1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 97 static struct scsi_transport_template *lpfc_transport_template = NULL; 98 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 99 static DEFINE_IDR(lpfc_hba_index); 100 #define LPFC_NVMET_BUF_POST 254 101 102 /** 103 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 104 * @phba: pointer to lpfc hba data structure. 105 * 106 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 107 * mailbox command. It retrieves the revision information from the HBA and 108 * collects the Vital Product Data (VPD) about the HBA for preparing the 109 * configuration of the HBA. 110 * 111 * Return codes: 112 * 0 - success. 113 * -ERESTART - requests the SLI layer to reset the HBA and try again. 114 * Any other value - indicates an error. 115 **/ 116 int 117 lpfc_config_port_prep(struct lpfc_hba *phba) 118 { 119 lpfc_vpd_t *vp = &phba->vpd; 120 int i = 0, rc; 121 LPFC_MBOXQ_t *pmb; 122 MAILBOX_t *mb; 123 char *lpfc_vpd_data = NULL; 124 uint16_t offset = 0; 125 static char licensed[56] = 126 "key unlock for use with gnu public licensed code only\0"; 127 static int init_key = 1; 128 129 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 130 if (!pmb) { 131 phba->link_state = LPFC_HBA_ERROR; 132 return -ENOMEM; 133 } 134 135 mb = &pmb->u.mb; 136 phba->link_state = LPFC_INIT_MBX_CMDS; 137 138 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 139 if (init_key) { 140 uint32_t *ptext = (uint32_t *) licensed; 141 142 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 143 *ptext = cpu_to_be32(*ptext); 144 init_key = 0; 145 } 146 147 lpfc_read_nv(phba, pmb); 148 memset((char*)mb->un.varRDnvp.rsvd3, 0, 149 sizeof (mb->un.varRDnvp.rsvd3)); 150 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 151 sizeof (licensed)); 152 153 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 154 155 if (rc != MBX_SUCCESS) { 156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 157 "0324 Config Port initialization " 158 "error, mbxCmd x%x READ_NVPARM, " 159 "mbxStatus x%x\n", 160 mb->mbxCommand, mb->mbxStatus); 161 mempool_free(pmb, phba->mbox_mem_pool); 162 return -ERESTART; 163 } 164 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 165 sizeof(phba->wwnn)); 166 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 167 sizeof(phba->wwpn)); 168 } 169 170 /* 171 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 172 * which was already set in lpfc_get_cfgparam() 173 */ 174 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 175 176 /* Setup and issue mailbox READ REV command */ 177 lpfc_read_rev(phba, pmb); 178 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 179 if (rc != MBX_SUCCESS) { 180 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 181 "0439 Adapter failed to init, mbxCmd x%x " 182 "READ_REV, mbxStatus x%x\n", 183 mb->mbxCommand, mb->mbxStatus); 184 mempool_free( pmb, phba->mbox_mem_pool); 185 return -ERESTART; 186 } 187 188 189 /* 190 * The value of rr must be 1 since the driver set the cv field to 1. 191 * This setting requires the FW to set all revision fields. 192 */ 193 if (mb->un.varRdRev.rr == 0) { 194 vp->rev.rBit = 0; 195 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 196 "0440 Adapter failed to init, READ_REV has " 197 "missing revision information.\n"); 198 mempool_free(pmb, phba->mbox_mem_pool); 199 return -ERESTART; 200 } 201 202 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -EINVAL; 205 } 206 207 /* Save information as VPD data */ 208 vp->rev.rBit = 1; 209 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 210 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 211 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 212 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 213 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 214 vp->rev.biuRev = mb->un.varRdRev.biuRev; 215 vp->rev.smRev = mb->un.varRdRev.smRev; 216 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 217 vp->rev.endecRev = mb->un.varRdRev.endecRev; 218 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 219 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 220 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 221 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 222 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 223 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 224 225 /* If the sli feature level is less then 9, we must 226 * tear down all RPIs and VPIs on link down if NPIV 227 * is enabled. 228 */ 229 if (vp->rev.feaLevelHigh < 9) 230 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 231 232 if (lpfc_is_LC_HBA(phba->pcidev->device)) 233 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 234 sizeof (phba->RandomData)); 235 236 /* Get adapter VPD information */ 237 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 238 if (!lpfc_vpd_data) 239 goto out_free_mbox; 240 do { 241 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 242 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 243 244 if (rc != MBX_SUCCESS) { 245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 246 "0441 VPD not present on adapter, " 247 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 248 mb->mbxCommand, mb->mbxStatus); 249 mb->un.varDmp.word_cnt = 0; 250 } 251 /* dump mem may return a zero when finished or we got a 252 * mailbox error, either way we are done. 253 */ 254 if (mb->un.varDmp.word_cnt == 0) 255 break; 256 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 257 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 258 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 259 lpfc_vpd_data + offset, 260 mb->un.varDmp.word_cnt); 261 offset += mb->un.varDmp.word_cnt; 262 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 263 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 264 265 kfree(lpfc_vpd_data); 266 out_free_mbox: 267 mempool_free(pmb, phba->mbox_mem_pool); 268 return 0; 269 } 270 271 /** 272 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 273 * @phba: pointer to lpfc hba data structure. 274 * @pmboxq: pointer to the driver internal queue element for mailbox command. 275 * 276 * This is the completion handler for driver's configuring asynchronous event 277 * mailbox command to the device. If the mailbox command returns successfully, 278 * it will set internal async event support flag to 1; otherwise, it will 279 * set internal async event support flag to 0. 280 **/ 281 static void 282 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 283 { 284 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 285 phba->temp_sensor_support = 1; 286 else 287 phba->temp_sensor_support = 0; 288 mempool_free(pmboxq, phba->mbox_mem_pool); 289 return; 290 } 291 292 /** 293 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 294 * @phba: pointer to lpfc hba data structure. 295 * @pmboxq: pointer to the driver internal queue element for mailbox command. 296 * 297 * This is the completion handler for dump mailbox command for getting 298 * wake up parameters. When this command complete, the response contain 299 * Option rom version of the HBA. This function translate the version number 300 * into a human readable string and store it in OptionROMVersion. 301 **/ 302 static void 303 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 304 { 305 struct prog_id *prg; 306 uint32_t prog_id_word; 307 char dist = ' '; 308 /* character array used for decoding dist type. */ 309 char dist_char[] = "nabx"; 310 311 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 312 mempool_free(pmboxq, phba->mbox_mem_pool); 313 return; 314 } 315 316 prg = (struct prog_id *) &prog_id_word; 317 318 /* word 7 contain option rom version */ 319 prog_id_word = pmboxq->u.mb.un.varWords[7]; 320 321 /* Decode the Option rom version word to a readable string */ 322 if (prg->dist < 4) 323 dist = dist_char[prg->dist]; 324 325 if ((prg->dist == 3) && (prg->num == 0)) 326 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 327 prg->ver, prg->rev, prg->lev); 328 else 329 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 330 prg->ver, prg->rev, prg->lev, 331 dist, prg->num); 332 mempool_free(pmboxq, phba->mbox_mem_pool); 333 return; 334 } 335 336 /** 337 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 338 * cfg_soft_wwnn, cfg_soft_wwpn 339 * @vport: pointer to lpfc vport data structure. 340 * 341 * 342 * Return codes 343 * None. 344 **/ 345 void 346 lpfc_update_vport_wwn(struct lpfc_vport *vport) 347 { 348 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 349 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 350 351 /* If the soft name exists then update it using the service params */ 352 if (vport->phba->cfg_soft_wwnn) 353 u64_to_wwn(vport->phba->cfg_soft_wwnn, 354 vport->fc_sparam.nodeName.u.wwn); 355 if (vport->phba->cfg_soft_wwpn) 356 u64_to_wwn(vport->phba->cfg_soft_wwpn, 357 vport->fc_sparam.portName.u.wwn); 358 359 /* 360 * If the name is empty or there exists a soft name 361 * then copy the service params name, otherwise use the fc name 362 */ 363 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn) 364 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 365 sizeof(struct lpfc_name)); 366 else 367 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 368 sizeof(struct lpfc_name)); 369 370 /* 371 * If the port name has changed, then set the Param changes flag 372 * to unreg the login 373 */ 374 if (vport->fc_portname.u.wwn[0] != 0 && 375 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 376 sizeof(struct lpfc_name))) 377 vport->vport_flag |= FAWWPN_PARAM_CHG; 378 379 if (vport->fc_portname.u.wwn[0] == 0 || 380 vport->phba->cfg_soft_wwpn || 381 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 382 vport->vport_flag & FAWWPN_SET) { 383 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 384 sizeof(struct lpfc_name)); 385 vport->vport_flag &= ~FAWWPN_SET; 386 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 387 vport->vport_flag |= FAWWPN_SET; 388 } 389 else 390 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 391 sizeof(struct lpfc_name)); 392 } 393 394 /** 395 * lpfc_config_port_post - Perform lpfc initialization after config port 396 * @phba: pointer to lpfc hba data structure. 397 * 398 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 399 * command call. It performs all internal resource and state setups on the 400 * port: post IOCB buffers, enable appropriate host interrupt attentions, 401 * ELS ring timers, etc. 402 * 403 * Return codes 404 * 0 - success. 405 * Any other value - error. 406 **/ 407 int 408 lpfc_config_port_post(struct lpfc_hba *phba) 409 { 410 struct lpfc_vport *vport = phba->pport; 411 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 412 LPFC_MBOXQ_t *pmb; 413 MAILBOX_t *mb; 414 struct lpfc_dmabuf *mp; 415 struct lpfc_sli *psli = &phba->sli; 416 uint32_t status, timeout; 417 int i, j; 418 int rc; 419 420 spin_lock_irq(&phba->hbalock); 421 /* 422 * If the Config port completed correctly the HBA is not 423 * over heated any more. 424 */ 425 if (phba->over_temp_state == HBA_OVER_TEMP) 426 phba->over_temp_state = HBA_NORMAL_TEMP; 427 spin_unlock_irq(&phba->hbalock); 428 429 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 430 if (!pmb) { 431 phba->link_state = LPFC_HBA_ERROR; 432 return -ENOMEM; 433 } 434 mb = &pmb->u.mb; 435 436 /* Get login parameters for NID. */ 437 rc = lpfc_read_sparam(phba, pmb, 0); 438 if (rc) { 439 mempool_free(pmb, phba->mbox_mem_pool); 440 return -ENOMEM; 441 } 442 443 pmb->vport = vport; 444 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 445 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 446 "0448 Adapter failed init, mbxCmd x%x " 447 "READ_SPARM mbxStatus x%x\n", 448 mb->mbxCommand, mb->mbxStatus); 449 phba->link_state = LPFC_HBA_ERROR; 450 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 451 mempool_free(pmb, phba->mbox_mem_pool); 452 lpfc_mbuf_free(phba, mp->virt, mp->phys); 453 kfree(mp); 454 return -EIO; 455 } 456 457 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 458 459 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 460 lpfc_mbuf_free(phba, mp->virt, mp->phys); 461 kfree(mp); 462 pmb->ctx_buf = NULL; 463 lpfc_update_vport_wwn(vport); 464 465 /* Update the fc_host data structures with new wwn. */ 466 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 467 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 468 fc_host_max_npiv_vports(shost) = phba->max_vpi; 469 470 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 471 /* This should be consolidated into parse_vpd ? - mr */ 472 if (phba->SerialNumber[0] == 0) { 473 uint8_t *outptr; 474 475 outptr = &vport->fc_nodename.u.s.IEEE[0]; 476 for (i = 0; i < 12; i++) { 477 status = *outptr++; 478 j = ((status & 0xf0) >> 4); 479 if (j <= 9) 480 phba->SerialNumber[i] = 481 (char)((uint8_t) 0x30 + (uint8_t) j); 482 else 483 phba->SerialNumber[i] = 484 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 485 i++; 486 j = (status & 0xf); 487 if (j <= 9) 488 phba->SerialNumber[i] = 489 (char)((uint8_t) 0x30 + (uint8_t) j); 490 else 491 phba->SerialNumber[i] = 492 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 493 } 494 } 495 496 lpfc_read_config(phba, pmb); 497 pmb->vport = vport; 498 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 499 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 500 "0453 Adapter failed to init, mbxCmd x%x " 501 "READ_CONFIG, mbxStatus x%x\n", 502 mb->mbxCommand, mb->mbxStatus); 503 phba->link_state = LPFC_HBA_ERROR; 504 mempool_free( pmb, phba->mbox_mem_pool); 505 return -EIO; 506 } 507 508 /* Check if the port is disabled */ 509 lpfc_sli_read_link_ste(phba); 510 511 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 512 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 513 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 514 "3359 HBA queue depth changed from %d to %d\n", 515 phba->cfg_hba_queue_depth, 516 mb->un.varRdConfig.max_xri); 517 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 518 } 519 520 phba->lmt = mb->un.varRdConfig.lmt; 521 522 /* Get the default values for Model Name and Description */ 523 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 524 525 phba->link_state = LPFC_LINK_DOWN; 526 527 /* Only process IOCBs on ELS ring till hba_state is READY */ 528 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 529 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 530 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 531 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 532 533 /* Post receive buffers for desired rings */ 534 if (phba->sli_rev != 3) 535 lpfc_post_rcv_buf(phba); 536 537 /* 538 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 539 */ 540 if (phba->intr_type == MSIX) { 541 rc = lpfc_config_msi(phba, pmb); 542 if (rc) { 543 mempool_free(pmb, phba->mbox_mem_pool); 544 return -EIO; 545 } 546 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 547 if (rc != MBX_SUCCESS) { 548 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 549 "0352 Config MSI mailbox command " 550 "failed, mbxCmd x%x, mbxStatus x%x\n", 551 pmb->u.mb.mbxCommand, 552 pmb->u.mb.mbxStatus); 553 mempool_free(pmb, phba->mbox_mem_pool); 554 return -EIO; 555 } 556 } 557 558 spin_lock_irq(&phba->hbalock); 559 /* Initialize ERATT handling flag */ 560 phba->hba_flag &= ~HBA_ERATT_HANDLED; 561 562 /* Enable appropriate host interrupts */ 563 if (lpfc_readl(phba->HCregaddr, &status)) { 564 spin_unlock_irq(&phba->hbalock); 565 return -EIO; 566 } 567 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 568 if (psli->num_rings > 0) 569 status |= HC_R0INT_ENA; 570 if (psli->num_rings > 1) 571 status |= HC_R1INT_ENA; 572 if (psli->num_rings > 2) 573 status |= HC_R2INT_ENA; 574 if (psli->num_rings > 3) 575 status |= HC_R3INT_ENA; 576 577 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 578 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 579 status &= ~(HC_R0INT_ENA); 580 581 writel(status, phba->HCregaddr); 582 readl(phba->HCregaddr); /* flush */ 583 spin_unlock_irq(&phba->hbalock); 584 585 /* Set up ring-0 (ELS) timer */ 586 timeout = phba->fc_ratov * 2; 587 mod_timer(&vport->els_tmofunc, 588 jiffies + msecs_to_jiffies(1000 * timeout)); 589 /* Set up heart beat (HB) timer */ 590 mod_timer(&phba->hb_tmofunc, 591 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 592 phba->hb_outstanding = 0; 593 phba->last_completion_time = jiffies; 594 /* Set up error attention (ERATT) polling timer */ 595 mod_timer(&phba->eratt_poll, 596 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 597 598 if (phba->hba_flag & LINK_DISABLED) { 599 lpfc_printf_log(phba, 600 KERN_ERR, LOG_INIT, 601 "2598 Adapter Link is disabled.\n"); 602 lpfc_down_link(phba, pmb); 603 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 604 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 605 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 606 lpfc_printf_log(phba, 607 KERN_ERR, LOG_INIT, 608 "2599 Adapter failed to issue DOWN_LINK" 609 " mbox command rc 0x%x\n", rc); 610 611 mempool_free(pmb, phba->mbox_mem_pool); 612 return -EIO; 613 } 614 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 615 mempool_free(pmb, phba->mbox_mem_pool); 616 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 617 if (rc) 618 return rc; 619 } 620 /* MBOX buffer will be freed in mbox compl */ 621 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 622 if (!pmb) { 623 phba->link_state = LPFC_HBA_ERROR; 624 return -ENOMEM; 625 } 626 627 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 628 pmb->mbox_cmpl = lpfc_config_async_cmpl; 629 pmb->vport = phba->pport; 630 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 631 632 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 633 lpfc_printf_log(phba, 634 KERN_ERR, 635 LOG_INIT, 636 "0456 Adapter failed to issue " 637 "ASYNCEVT_ENABLE mbox status x%x\n", 638 rc); 639 mempool_free(pmb, phba->mbox_mem_pool); 640 } 641 642 /* Get Option rom version */ 643 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 644 if (!pmb) { 645 phba->link_state = LPFC_HBA_ERROR; 646 return -ENOMEM; 647 } 648 649 lpfc_dump_wakeup_param(phba, pmb); 650 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 651 pmb->vport = phba->pport; 652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 653 654 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 655 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0435 Adapter failed " 656 "to get Option ROM version status x%x\n", rc); 657 mempool_free(pmb, phba->mbox_mem_pool); 658 } 659 660 return 0; 661 } 662 663 /** 664 * lpfc_hba_init_link - Initialize the FC link 665 * @phba: pointer to lpfc hba data structure. 666 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 667 * 668 * This routine will issue the INIT_LINK mailbox command call. 669 * It is available to other drivers through the lpfc_hba data 670 * structure for use as a delayed link up mechanism with the 671 * module parameter lpfc_suppress_link_up. 672 * 673 * Return code 674 * 0 - success 675 * Any other value - error 676 **/ 677 static int 678 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 679 { 680 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 681 } 682 683 /** 684 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 685 * @phba: pointer to lpfc hba data structure. 686 * @fc_topology: desired fc topology. 687 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 688 * 689 * This routine will issue the INIT_LINK mailbox command call. 690 * It is available to other drivers through the lpfc_hba data 691 * structure for use as a delayed link up mechanism with the 692 * module parameter lpfc_suppress_link_up. 693 * 694 * Return code 695 * 0 - success 696 * Any other value - error 697 **/ 698 int 699 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 700 uint32_t flag) 701 { 702 struct lpfc_vport *vport = phba->pport; 703 LPFC_MBOXQ_t *pmb; 704 MAILBOX_t *mb; 705 int rc; 706 707 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 708 if (!pmb) { 709 phba->link_state = LPFC_HBA_ERROR; 710 return -ENOMEM; 711 } 712 mb = &pmb->u.mb; 713 pmb->vport = vport; 714 715 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 716 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 717 !(phba->lmt & LMT_1Gb)) || 718 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 719 !(phba->lmt & LMT_2Gb)) || 720 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 721 !(phba->lmt & LMT_4Gb)) || 722 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 723 !(phba->lmt & LMT_8Gb)) || 724 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 725 !(phba->lmt & LMT_10Gb)) || 726 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 727 !(phba->lmt & LMT_16Gb)) || 728 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 729 !(phba->lmt & LMT_32Gb)) || 730 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 731 !(phba->lmt & LMT_64Gb))) { 732 /* Reset link speed to auto */ 733 lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, 734 "1302 Invalid speed for this board:%d " 735 "Reset link speed to auto.\n", 736 phba->cfg_link_speed); 737 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 738 } 739 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 740 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 741 if (phba->sli_rev < LPFC_SLI_REV4) 742 lpfc_set_loopback_flag(phba); 743 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 744 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 746 "0498 Adapter failed to init, mbxCmd x%x " 747 "INIT_LINK, mbxStatus x%x\n", 748 mb->mbxCommand, mb->mbxStatus); 749 if (phba->sli_rev <= LPFC_SLI_REV3) { 750 /* Clear all interrupt enable conditions */ 751 writel(0, phba->HCregaddr); 752 readl(phba->HCregaddr); /* flush */ 753 /* Clear all pending interrupts */ 754 writel(0xffffffff, phba->HAregaddr); 755 readl(phba->HAregaddr); /* flush */ 756 } 757 phba->link_state = LPFC_HBA_ERROR; 758 if (rc != MBX_BUSY || flag == MBX_POLL) 759 mempool_free(pmb, phba->mbox_mem_pool); 760 return -EIO; 761 } 762 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 763 if (flag == MBX_POLL) 764 mempool_free(pmb, phba->mbox_mem_pool); 765 766 return 0; 767 } 768 769 /** 770 * lpfc_hba_down_link - this routine downs the FC link 771 * @phba: pointer to lpfc hba data structure. 772 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 773 * 774 * This routine will issue the DOWN_LINK mailbox command call. 775 * It is available to other drivers through the lpfc_hba data 776 * structure for use to stop the link. 777 * 778 * Return code 779 * 0 - success 780 * Any other value - error 781 **/ 782 static int 783 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 784 { 785 LPFC_MBOXQ_t *pmb; 786 int rc; 787 788 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 789 if (!pmb) { 790 phba->link_state = LPFC_HBA_ERROR; 791 return -ENOMEM; 792 } 793 794 lpfc_printf_log(phba, 795 KERN_ERR, LOG_INIT, 796 "0491 Adapter Link is disabled.\n"); 797 lpfc_down_link(phba, pmb); 798 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 799 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 800 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 801 lpfc_printf_log(phba, 802 KERN_ERR, LOG_INIT, 803 "2522 Adapter failed to issue DOWN_LINK" 804 " mbox command rc 0x%x\n", rc); 805 806 mempool_free(pmb, phba->mbox_mem_pool); 807 return -EIO; 808 } 809 if (flag == MBX_POLL) 810 mempool_free(pmb, phba->mbox_mem_pool); 811 812 return 0; 813 } 814 815 /** 816 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 817 * @phba: pointer to lpfc HBA data structure. 818 * 819 * This routine will do LPFC uninitialization before the HBA is reset when 820 * bringing down the SLI Layer. 821 * 822 * Return codes 823 * 0 - success. 824 * Any other value - error. 825 **/ 826 int 827 lpfc_hba_down_prep(struct lpfc_hba *phba) 828 { 829 struct lpfc_vport **vports; 830 int i; 831 832 if (phba->sli_rev <= LPFC_SLI_REV3) { 833 /* Disable interrupts */ 834 writel(0, phba->HCregaddr); 835 readl(phba->HCregaddr); /* flush */ 836 } 837 838 if (phba->pport->load_flag & FC_UNLOADING) 839 lpfc_cleanup_discovery_resources(phba->pport); 840 else { 841 vports = lpfc_create_vport_work_array(phba); 842 if (vports != NULL) 843 for (i = 0; i <= phba->max_vports && 844 vports[i] != NULL; i++) 845 lpfc_cleanup_discovery_resources(vports[i]); 846 lpfc_destroy_vport_work_array(phba, vports); 847 } 848 return 0; 849 } 850 851 /** 852 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 853 * rspiocb which got deferred 854 * 855 * @phba: pointer to lpfc HBA data structure. 856 * 857 * This routine will cleanup completed slow path events after HBA is reset 858 * when bringing down the SLI Layer. 859 * 860 * 861 * Return codes 862 * void. 863 **/ 864 static void 865 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 866 { 867 struct lpfc_iocbq *rspiocbq; 868 struct hbq_dmabuf *dmabuf; 869 struct lpfc_cq_event *cq_event; 870 871 spin_lock_irq(&phba->hbalock); 872 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 873 spin_unlock_irq(&phba->hbalock); 874 875 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 876 /* Get the response iocb from the head of work queue */ 877 spin_lock_irq(&phba->hbalock); 878 list_remove_head(&phba->sli4_hba.sp_queue_event, 879 cq_event, struct lpfc_cq_event, list); 880 spin_unlock_irq(&phba->hbalock); 881 882 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 883 case CQE_CODE_COMPL_WQE: 884 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 885 cq_event); 886 lpfc_sli_release_iocbq(phba, rspiocbq); 887 break; 888 case CQE_CODE_RECEIVE: 889 case CQE_CODE_RECEIVE_V1: 890 dmabuf = container_of(cq_event, struct hbq_dmabuf, 891 cq_event); 892 lpfc_in_buf_free(phba, &dmabuf->dbuf); 893 } 894 } 895 } 896 897 /** 898 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 899 * @phba: pointer to lpfc HBA data structure. 900 * 901 * This routine will cleanup posted ELS buffers after the HBA is reset 902 * when bringing down the SLI Layer. 903 * 904 * 905 * Return codes 906 * void. 907 **/ 908 static void 909 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 910 { 911 struct lpfc_sli *psli = &phba->sli; 912 struct lpfc_sli_ring *pring; 913 struct lpfc_dmabuf *mp, *next_mp; 914 LIST_HEAD(buflist); 915 int count; 916 917 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 918 lpfc_sli_hbqbuf_free_all(phba); 919 else { 920 /* Cleanup preposted buffers on the ELS ring */ 921 pring = &psli->sli3_ring[LPFC_ELS_RING]; 922 spin_lock_irq(&phba->hbalock); 923 list_splice_init(&pring->postbufq, &buflist); 924 spin_unlock_irq(&phba->hbalock); 925 926 count = 0; 927 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 928 list_del(&mp->list); 929 count++; 930 lpfc_mbuf_free(phba, mp->virt, mp->phys); 931 kfree(mp); 932 } 933 934 spin_lock_irq(&phba->hbalock); 935 pring->postbufq_cnt -= count; 936 spin_unlock_irq(&phba->hbalock); 937 } 938 } 939 940 /** 941 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 942 * @phba: pointer to lpfc HBA data structure. 943 * 944 * This routine will cleanup the txcmplq after the HBA is reset when bringing 945 * down the SLI Layer. 946 * 947 * Return codes 948 * void 949 **/ 950 static void 951 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 952 { 953 struct lpfc_sli *psli = &phba->sli; 954 struct lpfc_queue *qp = NULL; 955 struct lpfc_sli_ring *pring; 956 LIST_HEAD(completions); 957 int i; 958 struct lpfc_iocbq *piocb, *next_iocb; 959 960 if (phba->sli_rev != LPFC_SLI_REV4) { 961 for (i = 0; i < psli->num_rings; i++) { 962 pring = &psli->sli3_ring[i]; 963 spin_lock_irq(&phba->hbalock); 964 /* At this point in time the HBA is either reset or DOA 965 * Nothing should be on txcmplq as it will 966 * NEVER complete. 967 */ 968 list_splice_init(&pring->txcmplq, &completions); 969 pring->txcmplq_cnt = 0; 970 spin_unlock_irq(&phba->hbalock); 971 972 lpfc_sli_abort_iocb_ring(phba, pring); 973 } 974 /* Cancel all the IOCBs from the completions list */ 975 lpfc_sli_cancel_iocbs(phba, &completions, 976 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 977 return; 978 } 979 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 980 pring = qp->pring; 981 if (!pring) 982 continue; 983 spin_lock_irq(&pring->ring_lock); 984 list_for_each_entry_safe(piocb, next_iocb, 985 &pring->txcmplq, list) 986 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 987 list_splice_init(&pring->txcmplq, &completions); 988 pring->txcmplq_cnt = 0; 989 spin_unlock_irq(&pring->ring_lock); 990 lpfc_sli_abort_iocb_ring(phba, pring); 991 } 992 /* Cancel all the IOCBs from the completions list */ 993 lpfc_sli_cancel_iocbs(phba, &completions, 994 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 995 } 996 997 /** 998 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 999 int i; 1000 * @phba: pointer to lpfc HBA data structure. 1001 * 1002 * This routine will do uninitialization after the HBA is reset when bring 1003 * down the SLI Layer. 1004 * 1005 * Return codes 1006 * 0 - success. 1007 * Any other value - error. 1008 **/ 1009 static int 1010 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1011 { 1012 lpfc_hba_free_post_buf(phba); 1013 lpfc_hba_clean_txcmplq(phba); 1014 return 0; 1015 } 1016 1017 /** 1018 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1019 * @phba: pointer to lpfc HBA data structure. 1020 * 1021 * This routine will do uninitialization after the HBA is reset when bring 1022 * down the SLI Layer. 1023 * 1024 * Return codes 1025 * 0 - success. 1026 * Any other value - error. 1027 **/ 1028 static int 1029 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1030 { 1031 struct lpfc_io_buf *psb, *psb_next; 1032 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1033 struct lpfc_sli4_hdw_queue *qp; 1034 LIST_HEAD(aborts); 1035 LIST_HEAD(nvme_aborts); 1036 LIST_HEAD(nvmet_aborts); 1037 struct lpfc_sglq *sglq_entry = NULL; 1038 int cnt, idx; 1039 1040 1041 lpfc_sli_hbqbuf_free_all(phba); 1042 lpfc_hba_clean_txcmplq(phba); 1043 1044 /* At this point in time the HBA is either reset or DOA. Either 1045 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1046 * on the lpfc_els_sgl_list so that it can either be freed if the 1047 * driver is unloading or reposted if the driver is restarting 1048 * the port. 1049 */ 1050 spin_lock_irq(&phba->hbalock); /* required for lpfc_els_sgl_list and */ 1051 /* scsl_buf_list */ 1052 /* sgl_list_lock required because worker thread uses this 1053 * list. 1054 */ 1055 spin_lock(&phba->sli4_hba.sgl_list_lock); 1056 list_for_each_entry(sglq_entry, 1057 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1058 sglq_entry->state = SGL_FREED; 1059 1060 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1061 &phba->sli4_hba.lpfc_els_sgl_list); 1062 1063 1064 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1065 1066 /* abts_xxxx_buf_list_lock required because worker thread uses this 1067 * list. 1068 */ 1069 cnt = 0; 1070 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1071 qp = &phba->sli4_hba.hdwq[idx]; 1072 1073 spin_lock(&qp->abts_io_buf_list_lock); 1074 list_splice_init(&qp->lpfc_abts_io_buf_list, 1075 &aborts); 1076 1077 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1078 psb->pCmd = NULL; 1079 psb->status = IOSTAT_SUCCESS; 1080 cnt++; 1081 } 1082 spin_lock(&qp->io_buf_list_put_lock); 1083 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1084 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1085 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1086 qp->abts_scsi_io_bufs = 0; 1087 qp->abts_nvme_io_bufs = 0; 1088 spin_unlock(&qp->io_buf_list_put_lock); 1089 spin_unlock(&qp->abts_io_buf_list_lock); 1090 } 1091 spin_unlock_irq(&phba->hbalock); 1092 1093 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1094 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1095 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1096 &nvmet_aborts); 1097 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1098 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1099 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1100 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1101 } 1102 } 1103 1104 lpfc_sli4_free_sp_events(phba); 1105 return cnt; 1106 } 1107 1108 /** 1109 * lpfc_hba_down_post - Wrapper func for hba down post routine 1110 * @phba: pointer to lpfc HBA data structure. 1111 * 1112 * This routine wraps the actual SLI3 or SLI4 routine for performing 1113 * uninitialization after the HBA is reset when bring down the SLI Layer. 1114 * 1115 * Return codes 1116 * 0 - success. 1117 * Any other value - error. 1118 **/ 1119 int 1120 lpfc_hba_down_post(struct lpfc_hba *phba) 1121 { 1122 return (*phba->lpfc_hba_down_post)(phba); 1123 } 1124 1125 /** 1126 * lpfc_hb_timeout - The HBA-timer timeout handler 1127 * @ptr: unsigned long holds the pointer to lpfc hba data structure. 1128 * 1129 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1130 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1131 * work-port-events bitmap and the worker thread is notified. This timeout 1132 * event will be used by the worker thread to invoke the actual timeout 1133 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1134 * be performed in the timeout handler and the HBA timeout event bit shall 1135 * be cleared by the worker thread after it has taken the event bitmap out. 1136 **/ 1137 static void 1138 lpfc_hb_timeout(struct timer_list *t) 1139 { 1140 struct lpfc_hba *phba; 1141 uint32_t tmo_posted; 1142 unsigned long iflag; 1143 1144 phba = from_timer(phba, t, hb_tmofunc); 1145 1146 /* Check for heart beat timeout conditions */ 1147 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1148 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1149 if (!tmo_posted) 1150 phba->pport->work_port_events |= WORKER_HB_TMO; 1151 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1152 1153 /* Tell the worker thread there is work to do */ 1154 if (!tmo_posted) 1155 lpfc_worker_wake_up(phba); 1156 return; 1157 } 1158 1159 /** 1160 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1161 * @ptr: unsigned long holds the pointer to lpfc hba data structure. 1162 * 1163 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1164 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1165 * work-port-events bitmap and the worker thread is notified. This timeout 1166 * event will be used by the worker thread to invoke the actual timeout 1167 * handler routine, lpfc_rrq_handler. Any periodical operations will 1168 * be performed in the timeout handler and the RRQ timeout event bit shall 1169 * be cleared by the worker thread after it has taken the event bitmap out. 1170 **/ 1171 static void 1172 lpfc_rrq_timeout(struct timer_list *t) 1173 { 1174 struct lpfc_hba *phba; 1175 unsigned long iflag; 1176 1177 phba = from_timer(phba, t, rrq_tmr); 1178 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1179 if (!(phba->pport->load_flag & FC_UNLOADING)) 1180 phba->hba_flag |= HBA_RRQ_ACTIVE; 1181 else 1182 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1183 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1184 1185 if (!(phba->pport->load_flag & FC_UNLOADING)) 1186 lpfc_worker_wake_up(phba); 1187 } 1188 1189 /** 1190 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1191 * @phba: pointer to lpfc hba data structure. 1192 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1193 * 1194 * This is the callback function to the lpfc heart-beat mailbox command. 1195 * If configured, the lpfc driver issues the heart-beat mailbox command to 1196 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1197 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1198 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1199 * heart-beat outstanding state. Once the mailbox command comes back and 1200 * no error conditions detected, the heart-beat mailbox command timer is 1201 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1202 * state is cleared for the next heart-beat. If the timer expired with the 1203 * heart-beat outstanding state set, the driver will put the HBA offline. 1204 **/ 1205 static void 1206 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1207 { 1208 unsigned long drvr_flag; 1209 1210 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1211 phba->hb_outstanding = 0; 1212 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1213 1214 /* Check and reset heart-beat timer is necessary */ 1215 mempool_free(pmboxq, phba->mbox_mem_pool); 1216 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1217 !(phba->link_state == LPFC_HBA_ERROR) && 1218 !(phba->pport->load_flag & FC_UNLOADING)) 1219 mod_timer(&phba->hb_tmofunc, 1220 jiffies + 1221 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1222 return; 1223 } 1224 1225 static void 1226 lpfc_hb_eq_delay_work(struct work_struct *work) 1227 { 1228 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1229 struct lpfc_hba, eq_delay_work); 1230 struct lpfc_eq_intr_info *eqi, *eqi_new; 1231 struct lpfc_queue *eq, *eq_next; 1232 unsigned char *ena_delay = NULL; 1233 uint32_t usdelay; 1234 int i; 1235 1236 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1237 return; 1238 1239 if (phba->link_state == LPFC_HBA_ERROR || 1240 phba->pport->fc_flag & FC_OFFLINE_MODE) 1241 goto requeue; 1242 1243 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1244 GFP_KERNEL); 1245 if (!ena_delay) 1246 goto requeue; 1247 1248 for (i = 0; i < phba->cfg_irq_chann; i++) { 1249 /* Get the EQ corresponding to the IRQ vector */ 1250 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1251 if (!eq) 1252 continue; 1253 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1254 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1255 ena_delay[eq->last_cpu] = 1; 1256 } 1257 } 1258 1259 for_each_present_cpu(i) { 1260 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1261 if (ena_delay[i]) { 1262 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1263 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1264 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1265 } else { 1266 usdelay = 0; 1267 } 1268 1269 eqi->icnt = 0; 1270 1271 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1272 if (unlikely(eq->last_cpu != i)) { 1273 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1274 eq->last_cpu); 1275 list_move_tail(&eq->cpu_list, &eqi_new->list); 1276 continue; 1277 } 1278 if (usdelay != eq->q_mode) 1279 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1280 usdelay); 1281 } 1282 } 1283 1284 kfree(ena_delay); 1285 1286 requeue: 1287 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1288 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1289 } 1290 1291 /** 1292 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1293 * @phba: pointer to lpfc hba data structure. 1294 * 1295 * For each heartbeat, this routine does some heuristic methods to adjust 1296 * XRI distribution. The goal is to fully utilize free XRIs. 1297 **/ 1298 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1299 { 1300 u32 i; 1301 u32 hwq_count; 1302 1303 hwq_count = phba->cfg_hdw_queue; 1304 for (i = 0; i < hwq_count; i++) { 1305 /* Adjust XRIs in private pool */ 1306 lpfc_adjust_pvt_pool_count(phba, i); 1307 1308 /* Adjust high watermark */ 1309 lpfc_adjust_high_watermark(phba, i); 1310 1311 #ifdef LPFC_MXP_STAT 1312 /* Snapshot pbl, pvt and busy count */ 1313 lpfc_snapshot_mxp(phba, i); 1314 #endif 1315 } 1316 } 1317 1318 /** 1319 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1320 * @phba: pointer to lpfc hba data structure. 1321 * 1322 * This is the actual HBA-timer timeout handler to be invoked by the worker 1323 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1324 * handler performs any periodic operations needed for the device. If such 1325 * periodic event has already been attended to either in the interrupt handler 1326 * or by processing slow-ring or fast-ring events within the HBA-timer 1327 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1328 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1329 * is configured and there is no heart-beat mailbox command outstanding, a 1330 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1331 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1332 * to offline. 1333 **/ 1334 void 1335 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1336 { 1337 struct lpfc_vport **vports; 1338 LPFC_MBOXQ_t *pmboxq; 1339 struct lpfc_dmabuf *buf_ptr; 1340 int retval, i; 1341 struct lpfc_sli *psli = &phba->sli; 1342 LIST_HEAD(completions); 1343 1344 if (phba->cfg_xri_rebalancing) { 1345 /* Multi-XRI pools handler */ 1346 lpfc_hb_mxp_handler(phba); 1347 } 1348 1349 vports = lpfc_create_vport_work_array(phba); 1350 if (vports != NULL) 1351 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1352 lpfc_rcv_seq_check_edtov(vports[i]); 1353 lpfc_fdmi_change_check(vports[i]); 1354 } 1355 lpfc_destroy_vport_work_array(phba, vports); 1356 1357 if ((phba->link_state == LPFC_HBA_ERROR) || 1358 (phba->pport->load_flag & FC_UNLOADING) || 1359 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1360 return; 1361 1362 spin_lock_irq(&phba->pport->work_port_lock); 1363 1364 if (time_after(phba->last_completion_time + 1365 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1366 jiffies)) { 1367 spin_unlock_irq(&phba->pport->work_port_lock); 1368 if (!phba->hb_outstanding) 1369 mod_timer(&phba->hb_tmofunc, 1370 jiffies + 1371 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1372 else 1373 mod_timer(&phba->hb_tmofunc, 1374 jiffies + 1375 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1376 return; 1377 } 1378 spin_unlock_irq(&phba->pport->work_port_lock); 1379 1380 if (phba->elsbuf_cnt && 1381 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1382 spin_lock_irq(&phba->hbalock); 1383 list_splice_init(&phba->elsbuf, &completions); 1384 phba->elsbuf_cnt = 0; 1385 phba->elsbuf_prev_cnt = 0; 1386 spin_unlock_irq(&phba->hbalock); 1387 1388 while (!list_empty(&completions)) { 1389 list_remove_head(&completions, buf_ptr, 1390 struct lpfc_dmabuf, list); 1391 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1392 kfree(buf_ptr); 1393 } 1394 } 1395 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1396 1397 /* If there is no heart beat outstanding, issue a heartbeat command */ 1398 if (phba->cfg_enable_hba_heartbeat) { 1399 if (!phba->hb_outstanding) { 1400 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1401 (list_empty(&psli->mboxq))) { 1402 pmboxq = mempool_alloc(phba->mbox_mem_pool, 1403 GFP_KERNEL); 1404 if (!pmboxq) { 1405 mod_timer(&phba->hb_tmofunc, 1406 jiffies + 1407 msecs_to_jiffies(1000 * 1408 LPFC_HB_MBOX_INTERVAL)); 1409 return; 1410 } 1411 1412 lpfc_heart_beat(phba, pmboxq); 1413 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1414 pmboxq->vport = phba->pport; 1415 retval = lpfc_sli_issue_mbox(phba, pmboxq, 1416 MBX_NOWAIT); 1417 1418 if (retval != MBX_BUSY && 1419 retval != MBX_SUCCESS) { 1420 mempool_free(pmboxq, 1421 phba->mbox_mem_pool); 1422 mod_timer(&phba->hb_tmofunc, 1423 jiffies + 1424 msecs_to_jiffies(1000 * 1425 LPFC_HB_MBOX_INTERVAL)); 1426 return; 1427 } 1428 phba->skipped_hb = 0; 1429 phba->hb_outstanding = 1; 1430 } else if (time_before_eq(phba->last_completion_time, 1431 phba->skipped_hb)) { 1432 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1433 "2857 Last completion time not " 1434 " updated in %d ms\n", 1435 jiffies_to_msecs(jiffies 1436 - phba->last_completion_time)); 1437 } else 1438 phba->skipped_hb = jiffies; 1439 1440 mod_timer(&phba->hb_tmofunc, 1441 jiffies + 1442 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1443 return; 1444 } else { 1445 /* 1446 * If heart beat timeout called with hb_outstanding set 1447 * we need to give the hb mailbox cmd a chance to 1448 * complete or TMO. 1449 */ 1450 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1451 "0459 Adapter heartbeat still out" 1452 "standing:last compl time was %d ms.\n", 1453 jiffies_to_msecs(jiffies 1454 - phba->last_completion_time)); 1455 mod_timer(&phba->hb_tmofunc, 1456 jiffies + 1457 msecs_to_jiffies(1000 * LPFC_HB_MBOX_TIMEOUT)); 1458 } 1459 } else { 1460 mod_timer(&phba->hb_tmofunc, 1461 jiffies + 1462 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1463 } 1464 } 1465 1466 /** 1467 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1468 * @phba: pointer to lpfc hba data structure. 1469 * 1470 * This routine is called to bring the HBA offline when HBA hardware error 1471 * other than Port Error 6 has been detected. 1472 **/ 1473 static void 1474 lpfc_offline_eratt(struct lpfc_hba *phba) 1475 { 1476 struct lpfc_sli *psli = &phba->sli; 1477 1478 spin_lock_irq(&phba->hbalock); 1479 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1480 spin_unlock_irq(&phba->hbalock); 1481 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1482 1483 lpfc_offline(phba); 1484 lpfc_reset_barrier(phba); 1485 spin_lock_irq(&phba->hbalock); 1486 lpfc_sli_brdreset(phba); 1487 spin_unlock_irq(&phba->hbalock); 1488 lpfc_hba_down_post(phba); 1489 lpfc_sli_brdready(phba, HS_MBRDY); 1490 lpfc_unblock_mgmt_io(phba); 1491 phba->link_state = LPFC_HBA_ERROR; 1492 return; 1493 } 1494 1495 /** 1496 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1497 * @phba: pointer to lpfc hba data structure. 1498 * 1499 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1500 * other than Port Error 6 has been detected. 1501 **/ 1502 void 1503 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1504 { 1505 spin_lock_irq(&phba->hbalock); 1506 phba->link_state = LPFC_HBA_ERROR; 1507 spin_unlock_irq(&phba->hbalock); 1508 1509 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1510 lpfc_sli_flush_io_rings(phba); 1511 lpfc_offline(phba); 1512 lpfc_hba_down_post(phba); 1513 lpfc_unblock_mgmt_io(phba); 1514 } 1515 1516 /** 1517 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1518 * @phba: pointer to lpfc hba data structure. 1519 * 1520 * This routine is invoked to handle the deferred HBA hardware error 1521 * conditions. This type of error is indicated by HBA by setting ER1 1522 * and another ER bit in the host status register. The driver will 1523 * wait until the ER1 bit clears before handling the error condition. 1524 **/ 1525 static void 1526 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1527 { 1528 uint32_t old_host_status = phba->work_hs; 1529 struct lpfc_sli *psli = &phba->sli; 1530 1531 /* If the pci channel is offline, ignore possible errors, 1532 * since we cannot communicate with the pci card anyway. 1533 */ 1534 if (pci_channel_offline(phba->pcidev)) { 1535 spin_lock_irq(&phba->hbalock); 1536 phba->hba_flag &= ~DEFER_ERATT; 1537 spin_unlock_irq(&phba->hbalock); 1538 return; 1539 } 1540 1541 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1542 "0479 Deferred Adapter Hardware Error " 1543 "Data: x%x x%x x%x\n", 1544 phba->work_hs, 1545 phba->work_status[0], phba->work_status[1]); 1546 1547 spin_lock_irq(&phba->hbalock); 1548 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1549 spin_unlock_irq(&phba->hbalock); 1550 1551 1552 /* 1553 * Firmware stops when it triggred erratt. That could cause the I/Os 1554 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1555 * SCSI layer retry it after re-establishing link. 1556 */ 1557 lpfc_sli_abort_fcp_rings(phba); 1558 1559 /* 1560 * There was a firmware error. Take the hba offline and then 1561 * attempt to restart it. 1562 */ 1563 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1564 lpfc_offline(phba); 1565 1566 /* Wait for the ER1 bit to clear.*/ 1567 while (phba->work_hs & HS_FFER1) { 1568 msleep(100); 1569 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1570 phba->work_hs = UNPLUG_ERR ; 1571 break; 1572 } 1573 /* If driver is unloading let the worker thread continue */ 1574 if (phba->pport->load_flag & FC_UNLOADING) { 1575 phba->work_hs = 0; 1576 break; 1577 } 1578 } 1579 1580 /* 1581 * This is to ptrotect against a race condition in which 1582 * first write to the host attention register clear the 1583 * host status register. 1584 */ 1585 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1586 phba->work_hs = old_host_status & ~HS_FFER1; 1587 1588 spin_lock_irq(&phba->hbalock); 1589 phba->hba_flag &= ~DEFER_ERATT; 1590 spin_unlock_irq(&phba->hbalock); 1591 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1592 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1593 } 1594 1595 static void 1596 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1597 { 1598 struct lpfc_board_event_header board_event; 1599 struct Scsi_Host *shost; 1600 1601 board_event.event_type = FC_REG_BOARD_EVENT; 1602 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1603 shost = lpfc_shost_from_vport(phba->pport); 1604 fc_host_post_vendor_event(shost, fc_get_event_number(), 1605 sizeof(board_event), 1606 (char *) &board_event, 1607 LPFC_NL_VENDOR_ID); 1608 } 1609 1610 /** 1611 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1612 * @phba: pointer to lpfc hba data structure. 1613 * 1614 * This routine is invoked to handle the following HBA hardware error 1615 * conditions: 1616 * 1 - HBA error attention interrupt 1617 * 2 - DMA ring index out of range 1618 * 3 - Mailbox command came back as unknown 1619 **/ 1620 static void 1621 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1622 { 1623 struct lpfc_vport *vport = phba->pport; 1624 struct lpfc_sli *psli = &phba->sli; 1625 uint32_t event_data; 1626 unsigned long temperature; 1627 struct temp_event temp_event_data; 1628 struct Scsi_Host *shost; 1629 1630 /* If the pci channel is offline, ignore possible errors, 1631 * since we cannot communicate with the pci card anyway. 1632 */ 1633 if (pci_channel_offline(phba->pcidev)) { 1634 spin_lock_irq(&phba->hbalock); 1635 phba->hba_flag &= ~DEFER_ERATT; 1636 spin_unlock_irq(&phba->hbalock); 1637 return; 1638 } 1639 1640 /* If resets are disabled then leave the HBA alone and return */ 1641 if (!phba->cfg_enable_hba_reset) 1642 return; 1643 1644 /* Send an internal error event to mgmt application */ 1645 lpfc_board_errevt_to_mgmt(phba); 1646 1647 if (phba->hba_flag & DEFER_ERATT) 1648 lpfc_handle_deferred_eratt(phba); 1649 1650 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1651 if (phba->work_hs & HS_FFER6) 1652 /* Re-establishing Link */ 1653 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1654 "1301 Re-establishing Link " 1655 "Data: x%x x%x x%x\n", 1656 phba->work_hs, phba->work_status[0], 1657 phba->work_status[1]); 1658 if (phba->work_hs & HS_FFER8) 1659 /* Device Zeroization */ 1660 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1661 "2861 Host Authentication device " 1662 "zeroization Data:x%x x%x x%x\n", 1663 phba->work_hs, phba->work_status[0], 1664 phba->work_status[1]); 1665 1666 spin_lock_irq(&phba->hbalock); 1667 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1668 spin_unlock_irq(&phba->hbalock); 1669 1670 /* 1671 * Firmware stops when it triggled erratt with HS_FFER6. 1672 * That could cause the I/Os dropped by the firmware. 1673 * Error iocb (I/O) on txcmplq and let the SCSI layer 1674 * retry it after re-establishing link. 1675 */ 1676 lpfc_sli_abort_fcp_rings(phba); 1677 1678 /* 1679 * There was a firmware error. Take the hba offline and then 1680 * attempt to restart it. 1681 */ 1682 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1683 lpfc_offline(phba); 1684 lpfc_sli_brdrestart(phba); 1685 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1686 lpfc_unblock_mgmt_io(phba); 1687 return; 1688 } 1689 lpfc_unblock_mgmt_io(phba); 1690 } else if (phba->work_hs & HS_CRIT_TEMP) { 1691 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1692 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1693 temp_event_data.event_code = LPFC_CRIT_TEMP; 1694 temp_event_data.data = (uint32_t)temperature; 1695 1696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1697 "0406 Adapter maximum temperature exceeded " 1698 "(%ld), taking this port offline " 1699 "Data: x%x x%x x%x\n", 1700 temperature, phba->work_hs, 1701 phba->work_status[0], phba->work_status[1]); 1702 1703 shost = lpfc_shost_from_vport(phba->pport); 1704 fc_host_post_vendor_event(shost, fc_get_event_number(), 1705 sizeof(temp_event_data), 1706 (char *) &temp_event_data, 1707 SCSI_NL_VID_TYPE_PCI 1708 | PCI_VENDOR_ID_EMULEX); 1709 1710 spin_lock_irq(&phba->hbalock); 1711 phba->over_temp_state = HBA_OVER_TEMP; 1712 spin_unlock_irq(&phba->hbalock); 1713 lpfc_offline_eratt(phba); 1714 1715 } else { 1716 /* The if clause above forces this code path when the status 1717 * failure is a value other than FFER6. Do not call the offline 1718 * twice. This is the adapter hardware error path. 1719 */ 1720 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1721 "0457 Adapter Hardware Error " 1722 "Data: x%x x%x x%x\n", 1723 phba->work_hs, 1724 phba->work_status[0], phba->work_status[1]); 1725 1726 event_data = FC_REG_DUMP_EVENT; 1727 shost = lpfc_shost_from_vport(vport); 1728 fc_host_post_vendor_event(shost, fc_get_event_number(), 1729 sizeof(event_data), (char *) &event_data, 1730 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1731 1732 lpfc_offline_eratt(phba); 1733 } 1734 return; 1735 } 1736 1737 /** 1738 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1739 * @phba: pointer to lpfc hba data structure. 1740 * @mbx_action: flag for mailbox shutdown action. 1741 * 1742 * This routine is invoked to perform an SLI4 port PCI function reset in 1743 * response to port status register polling attention. It waits for port 1744 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1745 * During this process, interrupt vectors are freed and later requested 1746 * for handling possible port resource change. 1747 **/ 1748 static int 1749 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1750 bool en_rn_msg) 1751 { 1752 int rc; 1753 uint32_t intr_mode; 1754 1755 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1756 LPFC_SLI_INTF_IF_TYPE_2) { 1757 /* 1758 * On error status condition, driver need to wait for port 1759 * ready before performing reset. 1760 */ 1761 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1762 if (rc) 1763 return rc; 1764 } 1765 1766 /* need reset: attempt for port recovery */ 1767 if (en_rn_msg) 1768 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1769 "2887 Reset Needed: Attempting Port " 1770 "Recovery...\n"); 1771 lpfc_offline_prep(phba, mbx_action); 1772 lpfc_sli_flush_io_rings(phba); 1773 lpfc_offline(phba); 1774 /* release interrupt for possible resource change */ 1775 lpfc_sli4_disable_intr(phba); 1776 rc = lpfc_sli_brdrestart(phba); 1777 if (rc) { 1778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1779 "6309 Failed to restart board\n"); 1780 return rc; 1781 } 1782 /* request and enable interrupt */ 1783 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1784 if (intr_mode == LPFC_INTR_ERROR) { 1785 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1786 "3175 Failed to enable interrupt\n"); 1787 return -EIO; 1788 } 1789 phba->intr_mode = intr_mode; 1790 rc = lpfc_online(phba); 1791 if (rc == 0) 1792 lpfc_unblock_mgmt_io(phba); 1793 1794 return rc; 1795 } 1796 1797 /** 1798 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1799 * @phba: pointer to lpfc hba data structure. 1800 * 1801 * This routine is invoked to handle the SLI4 HBA hardware error attention 1802 * conditions. 1803 **/ 1804 static void 1805 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1806 { 1807 struct lpfc_vport *vport = phba->pport; 1808 uint32_t event_data; 1809 struct Scsi_Host *shost; 1810 uint32_t if_type; 1811 struct lpfc_register portstat_reg = {0}; 1812 uint32_t reg_err1, reg_err2; 1813 uint32_t uerrlo_reg, uemasklo_reg; 1814 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1815 bool en_rn_msg = true; 1816 struct temp_event temp_event_data; 1817 struct lpfc_register portsmphr_reg; 1818 int rc, i; 1819 1820 /* If the pci channel is offline, ignore possible errors, since 1821 * we cannot communicate with the pci card anyway. 1822 */ 1823 if (pci_channel_offline(phba->pcidev)) { 1824 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1825 "3166 pci channel is offline\n"); 1826 lpfc_sli4_offline_eratt(phba); 1827 return; 1828 } 1829 1830 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1831 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1832 switch (if_type) { 1833 case LPFC_SLI_INTF_IF_TYPE_0: 1834 pci_rd_rc1 = lpfc_readl( 1835 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1836 &uerrlo_reg); 1837 pci_rd_rc2 = lpfc_readl( 1838 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 1839 &uemasklo_reg); 1840 /* consider PCI bus read error as pci_channel_offline */ 1841 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 1842 return; 1843 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 1844 lpfc_sli4_offline_eratt(phba); 1845 return; 1846 } 1847 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1848 "7623 Checking UE recoverable"); 1849 1850 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 1851 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1852 &portsmphr_reg.word0)) 1853 continue; 1854 1855 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 1856 &portsmphr_reg); 1857 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1858 LPFC_PORT_SEM_UE_RECOVERABLE) 1859 break; 1860 /*Sleep for 1Sec, before checking SEMAPHORE */ 1861 msleep(1000); 1862 } 1863 1864 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1865 "4827 smphr_port_status x%x : Waited %dSec", 1866 smphr_port_status, i); 1867 1868 /* Recoverable UE, reset the HBA device */ 1869 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1870 LPFC_PORT_SEM_UE_RECOVERABLE) { 1871 for (i = 0; i < 20; i++) { 1872 msleep(1000); 1873 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1874 &portsmphr_reg.word0) && 1875 (LPFC_POST_STAGE_PORT_READY == 1876 bf_get(lpfc_port_smphr_port_status, 1877 &portsmphr_reg))) { 1878 rc = lpfc_sli4_port_sta_fn_reset(phba, 1879 LPFC_MBX_NO_WAIT, en_rn_msg); 1880 if (rc == 0) 1881 return; 1882 lpfc_printf_log(phba, 1883 KERN_ERR, LOG_INIT, 1884 "4215 Failed to recover UE"); 1885 break; 1886 } 1887 } 1888 } 1889 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1890 "7624 Firmware not ready: Failing UE recovery," 1891 " waited %dSec", i); 1892 phba->link_state = LPFC_HBA_ERROR; 1893 break; 1894 1895 case LPFC_SLI_INTF_IF_TYPE_2: 1896 case LPFC_SLI_INTF_IF_TYPE_6: 1897 pci_rd_rc1 = lpfc_readl( 1898 phba->sli4_hba.u.if_type2.STATUSregaddr, 1899 &portstat_reg.word0); 1900 /* consider PCI bus read error as pci_channel_offline */ 1901 if (pci_rd_rc1 == -EIO) { 1902 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1903 "3151 PCI bus read access failure: x%x\n", 1904 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 1905 lpfc_sli4_offline_eratt(phba); 1906 return; 1907 } 1908 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 1909 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 1910 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 1911 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1912 "2889 Port Overtemperature event, " 1913 "taking port offline Data: x%x x%x\n", 1914 reg_err1, reg_err2); 1915 1916 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 1917 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1918 temp_event_data.event_code = LPFC_CRIT_TEMP; 1919 temp_event_data.data = 0xFFFFFFFF; 1920 1921 shost = lpfc_shost_from_vport(phba->pport); 1922 fc_host_post_vendor_event(shost, fc_get_event_number(), 1923 sizeof(temp_event_data), 1924 (char *)&temp_event_data, 1925 SCSI_NL_VID_TYPE_PCI 1926 | PCI_VENDOR_ID_EMULEX); 1927 1928 spin_lock_irq(&phba->hbalock); 1929 phba->over_temp_state = HBA_OVER_TEMP; 1930 spin_unlock_irq(&phba->hbalock); 1931 lpfc_sli4_offline_eratt(phba); 1932 return; 1933 } 1934 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1935 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1937 "3143 Port Down: Firmware Update " 1938 "Detected\n"); 1939 en_rn_msg = false; 1940 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1941 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 1942 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1943 "3144 Port Down: Debug Dump\n"); 1944 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1945 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 1946 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1947 "3145 Port Down: Provisioning\n"); 1948 1949 /* If resets are disabled then leave the HBA alone and return */ 1950 if (!phba->cfg_enable_hba_reset) 1951 return; 1952 1953 /* Check port status register for function reset */ 1954 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 1955 en_rn_msg); 1956 if (rc == 0) { 1957 /* don't report event on forced debug dump */ 1958 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 1959 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 1960 return; 1961 else 1962 break; 1963 } 1964 /* fall through for not able to recover */ 1965 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1966 "3152 Unrecoverable error\n"); 1967 phba->link_state = LPFC_HBA_ERROR; 1968 break; 1969 case LPFC_SLI_INTF_IF_TYPE_1: 1970 default: 1971 break; 1972 } 1973 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1974 "3123 Report dump event to upper layer\n"); 1975 /* Send an internal error event to mgmt application */ 1976 lpfc_board_errevt_to_mgmt(phba); 1977 1978 event_data = FC_REG_DUMP_EVENT; 1979 shost = lpfc_shost_from_vport(vport); 1980 fc_host_post_vendor_event(shost, fc_get_event_number(), 1981 sizeof(event_data), (char *) &event_data, 1982 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1983 } 1984 1985 /** 1986 * lpfc_handle_eratt - Wrapper func for handling hba error attention 1987 * @phba: pointer to lpfc HBA data structure. 1988 * 1989 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 1990 * routine from the API jump table function pointer from the lpfc_hba struct. 1991 * 1992 * Return codes 1993 * 0 - success. 1994 * Any other value - error. 1995 **/ 1996 void 1997 lpfc_handle_eratt(struct lpfc_hba *phba) 1998 { 1999 (*phba->lpfc_handle_eratt)(phba); 2000 } 2001 2002 /** 2003 * lpfc_handle_latt - The HBA link event handler 2004 * @phba: pointer to lpfc hba data structure. 2005 * 2006 * This routine is invoked from the worker thread to handle a HBA host 2007 * attention link event. SLI3 only. 2008 **/ 2009 void 2010 lpfc_handle_latt(struct lpfc_hba *phba) 2011 { 2012 struct lpfc_vport *vport = phba->pport; 2013 struct lpfc_sli *psli = &phba->sli; 2014 LPFC_MBOXQ_t *pmb; 2015 volatile uint32_t control; 2016 struct lpfc_dmabuf *mp; 2017 int rc = 0; 2018 2019 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2020 if (!pmb) { 2021 rc = 1; 2022 goto lpfc_handle_latt_err_exit; 2023 } 2024 2025 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2026 if (!mp) { 2027 rc = 2; 2028 goto lpfc_handle_latt_free_pmb; 2029 } 2030 2031 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2032 if (!mp->virt) { 2033 rc = 3; 2034 goto lpfc_handle_latt_free_mp; 2035 } 2036 2037 /* Cleanup any outstanding ELS commands */ 2038 lpfc_els_flush_all_cmd(phba); 2039 2040 psli->slistat.link_event++; 2041 lpfc_read_topology(phba, pmb, mp); 2042 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2043 pmb->vport = vport; 2044 /* Block ELS IOCBs until we have processed this mbox command */ 2045 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2046 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2047 if (rc == MBX_NOT_FINISHED) { 2048 rc = 4; 2049 goto lpfc_handle_latt_free_mbuf; 2050 } 2051 2052 /* Clear Link Attention in HA REG */ 2053 spin_lock_irq(&phba->hbalock); 2054 writel(HA_LATT, phba->HAregaddr); 2055 readl(phba->HAregaddr); /* flush */ 2056 spin_unlock_irq(&phba->hbalock); 2057 2058 return; 2059 2060 lpfc_handle_latt_free_mbuf: 2061 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2062 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2063 lpfc_handle_latt_free_mp: 2064 kfree(mp); 2065 lpfc_handle_latt_free_pmb: 2066 mempool_free(pmb, phba->mbox_mem_pool); 2067 lpfc_handle_latt_err_exit: 2068 /* Enable Link attention interrupts */ 2069 spin_lock_irq(&phba->hbalock); 2070 psli->sli_flag |= LPFC_PROCESS_LA; 2071 control = readl(phba->HCregaddr); 2072 control |= HC_LAINT_ENA; 2073 writel(control, phba->HCregaddr); 2074 readl(phba->HCregaddr); /* flush */ 2075 2076 /* Clear Link Attention in HA REG */ 2077 writel(HA_LATT, phba->HAregaddr); 2078 readl(phba->HAregaddr); /* flush */ 2079 spin_unlock_irq(&phba->hbalock); 2080 lpfc_linkdown(phba); 2081 phba->link_state = LPFC_HBA_ERROR; 2082 2083 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 2084 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2085 2086 return; 2087 } 2088 2089 /** 2090 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2091 * @phba: pointer to lpfc hba data structure. 2092 * @vpd: pointer to the vital product data. 2093 * @len: length of the vital product data in bytes. 2094 * 2095 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2096 * an array of characters. In this routine, the ModelName, ProgramType, and 2097 * ModelDesc, etc. fields of the phba data structure will be populated. 2098 * 2099 * Return codes 2100 * 0 - pointer to the VPD passed in is NULL 2101 * 1 - success 2102 **/ 2103 int 2104 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2105 { 2106 uint8_t lenlo, lenhi; 2107 int Length; 2108 int i, j; 2109 int finished = 0; 2110 int index = 0; 2111 2112 if (!vpd) 2113 return 0; 2114 2115 /* Vital Product */ 2116 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2117 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2118 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2119 (uint32_t) vpd[3]); 2120 while (!finished && (index < (len - 4))) { 2121 switch (vpd[index]) { 2122 case 0x82: 2123 case 0x91: 2124 index += 1; 2125 lenlo = vpd[index]; 2126 index += 1; 2127 lenhi = vpd[index]; 2128 index += 1; 2129 i = ((((unsigned short)lenhi) << 8) + lenlo); 2130 index += i; 2131 break; 2132 case 0x90: 2133 index += 1; 2134 lenlo = vpd[index]; 2135 index += 1; 2136 lenhi = vpd[index]; 2137 index += 1; 2138 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2139 if (Length > len - index) 2140 Length = len - index; 2141 while (Length > 0) { 2142 /* Look for Serial Number */ 2143 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2144 index += 2; 2145 i = vpd[index]; 2146 index += 1; 2147 j = 0; 2148 Length -= (3+i); 2149 while(i--) { 2150 phba->SerialNumber[j++] = vpd[index++]; 2151 if (j == 31) 2152 break; 2153 } 2154 phba->SerialNumber[j] = 0; 2155 continue; 2156 } 2157 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2158 phba->vpd_flag |= VPD_MODEL_DESC; 2159 index += 2; 2160 i = vpd[index]; 2161 index += 1; 2162 j = 0; 2163 Length -= (3+i); 2164 while(i--) { 2165 phba->ModelDesc[j++] = vpd[index++]; 2166 if (j == 255) 2167 break; 2168 } 2169 phba->ModelDesc[j] = 0; 2170 continue; 2171 } 2172 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2173 phba->vpd_flag |= VPD_MODEL_NAME; 2174 index += 2; 2175 i = vpd[index]; 2176 index += 1; 2177 j = 0; 2178 Length -= (3+i); 2179 while(i--) { 2180 phba->ModelName[j++] = vpd[index++]; 2181 if (j == 79) 2182 break; 2183 } 2184 phba->ModelName[j] = 0; 2185 continue; 2186 } 2187 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2188 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2189 index += 2; 2190 i = vpd[index]; 2191 index += 1; 2192 j = 0; 2193 Length -= (3+i); 2194 while(i--) { 2195 phba->ProgramType[j++] = vpd[index++]; 2196 if (j == 255) 2197 break; 2198 } 2199 phba->ProgramType[j] = 0; 2200 continue; 2201 } 2202 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2203 phba->vpd_flag |= VPD_PORT; 2204 index += 2; 2205 i = vpd[index]; 2206 index += 1; 2207 j = 0; 2208 Length -= (3+i); 2209 while(i--) { 2210 if ((phba->sli_rev == LPFC_SLI_REV4) && 2211 (phba->sli4_hba.pport_name_sta == 2212 LPFC_SLI4_PPNAME_GET)) { 2213 j++; 2214 index++; 2215 } else 2216 phba->Port[j++] = vpd[index++]; 2217 if (j == 19) 2218 break; 2219 } 2220 if ((phba->sli_rev != LPFC_SLI_REV4) || 2221 (phba->sli4_hba.pport_name_sta == 2222 LPFC_SLI4_PPNAME_NON)) 2223 phba->Port[j] = 0; 2224 continue; 2225 } 2226 else { 2227 index += 2; 2228 i = vpd[index]; 2229 index += 1; 2230 index += i; 2231 Length -= (3 + i); 2232 } 2233 } 2234 finished = 0; 2235 break; 2236 case 0x78: 2237 finished = 1; 2238 break; 2239 default: 2240 index ++; 2241 break; 2242 } 2243 } 2244 2245 return(1); 2246 } 2247 2248 /** 2249 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2250 * @phba: pointer to lpfc hba data structure. 2251 * @mdp: pointer to the data structure to hold the derived model name. 2252 * @descp: pointer to the data structure to hold the derived description. 2253 * 2254 * This routine retrieves HBA's description based on its registered PCI device 2255 * ID. The @descp passed into this function points to an array of 256 chars. It 2256 * shall be returned with the model name, maximum speed, and the host bus type. 2257 * The @mdp passed into this function points to an array of 80 chars. When the 2258 * function returns, the @mdp will be filled with the model name. 2259 **/ 2260 static void 2261 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2262 { 2263 lpfc_vpd_t *vp; 2264 uint16_t dev_id = phba->pcidev->device; 2265 int max_speed; 2266 int GE = 0; 2267 int oneConnect = 0; /* default is not a oneConnect */ 2268 struct { 2269 char *name; 2270 char *bus; 2271 char *function; 2272 } m = {"<Unknown>", "", ""}; 2273 2274 if (mdp && mdp[0] != '\0' 2275 && descp && descp[0] != '\0') 2276 return; 2277 2278 if (phba->lmt & LMT_64Gb) 2279 max_speed = 64; 2280 else if (phba->lmt & LMT_32Gb) 2281 max_speed = 32; 2282 else if (phba->lmt & LMT_16Gb) 2283 max_speed = 16; 2284 else if (phba->lmt & LMT_10Gb) 2285 max_speed = 10; 2286 else if (phba->lmt & LMT_8Gb) 2287 max_speed = 8; 2288 else if (phba->lmt & LMT_4Gb) 2289 max_speed = 4; 2290 else if (phba->lmt & LMT_2Gb) 2291 max_speed = 2; 2292 else if (phba->lmt & LMT_1Gb) 2293 max_speed = 1; 2294 else 2295 max_speed = 0; 2296 2297 vp = &phba->vpd; 2298 2299 switch (dev_id) { 2300 case PCI_DEVICE_ID_FIREFLY: 2301 m = (typeof(m)){"LP6000", "PCI", 2302 "Obsolete, Unsupported Fibre Channel Adapter"}; 2303 break; 2304 case PCI_DEVICE_ID_SUPERFLY: 2305 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2306 m = (typeof(m)){"LP7000", "PCI", ""}; 2307 else 2308 m = (typeof(m)){"LP7000E", "PCI", ""}; 2309 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2310 break; 2311 case PCI_DEVICE_ID_DRAGONFLY: 2312 m = (typeof(m)){"LP8000", "PCI", 2313 "Obsolete, Unsupported Fibre Channel Adapter"}; 2314 break; 2315 case PCI_DEVICE_ID_CENTAUR: 2316 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2317 m = (typeof(m)){"LP9002", "PCI", ""}; 2318 else 2319 m = (typeof(m)){"LP9000", "PCI", ""}; 2320 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2321 break; 2322 case PCI_DEVICE_ID_RFLY: 2323 m = (typeof(m)){"LP952", "PCI", 2324 "Obsolete, Unsupported Fibre Channel Adapter"}; 2325 break; 2326 case PCI_DEVICE_ID_PEGASUS: 2327 m = (typeof(m)){"LP9802", "PCI-X", 2328 "Obsolete, Unsupported Fibre Channel Adapter"}; 2329 break; 2330 case PCI_DEVICE_ID_THOR: 2331 m = (typeof(m)){"LP10000", "PCI-X", 2332 "Obsolete, Unsupported Fibre Channel Adapter"}; 2333 break; 2334 case PCI_DEVICE_ID_VIPER: 2335 m = (typeof(m)){"LPX1000", "PCI-X", 2336 "Obsolete, Unsupported Fibre Channel Adapter"}; 2337 break; 2338 case PCI_DEVICE_ID_PFLY: 2339 m = (typeof(m)){"LP982", "PCI-X", 2340 "Obsolete, Unsupported Fibre Channel Adapter"}; 2341 break; 2342 case PCI_DEVICE_ID_TFLY: 2343 m = (typeof(m)){"LP1050", "PCI-X", 2344 "Obsolete, Unsupported Fibre Channel Adapter"}; 2345 break; 2346 case PCI_DEVICE_ID_HELIOS: 2347 m = (typeof(m)){"LP11000", "PCI-X2", 2348 "Obsolete, Unsupported Fibre Channel Adapter"}; 2349 break; 2350 case PCI_DEVICE_ID_HELIOS_SCSP: 2351 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2352 "Obsolete, Unsupported Fibre Channel Adapter"}; 2353 break; 2354 case PCI_DEVICE_ID_HELIOS_DCSP: 2355 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2356 "Obsolete, Unsupported Fibre Channel Adapter"}; 2357 break; 2358 case PCI_DEVICE_ID_NEPTUNE: 2359 m = (typeof(m)){"LPe1000", "PCIe", 2360 "Obsolete, Unsupported Fibre Channel Adapter"}; 2361 break; 2362 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2363 m = (typeof(m)){"LPe1000-SP", "PCIe", 2364 "Obsolete, Unsupported Fibre Channel Adapter"}; 2365 break; 2366 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2367 m = (typeof(m)){"LPe1002-SP", "PCIe", 2368 "Obsolete, Unsupported Fibre Channel Adapter"}; 2369 break; 2370 case PCI_DEVICE_ID_BMID: 2371 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2372 break; 2373 case PCI_DEVICE_ID_BSMB: 2374 m = (typeof(m)){"LP111", "PCI-X2", 2375 "Obsolete, Unsupported Fibre Channel Adapter"}; 2376 break; 2377 case PCI_DEVICE_ID_ZEPHYR: 2378 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2379 break; 2380 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2381 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2382 break; 2383 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2384 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2385 GE = 1; 2386 break; 2387 case PCI_DEVICE_ID_ZMID: 2388 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2389 break; 2390 case PCI_DEVICE_ID_ZSMB: 2391 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2392 break; 2393 case PCI_DEVICE_ID_LP101: 2394 m = (typeof(m)){"LP101", "PCI-X", 2395 "Obsolete, Unsupported Fibre Channel Adapter"}; 2396 break; 2397 case PCI_DEVICE_ID_LP10000S: 2398 m = (typeof(m)){"LP10000-S", "PCI", 2399 "Obsolete, Unsupported Fibre Channel Adapter"}; 2400 break; 2401 case PCI_DEVICE_ID_LP11000S: 2402 m = (typeof(m)){"LP11000-S", "PCI-X2", 2403 "Obsolete, Unsupported Fibre Channel Adapter"}; 2404 break; 2405 case PCI_DEVICE_ID_LPE11000S: 2406 m = (typeof(m)){"LPe11000-S", "PCIe", 2407 "Obsolete, Unsupported Fibre Channel Adapter"}; 2408 break; 2409 case PCI_DEVICE_ID_SAT: 2410 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2411 break; 2412 case PCI_DEVICE_ID_SAT_MID: 2413 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2414 break; 2415 case PCI_DEVICE_ID_SAT_SMB: 2416 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2417 break; 2418 case PCI_DEVICE_ID_SAT_DCSP: 2419 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2420 break; 2421 case PCI_DEVICE_ID_SAT_SCSP: 2422 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2423 break; 2424 case PCI_DEVICE_ID_SAT_S: 2425 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2426 break; 2427 case PCI_DEVICE_ID_HORNET: 2428 m = (typeof(m)){"LP21000", "PCIe", 2429 "Obsolete, Unsupported FCoE Adapter"}; 2430 GE = 1; 2431 break; 2432 case PCI_DEVICE_ID_PROTEUS_VF: 2433 m = (typeof(m)){"LPev12000", "PCIe IOV", 2434 "Obsolete, Unsupported Fibre Channel Adapter"}; 2435 break; 2436 case PCI_DEVICE_ID_PROTEUS_PF: 2437 m = (typeof(m)){"LPev12000", "PCIe IOV", 2438 "Obsolete, Unsupported Fibre Channel Adapter"}; 2439 break; 2440 case PCI_DEVICE_ID_PROTEUS_S: 2441 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2442 "Obsolete, Unsupported Fibre Channel Adapter"}; 2443 break; 2444 case PCI_DEVICE_ID_TIGERSHARK: 2445 oneConnect = 1; 2446 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2447 break; 2448 case PCI_DEVICE_ID_TOMCAT: 2449 oneConnect = 1; 2450 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2451 break; 2452 case PCI_DEVICE_ID_FALCON: 2453 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2454 "EmulexSecure Fibre"}; 2455 break; 2456 case PCI_DEVICE_ID_BALIUS: 2457 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2458 "Obsolete, Unsupported Fibre Channel Adapter"}; 2459 break; 2460 case PCI_DEVICE_ID_LANCER_FC: 2461 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2462 break; 2463 case PCI_DEVICE_ID_LANCER_FC_VF: 2464 m = (typeof(m)){"LPe16000", "PCIe", 2465 "Obsolete, Unsupported Fibre Channel Adapter"}; 2466 break; 2467 case PCI_DEVICE_ID_LANCER_FCOE: 2468 oneConnect = 1; 2469 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2470 break; 2471 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2472 oneConnect = 1; 2473 m = (typeof(m)){"OCe15100", "PCIe", 2474 "Obsolete, Unsupported FCoE"}; 2475 break; 2476 case PCI_DEVICE_ID_LANCER_G6_FC: 2477 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2478 break; 2479 case PCI_DEVICE_ID_LANCER_G7_FC: 2480 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2481 break; 2482 case PCI_DEVICE_ID_SKYHAWK: 2483 case PCI_DEVICE_ID_SKYHAWK_VF: 2484 oneConnect = 1; 2485 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2486 break; 2487 default: 2488 m = (typeof(m)){"Unknown", "", ""}; 2489 break; 2490 } 2491 2492 if (mdp && mdp[0] == '\0') 2493 snprintf(mdp, 79,"%s", m.name); 2494 /* 2495 * oneConnect hba requires special processing, they are all initiators 2496 * and we put the port number on the end 2497 */ 2498 if (descp && descp[0] == '\0') { 2499 if (oneConnect) 2500 snprintf(descp, 255, 2501 "Emulex OneConnect %s, %s Initiator %s", 2502 m.name, m.function, 2503 phba->Port); 2504 else if (max_speed == 0) 2505 snprintf(descp, 255, 2506 "Emulex %s %s %s", 2507 m.name, m.bus, m.function); 2508 else 2509 snprintf(descp, 255, 2510 "Emulex %s %d%s %s %s", 2511 m.name, max_speed, (GE) ? "GE" : "Gb", 2512 m.bus, m.function); 2513 } 2514 } 2515 2516 /** 2517 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2518 * @phba: pointer to lpfc hba data structure. 2519 * @pring: pointer to a IOCB ring. 2520 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2521 * 2522 * This routine posts a given number of IOCBs with the associated DMA buffer 2523 * descriptors specified by the cnt argument to the given IOCB ring. 2524 * 2525 * Return codes 2526 * The number of IOCBs NOT able to be posted to the IOCB ring. 2527 **/ 2528 int 2529 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2530 { 2531 IOCB_t *icmd; 2532 struct lpfc_iocbq *iocb; 2533 struct lpfc_dmabuf *mp1, *mp2; 2534 2535 cnt += pring->missbufcnt; 2536 2537 /* While there are buffers to post */ 2538 while (cnt > 0) { 2539 /* Allocate buffer for command iocb */ 2540 iocb = lpfc_sli_get_iocbq(phba); 2541 if (iocb == NULL) { 2542 pring->missbufcnt = cnt; 2543 return cnt; 2544 } 2545 icmd = &iocb->iocb; 2546 2547 /* 2 buffers can be posted per command */ 2548 /* Allocate buffer to post */ 2549 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2550 if (mp1) 2551 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2552 if (!mp1 || !mp1->virt) { 2553 kfree(mp1); 2554 lpfc_sli_release_iocbq(phba, iocb); 2555 pring->missbufcnt = cnt; 2556 return cnt; 2557 } 2558 2559 INIT_LIST_HEAD(&mp1->list); 2560 /* Allocate buffer to post */ 2561 if (cnt > 1) { 2562 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2563 if (mp2) 2564 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2565 &mp2->phys); 2566 if (!mp2 || !mp2->virt) { 2567 kfree(mp2); 2568 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2569 kfree(mp1); 2570 lpfc_sli_release_iocbq(phba, iocb); 2571 pring->missbufcnt = cnt; 2572 return cnt; 2573 } 2574 2575 INIT_LIST_HEAD(&mp2->list); 2576 } else { 2577 mp2 = NULL; 2578 } 2579 2580 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2581 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2582 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2583 icmd->ulpBdeCount = 1; 2584 cnt--; 2585 if (mp2) { 2586 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2587 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2588 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2589 cnt--; 2590 icmd->ulpBdeCount = 2; 2591 } 2592 2593 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2594 icmd->ulpLe = 1; 2595 2596 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2597 IOCB_ERROR) { 2598 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2599 kfree(mp1); 2600 cnt++; 2601 if (mp2) { 2602 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2603 kfree(mp2); 2604 cnt++; 2605 } 2606 lpfc_sli_release_iocbq(phba, iocb); 2607 pring->missbufcnt = cnt; 2608 return cnt; 2609 } 2610 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2611 if (mp2) 2612 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2613 } 2614 pring->missbufcnt = 0; 2615 return 0; 2616 } 2617 2618 /** 2619 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2620 * @phba: pointer to lpfc hba data structure. 2621 * 2622 * This routine posts initial receive IOCB buffers to the ELS ring. The 2623 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2624 * set to 64 IOCBs. SLI3 only. 2625 * 2626 * Return codes 2627 * 0 - success (currently always success) 2628 **/ 2629 static int 2630 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2631 { 2632 struct lpfc_sli *psli = &phba->sli; 2633 2634 /* Ring 0, ELS / CT buffers */ 2635 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2636 /* Ring 2 - FCP no buffers needed */ 2637 2638 return 0; 2639 } 2640 2641 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2642 2643 /** 2644 * lpfc_sha_init - Set up initial array of hash table entries 2645 * @HashResultPointer: pointer to an array as hash table. 2646 * 2647 * This routine sets up the initial values to the array of hash table entries 2648 * for the LC HBAs. 2649 **/ 2650 static void 2651 lpfc_sha_init(uint32_t * HashResultPointer) 2652 { 2653 HashResultPointer[0] = 0x67452301; 2654 HashResultPointer[1] = 0xEFCDAB89; 2655 HashResultPointer[2] = 0x98BADCFE; 2656 HashResultPointer[3] = 0x10325476; 2657 HashResultPointer[4] = 0xC3D2E1F0; 2658 } 2659 2660 /** 2661 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2662 * @HashResultPointer: pointer to an initial/result hash table. 2663 * @HashWorkingPointer: pointer to an working hash table. 2664 * 2665 * This routine iterates an initial hash table pointed by @HashResultPointer 2666 * with the values from the working hash table pointeed by @HashWorkingPointer. 2667 * The results are putting back to the initial hash table, returned through 2668 * the @HashResultPointer as the result hash table. 2669 **/ 2670 static void 2671 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2672 { 2673 int t; 2674 uint32_t TEMP; 2675 uint32_t A, B, C, D, E; 2676 t = 16; 2677 do { 2678 HashWorkingPointer[t] = 2679 S(1, 2680 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2681 8] ^ 2682 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2683 } while (++t <= 79); 2684 t = 0; 2685 A = HashResultPointer[0]; 2686 B = HashResultPointer[1]; 2687 C = HashResultPointer[2]; 2688 D = HashResultPointer[3]; 2689 E = HashResultPointer[4]; 2690 2691 do { 2692 if (t < 20) { 2693 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2694 } else if (t < 40) { 2695 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2696 } else if (t < 60) { 2697 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2698 } else { 2699 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2700 } 2701 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2702 E = D; 2703 D = C; 2704 C = S(30, B); 2705 B = A; 2706 A = TEMP; 2707 } while (++t <= 79); 2708 2709 HashResultPointer[0] += A; 2710 HashResultPointer[1] += B; 2711 HashResultPointer[2] += C; 2712 HashResultPointer[3] += D; 2713 HashResultPointer[4] += E; 2714 2715 } 2716 2717 /** 2718 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2719 * @RandomChallenge: pointer to the entry of host challenge random number array. 2720 * @HashWorking: pointer to the entry of the working hash array. 2721 * 2722 * This routine calculates the working hash array referred by @HashWorking 2723 * from the challenge random numbers associated with the host, referred by 2724 * @RandomChallenge. The result is put into the entry of the working hash 2725 * array and returned by reference through @HashWorking. 2726 **/ 2727 static void 2728 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2729 { 2730 *HashWorking = (*RandomChallenge ^ *HashWorking); 2731 } 2732 2733 /** 2734 * lpfc_hba_init - Perform special handling for LC HBA initialization 2735 * @phba: pointer to lpfc hba data structure. 2736 * @hbainit: pointer to an array of unsigned 32-bit integers. 2737 * 2738 * This routine performs the special handling for LC HBA initialization. 2739 **/ 2740 void 2741 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2742 { 2743 int t; 2744 uint32_t *HashWorking; 2745 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2746 2747 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2748 if (!HashWorking) 2749 return; 2750 2751 HashWorking[0] = HashWorking[78] = *pwwnn++; 2752 HashWorking[1] = HashWorking[79] = *pwwnn; 2753 2754 for (t = 0; t < 7; t++) 2755 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2756 2757 lpfc_sha_init(hbainit); 2758 lpfc_sha_iterate(hbainit, HashWorking); 2759 kfree(HashWorking); 2760 } 2761 2762 /** 2763 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2764 * @vport: pointer to a virtual N_Port data structure. 2765 * 2766 * This routine performs the necessary cleanups before deleting the @vport. 2767 * It invokes the discovery state machine to perform necessary state 2768 * transitions and to release the ndlps associated with the @vport. Note, 2769 * the physical port is treated as @vport 0. 2770 **/ 2771 void 2772 lpfc_cleanup(struct lpfc_vport *vport) 2773 { 2774 struct lpfc_hba *phba = vport->phba; 2775 struct lpfc_nodelist *ndlp, *next_ndlp; 2776 int i = 0; 2777 2778 if (phba->link_state > LPFC_LINK_DOWN) 2779 lpfc_port_link_failure(vport); 2780 2781 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2782 if (!NLP_CHK_NODE_ACT(ndlp)) { 2783 ndlp = lpfc_enable_node(vport, ndlp, 2784 NLP_STE_UNUSED_NODE); 2785 if (!ndlp) 2786 continue; 2787 spin_lock_irq(&phba->ndlp_lock); 2788 NLP_SET_FREE_REQ(ndlp); 2789 spin_unlock_irq(&phba->ndlp_lock); 2790 /* Trigger the release of the ndlp memory */ 2791 lpfc_nlp_put(ndlp); 2792 continue; 2793 } 2794 spin_lock_irq(&phba->ndlp_lock); 2795 if (NLP_CHK_FREE_REQ(ndlp)) { 2796 /* The ndlp should not be in memory free mode already */ 2797 spin_unlock_irq(&phba->ndlp_lock); 2798 continue; 2799 } else 2800 /* Indicate request for freeing ndlp memory */ 2801 NLP_SET_FREE_REQ(ndlp); 2802 spin_unlock_irq(&phba->ndlp_lock); 2803 2804 if (vport->port_type != LPFC_PHYSICAL_PORT && 2805 ndlp->nlp_DID == Fabric_DID) { 2806 /* Just free up ndlp with Fabric_DID for vports */ 2807 lpfc_nlp_put(ndlp); 2808 continue; 2809 } 2810 2811 /* take care of nodes in unused state before the state 2812 * machine taking action. 2813 */ 2814 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2815 lpfc_nlp_put(ndlp); 2816 continue; 2817 } 2818 2819 if (ndlp->nlp_type & NLP_FABRIC) 2820 lpfc_disc_state_machine(vport, ndlp, NULL, 2821 NLP_EVT_DEVICE_RECOVERY); 2822 2823 lpfc_disc_state_machine(vport, ndlp, NULL, 2824 NLP_EVT_DEVICE_RM); 2825 } 2826 2827 /* At this point, ALL ndlp's should be gone 2828 * because of the previous NLP_EVT_DEVICE_RM. 2829 * Lets wait for this to happen, if needed. 2830 */ 2831 while (!list_empty(&vport->fc_nodes)) { 2832 if (i++ > 3000) { 2833 lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, 2834 "0233 Nodelist not empty\n"); 2835 list_for_each_entry_safe(ndlp, next_ndlp, 2836 &vport->fc_nodes, nlp_listp) { 2837 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 2838 LOG_NODE, 2839 "0282 did:x%x ndlp:x%px " 2840 "usgmap:x%x refcnt:%d\n", 2841 ndlp->nlp_DID, (void *)ndlp, 2842 ndlp->nlp_usg_map, 2843 kref_read(&ndlp->kref)); 2844 } 2845 break; 2846 } 2847 2848 /* Wait for any activity on ndlps to settle */ 2849 msleep(10); 2850 } 2851 lpfc_cleanup_vports_rrqs(vport, NULL); 2852 } 2853 2854 /** 2855 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 2856 * @vport: pointer to a virtual N_Port data structure. 2857 * 2858 * This routine stops all the timers associated with a @vport. This function 2859 * is invoked before disabling or deleting a @vport. Note that the physical 2860 * port is treated as @vport 0. 2861 **/ 2862 void 2863 lpfc_stop_vport_timers(struct lpfc_vport *vport) 2864 { 2865 del_timer_sync(&vport->els_tmofunc); 2866 del_timer_sync(&vport->delayed_disc_tmo); 2867 lpfc_can_disctmo(vport); 2868 return; 2869 } 2870 2871 /** 2872 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2873 * @phba: pointer to lpfc hba data structure. 2874 * 2875 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 2876 * caller of this routine should already hold the host lock. 2877 **/ 2878 void 2879 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2880 { 2881 /* Clear pending FCF rediscovery wait flag */ 2882 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 2883 2884 /* Now, try to stop the timer */ 2885 del_timer(&phba->fcf.redisc_wait); 2886 } 2887 2888 /** 2889 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2890 * @phba: pointer to lpfc hba data structure. 2891 * 2892 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 2893 * checks whether the FCF rediscovery wait timer is pending with the host 2894 * lock held before proceeding with disabling the timer and clearing the 2895 * wait timer pendig flag. 2896 **/ 2897 void 2898 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2899 { 2900 spin_lock_irq(&phba->hbalock); 2901 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 2902 /* FCF rediscovery timer already fired or stopped */ 2903 spin_unlock_irq(&phba->hbalock); 2904 return; 2905 } 2906 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 2907 /* Clear failover in progress flags */ 2908 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 2909 spin_unlock_irq(&phba->hbalock); 2910 } 2911 2912 /** 2913 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 2914 * @phba: pointer to lpfc hba data structure. 2915 * 2916 * This routine stops all the timers associated with a HBA. This function is 2917 * invoked before either putting a HBA offline or unloading the driver. 2918 **/ 2919 void 2920 lpfc_stop_hba_timers(struct lpfc_hba *phba) 2921 { 2922 if (phba->pport) 2923 lpfc_stop_vport_timers(phba->pport); 2924 cancel_delayed_work_sync(&phba->eq_delay_work); 2925 del_timer_sync(&phba->sli.mbox_tmo); 2926 del_timer_sync(&phba->fabric_block_timer); 2927 del_timer_sync(&phba->eratt_poll); 2928 del_timer_sync(&phba->hb_tmofunc); 2929 if (phba->sli_rev == LPFC_SLI_REV4) { 2930 del_timer_sync(&phba->rrq_tmr); 2931 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 2932 } 2933 phba->hb_outstanding = 0; 2934 2935 switch (phba->pci_dev_grp) { 2936 case LPFC_PCI_DEV_LP: 2937 /* Stop any LightPulse device specific driver timers */ 2938 del_timer_sync(&phba->fcp_poll_timer); 2939 break; 2940 case LPFC_PCI_DEV_OC: 2941 /* Stop any OneConnect device specific driver timers */ 2942 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 2943 break; 2944 default: 2945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 2946 "0297 Invalid device group (x%x)\n", 2947 phba->pci_dev_grp); 2948 break; 2949 } 2950 return; 2951 } 2952 2953 /** 2954 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 2955 * @phba: pointer to lpfc hba data structure. 2956 * 2957 * This routine marks a HBA's management interface as blocked. Once the HBA's 2958 * management interface is marked as blocked, all the user space access to 2959 * the HBA, whether they are from sysfs interface or libdfc interface will 2960 * all be blocked. The HBA is set to block the management interface when the 2961 * driver prepares the HBA interface for online or offline. 2962 **/ 2963 static void 2964 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 2965 { 2966 unsigned long iflag; 2967 uint8_t actcmd = MBX_HEARTBEAT; 2968 unsigned long timeout; 2969 2970 spin_lock_irqsave(&phba->hbalock, iflag); 2971 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 2972 spin_unlock_irqrestore(&phba->hbalock, iflag); 2973 if (mbx_action == LPFC_MBX_NO_WAIT) 2974 return; 2975 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 2976 spin_lock_irqsave(&phba->hbalock, iflag); 2977 if (phba->sli.mbox_active) { 2978 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 2979 /* Determine how long we might wait for the active mailbox 2980 * command to be gracefully completed by firmware. 2981 */ 2982 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 2983 phba->sli.mbox_active) * 1000) + jiffies; 2984 } 2985 spin_unlock_irqrestore(&phba->hbalock, iflag); 2986 2987 /* Wait for the outstnading mailbox command to complete */ 2988 while (phba->sli.mbox_active) { 2989 /* Check active mailbox complete status every 2ms */ 2990 msleep(2); 2991 if (time_after(jiffies, timeout)) { 2992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2993 "2813 Mgmt IO is Blocked %x " 2994 "- mbox cmd %x still active\n", 2995 phba->sli.sli_flag, actcmd); 2996 break; 2997 } 2998 } 2999 } 3000 3001 /** 3002 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3003 * @phba: pointer to lpfc hba data structure. 3004 * 3005 * Allocate RPIs for all active remote nodes. This is needed whenever 3006 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3007 * is to fixup the temporary rpi assignments. 3008 **/ 3009 void 3010 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3011 { 3012 struct lpfc_nodelist *ndlp, *next_ndlp; 3013 struct lpfc_vport **vports; 3014 int i, rpi; 3015 unsigned long flags; 3016 3017 if (phba->sli_rev != LPFC_SLI_REV4) 3018 return; 3019 3020 vports = lpfc_create_vport_work_array(phba); 3021 if (vports == NULL) 3022 return; 3023 3024 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3025 if (vports[i]->load_flag & FC_UNLOADING) 3026 continue; 3027 3028 list_for_each_entry_safe(ndlp, next_ndlp, 3029 &vports[i]->fc_nodes, 3030 nlp_listp) { 3031 if (!NLP_CHK_NODE_ACT(ndlp)) 3032 continue; 3033 rpi = lpfc_sli4_alloc_rpi(phba); 3034 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3035 spin_lock_irqsave(&phba->ndlp_lock, flags); 3036 NLP_CLR_NODE_ACT(ndlp); 3037 spin_unlock_irqrestore(&phba->ndlp_lock, flags); 3038 continue; 3039 } 3040 ndlp->nlp_rpi = rpi; 3041 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3042 LOG_NODE | LOG_DISCOVERY, 3043 "0009 Assign RPI x%x to ndlp x%px " 3044 "DID:x%06x flg:x%x map:x%x\n", 3045 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3046 ndlp->nlp_flag, ndlp->nlp_usg_map); 3047 } 3048 } 3049 lpfc_destroy_vport_work_array(phba, vports); 3050 } 3051 3052 /** 3053 * lpfc_create_expedite_pool - create expedite pool 3054 * @phba: pointer to lpfc hba data structure. 3055 * 3056 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3057 * to expedite pool. Mark them as expedite. 3058 **/ 3059 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3060 { 3061 struct lpfc_sli4_hdw_queue *qp; 3062 struct lpfc_io_buf *lpfc_ncmd; 3063 struct lpfc_io_buf *lpfc_ncmd_next; 3064 struct lpfc_epd_pool *epd_pool; 3065 unsigned long iflag; 3066 3067 epd_pool = &phba->epd_pool; 3068 qp = &phba->sli4_hba.hdwq[0]; 3069 3070 spin_lock_init(&epd_pool->lock); 3071 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3072 spin_lock(&epd_pool->lock); 3073 INIT_LIST_HEAD(&epd_pool->list); 3074 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3075 &qp->lpfc_io_buf_list_put, list) { 3076 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3077 lpfc_ncmd->expedite = true; 3078 qp->put_io_bufs--; 3079 epd_pool->count++; 3080 if (epd_pool->count >= XRI_BATCH) 3081 break; 3082 } 3083 spin_unlock(&epd_pool->lock); 3084 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3085 } 3086 3087 /** 3088 * lpfc_destroy_expedite_pool - destroy expedite pool 3089 * @phba: pointer to lpfc hba data structure. 3090 * 3091 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3092 * of HWQ 0. Clear the mark. 3093 **/ 3094 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3095 { 3096 struct lpfc_sli4_hdw_queue *qp; 3097 struct lpfc_io_buf *lpfc_ncmd; 3098 struct lpfc_io_buf *lpfc_ncmd_next; 3099 struct lpfc_epd_pool *epd_pool; 3100 unsigned long iflag; 3101 3102 epd_pool = &phba->epd_pool; 3103 qp = &phba->sli4_hba.hdwq[0]; 3104 3105 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3106 spin_lock(&epd_pool->lock); 3107 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3108 &epd_pool->list, list) { 3109 list_move_tail(&lpfc_ncmd->list, 3110 &qp->lpfc_io_buf_list_put); 3111 lpfc_ncmd->flags = false; 3112 qp->put_io_bufs++; 3113 epd_pool->count--; 3114 } 3115 spin_unlock(&epd_pool->lock); 3116 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3117 } 3118 3119 /** 3120 * lpfc_create_multixri_pools - create multi-XRI pools 3121 * @phba: pointer to lpfc hba data structure. 3122 * 3123 * This routine initialize public, private per HWQ. Then, move XRIs from 3124 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3125 * Initialized. 3126 **/ 3127 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3128 { 3129 u32 i, j; 3130 u32 hwq_count; 3131 u32 count_per_hwq; 3132 struct lpfc_io_buf *lpfc_ncmd; 3133 struct lpfc_io_buf *lpfc_ncmd_next; 3134 unsigned long iflag; 3135 struct lpfc_sli4_hdw_queue *qp; 3136 struct lpfc_multixri_pool *multixri_pool; 3137 struct lpfc_pbl_pool *pbl_pool; 3138 struct lpfc_pvt_pool *pvt_pool; 3139 3140 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3141 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3142 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3143 phba->sli4_hba.io_xri_cnt); 3144 3145 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3146 lpfc_create_expedite_pool(phba); 3147 3148 hwq_count = phba->cfg_hdw_queue; 3149 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3150 3151 for (i = 0; i < hwq_count; i++) { 3152 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3153 3154 if (!multixri_pool) { 3155 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3156 "1238 Failed to allocate memory for " 3157 "multixri_pool\n"); 3158 3159 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3160 lpfc_destroy_expedite_pool(phba); 3161 3162 j = 0; 3163 while (j < i) { 3164 qp = &phba->sli4_hba.hdwq[j]; 3165 kfree(qp->p_multixri_pool); 3166 j++; 3167 } 3168 phba->cfg_xri_rebalancing = 0; 3169 return; 3170 } 3171 3172 qp = &phba->sli4_hba.hdwq[i]; 3173 qp->p_multixri_pool = multixri_pool; 3174 3175 multixri_pool->xri_limit = count_per_hwq; 3176 multixri_pool->rrb_next_hwqid = i; 3177 3178 /* Deal with public free xri pool */ 3179 pbl_pool = &multixri_pool->pbl_pool; 3180 spin_lock_init(&pbl_pool->lock); 3181 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3182 spin_lock(&pbl_pool->lock); 3183 INIT_LIST_HEAD(&pbl_pool->list); 3184 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3185 &qp->lpfc_io_buf_list_put, list) { 3186 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3187 qp->put_io_bufs--; 3188 pbl_pool->count++; 3189 } 3190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3191 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3192 pbl_pool->count, i); 3193 spin_unlock(&pbl_pool->lock); 3194 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3195 3196 /* Deal with private free xri pool */ 3197 pvt_pool = &multixri_pool->pvt_pool; 3198 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3199 pvt_pool->low_watermark = XRI_BATCH; 3200 spin_lock_init(&pvt_pool->lock); 3201 spin_lock_irqsave(&pvt_pool->lock, iflag); 3202 INIT_LIST_HEAD(&pvt_pool->list); 3203 pvt_pool->count = 0; 3204 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3205 } 3206 } 3207 3208 /** 3209 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3210 * @phba: pointer to lpfc hba data structure. 3211 * 3212 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3213 **/ 3214 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3215 { 3216 u32 i; 3217 u32 hwq_count; 3218 struct lpfc_io_buf *lpfc_ncmd; 3219 struct lpfc_io_buf *lpfc_ncmd_next; 3220 unsigned long iflag; 3221 struct lpfc_sli4_hdw_queue *qp; 3222 struct lpfc_multixri_pool *multixri_pool; 3223 struct lpfc_pbl_pool *pbl_pool; 3224 struct lpfc_pvt_pool *pvt_pool; 3225 3226 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3227 lpfc_destroy_expedite_pool(phba); 3228 3229 if (!(phba->pport->load_flag & FC_UNLOADING)) 3230 lpfc_sli_flush_io_rings(phba); 3231 3232 hwq_count = phba->cfg_hdw_queue; 3233 3234 for (i = 0; i < hwq_count; i++) { 3235 qp = &phba->sli4_hba.hdwq[i]; 3236 multixri_pool = qp->p_multixri_pool; 3237 if (!multixri_pool) 3238 continue; 3239 3240 qp->p_multixri_pool = NULL; 3241 3242 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3243 3244 /* Deal with public free xri pool */ 3245 pbl_pool = &multixri_pool->pbl_pool; 3246 spin_lock(&pbl_pool->lock); 3247 3248 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3249 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3250 pbl_pool->count, i); 3251 3252 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3253 &pbl_pool->list, list) { 3254 list_move_tail(&lpfc_ncmd->list, 3255 &qp->lpfc_io_buf_list_put); 3256 qp->put_io_bufs++; 3257 pbl_pool->count--; 3258 } 3259 3260 INIT_LIST_HEAD(&pbl_pool->list); 3261 pbl_pool->count = 0; 3262 3263 spin_unlock(&pbl_pool->lock); 3264 3265 /* Deal with private free xri pool */ 3266 pvt_pool = &multixri_pool->pvt_pool; 3267 spin_lock(&pvt_pool->lock); 3268 3269 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3270 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3271 pvt_pool->count, i); 3272 3273 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3274 &pvt_pool->list, list) { 3275 list_move_tail(&lpfc_ncmd->list, 3276 &qp->lpfc_io_buf_list_put); 3277 qp->put_io_bufs++; 3278 pvt_pool->count--; 3279 } 3280 3281 INIT_LIST_HEAD(&pvt_pool->list); 3282 pvt_pool->count = 0; 3283 3284 spin_unlock(&pvt_pool->lock); 3285 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3286 3287 kfree(multixri_pool); 3288 } 3289 } 3290 3291 /** 3292 * lpfc_online - Initialize and bring a HBA online 3293 * @phba: pointer to lpfc hba data structure. 3294 * 3295 * This routine initializes the HBA and brings a HBA online. During this 3296 * process, the management interface is blocked to prevent user space access 3297 * to the HBA interfering with the driver initialization. 3298 * 3299 * Return codes 3300 * 0 - successful 3301 * 1 - failed 3302 **/ 3303 int 3304 lpfc_online(struct lpfc_hba *phba) 3305 { 3306 struct lpfc_vport *vport; 3307 struct lpfc_vport **vports; 3308 int i, error = 0; 3309 bool vpis_cleared = false; 3310 3311 if (!phba) 3312 return 0; 3313 vport = phba->pport; 3314 3315 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3316 return 0; 3317 3318 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3319 "0458 Bring Adapter online\n"); 3320 3321 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3322 3323 if (phba->sli_rev == LPFC_SLI_REV4) { 3324 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3325 lpfc_unblock_mgmt_io(phba); 3326 return 1; 3327 } 3328 spin_lock_irq(&phba->hbalock); 3329 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3330 vpis_cleared = true; 3331 spin_unlock_irq(&phba->hbalock); 3332 3333 /* Reestablish the local initiator port. 3334 * The offline process destroyed the previous lport. 3335 */ 3336 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3337 !phba->nvmet_support) { 3338 error = lpfc_nvme_create_localport(phba->pport); 3339 if (error) 3340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3341 "6132 NVME restore reg failed " 3342 "on nvmei error x%x\n", error); 3343 } 3344 } else { 3345 lpfc_sli_queue_init(phba); 3346 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3347 lpfc_unblock_mgmt_io(phba); 3348 return 1; 3349 } 3350 } 3351 3352 vports = lpfc_create_vport_work_array(phba); 3353 if (vports != NULL) { 3354 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3355 struct Scsi_Host *shost; 3356 shost = lpfc_shost_from_vport(vports[i]); 3357 spin_lock_irq(shost->host_lock); 3358 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3359 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3360 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3361 if (phba->sli_rev == LPFC_SLI_REV4) { 3362 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3363 if ((vpis_cleared) && 3364 (vports[i]->port_type != 3365 LPFC_PHYSICAL_PORT)) 3366 vports[i]->vpi = 0; 3367 } 3368 spin_unlock_irq(shost->host_lock); 3369 } 3370 } 3371 lpfc_destroy_vport_work_array(phba, vports); 3372 3373 if (phba->cfg_xri_rebalancing) 3374 lpfc_create_multixri_pools(phba); 3375 3376 lpfc_cpuhp_add(phba); 3377 3378 lpfc_unblock_mgmt_io(phba); 3379 return 0; 3380 } 3381 3382 /** 3383 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3384 * @phba: pointer to lpfc hba data structure. 3385 * 3386 * This routine marks a HBA's management interface as not blocked. Once the 3387 * HBA's management interface is marked as not blocked, all the user space 3388 * access to the HBA, whether they are from sysfs interface or libdfc 3389 * interface will be allowed. The HBA is set to block the management interface 3390 * when the driver prepares the HBA interface for online or offline and then 3391 * set to unblock the management interface afterwards. 3392 **/ 3393 void 3394 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3395 { 3396 unsigned long iflag; 3397 3398 spin_lock_irqsave(&phba->hbalock, iflag); 3399 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3400 spin_unlock_irqrestore(&phba->hbalock, iflag); 3401 } 3402 3403 /** 3404 * lpfc_offline_prep - Prepare a HBA to be brought offline 3405 * @phba: pointer to lpfc hba data structure. 3406 * 3407 * This routine is invoked to prepare a HBA to be brought offline. It performs 3408 * unregistration login to all the nodes on all vports and flushes the mailbox 3409 * queue to make it ready to be brought offline. 3410 **/ 3411 void 3412 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3413 { 3414 struct lpfc_vport *vport = phba->pport; 3415 struct lpfc_nodelist *ndlp, *next_ndlp; 3416 struct lpfc_vport **vports; 3417 struct Scsi_Host *shost; 3418 int i; 3419 3420 if (vport->fc_flag & FC_OFFLINE_MODE) 3421 return; 3422 3423 lpfc_block_mgmt_io(phba, mbx_action); 3424 3425 lpfc_linkdown(phba); 3426 3427 /* Issue an unreg_login to all nodes on all vports */ 3428 vports = lpfc_create_vport_work_array(phba); 3429 if (vports != NULL) { 3430 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3431 if (vports[i]->load_flag & FC_UNLOADING) 3432 continue; 3433 shost = lpfc_shost_from_vport(vports[i]); 3434 spin_lock_irq(shost->host_lock); 3435 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3436 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3437 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3438 spin_unlock_irq(shost->host_lock); 3439 3440 shost = lpfc_shost_from_vport(vports[i]); 3441 list_for_each_entry_safe(ndlp, next_ndlp, 3442 &vports[i]->fc_nodes, 3443 nlp_listp) { 3444 if ((!NLP_CHK_NODE_ACT(ndlp)) || 3445 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3446 /* Driver must assume RPI is invalid for 3447 * any unused or inactive node. 3448 */ 3449 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3450 continue; 3451 } 3452 3453 if (ndlp->nlp_type & NLP_FABRIC) { 3454 lpfc_disc_state_machine(vports[i], ndlp, 3455 NULL, NLP_EVT_DEVICE_RECOVERY); 3456 lpfc_disc_state_machine(vports[i], ndlp, 3457 NULL, NLP_EVT_DEVICE_RM); 3458 } 3459 spin_lock_irq(shost->host_lock); 3460 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3461 spin_unlock_irq(shost->host_lock); 3462 /* 3463 * Whenever an SLI4 port goes offline, free the 3464 * RPI. Get a new RPI when the adapter port 3465 * comes back online. 3466 */ 3467 if (phba->sli_rev == LPFC_SLI_REV4) { 3468 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3469 LOG_NODE | LOG_DISCOVERY, 3470 "0011 Free RPI x%x on " 3471 "ndlp:x%px did x%x " 3472 "usgmap:x%x\n", 3473 ndlp->nlp_rpi, ndlp, 3474 ndlp->nlp_DID, 3475 ndlp->nlp_usg_map); 3476 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3477 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3478 } 3479 lpfc_unreg_rpi(vports[i], ndlp); 3480 } 3481 } 3482 } 3483 lpfc_destroy_vport_work_array(phba, vports); 3484 3485 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3486 3487 if (phba->wq) 3488 flush_workqueue(phba->wq); 3489 } 3490 3491 /** 3492 * lpfc_offline - Bring a HBA offline 3493 * @phba: pointer to lpfc hba data structure. 3494 * 3495 * This routine actually brings a HBA offline. It stops all the timers 3496 * associated with the HBA, brings down the SLI layer, and eventually 3497 * marks the HBA as in offline state for the upper layer protocol. 3498 **/ 3499 void 3500 lpfc_offline(struct lpfc_hba *phba) 3501 { 3502 struct Scsi_Host *shost; 3503 struct lpfc_vport **vports; 3504 int i; 3505 3506 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3507 return; 3508 3509 /* stop port and all timers associated with this hba */ 3510 lpfc_stop_port(phba); 3511 3512 /* Tear down the local and target port registrations. The 3513 * nvme transports need to cleanup. 3514 */ 3515 lpfc_nvmet_destroy_targetport(phba); 3516 lpfc_nvme_destroy_localport(phba->pport); 3517 3518 vports = lpfc_create_vport_work_array(phba); 3519 if (vports != NULL) 3520 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3521 lpfc_stop_vport_timers(vports[i]); 3522 lpfc_destroy_vport_work_array(phba, vports); 3523 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3524 "0460 Bring Adapter offline\n"); 3525 /* Bring down the SLI Layer and cleanup. The HBA is offline 3526 now. */ 3527 lpfc_sli_hba_down(phba); 3528 spin_lock_irq(&phba->hbalock); 3529 phba->work_ha = 0; 3530 spin_unlock_irq(&phba->hbalock); 3531 vports = lpfc_create_vport_work_array(phba); 3532 if (vports != NULL) 3533 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3534 shost = lpfc_shost_from_vport(vports[i]); 3535 spin_lock_irq(shost->host_lock); 3536 vports[i]->work_port_events = 0; 3537 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3538 spin_unlock_irq(shost->host_lock); 3539 } 3540 lpfc_destroy_vport_work_array(phba, vports); 3541 __lpfc_cpuhp_remove(phba); 3542 3543 if (phba->cfg_xri_rebalancing) 3544 lpfc_destroy_multixri_pools(phba); 3545 } 3546 3547 /** 3548 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3549 * @phba: pointer to lpfc hba data structure. 3550 * 3551 * This routine is to free all the SCSI buffers and IOCBs from the driver 3552 * list back to kernel. It is called from lpfc_pci_remove_one to free 3553 * the internal resources before the device is removed from the system. 3554 **/ 3555 static void 3556 lpfc_scsi_free(struct lpfc_hba *phba) 3557 { 3558 struct lpfc_io_buf *sb, *sb_next; 3559 3560 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3561 return; 3562 3563 spin_lock_irq(&phba->hbalock); 3564 3565 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3566 3567 spin_lock(&phba->scsi_buf_list_put_lock); 3568 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3569 list) { 3570 list_del(&sb->list); 3571 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3572 sb->dma_handle); 3573 kfree(sb); 3574 phba->total_scsi_bufs--; 3575 } 3576 spin_unlock(&phba->scsi_buf_list_put_lock); 3577 3578 spin_lock(&phba->scsi_buf_list_get_lock); 3579 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3580 list) { 3581 list_del(&sb->list); 3582 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3583 sb->dma_handle); 3584 kfree(sb); 3585 phba->total_scsi_bufs--; 3586 } 3587 spin_unlock(&phba->scsi_buf_list_get_lock); 3588 spin_unlock_irq(&phba->hbalock); 3589 } 3590 3591 /** 3592 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3593 * @phba: pointer to lpfc hba data structure. 3594 * 3595 * This routine is to free all the IO buffers and IOCBs from the driver 3596 * list back to kernel. It is called from lpfc_pci_remove_one to free 3597 * the internal resources before the device is removed from the system. 3598 **/ 3599 void 3600 lpfc_io_free(struct lpfc_hba *phba) 3601 { 3602 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3603 struct lpfc_sli4_hdw_queue *qp; 3604 int idx; 3605 3606 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3607 qp = &phba->sli4_hba.hdwq[idx]; 3608 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3609 spin_lock(&qp->io_buf_list_put_lock); 3610 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3611 &qp->lpfc_io_buf_list_put, 3612 list) { 3613 list_del(&lpfc_ncmd->list); 3614 qp->put_io_bufs--; 3615 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3616 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3617 if (phba->cfg_xpsgl && !phba->nvmet_support) 3618 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3619 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3620 kfree(lpfc_ncmd); 3621 qp->total_io_bufs--; 3622 } 3623 spin_unlock(&qp->io_buf_list_put_lock); 3624 3625 spin_lock(&qp->io_buf_list_get_lock); 3626 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3627 &qp->lpfc_io_buf_list_get, 3628 list) { 3629 list_del(&lpfc_ncmd->list); 3630 qp->get_io_bufs--; 3631 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3632 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3633 if (phba->cfg_xpsgl && !phba->nvmet_support) 3634 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3635 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3636 kfree(lpfc_ncmd); 3637 qp->total_io_bufs--; 3638 } 3639 spin_unlock(&qp->io_buf_list_get_lock); 3640 } 3641 } 3642 3643 /** 3644 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3645 * @phba: pointer to lpfc hba data structure. 3646 * 3647 * This routine first calculates the sizes of the current els and allocated 3648 * scsi sgl lists, and then goes through all sgls to updates the physical 3649 * XRIs assigned due to port function reset. During port initialization, the 3650 * current els and allocated scsi sgl lists are 0s. 3651 * 3652 * Return codes 3653 * 0 - successful (for now, it always returns 0) 3654 **/ 3655 int 3656 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3657 { 3658 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3659 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3660 LIST_HEAD(els_sgl_list); 3661 int rc; 3662 3663 /* 3664 * update on pci function's els xri-sgl list 3665 */ 3666 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3667 3668 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3669 /* els xri-sgl expanded */ 3670 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3671 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3672 "3157 ELS xri-sgl count increased from " 3673 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3674 els_xri_cnt); 3675 /* allocate the additional els sgls */ 3676 for (i = 0; i < xri_cnt; i++) { 3677 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3678 GFP_KERNEL); 3679 if (sglq_entry == NULL) { 3680 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3681 "2562 Failure to allocate an " 3682 "ELS sgl entry:%d\n", i); 3683 rc = -ENOMEM; 3684 goto out_free_mem; 3685 } 3686 sglq_entry->buff_type = GEN_BUFF_TYPE; 3687 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3688 &sglq_entry->phys); 3689 if (sglq_entry->virt == NULL) { 3690 kfree(sglq_entry); 3691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3692 "2563 Failure to allocate an " 3693 "ELS mbuf:%d\n", i); 3694 rc = -ENOMEM; 3695 goto out_free_mem; 3696 } 3697 sglq_entry->sgl = sglq_entry->virt; 3698 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 3699 sglq_entry->state = SGL_FREED; 3700 list_add_tail(&sglq_entry->list, &els_sgl_list); 3701 } 3702 spin_lock_irq(&phba->hbalock); 3703 spin_lock(&phba->sli4_hba.sgl_list_lock); 3704 list_splice_init(&els_sgl_list, 3705 &phba->sli4_hba.lpfc_els_sgl_list); 3706 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3707 spin_unlock_irq(&phba->hbalock); 3708 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 3709 /* els xri-sgl shrinked */ 3710 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 3711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3712 "3158 ELS xri-sgl count decreased from " 3713 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3714 els_xri_cnt); 3715 spin_lock_irq(&phba->hbalock); 3716 spin_lock(&phba->sli4_hba.sgl_list_lock); 3717 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 3718 &els_sgl_list); 3719 /* release extra els sgls from list */ 3720 for (i = 0; i < xri_cnt; i++) { 3721 list_remove_head(&els_sgl_list, 3722 sglq_entry, struct lpfc_sglq, list); 3723 if (sglq_entry) { 3724 __lpfc_mbuf_free(phba, sglq_entry->virt, 3725 sglq_entry->phys); 3726 kfree(sglq_entry); 3727 } 3728 } 3729 list_splice_init(&els_sgl_list, 3730 &phba->sli4_hba.lpfc_els_sgl_list); 3731 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3732 spin_unlock_irq(&phba->hbalock); 3733 } else 3734 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3735 "3163 ELS xri-sgl count unchanged: %d\n", 3736 els_xri_cnt); 3737 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 3738 3739 /* update xris to els sgls on the list */ 3740 sglq_entry = NULL; 3741 sglq_entry_next = NULL; 3742 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3743 &phba->sli4_hba.lpfc_els_sgl_list, list) { 3744 lxri = lpfc_sli4_next_xritag(phba); 3745 if (lxri == NO_XRI) { 3746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3747 "2400 Failed to allocate xri for " 3748 "ELS sgl\n"); 3749 rc = -ENOMEM; 3750 goto out_free_mem; 3751 } 3752 sglq_entry->sli4_lxritag = lxri; 3753 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3754 } 3755 return 0; 3756 3757 out_free_mem: 3758 lpfc_free_els_sgl_list(phba); 3759 return rc; 3760 } 3761 3762 /** 3763 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 3764 * @phba: pointer to lpfc hba data structure. 3765 * 3766 * This routine first calculates the sizes of the current els and allocated 3767 * scsi sgl lists, and then goes through all sgls to updates the physical 3768 * XRIs assigned due to port function reset. During port initialization, the 3769 * current els and allocated scsi sgl lists are 0s. 3770 * 3771 * Return codes 3772 * 0 - successful (for now, it always returns 0) 3773 **/ 3774 int 3775 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 3776 { 3777 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3778 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3779 uint16_t nvmet_xri_cnt; 3780 LIST_HEAD(nvmet_sgl_list); 3781 int rc; 3782 3783 /* 3784 * update on pci function's nvmet xri-sgl list 3785 */ 3786 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3787 3788 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 3789 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 3790 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 3791 /* els xri-sgl expanded */ 3792 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 3793 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3794 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 3795 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 3796 /* allocate the additional nvmet sgls */ 3797 for (i = 0; i < xri_cnt; i++) { 3798 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3799 GFP_KERNEL); 3800 if (sglq_entry == NULL) { 3801 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3802 "6303 Failure to allocate an " 3803 "NVMET sgl entry:%d\n", i); 3804 rc = -ENOMEM; 3805 goto out_free_mem; 3806 } 3807 sglq_entry->buff_type = NVMET_BUFF_TYPE; 3808 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 3809 &sglq_entry->phys); 3810 if (sglq_entry->virt == NULL) { 3811 kfree(sglq_entry); 3812 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3813 "6304 Failure to allocate an " 3814 "NVMET buf:%d\n", i); 3815 rc = -ENOMEM; 3816 goto out_free_mem; 3817 } 3818 sglq_entry->sgl = sglq_entry->virt; 3819 memset(sglq_entry->sgl, 0, 3820 phba->cfg_sg_dma_buf_size); 3821 sglq_entry->state = SGL_FREED; 3822 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 3823 } 3824 spin_lock_irq(&phba->hbalock); 3825 spin_lock(&phba->sli4_hba.sgl_list_lock); 3826 list_splice_init(&nvmet_sgl_list, 3827 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3828 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3829 spin_unlock_irq(&phba->hbalock); 3830 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 3831 /* nvmet xri-sgl shrunk */ 3832 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 3833 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3834 "6305 NVMET xri-sgl count decreased from " 3835 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 3836 nvmet_xri_cnt); 3837 spin_lock_irq(&phba->hbalock); 3838 spin_lock(&phba->sli4_hba.sgl_list_lock); 3839 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 3840 &nvmet_sgl_list); 3841 /* release extra nvmet sgls from list */ 3842 for (i = 0; i < xri_cnt; i++) { 3843 list_remove_head(&nvmet_sgl_list, 3844 sglq_entry, struct lpfc_sglq, list); 3845 if (sglq_entry) { 3846 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 3847 sglq_entry->phys); 3848 kfree(sglq_entry); 3849 } 3850 } 3851 list_splice_init(&nvmet_sgl_list, 3852 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3853 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3854 spin_unlock_irq(&phba->hbalock); 3855 } else 3856 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3857 "6306 NVMET xri-sgl count unchanged: %d\n", 3858 nvmet_xri_cnt); 3859 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 3860 3861 /* update xris to nvmet sgls on the list */ 3862 sglq_entry = NULL; 3863 sglq_entry_next = NULL; 3864 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3865 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 3866 lxri = lpfc_sli4_next_xritag(phba); 3867 if (lxri == NO_XRI) { 3868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3869 "6307 Failed to allocate xri for " 3870 "NVMET sgl\n"); 3871 rc = -ENOMEM; 3872 goto out_free_mem; 3873 } 3874 sglq_entry->sli4_lxritag = lxri; 3875 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3876 } 3877 return 0; 3878 3879 out_free_mem: 3880 lpfc_free_nvmet_sgl_list(phba); 3881 return rc; 3882 } 3883 3884 int 3885 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 3886 { 3887 LIST_HEAD(blist); 3888 struct lpfc_sli4_hdw_queue *qp; 3889 struct lpfc_io_buf *lpfc_cmd; 3890 struct lpfc_io_buf *iobufp, *prev_iobufp; 3891 int idx, cnt, xri, inserted; 3892 3893 cnt = 0; 3894 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3895 qp = &phba->sli4_hba.hdwq[idx]; 3896 spin_lock_irq(&qp->io_buf_list_get_lock); 3897 spin_lock(&qp->io_buf_list_put_lock); 3898 3899 /* Take everything off the get and put lists */ 3900 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 3901 list_splice(&qp->lpfc_io_buf_list_put, &blist); 3902 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 3903 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 3904 cnt += qp->get_io_bufs + qp->put_io_bufs; 3905 qp->get_io_bufs = 0; 3906 qp->put_io_bufs = 0; 3907 qp->total_io_bufs = 0; 3908 spin_unlock(&qp->io_buf_list_put_lock); 3909 spin_unlock_irq(&qp->io_buf_list_get_lock); 3910 } 3911 3912 /* 3913 * Take IO buffers off blist and put on cbuf sorted by XRI. 3914 * This is because POST_SGL takes a sequential range of XRIs 3915 * to post to the firmware. 3916 */ 3917 for (idx = 0; idx < cnt; idx++) { 3918 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 3919 if (!lpfc_cmd) 3920 return cnt; 3921 if (idx == 0) { 3922 list_add_tail(&lpfc_cmd->list, cbuf); 3923 continue; 3924 } 3925 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 3926 inserted = 0; 3927 prev_iobufp = NULL; 3928 list_for_each_entry(iobufp, cbuf, list) { 3929 if (xri < iobufp->cur_iocbq.sli4_xritag) { 3930 if (prev_iobufp) 3931 list_add(&lpfc_cmd->list, 3932 &prev_iobufp->list); 3933 else 3934 list_add(&lpfc_cmd->list, cbuf); 3935 inserted = 1; 3936 break; 3937 } 3938 prev_iobufp = iobufp; 3939 } 3940 if (!inserted) 3941 list_add_tail(&lpfc_cmd->list, cbuf); 3942 } 3943 return cnt; 3944 } 3945 3946 int 3947 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 3948 { 3949 struct lpfc_sli4_hdw_queue *qp; 3950 struct lpfc_io_buf *lpfc_cmd; 3951 int idx, cnt; 3952 3953 qp = phba->sli4_hba.hdwq; 3954 cnt = 0; 3955 while (!list_empty(cbuf)) { 3956 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3957 list_remove_head(cbuf, lpfc_cmd, 3958 struct lpfc_io_buf, list); 3959 if (!lpfc_cmd) 3960 return cnt; 3961 cnt++; 3962 qp = &phba->sli4_hba.hdwq[idx]; 3963 lpfc_cmd->hdwq_no = idx; 3964 lpfc_cmd->hdwq = qp; 3965 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL; 3966 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL; 3967 spin_lock(&qp->io_buf_list_put_lock); 3968 list_add_tail(&lpfc_cmd->list, 3969 &qp->lpfc_io_buf_list_put); 3970 qp->put_io_bufs++; 3971 qp->total_io_bufs++; 3972 spin_unlock(&qp->io_buf_list_put_lock); 3973 } 3974 } 3975 return cnt; 3976 } 3977 3978 /** 3979 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 3980 * @phba: pointer to lpfc hba data structure. 3981 * 3982 * This routine first calculates the sizes of the current els and allocated 3983 * scsi sgl lists, and then goes through all sgls to updates the physical 3984 * XRIs assigned due to port function reset. During port initialization, the 3985 * current els and allocated scsi sgl lists are 0s. 3986 * 3987 * Return codes 3988 * 0 - successful (for now, it always returns 0) 3989 **/ 3990 int 3991 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 3992 { 3993 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 3994 uint16_t i, lxri, els_xri_cnt; 3995 uint16_t io_xri_cnt, io_xri_max; 3996 LIST_HEAD(io_sgl_list); 3997 int rc, cnt; 3998 3999 /* 4000 * update on pci function's allocated nvme xri-sgl list 4001 */ 4002 4003 /* maximum number of xris available for nvme buffers */ 4004 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4005 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4006 phba->sli4_hba.io_xri_max = io_xri_max; 4007 4008 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4009 "6074 Current allocated XRI sgl count:%d, " 4010 "maximum XRI count:%d\n", 4011 phba->sli4_hba.io_xri_cnt, 4012 phba->sli4_hba.io_xri_max); 4013 4014 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4015 4016 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4017 /* max nvme xri shrunk below the allocated nvme buffers */ 4018 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4019 phba->sli4_hba.io_xri_max; 4020 /* release the extra allocated nvme buffers */ 4021 for (i = 0; i < io_xri_cnt; i++) { 4022 list_remove_head(&io_sgl_list, lpfc_ncmd, 4023 struct lpfc_io_buf, list); 4024 if (lpfc_ncmd) { 4025 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4026 lpfc_ncmd->data, 4027 lpfc_ncmd->dma_handle); 4028 kfree(lpfc_ncmd); 4029 } 4030 } 4031 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4032 } 4033 4034 /* update xris associated to remaining allocated nvme buffers */ 4035 lpfc_ncmd = NULL; 4036 lpfc_ncmd_next = NULL; 4037 phba->sli4_hba.io_xri_cnt = cnt; 4038 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4039 &io_sgl_list, list) { 4040 lxri = lpfc_sli4_next_xritag(phba); 4041 if (lxri == NO_XRI) { 4042 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4043 "6075 Failed to allocate xri for " 4044 "nvme buffer\n"); 4045 rc = -ENOMEM; 4046 goto out_free_mem; 4047 } 4048 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4049 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4050 } 4051 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4052 return 0; 4053 4054 out_free_mem: 4055 lpfc_io_free(phba); 4056 return rc; 4057 } 4058 4059 /** 4060 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4061 * @vport: The virtual port for which this call being executed. 4062 * @num_to_allocate: The requested number of buffers to allocate. 4063 * 4064 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4065 * the nvme buffer contains all the necessary information needed to initiate 4066 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4067 * them on a list, it post them to the port by using SGL block post. 4068 * 4069 * Return codes: 4070 * int - number of IO buffers that were allocated and posted. 4071 * 0 = failure, less than num_to_alloc is a partial failure. 4072 **/ 4073 int 4074 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4075 { 4076 struct lpfc_io_buf *lpfc_ncmd; 4077 struct lpfc_iocbq *pwqeq; 4078 uint16_t iotag, lxri = 0; 4079 int bcnt, num_posted; 4080 LIST_HEAD(prep_nblist); 4081 LIST_HEAD(post_nblist); 4082 LIST_HEAD(nvme_nblist); 4083 4084 phba->sli4_hba.io_xri_cnt = 0; 4085 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4086 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4087 if (!lpfc_ncmd) 4088 break; 4089 /* 4090 * Get memory from the pci pool to map the virt space to 4091 * pci bus space for an I/O. The DMA buffer includes the 4092 * number of SGE's necessary to support the sg_tablesize. 4093 */ 4094 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4095 GFP_KERNEL, 4096 &lpfc_ncmd->dma_handle); 4097 if (!lpfc_ncmd->data) { 4098 kfree(lpfc_ncmd); 4099 break; 4100 } 4101 4102 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4103 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4104 } else { 4105 /* 4106 * 4K Page alignment is CRITICAL to BlockGuard, double 4107 * check to be sure. 4108 */ 4109 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4110 (((unsigned long)(lpfc_ncmd->data) & 4111 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4112 lpfc_printf_log(phba, KERN_ERR, LOG_FCP, 4113 "3369 Memory alignment err: " 4114 "addr=%lx\n", 4115 (unsigned long)lpfc_ncmd->data); 4116 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4117 lpfc_ncmd->data, 4118 lpfc_ncmd->dma_handle); 4119 kfree(lpfc_ncmd); 4120 break; 4121 } 4122 } 4123 4124 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4125 4126 lxri = lpfc_sli4_next_xritag(phba); 4127 if (lxri == NO_XRI) { 4128 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4129 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4130 kfree(lpfc_ncmd); 4131 break; 4132 } 4133 pwqeq = &lpfc_ncmd->cur_iocbq; 4134 4135 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4136 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4137 if (iotag == 0) { 4138 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4139 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4140 kfree(lpfc_ncmd); 4141 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR, 4142 "6121 Failed to allocate IOTAG for" 4143 " XRI:0x%x\n", lxri); 4144 lpfc_sli4_free_xri(phba, lxri); 4145 break; 4146 } 4147 pwqeq->sli4_lxritag = lxri; 4148 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4149 pwqeq->context1 = lpfc_ncmd; 4150 4151 /* Initialize local short-hand pointers. */ 4152 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4153 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4154 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4155 spin_lock_init(&lpfc_ncmd->buf_lock); 4156 4157 /* add the nvme buffer to a post list */ 4158 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4159 phba->sli4_hba.io_xri_cnt++; 4160 } 4161 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4162 "6114 Allocate %d out of %d requested new NVME " 4163 "buffers\n", bcnt, num_to_alloc); 4164 4165 /* post the list of nvme buffer sgls to port if available */ 4166 if (!list_empty(&post_nblist)) 4167 num_posted = lpfc_sli4_post_io_sgl_list( 4168 phba, &post_nblist, bcnt); 4169 else 4170 num_posted = 0; 4171 4172 return num_posted; 4173 } 4174 4175 static uint64_t 4176 lpfc_get_wwpn(struct lpfc_hba *phba) 4177 { 4178 uint64_t wwn; 4179 int rc; 4180 LPFC_MBOXQ_t *mboxq; 4181 MAILBOX_t *mb; 4182 4183 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4184 GFP_KERNEL); 4185 if (!mboxq) 4186 return (uint64_t)-1; 4187 4188 /* First get WWN of HBA instance */ 4189 lpfc_read_nv(phba, mboxq); 4190 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4191 if (rc != MBX_SUCCESS) { 4192 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4193 "6019 Mailbox failed , mbxCmd x%x " 4194 "READ_NV, mbxStatus x%x\n", 4195 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4196 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4197 mempool_free(mboxq, phba->mbox_mem_pool); 4198 return (uint64_t) -1; 4199 } 4200 mb = &mboxq->u.mb; 4201 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4202 /* wwn is WWPN of HBA instance */ 4203 mempool_free(mboxq, phba->mbox_mem_pool); 4204 if (phba->sli_rev == LPFC_SLI_REV4) 4205 return be64_to_cpu(wwn); 4206 else 4207 return rol64(wwn, 32); 4208 } 4209 4210 /** 4211 * lpfc_create_port - Create an FC port 4212 * @phba: pointer to lpfc hba data structure. 4213 * @instance: a unique integer ID to this FC port. 4214 * @dev: pointer to the device data structure. 4215 * 4216 * This routine creates a FC port for the upper layer protocol. The FC port 4217 * can be created on top of either a physical port or a virtual port provided 4218 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4219 * and associates the FC port created before adding the shost into the SCSI 4220 * layer. 4221 * 4222 * Return codes 4223 * @vport - pointer to the virtual N_Port data structure. 4224 * NULL - port create failed. 4225 **/ 4226 struct lpfc_vport * 4227 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4228 { 4229 struct lpfc_vport *vport; 4230 struct Scsi_Host *shost = NULL; 4231 struct scsi_host_template *template; 4232 int error = 0; 4233 int i; 4234 uint64_t wwn; 4235 bool use_no_reset_hba = false; 4236 int rc; 4237 4238 if (lpfc_no_hba_reset_cnt) { 4239 if (phba->sli_rev < LPFC_SLI_REV4 && 4240 dev == &phba->pcidev->dev) { 4241 /* Reset the port first */ 4242 lpfc_sli_brdrestart(phba); 4243 rc = lpfc_sli_chipset_init(phba); 4244 if (rc) 4245 return NULL; 4246 } 4247 wwn = lpfc_get_wwpn(phba); 4248 } 4249 4250 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4251 if (wwn == lpfc_no_hba_reset[i]) { 4252 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4253 "6020 Setting use_no_reset port=%llx\n", 4254 wwn); 4255 use_no_reset_hba = true; 4256 break; 4257 } 4258 } 4259 4260 /* Seed template for SCSI host registration */ 4261 if (dev == &phba->pcidev->dev) { 4262 template = &phba->port_template; 4263 4264 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4265 /* Seed physical port template */ 4266 memcpy(template, &lpfc_template, sizeof(*template)); 4267 4268 if (use_no_reset_hba) { 4269 /* template is for a no reset SCSI Host */ 4270 template->max_sectors = 0xffff; 4271 template->eh_host_reset_handler = NULL; 4272 } 4273 4274 /* Template for all vports this physical port creates */ 4275 memcpy(&phba->vport_template, &lpfc_template, 4276 sizeof(*template)); 4277 phba->vport_template.max_sectors = 0xffff; 4278 phba->vport_template.shost_attrs = lpfc_vport_attrs; 4279 phba->vport_template.eh_bus_reset_handler = NULL; 4280 phba->vport_template.eh_host_reset_handler = NULL; 4281 phba->vport_template.vendor_id = 0; 4282 4283 /* Initialize the host templates with updated value */ 4284 if (phba->sli_rev == LPFC_SLI_REV4) { 4285 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4286 phba->vport_template.sg_tablesize = 4287 phba->cfg_scsi_seg_cnt; 4288 } else { 4289 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4290 phba->vport_template.sg_tablesize = 4291 phba->cfg_sg_seg_cnt; 4292 } 4293 4294 } else { 4295 /* NVMET is for physical port only */ 4296 memcpy(template, &lpfc_template_nvme, 4297 sizeof(*template)); 4298 } 4299 } else { 4300 template = &phba->vport_template; 4301 } 4302 4303 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4304 if (!shost) 4305 goto out; 4306 4307 vport = (struct lpfc_vport *) shost->hostdata; 4308 vport->phba = phba; 4309 vport->load_flag |= FC_LOADING; 4310 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4311 vport->fc_rscn_flush = 0; 4312 lpfc_get_vport_cfgparam(vport); 4313 4314 /* Adjust value in vport */ 4315 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4316 4317 shost->unique_id = instance; 4318 shost->max_id = LPFC_MAX_TARGET; 4319 shost->max_lun = vport->cfg_max_luns; 4320 shost->this_id = -1; 4321 shost->max_cmd_len = 16; 4322 4323 if (phba->sli_rev == LPFC_SLI_REV4) { 4324 if (!phba->cfg_fcp_mq_threshold || 4325 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4326 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4327 4328 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4329 phba->cfg_fcp_mq_threshold); 4330 4331 shost->dma_boundary = 4332 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4333 4334 if (phba->cfg_xpsgl && !phba->nvmet_support) 4335 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4336 else 4337 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4338 } else 4339 /* SLI-3 has a limited number of hardware queues (3), 4340 * thus there is only one for FCP processing. 4341 */ 4342 shost->nr_hw_queues = 1; 4343 4344 /* 4345 * Set initial can_queue value since 0 is no longer supported and 4346 * scsi_add_host will fail. This will be adjusted later based on the 4347 * max xri value determined in hba setup. 4348 */ 4349 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4350 if (dev != &phba->pcidev->dev) { 4351 shost->transportt = lpfc_vport_transport_template; 4352 vport->port_type = LPFC_NPIV_PORT; 4353 } else { 4354 shost->transportt = lpfc_transport_template; 4355 vport->port_type = LPFC_PHYSICAL_PORT; 4356 } 4357 4358 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4359 "9081 CreatePort TMPLATE type %x TBLsize %d " 4360 "SEGcnt %d/%d\n", 4361 vport->port_type, shost->sg_tablesize, 4362 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4363 4364 /* Initialize all internally managed lists. */ 4365 INIT_LIST_HEAD(&vport->fc_nodes); 4366 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4367 spin_lock_init(&vport->work_port_lock); 4368 4369 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4370 4371 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4372 4373 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4374 4375 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4376 lpfc_setup_bg(phba, shost); 4377 4378 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4379 if (error) 4380 goto out_put_shost; 4381 4382 spin_lock_irq(&phba->port_list_lock); 4383 list_add_tail(&vport->listentry, &phba->port_list); 4384 spin_unlock_irq(&phba->port_list_lock); 4385 return vport; 4386 4387 out_put_shost: 4388 scsi_host_put(shost); 4389 out: 4390 return NULL; 4391 } 4392 4393 /** 4394 * destroy_port - destroy an FC port 4395 * @vport: pointer to an lpfc virtual N_Port data structure. 4396 * 4397 * This routine destroys a FC port from the upper layer protocol. All the 4398 * resources associated with the port are released. 4399 **/ 4400 void 4401 destroy_port(struct lpfc_vport *vport) 4402 { 4403 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4404 struct lpfc_hba *phba = vport->phba; 4405 4406 lpfc_debugfs_terminate(vport); 4407 fc_remove_host(shost); 4408 scsi_remove_host(shost); 4409 4410 spin_lock_irq(&phba->port_list_lock); 4411 list_del_init(&vport->listentry); 4412 spin_unlock_irq(&phba->port_list_lock); 4413 4414 lpfc_cleanup(vport); 4415 return; 4416 } 4417 4418 /** 4419 * lpfc_get_instance - Get a unique integer ID 4420 * 4421 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4422 * uses the kernel idr facility to perform the task. 4423 * 4424 * Return codes: 4425 * instance - a unique integer ID allocated as the new instance. 4426 * -1 - lpfc get instance failed. 4427 **/ 4428 int 4429 lpfc_get_instance(void) 4430 { 4431 int ret; 4432 4433 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4434 return ret < 0 ? -1 : ret; 4435 } 4436 4437 /** 4438 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4439 * @shost: pointer to SCSI host data structure. 4440 * @time: elapsed time of the scan in jiffies. 4441 * 4442 * This routine is called by the SCSI layer with a SCSI host to determine 4443 * whether the scan host is finished. 4444 * 4445 * Note: there is no scan_start function as adapter initialization will have 4446 * asynchronously kicked off the link initialization. 4447 * 4448 * Return codes 4449 * 0 - SCSI host scan is not over yet. 4450 * 1 - SCSI host scan is over. 4451 **/ 4452 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4453 { 4454 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4455 struct lpfc_hba *phba = vport->phba; 4456 int stat = 0; 4457 4458 spin_lock_irq(shost->host_lock); 4459 4460 if (vport->load_flag & FC_UNLOADING) { 4461 stat = 1; 4462 goto finished; 4463 } 4464 if (time >= msecs_to_jiffies(30 * 1000)) { 4465 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4466 "0461 Scanning longer than 30 " 4467 "seconds. Continuing initialization\n"); 4468 stat = 1; 4469 goto finished; 4470 } 4471 if (time >= msecs_to_jiffies(15 * 1000) && 4472 phba->link_state <= LPFC_LINK_DOWN) { 4473 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4474 "0465 Link down longer than 15 " 4475 "seconds. Continuing initialization\n"); 4476 stat = 1; 4477 goto finished; 4478 } 4479 4480 if (vport->port_state != LPFC_VPORT_READY) 4481 goto finished; 4482 if (vport->num_disc_nodes || vport->fc_prli_sent) 4483 goto finished; 4484 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4485 goto finished; 4486 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4487 goto finished; 4488 4489 stat = 1; 4490 4491 finished: 4492 spin_unlock_irq(shost->host_lock); 4493 return stat; 4494 } 4495 4496 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4497 { 4498 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4499 struct lpfc_hba *phba = vport->phba; 4500 4501 fc_host_supported_speeds(shost) = 0; 4502 if (phba->lmt & LMT_128Gb) 4503 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4504 if (phba->lmt & LMT_64Gb) 4505 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4506 if (phba->lmt & LMT_32Gb) 4507 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4508 if (phba->lmt & LMT_16Gb) 4509 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4510 if (phba->lmt & LMT_10Gb) 4511 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4512 if (phba->lmt & LMT_8Gb) 4513 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4514 if (phba->lmt & LMT_4Gb) 4515 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4516 if (phba->lmt & LMT_2Gb) 4517 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4518 if (phba->lmt & LMT_1Gb) 4519 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4520 } 4521 4522 /** 4523 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4524 * @shost: pointer to SCSI host data structure. 4525 * 4526 * This routine initializes a given SCSI host attributes on a FC port. The 4527 * SCSI host can be either on top of a physical port or a virtual port. 4528 **/ 4529 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4530 { 4531 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4532 struct lpfc_hba *phba = vport->phba; 4533 /* 4534 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4535 */ 4536 4537 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4538 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4539 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4540 4541 memset(fc_host_supported_fc4s(shost), 0, 4542 sizeof(fc_host_supported_fc4s(shost))); 4543 fc_host_supported_fc4s(shost)[2] = 1; 4544 fc_host_supported_fc4s(shost)[7] = 1; 4545 4546 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4547 sizeof fc_host_symbolic_name(shost)); 4548 4549 lpfc_host_supported_speeds_set(shost); 4550 4551 fc_host_maxframe_size(shost) = 4552 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4553 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4554 4555 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4556 4557 /* This value is also unchanging */ 4558 memset(fc_host_active_fc4s(shost), 0, 4559 sizeof(fc_host_active_fc4s(shost))); 4560 fc_host_active_fc4s(shost)[2] = 1; 4561 fc_host_active_fc4s(shost)[7] = 1; 4562 4563 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4564 spin_lock_irq(shost->host_lock); 4565 vport->load_flag &= ~FC_LOADING; 4566 spin_unlock_irq(shost->host_lock); 4567 } 4568 4569 /** 4570 * lpfc_stop_port_s3 - Stop SLI3 device port 4571 * @phba: pointer to lpfc hba data structure. 4572 * 4573 * This routine is invoked to stop an SLI3 device port, it stops the device 4574 * from generating interrupts and stops the device driver's timers for the 4575 * device. 4576 **/ 4577 static void 4578 lpfc_stop_port_s3(struct lpfc_hba *phba) 4579 { 4580 /* Clear all interrupt enable conditions */ 4581 writel(0, phba->HCregaddr); 4582 readl(phba->HCregaddr); /* flush */ 4583 /* Clear all pending interrupts */ 4584 writel(0xffffffff, phba->HAregaddr); 4585 readl(phba->HAregaddr); /* flush */ 4586 4587 /* Reset some HBA SLI setup states */ 4588 lpfc_stop_hba_timers(phba); 4589 phba->pport->work_port_events = 0; 4590 } 4591 4592 /** 4593 * lpfc_stop_port_s4 - Stop SLI4 device port 4594 * @phba: pointer to lpfc hba data structure. 4595 * 4596 * This routine is invoked to stop an SLI4 device port, it stops the device 4597 * from generating interrupts and stops the device driver's timers for the 4598 * device. 4599 **/ 4600 static void 4601 lpfc_stop_port_s4(struct lpfc_hba *phba) 4602 { 4603 /* Reset some HBA SLI4 setup states */ 4604 lpfc_stop_hba_timers(phba); 4605 if (phba->pport) 4606 phba->pport->work_port_events = 0; 4607 phba->sli4_hba.intr_enable = 0; 4608 } 4609 4610 /** 4611 * lpfc_stop_port - Wrapper function for stopping hba port 4612 * @phba: Pointer to HBA context object. 4613 * 4614 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4615 * the API jump table function pointer from the lpfc_hba struct. 4616 **/ 4617 void 4618 lpfc_stop_port(struct lpfc_hba *phba) 4619 { 4620 phba->lpfc_stop_port(phba); 4621 4622 if (phba->wq) 4623 flush_workqueue(phba->wq); 4624 } 4625 4626 /** 4627 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 4628 * @phba: Pointer to hba for which this call is being executed. 4629 * 4630 * This routine starts the timer waiting for the FCF rediscovery to complete. 4631 **/ 4632 void 4633 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 4634 { 4635 unsigned long fcf_redisc_wait_tmo = 4636 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 4637 /* Start fcf rediscovery wait period timer */ 4638 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 4639 spin_lock_irq(&phba->hbalock); 4640 /* Allow action to new fcf asynchronous event */ 4641 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 4642 /* Mark the FCF rediscovery pending state */ 4643 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 4644 spin_unlock_irq(&phba->hbalock); 4645 } 4646 4647 /** 4648 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 4649 * @ptr: Map to lpfc_hba data structure pointer. 4650 * 4651 * This routine is invoked when waiting for FCF table rediscover has been 4652 * timed out. If new FCF record(s) has (have) been discovered during the 4653 * wait period, a new FCF event shall be added to the FCOE async event 4654 * list, and then worker thread shall be waked up for processing from the 4655 * worker thread context. 4656 **/ 4657 static void 4658 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 4659 { 4660 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 4661 4662 /* Don't send FCF rediscovery event if timer cancelled */ 4663 spin_lock_irq(&phba->hbalock); 4664 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 4665 spin_unlock_irq(&phba->hbalock); 4666 return; 4667 } 4668 /* Clear FCF rediscovery timer pending flag */ 4669 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 4670 /* FCF rediscovery event to worker thread */ 4671 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 4672 spin_unlock_irq(&phba->hbalock); 4673 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 4674 "2776 FCF rediscover quiescent timer expired\n"); 4675 /* wake up worker thread */ 4676 lpfc_worker_wake_up(phba); 4677 } 4678 4679 /** 4680 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 4681 * @phba: pointer to lpfc hba data structure. 4682 * @acqe_link: pointer to the async link completion queue entry. 4683 * 4684 * This routine is to parse the SLI4 link-attention link fault code. 4685 **/ 4686 static void 4687 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 4688 struct lpfc_acqe_link *acqe_link) 4689 { 4690 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 4691 case LPFC_ASYNC_LINK_FAULT_NONE: 4692 case LPFC_ASYNC_LINK_FAULT_LOCAL: 4693 case LPFC_ASYNC_LINK_FAULT_REMOTE: 4694 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 4695 break; 4696 default: 4697 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4698 "0398 Unknown link fault code: x%x\n", 4699 bf_get(lpfc_acqe_link_fault, acqe_link)); 4700 break; 4701 } 4702 } 4703 4704 /** 4705 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 4706 * @phba: pointer to lpfc hba data structure. 4707 * @acqe_link: pointer to the async link completion queue entry. 4708 * 4709 * This routine is to parse the SLI4 link attention type and translate it 4710 * into the base driver's link attention type coding. 4711 * 4712 * Return: Link attention type in terms of base driver's coding. 4713 **/ 4714 static uint8_t 4715 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 4716 struct lpfc_acqe_link *acqe_link) 4717 { 4718 uint8_t att_type; 4719 4720 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 4721 case LPFC_ASYNC_LINK_STATUS_DOWN: 4722 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 4723 att_type = LPFC_ATT_LINK_DOWN; 4724 break; 4725 case LPFC_ASYNC_LINK_STATUS_UP: 4726 /* Ignore physical link up events - wait for logical link up */ 4727 att_type = LPFC_ATT_RESERVED; 4728 break; 4729 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 4730 att_type = LPFC_ATT_LINK_UP; 4731 break; 4732 default: 4733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4734 "0399 Invalid link attention type: x%x\n", 4735 bf_get(lpfc_acqe_link_status, acqe_link)); 4736 att_type = LPFC_ATT_RESERVED; 4737 break; 4738 } 4739 return att_type; 4740 } 4741 4742 /** 4743 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 4744 * @phba: pointer to lpfc hba data structure. 4745 * 4746 * This routine is to get an SLI3 FC port's link speed in Mbps. 4747 * 4748 * Return: link speed in terms of Mbps. 4749 **/ 4750 uint32_t 4751 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 4752 { 4753 uint32_t link_speed; 4754 4755 if (!lpfc_is_link_up(phba)) 4756 return 0; 4757 4758 if (phba->sli_rev <= LPFC_SLI_REV3) { 4759 switch (phba->fc_linkspeed) { 4760 case LPFC_LINK_SPEED_1GHZ: 4761 link_speed = 1000; 4762 break; 4763 case LPFC_LINK_SPEED_2GHZ: 4764 link_speed = 2000; 4765 break; 4766 case LPFC_LINK_SPEED_4GHZ: 4767 link_speed = 4000; 4768 break; 4769 case LPFC_LINK_SPEED_8GHZ: 4770 link_speed = 8000; 4771 break; 4772 case LPFC_LINK_SPEED_10GHZ: 4773 link_speed = 10000; 4774 break; 4775 case LPFC_LINK_SPEED_16GHZ: 4776 link_speed = 16000; 4777 break; 4778 default: 4779 link_speed = 0; 4780 } 4781 } else { 4782 if (phba->sli4_hba.link_state.logical_speed) 4783 link_speed = 4784 phba->sli4_hba.link_state.logical_speed; 4785 else 4786 link_speed = phba->sli4_hba.link_state.speed; 4787 } 4788 return link_speed; 4789 } 4790 4791 /** 4792 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 4793 * @phba: pointer to lpfc hba data structure. 4794 * @evt_code: asynchronous event code. 4795 * @speed_code: asynchronous event link speed code. 4796 * 4797 * This routine is to parse the giving SLI4 async event link speed code into 4798 * value of Mbps for the link speed. 4799 * 4800 * Return: link speed in terms of Mbps. 4801 **/ 4802 static uint32_t 4803 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 4804 uint8_t speed_code) 4805 { 4806 uint32_t port_speed; 4807 4808 switch (evt_code) { 4809 case LPFC_TRAILER_CODE_LINK: 4810 switch (speed_code) { 4811 case LPFC_ASYNC_LINK_SPEED_ZERO: 4812 port_speed = 0; 4813 break; 4814 case LPFC_ASYNC_LINK_SPEED_10MBPS: 4815 port_speed = 10; 4816 break; 4817 case LPFC_ASYNC_LINK_SPEED_100MBPS: 4818 port_speed = 100; 4819 break; 4820 case LPFC_ASYNC_LINK_SPEED_1GBPS: 4821 port_speed = 1000; 4822 break; 4823 case LPFC_ASYNC_LINK_SPEED_10GBPS: 4824 port_speed = 10000; 4825 break; 4826 case LPFC_ASYNC_LINK_SPEED_20GBPS: 4827 port_speed = 20000; 4828 break; 4829 case LPFC_ASYNC_LINK_SPEED_25GBPS: 4830 port_speed = 25000; 4831 break; 4832 case LPFC_ASYNC_LINK_SPEED_40GBPS: 4833 port_speed = 40000; 4834 break; 4835 default: 4836 port_speed = 0; 4837 } 4838 break; 4839 case LPFC_TRAILER_CODE_FC: 4840 switch (speed_code) { 4841 case LPFC_FC_LA_SPEED_UNKNOWN: 4842 port_speed = 0; 4843 break; 4844 case LPFC_FC_LA_SPEED_1G: 4845 port_speed = 1000; 4846 break; 4847 case LPFC_FC_LA_SPEED_2G: 4848 port_speed = 2000; 4849 break; 4850 case LPFC_FC_LA_SPEED_4G: 4851 port_speed = 4000; 4852 break; 4853 case LPFC_FC_LA_SPEED_8G: 4854 port_speed = 8000; 4855 break; 4856 case LPFC_FC_LA_SPEED_10G: 4857 port_speed = 10000; 4858 break; 4859 case LPFC_FC_LA_SPEED_16G: 4860 port_speed = 16000; 4861 break; 4862 case LPFC_FC_LA_SPEED_32G: 4863 port_speed = 32000; 4864 break; 4865 case LPFC_FC_LA_SPEED_64G: 4866 port_speed = 64000; 4867 break; 4868 case LPFC_FC_LA_SPEED_128G: 4869 port_speed = 128000; 4870 break; 4871 default: 4872 port_speed = 0; 4873 } 4874 break; 4875 default: 4876 port_speed = 0; 4877 } 4878 return port_speed; 4879 } 4880 4881 /** 4882 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 4883 * @phba: pointer to lpfc hba data structure. 4884 * @acqe_link: pointer to the async link completion queue entry. 4885 * 4886 * This routine is to handle the SLI4 asynchronous FCoE link event. 4887 **/ 4888 static void 4889 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 4890 struct lpfc_acqe_link *acqe_link) 4891 { 4892 struct lpfc_dmabuf *mp; 4893 LPFC_MBOXQ_t *pmb; 4894 MAILBOX_t *mb; 4895 struct lpfc_mbx_read_top *la; 4896 uint8_t att_type; 4897 int rc; 4898 4899 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 4900 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 4901 return; 4902 phba->fcoe_eventtag = acqe_link->event_tag; 4903 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4904 if (!pmb) { 4905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4906 "0395 The mboxq allocation failed\n"); 4907 return; 4908 } 4909 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4910 if (!mp) { 4911 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4912 "0396 The lpfc_dmabuf allocation failed\n"); 4913 goto out_free_pmb; 4914 } 4915 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 4916 if (!mp->virt) { 4917 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4918 "0397 The mbuf allocation failed\n"); 4919 goto out_free_dmabuf; 4920 } 4921 4922 /* Cleanup any outstanding ELS commands */ 4923 lpfc_els_flush_all_cmd(phba); 4924 4925 /* Block ELS IOCBs until we have done process link event */ 4926 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 4927 4928 /* Update link event statistics */ 4929 phba->sli.slistat.link_event++; 4930 4931 /* Create lpfc_handle_latt mailbox command from link ACQE */ 4932 lpfc_read_topology(phba, pmb, mp); 4933 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 4934 pmb->vport = phba->pport; 4935 4936 /* Keep the link status for extra SLI4 state machine reference */ 4937 phba->sli4_hba.link_state.speed = 4938 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 4939 bf_get(lpfc_acqe_link_speed, acqe_link)); 4940 phba->sli4_hba.link_state.duplex = 4941 bf_get(lpfc_acqe_link_duplex, acqe_link); 4942 phba->sli4_hba.link_state.status = 4943 bf_get(lpfc_acqe_link_status, acqe_link); 4944 phba->sli4_hba.link_state.type = 4945 bf_get(lpfc_acqe_link_type, acqe_link); 4946 phba->sli4_hba.link_state.number = 4947 bf_get(lpfc_acqe_link_number, acqe_link); 4948 phba->sli4_hba.link_state.fault = 4949 bf_get(lpfc_acqe_link_fault, acqe_link); 4950 phba->sli4_hba.link_state.logical_speed = 4951 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 4952 4953 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4954 "2900 Async FC/FCoE Link event - Speed:%dGBit " 4955 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 4956 "Logical speed:%dMbps Fault:%d\n", 4957 phba->sli4_hba.link_state.speed, 4958 phba->sli4_hba.link_state.topology, 4959 phba->sli4_hba.link_state.status, 4960 phba->sli4_hba.link_state.type, 4961 phba->sli4_hba.link_state.number, 4962 phba->sli4_hba.link_state.logical_speed, 4963 phba->sli4_hba.link_state.fault); 4964 /* 4965 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 4966 * topology info. Note: Optional for non FC-AL ports. 4967 */ 4968 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 4969 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4970 if (rc == MBX_NOT_FINISHED) 4971 goto out_free_dmabuf; 4972 return; 4973 } 4974 /* 4975 * For FCoE Mode: fill in all the topology information we need and call 4976 * the READ_TOPOLOGY completion routine to continue without actually 4977 * sending the READ_TOPOLOGY mailbox command to the port. 4978 */ 4979 /* Initialize completion status */ 4980 mb = &pmb->u.mb; 4981 mb->mbxStatus = MBX_SUCCESS; 4982 4983 /* Parse port fault information field */ 4984 lpfc_sli4_parse_latt_fault(phba, acqe_link); 4985 4986 /* Parse and translate link attention fields */ 4987 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 4988 la->eventTag = acqe_link->event_tag; 4989 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 4990 bf_set(lpfc_mbx_read_top_link_spd, la, 4991 (bf_get(lpfc_acqe_link_speed, acqe_link))); 4992 4993 /* Fake the the following irrelvant fields */ 4994 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 4995 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 4996 bf_set(lpfc_mbx_read_top_il, la, 0); 4997 bf_set(lpfc_mbx_read_top_pb, la, 0); 4998 bf_set(lpfc_mbx_read_top_fa, la, 0); 4999 bf_set(lpfc_mbx_read_top_mm, la, 0); 5000 5001 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5002 lpfc_mbx_cmpl_read_topology(phba, pmb); 5003 5004 return; 5005 5006 out_free_dmabuf: 5007 kfree(mp); 5008 out_free_pmb: 5009 mempool_free(pmb, phba->mbox_mem_pool); 5010 } 5011 5012 /** 5013 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5014 * topology. 5015 * @phba: pointer to lpfc hba data structure. 5016 * @evt_code: asynchronous event code. 5017 * @speed_code: asynchronous event link speed code. 5018 * 5019 * This routine is to parse the giving SLI4 async event link speed code into 5020 * value of Read topology link speed. 5021 * 5022 * Return: link speed in terms of Read topology. 5023 **/ 5024 static uint8_t 5025 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5026 { 5027 uint8_t port_speed; 5028 5029 switch (speed_code) { 5030 case LPFC_FC_LA_SPEED_1G: 5031 port_speed = LPFC_LINK_SPEED_1GHZ; 5032 break; 5033 case LPFC_FC_LA_SPEED_2G: 5034 port_speed = LPFC_LINK_SPEED_2GHZ; 5035 break; 5036 case LPFC_FC_LA_SPEED_4G: 5037 port_speed = LPFC_LINK_SPEED_4GHZ; 5038 break; 5039 case LPFC_FC_LA_SPEED_8G: 5040 port_speed = LPFC_LINK_SPEED_8GHZ; 5041 break; 5042 case LPFC_FC_LA_SPEED_16G: 5043 port_speed = LPFC_LINK_SPEED_16GHZ; 5044 break; 5045 case LPFC_FC_LA_SPEED_32G: 5046 port_speed = LPFC_LINK_SPEED_32GHZ; 5047 break; 5048 case LPFC_FC_LA_SPEED_64G: 5049 port_speed = LPFC_LINK_SPEED_64GHZ; 5050 break; 5051 case LPFC_FC_LA_SPEED_128G: 5052 port_speed = LPFC_LINK_SPEED_128GHZ; 5053 break; 5054 case LPFC_FC_LA_SPEED_256G: 5055 port_speed = LPFC_LINK_SPEED_256GHZ; 5056 break; 5057 default: 5058 port_speed = 0; 5059 break; 5060 } 5061 5062 return port_speed; 5063 } 5064 5065 #define trunk_link_status(__idx)\ 5066 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5067 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 5068 "Link up" : "Link down") : "NA" 5069 /* Did port __idx reported an error */ 5070 #define trunk_port_fault(__idx)\ 5071 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5072 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 5073 5074 static void 5075 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 5076 struct lpfc_acqe_fc_la *acqe_fc) 5077 { 5078 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 5079 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 5080 5081 phba->sli4_hba.link_state.speed = 5082 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5083 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5084 5085 phba->sli4_hba.link_state.logical_speed = 5086 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5087 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 5088 phba->fc_linkspeed = 5089 lpfc_async_link_speed_to_read_top( 5090 phba, 5091 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5092 5093 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 5094 phba->trunk_link.link0.state = 5095 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 5096 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5097 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 5098 } 5099 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 5100 phba->trunk_link.link1.state = 5101 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 5102 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5103 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 5104 } 5105 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 5106 phba->trunk_link.link2.state = 5107 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 5108 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5109 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 5110 } 5111 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 5112 phba->trunk_link.link3.state = 5113 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 5114 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5115 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 5116 } 5117 5118 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5119 "2910 Async FC Trunking Event - Speed:%d\n" 5120 "\tLogical speed:%d " 5121 "port0: %s port1: %s port2: %s port3: %s\n", 5122 phba->sli4_hba.link_state.speed, 5123 phba->sli4_hba.link_state.logical_speed, 5124 trunk_link_status(0), trunk_link_status(1), 5125 trunk_link_status(2), trunk_link_status(3)); 5126 5127 if (port_fault) 5128 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5129 "3202 trunk error:0x%x (%s) seen on port0:%s " 5130 /* 5131 * SLI-4: We have only 0xA error codes 5132 * defined as of now. print an appropriate 5133 * message in case driver needs to be updated. 5134 */ 5135 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 5136 "UNDEFINED. update driver." : trunk_errmsg[err], 5137 trunk_port_fault(0), trunk_port_fault(1), 5138 trunk_port_fault(2), trunk_port_fault(3)); 5139 } 5140 5141 5142 /** 5143 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 5144 * @phba: pointer to lpfc hba data structure. 5145 * @acqe_fc: pointer to the async fc completion queue entry. 5146 * 5147 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 5148 * that the event was received and then issue a read_topology mailbox command so 5149 * that the rest of the driver will treat it the same as SLI3. 5150 **/ 5151 static void 5152 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 5153 { 5154 struct lpfc_dmabuf *mp; 5155 LPFC_MBOXQ_t *pmb; 5156 MAILBOX_t *mb; 5157 struct lpfc_mbx_read_top *la; 5158 int rc; 5159 5160 if (bf_get(lpfc_trailer_type, acqe_fc) != 5161 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 5162 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5163 "2895 Non FC link Event detected.(%d)\n", 5164 bf_get(lpfc_trailer_type, acqe_fc)); 5165 return; 5166 } 5167 5168 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5169 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 5170 lpfc_update_trunk_link_status(phba, acqe_fc); 5171 return; 5172 } 5173 5174 /* Keep the link status for extra SLI4 state machine reference */ 5175 phba->sli4_hba.link_state.speed = 5176 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5177 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5178 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 5179 phba->sli4_hba.link_state.topology = 5180 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 5181 phba->sli4_hba.link_state.status = 5182 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 5183 phba->sli4_hba.link_state.type = 5184 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 5185 phba->sli4_hba.link_state.number = 5186 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 5187 phba->sli4_hba.link_state.fault = 5188 bf_get(lpfc_acqe_link_fault, acqe_fc); 5189 5190 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5191 LPFC_FC_LA_TYPE_LINK_DOWN) 5192 phba->sli4_hba.link_state.logical_speed = 0; 5193 else if (!phba->sli4_hba.conf_trunk) 5194 phba->sli4_hba.link_state.logical_speed = 5195 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5196 5197 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5198 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 5199 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 5200 "%dMbps Fault:%d\n", 5201 phba->sli4_hba.link_state.speed, 5202 phba->sli4_hba.link_state.topology, 5203 phba->sli4_hba.link_state.status, 5204 phba->sli4_hba.link_state.type, 5205 phba->sli4_hba.link_state.number, 5206 phba->sli4_hba.link_state.logical_speed, 5207 phba->sli4_hba.link_state.fault); 5208 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5209 if (!pmb) { 5210 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5211 "2897 The mboxq allocation failed\n"); 5212 return; 5213 } 5214 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5215 if (!mp) { 5216 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5217 "2898 The lpfc_dmabuf allocation failed\n"); 5218 goto out_free_pmb; 5219 } 5220 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5221 if (!mp->virt) { 5222 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5223 "2899 The mbuf allocation failed\n"); 5224 goto out_free_dmabuf; 5225 } 5226 5227 /* Cleanup any outstanding ELS commands */ 5228 lpfc_els_flush_all_cmd(phba); 5229 5230 /* Block ELS IOCBs until we have done process link event */ 5231 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5232 5233 /* Update link event statistics */ 5234 phba->sli.slistat.link_event++; 5235 5236 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5237 lpfc_read_topology(phba, pmb, mp); 5238 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5239 pmb->vport = phba->pport; 5240 5241 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 5242 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 5243 5244 switch (phba->sli4_hba.link_state.status) { 5245 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 5246 phba->link_flag |= LS_MDS_LINK_DOWN; 5247 break; 5248 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 5249 phba->link_flag |= LS_MDS_LOOPBACK; 5250 break; 5251 default: 5252 break; 5253 } 5254 5255 /* Initialize completion status */ 5256 mb = &pmb->u.mb; 5257 mb->mbxStatus = MBX_SUCCESS; 5258 5259 /* Parse port fault information field */ 5260 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 5261 5262 /* Parse and translate link attention fields */ 5263 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 5264 la->eventTag = acqe_fc->event_tag; 5265 5266 if (phba->sli4_hba.link_state.status == 5267 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 5268 bf_set(lpfc_mbx_read_top_att_type, la, 5269 LPFC_FC_LA_TYPE_UNEXP_WWPN); 5270 } else { 5271 bf_set(lpfc_mbx_read_top_att_type, la, 5272 LPFC_FC_LA_TYPE_LINK_DOWN); 5273 } 5274 /* Invoke the mailbox command callback function */ 5275 lpfc_mbx_cmpl_read_topology(phba, pmb); 5276 5277 return; 5278 } 5279 5280 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5281 if (rc == MBX_NOT_FINISHED) 5282 goto out_free_dmabuf; 5283 return; 5284 5285 out_free_dmabuf: 5286 kfree(mp); 5287 out_free_pmb: 5288 mempool_free(pmb, phba->mbox_mem_pool); 5289 } 5290 5291 /** 5292 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 5293 * @phba: pointer to lpfc hba data structure. 5294 * @acqe_fc: pointer to the async SLI completion queue entry. 5295 * 5296 * This routine is to handle the SLI4 asynchronous SLI events. 5297 **/ 5298 static void 5299 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 5300 { 5301 char port_name; 5302 char message[128]; 5303 uint8_t status; 5304 uint8_t evt_type; 5305 uint8_t operational = 0; 5306 struct temp_event temp_event_data; 5307 struct lpfc_acqe_misconfigured_event *misconfigured; 5308 struct Scsi_Host *shost; 5309 struct lpfc_vport **vports; 5310 int rc, i; 5311 5312 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 5313 5314 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5315 "2901 Async SLI event - Type:%d, Event Data: x%08x " 5316 "x%08x x%08x x%08x\n", evt_type, 5317 acqe_sli->event_data1, acqe_sli->event_data2, 5318 acqe_sli->reserved, acqe_sli->trailer); 5319 5320 port_name = phba->Port[0]; 5321 if (port_name == 0x00) 5322 port_name = '?'; /* get port name is empty */ 5323 5324 switch (evt_type) { 5325 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 5326 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5327 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 5328 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5329 5330 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5331 "3190 Over Temperature:%d Celsius- Port Name %c\n", 5332 acqe_sli->event_data1, port_name); 5333 5334 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 5335 shost = lpfc_shost_from_vport(phba->pport); 5336 fc_host_post_vendor_event(shost, fc_get_event_number(), 5337 sizeof(temp_event_data), 5338 (char *)&temp_event_data, 5339 SCSI_NL_VID_TYPE_PCI 5340 | PCI_VENDOR_ID_EMULEX); 5341 break; 5342 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 5343 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5344 temp_event_data.event_code = LPFC_NORMAL_TEMP; 5345 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5346 5347 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5348 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 5349 acqe_sli->event_data1, port_name); 5350 5351 shost = lpfc_shost_from_vport(phba->pport); 5352 fc_host_post_vendor_event(shost, fc_get_event_number(), 5353 sizeof(temp_event_data), 5354 (char *)&temp_event_data, 5355 SCSI_NL_VID_TYPE_PCI 5356 | PCI_VENDOR_ID_EMULEX); 5357 break; 5358 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 5359 misconfigured = (struct lpfc_acqe_misconfigured_event *) 5360 &acqe_sli->event_data1; 5361 5362 /* fetch the status for this port */ 5363 switch (phba->sli4_hba.lnk_info.lnk_no) { 5364 case LPFC_LINK_NUMBER_0: 5365 status = bf_get(lpfc_sli_misconfigured_port0_state, 5366 &misconfigured->theEvent); 5367 operational = bf_get(lpfc_sli_misconfigured_port0_op, 5368 &misconfigured->theEvent); 5369 break; 5370 case LPFC_LINK_NUMBER_1: 5371 status = bf_get(lpfc_sli_misconfigured_port1_state, 5372 &misconfigured->theEvent); 5373 operational = bf_get(lpfc_sli_misconfigured_port1_op, 5374 &misconfigured->theEvent); 5375 break; 5376 case LPFC_LINK_NUMBER_2: 5377 status = bf_get(lpfc_sli_misconfigured_port2_state, 5378 &misconfigured->theEvent); 5379 operational = bf_get(lpfc_sli_misconfigured_port2_op, 5380 &misconfigured->theEvent); 5381 break; 5382 case LPFC_LINK_NUMBER_3: 5383 status = bf_get(lpfc_sli_misconfigured_port3_state, 5384 &misconfigured->theEvent); 5385 operational = bf_get(lpfc_sli_misconfigured_port3_op, 5386 &misconfigured->theEvent); 5387 break; 5388 default: 5389 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5390 "3296 " 5391 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 5392 "event: Invalid link %d", 5393 phba->sli4_hba.lnk_info.lnk_no); 5394 return; 5395 } 5396 5397 /* Skip if optic state unchanged */ 5398 if (phba->sli4_hba.lnk_info.optic_state == status) 5399 return; 5400 5401 switch (status) { 5402 case LPFC_SLI_EVENT_STATUS_VALID: 5403 sprintf(message, "Physical Link is functional"); 5404 break; 5405 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 5406 sprintf(message, "Optics faulted/incorrectly " 5407 "installed/not installed - Reseat optics, " 5408 "if issue not resolved, replace."); 5409 break; 5410 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 5411 sprintf(message, 5412 "Optics of two types installed - Remove one " 5413 "optic or install matching pair of optics."); 5414 break; 5415 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 5416 sprintf(message, "Incompatible optics - Replace with " 5417 "compatible optics for card to function."); 5418 break; 5419 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 5420 sprintf(message, "Unqualified optics - Replace with " 5421 "Avago optics for Warranty and Technical " 5422 "Support - Link is%s operational", 5423 (operational) ? " not" : ""); 5424 break; 5425 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 5426 sprintf(message, "Uncertified optics - Replace with " 5427 "Avago-certified optics to enable link " 5428 "operation - Link is%s operational", 5429 (operational) ? " not" : ""); 5430 break; 5431 default: 5432 /* firmware is reporting a status we don't know about */ 5433 sprintf(message, "Unknown event status x%02x", status); 5434 break; 5435 } 5436 5437 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 5438 rc = lpfc_sli4_read_config(phba); 5439 if (rc) { 5440 phba->lmt = 0; 5441 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5442 "3194 Unable to retrieve supported " 5443 "speeds, rc = 0x%x\n", rc); 5444 } 5445 vports = lpfc_create_vport_work_array(phba); 5446 if (vports != NULL) { 5447 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5448 i++) { 5449 shost = lpfc_shost_from_vport(vports[i]); 5450 lpfc_host_supported_speeds_set(shost); 5451 } 5452 } 5453 lpfc_destroy_vport_work_array(phba, vports); 5454 5455 phba->sli4_hba.lnk_info.optic_state = status; 5456 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5457 "3176 Port Name %c %s\n", port_name, message); 5458 break; 5459 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 5460 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5461 "3192 Remote DPort Test Initiated - " 5462 "Event Data1:x%08x Event Data2: x%08x\n", 5463 acqe_sli->event_data1, acqe_sli->event_data2); 5464 break; 5465 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 5466 /* Misconfigured WWN. Reports that the SLI Port is configured 5467 * to use FA-WWN, but the attached device doesn’t support it. 5468 * No driver action is required. 5469 * Event Data1 - N.A, Event Data2 - N.A 5470 */ 5471 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 5472 "2699 Misconfigured FA-WWN - Attached device does " 5473 "not support FA-WWN\n"); 5474 break; 5475 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 5476 /* EEPROM failure. No driver action is required */ 5477 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5478 "2518 EEPROM failure - " 5479 "Event Data1: x%08x Event Data2: x%08x\n", 5480 acqe_sli->event_data1, acqe_sli->event_data2); 5481 break; 5482 default: 5483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5484 "3193 Unrecognized SLI event, type: 0x%x", 5485 evt_type); 5486 break; 5487 } 5488 } 5489 5490 /** 5491 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 5492 * @vport: pointer to vport data structure. 5493 * 5494 * This routine is to perform Clear Virtual Link (CVL) on a vport in 5495 * response to a CVL event. 5496 * 5497 * Return the pointer to the ndlp with the vport if successful, otherwise 5498 * return NULL. 5499 **/ 5500 static struct lpfc_nodelist * 5501 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 5502 { 5503 struct lpfc_nodelist *ndlp; 5504 struct Scsi_Host *shost; 5505 struct lpfc_hba *phba; 5506 5507 if (!vport) 5508 return NULL; 5509 phba = vport->phba; 5510 if (!phba) 5511 return NULL; 5512 ndlp = lpfc_findnode_did(vport, Fabric_DID); 5513 if (!ndlp) { 5514 /* Cannot find existing Fabric ndlp, so allocate a new one */ 5515 ndlp = lpfc_nlp_init(vport, Fabric_DID); 5516 if (!ndlp) 5517 return 0; 5518 /* Set the node type */ 5519 ndlp->nlp_type |= NLP_FABRIC; 5520 /* Put ndlp onto node list */ 5521 lpfc_enqueue_node(vport, ndlp); 5522 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 5523 /* re-setup ndlp without removing from node list */ 5524 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 5525 if (!ndlp) 5526 return 0; 5527 } 5528 if ((phba->pport->port_state < LPFC_FLOGI) && 5529 (phba->pport->port_state != LPFC_VPORT_FAILED)) 5530 return NULL; 5531 /* If virtual link is not yet instantiated ignore CVL */ 5532 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 5533 && (vport->port_state != LPFC_VPORT_FAILED)) 5534 return NULL; 5535 shost = lpfc_shost_from_vport(vport); 5536 if (!shost) 5537 return NULL; 5538 lpfc_linkdown_port(vport); 5539 lpfc_cleanup_pending_mbox(vport); 5540 spin_lock_irq(shost->host_lock); 5541 vport->fc_flag |= FC_VPORT_CVL_RCVD; 5542 spin_unlock_irq(shost->host_lock); 5543 5544 return ndlp; 5545 } 5546 5547 /** 5548 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 5549 * @vport: pointer to lpfc hba data structure. 5550 * 5551 * This routine is to perform Clear Virtual Link (CVL) on all vports in 5552 * response to a FCF dead event. 5553 **/ 5554 static void 5555 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 5556 { 5557 struct lpfc_vport **vports; 5558 int i; 5559 5560 vports = lpfc_create_vport_work_array(phba); 5561 if (vports) 5562 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 5563 lpfc_sli4_perform_vport_cvl(vports[i]); 5564 lpfc_destroy_vport_work_array(phba, vports); 5565 } 5566 5567 /** 5568 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 5569 * @phba: pointer to lpfc hba data structure. 5570 * @acqe_link: pointer to the async fcoe completion queue entry. 5571 * 5572 * This routine is to handle the SLI4 asynchronous fcoe event. 5573 **/ 5574 static void 5575 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 5576 struct lpfc_acqe_fip *acqe_fip) 5577 { 5578 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 5579 int rc; 5580 struct lpfc_vport *vport; 5581 struct lpfc_nodelist *ndlp; 5582 struct Scsi_Host *shost; 5583 int active_vlink_present; 5584 struct lpfc_vport **vports; 5585 int i; 5586 5587 phba->fc_eventTag = acqe_fip->event_tag; 5588 phba->fcoe_eventtag = acqe_fip->event_tag; 5589 switch (event_type) { 5590 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 5591 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 5592 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 5593 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5594 LOG_DISCOVERY, 5595 "2546 New FCF event, evt_tag:x%x, " 5596 "index:x%x\n", 5597 acqe_fip->event_tag, 5598 acqe_fip->index); 5599 else 5600 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 5601 LOG_DISCOVERY, 5602 "2788 FCF param modified event, " 5603 "evt_tag:x%x, index:x%x\n", 5604 acqe_fip->event_tag, 5605 acqe_fip->index); 5606 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5607 /* 5608 * During period of FCF discovery, read the FCF 5609 * table record indexed by the event to update 5610 * FCF roundrobin failover eligible FCF bmask. 5611 */ 5612 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5613 LOG_DISCOVERY, 5614 "2779 Read FCF (x%x) for updating " 5615 "roundrobin FCF failover bmask\n", 5616 acqe_fip->index); 5617 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 5618 } 5619 5620 /* If the FCF discovery is in progress, do nothing. */ 5621 spin_lock_irq(&phba->hbalock); 5622 if (phba->hba_flag & FCF_TS_INPROG) { 5623 spin_unlock_irq(&phba->hbalock); 5624 break; 5625 } 5626 /* If fast FCF failover rescan event is pending, do nothing */ 5627 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 5628 spin_unlock_irq(&phba->hbalock); 5629 break; 5630 } 5631 5632 /* If the FCF has been in discovered state, do nothing. */ 5633 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 5634 spin_unlock_irq(&phba->hbalock); 5635 break; 5636 } 5637 spin_unlock_irq(&phba->hbalock); 5638 5639 /* Otherwise, scan the entire FCF table and re-discover SAN */ 5640 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5641 "2770 Start FCF table scan per async FCF " 5642 "event, evt_tag:x%x, index:x%x\n", 5643 acqe_fip->event_tag, acqe_fip->index); 5644 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 5645 LPFC_FCOE_FCF_GET_FIRST); 5646 if (rc) 5647 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5648 "2547 Issue FCF scan read FCF mailbox " 5649 "command failed (x%x)\n", rc); 5650 break; 5651 5652 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 5653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5654 "2548 FCF Table full count 0x%x tag 0x%x\n", 5655 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 5656 acqe_fip->event_tag); 5657 break; 5658 5659 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 5660 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5661 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5662 "2549 FCF (x%x) disconnected from network, " 5663 "tag:x%x\n", acqe_fip->index, acqe_fip->event_tag); 5664 /* 5665 * If we are in the middle of FCF failover process, clear 5666 * the corresponding FCF bit in the roundrobin bitmap. 5667 */ 5668 spin_lock_irq(&phba->hbalock); 5669 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 5670 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 5671 spin_unlock_irq(&phba->hbalock); 5672 /* Update FLOGI FCF failover eligible FCF bmask */ 5673 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 5674 break; 5675 } 5676 spin_unlock_irq(&phba->hbalock); 5677 5678 /* If the event is not for currently used fcf do nothing */ 5679 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 5680 break; 5681 5682 /* 5683 * Otherwise, request the port to rediscover the entire FCF 5684 * table for a fast recovery from case that the current FCF 5685 * is no longer valid as we are not in the middle of FCF 5686 * failover process already. 5687 */ 5688 spin_lock_irq(&phba->hbalock); 5689 /* Mark the fast failover process in progress */ 5690 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 5691 spin_unlock_irq(&phba->hbalock); 5692 5693 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5694 "2771 Start FCF fast failover process due to " 5695 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 5696 "\n", acqe_fip->event_tag, acqe_fip->index); 5697 rc = lpfc_sli4_redisc_fcf_table(phba); 5698 if (rc) { 5699 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5700 LOG_DISCOVERY, 5701 "2772 Issue FCF rediscover mailbox " 5702 "command failed, fail through to FCF " 5703 "dead event\n"); 5704 spin_lock_irq(&phba->hbalock); 5705 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 5706 spin_unlock_irq(&phba->hbalock); 5707 /* 5708 * Last resort will fail over by treating this 5709 * as a link down to FCF registration. 5710 */ 5711 lpfc_sli4_fcf_dead_failthrough(phba); 5712 } else { 5713 /* Reset FCF roundrobin bmask for new discovery */ 5714 lpfc_sli4_clear_fcf_rr_bmask(phba); 5715 /* 5716 * Handling fast FCF failover to a DEAD FCF event is 5717 * considered equalivant to receiving CVL to all vports. 5718 */ 5719 lpfc_sli4_perform_all_vport_cvl(phba); 5720 } 5721 break; 5722 case LPFC_FIP_EVENT_TYPE_CVL: 5723 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5724 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5725 "2718 Clear Virtual Link Received for VPI 0x%x" 5726 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 5727 5728 vport = lpfc_find_vport_by_vpid(phba, 5729 acqe_fip->index); 5730 ndlp = lpfc_sli4_perform_vport_cvl(vport); 5731 if (!ndlp) 5732 break; 5733 active_vlink_present = 0; 5734 5735 vports = lpfc_create_vport_work_array(phba); 5736 if (vports) { 5737 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5738 i++) { 5739 if ((!(vports[i]->fc_flag & 5740 FC_VPORT_CVL_RCVD)) && 5741 (vports[i]->port_state > LPFC_FDISC)) { 5742 active_vlink_present = 1; 5743 break; 5744 } 5745 } 5746 lpfc_destroy_vport_work_array(phba, vports); 5747 } 5748 5749 /* 5750 * Don't re-instantiate if vport is marked for deletion. 5751 * If we are here first then vport_delete is going to wait 5752 * for discovery to complete. 5753 */ 5754 if (!(vport->load_flag & FC_UNLOADING) && 5755 active_vlink_present) { 5756 /* 5757 * If there are other active VLinks present, 5758 * re-instantiate the Vlink using FDISC. 5759 */ 5760 mod_timer(&ndlp->nlp_delayfunc, 5761 jiffies + msecs_to_jiffies(1000)); 5762 shost = lpfc_shost_from_vport(vport); 5763 spin_lock_irq(shost->host_lock); 5764 ndlp->nlp_flag |= NLP_DELAY_TMO; 5765 spin_unlock_irq(shost->host_lock); 5766 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 5767 vport->port_state = LPFC_FDISC; 5768 } else { 5769 /* 5770 * Otherwise, we request port to rediscover 5771 * the entire FCF table for a fast recovery 5772 * from possible case that the current FCF 5773 * is no longer valid if we are not already 5774 * in the FCF failover process. 5775 */ 5776 spin_lock_irq(&phba->hbalock); 5777 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5778 spin_unlock_irq(&phba->hbalock); 5779 break; 5780 } 5781 /* Mark the fast failover process in progress */ 5782 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 5783 spin_unlock_irq(&phba->hbalock); 5784 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5785 LOG_DISCOVERY, 5786 "2773 Start FCF failover per CVL, " 5787 "evt_tag:x%x\n", acqe_fip->event_tag); 5788 rc = lpfc_sli4_redisc_fcf_table(phba); 5789 if (rc) { 5790 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5791 LOG_DISCOVERY, 5792 "2774 Issue FCF rediscover " 5793 "mailbox command failed, " 5794 "through to CVL event\n"); 5795 spin_lock_irq(&phba->hbalock); 5796 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 5797 spin_unlock_irq(&phba->hbalock); 5798 /* 5799 * Last resort will be re-try on the 5800 * the current registered FCF entry. 5801 */ 5802 lpfc_retry_pport_discovery(phba); 5803 } else 5804 /* 5805 * Reset FCF roundrobin bmask for new 5806 * discovery. 5807 */ 5808 lpfc_sli4_clear_fcf_rr_bmask(phba); 5809 } 5810 break; 5811 default: 5812 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5813 "0288 Unknown FCoE event type 0x%x event tag " 5814 "0x%x\n", event_type, acqe_fip->event_tag); 5815 break; 5816 } 5817 } 5818 5819 /** 5820 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 5821 * @phba: pointer to lpfc hba data structure. 5822 * @acqe_link: pointer to the async dcbx completion queue entry. 5823 * 5824 * This routine is to handle the SLI4 asynchronous dcbx event. 5825 **/ 5826 static void 5827 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 5828 struct lpfc_acqe_dcbx *acqe_dcbx) 5829 { 5830 phba->fc_eventTag = acqe_dcbx->event_tag; 5831 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5832 "0290 The SLI4 DCBX asynchronous event is not " 5833 "handled yet\n"); 5834 } 5835 5836 /** 5837 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 5838 * @phba: pointer to lpfc hba data structure. 5839 * @acqe_link: pointer to the async grp5 completion queue entry. 5840 * 5841 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 5842 * is an asynchronous notified of a logical link speed change. The Port 5843 * reports the logical link speed in units of 10Mbps. 5844 **/ 5845 static void 5846 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 5847 struct lpfc_acqe_grp5 *acqe_grp5) 5848 { 5849 uint16_t prev_ll_spd; 5850 5851 phba->fc_eventTag = acqe_grp5->event_tag; 5852 phba->fcoe_eventtag = acqe_grp5->event_tag; 5853 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 5854 phba->sli4_hba.link_state.logical_speed = 5855 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 5856 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5857 "2789 GRP5 Async Event: Updating logical link speed " 5858 "from %dMbps to %dMbps\n", prev_ll_spd, 5859 phba->sli4_hba.link_state.logical_speed); 5860 } 5861 5862 /** 5863 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 5864 * @phba: pointer to lpfc hba data structure. 5865 * 5866 * This routine is invoked by the worker thread to process all the pending 5867 * SLI4 asynchronous events. 5868 **/ 5869 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 5870 { 5871 struct lpfc_cq_event *cq_event; 5872 5873 /* First, declare the async event has been handled */ 5874 spin_lock_irq(&phba->hbalock); 5875 phba->hba_flag &= ~ASYNC_EVENT; 5876 spin_unlock_irq(&phba->hbalock); 5877 /* Now, handle all the async events */ 5878 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 5879 /* Get the first event from the head of the event queue */ 5880 spin_lock_irq(&phba->hbalock); 5881 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 5882 cq_event, struct lpfc_cq_event, list); 5883 spin_unlock_irq(&phba->hbalock); 5884 /* Process the asynchronous event */ 5885 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 5886 case LPFC_TRAILER_CODE_LINK: 5887 lpfc_sli4_async_link_evt(phba, 5888 &cq_event->cqe.acqe_link); 5889 break; 5890 case LPFC_TRAILER_CODE_FCOE: 5891 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 5892 break; 5893 case LPFC_TRAILER_CODE_DCBX: 5894 lpfc_sli4_async_dcbx_evt(phba, 5895 &cq_event->cqe.acqe_dcbx); 5896 break; 5897 case LPFC_TRAILER_CODE_GRP5: 5898 lpfc_sli4_async_grp5_evt(phba, 5899 &cq_event->cqe.acqe_grp5); 5900 break; 5901 case LPFC_TRAILER_CODE_FC: 5902 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 5903 break; 5904 case LPFC_TRAILER_CODE_SLI: 5905 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 5906 break; 5907 default: 5908 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5909 "1804 Invalid asynchronous event code: " 5910 "x%x\n", bf_get(lpfc_trailer_code, 5911 &cq_event->cqe.mcqe_cmpl)); 5912 break; 5913 } 5914 /* Free the completion event processed to the free pool */ 5915 lpfc_sli4_cq_event_release(phba, cq_event); 5916 } 5917 } 5918 5919 /** 5920 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 5921 * @phba: pointer to lpfc hba data structure. 5922 * 5923 * This routine is invoked by the worker thread to process FCF table 5924 * rediscovery pending completion event. 5925 **/ 5926 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 5927 { 5928 int rc; 5929 5930 spin_lock_irq(&phba->hbalock); 5931 /* Clear FCF rediscovery timeout event */ 5932 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 5933 /* Clear driver fast failover FCF record flag */ 5934 phba->fcf.failover_rec.flag = 0; 5935 /* Set state for FCF fast failover */ 5936 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 5937 spin_unlock_irq(&phba->hbalock); 5938 5939 /* Scan FCF table from the first entry to re-discover SAN */ 5940 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5941 "2777 Start post-quiescent FCF table scan\n"); 5942 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 5943 if (rc) 5944 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_DISCOVERY, 5945 "2747 Issue FCF scan read FCF mailbox " 5946 "command failed 0x%x\n", rc); 5947 } 5948 5949 /** 5950 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 5951 * @phba: pointer to lpfc hba data structure. 5952 * @dev_grp: The HBA PCI-Device group number. 5953 * 5954 * This routine is invoked to set up the per HBA PCI-Device group function 5955 * API jump table entries. 5956 * 5957 * Return: 0 if success, otherwise -ENODEV 5958 **/ 5959 int 5960 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 5961 { 5962 int rc; 5963 5964 /* Set up lpfc PCI-device group */ 5965 phba->pci_dev_grp = dev_grp; 5966 5967 /* The LPFC_PCI_DEV_OC uses SLI4 */ 5968 if (dev_grp == LPFC_PCI_DEV_OC) 5969 phba->sli_rev = LPFC_SLI_REV4; 5970 5971 /* Set up device INIT API function jump table */ 5972 rc = lpfc_init_api_table_setup(phba, dev_grp); 5973 if (rc) 5974 return -ENODEV; 5975 /* Set up SCSI API function jump table */ 5976 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 5977 if (rc) 5978 return -ENODEV; 5979 /* Set up SLI API function jump table */ 5980 rc = lpfc_sli_api_table_setup(phba, dev_grp); 5981 if (rc) 5982 return -ENODEV; 5983 /* Set up MBOX API function jump table */ 5984 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 5985 if (rc) 5986 return -ENODEV; 5987 5988 return 0; 5989 } 5990 5991 /** 5992 * lpfc_log_intr_mode - Log the active interrupt mode 5993 * @phba: pointer to lpfc hba data structure. 5994 * @intr_mode: active interrupt mode adopted. 5995 * 5996 * This routine it invoked to log the currently used active interrupt mode 5997 * to the device. 5998 **/ 5999 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 6000 { 6001 switch (intr_mode) { 6002 case 0: 6003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6004 "0470 Enable INTx interrupt mode.\n"); 6005 break; 6006 case 1: 6007 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6008 "0481 Enabled MSI interrupt mode.\n"); 6009 break; 6010 case 2: 6011 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6012 "0480 Enabled MSI-X interrupt mode.\n"); 6013 break; 6014 default: 6015 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6016 "0482 Illegal interrupt mode.\n"); 6017 break; 6018 } 6019 return; 6020 } 6021 6022 /** 6023 * lpfc_enable_pci_dev - Enable a generic PCI device. 6024 * @phba: pointer to lpfc hba data structure. 6025 * 6026 * This routine is invoked to enable the PCI device that is common to all 6027 * PCI devices. 6028 * 6029 * Return codes 6030 * 0 - successful 6031 * other values - error 6032 **/ 6033 static int 6034 lpfc_enable_pci_dev(struct lpfc_hba *phba) 6035 { 6036 struct pci_dev *pdev; 6037 6038 /* Obtain PCI device reference */ 6039 if (!phba->pcidev) 6040 goto out_error; 6041 else 6042 pdev = phba->pcidev; 6043 /* Enable PCI device */ 6044 if (pci_enable_device_mem(pdev)) 6045 goto out_error; 6046 /* Request PCI resource for the device */ 6047 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 6048 goto out_disable_device; 6049 /* Set up device as PCI master and save state for EEH */ 6050 pci_set_master(pdev); 6051 pci_try_set_mwi(pdev); 6052 pci_save_state(pdev); 6053 6054 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6055 if (pci_is_pcie(pdev)) 6056 pdev->needs_freset = 1; 6057 6058 return 0; 6059 6060 out_disable_device: 6061 pci_disable_device(pdev); 6062 out_error: 6063 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6064 "1401 Failed to enable pci device\n"); 6065 return -ENODEV; 6066 } 6067 6068 /** 6069 * lpfc_disable_pci_dev - Disable a generic PCI device. 6070 * @phba: pointer to lpfc hba data structure. 6071 * 6072 * This routine is invoked to disable the PCI device that is common to all 6073 * PCI devices. 6074 **/ 6075 static void 6076 lpfc_disable_pci_dev(struct lpfc_hba *phba) 6077 { 6078 struct pci_dev *pdev; 6079 6080 /* Obtain PCI device reference */ 6081 if (!phba->pcidev) 6082 return; 6083 else 6084 pdev = phba->pcidev; 6085 /* Release PCI resource and disable PCI device */ 6086 pci_release_mem_regions(pdev); 6087 pci_disable_device(pdev); 6088 6089 return; 6090 } 6091 6092 /** 6093 * lpfc_reset_hba - Reset a hba 6094 * @phba: pointer to lpfc hba data structure. 6095 * 6096 * This routine is invoked to reset a hba device. It brings the HBA 6097 * offline, performs a board restart, and then brings the board back 6098 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 6099 * on outstanding mailbox commands. 6100 **/ 6101 void 6102 lpfc_reset_hba(struct lpfc_hba *phba) 6103 { 6104 /* If resets are disabled then set error state and return. */ 6105 if (!phba->cfg_enable_hba_reset) { 6106 phba->link_state = LPFC_HBA_ERROR; 6107 return; 6108 } 6109 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 6110 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 6111 else 6112 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 6113 lpfc_offline(phba); 6114 lpfc_sli_brdrestart(phba); 6115 lpfc_online(phba); 6116 lpfc_unblock_mgmt_io(phba); 6117 } 6118 6119 /** 6120 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 6121 * @phba: pointer to lpfc hba data structure. 6122 * 6123 * This function enables the PCI SR-IOV virtual functions to a physical 6124 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6125 * enable the number of virtual functions to the physical function. As 6126 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6127 * API call does not considered as an error condition for most of the device. 6128 **/ 6129 uint16_t 6130 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 6131 { 6132 struct pci_dev *pdev = phba->pcidev; 6133 uint16_t nr_virtfn; 6134 int pos; 6135 6136 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 6137 if (pos == 0) 6138 return 0; 6139 6140 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 6141 return nr_virtfn; 6142 } 6143 6144 /** 6145 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 6146 * @phba: pointer to lpfc hba data structure. 6147 * @nr_vfn: number of virtual functions to be enabled. 6148 * 6149 * This function enables the PCI SR-IOV virtual functions to a physical 6150 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6151 * enable the number of virtual functions to the physical function. As 6152 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6153 * API call does not considered as an error condition for most of the device. 6154 **/ 6155 int 6156 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 6157 { 6158 struct pci_dev *pdev = phba->pcidev; 6159 uint16_t max_nr_vfn; 6160 int rc; 6161 6162 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 6163 if (nr_vfn > max_nr_vfn) { 6164 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6165 "3057 Requested vfs (%d) greater than " 6166 "supported vfs (%d)", nr_vfn, max_nr_vfn); 6167 return -EINVAL; 6168 } 6169 6170 rc = pci_enable_sriov(pdev, nr_vfn); 6171 if (rc) { 6172 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6173 "2806 Failed to enable sriov on this device " 6174 "with vfn number nr_vf:%d, rc:%d\n", 6175 nr_vfn, rc); 6176 } else 6177 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6178 "2807 Successful enable sriov on this device " 6179 "with vfn number nr_vf:%d\n", nr_vfn); 6180 return rc; 6181 } 6182 6183 /** 6184 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 6185 * @phba: pointer to lpfc hba data structure. 6186 * 6187 * This routine is invoked to set up the driver internal resources before the 6188 * device specific resource setup to support the HBA device it attached to. 6189 * 6190 * Return codes 6191 * 0 - successful 6192 * other values - error 6193 **/ 6194 static int 6195 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 6196 { 6197 struct lpfc_sli *psli = &phba->sli; 6198 6199 /* 6200 * Driver resources common to all SLI revisions 6201 */ 6202 atomic_set(&phba->fast_event_count, 0); 6203 spin_lock_init(&phba->hbalock); 6204 6205 /* Initialize ndlp management spinlock */ 6206 spin_lock_init(&phba->ndlp_lock); 6207 6208 /* Initialize port_list spinlock */ 6209 spin_lock_init(&phba->port_list_lock); 6210 INIT_LIST_HEAD(&phba->port_list); 6211 6212 INIT_LIST_HEAD(&phba->work_list); 6213 init_waitqueue_head(&phba->wait_4_mlo_m_q); 6214 6215 /* Initialize the wait queue head for the kernel thread */ 6216 init_waitqueue_head(&phba->work_waitq); 6217 6218 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6219 "1403 Protocols supported %s %s %s\n", 6220 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 6221 "SCSI" : " "), 6222 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 6223 "NVME" : " "), 6224 (phba->nvmet_support ? "NVMET" : " ")); 6225 6226 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 6227 spin_lock_init(&phba->scsi_buf_list_get_lock); 6228 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 6229 spin_lock_init(&phba->scsi_buf_list_put_lock); 6230 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 6231 6232 /* Initialize the fabric iocb list */ 6233 INIT_LIST_HEAD(&phba->fabric_iocb_list); 6234 6235 /* Initialize list to save ELS buffers */ 6236 INIT_LIST_HEAD(&phba->elsbuf); 6237 6238 /* Initialize FCF connection rec list */ 6239 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 6240 6241 /* Initialize OAS configuration list */ 6242 spin_lock_init(&phba->devicelock); 6243 INIT_LIST_HEAD(&phba->luns); 6244 6245 /* MBOX heartbeat timer */ 6246 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 6247 /* Fabric block timer */ 6248 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 6249 /* EA polling mode timer */ 6250 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 6251 /* Heartbeat timer */ 6252 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 6253 6254 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 6255 6256 return 0; 6257 } 6258 6259 /** 6260 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 6261 * @phba: pointer to lpfc hba data structure. 6262 * 6263 * This routine is invoked to set up the driver internal resources specific to 6264 * support the SLI-3 HBA device it attached to. 6265 * 6266 * Return codes 6267 * 0 - successful 6268 * other values - error 6269 **/ 6270 static int 6271 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 6272 { 6273 int rc, entry_sz; 6274 6275 /* 6276 * Initialize timers used by driver 6277 */ 6278 6279 /* FCP polling mode timer */ 6280 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 6281 6282 /* Host attention work mask setup */ 6283 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 6284 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 6285 6286 /* Get all the module params for configuring this host */ 6287 lpfc_get_cfgparam(phba); 6288 /* Set up phase-1 common device driver resources */ 6289 6290 rc = lpfc_setup_driver_resource_phase1(phba); 6291 if (rc) 6292 return -ENODEV; 6293 6294 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 6295 phba->menlo_flag |= HBA_MENLO_SUPPORT; 6296 /* check for menlo minimum sg count */ 6297 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 6298 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 6299 } 6300 6301 if (!phba->sli.sli3_ring) 6302 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 6303 sizeof(struct lpfc_sli_ring), 6304 GFP_KERNEL); 6305 if (!phba->sli.sli3_ring) 6306 return -ENOMEM; 6307 6308 /* 6309 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 6310 * used to create the sg_dma_buf_pool must be dynamically calculated. 6311 */ 6312 6313 if (phba->sli_rev == LPFC_SLI_REV4) 6314 entry_sz = sizeof(struct sli4_sge); 6315 else 6316 entry_sz = sizeof(struct ulp_bde64); 6317 6318 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 6319 if (phba->cfg_enable_bg) { 6320 /* 6321 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 6322 * the FCP rsp, and a BDE for each. Sice we have no control 6323 * over how many protection data segments the SCSI Layer 6324 * will hand us (ie: there could be one for every block 6325 * in the IO), we just allocate enough BDEs to accomidate 6326 * our max amount and we need to limit lpfc_sg_seg_cnt to 6327 * minimize the risk of running out. 6328 */ 6329 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6330 sizeof(struct fcp_rsp) + 6331 (LPFC_MAX_SG_SEG_CNT * entry_sz); 6332 6333 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 6334 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 6335 6336 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 6337 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 6338 } else { 6339 /* 6340 * The scsi_buf for a regular I/O will hold the FCP cmnd, 6341 * the FCP rsp, a BDE for each, and a BDE for up to 6342 * cfg_sg_seg_cnt data segments. 6343 */ 6344 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6345 sizeof(struct fcp_rsp) + 6346 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 6347 6348 /* Total BDEs in BPL for scsi_sg_list */ 6349 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 6350 } 6351 6352 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6353 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 6354 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6355 phba->cfg_total_seg_cnt); 6356 6357 phba->max_vpi = LPFC_MAX_VPI; 6358 /* This will be set to correct value after config_port mbox */ 6359 phba->max_vports = 0; 6360 6361 /* 6362 * Initialize the SLI Layer to run with lpfc HBAs. 6363 */ 6364 lpfc_sli_setup(phba); 6365 lpfc_sli_queue_init(phba); 6366 6367 /* Allocate device driver memory */ 6368 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 6369 return -ENOMEM; 6370 6371 phba->lpfc_sg_dma_buf_pool = 6372 dma_pool_create("lpfc_sg_dma_buf_pool", 6373 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 6374 BPL_ALIGN_SZ, 0); 6375 6376 if (!phba->lpfc_sg_dma_buf_pool) 6377 goto fail_free_mem; 6378 6379 phba->lpfc_cmd_rsp_buf_pool = 6380 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6381 &phba->pcidev->dev, 6382 sizeof(struct fcp_cmnd) + 6383 sizeof(struct fcp_rsp), 6384 BPL_ALIGN_SZ, 0); 6385 6386 if (!phba->lpfc_cmd_rsp_buf_pool) 6387 goto fail_free_dma_buf_pool; 6388 6389 /* 6390 * Enable sr-iov virtual functions if supported and configured 6391 * through the module parameter. 6392 */ 6393 if (phba->cfg_sriov_nr_virtfn > 0) { 6394 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6395 phba->cfg_sriov_nr_virtfn); 6396 if (rc) { 6397 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6398 "2808 Requested number of SR-IOV " 6399 "virtual functions (%d) is not " 6400 "supported\n", 6401 phba->cfg_sriov_nr_virtfn); 6402 phba->cfg_sriov_nr_virtfn = 0; 6403 } 6404 } 6405 6406 return 0; 6407 6408 fail_free_dma_buf_pool: 6409 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 6410 phba->lpfc_sg_dma_buf_pool = NULL; 6411 fail_free_mem: 6412 lpfc_mem_free(phba); 6413 return -ENOMEM; 6414 } 6415 6416 /** 6417 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 6418 * @phba: pointer to lpfc hba data structure. 6419 * 6420 * This routine is invoked to unset the driver internal resources set up 6421 * specific for supporting the SLI-3 HBA device it attached to. 6422 **/ 6423 static void 6424 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 6425 { 6426 /* Free device driver memory allocated */ 6427 lpfc_mem_free_all(phba); 6428 6429 return; 6430 } 6431 6432 /** 6433 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 6434 * @phba: pointer to lpfc hba data structure. 6435 * 6436 * This routine is invoked to set up the driver internal resources specific to 6437 * support the SLI-4 HBA device it attached to. 6438 * 6439 * Return codes 6440 * 0 - successful 6441 * other values - error 6442 **/ 6443 static int 6444 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 6445 { 6446 LPFC_MBOXQ_t *mboxq; 6447 MAILBOX_t *mb; 6448 int rc, i, max_buf_size; 6449 uint8_t pn_page[LPFC_MAX_SUPPORTED_PAGES] = {0}; 6450 struct lpfc_mqe *mqe; 6451 int longs; 6452 int extra; 6453 uint64_t wwn; 6454 u32 if_type; 6455 u32 if_fam; 6456 6457 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 6458 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 6459 phba->sli4_hba.curr_disp_cpu = 0; 6460 6461 /* Get all the module params for configuring this host */ 6462 lpfc_get_cfgparam(phba); 6463 6464 /* Set up phase-1 common device driver resources */ 6465 rc = lpfc_setup_driver_resource_phase1(phba); 6466 if (rc) 6467 return -ENODEV; 6468 6469 /* Before proceed, wait for POST done and device ready */ 6470 rc = lpfc_sli4_post_status_check(phba); 6471 if (rc) 6472 return -ENODEV; 6473 6474 /* Allocate all driver workqueues here */ 6475 6476 /* The lpfc_wq workqueue for deferred irq use */ 6477 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 6478 6479 /* 6480 * Initialize timers used by driver 6481 */ 6482 6483 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 6484 6485 /* FCF rediscover timer */ 6486 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 6487 6488 /* 6489 * Control structure for handling external multi-buffer mailbox 6490 * command pass-through. 6491 */ 6492 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 6493 sizeof(struct lpfc_mbox_ext_buf_ctx)); 6494 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 6495 6496 phba->max_vpi = LPFC_MAX_VPI; 6497 6498 /* This will be set to correct value after the read_config mbox */ 6499 phba->max_vports = 0; 6500 6501 /* Program the default value of vlan_id and fc_map */ 6502 phba->valid_vlan = 0; 6503 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 6504 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 6505 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 6506 6507 /* 6508 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 6509 * we will associate a new ring, for each EQ/CQ/WQ tuple. 6510 * The WQ create will allocate the ring. 6511 */ 6512 6513 /* Initialize buffer queue management fields */ 6514 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 6515 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 6516 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 6517 6518 /* 6519 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 6520 */ 6521 /* Initialize the Abort buffer list used by driver */ 6522 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 6523 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 6524 6525 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6526 /* Initialize the Abort nvme buffer list used by driver */ 6527 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 6528 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 6529 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 6530 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 6531 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 6532 } 6533 6534 /* This abort list used by worker thread */ 6535 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 6536 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 6537 6538 /* 6539 * Initialize driver internal slow-path work queues 6540 */ 6541 6542 /* Driver internel slow-path CQ Event pool */ 6543 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 6544 /* Response IOCB work queue list */ 6545 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 6546 /* Asynchronous event CQ Event work queue list */ 6547 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 6548 /* Fast-path XRI aborted CQ Event work queue list */ 6549 INIT_LIST_HEAD(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 6550 /* Slow-path XRI aborted CQ Event work queue list */ 6551 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 6552 /* Receive queue CQ Event work queue list */ 6553 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 6554 6555 /* Initialize extent block lists. */ 6556 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 6557 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 6558 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 6559 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 6560 6561 /* Initialize mboxq lists. If the early init routines fail 6562 * these lists need to be correctly initialized. 6563 */ 6564 INIT_LIST_HEAD(&phba->sli.mboxq); 6565 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 6566 6567 /* initialize optic_state to 0xFF */ 6568 phba->sli4_hba.lnk_info.optic_state = 0xff; 6569 6570 /* Allocate device driver memory */ 6571 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 6572 if (rc) 6573 return -ENOMEM; 6574 6575 /* IF Type 2 ports get initialized now. */ 6576 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 6577 LPFC_SLI_INTF_IF_TYPE_2) { 6578 rc = lpfc_pci_function_reset(phba); 6579 if (unlikely(rc)) { 6580 rc = -ENODEV; 6581 goto out_free_mem; 6582 } 6583 phba->temp_sensor_support = 1; 6584 } 6585 6586 /* Create the bootstrap mailbox command */ 6587 rc = lpfc_create_bootstrap_mbox(phba); 6588 if (unlikely(rc)) 6589 goto out_free_mem; 6590 6591 /* Set up the host's endian order with the device. */ 6592 rc = lpfc_setup_endian_order(phba); 6593 if (unlikely(rc)) 6594 goto out_free_bsmbx; 6595 6596 /* Set up the hba's configuration parameters. */ 6597 rc = lpfc_sli4_read_config(phba); 6598 if (unlikely(rc)) 6599 goto out_free_bsmbx; 6600 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 6601 if (unlikely(rc)) 6602 goto out_free_bsmbx; 6603 6604 /* IF Type 0 ports get initialized now. */ 6605 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6606 LPFC_SLI_INTF_IF_TYPE_0) { 6607 rc = lpfc_pci_function_reset(phba); 6608 if (unlikely(rc)) 6609 goto out_free_bsmbx; 6610 } 6611 6612 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 6613 GFP_KERNEL); 6614 if (!mboxq) { 6615 rc = -ENOMEM; 6616 goto out_free_bsmbx; 6617 } 6618 6619 /* Check for NVMET being configured */ 6620 phba->nvmet_support = 0; 6621 if (lpfc_enable_nvmet_cnt) { 6622 6623 /* First get WWN of HBA instance */ 6624 lpfc_read_nv(phba, mboxq); 6625 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6626 if (rc != MBX_SUCCESS) { 6627 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6628 "6016 Mailbox failed , mbxCmd x%x " 6629 "READ_NV, mbxStatus x%x\n", 6630 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6631 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 6632 mempool_free(mboxq, phba->mbox_mem_pool); 6633 rc = -EIO; 6634 goto out_free_bsmbx; 6635 } 6636 mb = &mboxq->u.mb; 6637 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 6638 sizeof(uint64_t)); 6639 wwn = cpu_to_be64(wwn); 6640 phba->sli4_hba.wwnn.u.name = wwn; 6641 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 6642 sizeof(uint64_t)); 6643 /* wwn is WWPN of HBA instance */ 6644 wwn = cpu_to_be64(wwn); 6645 phba->sli4_hba.wwpn.u.name = wwn; 6646 6647 /* Check to see if it matches any module parameter */ 6648 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 6649 if (wwn == lpfc_enable_nvmet[i]) { 6650 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 6651 if (lpfc_nvmet_mem_alloc(phba)) 6652 break; 6653 6654 phba->nvmet_support = 1; /* a match */ 6655 6656 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6657 "6017 NVME Target %016llx\n", 6658 wwn); 6659 #else 6660 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6661 "6021 Can't enable NVME Target." 6662 " NVME_TARGET_FC infrastructure" 6663 " is not in kernel\n"); 6664 #endif 6665 /* Not supported for NVMET */ 6666 phba->cfg_xri_rebalancing = 0; 6667 if (phba->irq_chann_mode == NHT_MODE) { 6668 phba->cfg_irq_chann = 6669 phba->sli4_hba.num_present_cpu; 6670 phba->cfg_hdw_queue = 6671 phba->sli4_hba.num_present_cpu; 6672 phba->irq_chann_mode = NORMAL_MODE; 6673 } 6674 break; 6675 } 6676 } 6677 } 6678 6679 lpfc_nvme_mod_param_dep(phba); 6680 6681 /* Get the Supported Pages if PORT_CAPABILITIES is supported by port. */ 6682 lpfc_supported_pages(mboxq); 6683 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6684 if (!rc) { 6685 mqe = &mboxq->u.mqe; 6686 memcpy(&pn_page[0], ((uint8_t *)&mqe->un.supp_pages.word3), 6687 LPFC_MAX_SUPPORTED_PAGES); 6688 for (i = 0; i < LPFC_MAX_SUPPORTED_PAGES; i++) { 6689 switch (pn_page[i]) { 6690 case LPFC_SLI4_PARAMETERS: 6691 phba->sli4_hba.pc_sli4_params.supported = 1; 6692 break; 6693 default: 6694 break; 6695 } 6696 } 6697 /* Read the port's SLI4 Parameters capabilities if supported. */ 6698 if (phba->sli4_hba.pc_sli4_params.supported) 6699 rc = lpfc_pc_sli4_params_get(phba, mboxq); 6700 if (rc) { 6701 mempool_free(mboxq, phba->mbox_mem_pool); 6702 rc = -EIO; 6703 goto out_free_bsmbx; 6704 } 6705 } 6706 6707 /* 6708 * Get sli4 parameters that override parameters from Port capabilities. 6709 * If this call fails, it isn't critical unless the SLI4 parameters come 6710 * back in conflict. 6711 */ 6712 rc = lpfc_get_sli4_parameters(phba, mboxq); 6713 if (rc) { 6714 if_type = bf_get(lpfc_sli_intf_if_type, 6715 &phba->sli4_hba.sli_intf); 6716 if_fam = bf_get(lpfc_sli_intf_sli_family, 6717 &phba->sli4_hba.sli_intf); 6718 if (phba->sli4_hba.extents_in_use && 6719 phba->sli4_hba.rpi_hdrs_in_use) { 6720 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6721 "2999 Unsupported SLI4 Parameters " 6722 "Extents and RPI headers enabled.\n"); 6723 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6724 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 6725 mempool_free(mboxq, phba->mbox_mem_pool); 6726 rc = -EIO; 6727 goto out_free_bsmbx; 6728 } 6729 } 6730 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6731 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 6732 mempool_free(mboxq, phba->mbox_mem_pool); 6733 rc = -EIO; 6734 goto out_free_bsmbx; 6735 } 6736 } 6737 6738 /* 6739 * 1 for cmd, 1 for rsp, NVME adds an extra one 6740 * for boundary conditions in its max_sgl_segment template. 6741 */ 6742 extra = 2; 6743 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 6744 extra++; 6745 6746 /* 6747 * It doesn't matter what family our adapter is in, we are 6748 * limited to 2 Pages, 512 SGEs, for our SGL. 6749 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 6750 */ 6751 max_buf_size = (2 * SLI4_PAGE_SIZE); 6752 6753 /* 6754 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 6755 * used to create the sg_dma_buf_pool must be calculated. 6756 */ 6757 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 6758 /* Both cfg_enable_bg and cfg_external_dif code paths */ 6759 6760 /* 6761 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 6762 * the FCP rsp, and a SGE. Sice we have no control 6763 * over how many protection segments the SCSI Layer 6764 * will hand us (ie: there could be one for every block 6765 * in the IO), just allocate enough SGEs to accomidate 6766 * our max amount and we need to limit lpfc_sg_seg_cnt 6767 * to minimize the risk of running out. 6768 */ 6769 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6770 sizeof(struct fcp_rsp) + max_buf_size; 6771 6772 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 6773 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 6774 6775 /* 6776 * If supporting DIF, reduce the seg count for scsi to 6777 * allow room for the DIF sges. 6778 */ 6779 if (phba->cfg_enable_bg && 6780 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 6781 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 6782 else 6783 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6784 6785 } else { 6786 /* 6787 * The scsi_buf for a regular I/O holds the FCP cmnd, 6788 * the FCP rsp, a SGE for each, and a SGE for up to 6789 * cfg_sg_seg_cnt data segments. 6790 */ 6791 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6792 sizeof(struct fcp_rsp) + 6793 ((phba->cfg_sg_seg_cnt + extra) * 6794 sizeof(struct sli4_sge)); 6795 6796 /* Total SGEs for scsi_sg_list */ 6797 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 6798 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6799 6800 /* 6801 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 6802 * need to post 1 page for the SGL. 6803 */ 6804 } 6805 6806 if (phba->cfg_xpsgl && !phba->nvmet_support) 6807 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 6808 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 6809 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 6810 else 6811 phba->cfg_sg_dma_buf_size = 6812 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 6813 6814 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 6815 sizeof(struct sli4_sge); 6816 6817 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 6818 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6819 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 6820 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 6821 "6300 Reducing NVME sg segment " 6822 "cnt to %d\n", 6823 LPFC_MAX_NVME_SEG_CNT); 6824 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 6825 } else 6826 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 6827 } 6828 6829 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6830 "9087 sg_seg_cnt:%d dmabuf_size:%d " 6831 "total:%d scsi:%d nvme:%d\n", 6832 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6833 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 6834 phba->cfg_nvme_seg_cnt); 6835 6836 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 6837 i = phba->cfg_sg_dma_buf_size; 6838 else 6839 i = SLI4_PAGE_SIZE; 6840 6841 phba->lpfc_sg_dma_buf_pool = 6842 dma_pool_create("lpfc_sg_dma_buf_pool", 6843 &phba->pcidev->dev, 6844 phba->cfg_sg_dma_buf_size, 6845 i, 0); 6846 if (!phba->lpfc_sg_dma_buf_pool) 6847 goto out_free_bsmbx; 6848 6849 phba->lpfc_cmd_rsp_buf_pool = 6850 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6851 &phba->pcidev->dev, 6852 sizeof(struct fcp_cmnd) + 6853 sizeof(struct fcp_rsp), 6854 i, 0); 6855 if (!phba->lpfc_cmd_rsp_buf_pool) 6856 goto out_free_sg_dma_buf; 6857 6858 mempool_free(mboxq, phba->mbox_mem_pool); 6859 6860 /* Verify OAS is supported */ 6861 lpfc_sli4_oas_verify(phba); 6862 6863 /* Verify RAS support on adapter */ 6864 lpfc_sli4_ras_init(phba); 6865 6866 /* Verify all the SLI4 queues */ 6867 rc = lpfc_sli4_queue_verify(phba); 6868 if (rc) 6869 goto out_free_cmd_rsp_buf; 6870 6871 /* Create driver internal CQE event pool */ 6872 rc = lpfc_sli4_cq_event_pool_create(phba); 6873 if (rc) 6874 goto out_free_cmd_rsp_buf; 6875 6876 /* Initialize sgl lists per host */ 6877 lpfc_init_sgl_list(phba); 6878 6879 /* Allocate and initialize active sgl array */ 6880 rc = lpfc_init_active_sgl_array(phba); 6881 if (rc) { 6882 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6883 "1430 Failed to initialize sgl list.\n"); 6884 goto out_destroy_cq_event_pool; 6885 } 6886 rc = lpfc_sli4_init_rpi_hdrs(phba); 6887 if (rc) { 6888 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6889 "1432 Failed to initialize rpi headers.\n"); 6890 goto out_free_active_sgl; 6891 } 6892 6893 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 6894 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 6895 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 6896 GFP_KERNEL); 6897 if (!phba->fcf.fcf_rr_bmask) { 6898 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6899 "2759 Failed allocate memory for FCF round " 6900 "robin failover bmask\n"); 6901 rc = -ENOMEM; 6902 goto out_remove_rpi_hdrs; 6903 } 6904 6905 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 6906 sizeof(struct lpfc_hba_eq_hdl), 6907 GFP_KERNEL); 6908 if (!phba->sli4_hba.hba_eq_hdl) { 6909 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6910 "2572 Failed allocate memory for " 6911 "fast-path per-EQ handle array\n"); 6912 rc = -ENOMEM; 6913 goto out_free_fcf_rr_bmask; 6914 } 6915 6916 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 6917 sizeof(struct lpfc_vector_map_info), 6918 GFP_KERNEL); 6919 if (!phba->sli4_hba.cpu_map) { 6920 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6921 "3327 Failed allocate memory for msi-x " 6922 "interrupt vector mapping\n"); 6923 rc = -ENOMEM; 6924 goto out_free_hba_eq_hdl; 6925 } 6926 6927 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 6928 if (!phba->sli4_hba.eq_info) { 6929 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6930 "3321 Failed allocation for per_cpu stats\n"); 6931 rc = -ENOMEM; 6932 goto out_free_hba_cpu_map; 6933 } 6934 6935 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 6936 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 6937 if (!phba->sli4_hba.c_stat) { 6938 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6939 "3332 Failed allocating per cpu hdwq stats\n"); 6940 rc = -ENOMEM; 6941 goto out_free_hba_eq_info; 6942 } 6943 #endif 6944 6945 /* 6946 * Enable sr-iov virtual functions if supported and configured 6947 * through the module parameter. 6948 */ 6949 if (phba->cfg_sriov_nr_virtfn > 0) { 6950 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6951 phba->cfg_sriov_nr_virtfn); 6952 if (rc) { 6953 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6954 "3020 Requested number of SR-IOV " 6955 "virtual functions (%d) is not " 6956 "supported\n", 6957 phba->cfg_sriov_nr_virtfn); 6958 phba->cfg_sriov_nr_virtfn = 0; 6959 } 6960 } 6961 6962 return 0; 6963 6964 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 6965 out_free_hba_eq_info: 6966 free_percpu(phba->sli4_hba.eq_info); 6967 #endif 6968 out_free_hba_cpu_map: 6969 kfree(phba->sli4_hba.cpu_map); 6970 out_free_hba_eq_hdl: 6971 kfree(phba->sli4_hba.hba_eq_hdl); 6972 out_free_fcf_rr_bmask: 6973 kfree(phba->fcf.fcf_rr_bmask); 6974 out_remove_rpi_hdrs: 6975 lpfc_sli4_remove_rpi_hdrs(phba); 6976 out_free_active_sgl: 6977 lpfc_free_active_sgl(phba); 6978 out_destroy_cq_event_pool: 6979 lpfc_sli4_cq_event_pool_destroy(phba); 6980 out_free_cmd_rsp_buf: 6981 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 6982 phba->lpfc_cmd_rsp_buf_pool = NULL; 6983 out_free_sg_dma_buf: 6984 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 6985 phba->lpfc_sg_dma_buf_pool = NULL; 6986 out_free_bsmbx: 6987 lpfc_destroy_bootstrap_mbox(phba); 6988 out_free_mem: 6989 lpfc_mem_free(phba); 6990 return rc; 6991 } 6992 6993 /** 6994 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 6995 * @phba: pointer to lpfc hba data structure. 6996 * 6997 * This routine is invoked to unset the driver internal resources set up 6998 * specific for supporting the SLI-4 HBA device it attached to. 6999 **/ 7000 static void 7001 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 7002 { 7003 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 7004 7005 free_percpu(phba->sli4_hba.eq_info); 7006 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7007 free_percpu(phba->sli4_hba.c_stat); 7008 #endif 7009 7010 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 7011 kfree(phba->sli4_hba.cpu_map); 7012 phba->sli4_hba.num_possible_cpu = 0; 7013 phba->sli4_hba.num_present_cpu = 0; 7014 phba->sli4_hba.curr_disp_cpu = 0; 7015 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 7016 7017 /* Free memory allocated for fast-path work queue handles */ 7018 kfree(phba->sli4_hba.hba_eq_hdl); 7019 7020 /* Free the allocated rpi headers. */ 7021 lpfc_sli4_remove_rpi_hdrs(phba); 7022 lpfc_sli4_remove_rpis(phba); 7023 7024 /* Free eligible FCF index bmask */ 7025 kfree(phba->fcf.fcf_rr_bmask); 7026 7027 /* Free the ELS sgl list */ 7028 lpfc_free_active_sgl(phba); 7029 lpfc_free_els_sgl_list(phba); 7030 lpfc_free_nvmet_sgl_list(phba); 7031 7032 /* Free the completion queue EQ event pool */ 7033 lpfc_sli4_cq_event_release_all(phba); 7034 lpfc_sli4_cq_event_pool_destroy(phba); 7035 7036 /* Release resource identifiers. */ 7037 lpfc_sli4_dealloc_resource_identifiers(phba); 7038 7039 /* Free the bsmbx region. */ 7040 lpfc_destroy_bootstrap_mbox(phba); 7041 7042 /* Free the SLI Layer memory with SLI4 HBAs */ 7043 lpfc_mem_free_all(phba); 7044 7045 /* Free the current connect table */ 7046 list_for_each_entry_safe(conn_entry, next_conn_entry, 7047 &phba->fcf_conn_rec_list, list) { 7048 list_del_init(&conn_entry->list); 7049 kfree(conn_entry); 7050 } 7051 7052 return; 7053 } 7054 7055 /** 7056 * lpfc_init_api_table_setup - Set up init api function jump table 7057 * @phba: The hba struct for which this call is being executed. 7058 * @dev_grp: The HBA PCI-Device group number. 7059 * 7060 * This routine sets up the device INIT interface API function jump table 7061 * in @phba struct. 7062 * 7063 * Returns: 0 - success, -ENODEV - failure. 7064 **/ 7065 int 7066 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7067 { 7068 phba->lpfc_hba_init_link = lpfc_hba_init_link; 7069 phba->lpfc_hba_down_link = lpfc_hba_down_link; 7070 phba->lpfc_selective_reset = lpfc_selective_reset; 7071 switch (dev_grp) { 7072 case LPFC_PCI_DEV_LP: 7073 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 7074 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 7075 phba->lpfc_stop_port = lpfc_stop_port_s3; 7076 break; 7077 case LPFC_PCI_DEV_OC: 7078 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 7079 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 7080 phba->lpfc_stop_port = lpfc_stop_port_s4; 7081 break; 7082 default: 7083 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7084 "1431 Invalid HBA PCI-device group: 0x%x\n", 7085 dev_grp); 7086 return -ENODEV; 7087 break; 7088 } 7089 return 0; 7090 } 7091 7092 /** 7093 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 7094 * @phba: pointer to lpfc hba data structure. 7095 * 7096 * This routine is invoked to set up the driver internal resources after the 7097 * device specific resource setup to support the HBA device it attached to. 7098 * 7099 * Return codes 7100 * 0 - successful 7101 * other values - error 7102 **/ 7103 static int 7104 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 7105 { 7106 int error; 7107 7108 /* Startup the kernel thread for this host adapter. */ 7109 phba->worker_thread = kthread_run(lpfc_do_work, phba, 7110 "lpfc_worker_%d", phba->brd_no); 7111 if (IS_ERR(phba->worker_thread)) { 7112 error = PTR_ERR(phba->worker_thread); 7113 return error; 7114 } 7115 7116 return 0; 7117 } 7118 7119 /** 7120 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 7121 * @phba: pointer to lpfc hba data structure. 7122 * 7123 * This routine is invoked to unset the driver internal resources set up after 7124 * the device specific resource setup for supporting the HBA device it 7125 * attached to. 7126 **/ 7127 static void 7128 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 7129 { 7130 if (phba->wq) { 7131 flush_workqueue(phba->wq); 7132 destroy_workqueue(phba->wq); 7133 phba->wq = NULL; 7134 } 7135 7136 /* Stop kernel worker thread */ 7137 if (phba->worker_thread) 7138 kthread_stop(phba->worker_thread); 7139 } 7140 7141 /** 7142 * lpfc_free_iocb_list - Free iocb list. 7143 * @phba: pointer to lpfc hba data structure. 7144 * 7145 * This routine is invoked to free the driver's IOCB list and memory. 7146 **/ 7147 void 7148 lpfc_free_iocb_list(struct lpfc_hba *phba) 7149 { 7150 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 7151 7152 spin_lock_irq(&phba->hbalock); 7153 list_for_each_entry_safe(iocbq_entry, iocbq_next, 7154 &phba->lpfc_iocb_list, list) { 7155 list_del(&iocbq_entry->list); 7156 kfree(iocbq_entry); 7157 phba->total_iocbq_bufs--; 7158 } 7159 spin_unlock_irq(&phba->hbalock); 7160 7161 return; 7162 } 7163 7164 /** 7165 * lpfc_init_iocb_list - Allocate and initialize iocb list. 7166 * @phba: pointer to lpfc hba data structure. 7167 * 7168 * This routine is invoked to allocate and initizlize the driver's IOCB 7169 * list and set up the IOCB tag array accordingly. 7170 * 7171 * Return codes 7172 * 0 - successful 7173 * other values - error 7174 **/ 7175 int 7176 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 7177 { 7178 struct lpfc_iocbq *iocbq_entry = NULL; 7179 uint16_t iotag; 7180 int i; 7181 7182 /* Initialize and populate the iocb list per host. */ 7183 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 7184 for (i = 0; i < iocb_count; i++) { 7185 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 7186 if (iocbq_entry == NULL) { 7187 printk(KERN_ERR "%s: only allocated %d iocbs of " 7188 "expected %d count. Unloading driver.\n", 7189 __func__, i, iocb_count); 7190 goto out_free_iocbq; 7191 } 7192 7193 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 7194 if (iotag == 0) { 7195 kfree(iocbq_entry); 7196 printk(KERN_ERR "%s: failed to allocate IOTAG. " 7197 "Unloading driver.\n", __func__); 7198 goto out_free_iocbq; 7199 } 7200 iocbq_entry->sli4_lxritag = NO_XRI; 7201 iocbq_entry->sli4_xritag = NO_XRI; 7202 7203 spin_lock_irq(&phba->hbalock); 7204 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 7205 phba->total_iocbq_bufs++; 7206 spin_unlock_irq(&phba->hbalock); 7207 } 7208 7209 return 0; 7210 7211 out_free_iocbq: 7212 lpfc_free_iocb_list(phba); 7213 7214 return -ENOMEM; 7215 } 7216 7217 /** 7218 * lpfc_free_sgl_list - Free a given sgl list. 7219 * @phba: pointer to lpfc hba data structure. 7220 * @sglq_list: pointer to the head of sgl list. 7221 * 7222 * This routine is invoked to free a give sgl list and memory. 7223 **/ 7224 void 7225 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 7226 { 7227 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7228 7229 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 7230 list_del(&sglq_entry->list); 7231 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 7232 kfree(sglq_entry); 7233 } 7234 } 7235 7236 /** 7237 * lpfc_free_els_sgl_list - Free els sgl list. 7238 * @phba: pointer to lpfc hba data structure. 7239 * 7240 * This routine is invoked to free the driver's els sgl list and memory. 7241 **/ 7242 static void 7243 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 7244 { 7245 LIST_HEAD(sglq_list); 7246 7247 /* Retrieve all els sgls from driver list */ 7248 spin_lock_irq(&phba->hbalock); 7249 spin_lock(&phba->sli4_hba.sgl_list_lock); 7250 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 7251 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7252 spin_unlock_irq(&phba->hbalock); 7253 7254 /* Now free the sgl list */ 7255 lpfc_free_sgl_list(phba, &sglq_list); 7256 } 7257 7258 /** 7259 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 7260 * @phba: pointer to lpfc hba data structure. 7261 * 7262 * This routine is invoked to free the driver's nvmet sgl list and memory. 7263 **/ 7264 static void 7265 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 7266 { 7267 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7268 LIST_HEAD(sglq_list); 7269 7270 /* Retrieve all nvmet sgls from driver list */ 7271 spin_lock_irq(&phba->hbalock); 7272 spin_lock(&phba->sli4_hba.sgl_list_lock); 7273 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 7274 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7275 spin_unlock_irq(&phba->hbalock); 7276 7277 /* Now free the sgl list */ 7278 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 7279 list_del(&sglq_entry->list); 7280 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 7281 kfree(sglq_entry); 7282 } 7283 7284 /* Update the nvmet_xri_cnt to reflect no current sgls. 7285 * The next initialization cycle sets the count and allocates 7286 * the sgls over again. 7287 */ 7288 phba->sli4_hba.nvmet_xri_cnt = 0; 7289 } 7290 7291 /** 7292 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 7293 * @phba: pointer to lpfc hba data structure. 7294 * 7295 * This routine is invoked to allocate the driver's active sgl memory. 7296 * This array will hold the sglq_entry's for active IOs. 7297 **/ 7298 static int 7299 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 7300 { 7301 int size; 7302 size = sizeof(struct lpfc_sglq *); 7303 size *= phba->sli4_hba.max_cfg_param.max_xri; 7304 7305 phba->sli4_hba.lpfc_sglq_active_list = 7306 kzalloc(size, GFP_KERNEL); 7307 if (!phba->sli4_hba.lpfc_sglq_active_list) 7308 return -ENOMEM; 7309 return 0; 7310 } 7311 7312 /** 7313 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 7314 * @phba: pointer to lpfc hba data structure. 7315 * 7316 * This routine is invoked to walk through the array of active sglq entries 7317 * and free all of the resources. 7318 * This is just a place holder for now. 7319 **/ 7320 static void 7321 lpfc_free_active_sgl(struct lpfc_hba *phba) 7322 { 7323 kfree(phba->sli4_hba.lpfc_sglq_active_list); 7324 } 7325 7326 /** 7327 * lpfc_init_sgl_list - Allocate and initialize sgl list. 7328 * @phba: pointer to lpfc hba data structure. 7329 * 7330 * This routine is invoked to allocate and initizlize the driver's sgl 7331 * list and set up the sgl xritag tag array accordingly. 7332 * 7333 **/ 7334 static void 7335 lpfc_init_sgl_list(struct lpfc_hba *phba) 7336 { 7337 /* Initialize and populate the sglq list per host/VF. */ 7338 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 7339 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 7340 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 7341 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7342 7343 /* els xri-sgl book keeping */ 7344 phba->sli4_hba.els_xri_cnt = 0; 7345 7346 /* nvme xri-buffer book keeping */ 7347 phba->sli4_hba.io_xri_cnt = 0; 7348 } 7349 7350 /** 7351 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 7352 * @phba: pointer to lpfc hba data structure. 7353 * 7354 * This routine is invoked to post rpi header templates to the 7355 * port for those SLI4 ports that do not support extents. This routine 7356 * posts a PAGE_SIZE memory region to the port to hold up to 7357 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 7358 * and should be called only when interrupts are disabled. 7359 * 7360 * Return codes 7361 * 0 - successful 7362 * -ERROR - otherwise. 7363 **/ 7364 int 7365 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 7366 { 7367 int rc = 0; 7368 struct lpfc_rpi_hdr *rpi_hdr; 7369 7370 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 7371 if (!phba->sli4_hba.rpi_hdrs_in_use) 7372 return rc; 7373 if (phba->sli4_hba.extents_in_use) 7374 return -EIO; 7375 7376 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 7377 if (!rpi_hdr) { 7378 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7379 "0391 Error during rpi post operation\n"); 7380 lpfc_sli4_remove_rpis(phba); 7381 rc = -ENODEV; 7382 } 7383 7384 return rc; 7385 } 7386 7387 /** 7388 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 7389 * @phba: pointer to lpfc hba data structure. 7390 * 7391 * This routine is invoked to allocate a single 4KB memory region to 7392 * support rpis and stores them in the phba. This single region 7393 * provides support for up to 64 rpis. The region is used globally 7394 * by the device. 7395 * 7396 * Returns: 7397 * A valid rpi hdr on success. 7398 * A NULL pointer on any failure. 7399 **/ 7400 struct lpfc_rpi_hdr * 7401 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 7402 { 7403 uint16_t rpi_limit, curr_rpi_range; 7404 struct lpfc_dmabuf *dmabuf; 7405 struct lpfc_rpi_hdr *rpi_hdr; 7406 7407 /* 7408 * If the SLI4 port supports extents, posting the rpi header isn't 7409 * required. Set the expected maximum count and let the actual value 7410 * get set when extents are fully allocated. 7411 */ 7412 if (!phba->sli4_hba.rpi_hdrs_in_use) 7413 return NULL; 7414 if (phba->sli4_hba.extents_in_use) 7415 return NULL; 7416 7417 /* The limit on the logical index is just the max_rpi count. */ 7418 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 7419 7420 spin_lock_irq(&phba->hbalock); 7421 /* 7422 * Establish the starting RPI in this header block. The starting 7423 * rpi is normalized to a zero base because the physical rpi is 7424 * port based. 7425 */ 7426 curr_rpi_range = phba->sli4_hba.next_rpi; 7427 spin_unlock_irq(&phba->hbalock); 7428 7429 /* Reached full RPI range */ 7430 if (curr_rpi_range == rpi_limit) 7431 return NULL; 7432 7433 /* 7434 * First allocate the protocol header region for the port. The 7435 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 7436 */ 7437 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 7438 if (!dmabuf) 7439 return NULL; 7440 7441 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 7442 LPFC_HDR_TEMPLATE_SIZE, 7443 &dmabuf->phys, GFP_KERNEL); 7444 if (!dmabuf->virt) { 7445 rpi_hdr = NULL; 7446 goto err_free_dmabuf; 7447 } 7448 7449 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 7450 rpi_hdr = NULL; 7451 goto err_free_coherent; 7452 } 7453 7454 /* Save the rpi header data for cleanup later. */ 7455 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 7456 if (!rpi_hdr) 7457 goto err_free_coherent; 7458 7459 rpi_hdr->dmabuf = dmabuf; 7460 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 7461 rpi_hdr->page_count = 1; 7462 spin_lock_irq(&phba->hbalock); 7463 7464 /* The rpi_hdr stores the logical index only. */ 7465 rpi_hdr->start_rpi = curr_rpi_range; 7466 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 7467 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 7468 7469 spin_unlock_irq(&phba->hbalock); 7470 return rpi_hdr; 7471 7472 err_free_coherent: 7473 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 7474 dmabuf->virt, dmabuf->phys); 7475 err_free_dmabuf: 7476 kfree(dmabuf); 7477 return NULL; 7478 } 7479 7480 /** 7481 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 7482 * @phba: pointer to lpfc hba data structure. 7483 * 7484 * This routine is invoked to remove all memory resources allocated 7485 * to support rpis for SLI4 ports not supporting extents. This routine 7486 * presumes the caller has released all rpis consumed by fabric or port 7487 * logins and is prepared to have the header pages removed. 7488 **/ 7489 void 7490 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 7491 { 7492 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 7493 7494 if (!phba->sli4_hba.rpi_hdrs_in_use) 7495 goto exit; 7496 7497 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 7498 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 7499 list_del(&rpi_hdr->list); 7500 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 7501 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 7502 kfree(rpi_hdr->dmabuf); 7503 kfree(rpi_hdr); 7504 } 7505 exit: 7506 /* There are no rpis available to the port now. */ 7507 phba->sli4_hba.next_rpi = 0; 7508 } 7509 7510 /** 7511 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 7512 * @pdev: pointer to pci device data structure. 7513 * 7514 * This routine is invoked to allocate the driver hba data structure for an 7515 * HBA device. If the allocation is successful, the phba reference to the 7516 * PCI device data structure is set. 7517 * 7518 * Return codes 7519 * pointer to @phba - successful 7520 * NULL - error 7521 **/ 7522 static struct lpfc_hba * 7523 lpfc_hba_alloc(struct pci_dev *pdev) 7524 { 7525 struct lpfc_hba *phba; 7526 7527 /* Allocate memory for HBA structure */ 7528 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 7529 if (!phba) { 7530 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 7531 return NULL; 7532 } 7533 7534 /* Set reference to PCI device in HBA structure */ 7535 phba->pcidev = pdev; 7536 7537 /* Assign an unused board number */ 7538 phba->brd_no = lpfc_get_instance(); 7539 if (phba->brd_no < 0) { 7540 kfree(phba); 7541 return NULL; 7542 } 7543 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 7544 7545 spin_lock_init(&phba->ct_ev_lock); 7546 INIT_LIST_HEAD(&phba->ct_ev_waiters); 7547 7548 return phba; 7549 } 7550 7551 /** 7552 * lpfc_hba_free - Free driver hba data structure with a device. 7553 * @phba: pointer to lpfc hba data structure. 7554 * 7555 * This routine is invoked to free the driver hba data structure with an 7556 * HBA device. 7557 **/ 7558 static void 7559 lpfc_hba_free(struct lpfc_hba *phba) 7560 { 7561 if (phba->sli_rev == LPFC_SLI_REV4) 7562 kfree(phba->sli4_hba.hdwq); 7563 7564 /* Release the driver assigned board number */ 7565 idr_remove(&lpfc_hba_index, phba->brd_no); 7566 7567 /* Free memory allocated with sli3 rings */ 7568 kfree(phba->sli.sli3_ring); 7569 phba->sli.sli3_ring = NULL; 7570 7571 kfree(phba); 7572 return; 7573 } 7574 7575 /** 7576 * lpfc_create_shost - Create hba physical port with associated scsi host. 7577 * @phba: pointer to lpfc hba data structure. 7578 * 7579 * This routine is invoked to create HBA physical port and associate a SCSI 7580 * host with it. 7581 * 7582 * Return codes 7583 * 0 - successful 7584 * other values - error 7585 **/ 7586 static int 7587 lpfc_create_shost(struct lpfc_hba *phba) 7588 { 7589 struct lpfc_vport *vport; 7590 struct Scsi_Host *shost; 7591 7592 /* Initialize HBA FC structure */ 7593 phba->fc_edtov = FF_DEF_EDTOV; 7594 phba->fc_ratov = FF_DEF_RATOV; 7595 phba->fc_altov = FF_DEF_ALTOV; 7596 phba->fc_arbtov = FF_DEF_ARBTOV; 7597 7598 atomic_set(&phba->sdev_cnt, 0); 7599 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 7600 if (!vport) 7601 return -ENODEV; 7602 7603 shost = lpfc_shost_from_vport(vport); 7604 phba->pport = vport; 7605 7606 if (phba->nvmet_support) { 7607 /* Only 1 vport (pport) will support NVME target */ 7608 phba->targetport = NULL; 7609 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 7610 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 7611 "6076 NVME Target Found\n"); 7612 } 7613 7614 lpfc_debugfs_initialize(vport); 7615 /* Put reference to SCSI host to driver's device private data */ 7616 pci_set_drvdata(phba->pcidev, shost); 7617 7618 /* 7619 * At this point we are fully registered with PSA. In addition, 7620 * any initial discovery should be completed. 7621 */ 7622 vport->load_flag |= FC_ALLOW_FDMI; 7623 if (phba->cfg_enable_SmartSAN || 7624 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 7625 7626 /* Setup appropriate attribute masks */ 7627 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 7628 if (phba->cfg_enable_SmartSAN) 7629 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 7630 else 7631 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 7632 } 7633 return 0; 7634 } 7635 7636 /** 7637 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 7638 * @phba: pointer to lpfc hba data structure. 7639 * 7640 * This routine is invoked to destroy HBA physical port and the associated 7641 * SCSI host. 7642 **/ 7643 static void 7644 lpfc_destroy_shost(struct lpfc_hba *phba) 7645 { 7646 struct lpfc_vport *vport = phba->pport; 7647 7648 /* Destroy physical port that associated with the SCSI host */ 7649 destroy_port(vport); 7650 7651 return; 7652 } 7653 7654 /** 7655 * lpfc_setup_bg - Setup Block guard structures and debug areas. 7656 * @phba: pointer to lpfc hba data structure. 7657 * @shost: the shost to be used to detect Block guard settings. 7658 * 7659 * This routine sets up the local Block guard protocol settings for @shost. 7660 * This routine also allocates memory for debugging bg buffers. 7661 **/ 7662 static void 7663 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 7664 { 7665 uint32_t old_mask; 7666 uint32_t old_guard; 7667 7668 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7669 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7670 "1478 Registering BlockGuard with the " 7671 "SCSI layer\n"); 7672 7673 old_mask = phba->cfg_prot_mask; 7674 old_guard = phba->cfg_prot_guard; 7675 7676 /* Only allow supported values */ 7677 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 7678 SHOST_DIX_TYPE0_PROTECTION | 7679 SHOST_DIX_TYPE1_PROTECTION); 7680 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 7681 SHOST_DIX_GUARD_CRC); 7682 7683 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 7684 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 7685 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 7686 7687 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7688 if ((old_mask != phba->cfg_prot_mask) || 7689 (old_guard != phba->cfg_prot_guard)) 7690 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7691 "1475 Registering BlockGuard with the " 7692 "SCSI layer: mask %d guard %d\n", 7693 phba->cfg_prot_mask, 7694 phba->cfg_prot_guard); 7695 7696 scsi_host_set_prot(shost, phba->cfg_prot_mask); 7697 scsi_host_set_guard(shost, phba->cfg_prot_guard); 7698 } else 7699 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7700 "1479 Not Registering BlockGuard with the SCSI " 7701 "layer, Bad protection parameters: %d %d\n", 7702 old_mask, old_guard); 7703 } 7704 } 7705 7706 /** 7707 * lpfc_post_init_setup - Perform necessary device post initialization setup. 7708 * @phba: pointer to lpfc hba data structure. 7709 * 7710 * This routine is invoked to perform all the necessary post initialization 7711 * setup for the device. 7712 **/ 7713 static void 7714 lpfc_post_init_setup(struct lpfc_hba *phba) 7715 { 7716 struct Scsi_Host *shost; 7717 struct lpfc_adapter_event_header adapter_event; 7718 7719 /* Get the default values for Model Name and Description */ 7720 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 7721 7722 /* 7723 * hba setup may have changed the hba_queue_depth so we need to 7724 * adjust the value of can_queue. 7725 */ 7726 shost = pci_get_drvdata(phba->pcidev); 7727 shost->can_queue = phba->cfg_hba_queue_depth - 10; 7728 7729 lpfc_host_attrib_init(shost); 7730 7731 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 7732 spin_lock_irq(shost->host_lock); 7733 lpfc_poll_start_timer(phba); 7734 spin_unlock_irq(shost->host_lock); 7735 } 7736 7737 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7738 "0428 Perform SCSI scan\n"); 7739 /* Send board arrival event to upper layer */ 7740 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 7741 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 7742 fc_host_post_vendor_event(shost, fc_get_event_number(), 7743 sizeof(adapter_event), 7744 (char *) &adapter_event, 7745 LPFC_NL_VENDOR_ID); 7746 return; 7747 } 7748 7749 /** 7750 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 7751 * @phba: pointer to lpfc hba data structure. 7752 * 7753 * This routine is invoked to set up the PCI device memory space for device 7754 * with SLI-3 interface spec. 7755 * 7756 * Return codes 7757 * 0 - successful 7758 * other values - error 7759 **/ 7760 static int 7761 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 7762 { 7763 struct pci_dev *pdev = phba->pcidev; 7764 unsigned long bar0map_len, bar2map_len; 7765 int i, hbq_count; 7766 void *ptr; 7767 int error; 7768 7769 if (!pdev) 7770 return -ENODEV; 7771 7772 /* Set the device DMA mask size */ 7773 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7774 if (error) 7775 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7776 if (error) 7777 return error; 7778 error = -ENODEV; 7779 7780 /* Get the bus address of Bar0 and Bar2 and the number of bytes 7781 * required by each mapping. 7782 */ 7783 phba->pci_bar0_map = pci_resource_start(pdev, 0); 7784 bar0map_len = pci_resource_len(pdev, 0); 7785 7786 phba->pci_bar2_map = pci_resource_start(pdev, 2); 7787 bar2map_len = pci_resource_len(pdev, 2); 7788 7789 /* Map HBA SLIM to a kernel virtual address. */ 7790 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 7791 if (!phba->slim_memmap_p) { 7792 dev_printk(KERN_ERR, &pdev->dev, 7793 "ioremap failed for SLIM memory.\n"); 7794 goto out; 7795 } 7796 7797 /* Map HBA Control Registers to a kernel virtual address. */ 7798 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 7799 if (!phba->ctrl_regs_memmap_p) { 7800 dev_printk(KERN_ERR, &pdev->dev, 7801 "ioremap failed for HBA control registers.\n"); 7802 goto out_iounmap_slim; 7803 } 7804 7805 /* Allocate memory for SLI-2 structures */ 7806 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7807 &phba->slim2p.phys, GFP_KERNEL); 7808 if (!phba->slim2p.virt) 7809 goto out_iounmap; 7810 7811 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 7812 phba->mbox_ext = (phba->slim2p.virt + 7813 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 7814 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 7815 phba->IOCBs = (phba->slim2p.virt + 7816 offsetof(struct lpfc_sli2_slim, IOCBs)); 7817 7818 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 7819 lpfc_sli_hbq_size(), 7820 &phba->hbqslimp.phys, 7821 GFP_KERNEL); 7822 if (!phba->hbqslimp.virt) 7823 goto out_free_slim; 7824 7825 hbq_count = lpfc_sli_hbq_count(); 7826 ptr = phba->hbqslimp.virt; 7827 for (i = 0; i < hbq_count; ++i) { 7828 phba->hbqs[i].hbq_virt = ptr; 7829 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 7830 ptr += (lpfc_hbq_defs[i]->entry_count * 7831 sizeof(struct lpfc_hbq_entry)); 7832 } 7833 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 7834 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 7835 7836 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 7837 7838 phba->MBslimaddr = phba->slim_memmap_p; 7839 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 7840 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 7841 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 7842 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 7843 7844 return 0; 7845 7846 out_free_slim: 7847 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7848 phba->slim2p.virt, phba->slim2p.phys); 7849 out_iounmap: 7850 iounmap(phba->ctrl_regs_memmap_p); 7851 out_iounmap_slim: 7852 iounmap(phba->slim_memmap_p); 7853 out: 7854 return error; 7855 } 7856 7857 /** 7858 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 7859 * @phba: pointer to lpfc hba data structure. 7860 * 7861 * This routine is invoked to unset the PCI device memory space for device 7862 * with SLI-3 interface spec. 7863 **/ 7864 static void 7865 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 7866 { 7867 struct pci_dev *pdev; 7868 7869 /* Obtain PCI device reference */ 7870 if (!phba->pcidev) 7871 return; 7872 else 7873 pdev = phba->pcidev; 7874 7875 /* Free coherent DMA memory allocated */ 7876 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 7877 phba->hbqslimp.virt, phba->hbqslimp.phys); 7878 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7879 phba->slim2p.virt, phba->slim2p.phys); 7880 7881 /* I/O memory unmap */ 7882 iounmap(phba->ctrl_regs_memmap_p); 7883 iounmap(phba->slim_memmap_p); 7884 7885 return; 7886 } 7887 7888 /** 7889 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 7890 * @phba: pointer to lpfc hba data structure. 7891 * 7892 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 7893 * done and check status. 7894 * 7895 * Return 0 if successful, otherwise -ENODEV. 7896 **/ 7897 int 7898 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 7899 { 7900 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 7901 struct lpfc_register reg_data; 7902 int i, port_error = 0; 7903 uint32_t if_type; 7904 7905 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 7906 memset(®_data, 0, sizeof(reg_data)); 7907 if (!phba->sli4_hba.PSMPHRregaddr) 7908 return -ENODEV; 7909 7910 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 7911 for (i = 0; i < 3000; i++) { 7912 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 7913 &portsmphr_reg.word0) || 7914 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 7915 /* Port has a fatal POST error, break out */ 7916 port_error = -ENODEV; 7917 break; 7918 } 7919 if (LPFC_POST_STAGE_PORT_READY == 7920 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 7921 break; 7922 msleep(10); 7923 } 7924 7925 /* 7926 * If there was a port error during POST, then don't proceed with 7927 * other register reads as the data may not be valid. Just exit. 7928 */ 7929 if (port_error) { 7930 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7931 "1408 Port Failed POST - portsmphr=0x%x, " 7932 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 7933 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 7934 portsmphr_reg.word0, 7935 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 7936 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 7937 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 7938 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 7939 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 7940 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 7941 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 7942 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 7943 } else { 7944 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7945 "2534 Device Info: SLIFamily=0x%x, " 7946 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 7947 "SLIHint_2=0x%x, FT=0x%x\n", 7948 bf_get(lpfc_sli_intf_sli_family, 7949 &phba->sli4_hba.sli_intf), 7950 bf_get(lpfc_sli_intf_slirev, 7951 &phba->sli4_hba.sli_intf), 7952 bf_get(lpfc_sli_intf_if_type, 7953 &phba->sli4_hba.sli_intf), 7954 bf_get(lpfc_sli_intf_sli_hint1, 7955 &phba->sli4_hba.sli_intf), 7956 bf_get(lpfc_sli_intf_sli_hint2, 7957 &phba->sli4_hba.sli_intf), 7958 bf_get(lpfc_sli_intf_func_type, 7959 &phba->sli4_hba.sli_intf)); 7960 /* 7961 * Check for other Port errors during the initialization 7962 * process. Fail the load if the port did not come up 7963 * correctly. 7964 */ 7965 if_type = bf_get(lpfc_sli_intf_if_type, 7966 &phba->sli4_hba.sli_intf); 7967 switch (if_type) { 7968 case LPFC_SLI_INTF_IF_TYPE_0: 7969 phba->sli4_hba.ue_mask_lo = 7970 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 7971 phba->sli4_hba.ue_mask_hi = 7972 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 7973 uerrlo_reg.word0 = 7974 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 7975 uerrhi_reg.word0 = 7976 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 7977 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 7978 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 7979 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7980 "1422 Unrecoverable Error " 7981 "Detected during POST " 7982 "uerr_lo_reg=0x%x, " 7983 "uerr_hi_reg=0x%x, " 7984 "ue_mask_lo_reg=0x%x, " 7985 "ue_mask_hi_reg=0x%x\n", 7986 uerrlo_reg.word0, 7987 uerrhi_reg.word0, 7988 phba->sli4_hba.ue_mask_lo, 7989 phba->sli4_hba.ue_mask_hi); 7990 port_error = -ENODEV; 7991 } 7992 break; 7993 case LPFC_SLI_INTF_IF_TYPE_2: 7994 case LPFC_SLI_INTF_IF_TYPE_6: 7995 /* Final checks. The port status should be clean. */ 7996 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7997 ®_data.word0) || 7998 (bf_get(lpfc_sliport_status_err, ®_data) && 7999 !bf_get(lpfc_sliport_status_rn, ®_data))) { 8000 phba->work_status[0] = 8001 readl(phba->sli4_hba.u.if_type2. 8002 ERR1regaddr); 8003 phba->work_status[1] = 8004 readl(phba->sli4_hba.u.if_type2. 8005 ERR2regaddr); 8006 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8007 "2888 Unrecoverable port error " 8008 "following POST: port status reg " 8009 "0x%x, port_smphr reg 0x%x, " 8010 "error 1=0x%x, error 2=0x%x\n", 8011 reg_data.word0, 8012 portsmphr_reg.word0, 8013 phba->work_status[0], 8014 phba->work_status[1]); 8015 port_error = -ENODEV; 8016 } 8017 break; 8018 case LPFC_SLI_INTF_IF_TYPE_1: 8019 default: 8020 break; 8021 } 8022 } 8023 return port_error; 8024 } 8025 8026 /** 8027 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 8028 * @phba: pointer to lpfc hba data structure. 8029 * @if_type: The SLI4 interface type getting configured. 8030 * 8031 * This routine is invoked to set up SLI4 BAR0 PCI config space register 8032 * memory map. 8033 **/ 8034 static void 8035 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8036 { 8037 switch (if_type) { 8038 case LPFC_SLI_INTF_IF_TYPE_0: 8039 phba->sli4_hba.u.if_type0.UERRLOregaddr = 8040 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 8041 phba->sli4_hba.u.if_type0.UERRHIregaddr = 8042 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 8043 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 8044 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 8045 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 8046 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 8047 phba->sli4_hba.SLIINTFregaddr = 8048 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8049 break; 8050 case LPFC_SLI_INTF_IF_TYPE_2: 8051 phba->sli4_hba.u.if_type2.EQDregaddr = 8052 phba->sli4_hba.conf_regs_memmap_p + 8053 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8054 phba->sli4_hba.u.if_type2.ERR1regaddr = 8055 phba->sli4_hba.conf_regs_memmap_p + 8056 LPFC_CTL_PORT_ER1_OFFSET; 8057 phba->sli4_hba.u.if_type2.ERR2regaddr = 8058 phba->sli4_hba.conf_regs_memmap_p + 8059 LPFC_CTL_PORT_ER2_OFFSET; 8060 phba->sli4_hba.u.if_type2.CTRLregaddr = 8061 phba->sli4_hba.conf_regs_memmap_p + 8062 LPFC_CTL_PORT_CTL_OFFSET; 8063 phba->sli4_hba.u.if_type2.STATUSregaddr = 8064 phba->sli4_hba.conf_regs_memmap_p + 8065 LPFC_CTL_PORT_STA_OFFSET; 8066 phba->sli4_hba.SLIINTFregaddr = 8067 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8068 phba->sli4_hba.PSMPHRregaddr = 8069 phba->sli4_hba.conf_regs_memmap_p + 8070 LPFC_CTL_PORT_SEM_OFFSET; 8071 phba->sli4_hba.RQDBregaddr = 8072 phba->sli4_hba.conf_regs_memmap_p + 8073 LPFC_ULP0_RQ_DOORBELL; 8074 phba->sli4_hba.WQDBregaddr = 8075 phba->sli4_hba.conf_regs_memmap_p + 8076 LPFC_ULP0_WQ_DOORBELL; 8077 phba->sli4_hba.CQDBregaddr = 8078 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 8079 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8080 phba->sli4_hba.MQDBregaddr = 8081 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 8082 phba->sli4_hba.BMBXregaddr = 8083 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8084 break; 8085 case LPFC_SLI_INTF_IF_TYPE_6: 8086 phba->sli4_hba.u.if_type2.EQDregaddr = 8087 phba->sli4_hba.conf_regs_memmap_p + 8088 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8089 phba->sli4_hba.u.if_type2.ERR1regaddr = 8090 phba->sli4_hba.conf_regs_memmap_p + 8091 LPFC_CTL_PORT_ER1_OFFSET; 8092 phba->sli4_hba.u.if_type2.ERR2regaddr = 8093 phba->sli4_hba.conf_regs_memmap_p + 8094 LPFC_CTL_PORT_ER2_OFFSET; 8095 phba->sli4_hba.u.if_type2.CTRLregaddr = 8096 phba->sli4_hba.conf_regs_memmap_p + 8097 LPFC_CTL_PORT_CTL_OFFSET; 8098 phba->sli4_hba.u.if_type2.STATUSregaddr = 8099 phba->sli4_hba.conf_regs_memmap_p + 8100 LPFC_CTL_PORT_STA_OFFSET; 8101 phba->sli4_hba.PSMPHRregaddr = 8102 phba->sli4_hba.conf_regs_memmap_p + 8103 LPFC_CTL_PORT_SEM_OFFSET; 8104 phba->sli4_hba.BMBXregaddr = 8105 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8106 break; 8107 case LPFC_SLI_INTF_IF_TYPE_1: 8108 default: 8109 dev_printk(KERN_ERR, &phba->pcidev->dev, 8110 "FATAL - unsupported SLI4 interface type - %d\n", 8111 if_type); 8112 break; 8113 } 8114 } 8115 8116 /** 8117 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 8118 * @phba: pointer to lpfc hba data structure. 8119 * 8120 * This routine is invoked to set up SLI4 BAR1 register memory map. 8121 **/ 8122 static void 8123 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8124 { 8125 switch (if_type) { 8126 case LPFC_SLI_INTF_IF_TYPE_0: 8127 phba->sli4_hba.PSMPHRregaddr = 8128 phba->sli4_hba.ctrl_regs_memmap_p + 8129 LPFC_SLIPORT_IF0_SMPHR; 8130 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8131 LPFC_HST_ISR0; 8132 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8133 LPFC_HST_IMR0; 8134 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8135 LPFC_HST_ISCR0; 8136 break; 8137 case LPFC_SLI_INTF_IF_TYPE_6: 8138 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8139 LPFC_IF6_RQ_DOORBELL; 8140 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8141 LPFC_IF6_WQ_DOORBELL; 8142 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8143 LPFC_IF6_CQ_DOORBELL; 8144 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8145 LPFC_IF6_EQ_DOORBELL; 8146 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8147 LPFC_IF6_MQ_DOORBELL; 8148 break; 8149 case LPFC_SLI_INTF_IF_TYPE_2: 8150 case LPFC_SLI_INTF_IF_TYPE_1: 8151 default: 8152 dev_err(&phba->pcidev->dev, 8153 "FATAL - unsupported SLI4 interface type - %d\n", 8154 if_type); 8155 break; 8156 } 8157 } 8158 8159 /** 8160 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 8161 * @phba: pointer to lpfc hba data structure. 8162 * @vf: virtual function number 8163 * 8164 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 8165 * based on the given viftual function number, @vf. 8166 * 8167 * Return 0 if successful, otherwise -ENODEV. 8168 **/ 8169 static int 8170 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 8171 { 8172 if (vf > LPFC_VIR_FUNC_MAX) 8173 return -ENODEV; 8174 8175 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8176 vf * LPFC_VFR_PAGE_SIZE + 8177 LPFC_ULP0_RQ_DOORBELL); 8178 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8179 vf * LPFC_VFR_PAGE_SIZE + 8180 LPFC_ULP0_WQ_DOORBELL); 8181 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8182 vf * LPFC_VFR_PAGE_SIZE + 8183 LPFC_EQCQ_DOORBELL); 8184 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8185 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8186 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 8187 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8188 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 8189 return 0; 8190 } 8191 8192 /** 8193 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 8194 * @phba: pointer to lpfc hba data structure. 8195 * 8196 * This routine is invoked to create the bootstrap mailbox 8197 * region consistent with the SLI-4 interface spec. This 8198 * routine allocates all memory necessary to communicate 8199 * mailbox commands to the port and sets up all alignment 8200 * needs. No locks are expected to be held when calling 8201 * this routine. 8202 * 8203 * Return codes 8204 * 0 - successful 8205 * -ENOMEM - could not allocated memory. 8206 **/ 8207 static int 8208 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 8209 { 8210 uint32_t bmbx_size; 8211 struct lpfc_dmabuf *dmabuf; 8212 struct dma_address *dma_address; 8213 uint32_t pa_addr; 8214 uint64_t phys_addr; 8215 8216 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8217 if (!dmabuf) 8218 return -ENOMEM; 8219 8220 /* 8221 * The bootstrap mailbox region is comprised of 2 parts 8222 * plus an alignment restriction of 16 bytes. 8223 */ 8224 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 8225 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 8226 &dmabuf->phys, GFP_KERNEL); 8227 if (!dmabuf->virt) { 8228 kfree(dmabuf); 8229 return -ENOMEM; 8230 } 8231 8232 /* 8233 * Initialize the bootstrap mailbox pointers now so that the register 8234 * operations are simple later. The mailbox dma address is required 8235 * to be 16-byte aligned. Also align the virtual memory as each 8236 * maibox is copied into the bmbx mailbox region before issuing the 8237 * command to the port. 8238 */ 8239 phba->sli4_hba.bmbx.dmabuf = dmabuf; 8240 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 8241 8242 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 8243 LPFC_ALIGN_16_BYTE); 8244 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 8245 LPFC_ALIGN_16_BYTE); 8246 8247 /* 8248 * Set the high and low physical addresses now. The SLI4 alignment 8249 * requirement is 16 bytes and the mailbox is posted to the port 8250 * as two 30-bit addresses. The other data is a bit marking whether 8251 * the 30-bit address is the high or low address. 8252 * Upcast bmbx aphys to 64bits so shift instruction compiles 8253 * clean on 32 bit machines. 8254 */ 8255 dma_address = &phba->sli4_hba.bmbx.dma_address; 8256 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 8257 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 8258 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 8259 LPFC_BMBX_BIT1_ADDR_HI); 8260 8261 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 8262 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 8263 LPFC_BMBX_BIT1_ADDR_LO); 8264 return 0; 8265 } 8266 8267 /** 8268 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 8269 * @phba: pointer to lpfc hba data structure. 8270 * 8271 * This routine is invoked to teardown the bootstrap mailbox 8272 * region and release all host resources. This routine requires 8273 * the caller to ensure all mailbox commands recovered, no 8274 * additional mailbox comands are sent, and interrupts are disabled 8275 * before calling this routine. 8276 * 8277 **/ 8278 static void 8279 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 8280 { 8281 dma_free_coherent(&phba->pcidev->dev, 8282 phba->sli4_hba.bmbx.bmbx_size, 8283 phba->sli4_hba.bmbx.dmabuf->virt, 8284 phba->sli4_hba.bmbx.dmabuf->phys); 8285 8286 kfree(phba->sli4_hba.bmbx.dmabuf); 8287 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 8288 } 8289 8290 static const char * const lpfc_topo_to_str[] = { 8291 "Loop then P2P", 8292 "Loopback", 8293 "P2P Only", 8294 "Unsupported", 8295 "Loop Only", 8296 "Unsupported", 8297 "P2P then Loop", 8298 }; 8299 8300 /** 8301 * lpfc_map_topology - Map the topology read from READ_CONFIG 8302 * @phba: pointer to lpfc hba data structure. 8303 * @rdconf: pointer to read config data 8304 * 8305 * This routine is invoked to map the topology values as read 8306 * from the read config mailbox command. If the persistent 8307 * topology feature is supported, the firmware will provide the 8308 * saved topology information to be used in INIT_LINK 8309 * 8310 **/ 8311 #define LINK_FLAGS_DEF 0x0 8312 #define LINK_FLAGS_P2P 0x1 8313 #define LINK_FLAGS_LOOP 0x2 8314 static void 8315 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 8316 { 8317 u8 ptv, tf, pt; 8318 8319 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 8320 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 8321 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 8322 8323 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8324 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 8325 ptv, tf, pt); 8326 if (!ptv) { 8327 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8328 "2019 FW does not support persistent topology " 8329 "Using driver parameter defined value [%s]", 8330 lpfc_topo_to_str[phba->cfg_topology]); 8331 return; 8332 } 8333 /* FW supports persistent topology - override module parameter value */ 8334 phba->hba_flag |= HBA_PERSISTENT_TOPO; 8335 switch (phba->pcidev->device) { 8336 case PCI_DEVICE_ID_LANCER_G7_FC: 8337 case PCI_DEVICE_ID_LANCER_G6_FC: 8338 if (!tf) { 8339 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 8340 ? FLAGS_TOPOLOGY_MODE_LOOP 8341 : FLAGS_TOPOLOGY_MODE_PT_PT); 8342 } else { 8343 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 8344 } 8345 break; 8346 default: /* G5 */ 8347 if (tf) { 8348 /* If topology failover set - pt is '0' or '1' */ 8349 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 8350 FLAGS_TOPOLOGY_MODE_LOOP_PT); 8351 } else { 8352 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 8353 ? FLAGS_TOPOLOGY_MODE_PT_PT 8354 : FLAGS_TOPOLOGY_MODE_LOOP); 8355 } 8356 break; 8357 } 8358 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 8359 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8360 "2020 Using persistent topology value [%s]", 8361 lpfc_topo_to_str[phba->cfg_topology]); 8362 } else { 8363 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8364 "2021 Invalid topology values from FW " 8365 "Using driver parameter defined value [%s]", 8366 lpfc_topo_to_str[phba->cfg_topology]); 8367 } 8368 } 8369 8370 /** 8371 * lpfc_sli4_read_config - Get the config parameters. 8372 * @phba: pointer to lpfc hba data structure. 8373 * 8374 * This routine is invoked to read the configuration parameters from the HBA. 8375 * The configuration parameters are used to set the base and maximum values 8376 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 8377 * allocation for the port. 8378 * 8379 * Return codes 8380 * 0 - successful 8381 * -ENOMEM - No available memory 8382 * -EIO - The mailbox failed to complete successfully. 8383 **/ 8384 int 8385 lpfc_sli4_read_config(struct lpfc_hba *phba) 8386 { 8387 LPFC_MBOXQ_t *pmb; 8388 struct lpfc_mbx_read_config *rd_config; 8389 union lpfc_sli4_cfg_shdr *shdr; 8390 uint32_t shdr_status, shdr_add_status; 8391 struct lpfc_mbx_get_func_cfg *get_func_cfg; 8392 struct lpfc_rsrc_desc_fcfcoe *desc; 8393 char *pdesc_0; 8394 uint16_t forced_link_speed; 8395 uint32_t if_type, qmin; 8396 int length, i, rc = 0, rc2; 8397 8398 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8399 if (!pmb) { 8400 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8401 "2011 Unable to allocate memory for issuing " 8402 "SLI_CONFIG_SPECIAL mailbox command\n"); 8403 return -ENOMEM; 8404 } 8405 8406 lpfc_read_config(phba, pmb); 8407 8408 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8409 if (rc != MBX_SUCCESS) { 8410 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8411 "2012 Mailbox failed , mbxCmd x%x " 8412 "READ_CONFIG, mbxStatus x%x\n", 8413 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8414 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8415 rc = -EIO; 8416 } else { 8417 rd_config = &pmb->u.mqe.un.rd_config; 8418 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 8419 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 8420 phba->sli4_hba.lnk_info.lnk_tp = 8421 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 8422 phba->sli4_hba.lnk_info.lnk_no = 8423 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 8424 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8425 "3081 lnk_type:%d, lnk_numb:%d\n", 8426 phba->sli4_hba.lnk_info.lnk_tp, 8427 phba->sli4_hba.lnk_info.lnk_no); 8428 } else 8429 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8430 "3082 Mailbox (x%x) returned ldv:x0\n", 8431 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 8432 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 8433 phba->bbcredit_support = 1; 8434 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 8435 } 8436 8437 phba->sli4_hba.conf_trunk = 8438 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 8439 phba->sli4_hba.extents_in_use = 8440 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 8441 phba->sli4_hba.max_cfg_param.max_xri = 8442 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 8443 /* Reduce resource usage in kdump environment */ 8444 if (is_kdump_kernel() && 8445 phba->sli4_hba.max_cfg_param.max_xri > 512) 8446 phba->sli4_hba.max_cfg_param.max_xri = 512; 8447 phba->sli4_hba.max_cfg_param.xri_base = 8448 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 8449 phba->sli4_hba.max_cfg_param.max_vpi = 8450 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 8451 /* Limit the max we support */ 8452 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 8453 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 8454 phba->sli4_hba.max_cfg_param.vpi_base = 8455 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 8456 phba->sli4_hba.max_cfg_param.max_rpi = 8457 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 8458 phba->sli4_hba.max_cfg_param.rpi_base = 8459 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 8460 phba->sli4_hba.max_cfg_param.max_vfi = 8461 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 8462 phba->sli4_hba.max_cfg_param.vfi_base = 8463 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 8464 phba->sli4_hba.max_cfg_param.max_fcfi = 8465 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 8466 phba->sli4_hba.max_cfg_param.max_eq = 8467 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 8468 phba->sli4_hba.max_cfg_param.max_rq = 8469 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 8470 phba->sli4_hba.max_cfg_param.max_wq = 8471 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 8472 phba->sli4_hba.max_cfg_param.max_cq = 8473 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 8474 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 8475 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 8476 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 8477 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 8478 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 8479 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 8480 phba->max_vports = phba->max_vpi; 8481 lpfc_map_topology(phba, rd_config); 8482 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8483 "2003 cfg params Extents? %d " 8484 "XRI(B:%d M:%d), " 8485 "VPI(B:%d M:%d) " 8486 "VFI(B:%d M:%d) " 8487 "RPI(B:%d M:%d) " 8488 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d\n", 8489 phba->sli4_hba.extents_in_use, 8490 phba->sli4_hba.max_cfg_param.xri_base, 8491 phba->sli4_hba.max_cfg_param.max_xri, 8492 phba->sli4_hba.max_cfg_param.vpi_base, 8493 phba->sli4_hba.max_cfg_param.max_vpi, 8494 phba->sli4_hba.max_cfg_param.vfi_base, 8495 phba->sli4_hba.max_cfg_param.max_vfi, 8496 phba->sli4_hba.max_cfg_param.rpi_base, 8497 phba->sli4_hba.max_cfg_param.max_rpi, 8498 phba->sli4_hba.max_cfg_param.max_fcfi, 8499 phba->sli4_hba.max_cfg_param.max_eq, 8500 phba->sli4_hba.max_cfg_param.max_cq, 8501 phba->sli4_hba.max_cfg_param.max_wq, 8502 phba->sli4_hba.max_cfg_param.max_rq); 8503 8504 /* 8505 * Calculate queue resources based on how 8506 * many WQ/CQ/EQs are available. 8507 */ 8508 qmin = phba->sli4_hba.max_cfg_param.max_wq; 8509 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 8510 qmin = phba->sli4_hba.max_cfg_param.max_cq; 8511 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 8512 qmin = phba->sli4_hba.max_cfg_param.max_eq; 8513 /* 8514 * Whats left after this can go toward NVME / FCP. 8515 * The minus 4 accounts for ELS, NVME LS, MBOX 8516 * plus one extra. When configured for 8517 * NVMET, FCP io channel WQs are not created. 8518 */ 8519 qmin -= 4; 8520 8521 /* Check to see if there is enough for NVME */ 8522 if ((phba->cfg_irq_chann > qmin) || 8523 (phba->cfg_hdw_queue > qmin)) { 8524 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8525 "2005 Reducing Queues: " 8526 "WQ %d CQ %d EQ %d: min %d: " 8527 "IRQ %d HDWQ %d\n", 8528 phba->sli4_hba.max_cfg_param.max_wq, 8529 phba->sli4_hba.max_cfg_param.max_cq, 8530 phba->sli4_hba.max_cfg_param.max_eq, 8531 qmin, phba->cfg_irq_chann, 8532 phba->cfg_hdw_queue); 8533 8534 if (phba->cfg_irq_chann > qmin) 8535 phba->cfg_irq_chann = qmin; 8536 if (phba->cfg_hdw_queue > qmin) 8537 phba->cfg_hdw_queue = qmin; 8538 } 8539 } 8540 8541 if (rc) 8542 goto read_cfg_out; 8543 8544 /* Update link speed if forced link speed is supported */ 8545 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8546 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 8547 forced_link_speed = 8548 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 8549 if (forced_link_speed) { 8550 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 8551 8552 switch (forced_link_speed) { 8553 case LINK_SPEED_1G: 8554 phba->cfg_link_speed = 8555 LPFC_USER_LINK_SPEED_1G; 8556 break; 8557 case LINK_SPEED_2G: 8558 phba->cfg_link_speed = 8559 LPFC_USER_LINK_SPEED_2G; 8560 break; 8561 case LINK_SPEED_4G: 8562 phba->cfg_link_speed = 8563 LPFC_USER_LINK_SPEED_4G; 8564 break; 8565 case LINK_SPEED_8G: 8566 phba->cfg_link_speed = 8567 LPFC_USER_LINK_SPEED_8G; 8568 break; 8569 case LINK_SPEED_10G: 8570 phba->cfg_link_speed = 8571 LPFC_USER_LINK_SPEED_10G; 8572 break; 8573 case LINK_SPEED_16G: 8574 phba->cfg_link_speed = 8575 LPFC_USER_LINK_SPEED_16G; 8576 break; 8577 case LINK_SPEED_32G: 8578 phba->cfg_link_speed = 8579 LPFC_USER_LINK_SPEED_32G; 8580 break; 8581 case LINK_SPEED_64G: 8582 phba->cfg_link_speed = 8583 LPFC_USER_LINK_SPEED_64G; 8584 break; 8585 case 0xffff: 8586 phba->cfg_link_speed = 8587 LPFC_USER_LINK_SPEED_AUTO; 8588 break; 8589 default: 8590 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8591 "0047 Unrecognized link " 8592 "speed : %d\n", 8593 forced_link_speed); 8594 phba->cfg_link_speed = 8595 LPFC_USER_LINK_SPEED_AUTO; 8596 } 8597 } 8598 } 8599 8600 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 8601 length = phba->sli4_hba.max_cfg_param.max_xri - 8602 lpfc_sli4_get_els_iocb_cnt(phba); 8603 if (phba->cfg_hba_queue_depth > length) { 8604 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8605 "3361 HBA queue depth changed from %d to %d\n", 8606 phba->cfg_hba_queue_depth, length); 8607 phba->cfg_hba_queue_depth = length; 8608 } 8609 8610 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 8611 LPFC_SLI_INTF_IF_TYPE_2) 8612 goto read_cfg_out; 8613 8614 /* get the pf# and vf# for SLI4 if_type 2 port */ 8615 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 8616 sizeof(struct lpfc_sli4_cfg_mhdr)); 8617 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 8618 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 8619 length, LPFC_SLI4_MBX_EMBED); 8620 8621 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8622 shdr = (union lpfc_sli4_cfg_shdr *) 8623 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 8624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 8625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 8626 if (rc2 || shdr_status || shdr_add_status) { 8627 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8628 "3026 Mailbox failed , mbxCmd x%x " 8629 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 8630 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8631 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8632 goto read_cfg_out; 8633 } 8634 8635 /* search for fc_fcoe resrouce descriptor */ 8636 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 8637 8638 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 8639 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 8640 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 8641 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 8642 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 8643 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 8644 goto read_cfg_out; 8645 8646 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 8647 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 8648 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 8649 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 8650 phba->sli4_hba.iov.pf_number = 8651 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 8652 phba->sli4_hba.iov.vf_number = 8653 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 8654 break; 8655 } 8656 } 8657 8658 if (i < LPFC_RSRC_DESC_MAX_NUM) 8659 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8660 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 8661 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 8662 phba->sli4_hba.iov.vf_number); 8663 else 8664 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8665 "3028 GET_FUNCTION_CONFIG: failed to find " 8666 "Resource Descriptor:x%x\n", 8667 LPFC_RSRC_DESC_TYPE_FCFCOE); 8668 8669 read_cfg_out: 8670 mempool_free(pmb, phba->mbox_mem_pool); 8671 return rc; 8672 } 8673 8674 /** 8675 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 8676 * @phba: pointer to lpfc hba data structure. 8677 * 8678 * This routine is invoked to setup the port-side endian order when 8679 * the port if_type is 0. This routine has no function for other 8680 * if_types. 8681 * 8682 * Return codes 8683 * 0 - successful 8684 * -ENOMEM - No available memory 8685 * -EIO - The mailbox failed to complete successfully. 8686 **/ 8687 static int 8688 lpfc_setup_endian_order(struct lpfc_hba *phba) 8689 { 8690 LPFC_MBOXQ_t *mboxq; 8691 uint32_t if_type, rc = 0; 8692 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 8693 HOST_ENDIAN_HIGH_WORD1}; 8694 8695 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8696 switch (if_type) { 8697 case LPFC_SLI_INTF_IF_TYPE_0: 8698 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8699 GFP_KERNEL); 8700 if (!mboxq) { 8701 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8702 "0492 Unable to allocate memory for " 8703 "issuing SLI_CONFIG_SPECIAL mailbox " 8704 "command\n"); 8705 return -ENOMEM; 8706 } 8707 8708 /* 8709 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 8710 * two words to contain special data values and no other data. 8711 */ 8712 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 8713 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 8714 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8715 if (rc != MBX_SUCCESS) { 8716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8717 "0493 SLI_CONFIG_SPECIAL mailbox " 8718 "failed with status x%x\n", 8719 rc); 8720 rc = -EIO; 8721 } 8722 mempool_free(mboxq, phba->mbox_mem_pool); 8723 break; 8724 case LPFC_SLI_INTF_IF_TYPE_6: 8725 case LPFC_SLI_INTF_IF_TYPE_2: 8726 case LPFC_SLI_INTF_IF_TYPE_1: 8727 default: 8728 break; 8729 } 8730 return rc; 8731 } 8732 8733 /** 8734 * lpfc_sli4_queue_verify - Verify and update EQ counts 8735 * @phba: pointer to lpfc hba data structure. 8736 * 8737 * This routine is invoked to check the user settable queue counts for EQs. 8738 * After this routine is called the counts will be set to valid values that 8739 * adhere to the constraints of the system's interrupt vectors and the port's 8740 * queue resources. 8741 * 8742 * Return codes 8743 * 0 - successful 8744 * -ENOMEM - No available memory 8745 **/ 8746 static int 8747 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 8748 { 8749 /* 8750 * Sanity check for configured queue parameters against the run-time 8751 * device parameters 8752 */ 8753 8754 if (phba->nvmet_support) { 8755 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 8756 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 8757 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 8758 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 8759 } 8760 8761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8762 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 8763 phba->cfg_hdw_queue, phba->cfg_irq_chann, 8764 phba->cfg_nvmet_mrq); 8765 8766 /* Get EQ depth from module parameter, fake the default for now */ 8767 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8768 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8769 8770 /* Get CQ depth from module parameter, fake the default for now */ 8771 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8772 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8773 return 0; 8774 } 8775 8776 static int 8777 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 8778 { 8779 struct lpfc_queue *qdesc; 8780 u32 wqesize; 8781 int cpu; 8782 8783 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 8784 /* Create Fast Path IO CQs */ 8785 if (phba->enab_exp_wqcq_pages) 8786 /* Increase the CQ size when WQEs contain an embedded cdb */ 8787 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8788 phba->sli4_hba.cq_esize, 8789 LPFC_CQE_EXP_COUNT, cpu); 8790 8791 else 8792 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8793 phba->sli4_hba.cq_esize, 8794 phba->sli4_hba.cq_ecount, cpu); 8795 if (!qdesc) { 8796 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8797 "0499 Failed allocate fast-path IO CQ (%d)\n", idx); 8798 return 1; 8799 } 8800 qdesc->qe_valid = 1; 8801 qdesc->hdwq = idx; 8802 qdesc->chann = cpu; 8803 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 8804 8805 /* Create Fast Path IO WQs */ 8806 if (phba->enab_exp_wqcq_pages) { 8807 /* Increase the WQ size when WQEs contain an embedded cdb */ 8808 wqesize = (phba->fcp_embed_io) ? 8809 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 8810 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8811 wqesize, 8812 LPFC_WQE_EXP_COUNT, cpu); 8813 } else 8814 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8815 phba->sli4_hba.wq_esize, 8816 phba->sli4_hba.wq_ecount, cpu); 8817 8818 if (!qdesc) { 8819 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8820 "0503 Failed allocate fast-path IO WQ (%d)\n", 8821 idx); 8822 return 1; 8823 } 8824 qdesc->hdwq = idx; 8825 qdesc->chann = cpu; 8826 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 8827 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 8828 return 0; 8829 } 8830 8831 /** 8832 * lpfc_sli4_queue_create - Create all the SLI4 queues 8833 * @phba: pointer to lpfc hba data structure. 8834 * 8835 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 8836 * operation. For each SLI4 queue type, the parameters such as queue entry 8837 * count (queue depth) shall be taken from the module parameter. For now, 8838 * we just use some constant number as place holder. 8839 * 8840 * Return codes 8841 * 0 - successful 8842 * -ENOMEM - No availble memory 8843 * -EIO - The mailbox failed to complete successfully. 8844 **/ 8845 int 8846 lpfc_sli4_queue_create(struct lpfc_hba *phba) 8847 { 8848 struct lpfc_queue *qdesc; 8849 int idx, cpu, eqcpu; 8850 struct lpfc_sli4_hdw_queue *qp; 8851 struct lpfc_vector_map_info *cpup; 8852 struct lpfc_vector_map_info *eqcpup; 8853 struct lpfc_eq_intr_info *eqi; 8854 8855 /* 8856 * Create HBA Record arrays. 8857 * Both NVME and FCP will share that same vectors / EQs 8858 */ 8859 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 8860 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 8861 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 8862 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 8863 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 8864 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 8865 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8866 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8867 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8868 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8869 8870 if (!phba->sli4_hba.hdwq) { 8871 phba->sli4_hba.hdwq = kcalloc( 8872 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 8873 GFP_KERNEL); 8874 if (!phba->sli4_hba.hdwq) { 8875 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8876 "6427 Failed allocate memory for " 8877 "fast-path Hardware Queue array\n"); 8878 goto out_error; 8879 } 8880 /* Prepare hardware queues to take IO buffers */ 8881 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 8882 qp = &phba->sli4_hba.hdwq[idx]; 8883 spin_lock_init(&qp->io_buf_list_get_lock); 8884 spin_lock_init(&qp->io_buf_list_put_lock); 8885 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 8886 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 8887 qp->get_io_bufs = 0; 8888 qp->put_io_bufs = 0; 8889 qp->total_io_bufs = 0; 8890 spin_lock_init(&qp->abts_io_buf_list_lock); 8891 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 8892 qp->abts_scsi_io_bufs = 0; 8893 qp->abts_nvme_io_bufs = 0; 8894 INIT_LIST_HEAD(&qp->sgl_list); 8895 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 8896 spin_lock_init(&qp->hdwq_lock); 8897 } 8898 } 8899 8900 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8901 if (phba->nvmet_support) { 8902 phba->sli4_hba.nvmet_cqset = kcalloc( 8903 phba->cfg_nvmet_mrq, 8904 sizeof(struct lpfc_queue *), 8905 GFP_KERNEL); 8906 if (!phba->sli4_hba.nvmet_cqset) { 8907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8908 "3121 Fail allocate memory for " 8909 "fast-path CQ set array\n"); 8910 goto out_error; 8911 } 8912 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 8913 phba->cfg_nvmet_mrq, 8914 sizeof(struct lpfc_queue *), 8915 GFP_KERNEL); 8916 if (!phba->sli4_hba.nvmet_mrq_hdr) { 8917 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8918 "3122 Fail allocate memory for " 8919 "fast-path RQ set hdr array\n"); 8920 goto out_error; 8921 } 8922 phba->sli4_hba.nvmet_mrq_data = kcalloc( 8923 phba->cfg_nvmet_mrq, 8924 sizeof(struct lpfc_queue *), 8925 GFP_KERNEL); 8926 if (!phba->sli4_hba.nvmet_mrq_data) { 8927 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8928 "3124 Fail allocate memory for " 8929 "fast-path RQ set data array\n"); 8930 goto out_error; 8931 } 8932 } 8933 } 8934 8935 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 8936 8937 /* Create HBA Event Queues (EQs) */ 8938 for_each_present_cpu(cpu) { 8939 /* We only want to create 1 EQ per vector, even though 8940 * multiple CPUs might be using that vector. so only 8941 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 8942 */ 8943 cpup = &phba->sli4_hba.cpu_map[cpu]; 8944 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 8945 continue; 8946 8947 /* Get a ptr to the Hardware Queue associated with this CPU */ 8948 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 8949 8950 /* Allocate an EQ */ 8951 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8952 phba->sli4_hba.eq_esize, 8953 phba->sli4_hba.eq_ecount, cpu); 8954 if (!qdesc) { 8955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8956 "0497 Failed allocate EQ (%d)\n", 8957 cpup->hdwq); 8958 goto out_error; 8959 } 8960 qdesc->qe_valid = 1; 8961 qdesc->hdwq = cpup->hdwq; 8962 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 8963 qdesc->last_cpu = qdesc->chann; 8964 8965 /* Save the allocated EQ in the Hardware Queue */ 8966 qp->hba_eq = qdesc; 8967 8968 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 8969 list_add(&qdesc->cpu_list, &eqi->list); 8970 } 8971 8972 /* Now we need to populate the other Hardware Queues, that share 8973 * an IRQ vector, with the associated EQ ptr. 8974 */ 8975 for_each_present_cpu(cpu) { 8976 cpup = &phba->sli4_hba.cpu_map[cpu]; 8977 8978 /* Check for EQ already allocated in previous loop */ 8979 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 8980 continue; 8981 8982 /* Check for multiple CPUs per hdwq */ 8983 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 8984 if (qp->hba_eq) 8985 continue; 8986 8987 /* We need to share an EQ for this hdwq */ 8988 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 8989 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 8990 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 8991 } 8992 8993 /* Allocate IO Path SLI4 CQ/WQs */ 8994 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 8995 if (lpfc_alloc_io_wq_cq(phba, idx)) 8996 goto out_error; 8997 } 8998 8999 if (phba->nvmet_support) { 9000 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9001 cpu = lpfc_find_cpu_handle(phba, idx, 9002 LPFC_FIND_BY_HDWQ); 9003 qdesc = lpfc_sli4_queue_alloc(phba, 9004 LPFC_DEFAULT_PAGE_SIZE, 9005 phba->sli4_hba.cq_esize, 9006 phba->sli4_hba.cq_ecount, 9007 cpu); 9008 if (!qdesc) { 9009 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9010 "3142 Failed allocate NVME " 9011 "CQ Set (%d)\n", idx); 9012 goto out_error; 9013 } 9014 qdesc->qe_valid = 1; 9015 qdesc->hdwq = idx; 9016 qdesc->chann = cpu; 9017 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 9018 } 9019 } 9020 9021 /* 9022 * Create Slow Path Completion Queues (CQs) 9023 */ 9024 9025 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 9026 /* Create slow-path Mailbox Command Complete Queue */ 9027 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9028 phba->sli4_hba.cq_esize, 9029 phba->sli4_hba.cq_ecount, cpu); 9030 if (!qdesc) { 9031 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9032 "0500 Failed allocate slow-path mailbox CQ\n"); 9033 goto out_error; 9034 } 9035 qdesc->qe_valid = 1; 9036 phba->sli4_hba.mbx_cq = qdesc; 9037 9038 /* Create slow-path ELS Complete Queue */ 9039 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9040 phba->sli4_hba.cq_esize, 9041 phba->sli4_hba.cq_ecount, cpu); 9042 if (!qdesc) { 9043 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9044 "0501 Failed allocate slow-path ELS CQ\n"); 9045 goto out_error; 9046 } 9047 qdesc->qe_valid = 1; 9048 qdesc->chann = cpu; 9049 phba->sli4_hba.els_cq = qdesc; 9050 9051 9052 /* 9053 * Create Slow Path Work Queues (WQs) 9054 */ 9055 9056 /* Create Mailbox Command Queue */ 9057 9058 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9059 phba->sli4_hba.mq_esize, 9060 phba->sli4_hba.mq_ecount, cpu); 9061 if (!qdesc) { 9062 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9063 "0505 Failed allocate slow-path MQ\n"); 9064 goto out_error; 9065 } 9066 qdesc->chann = cpu; 9067 phba->sli4_hba.mbx_wq = qdesc; 9068 9069 /* 9070 * Create ELS Work Queues 9071 */ 9072 9073 /* Create slow-path ELS Work Queue */ 9074 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9075 phba->sli4_hba.wq_esize, 9076 phba->sli4_hba.wq_ecount, cpu); 9077 if (!qdesc) { 9078 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9079 "0504 Failed allocate slow-path ELS WQ\n"); 9080 goto out_error; 9081 } 9082 qdesc->chann = cpu; 9083 phba->sli4_hba.els_wq = qdesc; 9084 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9085 9086 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9087 /* Create NVME LS Complete Queue */ 9088 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9089 phba->sli4_hba.cq_esize, 9090 phba->sli4_hba.cq_ecount, cpu); 9091 if (!qdesc) { 9092 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9093 "6079 Failed allocate NVME LS CQ\n"); 9094 goto out_error; 9095 } 9096 qdesc->chann = cpu; 9097 qdesc->qe_valid = 1; 9098 phba->sli4_hba.nvmels_cq = qdesc; 9099 9100 /* Create NVME LS Work Queue */ 9101 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9102 phba->sli4_hba.wq_esize, 9103 phba->sli4_hba.wq_ecount, cpu); 9104 if (!qdesc) { 9105 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9106 "6080 Failed allocate NVME LS WQ\n"); 9107 goto out_error; 9108 } 9109 qdesc->chann = cpu; 9110 phba->sli4_hba.nvmels_wq = qdesc; 9111 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9112 } 9113 9114 /* 9115 * Create Receive Queue (RQ) 9116 */ 9117 9118 /* Create Receive Queue for header */ 9119 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9120 phba->sli4_hba.rq_esize, 9121 phba->sli4_hba.rq_ecount, cpu); 9122 if (!qdesc) { 9123 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9124 "0506 Failed allocate receive HRQ\n"); 9125 goto out_error; 9126 } 9127 phba->sli4_hba.hdr_rq = qdesc; 9128 9129 /* Create Receive Queue for data */ 9130 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9131 phba->sli4_hba.rq_esize, 9132 phba->sli4_hba.rq_ecount, cpu); 9133 if (!qdesc) { 9134 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9135 "0507 Failed allocate receive DRQ\n"); 9136 goto out_error; 9137 } 9138 phba->sli4_hba.dat_rq = qdesc; 9139 9140 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 9141 phba->nvmet_support) { 9142 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9143 cpu = lpfc_find_cpu_handle(phba, idx, 9144 LPFC_FIND_BY_HDWQ); 9145 /* Create NVMET Receive Queue for header */ 9146 qdesc = lpfc_sli4_queue_alloc(phba, 9147 LPFC_DEFAULT_PAGE_SIZE, 9148 phba->sli4_hba.rq_esize, 9149 LPFC_NVMET_RQE_DEF_COUNT, 9150 cpu); 9151 if (!qdesc) { 9152 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9153 "3146 Failed allocate " 9154 "receive HRQ\n"); 9155 goto out_error; 9156 } 9157 qdesc->hdwq = idx; 9158 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 9159 9160 /* Only needed for header of RQ pair */ 9161 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 9162 GFP_KERNEL, 9163 cpu_to_node(cpu)); 9164 if (qdesc->rqbp == NULL) { 9165 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9166 "6131 Failed allocate " 9167 "Header RQBP\n"); 9168 goto out_error; 9169 } 9170 9171 /* Put list in known state in case driver load fails. */ 9172 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 9173 9174 /* Create NVMET Receive Queue for data */ 9175 qdesc = lpfc_sli4_queue_alloc(phba, 9176 LPFC_DEFAULT_PAGE_SIZE, 9177 phba->sli4_hba.rq_esize, 9178 LPFC_NVMET_RQE_DEF_COUNT, 9179 cpu); 9180 if (!qdesc) { 9181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9182 "3156 Failed allocate " 9183 "receive DRQ\n"); 9184 goto out_error; 9185 } 9186 qdesc->hdwq = idx; 9187 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 9188 } 9189 } 9190 9191 /* Clear NVME stats */ 9192 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9193 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9194 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 9195 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 9196 } 9197 } 9198 9199 /* Clear SCSI stats */ 9200 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 9201 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9202 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 9203 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 9204 } 9205 } 9206 9207 return 0; 9208 9209 out_error: 9210 lpfc_sli4_queue_destroy(phba); 9211 return -ENOMEM; 9212 } 9213 9214 static inline void 9215 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 9216 { 9217 if (*qp != NULL) { 9218 lpfc_sli4_queue_free(*qp); 9219 *qp = NULL; 9220 } 9221 } 9222 9223 static inline void 9224 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 9225 { 9226 int idx; 9227 9228 if (*qs == NULL) 9229 return; 9230 9231 for (idx = 0; idx < max; idx++) 9232 __lpfc_sli4_release_queue(&(*qs)[idx]); 9233 9234 kfree(*qs); 9235 *qs = NULL; 9236 } 9237 9238 static inline void 9239 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 9240 { 9241 struct lpfc_sli4_hdw_queue *hdwq; 9242 struct lpfc_queue *eq; 9243 uint32_t idx; 9244 9245 hdwq = phba->sli4_hba.hdwq; 9246 9247 /* Loop thru all Hardware Queues */ 9248 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9249 /* Free the CQ/WQ corresponding to the Hardware Queue */ 9250 lpfc_sli4_queue_free(hdwq[idx].io_cq); 9251 lpfc_sli4_queue_free(hdwq[idx].io_wq); 9252 hdwq[idx].hba_eq = NULL; 9253 hdwq[idx].io_cq = NULL; 9254 hdwq[idx].io_wq = NULL; 9255 if (phba->cfg_xpsgl && !phba->nvmet_support) 9256 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 9257 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 9258 } 9259 /* Loop thru all IRQ vectors */ 9260 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 9261 /* Free the EQ corresponding to the IRQ vector */ 9262 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 9263 lpfc_sli4_queue_free(eq); 9264 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 9265 } 9266 } 9267 9268 /** 9269 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 9270 * @phba: pointer to lpfc hba data structure. 9271 * 9272 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 9273 * operation. 9274 * 9275 * Return codes 9276 * 0 - successful 9277 * -ENOMEM - No available memory 9278 * -EIO - The mailbox failed to complete successfully. 9279 **/ 9280 void 9281 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 9282 { 9283 /* 9284 * Set FREE_INIT before beginning to free the queues. 9285 * Wait until the users of queues to acknowledge to 9286 * release queues by clearing FREE_WAIT. 9287 */ 9288 spin_lock_irq(&phba->hbalock); 9289 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 9290 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 9291 spin_unlock_irq(&phba->hbalock); 9292 msleep(20); 9293 spin_lock_irq(&phba->hbalock); 9294 } 9295 spin_unlock_irq(&phba->hbalock); 9296 9297 lpfc_sli4_cleanup_poll_list(phba); 9298 9299 /* Release HBA eqs */ 9300 if (phba->sli4_hba.hdwq) 9301 lpfc_sli4_release_hdwq(phba); 9302 9303 if (phba->nvmet_support) { 9304 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 9305 phba->cfg_nvmet_mrq); 9306 9307 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 9308 phba->cfg_nvmet_mrq); 9309 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 9310 phba->cfg_nvmet_mrq); 9311 } 9312 9313 /* Release mailbox command work queue */ 9314 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 9315 9316 /* Release ELS work queue */ 9317 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 9318 9319 /* Release ELS work queue */ 9320 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 9321 9322 /* Release unsolicited receive queue */ 9323 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 9324 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 9325 9326 /* Release ELS complete queue */ 9327 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 9328 9329 /* Release NVME LS complete queue */ 9330 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 9331 9332 /* Release mailbox command complete queue */ 9333 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 9334 9335 /* Everything on this list has been freed */ 9336 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9337 9338 /* Done with freeing the queues */ 9339 spin_lock_irq(&phba->hbalock); 9340 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 9341 spin_unlock_irq(&phba->hbalock); 9342 } 9343 9344 int 9345 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 9346 { 9347 struct lpfc_rqb *rqbp; 9348 struct lpfc_dmabuf *h_buf; 9349 struct rqb_dmabuf *rqb_buffer; 9350 9351 rqbp = rq->rqbp; 9352 while (!list_empty(&rqbp->rqb_buffer_list)) { 9353 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 9354 struct lpfc_dmabuf, list); 9355 9356 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 9357 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 9358 rqbp->buffer_count--; 9359 } 9360 return 1; 9361 } 9362 9363 static int 9364 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 9365 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 9366 int qidx, uint32_t qtype) 9367 { 9368 struct lpfc_sli_ring *pring; 9369 int rc; 9370 9371 if (!eq || !cq || !wq) { 9372 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9373 "6085 Fast-path %s (%d) not allocated\n", 9374 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 9375 return -ENOMEM; 9376 } 9377 9378 /* create the Cq first */ 9379 rc = lpfc_cq_create(phba, cq, eq, 9380 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 9381 if (rc) { 9382 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9383 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 9384 qidx, (uint32_t)rc); 9385 return rc; 9386 } 9387 9388 if (qtype != LPFC_MBOX) { 9389 /* Setup cq_map for fast lookup */ 9390 if (cq_map) 9391 *cq_map = cq->queue_id; 9392 9393 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9394 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 9395 qidx, cq->queue_id, qidx, eq->queue_id); 9396 9397 /* create the wq */ 9398 rc = lpfc_wq_create(phba, wq, cq, qtype); 9399 if (rc) { 9400 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9401 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 9402 qidx, (uint32_t)rc); 9403 /* no need to tear down cq - caller will do so */ 9404 return rc; 9405 } 9406 9407 /* Bind this CQ/WQ to the NVME ring */ 9408 pring = wq->pring; 9409 pring->sli.sli4.wqp = (void *)wq; 9410 cq->pring = pring; 9411 9412 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9413 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 9414 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 9415 } else { 9416 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 9417 if (rc) { 9418 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9419 "0539 Failed setup of slow-path MQ: " 9420 "rc = 0x%x\n", rc); 9421 /* no need to tear down cq - caller will do so */ 9422 return rc; 9423 } 9424 9425 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9426 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 9427 phba->sli4_hba.mbx_wq->queue_id, 9428 phba->sli4_hba.mbx_cq->queue_id); 9429 } 9430 9431 return 0; 9432 } 9433 9434 /** 9435 * lpfc_setup_cq_lookup - Setup the CQ lookup table 9436 * @phba: pointer to lpfc hba data structure. 9437 * 9438 * This routine will populate the cq_lookup table by all 9439 * available CQ queue_id's. 9440 **/ 9441 static void 9442 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 9443 { 9444 struct lpfc_queue *eq, *childq; 9445 int qidx; 9446 9447 memset(phba->sli4_hba.cq_lookup, 0, 9448 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 9449 /* Loop thru all IRQ vectors */ 9450 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9451 /* Get the EQ corresponding to the IRQ vector */ 9452 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9453 if (!eq) 9454 continue; 9455 /* Loop through all CQs associated with that EQ */ 9456 list_for_each_entry(childq, &eq->child_list, list) { 9457 if (childq->queue_id > phba->sli4_hba.cq_max) 9458 continue; 9459 if (childq->subtype == LPFC_IO) 9460 phba->sli4_hba.cq_lookup[childq->queue_id] = 9461 childq; 9462 } 9463 } 9464 } 9465 9466 /** 9467 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 9468 * @phba: pointer to lpfc hba data structure. 9469 * 9470 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 9471 * operation. 9472 * 9473 * Return codes 9474 * 0 - successful 9475 * -ENOMEM - No available memory 9476 * -EIO - The mailbox failed to complete successfully. 9477 **/ 9478 int 9479 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 9480 { 9481 uint32_t shdr_status, shdr_add_status; 9482 union lpfc_sli4_cfg_shdr *shdr; 9483 struct lpfc_vector_map_info *cpup; 9484 struct lpfc_sli4_hdw_queue *qp; 9485 LPFC_MBOXQ_t *mboxq; 9486 int qidx, cpu; 9487 uint32_t length, usdelay; 9488 int rc = -ENOMEM; 9489 9490 /* Check for dual-ULP support */ 9491 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9492 if (!mboxq) { 9493 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9494 "3249 Unable to allocate memory for " 9495 "QUERY_FW_CFG mailbox command\n"); 9496 return -ENOMEM; 9497 } 9498 length = (sizeof(struct lpfc_mbx_query_fw_config) - 9499 sizeof(struct lpfc_sli4_cfg_mhdr)); 9500 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 9501 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 9502 length, LPFC_SLI4_MBX_EMBED); 9503 9504 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9505 9506 shdr = (union lpfc_sli4_cfg_shdr *) 9507 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 9508 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 9509 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 9510 if (shdr_status || shdr_add_status || rc) { 9511 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9512 "3250 QUERY_FW_CFG mailbox failed with status " 9513 "x%x add_status x%x, mbx status x%x\n", 9514 shdr_status, shdr_add_status, rc); 9515 if (rc != MBX_TIMEOUT) 9516 mempool_free(mboxq, phba->mbox_mem_pool); 9517 rc = -ENXIO; 9518 goto out_error; 9519 } 9520 9521 phba->sli4_hba.fw_func_mode = 9522 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 9523 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 9524 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 9525 phba->sli4_hba.physical_port = 9526 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 9527 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9528 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 9529 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 9530 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 9531 9532 if (rc != MBX_TIMEOUT) 9533 mempool_free(mboxq, phba->mbox_mem_pool); 9534 9535 /* 9536 * Set up HBA Event Queues (EQs) 9537 */ 9538 qp = phba->sli4_hba.hdwq; 9539 9540 /* Set up HBA event queue */ 9541 if (!qp) { 9542 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9543 "3147 Fast-path EQs not allocated\n"); 9544 rc = -ENOMEM; 9545 goto out_error; 9546 } 9547 9548 /* Loop thru all IRQ vectors */ 9549 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9550 /* Create HBA Event Queues (EQs) in order */ 9551 for_each_present_cpu(cpu) { 9552 cpup = &phba->sli4_hba.cpu_map[cpu]; 9553 9554 /* Look for the CPU thats using that vector with 9555 * LPFC_CPU_FIRST_IRQ set. 9556 */ 9557 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9558 continue; 9559 if (qidx != cpup->eq) 9560 continue; 9561 9562 /* Create an EQ for that vector */ 9563 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 9564 phba->cfg_fcp_imax); 9565 if (rc) { 9566 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9567 "0523 Failed setup of fast-path" 9568 " EQ (%d), rc = 0x%x\n", 9569 cpup->eq, (uint32_t)rc); 9570 goto out_destroy; 9571 } 9572 9573 /* Save the EQ for that vector in the hba_eq_hdl */ 9574 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 9575 qp[cpup->hdwq].hba_eq; 9576 9577 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9578 "2584 HBA EQ setup: queue[%d]-id=%d\n", 9579 cpup->eq, 9580 qp[cpup->hdwq].hba_eq->queue_id); 9581 } 9582 } 9583 9584 /* Loop thru all Hardware Queues */ 9585 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9586 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 9587 cpup = &phba->sli4_hba.cpu_map[cpu]; 9588 9589 /* Create the CQ/WQ corresponding to the Hardware Queue */ 9590 rc = lpfc_create_wq_cq(phba, 9591 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 9592 qp[qidx].io_cq, 9593 qp[qidx].io_wq, 9594 &phba->sli4_hba.hdwq[qidx].io_cq_map, 9595 qidx, 9596 LPFC_IO); 9597 if (rc) { 9598 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9599 "0535 Failed to setup fastpath " 9600 "IO WQ/CQ (%d), rc = 0x%x\n", 9601 qidx, (uint32_t)rc); 9602 goto out_destroy; 9603 } 9604 } 9605 9606 /* 9607 * Set up Slow Path Complete Queues (CQs) 9608 */ 9609 9610 /* Set up slow-path MBOX CQ/MQ */ 9611 9612 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 9613 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9614 "0528 %s not allocated\n", 9615 phba->sli4_hba.mbx_cq ? 9616 "Mailbox WQ" : "Mailbox CQ"); 9617 rc = -ENOMEM; 9618 goto out_destroy; 9619 } 9620 9621 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9622 phba->sli4_hba.mbx_cq, 9623 phba->sli4_hba.mbx_wq, 9624 NULL, 0, LPFC_MBOX); 9625 if (rc) { 9626 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9627 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 9628 (uint32_t)rc); 9629 goto out_destroy; 9630 } 9631 if (phba->nvmet_support) { 9632 if (!phba->sli4_hba.nvmet_cqset) { 9633 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9634 "3165 Fast-path NVME CQ Set " 9635 "array not allocated\n"); 9636 rc = -ENOMEM; 9637 goto out_destroy; 9638 } 9639 if (phba->cfg_nvmet_mrq > 1) { 9640 rc = lpfc_cq_create_set(phba, 9641 phba->sli4_hba.nvmet_cqset, 9642 qp, 9643 LPFC_WCQ, LPFC_NVMET); 9644 if (rc) { 9645 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9646 "3164 Failed setup of NVME CQ " 9647 "Set, rc = 0x%x\n", 9648 (uint32_t)rc); 9649 goto out_destroy; 9650 } 9651 } else { 9652 /* Set up NVMET Receive Complete Queue */ 9653 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 9654 qp[0].hba_eq, 9655 LPFC_WCQ, LPFC_NVMET); 9656 if (rc) { 9657 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9658 "6089 Failed setup NVMET CQ: " 9659 "rc = 0x%x\n", (uint32_t)rc); 9660 goto out_destroy; 9661 } 9662 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 9663 9664 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9665 "6090 NVMET CQ setup: cq-id=%d, " 9666 "parent eq-id=%d\n", 9667 phba->sli4_hba.nvmet_cqset[0]->queue_id, 9668 qp[0].hba_eq->queue_id); 9669 } 9670 } 9671 9672 /* Set up slow-path ELS WQ/CQ */ 9673 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 9674 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9675 "0530 ELS %s not allocated\n", 9676 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 9677 rc = -ENOMEM; 9678 goto out_destroy; 9679 } 9680 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9681 phba->sli4_hba.els_cq, 9682 phba->sli4_hba.els_wq, 9683 NULL, 0, LPFC_ELS); 9684 if (rc) { 9685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9686 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 9687 (uint32_t)rc); 9688 goto out_destroy; 9689 } 9690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9691 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 9692 phba->sli4_hba.els_wq->queue_id, 9693 phba->sli4_hba.els_cq->queue_id); 9694 9695 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9696 /* Set up NVME LS Complete Queue */ 9697 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 9698 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9699 "6091 LS %s not allocated\n", 9700 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 9701 rc = -ENOMEM; 9702 goto out_destroy; 9703 } 9704 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9705 phba->sli4_hba.nvmels_cq, 9706 phba->sli4_hba.nvmels_wq, 9707 NULL, 0, LPFC_NVME_LS); 9708 if (rc) { 9709 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9710 "0526 Failed setup of NVVME LS WQ/CQ: " 9711 "rc = 0x%x\n", (uint32_t)rc); 9712 goto out_destroy; 9713 } 9714 9715 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9716 "6096 ELS WQ setup: wq-id=%d, " 9717 "parent cq-id=%d\n", 9718 phba->sli4_hba.nvmels_wq->queue_id, 9719 phba->sli4_hba.nvmels_cq->queue_id); 9720 } 9721 9722 /* 9723 * Create NVMET Receive Queue (RQ) 9724 */ 9725 if (phba->nvmet_support) { 9726 if ((!phba->sli4_hba.nvmet_cqset) || 9727 (!phba->sli4_hba.nvmet_mrq_hdr) || 9728 (!phba->sli4_hba.nvmet_mrq_data)) { 9729 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9730 "6130 MRQ CQ Queues not " 9731 "allocated\n"); 9732 rc = -ENOMEM; 9733 goto out_destroy; 9734 } 9735 if (phba->cfg_nvmet_mrq > 1) { 9736 rc = lpfc_mrq_create(phba, 9737 phba->sli4_hba.nvmet_mrq_hdr, 9738 phba->sli4_hba.nvmet_mrq_data, 9739 phba->sli4_hba.nvmet_cqset, 9740 LPFC_NVMET); 9741 if (rc) { 9742 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9743 "6098 Failed setup of NVMET " 9744 "MRQ: rc = 0x%x\n", 9745 (uint32_t)rc); 9746 goto out_destroy; 9747 } 9748 9749 } else { 9750 rc = lpfc_rq_create(phba, 9751 phba->sli4_hba.nvmet_mrq_hdr[0], 9752 phba->sli4_hba.nvmet_mrq_data[0], 9753 phba->sli4_hba.nvmet_cqset[0], 9754 LPFC_NVMET); 9755 if (rc) { 9756 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9757 "6057 Failed setup of NVMET " 9758 "Receive Queue: rc = 0x%x\n", 9759 (uint32_t)rc); 9760 goto out_destroy; 9761 } 9762 9763 lpfc_printf_log( 9764 phba, KERN_INFO, LOG_INIT, 9765 "6099 NVMET RQ setup: hdr-rq-id=%d, " 9766 "dat-rq-id=%d parent cq-id=%d\n", 9767 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 9768 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 9769 phba->sli4_hba.nvmet_cqset[0]->queue_id); 9770 9771 } 9772 } 9773 9774 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 9775 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9776 "0540 Receive Queue not allocated\n"); 9777 rc = -ENOMEM; 9778 goto out_destroy; 9779 } 9780 9781 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 9782 phba->sli4_hba.els_cq, LPFC_USOL); 9783 if (rc) { 9784 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9785 "0541 Failed setup of Receive Queue: " 9786 "rc = 0x%x\n", (uint32_t)rc); 9787 goto out_destroy; 9788 } 9789 9790 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9791 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 9792 "parent cq-id=%d\n", 9793 phba->sli4_hba.hdr_rq->queue_id, 9794 phba->sli4_hba.dat_rq->queue_id, 9795 phba->sli4_hba.els_cq->queue_id); 9796 9797 if (phba->cfg_fcp_imax) 9798 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 9799 else 9800 usdelay = 0; 9801 9802 for (qidx = 0; qidx < phba->cfg_irq_chann; 9803 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 9804 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 9805 usdelay); 9806 9807 if (phba->sli4_hba.cq_max) { 9808 kfree(phba->sli4_hba.cq_lookup); 9809 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 9810 sizeof(struct lpfc_queue *), GFP_KERNEL); 9811 if (!phba->sli4_hba.cq_lookup) { 9812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9813 "0549 Failed setup of CQ Lookup table: " 9814 "size 0x%x\n", phba->sli4_hba.cq_max); 9815 rc = -ENOMEM; 9816 goto out_destroy; 9817 } 9818 lpfc_setup_cq_lookup(phba); 9819 } 9820 return 0; 9821 9822 out_destroy: 9823 lpfc_sli4_queue_unset(phba); 9824 out_error: 9825 return rc; 9826 } 9827 9828 /** 9829 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 9830 * @phba: pointer to lpfc hba data structure. 9831 * 9832 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 9833 * operation. 9834 * 9835 * Return codes 9836 * 0 - successful 9837 * -ENOMEM - No available memory 9838 * -EIO - The mailbox failed to complete successfully. 9839 **/ 9840 void 9841 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 9842 { 9843 struct lpfc_sli4_hdw_queue *qp; 9844 struct lpfc_queue *eq; 9845 int qidx; 9846 9847 /* Unset mailbox command work queue */ 9848 if (phba->sli4_hba.mbx_wq) 9849 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 9850 9851 /* Unset NVME LS work queue */ 9852 if (phba->sli4_hba.nvmels_wq) 9853 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 9854 9855 /* Unset ELS work queue */ 9856 if (phba->sli4_hba.els_wq) 9857 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 9858 9859 /* Unset unsolicited receive queue */ 9860 if (phba->sli4_hba.hdr_rq) 9861 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 9862 phba->sli4_hba.dat_rq); 9863 9864 /* Unset mailbox command complete queue */ 9865 if (phba->sli4_hba.mbx_cq) 9866 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 9867 9868 /* Unset ELS complete queue */ 9869 if (phba->sli4_hba.els_cq) 9870 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 9871 9872 /* Unset NVME LS complete queue */ 9873 if (phba->sli4_hba.nvmels_cq) 9874 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 9875 9876 if (phba->nvmet_support) { 9877 /* Unset NVMET MRQ queue */ 9878 if (phba->sli4_hba.nvmet_mrq_hdr) { 9879 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9880 lpfc_rq_destroy( 9881 phba, 9882 phba->sli4_hba.nvmet_mrq_hdr[qidx], 9883 phba->sli4_hba.nvmet_mrq_data[qidx]); 9884 } 9885 9886 /* Unset NVMET CQ Set complete queue */ 9887 if (phba->sli4_hba.nvmet_cqset) { 9888 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9889 lpfc_cq_destroy( 9890 phba, phba->sli4_hba.nvmet_cqset[qidx]); 9891 } 9892 } 9893 9894 /* Unset fast-path SLI4 queues */ 9895 if (phba->sli4_hba.hdwq) { 9896 /* Loop thru all Hardware Queues */ 9897 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9898 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 9899 qp = &phba->sli4_hba.hdwq[qidx]; 9900 lpfc_wq_destroy(phba, qp->io_wq); 9901 lpfc_cq_destroy(phba, qp->io_cq); 9902 } 9903 /* Loop thru all IRQ vectors */ 9904 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9905 /* Destroy the EQ corresponding to the IRQ vector */ 9906 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9907 lpfc_eq_destroy(phba, eq); 9908 } 9909 } 9910 9911 kfree(phba->sli4_hba.cq_lookup); 9912 phba->sli4_hba.cq_lookup = NULL; 9913 phba->sli4_hba.cq_max = 0; 9914 } 9915 9916 /** 9917 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 9918 * @phba: pointer to lpfc hba data structure. 9919 * 9920 * This routine is invoked to allocate and set up a pool of completion queue 9921 * events. The body of the completion queue event is a completion queue entry 9922 * CQE. For now, this pool is used for the interrupt service routine to queue 9923 * the following HBA completion queue events for the worker thread to process: 9924 * - Mailbox asynchronous events 9925 * - Receive queue completion unsolicited events 9926 * Later, this can be used for all the slow-path events. 9927 * 9928 * Return codes 9929 * 0 - successful 9930 * -ENOMEM - No available memory 9931 **/ 9932 static int 9933 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 9934 { 9935 struct lpfc_cq_event *cq_event; 9936 int i; 9937 9938 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 9939 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 9940 if (!cq_event) 9941 goto out_pool_create_fail; 9942 list_add_tail(&cq_event->list, 9943 &phba->sli4_hba.sp_cqe_event_pool); 9944 } 9945 return 0; 9946 9947 out_pool_create_fail: 9948 lpfc_sli4_cq_event_pool_destroy(phba); 9949 return -ENOMEM; 9950 } 9951 9952 /** 9953 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 9954 * @phba: pointer to lpfc hba data structure. 9955 * 9956 * This routine is invoked to free the pool of completion queue events at 9957 * driver unload time. Note that, it is the responsibility of the driver 9958 * cleanup routine to free all the outstanding completion-queue events 9959 * allocated from this pool back into the pool before invoking this routine 9960 * to destroy the pool. 9961 **/ 9962 static void 9963 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 9964 { 9965 struct lpfc_cq_event *cq_event, *next_cq_event; 9966 9967 list_for_each_entry_safe(cq_event, next_cq_event, 9968 &phba->sli4_hba.sp_cqe_event_pool, list) { 9969 list_del(&cq_event->list); 9970 kfree(cq_event); 9971 } 9972 } 9973 9974 /** 9975 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 9976 * @phba: pointer to lpfc hba data structure. 9977 * 9978 * This routine is the lock free version of the API invoked to allocate a 9979 * completion-queue event from the free pool. 9980 * 9981 * Return: Pointer to the newly allocated completion-queue event if successful 9982 * NULL otherwise. 9983 **/ 9984 struct lpfc_cq_event * 9985 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 9986 { 9987 struct lpfc_cq_event *cq_event = NULL; 9988 9989 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 9990 struct lpfc_cq_event, list); 9991 return cq_event; 9992 } 9993 9994 /** 9995 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 9996 * @phba: pointer to lpfc hba data structure. 9997 * 9998 * This routine is the lock version of the API invoked to allocate a 9999 * completion-queue event from the free pool. 10000 * 10001 * Return: Pointer to the newly allocated completion-queue event if successful 10002 * NULL otherwise. 10003 **/ 10004 struct lpfc_cq_event * 10005 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10006 { 10007 struct lpfc_cq_event *cq_event; 10008 unsigned long iflags; 10009 10010 spin_lock_irqsave(&phba->hbalock, iflags); 10011 cq_event = __lpfc_sli4_cq_event_alloc(phba); 10012 spin_unlock_irqrestore(&phba->hbalock, iflags); 10013 return cq_event; 10014 } 10015 10016 /** 10017 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10018 * @phba: pointer to lpfc hba data structure. 10019 * @cq_event: pointer to the completion queue event to be freed. 10020 * 10021 * This routine is the lock free version of the API invoked to release a 10022 * completion-queue event back into the free pool. 10023 **/ 10024 void 10025 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10026 struct lpfc_cq_event *cq_event) 10027 { 10028 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 10029 } 10030 10031 /** 10032 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10033 * @phba: pointer to lpfc hba data structure. 10034 * @cq_event: pointer to the completion queue event to be freed. 10035 * 10036 * This routine is the lock version of the API invoked to release a 10037 * completion-queue event back into the free pool. 10038 **/ 10039 void 10040 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10041 struct lpfc_cq_event *cq_event) 10042 { 10043 unsigned long iflags; 10044 spin_lock_irqsave(&phba->hbalock, iflags); 10045 __lpfc_sli4_cq_event_release(phba, cq_event); 10046 spin_unlock_irqrestore(&phba->hbalock, iflags); 10047 } 10048 10049 /** 10050 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 10051 * @phba: pointer to lpfc hba data structure. 10052 * 10053 * This routine is to free all the pending completion-queue events to the 10054 * back into the free pool for device reset. 10055 **/ 10056 static void 10057 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 10058 { 10059 LIST_HEAD(cqelist); 10060 struct lpfc_cq_event *cqe; 10061 unsigned long iflags; 10062 10063 /* Retrieve all the pending WCQEs from pending WCQE lists */ 10064 spin_lock_irqsave(&phba->hbalock, iflags); 10065 /* Pending FCP XRI abort events */ 10066 list_splice_init(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 10067 &cqelist); 10068 /* Pending ELS XRI abort events */ 10069 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 10070 &cqelist); 10071 /* Pending asynnc events */ 10072 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 10073 &cqelist); 10074 spin_unlock_irqrestore(&phba->hbalock, iflags); 10075 10076 while (!list_empty(&cqelist)) { 10077 list_remove_head(&cqelist, cqe, struct lpfc_cq_event, list); 10078 lpfc_sli4_cq_event_release(phba, cqe); 10079 } 10080 } 10081 10082 /** 10083 * lpfc_pci_function_reset - Reset pci function. 10084 * @phba: pointer to lpfc hba data structure. 10085 * 10086 * This routine is invoked to request a PCI function reset. It will destroys 10087 * all resources assigned to the PCI function which originates this request. 10088 * 10089 * Return codes 10090 * 0 - successful 10091 * -ENOMEM - No available memory 10092 * -EIO - The mailbox failed to complete successfully. 10093 **/ 10094 int 10095 lpfc_pci_function_reset(struct lpfc_hba *phba) 10096 { 10097 LPFC_MBOXQ_t *mboxq; 10098 uint32_t rc = 0, if_type; 10099 uint32_t shdr_status, shdr_add_status; 10100 uint32_t rdy_chk; 10101 uint32_t port_reset = 0; 10102 union lpfc_sli4_cfg_shdr *shdr; 10103 struct lpfc_register reg_data; 10104 uint16_t devid; 10105 10106 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10107 switch (if_type) { 10108 case LPFC_SLI_INTF_IF_TYPE_0: 10109 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10110 GFP_KERNEL); 10111 if (!mboxq) { 10112 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10113 "0494 Unable to allocate memory for " 10114 "issuing SLI_FUNCTION_RESET mailbox " 10115 "command\n"); 10116 return -ENOMEM; 10117 } 10118 10119 /* Setup PCI function reset mailbox-ioctl command */ 10120 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10121 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 10122 LPFC_SLI4_MBX_EMBED); 10123 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10124 shdr = (union lpfc_sli4_cfg_shdr *) 10125 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10126 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10127 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 10128 &shdr->response); 10129 if (rc != MBX_TIMEOUT) 10130 mempool_free(mboxq, phba->mbox_mem_pool); 10131 if (shdr_status || shdr_add_status || rc) { 10132 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10133 "0495 SLI_FUNCTION_RESET mailbox " 10134 "failed with status x%x add_status x%x," 10135 " mbx status x%x\n", 10136 shdr_status, shdr_add_status, rc); 10137 rc = -ENXIO; 10138 } 10139 break; 10140 case LPFC_SLI_INTF_IF_TYPE_2: 10141 case LPFC_SLI_INTF_IF_TYPE_6: 10142 wait: 10143 /* 10144 * Poll the Port Status Register and wait for RDY for 10145 * up to 30 seconds. If the port doesn't respond, treat 10146 * it as an error. 10147 */ 10148 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 10149 if (lpfc_readl(phba->sli4_hba.u.if_type2. 10150 STATUSregaddr, ®_data.word0)) { 10151 rc = -ENODEV; 10152 goto out; 10153 } 10154 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 10155 break; 10156 msleep(20); 10157 } 10158 10159 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 10160 phba->work_status[0] = readl( 10161 phba->sli4_hba.u.if_type2.ERR1regaddr); 10162 phba->work_status[1] = readl( 10163 phba->sli4_hba.u.if_type2.ERR2regaddr); 10164 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10165 "2890 Port not ready, port status reg " 10166 "0x%x error 1=0x%x, error 2=0x%x\n", 10167 reg_data.word0, 10168 phba->work_status[0], 10169 phba->work_status[1]); 10170 rc = -ENODEV; 10171 goto out; 10172 } 10173 10174 if (!port_reset) { 10175 /* 10176 * Reset the port now 10177 */ 10178 reg_data.word0 = 0; 10179 bf_set(lpfc_sliport_ctrl_end, ®_data, 10180 LPFC_SLIPORT_LITTLE_ENDIAN); 10181 bf_set(lpfc_sliport_ctrl_ip, ®_data, 10182 LPFC_SLIPORT_INIT_PORT); 10183 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 10184 CTRLregaddr); 10185 /* flush */ 10186 pci_read_config_word(phba->pcidev, 10187 PCI_DEVICE_ID, &devid); 10188 10189 port_reset = 1; 10190 msleep(20); 10191 goto wait; 10192 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 10193 rc = -ENODEV; 10194 goto out; 10195 } 10196 break; 10197 10198 case LPFC_SLI_INTF_IF_TYPE_1: 10199 default: 10200 break; 10201 } 10202 10203 out: 10204 /* Catch the not-ready port failure after a port reset. */ 10205 if (rc) { 10206 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10207 "3317 HBA not functional: IP Reset Failed " 10208 "try: echo fw_reset > board_mode\n"); 10209 rc = -ENODEV; 10210 } 10211 10212 return rc; 10213 } 10214 10215 /** 10216 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 10217 * @phba: pointer to lpfc hba data structure. 10218 * 10219 * This routine is invoked to set up the PCI device memory space for device 10220 * with SLI-4 interface spec. 10221 * 10222 * Return codes 10223 * 0 - successful 10224 * other values - error 10225 **/ 10226 static int 10227 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 10228 { 10229 struct pci_dev *pdev = phba->pcidev; 10230 unsigned long bar0map_len, bar1map_len, bar2map_len; 10231 int error; 10232 uint32_t if_type; 10233 10234 if (!pdev) 10235 return -ENODEV; 10236 10237 /* Set the device DMA mask size */ 10238 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 10239 if (error) 10240 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 10241 if (error) 10242 return error; 10243 10244 /* 10245 * The BARs and register set definitions and offset locations are 10246 * dependent on the if_type. 10247 */ 10248 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 10249 &phba->sli4_hba.sli_intf.word0)) { 10250 return -ENODEV; 10251 } 10252 10253 /* There is no SLI3 failback for SLI4 devices. */ 10254 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 10255 LPFC_SLI_INTF_VALID) { 10256 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10257 "2894 SLI_INTF reg contents invalid " 10258 "sli_intf reg 0x%x\n", 10259 phba->sli4_hba.sli_intf.word0); 10260 return -ENODEV; 10261 } 10262 10263 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10264 /* 10265 * Get the bus address of SLI4 device Bar regions and the 10266 * number of bytes required by each mapping. The mapping of the 10267 * particular PCI BARs regions is dependent on the type of 10268 * SLI4 device. 10269 */ 10270 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 10271 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 10272 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 10273 10274 /* 10275 * Map SLI4 PCI Config Space Register base to a kernel virtual 10276 * addr 10277 */ 10278 phba->sli4_hba.conf_regs_memmap_p = 10279 ioremap(phba->pci_bar0_map, bar0map_len); 10280 if (!phba->sli4_hba.conf_regs_memmap_p) { 10281 dev_printk(KERN_ERR, &pdev->dev, 10282 "ioremap failed for SLI4 PCI config " 10283 "registers.\n"); 10284 return -ENODEV; 10285 } 10286 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 10287 /* Set up BAR0 PCI config space register memory map */ 10288 lpfc_sli4_bar0_register_memmap(phba, if_type); 10289 } else { 10290 phba->pci_bar0_map = pci_resource_start(pdev, 1); 10291 bar0map_len = pci_resource_len(pdev, 1); 10292 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10293 dev_printk(KERN_ERR, &pdev->dev, 10294 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 10295 return -ENODEV; 10296 } 10297 phba->sli4_hba.conf_regs_memmap_p = 10298 ioremap(phba->pci_bar0_map, bar0map_len); 10299 if (!phba->sli4_hba.conf_regs_memmap_p) { 10300 dev_printk(KERN_ERR, &pdev->dev, 10301 "ioremap failed for SLI4 PCI config " 10302 "registers.\n"); 10303 return -ENODEV; 10304 } 10305 lpfc_sli4_bar0_register_memmap(phba, if_type); 10306 } 10307 10308 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10309 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 10310 /* 10311 * Map SLI4 if type 0 HBA Control Register base to a 10312 * kernel virtual address and setup the registers. 10313 */ 10314 phba->pci_bar1_map = pci_resource_start(pdev, 10315 PCI_64BIT_BAR2); 10316 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10317 phba->sli4_hba.ctrl_regs_memmap_p = 10318 ioremap(phba->pci_bar1_map, 10319 bar1map_len); 10320 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 10321 dev_err(&pdev->dev, 10322 "ioremap failed for SLI4 HBA " 10323 "control registers.\n"); 10324 error = -ENOMEM; 10325 goto out_iounmap_conf; 10326 } 10327 phba->pci_bar2_memmap_p = 10328 phba->sli4_hba.ctrl_regs_memmap_p; 10329 lpfc_sli4_bar1_register_memmap(phba, if_type); 10330 } else { 10331 error = -ENOMEM; 10332 goto out_iounmap_conf; 10333 } 10334 } 10335 10336 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 10337 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 10338 /* 10339 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 10340 * virtual address and setup the registers. 10341 */ 10342 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 10343 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10344 phba->sli4_hba.drbl_regs_memmap_p = 10345 ioremap(phba->pci_bar1_map, bar1map_len); 10346 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10347 dev_err(&pdev->dev, 10348 "ioremap failed for SLI4 HBA doorbell registers.\n"); 10349 error = -ENOMEM; 10350 goto out_iounmap_conf; 10351 } 10352 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 10353 lpfc_sli4_bar1_register_memmap(phba, if_type); 10354 } 10355 10356 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10357 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10358 /* 10359 * Map SLI4 if type 0 HBA Doorbell Register base to 10360 * a kernel virtual address and setup the registers. 10361 */ 10362 phba->pci_bar2_map = pci_resource_start(pdev, 10363 PCI_64BIT_BAR4); 10364 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10365 phba->sli4_hba.drbl_regs_memmap_p = 10366 ioremap(phba->pci_bar2_map, 10367 bar2map_len); 10368 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10369 dev_err(&pdev->dev, 10370 "ioremap failed for SLI4 HBA" 10371 " doorbell registers.\n"); 10372 error = -ENOMEM; 10373 goto out_iounmap_ctrl; 10374 } 10375 phba->pci_bar4_memmap_p = 10376 phba->sli4_hba.drbl_regs_memmap_p; 10377 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 10378 if (error) 10379 goto out_iounmap_all; 10380 } else { 10381 error = -ENOMEM; 10382 goto out_iounmap_all; 10383 } 10384 } 10385 10386 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 10387 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10388 /* 10389 * Map SLI4 if type 6 HBA DPP Register base to a kernel 10390 * virtual address and setup the registers. 10391 */ 10392 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 10393 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10394 phba->sli4_hba.dpp_regs_memmap_p = 10395 ioremap(phba->pci_bar2_map, bar2map_len); 10396 if (!phba->sli4_hba.dpp_regs_memmap_p) { 10397 dev_err(&pdev->dev, 10398 "ioremap failed for SLI4 HBA dpp registers.\n"); 10399 error = -ENOMEM; 10400 goto out_iounmap_ctrl; 10401 } 10402 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 10403 } 10404 10405 /* Set up the EQ/CQ register handeling functions now */ 10406 switch (if_type) { 10407 case LPFC_SLI_INTF_IF_TYPE_0: 10408 case LPFC_SLI_INTF_IF_TYPE_2: 10409 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 10410 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 10411 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 10412 break; 10413 case LPFC_SLI_INTF_IF_TYPE_6: 10414 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 10415 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 10416 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 10417 break; 10418 default: 10419 break; 10420 } 10421 10422 return 0; 10423 10424 out_iounmap_all: 10425 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10426 out_iounmap_ctrl: 10427 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10428 out_iounmap_conf: 10429 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10430 10431 return error; 10432 } 10433 10434 /** 10435 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 10436 * @phba: pointer to lpfc hba data structure. 10437 * 10438 * This routine is invoked to unset the PCI device memory space for device 10439 * with SLI-4 interface spec. 10440 **/ 10441 static void 10442 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 10443 { 10444 uint32_t if_type; 10445 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10446 10447 switch (if_type) { 10448 case LPFC_SLI_INTF_IF_TYPE_0: 10449 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10450 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10451 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10452 break; 10453 case LPFC_SLI_INTF_IF_TYPE_2: 10454 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10455 break; 10456 case LPFC_SLI_INTF_IF_TYPE_6: 10457 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10458 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10459 if (phba->sli4_hba.dpp_regs_memmap_p) 10460 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 10461 break; 10462 case LPFC_SLI_INTF_IF_TYPE_1: 10463 default: 10464 dev_printk(KERN_ERR, &phba->pcidev->dev, 10465 "FATAL - unsupported SLI4 interface type - %d\n", 10466 if_type); 10467 break; 10468 } 10469 } 10470 10471 /** 10472 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 10473 * @phba: pointer to lpfc hba data structure. 10474 * 10475 * This routine is invoked to enable the MSI-X interrupt vectors to device 10476 * with SLI-3 interface specs. 10477 * 10478 * Return codes 10479 * 0 - successful 10480 * other values - error 10481 **/ 10482 static int 10483 lpfc_sli_enable_msix(struct lpfc_hba *phba) 10484 { 10485 int rc; 10486 LPFC_MBOXQ_t *pmb; 10487 10488 /* Set up MSI-X multi-message vectors */ 10489 rc = pci_alloc_irq_vectors(phba->pcidev, 10490 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 10491 if (rc < 0) { 10492 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10493 "0420 PCI enable MSI-X failed (%d)\n", rc); 10494 goto vec_fail_out; 10495 } 10496 10497 /* 10498 * Assign MSI-X vectors to interrupt handlers 10499 */ 10500 10501 /* vector-0 is associated to slow-path handler */ 10502 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 10503 &lpfc_sli_sp_intr_handler, 0, 10504 LPFC_SP_DRIVER_HANDLER_NAME, phba); 10505 if (rc) { 10506 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10507 "0421 MSI-X slow-path request_irq failed " 10508 "(%d)\n", rc); 10509 goto msi_fail_out; 10510 } 10511 10512 /* vector-1 is associated to fast-path handler */ 10513 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 10514 &lpfc_sli_fp_intr_handler, 0, 10515 LPFC_FP_DRIVER_HANDLER_NAME, phba); 10516 10517 if (rc) { 10518 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10519 "0429 MSI-X fast-path request_irq failed " 10520 "(%d)\n", rc); 10521 goto irq_fail_out; 10522 } 10523 10524 /* 10525 * Configure HBA MSI-X attention conditions to messages 10526 */ 10527 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10528 10529 if (!pmb) { 10530 rc = -ENOMEM; 10531 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10532 "0474 Unable to allocate memory for issuing " 10533 "MBOX_CONFIG_MSI command\n"); 10534 goto mem_fail_out; 10535 } 10536 rc = lpfc_config_msi(phba, pmb); 10537 if (rc) 10538 goto mbx_fail_out; 10539 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10540 if (rc != MBX_SUCCESS) { 10541 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 10542 "0351 Config MSI mailbox command failed, " 10543 "mbxCmd x%x, mbxStatus x%x\n", 10544 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 10545 goto mbx_fail_out; 10546 } 10547 10548 /* Free memory allocated for mailbox command */ 10549 mempool_free(pmb, phba->mbox_mem_pool); 10550 return rc; 10551 10552 mbx_fail_out: 10553 /* Free memory allocated for mailbox command */ 10554 mempool_free(pmb, phba->mbox_mem_pool); 10555 10556 mem_fail_out: 10557 /* free the irq already requested */ 10558 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 10559 10560 irq_fail_out: 10561 /* free the irq already requested */ 10562 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 10563 10564 msi_fail_out: 10565 /* Unconfigure MSI-X capability structure */ 10566 pci_free_irq_vectors(phba->pcidev); 10567 10568 vec_fail_out: 10569 return rc; 10570 } 10571 10572 /** 10573 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 10574 * @phba: pointer to lpfc hba data structure. 10575 * 10576 * This routine is invoked to enable the MSI interrupt mode to device with 10577 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 10578 * enable the MSI vector. The device driver is responsible for calling the 10579 * request_irq() to register MSI vector with a interrupt the handler, which 10580 * is done in this function. 10581 * 10582 * Return codes 10583 * 0 - successful 10584 * other values - error 10585 */ 10586 static int 10587 lpfc_sli_enable_msi(struct lpfc_hba *phba) 10588 { 10589 int rc; 10590 10591 rc = pci_enable_msi(phba->pcidev); 10592 if (!rc) 10593 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10594 "0462 PCI enable MSI mode success.\n"); 10595 else { 10596 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10597 "0471 PCI enable MSI mode failed (%d)\n", rc); 10598 return rc; 10599 } 10600 10601 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10602 0, LPFC_DRIVER_NAME, phba); 10603 if (rc) { 10604 pci_disable_msi(phba->pcidev); 10605 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10606 "0478 MSI request_irq failed (%d)\n", rc); 10607 } 10608 return rc; 10609 } 10610 10611 /** 10612 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 10613 * @phba: pointer to lpfc hba data structure. 10614 * 10615 * This routine is invoked to enable device interrupt and associate driver's 10616 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 10617 * spec. Depends on the interrupt mode configured to the driver, the driver 10618 * will try to fallback from the configured interrupt mode to an interrupt 10619 * mode which is supported by the platform, kernel, and device in the order 10620 * of: 10621 * MSI-X -> MSI -> IRQ. 10622 * 10623 * Return codes 10624 * 0 - successful 10625 * other values - error 10626 **/ 10627 static uint32_t 10628 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 10629 { 10630 uint32_t intr_mode = LPFC_INTR_ERROR; 10631 int retval; 10632 10633 if (cfg_mode == 2) { 10634 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 10635 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 10636 if (!retval) { 10637 /* Now, try to enable MSI-X interrupt mode */ 10638 retval = lpfc_sli_enable_msix(phba); 10639 if (!retval) { 10640 /* Indicate initialization to MSI-X mode */ 10641 phba->intr_type = MSIX; 10642 intr_mode = 2; 10643 } 10644 } 10645 } 10646 10647 /* Fallback to MSI if MSI-X initialization failed */ 10648 if (cfg_mode >= 1 && phba->intr_type == NONE) { 10649 retval = lpfc_sli_enable_msi(phba); 10650 if (!retval) { 10651 /* Indicate initialization to MSI mode */ 10652 phba->intr_type = MSI; 10653 intr_mode = 1; 10654 } 10655 } 10656 10657 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 10658 if (phba->intr_type == NONE) { 10659 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10660 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 10661 if (!retval) { 10662 /* Indicate initialization to INTx mode */ 10663 phba->intr_type = INTx; 10664 intr_mode = 0; 10665 } 10666 } 10667 return intr_mode; 10668 } 10669 10670 /** 10671 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 10672 * @phba: pointer to lpfc hba data structure. 10673 * 10674 * This routine is invoked to disable device interrupt and disassociate the 10675 * driver's interrupt handler(s) from interrupt vector(s) to device with 10676 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 10677 * release the interrupt vector(s) for the message signaled interrupt. 10678 **/ 10679 static void 10680 lpfc_sli_disable_intr(struct lpfc_hba *phba) 10681 { 10682 int nr_irqs, i; 10683 10684 if (phba->intr_type == MSIX) 10685 nr_irqs = LPFC_MSIX_VECTORS; 10686 else 10687 nr_irqs = 1; 10688 10689 for (i = 0; i < nr_irqs; i++) 10690 free_irq(pci_irq_vector(phba->pcidev, i), phba); 10691 pci_free_irq_vectors(phba->pcidev); 10692 10693 /* Reset interrupt management states */ 10694 phba->intr_type = NONE; 10695 phba->sli.slistat.sli_intr = 0; 10696 } 10697 10698 /** 10699 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 10700 * @phba: pointer to lpfc hba data structure. 10701 * @id: EQ vector index or Hardware Queue index 10702 * @match: LPFC_FIND_BY_EQ = match by EQ 10703 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 10704 * Return the CPU that matches the selection criteria 10705 */ 10706 static uint16_t 10707 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 10708 { 10709 struct lpfc_vector_map_info *cpup; 10710 int cpu; 10711 10712 /* Loop through all CPUs */ 10713 for_each_present_cpu(cpu) { 10714 cpup = &phba->sli4_hba.cpu_map[cpu]; 10715 10716 /* If we are matching by EQ, there may be multiple CPUs using 10717 * using the same vector, so select the one with 10718 * LPFC_CPU_FIRST_IRQ set. 10719 */ 10720 if ((match == LPFC_FIND_BY_EQ) && 10721 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 10722 (cpup->eq == id)) 10723 return cpu; 10724 10725 /* If matching by HDWQ, select the first CPU that matches */ 10726 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 10727 return cpu; 10728 } 10729 return 0; 10730 } 10731 10732 #ifdef CONFIG_X86 10733 /** 10734 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 10735 * @phba: pointer to lpfc hba data structure. 10736 * @cpu: CPU map index 10737 * @phys_id: CPU package physical id 10738 * @core_id: CPU core id 10739 */ 10740 static int 10741 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 10742 uint16_t phys_id, uint16_t core_id) 10743 { 10744 struct lpfc_vector_map_info *cpup; 10745 int idx; 10746 10747 for_each_present_cpu(idx) { 10748 cpup = &phba->sli4_hba.cpu_map[idx]; 10749 /* Does the cpup match the one we are looking for */ 10750 if ((cpup->phys_id == phys_id) && 10751 (cpup->core_id == core_id) && 10752 (cpu != idx)) 10753 return 1; 10754 } 10755 return 0; 10756 } 10757 #endif 10758 10759 /* 10760 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 10761 * @phba: pointer to lpfc hba data structure. 10762 * @eqidx: index for eq and irq vector 10763 * @flag: flags to set for vector_map structure 10764 * @cpu: cpu used to index vector_map structure 10765 * 10766 * The routine assigns eq info into vector_map structure 10767 */ 10768 static inline void 10769 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 10770 unsigned int cpu) 10771 { 10772 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 10773 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 10774 10775 cpup->eq = eqidx; 10776 cpup->flag |= flag; 10777 10778 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10779 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 10780 cpu, eqhdl->irq, cpup->eq, cpup->flag); 10781 } 10782 10783 /** 10784 * lpfc_cpu_map_array_init - Initialize cpu_map structure 10785 * @phba: pointer to lpfc hba data structure. 10786 * 10787 * The routine initializes the cpu_map array structure 10788 */ 10789 static void 10790 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 10791 { 10792 struct lpfc_vector_map_info *cpup; 10793 struct lpfc_eq_intr_info *eqi; 10794 int cpu; 10795 10796 for_each_possible_cpu(cpu) { 10797 cpup = &phba->sli4_hba.cpu_map[cpu]; 10798 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 10799 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 10800 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 10801 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 10802 cpup->flag = 0; 10803 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 10804 INIT_LIST_HEAD(&eqi->list); 10805 eqi->icnt = 0; 10806 } 10807 } 10808 10809 /** 10810 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 10811 * @phba: pointer to lpfc hba data structure. 10812 * 10813 * The routine initializes the hba_eq_hdl array structure 10814 */ 10815 static void 10816 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 10817 { 10818 struct lpfc_hba_eq_hdl *eqhdl; 10819 int i; 10820 10821 for (i = 0; i < phba->cfg_irq_chann; i++) { 10822 eqhdl = lpfc_get_eq_hdl(i); 10823 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 10824 eqhdl->phba = phba; 10825 } 10826 } 10827 10828 /** 10829 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 10830 * @phba: pointer to lpfc hba data structure. 10831 * @vectors: number of msix vectors allocated. 10832 * 10833 * The routine will figure out the CPU affinity assignment for every 10834 * MSI-X vector allocated for the HBA. 10835 * In addition, the CPU to IO channel mapping will be calculated 10836 * and the phba->sli4_hba.cpu_map array will reflect this. 10837 */ 10838 static void 10839 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 10840 { 10841 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 10842 int max_phys_id, min_phys_id; 10843 int max_core_id, min_core_id; 10844 struct lpfc_vector_map_info *cpup; 10845 struct lpfc_vector_map_info *new_cpup; 10846 #ifdef CONFIG_X86 10847 struct cpuinfo_x86 *cpuinfo; 10848 #endif 10849 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 10850 struct lpfc_hdwq_stat *c_stat; 10851 #endif 10852 10853 max_phys_id = 0; 10854 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 10855 max_core_id = 0; 10856 min_core_id = LPFC_VECTOR_MAP_EMPTY; 10857 10858 /* Update CPU map with physical id and core id of each CPU */ 10859 for_each_present_cpu(cpu) { 10860 cpup = &phba->sli4_hba.cpu_map[cpu]; 10861 #ifdef CONFIG_X86 10862 cpuinfo = &cpu_data(cpu); 10863 cpup->phys_id = cpuinfo->phys_proc_id; 10864 cpup->core_id = cpuinfo->cpu_core_id; 10865 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 10866 cpup->flag |= LPFC_CPU_MAP_HYPER; 10867 #else 10868 /* No distinction between CPUs for other platforms */ 10869 cpup->phys_id = 0; 10870 cpup->core_id = cpu; 10871 #endif 10872 10873 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10874 "3328 CPU %d physid %d coreid %d flag x%x\n", 10875 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 10876 10877 if (cpup->phys_id > max_phys_id) 10878 max_phys_id = cpup->phys_id; 10879 if (cpup->phys_id < min_phys_id) 10880 min_phys_id = cpup->phys_id; 10881 10882 if (cpup->core_id > max_core_id) 10883 max_core_id = cpup->core_id; 10884 if (cpup->core_id < min_core_id) 10885 min_core_id = cpup->core_id; 10886 } 10887 10888 /* After looking at each irq vector assigned to this pcidev, its 10889 * possible to see that not ALL CPUs have been accounted for. 10890 * Next we will set any unassigned (unaffinitized) cpu map 10891 * entries to a IRQ on the same phys_id. 10892 */ 10893 first_cpu = cpumask_first(cpu_present_mask); 10894 start_cpu = first_cpu; 10895 10896 for_each_present_cpu(cpu) { 10897 cpup = &phba->sli4_hba.cpu_map[cpu]; 10898 10899 /* Is this CPU entry unassigned */ 10900 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 10901 /* Mark CPU as IRQ not assigned by the kernel */ 10902 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 10903 10904 /* If so, find a new_cpup thats on the the SAME 10905 * phys_id as cpup. start_cpu will start where we 10906 * left off so all unassigned entries don't get assgined 10907 * the IRQ of the first entry. 10908 */ 10909 new_cpu = start_cpu; 10910 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 10911 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 10912 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 10913 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 10914 (new_cpup->phys_id == cpup->phys_id)) 10915 goto found_same; 10916 new_cpu = cpumask_next( 10917 new_cpu, cpu_present_mask); 10918 if (new_cpu == nr_cpumask_bits) 10919 new_cpu = first_cpu; 10920 } 10921 /* At this point, we leave the CPU as unassigned */ 10922 continue; 10923 found_same: 10924 /* We found a matching phys_id, so copy the IRQ info */ 10925 cpup->eq = new_cpup->eq; 10926 10927 /* Bump start_cpu to the next slot to minmize the 10928 * chance of having multiple unassigned CPU entries 10929 * selecting the same IRQ. 10930 */ 10931 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 10932 if (start_cpu == nr_cpumask_bits) 10933 start_cpu = first_cpu; 10934 10935 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10936 "3337 Set Affinity: CPU %d " 10937 "eq %d from peer cpu %d same " 10938 "phys_id (%d)\n", 10939 cpu, cpup->eq, new_cpu, 10940 cpup->phys_id); 10941 } 10942 } 10943 10944 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 10945 start_cpu = first_cpu; 10946 10947 for_each_present_cpu(cpu) { 10948 cpup = &phba->sli4_hba.cpu_map[cpu]; 10949 10950 /* Is this entry unassigned */ 10951 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 10952 /* Mark it as IRQ not assigned by the kernel */ 10953 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 10954 10955 /* If so, find a new_cpup thats on ANY phys_id 10956 * as the cpup. start_cpu will start where we 10957 * left off so all unassigned entries don't get 10958 * assigned the IRQ of the first entry. 10959 */ 10960 new_cpu = start_cpu; 10961 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 10962 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 10963 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 10964 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 10965 goto found_any; 10966 new_cpu = cpumask_next( 10967 new_cpu, cpu_present_mask); 10968 if (new_cpu == nr_cpumask_bits) 10969 new_cpu = first_cpu; 10970 } 10971 /* We should never leave an entry unassigned */ 10972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10973 "3339 Set Affinity: CPU %d " 10974 "eq %d UNASSIGNED\n", 10975 cpup->hdwq, cpup->eq); 10976 continue; 10977 found_any: 10978 /* We found an available entry, copy the IRQ info */ 10979 cpup->eq = new_cpup->eq; 10980 10981 /* Bump start_cpu to the next slot to minmize the 10982 * chance of having multiple unassigned CPU entries 10983 * selecting the same IRQ. 10984 */ 10985 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 10986 if (start_cpu == nr_cpumask_bits) 10987 start_cpu = first_cpu; 10988 10989 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10990 "3338 Set Affinity: CPU %d " 10991 "eq %d from peer cpu %d (%d/%d)\n", 10992 cpu, cpup->eq, new_cpu, 10993 new_cpup->phys_id, new_cpup->core_id); 10994 } 10995 } 10996 10997 /* Assign hdwq indices that are unique across all cpus in the map 10998 * that are also FIRST_CPUs. 10999 */ 11000 idx = 0; 11001 for_each_present_cpu(cpu) { 11002 cpup = &phba->sli4_hba.cpu_map[cpu]; 11003 11004 /* Only FIRST IRQs get a hdwq index assignment. */ 11005 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11006 continue; 11007 11008 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 11009 cpup->hdwq = idx; 11010 idx++; 11011 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11012 "3333 Set Affinity: CPU %d (phys %d core %d): " 11013 "hdwq %d eq %d flg x%x\n", 11014 cpu, cpup->phys_id, cpup->core_id, 11015 cpup->hdwq, cpup->eq, cpup->flag); 11016 } 11017 /* Associate a hdwq with each cpu_map entry 11018 * This will be 1 to 1 - hdwq to cpu, unless there are less 11019 * hardware queues then CPUs. For that case we will just round-robin 11020 * the available hardware queues as they get assigned to CPUs. 11021 * The next_idx is the idx from the FIRST_CPU loop above to account 11022 * for irq_chann < hdwq. The idx is used for round-robin assignments 11023 * and needs to start at 0. 11024 */ 11025 next_idx = idx; 11026 start_cpu = 0; 11027 idx = 0; 11028 for_each_present_cpu(cpu) { 11029 cpup = &phba->sli4_hba.cpu_map[cpu]; 11030 11031 /* FIRST cpus are already mapped. */ 11032 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 11033 continue; 11034 11035 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 11036 * of the unassigned cpus to the next idx so that all 11037 * hdw queues are fully utilized. 11038 */ 11039 if (next_idx < phba->cfg_hdw_queue) { 11040 cpup->hdwq = next_idx; 11041 next_idx++; 11042 continue; 11043 } 11044 11045 /* Not a First CPU and all hdw_queues are used. Reuse a 11046 * Hardware Queue for another CPU, so be smart about it 11047 * and pick one that has its IRQ/EQ mapped to the same phys_id 11048 * (CPU package) and core_id. 11049 */ 11050 new_cpu = start_cpu; 11051 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11052 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11053 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11054 new_cpup->phys_id == cpup->phys_id && 11055 new_cpup->core_id == cpup->core_id) { 11056 goto found_hdwq; 11057 } 11058 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11059 if (new_cpu == nr_cpumask_bits) 11060 new_cpu = first_cpu; 11061 } 11062 11063 /* If we can't match both phys_id and core_id, 11064 * settle for just a phys_id match. 11065 */ 11066 new_cpu = start_cpu; 11067 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11068 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11069 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11070 new_cpup->phys_id == cpup->phys_id) 11071 goto found_hdwq; 11072 11073 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11074 if (new_cpu == nr_cpumask_bits) 11075 new_cpu = first_cpu; 11076 } 11077 11078 /* Otherwise just round robin on cfg_hdw_queue */ 11079 cpup->hdwq = idx % phba->cfg_hdw_queue; 11080 idx++; 11081 goto logit; 11082 found_hdwq: 11083 /* We found an available entry, copy the IRQ info */ 11084 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11085 if (start_cpu == nr_cpumask_bits) 11086 start_cpu = first_cpu; 11087 cpup->hdwq = new_cpup->hdwq; 11088 logit: 11089 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11090 "3335 Set Affinity: CPU %d (phys %d core %d): " 11091 "hdwq %d eq %d flg x%x\n", 11092 cpu, cpup->phys_id, cpup->core_id, 11093 cpup->hdwq, cpup->eq, cpup->flag); 11094 } 11095 11096 /* 11097 * Initialize the cpu_map slots for not-present cpus in case 11098 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 11099 */ 11100 idx = 0; 11101 for_each_possible_cpu(cpu) { 11102 cpup = &phba->sli4_hba.cpu_map[cpu]; 11103 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11104 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 11105 c_stat->hdwq_no = cpup->hdwq; 11106 #endif 11107 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 11108 continue; 11109 11110 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 11111 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11112 c_stat->hdwq_no = cpup->hdwq; 11113 #endif 11114 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11115 "3340 Set Affinity: not present " 11116 "CPU %d hdwq %d\n", 11117 cpu, cpup->hdwq); 11118 } 11119 11120 /* The cpu_map array will be used later during initialization 11121 * when EQ / CQ / WQs are allocated and configured. 11122 */ 11123 return; 11124 } 11125 11126 /** 11127 * lpfc_cpuhp_get_eq 11128 * 11129 * @phba: pointer to lpfc hba data structure. 11130 * @cpu: cpu going offline 11131 * @eqlist: 11132 */ 11133 static int 11134 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 11135 struct list_head *eqlist) 11136 { 11137 const struct cpumask *maskp; 11138 struct lpfc_queue *eq; 11139 struct cpumask *tmp; 11140 u16 idx; 11141 11142 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 11143 if (!tmp) 11144 return -ENOMEM; 11145 11146 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11147 maskp = pci_irq_get_affinity(phba->pcidev, idx); 11148 if (!maskp) 11149 continue; 11150 /* 11151 * if irq is not affinitized to the cpu going 11152 * then we don't need to poll the eq attached 11153 * to it. 11154 */ 11155 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 11156 continue; 11157 /* get the cpus that are online and are affini- 11158 * tized to this irq vector. If the count is 11159 * more than 1 then cpuhp is not going to shut- 11160 * down this vector. Since this cpu has not 11161 * gone offline yet, we need >1. 11162 */ 11163 cpumask_and(tmp, maskp, cpu_online_mask); 11164 if (cpumask_weight(tmp) > 1) 11165 continue; 11166 11167 /* Now that we have an irq to shutdown, get the eq 11168 * mapped to this irq. Note: multiple hdwq's in 11169 * the software can share an eq, but eventually 11170 * only eq will be mapped to this vector 11171 */ 11172 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 11173 list_add(&eq->_poll_list, eqlist); 11174 } 11175 kfree(tmp); 11176 return 0; 11177 } 11178 11179 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 11180 { 11181 if (phba->sli_rev != LPFC_SLI_REV4) 11182 return; 11183 11184 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 11185 &phba->cpuhp); 11186 /* 11187 * unregistering the instance doesn't stop the polling 11188 * timer. Wait for the poll timer to retire. 11189 */ 11190 synchronize_rcu(); 11191 del_timer_sync(&phba->cpuhp_poll_timer); 11192 } 11193 11194 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 11195 { 11196 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 11197 return; 11198 11199 __lpfc_cpuhp_remove(phba); 11200 } 11201 11202 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 11203 { 11204 if (phba->sli_rev != LPFC_SLI_REV4) 11205 return; 11206 11207 rcu_read_lock(); 11208 11209 if (!list_empty(&phba->poll_list)) 11210 mod_timer(&phba->cpuhp_poll_timer, 11211 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 11212 11213 rcu_read_unlock(); 11214 11215 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 11216 &phba->cpuhp); 11217 } 11218 11219 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 11220 { 11221 if (phba->pport->load_flag & FC_UNLOADING) { 11222 *retval = -EAGAIN; 11223 return true; 11224 } 11225 11226 if (phba->sli_rev != LPFC_SLI_REV4) { 11227 *retval = 0; 11228 return true; 11229 } 11230 11231 /* proceed with the hotplug */ 11232 return false; 11233 } 11234 11235 /** 11236 * lpfc_irq_set_aff - set IRQ affinity 11237 * @eqhdl: EQ handle 11238 * @cpu: cpu to set affinity 11239 * 11240 **/ 11241 static inline void 11242 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 11243 { 11244 cpumask_clear(&eqhdl->aff_mask); 11245 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 11246 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11247 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11248 } 11249 11250 /** 11251 * lpfc_irq_clear_aff - clear IRQ affinity 11252 * @eqhdl: EQ handle 11253 * 11254 **/ 11255 static inline void 11256 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 11257 { 11258 cpumask_clear(&eqhdl->aff_mask); 11259 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11260 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11261 } 11262 11263 /** 11264 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 11265 * @phba: pointer to HBA context object. 11266 * @cpu: cpu going offline/online 11267 * @offline: true, cpu is going offline. false, cpu is coming online. 11268 * 11269 * If cpu is going offline, we'll try our best effort to find the next 11270 * online cpu on the phba's original_mask and migrate all offlining IRQ 11271 * affinities. 11272 * 11273 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 11274 * 11275 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 11276 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 11277 * 11278 **/ 11279 static void 11280 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 11281 { 11282 struct lpfc_vector_map_info *cpup; 11283 struct cpumask *aff_mask; 11284 unsigned int cpu_select, cpu_next, idx; 11285 const struct cpumask *orig_mask; 11286 11287 if (phba->irq_chann_mode == NORMAL_MODE) 11288 return; 11289 11290 orig_mask = &phba->sli4_hba.irq_aff_mask; 11291 11292 if (!cpumask_test_cpu(cpu, orig_mask)) 11293 return; 11294 11295 cpup = &phba->sli4_hba.cpu_map[cpu]; 11296 11297 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11298 return; 11299 11300 if (offline) { 11301 /* Find next online CPU on original mask */ 11302 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 11303 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 11304 11305 /* Found a valid CPU */ 11306 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 11307 /* Go through each eqhdl and ensure offlining 11308 * cpu aff_mask is migrated 11309 */ 11310 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11311 aff_mask = lpfc_get_aff_mask(idx); 11312 11313 /* Migrate affinity */ 11314 if (cpumask_test_cpu(cpu, aff_mask)) 11315 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 11316 cpu_select); 11317 } 11318 } else { 11319 /* Rely on irqbalance if no online CPUs left on NUMA */ 11320 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 11321 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 11322 } 11323 } else { 11324 /* Migrate affinity back to this CPU */ 11325 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 11326 } 11327 } 11328 11329 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 11330 { 11331 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11332 struct lpfc_queue *eq, *next; 11333 LIST_HEAD(eqlist); 11334 int retval; 11335 11336 if (!phba) { 11337 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11338 return 0; 11339 } 11340 11341 if (__lpfc_cpuhp_checks(phba, &retval)) 11342 return retval; 11343 11344 lpfc_irq_rebalance(phba, cpu, true); 11345 11346 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 11347 if (retval) 11348 return retval; 11349 11350 /* start polling on these eq's */ 11351 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 11352 list_del_init(&eq->_poll_list); 11353 lpfc_sli4_start_polling(eq); 11354 } 11355 11356 return 0; 11357 } 11358 11359 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 11360 { 11361 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11362 struct lpfc_queue *eq, *next; 11363 unsigned int n; 11364 int retval; 11365 11366 if (!phba) { 11367 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11368 return 0; 11369 } 11370 11371 if (__lpfc_cpuhp_checks(phba, &retval)) 11372 return retval; 11373 11374 lpfc_irq_rebalance(phba, cpu, false); 11375 11376 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 11377 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 11378 if (n == cpu) 11379 lpfc_sli4_stop_polling(eq); 11380 } 11381 11382 return 0; 11383 } 11384 11385 /** 11386 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 11387 * @phba: pointer to lpfc hba data structure. 11388 * 11389 * This routine is invoked to enable the MSI-X interrupt vectors to device 11390 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 11391 * to cpus on the system. 11392 * 11393 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 11394 * the number of cpus on the same numa node as this adapter. The vectors are 11395 * allocated without requesting OS affinity mapping. A vector will be 11396 * allocated and assigned to each online and offline cpu. If the cpu is 11397 * online, then affinity will be set to that cpu. If the cpu is offline, then 11398 * affinity will be set to the nearest peer cpu within the numa node that is 11399 * online. If there are no online cpus within the numa node, affinity is not 11400 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 11401 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 11402 * configured. 11403 * 11404 * If numa mode is not enabled and there is more than 1 vector allocated, then 11405 * the driver relies on the managed irq interface where the OS assigns vector to 11406 * cpu affinity. The driver will then use that affinity mapping to setup its 11407 * cpu mapping table. 11408 * 11409 * Return codes 11410 * 0 - successful 11411 * other values - error 11412 **/ 11413 static int 11414 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 11415 { 11416 int vectors, rc, index; 11417 char *name; 11418 const struct cpumask *aff_mask = NULL; 11419 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 11420 struct lpfc_hba_eq_hdl *eqhdl; 11421 const struct cpumask *maskp; 11422 bool first; 11423 unsigned int flags = PCI_IRQ_MSIX; 11424 11425 /* Set up MSI-X multi-message vectors */ 11426 vectors = phba->cfg_irq_chann; 11427 11428 if (phba->irq_chann_mode != NORMAL_MODE) 11429 aff_mask = &phba->sli4_hba.irq_aff_mask; 11430 11431 if (aff_mask) { 11432 cpu_cnt = cpumask_weight(aff_mask); 11433 vectors = min(phba->cfg_irq_chann, cpu_cnt); 11434 11435 /* cpu: iterates over aff_mask including offline or online 11436 * cpu_select: iterates over online aff_mask to set affinity 11437 */ 11438 cpu = cpumask_first(aff_mask); 11439 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11440 } else { 11441 flags |= PCI_IRQ_AFFINITY; 11442 } 11443 11444 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 11445 if (rc < 0) { 11446 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11447 "0484 PCI enable MSI-X failed (%d)\n", rc); 11448 goto vec_fail_out; 11449 } 11450 vectors = rc; 11451 11452 /* Assign MSI-X vectors to interrupt handlers */ 11453 for (index = 0; index < vectors; index++) { 11454 eqhdl = lpfc_get_eq_hdl(index); 11455 name = eqhdl->handler_name; 11456 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 11457 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 11458 LPFC_DRIVER_HANDLER_NAME"%d", index); 11459 11460 eqhdl->idx = index; 11461 rc = request_irq(pci_irq_vector(phba->pcidev, index), 11462 &lpfc_sli4_hba_intr_handler, 0, 11463 name, eqhdl); 11464 if (rc) { 11465 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11466 "0486 MSI-X fast-path (%d) " 11467 "request_irq failed (%d)\n", index, rc); 11468 goto cfg_fail_out; 11469 } 11470 11471 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 11472 11473 if (aff_mask) { 11474 /* If found a neighboring online cpu, set affinity */ 11475 if (cpu_select < nr_cpu_ids) 11476 lpfc_irq_set_aff(eqhdl, cpu_select); 11477 11478 /* Assign EQ to cpu_map */ 11479 lpfc_assign_eq_map_info(phba, index, 11480 LPFC_CPU_FIRST_IRQ, 11481 cpu); 11482 11483 /* Iterate to next offline or online cpu in aff_mask */ 11484 cpu = cpumask_next(cpu, aff_mask); 11485 11486 /* Find next online cpu in aff_mask to set affinity */ 11487 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11488 } else if (vectors == 1) { 11489 cpu = cpumask_first(cpu_present_mask); 11490 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 11491 cpu); 11492 } else { 11493 maskp = pci_irq_get_affinity(phba->pcidev, index); 11494 11495 first = true; 11496 /* Loop through all CPUs associated with vector index */ 11497 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 11498 /* If this is the first CPU thats assigned to 11499 * this vector, set LPFC_CPU_FIRST_IRQ. 11500 */ 11501 lpfc_assign_eq_map_info(phba, index, 11502 first ? 11503 LPFC_CPU_FIRST_IRQ : 0, 11504 cpu); 11505 if (first) 11506 first = false; 11507 } 11508 } 11509 } 11510 11511 if (vectors != phba->cfg_irq_chann) { 11512 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11513 "3238 Reducing IO channels to match number of " 11514 "MSI-X vectors, requested %d got %d\n", 11515 phba->cfg_irq_chann, vectors); 11516 if (phba->cfg_irq_chann > vectors) 11517 phba->cfg_irq_chann = vectors; 11518 } 11519 11520 return rc; 11521 11522 cfg_fail_out: 11523 /* free the irq already requested */ 11524 for (--index; index >= 0; index--) { 11525 eqhdl = lpfc_get_eq_hdl(index); 11526 lpfc_irq_clear_aff(eqhdl); 11527 irq_set_affinity_hint(eqhdl->irq, NULL); 11528 free_irq(eqhdl->irq, eqhdl); 11529 } 11530 11531 /* Unconfigure MSI-X capability structure */ 11532 pci_free_irq_vectors(phba->pcidev); 11533 11534 vec_fail_out: 11535 return rc; 11536 } 11537 11538 /** 11539 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 11540 * @phba: pointer to lpfc hba data structure. 11541 * 11542 * This routine is invoked to enable the MSI interrupt mode to device with 11543 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 11544 * called to enable the MSI vector. The device driver is responsible for 11545 * calling the request_irq() to register MSI vector with a interrupt the 11546 * handler, which is done in this function. 11547 * 11548 * Return codes 11549 * 0 - successful 11550 * other values - error 11551 **/ 11552 static int 11553 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 11554 { 11555 int rc, index; 11556 unsigned int cpu; 11557 struct lpfc_hba_eq_hdl *eqhdl; 11558 11559 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 11560 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 11561 if (rc > 0) 11562 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11563 "0487 PCI enable MSI mode success.\n"); 11564 else { 11565 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11566 "0488 PCI enable MSI mode failed (%d)\n", rc); 11567 return rc ? rc : -1; 11568 } 11569 11570 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11571 0, LPFC_DRIVER_NAME, phba); 11572 if (rc) { 11573 pci_free_irq_vectors(phba->pcidev); 11574 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11575 "0490 MSI request_irq failed (%d)\n", rc); 11576 return rc; 11577 } 11578 11579 eqhdl = lpfc_get_eq_hdl(0); 11580 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11581 11582 cpu = cpumask_first(cpu_present_mask); 11583 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 11584 11585 for (index = 0; index < phba->cfg_irq_chann; index++) { 11586 eqhdl = lpfc_get_eq_hdl(index); 11587 eqhdl->idx = index; 11588 } 11589 11590 return 0; 11591 } 11592 11593 /** 11594 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 11595 * @phba: pointer to lpfc hba data structure. 11596 * 11597 * This routine is invoked to enable device interrupt and associate driver's 11598 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 11599 * interface spec. Depends on the interrupt mode configured to the driver, 11600 * the driver will try to fallback from the configured interrupt mode to an 11601 * interrupt mode which is supported by the platform, kernel, and device in 11602 * the order of: 11603 * MSI-X -> MSI -> IRQ. 11604 * 11605 * Return codes 11606 * 0 - successful 11607 * other values - error 11608 **/ 11609 static uint32_t 11610 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 11611 { 11612 uint32_t intr_mode = LPFC_INTR_ERROR; 11613 int retval, idx; 11614 11615 if (cfg_mode == 2) { 11616 /* Preparation before conf_msi mbox cmd */ 11617 retval = 0; 11618 if (!retval) { 11619 /* Now, try to enable MSI-X interrupt mode */ 11620 retval = lpfc_sli4_enable_msix(phba); 11621 if (!retval) { 11622 /* Indicate initialization to MSI-X mode */ 11623 phba->intr_type = MSIX; 11624 intr_mode = 2; 11625 } 11626 } 11627 } 11628 11629 /* Fallback to MSI if MSI-X initialization failed */ 11630 if (cfg_mode >= 1 && phba->intr_type == NONE) { 11631 retval = lpfc_sli4_enable_msi(phba); 11632 if (!retval) { 11633 /* Indicate initialization to MSI mode */ 11634 phba->intr_type = MSI; 11635 intr_mode = 1; 11636 } 11637 } 11638 11639 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 11640 if (phba->intr_type == NONE) { 11641 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11642 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 11643 if (!retval) { 11644 struct lpfc_hba_eq_hdl *eqhdl; 11645 unsigned int cpu; 11646 11647 /* Indicate initialization to INTx mode */ 11648 phba->intr_type = INTx; 11649 intr_mode = 0; 11650 11651 eqhdl = lpfc_get_eq_hdl(0); 11652 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11653 11654 cpu = cpumask_first(cpu_present_mask); 11655 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 11656 cpu); 11657 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11658 eqhdl = lpfc_get_eq_hdl(idx); 11659 eqhdl->idx = idx; 11660 } 11661 } 11662 } 11663 return intr_mode; 11664 } 11665 11666 /** 11667 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 11668 * @phba: pointer to lpfc hba data structure. 11669 * 11670 * This routine is invoked to disable device interrupt and disassociate 11671 * the driver's interrupt handler(s) from interrupt vector(s) to device 11672 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 11673 * will release the interrupt vector(s) for the message signaled interrupt. 11674 **/ 11675 static void 11676 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 11677 { 11678 /* Disable the currently initialized interrupt mode */ 11679 if (phba->intr_type == MSIX) { 11680 int index; 11681 struct lpfc_hba_eq_hdl *eqhdl; 11682 11683 /* Free up MSI-X multi-message vectors */ 11684 for (index = 0; index < phba->cfg_irq_chann; index++) { 11685 eqhdl = lpfc_get_eq_hdl(index); 11686 lpfc_irq_clear_aff(eqhdl); 11687 irq_set_affinity_hint(eqhdl->irq, NULL); 11688 free_irq(eqhdl->irq, eqhdl); 11689 } 11690 } else { 11691 free_irq(phba->pcidev->irq, phba); 11692 } 11693 11694 pci_free_irq_vectors(phba->pcidev); 11695 11696 /* Reset interrupt management states */ 11697 phba->intr_type = NONE; 11698 phba->sli.slistat.sli_intr = 0; 11699 } 11700 11701 /** 11702 * lpfc_unset_hba - Unset SLI3 hba device initialization 11703 * @phba: pointer to lpfc hba data structure. 11704 * 11705 * This routine is invoked to unset the HBA device initialization steps to 11706 * a device with SLI-3 interface spec. 11707 **/ 11708 static void 11709 lpfc_unset_hba(struct lpfc_hba *phba) 11710 { 11711 struct lpfc_vport *vport = phba->pport; 11712 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 11713 11714 spin_lock_irq(shost->host_lock); 11715 vport->load_flag |= FC_UNLOADING; 11716 spin_unlock_irq(shost->host_lock); 11717 11718 kfree(phba->vpi_bmask); 11719 kfree(phba->vpi_ids); 11720 11721 lpfc_stop_hba_timers(phba); 11722 11723 phba->pport->work_port_events = 0; 11724 11725 lpfc_sli_hba_down(phba); 11726 11727 lpfc_sli_brdrestart(phba); 11728 11729 lpfc_sli_disable_intr(phba); 11730 11731 return; 11732 } 11733 11734 /** 11735 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 11736 * @phba: Pointer to HBA context object. 11737 * 11738 * This function is called in the SLI4 code path to wait for completion 11739 * of device's XRIs exchange busy. It will check the XRI exchange busy 11740 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 11741 * that, it will check the XRI exchange busy on outstanding FCP and ELS 11742 * I/Os every 30 seconds, log error message, and wait forever. Only when 11743 * all XRI exchange busy complete, the driver unload shall proceed with 11744 * invoking the function reset ioctl mailbox command to the CNA and the 11745 * the rest of the driver unload resource release. 11746 **/ 11747 static void 11748 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 11749 { 11750 struct lpfc_sli4_hdw_queue *qp; 11751 int idx, ccnt; 11752 int wait_time = 0; 11753 int io_xri_cmpl = 1; 11754 int nvmet_xri_cmpl = 1; 11755 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11756 11757 /* Driver just aborted IOs during the hba_unset process. Pause 11758 * here to give the HBA time to complete the IO and get entries 11759 * into the abts lists. 11760 */ 11761 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 11762 11763 /* Wait for NVME pending IO to flush back to transport. */ 11764 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 11765 lpfc_nvme_wait_for_io_drain(phba); 11766 11767 ccnt = 0; 11768 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11769 qp = &phba->sli4_hba.hdwq[idx]; 11770 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 11771 if (!io_xri_cmpl) /* if list is NOT empty */ 11772 ccnt++; 11773 } 11774 if (ccnt) 11775 io_xri_cmpl = 0; 11776 11777 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11778 nvmet_xri_cmpl = 11779 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11780 } 11781 11782 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 11783 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 11784 if (!nvmet_xri_cmpl) 11785 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11786 "6424 NVMET XRI exchange busy " 11787 "wait time: %d seconds.\n", 11788 wait_time/1000); 11789 if (!io_xri_cmpl) 11790 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11791 "6100 IO XRI exchange busy " 11792 "wait time: %d seconds.\n", 11793 wait_time/1000); 11794 if (!els_xri_cmpl) 11795 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11796 "2878 ELS XRI exchange busy " 11797 "wait time: %d seconds.\n", 11798 wait_time/1000); 11799 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 11800 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 11801 } else { 11802 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 11803 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 11804 } 11805 11806 ccnt = 0; 11807 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11808 qp = &phba->sli4_hba.hdwq[idx]; 11809 io_xri_cmpl = list_empty( 11810 &qp->lpfc_abts_io_buf_list); 11811 if (!io_xri_cmpl) /* if list is NOT empty */ 11812 ccnt++; 11813 } 11814 if (ccnt) 11815 io_xri_cmpl = 0; 11816 11817 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11818 nvmet_xri_cmpl = list_empty( 11819 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11820 } 11821 els_xri_cmpl = 11822 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11823 11824 } 11825 } 11826 11827 /** 11828 * lpfc_sli4_hba_unset - Unset the fcoe hba 11829 * @phba: Pointer to HBA context object. 11830 * 11831 * This function is called in the SLI4 code path to reset the HBA's FCoE 11832 * function. The caller is not required to hold any lock. This routine 11833 * issues PCI function reset mailbox command to reset the FCoE function. 11834 * At the end of the function, it calls lpfc_hba_down_post function to 11835 * free any pending commands. 11836 **/ 11837 static void 11838 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 11839 { 11840 int wait_cnt = 0; 11841 LPFC_MBOXQ_t *mboxq; 11842 struct pci_dev *pdev = phba->pcidev; 11843 11844 lpfc_stop_hba_timers(phba); 11845 if (phba->pport) 11846 phba->sli4_hba.intr_enable = 0; 11847 11848 /* 11849 * Gracefully wait out the potential current outstanding asynchronous 11850 * mailbox command. 11851 */ 11852 11853 /* First, block any pending async mailbox command from posted */ 11854 spin_lock_irq(&phba->hbalock); 11855 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11856 spin_unlock_irq(&phba->hbalock); 11857 /* Now, trying to wait it out if we can */ 11858 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11859 msleep(10); 11860 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 11861 break; 11862 } 11863 /* Forcefully release the outstanding mailbox command if timed out */ 11864 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11865 spin_lock_irq(&phba->hbalock); 11866 mboxq = phba->sli.mbox_active; 11867 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 11868 __lpfc_mbox_cmpl_put(phba, mboxq); 11869 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11870 phba->sli.mbox_active = NULL; 11871 spin_unlock_irq(&phba->hbalock); 11872 } 11873 11874 /* Abort all iocbs associated with the hba */ 11875 lpfc_sli_hba_iocb_abort(phba); 11876 11877 /* Wait for completion of device XRI exchange busy */ 11878 lpfc_sli4_xri_exchange_busy_wait(phba); 11879 11880 /* per-phba callback de-registration for hotplug event */ 11881 if (phba->pport) 11882 lpfc_cpuhp_remove(phba); 11883 11884 /* Disable PCI subsystem interrupt */ 11885 lpfc_sli4_disable_intr(phba); 11886 11887 /* Disable SR-IOV if enabled */ 11888 if (phba->cfg_sriov_nr_virtfn) 11889 pci_disable_sriov(pdev); 11890 11891 /* Stop kthread signal shall trigger work_done one more time */ 11892 kthread_stop(phba->worker_thread); 11893 11894 /* Disable FW logging to host memory */ 11895 lpfc_ras_stop_fwlog(phba); 11896 11897 /* Unset the queues shared with the hardware then release all 11898 * allocated resources. 11899 */ 11900 lpfc_sli4_queue_unset(phba); 11901 lpfc_sli4_queue_destroy(phba); 11902 11903 /* Reset SLI4 HBA FCoE function */ 11904 lpfc_pci_function_reset(phba); 11905 11906 /* Free RAS DMA memory */ 11907 if (phba->ras_fwlog.ras_enabled) 11908 lpfc_sli4_ras_dma_free(phba); 11909 11910 /* Stop the SLI4 device port */ 11911 if (phba->pport) 11912 phba->pport->work_port_events = 0; 11913 } 11914 11915 /** 11916 * lpfc_pc_sli4_params_get - Get the SLI4_PARAMS port capabilities. 11917 * @phba: Pointer to HBA context object. 11918 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 11919 * 11920 * This function is called in the SLI4 code path to read the port's 11921 * sli4 capabilities. 11922 * 11923 * This function may be be called from any context that can block-wait 11924 * for the completion. The expectation is that this routine is called 11925 * typically from probe_one or from the online routine. 11926 **/ 11927 int 11928 lpfc_pc_sli4_params_get(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 11929 { 11930 int rc; 11931 struct lpfc_mqe *mqe; 11932 struct lpfc_pc_sli4_params *sli4_params; 11933 uint32_t mbox_tmo; 11934 11935 rc = 0; 11936 mqe = &mboxq->u.mqe; 11937 11938 /* Read the port's SLI4 Parameters port capabilities */ 11939 lpfc_pc_sli4_params(mboxq); 11940 if (!phba->sli4_hba.intr_enable) 11941 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11942 else { 11943 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 11944 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 11945 } 11946 11947 if (unlikely(rc)) 11948 return 1; 11949 11950 sli4_params = &phba->sli4_hba.pc_sli4_params; 11951 sli4_params->if_type = bf_get(if_type, &mqe->un.sli4_params); 11952 sli4_params->sli_rev = bf_get(sli_rev, &mqe->un.sli4_params); 11953 sli4_params->sli_family = bf_get(sli_family, &mqe->un.sli4_params); 11954 sli4_params->featurelevel_1 = bf_get(featurelevel_1, 11955 &mqe->un.sli4_params); 11956 sli4_params->featurelevel_2 = bf_get(featurelevel_2, 11957 &mqe->un.sli4_params); 11958 sli4_params->proto_types = mqe->un.sli4_params.word3; 11959 sli4_params->sge_supp_len = mqe->un.sli4_params.sge_supp_len; 11960 sli4_params->if_page_sz = bf_get(if_page_sz, &mqe->un.sli4_params); 11961 sli4_params->rq_db_window = bf_get(rq_db_window, &mqe->un.sli4_params); 11962 sli4_params->loopbk_scope = bf_get(loopbk_scope, &mqe->un.sli4_params); 11963 sli4_params->eq_pages_max = bf_get(eq_pages, &mqe->un.sli4_params); 11964 sli4_params->eqe_size = bf_get(eqe_size, &mqe->un.sli4_params); 11965 sli4_params->cq_pages_max = bf_get(cq_pages, &mqe->un.sli4_params); 11966 sli4_params->cqe_size = bf_get(cqe_size, &mqe->un.sli4_params); 11967 sli4_params->mq_pages_max = bf_get(mq_pages, &mqe->un.sli4_params); 11968 sli4_params->mqe_size = bf_get(mqe_size, &mqe->un.sli4_params); 11969 sli4_params->mq_elem_cnt = bf_get(mq_elem_cnt, &mqe->un.sli4_params); 11970 sli4_params->wq_pages_max = bf_get(wq_pages, &mqe->un.sli4_params); 11971 sli4_params->wqe_size = bf_get(wqe_size, &mqe->un.sli4_params); 11972 sli4_params->rq_pages_max = bf_get(rq_pages, &mqe->un.sli4_params); 11973 sli4_params->rqe_size = bf_get(rqe_size, &mqe->un.sli4_params); 11974 sli4_params->hdr_pages_max = bf_get(hdr_pages, &mqe->un.sli4_params); 11975 sli4_params->hdr_size = bf_get(hdr_size, &mqe->un.sli4_params); 11976 sli4_params->hdr_pp_align = bf_get(hdr_pp_align, &mqe->un.sli4_params); 11977 sli4_params->sgl_pages_max = bf_get(sgl_pages, &mqe->un.sli4_params); 11978 sli4_params->sgl_pp_align = bf_get(sgl_pp_align, &mqe->un.sli4_params); 11979 11980 /* Make sure that sge_supp_len can be handled by the driver */ 11981 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 11982 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 11983 11984 return rc; 11985 } 11986 11987 /** 11988 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 11989 * @phba: Pointer to HBA context object. 11990 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 11991 * 11992 * This function is called in the SLI4 code path to read the port's 11993 * sli4 capabilities. 11994 * 11995 * This function may be be called from any context that can block-wait 11996 * for the completion. The expectation is that this routine is called 11997 * typically from probe_one or from the online routine. 11998 **/ 11999 int 12000 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 12001 { 12002 int rc; 12003 struct lpfc_mqe *mqe = &mboxq->u.mqe; 12004 struct lpfc_pc_sli4_params *sli4_params; 12005 uint32_t mbox_tmo; 12006 int length; 12007 bool exp_wqcq_pages = true; 12008 struct lpfc_sli4_parameters *mbx_sli4_parameters; 12009 12010 /* 12011 * By default, the driver assumes the SLI4 port requires RPI 12012 * header postings. The SLI4_PARAM response will correct this 12013 * assumption. 12014 */ 12015 phba->sli4_hba.rpi_hdrs_in_use = 1; 12016 12017 /* Read the port's SLI4 Config Parameters */ 12018 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 12019 sizeof(struct lpfc_sli4_cfg_mhdr)); 12020 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 12021 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 12022 length, LPFC_SLI4_MBX_EMBED); 12023 if (!phba->sli4_hba.intr_enable) 12024 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 12025 else { 12026 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 12027 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 12028 } 12029 if (unlikely(rc)) 12030 return rc; 12031 sli4_params = &phba->sli4_hba.pc_sli4_params; 12032 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 12033 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 12034 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 12035 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 12036 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 12037 mbx_sli4_parameters); 12038 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 12039 mbx_sli4_parameters); 12040 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 12041 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 12042 else 12043 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 12044 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 12045 sli4_params->loopbk_scope = bf_get(loopbk_scope, mbx_sli4_parameters); 12046 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 12047 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 12048 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 12049 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 12050 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 12051 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 12052 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 12053 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 12054 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 12055 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 12056 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 12057 mbx_sli4_parameters); 12058 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 12059 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 12060 mbx_sli4_parameters); 12061 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 12062 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 12063 12064 /* Check for Extended Pre-Registered SGL support */ 12065 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 12066 12067 /* Check for firmware nvme support */ 12068 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 12069 bf_get(cfg_xib, mbx_sli4_parameters)); 12070 12071 if (rc) { 12072 /* Save this to indicate the Firmware supports NVME */ 12073 sli4_params->nvme = 1; 12074 12075 /* Firmware NVME support, check driver FC4 NVME support */ 12076 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 12077 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12078 "6133 Disabling NVME support: " 12079 "FC4 type not supported: x%x\n", 12080 phba->cfg_enable_fc4_type); 12081 goto fcponly; 12082 } 12083 } else { 12084 /* No firmware NVME support, check driver FC4 NVME support */ 12085 sli4_params->nvme = 0; 12086 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 12087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 12088 "6101 Disabling NVME support: Not " 12089 "supported by firmware (%d %d) x%x\n", 12090 bf_get(cfg_nvme, mbx_sli4_parameters), 12091 bf_get(cfg_xib, mbx_sli4_parameters), 12092 phba->cfg_enable_fc4_type); 12093 fcponly: 12094 phba->nvme_support = 0; 12095 phba->nvmet_support = 0; 12096 phba->cfg_nvmet_mrq = 0; 12097 phba->cfg_nvme_seg_cnt = 0; 12098 12099 /* If no FC4 type support, move to just SCSI support */ 12100 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 12101 return -ENODEV; 12102 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 12103 } 12104 } 12105 12106 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 12107 * accommodate 512K and 1M IOs in a single nvme buf. 12108 */ 12109 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 12110 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 12111 12112 /* Only embed PBDE for if_type 6, PBDE support requires xib be set */ 12113 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != 12114 LPFC_SLI_INTF_IF_TYPE_6) || (!bf_get(cfg_xib, mbx_sli4_parameters))) 12115 phba->cfg_enable_pbde = 0; 12116 12117 /* 12118 * To support Suppress Response feature we must satisfy 3 conditions. 12119 * lpfc_suppress_rsp module parameter must be set (default). 12120 * In SLI4-Parameters Descriptor: 12121 * Extended Inline Buffers (XIB) must be supported. 12122 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 12123 * (double negative). 12124 */ 12125 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 12126 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 12127 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 12128 else 12129 phba->cfg_suppress_rsp = 0; 12130 12131 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 12132 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 12133 12134 /* Make sure that sge_supp_len can be handled by the driver */ 12135 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 12136 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 12137 12138 /* 12139 * Check whether the adapter supports an embedded copy of the 12140 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 12141 * to use this option, 128-byte WQEs must be used. 12142 */ 12143 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 12144 phba->fcp_embed_io = 1; 12145 else 12146 phba->fcp_embed_io = 0; 12147 12148 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12149 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 12150 bf_get(cfg_xib, mbx_sli4_parameters), 12151 phba->cfg_enable_pbde, 12152 phba->fcp_embed_io, phba->nvme_support, 12153 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 12154 12155 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 12156 LPFC_SLI_INTF_IF_TYPE_2) && 12157 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 12158 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 12159 exp_wqcq_pages = false; 12160 12161 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 12162 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 12163 exp_wqcq_pages && 12164 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 12165 phba->enab_exp_wqcq_pages = 1; 12166 else 12167 phba->enab_exp_wqcq_pages = 0; 12168 /* 12169 * Check if the SLI port supports MDS Diagnostics 12170 */ 12171 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 12172 phba->mds_diags_support = 1; 12173 else 12174 phba->mds_diags_support = 0; 12175 12176 /* 12177 * Check if the SLI port supports NSLER 12178 */ 12179 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 12180 phba->nsler = 1; 12181 else 12182 phba->nsler = 0; 12183 12184 return 0; 12185 } 12186 12187 /** 12188 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 12189 * @pdev: pointer to PCI device 12190 * @pid: pointer to PCI device identifier 12191 * 12192 * This routine is to be called to attach a device with SLI-3 interface spec 12193 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12194 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 12195 * information of the device and driver to see if the driver state that it can 12196 * support this kind of device. If the match is successful, the driver core 12197 * invokes this routine. If this routine determines it can claim the HBA, it 12198 * does all the initialization that it needs to do to handle the HBA properly. 12199 * 12200 * Return code 12201 * 0 - driver can claim the device 12202 * negative value - driver can not claim the device 12203 **/ 12204 static int 12205 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 12206 { 12207 struct lpfc_hba *phba; 12208 struct lpfc_vport *vport = NULL; 12209 struct Scsi_Host *shost = NULL; 12210 int error; 12211 uint32_t cfg_mode, intr_mode; 12212 12213 /* Allocate memory for HBA structure */ 12214 phba = lpfc_hba_alloc(pdev); 12215 if (!phba) 12216 return -ENOMEM; 12217 12218 /* Perform generic PCI device enabling operation */ 12219 error = lpfc_enable_pci_dev(phba); 12220 if (error) 12221 goto out_free_phba; 12222 12223 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 12224 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 12225 if (error) 12226 goto out_disable_pci_dev; 12227 12228 /* Set up SLI-3 specific device PCI memory space */ 12229 error = lpfc_sli_pci_mem_setup(phba); 12230 if (error) { 12231 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12232 "1402 Failed to set up pci memory space.\n"); 12233 goto out_disable_pci_dev; 12234 } 12235 12236 /* Set up SLI-3 specific device driver resources */ 12237 error = lpfc_sli_driver_resource_setup(phba); 12238 if (error) { 12239 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12240 "1404 Failed to set up driver resource.\n"); 12241 goto out_unset_pci_mem_s3; 12242 } 12243 12244 /* Initialize and populate the iocb list per host */ 12245 12246 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 12247 if (error) { 12248 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12249 "1405 Failed to initialize iocb list.\n"); 12250 goto out_unset_driver_resource_s3; 12251 } 12252 12253 /* Set up common device driver resources */ 12254 error = lpfc_setup_driver_resource_phase2(phba); 12255 if (error) { 12256 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12257 "1406 Failed to set up driver resource.\n"); 12258 goto out_free_iocb_list; 12259 } 12260 12261 /* Get the default values for Model Name and Description */ 12262 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 12263 12264 /* Create SCSI host to the physical port */ 12265 error = lpfc_create_shost(phba); 12266 if (error) { 12267 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12268 "1407 Failed to create scsi host.\n"); 12269 goto out_unset_driver_resource; 12270 } 12271 12272 /* Configure sysfs attributes */ 12273 vport = phba->pport; 12274 error = lpfc_alloc_sysfs_attr(vport); 12275 if (error) { 12276 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12277 "1476 Failed to allocate sysfs attr\n"); 12278 goto out_destroy_shost; 12279 } 12280 12281 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 12282 /* Now, trying to enable interrupt and bring up the device */ 12283 cfg_mode = phba->cfg_use_msi; 12284 while (true) { 12285 /* Put device to a known state before enabling interrupt */ 12286 lpfc_stop_port(phba); 12287 /* Configure and enable interrupt */ 12288 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 12289 if (intr_mode == LPFC_INTR_ERROR) { 12290 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12291 "0431 Failed to enable interrupt.\n"); 12292 error = -ENODEV; 12293 goto out_free_sysfs_attr; 12294 } 12295 /* SLI-3 HBA setup */ 12296 if (lpfc_sli_hba_setup(phba)) { 12297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12298 "1477 Failed to set up hba\n"); 12299 error = -ENODEV; 12300 goto out_remove_device; 12301 } 12302 12303 /* Wait 50ms for the interrupts of previous mailbox commands */ 12304 msleep(50); 12305 /* Check active interrupts on message signaled interrupts */ 12306 if (intr_mode == 0 || 12307 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 12308 /* Log the current active interrupt mode */ 12309 phba->intr_mode = intr_mode; 12310 lpfc_log_intr_mode(phba, intr_mode); 12311 break; 12312 } else { 12313 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12314 "0447 Configure interrupt mode (%d) " 12315 "failed active interrupt test.\n", 12316 intr_mode); 12317 /* Disable the current interrupt mode */ 12318 lpfc_sli_disable_intr(phba); 12319 /* Try next level of interrupt mode */ 12320 cfg_mode = --intr_mode; 12321 } 12322 } 12323 12324 /* Perform post initialization setup */ 12325 lpfc_post_init_setup(phba); 12326 12327 /* Check if there are static vports to be created. */ 12328 lpfc_create_static_vport(phba); 12329 12330 return 0; 12331 12332 out_remove_device: 12333 lpfc_unset_hba(phba); 12334 out_free_sysfs_attr: 12335 lpfc_free_sysfs_attr(vport); 12336 out_destroy_shost: 12337 lpfc_destroy_shost(phba); 12338 out_unset_driver_resource: 12339 lpfc_unset_driver_resource_phase2(phba); 12340 out_free_iocb_list: 12341 lpfc_free_iocb_list(phba); 12342 out_unset_driver_resource_s3: 12343 lpfc_sli_driver_resource_unset(phba); 12344 out_unset_pci_mem_s3: 12345 lpfc_sli_pci_mem_unset(phba); 12346 out_disable_pci_dev: 12347 lpfc_disable_pci_dev(phba); 12348 if (shost) 12349 scsi_host_put(shost); 12350 out_free_phba: 12351 lpfc_hba_free(phba); 12352 return error; 12353 } 12354 12355 /** 12356 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 12357 * @pdev: pointer to PCI device 12358 * 12359 * This routine is to be called to disattach a device with SLI-3 interface 12360 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12361 * removed from PCI bus, it performs all the necessary cleanup for the HBA 12362 * device to be removed from the PCI subsystem properly. 12363 **/ 12364 static void 12365 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 12366 { 12367 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12368 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 12369 struct lpfc_vport **vports; 12370 struct lpfc_hba *phba = vport->phba; 12371 int i; 12372 12373 spin_lock_irq(&phba->hbalock); 12374 vport->load_flag |= FC_UNLOADING; 12375 spin_unlock_irq(&phba->hbalock); 12376 12377 lpfc_free_sysfs_attr(vport); 12378 12379 /* Release all the vports against this physical port */ 12380 vports = lpfc_create_vport_work_array(phba); 12381 if (vports != NULL) 12382 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 12383 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 12384 continue; 12385 fc_vport_terminate(vports[i]->fc_vport); 12386 } 12387 lpfc_destroy_vport_work_array(phba, vports); 12388 12389 /* Remove FC host and then SCSI host with the physical port */ 12390 fc_remove_host(shost); 12391 scsi_remove_host(shost); 12392 12393 lpfc_cleanup(vport); 12394 12395 /* 12396 * Bring down the SLI Layer. This step disable all interrupts, 12397 * clears the rings, discards all mailbox commands, and resets 12398 * the HBA. 12399 */ 12400 12401 /* HBA interrupt will be disabled after this call */ 12402 lpfc_sli_hba_down(phba); 12403 /* Stop kthread signal shall trigger work_done one more time */ 12404 kthread_stop(phba->worker_thread); 12405 /* Final cleanup of txcmplq and reset the HBA */ 12406 lpfc_sli_brdrestart(phba); 12407 12408 kfree(phba->vpi_bmask); 12409 kfree(phba->vpi_ids); 12410 12411 lpfc_stop_hba_timers(phba); 12412 spin_lock_irq(&phba->port_list_lock); 12413 list_del_init(&vport->listentry); 12414 spin_unlock_irq(&phba->port_list_lock); 12415 12416 lpfc_debugfs_terminate(vport); 12417 12418 /* Disable SR-IOV if enabled */ 12419 if (phba->cfg_sriov_nr_virtfn) 12420 pci_disable_sriov(pdev); 12421 12422 /* Disable interrupt */ 12423 lpfc_sli_disable_intr(phba); 12424 12425 scsi_host_put(shost); 12426 12427 /* 12428 * Call scsi_free before mem_free since scsi bufs are released to their 12429 * corresponding pools here. 12430 */ 12431 lpfc_scsi_free(phba); 12432 lpfc_free_iocb_list(phba); 12433 12434 lpfc_mem_free_all(phba); 12435 12436 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 12437 phba->hbqslimp.virt, phba->hbqslimp.phys); 12438 12439 /* Free resources associated with SLI2 interface */ 12440 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 12441 phba->slim2p.virt, phba->slim2p.phys); 12442 12443 /* unmap adapter SLIM and Control Registers */ 12444 iounmap(phba->ctrl_regs_memmap_p); 12445 iounmap(phba->slim_memmap_p); 12446 12447 lpfc_hba_free(phba); 12448 12449 pci_release_mem_regions(pdev); 12450 pci_disable_device(pdev); 12451 } 12452 12453 /** 12454 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 12455 * @pdev: pointer to PCI device 12456 * @msg: power management message 12457 * 12458 * This routine is to be called from the kernel's PCI subsystem to support 12459 * system Power Management (PM) to device with SLI-3 interface spec. When 12460 * PM invokes this method, it quiesces the device by stopping the driver's 12461 * worker thread for the device, turning off device's interrupt and DMA, 12462 * and bring the device offline. Note that as the driver implements the 12463 * minimum PM requirements to a power-aware driver's PM support for the 12464 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 12465 * to the suspend() method call will be treated as SUSPEND and the driver will 12466 * fully reinitialize its device during resume() method call, the driver will 12467 * set device to PCI_D3hot state in PCI config space instead of setting it 12468 * according to the @msg provided by the PM. 12469 * 12470 * Return code 12471 * 0 - driver suspended the device 12472 * Error otherwise 12473 **/ 12474 static int 12475 lpfc_pci_suspend_one_s3(struct pci_dev *pdev, pm_message_t msg) 12476 { 12477 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12478 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12479 12480 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12481 "0473 PCI device Power Management suspend.\n"); 12482 12483 /* Bring down the device */ 12484 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12485 lpfc_offline(phba); 12486 kthread_stop(phba->worker_thread); 12487 12488 /* Disable interrupt from device */ 12489 lpfc_sli_disable_intr(phba); 12490 12491 /* Save device state to PCI config space */ 12492 pci_save_state(pdev); 12493 pci_set_power_state(pdev, PCI_D3hot); 12494 12495 return 0; 12496 } 12497 12498 /** 12499 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 12500 * @pdev: pointer to PCI device 12501 * 12502 * This routine is to be called from the kernel's PCI subsystem to support 12503 * system Power Management (PM) to device with SLI-3 interface spec. When PM 12504 * invokes this method, it restores the device's PCI config space state and 12505 * fully reinitializes the device and brings it online. Note that as the 12506 * driver implements the minimum PM requirements to a power-aware driver's 12507 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 12508 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 12509 * driver will fully reinitialize its device during resume() method call, 12510 * the device will be set to PCI_D0 directly in PCI config space before 12511 * restoring the state. 12512 * 12513 * Return code 12514 * 0 - driver suspended the device 12515 * Error otherwise 12516 **/ 12517 static int 12518 lpfc_pci_resume_one_s3(struct pci_dev *pdev) 12519 { 12520 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12521 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12522 uint32_t intr_mode; 12523 int error; 12524 12525 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12526 "0452 PCI device Power Management resume.\n"); 12527 12528 /* Restore device state from PCI config space */ 12529 pci_set_power_state(pdev, PCI_D0); 12530 pci_restore_state(pdev); 12531 12532 /* 12533 * As the new kernel behavior of pci_restore_state() API call clears 12534 * device saved_state flag, need to save the restored state again. 12535 */ 12536 pci_save_state(pdev); 12537 12538 if (pdev->is_busmaster) 12539 pci_set_master(pdev); 12540 12541 /* Startup the kernel thread for this host adapter. */ 12542 phba->worker_thread = kthread_run(lpfc_do_work, phba, 12543 "lpfc_worker_%d", phba->brd_no); 12544 if (IS_ERR(phba->worker_thread)) { 12545 error = PTR_ERR(phba->worker_thread); 12546 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12547 "0434 PM resume failed to start worker " 12548 "thread: error=x%x.\n", error); 12549 return error; 12550 } 12551 12552 /* Configure and enable interrupt */ 12553 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12554 if (intr_mode == LPFC_INTR_ERROR) { 12555 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12556 "0430 PM resume Failed to enable interrupt\n"); 12557 return -EIO; 12558 } else 12559 phba->intr_mode = intr_mode; 12560 12561 /* Restart HBA and bring it online */ 12562 lpfc_sli_brdrestart(phba); 12563 lpfc_online(phba); 12564 12565 /* Log the current active interrupt mode */ 12566 lpfc_log_intr_mode(phba, phba->intr_mode); 12567 12568 return 0; 12569 } 12570 12571 /** 12572 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 12573 * @phba: pointer to lpfc hba data structure. 12574 * 12575 * This routine is called to prepare the SLI3 device for PCI slot recover. It 12576 * aborts all the outstanding SCSI I/Os to the pci device. 12577 **/ 12578 static void 12579 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 12580 { 12581 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12582 "2723 PCI channel I/O abort preparing for recovery\n"); 12583 12584 /* 12585 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 12586 * and let the SCSI mid-layer to retry them to recover. 12587 */ 12588 lpfc_sli_abort_fcp_rings(phba); 12589 } 12590 12591 /** 12592 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 12593 * @phba: pointer to lpfc hba data structure. 12594 * 12595 * This routine is called to prepare the SLI3 device for PCI slot reset. It 12596 * disables the device interrupt and pci device, and aborts the internal FCP 12597 * pending I/Os. 12598 **/ 12599 static void 12600 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 12601 { 12602 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12603 "2710 PCI channel disable preparing for reset\n"); 12604 12605 /* Block any management I/Os to the device */ 12606 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 12607 12608 /* Block all SCSI devices' I/Os on the host */ 12609 lpfc_scsi_dev_block(phba); 12610 12611 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 12612 lpfc_sli_flush_io_rings(phba); 12613 12614 /* stop all timers */ 12615 lpfc_stop_hba_timers(phba); 12616 12617 /* Disable interrupt and pci device */ 12618 lpfc_sli_disable_intr(phba); 12619 pci_disable_device(phba->pcidev); 12620 } 12621 12622 /** 12623 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 12624 * @phba: pointer to lpfc hba data structure. 12625 * 12626 * This routine is called to prepare the SLI3 device for PCI slot permanently 12627 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 12628 * pending I/Os. 12629 **/ 12630 static void 12631 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 12632 { 12633 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12634 "2711 PCI channel permanent disable for failure\n"); 12635 /* Block all SCSI devices' I/Os on the host */ 12636 lpfc_scsi_dev_block(phba); 12637 12638 /* stop all timers */ 12639 lpfc_stop_hba_timers(phba); 12640 12641 /* Clean up all driver's outstanding SCSI I/Os */ 12642 lpfc_sli_flush_io_rings(phba); 12643 } 12644 12645 /** 12646 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 12647 * @pdev: pointer to PCI device. 12648 * @state: the current PCI connection state. 12649 * 12650 * This routine is called from the PCI subsystem for I/O error handling to 12651 * device with SLI-3 interface spec. This function is called by the PCI 12652 * subsystem after a PCI bus error affecting this device has been detected. 12653 * When this function is invoked, it will need to stop all the I/Os and 12654 * interrupt(s) to the device. Once that is done, it will return 12655 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 12656 * as desired. 12657 * 12658 * Return codes 12659 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 12660 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 12661 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12662 **/ 12663 static pci_ers_result_t 12664 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 12665 { 12666 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12667 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12668 12669 switch (state) { 12670 case pci_channel_io_normal: 12671 /* Non-fatal error, prepare for recovery */ 12672 lpfc_sli_prep_dev_for_recover(phba); 12673 return PCI_ERS_RESULT_CAN_RECOVER; 12674 case pci_channel_io_frozen: 12675 /* Fatal error, prepare for slot reset */ 12676 lpfc_sli_prep_dev_for_reset(phba); 12677 return PCI_ERS_RESULT_NEED_RESET; 12678 case pci_channel_io_perm_failure: 12679 /* Permanent failure, prepare for device down */ 12680 lpfc_sli_prep_dev_for_perm_failure(phba); 12681 return PCI_ERS_RESULT_DISCONNECT; 12682 default: 12683 /* Unknown state, prepare and request slot reset */ 12684 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12685 "0472 Unknown PCI error state: x%x\n", state); 12686 lpfc_sli_prep_dev_for_reset(phba); 12687 return PCI_ERS_RESULT_NEED_RESET; 12688 } 12689 } 12690 12691 /** 12692 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 12693 * @pdev: pointer to PCI device. 12694 * 12695 * This routine is called from the PCI subsystem for error handling to 12696 * device with SLI-3 interface spec. This is called after PCI bus has been 12697 * reset to restart the PCI card from scratch, as if from a cold-boot. 12698 * During the PCI subsystem error recovery, after driver returns 12699 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 12700 * recovery and then call this routine before calling the .resume method 12701 * to recover the device. This function will initialize the HBA device, 12702 * enable the interrupt, but it will just put the HBA to offline state 12703 * without passing any I/O traffic. 12704 * 12705 * Return codes 12706 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 12707 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12708 */ 12709 static pci_ers_result_t 12710 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 12711 { 12712 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12713 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12714 struct lpfc_sli *psli = &phba->sli; 12715 uint32_t intr_mode; 12716 12717 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 12718 if (pci_enable_device_mem(pdev)) { 12719 printk(KERN_ERR "lpfc: Cannot re-enable " 12720 "PCI device after reset.\n"); 12721 return PCI_ERS_RESULT_DISCONNECT; 12722 } 12723 12724 pci_restore_state(pdev); 12725 12726 /* 12727 * As the new kernel behavior of pci_restore_state() API call clears 12728 * device saved_state flag, need to save the restored state again. 12729 */ 12730 pci_save_state(pdev); 12731 12732 if (pdev->is_busmaster) 12733 pci_set_master(pdev); 12734 12735 spin_lock_irq(&phba->hbalock); 12736 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 12737 spin_unlock_irq(&phba->hbalock); 12738 12739 /* Configure and enable interrupt */ 12740 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12741 if (intr_mode == LPFC_INTR_ERROR) { 12742 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12743 "0427 Cannot re-enable interrupt after " 12744 "slot reset.\n"); 12745 return PCI_ERS_RESULT_DISCONNECT; 12746 } else 12747 phba->intr_mode = intr_mode; 12748 12749 /* Take device offline, it will perform cleanup */ 12750 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12751 lpfc_offline(phba); 12752 lpfc_sli_brdrestart(phba); 12753 12754 /* Log the current active interrupt mode */ 12755 lpfc_log_intr_mode(phba, phba->intr_mode); 12756 12757 return PCI_ERS_RESULT_RECOVERED; 12758 } 12759 12760 /** 12761 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 12762 * @pdev: pointer to PCI device 12763 * 12764 * This routine is called from the PCI subsystem for error handling to device 12765 * with SLI-3 interface spec. It is called when kernel error recovery tells 12766 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 12767 * error recovery. After this call, traffic can start to flow from this device 12768 * again. 12769 */ 12770 static void 12771 lpfc_io_resume_s3(struct pci_dev *pdev) 12772 { 12773 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12774 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12775 12776 /* Bring device online, it will be no-op for non-fatal error resume */ 12777 lpfc_online(phba); 12778 } 12779 12780 /** 12781 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 12782 * @phba: pointer to lpfc hba data structure. 12783 * 12784 * returns the number of ELS/CT IOCBs to reserve 12785 **/ 12786 int 12787 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 12788 { 12789 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 12790 12791 if (phba->sli_rev == LPFC_SLI_REV4) { 12792 if (max_xri <= 100) 12793 return 10; 12794 else if (max_xri <= 256) 12795 return 25; 12796 else if (max_xri <= 512) 12797 return 50; 12798 else if (max_xri <= 1024) 12799 return 100; 12800 else if (max_xri <= 1536) 12801 return 150; 12802 else if (max_xri <= 2048) 12803 return 200; 12804 else 12805 return 250; 12806 } else 12807 return 0; 12808 } 12809 12810 /** 12811 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 12812 * @phba: pointer to lpfc hba data structure. 12813 * 12814 * returns the number of ELS/CT + NVMET IOCBs to reserve 12815 **/ 12816 int 12817 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 12818 { 12819 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 12820 12821 if (phba->nvmet_support) 12822 max_xri += LPFC_NVMET_BUF_POST; 12823 return max_xri; 12824 } 12825 12826 12827 static int 12828 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 12829 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 12830 const struct firmware *fw) 12831 { 12832 int rc; 12833 12834 /* Three cases: (1) FW was not supported on the detected adapter. 12835 * (2) FW update has been locked out administratively. 12836 * (3) Some other error during FW update. 12837 * In each case, an unmaskable message is written to the console 12838 * for admin diagnosis. 12839 */ 12840 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 12841 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G6_FC && 12842 magic_number != MAGIC_NUMBER_G6) || 12843 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G7_FC && 12844 magic_number != MAGIC_NUMBER_G7)) { 12845 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12846 "3030 This firmware version is not supported on" 12847 " this HBA model. Device:%x Magic:%x Type:%x " 12848 "ID:%x Size %d %zd\n", 12849 phba->pcidev->device, magic_number, ftype, fid, 12850 fsize, fw->size); 12851 rc = -EINVAL; 12852 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 12853 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12854 "3021 Firmware downloads have been prohibited " 12855 "by a system configuration setting on " 12856 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12857 "%zd\n", 12858 phba->pcidev->device, magic_number, ftype, fid, 12859 fsize, fw->size); 12860 rc = -EACCES; 12861 } else { 12862 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12863 "3022 FW Download failed. Add Status x%x " 12864 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12865 "%zd\n", 12866 offset, phba->pcidev->device, magic_number, 12867 ftype, fid, fsize, fw->size); 12868 rc = -EIO; 12869 } 12870 return rc; 12871 } 12872 12873 /** 12874 * lpfc_write_firmware - attempt to write a firmware image to the port 12875 * @fw: pointer to firmware image returned from request_firmware. 12876 * @context: pointer to firmware image returned from request_firmware. 12877 * @ret: return value this routine provides to the caller. 12878 * 12879 **/ 12880 static void 12881 lpfc_write_firmware(const struct firmware *fw, void *context) 12882 { 12883 struct lpfc_hba *phba = (struct lpfc_hba *)context; 12884 char fwrev[FW_REV_STR_SIZE]; 12885 struct lpfc_grp_hdr *image; 12886 struct list_head dma_buffer_list; 12887 int i, rc = 0; 12888 struct lpfc_dmabuf *dmabuf, *next; 12889 uint32_t offset = 0, temp_offset = 0; 12890 uint32_t magic_number, ftype, fid, fsize; 12891 12892 /* It can be null in no-wait mode, sanity check */ 12893 if (!fw) { 12894 rc = -ENXIO; 12895 goto out; 12896 } 12897 image = (struct lpfc_grp_hdr *)fw->data; 12898 12899 magic_number = be32_to_cpu(image->magic_number); 12900 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 12901 fid = bf_get_be32(lpfc_grp_hdr_id, image); 12902 fsize = be32_to_cpu(image->size); 12903 12904 INIT_LIST_HEAD(&dma_buffer_list); 12905 lpfc_decode_firmware_rev(phba, fwrev, 1); 12906 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 12907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12908 "3023 Updating Firmware, Current Version:%s " 12909 "New Version:%s\n", 12910 fwrev, image->revision); 12911 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 12912 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 12913 GFP_KERNEL); 12914 if (!dmabuf) { 12915 rc = -ENOMEM; 12916 goto release_out; 12917 } 12918 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 12919 SLI4_PAGE_SIZE, 12920 &dmabuf->phys, 12921 GFP_KERNEL); 12922 if (!dmabuf->virt) { 12923 kfree(dmabuf); 12924 rc = -ENOMEM; 12925 goto release_out; 12926 } 12927 list_add_tail(&dmabuf->list, &dma_buffer_list); 12928 } 12929 while (offset < fw->size) { 12930 temp_offset = offset; 12931 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 12932 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 12933 memcpy(dmabuf->virt, 12934 fw->data + temp_offset, 12935 fw->size - temp_offset); 12936 temp_offset = fw->size; 12937 break; 12938 } 12939 memcpy(dmabuf->virt, fw->data + temp_offset, 12940 SLI4_PAGE_SIZE); 12941 temp_offset += SLI4_PAGE_SIZE; 12942 } 12943 rc = lpfc_wr_object(phba, &dma_buffer_list, 12944 (fw->size - offset), &offset); 12945 if (rc) { 12946 rc = lpfc_log_write_firmware_error(phba, offset, 12947 magic_number, 12948 ftype, 12949 fid, 12950 fsize, 12951 fw); 12952 goto release_out; 12953 } 12954 } 12955 rc = offset; 12956 } else 12957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12958 "3029 Skipped Firmware update, Current " 12959 "Version:%s New Version:%s\n", 12960 fwrev, image->revision); 12961 12962 release_out: 12963 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 12964 list_del(&dmabuf->list); 12965 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 12966 dmabuf->virt, dmabuf->phys); 12967 kfree(dmabuf); 12968 } 12969 release_firmware(fw); 12970 out: 12971 if (rc < 0) 12972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12973 "3062 Firmware update error, status %d.\n", rc); 12974 else 12975 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12976 "3024 Firmware update success: size %d.\n", rc); 12977 } 12978 12979 /** 12980 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 12981 * @phba: pointer to lpfc hba data structure. 12982 * 12983 * This routine is called to perform Linux generic firmware upgrade on device 12984 * that supports such feature. 12985 **/ 12986 int 12987 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 12988 { 12989 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 12990 int ret; 12991 const struct firmware *fw; 12992 12993 /* Only supported on SLI4 interface type 2 for now */ 12994 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 12995 LPFC_SLI_INTF_IF_TYPE_2) 12996 return -EPERM; 12997 12998 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 12999 13000 if (fw_upgrade == INT_FW_UPGRADE) { 13001 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 13002 file_name, &phba->pcidev->dev, 13003 GFP_KERNEL, (void *)phba, 13004 lpfc_write_firmware); 13005 } else if (fw_upgrade == RUN_FW_UPGRADE) { 13006 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 13007 if (!ret) 13008 lpfc_write_firmware(fw, (void *)phba); 13009 } else { 13010 ret = -EINVAL; 13011 } 13012 13013 return ret; 13014 } 13015 13016 /** 13017 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 13018 * @pdev: pointer to PCI device 13019 * @pid: pointer to PCI device identifier 13020 * 13021 * This routine is called from the kernel's PCI subsystem to device with 13022 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13023 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13024 * information of the device and driver to see if the driver state that it 13025 * can support this kind of device. If the match is successful, the driver 13026 * core invokes this routine. If this routine determines it can claim the HBA, 13027 * it does all the initialization that it needs to do to handle the HBA 13028 * properly. 13029 * 13030 * Return code 13031 * 0 - driver can claim the device 13032 * negative value - driver can not claim the device 13033 **/ 13034 static int 13035 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 13036 { 13037 struct lpfc_hba *phba; 13038 struct lpfc_vport *vport = NULL; 13039 struct Scsi_Host *shost = NULL; 13040 int error; 13041 uint32_t cfg_mode, intr_mode; 13042 13043 /* Allocate memory for HBA structure */ 13044 phba = lpfc_hba_alloc(pdev); 13045 if (!phba) 13046 return -ENOMEM; 13047 13048 /* Perform generic PCI device enabling operation */ 13049 error = lpfc_enable_pci_dev(phba); 13050 if (error) 13051 goto out_free_phba; 13052 13053 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 13054 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 13055 if (error) 13056 goto out_disable_pci_dev; 13057 13058 /* Set up SLI-4 specific device PCI memory space */ 13059 error = lpfc_sli4_pci_mem_setup(phba); 13060 if (error) { 13061 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13062 "1410 Failed to set up pci memory space.\n"); 13063 goto out_disable_pci_dev; 13064 } 13065 13066 /* Set up SLI-4 Specific device driver resources */ 13067 error = lpfc_sli4_driver_resource_setup(phba); 13068 if (error) { 13069 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13070 "1412 Failed to set up driver resource.\n"); 13071 goto out_unset_pci_mem_s4; 13072 } 13073 13074 INIT_LIST_HEAD(&phba->active_rrq_list); 13075 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 13076 13077 /* Set up common device driver resources */ 13078 error = lpfc_setup_driver_resource_phase2(phba); 13079 if (error) { 13080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13081 "1414 Failed to set up driver resource.\n"); 13082 goto out_unset_driver_resource_s4; 13083 } 13084 13085 /* Get the default values for Model Name and Description */ 13086 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13087 13088 /* Now, trying to enable interrupt and bring up the device */ 13089 cfg_mode = phba->cfg_use_msi; 13090 13091 /* Put device to a known state before enabling interrupt */ 13092 phba->pport = NULL; 13093 lpfc_stop_port(phba); 13094 13095 /* Init cpu_map array */ 13096 lpfc_cpu_map_array_init(phba); 13097 13098 /* Init hba_eq_hdl array */ 13099 lpfc_hba_eq_hdl_array_init(phba); 13100 13101 /* Configure and enable interrupt */ 13102 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 13103 if (intr_mode == LPFC_INTR_ERROR) { 13104 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13105 "0426 Failed to enable interrupt.\n"); 13106 error = -ENODEV; 13107 goto out_unset_driver_resource; 13108 } 13109 /* Default to single EQ for non-MSI-X */ 13110 if (phba->intr_type != MSIX) { 13111 phba->cfg_irq_chann = 1; 13112 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13113 if (phba->nvmet_support) 13114 phba->cfg_nvmet_mrq = 1; 13115 } 13116 } 13117 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 13118 13119 /* Create SCSI host to the physical port */ 13120 error = lpfc_create_shost(phba); 13121 if (error) { 13122 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13123 "1415 Failed to create scsi host.\n"); 13124 goto out_disable_intr; 13125 } 13126 vport = phba->pport; 13127 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13128 13129 /* Configure sysfs attributes */ 13130 error = lpfc_alloc_sysfs_attr(vport); 13131 if (error) { 13132 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13133 "1416 Failed to allocate sysfs attr\n"); 13134 goto out_destroy_shost; 13135 } 13136 13137 /* Set up SLI-4 HBA */ 13138 if (lpfc_sli4_hba_setup(phba)) { 13139 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13140 "1421 Failed to set up hba\n"); 13141 error = -ENODEV; 13142 goto out_free_sysfs_attr; 13143 } 13144 13145 /* Log the current active interrupt mode */ 13146 phba->intr_mode = intr_mode; 13147 lpfc_log_intr_mode(phba, intr_mode); 13148 13149 /* Perform post initialization setup */ 13150 lpfc_post_init_setup(phba); 13151 13152 /* NVME support in FW earlier in the driver load corrects the 13153 * FC4 type making a check for nvme_support unnecessary. 13154 */ 13155 if (phba->nvmet_support == 0) { 13156 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13157 /* Create NVME binding with nvme_fc_transport. This 13158 * ensures the vport is initialized. If the localport 13159 * create fails, it should not unload the driver to 13160 * support field issues. 13161 */ 13162 error = lpfc_nvme_create_localport(vport); 13163 if (error) { 13164 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13165 "6004 NVME registration " 13166 "failed, error x%x\n", 13167 error); 13168 } 13169 } 13170 } 13171 13172 /* check for firmware upgrade or downgrade */ 13173 if (phba->cfg_request_firmware_upgrade) 13174 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 13175 13176 /* Check if there are static vports to be created. */ 13177 lpfc_create_static_vport(phba); 13178 13179 /* Enable RAS FW log support */ 13180 lpfc_sli4_ras_setup(phba); 13181 13182 INIT_LIST_HEAD(&phba->poll_list); 13183 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 13184 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 13185 13186 return 0; 13187 13188 out_free_sysfs_attr: 13189 lpfc_free_sysfs_attr(vport); 13190 out_destroy_shost: 13191 lpfc_destroy_shost(phba); 13192 out_disable_intr: 13193 lpfc_sli4_disable_intr(phba); 13194 out_unset_driver_resource: 13195 lpfc_unset_driver_resource_phase2(phba); 13196 out_unset_driver_resource_s4: 13197 lpfc_sli4_driver_resource_unset(phba); 13198 out_unset_pci_mem_s4: 13199 lpfc_sli4_pci_mem_unset(phba); 13200 out_disable_pci_dev: 13201 lpfc_disable_pci_dev(phba); 13202 if (shost) 13203 scsi_host_put(shost); 13204 out_free_phba: 13205 lpfc_hba_free(phba); 13206 return error; 13207 } 13208 13209 /** 13210 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 13211 * @pdev: pointer to PCI device 13212 * 13213 * This routine is called from the kernel's PCI subsystem to device with 13214 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13215 * removed from PCI bus, it performs all the necessary cleanup for the HBA 13216 * device to be removed from the PCI subsystem properly. 13217 **/ 13218 static void 13219 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 13220 { 13221 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13222 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 13223 struct lpfc_vport **vports; 13224 struct lpfc_hba *phba = vport->phba; 13225 int i; 13226 13227 /* Mark the device unloading flag */ 13228 spin_lock_irq(&phba->hbalock); 13229 vport->load_flag |= FC_UNLOADING; 13230 spin_unlock_irq(&phba->hbalock); 13231 13232 /* Free the HBA sysfs attributes */ 13233 lpfc_free_sysfs_attr(vport); 13234 13235 /* Release all the vports against this physical port */ 13236 vports = lpfc_create_vport_work_array(phba); 13237 if (vports != NULL) 13238 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 13239 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 13240 continue; 13241 fc_vport_terminate(vports[i]->fc_vport); 13242 } 13243 lpfc_destroy_vport_work_array(phba, vports); 13244 13245 /* Remove FC host and then SCSI host with the physical port */ 13246 fc_remove_host(shost); 13247 scsi_remove_host(shost); 13248 13249 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 13250 * localports are destroyed after to cleanup all transport memory. 13251 */ 13252 lpfc_cleanup(vport); 13253 lpfc_nvmet_destroy_targetport(phba); 13254 lpfc_nvme_destroy_localport(vport); 13255 13256 /* De-allocate multi-XRI pools */ 13257 if (phba->cfg_xri_rebalancing) 13258 lpfc_destroy_multixri_pools(phba); 13259 13260 /* 13261 * Bring down the SLI Layer. This step disables all interrupts, 13262 * clears the rings, discards all mailbox commands, and resets 13263 * the HBA FCoE function. 13264 */ 13265 lpfc_debugfs_terminate(vport); 13266 13267 lpfc_stop_hba_timers(phba); 13268 spin_lock_irq(&phba->port_list_lock); 13269 list_del_init(&vport->listentry); 13270 spin_unlock_irq(&phba->port_list_lock); 13271 13272 /* Perform scsi free before driver resource_unset since scsi 13273 * buffers are released to their corresponding pools here. 13274 */ 13275 lpfc_io_free(phba); 13276 lpfc_free_iocb_list(phba); 13277 lpfc_sli4_hba_unset(phba); 13278 13279 lpfc_unset_driver_resource_phase2(phba); 13280 lpfc_sli4_driver_resource_unset(phba); 13281 13282 /* Unmap adapter Control and Doorbell registers */ 13283 lpfc_sli4_pci_mem_unset(phba); 13284 13285 /* Release PCI resources and disable device's PCI function */ 13286 scsi_host_put(shost); 13287 lpfc_disable_pci_dev(phba); 13288 13289 /* Finally, free the driver's device data structure */ 13290 lpfc_hba_free(phba); 13291 13292 return; 13293 } 13294 13295 /** 13296 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 13297 * @pdev: pointer to PCI device 13298 * @msg: power management message 13299 * 13300 * This routine is called from the kernel's PCI subsystem to support system 13301 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 13302 * this method, it quiesces the device by stopping the driver's worker 13303 * thread for the device, turning off device's interrupt and DMA, and bring 13304 * the device offline. Note that as the driver implements the minimum PM 13305 * requirements to a power-aware driver's PM support for suspend/resume -- all 13306 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 13307 * method call will be treated as SUSPEND and the driver will fully 13308 * reinitialize its device during resume() method call, the driver will set 13309 * device to PCI_D3hot state in PCI config space instead of setting it 13310 * according to the @msg provided by the PM. 13311 * 13312 * Return code 13313 * 0 - driver suspended the device 13314 * Error otherwise 13315 **/ 13316 static int 13317 lpfc_pci_suspend_one_s4(struct pci_dev *pdev, pm_message_t msg) 13318 { 13319 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13320 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13321 13322 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13323 "2843 PCI device Power Management suspend.\n"); 13324 13325 /* Bring down the device */ 13326 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13327 lpfc_offline(phba); 13328 kthread_stop(phba->worker_thread); 13329 13330 /* Disable interrupt from device */ 13331 lpfc_sli4_disable_intr(phba); 13332 lpfc_sli4_queue_destroy(phba); 13333 13334 /* Save device state to PCI config space */ 13335 pci_save_state(pdev); 13336 pci_set_power_state(pdev, PCI_D3hot); 13337 13338 return 0; 13339 } 13340 13341 /** 13342 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 13343 * @pdev: pointer to PCI device 13344 * 13345 * This routine is called from the kernel's PCI subsystem to support system 13346 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 13347 * this method, it restores the device's PCI config space state and fully 13348 * reinitializes the device and brings it online. Note that as the driver 13349 * implements the minimum PM requirements to a power-aware driver's PM for 13350 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 13351 * to the suspend() method call will be treated as SUSPEND and the driver 13352 * will fully reinitialize its device during resume() method call, the device 13353 * will be set to PCI_D0 directly in PCI config space before restoring the 13354 * state. 13355 * 13356 * Return code 13357 * 0 - driver suspended the device 13358 * Error otherwise 13359 **/ 13360 static int 13361 lpfc_pci_resume_one_s4(struct pci_dev *pdev) 13362 { 13363 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13364 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13365 uint32_t intr_mode; 13366 int error; 13367 13368 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13369 "0292 PCI device Power Management resume.\n"); 13370 13371 /* Restore device state from PCI config space */ 13372 pci_set_power_state(pdev, PCI_D0); 13373 pci_restore_state(pdev); 13374 13375 /* 13376 * As the new kernel behavior of pci_restore_state() API call clears 13377 * device saved_state flag, need to save the restored state again. 13378 */ 13379 pci_save_state(pdev); 13380 13381 if (pdev->is_busmaster) 13382 pci_set_master(pdev); 13383 13384 /* Startup the kernel thread for this host adapter. */ 13385 phba->worker_thread = kthread_run(lpfc_do_work, phba, 13386 "lpfc_worker_%d", phba->brd_no); 13387 if (IS_ERR(phba->worker_thread)) { 13388 error = PTR_ERR(phba->worker_thread); 13389 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13390 "0293 PM resume failed to start worker " 13391 "thread: error=x%x.\n", error); 13392 return error; 13393 } 13394 13395 /* Configure and enable interrupt */ 13396 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13397 if (intr_mode == LPFC_INTR_ERROR) { 13398 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13399 "0294 PM resume Failed to enable interrupt\n"); 13400 return -EIO; 13401 } else 13402 phba->intr_mode = intr_mode; 13403 13404 /* Restart HBA and bring it online */ 13405 lpfc_sli_brdrestart(phba); 13406 lpfc_online(phba); 13407 13408 /* Log the current active interrupt mode */ 13409 lpfc_log_intr_mode(phba, phba->intr_mode); 13410 13411 return 0; 13412 } 13413 13414 /** 13415 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 13416 * @phba: pointer to lpfc hba data structure. 13417 * 13418 * This routine is called to prepare the SLI4 device for PCI slot recover. It 13419 * aborts all the outstanding SCSI I/Os to the pci device. 13420 **/ 13421 static void 13422 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 13423 { 13424 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13425 "2828 PCI channel I/O abort preparing for recovery\n"); 13426 /* 13427 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 13428 * and let the SCSI mid-layer to retry them to recover. 13429 */ 13430 lpfc_sli_abort_fcp_rings(phba); 13431 } 13432 13433 /** 13434 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 13435 * @phba: pointer to lpfc hba data structure. 13436 * 13437 * This routine is called to prepare the SLI4 device for PCI slot reset. It 13438 * disables the device interrupt and pci device, and aborts the internal FCP 13439 * pending I/Os. 13440 **/ 13441 static void 13442 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 13443 { 13444 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13445 "2826 PCI channel disable preparing for reset\n"); 13446 13447 /* Block any management I/Os to the device */ 13448 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 13449 13450 /* Block all SCSI devices' I/Os on the host */ 13451 lpfc_scsi_dev_block(phba); 13452 13453 /* Flush all driver's outstanding I/Os as we are to reset */ 13454 lpfc_sli_flush_io_rings(phba); 13455 13456 /* stop all timers */ 13457 lpfc_stop_hba_timers(phba); 13458 13459 /* Disable interrupt and pci device */ 13460 lpfc_sli4_disable_intr(phba); 13461 lpfc_sli4_queue_destroy(phba); 13462 pci_disable_device(phba->pcidev); 13463 } 13464 13465 /** 13466 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 13467 * @phba: pointer to lpfc hba data structure. 13468 * 13469 * This routine is called to prepare the SLI4 device for PCI slot permanently 13470 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 13471 * pending I/Os. 13472 **/ 13473 static void 13474 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 13475 { 13476 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13477 "2827 PCI channel permanent disable for failure\n"); 13478 13479 /* Block all SCSI devices' I/Os on the host */ 13480 lpfc_scsi_dev_block(phba); 13481 13482 /* stop all timers */ 13483 lpfc_stop_hba_timers(phba); 13484 13485 /* Clean up all driver's outstanding I/Os */ 13486 lpfc_sli_flush_io_rings(phba); 13487 } 13488 13489 /** 13490 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 13491 * @pdev: pointer to PCI device. 13492 * @state: the current PCI connection state. 13493 * 13494 * This routine is called from the PCI subsystem for error handling to device 13495 * with SLI-4 interface spec. This function is called by the PCI subsystem 13496 * after a PCI bus error affecting this device has been detected. When this 13497 * function is invoked, it will need to stop all the I/Os and interrupt(s) 13498 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 13499 * for the PCI subsystem to perform proper recovery as desired. 13500 * 13501 * Return codes 13502 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13503 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13504 **/ 13505 static pci_ers_result_t 13506 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 13507 { 13508 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13509 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13510 13511 switch (state) { 13512 case pci_channel_io_normal: 13513 /* Non-fatal error, prepare for recovery */ 13514 lpfc_sli4_prep_dev_for_recover(phba); 13515 return PCI_ERS_RESULT_CAN_RECOVER; 13516 case pci_channel_io_frozen: 13517 /* Fatal error, prepare for slot reset */ 13518 lpfc_sli4_prep_dev_for_reset(phba); 13519 return PCI_ERS_RESULT_NEED_RESET; 13520 case pci_channel_io_perm_failure: 13521 /* Permanent failure, prepare for device down */ 13522 lpfc_sli4_prep_dev_for_perm_failure(phba); 13523 return PCI_ERS_RESULT_DISCONNECT; 13524 default: 13525 /* Unknown state, prepare and request slot reset */ 13526 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13527 "2825 Unknown PCI error state: x%x\n", state); 13528 lpfc_sli4_prep_dev_for_reset(phba); 13529 return PCI_ERS_RESULT_NEED_RESET; 13530 } 13531 } 13532 13533 /** 13534 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 13535 * @pdev: pointer to PCI device. 13536 * 13537 * This routine is called from the PCI subsystem for error handling to device 13538 * with SLI-4 interface spec. It is called after PCI bus has been reset to 13539 * restart the PCI card from scratch, as if from a cold-boot. During the 13540 * PCI subsystem error recovery, after the driver returns 13541 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 13542 * recovery and then call this routine before calling the .resume method to 13543 * recover the device. This function will initialize the HBA device, enable 13544 * the interrupt, but it will just put the HBA to offline state without 13545 * passing any I/O traffic. 13546 * 13547 * Return codes 13548 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13549 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13550 */ 13551 static pci_ers_result_t 13552 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 13553 { 13554 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13555 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13556 struct lpfc_sli *psli = &phba->sli; 13557 uint32_t intr_mode; 13558 13559 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 13560 if (pci_enable_device_mem(pdev)) { 13561 printk(KERN_ERR "lpfc: Cannot re-enable " 13562 "PCI device after reset.\n"); 13563 return PCI_ERS_RESULT_DISCONNECT; 13564 } 13565 13566 pci_restore_state(pdev); 13567 13568 /* 13569 * As the new kernel behavior of pci_restore_state() API call clears 13570 * device saved_state flag, need to save the restored state again. 13571 */ 13572 pci_save_state(pdev); 13573 13574 if (pdev->is_busmaster) 13575 pci_set_master(pdev); 13576 13577 spin_lock_irq(&phba->hbalock); 13578 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 13579 spin_unlock_irq(&phba->hbalock); 13580 13581 /* Configure and enable interrupt */ 13582 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13583 if (intr_mode == LPFC_INTR_ERROR) { 13584 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13585 "2824 Cannot re-enable interrupt after " 13586 "slot reset.\n"); 13587 return PCI_ERS_RESULT_DISCONNECT; 13588 } else 13589 phba->intr_mode = intr_mode; 13590 13591 /* Log the current active interrupt mode */ 13592 lpfc_log_intr_mode(phba, phba->intr_mode); 13593 13594 return PCI_ERS_RESULT_RECOVERED; 13595 } 13596 13597 /** 13598 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 13599 * @pdev: pointer to PCI device 13600 * 13601 * This routine is called from the PCI subsystem for error handling to device 13602 * with SLI-4 interface spec. It is called when kernel error recovery tells 13603 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 13604 * error recovery. After this call, traffic can start to flow from this device 13605 * again. 13606 **/ 13607 static void 13608 lpfc_io_resume_s4(struct pci_dev *pdev) 13609 { 13610 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13611 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13612 13613 /* 13614 * In case of slot reset, as function reset is performed through 13615 * mailbox command which needs DMA to be enabled, this operation 13616 * has to be moved to the io resume phase. Taking device offline 13617 * will perform the necessary cleanup. 13618 */ 13619 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 13620 /* Perform device reset */ 13621 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13622 lpfc_offline(phba); 13623 lpfc_sli_brdrestart(phba); 13624 /* Bring the device back online */ 13625 lpfc_online(phba); 13626 } 13627 } 13628 13629 /** 13630 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 13631 * @pdev: pointer to PCI device 13632 * @pid: pointer to PCI device identifier 13633 * 13634 * This routine is to be registered to the kernel's PCI subsystem. When an 13635 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 13636 * at PCI device-specific information of the device and driver to see if the 13637 * driver state that it can support this kind of device. If the match is 13638 * successful, the driver core invokes this routine. This routine dispatches 13639 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 13640 * do all the initialization that it needs to do to handle the HBA device 13641 * properly. 13642 * 13643 * Return code 13644 * 0 - driver can claim the device 13645 * negative value - driver can not claim the device 13646 **/ 13647 static int 13648 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 13649 { 13650 int rc; 13651 struct lpfc_sli_intf intf; 13652 13653 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 13654 return -ENODEV; 13655 13656 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 13657 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 13658 rc = lpfc_pci_probe_one_s4(pdev, pid); 13659 else 13660 rc = lpfc_pci_probe_one_s3(pdev, pid); 13661 13662 return rc; 13663 } 13664 13665 /** 13666 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 13667 * @pdev: pointer to PCI device 13668 * 13669 * This routine is to be registered to the kernel's PCI subsystem. When an 13670 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 13671 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 13672 * remove routine, which will perform all the necessary cleanup for the 13673 * device to be removed from the PCI subsystem properly. 13674 **/ 13675 static void 13676 lpfc_pci_remove_one(struct pci_dev *pdev) 13677 { 13678 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13679 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13680 13681 switch (phba->pci_dev_grp) { 13682 case LPFC_PCI_DEV_LP: 13683 lpfc_pci_remove_one_s3(pdev); 13684 break; 13685 case LPFC_PCI_DEV_OC: 13686 lpfc_pci_remove_one_s4(pdev); 13687 break; 13688 default: 13689 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13690 "1424 Invalid PCI device group: 0x%x\n", 13691 phba->pci_dev_grp); 13692 break; 13693 } 13694 return; 13695 } 13696 13697 /** 13698 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 13699 * @pdev: pointer to PCI device 13700 * @msg: power management message 13701 * 13702 * This routine is to be registered to the kernel's PCI subsystem to support 13703 * system Power Management (PM). When PM invokes this method, it dispatches 13704 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 13705 * suspend the device. 13706 * 13707 * Return code 13708 * 0 - driver suspended the device 13709 * Error otherwise 13710 **/ 13711 static int 13712 lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg) 13713 { 13714 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13715 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13716 int rc = -ENODEV; 13717 13718 switch (phba->pci_dev_grp) { 13719 case LPFC_PCI_DEV_LP: 13720 rc = lpfc_pci_suspend_one_s3(pdev, msg); 13721 break; 13722 case LPFC_PCI_DEV_OC: 13723 rc = lpfc_pci_suspend_one_s4(pdev, msg); 13724 break; 13725 default: 13726 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13727 "1425 Invalid PCI device group: 0x%x\n", 13728 phba->pci_dev_grp); 13729 break; 13730 } 13731 return rc; 13732 } 13733 13734 /** 13735 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 13736 * @pdev: pointer to PCI device 13737 * 13738 * This routine is to be registered to the kernel's PCI subsystem to support 13739 * system Power Management (PM). When PM invokes this method, it dispatches 13740 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 13741 * resume the device. 13742 * 13743 * Return code 13744 * 0 - driver suspended the device 13745 * Error otherwise 13746 **/ 13747 static int 13748 lpfc_pci_resume_one(struct pci_dev *pdev) 13749 { 13750 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13751 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13752 int rc = -ENODEV; 13753 13754 switch (phba->pci_dev_grp) { 13755 case LPFC_PCI_DEV_LP: 13756 rc = lpfc_pci_resume_one_s3(pdev); 13757 break; 13758 case LPFC_PCI_DEV_OC: 13759 rc = lpfc_pci_resume_one_s4(pdev); 13760 break; 13761 default: 13762 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13763 "1426 Invalid PCI device group: 0x%x\n", 13764 phba->pci_dev_grp); 13765 break; 13766 } 13767 return rc; 13768 } 13769 13770 /** 13771 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 13772 * @pdev: pointer to PCI device. 13773 * @state: the current PCI connection state. 13774 * 13775 * This routine is registered to the PCI subsystem for error handling. This 13776 * function is called by the PCI subsystem after a PCI bus error affecting 13777 * this device has been detected. When this routine is invoked, it dispatches 13778 * the action to the proper SLI-3 or SLI-4 device error detected handling 13779 * routine, which will perform the proper error detected operation. 13780 * 13781 * Return codes 13782 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13783 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13784 **/ 13785 static pci_ers_result_t 13786 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 13787 { 13788 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13789 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13790 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13791 13792 switch (phba->pci_dev_grp) { 13793 case LPFC_PCI_DEV_LP: 13794 rc = lpfc_io_error_detected_s3(pdev, state); 13795 break; 13796 case LPFC_PCI_DEV_OC: 13797 rc = lpfc_io_error_detected_s4(pdev, state); 13798 break; 13799 default: 13800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13801 "1427 Invalid PCI device group: 0x%x\n", 13802 phba->pci_dev_grp); 13803 break; 13804 } 13805 return rc; 13806 } 13807 13808 /** 13809 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 13810 * @pdev: pointer to PCI device. 13811 * 13812 * This routine is registered to the PCI subsystem for error handling. This 13813 * function is called after PCI bus has been reset to restart the PCI card 13814 * from scratch, as if from a cold-boot. When this routine is invoked, it 13815 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 13816 * routine, which will perform the proper device reset. 13817 * 13818 * Return codes 13819 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13820 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13821 **/ 13822 static pci_ers_result_t 13823 lpfc_io_slot_reset(struct pci_dev *pdev) 13824 { 13825 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13826 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13827 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13828 13829 switch (phba->pci_dev_grp) { 13830 case LPFC_PCI_DEV_LP: 13831 rc = lpfc_io_slot_reset_s3(pdev); 13832 break; 13833 case LPFC_PCI_DEV_OC: 13834 rc = lpfc_io_slot_reset_s4(pdev); 13835 break; 13836 default: 13837 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13838 "1428 Invalid PCI device group: 0x%x\n", 13839 phba->pci_dev_grp); 13840 break; 13841 } 13842 return rc; 13843 } 13844 13845 /** 13846 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 13847 * @pdev: pointer to PCI device 13848 * 13849 * This routine is registered to the PCI subsystem for error handling. It 13850 * is called when kernel error recovery tells the lpfc driver that it is 13851 * OK to resume normal PCI operation after PCI bus error recovery. When 13852 * this routine is invoked, it dispatches the action to the proper SLI-3 13853 * or SLI-4 device io_resume routine, which will resume the device operation. 13854 **/ 13855 static void 13856 lpfc_io_resume(struct pci_dev *pdev) 13857 { 13858 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13859 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13860 13861 switch (phba->pci_dev_grp) { 13862 case LPFC_PCI_DEV_LP: 13863 lpfc_io_resume_s3(pdev); 13864 break; 13865 case LPFC_PCI_DEV_OC: 13866 lpfc_io_resume_s4(pdev); 13867 break; 13868 default: 13869 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13870 "1429 Invalid PCI device group: 0x%x\n", 13871 phba->pci_dev_grp); 13872 break; 13873 } 13874 return; 13875 } 13876 13877 /** 13878 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 13879 * @phba: pointer to lpfc hba data structure. 13880 * 13881 * This routine checks to see if OAS is supported for this adapter. If 13882 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 13883 * the enable oas flag is cleared and the pool created for OAS device data 13884 * is destroyed. 13885 * 13886 **/ 13887 static void 13888 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 13889 { 13890 13891 if (!phba->cfg_EnableXLane) 13892 return; 13893 13894 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 13895 phba->cfg_fof = 1; 13896 } else { 13897 phba->cfg_fof = 0; 13898 mempool_destroy(phba->device_data_mem_pool); 13899 phba->device_data_mem_pool = NULL; 13900 } 13901 13902 return; 13903 } 13904 13905 /** 13906 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 13907 * @phba: pointer to lpfc hba data structure. 13908 * 13909 * This routine checks to see if RAS is supported by the adapter. Check the 13910 * function through which RAS support enablement is to be done. 13911 **/ 13912 void 13913 lpfc_sli4_ras_init(struct lpfc_hba *phba) 13914 { 13915 switch (phba->pcidev->device) { 13916 case PCI_DEVICE_ID_LANCER_G6_FC: 13917 case PCI_DEVICE_ID_LANCER_G7_FC: 13918 phba->ras_fwlog.ras_hwsupport = true; 13919 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 13920 phba->cfg_ras_fwlog_buffsize) 13921 phba->ras_fwlog.ras_enabled = true; 13922 else 13923 phba->ras_fwlog.ras_enabled = false; 13924 break; 13925 default: 13926 phba->ras_fwlog.ras_hwsupport = false; 13927 } 13928 } 13929 13930 13931 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 13932 13933 static const struct pci_error_handlers lpfc_err_handler = { 13934 .error_detected = lpfc_io_error_detected, 13935 .slot_reset = lpfc_io_slot_reset, 13936 .resume = lpfc_io_resume, 13937 }; 13938 13939 static struct pci_driver lpfc_driver = { 13940 .name = LPFC_DRIVER_NAME, 13941 .id_table = lpfc_id_table, 13942 .probe = lpfc_pci_probe_one, 13943 .remove = lpfc_pci_remove_one, 13944 .shutdown = lpfc_pci_remove_one, 13945 .suspend = lpfc_pci_suspend_one, 13946 .resume = lpfc_pci_resume_one, 13947 .err_handler = &lpfc_err_handler, 13948 }; 13949 13950 static const struct file_operations lpfc_mgmt_fop = { 13951 .owner = THIS_MODULE, 13952 }; 13953 13954 static struct miscdevice lpfc_mgmt_dev = { 13955 .minor = MISC_DYNAMIC_MINOR, 13956 .name = "lpfcmgmt", 13957 .fops = &lpfc_mgmt_fop, 13958 }; 13959 13960 /** 13961 * lpfc_init - lpfc module initialization routine 13962 * 13963 * This routine is to be invoked when the lpfc module is loaded into the 13964 * kernel. The special kernel macro module_init() is used to indicate the 13965 * role of this routine to the kernel as lpfc module entry point. 13966 * 13967 * Return codes 13968 * 0 - successful 13969 * -ENOMEM - FC attach transport failed 13970 * all others - failed 13971 */ 13972 static int __init 13973 lpfc_init(void) 13974 { 13975 int error = 0; 13976 13977 printk(LPFC_MODULE_DESC "\n"); 13978 printk(LPFC_COPYRIGHT "\n"); 13979 13980 error = misc_register(&lpfc_mgmt_dev); 13981 if (error) 13982 printk(KERN_ERR "Could not register lpfcmgmt device, " 13983 "misc_register returned with status %d", error); 13984 13985 lpfc_transport_functions.vport_create = lpfc_vport_create; 13986 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 13987 lpfc_transport_template = 13988 fc_attach_transport(&lpfc_transport_functions); 13989 if (lpfc_transport_template == NULL) 13990 return -ENOMEM; 13991 lpfc_vport_transport_template = 13992 fc_attach_transport(&lpfc_vport_transport_functions); 13993 if (lpfc_vport_transport_template == NULL) { 13994 fc_release_transport(lpfc_transport_template); 13995 return -ENOMEM; 13996 } 13997 lpfc_nvme_cmd_template(); 13998 lpfc_nvmet_cmd_template(); 13999 14000 /* Initialize in case vector mapping is needed */ 14001 lpfc_present_cpu = num_present_cpus(); 14002 14003 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 14004 "lpfc/sli4:online", 14005 lpfc_cpu_online, lpfc_cpu_offline); 14006 if (error < 0) 14007 goto cpuhp_failure; 14008 lpfc_cpuhp_state = error; 14009 14010 error = pci_register_driver(&lpfc_driver); 14011 if (error) 14012 goto unwind; 14013 14014 return error; 14015 14016 unwind: 14017 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14018 cpuhp_failure: 14019 fc_release_transport(lpfc_transport_template); 14020 fc_release_transport(lpfc_vport_transport_template); 14021 14022 return error; 14023 } 14024 14025 /** 14026 * lpfc_exit - lpfc module removal routine 14027 * 14028 * This routine is invoked when the lpfc module is removed from the kernel. 14029 * The special kernel macro module_exit() is used to indicate the role of 14030 * this routine to the kernel as lpfc module exit point. 14031 */ 14032 static void __exit 14033 lpfc_exit(void) 14034 { 14035 misc_deregister(&lpfc_mgmt_dev); 14036 pci_unregister_driver(&lpfc_driver); 14037 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14038 fc_release_transport(lpfc_transport_template); 14039 fc_release_transport(lpfc_vport_transport_template); 14040 idr_destroy(&lpfc_hba_index); 14041 } 14042 14043 module_init(lpfc_init); 14044 module_exit(lpfc_exit); 14045 MODULE_LICENSE("GPL"); 14046 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 14047 MODULE_AUTHOR("Broadcom"); 14048 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 14049