flags |= PCI_IRQ_AFFINITY;
13033 	}
13034 
13035 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13036 	if (rc < 0) {
13037 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13038 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13039 		goto vec_fail_out;
13040 	}
13041 	vectors = rc;
13042 
13043 	/* Assign MSI-X vectors to interrupt handlers */
13044 	for (index = 0; index < vectors; index++) {
13045 		eqhdl = lpfc_get_eq_hdl(index);
13046 		name = eqhdl->handler_name;
13047 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13048 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13049 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13050 
13051 		eqhdl->idx = index;
13052 		rc = pci_irq_vector(phba->pcidev, index);
13053 		if (rc < 0) {
13054 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13055 					"0489 MSI-X fast-path (%d) "
13056 					"pci_irq_vec failed (%d)\n", index, rc);
13057 			goto cfg_fail_out;
13058 		}
13059 		eqhdl->irq = rc;
13060 
13061 		rc = request_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, 0,
13062 				 name, eqhdl);
13063 		if (rc) {
13064 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13065 					"0486 MSI-X fast-path (%d) "
13066 					"request_irq failed (%d)\n", index, rc);
13067 			goto cfg_fail_out;
13068 		}
13069 
13070 		if (aff_mask) {
13071 			/* If found a neighboring online cpu, set affinity */
13072 			if (cpu_select < nr_cpu_ids)
13073 				lpfc_irq_set_aff(eqhdl, cpu_select);
13074 
13075 			/* Assign EQ to cpu_map */
13076 			lpfc_assign_eq_map_info(phba, index,
13077 						LPFC_CPU_FIRST_IRQ,
13078 						cpu);
13079 
13080 			/* Iterate to next offline or online cpu in aff_mask */
13081 			cpu = cpumask_next(cpu, aff_mask);
13082 
13083 			/* Find next online cpu in aff_mask to set affinity */
13084 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13085 		} else if (vectors == 1) {
13086 			cpu = cpumask_first(cpu_present_mask);
13087 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13088 						cpu);
13089 		} else {
13090 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13091 
13092 			/* Loop through all CPUs associated with vector index */
13093 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13094 				cpup = &phba->sli4_hba.cpu_map[cpu];
13095 
13096 				/* If this is the first CPU thats assigned to
13097 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13098 				 *
13099 				 * With certain platforms its possible that irq
13100 				 * vectors are affinitized to all the cpu's.
13101 				 * This can result in each cpu_map.eq to be set
13102 				 * to the last vector, resulting in overwrite
13103 				 * of all the previous cpu_map.eq.  Ensure that
13104 				 * each vector receives a place in cpu_map.
13105 				 * Later call to lpfc_cpu_affinity_check will
13106 				 * ensure we are nicely balanced out.
13107 				 */
13108 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13109 					continue;
13110 				lpfc_assign_eq_map_info(phba, index,
13111 							LPFC_CPU_FIRST_IRQ,
13112 							cpu);
13113 				break;
13114 			}
13115 		}
13116 	}
13117 
13118 	if (vectors != phba->cfg_irq_chann) {
13119 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13120 				"3238 Reducing IO channels to match number of "
13121 				"MSI-X vectors, requested %d got %d\n",
13122 				phba->cfg_irq_chann, vectors);
13123 		if (phba->cfg_irq_chann > vectors)
13124 			phba->cfg_irq_chann = vectors;
13125 	}
13126 
13127 	return rc;
13128 
13129 cfg_fail_out:
13130 	/* free the irq already requested */
13131 	for (--index; index >= 0; index--) {
13132 		eqhdl = lpfc_get_eq_hdl(index);
13133 		lpfc_irq_clear_aff(eqhdl);
13134 		free_irq(eqhdl->irq, eqhdl);
13135 	}
13136 
13137 	/* Unconfigure MSI-X capability structure */
13138 	pci_free_irq_vectors(phba->pcidev);
13139 
13140 vec_fail_out:
13141 	return rc;
13142 }
13143 
13144 /**
13145  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13146  * @phba: pointer to lpfc hba data structure.
13147  *
13148  * This routine is invoked to enable the MSI interrupt mode to device with
13149  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13150  * called to enable the MSI vector. The device driver is responsible for
13151  * calling the request_irq() to register MSI vector with a interrupt the
13152  * handler, which is done in this function.
13153  *
13154  * Return codes
13155  * 	0 - successful
13156  * 	other values - error
13157  **/
13158 static int
13159 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13160 {
13161 	int rc, index;
13162 	unsigned int cpu;
13163 	struct lpfc_hba_eq_hdl *eqhdl;
13164 
13165 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13166 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13167 	if (rc > 0)
13168 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13169 				"0487 PCI enable MSI mode success.\n");
13170 	else {
13171 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13172 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13173 		return rc ? rc : -1;
13174 	}
13175 
13176 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13177 			 0, LPFC_DRIVER_NAME, phba);
13178 	if (rc) {
13179 		pci_free_irq_vectors(phba->pcidev);
13180 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13181 				"0490 MSI request_irq failed (%d)\n", rc);
13182 		return rc;
13183 	}
13184 
13185 	eqhdl = lpfc_get_eq_hdl(0);
13186 	rc = pci_irq_vector(phba->pcidev, 0);
13187 	if (rc < 0) {
13188 		pci_free_irq_vectors(phba->pcidev);
13189 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13190 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13191 		return rc;
13192 	}
13193 	eqhdl->irq = rc;
13194 
13195 	cpu = cpumask_first(cpu_present_mask);
13196 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13197 
13198 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13199 		eqhdl = lpfc_get_eq_hdl(index);
13200 		eqhdl->idx = index;
13201 	}
13202 
13203 	return 0;
13204 }
13205 
13206 /**
13207  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13208  * @phba: pointer to lpfc hba data structure.
13209  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13210  *
13211  * This routine is invoked to enable device interrupt and associate driver's
13212  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13213  * interface spec. Depends on the interrupt mode configured to the driver,
13214  * the driver will try to fallback from the configured interrupt mode to an
13215  * interrupt mode which is supported by the platform, kernel, and device in
13216  * the order of:
13217  * MSI-X -> MSI -> IRQ.
13218  *
13219  * Return codes
13220  *	Interrupt mode (2, 1, 0) - successful
13221  *	LPFC_INTR_ERROR - error
13222  **/
13223 static uint32_t
13224 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13225 {
13226 	uint32_t intr_mode = LPFC_INTR_ERROR;
13227 	int retval, idx;
13228 
13229 	if (cfg_mode == 2) {
13230 		/* Preparation before conf_msi mbox cmd */
13231 		retval = 0;
13232 		if (!retval) {
13233 			/* Now, try to enable MSI-X interrupt mode */
13234 			retval = lpfc_sli4_enable_msix(phba);
13235 			if (!retval) {
13236 				/* Indicate initialization to MSI-X mode */
13237 				phba->intr_type = MSIX;
13238 				intr_mode = 2;
13239 			}
13240 		}
13241 	}
13242 
13243 	/* Fallback to MSI if MSI-X initialization failed */
13244 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13245 		retval = lpfc_sli4_enable_msi(phba);
13246 		if (!retval) {
13247 			/* Indicate initialization to MSI mode */
13248 			phba->intr_type = MSI;
13249 			intr_mode = 1;
13250 		}
13251 	}
13252 
13253 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13254 	if (phba->intr_type == NONE) {
13255 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13256 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13257 		if (!retval) {
13258 			struct lpfc_hba_eq_hdl *eqhdl;
13259 			unsigned int cpu;
13260 
13261 			/* Indicate initialization to INTx mode */
13262 			phba->intr_type = INTx;
13263 			intr_mode = 0;
13264 
13265 			eqhdl = lpfc_get_eq_hdl(0);
13266 			retval = pci_irq_vector(phba->pcidev, 0);
13267 			if (retval < 0) {
13268 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13269 					"0502 INTR pci_irq_vec failed (%d)\n",
13270 					 retval);
13271 				return LPFC_INTR_ERROR;
13272 			}
13273 			eqhdl->irq = retval;
13274 
13275 			cpu = cpumask_first(cpu_present_mask);
13276 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13277 						cpu);
13278 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13279 				eqhdl = lpfc_get_eq_hdl(idx);
13280 				eqhdl->idx = idx;
13281 			}
13282 		}
13283 	}
13284 	return intr_mode;
13285 }
13286 
13287 /**
13288  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13289  * @phba: pointer to lpfc hba data structure.
13290  *
13291  * This routine is invoked to disable device interrupt and disassociate
13292  * the driver's interrupt handler(s) from interrupt vector(s) to device
13293  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13294  * will release the interrupt vector(s) for the message signaled interrupt.
13295  **/
13296 static void
13297 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13298 {
13299 	/* Disable the currently initialized interrupt mode */
13300 	if (phba->intr_type == MSIX) {
13301 		int index;
13302 		struct lpfc_hba_eq_hdl *eqhdl;
13303 
13304 		/* Free up MSI-X multi-message vectors */
13305 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13306 			eqhdl = lpfc_get_eq_hdl(index);
13307 			lpfc_irq_clear_aff(eqhdl);
13308 			free_irq(eqhdl->irq, eqhdl);
13309 		}
13310 	} else {
13311 		free_irq(phba->pcidev->irq, phba);
13312 	}
13313 
13314 	pci_free_irq_vectors(phba->pcidev);
13315 
13316 	/* Reset interrupt management states */
13317 	phba->intr_type = NONE;
13318 	phba->sli.slistat.sli_intr = 0;
13319 }
13320 
13321 /**
13322  * lpfc_unset_hba - Unset SLI3 hba device initialization
13323  * @phba: pointer to lpfc hba data structure.
13324  *
13325  * This routine is invoked to unset the HBA device initialization steps to
13326  * a device with SLI-3 interface spec.
13327  **/
13328 static void
13329 lpfc_unset_hba(struct lpfc_hba *phba)
13330 {
13331 	struct lpfc_vport *vport = phba->pport;
13332 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13333 
13334 	spin_lock_irq(shost->host_lock);
13335 	vport->load_flag |= FC_UNLOADING;
13336 	spin_unlock_irq(shost->host_lock);
13337 
13338 	kfree(phba->vpi_bmask);
13339 	kfree(phba->vpi_ids);
13340 
13341 	lpfc_stop_hba_timers(phba);
13342 
13343 	phba->pport->work_port_events = 0;
13344 
13345 	lpfc_sli_hba_down(phba);
13346 
13347 	lpfc_sli_brdrestart(phba);
13348 
13349 	lpfc_sli_disable_intr(phba);
13350 
13351 	return;
13352 }
13353 
13354 /**
13355  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13356  * @phba: Pointer to HBA context object.
13357  *
13358  * This function is called in the SLI4 code path to wait for completion
13359  * of device's XRIs exchange busy. It will check the XRI exchange busy
13360  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13361  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13362  * I/Os every 30 seconds, log error message, and wait forever. Only when
13363  * all XRI exchange busy complete, the driver unload shall proceed with
13364  * invoking the function reset ioctl mailbox command to the CNA and the
13365  * the rest of the driver unload resource release.
13366  **/
13367 static void
13368 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13369 {
13370 	struct lpfc_sli4_hdw_queue *qp;
13371 	int idx, ccnt;
13372 	int wait_time = 0;
13373 	int io_xri_cmpl = 1;
13374 	int nvmet_xri_cmpl = 1;
13375 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13376 
13377 	/* Driver just aborted IOs during the hba_unset process.  Pause
13378 	 * here to give the HBA time to complete the IO and get entries
13379 	 * into the abts lists.
13380 	 */
13381 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13382 
13383 	/* Wait for NVME pending IO to flush back to transport. */
13384 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13385 		lpfc_nvme_wait_for_io_drain(phba);
13386 
13387 	ccnt = 0;
13388 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13389 		qp = &phba->sli4_hba.hdwq[idx];
13390 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13391 		if (!io_xri_cmpl) /* if list is NOT empty */
13392 			ccnt++;
13393 	}
13394 	if (ccnt)
13395 		io_xri_cmpl = 0;
13396 
13397 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13398 		nvmet_xri_cmpl =
13399 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13400 	}
13401 
13402 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13403 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13404 			if (!nvmet_xri_cmpl)
13405 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13406 						"6424 NVMET XRI exchange busy "
13407 						"wait time: %d seconds.\n",
13408 						wait_time/1000);
13409 			if (!io_xri_cmpl)
13410 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13411 						"6100 IO XRI exchange busy "
13412 						"wait time: %d seconds.\n",
13413 						wait_time/1000);
13414 			if (!els_xri_cmpl)
13415 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13416 						"2878 ELS XRI exchange busy "
13417 						"wait time: %d seconds.\n",
13418 						wait_time/1000);
13419 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13420 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13421 		} else {
13422 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13423 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13424 		}
13425 
13426 		ccnt = 0;
13427 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13428 			qp = &phba->sli4_hba.hdwq[idx];
13429 			io_xri_cmpl = list_empty(
13430 			    &qp->lpfc_abts_io_buf_list);
13431 			if (!io_xri_cmpl) /* if list is NOT empty */
13432 				ccnt++;
13433 		}
13434 		if (ccnt)
13435 			io_xri_cmpl = 0;
13436 
13437 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13438 			nvmet_xri_cmpl = list_empty(
13439 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13440 		}
13441 		els_xri_cmpl =
13442 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13443 
13444 	}
13445 }
13446 
13447 /**
13448  * lpfc_sli4_hba_unset - Unset the fcoe hba
13449  * @phba: Pointer to HBA context object.
13450  *
13451  * This function is called in the SLI4 code path to reset the HBA's FCoE
13452  * function. The caller is not required to hold any lock. This routine
13453  * issues PCI function reset mailbox command to reset the FCoE function.
13454  * At the end of the function, it calls lpfc_hba_down_post function to
13455  * free any pending commands.
13456  **/
13457 static void
13458 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13459 {
13460 	int wait_cnt = 0;
13461 	LPFC_MBOXQ_t *mboxq;
13462 	struct pci_dev *pdev = phba->pcidev;
13463 
13464 	lpfc_stop_hba_timers(phba);
13465 	hrtimer_cancel(&phba->cmf_timer);
13466 
13467 	if (phba->pport)
13468 		phba->sli4_hba.intr_enable = 0;
13469 
13470 	/*
13471 	 * Gracefully wait out the potential current outstanding asynchronous
13472 	 * mailbox command.
13473 	 */
13474 
13475 	/* First, block any pending async mailbox command from posted */
13476 	spin_lock_irq(&phba->hbalock);
13477 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13478 	spin_unlock_irq(&phba->hbalock);
13479 	/* Now, trying to wait it out if we can */
13480 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13481 		msleep(10);
13482 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13483 			break;
13484 	}
13485 	/* Forcefully release the outstanding mailbox command if timed out */
13486 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13487 		spin_lock_irq(&phba->hbalock);
13488 		mboxq = phba->sli.mbox_active;
13489 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13490 		__lpfc_mbox_cmpl_put(phba, mboxq);
13491 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13492 		phba->sli.mbox_active = NULL;
13493 		spin_unlock_irq(&phba->hbalock);
13494 	}
13495 
13496 	/* Abort all iocbs associated with the hba */
13497 	lpfc_sli_hba_iocb_abort(phba);
13498 
13499 	if (!pci_channel_offline(phba->pcidev))
13500 		/* Wait for completion of device XRI exchange busy */
13501 		lpfc_sli4_xri_exchange_busy_wait(phba);
13502 
13503 	/* per-phba callback de-registration for hotplug event */
13504 	if (phba->pport)
13505 		lpfc_cpuhp_remove(phba);
13506 
13507 	/* Disable PCI subsystem interrupt */
13508 	lpfc_sli4_disable_intr(phba);
13509 
13510 	/* Disable SR-IOV if enabled */
13511 	if (phba->cfg_sriov_nr_virtfn)
13512 		pci_disable_sriov(pdev);
13513 
13514 	/* Stop kthread signal shall trigger work_done one more time */
13515 	kthread_stop(phba->worker_thread);
13516 
13517 	/* Disable FW logging to host memory */
13518 	lpfc_ras_stop_fwlog(phba);
13519 
13520 	/* Reset SLI4 HBA FCoE function */
13521 	lpfc_pci_function_reset(phba);
13522 
13523 	/* release all queue allocated resources. */
13524 	lpfc_sli4_queue_destroy(phba);
13525 
13526 	/* Free RAS DMA memory */
13527 	if (phba->ras_fwlog.ras_enabled)
13528 		lpfc_sli4_ras_dma_free(phba);
13529 
13530 	/* Stop the SLI4 device port */
13531 	if (phba->pport)
13532 		phba->pport->work_port_events = 0;
13533 }
13534 
13535 static uint32_t
13536 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13537 {
13538 	uint32_t msb = 0;
13539 	uint32_t bit;
13540 
13541 	for (bit = 0; bit < 8; bit++) {
13542 		msb = (crc >> 31) & 1;
13543 		crc <<= 1;
13544 
13545 		if (msb ^ (byte & 1)) {
13546 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13547 			crc |= 1;
13548 		}
13549 		byte >>= 1;
13550 	}
13551 	return crc;
13552 }
13553 
13554 static uint32_t
13555 lpfc_cgn_reverse_bits(uint32_t wd)
13556 {
13557 	uint32_t result = 0;
13558 	uint32_t i;
13559 
13560 	for (i = 0; i < 32; i++) {
13561 		result <<= 1;
13562 		result |= (1 & (wd >> i));
13563 	}
13564 	return result;
13565 }
13566 
13567 /*
13568  * The routine corresponds with the algorithm the HBA firmware
13569  * uses to validate the data integrity.
13570  */
13571 uint32_t
13572 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13573 {
13574 	uint32_t  i;
13575 	uint32_t result;
13576 	uint8_t  *data = (uint8_t *)ptr;
13577 
13578 	for (i = 0; i < byteLen; ++i)
13579 		crc = lpfc_cgn_crc32(crc, data[i]);
13580 
13581 	result = ~lpfc_cgn_reverse_bits(crc);
13582 	return result;
13583 }
13584 
13585 void
13586 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13587 {
13588 	struct lpfc_cgn_info *cp;
13589 	struct timespec64 cmpl_time;
13590 	struct tm broken;
13591 	uint16_t size;
13592 	uint32_t crc;
13593 
13594 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13595 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13596 
13597 	if (!phba->cgn_i)
13598 		return;
13599 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13600 
13601 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13602 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13603 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13604 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13605 
13606 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13607 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13608 	atomic64_set(&phba->cgn_latency_evt, 0);
13609 	phba->cgn_evt_minute = 0;
13610 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13611 
13612 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13613 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13614 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13615 
13616 	/* cgn parameters */
13617 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13618 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13619 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13620 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13621 
13622 	ktime_get_real_ts64(&cmpl_time);
13623 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13624 
13625 	cp->cgn_info_month = broken.tm_mon + 1;
13626 	cp->cgn_info_day = broken.tm_mday;
13627 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13628 	cp->cgn_info_hour = broken.tm_hour;
13629 	cp->cgn_info_minute = broken.tm_min;
13630 	cp->cgn_info_second = broken.tm_sec;
13631 
13632 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13633 			"2643 CGNInfo Init: Start Time "
13634 			"%d/%d/%d %d:%d:%d\n",
13635 			cp->cgn_info_day, cp->cgn_info_month,
13636 			cp->cgn_info_year, cp->cgn_info_hour,
13637 			cp->cgn_info_minute, cp->cgn_info_second);
13638 
13639 	/* Fill in default LUN qdepth */
13640 	if (phba->pport) {
13641 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13642 		cp->cgn_lunq = cpu_to_le16(size);
13643 	}
13644 
13645 	/* last used Index initialized to 0xff already */
13646 
13647 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13648 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13649 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13650 	cp->cgn_info_crc = cpu_to_le32(crc);
13651 
13652 	phba->cgn_evt_timestamp = jiffies +
13653 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13654 }
13655 
13656 void
13657 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13658 {
13659 	struct lpfc_cgn_info *cp;
13660 	struct timespec64 cmpl_time;
13661 	struct tm broken;
13662 	uint32_t crc;
13663 
13664 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13665 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13666 
13667 	if (!phba->cgn_i)
13668 		return;
13669 
13670 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13671 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13672 
13673 	ktime_get_real_ts64(&cmpl_time);
13674 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13675 
13676 	cp->cgn_stat_month = broken.tm_mon + 1;
13677 	cp->cgn_stat_day = broken.tm_mday;
13678 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13679 	cp->cgn_stat_hour = broken.tm_hour;
13680 	cp->cgn_stat_minute = broken.tm_min;
13681 
13682 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13683 			"2647 CGNstat Init: Start Time "
13684 			"%d/%d/%d %d:%d\n",
13685 			cp->cgn_stat_day, cp->cgn_stat_month,
13686 			cp->cgn_stat_year, cp->cgn_stat_hour,
13687 			cp->cgn_stat_minute);
13688 
13689 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13690 	cp->cgn_info_crc = cpu_to_le32(crc);
13691 }
13692 
13693 /**
13694  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13695  * @phba: Pointer to hba context object.
13696  * @reg: flag to determine register or unregister.
13697  */
13698 static int
13699 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13700 {
13701 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13702 	union  lpfc_sli4_cfg_shdr *shdr;
13703 	uint32_t shdr_status, shdr_add_status;
13704 	LPFC_MBOXQ_t *mboxq;
13705 	int length, rc;
13706 
13707 	if (!phba->cgn_i)
13708 		return -ENXIO;
13709 
13710 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13711 	if (!mboxq) {
13712 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13713 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13714 				"HBA state x%x reg %d\n",
13715 				phba->pport->port_state, reg);
13716 		return -ENOMEM;
13717 	}
13718 
13719 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13720 		sizeof(struct lpfc_sli4_cfg_mhdr));
13721 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13722 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13723 			 LPFC_SLI4_MBX_EMBED);
13724 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13725 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13726 	if (reg > 0)
13727 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13728 	else
13729 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13730 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13731 	reg_congestion_buf->addr_lo =
13732 		putPaddrLow(phba->cgn_i->phys);
13733 	reg_congestion_buf->addr_hi =
13734 		putPaddrHigh(phba->cgn_i->phys);
13735 
13736 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13737 	shdr = (union lpfc_sli4_cfg_shdr *)
13738 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13739 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13740 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13741 				 &shdr->response);
13742 	mempool_free(mboxq, phba->mbox_mem_pool);
13743 	if (shdr_status || shdr_add_status || rc) {
13744 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13745 				"2642 REG_CONGESTION_BUF mailbox "
13746 				"failed with status x%x add_status x%x,"
13747 				" mbx status x%x reg %d\n",
13748 				shdr_status, shdr_add_status, rc, reg);
13749 		return -ENXIO;
13750 	}
13751 	return 0;
13752 }
13753 
13754 int
13755 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13756 {
13757 	lpfc_cmf_stop(phba);
13758 	return __lpfc_reg_congestion_buf(phba, 0);
13759 }
13760 
13761 int
13762 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13763 {
13764 	return __lpfc_reg_congestion_buf(phba, 1);
13765 }
13766 
13767 /**
13768  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13769  * @phba: Pointer to HBA context object.
13770  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13771  *
13772  * This function is called in the SLI4 code path to read the port's
13773  * sli4 capabilities.
13774  *
13775  * This function may be be called from any context that can block-wait
13776  * for the completion.  The expectation is that this routine is called
13777  * typically from probe_one or from the online routine.
13778  **/
13779 int
13780 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13781 {
13782 	int rc;
13783 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13784 	struct lpfc_pc_sli4_params *sli4_params;
13785 	uint32_t mbox_tmo;
13786 	int length;
13787 	bool exp_wqcq_pages = true;
13788 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13789 
13790 	/*
13791 	 * By default, the driver assumes the SLI4 port requires RPI
13792 	 * header postings.  The SLI4_PARAM response will correct this
13793 	 * assumption.
13794 	 */
13795 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13796 
13797 	/* Read the port's SLI4 Config Parameters */
13798 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13799 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13800 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13801 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13802 			 length, LPFC_SLI4_MBX_EMBED);
13803 	if (!phba->sli4_hba.intr_enable)
13804 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13805 	else {
13806 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13807 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13808 	}
13809 	if (unlikely(rc))
13810 		return rc;
13811 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13812 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13813 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13814 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13815 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13816 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13817 					     mbx_sli4_parameters);
13818 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13819 					     mbx_sli4_parameters);
13820 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13821 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13822 	else
13823 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13824 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13825 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13826 					   mbx_sli4_parameters);
13827 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13828 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13829 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13830 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13831 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13832 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13833 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13834 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13835 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13836 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13837 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13838 					    mbx_sli4_parameters);
13839 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13840 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13841 					   mbx_sli4_parameters);
13842 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13843 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13844 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13845 
13846 	/* Check for Extended Pre-Registered SGL support */
13847 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13848 
13849 	/* Check for firmware nvme support */
13850 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13851 		     bf_get(cfg_xib, mbx_sli4_parameters));
13852 
13853 	if (rc) {
13854 		/* Save this to indicate the Firmware supports NVME */
13855 		sli4_params->nvme = 1;
13856 
13857 		/* Firmware NVME support, check driver FC4 NVME support */
13858 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13859 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13860 					"6133 Disabling NVME support: "
13861 					"FC4 type not supported: x%x\n",
13862 					phba->cfg_enable_fc4_type);
13863 			goto fcponly;
13864 		}
13865 	} else {
13866 		/* No firmware NVME support, check driver FC4 NVME support */
13867 		sli4_params->nvme = 0;
13868 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13869 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13870 					"6101 Disabling NVME support: Not "
13871 					"supported by firmware (%d %d) x%x\n",
13872 					bf_get(cfg_nvme, mbx_sli4_parameters),
13873 					bf_get(cfg_xib, mbx_sli4_parameters),
13874 					phba->cfg_enable_fc4_type);
13875 fcponly:
13876 			phba->nvmet_support = 0;
13877 			phba->cfg_nvmet_mrq = 0;
13878 			phba->cfg_nvme_seg_cnt = 0;
13879 
13880 			/* If no FC4 type support, move to just SCSI support */
13881 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13882 				return -ENODEV;
13883 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13884 		}
13885 	}
13886 
13887 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13888 	 * accommodate 512K and 1M IOs in a single nvme buf.
13889 	 */
13890 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13891 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13892 
13893 	/* Enable embedded Payload BDE if support is indicated */
13894 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13895 		phba->cfg_enable_pbde = 1;
13896 	else
13897 		phba->cfg_enable_pbde = 0;
13898 
13899 	/*
13900 	 * To support Suppress Response feature we must satisfy 3 conditions.
13901 	 * lpfc_suppress_rsp module parameter must be set (default).
13902 	 * In SLI4-Parameters Descriptor:
13903 	 * Extended Inline Buffers (XIB) must be supported.
13904 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13905 	 * (double negative).
13906 	 */
13907 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13908 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13909 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13910 	else
13911 		phba->cfg_suppress_rsp = 0;
13912 
13913 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13914 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13915 
13916 	/* Make sure that sge_supp_len can be handled by the driver */
13917 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13918 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13919 
13920 	/*
13921 	 * Check whether the adapter supports an embedded copy of the
13922 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13923 	 * to use this option, 128-byte WQEs must be used.
13924 	 */
13925 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13926 		phba->fcp_embed_io = 1;
13927 	else
13928 		phba->fcp_embed_io = 0;
13929 
13930 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13931 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13932 			bf_get(cfg_xib, mbx_sli4_parameters),
13933 			phba->cfg_enable_pbde,
13934 			phba->fcp_embed_io, sli4_params->nvme,
13935 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13936 
13937 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13938 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13939 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13940 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13941 		exp_wqcq_pages = false;
13942 
13943 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13944 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13945 	    exp_wqcq_pages &&
13946 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13947 		phba->enab_exp_wqcq_pages = 1;
13948 	else
13949 		phba->enab_exp_wqcq_pages = 0;
13950 	/*
13951 	 * Check if the SLI port supports MDS Diagnostics
13952 	 */
13953 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13954 		phba->mds_diags_support = 1;
13955 	else
13956 		phba->mds_diags_support = 0;
13957 
13958 	/*
13959 	 * Check if the SLI port supports NSLER
13960 	 */
13961 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13962 		phba->nsler = 1;
13963 	else
13964 		phba->nsler = 0;
13965 
13966 	return 0;
13967 }
13968 
13969 /**
13970  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13971  * @pdev: pointer to PCI device
13972  * @pid: pointer to PCI device identifier
13973  *
13974  * This routine is to be called to attach a device with SLI-3 interface spec
13975  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13976  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13977  * information of the device and driver to see if the driver state that it can
13978  * support this kind of device. If the match is successful, the driver core
13979  * invokes this routine. If this routine determines it can claim the HBA, it
13980  * does all the initialization that it needs to do to handle the HBA properly.
13981  *
13982  * Return code
13983  * 	0 - driver can claim the device
13984  * 	negative value - driver can not claim the device
13985  **/
13986 static int
13987 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13988 {
13989 	struct lpfc_hba   *phba;
13990 	struct lpfc_vport *vport = NULL;
13991 	struct Scsi_Host  *shost = NULL;
13992 	int error;
13993 	uint32_t cfg_mode, intr_mode;
13994 
13995 	/* Allocate memory for HBA structure */
13996 	phba = lpfc_hba_alloc(pdev);
13997 	if (!phba)
13998 		return -ENOMEM;
13999 
14000 	/* Perform generic PCI device enabling operation */
14001 	error = lpfc_enable_pci_dev(phba);
14002 	if (error)
14003 		goto out_free_phba;
14004 
14005 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
14006 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
14007 	if (error)
14008 		goto out_disable_pci_dev;
14009 
14010 	/* Set up SLI-3 specific device PCI memory space */
14011 	error = lpfc_sli_pci_mem_setup(phba);
14012 	if (error) {
14013 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14014 				"1402 Failed to set up pci memory space.\n");
14015 		goto out_disable_pci_dev;
14016 	}
14017 
14018 	/* Set up SLI-3 specific device driver resources */
14019 	error = lpfc_sli_driver_resource_setup(phba);
14020 	if (error) {
14021 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14022 				"1404 Failed to set up driver resource.\n");
14023 		goto out_unset_pci_mem_s3;
14024 	}
14025 
14026 	/* Initialize and populate the iocb list per host */
14027 
14028 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14029 	if (error) {
14030 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14031 				"1405 Failed to initialize iocb list.\n");
14032 		goto out_unset_driver_resource_s3;
14033 	}
14034 
14035 	/* Set up common device driver resources */
14036 	error = lpfc_setup_driver_resource_phase2(phba);
14037 	if (error) {
14038 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14039 				"1406 Failed to set up driver resource.\n");
14040 		goto out_free_iocb_list;
14041 	}
14042 
14043 	/* Get the default values for Model Name and Description */
14044 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14045 
14046 	/* Create SCSI host to the physical port */
14047 	error = lpfc_create_shost(phba);
14048 	if (error) {
14049 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14050 				"1407 Failed to create scsi host.\n");
14051 		goto out_unset_driver_resource;
14052 	}
14053 
14054 	/* Configure sysfs attributes */
14055 	vport = phba->pport;
14056 	error = lpfc_alloc_sysfs_attr(vport);
14057 	if (error) {
14058 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14059 				"1476 Failed to allocate sysfs attr\n");
14060 		goto out_destroy_shost;
14061 	}
14062 
14063 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14064 	/* Now, trying to enable interrupt and bring up the device */
14065 	cfg_mode = phba->cfg_use_msi;
14066 	while (true) {
14067 		/* Put device to a known state before enabling interrupt */
14068 		lpfc_stop_port(phba);
14069 		/* Configure and enable interrupt */
14070 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14071 		if (intr_mode == LPFC_INTR_ERROR) {
14072 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14073 					"0431 Failed to enable interrupt.\n");
14074 			error = -ENODEV;
14075 			goto out_free_sysfs_attr;
14076 		}
14077 		/* SLI-3 HBA setup */
14078 		if (lpfc_sli_hba_setup(phba)) {
14079 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14080 					"1477 Failed to set up hba\n");
14081 			error = -ENODEV;
14082 			goto out_remove_device;
14083 		}
14084 
14085 		/* Wait 50ms for the interrupts of previous mailbox commands */
14086 		msleep(50);
14087 		/* Check active interrupts on message signaled interrupts */
14088 		if (intr_mode == 0 ||
14089 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14090 			/* Log the current active interrupt mode */
14091 			phba->intr_mode = intr_mode;
14092 			lpfc_log_intr_mode(phba, intr_mode);
14093 			break;
14094 		} else {
14095 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14096 					"0447 Configure interrupt mode (%d) "
14097 					"failed active interrupt test.\n",
14098 					intr_mode);
14099 			/* Disable the current interrupt mode */
14100 			lpfc_sli_disable_intr(phba);
14101 			/* Try next level of interrupt mode */
14102 			cfg_mode = --intr_mode;
14103 		}
14104 	}
14105 
14106 	/* Perform post initialization setup */
14107 	lpfc_post_init_setup(phba);
14108 
14109 	/* Check if there are static vports to be created. */
14110 	lpfc_create_static_vport(phba);
14111 
14112 	return 0;
14113 
14114 out_remove_device:
14115 	lpfc_unset_hba(phba);
14116 out_free_sysfs_attr:
14117 	lpfc_free_sysfs_attr(vport);
14118 out_destroy_shost:
14119 	lpfc_destroy_shost(phba);
14120 out_unset_driver_resource:
14121 	lpfc_unset_driver_resource_phase2(phba);
14122 out_free_iocb_list:
14123 	lpfc_free_iocb_list(phba);
14124 out_unset_driver_resource_s3:
14125 	lpfc_sli_driver_resource_unset(phba);
14126 out_unset_pci_mem_s3:
14127 	lpfc_sli_pci_mem_unset(phba);
14128 out_disable_pci_dev:
14129 	lpfc_disable_pci_dev(phba);
14130 	if (shost)
14131 		scsi_host_put(shost);
14132 out_free_phba:
14133 	lpfc_hba_free(phba);
14134 	return error;
14135 }
14136 
14137 /**
14138  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14139  * @pdev: pointer to PCI device
14140  *
14141  * This routine is to be called to disattach a device with SLI-3 interface
14142  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14143  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14144  * device to be removed from the PCI subsystem properly.
14145  **/
14146 static void
14147 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14148 {
14149 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14150 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14151 	struct lpfc_vport **vports;
14152 	struct lpfc_hba   *phba = vport->phba;
14153 	int i;
14154 
14155 	spin_lock_irq(&phba->hbalock);
14156 	vport->load_flag |= FC_UNLOADING;
14157 	spin_unlock_irq(&phba->hbalock);
14158 
14159 	lpfc_free_sysfs_attr(vport);
14160 
14161 	/* Release all the vports against this physical port */
14162 	vports = lpfc_create_vport_work_array(phba);
14163 	if (vports != NULL)
14164 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14165 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14166 				continue;
14167 			fc_vport_terminate(vports[i]->fc_vport);
14168 		}
14169 	lpfc_destroy_vport_work_array(phba, vports);
14170 
14171 	/* Remove FC host with the physical port */
14172 	fc_remove_host(shost);
14173 	scsi_remove_host(shost);
14174 
14175 	/* Clean up all nodes, mailboxes and IOs. */
14176 	lpfc_cleanup(vport);
14177 
14178 	/*
14179 	 * Bring down the SLI Layer. This step disable all interrupts,
14180 	 * clears the rings, discards all mailbox commands, and resets
14181 	 * the HBA.
14182 	 */
14183 
14184 	/* HBA interrupt will be disabled after this call */
14185 	lpfc_sli_hba_down(phba);
14186 	/* Stop kthread signal shall trigger work_done one more time */
14187 	kthread_stop(phba->worker_thread);
14188 	/* Final cleanup of txcmplq and reset the HBA */
14189 	lpfc_sli_brdrestart(phba);
14190 
14191 	kfree(phba->vpi_bmask);
14192 	kfree(phba->vpi_ids);
14193 
14194 	lpfc_stop_hba_timers(phba);
14195 	spin_lock_irq(&phba->port_list_lock);
14196 	list_del_init(&vport->listentry);
14197 	spin_unlock_irq(&phba->port_list_lock);
14198 
14199 	lpfc_debugfs_terminate(vport);
14200 
14201 	/* Disable SR-IOV if enabled */
14202 	if (phba->cfg_sriov_nr_virtfn)
14203 		pci_disable_sriov(pdev);
14204 
14205 	/* Disable interrupt */
14206 	lpfc_sli_disable_intr(phba);
14207 
14208 	scsi_host_put(shost);
14209 
14210 	/*
14211 	 * Call scsi_free before mem_free since scsi bufs are released to their
14212 	 * corresponding pools here.
14213 	 */
14214 	lpfc_scsi_free(phba);
14215 	lpfc_free_iocb_list(phba);
14216 
14217 	lpfc_mem_free_all(phba);
14218 
14219 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14220 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14221 
14222 	/* Free resources associated with SLI2 interface */
14223 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14224 			  phba->slim2p.virt, phba->slim2p.phys);
14225 
14226 	/* unmap adapter SLIM and Control Registers */
14227 	iounmap(phba->ctrl_regs_memmap_p);
14228 	iounmap(phba->slim_memmap_p);
14229 
14230 	lpfc_hba_free(phba);
14231 
14232 	pci_release_mem_regions(pdev);
14233 	pci_disable_device(pdev);
14234 }
14235 
14236 /**
14237  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14238  * @dev_d: pointer to device
14239  *
14240  * This routine is to be called from the kernel's PCI subsystem to support
14241  * system Power Management (PM) to device with SLI-3 interface spec. When
14242  * PM invokes this method, it quiesces the device by stopping the driver's
14243  * worker thread for the device, turning off device's interrupt and DMA,
14244  * and bring the device offline. Note that as the driver implements the
14245  * minimum PM requirements to a power-aware driver's PM support for the
14246  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14247  * to the suspend() method call will be treated as SUSPEND and the driver will
14248  * fully reinitialize its device during resume() method call, the driver will
14249  * set device to PCI_D3hot state in PCI config space instead of setting it
14250  * according to the @msg provided by the PM.
14251  *
14252  * Return code
14253  * 	0 - driver suspended the device
14254  * 	Error otherwise
14255  **/
14256 static int __maybe_unused
14257 lpfc_pci_suspend_one_s3(struct device *dev_d)
14258 {
14259 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14260 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14261 
14262 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14263 			"0473 PCI device Power Management suspend.\n");
14264 
14265 	/* Bring down the device */
14266 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14267 	lpfc_offline(phba);
14268 	kthread_stop(phba->worker_thread);
14269 
14270 	/* Disable interrupt from device */
14271 	lpfc_sli_disable_intr(phba);
14272 
14273 	return 0;
14274 }
14275 
14276 /**
14277  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14278  * @dev_d: pointer to device
14279  *
14280  * This routine is to be called from the kernel's PCI subsystem to support
14281  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14282  * invokes this method, it restores the device's PCI config space state and
14283  * fully reinitializes the device and brings it online. Note that as the
14284  * driver implements the minimum PM requirements to a power-aware driver's
14285  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14286  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14287  * driver will fully reinitialize its device during resume() method call,
14288  * the device will be set to PCI_D0 directly in PCI config space before
14289  * restoring the state.
14290  *
14291  * Return code
14292  * 	0 - driver suspended the device
14293  * 	Error otherwise
14294  **/
14295 static int __maybe_unused
14296 lpfc_pci_resume_one_s3(struct device *dev_d)
14297 {
14298 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14299 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14300 	uint32_t intr_mode;
14301 	int error;
14302 
14303 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14304 			"0452 PCI device Power Management resume.\n");
14305 
14306 	/* Startup the kernel thread for this host adapter. */
14307 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14308 					"lpfc_worker_%d", phba->brd_no);
14309 	if (IS_ERR(phba->worker_thread)) {
14310 		error = PTR_ERR(phba->worker_thread);
14311 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14312 				"0434 PM resume failed to start worker "
14313 				"thread: error=x%x.\n", error);
14314 		return error;
14315 	}
14316 
14317 	/* Init cpu_map array */
14318 	lpfc_cpu_map_array_init(phba);
14319 	/* Init hba_eq_hdl array */
14320 	lpfc_hba_eq_hdl_array_init(phba);
14321 	/* Configure and enable interrupt */
14322 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14323 	if (intr_mode == LPFC_INTR_ERROR) {
14324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14325 				"0430 PM resume Failed to enable interrupt\n");
14326 		return -EIO;
14327 	} else
14328 		phba->intr_mode = intr_mode;
14329 
14330 	/* Restart HBA and bring it online */
14331 	lpfc_sli_brdrestart(phba);
14332 	lpfc_online(phba);
14333 
14334 	/* Log the current active interrupt mode */
14335 	lpfc_log_intr_mode(phba, phba->intr_mode);
14336 
14337 	return 0;
14338 }
14339 
14340 /**
14341  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14342  * @phba: pointer to lpfc hba data structure.
14343  *
14344  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14345  * aborts all the outstanding SCSI I/Os to the pci device.
14346  **/
14347 static void
14348 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14349 {
14350 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14351 			"2723 PCI channel I/O abort preparing for recovery\n");
14352 
14353 	/*
14354 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14355 	 * and let the SCSI mid-layer to retry them to recover.
14356 	 */
14357 	lpfc_sli_abort_fcp_rings(phba);
14358 }
14359 
14360 /**
14361  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14362  * @phba: pointer to lpfc hba data structure.
14363  *
14364  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14365  * disables the device interrupt and pci device, and aborts the internal FCP
14366  * pending I/Os.
14367  **/
14368 static void
14369 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14370 {
14371 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14372 			"2710 PCI channel disable preparing for reset\n");
14373 
14374 	/* Block any management I/Os to the device */
14375 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14376 
14377 	/* Block all SCSI devices' I/Os on the host */
14378 	lpfc_scsi_dev_block(phba);
14379 
14380 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14381 	lpfc_sli_flush_io_rings(phba);
14382 
14383 	/* stop all timers */
14384 	lpfc_stop_hba_timers(phba);
14385 
14386 	/* Disable interrupt and pci device */
14387 	lpfc_sli_disable_intr(phba);
14388 	pci_disable_device(phba->pcidev);
14389 }
14390 
14391 /**
14392  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14393  * @phba: pointer to lpfc hba data structure.
14394  *
14395  * This routine is called to prepare the SLI3 device for PCI slot permanently
14396  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14397  * pending I/Os.
14398  **/
14399 static void
14400 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14401 {
14402 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14403 			"2711 PCI channel permanent disable for failure\n");
14404 	/* Block all SCSI devices' I/Os on the host */
14405 	lpfc_scsi_dev_block(phba);
14406 	lpfc_sli4_prep_dev_for_reset(phba);
14407 
14408 	/* stop all timers */
14409 	lpfc_stop_hba_timers(phba);
14410 
14411 	/* Clean up all driver's outstanding SCSI I/Os */
14412 	lpfc_sli_flush_io_rings(phba);
14413 }
14414 
14415 /**
14416  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14417  * @pdev: pointer to PCI device.
14418  * @state: the current PCI connection state.
14419  *
14420  * This routine is called from the PCI subsystem for I/O error handling to
14421  * device with SLI-3 interface spec. This function is called by the PCI
14422  * subsystem after a PCI bus error affecting this device has been detected.
14423  * When this function is invoked, it will need to stop all the I/Os and
14424  * interrupt(s) to the device. Once that is done, it will return
14425  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14426  * as desired.
14427  *
14428  * Return codes
14429  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14430  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14431  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14432  **/
14433 static pci_ers_result_t
14434 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14435 {
14436 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14437 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14438 
14439 	switch (state) {
14440 	case pci_channel_io_normal:
14441 		/* Non-fatal error, prepare for recovery */
14442 		lpfc_sli_prep_dev_for_recover(phba);
14443 		return PCI_ERS_RESULT_CAN_RECOVER;
14444 	case pci_channel_io_frozen:
14445 		/* Fatal error, prepare for slot reset */
14446 		lpfc_sli_prep_dev_for_reset(phba);
14447 		return PCI_ERS_RESULT_NEED_RESET;
14448 	case pci_channel_io_perm_failure:
14449 		/* Permanent failure, prepare for device down */
14450 		lpfc_sli_prep_dev_for_perm_failure(phba);
14451 		return PCI_ERS_RESULT_DISCONNECT;
14452 	default:
14453 		/* Unknown state, prepare and request slot reset */
14454 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14455 				"0472 Unknown PCI error state: x%x\n", state);
14456 		lpfc_sli_prep_dev_for_reset(phba);
14457 		return PCI_ERS_RESULT_NEED_RESET;
14458 	}
14459 }
14460 
14461 /**
14462  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14463  * @pdev: pointer to PCI device.
14464  *
14465  * This routine is called from the PCI subsystem for error handling to
14466  * device with SLI-3 interface spec. This is called after PCI bus has been
14467  * reset to restart the PCI card from scratch, as if from a cold-boot.
14468  * During the PCI subsystem error recovery, after driver returns
14469  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14470  * recovery and then call this routine before calling the .resume method
14471  * to recover the device. This function will initialize the HBA device,
14472  * enable the interrupt, but it will just put the HBA to offline state
14473  * without passing any I/O traffic.
14474  *
14475  * Return codes
14476  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14477  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14478  */
14479 static pci_ers_result_t
14480 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14481 {
14482 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14483 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14484 	struct lpfc_sli *psli = &phba->sli;
14485 	uint32_t intr_mode;
14486 
14487 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14488 	if (pci_enable_device_mem(pdev)) {
14489 		printk(KERN_ERR "lpfc: Cannot re-enable "
14490 			"PCI device after reset.\n");
14491 		return PCI_ERS_RESULT_DISCONNECT;
14492 	}
14493 
14494 	pci_restore_state(pdev);
14495 
14496 	/*
14497 	 * As the new kernel behavior of pci_restore_state() API call clears
14498 	 * device saved_state flag, need to save the restored state again.
14499 	 */
14500 	pci_save_state(pdev);
14501 
14502 	if (pdev->is_busmaster)
14503 		pci_set_master(pdev);
14504 
14505 	spin_lock_irq(&phba->hbalock);
14506 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14507 	spin_unlock_irq(&phba->hbalock);
14508 
14509 	/* Configure and enable interrupt */
14510 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14511 	if (intr_mode == LPFC_INTR_ERROR) {
14512 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14513 				"0427 Cannot re-enable interrupt after "
14514 				"slot reset.\n");
14515 		return PCI_ERS_RESULT_DISCONNECT;
14516 	} else
14517 		phba->intr_mode = intr_mode;
14518 
14519 	/* Take device offline, it will perform cleanup */
14520 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14521 	lpfc_offline(phba);
14522 	lpfc_sli_brdrestart(phba);
14523 
14524 	/* Log the current active interrupt mode */
14525 	lpfc_log_intr_mode(phba, phba->intr_mode);
14526 
14527 	return PCI_ERS_RESULT_RECOVERED;
14528 }
14529 
14530 /**
14531  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14532  * @pdev: pointer to PCI device
14533  *
14534  * This routine is called from the PCI subsystem for error handling to device
14535  * with SLI-3 interface spec. It is called when kernel error recovery tells
14536  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14537  * error recovery. After this call, traffic can start to flow from this device
14538  * again.
14539  */
14540 static void
14541 lpfc_io_resume_s3(struct pci_dev *pdev)
14542 {
14543 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14544 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14545 
14546 	/* Bring device online, it will be no-op for non-fatal error resume */
14547 	lpfc_online(phba);
14548 }
14549 
14550 /**
14551  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14552  * @phba: pointer to lpfc hba data structure.
14553  *
14554  * returns the number of ELS/CT IOCBs to reserve
14555  **/
14556 int
14557 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14558 {
14559 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14560 
14561 	if (phba->sli_rev == LPFC_SLI_REV4) {
14562 		if (max_xri <= 100)
14563 			return 10;
14564 		else if (max_xri <= 256)
14565 			return 25;
14566 		else if (max_xri <= 512)
14567 			return 50;
14568 		else if (max_xri <= 1024)
14569 			return 100;
14570 		else if (max_xri <= 1536)
14571 			return 150;
14572 		else if (max_xri <= 2048)
14573 			return 200;
14574 		else
14575 			return 250;
14576 	} else
14577 		return 0;
14578 }
14579 
14580 /**
14581  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14582  * @phba: pointer to lpfc hba data structure.
14583  *
14584  * returns the number of ELS/CT + NVMET IOCBs to reserve
14585  **/
14586 int
14587 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14588 {
14589 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14590 
14591 	if (phba->nvmet_support)
14592 		max_xri += LPFC_NVMET_BUF_POST;
14593 	return max_xri;
14594 }
14595 
14596 
14597 static int
14598 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14599 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14600 	const struct firmware *fw)
14601 {
14602 	int rc;
14603 	u8 sli_family;
14604 
14605 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14606 	/* Three cases:  (1) FW was not supported on the detected adapter.
14607 	 * (2) FW update has been locked out administratively.
14608 	 * (3) Some other error during FW update.
14609 	 * In each case, an unmaskable message is written to the console
14610 	 * for admin diagnosis.
14611 	 */
14612 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14613 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14614 	     magic_number != MAGIC_NUMBER_G6) ||
14615 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14616 	     magic_number != MAGIC_NUMBER_G7) ||
14617 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14618 	     magic_number != MAGIC_NUMBER_G7P)) {
14619 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14620 				"3030 This firmware version is not supported on"
14621 				" this HBA model. Device:%x Magic:%x Type:%x "
14622 				"ID:%x Size %d %zd\n",
14623 				phba->pcidev->device, magic_number, ftype, fid,
14624 				fsize, fw->size);
14625 		rc = -EINVAL;
14626 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14627 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14628 				"3021 Firmware downloads have been prohibited "
14629 				"by a system configuration setting on "
14630 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14631 				"%zd\n",
14632 				phba->pcidev->device, magic_number, ftype, fid,
14633 				fsize, fw->size);
14634 		rc = -EACCES;
14635 	} else {
14636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14637 				"3022 FW Download failed. Add Status x%x "
14638 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14639 				"%zd\n",
14640 				offset, phba->pcidev->device, magic_number,
14641 				ftype, fid, fsize, fw->size);
14642 		rc = -EIO;
14643 	}
14644 	return rc;
14645 }
14646 
14647 /**
14648  * lpfc_write_firmware - attempt to write a firmware image to the port
14649  * @fw: pointer to firmware image returned from request_firmware.
14650  * @context: pointer to firmware image returned from request_firmware.
14651  *
14652  **/
14653 static void
14654 lpfc_write_firmware(const struct firmware *fw, void *context)
14655 {
14656 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14657 	char fwrev[FW_REV_STR_SIZE];
14658 	struct lpfc_grp_hdr *image;
14659 	struct list_head dma_buffer_list;
14660 	int i, rc = 0;
14661 	struct lpfc_dmabuf *dmabuf, *next;
14662 	uint32_t offset = 0, temp_offset = 0;
14663 	uint32_t magic_number, ftype, fid, fsize;
14664 
14665 	/* It can be null in no-wait mode, sanity check */
14666 	if (!fw) {
14667 		rc = -ENXIO;
14668 		goto out;
14669 	}
14670 	image = (struct lpfc_grp_hdr *)fw->data;
14671 
14672 	magic_number = be32_to_cpu(image->magic_number);
14673 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14674 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14675 	fsize = be32_to_cpu(image->size);
14676 
14677 	INIT_LIST_HEAD(&dma_buffer_list);
14678 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14679 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14680 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14681 				"3023 Updating Firmware, Current Version:%s "
14682 				"New Version:%s\n",
14683 				fwrev, image->revision);
14684 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14685 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14686 					 GFP_KERNEL);
14687 			if (!dmabuf) {
14688 				rc = -ENOMEM;
14689 				goto release_out;
14690 			}
14691 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14692 							  SLI4_PAGE_SIZE,
14693 							  &dmabuf->phys,
14694 							  GFP_KERNEL);
14695 			if (!dmabuf->virt) {
14696 				kfree(dmabuf);
14697 				rc = -ENOMEM;
14698 				goto release_out;
14699 			}
14700 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14701 		}
14702 		while (offset < fw->size) {
14703 			temp_offset = offset;
14704 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14705 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14706 					memcpy(dmabuf->virt,
14707 					       fw->data + temp_offset,
14708 					       fw->size - temp_offset);
14709 					temp_offset = fw->size;
14710 					break;
14711 				}
14712 				memcpy(dmabuf->virt, fw->data + temp_offset,
14713 				       SLI4_PAGE_SIZE);
14714 				temp_offset += SLI4_PAGE_SIZE;
14715 			}
14716 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14717 				    (fw->size - offset), &offset);
14718 			if (rc) {
14719 				rc = lpfc_log_write_firmware_error(phba, offset,
14720 								   magic_number,
14721 								   ftype,
14722 								   fid,
14723 								   fsize,
14724 								   fw);
14725 				goto release_out;
14726 			}
14727 		}
14728 		rc = offset;
14729 	} else
14730 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14731 				"3029 Skipped Firmware update, Current "
14732 				"Version:%s New Version:%s\n",
14733 				fwrev, image->revision);
14734 
14735 release_out:
14736 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14737 		list_del(&dmabuf->list);
14738 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14739 				  dmabuf->virt, dmabuf->phys);
14740 		kfree(dmabuf);
14741 	}
14742 	release_firmware(fw);
14743 out:
14744 	if (rc < 0)
14745 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14746 				"3062 Firmware update error, status %d.\n", rc);
14747 	else
14748 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14749 				"3024 Firmware update success: size %d.\n", rc);
14750 }
14751 
14752 /**
14753  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14754  * @phba: pointer to lpfc hba data structure.
14755  * @fw_upgrade: which firmware to update.
14756  *
14757  * This routine is called to perform Linux generic firmware upgrade on device
14758  * that supports such feature.
14759  **/
14760 int
14761 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14762 {
14763 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14764 	int ret;
14765 	const struct firmware *fw;
14766 
14767 	/* Only supported on SLI4 interface type 2 for now */
14768 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14769 	    LPFC_SLI_INTF_IF_TYPE_2)
14770 		return -EPERM;
14771 
14772 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14773 
14774 	if (fw_upgrade == INT_FW_UPGRADE) {
14775 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14776 					file_name, &phba->pcidev->dev,
14777 					GFP_KERNEL, (void *)phba,
14778 					lpfc_write_firmware);
14779 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14780 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14781 		if (!ret)
14782 			lpfc_write_firmware(fw, (void *)phba);
14783 	} else {
14784 		ret = -EINVAL;
14785 	}
14786 
14787 	return ret;
14788 }
14789 
14790 /**
14791  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14792  * @pdev: pointer to PCI device
14793  * @pid: pointer to PCI device identifier
14794  *
14795  * This routine is called from the kernel's PCI subsystem to device with
14796  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14797  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14798  * information of the device and driver to see if the driver state that it
14799  * can support this kind of device. If the match is successful, the driver
14800  * core invokes this routine. If this routine determines it can claim the HBA,
14801  * it does all the initialization that it needs to do to handle the HBA
14802  * properly.
14803  *
14804  * Return code
14805  * 	0 - driver can claim the device
14806  * 	negative value - driver can not claim the device
14807  **/
14808 static int
14809 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14810 {
14811 	struct lpfc_hba   *phba;
14812 	struct lpfc_vport *vport = NULL;
14813 	struct Scsi_Host  *shost = NULL;
14814 	int error;
14815 	uint32_t cfg_mode, intr_mode;
14816 
14817 	/* Allocate memory for HBA structure */
14818 	phba = lpfc_hba_alloc(pdev);
14819 	if (!phba)
14820 		return -ENOMEM;
14821 
14822 	INIT_LIST_HEAD(&phba->poll_list);
14823 
14824 	/* Perform generic PCI device enabling operation */
14825 	error = lpfc_enable_pci_dev(phba);
14826 	if (error)
14827 		goto out_free_phba;
14828 
14829 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14830 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14831 	if (error)
14832 		goto out_disable_pci_dev;
14833 
14834 	/* Set up SLI-4 specific device PCI memory space */
14835 	error = lpfc_sli4_pci_mem_setup(phba);
14836 	if (error) {
14837 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14838 				"1410 Failed to set up pci memory space.\n");
14839 		goto out_disable_pci_dev;
14840 	}
14841 
14842 	/* Set up SLI-4 Specific device driver resources */
14843 	error = lpfc_sli4_driver_resource_setup(phba);
14844 	if (error) {
14845 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14846 				"1412 Failed to set up driver resource.\n");
14847 		goto out_unset_pci_mem_s4;
14848 	}
14849 
14850 	INIT_LIST_HEAD(&phba->active_rrq_list);
14851 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14852 
14853 	/* Set up common device driver resources */
14854 	error = lpfc_setup_driver_resource_phase2(phba);
14855 	if (error) {
14856 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14857 				"1414 Failed to set up driver resource.\n");
14858 		goto out_unset_driver_resource_s4;
14859 	}
14860 
14861 	/* Get the default values for Model Name and Description */
14862 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14863 
14864 	/* Now, trying to enable interrupt and bring up the device */
14865 	cfg_mode = phba->cfg_use_msi;
14866 
14867 	/* Put device to a known state before enabling interrupt */
14868 	phba->pport = NULL;
14869 	lpfc_stop_port(phba);
14870 
14871 	/* Init cpu_map array */
14872 	lpfc_cpu_map_array_init(phba);
14873 
14874 	/* Init hba_eq_hdl array */
14875 	lpfc_hba_eq_hdl_array_init(phba);
14876 
14877 	/* Configure and enable interrupt */
14878 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14879 	if (intr_mode == LPFC_INTR_ERROR) {
14880 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14881 				"0426 Failed to enable interrupt.\n");
14882 		error = -ENODEV;
14883 		goto out_unset_driver_resource;
14884 	}
14885 	/* Default to single EQ for non-MSI-X */
14886 	if (phba->intr_type != MSIX) {
14887 		phba->cfg_irq_chann = 1;
14888 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14889 			if (phba->nvmet_support)
14890 				phba->cfg_nvmet_mrq = 1;
14891 		}
14892 	}
14893 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14894 
14895 	/* Create SCSI host to the physical port */
14896 	error = lpfc_create_shost(phba);
14897 	if (error) {
14898 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14899 				"1415 Failed to create scsi host.\n");
14900 		goto out_disable_intr;
14901 	}
14902 	vport = phba->pport;
14903 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14904 
14905 	/* Configure sysfs attributes */
14906 	error = lpfc_alloc_sysfs_attr(vport);
14907 	if (error) {
14908 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14909 				"1416 Failed to allocate sysfs attr\n");
14910 		goto out_destroy_shost;
14911 	}
14912 
14913 	/* Set up SLI-4 HBA */
14914 	if (lpfc_sli4_hba_setup(phba)) {
14915 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14916 				"1421 Failed to set up hba\n");
14917 		error = -ENODEV;
14918 		goto out_free_sysfs_attr;
14919 	}
14920 
14921 	/* Log the current active interrupt mode */
14922 	phba->intr_mode = intr_mode;
14923 	lpfc_log_intr_mode(phba, intr_mode);
14924 
14925 	/* Perform post initialization setup */
14926 	lpfc_post_init_setup(phba);
14927 
14928 	/* NVME support in FW earlier in the driver load corrects the
14929 	 * FC4 type making a check for nvme_support unnecessary.
14930 	 */
14931 	if (phba->nvmet_support == 0) {
14932 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14933 			/* Create NVME binding with nvme_fc_transport. This
14934 			 * ensures the vport is initialized.  If the localport
14935 			 * create fails, it should not unload the driver to
14936 			 * support field issues.
14937 			 */
14938 			error = lpfc_nvme_create_localport(vport);
14939 			if (error) {
14940 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14941 						"6004 NVME registration "
14942 						"failed, error x%x\n",
14943 						error);
14944 			}
14945 		}
14946 	}
14947 
14948 	/* check for firmware upgrade or downgrade */
14949 	if (phba->cfg_request_firmware_upgrade)
14950 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14951 
14952 	/* Check if there are static vports to be created. */
14953 	lpfc_create_static_vport(phba);
14954 
14955 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14956 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14957 
14958 	return 0;
14959 
14960 out_free_sysfs_attr:
14961 	lpfc_free_sysfs_attr(vport);
14962 out_destroy_shost:
14963 	lpfc_destroy_shost(phba);
14964 out_disable_intr:
14965 	lpfc_sli4_disable_intr(phba);
14966 out_unset_driver_resource:
14967 	lpfc_unset_driver_resource_phase2(phba);
14968 out_unset_driver_resource_s4:
14969 	lpfc_sli4_driver_resource_unset(phba);
14970 out_unset_pci_mem_s4:
14971 	lpfc_sli4_pci_mem_unset(phba);
14972 out_disable_pci_dev:
14973 	lpfc_disable_pci_dev(phba);
14974 	if (shost)
14975 		scsi_host_put(shost);
14976 out_free_phba:
14977 	lpfc_hba_free(phba);
14978 	return error;
14979 }
14980 
14981 /**
14982  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14983  * @pdev: pointer to PCI device
14984  *
14985  * This routine is called from the kernel's PCI subsystem to device with
14986  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14987  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14988  * device to be removed from the PCI subsystem properly.
14989  **/
14990 static void
14991 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14992 {
14993 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14994 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14995 	struct lpfc_vport **vports;
14996 	struct lpfc_hba *phba = vport->phba;
14997 	int i;
14998 
14999 	/* Mark the device unloading flag */
15000 	spin_lock_irq(&phba->hbalock);
15001 	vport->load_flag |= FC_UNLOADING;
15002 	spin_unlock_irq(&phba->hbalock);
15003 	if (phba->cgn_i)
15004 		lpfc_unreg_congestion_buf(phba);
15005 
15006 	lpfc_free_sysfs_attr(vport);
15007 
15008 	/* Release all the vports against this physical port */
15009 	vports = lpfc_create_vport_work_array(phba);
15010 	if (vports != NULL)
15011 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
15012 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
15013 				continue;
15014 			fc_vport_terminate(vports[i]->fc_vport);
15015 		}
15016 	lpfc_destroy_vport_work_array(phba, vports);
15017 
15018 	/* Remove FC host with the physical port */
15019 	fc_remove_host(shost);
15020 	scsi_remove_host(shost);
15021 
15022 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15023 	 * localports are destroyed after to cleanup all transport memory.
15024 	 */
15025 	lpfc_cleanup(vport);
15026 	lpfc_nvmet_destroy_targetport(phba);
15027 	lpfc_nvme_destroy_localport(vport);
15028 
15029 	/* De-allocate multi-XRI pools */
15030 	if (phba->cfg_xri_rebalancing)
15031 		lpfc_destroy_multixri_pools(phba);
15032 
15033 	/*
15034 	 * Bring down the SLI Layer. This step disables all interrupts,
15035 	 * clears the rings, discards all mailbox commands, and resets
15036 	 * the HBA FCoE function.
15037 	 */
15038 	lpfc_debugfs_terminate(vport);
15039 
15040 	lpfc_stop_hba_timers(phba);
15041 	spin_lock_irq(&phba->port_list_lock);
15042 	list_del_init(&vport->listentry);
15043 	spin_unlock_irq(&phba->port_list_lock);
15044 
15045 	/* Perform scsi free before driver resource_unset since scsi
15046 	 * buffers are released to their corresponding pools here.
15047 	 */
15048 	lpfc_io_free(phba);
15049 	lpfc_free_iocb_list(phba);
15050 	lpfc_sli4_hba_unset(phba);
15051 
15052 	lpfc_unset_driver_resource_phase2(phba);
15053 	lpfc_sli4_driver_resource_unset(phba);
15054 
15055 	/* Unmap adapter Control and Doorbell registers */
15056 	lpfc_sli4_pci_mem_unset(phba);
15057 
15058 	/* Release PCI resources and disable device's PCI function */
15059 	scsi_host_put(shost);
15060 	lpfc_disable_pci_dev(phba);
15061 
15062 	/* Finally, free the driver's device data structure */
15063 	lpfc_hba_free(phba);
15064 
15065 	return;
15066 }
15067 
15068 /**
15069  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15070  * @dev_d: pointer to device
15071  *
15072  * This routine is called from the kernel's PCI subsystem to support system
15073  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15074  * this method, it quiesces the device by stopping the driver's worker
15075  * thread for the device, turning off device's interrupt and DMA, and bring
15076  * the device offline. Note that as the driver implements the minimum PM
15077  * requirements to a power-aware driver's PM support for suspend/resume -- all
15078  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15079  * method call will be treated as SUSPEND and the driver will fully
15080  * reinitialize its device during resume() method call, the driver will set
15081  * device to PCI_D3hot state in PCI config space instead of setting it
15082  * according to the @msg provided by the PM.
15083  *
15084  * Return code
15085  * 	0 - driver suspended the device
15086  * 	Error otherwise
15087  **/
15088 static int __maybe_unused
15089 lpfc_pci_suspend_one_s4(struct device *dev_d)
15090 {
15091 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15092 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15093 
15094 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15095 			"2843 PCI device Power Management suspend.\n");
15096 
15097 	/* Bring down the device */
15098 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15099 	lpfc_offline(phba);
15100 	kthread_stop(phba->worker_thread);
15101 
15102 	/* Disable interrupt from device */
15103 	lpfc_sli4_disable_intr(phba);
15104 	lpfc_sli4_queue_destroy(phba);
15105 
15106 	return 0;
15107 }
15108 
15109 /**
15110  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15111  * @dev_d: pointer to device
15112  *
15113  * This routine is called from the kernel's PCI subsystem to support system
15114  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15115  * this method, it restores the device's PCI config space state and fully
15116  * reinitializes the device and brings it online. Note that as the driver
15117  * implements the minimum PM requirements to a power-aware driver's PM for
15118  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15119  * to the suspend() method call will be treated as SUSPEND and the driver
15120  * will fully reinitialize its device during resume() method call, the device
15121  * will be set to PCI_D0 directly in PCI config space before restoring the
15122  * state.
15123  *
15124  * Return code
15125  * 	0 - driver suspended the device
15126  * 	Error otherwise
15127  **/
15128 static int __maybe_unused
15129 lpfc_pci_resume_one_s4(struct device *dev_d)
15130 {
15131 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15132 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15133 	uint32_t intr_mode;
15134 	int error;
15135 
15136 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15137 			"0292 PCI device Power Management resume.\n");
15138 
15139 	 /* Startup the kernel thread for this host adapter. */
15140 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15141 					"lpfc_worker_%d", phba->brd_no);
15142 	if (IS_ERR(phba->worker_thread)) {
15143 		error = PTR_ERR(phba->worker_thread);
15144 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15145 				"0293 PM resume failed to start worker "
15146 				"thread: error=x%x.\n", error);
15147 		return error;
15148 	}
15149 
15150 	/* Configure and enable interrupt */
15151 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15152 	if (intr_mode == LPFC_INTR_ERROR) {
15153 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15154 				"0294 PM resume Failed to enable interrupt\n");
15155 		return -EIO;
15156 	} else
15157 		phba->intr_mode = intr_mode;
15158 
15159 	/* Restart HBA and bring it online */
15160 	lpfc_sli_brdrestart(phba);
15161 	lpfc_online(phba);
15162 
15163 	/* Log the current active interrupt mode */
15164 	lpfc_log_intr_mode(phba, phba->intr_mode);
15165 
15166 	return 0;
15167 }
15168 
15169 /**
15170  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15171  * @phba: pointer to lpfc hba data structure.
15172  *
15173  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15174  * aborts all the outstanding SCSI I/Os to the pci device.
15175  **/
15176 static void
15177 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15178 {
15179 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15180 			"2828 PCI channel I/O abort preparing for recovery\n");
15181 	/*
15182 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15183 	 * and let the SCSI mid-layer to retry them to recover.
15184 	 */
15185 	lpfc_sli_abort_fcp_rings(phba);
15186 }
15187 
15188 /**
15189  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15190  * @phba: pointer to lpfc hba data structure.
15191  *
15192  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15193  * disables the device interrupt and pci device, and aborts the internal FCP
15194  * pending I/Os.
15195  **/
15196 static void
15197 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15198 {
15199 	int offline =  pci_channel_offline(phba->pcidev);
15200 
15201 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15202 			"2826 PCI channel disable preparing for reset offline"
15203 			" %d\n", offline);
15204 
15205 	/* Block any management I/Os to the device */
15206 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15207 
15208 
15209 	/* HBA_PCI_ERR was set in io_error_detect */
15210 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15211 	/* Flush all driver's outstanding I/Os as we are to reset */
15212 	lpfc_sli_flush_io_rings(phba);
15213 	lpfc_offline(phba);
15214 
15215 	/* stop all timers */
15216 	lpfc_stop_hba_timers(phba);
15217 
15218 	lpfc_sli4_queue_destroy(phba);
15219 	/* Disable interrupt and pci device */
15220 	lpfc_sli4_disable_intr(phba);
15221 	pci_disable_device(phba->pcidev);
15222 }
15223 
15224 /**
15225  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15226  * @phba: pointer to lpfc hba data structure.
15227  *
15228  * This routine is called to prepare the SLI4 device for PCI slot permanently
15229  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15230  * pending I/Os.
15231  **/
15232 static void
15233 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15234 {
15235 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15236 			"2827 PCI channel permanent disable for failure\n");
15237 
15238 	/* Block all SCSI devices' I/Os on the host */
15239 	lpfc_scsi_dev_block(phba);
15240 
15241 	/* stop all timers */
15242 	lpfc_stop_hba_timers(phba);
15243 
15244 	/* Clean up all driver's outstanding I/Os */
15245 	lpfc_sli_flush_io_rings(phba);
15246 }
15247 
15248 /**
15249  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15250  * @pdev: pointer to PCI device.
15251  * @state: the current PCI connection state.
15252  *
15253  * This routine is called from the PCI subsystem for error handling to device
15254  * with SLI-4 interface spec. This function is called by the PCI subsystem
15255  * after a PCI bus error affecting this device has been detected. When this
15256  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15257  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15258  * for the PCI subsystem to perform proper recovery as desired.
15259  *
15260  * Return codes
15261  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15262  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15263  **/
15264 static pci_ers_result_t
15265 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15266 {
15267 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15268 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15269 	bool hba_pci_err;
15270 
15271 	switch (state) {
15272 	case pci_channel_io_normal:
15273 		/* Non-fatal error, prepare for recovery */
15274 		lpfc_sli4_prep_dev_for_recover(phba);
15275 		return PCI_ERS_RESULT_CAN_RECOVER;
15276 	case pci_channel_io_frozen:
15277 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15278 		/* Fatal error, prepare for slot reset */
15279 		if (!hba_pci_err)
15280 			lpfc_sli4_prep_dev_for_reset(phba);
15281 		else
15282 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15283 					"2832  Already handling PCI error "
15284 					"state: x%x\n", state);
15285 		return PCI_ERS_RESULT_NEED_RESET;
15286 	case pci_channel_io_perm_failure:
15287 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15288 		/* Permanent failure, prepare for device down */
15289 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15290 		return PCI_ERS_RESULT_DISCONNECT;
15291 	default:
15292 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15293 		if (!hba_pci_err)
15294 			lpfc_sli4_prep_dev_for_reset(phba);
15295 		/* Unknown state, prepare and request slot reset */
15296 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15297 				"2825 Unknown PCI error state: x%x\n", state);
15298 		lpfc_sli4_prep_dev_for_reset(phba);
15299 		return PCI_ERS_RESULT_NEED_RESET;
15300 	}
15301 }
15302 
15303 /**
15304  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15305  * @pdev: pointer to PCI device.
15306  *
15307  * This routine is called from the PCI subsystem for error handling to device
15308  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15309  * restart the PCI card from scratch, as if from a cold-boot. During the
15310  * PCI subsystem error recovery, after the driver returns
15311  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15312  * recovery and then call this routine before calling the .resume method to
15313  * recover the device. This function will initialize the HBA device, enable
15314  * the interrupt, but it will just put the HBA to offline state without
15315  * passing any I/O traffic.
15316  *
15317  * Return codes
15318  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15319  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15320  */
15321 static pci_ers_result_t
15322 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15323 {
15324 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15325 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15326 	struct lpfc_sli *psli = &phba->sli;
15327 	uint32_t intr_mode;
15328 	bool hba_pci_err;
15329 
15330 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15331 	if (pci_enable_device_mem(pdev)) {
15332 		printk(KERN_ERR "lpfc: Cannot re-enable "
15333 		       "PCI device after reset.\n");
15334 		return PCI_ERS_RESULT_DISCONNECT;
15335 	}
15336 
15337 	pci_restore_state(pdev);
15338 
15339 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15340 	if (!hba_pci_err)
15341 		dev_info(&pdev->dev,
15342 			 "hba_pci_err was not set, recovering slot reset.\n");
15343 	/*
15344 	 * As the new kernel behavior of pci_restore_state() API call clears
15345 	 * device saved_state flag, need to save the restored state again.
15346 	 */
15347 	pci_save_state(pdev);
15348 
15349 	if (pdev->is_busmaster)
15350 		pci_set_master(pdev);
15351 
15352 	spin_lock_irq(&phba->hbalock);
15353 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15354 	spin_unlock_irq(&phba->hbalock);
15355 
15356 	/* Init cpu_map array */
15357 	lpfc_cpu_map_array_init(phba);
15358 	/* Configure and enable interrupt */
15359 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15360 	if (intr_mode == LPFC_INTR_ERROR) {
15361 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15362 				"2824 Cannot re-enable interrupt after "
15363 				"slot reset.\n");
15364 		return PCI_ERS_RESULT_DISCONNECT;
15365 	} else
15366 		phba->intr_mode = intr_mode;
15367 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15368 
15369 	/* Log the current active interrupt mode */
15370 	lpfc_log_intr_mode(phba, phba->intr_mode);
15371 
15372 	return PCI_ERS_RESULT_RECOVERED;
15373 }
15374 
15375 /**
15376  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15377  * @pdev: pointer to PCI device
15378  *
15379  * This routine is called from the PCI subsystem for error handling to device
15380  * with SLI-4 interface spec. It is called when kernel error recovery tells
15381  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15382  * error recovery. After this call, traffic can start to flow from this device
15383  * again.
15384  **/
15385 static void
15386 lpfc_io_resume_s4(struct pci_dev *pdev)
15387 {
15388 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15389 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15390 
15391 	/*
15392 	 * In case of slot reset, as function reset is performed through
15393 	 * mailbox command which needs DMA to be enabled, this operation
15394 	 * has to be moved to the io resume phase. Taking device offline
15395 	 * will perform the necessary cleanup.
15396 	 */
15397 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15398 		/* Perform device reset */
15399 		lpfc_sli_brdrestart(phba);
15400 		/* Bring the device back online */
15401 		lpfc_online(phba);
15402 	}
15403 }
15404 
15405 /**
15406  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15407  * @pdev: pointer to PCI device
15408  * @pid: pointer to PCI device identifier
15409  *
15410  * This routine is to be registered to the kernel's PCI subsystem. When an
15411  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15412  * at PCI device-specific information of the device and driver to see if the
15413  * driver state that it can support this kind of device. If the match is
15414  * successful, the driver core invokes this routine. This routine dispatches
15415  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15416  * do all the initialization that it needs to do to handle the HBA device
15417  * properly.
15418  *
15419  * Return code
15420  * 	0 - driver can claim the device
15421  * 	negative value - driver can not claim the device
15422  **/
15423 static int
15424 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15425 {
15426 	int rc;
15427 	struct lpfc_sli_intf intf;
15428 
15429 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15430 		return -ENODEV;
15431 
15432 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15433 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15434 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15435 	else
15436 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15437 
15438 	return rc;
15439 }
15440 
15441 /**
15442  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15443  * @pdev: pointer to PCI device
15444  *
15445  * This routine is to be registered to the kernel's PCI subsystem. When an
15446  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15447  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15448  * remove routine, which will perform all the necessary cleanup for the
15449  * device to be removed from the PCI subsystem properly.
15450  **/
15451 static void
15452 lpfc_pci_remove_one(struct pci_dev *pdev)
15453 {
15454 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15455 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456 
15457 	switch (phba->pci_dev_grp) {
15458 	case LPFC_PCI_DEV_LP:
15459 		lpfc_pci_remove_one_s3(pdev);
15460 		break;
15461 	case LPFC_PCI_DEV_OC:
15462 		lpfc_pci_remove_one_s4(pdev);
15463 		break;
15464 	default:
15465 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15466 				"1424 Invalid PCI device group: 0x%x\n",
15467 				phba->pci_dev_grp);
15468 		break;
15469 	}
15470 	return;
15471 }
15472 
15473 /**
15474  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15475  * @dev: pointer to device
15476  *
15477  * This routine is to be registered to the kernel's PCI subsystem to support
15478  * system Power Management (PM). When PM invokes this method, it dispatches
15479  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15480  * suspend the device.
15481  *
15482  * Return code
15483  * 	0 - driver suspended the device
15484  * 	Error otherwise
15485  **/
15486 static int __maybe_unused
15487 lpfc_pci_suspend_one(struct device *dev)
15488 {
15489 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15490 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15491 	int rc = -ENODEV;
15492 
15493 	switch (phba->pci_dev_grp) {
15494 	case LPFC_PCI_DEV_LP:
15495 		rc = lpfc_pci_suspend_one_s3(dev);
15496 		break;
15497 	case LPFC_PCI_DEV_OC:
15498 		rc = lpfc_pci_suspend_one_s4(dev);
15499 		break;
15500 	default:
15501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15502 				"1425 Invalid PCI device group: 0x%x\n",
15503 				phba->pci_dev_grp);
15504 		break;
15505 	}
15506 	return rc;
15507 }
15508 
15509 /**
15510  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15511  * @dev: pointer to device
15512  *
15513  * This routine is to be registered to the kernel's PCI subsystem to support
15514  * system Power Management (PM). When PM invokes this method, it dispatches
15515  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15516  * resume the device.
15517  *
15518  * Return code
15519  * 	0 - driver suspended the device
15520  * 	Error otherwise
15521  **/
15522 static int __maybe_unused
15523 lpfc_pci_resume_one(struct device *dev)
15524 {
15525 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15526 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15527 	int rc = -ENODEV;
15528 
15529 	switch (phba->pci_dev_grp) {
15530 	case LPFC_PCI_DEV_LP:
15531 		rc = lpfc_pci_resume_one_s3(dev);
15532 		break;
15533 	case LPFC_PCI_DEV_OC:
15534 		rc = lpfc_pci_resume_one_s4(dev);
15535 		break;
15536 	default:
15537 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15538 				"1426 Invalid PCI device group: 0x%x\n",
15539 				phba->pci_dev_grp);
15540 		break;
15541 	}
15542 	return rc;
15543 }
15544 
15545 /**
15546  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15547  * @pdev: pointer to PCI device.
15548  * @state: the current PCI connection state.
15549  *
15550  * This routine is registered to the PCI subsystem for error handling. This
15551  * function is called by the PCI subsystem after a PCI bus error affecting
15552  * this device has been detected. When this routine is invoked, it dispatches
15553  * the action to the proper SLI-3 or SLI-4 device error detected handling
15554  * routine, which will perform the proper error detected operation.
15555  *
15556  * Return codes
15557  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15558  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15559  **/
15560 static pci_ers_result_t
15561 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15562 {
15563 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15564 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15565 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15566 
15567 	if (phba->link_state == LPFC_HBA_ERROR &&
15568 	    phba->hba_flag & HBA_IOQ_FLUSH)
15569 		return PCI_ERS_RESULT_NEED_RESET;
15570 
15571 	switch (phba->pci_dev_grp) {
15572 	case LPFC_PCI_DEV_LP:
15573 		rc = lpfc_io_error_detected_s3(pdev, state);
15574 		break;
15575 	case LPFC_PCI_DEV_OC:
15576 		rc = lpfc_io_error_detected_s4(pdev, state);
15577 		break;
15578 	default:
15579 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15580 				"1427 Invalid PCI device group: 0x%x\n",
15581 				phba->pci_dev_grp);
15582 		break;
15583 	}
15584 	return rc;
15585 }
15586 
15587 /**
15588  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15589  * @pdev: pointer to PCI device.
15590  *
15591  * This routine is registered to the PCI subsystem for error handling. This
15592  * function is called after PCI bus has been reset to restart the PCI card
15593  * from scratch, as if from a cold-boot. When this routine is invoked, it
15594  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15595  * routine, which will perform the proper device reset.
15596  *
15597  * Return codes
15598  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15599  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15600  **/
15601 static pci_ers_result_t
15602 lpfc_io_slot_reset(struct pci_dev *pdev)
15603 {
15604 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15605 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15606 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15607 
15608 	switch (phba->pci_dev_grp) {
15609 	case LPFC_PCI_DEV_LP:
15610 		rc = lpfc_io_slot_reset_s3(pdev);
15611 		break;
15612 	case LPFC_PCI_DEV_OC:
15613 		rc = lpfc_io_slot_reset_s4(pdev);
15614 		break;
15615 	default:
15616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15617 				"1428 Invalid PCI device group: 0x%x\n",
15618 				phba->pci_dev_grp);
15619 		break;
15620 	}
15621 	return rc;
15622 }
15623 
15624 /**
15625  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15626  * @pdev: pointer to PCI device
15627  *
15628  * This routine is registered to the PCI subsystem for error handling. It
15629  * is called when kernel error recovery tells the lpfc driver that it is
15630  * OK to resume normal PCI operation after PCI bus error recovery. When
15631  * this routine is invoked, it dispatches the action to the proper SLI-3
15632  * or SLI-4 device io_resume routine, which will resume the device operation.
15633  **/
15634 static void
15635 lpfc_io_resume(struct pci_dev *pdev)
15636 {
15637 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15638 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15639 
15640 	switch (phba->pci_dev_grp) {
15641 	case LPFC_PCI_DEV_LP:
15642 		lpfc_io_resume_s3(pdev);
15643 		break;
15644 	case LPFC_PCI_DEV_OC:
15645 		lpfc_io_resume_s4(pdev);
15646 		break;
15647 	default:
15648 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15649 				"1429 Invalid PCI device group: 0x%x\n",
15650 				phba->pci_dev_grp);
15651 		break;
15652 	}
15653 	return;
15654 }
15655 
15656 /**
15657  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15658  * @phba: pointer to lpfc hba data structure.
15659  *
15660  * This routine checks to see if OAS is supported for this adapter. If
15661  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15662  * the enable oas flag is cleared and the pool created for OAS device data
15663  * is destroyed.
15664  *
15665  **/
15666 static void
15667 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15668 {
15669 
15670 	if (!phba->cfg_EnableXLane)
15671 		return;
15672 
15673 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15674 		phba->cfg_fof = 1;
15675 	} else {
15676 		phba->cfg_fof = 0;
15677 		mempool_destroy(phba->device_data_mem_pool);
15678 		phba->device_data_mem_pool = NULL;
15679 	}
15680 
15681 	return;
15682 }
15683 
15684 /**
15685  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15686  * @phba: pointer to lpfc hba data structure.
15687  *
15688  * This routine checks to see if RAS is supported by the adapter. Check the
15689  * function through which RAS support enablement is to be done.
15690  **/
15691 void
15692 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15693 {
15694 	/* if ASIC_GEN_NUM >= 0xC) */
15695 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15696 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15697 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15698 		    LPFC_SLI_INTF_FAMILY_G6)) {
15699 		phba->ras_fwlog.ras_hwsupport = true;
15700 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15701 		    phba->cfg_ras_fwlog_buffsize)
15702 			phba->ras_fwlog.ras_enabled = true;
15703 		else
15704 			phba->ras_fwlog.ras_enabled = false;
15705 	} else {
15706 		phba->ras_fwlog.ras_hwsupport = false;
15707 	}
15708 }
15709 
15710 
15711 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15712 
15713 static const struct pci_error_handlers lpfc_err_handler = {
15714 	.error_detected = lpfc_io_error_detected,
15715 	.slot_reset = lpfc_io_slot_reset,
15716 	.resume = lpfc_io_resume,
15717 };
15718 
15719 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15720 			 lpfc_pci_suspend_one,
15721 			 lpfc_pci_resume_one);
15722 
15723 static struct pci_driver lpfc_driver = {
15724 	.name		= LPFC_DRIVER_NAME,
15725 	.id_table	= lpfc_id_table,
15726 	.probe		= lpfc_pci_probe_one,
15727 	.remove		= lpfc_pci_remove_one,
15728 	.shutdown	= lpfc_pci_remove_one,
15729 	.driver.pm	= &lpfc_pci_pm_ops_one,
15730 	.err_handler    = &lpfc_err_handler,
15731 };
15732 
15733 static const struct file_operations lpfc_mgmt_fop = {
15734 	.owner = THIS_MODULE,
15735 };
15736 
15737 static struct miscdevice lpfc_mgmt_dev = {
15738 	.minor = MISC_DYNAMIC_MINOR,
15739 	.name = "lpfcmgmt",
15740 	.fops = &lpfc_mgmt_fop,
15741 };
15742 
15743 /**
15744  * lpfc_init - lpfc module initialization routine
15745  *
15746  * This routine is to be invoked when the lpfc module is loaded into the
15747  * kernel. The special kernel macro module_init() is used to indicate the
15748  * role of this routine to the kernel as lpfc module entry point.
15749  *
15750  * Return codes
15751  *   0 - successful
15752  *   -ENOMEM - FC attach transport failed
15753  *   all others - failed
15754  */
15755 static int __init
15756 lpfc_init(void)
15757 {
15758 	int error = 0;
15759 
15760 	pr_info(LPFC_MODULE_DESC "\n");
15761 	pr_info(LPFC_COPYRIGHT "\n");
15762 
15763 	error = misc_register(&lpfc_mgmt_dev);
15764 	if (error)
15765 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15766 			"misc_register returned with status %d", error);
15767 
15768 	error = -ENOMEM;
15769 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15770 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15771 	lpfc_transport_template =
15772 				fc_attach_transport(&lpfc_transport_functions);
15773 	if (lpfc_transport_template == NULL)
15774 		goto unregister;
15775 	lpfc_vport_transport_template =
15776 		fc_attach_transport(&lpfc_vport_transport_functions);
15777 	if (lpfc_vport_transport_template == NULL) {
15778 		fc_release_transport(lpfc_transport_template);
15779 		goto unregister;
15780 	}
15781 	lpfc_wqe_cmd_template();
15782 	lpfc_nvmet_cmd_template();
15783 
15784 	/* Initialize in case vector mapping is needed */
15785 	lpfc_present_cpu = num_present_cpus();
15786 
15787 	lpfc_pldv_detect = false;
15788 
15789 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15790 					"lpfc/sli4:online",
15791 					lpfc_cpu_online, lpfc_cpu_offline);
15792 	if (error < 0)
15793 		goto cpuhp_failure;
15794 	lpfc_cpuhp_state = error;
15795 
15796 	error = pci_register_driver(&lpfc_driver);
15797 	if (error)
15798 		goto unwind;
15799 
15800 	return error;
15801 
15802 unwind:
15803 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15804 cpuhp_failure:
15805 	fc_release_transport(lpfc_transport_template);
15806 	fc_release_transport(lpfc_vport_transport_template);
15807 unregister:
15808 	misc_deregister(&lpfc_mgmt_dev);
15809 
15810 	return error;
15811 }
15812 
15813 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15814 {
15815 	unsigned int start_idx;
15816 	unsigned int dbg_cnt;
15817 	unsigned int temp_idx;
15818 	int i;
15819 	int j = 0;
15820 	unsigned long rem_nsec;
15821 
15822 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15823 		return;
15824 
15825 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15826 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15827 	if (!dbg_cnt)
15828 		goto out;
15829 	temp_idx = start_idx;
15830 	if (dbg_cnt >= DBG_LOG_SZ) {
15831 		dbg_cnt = DBG_LOG_SZ;
15832 		temp_idx -= 1;
15833 	} else {
15834 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15835 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15836 		} else {
15837 			if (start_idx < dbg_cnt)
15838 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15839 			else
15840 				start_idx -= dbg_cnt;
15841 		}
15842 	}
15843 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15844 		 start_idx, temp_idx, dbg_cnt);
15845 
15846 	for (i = 0; i < dbg_cnt; i++) {
15847 		if ((start_idx + i) < DBG_LOG_SZ)
15848 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15849 		else
15850 			temp_idx = j++;
15851 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15852 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15853 			 temp_idx,
15854 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15855 			 rem_nsec / 1000,
15856 			 phba->dbg_log[temp_idx].log);
15857 	}
15858 out:
15859 	atomic_set(&phba->dbg_log_cnt, 0);
15860 	atomic_set(&phba->dbg_log_dmping, 0);
15861 }
15862 
15863 __printf(2, 3)
15864 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15865 {
15866 	unsigned int idx;
15867 	va_list args;
15868 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15869 	struct va_format vaf;
15870 
15871 
15872 	va_start(args, fmt);
15873 	if (unlikely(dbg_dmping)) {
15874 		vaf.fmt = fmt;
15875 		vaf.va = &args;
15876 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15877 		va_end(args);
15878 		return;
15879 	}
15880 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15881 		DBG_LOG_SZ;
15882 
15883 	atomic_inc(&phba->dbg_log_cnt);
15884 
15885 	vscnprintf(phba->dbg_log[idx].log,
15886 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15887 	va_end(args);
15888 
15889 	phba->dbg_log[idx].t_ns = local_clock();
15890 }
15891 
15892 /**
15893  * lpfc_exit - lpfc module removal routine
15894  *
15895  * This routine is invoked when the lpfc module is removed from the kernel.
15896  * The special kernel macro module_exit() is used to indicate the role of
15897  * this routine to the kernel as lpfc module exit point.
15898  */
15899 static void __exit
15900 lpfc_exit(void)
15901 {
15902 	misc_deregister(&lpfc_mgmt_dev);
15903 	pci_unregister_driver(&lpfc_driver);
15904 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15905 	fc_release_transport(lpfc_transport_template);
15906 	fc_release_transport(lpfc_vport_transport_template);
15907 	idr_destroy(&lpfc_hba_index);
15908 }
15909 
15910 module_init(lpfc_init);
15911 module_exit(lpfc_exit);
15912 MODULE_LICENSE("GPL");
15913 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15914 MODULE_AUTHOR("Broadcom");
15915 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15916