xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 44ac5aba)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/aer.h>
36 #include <linux/slab.h>
37 #include <linux/firmware.h>
38 #include <linux/miscdevice.h>
39 #include <linux/percpu.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 static bool lpfc_pldv_detect;
72 
73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
75 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
77 static int lpfc_post_rcv_buf(struct lpfc_hba *);
78 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
80 static int lpfc_setup_endian_order(struct lpfc_hba *);
81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
82 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
84 static void lpfc_init_sgl_list(struct lpfc_hba *);
85 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
86 static void lpfc_free_active_sgl(struct lpfc_hba *);
87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
92 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
99 
100 static struct scsi_transport_template *lpfc_transport_template = NULL;
101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
102 static DEFINE_IDR(lpfc_hba_index);
103 #define LPFC_NVMET_BUF_POST 254
104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
105 
106 /**
107  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
108  * @phba: pointer to lpfc hba data structure.
109  *
110  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
111  * mailbox command. It retrieves the revision information from the HBA and
112  * collects the Vital Product Data (VPD) about the HBA for preparing the
113  * configuration of the HBA.
114  *
115  * Return codes:
116  *   0 - success.
117  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
118  *   Any other value - indicates an error.
119  **/
120 int
121 lpfc_config_port_prep(struct lpfc_hba *phba)
122 {
123 	lpfc_vpd_t *vp = &phba->vpd;
124 	int i = 0, rc;
125 	LPFC_MBOXQ_t *pmb;
126 	MAILBOX_t *mb;
127 	char *lpfc_vpd_data = NULL;
128 	uint16_t offset = 0;
129 	static char licensed[56] =
130 		    "key unlock for use with gnu public licensed code only\0";
131 	static int init_key = 1;
132 
133 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
134 	if (!pmb) {
135 		phba->link_state = LPFC_HBA_ERROR;
136 		return -ENOMEM;
137 	}
138 
139 	mb = &pmb->u.mb;
140 	phba->link_state = LPFC_INIT_MBX_CMDS;
141 
142 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
143 		if (init_key) {
144 			uint32_t *ptext = (uint32_t *) licensed;
145 
146 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
147 				*ptext = cpu_to_be32(*ptext);
148 			init_key = 0;
149 		}
150 
151 		lpfc_read_nv(phba, pmb);
152 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
153 			sizeof (mb->un.varRDnvp.rsvd3));
154 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
155 			 sizeof (licensed));
156 
157 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
158 
159 		if (rc != MBX_SUCCESS) {
160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
161 					"0324 Config Port initialization "
162 					"error, mbxCmd x%x READ_NVPARM, "
163 					"mbxStatus x%x\n",
164 					mb->mbxCommand, mb->mbxStatus);
165 			mempool_free(pmb, phba->mbox_mem_pool);
166 			return -ERESTART;
167 		}
168 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
169 		       sizeof(phba->wwnn));
170 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
171 		       sizeof(phba->wwpn));
172 	}
173 
174 	/*
175 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
176 	 * which was already set in lpfc_get_cfgparam()
177 	 */
178 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
179 
180 	/* Setup and issue mailbox READ REV command */
181 	lpfc_read_rev(phba, pmb);
182 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
183 	if (rc != MBX_SUCCESS) {
184 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
185 				"0439 Adapter failed to init, mbxCmd x%x "
186 				"READ_REV, mbxStatus x%x\n",
187 				mb->mbxCommand, mb->mbxStatus);
188 		mempool_free( pmb, phba->mbox_mem_pool);
189 		return -ERESTART;
190 	}
191 
192 
193 	/*
194 	 * The value of rr must be 1 since the driver set the cv field to 1.
195 	 * This setting requires the FW to set all revision fields.
196 	 */
197 	if (mb->un.varRdRev.rr == 0) {
198 		vp->rev.rBit = 0;
199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
200 				"0440 Adapter failed to init, READ_REV has "
201 				"missing revision information.\n");
202 		mempool_free(pmb, phba->mbox_mem_pool);
203 		return -ERESTART;
204 	}
205 
206 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
207 		mempool_free(pmb, phba->mbox_mem_pool);
208 		return -EINVAL;
209 	}
210 
211 	/* Save information as VPD data */
212 	vp->rev.rBit = 1;
213 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
214 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
215 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
216 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
217 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
218 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
219 	vp->rev.smRev = mb->un.varRdRev.smRev;
220 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
221 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
222 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
223 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
224 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
225 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
226 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
227 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
228 
229 	/* If the sli feature level is less then 9, we must
230 	 * tear down all RPIs and VPIs on link down if NPIV
231 	 * is enabled.
232 	 */
233 	if (vp->rev.feaLevelHigh < 9)
234 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
235 
236 	if (lpfc_is_LC_HBA(phba->pcidev->device))
237 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
238 						sizeof (phba->RandomData));
239 
240 	/* Get adapter VPD information */
241 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
242 	if (!lpfc_vpd_data)
243 		goto out_free_mbox;
244 	do {
245 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
246 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
247 
248 		if (rc != MBX_SUCCESS) {
249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
250 					"0441 VPD not present on adapter, "
251 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
252 					mb->mbxCommand, mb->mbxStatus);
253 			mb->un.varDmp.word_cnt = 0;
254 		}
255 		/* dump mem may return a zero when finished or we got a
256 		 * mailbox error, either way we are done.
257 		 */
258 		if (mb->un.varDmp.word_cnt == 0)
259 			break;
260 
261 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
262 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
263 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
264 				      lpfc_vpd_data + offset,
265 				      mb->un.varDmp.word_cnt);
266 		offset += mb->un.varDmp.word_cnt;
267 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
268 
269 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
270 
271 	kfree(lpfc_vpd_data);
272 out_free_mbox:
273 	mempool_free(pmb, phba->mbox_mem_pool);
274 	return 0;
275 }
276 
277 /**
278  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
279  * @phba: pointer to lpfc hba data structure.
280  * @pmboxq: pointer to the driver internal queue element for mailbox command.
281  *
282  * This is the completion handler for driver's configuring asynchronous event
283  * mailbox command to the device. If the mailbox command returns successfully,
284  * it will set internal async event support flag to 1; otherwise, it will
285  * set internal async event support flag to 0.
286  **/
287 static void
288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
289 {
290 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
291 		phba->temp_sensor_support = 1;
292 	else
293 		phba->temp_sensor_support = 0;
294 	mempool_free(pmboxq, phba->mbox_mem_pool);
295 	return;
296 }
297 
298 /**
299  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
300  * @phba: pointer to lpfc hba data structure.
301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
302  *
303  * This is the completion handler for dump mailbox command for getting
304  * wake up parameters. When this command complete, the response contain
305  * Option rom version of the HBA. This function translate the version number
306  * into a human readable string and store it in OptionROMVersion.
307  **/
308 static void
309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
310 {
311 	struct prog_id *prg;
312 	uint32_t prog_id_word;
313 	char dist = ' ';
314 	/* character array used for decoding dist type. */
315 	char dist_char[] = "nabx";
316 
317 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
318 		mempool_free(pmboxq, phba->mbox_mem_pool);
319 		return;
320 	}
321 
322 	prg = (struct prog_id *) &prog_id_word;
323 
324 	/* word 7 contain option rom version */
325 	prog_id_word = pmboxq->u.mb.un.varWords[7];
326 
327 	/* Decode the Option rom version word to a readable string */
328 	dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	struct lpfc_hba *phba = vport->phba;
353 
354 	/*
355 	 * If the name is empty or there exists a soft name
356 	 * then copy the service params name, otherwise use the fc name
357 	 */
358 	if (vport->fc_nodename.u.wwn[0] == 0)
359 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
360 			sizeof(struct lpfc_name));
361 	else
362 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
363 			sizeof(struct lpfc_name));
364 
365 	/*
366 	 * If the port name has changed, then set the Param changes flag
367 	 * to unreg the login
368 	 */
369 	if (vport->fc_portname.u.wwn[0] != 0 &&
370 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
371 		       sizeof(struct lpfc_name))) {
372 		vport->vport_flag |= FAWWPN_PARAM_CHG;
373 
374 		if (phba->sli_rev == LPFC_SLI_REV4 &&
375 		    vport->port_type == LPFC_PHYSICAL_PORT &&
376 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
377 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
378 				phba->sli4_hba.fawwpn_flag &=
379 						~LPFC_FAWWPN_FABRIC;
380 			lpfc_printf_log(phba, KERN_INFO,
381 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
382 					"2701 FA-PWWN change WWPN from %llx to "
383 					"%llx: vflag x%x fawwpn_flag x%x\n",
384 					wwn_to_u64(vport->fc_portname.u.wwn),
385 					wwn_to_u64
386 					   (vport->fc_sparam.portName.u.wwn),
387 					vport->vport_flag,
388 					phba->sli4_hba.fawwpn_flag);
389 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
390 			       sizeof(struct lpfc_name));
391 		}
392 	}
393 
394 	if (vport->fc_portname.u.wwn[0] == 0)
395 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
396 		       sizeof(struct lpfc_name));
397 	else
398 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
399 		       sizeof(struct lpfc_name));
400 }
401 
402 /**
403  * lpfc_config_port_post - Perform lpfc initialization after config port
404  * @phba: pointer to lpfc hba data structure.
405  *
406  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
407  * command call. It performs all internal resource and state setups on the
408  * port: post IOCB buffers, enable appropriate host interrupt attentions,
409  * ELS ring timers, etc.
410  *
411  * Return codes
412  *   0 - success.
413  *   Any other value - error.
414  **/
415 int
416 lpfc_config_port_post(struct lpfc_hba *phba)
417 {
418 	struct lpfc_vport *vport = phba->pport;
419 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
420 	LPFC_MBOXQ_t *pmb;
421 	MAILBOX_t *mb;
422 	struct lpfc_dmabuf *mp;
423 	struct lpfc_sli *psli = &phba->sli;
424 	uint32_t status, timeout;
425 	int i, j;
426 	int rc;
427 
428 	spin_lock_irq(&phba->hbalock);
429 	/*
430 	 * If the Config port completed correctly the HBA is not
431 	 * over heated any more.
432 	 */
433 	if (phba->over_temp_state == HBA_OVER_TEMP)
434 		phba->over_temp_state = HBA_NORMAL_TEMP;
435 	spin_unlock_irq(&phba->hbalock);
436 
437 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
438 	if (!pmb) {
439 		phba->link_state = LPFC_HBA_ERROR;
440 		return -ENOMEM;
441 	}
442 	mb = &pmb->u.mb;
443 
444 	/* Get login parameters for NID.  */
445 	rc = lpfc_read_sparam(phba, pmb, 0);
446 	if (rc) {
447 		mempool_free(pmb, phba->mbox_mem_pool);
448 		return -ENOMEM;
449 	}
450 
451 	pmb->vport = vport;
452 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
454 				"0448 Adapter failed init, mbxCmd x%x "
455 				"READ_SPARM mbxStatus x%x\n",
456 				mb->mbxCommand, mb->mbxStatus);
457 		phba->link_state = LPFC_HBA_ERROR;
458 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
465 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
466 	 * reused.
467 	 */
468 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
469 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
470 	kfree(mp);
471 	pmb->ctx_buf = NULL;
472 	lpfc_update_vport_wwn(vport);
473 
474 	/* Update the fc_host data structures with new wwn. */
475 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
476 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
477 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
478 
479 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
480 	/* This should be consolidated into parse_vpd ? - mr */
481 	if (phba->SerialNumber[0] == 0) {
482 		uint8_t *outptr;
483 
484 		outptr = &vport->fc_nodename.u.s.IEEE[0];
485 		for (i = 0; i < 12; i++) {
486 			status = *outptr++;
487 			j = ((status & 0xf0) >> 4);
488 			if (j <= 9)
489 				phba->SerialNumber[i] =
490 				    (char)((uint8_t) 0x30 + (uint8_t) j);
491 			else
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
494 			i++;
495 			j = (status & 0xf);
496 			if (j <= 9)
497 				phba->SerialNumber[i] =
498 				    (char)((uint8_t) 0x30 + (uint8_t) j);
499 			else
500 				phba->SerialNumber[i] =
501 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
502 		}
503 	}
504 
505 	lpfc_read_config(phba, pmb);
506 	pmb->vport = vport;
507 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
509 				"0453 Adapter failed to init, mbxCmd x%x "
510 				"READ_CONFIG, mbxStatus x%x\n",
511 				mb->mbxCommand, mb->mbxStatus);
512 		phba->link_state = LPFC_HBA_ERROR;
513 		mempool_free( pmb, phba->mbox_mem_pool);
514 		return -EIO;
515 	}
516 
517 	/* Check if the port is disabled */
518 	lpfc_sli_read_link_ste(phba);
519 
520 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
521 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
522 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
523 				"3359 HBA queue depth changed from %d to %d\n",
524 				phba->cfg_hba_queue_depth,
525 				mb->un.varRdConfig.max_xri);
526 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
527 	}
528 
529 	phba->lmt = mb->un.varRdConfig.lmt;
530 
531 	/* Get the default values for Model Name and Description */
532 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
533 
534 	phba->link_state = LPFC_LINK_DOWN;
535 
536 	/* Only process IOCBs on ELS ring till hba_state is READY */
537 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
538 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
539 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
540 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
541 
542 	/* Post receive buffers for desired rings */
543 	if (phba->sli_rev != 3)
544 		lpfc_post_rcv_buf(phba);
545 
546 	/*
547 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
548 	 */
549 	if (phba->intr_type == MSIX) {
550 		rc = lpfc_config_msi(phba, pmb);
551 		if (rc) {
552 			mempool_free(pmb, phba->mbox_mem_pool);
553 			return -EIO;
554 		}
555 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
556 		if (rc != MBX_SUCCESS) {
557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
558 					"0352 Config MSI mailbox command "
559 					"failed, mbxCmd x%x, mbxStatus x%x\n",
560 					pmb->u.mb.mbxCommand,
561 					pmb->u.mb.mbxStatus);
562 			mempool_free(pmb, phba->mbox_mem_pool);
563 			return -EIO;
564 		}
565 	}
566 
567 	spin_lock_irq(&phba->hbalock);
568 	/* Initialize ERATT handling flag */
569 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
570 
571 	/* Enable appropriate host interrupts */
572 	if (lpfc_readl(phba->HCregaddr, &status)) {
573 		spin_unlock_irq(&phba->hbalock);
574 		return -EIO;
575 	}
576 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
577 	if (psli->num_rings > 0)
578 		status |= HC_R0INT_ENA;
579 	if (psli->num_rings > 1)
580 		status |= HC_R1INT_ENA;
581 	if (psli->num_rings > 2)
582 		status |= HC_R2INT_ENA;
583 	if (psli->num_rings > 3)
584 		status |= HC_R3INT_ENA;
585 
586 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
587 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
588 		status &= ~(HC_R0INT_ENA);
589 
590 	writel(status, phba->HCregaddr);
591 	readl(phba->HCregaddr); /* flush */
592 	spin_unlock_irq(&phba->hbalock);
593 
594 	/* Set up ring-0 (ELS) timer */
595 	timeout = phba->fc_ratov * 2;
596 	mod_timer(&vport->els_tmofunc,
597 		  jiffies + msecs_to_jiffies(1000 * timeout));
598 	/* Set up heart beat (HB) timer */
599 	mod_timer(&phba->hb_tmofunc,
600 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
601 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
602 	phba->last_completion_time = jiffies;
603 	/* Set up error attention (ERATT) polling timer */
604 	mod_timer(&phba->eratt_poll,
605 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
606 
607 	if (phba->hba_flag & LINK_DISABLED) {
608 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
609 				"2598 Adapter Link is disabled.\n");
610 		lpfc_down_link(phba, pmb);
611 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
612 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
613 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
614 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
615 					"2599 Adapter failed to issue DOWN_LINK"
616 					" mbox command rc 0x%x\n", rc);
617 
618 			mempool_free(pmb, phba->mbox_mem_pool);
619 			return -EIO;
620 		}
621 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
622 		mempool_free(pmb, phba->mbox_mem_pool);
623 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
624 		if (rc)
625 			return rc;
626 	}
627 	/* MBOX buffer will be freed in mbox compl */
628 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
629 	if (!pmb) {
630 		phba->link_state = LPFC_HBA_ERROR;
631 		return -ENOMEM;
632 	}
633 
634 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
635 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
636 	pmb->vport = phba->pport;
637 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
638 
639 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
640 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
641 				"0456 Adapter failed to issue "
642 				"ASYNCEVT_ENABLE mbox status x%x\n",
643 				rc);
644 		mempool_free(pmb, phba->mbox_mem_pool);
645 	}
646 
647 	/* Get Option rom version */
648 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
649 	if (!pmb) {
650 		phba->link_state = LPFC_HBA_ERROR;
651 		return -ENOMEM;
652 	}
653 
654 	lpfc_dump_wakeup_param(phba, pmb);
655 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
656 	pmb->vport = phba->pport;
657 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
658 
659 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
661 				"0435 Adapter failed "
662 				"to get Option ROM version status x%x\n", rc);
663 		mempool_free(pmb, phba->mbox_mem_pool);
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  * lpfc_sli4_refresh_params - update driver copy of params.
671  * @phba: Pointer to HBA context object.
672  *
673  * This is called to refresh driver copy of dynamic fields from the
674  * common_get_sli4_parameters descriptor.
675  **/
676 int
677 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
678 {
679 	LPFC_MBOXQ_t *mboxq;
680 	struct lpfc_mqe *mqe;
681 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
682 	int length, rc;
683 
684 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
685 	if (!mboxq)
686 		return -ENOMEM;
687 
688 	mqe = &mboxq->u.mqe;
689 	/* Read the port's SLI4 Config Parameters */
690 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
691 		  sizeof(struct lpfc_sli4_cfg_mhdr));
692 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
693 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
694 			 length, LPFC_SLI4_MBX_EMBED);
695 
696 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
697 	if (unlikely(rc)) {
698 		mempool_free(mboxq, phba->mbox_mem_pool);
699 		return rc;
700 	}
701 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
702 	phba->sli4_hba.pc_sli4_params.mi_cap =
703 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
704 
705 	/* Are we forcing MI off via module parameter? */
706 	if (phba->cfg_enable_mi)
707 		phba->sli4_hba.pc_sli4_params.mi_ver =
708 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
709 	else
710 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
711 
712 	phba->sli4_hba.pc_sli4_params.cmf =
713 			bf_get(cfg_cmf, mbx_sli4_parameters);
714 	phba->sli4_hba.pc_sli4_params.pls =
715 			bf_get(cfg_pvl, mbx_sli4_parameters);
716 
717 	mempool_free(mboxq, phba->mbox_mem_pool);
718 	return rc;
719 }
720 
721 /**
722  * lpfc_hba_init_link - Initialize the FC link
723  * @phba: pointer to lpfc hba data structure.
724  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
725  *
726  * This routine will issue the INIT_LINK mailbox command call.
727  * It is available to other drivers through the lpfc_hba data
728  * structure for use as a delayed link up mechanism with the
729  * module parameter lpfc_suppress_link_up.
730  *
731  * Return code
732  *		0 - success
733  *		Any other value - error
734  **/
735 static int
736 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
737 {
738 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
739 }
740 
741 /**
742  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
743  * @phba: pointer to lpfc hba data structure.
744  * @fc_topology: desired fc topology.
745  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
746  *
747  * This routine will issue the INIT_LINK mailbox command call.
748  * It is available to other drivers through the lpfc_hba data
749  * structure for use as a delayed link up mechanism with the
750  * module parameter lpfc_suppress_link_up.
751  *
752  * Return code
753  *              0 - success
754  *              Any other value - error
755  **/
756 int
757 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
758 			       uint32_t flag)
759 {
760 	struct lpfc_vport *vport = phba->pport;
761 	LPFC_MBOXQ_t *pmb;
762 	MAILBOX_t *mb;
763 	int rc;
764 
765 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
766 	if (!pmb) {
767 		phba->link_state = LPFC_HBA_ERROR;
768 		return -ENOMEM;
769 	}
770 	mb = &pmb->u.mb;
771 	pmb->vport = vport;
772 
773 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
775 	     !(phba->lmt & LMT_1Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
777 	     !(phba->lmt & LMT_2Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
779 	     !(phba->lmt & LMT_4Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
781 	     !(phba->lmt & LMT_8Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
783 	     !(phba->lmt & LMT_10Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
785 	     !(phba->lmt & LMT_16Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
787 	     !(phba->lmt & LMT_32Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
789 	     !(phba->lmt & LMT_64Gb))) {
790 		/* Reset link speed to auto */
791 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
792 				"1302 Invalid speed for this board:%d "
793 				"Reset link speed to auto.\n",
794 				phba->cfg_link_speed);
795 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
796 	}
797 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
798 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 	if (phba->sli_rev < LPFC_SLI_REV4)
800 		lpfc_set_loopback_flag(phba);
801 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
802 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
803 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
804 				"0498 Adapter failed to init, mbxCmd x%x "
805 				"INIT_LINK, mbxStatus x%x\n",
806 				mb->mbxCommand, mb->mbxStatus);
807 		if (phba->sli_rev <= LPFC_SLI_REV3) {
808 			/* Clear all interrupt enable conditions */
809 			writel(0, phba->HCregaddr);
810 			readl(phba->HCregaddr); /* flush */
811 			/* Clear all pending interrupts */
812 			writel(0xffffffff, phba->HAregaddr);
813 			readl(phba->HAregaddr); /* flush */
814 		}
815 		phba->link_state = LPFC_HBA_ERROR;
816 		if (rc != MBX_BUSY || flag == MBX_POLL)
817 			mempool_free(pmb, phba->mbox_mem_pool);
818 		return -EIO;
819 	}
820 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
821 	if (flag == MBX_POLL)
822 		mempool_free(pmb, phba->mbox_mem_pool);
823 
824 	return 0;
825 }
826 
827 /**
828  * lpfc_hba_down_link - this routine downs the FC link
829  * @phba: pointer to lpfc hba data structure.
830  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
831  *
832  * This routine will issue the DOWN_LINK mailbox command call.
833  * It is available to other drivers through the lpfc_hba data
834  * structure for use to stop the link.
835  *
836  * Return code
837  *		0 - success
838  *		Any other value - error
839  **/
840 static int
841 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
842 {
843 	LPFC_MBOXQ_t *pmb;
844 	int rc;
845 
846 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
847 	if (!pmb) {
848 		phba->link_state = LPFC_HBA_ERROR;
849 		return -ENOMEM;
850 	}
851 
852 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
853 			"0491 Adapter Link is disabled.\n");
854 	lpfc_down_link(phba, pmb);
855 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
856 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
857 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
858 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
859 				"2522 Adapter failed to issue DOWN_LINK"
860 				" mbox command rc 0x%x\n", rc);
861 
862 		mempool_free(pmb, phba->mbox_mem_pool);
863 		return -EIO;
864 	}
865 	if (flag == MBX_POLL)
866 		mempool_free(pmb, phba->mbox_mem_pool);
867 
868 	return 0;
869 }
870 
871 /**
872  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
873  * @phba: pointer to lpfc HBA data structure.
874  *
875  * This routine will do LPFC uninitialization before the HBA is reset when
876  * bringing down the SLI Layer.
877  *
878  * Return codes
879  *   0 - success.
880  *   Any other value - error.
881  **/
882 int
883 lpfc_hba_down_prep(struct lpfc_hba *phba)
884 {
885 	struct lpfc_vport **vports;
886 	int i;
887 
888 	if (phba->sli_rev <= LPFC_SLI_REV3) {
889 		/* Disable interrupts */
890 		writel(0, phba->HCregaddr);
891 		readl(phba->HCregaddr); /* flush */
892 	}
893 
894 	if (phba->pport->load_flag & FC_UNLOADING)
895 		lpfc_cleanup_discovery_resources(phba->pport);
896 	else {
897 		vports = lpfc_create_vport_work_array(phba);
898 		if (vports != NULL)
899 			for (i = 0; i <= phba->max_vports &&
900 				vports[i] != NULL; i++)
901 				lpfc_cleanup_discovery_resources(vports[i]);
902 		lpfc_destroy_vport_work_array(phba, vports);
903 	}
904 	return 0;
905 }
906 
907 /**
908  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
909  * rspiocb which got deferred
910  *
911  * @phba: pointer to lpfc HBA data structure.
912  *
913  * This routine will cleanup completed slow path events after HBA is reset
914  * when bringing down the SLI Layer.
915  *
916  *
917  * Return codes
918  *   void.
919  **/
920 static void
921 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
922 {
923 	struct lpfc_iocbq *rspiocbq;
924 	struct hbq_dmabuf *dmabuf;
925 	struct lpfc_cq_event *cq_event;
926 
927 	spin_lock_irq(&phba->hbalock);
928 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
929 	spin_unlock_irq(&phba->hbalock);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 	unsigned long iflag;
1231 
1232 	phba = from_timer(phba, t, rrq_tmr);
1233 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1234 	if (!(phba->pport->load_flag & FC_UNLOADING))
1235 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1236 	else
1237 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1238 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1239 
1240 	if (!(phba->pport->load_flag & FC_UNLOADING))
1241 		lpfc_worker_wake_up(phba);
1242 }
1243 
1244 /**
1245  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1246  * @phba: pointer to lpfc hba data structure.
1247  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1248  *
1249  * This is the callback function to the lpfc heart-beat mailbox command.
1250  * If configured, the lpfc driver issues the heart-beat mailbox command to
1251  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1252  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1253  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1254  * heart-beat outstanding state. Once the mailbox command comes back and
1255  * no error conditions detected, the heart-beat mailbox command timer is
1256  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1257  * state is cleared for the next heart-beat. If the timer expired with the
1258  * heart-beat outstanding state set, the driver will put the HBA offline.
1259  **/
1260 static void
1261 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1262 {
1263 	unsigned long drvr_flag;
1264 
1265 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1266 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1267 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1268 
1269 	/* Check and reset heart-beat timer if necessary */
1270 	mempool_free(pmboxq, phba->mbox_mem_pool);
1271 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1272 		!(phba->link_state == LPFC_HBA_ERROR) &&
1273 		!(phba->pport->load_flag & FC_UNLOADING))
1274 		mod_timer(&phba->hb_tmofunc,
1275 			  jiffies +
1276 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1277 	return;
1278 }
1279 
1280 /*
1281  * lpfc_idle_stat_delay_work - idle_stat tracking
1282  *
1283  * This routine tracks per-cq idle_stat and determines polling decisions.
1284  *
1285  * Return codes:
1286  *   None
1287  **/
1288 static void
1289 lpfc_idle_stat_delay_work(struct work_struct *work)
1290 {
1291 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1292 					     struct lpfc_hba,
1293 					     idle_stat_delay_work);
1294 	struct lpfc_queue *cq;
1295 	struct lpfc_sli4_hdw_queue *hdwq;
1296 	struct lpfc_idle_stat *idle_stat;
1297 	u32 i, idle_percent;
1298 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1299 
1300 	if (phba->pport->load_flag & FC_UNLOADING)
1301 		return;
1302 
1303 	if (phba->link_state == LPFC_HBA_ERROR ||
1304 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1305 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1306 		goto requeue;
1307 
1308 	for_each_present_cpu(i) {
1309 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1310 		cq = hdwq->io_cq;
1311 
1312 		/* Skip if we've already handled this cq's primary CPU */
1313 		if (cq->chann != i)
1314 			continue;
1315 
1316 		idle_stat = &phba->sli4_hba.idle_stat[i];
1317 
1318 		/* get_cpu_idle_time returns values as running counters. Thus,
1319 		 * to know the amount for this period, the prior counter values
1320 		 * need to be subtracted from the current counter values.
1321 		 * From there, the idle time stat can be calculated as a
1322 		 * percentage of 100 - the sum of the other consumption times.
1323 		 */
1324 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1325 		diff_idle = wall_idle - idle_stat->prev_idle;
1326 		diff_wall = wall - idle_stat->prev_wall;
1327 
1328 		if (diff_wall <= diff_idle)
1329 			busy_time = 0;
1330 		else
1331 			busy_time = diff_wall - diff_idle;
1332 
1333 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1334 		idle_percent = 100 - idle_percent;
1335 
1336 		if (idle_percent < 15)
1337 			cq->poll_mode = LPFC_QUEUE_WORK;
1338 		else
1339 			cq->poll_mode = LPFC_IRQ_POLL;
1340 
1341 		idle_stat->prev_idle = wall_idle;
1342 		idle_stat->prev_wall = wall;
1343 	}
1344 
1345 requeue:
1346 	schedule_delayed_work(&phba->idle_stat_delay_work,
1347 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1348 }
1349 
1350 static void
1351 lpfc_hb_eq_delay_work(struct work_struct *work)
1352 {
1353 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1354 					     struct lpfc_hba, eq_delay_work);
1355 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1356 	struct lpfc_queue *eq, *eq_next;
1357 	unsigned char *ena_delay = NULL;
1358 	uint32_t usdelay;
1359 	int i;
1360 
1361 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1362 		return;
1363 
1364 	if (phba->link_state == LPFC_HBA_ERROR ||
1365 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1366 		goto requeue;
1367 
1368 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1369 			    GFP_KERNEL);
1370 	if (!ena_delay)
1371 		goto requeue;
1372 
1373 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1374 		/* Get the EQ corresponding to the IRQ vector */
1375 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1376 		if (!eq)
1377 			continue;
1378 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1379 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1380 			ena_delay[eq->last_cpu] = 1;
1381 		}
1382 	}
1383 
1384 	for_each_present_cpu(i) {
1385 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1386 		if (ena_delay[i]) {
1387 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1388 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1389 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1390 		} else {
1391 			usdelay = 0;
1392 		}
1393 
1394 		eqi->icnt = 0;
1395 
1396 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1397 			if (unlikely(eq->last_cpu != i)) {
1398 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1399 						      eq->last_cpu);
1400 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1401 				continue;
1402 			}
1403 			if (usdelay != eq->q_mode)
1404 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1405 							 usdelay);
1406 		}
1407 	}
1408 
1409 	kfree(ena_delay);
1410 
1411 requeue:
1412 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1413 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1414 }
1415 
1416 /**
1417  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1418  * @phba: pointer to lpfc hba data structure.
1419  *
1420  * For each heartbeat, this routine does some heuristic methods to adjust
1421  * XRI distribution. The goal is to fully utilize free XRIs.
1422  **/
1423 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1424 {
1425 	u32 i;
1426 	u32 hwq_count;
1427 
1428 	hwq_count = phba->cfg_hdw_queue;
1429 	for (i = 0; i < hwq_count; i++) {
1430 		/* Adjust XRIs in private pool */
1431 		lpfc_adjust_pvt_pool_count(phba, i);
1432 
1433 		/* Adjust high watermark */
1434 		lpfc_adjust_high_watermark(phba, i);
1435 
1436 #ifdef LPFC_MXP_STAT
1437 		/* Snapshot pbl, pvt and busy count */
1438 		lpfc_snapshot_mxp(phba, i);
1439 #endif
1440 	}
1441 }
1442 
1443 /**
1444  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1445  * @phba: pointer to lpfc hba data structure.
1446  *
1447  * If a HB mbox is not already in progrees, this routine will allocate
1448  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1449  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1450  **/
1451 int
1452 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1453 {
1454 	LPFC_MBOXQ_t *pmboxq;
1455 	int retval;
1456 
1457 	/* Is a Heartbeat mbox already in progress */
1458 	if (phba->hba_flag & HBA_HBEAT_INP)
1459 		return 0;
1460 
1461 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1462 	if (!pmboxq)
1463 		return -ENOMEM;
1464 
1465 	lpfc_heart_beat(phba, pmboxq);
1466 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1467 	pmboxq->vport = phba->pport;
1468 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1469 
1470 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1471 		mempool_free(pmboxq, phba->mbox_mem_pool);
1472 		return -ENXIO;
1473 	}
1474 	phba->hba_flag |= HBA_HBEAT_INP;
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1481  * @phba: pointer to lpfc hba data structure.
1482  *
1483  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1484  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1485  * of the value of lpfc_enable_hba_heartbeat.
1486  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1487  * try to issue a MBX_HEARTBEAT mbox command.
1488  **/
1489 void
1490 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1491 {
1492 	if (phba->cfg_enable_hba_heartbeat)
1493 		return;
1494 	phba->hba_flag |= HBA_HBEAT_TMO;
1495 }
1496 
1497 /**
1498  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1499  * @phba: pointer to lpfc hba data structure.
1500  *
1501  * This is the actual HBA-timer timeout handler to be invoked by the worker
1502  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1503  * handler performs any periodic operations needed for the device. If such
1504  * periodic event has already been attended to either in the interrupt handler
1505  * or by processing slow-ring or fast-ring events within the HBA-timer
1506  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1507  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1508  * is configured and there is no heart-beat mailbox command outstanding, a
1509  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1510  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1511  * to offline.
1512  **/
1513 void
1514 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1515 {
1516 	struct lpfc_vport **vports;
1517 	struct lpfc_dmabuf *buf_ptr;
1518 	int retval = 0;
1519 	int i, tmo;
1520 	struct lpfc_sli *psli = &phba->sli;
1521 	LIST_HEAD(completions);
1522 
1523 	if (phba->cfg_xri_rebalancing) {
1524 		/* Multi-XRI pools handler */
1525 		lpfc_hb_mxp_handler(phba);
1526 	}
1527 
1528 	vports = lpfc_create_vport_work_array(phba);
1529 	if (vports != NULL)
1530 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1531 			lpfc_rcv_seq_check_edtov(vports[i]);
1532 			lpfc_fdmi_change_check(vports[i]);
1533 		}
1534 	lpfc_destroy_vport_work_array(phba, vports);
1535 
1536 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1537 		(phba->pport->load_flag & FC_UNLOADING) ||
1538 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1539 		return;
1540 
1541 	if (phba->elsbuf_cnt &&
1542 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1543 		spin_lock_irq(&phba->hbalock);
1544 		list_splice_init(&phba->elsbuf, &completions);
1545 		phba->elsbuf_cnt = 0;
1546 		phba->elsbuf_prev_cnt = 0;
1547 		spin_unlock_irq(&phba->hbalock);
1548 
1549 		while (!list_empty(&completions)) {
1550 			list_remove_head(&completions, buf_ptr,
1551 				struct lpfc_dmabuf, list);
1552 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1553 			kfree(buf_ptr);
1554 		}
1555 	}
1556 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1557 
1558 	/* If there is no heart beat outstanding, issue a heartbeat command */
1559 	if (phba->cfg_enable_hba_heartbeat) {
1560 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1561 		spin_lock_irq(&phba->pport->work_port_lock);
1562 		if (time_after(phba->last_completion_time +
1563 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1564 				jiffies)) {
1565 			spin_unlock_irq(&phba->pport->work_port_lock);
1566 			if (phba->hba_flag & HBA_HBEAT_INP)
1567 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1568 			else
1569 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1570 			goto out;
1571 		}
1572 		spin_unlock_irq(&phba->pport->work_port_lock);
1573 
1574 		/* Check if a MBX_HEARTBEAT is already in progress */
1575 		if (phba->hba_flag & HBA_HBEAT_INP) {
1576 			/*
1577 			 * If heart beat timeout called with HBA_HBEAT_INP set
1578 			 * we need to give the hb mailbox cmd a chance to
1579 			 * complete or TMO.
1580 			 */
1581 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1582 				"0459 Adapter heartbeat still outstanding: "
1583 				"last compl time was %d ms.\n",
1584 				jiffies_to_msecs(jiffies
1585 					 - phba->last_completion_time));
1586 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1587 		} else {
1588 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1589 				(list_empty(&psli->mboxq))) {
1590 
1591 				retval = lpfc_issue_hb_mbox(phba);
1592 				if (retval) {
1593 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1594 					goto out;
1595 				}
1596 				phba->skipped_hb = 0;
1597 			} else if (time_before_eq(phba->last_completion_time,
1598 					phba->skipped_hb)) {
1599 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1600 					"2857 Last completion time not "
1601 					" updated in %d ms\n",
1602 					jiffies_to_msecs(jiffies
1603 						 - phba->last_completion_time));
1604 			} else
1605 				phba->skipped_hb = jiffies;
1606 
1607 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1608 			goto out;
1609 		}
1610 	} else {
1611 		/* Check to see if we want to force a MBX_HEARTBEAT */
1612 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1613 			retval = lpfc_issue_hb_mbox(phba);
1614 			if (retval)
1615 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 			else
1617 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1618 			goto out;
1619 		}
1620 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1621 	}
1622 out:
1623 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1624 }
1625 
1626 /**
1627  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1628  * @phba: pointer to lpfc hba data structure.
1629  *
1630  * This routine is called to bring the HBA offline when HBA hardware error
1631  * other than Port Error 6 has been detected.
1632  **/
1633 static void
1634 lpfc_offline_eratt(struct lpfc_hba *phba)
1635 {
1636 	struct lpfc_sli   *psli = &phba->sli;
1637 
1638 	spin_lock_irq(&phba->hbalock);
1639 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1640 	spin_unlock_irq(&phba->hbalock);
1641 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1642 
1643 	lpfc_offline(phba);
1644 	lpfc_reset_barrier(phba);
1645 	spin_lock_irq(&phba->hbalock);
1646 	lpfc_sli_brdreset(phba);
1647 	spin_unlock_irq(&phba->hbalock);
1648 	lpfc_hba_down_post(phba);
1649 	lpfc_sli_brdready(phba, HS_MBRDY);
1650 	lpfc_unblock_mgmt_io(phba);
1651 	phba->link_state = LPFC_HBA_ERROR;
1652 	return;
1653 }
1654 
1655 /**
1656  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1657  * @phba: pointer to lpfc hba data structure.
1658  *
1659  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1660  * other than Port Error 6 has been detected.
1661  **/
1662 void
1663 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1664 {
1665 	spin_lock_irq(&phba->hbalock);
1666 	if (phba->link_state == LPFC_HBA_ERROR &&
1667 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1668 		spin_unlock_irq(&phba->hbalock);
1669 		return;
1670 	}
1671 	phba->link_state = LPFC_HBA_ERROR;
1672 	spin_unlock_irq(&phba->hbalock);
1673 
1674 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1675 	lpfc_sli_flush_io_rings(phba);
1676 	lpfc_offline(phba);
1677 	lpfc_hba_down_post(phba);
1678 	lpfc_unblock_mgmt_io(phba);
1679 }
1680 
1681 /**
1682  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1683  * @phba: pointer to lpfc hba data structure.
1684  *
1685  * This routine is invoked to handle the deferred HBA hardware error
1686  * conditions. This type of error is indicated by HBA by setting ER1
1687  * and another ER bit in the host status register. The driver will
1688  * wait until the ER1 bit clears before handling the error condition.
1689  **/
1690 static void
1691 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1692 {
1693 	uint32_t old_host_status = phba->work_hs;
1694 	struct lpfc_sli *psli = &phba->sli;
1695 
1696 	/* If the pci channel is offline, ignore possible errors,
1697 	 * since we cannot communicate with the pci card anyway.
1698 	 */
1699 	if (pci_channel_offline(phba->pcidev)) {
1700 		spin_lock_irq(&phba->hbalock);
1701 		phba->hba_flag &= ~DEFER_ERATT;
1702 		spin_unlock_irq(&phba->hbalock);
1703 		return;
1704 	}
1705 
1706 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1707 			"0479 Deferred Adapter Hardware Error "
1708 			"Data: x%x x%x x%x\n",
1709 			phba->work_hs, phba->work_status[0],
1710 			phba->work_status[1]);
1711 
1712 	spin_lock_irq(&phba->hbalock);
1713 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1714 	spin_unlock_irq(&phba->hbalock);
1715 
1716 
1717 	/*
1718 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1719 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1720 	 * SCSI layer retry it after re-establishing link.
1721 	 */
1722 	lpfc_sli_abort_fcp_rings(phba);
1723 
1724 	/*
1725 	 * There was a firmware error. Take the hba offline and then
1726 	 * attempt to restart it.
1727 	 */
1728 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1729 	lpfc_offline(phba);
1730 
1731 	/* Wait for the ER1 bit to clear.*/
1732 	while (phba->work_hs & HS_FFER1) {
1733 		msleep(100);
1734 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1735 			phba->work_hs = UNPLUG_ERR ;
1736 			break;
1737 		}
1738 		/* If driver is unloading let the worker thread continue */
1739 		if (phba->pport->load_flag & FC_UNLOADING) {
1740 			phba->work_hs = 0;
1741 			break;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * This is to ptrotect against a race condition in which
1747 	 * first write to the host attention register clear the
1748 	 * host status register.
1749 	 */
1750 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1751 		phba->work_hs = old_host_status & ~HS_FFER1;
1752 
1753 	spin_lock_irq(&phba->hbalock);
1754 	phba->hba_flag &= ~DEFER_ERATT;
1755 	spin_unlock_irq(&phba->hbalock);
1756 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1757 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1758 }
1759 
1760 static void
1761 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1762 {
1763 	struct lpfc_board_event_header board_event;
1764 	struct Scsi_Host *shost;
1765 
1766 	board_event.event_type = FC_REG_BOARD_EVENT;
1767 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1768 	shost = lpfc_shost_from_vport(phba->pport);
1769 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1770 				  sizeof(board_event),
1771 				  (char *) &board_event,
1772 				  LPFC_NL_VENDOR_ID);
1773 }
1774 
1775 /**
1776  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1777  * @phba: pointer to lpfc hba data structure.
1778  *
1779  * This routine is invoked to handle the following HBA hardware error
1780  * conditions:
1781  * 1 - HBA error attention interrupt
1782  * 2 - DMA ring index out of range
1783  * 3 - Mailbox command came back as unknown
1784  **/
1785 static void
1786 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1787 {
1788 	struct lpfc_vport *vport = phba->pport;
1789 	struct lpfc_sli   *psli = &phba->sli;
1790 	uint32_t event_data;
1791 	unsigned long temperature;
1792 	struct temp_event temp_event_data;
1793 	struct Scsi_Host  *shost;
1794 
1795 	/* If the pci channel is offline, ignore possible errors,
1796 	 * since we cannot communicate with the pci card anyway.
1797 	 */
1798 	if (pci_channel_offline(phba->pcidev)) {
1799 		spin_lock_irq(&phba->hbalock);
1800 		phba->hba_flag &= ~DEFER_ERATT;
1801 		spin_unlock_irq(&phba->hbalock);
1802 		return;
1803 	}
1804 
1805 	/* If resets are disabled then leave the HBA alone and return */
1806 	if (!phba->cfg_enable_hba_reset)
1807 		return;
1808 
1809 	/* Send an internal error event to mgmt application */
1810 	lpfc_board_errevt_to_mgmt(phba);
1811 
1812 	if (phba->hba_flag & DEFER_ERATT)
1813 		lpfc_handle_deferred_eratt(phba);
1814 
1815 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1816 		if (phba->work_hs & HS_FFER6)
1817 			/* Re-establishing Link */
1818 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1819 					"1301 Re-establishing Link "
1820 					"Data: x%x x%x x%x\n",
1821 					phba->work_hs, phba->work_status[0],
1822 					phba->work_status[1]);
1823 		if (phba->work_hs & HS_FFER8)
1824 			/* Device Zeroization */
1825 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1826 					"2861 Host Authentication device "
1827 					"zeroization Data:x%x x%x x%x\n",
1828 					phba->work_hs, phba->work_status[0],
1829 					phba->work_status[1]);
1830 
1831 		spin_lock_irq(&phba->hbalock);
1832 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1833 		spin_unlock_irq(&phba->hbalock);
1834 
1835 		/*
1836 		* Firmware stops when it triggled erratt with HS_FFER6.
1837 		* That could cause the I/Os dropped by the firmware.
1838 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1839 		* retry it after re-establishing link.
1840 		*/
1841 		lpfc_sli_abort_fcp_rings(phba);
1842 
1843 		/*
1844 		 * There was a firmware error.  Take the hba offline and then
1845 		 * attempt to restart it.
1846 		 */
1847 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1848 		lpfc_offline(phba);
1849 		lpfc_sli_brdrestart(phba);
1850 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1851 			lpfc_unblock_mgmt_io(phba);
1852 			return;
1853 		}
1854 		lpfc_unblock_mgmt_io(phba);
1855 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1856 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1857 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1858 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1859 		temp_event_data.data = (uint32_t)temperature;
1860 
1861 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1862 				"0406 Adapter maximum temperature exceeded "
1863 				"(%ld), taking this port offline "
1864 				"Data: x%x x%x x%x\n",
1865 				temperature, phba->work_hs,
1866 				phba->work_status[0], phba->work_status[1]);
1867 
1868 		shost = lpfc_shost_from_vport(phba->pport);
1869 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1870 					  sizeof(temp_event_data),
1871 					  (char *) &temp_event_data,
1872 					  SCSI_NL_VID_TYPE_PCI
1873 					  | PCI_VENDOR_ID_EMULEX);
1874 
1875 		spin_lock_irq(&phba->hbalock);
1876 		phba->over_temp_state = HBA_OVER_TEMP;
1877 		spin_unlock_irq(&phba->hbalock);
1878 		lpfc_offline_eratt(phba);
1879 
1880 	} else {
1881 		/* The if clause above forces this code path when the status
1882 		 * failure is a value other than FFER6. Do not call the offline
1883 		 * twice. This is the adapter hardware error path.
1884 		 */
1885 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1886 				"0457 Adapter Hardware Error "
1887 				"Data: x%x x%x x%x\n",
1888 				phba->work_hs,
1889 				phba->work_status[0], phba->work_status[1]);
1890 
1891 		event_data = FC_REG_DUMP_EVENT;
1892 		shost = lpfc_shost_from_vport(vport);
1893 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1894 				sizeof(event_data), (char *) &event_data,
1895 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1896 
1897 		lpfc_offline_eratt(phba);
1898 	}
1899 	return;
1900 }
1901 
1902 /**
1903  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1904  * @phba: pointer to lpfc hba data structure.
1905  * @mbx_action: flag for mailbox shutdown action.
1906  * @en_rn_msg: send reset/port recovery message.
1907  * This routine is invoked to perform an SLI4 port PCI function reset in
1908  * response to port status register polling attention. It waits for port
1909  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1910  * During this process, interrupt vectors are freed and later requested
1911  * for handling possible port resource change.
1912  **/
1913 static int
1914 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1915 			    bool en_rn_msg)
1916 {
1917 	int rc;
1918 	uint32_t intr_mode;
1919 	LPFC_MBOXQ_t *mboxq;
1920 
1921 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1922 	    LPFC_SLI_INTF_IF_TYPE_2) {
1923 		/*
1924 		 * On error status condition, driver need to wait for port
1925 		 * ready before performing reset.
1926 		 */
1927 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1928 		if (rc)
1929 			return rc;
1930 	}
1931 
1932 	/* need reset: attempt for port recovery */
1933 	if (en_rn_msg)
1934 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1935 				"2887 Reset Needed: Attempting Port "
1936 				"Recovery...\n");
1937 
1938 	/* If we are no wait, the HBA has been reset and is not
1939 	 * functional, thus we should clear
1940 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1941 	 */
1942 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1943 		spin_lock_irq(&phba->hbalock);
1944 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1945 		if (phba->sli.mbox_active) {
1946 			mboxq = phba->sli.mbox_active;
1947 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1948 			__lpfc_mbox_cmpl_put(phba, mboxq);
1949 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1950 			phba->sli.mbox_active = NULL;
1951 		}
1952 		spin_unlock_irq(&phba->hbalock);
1953 	}
1954 
1955 	lpfc_offline_prep(phba, mbx_action);
1956 	lpfc_sli_flush_io_rings(phba);
1957 	lpfc_offline(phba);
1958 	/* release interrupt for possible resource change */
1959 	lpfc_sli4_disable_intr(phba);
1960 	rc = lpfc_sli_brdrestart(phba);
1961 	if (rc) {
1962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963 				"6309 Failed to restart board\n");
1964 		return rc;
1965 	}
1966 	/* request and enable interrupt */
1967 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1968 	if (intr_mode == LPFC_INTR_ERROR) {
1969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1970 				"3175 Failed to enable interrupt\n");
1971 		return -EIO;
1972 	}
1973 	phba->intr_mode = intr_mode;
1974 	rc = lpfc_online(phba);
1975 	if (rc == 0)
1976 		lpfc_unblock_mgmt_io(phba);
1977 
1978 	return rc;
1979 }
1980 
1981 /**
1982  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1983  * @phba: pointer to lpfc hba data structure.
1984  *
1985  * This routine is invoked to handle the SLI4 HBA hardware error attention
1986  * conditions.
1987  **/
1988 static void
1989 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1990 {
1991 	struct lpfc_vport *vport = phba->pport;
1992 	uint32_t event_data;
1993 	struct Scsi_Host *shost;
1994 	uint32_t if_type;
1995 	struct lpfc_register portstat_reg = {0};
1996 	uint32_t reg_err1, reg_err2;
1997 	uint32_t uerrlo_reg, uemasklo_reg;
1998 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1999 	bool en_rn_msg = true;
2000 	struct temp_event temp_event_data;
2001 	struct lpfc_register portsmphr_reg;
2002 	int rc, i;
2003 
2004 	/* If the pci channel is offline, ignore possible errors, since
2005 	 * we cannot communicate with the pci card anyway.
2006 	 */
2007 	if (pci_channel_offline(phba->pcidev)) {
2008 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2009 				"3166 pci channel is offline\n");
2010 		lpfc_sli_flush_io_rings(phba);
2011 		return;
2012 	}
2013 
2014 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2015 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2016 	switch (if_type) {
2017 	case LPFC_SLI_INTF_IF_TYPE_0:
2018 		pci_rd_rc1 = lpfc_readl(
2019 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2020 				&uerrlo_reg);
2021 		pci_rd_rc2 = lpfc_readl(
2022 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2023 				&uemasklo_reg);
2024 		/* consider PCI bus read error as pci_channel_offline */
2025 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2026 			return;
2027 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2028 			lpfc_sli4_offline_eratt(phba);
2029 			return;
2030 		}
2031 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2032 				"7623 Checking UE recoverable");
2033 
2034 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2035 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2036 				       &portsmphr_reg.word0))
2037 				continue;
2038 
2039 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2040 						   &portsmphr_reg);
2041 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2042 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2043 				break;
2044 			/*Sleep for 1Sec, before checking SEMAPHORE */
2045 			msleep(1000);
2046 		}
2047 
2048 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2049 				"4827 smphr_port_status x%x : Waited %dSec",
2050 				smphr_port_status, i);
2051 
2052 		/* Recoverable UE, reset the HBA device */
2053 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2054 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2055 			for (i = 0; i < 20; i++) {
2056 				msleep(1000);
2057 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2058 				    &portsmphr_reg.word0) &&
2059 				    (LPFC_POST_STAGE_PORT_READY ==
2060 				     bf_get(lpfc_port_smphr_port_status,
2061 				     &portsmphr_reg))) {
2062 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2063 						LPFC_MBX_NO_WAIT, en_rn_msg);
2064 					if (rc == 0)
2065 						return;
2066 					lpfc_printf_log(phba, KERN_ERR,
2067 						LOG_TRACE_EVENT,
2068 						"4215 Failed to recover UE");
2069 					break;
2070 				}
2071 			}
2072 		}
2073 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2074 				"7624 Firmware not ready: Failing UE recovery,"
2075 				" waited %dSec", i);
2076 		phba->link_state = LPFC_HBA_ERROR;
2077 		break;
2078 
2079 	case LPFC_SLI_INTF_IF_TYPE_2:
2080 	case LPFC_SLI_INTF_IF_TYPE_6:
2081 		pci_rd_rc1 = lpfc_readl(
2082 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2083 				&portstat_reg.word0);
2084 		/* consider PCI bus read error as pci_channel_offline */
2085 		if (pci_rd_rc1 == -EIO) {
2086 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2087 				"3151 PCI bus read access failure: x%x\n",
2088 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2089 			lpfc_sli4_offline_eratt(phba);
2090 			return;
2091 		}
2092 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2093 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2094 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2095 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2096 					"2889 Port Overtemperature event, "
2097 					"taking port offline Data: x%x x%x\n",
2098 					reg_err1, reg_err2);
2099 
2100 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2101 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2102 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2103 			temp_event_data.data = 0xFFFFFFFF;
2104 
2105 			shost = lpfc_shost_from_vport(phba->pport);
2106 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2107 						  sizeof(temp_event_data),
2108 						  (char *)&temp_event_data,
2109 						  SCSI_NL_VID_TYPE_PCI
2110 						  | PCI_VENDOR_ID_EMULEX);
2111 
2112 			spin_lock_irq(&phba->hbalock);
2113 			phba->over_temp_state = HBA_OVER_TEMP;
2114 			spin_unlock_irq(&phba->hbalock);
2115 			lpfc_sli4_offline_eratt(phba);
2116 			return;
2117 		}
2118 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2119 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2120 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2121 					"3143 Port Down: Firmware Update "
2122 					"Detected\n");
2123 			en_rn_msg = false;
2124 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2125 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2126 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2127 					"3144 Port Down: Debug Dump\n");
2128 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2129 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2130 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2131 					"3145 Port Down: Provisioning\n");
2132 
2133 		/* If resets are disabled then leave the HBA alone and return */
2134 		if (!phba->cfg_enable_hba_reset)
2135 			return;
2136 
2137 		/* Check port status register for function reset */
2138 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2139 				en_rn_msg);
2140 		if (rc == 0) {
2141 			/* don't report event on forced debug dump */
2142 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2143 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2144 				return;
2145 			else
2146 				break;
2147 		}
2148 		/* fall through for not able to recover */
2149 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2150 				"3152 Unrecoverable error\n");
2151 		phba->link_state = LPFC_HBA_ERROR;
2152 		break;
2153 	case LPFC_SLI_INTF_IF_TYPE_1:
2154 	default:
2155 		break;
2156 	}
2157 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2158 			"3123 Report dump event to upper layer\n");
2159 	/* Send an internal error event to mgmt application */
2160 	lpfc_board_errevt_to_mgmt(phba);
2161 
2162 	event_data = FC_REG_DUMP_EVENT;
2163 	shost = lpfc_shost_from_vport(vport);
2164 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2165 				  sizeof(event_data), (char *) &event_data,
2166 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2167 }
2168 
2169 /**
2170  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2171  * @phba: pointer to lpfc HBA data structure.
2172  *
2173  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2174  * routine from the API jump table function pointer from the lpfc_hba struct.
2175  *
2176  * Return codes
2177  *   0 - success.
2178  *   Any other value - error.
2179  **/
2180 void
2181 lpfc_handle_eratt(struct lpfc_hba *phba)
2182 {
2183 	(*phba->lpfc_handle_eratt)(phba);
2184 }
2185 
2186 /**
2187  * lpfc_handle_latt - The HBA link event handler
2188  * @phba: pointer to lpfc hba data structure.
2189  *
2190  * This routine is invoked from the worker thread to handle a HBA host
2191  * attention link event. SLI3 only.
2192  **/
2193 void
2194 lpfc_handle_latt(struct lpfc_hba *phba)
2195 {
2196 	struct lpfc_vport *vport = phba->pport;
2197 	struct lpfc_sli   *psli = &phba->sli;
2198 	LPFC_MBOXQ_t *pmb;
2199 	volatile uint32_t control;
2200 	int rc = 0;
2201 
2202 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2203 	if (!pmb) {
2204 		rc = 1;
2205 		goto lpfc_handle_latt_err_exit;
2206 	}
2207 
2208 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2209 	if (rc) {
2210 		rc = 2;
2211 		mempool_free(pmb, phba->mbox_mem_pool);
2212 		goto lpfc_handle_latt_err_exit;
2213 	}
2214 
2215 	/* Cleanup any outstanding ELS commands */
2216 	lpfc_els_flush_all_cmd(phba);
2217 	psli->slistat.link_event++;
2218 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2219 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2220 	pmb->vport = vport;
2221 	/* Block ELS IOCBs until we have processed this mbox command */
2222 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2223 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2224 	if (rc == MBX_NOT_FINISHED) {
2225 		rc = 4;
2226 		goto lpfc_handle_latt_free_mbuf;
2227 	}
2228 
2229 	/* Clear Link Attention in HA REG */
2230 	spin_lock_irq(&phba->hbalock);
2231 	writel(HA_LATT, phba->HAregaddr);
2232 	readl(phba->HAregaddr); /* flush */
2233 	spin_unlock_irq(&phba->hbalock);
2234 
2235 	return;
2236 
2237 lpfc_handle_latt_free_mbuf:
2238 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2239 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2240 lpfc_handle_latt_err_exit:
2241 	/* Enable Link attention interrupts */
2242 	spin_lock_irq(&phba->hbalock);
2243 	psli->sli_flag |= LPFC_PROCESS_LA;
2244 	control = readl(phba->HCregaddr);
2245 	control |= HC_LAINT_ENA;
2246 	writel(control, phba->HCregaddr);
2247 	readl(phba->HCregaddr); /* flush */
2248 
2249 	/* Clear Link Attention in HA REG */
2250 	writel(HA_LATT, phba->HAregaddr);
2251 	readl(phba->HAregaddr); /* flush */
2252 	spin_unlock_irq(&phba->hbalock);
2253 	lpfc_linkdown(phba);
2254 	phba->link_state = LPFC_HBA_ERROR;
2255 
2256 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2257 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2258 
2259 	return;
2260 }
2261 
2262 static void
2263 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2264 {
2265 	int i, j;
2266 
2267 	while (length > 0) {
2268 		/* Look for Serial Number */
2269 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2270 			*pindex += 2;
2271 			i = vpd[*pindex];
2272 			*pindex += 1;
2273 			j = 0;
2274 			length -= (3+i);
2275 			while (i--) {
2276 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2277 				if (j == 31)
2278 					break;
2279 			}
2280 			phba->SerialNumber[j] = 0;
2281 			continue;
2282 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2283 			phba->vpd_flag |= VPD_MODEL_DESC;
2284 			*pindex += 2;
2285 			i = vpd[*pindex];
2286 			*pindex += 1;
2287 			j = 0;
2288 			length -= (3+i);
2289 			while (i--) {
2290 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2291 				if (j == 255)
2292 					break;
2293 			}
2294 			phba->ModelDesc[j] = 0;
2295 			continue;
2296 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2297 			phba->vpd_flag |= VPD_MODEL_NAME;
2298 			*pindex += 2;
2299 			i = vpd[*pindex];
2300 			*pindex += 1;
2301 			j = 0;
2302 			length -= (3+i);
2303 			while (i--) {
2304 				phba->ModelName[j++] = vpd[(*pindex)++];
2305 				if (j == 79)
2306 					break;
2307 			}
2308 			phba->ModelName[j] = 0;
2309 			continue;
2310 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2311 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2312 			*pindex += 2;
2313 			i = vpd[*pindex];
2314 			*pindex += 1;
2315 			j = 0;
2316 			length -= (3+i);
2317 			while (i--) {
2318 				phba->ProgramType[j++] = vpd[(*pindex)++];
2319 				if (j == 255)
2320 					break;
2321 			}
2322 			phba->ProgramType[j] = 0;
2323 			continue;
2324 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2325 			phba->vpd_flag |= VPD_PORT;
2326 			*pindex += 2;
2327 			i = vpd[*pindex];
2328 			*pindex += 1;
2329 			j = 0;
2330 			length -= (3 + i);
2331 			while (i--) {
2332 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2333 				    (phba->sli4_hba.pport_name_sta ==
2334 				     LPFC_SLI4_PPNAME_GET)) {
2335 					j++;
2336 					(*pindex)++;
2337 				} else
2338 					phba->Port[j++] = vpd[(*pindex)++];
2339 				if (j == 19)
2340 					break;
2341 			}
2342 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2343 			    (phba->sli4_hba.pport_name_sta ==
2344 			     LPFC_SLI4_PPNAME_NON))
2345 				phba->Port[j] = 0;
2346 			continue;
2347 		} else {
2348 			*pindex += 2;
2349 			i = vpd[*pindex];
2350 			*pindex += 1;
2351 			*pindex += i;
2352 			length -= (3 + i);
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2359  * @phba: pointer to lpfc hba data structure.
2360  * @vpd: pointer to the vital product data.
2361  * @len: length of the vital product data in bytes.
2362  *
2363  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2364  * an array of characters. In this routine, the ModelName, ProgramType, and
2365  * ModelDesc, etc. fields of the phba data structure will be populated.
2366  *
2367  * Return codes
2368  *   0 - pointer to the VPD passed in is NULL
2369  *   1 - success
2370  **/
2371 int
2372 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2373 {
2374 	uint8_t lenlo, lenhi;
2375 	int Length;
2376 	int i;
2377 	int finished = 0;
2378 	int index = 0;
2379 
2380 	if (!vpd)
2381 		return 0;
2382 
2383 	/* Vital Product */
2384 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2385 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2386 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2387 			(uint32_t) vpd[3]);
2388 	while (!finished && (index < (len - 4))) {
2389 		switch (vpd[index]) {
2390 		case 0x82:
2391 		case 0x91:
2392 			index += 1;
2393 			lenlo = vpd[index];
2394 			index += 1;
2395 			lenhi = vpd[index];
2396 			index += 1;
2397 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2398 			index += i;
2399 			break;
2400 		case 0x90:
2401 			index += 1;
2402 			lenlo = vpd[index];
2403 			index += 1;
2404 			lenhi = vpd[index];
2405 			index += 1;
2406 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2407 			if (Length > len - index)
2408 				Length = len - index;
2409 
2410 			lpfc_fill_vpd(phba, vpd, Length, &index);
2411 			finished = 0;
2412 			break;
2413 		case 0x78:
2414 			finished = 1;
2415 			break;
2416 		default:
2417 			index ++;
2418 			break;
2419 		}
2420 	}
2421 
2422 	return(1);
2423 }
2424 
2425 /**
2426  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2427  * @phba: pointer to lpfc hba data structure.
2428  * @mdp: pointer to the data structure to hold the derived model name.
2429  * @descp: pointer to the data structure to hold the derived description.
2430  *
2431  * This routine retrieves HBA's description based on its registered PCI device
2432  * ID. The @descp passed into this function points to an array of 256 chars. It
2433  * shall be returned with the model name, maximum speed, and the host bus type.
2434  * The @mdp passed into this function points to an array of 80 chars. When the
2435  * function returns, the @mdp will be filled with the model name.
2436  **/
2437 static void
2438 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2439 {
2440 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2441 	char *model = "<Unknown>";
2442 	int tbolt = 0;
2443 
2444 	switch (sub_dev_id) {
2445 	case PCI_DEVICE_ID_CLRY_161E:
2446 		model = "161E";
2447 		break;
2448 	case PCI_DEVICE_ID_CLRY_162E:
2449 		model = "162E";
2450 		break;
2451 	case PCI_DEVICE_ID_CLRY_164E:
2452 		model = "164E";
2453 		break;
2454 	case PCI_DEVICE_ID_CLRY_161P:
2455 		model = "161P";
2456 		break;
2457 	case PCI_DEVICE_ID_CLRY_162P:
2458 		model = "162P";
2459 		break;
2460 	case PCI_DEVICE_ID_CLRY_164P:
2461 		model = "164P";
2462 		break;
2463 	case PCI_DEVICE_ID_CLRY_321E:
2464 		model = "321E";
2465 		break;
2466 	case PCI_DEVICE_ID_CLRY_322E:
2467 		model = "322E";
2468 		break;
2469 	case PCI_DEVICE_ID_CLRY_324E:
2470 		model = "324E";
2471 		break;
2472 	case PCI_DEVICE_ID_CLRY_321P:
2473 		model = "321P";
2474 		break;
2475 	case PCI_DEVICE_ID_CLRY_322P:
2476 		model = "322P";
2477 		break;
2478 	case PCI_DEVICE_ID_CLRY_324P:
2479 		model = "324P";
2480 		break;
2481 	case PCI_DEVICE_ID_TLFC_2XX2:
2482 		model = "2XX2";
2483 		tbolt = 1;
2484 		break;
2485 	case PCI_DEVICE_ID_TLFC_3162:
2486 		model = "3162";
2487 		tbolt = 1;
2488 		break;
2489 	case PCI_DEVICE_ID_TLFC_3322:
2490 		model = "3322";
2491 		tbolt = 1;
2492 		break;
2493 	default:
2494 		model = "Unknown";
2495 		break;
2496 	}
2497 
2498 	if (mdp && mdp[0] == '\0')
2499 		snprintf(mdp, 79, "%s", model);
2500 
2501 	if (descp && descp[0] == '\0')
2502 		snprintf(descp, 255,
2503 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2504 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2505 			 model,
2506 			 phba->Port);
2507 }
2508 
2509 /**
2510  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2511  * @phba: pointer to lpfc hba data structure.
2512  * @mdp: pointer to the data structure to hold the derived model name.
2513  * @descp: pointer to the data structure to hold the derived description.
2514  *
2515  * This routine retrieves HBA's description based on its registered PCI device
2516  * ID. The @descp passed into this function points to an array of 256 chars. It
2517  * shall be returned with the model name, maximum speed, and the host bus type.
2518  * The @mdp passed into this function points to an array of 80 chars. When the
2519  * function returns, the @mdp will be filled with the model name.
2520  **/
2521 static void
2522 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2523 {
2524 	lpfc_vpd_t *vp;
2525 	uint16_t dev_id = phba->pcidev->device;
2526 	int max_speed;
2527 	int GE = 0;
2528 	int oneConnect = 0; /* default is not a oneConnect */
2529 	struct {
2530 		char *name;
2531 		char *bus;
2532 		char *function;
2533 	} m = {"<Unknown>", "", ""};
2534 
2535 	if (mdp && mdp[0] != '\0'
2536 		&& descp && descp[0] != '\0')
2537 		return;
2538 
2539 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2540 		lpfc_get_atto_model_desc(phba, mdp, descp);
2541 		return;
2542 	}
2543 
2544 	if (phba->lmt & LMT_64Gb)
2545 		max_speed = 64;
2546 	else if (phba->lmt & LMT_32Gb)
2547 		max_speed = 32;
2548 	else if (phba->lmt & LMT_16Gb)
2549 		max_speed = 16;
2550 	else if (phba->lmt & LMT_10Gb)
2551 		max_speed = 10;
2552 	else if (phba->lmt & LMT_8Gb)
2553 		max_speed = 8;
2554 	else if (phba->lmt & LMT_4Gb)
2555 		max_speed = 4;
2556 	else if (phba->lmt & LMT_2Gb)
2557 		max_speed = 2;
2558 	else if (phba->lmt & LMT_1Gb)
2559 		max_speed = 1;
2560 	else
2561 		max_speed = 0;
2562 
2563 	vp = &phba->vpd;
2564 
2565 	switch (dev_id) {
2566 	case PCI_DEVICE_ID_FIREFLY:
2567 		m = (typeof(m)){"LP6000", "PCI",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_SUPERFLY:
2571 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2572 			m = (typeof(m)){"LP7000", "PCI", ""};
2573 		else
2574 			m = (typeof(m)){"LP7000E", "PCI", ""};
2575 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576 		break;
2577 	case PCI_DEVICE_ID_DRAGONFLY:
2578 		m = (typeof(m)){"LP8000", "PCI",
2579 				"Obsolete, Unsupported Fibre Channel Adapter"};
2580 		break;
2581 	case PCI_DEVICE_ID_CENTAUR:
2582 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2583 			m = (typeof(m)){"LP9002", "PCI", ""};
2584 		else
2585 			m = (typeof(m)){"LP9000", "PCI", ""};
2586 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2587 		break;
2588 	case PCI_DEVICE_ID_RFLY:
2589 		m = (typeof(m)){"LP952", "PCI",
2590 				"Obsolete, Unsupported Fibre Channel Adapter"};
2591 		break;
2592 	case PCI_DEVICE_ID_PEGASUS:
2593 		m = (typeof(m)){"LP9802", "PCI-X",
2594 				"Obsolete, Unsupported Fibre Channel Adapter"};
2595 		break;
2596 	case PCI_DEVICE_ID_THOR:
2597 		m = (typeof(m)){"LP10000", "PCI-X",
2598 				"Obsolete, Unsupported Fibre Channel Adapter"};
2599 		break;
2600 	case PCI_DEVICE_ID_VIPER:
2601 		m = (typeof(m)){"LPX1000",  "PCI-X",
2602 				"Obsolete, Unsupported Fibre Channel Adapter"};
2603 		break;
2604 	case PCI_DEVICE_ID_PFLY:
2605 		m = (typeof(m)){"LP982", "PCI-X",
2606 				"Obsolete, Unsupported Fibre Channel Adapter"};
2607 		break;
2608 	case PCI_DEVICE_ID_TFLY:
2609 		m = (typeof(m)){"LP1050", "PCI-X",
2610 				"Obsolete, Unsupported Fibre Channel Adapter"};
2611 		break;
2612 	case PCI_DEVICE_ID_HELIOS:
2613 		m = (typeof(m)){"LP11000", "PCI-X2",
2614 				"Obsolete, Unsupported Fibre Channel Adapter"};
2615 		break;
2616 	case PCI_DEVICE_ID_HELIOS_SCSP:
2617 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2618 				"Obsolete, Unsupported Fibre Channel Adapter"};
2619 		break;
2620 	case PCI_DEVICE_ID_HELIOS_DCSP:
2621 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2622 				"Obsolete, Unsupported Fibre Channel Adapter"};
2623 		break;
2624 	case PCI_DEVICE_ID_NEPTUNE:
2625 		m = (typeof(m)){"LPe1000", "PCIe",
2626 				"Obsolete, Unsupported Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2629 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2630 				"Obsolete, Unsupported Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2633 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2634 				"Obsolete, Unsupported Fibre Channel Adapter"};
2635 		break;
2636 	case PCI_DEVICE_ID_BMID:
2637 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2638 		break;
2639 	case PCI_DEVICE_ID_BSMB:
2640 		m = (typeof(m)){"LP111", "PCI-X2",
2641 				"Obsolete, Unsupported Fibre Channel Adapter"};
2642 		break;
2643 	case PCI_DEVICE_ID_ZEPHYR:
2644 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2645 		break;
2646 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2647 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2648 		break;
2649 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2650 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2651 		GE = 1;
2652 		break;
2653 	case PCI_DEVICE_ID_ZMID:
2654 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_ZSMB:
2657 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2658 		break;
2659 	case PCI_DEVICE_ID_LP101:
2660 		m = (typeof(m)){"LP101", "PCI-X",
2661 				"Obsolete, Unsupported Fibre Channel Adapter"};
2662 		break;
2663 	case PCI_DEVICE_ID_LP10000S:
2664 		m = (typeof(m)){"LP10000-S", "PCI",
2665 				"Obsolete, Unsupported Fibre Channel Adapter"};
2666 		break;
2667 	case PCI_DEVICE_ID_LP11000S:
2668 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2669 				"Obsolete, Unsupported Fibre Channel Adapter"};
2670 		break;
2671 	case PCI_DEVICE_ID_LPE11000S:
2672 		m = (typeof(m)){"LPe11000-S", "PCIe",
2673 				"Obsolete, Unsupported Fibre Channel Adapter"};
2674 		break;
2675 	case PCI_DEVICE_ID_SAT:
2676 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2677 		break;
2678 	case PCI_DEVICE_ID_SAT_MID:
2679 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2680 		break;
2681 	case PCI_DEVICE_ID_SAT_SMB:
2682 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2683 		break;
2684 	case PCI_DEVICE_ID_SAT_DCSP:
2685 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2686 		break;
2687 	case PCI_DEVICE_ID_SAT_SCSP:
2688 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_SAT_S:
2691 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2692 		break;
2693 	case PCI_DEVICE_ID_PROTEUS_VF:
2694 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2695 				"Obsolete, Unsupported Fibre Channel Adapter"};
2696 		break;
2697 	case PCI_DEVICE_ID_PROTEUS_PF:
2698 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2699 				"Obsolete, Unsupported Fibre Channel Adapter"};
2700 		break;
2701 	case PCI_DEVICE_ID_PROTEUS_S:
2702 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2703 				"Obsolete, Unsupported Fibre Channel Adapter"};
2704 		break;
2705 	case PCI_DEVICE_ID_TIGERSHARK:
2706 		oneConnect = 1;
2707 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2708 		break;
2709 	case PCI_DEVICE_ID_TOMCAT:
2710 		oneConnect = 1;
2711 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2712 		break;
2713 	case PCI_DEVICE_ID_FALCON:
2714 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2715 				"EmulexSecure Fibre"};
2716 		break;
2717 	case PCI_DEVICE_ID_BALIUS:
2718 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2719 				"Obsolete, Unsupported Fibre Channel Adapter"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FC:
2722 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2723 		break;
2724 	case PCI_DEVICE_ID_LANCER_FC_VF:
2725 		m = (typeof(m)){"LPe16000", "PCIe",
2726 				"Obsolete, Unsupported Fibre Channel Adapter"};
2727 		break;
2728 	case PCI_DEVICE_ID_LANCER_FCOE:
2729 		oneConnect = 1;
2730 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2733 		oneConnect = 1;
2734 		m = (typeof(m)){"OCe15100", "PCIe",
2735 				"Obsolete, Unsupported FCoE"};
2736 		break;
2737 	case PCI_DEVICE_ID_LANCER_G6_FC:
2738 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2739 		break;
2740 	case PCI_DEVICE_ID_LANCER_G7_FC:
2741 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2742 		break;
2743 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2744 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2745 		break;
2746 	case PCI_DEVICE_ID_SKYHAWK:
2747 	case PCI_DEVICE_ID_SKYHAWK_VF:
2748 		oneConnect = 1;
2749 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2750 		break;
2751 	default:
2752 		m = (typeof(m)){"Unknown", "", ""};
2753 		break;
2754 	}
2755 
2756 	if (mdp && mdp[0] == '\0')
2757 		snprintf(mdp, 79,"%s", m.name);
2758 	/*
2759 	 * oneConnect hba requires special processing, they are all initiators
2760 	 * and we put the port number on the end
2761 	 */
2762 	if (descp && descp[0] == '\0') {
2763 		if (oneConnect)
2764 			snprintf(descp, 255,
2765 				"Emulex OneConnect %s, %s Initiator %s",
2766 				m.name, m.function,
2767 				phba->Port);
2768 		else if (max_speed == 0)
2769 			snprintf(descp, 255,
2770 				"Emulex %s %s %s",
2771 				m.name, m.bus, m.function);
2772 		else
2773 			snprintf(descp, 255,
2774 				"Emulex %s %d%s %s %s",
2775 				m.name, max_speed, (GE) ? "GE" : "Gb",
2776 				m.bus, m.function);
2777 	}
2778 }
2779 
2780 /**
2781  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2782  * @phba: pointer to lpfc hba data structure.
2783  * @pring: pointer to a IOCB ring.
2784  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2785  *
2786  * This routine posts a given number of IOCBs with the associated DMA buffer
2787  * descriptors specified by the cnt argument to the given IOCB ring.
2788  *
2789  * Return codes
2790  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2791  **/
2792 int
2793 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2794 {
2795 	IOCB_t *icmd;
2796 	struct lpfc_iocbq *iocb;
2797 	struct lpfc_dmabuf *mp1, *mp2;
2798 
2799 	cnt += pring->missbufcnt;
2800 
2801 	/* While there are buffers to post */
2802 	while (cnt > 0) {
2803 		/* Allocate buffer for  command iocb */
2804 		iocb = lpfc_sli_get_iocbq(phba);
2805 		if (iocb == NULL) {
2806 			pring->missbufcnt = cnt;
2807 			return cnt;
2808 		}
2809 		icmd = &iocb->iocb;
2810 
2811 		/* 2 buffers can be posted per command */
2812 		/* Allocate buffer to post */
2813 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2814 		if (mp1)
2815 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2816 		if (!mp1 || !mp1->virt) {
2817 			kfree(mp1);
2818 			lpfc_sli_release_iocbq(phba, iocb);
2819 			pring->missbufcnt = cnt;
2820 			return cnt;
2821 		}
2822 
2823 		INIT_LIST_HEAD(&mp1->list);
2824 		/* Allocate buffer to post */
2825 		if (cnt > 1) {
2826 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2827 			if (mp2)
2828 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2829 							    &mp2->phys);
2830 			if (!mp2 || !mp2->virt) {
2831 				kfree(mp2);
2832 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2833 				kfree(mp1);
2834 				lpfc_sli_release_iocbq(phba, iocb);
2835 				pring->missbufcnt = cnt;
2836 				return cnt;
2837 			}
2838 
2839 			INIT_LIST_HEAD(&mp2->list);
2840 		} else {
2841 			mp2 = NULL;
2842 		}
2843 
2844 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2845 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2846 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2847 		icmd->ulpBdeCount = 1;
2848 		cnt--;
2849 		if (mp2) {
2850 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2851 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2852 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2853 			cnt--;
2854 			icmd->ulpBdeCount = 2;
2855 		}
2856 
2857 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2858 		icmd->ulpLe = 1;
2859 
2860 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2861 		    IOCB_ERROR) {
2862 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2863 			kfree(mp1);
2864 			cnt++;
2865 			if (mp2) {
2866 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2867 				kfree(mp2);
2868 				cnt++;
2869 			}
2870 			lpfc_sli_release_iocbq(phba, iocb);
2871 			pring->missbufcnt = cnt;
2872 			return cnt;
2873 		}
2874 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2875 		if (mp2)
2876 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2877 	}
2878 	pring->missbufcnt = 0;
2879 	return 0;
2880 }
2881 
2882 /**
2883  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2884  * @phba: pointer to lpfc hba data structure.
2885  *
2886  * This routine posts initial receive IOCB buffers to the ELS ring. The
2887  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2888  * set to 64 IOCBs. SLI3 only.
2889  *
2890  * Return codes
2891  *   0 - success (currently always success)
2892  **/
2893 static int
2894 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2895 {
2896 	struct lpfc_sli *psli = &phba->sli;
2897 
2898 	/* Ring 0, ELS / CT buffers */
2899 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2900 	/* Ring 2 - FCP no buffers needed */
2901 
2902 	return 0;
2903 }
2904 
2905 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2906 
2907 /**
2908  * lpfc_sha_init - Set up initial array of hash table entries
2909  * @HashResultPointer: pointer to an array as hash table.
2910  *
2911  * This routine sets up the initial values to the array of hash table entries
2912  * for the LC HBAs.
2913  **/
2914 static void
2915 lpfc_sha_init(uint32_t * HashResultPointer)
2916 {
2917 	HashResultPointer[0] = 0x67452301;
2918 	HashResultPointer[1] = 0xEFCDAB89;
2919 	HashResultPointer[2] = 0x98BADCFE;
2920 	HashResultPointer[3] = 0x10325476;
2921 	HashResultPointer[4] = 0xC3D2E1F0;
2922 }
2923 
2924 /**
2925  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2926  * @HashResultPointer: pointer to an initial/result hash table.
2927  * @HashWorkingPointer: pointer to an working hash table.
2928  *
2929  * This routine iterates an initial hash table pointed by @HashResultPointer
2930  * with the values from the working hash table pointeed by @HashWorkingPointer.
2931  * The results are putting back to the initial hash table, returned through
2932  * the @HashResultPointer as the result hash table.
2933  **/
2934 static void
2935 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2936 {
2937 	int t;
2938 	uint32_t TEMP;
2939 	uint32_t A, B, C, D, E;
2940 	t = 16;
2941 	do {
2942 		HashWorkingPointer[t] =
2943 		    S(1,
2944 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2945 								     8] ^
2946 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2947 	} while (++t <= 79);
2948 	t = 0;
2949 	A = HashResultPointer[0];
2950 	B = HashResultPointer[1];
2951 	C = HashResultPointer[2];
2952 	D = HashResultPointer[3];
2953 	E = HashResultPointer[4];
2954 
2955 	do {
2956 		if (t < 20) {
2957 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2958 		} else if (t < 40) {
2959 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2960 		} else if (t < 60) {
2961 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2962 		} else {
2963 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2964 		}
2965 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2966 		E = D;
2967 		D = C;
2968 		C = S(30, B);
2969 		B = A;
2970 		A = TEMP;
2971 	} while (++t <= 79);
2972 
2973 	HashResultPointer[0] += A;
2974 	HashResultPointer[1] += B;
2975 	HashResultPointer[2] += C;
2976 	HashResultPointer[3] += D;
2977 	HashResultPointer[4] += E;
2978 
2979 }
2980 
2981 /**
2982  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2983  * @RandomChallenge: pointer to the entry of host challenge random number array.
2984  * @HashWorking: pointer to the entry of the working hash array.
2985  *
2986  * This routine calculates the working hash array referred by @HashWorking
2987  * from the challenge random numbers associated with the host, referred by
2988  * @RandomChallenge. The result is put into the entry of the working hash
2989  * array and returned by reference through @HashWorking.
2990  **/
2991 static void
2992 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2993 {
2994 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2995 }
2996 
2997 /**
2998  * lpfc_hba_init - Perform special handling for LC HBA initialization
2999  * @phba: pointer to lpfc hba data structure.
3000  * @hbainit: pointer to an array of unsigned 32-bit integers.
3001  *
3002  * This routine performs the special handling for LC HBA initialization.
3003  **/
3004 void
3005 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3006 {
3007 	int t;
3008 	uint32_t *HashWorking;
3009 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3010 
3011 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3012 	if (!HashWorking)
3013 		return;
3014 
3015 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3016 	HashWorking[1] = HashWorking[79] = *pwwnn;
3017 
3018 	for (t = 0; t < 7; t++)
3019 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3020 
3021 	lpfc_sha_init(hbainit);
3022 	lpfc_sha_iterate(hbainit, HashWorking);
3023 	kfree(HashWorking);
3024 }
3025 
3026 /**
3027  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3028  * @vport: pointer to a virtual N_Port data structure.
3029  *
3030  * This routine performs the necessary cleanups before deleting the @vport.
3031  * It invokes the discovery state machine to perform necessary state
3032  * transitions and to release the ndlps associated with the @vport. Note,
3033  * the physical port is treated as @vport 0.
3034  **/
3035 void
3036 lpfc_cleanup(struct lpfc_vport *vport)
3037 {
3038 	struct lpfc_hba   *phba = vport->phba;
3039 	struct lpfc_nodelist *ndlp, *next_ndlp;
3040 	int i = 0;
3041 
3042 	if (phba->link_state > LPFC_LINK_DOWN)
3043 		lpfc_port_link_failure(vport);
3044 
3045 	/* Clean up VMID resources */
3046 	if (lpfc_is_vmid_enabled(phba))
3047 		lpfc_vmid_vport_cleanup(vport);
3048 
3049 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3050 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3051 		    ndlp->nlp_DID == Fabric_DID) {
3052 			/* Just free up ndlp with Fabric_DID for vports */
3053 			lpfc_nlp_put(ndlp);
3054 			continue;
3055 		}
3056 
3057 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3058 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3059 			lpfc_nlp_put(ndlp);
3060 			continue;
3061 		}
3062 
3063 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3064 		 * DEVICE_RM event.
3065 		 */
3066 		if (ndlp->nlp_type & NLP_FABRIC &&
3067 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3068 			lpfc_disc_state_machine(vport, ndlp, NULL,
3069 					NLP_EVT_DEVICE_RECOVERY);
3070 
3071 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3072 			lpfc_disc_state_machine(vport, ndlp, NULL,
3073 					NLP_EVT_DEVICE_RM);
3074 	}
3075 
3076 	/* This is a special case flush to return all
3077 	 * IOs before entering this loop. There are
3078 	 * two points in the code where a flush is
3079 	 * avoided if the FC_UNLOADING flag is set.
3080 	 * one is in the multipool destroy,
3081 	 * (this prevents a crash) and the other is
3082 	 * in the nvme abort handler, ( also prevents
3083 	 * a crash). Both of these exceptions are
3084 	 * cases where the slot is still accessible.
3085 	 * The flush here is only when the pci slot
3086 	 * is offline.
3087 	 */
3088 	if (vport->load_flag & FC_UNLOADING &&
3089 	    pci_channel_offline(phba->pcidev))
3090 		lpfc_sli_flush_io_rings(vport->phba);
3091 
3092 	/* At this point, ALL ndlp's should be gone
3093 	 * because of the previous NLP_EVT_DEVICE_RM.
3094 	 * Lets wait for this to happen, if needed.
3095 	 */
3096 	while (!list_empty(&vport->fc_nodes)) {
3097 		if (i++ > 3000) {
3098 			lpfc_printf_vlog(vport, KERN_ERR,
3099 					 LOG_TRACE_EVENT,
3100 				"0233 Nodelist not empty\n");
3101 			list_for_each_entry_safe(ndlp, next_ndlp,
3102 						&vport->fc_nodes, nlp_listp) {
3103 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3104 						 LOG_DISCOVERY,
3105 						 "0282 did:x%x ndlp:x%px "
3106 						 "refcnt:%d xflags x%x nflag x%x\n",
3107 						 ndlp->nlp_DID, (void *)ndlp,
3108 						 kref_read(&ndlp->kref),
3109 						 ndlp->fc4_xpt_flags,
3110 						 ndlp->nlp_flag);
3111 			}
3112 			break;
3113 		}
3114 
3115 		/* Wait for any activity on ndlps to settle */
3116 		msleep(10);
3117 	}
3118 	lpfc_cleanup_vports_rrqs(vport, NULL);
3119 }
3120 
3121 /**
3122  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3123  * @vport: pointer to a virtual N_Port data structure.
3124  *
3125  * This routine stops all the timers associated with a @vport. This function
3126  * is invoked before disabling or deleting a @vport. Note that the physical
3127  * port is treated as @vport 0.
3128  **/
3129 void
3130 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3131 {
3132 	del_timer_sync(&vport->els_tmofunc);
3133 	del_timer_sync(&vport->delayed_disc_tmo);
3134 	lpfc_can_disctmo(vport);
3135 	return;
3136 }
3137 
3138 /**
3139  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3140  * @phba: pointer to lpfc hba data structure.
3141  *
3142  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3143  * caller of this routine should already hold the host lock.
3144  **/
3145 void
3146 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3147 {
3148 	/* Clear pending FCF rediscovery wait flag */
3149 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3150 
3151 	/* Now, try to stop the timer */
3152 	del_timer(&phba->fcf.redisc_wait);
3153 }
3154 
3155 /**
3156  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3157  * @phba: pointer to lpfc hba data structure.
3158  *
3159  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3160  * checks whether the FCF rediscovery wait timer is pending with the host
3161  * lock held before proceeding with disabling the timer and clearing the
3162  * wait timer pendig flag.
3163  **/
3164 void
3165 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3166 {
3167 	spin_lock_irq(&phba->hbalock);
3168 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3169 		/* FCF rediscovery timer already fired or stopped */
3170 		spin_unlock_irq(&phba->hbalock);
3171 		return;
3172 	}
3173 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3174 	/* Clear failover in progress flags */
3175 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3176 	spin_unlock_irq(&phba->hbalock);
3177 }
3178 
3179 /**
3180  * lpfc_cmf_stop - Stop CMF processing
3181  * @phba: pointer to lpfc hba data structure.
3182  *
3183  * This is called when the link goes down or if CMF mode is turned OFF.
3184  * It is also called when going offline or unloaded just before the
3185  * congestion info buffer is unregistered.
3186  **/
3187 void
3188 lpfc_cmf_stop(struct lpfc_hba *phba)
3189 {
3190 	int cpu;
3191 	struct lpfc_cgn_stat *cgs;
3192 
3193 	/* We only do something if CMF is enabled */
3194 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3195 		return;
3196 
3197 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3198 			"6221 Stop CMF / Cancel Timer\n");
3199 
3200 	/* Cancel the CMF timer */
3201 	hrtimer_cancel(&phba->cmf_timer);
3202 
3203 	/* Zero CMF counters */
3204 	atomic_set(&phba->cmf_busy, 0);
3205 	for_each_present_cpu(cpu) {
3206 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3207 		atomic64_set(&cgs->total_bytes, 0);
3208 		atomic64_set(&cgs->rcv_bytes, 0);
3209 		atomic_set(&cgs->rx_io_cnt, 0);
3210 		atomic64_set(&cgs->rx_latency, 0);
3211 	}
3212 	atomic_set(&phba->cmf_bw_wait, 0);
3213 
3214 	/* Resume any blocked IO - Queue unblock on workqueue */
3215 	queue_work(phba->wq, &phba->unblock_request_work);
3216 }
3217 
3218 static inline uint64_t
3219 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3220 {
3221 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3222 
3223 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3224 }
3225 
3226 void
3227 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3228 {
3229 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3230 			"6223 Signal CMF init\n");
3231 
3232 	/* Use the new fc_linkspeed to recalculate */
3233 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3234 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3235 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3236 					    phba->cmf_interval_rate, 1000);
3237 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3238 
3239 	/* This is a signal to firmware to sync up CMF BW with link speed */
3240 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3241 }
3242 
3243 /**
3244  * lpfc_cmf_start - Start CMF processing
3245  * @phba: pointer to lpfc hba data structure.
3246  *
3247  * This is called when the link comes up or if CMF mode is turned OFF
3248  * to Monitor or Managed.
3249  **/
3250 void
3251 lpfc_cmf_start(struct lpfc_hba *phba)
3252 {
3253 	struct lpfc_cgn_stat *cgs;
3254 	int cpu;
3255 
3256 	/* We only do something if CMF is enabled */
3257 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3258 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3259 		return;
3260 
3261 	/* Reinitialize congestion buffer info */
3262 	lpfc_init_congestion_buf(phba);
3263 
3264 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3265 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3266 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3267 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3268 
3269 	atomic_set(&phba->cmf_busy, 0);
3270 	for_each_present_cpu(cpu) {
3271 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3272 		atomic64_set(&cgs->total_bytes, 0);
3273 		atomic64_set(&cgs->rcv_bytes, 0);
3274 		atomic_set(&cgs->rx_io_cnt, 0);
3275 		atomic64_set(&cgs->rx_latency, 0);
3276 	}
3277 	phba->cmf_latency.tv_sec = 0;
3278 	phba->cmf_latency.tv_nsec = 0;
3279 
3280 	lpfc_cmf_signal_init(phba);
3281 
3282 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3283 			"6222 Start CMF / Timer\n");
3284 
3285 	phba->cmf_timer_cnt = 0;
3286 	hrtimer_start(&phba->cmf_timer,
3287 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3288 		      HRTIMER_MODE_REL);
3289 	/* Setup for latency check in IO cmpl routines */
3290 	ktime_get_real_ts64(&phba->cmf_latency);
3291 
3292 	atomic_set(&phba->cmf_bw_wait, 0);
3293 	atomic_set(&phba->cmf_stop_io, 0);
3294 }
3295 
3296 /**
3297  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3298  * @phba: pointer to lpfc hba data structure.
3299  *
3300  * This routine stops all the timers associated with a HBA. This function is
3301  * invoked before either putting a HBA offline or unloading the driver.
3302  **/
3303 void
3304 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3305 {
3306 	if (phba->pport)
3307 		lpfc_stop_vport_timers(phba->pport);
3308 	cancel_delayed_work_sync(&phba->eq_delay_work);
3309 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3310 	del_timer_sync(&phba->sli.mbox_tmo);
3311 	del_timer_sync(&phba->fabric_block_timer);
3312 	del_timer_sync(&phba->eratt_poll);
3313 	del_timer_sync(&phba->hb_tmofunc);
3314 	if (phba->sli_rev == LPFC_SLI_REV4) {
3315 		del_timer_sync(&phba->rrq_tmr);
3316 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3317 	}
3318 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3319 
3320 	switch (phba->pci_dev_grp) {
3321 	case LPFC_PCI_DEV_LP:
3322 		/* Stop any LightPulse device specific driver timers */
3323 		del_timer_sync(&phba->fcp_poll_timer);
3324 		break;
3325 	case LPFC_PCI_DEV_OC:
3326 		/* Stop any OneConnect device specific driver timers */
3327 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3328 		break;
3329 	default:
3330 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3331 				"0297 Invalid device group (x%x)\n",
3332 				phba->pci_dev_grp);
3333 		break;
3334 	}
3335 	return;
3336 }
3337 
3338 /**
3339  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3340  * @phba: pointer to lpfc hba data structure.
3341  * @mbx_action: flag for mailbox no wait action.
3342  *
3343  * This routine marks a HBA's management interface as blocked. Once the HBA's
3344  * management interface is marked as blocked, all the user space access to
3345  * the HBA, whether they are from sysfs interface or libdfc interface will
3346  * all be blocked. The HBA is set to block the management interface when the
3347  * driver prepares the HBA interface for online or offline.
3348  **/
3349 static void
3350 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3351 {
3352 	unsigned long iflag;
3353 	uint8_t actcmd = MBX_HEARTBEAT;
3354 	unsigned long timeout;
3355 
3356 	spin_lock_irqsave(&phba->hbalock, iflag);
3357 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3358 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3359 	if (mbx_action == LPFC_MBX_NO_WAIT)
3360 		return;
3361 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3362 	spin_lock_irqsave(&phba->hbalock, iflag);
3363 	if (phba->sli.mbox_active) {
3364 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3365 		/* Determine how long we might wait for the active mailbox
3366 		 * command to be gracefully completed by firmware.
3367 		 */
3368 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3369 				phba->sli.mbox_active) * 1000) + jiffies;
3370 	}
3371 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3372 
3373 	/* Wait for the outstnading mailbox command to complete */
3374 	while (phba->sli.mbox_active) {
3375 		/* Check active mailbox complete status every 2ms */
3376 		msleep(2);
3377 		if (time_after(jiffies, timeout)) {
3378 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3379 					"2813 Mgmt IO is Blocked %x "
3380 					"- mbox cmd %x still active\n",
3381 					phba->sli.sli_flag, actcmd);
3382 			break;
3383 		}
3384 	}
3385 }
3386 
3387 /**
3388  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3389  * @phba: pointer to lpfc hba data structure.
3390  *
3391  * Allocate RPIs for all active remote nodes. This is needed whenever
3392  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3393  * is to fixup the temporary rpi assignments.
3394  **/
3395 void
3396 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3397 {
3398 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3399 	struct lpfc_vport **vports;
3400 	int i, rpi;
3401 
3402 	if (phba->sli_rev != LPFC_SLI_REV4)
3403 		return;
3404 
3405 	vports = lpfc_create_vport_work_array(phba);
3406 	if (vports == NULL)
3407 		return;
3408 
3409 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3410 		if (vports[i]->load_flag & FC_UNLOADING)
3411 			continue;
3412 
3413 		list_for_each_entry_safe(ndlp, next_ndlp,
3414 					 &vports[i]->fc_nodes,
3415 					 nlp_listp) {
3416 			rpi = lpfc_sli4_alloc_rpi(phba);
3417 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3418 				/* TODO print log? */
3419 				continue;
3420 			}
3421 			ndlp->nlp_rpi = rpi;
3422 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3423 					 LOG_NODE | LOG_DISCOVERY,
3424 					 "0009 Assign RPI x%x to ndlp x%px "
3425 					 "DID:x%06x flg:x%x\n",
3426 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3427 					 ndlp->nlp_flag);
3428 		}
3429 	}
3430 	lpfc_destroy_vport_work_array(phba, vports);
3431 }
3432 
3433 /**
3434  * lpfc_create_expedite_pool - create expedite pool
3435  * @phba: pointer to lpfc hba data structure.
3436  *
3437  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3438  * to expedite pool. Mark them as expedite.
3439  **/
3440 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3441 {
3442 	struct lpfc_sli4_hdw_queue *qp;
3443 	struct lpfc_io_buf *lpfc_ncmd;
3444 	struct lpfc_io_buf *lpfc_ncmd_next;
3445 	struct lpfc_epd_pool *epd_pool;
3446 	unsigned long iflag;
3447 
3448 	epd_pool = &phba->epd_pool;
3449 	qp = &phba->sli4_hba.hdwq[0];
3450 
3451 	spin_lock_init(&epd_pool->lock);
3452 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3453 	spin_lock(&epd_pool->lock);
3454 	INIT_LIST_HEAD(&epd_pool->list);
3455 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3456 				 &qp->lpfc_io_buf_list_put, list) {
3457 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3458 		lpfc_ncmd->expedite = true;
3459 		qp->put_io_bufs--;
3460 		epd_pool->count++;
3461 		if (epd_pool->count >= XRI_BATCH)
3462 			break;
3463 	}
3464 	spin_unlock(&epd_pool->lock);
3465 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3466 }
3467 
3468 /**
3469  * lpfc_destroy_expedite_pool - destroy expedite pool
3470  * @phba: pointer to lpfc hba data structure.
3471  *
3472  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3473  * of HWQ 0. Clear the mark.
3474  **/
3475 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3476 {
3477 	struct lpfc_sli4_hdw_queue *qp;
3478 	struct lpfc_io_buf *lpfc_ncmd;
3479 	struct lpfc_io_buf *lpfc_ncmd_next;
3480 	struct lpfc_epd_pool *epd_pool;
3481 	unsigned long iflag;
3482 
3483 	epd_pool = &phba->epd_pool;
3484 	qp = &phba->sli4_hba.hdwq[0];
3485 
3486 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3487 	spin_lock(&epd_pool->lock);
3488 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3489 				 &epd_pool->list, list) {
3490 		list_move_tail(&lpfc_ncmd->list,
3491 			       &qp->lpfc_io_buf_list_put);
3492 		lpfc_ncmd->flags = false;
3493 		qp->put_io_bufs++;
3494 		epd_pool->count--;
3495 	}
3496 	spin_unlock(&epd_pool->lock);
3497 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3498 }
3499 
3500 /**
3501  * lpfc_create_multixri_pools - create multi-XRI pools
3502  * @phba: pointer to lpfc hba data structure.
3503  *
3504  * This routine initialize public, private per HWQ. Then, move XRIs from
3505  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3506  * Initialized.
3507  **/
3508 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3509 {
3510 	u32 i, j;
3511 	u32 hwq_count;
3512 	u32 count_per_hwq;
3513 	struct lpfc_io_buf *lpfc_ncmd;
3514 	struct lpfc_io_buf *lpfc_ncmd_next;
3515 	unsigned long iflag;
3516 	struct lpfc_sli4_hdw_queue *qp;
3517 	struct lpfc_multixri_pool *multixri_pool;
3518 	struct lpfc_pbl_pool *pbl_pool;
3519 	struct lpfc_pvt_pool *pvt_pool;
3520 
3521 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3522 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3523 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3524 			phba->sli4_hba.io_xri_cnt);
3525 
3526 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3527 		lpfc_create_expedite_pool(phba);
3528 
3529 	hwq_count = phba->cfg_hdw_queue;
3530 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3531 
3532 	for (i = 0; i < hwq_count; i++) {
3533 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3534 
3535 		if (!multixri_pool) {
3536 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3537 					"1238 Failed to allocate memory for "
3538 					"multixri_pool\n");
3539 
3540 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3541 				lpfc_destroy_expedite_pool(phba);
3542 
3543 			j = 0;
3544 			while (j < i) {
3545 				qp = &phba->sli4_hba.hdwq[j];
3546 				kfree(qp->p_multixri_pool);
3547 				j++;
3548 			}
3549 			phba->cfg_xri_rebalancing = 0;
3550 			return;
3551 		}
3552 
3553 		qp = &phba->sli4_hba.hdwq[i];
3554 		qp->p_multixri_pool = multixri_pool;
3555 
3556 		multixri_pool->xri_limit = count_per_hwq;
3557 		multixri_pool->rrb_next_hwqid = i;
3558 
3559 		/* Deal with public free xri pool */
3560 		pbl_pool = &multixri_pool->pbl_pool;
3561 		spin_lock_init(&pbl_pool->lock);
3562 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3563 		spin_lock(&pbl_pool->lock);
3564 		INIT_LIST_HEAD(&pbl_pool->list);
3565 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3566 					 &qp->lpfc_io_buf_list_put, list) {
3567 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3568 			qp->put_io_bufs--;
3569 			pbl_pool->count++;
3570 		}
3571 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3572 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3573 				pbl_pool->count, i);
3574 		spin_unlock(&pbl_pool->lock);
3575 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3576 
3577 		/* Deal with private free xri pool */
3578 		pvt_pool = &multixri_pool->pvt_pool;
3579 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3580 		pvt_pool->low_watermark = XRI_BATCH;
3581 		spin_lock_init(&pvt_pool->lock);
3582 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3583 		INIT_LIST_HEAD(&pvt_pool->list);
3584 		pvt_pool->count = 0;
3585 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3586 	}
3587 }
3588 
3589 /**
3590  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3591  * @phba: pointer to lpfc hba data structure.
3592  *
3593  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3594  **/
3595 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3596 {
3597 	u32 i;
3598 	u32 hwq_count;
3599 	struct lpfc_io_buf *lpfc_ncmd;
3600 	struct lpfc_io_buf *lpfc_ncmd_next;
3601 	unsigned long iflag;
3602 	struct lpfc_sli4_hdw_queue *qp;
3603 	struct lpfc_multixri_pool *multixri_pool;
3604 	struct lpfc_pbl_pool *pbl_pool;
3605 	struct lpfc_pvt_pool *pvt_pool;
3606 
3607 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3608 		lpfc_destroy_expedite_pool(phba);
3609 
3610 	if (!(phba->pport->load_flag & FC_UNLOADING))
3611 		lpfc_sli_flush_io_rings(phba);
3612 
3613 	hwq_count = phba->cfg_hdw_queue;
3614 
3615 	for (i = 0; i < hwq_count; i++) {
3616 		qp = &phba->sli4_hba.hdwq[i];
3617 		multixri_pool = qp->p_multixri_pool;
3618 		if (!multixri_pool)
3619 			continue;
3620 
3621 		qp->p_multixri_pool = NULL;
3622 
3623 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3624 
3625 		/* Deal with public free xri pool */
3626 		pbl_pool = &multixri_pool->pbl_pool;
3627 		spin_lock(&pbl_pool->lock);
3628 
3629 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3630 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3631 				pbl_pool->count, i);
3632 
3633 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3634 					 &pbl_pool->list, list) {
3635 			list_move_tail(&lpfc_ncmd->list,
3636 				       &qp->lpfc_io_buf_list_put);
3637 			qp->put_io_bufs++;
3638 			pbl_pool->count--;
3639 		}
3640 
3641 		INIT_LIST_HEAD(&pbl_pool->list);
3642 		pbl_pool->count = 0;
3643 
3644 		spin_unlock(&pbl_pool->lock);
3645 
3646 		/* Deal with private free xri pool */
3647 		pvt_pool = &multixri_pool->pvt_pool;
3648 		spin_lock(&pvt_pool->lock);
3649 
3650 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3651 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3652 				pvt_pool->count, i);
3653 
3654 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3655 					 &pvt_pool->list, list) {
3656 			list_move_tail(&lpfc_ncmd->list,
3657 				       &qp->lpfc_io_buf_list_put);
3658 			qp->put_io_bufs++;
3659 			pvt_pool->count--;
3660 		}
3661 
3662 		INIT_LIST_HEAD(&pvt_pool->list);
3663 		pvt_pool->count = 0;
3664 
3665 		spin_unlock(&pvt_pool->lock);
3666 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3667 
3668 		kfree(multixri_pool);
3669 	}
3670 }
3671 
3672 /**
3673  * lpfc_online - Initialize and bring a HBA online
3674  * @phba: pointer to lpfc hba data structure.
3675  *
3676  * This routine initializes the HBA and brings a HBA online. During this
3677  * process, the management interface is blocked to prevent user space access
3678  * to the HBA interfering with the driver initialization.
3679  *
3680  * Return codes
3681  *   0 - successful
3682  *   1 - failed
3683  **/
3684 int
3685 lpfc_online(struct lpfc_hba *phba)
3686 {
3687 	struct lpfc_vport *vport;
3688 	struct lpfc_vport **vports;
3689 	int i, error = 0;
3690 	bool vpis_cleared = false;
3691 
3692 	if (!phba)
3693 		return 0;
3694 	vport = phba->pport;
3695 
3696 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3697 		return 0;
3698 
3699 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3700 			"0458 Bring Adapter online\n");
3701 
3702 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3703 
3704 	if (phba->sli_rev == LPFC_SLI_REV4) {
3705 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3706 			lpfc_unblock_mgmt_io(phba);
3707 			return 1;
3708 		}
3709 		spin_lock_irq(&phba->hbalock);
3710 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3711 			vpis_cleared = true;
3712 		spin_unlock_irq(&phba->hbalock);
3713 
3714 		/* Reestablish the local initiator port.
3715 		 * The offline process destroyed the previous lport.
3716 		 */
3717 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3718 				!phba->nvmet_support) {
3719 			error = lpfc_nvme_create_localport(phba->pport);
3720 			if (error)
3721 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3722 					"6132 NVME restore reg failed "
3723 					"on nvmei error x%x\n", error);
3724 		}
3725 	} else {
3726 		lpfc_sli_queue_init(phba);
3727 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3728 			lpfc_unblock_mgmt_io(phba);
3729 			return 1;
3730 		}
3731 	}
3732 
3733 	vports = lpfc_create_vport_work_array(phba);
3734 	if (vports != NULL) {
3735 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3736 			struct Scsi_Host *shost;
3737 			shost = lpfc_shost_from_vport(vports[i]);
3738 			spin_lock_irq(shost->host_lock);
3739 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3740 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3741 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3742 			if (phba->sli_rev == LPFC_SLI_REV4) {
3743 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3744 				if ((vpis_cleared) &&
3745 				    (vports[i]->port_type !=
3746 					LPFC_PHYSICAL_PORT))
3747 					vports[i]->vpi = 0;
3748 			}
3749 			spin_unlock_irq(shost->host_lock);
3750 		}
3751 	}
3752 	lpfc_destroy_vport_work_array(phba, vports);
3753 
3754 	if (phba->cfg_xri_rebalancing)
3755 		lpfc_create_multixri_pools(phba);
3756 
3757 	lpfc_cpuhp_add(phba);
3758 
3759 	lpfc_unblock_mgmt_io(phba);
3760 	return 0;
3761 }
3762 
3763 /**
3764  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3765  * @phba: pointer to lpfc hba data structure.
3766  *
3767  * This routine marks a HBA's management interface as not blocked. Once the
3768  * HBA's management interface is marked as not blocked, all the user space
3769  * access to the HBA, whether they are from sysfs interface or libdfc
3770  * interface will be allowed. The HBA is set to block the management interface
3771  * when the driver prepares the HBA interface for online or offline and then
3772  * set to unblock the management interface afterwards.
3773  **/
3774 void
3775 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3776 {
3777 	unsigned long iflag;
3778 
3779 	spin_lock_irqsave(&phba->hbalock, iflag);
3780 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3781 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3782 }
3783 
3784 /**
3785  * lpfc_offline_prep - Prepare a HBA to be brought offline
3786  * @phba: pointer to lpfc hba data structure.
3787  * @mbx_action: flag for mailbox shutdown action.
3788  *
3789  * This routine is invoked to prepare a HBA to be brought offline. It performs
3790  * unregistration login to all the nodes on all vports and flushes the mailbox
3791  * queue to make it ready to be brought offline.
3792  **/
3793 void
3794 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3795 {
3796 	struct lpfc_vport *vport = phba->pport;
3797 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3798 	struct lpfc_vport **vports;
3799 	struct Scsi_Host *shost;
3800 	int i;
3801 	int offline;
3802 	bool hba_pci_err;
3803 
3804 	if (vport->fc_flag & FC_OFFLINE_MODE)
3805 		return;
3806 
3807 	lpfc_block_mgmt_io(phba, mbx_action);
3808 
3809 	lpfc_linkdown(phba);
3810 
3811 	offline =  pci_channel_offline(phba->pcidev);
3812 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3813 
3814 	/* Issue an unreg_login to all nodes on all vports */
3815 	vports = lpfc_create_vport_work_array(phba);
3816 	if (vports != NULL) {
3817 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3818 			if (vports[i]->load_flag & FC_UNLOADING)
3819 				continue;
3820 			shost = lpfc_shost_from_vport(vports[i]);
3821 			spin_lock_irq(shost->host_lock);
3822 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3823 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3824 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3825 			spin_unlock_irq(shost->host_lock);
3826 
3827 			shost =	lpfc_shost_from_vport(vports[i]);
3828 			list_for_each_entry_safe(ndlp, next_ndlp,
3829 						 &vports[i]->fc_nodes,
3830 						 nlp_listp) {
3831 
3832 				spin_lock_irq(&ndlp->lock);
3833 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3834 				spin_unlock_irq(&ndlp->lock);
3835 
3836 				if (offline || hba_pci_err) {
3837 					spin_lock_irq(&ndlp->lock);
3838 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3839 							    NLP_RPI_REGISTERED);
3840 					spin_unlock_irq(&ndlp->lock);
3841 					if (phba->sli_rev == LPFC_SLI_REV4)
3842 						lpfc_sli_rpi_release(vports[i],
3843 								     ndlp);
3844 				} else {
3845 					lpfc_unreg_rpi(vports[i], ndlp);
3846 				}
3847 				/*
3848 				 * Whenever an SLI4 port goes offline, free the
3849 				 * RPI. Get a new RPI when the adapter port
3850 				 * comes back online.
3851 				 */
3852 				if (phba->sli_rev == LPFC_SLI_REV4) {
3853 					lpfc_printf_vlog(vports[i], KERN_INFO,
3854 						 LOG_NODE | LOG_DISCOVERY,
3855 						 "0011 Free RPI x%x on "
3856 						 "ndlp: x%px did x%x\n",
3857 						 ndlp->nlp_rpi, ndlp,
3858 						 ndlp->nlp_DID);
3859 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3860 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3861 				}
3862 
3863 				if (ndlp->nlp_type & NLP_FABRIC) {
3864 					lpfc_disc_state_machine(vports[i], ndlp,
3865 						NULL, NLP_EVT_DEVICE_RECOVERY);
3866 
3867 					/* Don't remove the node unless the node
3868 					 * has been unregistered with the
3869 					 * transport, and we're not in recovery
3870 					 * before dev_loss_tmo triggered.
3871 					 * Otherwise, let dev_loss take care of
3872 					 * the node.
3873 					 */
3874 					if (!(ndlp->save_flags &
3875 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3876 					    !(ndlp->fc4_xpt_flags &
3877 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3878 						lpfc_disc_state_machine
3879 							(vports[i], ndlp,
3880 							 NULL,
3881 							 NLP_EVT_DEVICE_RM);
3882 				}
3883 			}
3884 		}
3885 	}
3886 	lpfc_destroy_vport_work_array(phba, vports);
3887 
3888 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3889 
3890 	if (phba->wq)
3891 		flush_workqueue(phba->wq);
3892 }
3893 
3894 /**
3895  * lpfc_offline - Bring a HBA offline
3896  * @phba: pointer to lpfc hba data structure.
3897  *
3898  * This routine actually brings a HBA offline. It stops all the timers
3899  * associated with the HBA, brings down the SLI layer, and eventually
3900  * marks the HBA as in offline state for the upper layer protocol.
3901  **/
3902 void
3903 lpfc_offline(struct lpfc_hba *phba)
3904 {
3905 	struct Scsi_Host  *shost;
3906 	struct lpfc_vport **vports;
3907 	int i;
3908 
3909 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3910 		return;
3911 
3912 	/* stop port and all timers associated with this hba */
3913 	lpfc_stop_port(phba);
3914 
3915 	/* Tear down the local and target port registrations.  The
3916 	 * nvme transports need to cleanup.
3917 	 */
3918 	lpfc_nvmet_destroy_targetport(phba);
3919 	lpfc_nvme_destroy_localport(phba->pport);
3920 
3921 	vports = lpfc_create_vport_work_array(phba);
3922 	if (vports != NULL)
3923 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3924 			lpfc_stop_vport_timers(vports[i]);
3925 	lpfc_destroy_vport_work_array(phba, vports);
3926 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3927 			"0460 Bring Adapter offline\n");
3928 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3929 	   now.  */
3930 	lpfc_sli_hba_down(phba);
3931 	spin_lock_irq(&phba->hbalock);
3932 	phba->work_ha = 0;
3933 	spin_unlock_irq(&phba->hbalock);
3934 	vports = lpfc_create_vport_work_array(phba);
3935 	if (vports != NULL)
3936 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3937 			shost = lpfc_shost_from_vport(vports[i]);
3938 			spin_lock_irq(shost->host_lock);
3939 			vports[i]->work_port_events = 0;
3940 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3941 			spin_unlock_irq(shost->host_lock);
3942 		}
3943 	lpfc_destroy_vport_work_array(phba, vports);
3944 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3945 	 * in hba_unset
3946 	 */
3947 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3948 		__lpfc_cpuhp_remove(phba);
3949 
3950 	if (phba->cfg_xri_rebalancing)
3951 		lpfc_destroy_multixri_pools(phba);
3952 }
3953 
3954 /**
3955  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3956  * @phba: pointer to lpfc hba data structure.
3957  *
3958  * This routine is to free all the SCSI buffers and IOCBs from the driver
3959  * list back to kernel. It is called from lpfc_pci_remove_one to free
3960  * the internal resources before the device is removed from the system.
3961  **/
3962 static void
3963 lpfc_scsi_free(struct lpfc_hba *phba)
3964 {
3965 	struct lpfc_io_buf *sb, *sb_next;
3966 
3967 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3968 		return;
3969 
3970 	spin_lock_irq(&phba->hbalock);
3971 
3972 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3973 
3974 	spin_lock(&phba->scsi_buf_list_put_lock);
3975 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3976 				 list) {
3977 		list_del(&sb->list);
3978 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3979 			      sb->dma_handle);
3980 		kfree(sb);
3981 		phba->total_scsi_bufs--;
3982 	}
3983 	spin_unlock(&phba->scsi_buf_list_put_lock);
3984 
3985 	spin_lock(&phba->scsi_buf_list_get_lock);
3986 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3987 				 list) {
3988 		list_del(&sb->list);
3989 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3990 			      sb->dma_handle);
3991 		kfree(sb);
3992 		phba->total_scsi_bufs--;
3993 	}
3994 	spin_unlock(&phba->scsi_buf_list_get_lock);
3995 	spin_unlock_irq(&phba->hbalock);
3996 }
3997 
3998 /**
3999  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
4000  * @phba: pointer to lpfc hba data structure.
4001  *
4002  * This routine is to free all the IO buffers and IOCBs from the driver
4003  * list back to kernel. It is called from lpfc_pci_remove_one to free
4004  * the internal resources before the device is removed from the system.
4005  **/
4006 void
4007 lpfc_io_free(struct lpfc_hba *phba)
4008 {
4009 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4010 	struct lpfc_sli4_hdw_queue *qp;
4011 	int idx;
4012 
4013 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4014 		qp = &phba->sli4_hba.hdwq[idx];
4015 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4016 		spin_lock(&qp->io_buf_list_put_lock);
4017 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4018 					 &qp->lpfc_io_buf_list_put,
4019 					 list) {
4020 			list_del(&lpfc_ncmd->list);
4021 			qp->put_io_bufs--;
4022 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4023 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4024 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4025 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4026 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4027 			kfree(lpfc_ncmd);
4028 			qp->total_io_bufs--;
4029 		}
4030 		spin_unlock(&qp->io_buf_list_put_lock);
4031 
4032 		spin_lock(&qp->io_buf_list_get_lock);
4033 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4034 					 &qp->lpfc_io_buf_list_get,
4035 					 list) {
4036 			list_del(&lpfc_ncmd->list);
4037 			qp->get_io_bufs--;
4038 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4039 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4040 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4041 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4042 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4043 			kfree(lpfc_ncmd);
4044 			qp->total_io_bufs--;
4045 		}
4046 		spin_unlock(&qp->io_buf_list_get_lock);
4047 	}
4048 }
4049 
4050 /**
4051  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4052  * @phba: pointer to lpfc hba data structure.
4053  *
4054  * This routine first calculates the sizes of the current els and allocated
4055  * scsi sgl lists, and then goes through all sgls to updates the physical
4056  * XRIs assigned due to port function reset. During port initialization, the
4057  * current els and allocated scsi sgl lists are 0s.
4058  *
4059  * Return codes
4060  *   0 - successful (for now, it always returns 0)
4061  **/
4062 int
4063 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4064 {
4065 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4066 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4067 	LIST_HEAD(els_sgl_list);
4068 	int rc;
4069 
4070 	/*
4071 	 * update on pci function's els xri-sgl list
4072 	 */
4073 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4074 
4075 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4076 		/* els xri-sgl expanded */
4077 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4078 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4079 				"3157 ELS xri-sgl count increased from "
4080 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4081 				els_xri_cnt);
4082 		/* allocate the additional els sgls */
4083 		for (i = 0; i < xri_cnt; i++) {
4084 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4085 					     GFP_KERNEL);
4086 			if (sglq_entry == NULL) {
4087 				lpfc_printf_log(phba, KERN_ERR,
4088 						LOG_TRACE_EVENT,
4089 						"2562 Failure to allocate an "
4090 						"ELS sgl entry:%d\n", i);
4091 				rc = -ENOMEM;
4092 				goto out_free_mem;
4093 			}
4094 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4095 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4096 							   &sglq_entry->phys);
4097 			if (sglq_entry->virt == NULL) {
4098 				kfree(sglq_entry);
4099 				lpfc_printf_log(phba, KERN_ERR,
4100 						LOG_TRACE_EVENT,
4101 						"2563 Failure to allocate an "
4102 						"ELS mbuf:%d\n", i);
4103 				rc = -ENOMEM;
4104 				goto out_free_mem;
4105 			}
4106 			sglq_entry->sgl = sglq_entry->virt;
4107 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4108 			sglq_entry->state = SGL_FREED;
4109 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4110 		}
4111 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4112 		list_splice_init(&els_sgl_list,
4113 				 &phba->sli4_hba.lpfc_els_sgl_list);
4114 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4115 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4116 		/* els xri-sgl shrinked */
4117 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4118 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4119 				"3158 ELS xri-sgl count decreased from "
4120 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4121 				els_xri_cnt);
4122 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4123 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4124 				 &els_sgl_list);
4125 		/* release extra els sgls from list */
4126 		for (i = 0; i < xri_cnt; i++) {
4127 			list_remove_head(&els_sgl_list,
4128 					 sglq_entry, struct lpfc_sglq, list);
4129 			if (sglq_entry) {
4130 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4131 						 sglq_entry->phys);
4132 				kfree(sglq_entry);
4133 			}
4134 		}
4135 		list_splice_init(&els_sgl_list,
4136 				 &phba->sli4_hba.lpfc_els_sgl_list);
4137 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4138 	} else
4139 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4140 				"3163 ELS xri-sgl count unchanged: %d\n",
4141 				els_xri_cnt);
4142 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4143 
4144 	/* update xris to els sgls on the list */
4145 	sglq_entry = NULL;
4146 	sglq_entry_next = NULL;
4147 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4148 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4149 		lxri = lpfc_sli4_next_xritag(phba);
4150 		if (lxri == NO_XRI) {
4151 			lpfc_printf_log(phba, KERN_ERR,
4152 					LOG_TRACE_EVENT,
4153 					"2400 Failed to allocate xri for "
4154 					"ELS sgl\n");
4155 			rc = -ENOMEM;
4156 			goto out_free_mem;
4157 		}
4158 		sglq_entry->sli4_lxritag = lxri;
4159 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4160 	}
4161 	return 0;
4162 
4163 out_free_mem:
4164 	lpfc_free_els_sgl_list(phba);
4165 	return rc;
4166 }
4167 
4168 /**
4169  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4170  * @phba: pointer to lpfc hba data structure.
4171  *
4172  * This routine first calculates the sizes of the current els and allocated
4173  * scsi sgl lists, and then goes through all sgls to updates the physical
4174  * XRIs assigned due to port function reset. During port initialization, the
4175  * current els and allocated scsi sgl lists are 0s.
4176  *
4177  * Return codes
4178  *   0 - successful (for now, it always returns 0)
4179  **/
4180 int
4181 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4182 {
4183 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4184 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4185 	uint16_t nvmet_xri_cnt;
4186 	LIST_HEAD(nvmet_sgl_list);
4187 	int rc;
4188 
4189 	/*
4190 	 * update on pci function's nvmet xri-sgl list
4191 	 */
4192 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4193 
4194 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4195 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4196 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4197 		/* els xri-sgl expanded */
4198 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4199 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4200 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4201 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4202 		/* allocate the additional nvmet sgls */
4203 		for (i = 0; i < xri_cnt; i++) {
4204 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4205 					     GFP_KERNEL);
4206 			if (sglq_entry == NULL) {
4207 				lpfc_printf_log(phba, KERN_ERR,
4208 						LOG_TRACE_EVENT,
4209 						"6303 Failure to allocate an "
4210 						"NVMET sgl entry:%d\n", i);
4211 				rc = -ENOMEM;
4212 				goto out_free_mem;
4213 			}
4214 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4215 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4216 							   &sglq_entry->phys);
4217 			if (sglq_entry->virt == NULL) {
4218 				kfree(sglq_entry);
4219 				lpfc_printf_log(phba, KERN_ERR,
4220 						LOG_TRACE_EVENT,
4221 						"6304 Failure to allocate an "
4222 						"NVMET buf:%d\n", i);
4223 				rc = -ENOMEM;
4224 				goto out_free_mem;
4225 			}
4226 			sglq_entry->sgl = sglq_entry->virt;
4227 			memset(sglq_entry->sgl, 0,
4228 			       phba->cfg_sg_dma_buf_size);
4229 			sglq_entry->state = SGL_FREED;
4230 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4231 		}
4232 		spin_lock_irq(&phba->hbalock);
4233 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4234 		list_splice_init(&nvmet_sgl_list,
4235 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4236 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4237 		spin_unlock_irq(&phba->hbalock);
4238 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4239 		/* nvmet xri-sgl shrunk */
4240 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4241 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4242 				"6305 NVMET xri-sgl count decreased from "
4243 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4244 				nvmet_xri_cnt);
4245 		spin_lock_irq(&phba->hbalock);
4246 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4247 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4248 				 &nvmet_sgl_list);
4249 		/* release extra nvmet sgls from list */
4250 		for (i = 0; i < xri_cnt; i++) {
4251 			list_remove_head(&nvmet_sgl_list,
4252 					 sglq_entry, struct lpfc_sglq, list);
4253 			if (sglq_entry) {
4254 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4255 						    sglq_entry->phys);
4256 				kfree(sglq_entry);
4257 			}
4258 		}
4259 		list_splice_init(&nvmet_sgl_list,
4260 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4261 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4262 		spin_unlock_irq(&phba->hbalock);
4263 	} else
4264 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4265 				"6306 NVMET xri-sgl count unchanged: %d\n",
4266 				nvmet_xri_cnt);
4267 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4268 
4269 	/* update xris to nvmet sgls on the list */
4270 	sglq_entry = NULL;
4271 	sglq_entry_next = NULL;
4272 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4273 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4274 		lxri = lpfc_sli4_next_xritag(phba);
4275 		if (lxri == NO_XRI) {
4276 			lpfc_printf_log(phba, KERN_ERR,
4277 					LOG_TRACE_EVENT,
4278 					"6307 Failed to allocate xri for "
4279 					"NVMET sgl\n");
4280 			rc = -ENOMEM;
4281 			goto out_free_mem;
4282 		}
4283 		sglq_entry->sli4_lxritag = lxri;
4284 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4285 	}
4286 	return 0;
4287 
4288 out_free_mem:
4289 	lpfc_free_nvmet_sgl_list(phba);
4290 	return rc;
4291 }
4292 
4293 int
4294 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4295 {
4296 	LIST_HEAD(blist);
4297 	struct lpfc_sli4_hdw_queue *qp;
4298 	struct lpfc_io_buf *lpfc_cmd;
4299 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4300 	int idx, cnt, xri, inserted;
4301 
4302 	cnt = 0;
4303 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4304 		qp = &phba->sli4_hba.hdwq[idx];
4305 		spin_lock_irq(&qp->io_buf_list_get_lock);
4306 		spin_lock(&qp->io_buf_list_put_lock);
4307 
4308 		/* Take everything off the get and put lists */
4309 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4310 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4311 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4312 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4313 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4314 		qp->get_io_bufs = 0;
4315 		qp->put_io_bufs = 0;
4316 		qp->total_io_bufs = 0;
4317 		spin_unlock(&qp->io_buf_list_put_lock);
4318 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4319 	}
4320 
4321 	/*
4322 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4323 	 * This is because POST_SGL takes a sequential range of XRIs
4324 	 * to post to the firmware.
4325 	 */
4326 	for (idx = 0; idx < cnt; idx++) {
4327 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4328 		if (!lpfc_cmd)
4329 			return cnt;
4330 		if (idx == 0) {
4331 			list_add_tail(&lpfc_cmd->list, cbuf);
4332 			continue;
4333 		}
4334 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4335 		inserted = 0;
4336 		prev_iobufp = NULL;
4337 		list_for_each_entry(iobufp, cbuf, list) {
4338 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4339 				if (prev_iobufp)
4340 					list_add(&lpfc_cmd->list,
4341 						 &prev_iobufp->list);
4342 				else
4343 					list_add(&lpfc_cmd->list, cbuf);
4344 				inserted = 1;
4345 				break;
4346 			}
4347 			prev_iobufp = iobufp;
4348 		}
4349 		if (!inserted)
4350 			list_add_tail(&lpfc_cmd->list, cbuf);
4351 	}
4352 	return cnt;
4353 }
4354 
4355 int
4356 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4357 {
4358 	struct lpfc_sli4_hdw_queue *qp;
4359 	struct lpfc_io_buf *lpfc_cmd;
4360 	int idx, cnt;
4361 
4362 	qp = phba->sli4_hba.hdwq;
4363 	cnt = 0;
4364 	while (!list_empty(cbuf)) {
4365 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4366 			list_remove_head(cbuf, lpfc_cmd,
4367 					 struct lpfc_io_buf, list);
4368 			if (!lpfc_cmd)
4369 				return cnt;
4370 			cnt++;
4371 			qp = &phba->sli4_hba.hdwq[idx];
4372 			lpfc_cmd->hdwq_no = idx;
4373 			lpfc_cmd->hdwq = qp;
4374 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4375 			spin_lock(&qp->io_buf_list_put_lock);
4376 			list_add_tail(&lpfc_cmd->list,
4377 				      &qp->lpfc_io_buf_list_put);
4378 			qp->put_io_bufs++;
4379 			qp->total_io_bufs++;
4380 			spin_unlock(&qp->io_buf_list_put_lock);
4381 		}
4382 	}
4383 	return cnt;
4384 }
4385 
4386 /**
4387  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4388  * @phba: pointer to lpfc hba data structure.
4389  *
4390  * This routine first calculates the sizes of the current els and allocated
4391  * scsi sgl lists, and then goes through all sgls to updates the physical
4392  * XRIs assigned due to port function reset. During port initialization, the
4393  * current els and allocated scsi sgl lists are 0s.
4394  *
4395  * Return codes
4396  *   0 - successful (for now, it always returns 0)
4397  **/
4398 int
4399 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4400 {
4401 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4402 	uint16_t i, lxri, els_xri_cnt;
4403 	uint16_t io_xri_cnt, io_xri_max;
4404 	LIST_HEAD(io_sgl_list);
4405 	int rc, cnt;
4406 
4407 	/*
4408 	 * update on pci function's allocated nvme xri-sgl list
4409 	 */
4410 
4411 	/* maximum number of xris available for nvme buffers */
4412 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4413 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4414 	phba->sli4_hba.io_xri_max = io_xri_max;
4415 
4416 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4417 			"6074 Current allocated XRI sgl count:%d, "
4418 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4419 			phba->sli4_hba.io_xri_cnt,
4420 			phba->sli4_hba.io_xri_max,
4421 			els_xri_cnt);
4422 
4423 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4424 
4425 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4426 		/* max nvme xri shrunk below the allocated nvme buffers */
4427 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4428 					phba->sli4_hba.io_xri_max;
4429 		/* release the extra allocated nvme buffers */
4430 		for (i = 0; i < io_xri_cnt; i++) {
4431 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4432 					 struct lpfc_io_buf, list);
4433 			if (lpfc_ncmd) {
4434 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4435 					      lpfc_ncmd->data,
4436 					      lpfc_ncmd->dma_handle);
4437 				kfree(lpfc_ncmd);
4438 			}
4439 		}
4440 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4441 	}
4442 
4443 	/* update xris associated to remaining allocated nvme buffers */
4444 	lpfc_ncmd = NULL;
4445 	lpfc_ncmd_next = NULL;
4446 	phba->sli4_hba.io_xri_cnt = cnt;
4447 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4448 				 &io_sgl_list, list) {
4449 		lxri = lpfc_sli4_next_xritag(phba);
4450 		if (lxri == NO_XRI) {
4451 			lpfc_printf_log(phba, KERN_ERR,
4452 					LOG_TRACE_EVENT,
4453 					"6075 Failed to allocate xri for "
4454 					"nvme buffer\n");
4455 			rc = -ENOMEM;
4456 			goto out_free_mem;
4457 		}
4458 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4459 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4460 	}
4461 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4462 	return 0;
4463 
4464 out_free_mem:
4465 	lpfc_io_free(phba);
4466 	return rc;
4467 }
4468 
4469 /**
4470  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4471  * @phba: Pointer to lpfc hba data structure.
4472  * @num_to_alloc: The requested number of buffers to allocate.
4473  *
4474  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4475  * the nvme buffer contains all the necessary information needed to initiate
4476  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4477  * them on a list, it post them to the port by using SGL block post.
4478  *
4479  * Return codes:
4480  *   int - number of IO buffers that were allocated and posted.
4481  *   0 = failure, less than num_to_alloc is a partial failure.
4482  **/
4483 int
4484 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4485 {
4486 	struct lpfc_io_buf *lpfc_ncmd;
4487 	struct lpfc_iocbq *pwqeq;
4488 	uint16_t iotag, lxri = 0;
4489 	int bcnt, num_posted;
4490 	LIST_HEAD(prep_nblist);
4491 	LIST_HEAD(post_nblist);
4492 	LIST_HEAD(nvme_nblist);
4493 
4494 	phba->sli4_hba.io_xri_cnt = 0;
4495 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4496 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4497 		if (!lpfc_ncmd)
4498 			break;
4499 		/*
4500 		 * Get memory from the pci pool to map the virt space to
4501 		 * pci bus space for an I/O. The DMA buffer includes the
4502 		 * number of SGE's necessary to support the sg_tablesize.
4503 		 */
4504 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4505 						  GFP_KERNEL,
4506 						  &lpfc_ncmd->dma_handle);
4507 		if (!lpfc_ncmd->data) {
4508 			kfree(lpfc_ncmd);
4509 			break;
4510 		}
4511 
4512 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4513 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4514 		} else {
4515 			/*
4516 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4517 			 * check to be sure.
4518 			 */
4519 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4520 			    (((unsigned long)(lpfc_ncmd->data) &
4521 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4522 				lpfc_printf_log(phba, KERN_ERR,
4523 						LOG_TRACE_EVENT,
4524 						"3369 Memory alignment err: "
4525 						"addr=%lx\n",
4526 						(unsigned long)lpfc_ncmd->data);
4527 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4528 					      lpfc_ncmd->data,
4529 					      lpfc_ncmd->dma_handle);
4530 				kfree(lpfc_ncmd);
4531 				break;
4532 			}
4533 		}
4534 
4535 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4536 
4537 		lxri = lpfc_sli4_next_xritag(phba);
4538 		if (lxri == NO_XRI) {
4539 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4540 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4541 			kfree(lpfc_ncmd);
4542 			break;
4543 		}
4544 		pwqeq = &lpfc_ncmd->cur_iocbq;
4545 
4546 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4547 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4548 		if (iotag == 0) {
4549 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4550 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4551 			kfree(lpfc_ncmd);
4552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4553 					"6121 Failed to allocate IOTAG for"
4554 					" XRI:0x%x\n", lxri);
4555 			lpfc_sli4_free_xri(phba, lxri);
4556 			break;
4557 		}
4558 		pwqeq->sli4_lxritag = lxri;
4559 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4560 
4561 		/* Initialize local short-hand pointers. */
4562 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4563 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4564 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4565 		spin_lock_init(&lpfc_ncmd->buf_lock);
4566 
4567 		/* add the nvme buffer to a post list */
4568 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4569 		phba->sli4_hba.io_xri_cnt++;
4570 	}
4571 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4572 			"6114 Allocate %d out of %d requested new NVME "
4573 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4574 			sizeof(*lpfc_ncmd));
4575 
4576 
4577 	/* post the list of nvme buffer sgls to port if available */
4578 	if (!list_empty(&post_nblist))
4579 		num_posted = lpfc_sli4_post_io_sgl_list(
4580 				phba, &post_nblist, bcnt);
4581 	else
4582 		num_posted = 0;
4583 
4584 	return num_posted;
4585 }
4586 
4587 static uint64_t
4588 lpfc_get_wwpn(struct lpfc_hba *phba)
4589 {
4590 	uint64_t wwn;
4591 	int rc;
4592 	LPFC_MBOXQ_t *mboxq;
4593 	MAILBOX_t *mb;
4594 
4595 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4596 						GFP_KERNEL);
4597 	if (!mboxq)
4598 		return (uint64_t)-1;
4599 
4600 	/* First get WWN of HBA instance */
4601 	lpfc_read_nv(phba, mboxq);
4602 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4603 	if (rc != MBX_SUCCESS) {
4604 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4605 				"6019 Mailbox failed , mbxCmd x%x "
4606 				"READ_NV, mbxStatus x%x\n",
4607 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4608 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4609 		mempool_free(mboxq, phba->mbox_mem_pool);
4610 		return (uint64_t) -1;
4611 	}
4612 	mb = &mboxq->u.mb;
4613 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4614 	/* wwn is WWPN of HBA instance */
4615 	mempool_free(mboxq, phba->mbox_mem_pool);
4616 	if (phba->sli_rev == LPFC_SLI_REV4)
4617 		return be64_to_cpu(wwn);
4618 	else
4619 		return rol64(wwn, 32);
4620 }
4621 
4622 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4623 {
4624 	if (phba->sli_rev == LPFC_SLI_REV4)
4625 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4626 			return LPFC_MAX_SG_TABLESIZE;
4627 		else
4628 			return phba->cfg_scsi_seg_cnt;
4629 	else
4630 		return phba->cfg_sg_seg_cnt;
4631 }
4632 
4633 /**
4634  * lpfc_vmid_res_alloc - Allocates resources for VMID
4635  * @phba: pointer to lpfc hba data structure.
4636  * @vport: pointer to vport data structure
4637  *
4638  * This routine allocated the resources needed for the VMID.
4639  *
4640  * Return codes
4641  *	0 on Success
4642  *	Non-0 on Failure
4643  */
4644 static int
4645 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4646 {
4647 	/* VMID feature is supported only on SLI4 */
4648 	if (phba->sli_rev == LPFC_SLI_REV3) {
4649 		phba->cfg_vmid_app_header = 0;
4650 		phba->cfg_vmid_priority_tagging = 0;
4651 	}
4652 
4653 	if (lpfc_is_vmid_enabled(phba)) {
4654 		vport->vmid =
4655 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4656 			    GFP_KERNEL);
4657 		if (!vport->vmid)
4658 			return -ENOMEM;
4659 
4660 		rwlock_init(&vport->vmid_lock);
4661 
4662 		/* Set the VMID parameters for the vport */
4663 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4664 		vport->vmid_inactivity_timeout =
4665 		    phba->cfg_vmid_inactivity_timeout;
4666 		vport->max_vmid = phba->cfg_max_vmid;
4667 		vport->cur_vmid_cnt = 0;
4668 
4669 		vport->vmid_priority_range = bitmap_zalloc
4670 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4671 
4672 		if (!vport->vmid_priority_range) {
4673 			kfree(vport->vmid);
4674 			return -ENOMEM;
4675 		}
4676 
4677 		hash_init(vport->hash_table);
4678 	}
4679 	return 0;
4680 }
4681 
4682 /**
4683  * lpfc_create_port - Create an FC port
4684  * @phba: pointer to lpfc hba data structure.
4685  * @instance: a unique integer ID to this FC port.
4686  * @dev: pointer to the device data structure.
4687  *
4688  * This routine creates a FC port for the upper layer protocol. The FC port
4689  * can be created on top of either a physical port or a virtual port provided
4690  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4691  * and associates the FC port created before adding the shost into the SCSI
4692  * layer.
4693  *
4694  * Return codes
4695  *   @vport - pointer to the virtual N_Port data structure.
4696  *   NULL - port create failed.
4697  **/
4698 struct lpfc_vport *
4699 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4700 {
4701 	struct lpfc_vport *vport;
4702 	struct Scsi_Host  *shost = NULL;
4703 	struct scsi_host_template *template;
4704 	int error = 0;
4705 	int i;
4706 	uint64_t wwn;
4707 	bool use_no_reset_hba = false;
4708 	int rc;
4709 
4710 	if (lpfc_no_hba_reset_cnt) {
4711 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4712 		    dev == &phba->pcidev->dev) {
4713 			/* Reset the port first */
4714 			lpfc_sli_brdrestart(phba);
4715 			rc = lpfc_sli_chipset_init(phba);
4716 			if (rc)
4717 				return NULL;
4718 		}
4719 		wwn = lpfc_get_wwpn(phba);
4720 	}
4721 
4722 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4723 		if (wwn == lpfc_no_hba_reset[i]) {
4724 			lpfc_printf_log(phba, KERN_ERR,
4725 					LOG_TRACE_EVENT,
4726 					"6020 Setting use_no_reset port=%llx\n",
4727 					wwn);
4728 			use_no_reset_hba = true;
4729 			break;
4730 		}
4731 	}
4732 
4733 	/* Seed template for SCSI host registration */
4734 	if (dev == &phba->pcidev->dev) {
4735 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4736 			/* Seed physical port template */
4737 			template = &lpfc_template;
4738 
4739 			if (use_no_reset_hba)
4740 				/* template is for a no reset SCSI Host */
4741 				template->eh_host_reset_handler = NULL;
4742 
4743 			/* Seed updated value of sg_tablesize */
4744 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4745 		} else {
4746 			/* NVMET is for physical port only */
4747 			template = &lpfc_template_nvme;
4748 		}
4749 	} else {
4750 		/* Seed vport template */
4751 		template = &lpfc_vport_template;
4752 
4753 		/* Seed updated value of sg_tablesize */
4754 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4755 	}
4756 
4757 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4758 	if (!shost)
4759 		goto out;
4760 
4761 	vport = (struct lpfc_vport *) shost->hostdata;
4762 	vport->phba = phba;
4763 	vport->load_flag |= FC_LOADING;
4764 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4765 	vport->fc_rscn_flush = 0;
4766 	lpfc_get_vport_cfgparam(vport);
4767 
4768 	/* Adjust value in vport */
4769 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4770 
4771 	shost->unique_id = instance;
4772 	shost->max_id = LPFC_MAX_TARGET;
4773 	shost->max_lun = vport->cfg_max_luns;
4774 	shost->this_id = -1;
4775 	shost->max_cmd_len = 16;
4776 
4777 	if (phba->sli_rev == LPFC_SLI_REV4) {
4778 		if (!phba->cfg_fcp_mq_threshold ||
4779 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4780 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4781 
4782 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4783 					    phba->cfg_fcp_mq_threshold);
4784 
4785 		shost->dma_boundary =
4786 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4787 	} else
4788 		/* SLI-3 has a limited number of hardware queues (3),
4789 		 * thus there is only one for FCP processing.
4790 		 */
4791 		shost->nr_hw_queues = 1;
4792 
4793 	/*
4794 	 * Set initial can_queue value since 0 is no longer supported and
4795 	 * scsi_add_host will fail. This will be adjusted later based on the
4796 	 * max xri value determined in hba setup.
4797 	 */
4798 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4799 	if (dev != &phba->pcidev->dev) {
4800 		shost->transportt = lpfc_vport_transport_template;
4801 		vport->port_type = LPFC_NPIV_PORT;
4802 	} else {
4803 		shost->transportt = lpfc_transport_template;
4804 		vport->port_type = LPFC_PHYSICAL_PORT;
4805 	}
4806 
4807 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4808 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4809 			"SEGcnt %d/%d\n",
4810 			vport->port_type, shost->sg_tablesize,
4811 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4812 
4813 	/* Allocate the resources for VMID */
4814 	rc = lpfc_vmid_res_alloc(phba, vport);
4815 
4816 	if (rc)
4817 		goto out_put_shost;
4818 
4819 	/* Initialize all internally managed lists. */
4820 	INIT_LIST_HEAD(&vport->fc_nodes);
4821 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4822 	spin_lock_init(&vport->work_port_lock);
4823 
4824 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4825 
4826 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4827 
4828 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4829 
4830 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4831 		lpfc_setup_bg(phba, shost);
4832 
4833 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4834 	if (error)
4835 		goto out_free_vmid;
4836 
4837 	spin_lock_irq(&phba->port_list_lock);
4838 	list_add_tail(&vport->listentry, &phba->port_list);
4839 	spin_unlock_irq(&phba->port_list_lock);
4840 	return vport;
4841 
4842 out_free_vmid:
4843 	kfree(vport->vmid);
4844 	bitmap_free(vport->vmid_priority_range);
4845 out_put_shost:
4846 	scsi_host_put(shost);
4847 out:
4848 	return NULL;
4849 }
4850 
4851 /**
4852  * destroy_port -  destroy an FC port
4853  * @vport: pointer to an lpfc virtual N_Port data structure.
4854  *
4855  * This routine destroys a FC port from the upper layer protocol. All the
4856  * resources associated with the port are released.
4857  **/
4858 void
4859 destroy_port(struct lpfc_vport *vport)
4860 {
4861 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4862 	struct lpfc_hba  *phba = vport->phba;
4863 
4864 	lpfc_debugfs_terminate(vport);
4865 	fc_remove_host(shost);
4866 	scsi_remove_host(shost);
4867 
4868 	spin_lock_irq(&phba->port_list_lock);
4869 	list_del_init(&vport->listentry);
4870 	spin_unlock_irq(&phba->port_list_lock);
4871 
4872 	lpfc_cleanup(vport);
4873 	return;
4874 }
4875 
4876 /**
4877  * lpfc_get_instance - Get a unique integer ID
4878  *
4879  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4880  * uses the kernel idr facility to perform the task.
4881  *
4882  * Return codes:
4883  *   instance - a unique integer ID allocated as the new instance.
4884  *   -1 - lpfc get instance failed.
4885  **/
4886 int
4887 lpfc_get_instance(void)
4888 {
4889 	int ret;
4890 
4891 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4892 	return ret < 0 ? -1 : ret;
4893 }
4894 
4895 /**
4896  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4897  * @shost: pointer to SCSI host data structure.
4898  * @time: elapsed time of the scan in jiffies.
4899  *
4900  * This routine is called by the SCSI layer with a SCSI host to determine
4901  * whether the scan host is finished.
4902  *
4903  * Note: there is no scan_start function as adapter initialization will have
4904  * asynchronously kicked off the link initialization.
4905  *
4906  * Return codes
4907  *   0 - SCSI host scan is not over yet.
4908  *   1 - SCSI host scan is over.
4909  **/
4910 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4911 {
4912 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4913 	struct lpfc_hba   *phba = vport->phba;
4914 	int stat = 0;
4915 
4916 	spin_lock_irq(shost->host_lock);
4917 
4918 	if (vport->load_flag & FC_UNLOADING) {
4919 		stat = 1;
4920 		goto finished;
4921 	}
4922 	if (time >= msecs_to_jiffies(30 * 1000)) {
4923 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4924 				"0461 Scanning longer than 30 "
4925 				"seconds.  Continuing initialization\n");
4926 		stat = 1;
4927 		goto finished;
4928 	}
4929 	if (time >= msecs_to_jiffies(15 * 1000) &&
4930 	    phba->link_state <= LPFC_LINK_DOWN) {
4931 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4932 				"0465 Link down longer than 15 "
4933 				"seconds.  Continuing initialization\n");
4934 		stat = 1;
4935 		goto finished;
4936 	}
4937 
4938 	if (vport->port_state != LPFC_VPORT_READY)
4939 		goto finished;
4940 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4941 		goto finished;
4942 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4943 		goto finished;
4944 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4945 		goto finished;
4946 
4947 	stat = 1;
4948 
4949 finished:
4950 	spin_unlock_irq(shost->host_lock);
4951 	return stat;
4952 }
4953 
4954 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4955 {
4956 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4957 	struct lpfc_hba   *phba = vport->phba;
4958 
4959 	fc_host_supported_speeds(shost) = 0;
4960 	/*
4961 	 * Avoid reporting supported link speed for FCoE as it can't be
4962 	 * controlled via FCoE.
4963 	 */
4964 	if (phba->hba_flag & HBA_FCOE_MODE)
4965 		return;
4966 
4967 	if (phba->lmt & LMT_256Gb)
4968 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4969 	if (phba->lmt & LMT_128Gb)
4970 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4971 	if (phba->lmt & LMT_64Gb)
4972 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4973 	if (phba->lmt & LMT_32Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4975 	if (phba->lmt & LMT_16Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4977 	if (phba->lmt & LMT_10Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4979 	if (phba->lmt & LMT_8Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4981 	if (phba->lmt & LMT_4Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4983 	if (phba->lmt & LMT_2Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4985 	if (phba->lmt & LMT_1Gb)
4986 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4987 }
4988 
4989 /**
4990  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4991  * @shost: pointer to SCSI host data structure.
4992  *
4993  * This routine initializes a given SCSI host attributes on a FC port. The
4994  * SCSI host can be either on top of a physical port or a virtual port.
4995  **/
4996 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4997 {
4998 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4999 	struct lpfc_hba   *phba = vport->phba;
5000 	/*
5001 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5002 	 */
5003 
5004 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5005 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5006 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5007 
5008 	memset(fc_host_supported_fc4s(shost), 0,
5009 	       sizeof(fc_host_supported_fc4s(shost)));
5010 	fc_host_supported_fc4s(shost)[2] = 1;
5011 	fc_host_supported_fc4s(shost)[7] = 1;
5012 
5013 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5014 				 sizeof fc_host_symbolic_name(shost));
5015 
5016 	lpfc_host_supported_speeds_set(shost);
5017 
5018 	fc_host_maxframe_size(shost) =
5019 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5020 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5021 
5022 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5023 
5024 	/* This value is also unchanging */
5025 	memset(fc_host_active_fc4s(shost), 0,
5026 	       sizeof(fc_host_active_fc4s(shost)));
5027 	fc_host_active_fc4s(shost)[2] = 1;
5028 	fc_host_active_fc4s(shost)[7] = 1;
5029 
5030 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5031 	spin_lock_irq(shost->host_lock);
5032 	vport->load_flag &= ~FC_LOADING;
5033 	spin_unlock_irq(shost->host_lock);
5034 }
5035 
5036 /**
5037  * lpfc_stop_port_s3 - Stop SLI3 device port
5038  * @phba: pointer to lpfc hba data structure.
5039  *
5040  * This routine is invoked to stop an SLI3 device port, it stops the device
5041  * from generating interrupts and stops the device driver's timers for the
5042  * device.
5043  **/
5044 static void
5045 lpfc_stop_port_s3(struct lpfc_hba *phba)
5046 {
5047 	/* Clear all interrupt enable conditions */
5048 	writel(0, phba->HCregaddr);
5049 	readl(phba->HCregaddr); /* flush */
5050 	/* Clear all pending interrupts */
5051 	writel(0xffffffff, phba->HAregaddr);
5052 	readl(phba->HAregaddr); /* flush */
5053 
5054 	/* Reset some HBA SLI setup states */
5055 	lpfc_stop_hba_timers(phba);
5056 	phba->pport->work_port_events = 0;
5057 }
5058 
5059 /**
5060  * lpfc_stop_port_s4 - Stop SLI4 device port
5061  * @phba: pointer to lpfc hba data structure.
5062  *
5063  * This routine is invoked to stop an SLI4 device port, it stops the device
5064  * from generating interrupts and stops the device driver's timers for the
5065  * device.
5066  **/
5067 static void
5068 lpfc_stop_port_s4(struct lpfc_hba *phba)
5069 {
5070 	/* Reset some HBA SLI4 setup states */
5071 	lpfc_stop_hba_timers(phba);
5072 	if (phba->pport)
5073 		phba->pport->work_port_events = 0;
5074 	phba->sli4_hba.intr_enable = 0;
5075 }
5076 
5077 /**
5078  * lpfc_stop_port - Wrapper function for stopping hba port
5079  * @phba: Pointer to HBA context object.
5080  *
5081  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5082  * the API jump table function pointer from the lpfc_hba struct.
5083  **/
5084 void
5085 lpfc_stop_port(struct lpfc_hba *phba)
5086 {
5087 	phba->lpfc_stop_port(phba);
5088 
5089 	if (phba->wq)
5090 		flush_workqueue(phba->wq);
5091 }
5092 
5093 /**
5094  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5095  * @phba: Pointer to hba for which this call is being executed.
5096  *
5097  * This routine starts the timer waiting for the FCF rediscovery to complete.
5098  **/
5099 void
5100 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5101 {
5102 	unsigned long fcf_redisc_wait_tmo =
5103 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5104 	/* Start fcf rediscovery wait period timer */
5105 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5106 	spin_lock_irq(&phba->hbalock);
5107 	/* Allow action to new fcf asynchronous event */
5108 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5109 	/* Mark the FCF rediscovery pending state */
5110 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5111 	spin_unlock_irq(&phba->hbalock);
5112 }
5113 
5114 /**
5115  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5116  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5117  *
5118  * This routine is invoked when waiting for FCF table rediscover has been
5119  * timed out. If new FCF record(s) has (have) been discovered during the
5120  * wait period, a new FCF event shall be added to the FCOE async event
5121  * list, and then worker thread shall be waked up for processing from the
5122  * worker thread context.
5123  **/
5124 static void
5125 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5126 {
5127 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5128 
5129 	/* Don't send FCF rediscovery event if timer cancelled */
5130 	spin_lock_irq(&phba->hbalock);
5131 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5132 		spin_unlock_irq(&phba->hbalock);
5133 		return;
5134 	}
5135 	/* Clear FCF rediscovery timer pending flag */
5136 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5137 	/* FCF rediscovery event to worker thread */
5138 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5139 	spin_unlock_irq(&phba->hbalock);
5140 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5141 			"2776 FCF rediscover quiescent timer expired\n");
5142 	/* wake up worker thread */
5143 	lpfc_worker_wake_up(phba);
5144 }
5145 
5146 /**
5147  * lpfc_vmid_poll - VMID timeout detection
5148  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5149  *
5150  * This routine is invoked when there is no I/O on by a VM for the specified
5151  * amount of time. When this situation is detected, the VMID has to be
5152  * deregistered from the switch and all the local resources freed. The VMID
5153  * will be reassigned to the VM once the I/O begins.
5154  **/
5155 static void
5156 lpfc_vmid_poll(struct timer_list *t)
5157 {
5158 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5159 	u32 wake_up = 0;
5160 
5161 	/* check if there is a need to issue QFPA */
5162 	if (phba->pport->vmid_priority_tagging) {
5163 		wake_up = 1;
5164 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5165 	}
5166 
5167 	/* Is the vmid inactivity timer enabled */
5168 	if (phba->pport->vmid_inactivity_timeout ||
5169 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5170 		wake_up = 1;
5171 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5172 	}
5173 
5174 	if (wake_up)
5175 		lpfc_worker_wake_up(phba);
5176 
5177 	/* restart the timer for the next iteration */
5178 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5179 							LPFC_VMID_TIMER));
5180 }
5181 
5182 /**
5183  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5184  * @phba: pointer to lpfc hba data structure.
5185  * @acqe_link: pointer to the async link completion queue entry.
5186  *
5187  * This routine is to parse the SLI4 link-attention link fault code.
5188  **/
5189 static void
5190 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5191 			   struct lpfc_acqe_link *acqe_link)
5192 {
5193 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5194 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5195 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5196 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5197 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5198 		break;
5199 	default:
5200 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5201 		case LPFC_ASYNC_LINK_FAULT_NONE:
5202 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5203 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5204 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5205 			break;
5206 		default:
5207 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5208 					"0398 Unknown link fault code: x%x\n",
5209 					bf_get(lpfc_acqe_link_fault, acqe_link));
5210 			break;
5211 		}
5212 		break;
5213 	}
5214 }
5215 
5216 /**
5217  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5218  * @phba: pointer to lpfc hba data structure.
5219  * @acqe_link: pointer to the async link completion queue entry.
5220  *
5221  * This routine is to parse the SLI4 link attention type and translate it
5222  * into the base driver's link attention type coding.
5223  *
5224  * Return: Link attention type in terms of base driver's coding.
5225  **/
5226 static uint8_t
5227 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5228 			  struct lpfc_acqe_link *acqe_link)
5229 {
5230 	uint8_t att_type;
5231 
5232 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5233 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5234 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5235 		att_type = LPFC_ATT_LINK_DOWN;
5236 		break;
5237 	case LPFC_ASYNC_LINK_STATUS_UP:
5238 		/* Ignore physical link up events - wait for logical link up */
5239 		att_type = LPFC_ATT_RESERVED;
5240 		break;
5241 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5242 		att_type = LPFC_ATT_LINK_UP;
5243 		break;
5244 	default:
5245 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5246 				"0399 Invalid link attention type: x%x\n",
5247 				bf_get(lpfc_acqe_link_status, acqe_link));
5248 		att_type = LPFC_ATT_RESERVED;
5249 		break;
5250 	}
5251 	return att_type;
5252 }
5253 
5254 /**
5255  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5256  * @phba: pointer to lpfc hba data structure.
5257  *
5258  * This routine is to get an SLI3 FC port's link speed in Mbps.
5259  *
5260  * Return: link speed in terms of Mbps.
5261  **/
5262 uint32_t
5263 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5264 {
5265 	uint32_t link_speed;
5266 
5267 	if (!lpfc_is_link_up(phba))
5268 		return 0;
5269 
5270 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5271 		switch (phba->fc_linkspeed) {
5272 		case LPFC_LINK_SPEED_1GHZ:
5273 			link_speed = 1000;
5274 			break;
5275 		case LPFC_LINK_SPEED_2GHZ:
5276 			link_speed = 2000;
5277 			break;
5278 		case LPFC_LINK_SPEED_4GHZ:
5279 			link_speed = 4000;
5280 			break;
5281 		case LPFC_LINK_SPEED_8GHZ:
5282 			link_speed = 8000;
5283 			break;
5284 		case LPFC_LINK_SPEED_10GHZ:
5285 			link_speed = 10000;
5286 			break;
5287 		case LPFC_LINK_SPEED_16GHZ:
5288 			link_speed = 16000;
5289 			break;
5290 		default:
5291 			link_speed = 0;
5292 		}
5293 	} else {
5294 		if (phba->sli4_hba.link_state.logical_speed)
5295 			link_speed =
5296 			      phba->sli4_hba.link_state.logical_speed;
5297 		else
5298 			link_speed = phba->sli4_hba.link_state.speed;
5299 	}
5300 	return link_speed;
5301 }
5302 
5303 /**
5304  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5305  * @phba: pointer to lpfc hba data structure.
5306  * @evt_code: asynchronous event code.
5307  * @speed_code: asynchronous event link speed code.
5308  *
5309  * This routine is to parse the giving SLI4 async event link speed code into
5310  * value of Mbps for the link speed.
5311  *
5312  * Return: link speed in terms of Mbps.
5313  **/
5314 static uint32_t
5315 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5316 			   uint8_t speed_code)
5317 {
5318 	uint32_t port_speed;
5319 
5320 	switch (evt_code) {
5321 	case LPFC_TRAILER_CODE_LINK:
5322 		switch (speed_code) {
5323 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5324 			port_speed = 0;
5325 			break;
5326 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5327 			port_speed = 10;
5328 			break;
5329 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5330 			port_speed = 100;
5331 			break;
5332 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5333 			port_speed = 1000;
5334 			break;
5335 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5336 			port_speed = 10000;
5337 			break;
5338 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5339 			port_speed = 20000;
5340 			break;
5341 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5342 			port_speed = 25000;
5343 			break;
5344 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5345 			port_speed = 40000;
5346 			break;
5347 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5348 			port_speed = 100000;
5349 			break;
5350 		default:
5351 			port_speed = 0;
5352 		}
5353 		break;
5354 	case LPFC_TRAILER_CODE_FC:
5355 		switch (speed_code) {
5356 		case LPFC_FC_LA_SPEED_UNKNOWN:
5357 			port_speed = 0;
5358 			break;
5359 		case LPFC_FC_LA_SPEED_1G:
5360 			port_speed = 1000;
5361 			break;
5362 		case LPFC_FC_LA_SPEED_2G:
5363 			port_speed = 2000;
5364 			break;
5365 		case LPFC_FC_LA_SPEED_4G:
5366 			port_speed = 4000;
5367 			break;
5368 		case LPFC_FC_LA_SPEED_8G:
5369 			port_speed = 8000;
5370 			break;
5371 		case LPFC_FC_LA_SPEED_10G:
5372 			port_speed = 10000;
5373 			break;
5374 		case LPFC_FC_LA_SPEED_16G:
5375 			port_speed = 16000;
5376 			break;
5377 		case LPFC_FC_LA_SPEED_32G:
5378 			port_speed = 32000;
5379 			break;
5380 		case LPFC_FC_LA_SPEED_64G:
5381 			port_speed = 64000;
5382 			break;
5383 		case LPFC_FC_LA_SPEED_128G:
5384 			port_speed = 128000;
5385 			break;
5386 		case LPFC_FC_LA_SPEED_256G:
5387 			port_speed = 256000;
5388 			break;
5389 		default:
5390 			port_speed = 0;
5391 		}
5392 		break;
5393 	default:
5394 		port_speed = 0;
5395 	}
5396 	return port_speed;
5397 }
5398 
5399 /**
5400  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5401  * @phba: pointer to lpfc hba data structure.
5402  * @acqe_link: pointer to the async link completion queue entry.
5403  *
5404  * This routine is to handle the SLI4 asynchronous FCoE link event.
5405  **/
5406 static void
5407 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5408 			 struct lpfc_acqe_link *acqe_link)
5409 {
5410 	LPFC_MBOXQ_t *pmb;
5411 	MAILBOX_t *mb;
5412 	struct lpfc_mbx_read_top *la;
5413 	uint8_t att_type;
5414 	int rc;
5415 
5416 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5417 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5418 		return;
5419 	phba->fcoe_eventtag = acqe_link->event_tag;
5420 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5421 	if (!pmb) {
5422 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5423 				"0395 The mboxq allocation failed\n");
5424 		return;
5425 	}
5426 
5427 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5428 	if (rc) {
5429 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5430 				"0396 mailbox allocation failed\n");
5431 		goto out_free_pmb;
5432 	}
5433 
5434 	/* Cleanup any outstanding ELS commands */
5435 	lpfc_els_flush_all_cmd(phba);
5436 
5437 	/* Block ELS IOCBs until we have done process link event */
5438 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5439 
5440 	/* Update link event statistics */
5441 	phba->sli.slistat.link_event++;
5442 
5443 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5444 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5445 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5446 	pmb->vport = phba->pport;
5447 
5448 	/* Keep the link status for extra SLI4 state machine reference */
5449 	phba->sli4_hba.link_state.speed =
5450 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5451 				bf_get(lpfc_acqe_link_speed, acqe_link));
5452 	phba->sli4_hba.link_state.duplex =
5453 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5454 	phba->sli4_hba.link_state.status =
5455 				bf_get(lpfc_acqe_link_status, acqe_link);
5456 	phba->sli4_hba.link_state.type =
5457 				bf_get(lpfc_acqe_link_type, acqe_link);
5458 	phba->sli4_hba.link_state.number =
5459 				bf_get(lpfc_acqe_link_number, acqe_link);
5460 	phba->sli4_hba.link_state.fault =
5461 				bf_get(lpfc_acqe_link_fault, acqe_link);
5462 	phba->sli4_hba.link_state.logical_speed =
5463 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5464 
5465 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5466 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5467 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5468 			"Logical speed:%dMbps Fault:%d\n",
5469 			phba->sli4_hba.link_state.speed,
5470 			phba->sli4_hba.link_state.topology,
5471 			phba->sli4_hba.link_state.status,
5472 			phba->sli4_hba.link_state.type,
5473 			phba->sli4_hba.link_state.number,
5474 			phba->sli4_hba.link_state.logical_speed,
5475 			phba->sli4_hba.link_state.fault);
5476 	/*
5477 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5478 	 * topology info. Note: Optional for non FC-AL ports.
5479 	 */
5480 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5481 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5482 		if (rc == MBX_NOT_FINISHED)
5483 			goto out_free_pmb;
5484 		return;
5485 	}
5486 	/*
5487 	 * For FCoE Mode: fill in all the topology information we need and call
5488 	 * the READ_TOPOLOGY completion routine to continue without actually
5489 	 * sending the READ_TOPOLOGY mailbox command to the port.
5490 	 */
5491 	/* Initialize completion status */
5492 	mb = &pmb->u.mb;
5493 	mb->mbxStatus = MBX_SUCCESS;
5494 
5495 	/* Parse port fault information field */
5496 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5497 
5498 	/* Parse and translate link attention fields */
5499 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5500 	la->eventTag = acqe_link->event_tag;
5501 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5502 	bf_set(lpfc_mbx_read_top_link_spd, la,
5503 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5504 
5505 	/* Fake the following irrelevant fields */
5506 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5507 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5508 	bf_set(lpfc_mbx_read_top_il, la, 0);
5509 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5510 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5511 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5512 
5513 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5514 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5515 
5516 	return;
5517 
5518 out_free_pmb:
5519 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5520 }
5521 
5522 /**
5523  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5524  * topology.
5525  * @phba: pointer to lpfc hba data structure.
5526  * @speed_code: asynchronous event link speed code.
5527  *
5528  * This routine is to parse the giving SLI4 async event link speed code into
5529  * value of Read topology link speed.
5530  *
5531  * Return: link speed in terms of Read topology.
5532  **/
5533 static uint8_t
5534 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5535 {
5536 	uint8_t port_speed;
5537 
5538 	switch (speed_code) {
5539 	case LPFC_FC_LA_SPEED_1G:
5540 		port_speed = LPFC_LINK_SPEED_1GHZ;
5541 		break;
5542 	case LPFC_FC_LA_SPEED_2G:
5543 		port_speed = LPFC_LINK_SPEED_2GHZ;
5544 		break;
5545 	case LPFC_FC_LA_SPEED_4G:
5546 		port_speed = LPFC_LINK_SPEED_4GHZ;
5547 		break;
5548 	case LPFC_FC_LA_SPEED_8G:
5549 		port_speed = LPFC_LINK_SPEED_8GHZ;
5550 		break;
5551 	case LPFC_FC_LA_SPEED_16G:
5552 		port_speed = LPFC_LINK_SPEED_16GHZ;
5553 		break;
5554 	case LPFC_FC_LA_SPEED_32G:
5555 		port_speed = LPFC_LINK_SPEED_32GHZ;
5556 		break;
5557 	case LPFC_FC_LA_SPEED_64G:
5558 		port_speed = LPFC_LINK_SPEED_64GHZ;
5559 		break;
5560 	case LPFC_FC_LA_SPEED_128G:
5561 		port_speed = LPFC_LINK_SPEED_128GHZ;
5562 		break;
5563 	case LPFC_FC_LA_SPEED_256G:
5564 		port_speed = LPFC_LINK_SPEED_256GHZ;
5565 		break;
5566 	default:
5567 		port_speed = 0;
5568 		break;
5569 	}
5570 
5571 	return port_speed;
5572 }
5573 
5574 void
5575 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5576 {
5577 	if (!phba->rx_monitor) {
5578 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5579 				"4411 Rx Monitor Info is empty.\n");
5580 	} else {
5581 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5582 				       LPFC_MAX_RXMONITOR_DUMP);
5583 	}
5584 }
5585 
5586 /**
5587  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5588  * @phba: pointer to lpfc hba data structure.
5589  * @dtag: FPIN descriptor received
5590  *
5591  * Increment the FPIN received counter/time when it happens.
5592  */
5593 void
5594 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5595 {
5596 	struct lpfc_cgn_info *cp;
5597 	struct tm broken;
5598 	struct timespec64 cur_time;
5599 	u32 cnt;
5600 	u32 value;
5601 
5602 	/* Make sure we have a congestion info buffer */
5603 	if (!phba->cgn_i)
5604 		return;
5605 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5606 	ktime_get_real_ts64(&cur_time);
5607 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5608 
5609 	/* Update congestion statistics */
5610 	switch (dtag) {
5611 	case ELS_DTAG_LNK_INTEGRITY:
5612 		cnt = le32_to_cpu(cp->link_integ_notification);
5613 		cnt++;
5614 		cp->link_integ_notification = cpu_to_le32(cnt);
5615 
5616 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5617 		cp->cgn_stat_lnk_day = broken.tm_mday;
5618 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5619 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5620 		cp->cgn_stat_lnk_min = broken.tm_min;
5621 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5622 		break;
5623 	case ELS_DTAG_DELIVERY:
5624 		cnt = le32_to_cpu(cp->delivery_notification);
5625 		cnt++;
5626 		cp->delivery_notification = cpu_to_le32(cnt);
5627 
5628 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5629 		cp->cgn_stat_del_day = broken.tm_mday;
5630 		cp->cgn_stat_del_year = broken.tm_year - 100;
5631 		cp->cgn_stat_del_hour = broken.tm_hour;
5632 		cp->cgn_stat_del_min = broken.tm_min;
5633 		cp->cgn_stat_del_sec = broken.tm_sec;
5634 		break;
5635 	case ELS_DTAG_PEER_CONGEST:
5636 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5637 		cnt++;
5638 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5639 
5640 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5641 		cp->cgn_stat_peer_day = broken.tm_mday;
5642 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5643 		cp->cgn_stat_peer_hour = broken.tm_hour;
5644 		cp->cgn_stat_peer_min = broken.tm_min;
5645 		cp->cgn_stat_peer_sec = broken.tm_sec;
5646 		break;
5647 	case ELS_DTAG_CONGESTION:
5648 		cnt = le32_to_cpu(cp->cgn_notification);
5649 		cnt++;
5650 		cp->cgn_notification = cpu_to_le32(cnt);
5651 
5652 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5653 		cp->cgn_stat_cgn_day = broken.tm_mday;
5654 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5655 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5656 		cp->cgn_stat_cgn_min = broken.tm_min;
5657 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5658 	}
5659 	if (phba->cgn_fpin_frequency &&
5660 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5661 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5662 		cp->cgn_stat_npm = value;
5663 	}
5664 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5665 				    LPFC_CGN_CRC32_SEED);
5666 	cp->cgn_info_crc = cpu_to_le32(value);
5667 }
5668 
5669 /**
5670  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5671  * @phba: pointer to lpfc hba data structure.
5672  *
5673  * Save the congestion event data every minute.
5674  * On the hour collapse all the minute data into hour data. Every day
5675  * collapse all the hour data into daily data. Separate driver
5676  * and fabrc congestion event counters that will be saved out
5677  * to the registered congestion buffer every minute.
5678  */
5679 static void
5680 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5681 {
5682 	struct lpfc_cgn_info *cp;
5683 	struct tm broken;
5684 	struct timespec64 cur_time;
5685 	uint32_t i, index;
5686 	uint16_t value, mvalue;
5687 	uint64_t bps;
5688 	uint32_t mbps;
5689 	uint32_t dvalue, wvalue, lvalue, avalue;
5690 	uint64_t latsum;
5691 	__le16 *ptr;
5692 	__le32 *lptr;
5693 	__le16 *mptr;
5694 
5695 	/* Make sure we have a congestion info buffer */
5696 	if (!phba->cgn_i)
5697 		return;
5698 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5699 
5700 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5701 		return;
5702 	phba->cgn_evt_timestamp = jiffies +
5703 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5704 	phba->cgn_evt_minute++;
5705 
5706 	/* We should get to this point in the routine on 1 minute intervals */
5707 
5708 	ktime_get_real_ts64(&cur_time);
5709 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5710 
5711 	if (phba->cgn_fpin_frequency &&
5712 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5713 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5714 		cp->cgn_stat_npm = value;
5715 	}
5716 
5717 	/* Read and clear the latency counters for this minute */
5718 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5719 	latsum = atomic64_read(&phba->cgn_latency_evt);
5720 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5721 	atomic64_set(&phba->cgn_latency_evt, 0);
5722 
5723 	/* We need to store MB/sec bandwidth in the congestion information.
5724 	 * block_cnt is count of 512 byte blocks for the entire minute,
5725 	 * bps will get bytes per sec before finally converting to MB/sec.
5726 	 */
5727 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5728 	phba->rx_block_cnt = 0;
5729 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5730 
5731 	/* Every minute */
5732 	/* cgn parameters */
5733 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5734 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5735 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5736 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5737 
5738 	/* Fill in default LUN qdepth */
5739 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5740 	cp->cgn_lunq = cpu_to_le16(value);
5741 
5742 	/* Record congestion buffer info - every minute
5743 	 * cgn_driver_evt_cnt (Driver events)
5744 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5745 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5746 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5747 	 */
5748 	index = ++cp->cgn_index_minute;
5749 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5750 		cp->cgn_index_minute = 0;
5751 		index = 0;
5752 	}
5753 
5754 	/* Get the number of driver events in this sample and reset counter */
5755 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5756 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5757 
5758 	/* Get the number of warning events - FPIN and Signal for this minute */
5759 	wvalue = 0;
5760 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5761 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5762 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5763 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5764 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5765 
5766 	/* Get the number of alarm events - FPIN and Signal for this minute */
5767 	avalue = 0;
5768 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5769 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5770 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5771 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5772 
5773 	/* Collect the driver, warning, alarm and latency counts for this
5774 	 * minute into the driver congestion buffer.
5775 	 */
5776 	ptr = &cp->cgn_drvr_min[index];
5777 	value = (uint16_t)dvalue;
5778 	*ptr = cpu_to_le16(value);
5779 
5780 	ptr = &cp->cgn_warn_min[index];
5781 	value = (uint16_t)wvalue;
5782 	*ptr = cpu_to_le16(value);
5783 
5784 	ptr = &cp->cgn_alarm_min[index];
5785 	value = (uint16_t)avalue;
5786 	*ptr = cpu_to_le16(value);
5787 
5788 	lptr = &cp->cgn_latency_min[index];
5789 	if (lvalue) {
5790 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5791 		*lptr = cpu_to_le32(lvalue);
5792 	} else {
5793 		*lptr = 0;
5794 	}
5795 
5796 	/* Collect the bandwidth value into the driver's congesion buffer. */
5797 	mptr = &cp->cgn_bw_min[index];
5798 	*mptr = cpu_to_le16(mvalue);
5799 
5800 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5801 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5802 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5803 
5804 	/* Every hour */
5805 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5806 		/* Record congestion buffer info - every hour
5807 		 * Collapse all minutes into an hour
5808 		 */
5809 		index = ++cp->cgn_index_hour;
5810 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5811 			cp->cgn_index_hour = 0;
5812 			index = 0;
5813 		}
5814 
5815 		dvalue = 0;
5816 		wvalue = 0;
5817 		lvalue = 0;
5818 		avalue = 0;
5819 		mvalue = 0;
5820 		mbps = 0;
5821 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5822 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5823 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5824 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5825 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5826 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5827 		}
5828 		if (lvalue)		/* Avg of latency averages */
5829 			lvalue /= LPFC_MIN_HOUR;
5830 		if (mbps)		/* Avg of Bandwidth averages */
5831 			mvalue = mbps / LPFC_MIN_HOUR;
5832 
5833 		lptr = &cp->cgn_drvr_hr[index];
5834 		*lptr = cpu_to_le32(dvalue);
5835 		lptr = &cp->cgn_warn_hr[index];
5836 		*lptr = cpu_to_le32(wvalue);
5837 		lptr = &cp->cgn_latency_hr[index];
5838 		*lptr = cpu_to_le32(lvalue);
5839 		mptr = &cp->cgn_bw_hr[index];
5840 		*mptr = cpu_to_le16(mvalue);
5841 		lptr = &cp->cgn_alarm_hr[index];
5842 		*lptr = cpu_to_le32(avalue);
5843 
5844 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5845 				"2419 Congestion Info - hour "
5846 				"(%d): %d %d %d %d %d\n",
5847 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5848 	}
5849 
5850 	/* Every day */
5851 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5852 		/* Record congestion buffer info - every hour
5853 		 * Collapse all hours into a day. Rotate days
5854 		 * after LPFC_MAX_CGN_DAYS.
5855 		 */
5856 		index = ++cp->cgn_index_day;
5857 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5858 			cp->cgn_index_day = 0;
5859 			index = 0;
5860 		}
5861 
5862 		/* Anytime we overwrite daily index 0, after we wrap,
5863 		 * we will be overwriting the oldest day, so we must
5864 		 * update the congestion data start time for that day.
5865 		 * That start time should have previously been saved after
5866 		 * we wrote the last days worth of data.
5867 		 */
5868 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5869 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5870 
5871 			cp->cgn_info_month = broken.tm_mon + 1;
5872 			cp->cgn_info_day = broken.tm_mday;
5873 			cp->cgn_info_year = broken.tm_year - 100;
5874 			cp->cgn_info_hour = broken.tm_hour;
5875 			cp->cgn_info_minute = broken.tm_min;
5876 			cp->cgn_info_second = broken.tm_sec;
5877 
5878 			lpfc_printf_log
5879 				(phba, KERN_INFO, LOG_CGN_MGMT,
5880 				"2646 CGNInfo idx0 Start Time: "
5881 				"%d/%d/%d %d:%d:%d\n",
5882 				cp->cgn_info_day, cp->cgn_info_month,
5883 				cp->cgn_info_year, cp->cgn_info_hour,
5884 				cp->cgn_info_minute, cp->cgn_info_second);
5885 		}
5886 
5887 		dvalue = 0;
5888 		wvalue = 0;
5889 		lvalue = 0;
5890 		mvalue = 0;
5891 		mbps = 0;
5892 		avalue = 0;
5893 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5894 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5895 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5896 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5897 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5898 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5899 		}
5900 		if (lvalue)		/* Avg of latency averages */
5901 			lvalue /= LPFC_HOUR_DAY;
5902 		if (mbps)		/* Avg of Bandwidth averages */
5903 			mvalue = mbps / LPFC_HOUR_DAY;
5904 
5905 		lptr = &cp->cgn_drvr_day[index];
5906 		*lptr = cpu_to_le32(dvalue);
5907 		lptr = &cp->cgn_warn_day[index];
5908 		*lptr = cpu_to_le32(wvalue);
5909 		lptr = &cp->cgn_latency_day[index];
5910 		*lptr = cpu_to_le32(lvalue);
5911 		mptr = &cp->cgn_bw_day[index];
5912 		*mptr = cpu_to_le16(mvalue);
5913 		lptr = &cp->cgn_alarm_day[index];
5914 		*lptr = cpu_to_le32(avalue);
5915 
5916 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5917 				"2420 Congestion Info - daily (%d): "
5918 				"%d %d %d %d %d\n",
5919 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5920 
5921 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5922 		 * so we are wrapped on any data after this.
5923 		 * Save this as the start time for the next day.
5924 		 */
5925 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5926 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5927 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5928 		}
5929 	}
5930 
5931 	/* Use the frequency found in the last rcv'ed FPIN */
5932 	value = phba->cgn_fpin_frequency;
5933 	cp->cgn_warn_freq = cpu_to_le16(value);
5934 	cp->cgn_alarm_freq = cpu_to_le16(value);
5935 
5936 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5937 				     LPFC_CGN_CRC32_SEED);
5938 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5939 }
5940 
5941 /**
5942  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5943  * @phba: The Hba for which this call is being executed.
5944  *
5945  * The routine calculates the latency from the beginning of the CMF timer
5946  * interval to the current point in time. It is called from IO completion
5947  * when we exceed our Bandwidth limitation for the time interval.
5948  */
5949 uint32_t
5950 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5951 {
5952 	struct timespec64 cmpl_time;
5953 	uint32_t msec = 0;
5954 
5955 	ktime_get_real_ts64(&cmpl_time);
5956 
5957 	/* This routine works on a ms granularity so sec and usec are
5958 	 * converted accordingly.
5959 	 */
5960 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5961 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5962 			NSEC_PER_MSEC;
5963 	} else {
5964 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5965 			msec = (cmpl_time.tv_sec -
5966 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5967 			msec += ((cmpl_time.tv_nsec -
5968 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5969 		} else {
5970 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5971 				1) * MSEC_PER_SEC;
5972 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5973 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5974 		}
5975 	}
5976 	return msec;
5977 }
5978 
5979 /**
5980  * lpfc_cmf_timer -  This is the timer function for one congestion
5981  * rate interval.
5982  * @timer: Pointer to the high resolution timer that expired
5983  */
5984 static enum hrtimer_restart
5985 lpfc_cmf_timer(struct hrtimer *timer)
5986 {
5987 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5988 					     cmf_timer);
5989 	struct rx_info_entry entry;
5990 	uint32_t io_cnt;
5991 	uint32_t busy, max_read;
5992 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5993 	int timer_interval = LPFC_CMF_INTERVAL;
5994 	uint32_t ms;
5995 	struct lpfc_cgn_stat *cgs;
5996 	int cpu;
5997 
5998 	/* Only restart the timer if congestion mgmt is on */
5999 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6000 	    !phba->cmf_latency.tv_sec) {
6001 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6002 				"6224 CMF timer exit: %d %lld\n",
6003 				phba->cmf_active_mode,
6004 				(uint64_t)phba->cmf_latency.tv_sec);
6005 		return HRTIMER_NORESTART;
6006 	}
6007 
6008 	/* If pport is not ready yet, just exit and wait for
6009 	 * the next timer cycle to hit.
6010 	 */
6011 	if (!phba->pport)
6012 		goto skip;
6013 
6014 	/* Do not block SCSI IO while in the timer routine since
6015 	 * total_bytes will be cleared
6016 	 */
6017 	atomic_set(&phba->cmf_stop_io, 1);
6018 
6019 	/* First we need to calculate the actual ms between
6020 	 * the last timer interrupt and this one. We ask for
6021 	 * LPFC_CMF_INTERVAL, however the actual time may
6022 	 * vary depending on system overhead.
6023 	 */
6024 	ms = lpfc_calc_cmf_latency(phba);
6025 
6026 
6027 	/* Immediately after we calculate the time since the last
6028 	 * timer interrupt, set the start time for the next
6029 	 * interrupt
6030 	 */
6031 	ktime_get_real_ts64(&phba->cmf_latency);
6032 
6033 	phba->cmf_link_byte_count =
6034 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6035 
6036 	/* Collect all the stats from the prior timer interval */
6037 	total = 0;
6038 	io_cnt = 0;
6039 	lat = 0;
6040 	rcv = 0;
6041 	for_each_present_cpu(cpu) {
6042 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6043 		total += atomic64_xchg(&cgs->total_bytes, 0);
6044 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6045 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6046 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6047 	}
6048 
6049 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6050 	 * returned from the last CMF_SYNC_WQE issued, from
6051 	 * cmf_last_sync_bw. This will be the target BW for
6052 	 * this next timer interval.
6053 	 */
6054 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6055 	    phba->link_state != LPFC_LINK_DOWN &&
6056 	    phba->hba_flag & HBA_SETUP) {
6057 		mbpi = phba->cmf_last_sync_bw;
6058 		phba->cmf_last_sync_bw = 0;
6059 		extra = 0;
6060 
6061 		/* Calculate any extra bytes needed to account for the
6062 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6063 		 * calculate the adjustment needed for total to reflect
6064 		 * a full LPFC_CMF_INTERVAL.
6065 		 */
6066 		if (ms && ms < LPFC_CMF_INTERVAL) {
6067 			cnt = div_u64(total, ms); /* bytes per ms */
6068 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6069 
6070 			/* If the timeout is scheduled to be shorter,
6071 			 * this value may skew the data, so cap it at mbpi.
6072 			 */
6073 			if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi)
6074 				cnt = mbpi;
6075 
6076 			extra = cnt - total;
6077 		}
6078 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6079 	} else {
6080 		/* For Monitor mode or link down we want mbpi
6081 		 * to be the full link speed
6082 		 */
6083 		mbpi = phba->cmf_link_byte_count;
6084 		extra = 0;
6085 	}
6086 	phba->cmf_timer_cnt++;
6087 
6088 	if (io_cnt) {
6089 		/* Update congestion info buffer latency in us */
6090 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6091 		atomic64_add(lat, &phba->cgn_latency_evt);
6092 	}
6093 	busy = atomic_xchg(&phba->cmf_busy, 0);
6094 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6095 
6096 	/* Calculate MBPI for the next timer interval */
6097 	if (mbpi) {
6098 		if (mbpi > phba->cmf_link_byte_count ||
6099 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6100 			mbpi = phba->cmf_link_byte_count;
6101 
6102 		/* Change max_bytes_per_interval to what the prior
6103 		 * CMF_SYNC_WQE cmpl indicated.
6104 		 */
6105 		if (mbpi != phba->cmf_max_bytes_per_interval)
6106 			phba->cmf_max_bytes_per_interval = mbpi;
6107 	}
6108 
6109 	/* Save rxmonitor information for debug */
6110 	if (phba->rx_monitor) {
6111 		entry.total_bytes = total;
6112 		entry.cmf_bytes = total + extra;
6113 		entry.rcv_bytes = rcv;
6114 		entry.cmf_busy = busy;
6115 		entry.cmf_info = phba->cmf_active_info;
6116 		if (io_cnt) {
6117 			entry.avg_io_latency = div_u64(lat, io_cnt);
6118 			entry.avg_io_size = div_u64(rcv, io_cnt);
6119 		} else {
6120 			entry.avg_io_latency = 0;
6121 			entry.avg_io_size = 0;
6122 		}
6123 		entry.max_read_cnt = max_read;
6124 		entry.io_cnt = io_cnt;
6125 		entry.max_bytes_per_interval = mbpi;
6126 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6127 			entry.timer_utilization = phba->cmf_last_ts;
6128 		else
6129 			entry.timer_utilization = ms;
6130 		entry.timer_interval = ms;
6131 		phba->cmf_last_ts = 0;
6132 
6133 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6134 	}
6135 
6136 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6137 		/* If Monitor mode, check if we are oversubscribed
6138 		 * against the full line rate.
6139 		 */
6140 		if (mbpi && total > mbpi)
6141 			atomic_inc(&phba->cgn_driver_evt_cnt);
6142 	}
6143 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6144 
6145 	/* Each minute save Fabric and Driver congestion information */
6146 	lpfc_cgn_save_evt_cnt(phba);
6147 
6148 	phba->hba_flag &= ~HBA_SHORT_CMF;
6149 
6150 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
6151 	 * minute, adjust our next timer interval, if needed, to ensure a
6152 	 * 1 minute granularity when we get the next timer interrupt.
6153 	 */
6154 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6155 		       phba->cgn_evt_timestamp)) {
6156 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6157 						  jiffies);
6158 		if (timer_interval <= 0)
6159 			timer_interval = LPFC_CMF_INTERVAL;
6160 		else
6161 			phba->hba_flag |= HBA_SHORT_CMF;
6162 
6163 		/* If we adjust timer_interval, max_bytes_per_interval
6164 		 * needs to be adjusted as well.
6165 		 */
6166 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6167 						    timer_interval, 1000);
6168 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6169 			phba->cmf_max_bytes_per_interval =
6170 				phba->cmf_link_byte_count;
6171 	}
6172 
6173 	/* Since total_bytes has already been zero'ed, its okay to unblock
6174 	 * after max_bytes_per_interval is setup.
6175 	 */
6176 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6177 		queue_work(phba->wq, &phba->unblock_request_work);
6178 
6179 	/* SCSI IO is now unblocked */
6180 	atomic_set(&phba->cmf_stop_io, 0);
6181 
6182 skip:
6183 	hrtimer_forward_now(timer,
6184 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6185 	return HRTIMER_RESTART;
6186 }
6187 
6188 #define trunk_link_status(__idx)\
6189 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6190 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6191 		"Link up" : "Link down") : "NA"
6192 /* Did port __idx reported an error */
6193 #define trunk_port_fault(__idx)\
6194 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6195 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6196 
6197 static void
6198 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6199 			      struct lpfc_acqe_fc_la *acqe_fc)
6200 {
6201 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6202 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6203 	u8 cnt = 0;
6204 
6205 	phba->sli4_hba.link_state.speed =
6206 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6207 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6208 
6209 	phba->sli4_hba.link_state.logical_speed =
6210 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6211 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6212 	phba->fc_linkspeed =
6213 		 lpfc_async_link_speed_to_read_top(
6214 				phba,
6215 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6216 
6217 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6218 		phba->trunk_link.link0.state =
6219 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6220 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6221 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6222 		cnt++;
6223 	}
6224 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6225 		phba->trunk_link.link1.state =
6226 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6227 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6228 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6229 		cnt++;
6230 	}
6231 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6232 		phba->trunk_link.link2.state =
6233 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6234 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6235 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6236 		cnt++;
6237 	}
6238 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6239 		phba->trunk_link.link3.state =
6240 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6241 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6242 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6243 		cnt++;
6244 	}
6245 
6246 	if (cnt)
6247 		phba->trunk_link.phy_lnk_speed =
6248 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6249 	else
6250 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6251 
6252 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6253 			"2910 Async FC Trunking Event - Speed:%d\n"
6254 			"\tLogical speed:%d "
6255 			"port0: %s port1: %s port2: %s port3: %s\n",
6256 			phba->sli4_hba.link_state.speed,
6257 			phba->sli4_hba.link_state.logical_speed,
6258 			trunk_link_status(0), trunk_link_status(1),
6259 			trunk_link_status(2), trunk_link_status(3));
6260 
6261 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6262 		lpfc_cmf_signal_init(phba);
6263 
6264 	if (port_fault)
6265 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6266 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6267 				/*
6268 				 * SLI-4: We have only 0xA error codes
6269 				 * defined as of now. print an appropriate
6270 				 * message in case driver needs to be updated.
6271 				 */
6272 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6273 				"UNDEFINED. update driver." : trunk_errmsg[err],
6274 				trunk_port_fault(0), trunk_port_fault(1),
6275 				trunk_port_fault(2), trunk_port_fault(3));
6276 }
6277 
6278 
6279 /**
6280  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6281  * @phba: pointer to lpfc hba data structure.
6282  * @acqe_fc: pointer to the async fc completion queue entry.
6283  *
6284  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6285  * that the event was received and then issue a read_topology mailbox command so
6286  * that the rest of the driver will treat it the same as SLI3.
6287  **/
6288 static void
6289 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6290 {
6291 	LPFC_MBOXQ_t *pmb;
6292 	MAILBOX_t *mb;
6293 	struct lpfc_mbx_read_top *la;
6294 	char *log_level;
6295 	int rc;
6296 
6297 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6298 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6299 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6300 				"2895 Non FC link Event detected.(%d)\n",
6301 				bf_get(lpfc_trailer_type, acqe_fc));
6302 		return;
6303 	}
6304 
6305 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6306 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6307 		lpfc_update_trunk_link_status(phba, acqe_fc);
6308 		return;
6309 	}
6310 
6311 	/* Keep the link status for extra SLI4 state machine reference */
6312 	phba->sli4_hba.link_state.speed =
6313 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6314 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6315 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6316 	phba->sli4_hba.link_state.topology =
6317 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6318 	phba->sli4_hba.link_state.status =
6319 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6320 	phba->sli4_hba.link_state.type =
6321 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6322 	phba->sli4_hba.link_state.number =
6323 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6324 	phba->sli4_hba.link_state.fault =
6325 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6326 	phba->sli4_hba.link_state.link_status =
6327 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6328 
6329 	/*
6330 	 * Only select attention types need logical speed modification to what
6331 	 * was previously set.
6332 	 */
6333 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6334 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6335 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6336 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6337 			phba->sli4_hba.link_state.logical_speed = 0;
6338 		else if (!phba->sli4_hba.conf_trunk)
6339 			phba->sli4_hba.link_state.logical_speed =
6340 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6341 	}
6342 
6343 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6344 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6345 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6346 			"%dMbps Fault:x%x Link Status:x%x\n",
6347 			phba->sli4_hba.link_state.speed,
6348 			phba->sli4_hba.link_state.topology,
6349 			phba->sli4_hba.link_state.status,
6350 			phba->sli4_hba.link_state.type,
6351 			phba->sli4_hba.link_state.number,
6352 			phba->sli4_hba.link_state.logical_speed,
6353 			phba->sli4_hba.link_state.fault,
6354 			phba->sli4_hba.link_state.link_status);
6355 
6356 	/*
6357 	 * The following attention types are informational only, providing
6358 	 * further details about link status.  Overwrite the value of
6359 	 * link_state.status appropriately.  No further action is required.
6360 	 */
6361 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6362 		switch (phba->sli4_hba.link_state.status) {
6363 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6364 			log_level = KERN_WARNING;
6365 			phba->sli4_hba.link_state.status =
6366 					LPFC_FC_LA_TYPE_LINK_DOWN;
6367 			break;
6368 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6369 			/*
6370 			 * During bb credit recovery establishment, receiving
6371 			 * this attention type is normal.  Link Up attention
6372 			 * type is expected to occur before this informational
6373 			 * attention type so keep the Link Up status.
6374 			 */
6375 			log_level = KERN_INFO;
6376 			phba->sli4_hba.link_state.status =
6377 					LPFC_FC_LA_TYPE_LINK_UP;
6378 			break;
6379 		default:
6380 			log_level = KERN_INFO;
6381 			break;
6382 		}
6383 		lpfc_log_msg(phba, log_level, LOG_SLI,
6384 			     "2992 Async FC event - Informational Link "
6385 			     "Attention Type x%x\n",
6386 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6387 		return;
6388 	}
6389 
6390 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6391 	if (!pmb) {
6392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6393 				"2897 The mboxq allocation failed\n");
6394 		return;
6395 	}
6396 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6397 	if (rc) {
6398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6399 				"2898 The mboxq prep failed\n");
6400 		goto out_free_pmb;
6401 	}
6402 
6403 	/* Cleanup any outstanding ELS commands */
6404 	lpfc_els_flush_all_cmd(phba);
6405 
6406 	/* Block ELS IOCBs until we have done process link event */
6407 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6408 
6409 	/* Update link event statistics */
6410 	phba->sli.slistat.link_event++;
6411 
6412 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6413 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6414 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6415 	pmb->vport = phba->pport;
6416 
6417 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6418 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6419 
6420 		switch (phba->sli4_hba.link_state.status) {
6421 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6422 			phba->link_flag |= LS_MDS_LINK_DOWN;
6423 			break;
6424 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6425 			phba->link_flag |= LS_MDS_LOOPBACK;
6426 			break;
6427 		default:
6428 			break;
6429 		}
6430 
6431 		/* Initialize completion status */
6432 		mb = &pmb->u.mb;
6433 		mb->mbxStatus = MBX_SUCCESS;
6434 
6435 		/* Parse port fault information field */
6436 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6437 
6438 		/* Parse and translate link attention fields */
6439 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6440 		la->eventTag = acqe_fc->event_tag;
6441 
6442 		if (phba->sli4_hba.link_state.status ==
6443 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6444 			bf_set(lpfc_mbx_read_top_att_type, la,
6445 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6446 		} else {
6447 			bf_set(lpfc_mbx_read_top_att_type, la,
6448 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6449 		}
6450 		/* Invoke the mailbox command callback function */
6451 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6452 
6453 		return;
6454 	}
6455 
6456 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6457 	if (rc == MBX_NOT_FINISHED)
6458 		goto out_free_pmb;
6459 	return;
6460 
6461 out_free_pmb:
6462 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6463 }
6464 
6465 /**
6466  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6467  * @phba: pointer to lpfc hba data structure.
6468  * @acqe_sli: pointer to the async SLI completion queue entry.
6469  *
6470  * This routine is to handle the SLI4 asynchronous SLI events.
6471  **/
6472 static void
6473 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6474 {
6475 	char port_name;
6476 	char message[128];
6477 	uint8_t status;
6478 	uint8_t evt_type;
6479 	uint8_t operational = 0;
6480 	struct temp_event temp_event_data;
6481 	struct lpfc_acqe_misconfigured_event *misconfigured;
6482 	struct lpfc_acqe_cgn_signal *cgn_signal;
6483 	struct Scsi_Host  *shost;
6484 	struct lpfc_vport **vports;
6485 	int rc, i, cnt;
6486 
6487 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6488 
6489 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6490 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6491 			"x%08x x%08x x%08x\n", evt_type,
6492 			acqe_sli->event_data1, acqe_sli->event_data2,
6493 			acqe_sli->event_data3, acqe_sli->trailer);
6494 
6495 	port_name = phba->Port[0];
6496 	if (port_name == 0x00)
6497 		port_name = '?'; /* get port name is empty */
6498 
6499 	switch (evt_type) {
6500 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6501 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6502 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6503 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6504 
6505 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6506 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6507 				acqe_sli->event_data1, port_name);
6508 
6509 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6510 		shost = lpfc_shost_from_vport(phba->pport);
6511 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6512 					  sizeof(temp_event_data),
6513 					  (char *)&temp_event_data,
6514 					  SCSI_NL_VID_TYPE_PCI
6515 					  | PCI_VENDOR_ID_EMULEX);
6516 		break;
6517 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6518 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6519 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6520 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6521 
6522 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6523 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6524 				acqe_sli->event_data1, port_name);
6525 
6526 		shost = lpfc_shost_from_vport(phba->pport);
6527 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6528 					  sizeof(temp_event_data),
6529 					  (char *)&temp_event_data,
6530 					  SCSI_NL_VID_TYPE_PCI
6531 					  | PCI_VENDOR_ID_EMULEX);
6532 		break;
6533 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6534 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6535 					&acqe_sli->event_data1;
6536 
6537 		/* fetch the status for this port */
6538 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6539 		case LPFC_LINK_NUMBER_0:
6540 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6541 					&misconfigured->theEvent);
6542 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6543 					&misconfigured->theEvent);
6544 			break;
6545 		case LPFC_LINK_NUMBER_1:
6546 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6547 					&misconfigured->theEvent);
6548 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6549 					&misconfigured->theEvent);
6550 			break;
6551 		case LPFC_LINK_NUMBER_2:
6552 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6553 					&misconfigured->theEvent);
6554 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6555 					&misconfigured->theEvent);
6556 			break;
6557 		case LPFC_LINK_NUMBER_3:
6558 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6559 					&misconfigured->theEvent);
6560 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6561 					&misconfigured->theEvent);
6562 			break;
6563 		default:
6564 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6565 					"3296 "
6566 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6567 					"event: Invalid link %d",
6568 					phba->sli4_hba.lnk_info.lnk_no);
6569 			return;
6570 		}
6571 
6572 		/* Skip if optic state unchanged */
6573 		if (phba->sli4_hba.lnk_info.optic_state == status)
6574 			return;
6575 
6576 		switch (status) {
6577 		case LPFC_SLI_EVENT_STATUS_VALID:
6578 			sprintf(message, "Physical Link is functional");
6579 			break;
6580 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6581 			sprintf(message, "Optics faulted/incorrectly "
6582 				"installed/not installed - Reseat optics, "
6583 				"if issue not resolved, replace.");
6584 			break;
6585 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6586 			sprintf(message,
6587 				"Optics of two types installed - Remove one "
6588 				"optic or install matching pair of optics.");
6589 			break;
6590 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6591 			sprintf(message, "Incompatible optics - Replace with "
6592 				"compatible optics for card to function.");
6593 			break;
6594 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6595 			sprintf(message, "Unqualified optics - Replace with "
6596 				"Avago optics for Warranty and Technical "
6597 				"Support - Link is%s operational",
6598 				(operational) ? " not" : "");
6599 			break;
6600 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6601 			sprintf(message, "Uncertified optics - Replace with "
6602 				"Avago-certified optics to enable link "
6603 				"operation - Link is%s operational",
6604 				(operational) ? " not" : "");
6605 			break;
6606 		default:
6607 			/* firmware is reporting a status we don't know about */
6608 			sprintf(message, "Unknown event status x%02x", status);
6609 			break;
6610 		}
6611 
6612 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6613 		rc = lpfc_sli4_read_config(phba);
6614 		if (rc) {
6615 			phba->lmt = 0;
6616 			lpfc_printf_log(phba, KERN_ERR,
6617 					LOG_TRACE_EVENT,
6618 					"3194 Unable to retrieve supported "
6619 					"speeds, rc = 0x%x\n", rc);
6620 		}
6621 		rc = lpfc_sli4_refresh_params(phba);
6622 		if (rc) {
6623 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6624 					"3174 Unable to update pls support, "
6625 					"rc x%x\n", rc);
6626 		}
6627 		vports = lpfc_create_vport_work_array(phba);
6628 		if (vports != NULL) {
6629 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6630 					i++) {
6631 				shost = lpfc_shost_from_vport(vports[i]);
6632 				lpfc_host_supported_speeds_set(shost);
6633 			}
6634 		}
6635 		lpfc_destroy_vport_work_array(phba, vports);
6636 
6637 		phba->sli4_hba.lnk_info.optic_state = status;
6638 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6639 				"3176 Port Name %c %s\n", port_name, message);
6640 		break;
6641 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6642 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6643 				"3192 Remote DPort Test Initiated - "
6644 				"Event Data1:x%08x Event Data2: x%08x\n",
6645 				acqe_sli->event_data1, acqe_sli->event_data2);
6646 		break;
6647 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6648 		/* Call FW to obtain active parms */
6649 		lpfc_sli4_cgn_parm_chg_evt(phba);
6650 		break;
6651 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6652 		/* Misconfigured WWN. Reports that the SLI Port is configured
6653 		 * to use FA-WWN, but the attached device doesn’t support it.
6654 		 * Event Data1 - N.A, Event Data2 - N.A
6655 		 * This event only happens on the physical port.
6656 		 */
6657 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6658 			     "2699 Misconfigured FA-PWWN - Attached device "
6659 			     "does not support FA-PWWN\n");
6660 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6661 		memset(phba->pport->fc_portname.u.wwn, 0,
6662 		       sizeof(struct lpfc_name));
6663 		break;
6664 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6665 		/* EEPROM failure. No driver action is required */
6666 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6667 			     "2518 EEPROM failure - "
6668 			     "Event Data1: x%08x Event Data2: x%08x\n",
6669 			     acqe_sli->event_data1, acqe_sli->event_data2);
6670 		break;
6671 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6672 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6673 			break;
6674 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6675 					&acqe_sli->event_data1;
6676 		phba->cgn_acqe_cnt++;
6677 
6678 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6679 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6680 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6681 
6682 		/* no threshold for CMF, even 1 signal will trigger an event */
6683 
6684 		/* Alarm overrides warning, so check that first */
6685 		if (cgn_signal->alarm_cnt) {
6686 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6687 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6688 				atomic_add(cgn_signal->alarm_cnt,
6689 					   &phba->cgn_sync_alarm_cnt);
6690 			}
6691 		} else if (cnt) {
6692 			/* signal action needs to be taken */
6693 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6694 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6695 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6696 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6697 			}
6698 		}
6699 		break;
6700 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6701 		/* May be accompanied by a temperature event */
6702 		lpfc_printf_log(phba, KERN_INFO,
6703 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6704 				"2902 Remote Degrade Signaling: x%08x x%08x "
6705 				"x%08x\n",
6706 				acqe_sli->event_data1, acqe_sli->event_data2,
6707 				acqe_sli->event_data3);
6708 		break;
6709 	default:
6710 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6711 				"3193 Unrecognized SLI event, type: 0x%x",
6712 				evt_type);
6713 		break;
6714 	}
6715 }
6716 
6717 /**
6718  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6719  * @vport: pointer to vport data structure.
6720  *
6721  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6722  * response to a CVL event.
6723  *
6724  * Return the pointer to the ndlp with the vport if successful, otherwise
6725  * return NULL.
6726  **/
6727 static struct lpfc_nodelist *
6728 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6729 {
6730 	struct lpfc_nodelist *ndlp;
6731 	struct Scsi_Host *shost;
6732 	struct lpfc_hba *phba;
6733 
6734 	if (!vport)
6735 		return NULL;
6736 	phba = vport->phba;
6737 	if (!phba)
6738 		return NULL;
6739 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6740 	if (!ndlp) {
6741 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6742 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6743 		if (!ndlp)
6744 			return NULL;
6745 		/* Set the node type */
6746 		ndlp->nlp_type |= NLP_FABRIC;
6747 		/* Put ndlp onto node list */
6748 		lpfc_enqueue_node(vport, ndlp);
6749 	}
6750 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6751 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6752 		return NULL;
6753 	/* If virtual link is not yet instantiated ignore CVL */
6754 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6755 		&& (vport->port_state != LPFC_VPORT_FAILED))
6756 		return NULL;
6757 	shost = lpfc_shost_from_vport(vport);
6758 	if (!shost)
6759 		return NULL;
6760 	lpfc_linkdown_port(vport);
6761 	lpfc_cleanup_pending_mbox(vport);
6762 	spin_lock_irq(shost->host_lock);
6763 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6764 	spin_unlock_irq(shost->host_lock);
6765 
6766 	return ndlp;
6767 }
6768 
6769 /**
6770  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6771  * @phba: pointer to lpfc hba data structure.
6772  *
6773  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6774  * response to a FCF dead event.
6775  **/
6776 static void
6777 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6778 {
6779 	struct lpfc_vport **vports;
6780 	int i;
6781 
6782 	vports = lpfc_create_vport_work_array(phba);
6783 	if (vports)
6784 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6785 			lpfc_sli4_perform_vport_cvl(vports[i]);
6786 	lpfc_destroy_vport_work_array(phba, vports);
6787 }
6788 
6789 /**
6790  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6791  * @phba: pointer to lpfc hba data structure.
6792  * @acqe_fip: pointer to the async fcoe completion queue entry.
6793  *
6794  * This routine is to handle the SLI4 asynchronous fcoe event.
6795  **/
6796 static void
6797 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6798 			struct lpfc_acqe_fip *acqe_fip)
6799 {
6800 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6801 	int rc;
6802 	struct lpfc_vport *vport;
6803 	struct lpfc_nodelist *ndlp;
6804 	int active_vlink_present;
6805 	struct lpfc_vport **vports;
6806 	int i;
6807 
6808 	phba->fc_eventTag = acqe_fip->event_tag;
6809 	phba->fcoe_eventtag = acqe_fip->event_tag;
6810 	switch (event_type) {
6811 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6812 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6813 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6814 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6815 					"2546 New FCF event, evt_tag:x%x, "
6816 					"index:x%x\n",
6817 					acqe_fip->event_tag,
6818 					acqe_fip->index);
6819 		else
6820 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6821 					LOG_DISCOVERY,
6822 					"2788 FCF param modified event, "
6823 					"evt_tag:x%x, index:x%x\n",
6824 					acqe_fip->event_tag,
6825 					acqe_fip->index);
6826 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6827 			/*
6828 			 * During period of FCF discovery, read the FCF
6829 			 * table record indexed by the event to update
6830 			 * FCF roundrobin failover eligible FCF bmask.
6831 			 */
6832 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6833 					LOG_DISCOVERY,
6834 					"2779 Read FCF (x%x) for updating "
6835 					"roundrobin FCF failover bmask\n",
6836 					acqe_fip->index);
6837 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6838 		}
6839 
6840 		/* If the FCF discovery is in progress, do nothing. */
6841 		spin_lock_irq(&phba->hbalock);
6842 		if (phba->hba_flag & FCF_TS_INPROG) {
6843 			spin_unlock_irq(&phba->hbalock);
6844 			break;
6845 		}
6846 		/* If fast FCF failover rescan event is pending, do nothing */
6847 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6848 			spin_unlock_irq(&phba->hbalock);
6849 			break;
6850 		}
6851 
6852 		/* If the FCF has been in discovered state, do nothing. */
6853 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6854 			spin_unlock_irq(&phba->hbalock);
6855 			break;
6856 		}
6857 		spin_unlock_irq(&phba->hbalock);
6858 
6859 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6860 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6861 				"2770 Start FCF table scan per async FCF "
6862 				"event, evt_tag:x%x, index:x%x\n",
6863 				acqe_fip->event_tag, acqe_fip->index);
6864 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6865 						     LPFC_FCOE_FCF_GET_FIRST);
6866 		if (rc)
6867 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6868 					"2547 Issue FCF scan read FCF mailbox "
6869 					"command failed (x%x)\n", rc);
6870 		break;
6871 
6872 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6873 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6874 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6875 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6876 				acqe_fip->event_tag);
6877 		break;
6878 
6879 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6880 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6881 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6882 				"2549 FCF (x%x) disconnected from network, "
6883 				 "tag:x%x\n", acqe_fip->index,
6884 				 acqe_fip->event_tag);
6885 		/*
6886 		 * If we are in the middle of FCF failover process, clear
6887 		 * the corresponding FCF bit in the roundrobin bitmap.
6888 		 */
6889 		spin_lock_irq(&phba->hbalock);
6890 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6891 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6892 			spin_unlock_irq(&phba->hbalock);
6893 			/* Update FLOGI FCF failover eligible FCF bmask */
6894 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6895 			break;
6896 		}
6897 		spin_unlock_irq(&phba->hbalock);
6898 
6899 		/* If the event is not for currently used fcf do nothing */
6900 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6901 			break;
6902 
6903 		/*
6904 		 * Otherwise, request the port to rediscover the entire FCF
6905 		 * table for a fast recovery from case that the current FCF
6906 		 * is no longer valid as we are not in the middle of FCF
6907 		 * failover process already.
6908 		 */
6909 		spin_lock_irq(&phba->hbalock);
6910 		/* Mark the fast failover process in progress */
6911 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6912 		spin_unlock_irq(&phba->hbalock);
6913 
6914 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6915 				"2771 Start FCF fast failover process due to "
6916 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6917 				"\n", acqe_fip->event_tag, acqe_fip->index);
6918 		rc = lpfc_sli4_redisc_fcf_table(phba);
6919 		if (rc) {
6920 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6921 					LOG_TRACE_EVENT,
6922 					"2772 Issue FCF rediscover mailbox "
6923 					"command failed, fail through to FCF "
6924 					"dead event\n");
6925 			spin_lock_irq(&phba->hbalock);
6926 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6927 			spin_unlock_irq(&phba->hbalock);
6928 			/*
6929 			 * Last resort will fail over by treating this
6930 			 * as a link down to FCF registration.
6931 			 */
6932 			lpfc_sli4_fcf_dead_failthrough(phba);
6933 		} else {
6934 			/* Reset FCF roundrobin bmask for new discovery */
6935 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6936 			/*
6937 			 * Handling fast FCF failover to a DEAD FCF event is
6938 			 * considered equalivant to receiving CVL to all vports.
6939 			 */
6940 			lpfc_sli4_perform_all_vport_cvl(phba);
6941 		}
6942 		break;
6943 	case LPFC_FIP_EVENT_TYPE_CVL:
6944 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6945 		lpfc_printf_log(phba, KERN_ERR,
6946 				LOG_TRACE_EVENT,
6947 			"2718 Clear Virtual Link Received for VPI 0x%x"
6948 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6949 
6950 		vport = lpfc_find_vport_by_vpid(phba,
6951 						acqe_fip->index);
6952 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6953 		if (!ndlp)
6954 			break;
6955 		active_vlink_present = 0;
6956 
6957 		vports = lpfc_create_vport_work_array(phba);
6958 		if (vports) {
6959 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6960 					i++) {
6961 				if ((!(vports[i]->fc_flag &
6962 					FC_VPORT_CVL_RCVD)) &&
6963 					(vports[i]->port_state > LPFC_FDISC)) {
6964 					active_vlink_present = 1;
6965 					break;
6966 				}
6967 			}
6968 			lpfc_destroy_vport_work_array(phba, vports);
6969 		}
6970 
6971 		/*
6972 		 * Don't re-instantiate if vport is marked for deletion.
6973 		 * If we are here first then vport_delete is going to wait
6974 		 * for discovery to complete.
6975 		 */
6976 		if (!(vport->load_flag & FC_UNLOADING) &&
6977 					active_vlink_present) {
6978 			/*
6979 			 * If there are other active VLinks present,
6980 			 * re-instantiate the Vlink using FDISC.
6981 			 */
6982 			mod_timer(&ndlp->nlp_delayfunc,
6983 				  jiffies + msecs_to_jiffies(1000));
6984 			spin_lock_irq(&ndlp->lock);
6985 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6986 			spin_unlock_irq(&ndlp->lock);
6987 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6988 			vport->port_state = LPFC_FDISC;
6989 		} else {
6990 			/*
6991 			 * Otherwise, we request port to rediscover
6992 			 * the entire FCF table for a fast recovery
6993 			 * from possible case that the current FCF
6994 			 * is no longer valid if we are not already
6995 			 * in the FCF failover process.
6996 			 */
6997 			spin_lock_irq(&phba->hbalock);
6998 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6999 				spin_unlock_irq(&phba->hbalock);
7000 				break;
7001 			}
7002 			/* Mark the fast failover process in progress */
7003 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
7004 			spin_unlock_irq(&phba->hbalock);
7005 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
7006 					LOG_DISCOVERY,
7007 					"2773 Start FCF failover per CVL, "
7008 					"evt_tag:x%x\n", acqe_fip->event_tag);
7009 			rc = lpfc_sli4_redisc_fcf_table(phba);
7010 			if (rc) {
7011 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
7012 						LOG_TRACE_EVENT,
7013 						"2774 Issue FCF rediscover "
7014 						"mailbox command failed, "
7015 						"through to CVL event\n");
7016 				spin_lock_irq(&phba->hbalock);
7017 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
7018 				spin_unlock_irq(&phba->hbalock);
7019 				/*
7020 				 * Last resort will be re-try on the
7021 				 * the current registered FCF entry.
7022 				 */
7023 				lpfc_retry_pport_discovery(phba);
7024 			} else
7025 				/*
7026 				 * Reset FCF roundrobin bmask for new
7027 				 * discovery.
7028 				 */
7029 				lpfc_sli4_clear_fcf_rr_bmask(phba);
7030 		}
7031 		break;
7032 	default:
7033 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7034 				"0288 Unknown FCoE event type 0x%x event tag "
7035 				"0x%x\n", event_type, acqe_fip->event_tag);
7036 		break;
7037 	}
7038 }
7039 
7040 /**
7041  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
7042  * @phba: pointer to lpfc hba data structure.
7043  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
7044  *
7045  * This routine is to handle the SLI4 asynchronous dcbx event.
7046  **/
7047 static void
7048 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
7049 			 struct lpfc_acqe_dcbx *acqe_dcbx)
7050 {
7051 	phba->fc_eventTag = acqe_dcbx->event_tag;
7052 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7053 			"0290 The SLI4 DCBX asynchronous event is not "
7054 			"handled yet\n");
7055 }
7056 
7057 /**
7058  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
7059  * @phba: pointer to lpfc hba data structure.
7060  * @acqe_grp5: pointer to the async grp5 completion queue entry.
7061  *
7062  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
7063  * is an asynchronous notified of a logical link speed change.  The Port
7064  * reports the logical link speed in units of 10Mbps.
7065  **/
7066 static void
7067 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
7068 			 struct lpfc_acqe_grp5 *acqe_grp5)
7069 {
7070 	uint16_t prev_ll_spd;
7071 
7072 	phba->fc_eventTag = acqe_grp5->event_tag;
7073 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7074 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7075 	phba->sli4_hba.link_state.logical_speed =
7076 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7077 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7078 			"2789 GRP5 Async Event: Updating logical link speed "
7079 			"from %dMbps to %dMbps\n", prev_ll_spd,
7080 			phba->sli4_hba.link_state.logical_speed);
7081 }
7082 
7083 /**
7084  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7085  * @phba: pointer to lpfc hba data structure.
7086  *
7087  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7088  * is an asynchronous notification of a request to reset CM stats.
7089  **/
7090 static void
7091 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7092 {
7093 	if (!phba->cgn_i)
7094 		return;
7095 	lpfc_init_congestion_stat(phba);
7096 }
7097 
7098 /**
7099  * lpfc_cgn_params_val - Validate FW congestion parameters.
7100  * @phba: pointer to lpfc hba data structure.
7101  * @p_cfg_param: pointer to FW provided congestion parameters.
7102  *
7103  * This routine validates the congestion parameters passed
7104  * by the FW to the driver via an ACQE event.
7105  **/
7106 static void
7107 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7108 {
7109 	spin_lock_irq(&phba->hbalock);
7110 
7111 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7112 			     LPFC_CFG_MONITOR)) {
7113 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7114 				"6225 CMF mode param out of range: %d\n",
7115 				 p_cfg_param->cgn_param_mode);
7116 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7117 	}
7118 
7119 	spin_unlock_irq(&phba->hbalock);
7120 }
7121 
7122 static const char * const lpfc_cmf_mode_to_str[] = {
7123 	"OFF",
7124 	"MANAGED",
7125 	"MONITOR",
7126 };
7127 
7128 /**
7129  * lpfc_cgn_params_parse - Process a FW cong parm change event
7130  * @phba: pointer to lpfc hba data structure.
7131  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7132  * @len: the size of pdata in bytes.
7133  *
7134  * This routine validates the congestion management buffer signature
7135  * from the FW, validates the contents and makes corrections for
7136  * valid, in-range values.  If the signature magic is correct and
7137  * after parameter validation, the contents are copied to the driver's
7138  * @phba structure. If the magic is incorrect, an error message is
7139  * logged.
7140  **/
7141 static void
7142 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7143 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7144 {
7145 	struct lpfc_cgn_info *cp;
7146 	uint32_t crc, oldmode;
7147 	char acr_string[4] = {0};
7148 
7149 	/* Make sure the FW has encoded the correct magic number to
7150 	 * validate the congestion parameter in FW memory.
7151 	 */
7152 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7153 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7154 				"4668 FW cgn parm buffer data: "
7155 				"magic 0x%x version %d mode %d "
7156 				"level0 %d level1 %d "
7157 				"level2 %d byte13 %d "
7158 				"byte14 %d byte15 %d "
7159 				"byte11 %d byte12 %d activeMode %d\n",
7160 				p_cgn_param->cgn_param_magic,
7161 				p_cgn_param->cgn_param_version,
7162 				p_cgn_param->cgn_param_mode,
7163 				p_cgn_param->cgn_param_level0,
7164 				p_cgn_param->cgn_param_level1,
7165 				p_cgn_param->cgn_param_level2,
7166 				p_cgn_param->byte13,
7167 				p_cgn_param->byte14,
7168 				p_cgn_param->byte15,
7169 				p_cgn_param->byte11,
7170 				p_cgn_param->byte12,
7171 				phba->cmf_active_mode);
7172 
7173 		oldmode = phba->cmf_active_mode;
7174 
7175 		/* Any parameters out of range are corrected to defaults
7176 		 * by this routine.  No need to fail.
7177 		 */
7178 		lpfc_cgn_params_val(phba, p_cgn_param);
7179 
7180 		/* Parameters are verified, move them into driver storage */
7181 		spin_lock_irq(&phba->hbalock);
7182 		memcpy(&phba->cgn_p, p_cgn_param,
7183 		       sizeof(struct lpfc_cgn_param));
7184 
7185 		/* Update parameters in congestion info buffer now */
7186 		if (phba->cgn_i) {
7187 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7188 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7189 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7190 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7191 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7192 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7193 						  LPFC_CGN_CRC32_SEED);
7194 			cp->cgn_info_crc = cpu_to_le32(crc);
7195 		}
7196 		spin_unlock_irq(&phba->hbalock);
7197 
7198 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7199 
7200 		switch (oldmode) {
7201 		case LPFC_CFG_OFF:
7202 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7203 				/* Turning CMF on */
7204 				lpfc_cmf_start(phba);
7205 
7206 				if (phba->link_state >= LPFC_LINK_UP) {
7207 					phba->cgn_reg_fpin =
7208 						phba->cgn_init_reg_fpin;
7209 					phba->cgn_reg_signal =
7210 						phba->cgn_init_reg_signal;
7211 					lpfc_issue_els_edc(phba->pport, 0);
7212 				}
7213 			}
7214 			break;
7215 		case LPFC_CFG_MANAGED:
7216 			switch (phba->cgn_p.cgn_param_mode) {
7217 			case LPFC_CFG_OFF:
7218 				/* Turning CMF off */
7219 				lpfc_cmf_stop(phba);
7220 				if (phba->link_state >= LPFC_LINK_UP)
7221 					lpfc_issue_els_edc(phba->pport, 0);
7222 				break;
7223 			case LPFC_CFG_MONITOR:
7224 				phba->cmf_max_bytes_per_interval =
7225 					phba->cmf_link_byte_count;
7226 
7227 				/* Resume blocked IO - unblock on workqueue */
7228 				queue_work(phba->wq,
7229 					   &phba->unblock_request_work);
7230 				break;
7231 			}
7232 			break;
7233 		case LPFC_CFG_MONITOR:
7234 			switch (phba->cgn_p.cgn_param_mode) {
7235 			case LPFC_CFG_OFF:
7236 				/* Turning CMF off */
7237 				lpfc_cmf_stop(phba);
7238 				if (phba->link_state >= LPFC_LINK_UP)
7239 					lpfc_issue_els_edc(phba->pport, 0);
7240 				break;
7241 			case LPFC_CFG_MANAGED:
7242 				lpfc_cmf_signal_init(phba);
7243 				break;
7244 			}
7245 			break;
7246 		}
7247 		if (oldmode != LPFC_CFG_OFF ||
7248 		    oldmode != phba->cgn_p.cgn_param_mode) {
7249 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7250 				scnprintf(acr_string, sizeof(acr_string), "%u",
7251 					  phba->cgn_p.cgn_param_level0);
7252 			else
7253 				scnprintf(acr_string, sizeof(acr_string), "NA");
7254 
7255 			dev_info(&phba->pcidev->dev, "%d: "
7256 				 "4663 CMF: Mode %s acr %s\n",
7257 				 phba->brd_no,
7258 				 lpfc_cmf_mode_to_str
7259 				 [phba->cgn_p.cgn_param_mode],
7260 				 acr_string);
7261 		}
7262 	} else {
7263 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7264 				"4669 FW cgn parm buf wrong magic 0x%x "
7265 				"version %d\n", p_cgn_param->cgn_param_magic,
7266 				p_cgn_param->cgn_param_version);
7267 	}
7268 }
7269 
7270 /**
7271  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7272  * @phba: pointer to lpfc hba data structure.
7273  *
7274  * This routine issues a read_object mailbox command to
7275  * get the congestion management parameters from the FW
7276  * parses it and updates the driver maintained values.
7277  *
7278  * Returns
7279  *  0     if the object was empty
7280  *  -Eval if an error was encountered
7281  *  Count if bytes were read from object
7282  **/
7283 int
7284 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7285 {
7286 	int ret = 0;
7287 	struct lpfc_cgn_param *p_cgn_param = NULL;
7288 	u32 *pdata = NULL;
7289 	u32 len = 0;
7290 
7291 	/* Find out if the FW has a new set of congestion parameters. */
7292 	len = sizeof(struct lpfc_cgn_param);
7293 	pdata = kzalloc(len, GFP_KERNEL);
7294 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7295 			       pdata, len);
7296 
7297 	/* 0 means no data.  A negative means error.  A positive means
7298 	 * bytes were copied.
7299 	 */
7300 	if (!ret) {
7301 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7302 				"4670 CGN RD OBJ returns no data\n");
7303 		goto rd_obj_err;
7304 	} else if (ret < 0) {
7305 		/* Some error.  Just exit and return it to the caller.*/
7306 		goto rd_obj_err;
7307 	}
7308 
7309 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7310 			"6234 READ CGN PARAMS Successful %d\n", len);
7311 
7312 	/* Parse data pointer over len and update the phba congestion
7313 	 * parameters with values passed back.  The receive rate values
7314 	 * may have been altered in FW, but take no action here.
7315 	 */
7316 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7317 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7318 
7319  rd_obj_err:
7320 	kfree(pdata);
7321 	return ret;
7322 }
7323 
7324 /**
7325  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7326  * @phba: pointer to lpfc hba data structure.
7327  *
7328  * The FW generated Async ACQE SLI event calls this routine when
7329  * the event type is an SLI Internal Port Event and the Event Code
7330  * indicates a change to the FW maintained congestion parameters.
7331  *
7332  * This routine executes a Read_Object mailbox call to obtain the
7333  * current congestion parameters maintained in FW and corrects
7334  * the driver's active congestion parameters.
7335  *
7336  * The acqe event is not passed because there is no further data
7337  * required.
7338  *
7339  * Returns nonzero error if event processing encountered an error.
7340  * Zero otherwise for success.
7341  **/
7342 static int
7343 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7344 {
7345 	int ret = 0;
7346 
7347 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7348 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7349 				"4664 Cgn Evt when E2E off. Drop event\n");
7350 		return -EACCES;
7351 	}
7352 
7353 	/* If the event is claiming an empty object, it's ok.  A write
7354 	 * could have cleared it.  Only error is a negative return
7355 	 * status.
7356 	 */
7357 	ret = lpfc_sli4_cgn_params_read(phba);
7358 	if (ret < 0) {
7359 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7360 				"4667 Error reading Cgn Params (%d)\n",
7361 				ret);
7362 	} else if (!ret) {
7363 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7364 				"4673 CGN Event empty object.\n");
7365 	}
7366 	return ret;
7367 }
7368 
7369 /**
7370  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7371  * @phba: pointer to lpfc hba data structure.
7372  *
7373  * This routine is invoked by the worker thread to process all the pending
7374  * SLI4 asynchronous events.
7375  **/
7376 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7377 {
7378 	struct lpfc_cq_event *cq_event;
7379 	unsigned long iflags;
7380 
7381 	/* First, declare the async event has been handled */
7382 	spin_lock_irqsave(&phba->hbalock, iflags);
7383 	phba->hba_flag &= ~ASYNC_EVENT;
7384 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7385 
7386 	/* Now, handle all the async events */
7387 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7388 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7389 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7390 				 cq_event, struct lpfc_cq_event, list);
7391 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7392 				       iflags);
7393 
7394 		/* Process the asynchronous event */
7395 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7396 		case LPFC_TRAILER_CODE_LINK:
7397 			lpfc_sli4_async_link_evt(phba,
7398 						 &cq_event->cqe.acqe_link);
7399 			break;
7400 		case LPFC_TRAILER_CODE_FCOE:
7401 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7402 			break;
7403 		case LPFC_TRAILER_CODE_DCBX:
7404 			lpfc_sli4_async_dcbx_evt(phba,
7405 						 &cq_event->cqe.acqe_dcbx);
7406 			break;
7407 		case LPFC_TRAILER_CODE_GRP5:
7408 			lpfc_sli4_async_grp5_evt(phba,
7409 						 &cq_event->cqe.acqe_grp5);
7410 			break;
7411 		case LPFC_TRAILER_CODE_FC:
7412 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7413 			break;
7414 		case LPFC_TRAILER_CODE_SLI:
7415 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7416 			break;
7417 		case LPFC_TRAILER_CODE_CMSTAT:
7418 			lpfc_sli4_async_cmstat_evt(phba);
7419 			break;
7420 		default:
7421 			lpfc_printf_log(phba, KERN_ERR,
7422 					LOG_TRACE_EVENT,
7423 					"1804 Invalid asynchronous event code: "
7424 					"x%x\n", bf_get(lpfc_trailer_code,
7425 					&cq_event->cqe.mcqe_cmpl));
7426 			break;
7427 		}
7428 
7429 		/* Free the completion event processed to the free pool */
7430 		lpfc_sli4_cq_event_release(phba, cq_event);
7431 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7432 	}
7433 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7434 }
7435 
7436 /**
7437  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7438  * @phba: pointer to lpfc hba data structure.
7439  *
7440  * This routine is invoked by the worker thread to process FCF table
7441  * rediscovery pending completion event.
7442  **/
7443 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7444 {
7445 	int rc;
7446 
7447 	spin_lock_irq(&phba->hbalock);
7448 	/* Clear FCF rediscovery timeout event */
7449 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7450 	/* Clear driver fast failover FCF record flag */
7451 	phba->fcf.failover_rec.flag = 0;
7452 	/* Set state for FCF fast failover */
7453 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7454 	spin_unlock_irq(&phba->hbalock);
7455 
7456 	/* Scan FCF table from the first entry to re-discover SAN */
7457 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7458 			"2777 Start post-quiescent FCF table scan\n");
7459 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7460 	if (rc)
7461 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7462 				"2747 Issue FCF scan read FCF mailbox "
7463 				"command failed 0x%x\n", rc);
7464 }
7465 
7466 /**
7467  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7468  * @phba: pointer to lpfc hba data structure.
7469  * @dev_grp: The HBA PCI-Device group number.
7470  *
7471  * This routine is invoked to set up the per HBA PCI-Device group function
7472  * API jump table entries.
7473  *
7474  * Return: 0 if success, otherwise -ENODEV
7475  **/
7476 int
7477 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7478 {
7479 	int rc;
7480 
7481 	/* Set up lpfc PCI-device group */
7482 	phba->pci_dev_grp = dev_grp;
7483 
7484 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7485 	if (dev_grp == LPFC_PCI_DEV_OC)
7486 		phba->sli_rev = LPFC_SLI_REV4;
7487 
7488 	/* Set up device INIT API function jump table */
7489 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7490 	if (rc)
7491 		return -ENODEV;
7492 	/* Set up SCSI API function jump table */
7493 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7494 	if (rc)
7495 		return -ENODEV;
7496 	/* Set up SLI API function jump table */
7497 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7498 	if (rc)
7499 		return -ENODEV;
7500 	/* Set up MBOX API function jump table */
7501 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7502 	if (rc)
7503 		return -ENODEV;
7504 
7505 	return 0;
7506 }
7507 
7508 /**
7509  * lpfc_log_intr_mode - Log the active interrupt mode
7510  * @phba: pointer to lpfc hba data structure.
7511  * @intr_mode: active interrupt mode adopted.
7512  *
7513  * This routine it invoked to log the currently used active interrupt mode
7514  * to the device.
7515  **/
7516 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7517 {
7518 	switch (intr_mode) {
7519 	case 0:
7520 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7521 				"0470 Enable INTx interrupt mode.\n");
7522 		break;
7523 	case 1:
7524 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7525 				"0481 Enabled MSI interrupt mode.\n");
7526 		break;
7527 	case 2:
7528 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7529 				"0480 Enabled MSI-X interrupt mode.\n");
7530 		break;
7531 	default:
7532 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7533 				"0482 Illegal interrupt mode.\n");
7534 		break;
7535 	}
7536 	return;
7537 }
7538 
7539 /**
7540  * lpfc_enable_pci_dev - Enable a generic PCI device.
7541  * @phba: pointer to lpfc hba data structure.
7542  *
7543  * This routine is invoked to enable the PCI device that is common to all
7544  * PCI devices.
7545  *
7546  * Return codes
7547  * 	0 - successful
7548  * 	other values - error
7549  **/
7550 static int
7551 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7552 {
7553 	struct pci_dev *pdev;
7554 
7555 	/* Obtain PCI device reference */
7556 	if (!phba->pcidev)
7557 		goto out_error;
7558 	else
7559 		pdev = phba->pcidev;
7560 	/* Enable PCI device */
7561 	if (pci_enable_device_mem(pdev))
7562 		goto out_error;
7563 	/* Request PCI resource for the device */
7564 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7565 		goto out_disable_device;
7566 	/* Set up device as PCI master and save state for EEH */
7567 	pci_set_master(pdev);
7568 	pci_try_set_mwi(pdev);
7569 	pci_save_state(pdev);
7570 
7571 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7572 	if (pci_is_pcie(pdev))
7573 		pdev->needs_freset = 1;
7574 
7575 	return 0;
7576 
7577 out_disable_device:
7578 	pci_disable_device(pdev);
7579 out_error:
7580 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7581 			"1401 Failed to enable pci device\n");
7582 	return -ENODEV;
7583 }
7584 
7585 /**
7586  * lpfc_disable_pci_dev - Disable a generic PCI device.
7587  * @phba: pointer to lpfc hba data structure.
7588  *
7589  * This routine is invoked to disable the PCI device that is common to all
7590  * PCI devices.
7591  **/
7592 static void
7593 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7594 {
7595 	struct pci_dev *pdev;
7596 
7597 	/* Obtain PCI device reference */
7598 	if (!phba->pcidev)
7599 		return;
7600 	else
7601 		pdev = phba->pcidev;
7602 	/* Release PCI resource and disable PCI device */
7603 	pci_release_mem_regions(pdev);
7604 	pci_disable_device(pdev);
7605 
7606 	return;
7607 }
7608 
7609 /**
7610  * lpfc_reset_hba - Reset a hba
7611  * @phba: pointer to lpfc hba data structure.
7612  *
7613  * This routine is invoked to reset a hba device. It brings the HBA
7614  * offline, performs a board restart, and then brings the board back
7615  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7616  * on outstanding mailbox commands.
7617  **/
7618 void
7619 lpfc_reset_hba(struct lpfc_hba *phba)
7620 {
7621 	/* If resets are disabled then set error state and return. */
7622 	if (!phba->cfg_enable_hba_reset) {
7623 		phba->link_state = LPFC_HBA_ERROR;
7624 		return;
7625 	}
7626 
7627 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7628 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7629 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7630 	} else {
7631 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7632 		lpfc_sli_flush_io_rings(phba);
7633 	}
7634 	lpfc_offline(phba);
7635 	lpfc_sli_brdrestart(phba);
7636 	lpfc_online(phba);
7637 	lpfc_unblock_mgmt_io(phba);
7638 }
7639 
7640 /**
7641  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7642  * @phba: pointer to lpfc hba data structure.
7643  *
7644  * This function enables the PCI SR-IOV virtual functions to a physical
7645  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7646  * enable the number of virtual functions to the physical function. As
7647  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7648  * API call does not considered as an error condition for most of the device.
7649  **/
7650 uint16_t
7651 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7652 {
7653 	struct pci_dev *pdev = phba->pcidev;
7654 	uint16_t nr_virtfn;
7655 	int pos;
7656 
7657 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7658 	if (pos == 0)
7659 		return 0;
7660 
7661 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7662 	return nr_virtfn;
7663 }
7664 
7665 /**
7666  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7667  * @phba: pointer to lpfc hba data structure.
7668  * @nr_vfn: number of virtual functions to be enabled.
7669  *
7670  * This function enables the PCI SR-IOV virtual functions to a physical
7671  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7672  * enable the number of virtual functions to the physical function. As
7673  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7674  * API call does not considered as an error condition for most of the device.
7675  **/
7676 int
7677 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7678 {
7679 	struct pci_dev *pdev = phba->pcidev;
7680 	uint16_t max_nr_vfn;
7681 	int rc;
7682 
7683 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7684 	if (nr_vfn > max_nr_vfn) {
7685 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7686 				"3057 Requested vfs (%d) greater than "
7687 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7688 		return -EINVAL;
7689 	}
7690 
7691 	rc = pci_enable_sriov(pdev, nr_vfn);
7692 	if (rc) {
7693 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7694 				"2806 Failed to enable sriov on this device "
7695 				"with vfn number nr_vf:%d, rc:%d\n",
7696 				nr_vfn, rc);
7697 	} else
7698 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7699 				"2807 Successful enable sriov on this device "
7700 				"with vfn number nr_vf:%d\n", nr_vfn);
7701 	return rc;
7702 }
7703 
7704 static void
7705 lpfc_unblock_requests_work(struct work_struct *work)
7706 {
7707 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7708 					     unblock_request_work);
7709 
7710 	lpfc_unblock_requests(phba);
7711 }
7712 
7713 /**
7714  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7715  * @phba: pointer to lpfc hba data structure.
7716  *
7717  * This routine is invoked to set up the driver internal resources before the
7718  * device specific resource setup to support the HBA device it attached to.
7719  *
7720  * Return codes
7721  *	0 - successful
7722  *	other values - error
7723  **/
7724 static int
7725 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7726 {
7727 	struct lpfc_sli *psli = &phba->sli;
7728 
7729 	/*
7730 	 * Driver resources common to all SLI revisions
7731 	 */
7732 	atomic_set(&phba->fast_event_count, 0);
7733 	atomic_set(&phba->dbg_log_idx, 0);
7734 	atomic_set(&phba->dbg_log_cnt, 0);
7735 	atomic_set(&phba->dbg_log_dmping, 0);
7736 	spin_lock_init(&phba->hbalock);
7737 
7738 	/* Initialize port_list spinlock */
7739 	spin_lock_init(&phba->port_list_lock);
7740 	INIT_LIST_HEAD(&phba->port_list);
7741 
7742 	INIT_LIST_HEAD(&phba->work_list);
7743 
7744 	/* Initialize the wait queue head for the kernel thread */
7745 	init_waitqueue_head(&phba->work_waitq);
7746 
7747 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7748 			"1403 Protocols supported %s %s %s\n",
7749 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7750 				"SCSI" : " "),
7751 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7752 				"NVME" : " "),
7753 			(phba->nvmet_support ? "NVMET" : " "));
7754 
7755 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7756 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7757 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7758 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7759 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7760 
7761 	/* Initialize the fabric iocb list */
7762 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7763 
7764 	/* Initialize list to save ELS buffers */
7765 	INIT_LIST_HEAD(&phba->elsbuf);
7766 
7767 	/* Initialize FCF connection rec list */
7768 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7769 
7770 	/* Initialize OAS configuration list */
7771 	spin_lock_init(&phba->devicelock);
7772 	INIT_LIST_HEAD(&phba->luns);
7773 
7774 	/* MBOX heartbeat timer */
7775 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7776 	/* Fabric block timer */
7777 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7778 	/* EA polling mode timer */
7779 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7780 	/* Heartbeat timer */
7781 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7782 
7783 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7784 
7785 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7786 			  lpfc_idle_stat_delay_work);
7787 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7788 	return 0;
7789 }
7790 
7791 /**
7792  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7793  * @phba: pointer to lpfc hba data structure.
7794  *
7795  * This routine is invoked to set up the driver internal resources specific to
7796  * support the SLI-3 HBA device it attached to.
7797  *
7798  * Return codes
7799  * 0 - successful
7800  * other values - error
7801  **/
7802 static int
7803 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7804 {
7805 	int rc, entry_sz;
7806 
7807 	/*
7808 	 * Initialize timers used by driver
7809 	 */
7810 
7811 	/* FCP polling mode timer */
7812 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7813 
7814 	/* Host attention work mask setup */
7815 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7816 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7817 
7818 	/* Get all the module params for configuring this host */
7819 	lpfc_get_cfgparam(phba);
7820 	/* Set up phase-1 common device driver resources */
7821 
7822 	rc = lpfc_setup_driver_resource_phase1(phba);
7823 	if (rc)
7824 		return -ENODEV;
7825 
7826 	if (!phba->sli.sli3_ring)
7827 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7828 					      sizeof(struct lpfc_sli_ring),
7829 					      GFP_KERNEL);
7830 	if (!phba->sli.sli3_ring)
7831 		return -ENOMEM;
7832 
7833 	/*
7834 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7835 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7836 	 */
7837 
7838 	if (phba->sli_rev == LPFC_SLI_REV4)
7839 		entry_sz = sizeof(struct sli4_sge);
7840 	else
7841 		entry_sz = sizeof(struct ulp_bde64);
7842 
7843 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7844 	if (phba->cfg_enable_bg) {
7845 		/*
7846 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7847 		 * the FCP rsp, and a BDE for each. Sice we have no control
7848 		 * over how many protection data segments the SCSI Layer
7849 		 * will hand us (ie: there could be one for every block
7850 		 * in the IO), we just allocate enough BDEs to accomidate
7851 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7852 		 * minimize the risk of running out.
7853 		 */
7854 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7855 			sizeof(struct fcp_rsp) +
7856 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7857 
7858 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7859 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7860 
7861 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7862 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7863 	} else {
7864 		/*
7865 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7866 		 * the FCP rsp, a BDE for each, and a BDE for up to
7867 		 * cfg_sg_seg_cnt data segments.
7868 		 */
7869 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7870 			sizeof(struct fcp_rsp) +
7871 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7872 
7873 		/* Total BDEs in BPL for scsi_sg_list */
7874 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7875 	}
7876 
7877 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7878 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7879 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7880 			phba->cfg_total_seg_cnt);
7881 
7882 	phba->max_vpi = LPFC_MAX_VPI;
7883 	/* This will be set to correct value after config_port mbox */
7884 	phba->max_vports = 0;
7885 
7886 	/*
7887 	 * Initialize the SLI Layer to run with lpfc HBAs.
7888 	 */
7889 	lpfc_sli_setup(phba);
7890 	lpfc_sli_queue_init(phba);
7891 
7892 	/* Allocate device driver memory */
7893 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7894 		return -ENOMEM;
7895 
7896 	phba->lpfc_sg_dma_buf_pool =
7897 		dma_pool_create("lpfc_sg_dma_buf_pool",
7898 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7899 				BPL_ALIGN_SZ, 0);
7900 
7901 	if (!phba->lpfc_sg_dma_buf_pool)
7902 		goto fail_free_mem;
7903 
7904 	phba->lpfc_cmd_rsp_buf_pool =
7905 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7906 					&phba->pcidev->dev,
7907 					sizeof(struct fcp_cmnd) +
7908 					sizeof(struct fcp_rsp),
7909 					BPL_ALIGN_SZ, 0);
7910 
7911 	if (!phba->lpfc_cmd_rsp_buf_pool)
7912 		goto fail_free_dma_buf_pool;
7913 
7914 	/*
7915 	 * Enable sr-iov virtual functions if supported and configured
7916 	 * through the module parameter.
7917 	 */
7918 	if (phba->cfg_sriov_nr_virtfn > 0) {
7919 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7920 						 phba->cfg_sriov_nr_virtfn);
7921 		if (rc) {
7922 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7923 					"2808 Requested number of SR-IOV "
7924 					"virtual functions (%d) is not "
7925 					"supported\n",
7926 					phba->cfg_sriov_nr_virtfn);
7927 			phba->cfg_sriov_nr_virtfn = 0;
7928 		}
7929 	}
7930 
7931 	return 0;
7932 
7933 fail_free_dma_buf_pool:
7934 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7935 	phba->lpfc_sg_dma_buf_pool = NULL;
7936 fail_free_mem:
7937 	lpfc_mem_free(phba);
7938 	return -ENOMEM;
7939 }
7940 
7941 /**
7942  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7943  * @phba: pointer to lpfc hba data structure.
7944  *
7945  * This routine is invoked to unset the driver internal resources set up
7946  * specific for supporting the SLI-3 HBA device it attached to.
7947  **/
7948 static void
7949 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7950 {
7951 	/* Free device driver memory allocated */
7952 	lpfc_mem_free_all(phba);
7953 
7954 	return;
7955 }
7956 
7957 /**
7958  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7959  * @phba: pointer to lpfc hba data structure.
7960  *
7961  * This routine is invoked to set up the driver internal resources specific to
7962  * support the SLI-4 HBA device it attached to.
7963  *
7964  * Return codes
7965  * 	0 - successful
7966  * 	other values - error
7967  **/
7968 static int
7969 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7970 {
7971 	LPFC_MBOXQ_t *mboxq;
7972 	MAILBOX_t *mb;
7973 	int rc, i, max_buf_size;
7974 	int longs;
7975 	int extra;
7976 	uint64_t wwn;
7977 	u32 if_type;
7978 	u32 if_fam;
7979 
7980 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7981 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7982 	phba->sli4_hba.curr_disp_cpu = 0;
7983 
7984 	/* Get all the module params for configuring this host */
7985 	lpfc_get_cfgparam(phba);
7986 
7987 	/* Set up phase-1 common device driver resources */
7988 	rc = lpfc_setup_driver_resource_phase1(phba);
7989 	if (rc)
7990 		return -ENODEV;
7991 
7992 	/* Before proceed, wait for POST done and device ready */
7993 	rc = lpfc_sli4_post_status_check(phba);
7994 	if (rc)
7995 		return -ENODEV;
7996 
7997 	/* Allocate all driver workqueues here */
7998 
7999 	/* The lpfc_wq workqueue for deferred irq use */
8000 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
8001 	if (!phba->wq)
8002 		return -ENOMEM;
8003 
8004 	/*
8005 	 * Initialize timers used by driver
8006 	 */
8007 
8008 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
8009 
8010 	/* FCF rediscover timer */
8011 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
8012 
8013 	/* CMF congestion timer */
8014 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8015 	phba->cmf_timer.function = lpfc_cmf_timer;
8016 
8017 	/*
8018 	 * Control structure for handling external multi-buffer mailbox
8019 	 * command pass-through.
8020 	 */
8021 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
8022 		sizeof(struct lpfc_mbox_ext_buf_ctx));
8023 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
8024 
8025 	phba->max_vpi = LPFC_MAX_VPI;
8026 
8027 	/* This will be set to correct value after the read_config mbox */
8028 	phba->max_vports = 0;
8029 
8030 	/* Program the default value of vlan_id and fc_map */
8031 	phba->valid_vlan = 0;
8032 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
8033 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
8034 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
8035 
8036 	/*
8037 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
8038 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
8039 	 * The WQ create will allocate the ring.
8040 	 */
8041 
8042 	/* Initialize buffer queue management fields */
8043 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
8044 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
8045 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
8046 
8047 	/* for VMID idle timeout if VMID is enabled */
8048 	if (lpfc_is_vmid_enabled(phba))
8049 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8050 
8051 	/*
8052 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8053 	 */
8054 	/* Initialize the Abort buffer list used by driver */
8055 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8056 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8057 
8058 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8059 		/* Initialize the Abort nvme buffer list used by driver */
8060 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8061 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8062 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8063 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8064 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8065 	}
8066 
8067 	/* This abort list used by worker thread */
8068 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8069 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8070 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8071 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8072 
8073 	/*
8074 	 * Initialize driver internal slow-path work queues
8075 	 */
8076 
8077 	/* Driver internel slow-path CQ Event pool */
8078 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8079 	/* Response IOCB work queue list */
8080 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8081 	/* Asynchronous event CQ Event work queue list */
8082 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8083 	/* Slow-path XRI aborted CQ Event work queue list */
8084 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8085 	/* Receive queue CQ Event work queue list */
8086 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8087 
8088 	/* Initialize extent block lists. */
8089 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8090 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8091 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8092 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8093 
8094 	/* Initialize mboxq lists. If the early init routines fail
8095 	 * these lists need to be correctly initialized.
8096 	 */
8097 	INIT_LIST_HEAD(&phba->sli.mboxq);
8098 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8099 
8100 	/* initialize optic_state to 0xFF */
8101 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8102 
8103 	/* Allocate device driver memory */
8104 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8105 	if (rc)
8106 		goto out_destroy_workqueue;
8107 
8108 	/* IF Type 2 ports get initialized now. */
8109 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8110 	    LPFC_SLI_INTF_IF_TYPE_2) {
8111 		rc = lpfc_pci_function_reset(phba);
8112 		if (unlikely(rc)) {
8113 			rc = -ENODEV;
8114 			goto out_free_mem;
8115 		}
8116 		phba->temp_sensor_support = 1;
8117 	}
8118 
8119 	/* Create the bootstrap mailbox command */
8120 	rc = lpfc_create_bootstrap_mbox(phba);
8121 	if (unlikely(rc))
8122 		goto out_free_mem;
8123 
8124 	/* Set up the host's endian order with the device. */
8125 	rc = lpfc_setup_endian_order(phba);
8126 	if (unlikely(rc))
8127 		goto out_free_bsmbx;
8128 
8129 	/* Set up the hba's configuration parameters. */
8130 	rc = lpfc_sli4_read_config(phba);
8131 	if (unlikely(rc))
8132 		goto out_free_bsmbx;
8133 
8134 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8135 		/* Right now the link is down, if FA-PWWN is configured the
8136 		 * firmware will try FLOGI before the driver gets a link up.
8137 		 * If it fails, the driver should get a MISCONFIGURED async
8138 		 * event which will clear this flag. The only notification
8139 		 * the driver gets is if it fails, if it succeeds there is no
8140 		 * notification given. Assume success.
8141 		 */
8142 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8143 	}
8144 
8145 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8146 	if (unlikely(rc))
8147 		goto out_free_bsmbx;
8148 
8149 	/* IF Type 0 ports get initialized now. */
8150 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8151 	    LPFC_SLI_INTF_IF_TYPE_0) {
8152 		rc = lpfc_pci_function_reset(phba);
8153 		if (unlikely(rc))
8154 			goto out_free_bsmbx;
8155 	}
8156 
8157 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8158 						       GFP_KERNEL);
8159 	if (!mboxq) {
8160 		rc = -ENOMEM;
8161 		goto out_free_bsmbx;
8162 	}
8163 
8164 	/* Check for NVMET being configured */
8165 	phba->nvmet_support = 0;
8166 	if (lpfc_enable_nvmet_cnt) {
8167 
8168 		/* First get WWN of HBA instance */
8169 		lpfc_read_nv(phba, mboxq);
8170 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8171 		if (rc != MBX_SUCCESS) {
8172 			lpfc_printf_log(phba, KERN_ERR,
8173 					LOG_TRACE_EVENT,
8174 					"6016 Mailbox failed , mbxCmd x%x "
8175 					"READ_NV, mbxStatus x%x\n",
8176 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8177 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8178 			mempool_free(mboxq, phba->mbox_mem_pool);
8179 			rc = -EIO;
8180 			goto out_free_bsmbx;
8181 		}
8182 		mb = &mboxq->u.mb;
8183 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8184 		       sizeof(uint64_t));
8185 		wwn = cpu_to_be64(wwn);
8186 		phba->sli4_hba.wwnn.u.name = wwn;
8187 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8188 		       sizeof(uint64_t));
8189 		/* wwn is WWPN of HBA instance */
8190 		wwn = cpu_to_be64(wwn);
8191 		phba->sli4_hba.wwpn.u.name = wwn;
8192 
8193 		/* Check to see if it matches any module parameter */
8194 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8195 			if (wwn == lpfc_enable_nvmet[i]) {
8196 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8197 				if (lpfc_nvmet_mem_alloc(phba))
8198 					break;
8199 
8200 				phba->nvmet_support = 1; /* a match */
8201 
8202 				lpfc_printf_log(phba, KERN_ERR,
8203 						LOG_TRACE_EVENT,
8204 						"6017 NVME Target %016llx\n",
8205 						wwn);
8206 #else
8207 				lpfc_printf_log(phba, KERN_ERR,
8208 						LOG_TRACE_EVENT,
8209 						"6021 Can't enable NVME Target."
8210 						" NVME_TARGET_FC infrastructure"
8211 						" is not in kernel\n");
8212 #endif
8213 				/* Not supported for NVMET */
8214 				phba->cfg_xri_rebalancing = 0;
8215 				if (phba->irq_chann_mode == NHT_MODE) {
8216 					phba->cfg_irq_chann =
8217 						phba->sli4_hba.num_present_cpu;
8218 					phba->cfg_hdw_queue =
8219 						phba->sli4_hba.num_present_cpu;
8220 					phba->irq_chann_mode = NORMAL_MODE;
8221 				}
8222 				break;
8223 			}
8224 		}
8225 	}
8226 
8227 	lpfc_nvme_mod_param_dep(phba);
8228 
8229 	/*
8230 	 * Get sli4 parameters that override parameters from Port capabilities.
8231 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8232 	 * back in conflict.
8233 	 */
8234 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8235 	if (rc) {
8236 		if_type = bf_get(lpfc_sli_intf_if_type,
8237 				 &phba->sli4_hba.sli_intf);
8238 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8239 				&phba->sli4_hba.sli_intf);
8240 		if (phba->sli4_hba.extents_in_use &&
8241 		    phba->sli4_hba.rpi_hdrs_in_use) {
8242 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8243 					"2999 Unsupported SLI4 Parameters "
8244 					"Extents and RPI headers enabled.\n");
8245 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8246 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8247 				mempool_free(mboxq, phba->mbox_mem_pool);
8248 				rc = -EIO;
8249 				goto out_free_bsmbx;
8250 			}
8251 		}
8252 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8253 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8254 			mempool_free(mboxq, phba->mbox_mem_pool);
8255 			rc = -EIO;
8256 			goto out_free_bsmbx;
8257 		}
8258 	}
8259 
8260 	/*
8261 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8262 	 * for boundary conditions in its max_sgl_segment template.
8263 	 */
8264 	extra = 2;
8265 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8266 		extra++;
8267 
8268 	/*
8269 	 * It doesn't matter what family our adapter is in, we are
8270 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8271 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8272 	 */
8273 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8274 
8275 	/*
8276 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8277 	 * used to create the sg_dma_buf_pool must be calculated.
8278 	 */
8279 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8280 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8281 
8282 		/*
8283 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8284 		 * the FCP rsp, and a SGE. Sice we have no control
8285 		 * over how many protection segments the SCSI Layer
8286 		 * will hand us (ie: there could be one for every block
8287 		 * in the IO), just allocate enough SGEs to accomidate
8288 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8289 		 * to minimize the risk of running out.
8290 		 */
8291 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8292 				sizeof(struct fcp_rsp) + max_buf_size;
8293 
8294 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8295 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8296 
8297 		/*
8298 		 * If supporting DIF, reduce the seg count for scsi to
8299 		 * allow room for the DIF sges.
8300 		 */
8301 		if (phba->cfg_enable_bg &&
8302 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8303 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8304 		else
8305 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8306 
8307 	} else {
8308 		/*
8309 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8310 		 * the FCP rsp, a SGE for each, and a SGE for up to
8311 		 * cfg_sg_seg_cnt data segments.
8312 		 */
8313 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8314 				sizeof(struct fcp_rsp) +
8315 				((phba->cfg_sg_seg_cnt + extra) *
8316 				sizeof(struct sli4_sge));
8317 
8318 		/* Total SGEs for scsi_sg_list */
8319 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8320 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8321 
8322 		/*
8323 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8324 		 * need to post 1 page for the SGL.
8325 		 */
8326 	}
8327 
8328 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8329 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8330 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8331 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8332 	else
8333 		phba->cfg_sg_dma_buf_size =
8334 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8335 
8336 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8337 			       sizeof(struct sli4_sge);
8338 
8339 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8340 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8341 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8342 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8343 					"6300 Reducing NVME sg segment "
8344 					"cnt to %d\n",
8345 					LPFC_MAX_NVME_SEG_CNT);
8346 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8347 		} else
8348 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8349 	}
8350 
8351 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8352 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8353 			"total:%d scsi:%d nvme:%d\n",
8354 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8355 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8356 			phba->cfg_nvme_seg_cnt);
8357 
8358 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8359 		i = phba->cfg_sg_dma_buf_size;
8360 	else
8361 		i = SLI4_PAGE_SIZE;
8362 
8363 	phba->lpfc_sg_dma_buf_pool =
8364 			dma_pool_create("lpfc_sg_dma_buf_pool",
8365 					&phba->pcidev->dev,
8366 					phba->cfg_sg_dma_buf_size,
8367 					i, 0);
8368 	if (!phba->lpfc_sg_dma_buf_pool) {
8369 		rc = -ENOMEM;
8370 		goto out_free_bsmbx;
8371 	}
8372 
8373 	phba->lpfc_cmd_rsp_buf_pool =
8374 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8375 					&phba->pcidev->dev,
8376 					sizeof(struct fcp_cmnd) +
8377 					sizeof(struct fcp_rsp),
8378 					i, 0);
8379 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8380 		rc = -ENOMEM;
8381 		goto out_free_sg_dma_buf;
8382 	}
8383 
8384 	mempool_free(mboxq, phba->mbox_mem_pool);
8385 
8386 	/* Verify OAS is supported */
8387 	lpfc_sli4_oas_verify(phba);
8388 
8389 	/* Verify RAS support on adapter */
8390 	lpfc_sli4_ras_init(phba);
8391 
8392 	/* Verify all the SLI4 queues */
8393 	rc = lpfc_sli4_queue_verify(phba);
8394 	if (rc)
8395 		goto out_free_cmd_rsp_buf;
8396 
8397 	/* Create driver internal CQE event pool */
8398 	rc = lpfc_sli4_cq_event_pool_create(phba);
8399 	if (rc)
8400 		goto out_free_cmd_rsp_buf;
8401 
8402 	/* Initialize sgl lists per host */
8403 	lpfc_init_sgl_list(phba);
8404 
8405 	/* Allocate and initialize active sgl array */
8406 	rc = lpfc_init_active_sgl_array(phba);
8407 	if (rc) {
8408 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8409 				"1430 Failed to initialize sgl list.\n");
8410 		goto out_destroy_cq_event_pool;
8411 	}
8412 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8413 	if (rc) {
8414 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8415 				"1432 Failed to initialize rpi headers.\n");
8416 		goto out_free_active_sgl;
8417 	}
8418 
8419 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8420 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8421 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8422 					 GFP_KERNEL);
8423 	if (!phba->fcf.fcf_rr_bmask) {
8424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8425 				"2759 Failed allocate memory for FCF round "
8426 				"robin failover bmask\n");
8427 		rc = -ENOMEM;
8428 		goto out_remove_rpi_hdrs;
8429 	}
8430 
8431 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8432 					    sizeof(struct lpfc_hba_eq_hdl),
8433 					    GFP_KERNEL);
8434 	if (!phba->sli4_hba.hba_eq_hdl) {
8435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8436 				"2572 Failed allocate memory for "
8437 				"fast-path per-EQ handle array\n");
8438 		rc = -ENOMEM;
8439 		goto out_free_fcf_rr_bmask;
8440 	}
8441 
8442 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8443 					sizeof(struct lpfc_vector_map_info),
8444 					GFP_KERNEL);
8445 	if (!phba->sli4_hba.cpu_map) {
8446 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8447 				"3327 Failed allocate memory for msi-x "
8448 				"interrupt vector mapping\n");
8449 		rc = -ENOMEM;
8450 		goto out_free_hba_eq_hdl;
8451 	}
8452 
8453 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8454 	if (!phba->sli4_hba.eq_info) {
8455 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8456 				"3321 Failed allocation for per_cpu stats\n");
8457 		rc = -ENOMEM;
8458 		goto out_free_hba_cpu_map;
8459 	}
8460 
8461 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8462 					   sizeof(*phba->sli4_hba.idle_stat),
8463 					   GFP_KERNEL);
8464 	if (!phba->sli4_hba.idle_stat) {
8465 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8466 				"3390 Failed allocation for idle_stat\n");
8467 		rc = -ENOMEM;
8468 		goto out_free_hba_eq_info;
8469 	}
8470 
8471 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8472 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8473 	if (!phba->sli4_hba.c_stat) {
8474 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8475 				"3332 Failed allocating per cpu hdwq stats\n");
8476 		rc = -ENOMEM;
8477 		goto out_free_hba_idle_stat;
8478 	}
8479 #endif
8480 
8481 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8482 	if (!phba->cmf_stat) {
8483 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8484 				"3331 Failed allocating per cpu cgn stats\n");
8485 		rc = -ENOMEM;
8486 		goto out_free_hba_hdwq_info;
8487 	}
8488 
8489 	/*
8490 	 * Enable sr-iov virtual functions if supported and configured
8491 	 * through the module parameter.
8492 	 */
8493 	if (phba->cfg_sriov_nr_virtfn > 0) {
8494 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8495 						 phba->cfg_sriov_nr_virtfn);
8496 		if (rc) {
8497 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8498 					"3020 Requested number of SR-IOV "
8499 					"virtual functions (%d) is not "
8500 					"supported\n",
8501 					phba->cfg_sriov_nr_virtfn);
8502 			phba->cfg_sriov_nr_virtfn = 0;
8503 		}
8504 	}
8505 
8506 	return 0;
8507 
8508 out_free_hba_hdwq_info:
8509 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8510 	free_percpu(phba->sli4_hba.c_stat);
8511 out_free_hba_idle_stat:
8512 #endif
8513 	kfree(phba->sli4_hba.idle_stat);
8514 out_free_hba_eq_info:
8515 	free_percpu(phba->sli4_hba.eq_info);
8516 out_free_hba_cpu_map:
8517 	kfree(phba->sli4_hba.cpu_map);
8518 out_free_hba_eq_hdl:
8519 	kfree(phba->sli4_hba.hba_eq_hdl);
8520 out_free_fcf_rr_bmask:
8521 	kfree(phba->fcf.fcf_rr_bmask);
8522 out_remove_rpi_hdrs:
8523 	lpfc_sli4_remove_rpi_hdrs(phba);
8524 out_free_active_sgl:
8525 	lpfc_free_active_sgl(phba);
8526 out_destroy_cq_event_pool:
8527 	lpfc_sli4_cq_event_pool_destroy(phba);
8528 out_free_cmd_rsp_buf:
8529 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8530 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8531 out_free_sg_dma_buf:
8532 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8533 	phba->lpfc_sg_dma_buf_pool = NULL;
8534 out_free_bsmbx:
8535 	lpfc_destroy_bootstrap_mbox(phba);
8536 out_free_mem:
8537 	lpfc_mem_free(phba);
8538 out_destroy_workqueue:
8539 	destroy_workqueue(phba->wq);
8540 	phba->wq = NULL;
8541 	return rc;
8542 }
8543 
8544 /**
8545  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8546  * @phba: pointer to lpfc hba data structure.
8547  *
8548  * This routine is invoked to unset the driver internal resources set up
8549  * specific for supporting the SLI-4 HBA device it attached to.
8550  **/
8551 static void
8552 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8553 {
8554 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8555 
8556 	free_percpu(phba->sli4_hba.eq_info);
8557 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8558 	free_percpu(phba->sli4_hba.c_stat);
8559 #endif
8560 	free_percpu(phba->cmf_stat);
8561 	kfree(phba->sli4_hba.idle_stat);
8562 
8563 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8564 	kfree(phba->sli4_hba.cpu_map);
8565 	phba->sli4_hba.num_possible_cpu = 0;
8566 	phba->sli4_hba.num_present_cpu = 0;
8567 	phba->sli4_hba.curr_disp_cpu = 0;
8568 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8569 
8570 	/* Free memory allocated for fast-path work queue handles */
8571 	kfree(phba->sli4_hba.hba_eq_hdl);
8572 
8573 	/* Free the allocated rpi headers. */
8574 	lpfc_sli4_remove_rpi_hdrs(phba);
8575 	lpfc_sli4_remove_rpis(phba);
8576 
8577 	/* Free eligible FCF index bmask */
8578 	kfree(phba->fcf.fcf_rr_bmask);
8579 
8580 	/* Free the ELS sgl list */
8581 	lpfc_free_active_sgl(phba);
8582 	lpfc_free_els_sgl_list(phba);
8583 	lpfc_free_nvmet_sgl_list(phba);
8584 
8585 	/* Free the completion queue EQ event pool */
8586 	lpfc_sli4_cq_event_release_all(phba);
8587 	lpfc_sli4_cq_event_pool_destroy(phba);
8588 
8589 	/* Release resource identifiers. */
8590 	lpfc_sli4_dealloc_resource_identifiers(phba);
8591 
8592 	/* Free the bsmbx region. */
8593 	lpfc_destroy_bootstrap_mbox(phba);
8594 
8595 	/* Free the SLI Layer memory with SLI4 HBAs */
8596 	lpfc_mem_free_all(phba);
8597 
8598 	/* Free the current connect table */
8599 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8600 		&phba->fcf_conn_rec_list, list) {
8601 		list_del_init(&conn_entry->list);
8602 		kfree(conn_entry);
8603 	}
8604 
8605 	return;
8606 }
8607 
8608 /**
8609  * lpfc_init_api_table_setup - Set up init api function jump table
8610  * @phba: The hba struct for which this call is being executed.
8611  * @dev_grp: The HBA PCI-Device group number.
8612  *
8613  * This routine sets up the device INIT interface API function jump table
8614  * in @phba struct.
8615  *
8616  * Returns: 0 - success, -ENODEV - failure.
8617  **/
8618 int
8619 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8620 {
8621 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8622 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8623 	phba->lpfc_selective_reset = lpfc_selective_reset;
8624 	switch (dev_grp) {
8625 	case LPFC_PCI_DEV_LP:
8626 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8627 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8628 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8629 		break;
8630 	case LPFC_PCI_DEV_OC:
8631 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8632 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8633 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8634 		break;
8635 	default:
8636 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8637 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8638 				dev_grp);
8639 		return -ENODEV;
8640 	}
8641 	return 0;
8642 }
8643 
8644 /**
8645  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8646  * @phba: pointer to lpfc hba data structure.
8647  *
8648  * This routine is invoked to set up the driver internal resources after the
8649  * device specific resource setup to support the HBA device it attached to.
8650  *
8651  * Return codes
8652  * 	0 - successful
8653  * 	other values - error
8654  **/
8655 static int
8656 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8657 {
8658 	int error;
8659 
8660 	/* Startup the kernel thread for this host adapter. */
8661 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8662 					  "lpfc_worker_%d", phba->brd_no);
8663 	if (IS_ERR(phba->worker_thread)) {
8664 		error = PTR_ERR(phba->worker_thread);
8665 		return error;
8666 	}
8667 
8668 	return 0;
8669 }
8670 
8671 /**
8672  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8673  * @phba: pointer to lpfc hba data structure.
8674  *
8675  * This routine is invoked to unset the driver internal resources set up after
8676  * the device specific resource setup for supporting the HBA device it
8677  * attached to.
8678  **/
8679 static void
8680 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8681 {
8682 	if (phba->wq) {
8683 		destroy_workqueue(phba->wq);
8684 		phba->wq = NULL;
8685 	}
8686 
8687 	/* Stop kernel worker thread */
8688 	if (phba->worker_thread)
8689 		kthread_stop(phba->worker_thread);
8690 }
8691 
8692 /**
8693  * lpfc_free_iocb_list - Free iocb list.
8694  * @phba: pointer to lpfc hba data structure.
8695  *
8696  * This routine is invoked to free the driver's IOCB list and memory.
8697  **/
8698 void
8699 lpfc_free_iocb_list(struct lpfc_hba *phba)
8700 {
8701 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8702 
8703 	spin_lock_irq(&phba->hbalock);
8704 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8705 				 &phba->lpfc_iocb_list, list) {
8706 		list_del(&iocbq_entry->list);
8707 		kfree(iocbq_entry);
8708 		phba->total_iocbq_bufs--;
8709 	}
8710 	spin_unlock_irq(&phba->hbalock);
8711 
8712 	return;
8713 }
8714 
8715 /**
8716  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8717  * @phba: pointer to lpfc hba data structure.
8718  * @iocb_count: number of requested iocbs
8719  *
8720  * This routine is invoked to allocate and initizlize the driver's IOCB
8721  * list and set up the IOCB tag array accordingly.
8722  *
8723  * Return codes
8724  *	0 - successful
8725  *	other values - error
8726  **/
8727 int
8728 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8729 {
8730 	struct lpfc_iocbq *iocbq_entry = NULL;
8731 	uint16_t iotag;
8732 	int i;
8733 
8734 	/* Initialize and populate the iocb list per host.  */
8735 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8736 	for (i = 0; i < iocb_count; i++) {
8737 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8738 		if (iocbq_entry == NULL) {
8739 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8740 				"expected %d count. Unloading driver.\n",
8741 				__func__, i, iocb_count);
8742 			goto out_free_iocbq;
8743 		}
8744 
8745 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8746 		if (iotag == 0) {
8747 			kfree(iocbq_entry);
8748 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8749 				"Unloading driver.\n", __func__);
8750 			goto out_free_iocbq;
8751 		}
8752 		iocbq_entry->sli4_lxritag = NO_XRI;
8753 		iocbq_entry->sli4_xritag = NO_XRI;
8754 
8755 		spin_lock_irq(&phba->hbalock);
8756 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8757 		phba->total_iocbq_bufs++;
8758 		spin_unlock_irq(&phba->hbalock);
8759 	}
8760 
8761 	return 0;
8762 
8763 out_free_iocbq:
8764 	lpfc_free_iocb_list(phba);
8765 
8766 	return -ENOMEM;
8767 }
8768 
8769 /**
8770  * lpfc_free_sgl_list - Free a given sgl list.
8771  * @phba: pointer to lpfc hba data structure.
8772  * @sglq_list: pointer to the head of sgl list.
8773  *
8774  * This routine is invoked to free a give sgl list and memory.
8775  **/
8776 void
8777 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8778 {
8779 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8780 
8781 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8782 		list_del(&sglq_entry->list);
8783 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8784 		kfree(sglq_entry);
8785 	}
8786 }
8787 
8788 /**
8789  * lpfc_free_els_sgl_list - Free els sgl list.
8790  * @phba: pointer to lpfc hba data structure.
8791  *
8792  * This routine is invoked to free the driver's els sgl list and memory.
8793  **/
8794 static void
8795 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8796 {
8797 	LIST_HEAD(sglq_list);
8798 
8799 	/* Retrieve all els sgls from driver list */
8800 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8801 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8802 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8803 
8804 	/* Now free the sgl list */
8805 	lpfc_free_sgl_list(phba, &sglq_list);
8806 }
8807 
8808 /**
8809  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8810  * @phba: pointer to lpfc hba data structure.
8811  *
8812  * This routine is invoked to free the driver's nvmet sgl list and memory.
8813  **/
8814 static void
8815 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8816 {
8817 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8818 	LIST_HEAD(sglq_list);
8819 
8820 	/* Retrieve all nvmet sgls from driver list */
8821 	spin_lock_irq(&phba->hbalock);
8822 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8823 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8824 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8825 	spin_unlock_irq(&phba->hbalock);
8826 
8827 	/* Now free the sgl list */
8828 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8829 		list_del(&sglq_entry->list);
8830 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8831 		kfree(sglq_entry);
8832 	}
8833 
8834 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8835 	 * The next initialization cycle sets the count and allocates
8836 	 * the sgls over again.
8837 	 */
8838 	phba->sli4_hba.nvmet_xri_cnt = 0;
8839 }
8840 
8841 /**
8842  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8843  * @phba: pointer to lpfc hba data structure.
8844  *
8845  * This routine is invoked to allocate the driver's active sgl memory.
8846  * This array will hold the sglq_entry's for active IOs.
8847  **/
8848 static int
8849 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8850 {
8851 	int size;
8852 	size = sizeof(struct lpfc_sglq *);
8853 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8854 
8855 	phba->sli4_hba.lpfc_sglq_active_list =
8856 		kzalloc(size, GFP_KERNEL);
8857 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8858 		return -ENOMEM;
8859 	return 0;
8860 }
8861 
8862 /**
8863  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8864  * @phba: pointer to lpfc hba data structure.
8865  *
8866  * This routine is invoked to walk through the array of active sglq entries
8867  * and free all of the resources.
8868  * This is just a place holder for now.
8869  **/
8870 static void
8871 lpfc_free_active_sgl(struct lpfc_hba *phba)
8872 {
8873 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8874 }
8875 
8876 /**
8877  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8878  * @phba: pointer to lpfc hba data structure.
8879  *
8880  * This routine is invoked to allocate and initizlize the driver's sgl
8881  * list and set up the sgl xritag tag array accordingly.
8882  *
8883  **/
8884 static void
8885 lpfc_init_sgl_list(struct lpfc_hba *phba)
8886 {
8887 	/* Initialize and populate the sglq list per host/VF. */
8888 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8889 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8890 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8891 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8892 
8893 	/* els xri-sgl book keeping */
8894 	phba->sli4_hba.els_xri_cnt = 0;
8895 
8896 	/* nvme xri-buffer book keeping */
8897 	phba->sli4_hba.io_xri_cnt = 0;
8898 }
8899 
8900 /**
8901  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8902  * @phba: pointer to lpfc hba data structure.
8903  *
8904  * This routine is invoked to post rpi header templates to the
8905  * port for those SLI4 ports that do not support extents.  This routine
8906  * posts a PAGE_SIZE memory region to the port to hold up to
8907  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8908  * and should be called only when interrupts are disabled.
8909  *
8910  * Return codes
8911  * 	0 - successful
8912  *	-ERROR - otherwise.
8913  **/
8914 int
8915 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8916 {
8917 	int rc = 0;
8918 	struct lpfc_rpi_hdr *rpi_hdr;
8919 
8920 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8921 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8922 		return rc;
8923 	if (phba->sli4_hba.extents_in_use)
8924 		return -EIO;
8925 
8926 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8927 	if (!rpi_hdr) {
8928 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8929 				"0391 Error during rpi post operation\n");
8930 		lpfc_sli4_remove_rpis(phba);
8931 		rc = -ENODEV;
8932 	}
8933 
8934 	return rc;
8935 }
8936 
8937 /**
8938  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8939  * @phba: pointer to lpfc hba data structure.
8940  *
8941  * This routine is invoked to allocate a single 4KB memory region to
8942  * support rpis and stores them in the phba.  This single region
8943  * provides support for up to 64 rpis.  The region is used globally
8944  * by the device.
8945  *
8946  * Returns:
8947  *   A valid rpi hdr on success.
8948  *   A NULL pointer on any failure.
8949  **/
8950 struct lpfc_rpi_hdr *
8951 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8952 {
8953 	uint16_t rpi_limit, curr_rpi_range;
8954 	struct lpfc_dmabuf *dmabuf;
8955 	struct lpfc_rpi_hdr *rpi_hdr;
8956 
8957 	/*
8958 	 * If the SLI4 port supports extents, posting the rpi header isn't
8959 	 * required.  Set the expected maximum count and let the actual value
8960 	 * get set when extents are fully allocated.
8961 	 */
8962 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8963 		return NULL;
8964 	if (phba->sli4_hba.extents_in_use)
8965 		return NULL;
8966 
8967 	/* The limit on the logical index is just the max_rpi count. */
8968 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8969 
8970 	spin_lock_irq(&phba->hbalock);
8971 	/*
8972 	 * Establish the starting RPI in this header block.  The starting
8973 	 * rpi is normalized to a zero base because the physical rpi is
8974 	 * port based.
8975 	 */
8976 	curr_rpi_range = phba->sli4_hba.next_rpi;
8977 	spin_unlock_irq(&phba->hbalock);
8978 
8979 	/* Reached full RPI range */
8980 	if (curr_rpi_range == rpi_limit)
8981 		return NULL;
8982 
8983 	/*
8984 	 * First allocate the protocol header region for the port.  The
8985 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8986 	 */
8987 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8988 	if (!dmabuf)
8989 		return NULL;
8990 
8991 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8992 					  LPFC_HDR_TEMPLATE_SIZE,
8993 					  &dmabuf->phys, GFP_KERNEL);
8994 	if (!dmabuf->virt) {
8995 		rpi_hdr = NULL;
8996 		goto err_free_dmabuf;
8997 	}
8998 
8999 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
9000 		rpi_hdr = NULL;
9001 		goto err_free_coherent;
9002 	}
9003 
9004 	/* Save the rpi header data for cleanup later. */
9005 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
9006 	if (!rpi_hdr)
9007 		goto err_free_coherent;
9008 
9009 	rpi_hdr->dmabuf = dmabuf;
9010 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
9011 	rpi_hdr->page_count = 1;
9012 	spin_lock_irq(&phba->hbalock);
9013 
9014 	/* The rpi_hdr stores the logical index only. */
9015 	rpi_hdr->start_rpi = curr_rpi_range;
9016 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
9017 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
9018 
9019 	spin_unlock_irq(&phba->hbalock);
9020 	return rpi_hdr;
9021 
9022  err_free_coherent:
9023 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
9024 			  dmabuf->virt, dmabuf->phys);
9025  err_free_dmabuf:
9026 	kfree(dmabuf);
9027 	return NULL;
9028 }
9029 
9030 /**
9031  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
9032  * @phba: pointer to lpfc hba data structure.
9033  *
9034  * This routine is invoked to remove all memory resources allocated
9035  * to support rpis for SLI4 ports not supporting extents. This routine
9036  * presumes the caller has released all rpis consumed by fabric or port
9037  * logins and is prepared to have the header pages removed.
9038  **/
9039 void
9040 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
9041 {
9042 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
9043 
9044 	if (!phba->sli4_hba.rpi_hdrs_in_use)
9045 		goto exit;
9046 
9047 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9048 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9049 		list_del(&rpi_hdr->list);
9050 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9051 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9052 		kfree(rpi_hdr->dmabuf);
9053 		kfree(rpi_hdr);
9054 	}
9055  exit:
9056 	/* There are no rpis available to the port now. */
9057 	phba->sli4_hba.next_rpi = 0;
9058 }
9059 
9060 /**
9061  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9062  * @pdev: pointer to pci device data structure.
9063  *
9064  * This routine is invoked to allocate the driver hba data structure for an
9065  * HBA device. If the allocation is successful, the phba reference to the
9066  * PCI device data structure is set.
9067  *
9068  * Return codes
9069  *      pointer to @phba - successful
9070  *      NULL - error
9071  **/
9072 static struct lpfc_hba *
9073 lpfc_hba_alloc(struct pci_dev *pdev)
9074 {
9075 	struct lpfc_hba *phba;
9076 
9077 	/* Allocate memory for HBA structure */
9078 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9079 	if (!phba) {
9080 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9081 		return NULL;
9082 	}
9083 
9084 	/* Set reference to PCI device in HBA structure */
9085 	phba->pcidev = pdev;
9086 
9087 	/* Assign an unused board number */
9088 	phba->brd_no = lpfc_get_instance();
9089 	if (phba->brd_no < 0) {
9090 		kfree(phba);
9091 		return NULL;
9092 	}
9093 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9094 
9095 	spin_lock_init(&phba->ct_ev_lock);
9096 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9097 
9098 	return phba;
9099 }
9100 
9101 /**
9102  * lpfc_hba_free - Free driver hba data structure with a device.
9103  * @phba: pointer to lpfc hba data structure.
9104  *
9105  * This routine is invoked to free the driver hba data structure with an
9106  * HBA device.
9107  **/
9108 static void
9109 lpfc_hba_free(struct lpfc_hba *phba)
9110 {
9111 	if (phba->sli_rev == LPFC_SLI_REV4)
9112 		kfree(phba->sli4_hba.hdwq);
9113 
9114 	/* Release the driver assigned board number */
9115 	idr_remove(&lpfc_hba_index, phba->brd_no);
9116 
9117 	/* Free memory allocated with sli3 rings */
9118 	kfree(phba->sli.sli3_ring);
9119 	phba->sli.sli3_ring = NULL;
9120 
9121 	kfree(phba);
9122 	return;
9123 }
9124 
9125 /**
9126  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9127  * @vport: pointer to lpfc vport data structure.
9128  *
9129  * This routine is will setup initial FDMI attribute masks for
9130  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9131  * to get these attributes first before falling back, the attribute
9132  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9133  **/
9134 void
9135 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9136 {
9137 	struct lpfc_hba *phba = vport->phba;
9138 
9139 	vport->load_flag |= FC_ALLOW_FDMI;
9140 	if (phba->cfg_enable_SmartSAN ||
9141 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9142 		/* Setup appropriate attribute masks */
9143 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9144 		if (phba->cfg_enable_SmartSAN)
9145 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9146 		else
9147 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9148 	}
9149 
9150 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9151 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9152 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9153 }
9154 
9155 /**
9156  * lpfc_create_shost - Create hba physical port with associated scsi host.
9157  * @phba: pointer to lpfc hba data structure.
9158  *
9159  * This routine is invoked to create HBA physical port and associate a SCSI
9160  * host with it.
9161  *
9162  * Return codes
9163  *      0 - successful
9164  *      other values - error
9165  **/
9166 static int
9167 lpfc_create_shost(struct lpfc_hba *phba)
9168 {
9169 	struct lpfc_vport *vport;
9170 	struct Scsi_Host  *shost;
9171 
9172 	/* Initialize HBA FC structure */
9173 	phba->fc_edtov = FF_DEF_EDTOV;
9174 	phba->fc_ratov = FF_DEF_RATOV;
9175 	phba->fc_altov = FF_DEF_ALTOV;
9176 	phba->fc_arbtov = FF_DEF_ARBTOV;
9177 
9178 	atomic_set(&phba->sdev_cnt, 0);
9179 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9180 	if (!vport)
9181 		return -ENODEV;
9182 
9183 	shost = lpfc_shost_from_vport(vport);
9184 	phba->pport = vport;
9185 
9186 	if (phba->nvmet_support) {
9187 		/* Only 1 vport (pport) will support NVME target */
9188 		phba->targetport = NULL;
9189 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9190 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9191 				"6076 NVME Target Found\n");
9192 	}
9193 
9194 	lpfc_debugfs_initialize(vport);
9195 	/* Put reference to SCSI host to driver's device private data */
9196 	pci_set_drvdata(phba->pcidev, shost);
9197 
9198 	lpfc_setup_fdmi_mask(vport);
9199 
9200 	/*
9201 	 * At this point we are fully registered with PSA. In addition,
9202 	 * any initial discovery should be completed.
9203 	 */
9204 	return 0;
9205 }
9206 
9207 /**
9208  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9209  * @phba: pointer to lpfc hba data structure.
9210  *
9211  * This routine is invoked to destroy HBA physical port and the associated
9212  * SCSI host.
9213  **/
9214 static void
9215 lpfc_destroy_shost(struct lpfc_hba *phba)
9216 {
9217 	struct lpfc_vport *vport = phba->pport;
9218 
9219 	/* Destroy physical port that associated with the SCSI host */
9220 	destroy_port(vport);
9221 
9222 	return;
9223 }
9224 
9225 /**
9226  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9227  * @phba: pointer to lpfc hba data structure.
9228  * @shost: the shost to be used to detect Block guard settings.
9229  *
9230  * This routine sets up the local Block guard protocol settings for @shost.
9231  * This routine also allocates memory for debugging bg buffers.
9232  **/
9233 static void
9234 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9235 {
9236 	uint32_t old_mask;
9237 	uint32_t old_guard;
9238 
9239 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9240 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9241 				"1478 Registering BlockGuard with the "
9242 				"SCSI layer\n");
9243 
9244 		old_mask = phba->cfg_prot_mask;
9245 		old_guard = phba->cfg_prot_guard;
9246 
9247 		/* Only allow supported values */
9248 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9249 			SHOST_DIX_TYPE0_PROTECTION |
9250 			SHOST_DIX_TYPE1_PROTECTION);
9251 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9252 					 SHOST_DIX_GUARD_CRC);
9253 
9254 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9255 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9256 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9257 
9258 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9259 			if ((old_mask != phba->cfg_prot_mask) ||
9260 				(old_guard != phba->cfg_prot_guard))
9261 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9262 					"1475 Registering BlockGuard with the "
9263 					"SCSI layer: mask %d  guard %d\n",
9264 					phba->cfg_prot_mask,
9265 					phba->cfg_prot_guard);
9266 
9267 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9268 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9269 		} else
9270 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9271 				"1479 Not Registering BlockGuard with the SCSI "
9272 				"layer, Bad protection parameters: %d %d\n",
9273 				old_mask, old_guard);
9274 	}
9275 }
9276 
9277 /**
9278  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9279  * @phba: pointer to lpfc hba data structure.
9280  *
9281  * This routine is invoked to perform all the necessary post initialization
9282  * setup for the device.
9283  **/
9284 static void
9285 lpfc_post_init_setup(struct lpfc_hba *phba)
9286 {
9287 	struct Scsi_Host  *shost;
9288 	struct lpfc_adapter_event_header adapter_event;
9289 
9290 	/* Get the default values for Model Name and Description */
9291 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9292 
9293 	/*
9294 	 * hba setup may have changed the hba_queue_depth so we need to
9295 	 * adjust the value of can_queue.
9296 	 */
9297 	shost = pci_get_drvdata(phba->pcidev);
9298 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9299 
9300 	lpfc_host_attrib_init(shost);
9301 
9302 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9303 		spin_lock_irq(shost->host_lock);
9304 		lpfc_poll_start_timer(phba);
9305 		spin_unlock_irq(shost->host_lock);
9306 	}
9307 
9308 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9309 			"0428 Perform SCSI scan\n");
9310 	/* Send board arrival event to upper layer */
9311 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9312 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9313 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9314 				  sizeof(adapter_event),
9315 				  (char *) &adapter_event,
9316 				  LPFC_NL_VENDOR_ID);
9317 	return;
9318 }
9319 
9320 /**
9321  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9322  * @phba: pointer to lpfc hba data structure.
9323  *
9324  * This routine is invoked to set up the PCI device memory space for device
9325  * with SLI-3 interface spec.
9326  *
9327  * Return codes
9328  * 	0 - successful
9329  * 	other values - error
9330  **/
9331 static int
9332 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9333 {
9334 	struct pci_dev *pdev = phba->pcidev;
9335 	unsigned long bar0map_len, bar2map_len;
9336 	int i, hbq_count;
9337 	void *ptr;
9338 	int error;
9339 
9340 	if (!pdev)
9341 		return -ENODEV;
9342 
9343 	/* Set the device DMA mask size */
9344 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9345 	if (error)
9346 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9347 	if (error)
9348 		return error;
9349 	error = -ENODEV;
9350 
9351 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9352 	 * required by each mapping.
9353 	 */
9354 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9355 	bar0map_len = pci_resource_len(pdev, 0);
9356 
9357 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9358 	bar2map_len = pci_resource_len(pdev, 2);
9359 
9360 	/* Map HBA SLIM to a kernel virtual address. */
9361 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9362 	if (!phba->slim_memmap_p) {
9363 		dev_printk(KERN_ERR, &pdev->dev,
9364 			   "ioremap failed for SLIM memory.\n");
9365 		goto out;
9366 	}
9367 
9368 	/* Map HBA Control Registers to a kernel virtual address. */
9369 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9370 	if (!phba->ctrl_regs_memmap_p) {
9371 		dev_printk(KERN_ERR, &pdev->dev,
9372 			   "ioremap failed for HBA control registers.\n");
9373 		goto out_iounmap_slim;
9374 	}
9375 
9376 	/* Allocate memory for SLI-2 structures */
9377 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9378 					       &phba->slim2p.phys, GFP_KERNEL);
9379 	if (!phba->slim2p.virt)
9380 		goto out_iounmap;
9381 
9382 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9383 	phba->mbox_ext = (phba->slim2p.virt +
9384 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9385 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9386 	phba->IOCBs = (phba->slim2p.virt +
9387 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9388 
9389 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9390 						 lpfc_sli_hbq_size(),
9391 						 &phba->hbqslimp.phys,
9392 						 GFP_KERNEL);
9393 	if (!phba->hbqslimp.virt)
9394 		goto out_free_slim;
9395 
9396 	hbq_count = lpfc_sli_hbq_count();
9397 	ptr = phba->hbqslimp.virt;
9398 	for (i = 0; i < hbq_count; ++i) {
9399 		phba->hbqs[i].hbq_virt = ptr;
9400 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9401 		ptr += (lpfc_hbq_defs[i]->entry_count *
9402 			sizeof(struct lpfc_hbq_entry));
9403 	}
9404 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9405 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9406 
9407 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9408 
9409 	phba->MBslimaddr = phba->slim_memmap_p;
9410 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9411 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9412 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9413 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9414 
9415 	return 0;
9416 
9417 out_free_slim:
9418 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9419 			  phba->slim2p.virt, phba->slim2p.phys);
9420 out_iounmap:
9421 	iounmap(phba->ctrl_regs_memmap_p);
9422 out_iounmap_slim:
9423 	iounmap(phba->slim_memmap_p);
9424 out:
9425 	return error;
9426 }
9427 
9428 /**
9429  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9430  * @phba: pointer to lpfc hba data structure.
9431  *
9432  * This routine is invoked to unset the PCI device memory space for device
9433  * with SLI-3 interface spec.
9434  **/
9435 static void
9436 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9437 {
9438 	struct pci_dev *pdev;
9439 
9440 	/* Obtain PCI device reference */
9441 	if (!phba->pcidev)
9442 		return;
9443 	else
9444 		pdev = phba->pcidev;
9445 
9446 	/* Free coherent DMA memory allocated */
9447 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9448 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9449 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9450 			  phba->slim2p.virt, phba->slim2p.phys);
9451 
9452 	/* I/O memory unmap */
9453 	iounmap(phba->ctrl_regs_memmap_p);
9454 	iounmap(phba->slim_memmap_p);
9455 
9456 	return;
9457 }
9458 
9459 /**
9460  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9461  * @phba: pointer to lpfc hba data structure.
9462  *
9463  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9464  * done and check status.
9465  *
9466  * Return 0 if successful, otherwise -ENODEV.
9467  **/
9468 int
9469 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9470 {
9471 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9472 	struct lpfc_register reg_data;
9473 	int i, port_error = 0;
9474 	uint32_t if_type;
9475 
9476 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9477 	memset(&reg_data, 0, sizeof(reg_data));
9478 	if (!phba->sli4_hba.PSMPHRregaddr)
9479 		return -ENODEV;
9480 
9481 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9482 	for (i = 0; i < 3000; i++) {
9483 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9484 			&portsmphr_reg.word0) ||
9485 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9486 			/* Port has a fatal POST error, break out */
9487 			port_error = -ENODEV;
9488 			break;
9489 		}
9490 		if (LPFC_POST_STAGE_PORT_READY ==
9491 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9492 			break;
9493 		msleep(10);
9494 	}
9495 
9496 	/*
9497 	 * If there was a port error during POST, then don't proceed with
9498 	 * other register reads as the data may not be valid.  Just exit.
9499 	 */
9500 	if (port_error) {
9501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9502 			"1408 Port Failed POST - portsmphr=0x%x, "
9503 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9504 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9505 			portsmphr_reg.word0,
9506 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9507 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9508 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9509 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9510 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9511 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9512 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9513 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9514 	} else {
9515 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9516 				"2534 Device Info: SLIFamily=0x%x, "
9517 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9518 				"SLIHint_2=0x%x, FT=0x%x\n",
9519 				bf_get(lpfc_sli_intf_sli_family,
9520 				       &phba->sli4_hba.sli_intf),
9521 				bf_get(lpfc_sli_intf_slirev,
9522 				       &phba->sli4_hba.sli_intf),
9523 				bf_get(lpfc_sli_intf_if_type,
9524 				       &phba->sli4_hba.sli_intf),
9525 				bf_get(lpfc_sli_intf_sli_hint1,
9526 				       &phba->sli4_hba.sli_intf),
9527 				bf_get(lpfc_sli_intf_sli_hint2,
9528 				       &phba->sli4_hba.sli_intf),
9529 				bf_get(lpfc_sli_intf_func_type,
9530 				       &phba->sli4_hba.sli_intf));
9531 		/*
9532 		 * Check for other Port errors during the initialization
9533 		 * process.  Fail the load if the port did not come up
9534 		 * correctly.
9535 		 */
9536 		if_type = bf_get(lpfc_sli_intf_if_type,
9537 				 &phba->sli4_hba.sli_intf);
9538 		switch (if_type) {
9539 		case LPFC_SLI_INTF_IF_TYPE_0:
9540 			phba->sli4_hba.ue_mask_lo =
9541 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9542 			phba->sli4_hba.ue_mask_hi =
9543 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9544 			uerrlo_reg.word0 =
9545 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9546 			uerrhi_reg.word0 =
9547 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9548 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9549 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9550 				lpfc_printf_log(phba, KERN_ERR,
9551 						LOG_TRACE_EVENT,
9552 						"1422 Unrecoverable Error "
9553 						"Detected during POST "
9554 						"uerr_lo_reg=0x%x, "
9555 						"uerr_hi_reg=0x%x, "
9556 						"ue_mask_lo_reg=0x%x, "
9557 						"ue_mask_hi_reg=0x%x\n",
9558 						uerrlo_reg.word0,
9559 						uerrhi_reg.word0,
9560 						phba->sli4_hba.ue_mask_lo,
9561 						phba->sli4_hba.ue_mask_hi);
9562 				port_error = -ENODEV;
9563 			}
9564 			break;
9565 		case LPFC_SLI_INTF_IF_TYPE_2:
9566 		case LPFC_SLI_INTF_IF_TYPE_6:
9567 			/* Final checks.  The port status should be clean. */
9568 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9569 				&reg_data.word0) ||
9570 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9571 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9572 				phba->work_status[0] =
9573 					readl(phba->sli4_hba.u.if_type2.
9574 					      ERR1regaddr);
9575 				phba->work_status[1] =
9576 					readl(phba->sli4_hba.u.if_type2.
9577 					      ERR2regaddr);
9578 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9579 					"2888 Unrecoverable port error "
9580 					"following POST: port status reg "
9581 					"0x%x, port_smphr reg 0x%x, "
9582 					"error 1=0x%x, error 2=0x%x\n",
9583 					reg_data.word0,
9584 					portsmphr_reg.word0,
9585 					phba->work_status[0],
9586 					phba->work_status[1]);
9587 				port_error = -ENODEV;
9588 				break;
9589 			}
9590 
9591 			if (lpfc_pldv_detect &&
9592 			    bf_get(lpfc_sli_intf_sli_family,
9593 				   &phba->sli4_hba.sli_intf) ==
9594 					LPFC_SLI_INTF_FAMILY_G6)
9595 				pci_write_config_byte(phba->pcidev,
9596 						      LPFC_SLI_INTF, CFG_PLD);
9597 			break;
9598 		case LPFC_SLI_INTF_IF_TYPE_1:
9599 		default:
9600 			break;
9601 		}
9602 	}
9603 	return port_error;
9604 }
9605 
9606 /**
9607  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9608  * @phba: pointer to lpfc hba data structure.
9609  * @if_type:  The SLI4 interface type getting configured.
9610  *
9611  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9612  * memory map.
9613  **/
9614 static void
9615 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9616 {
9617 	switch (if_type) {
9618 	case LPFC_SLI_INTF_IF_TYPE_0:
9619 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9620 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9621 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9622 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9623 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9625 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9626 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9627 		phba->sli4_hba.SLIINTFregaddr =
9628 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9629 		break;
9630 	case LPFC_SLI_INTF_IF_TYPE_2:
9631 		phba->sli4_hba.u.if_type2.EQDregaddr =
9632 			phba->sli4_hba.conf_regs_memmap_p +
9633 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9634 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9635 			phba->sli4_hba.conf_regs_memmap_p +
9636 						LPFC_CTL_PORT_ER1_OFFSET;
9637 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9638 			phba->sli4_hba.conf_regs_memmap_p +
9639 						LPFC_CTL_PORT_ER2_OFFSET;
9640 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9641 			phba->sli4_hba.conf_regs_memmap_p +
9642 						LPFC_CTL_PORT_CTL_OFFSET;
9643 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9644 			phba->sli4_hba.conf_regs_memmap_p +
9645 						LPFC_CTL_PORT_STA_OFFSET;
9646 		phba->sli4_hba.SLIINTFregaddr =
9647 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9648 		phba->sli4_hba.PSMPHRregaddr =
9649 			phba->sli4_hba.conf_regs_memmap_p +
9650 						LPFC_CTL_PORT_SEM_OFFSET;
9651 		phba->sli4_hba.RQDBregaddr =
9652 			phba->sli4_hba.conf_regs_memmap_p +
9653 						LPFC_ULP0_RQ_DOORBELL;
9654 		phba->sli4_hba.WQDBregaddr =
9655 			phba->sli4_hba.conf_regs_memmap_p +
9656 						LPFC_ULP0_WQ_DOORBELL;
9657 		phba->sli4_hba.CQDBregaddr =
9658 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9659 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9660 		phba->sli4_hba.MQDBregaddr =
9661 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9662 		phba->sli4_hba.BMBXregaddr =
9663 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9664 		break;
9665 	case LPFC_SLI_INTF_IF_TYPE_6:
9666 		phba->sli4_hba.u.if_type2.EQDregaddr =
9667 			phba->sli4_hba.conf_regs_memmap_p +
9668 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9669 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9670 			phba->sli4_hba.conf_regs_memmap_p +
9671 						LPFC_CTL_PORT_ER1_OFFSET;
9672 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9673 			phba->sli4_hba.conf_regs_memmap_p +
9674 						LPFC_CTL_PORT_ER2_OFFSET;
9675 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9676 			phba->sli4_hba.conf_regs_memmap_p +
9677 						LPFC_CTL_PORT_CTL_OFFSET;
9678 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9679 			phba->sli4_hba.conf_regs_memmap_p +
9680 						LPFC_CTL_PORT_STA_OFFSET;
9681 		phba->sli4_hba.PSMPHRregaddr =
9682 			phba->sli4_hba.conf_regs_memmap_p +
9683 						LPFC_CTL_PORT_SEM_OFFSET;
9684 		phba->sli4_hba.BMBXregaddr =
9685 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9686 		break;
9687 	case LPFC_SLI_INTF_IF_TYPE_1:
9688 	default:
9689 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9690 			   "FATAL - unsupported SLI4 interface type - %d\n",
9691 			   if_type);
9692 		break;
9693 	}
9694 }
9695 
9696 /**
9697  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9698  * @phba: pointer to lpfc hba data structure.
9699  * @if_type: sli if type to operate on.
9700  *
9701  * This routine is invoked to set up SLI4 BAR1 register memory map.
9702  **/
9703 static void
9704 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9705 {
9706 	switch (if_type) {
9707 	case LPFC_SLI_INTF_IF_TYPE_0:
9708 		phba->sli4_hba.PSMPHRregaddr =
9709 			phba->sli4_hba.ctrl_regs_memmap_p +
9710 			LPFC_SLIPORT_IF0_SMPHR;
9711 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9712 			LPFC_HST_ISR0;
9713 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9714 			LPFC_HST_IMR0;
9715 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9716 			LPFC_HST_ISCR0;
9717 		break;
9718 	case LPFC_SLI_INTF_IF_TYPE_6:
9719 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9720 			LPFC_IF6_RQ_DOORBELL;
9721 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9722 			LPFC_IF6_WQ_DOORBELL;
9723 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9724 			LPFC_IF6_CQ_DOORBELL;
9725 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9726 			LPFC_IF6_EQ_DOORBELL;
9727 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9728 			LPFC_IF6_MQ_DOORBELL;
9729 		break;
9730 	case LPFC_SLI_INTF_IF_TYPE_2:
9731 	case LPFC_SLI_INTF_IF_TYPE_1:
9732 	default:
9733 		dev_err(&phba->pcidev->dev,
9734 			   "FATAL - unsupported SLI4 interface type - %d\n",
9735 			   if_type);
9736 		break;
9737 	}
9738 }
9739 
9740 /**
9741  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9742  * @phba: pointer to lpfc hba data structure.
9743  * @vf: virtual function number
9744  *
9745  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9746  * based on the given viftual function number, @vf.
9747  *
9748  * Return 0 if successful, otherwise -ENODEV.
9749  **/
9750 static int
9751 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9752 {
9753 	if (vf > LPFC_VIR_FUNC_MAX)
9754 		return -ENODEV;
9755 
9756 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9757 				vf * LPFC_VFR_PAGE_SIZE +
9758 					LPFC_ULP0_RQ_DOORBELL);
9759 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9760 				vf * LPFC_VFR_PAGE_SIZE +
9761 					LPFC_ULP0_WQ_DOORBELL);
9762 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9763 				vf * LPFC_VFR_PAGE_SIZE +
9764 					LPFC_EQCQ_DOORBELL);
9765 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9766 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9767 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9768 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9769 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9770 	return 0;
9771 }
9772 
9773 /**
9774  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9775  * @phba: pointer to lpfc hba data structure.
9776  *
9777  * This routine is invoked to create the bootstrap mailbox
9778  * region consistent with the SLI-4 interface spec.  This
9779  * routine allocates all memory necessary to communicate
9780  * mailbox commands to the port and sets up all alignment
9781  * needs.  No locks are expected to be held when calling
9782  * this routine.
9783  *
9784  * Return codes
9785  * 	0 - successful
9786  * 	-ENOMEM - could not allocated memory.
9787  **/
9788 static int
9789 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9790 {
9791 	uint32_t bmbx_size;
9792 	struct lpfc_dmabuf *dmabuf;
9793 	struct dma_address *dma_address;
9794 	uint32_t pa_addr;
9795 	uint64_t phys_addr;
9796 
9797 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9798 	if (!dmabuf)
9799 		return -ENOMEM;
9800 
9801 	/*
9802 	 * The bootstrap mailbox region is comprised of 2 parts
9803 	 * plus an alignment restriction of 16 bytes.
9804 	 */
9805 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9806 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9807 					  &dmabuf->phys, GFP_KERNEL);
9808 	if (!dmabuf->virt) {
9809 		kfree(dmabuf);
9810 		return -ENOMEM;
9811 	}
9812 
9813 	/*
9814 	 * Initialize the bootstrap mailbox pointers now so that the register
9815 	 * operations are simple later.  The mailbox dma address is required
9816 	 * to be 16-byte aligned.  Also align the virtual memory as each
9817 	 * maibox is copied into the bmbx mailbox region before issuing the
9818 	 * command to the port.
9819 	 */
9820 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9821 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9822 
9823 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9824 					      LPFC_ALIGN_16_BYTE);
9825 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9826 					      LPFC_ALIGN_16_BYTE);
9827 
9828 	/*
9829 	 * Set the high and low physical addresses now.  The SLI4 alignment
9830 	 * requirement is 16 bytes and the mailbox is posted to the port
9831 	 * as two 30-bit addresses.  The other data is a bit marking whether
9832 	 * the 30-bit address is the high or low address.
9833 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9834 	 * clean on 32 bit machines.
9835 	 */
9836 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9837 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9838 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9839 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9840 					   LPFC_BMBX_BIT1_ADDR_HI);
9841 
9842 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9843 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9844 					   LPFC_BMBX_BIT1_ADDR_LO);
9845 	return 0;
9846 }
9847 
9848 /**
9849  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9850  * @phba: pointer to lpfc hba data structure.
9851  *
9852  * This routine is invoked to teardown the bootstrap mailbox
9853  * region and release all host resources. This routine requires
9854  * the caller to ensure all mailbox commands recovered, no
9855  * additional mailbox comands are sent, and interrupts are disabled
9856  * before calling this routine.
9857  *
9858  **/
9859 static void
9860 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9861 {
9862 	dma_free_coherent(&phba->pcidev->dev,
9863 			  phba->sli4_hba.bmbx.bmbx_size,
9864 			  phba->sli4_hba.bmbx.dmabuf->virt,
9865 			  phba->sli4_hba.bmbx.dmabuf->phys);
9866 
9867 	kfree(phba->sli4_hba.bmbx.dmabuf);
9868 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9869 }
9870 
9871 static const char * const lpfc_topo_to_str[] = {
9872 	"Loop then P2P",
9873 	"Loopback",
9874 	"P2P Only",
9875 	"Unsupported",
9876 	"Loop Only",
9877 	"Unsupported",
9878 	"P2P then Loop",
9879 };
9880 
9881 #define	LINK_FLAGS_DEF	0x0
9882 #define	LINK_FLAGS_P2P	0x1
9883 #define	LINK_FLAGS_LOOP	0x2
9884 /**
9885  * lpfc_map_topology - Map the topology read from READ_CONFIG
9886  * @phba: pointer to lpfc hba data structure.
9887  * @rd_config: pointer to read config data
9888  *
9889  * This routine is invoked to map the topology values as read
9890  * from the read config mailbox command. If the persistent
9891  * topology feature is supported, the firmware will provide the
9892  * saved topology information to be used in INIT_LINK
9893  **/
9894 static void
9895 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9896 {
9897 	u8 ptv, tf, pt;
9898 
9899 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9900 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9901 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9902 
9903 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9904 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9905 			 ptv, tf, pt);
9906 	if (!ptv) {
9907 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9908 				"2019 FW does not support persistent topology "
9909 				"Using driver parameter defined value [%s]",
9910 				lpfc_topo_to_str[phba->cfg_topology]);
9911 		return;
9912 	}
9913 	/* FW supports persistent topology - override module parameter value */
9914 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9915 
9916 	/* if ASIC_GEN_NUM >= 0xC) */
9917 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9918 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9919 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9920 		    LPFC_SLI_INTF_FAMILY_G6)) {
9921 		if (!tf) {
9922 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9923 					? FLAGS_TOPOLOGY_MODE_LOOP
9924 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9925 		} else {
9926 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9927 		}
9928 	} else { /* G5 */
9929 		if (tf) {
9930 			/* If topology failover set - pt is '0' or '1' */
9931 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9932 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9933 		} else {
9934 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9935 					? FLAGS_TOPOLOGY_MODE_PT_PT
9936 					: FLAGS_TOPOLOGY_MODE_LOOP);
9937 		}
9938 	}
9939 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9940 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9941 				"2020 Using persistent topology value [%s]",
9942 				lpfc_topo_to_str[phba->cfg_topology]);
9943 	} else {
9944 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9945 				"2021 Invalid topology values from FW "
9946 				"Using driver parameter defined value [%s]",
9947 				lpfc_topo_to_str[phba->cfg_topology]);
9948 	}
9949 }
9950 
9951 /**
9952  * lpfc_sli4_read_config - Get the config parameters.
9953  * @phba: pointer to lpfc hba data structure.
9954  *
9955  * This routine is invoked to read the configuration parameters from the HBA.
9956  * The configuration parameters are used to set the base and maximum values
9957  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9958  * allocation for the port.
9959  *
9960  * Return codes
9961  * 	0 - successful
9962  * 	-ENOMEM - No available memory
9963  *      -EIO - The mailbox failed to complete successfully.
9964  **/
9965 int
9966 lpfc_sli4_read_config(struct lpfc_hba *phba)
9967 {
9968 	LPFC_MBOXQ_t *pmb;
9969 	struct lpfc_mbx_read_config *rd_config;
9970 	union  lpfc_sli4_cfg_shdr *shdr;
9971 	uint32_t shdr_status, shdr_add_status;
9972 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9973 	struct lpfc_rsrc_desc_fcfcoe *desc;
9974 	char *pdesc_0;
9975 	uint16_t forced_link_speed;
9976 	uint32_t if_type, qmin, fawwpn;
9977 	int length, i, rc = 0, rc2;
9978 
9979 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9980 	if (!pmb) {
9981 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9982 				"2011 Unable to allocate memory for issuing "
9983 				"SLI_CONFIG_SPECIAL mailbox command\n");
9984 		return -ENOMEM;
9985 	}
9986 
9987 	lpfc_read_config(phba, pmb);
9988 
9989 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9990 	if (rc != MBX_SUCCESS) {
9991 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9992 				"2012 Mailbox failed , mbxCmd x%x "
9993 				"READ_CONFIG, mbxStatus x%x\n",
9994 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9995 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9996 		rc = -EIO;
9997 	} else {
9998 		rd_config = &pmb->u.mqe.un.rd_config;
9999 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
10000 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
10001 			phba->sli4_hba.lnk_info.lnk_tp =
10002 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
10003 			phba->sli4_hba.lnk_info.lnk_no =
10004 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
10005 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10006 					"3081 lnk_type:%d, lnk_numb:%d\n",
10007 					phba->sli4_hba.lnk_info.lnk_tp,
10008 					phba->sli4_hba.lnk_info.lnk_no);
10009 		} else
10010 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10011 					"3082 Mailbox (x%x) returned ldv:x0\n",
10012 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
10013 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
10014 			phba->bbcredit_support = 1;
10015 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
10016 		}
10017 
10018 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
10019 
10020 		if (fawwpn) {
10021 			lpfc_printf_log(phba, KERN_INFO,
10022 					LOG_INIT | LOG_DISCOVERY,
10023 					"2702 READ_CONFIG: FA-PWWN is "
10024 					"configured on\n");
10025 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
10026 		} else {
10027 			/* Clear FW configured flag, preserve driver flag */
10028 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
10029 		}
10030 
10031 		phba->sli4_hba.conf_trunk =
10032 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
10033 		phba->sli4_hba.extents_in_use =
10034 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
10035 
10036 		phba->sli4_hba.max_cfg_param.max_xri =
10037 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
10038 		/* Reduce resource usage in kdump environment */
10039 		if (is_kdump_kernel() &&
10040 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
10041 			phba->sli4_hba.max_cfg_param.max_xri = 512;
10042 		phba->sli4_hba.max_cfg_param.xri_base =
10043 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
10044 		phba->sli4_hba.max_cfg_param.max_vpi =
10045 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
10046 		/* Limit the max we support */
10047 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
10048 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10049 		phba->sli4_hba.max_cfg_param.vpi_base =
10050 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10051 		phba->sli4_hba.max_cfg_param.max_rpi =
10052 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10053 		phba->sli4_hba.max_cfg_param.rpi_base =
10054 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10055 		phba->sli4_hba.max_cfg_param.max_vfi =
10056 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10057 		phba->sli4_hba.max_cfg_param.vfi_base =
10058 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10059 		phba->sli4_hba.max_cfg_param.max_fcfi =
10060 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10061 		phba->sli4_hba.max_cfg_param.max_eq =
10062 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10063 		phba->sli4_hba.max_cfg_param.max_rq =
10064 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10065 		phba->sli4_hba.max_cfg_param.max_wq =
10066 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10067 		phba->sli4_hba.max_cfg_param.max_cq =
10068 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10069 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10070 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10071 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10072 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10073 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10074 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10075 		phba->max_vports = phba->max_vpi;
10076 
10077 		/* Next decide on FPIN or Signal E2E CGN support
10078 		 * For congestion alarms and warnings valid combination are:
10079 		 * 1. FPIN alarms / FPIN warnings
10080 		 * 2. Signal alarms / Signal warnings
10081 		 * 3. FPIN alarms / Signal warnings
10082 		 * 4. Signal alarms / FPIN warnings
10083 		 *
10084 		 * Initialize the adapter frequency to 100 mSecs
10085 		 */
10086 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10087 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10088 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10089 
10090 		if (lpfc_use_cgn_signal) {
10091 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10092 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10093 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10094 			}
10095 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10096 				/* MUST support both alarm and warning
10097 				 * because EDC does not support alarm alone.
10098 				 */
10099 				if (phba->cgn_reg_signal !=
10100 				    EDC_CG_SIG_WARN_ONLY) {
10101 					/* Must support both or none */
10102 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10103 					phba->cgn_reg_signal =
10104 						EDC_CG_SIG_NOTSUPPORTED;
10105 				} else {
10106 					phba->cgn_reg_signal =
10107 						EDC_CG_SIG_WARN_ALARM;
10108 					phba->cgn_reg_fpin =
10109 						LPFC_CGN_FPIN_NONE;
10110 				}
10111 			}
10112 		}
10113 
10114 		/* Set the congestion initial signal and fpin values. */
10115 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10116 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10117 
10118 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10119 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10120 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10121 
10122 		lpfc_map_topology(phba, rd_config);
10123 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10124 				"2003 cfg params Extents? %d "
10125 				"XRI(B:%d M:%d), "
10126 				"VPI(B:%d M:%d) "
10127 				"VFI(B:%d M:%d) "
10128 				"RPI(B:%d M:%d) "
10129 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10130 				phba->sli4_hba.extents_in_use,
10131 				phba->sli4_hba.max_cfg_param.xri_base,
10132 				phba->sli4_hba.max_cfg_param.max_xri,
10133 				phba->sli4_hba.max_cfg_param.vpi_base,
10134 				phba->sli4_hba.max_cfg_param.max_vpi,
10135 				phba->sli4_hba.max_cfg_param.vfi_base,
10136 				phba->sli4_hba.max_cfg_param.max_vfi,
10137 				phba->sli4_hba.max_cfg_param.rpi_base,
10138 				phba->sli4_hba.max_cfg_param.max_rpi,
10139 				phba->sli4_hba.max_cfg_param.max_fcfi,
10140 				phba->sli4_hba.max_cfg_param.max_eq,
10141 				phba->sli4_hba.max_cfg_param.max_cq,
10142 				phba->sli4_hba.max_cfg_param.max_wq,
10143 				phba->sli4_hba.max_cfg_param.max_rq,
10144 				phba->lmt);
10145 
10146 		/*
10147 		 * Calculate queue resources based on how
10148 		 * many WQ/CQ/EQs are available.
10149 		 */
10150 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10151 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10152 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10153 		/*
10154 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10155 		 * the remainder can be used for NVME / FCP.
10156 		 */
10157 		qmin -= 4;
10158 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10159 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10160 
10161 		/* Check to see if there is enough for default cfg */
10162 		if ((phba->cfg_irq_chann > qmin) ||
10163 		    (phba->cfg_hdw_queue > qmin)) {
10164 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10165 					"2005 Reducing Queues - "
10166 					"FW resource limitation: "
10167 					"WQ %d CQ %d EQ %d: min %d: "
10168 					"IRQ %d HDWQ %d\n",
10169 					phba->sli4_hba.max_cfg_param.max_wq,
10170 					phba->sli4_hba.max_cfg_param.max_cq,
10171 					phba->sli4_hba.max_cfg_param.max_eq,
10172 					qmin, phba->cfg_irq_chann,
10173 					phba->cfg_hdw_queue);
10174 
10175 			if (phba->cfg_irq_chann > qmin)
10176 				phba->cfg_irq_chann = qmin;
10177 			if (phba->cfg_hdw_queue > qmin)
10178 				phba->cfg_hdw_queue = qmin;
10179 		}
10180 	}
10181 
10182 	if (rc)
10183 		goto read_cfg_out;
10184 
10185 	/* Update link speed if forced link speed is supported */
10186 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10187 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10188 		forced_link_speed =
10189 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10190 		if (forced_link_speed) {
10191 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10192 
10193 			switch (forced_link_speed) {
10194 			case LINK_SPEED_1G:
10195 				phba->cfg_link_speed =
10196 					LPFC_USER_LINK_SPEED_1G;
10197 				break;
10198 			case LINK_SPEED_2G:
10199 				phba->cfg_link_speed =
10200 					LPFC_USER_LINK_SPEED_2G;
10201 				break;
10202 			case LINK_SPEED_4G:
10203 				phba->cfg_link_speed =
10204 					LPFC_USER_LINK_SPEED_4G;
10205 				break;
10206 			case LINK_SPEED_8G:
10207 				phba->cfg_link_speed =
10208 					LPFC_USER_LINK_SPEED_8G;
10209 				break;
10210 			case LINK_SPEED_10G:
10211 				phba->cfg_link_speed =
10212 					LPFC_USER_LINK_SPEED_10G;
10213 				break;
10214 			case LINK_SPEED_16G:
10215 				phba->cfg_link_speed =
10216 					LPFC_USER_LINK_SPEED_16G;
10217 				break;
10218 			case LINK_SPEED_32G:
10219 				phba->cfg_link_speed =
10220 					LPFC_USER_LINK_SPEED_32G;
10221 				break;
10222 			case LINK_SPEED_64G:
10223 				phba->cfg_link_speed =
10224 					LPFC_USER_LINK_SPEED_64G;
10225 				break;
10226 			case 0xffff:
10227 				phba->cfg_link_speed =
10228 					LPFC_USER_LINK_SPEED_AUTO;
10229 				break;
10230 			default:
10231 				lpfc_printf_log(phba, KERN_ERR,
10232 						LOG_TRACE_EVENT,
10233 						"0047 Unrecognized link "
10234 						"speed : %d\n",
10235 						forced_link_speed);
10236 				phba->cfg_link_speed =
10237 					LPFC_USER_LINK_SPEED_AUTO;
10238 			}
10239 		}
10240 	}
10241 
10242 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10243 	length = phba->sli4_hba.max_cfg_param.max_xri -
10244 			lpfc_sli4_get_els_iocb_cnt(phba);
10245 	if (phba->cfg_hba_queue_depth > length) {
10246 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10247 				"3361 HBA queue depth changed from %d to %d\n",
10248 				phba->cfg_hba_queue_depth, length);
10249 		phba->cfg_hba_queue_depth = length;
10250 	}
10251 
10252 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10253 	    LPFC_SLI_INTF_IF_TYPE_2)
10254 		goto read_cfg_out;
10255 
10256 	/* get the pf# and vf# for SLI4 if_type 2 port */
10257 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10258 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10259 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10260 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10261 			 length, LPFC_SLI4_MBX_EMBED);
10262 
10263 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10264 	shdr = (union lpfc_sli4_cfg_shdr *)
10265 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10266 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10267 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10268 	if (rc2 || shdr_status || shdr_add_status) {
10269 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10270 				"3026 Mailbox failed , mbxCmd x%x "
10271 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10272 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10273 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10274 		goto read_cfg_out;
10275 	}
10276 
10277 	/* search for fc_fcoe resrouce descriptor */
10278 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10279 
10280 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10281 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10282 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10283 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10284 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10285 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10286 		goto read_cfg_out;
10287 
10288 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10289 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10290 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10291 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10292 			phba->sli4_hba.iov.pf_number =
10293 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10294 			phba->sli4_hba.iov.vf_number =
10295 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10296 			break;
10297 		}
10298 	}
10299 
10300 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10301 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10302 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10303 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10304 				phba->sli4_hba.iov.vf_number);
10305 	else
10306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10307 				"3028 GET_FUNCTION_CONFIG: failed to find "
10308 				"Resource Descriptor:x%x\n",
10309 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10310 
10311 read_cfg_out:
10312 	mempool_free(pmb, phba->mbox_mem_pool);
10313 	return rc;
10314 }
10315 
10316 /**
10317  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10318  * @phba: pointer to lpfc hba data structure.
10319  *
10320  * This routine is invoked to setup the port-side endian order when
10321  * the port if_type is 0.  This routine has no function for other
10322  * if_types.
10323  *
10324  * Return codes
10325  * 	0 - successful
10326  * 	-ENOMEM - No available memory
10327  *      -EIO - The mailbox failed to complete successfully.
10328  **/
10329 static int
10330 lpfc_setup_endian_order(struct lpfc_hba *phba)
10331 {
10332 	LPFC_MBOXQ_t *mboxq;
10333 	uint32_t if_type, rc = 0;
10334 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10335 				      HOST_ENDIAN_HIGH_WORD1};
10336 
10337 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10338 	switch (if_type) {
10339 	case LPFC_SLI_INTF_IF_TYPE_0:
10340 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10341 						       GFP_KERNEL);
10342 		if (!mboxq) {
10343 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10344 					"0492 Unable to allocate memory for "
10345 					"issuing SLI_CONFIG_SPECIAL mailbox "
10346 					"command\n");
10347 			return -ENOMEM;
10348 		}
10349 
10350 		/*
10351 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10352 		 * two words to contain special data values and no other data.
10353 		 */
10354 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10355 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10356 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10357 		if (rc != MBX_SUCCESS) {
10358 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10359 					"0493 SLI_CONFIG_SPECIAL mailbox "
10360 					"failed with status x%x\n",
10361 					rc);
10362 			rc = -EIO;
10363 		}
10364 		mempool_free(mboxq, phba->mbox_mem_pool);
10365 		break;
10366 	case LPFC_SLI_INTF_IF_TYPE_6:
10367 	case LPFC_SLI_INTF_IF_TYPE_2:
10368 	case LPFC_SLI_INTF_IF_TYPE_1:
10369 	default:
10370 		break;
10371 	}
10372 	return rc;
10373 }
10374 
10375 /**
10376  * lpfc_sli4_queue_verify - Verify and update EQ counts
10377  * @phba: pointer to lpfc hba data structure.
10378  *
10379  * This routine is invoked to check the user settable queue counts for EQs.
10380  * After this routine is called the counts will be set to valid values that
10381  * adhere to the constraints of the system's interrupt vectors and the port's
10382  * queue resources.
10383  *
10384  * Return codes
10385  *      0 - successful
10386  *      -ENOMEM - No available memory
10387  **/
10388 static int
10389 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10390 {
10391 	/*
10392 	 * Sanity check for configured queue parameters against the run-time
10393 	 * device parameters
10394 	 */
10395 
10396 	if (phba->nvmet_support) {
10397 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10398 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10399 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10400 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10401 	}
10402 
10403 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10404 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10405 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10406 			phba->cfg_nvmet_mrq);
10407 
10408 	/* Get EQ depth from module parameter, fake the default for now */
10409 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10410 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10411 
10412 	/* Get CQ depth from module parameter, fake the default for now */
10413 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10414 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10415 	return 0;
10416 }
10417 
10418 static int
10419 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10420 {
10421 	struct lpfc_queue *qdesc;
10422 	u32 wqesize;
10423 	int cpu;
10424 
10425 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10426 	/* Create Fast Path IO CQs */
10427 	if (phba->enab_exp_wqcq_pages)
10428 		/* Increase the CQ size when WQEs contain an embedded cdb */
10429 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10430 					      phba->sli4_hba.cq_esize,
10431 					      LPFC_CQE_EXP_COUNT, cpu);
10432 
10433 	else
10434 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10435 					      phba->sli4_hba.cq_esize,
10436 					      phba->sli4_hba.cq_ecount, cpu);
10437 	if (!qdesc) {
10438 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10439 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10440 				idx);
10441 		return 1;
10442 	}
10443 	qdesc->qe_valid = 1;
10444 	qdesc->hdwq = idx;
10445 	qdesc->chann = cpu;
10446 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10447 
10448 	/* Create Fast Path IO WQs */
10449 	if (phba->enab_exp_wqcq_pages) {
10450 		/* Increase the WQ size when WQEs contain an embedded cdb */
10451 		wqesize = (phba->fcp_embed_io) ?
10452 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10453 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10454 					      wqesize,
10455 					      LPFC_WQE_EXP_COUNT, cpu);
10456 	} else
10457 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10458 					      phba->sli4_hba.wq_esize,
10459 					      phba->sli4_hba.wq_ecount, cpu);
10460 
10461 	if (!qdesc) {
10462 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10463 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10464 				idx);
10465 		return 1;
10466 	}
10467 	qdesc->hdwq = idx;
10468 	qdesc->chann = cpu;
10469 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10470 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10471 	return 0;
10472 }
10473 
10474 /**
10475  * lpfc_sli4_queue_create - Create all the SLI4 queues
10476  * @phba: pointer to lpfc hba data structure.
10477  *
10478  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10479  * operation. For each SLI4 queue type, the parameters such as queue entry
10480  * count (queue depth) shall be taken from the module parameter. For now,
10481  * we just use some constant number as place holder.
10482  *
10483  * Return codes
10484  *      0 - successful
10485  *      -ENOMEM - No availble memory
10486  *      -EIO - The mailbox failed to complete successfully.
10487  **/
10488 int
10489 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10490 {
10491 	struct lpfc_queue *qdesc;
10492 	int idx, cpu, eqcpu;
10493 	struct lpfc_sli4_hdw_queue *qp;
10494 	struct lpfc_vector_map_info *cpup;
10495 	struct lpfc_vector_map_info *eqcpup;
10496 	struct lpfc_eq_intr_info *eqi;
10497 
10498 	/*
10499 	 * Create HBA Record arrays.
10500 	 * Both NVME and FCP will share that same vectors / EQs
10501 	 */
10502 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10503 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10504 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10505 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10506 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10507 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10508 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10509 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10510 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10511 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10512 
10513 	if (!phba->sli4_hba.hdwq) {
10514 		phba->sli4_hba.hdwq = kcalloc(
10515 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10516 			GFP_KERNEL);
10517 		if (!phba->sli4_hba.hdwq) {
10518 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10519 					"6427 Failed allocate memory for "
10520 					"fast-path Hardware Queue array\n");
10521 			goto out_error;
10522 		}
10523 		/* Prepare hardware queues to take IO buffers */
10524 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10525 			qp = &phba->sli4_hba.hdwq[idx];
10526 			spin_lock_init(&qp->io_buf_list_get_lock);
10527 			spin_lock_init(&qp->io_buf_list_put_lock);
10528 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10529 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10530 			qp->get_io_bufs = 0;
10531 			qp->put_io_bufs = 0;
10532 			qp->total_io_bufs = 0;
10533 			spin_lock_init(&qp->abts_io_buf_list_lock);
10534 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10535 			qp->abts_scsi_io_bufs = 0;
10536 			qp->abts_nvme_io_bufs = 0;
10537 			INIT_LIST_HEAD(&qp->sgl_list);
10538 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10539 			spin_lock_init(&qp->hdwq_lock);
10540 		}
10541 	}
10542 
10543 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10544 		if (phba->nvmet_support) {
10545 			phba->sli4_hba.nvmet_cqset = kcalloc(
10546 					phba->cfg_nvmet_mrq,
10547 					sizeof(struct lpfc_queue *),
10548 					GFP_KERNEL);
10549 			if (!phba->sli4_hba.nvmet_cqset) {
10550 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10551 					"3121 Fail allocate memory for "
10552 					"fast-path CQ set array\n");
10553 				goto out_error;
10554 			}
10555 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10556 					phba->cfg_nvmet_mrq,
10557 					sizeof(struct lpfc_queue *),
10558 					GFP_KERNEL);
10559 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10560 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10561 					"3122 Fail allocate memory for "
10562 					"fast-path RQ set hdr array\n");
10563 				goto out_error;
10564 			}
10565 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10566 					phba->cfg_nvmet_mrq,
10567 					sizeof(struct lpfc_queue *),
10568 					GFP_KERNEL);
10569 			if (!phba->sli4_hba.nvmet_mrq_data) {
10570 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10571 					"3124 Fail allocate memory for "
10572 					"fast-path RQ set data array\n");
10573 				goto out_error;
10574 			}
10575 		}
10576 	}
10577 
10578 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10579 
10580 	/* Create HBA Event Queues (EQs) */
10581 	for_each_present_cpu(cpu) {
10582 		/* We only want to create 1 EQ per vector, even though
10583 		 * multiple CPUs might be using that vector. so only
10584 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10585 		 */
10586 		cpup = &phba->sli4_hba.cpu_map[cpu];
10587 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10588 			continue;
10589 
10590 		/* Get a ptr to the Hardware Queue associated with this CPU */
10591 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10592 
10593 		/* Allocate an EQ */
10594 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10595 					      phba->sli4_hba.eq_esize,
10596 					      phba->sli4_hba.eq_ecount, cpu);
10597 		if (!qdesc) {
10598 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10599 					"0497 Failed allocate EQ (%d)\n",
10600 					cpup->hdwq);
10601 			goto out_error;
10602 		}
10603 		qdesc->qe_valid = 1;
10604 		qdesc->hdwq = cpup->hdwq;
10605 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10606 		qdesc->last_cpu = qdesc->chann;
10607 
10608 		/* Save the allocated EQ in the Hardware Queue */
10609 		qp->hba_eq = qdesc;
10610 
10611 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10612 		list_add(&qdesc->cpu_list, &eqi->list);
10613 	}
10614 
10615 	/* Now we need to populate the other Hardware Queues, that share
10616 	 * an IRQ vector, with the associated EQ ptr.
10617 	 */
10618 	for_each_present_cpu(cpu) {
10619 		cpup = &phba->sli4_hba.cpu_map[cpu];
10620 
10621 		/* Check for EQ already allocated in previous loop */
10622 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10623 			continue;
10624 
10625 		/* Check for multiple CPUs per hdwq */
10626 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10627 		if (qp->hba_eq)
10628 			continue;
10629 
10630 		/* We need to share an EQ for this hdwq */
10631 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10632 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10633 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10634 	}
10635 
10636 	/* Allocate IO Path SLI4 CQ/WQs */
10637 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10638 		if (lpfc_alloc_io_wq_cq(phba, idx))
10639 			goto out_error;
10640 	}
10641 
10642 	if (phba->nvmet_support) {
10643 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10644 			cpu = lpfc_find_cpu_handle(phba, idx,
10645 						   LPFC_FIND_BY_HDWQ);
10646 			qdesc = lpfc_sli4_queue_alloc(phba,
10647 						      LPFC_DEFAULT_PAGE_SIZE,
10648 						      phba->sli4_hba.cq_esize,
10649 						      phba->sli4_hba.cq_ecount,
10650 						      cpu);
10651 			if (!qdesc) {
10652 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10653 						"3142 Failed allocate NVME "
10654 						"CQ Set (%d)\n", idx);
10655 				goto out_error;
10656 			}
10657 			qdesc->qe_valid = 1;
10658 			qdesc->hdwq = idx;
10659 			qdesc->chann = cpu;
10660 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10661 		}
10662 	}
10663 
10664 	/*
10665 	 * Create Slow Path Completion Queues (CQs)
10666 	 */
10667 
10668 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10669 	/* Create slow-path Mailbox Command Complete Queue */
10670 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10671 				      phba->sli4_hba.cq_esize,
10672 				      phba->sli4_hba.cq_ecount, cpu);
10673 	if (!qdesc) {
10674 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10675 				"0500 Failed allocate slow-path mailbox CQ\n");
10676 		goto out_error;
10677 	}
10678 	qdesc->qe_valid = 1;
10679 	phba->sli4_hba.mbx_cq = qdesc;
10680 
10681 	/* Create slow-path ELS Complete Queue */
10682 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10683 				      phba->sli4_hba.cq_esize,
10684 				      phba->sli4_hba.cq_ecount, cpu);
10685 	if (!qdesc) {
10686 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10687 				"0501 Failed allocate slow-path ELS CQ\n");
10688 		goto out_error;
10689 	}
10690 	qdesc->qe_valid = 1;
10691 	qdesc->chann = cpu;
10692 	phba->sli4_hba.els_cq = qdesc;
10693 
10694 
10695 	/*
10696 	 * Create Slow Path Work Queues (WQs)
10697 	 */
10698 
10699 	/* Create Mailbox Command Queue */
10700 
10701 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10702 				      phba->sli4_hba.mq_esize,
10703 				      phba->sli4_hba.mq_ecount, cpu);
10704 	if (!qdesc) {
10705 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10706 				"0505 Failed allocate slow-path MQ\n");
10707 		goto out_error;
10708 	}
10709 	qdesc->chann = cpu;
10710 	phba->sli4_hba.mbx_wq = qdesc;
10711 
10712 	/*
10713 	 * Create ELS Work Queues
10714 	 */
10715 
10716 	/* Create slow-path ELS Work Queue */
10717 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10718 				      phba->sli4_hba.wq_esize,
10719 				      phba->sli4_hba.wq_ecount, cpu);
10720 	if (!qdesc) {
10721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10722 				"0504 Failed allocate slow-path ELS WQ\n");
10723 		goto out_error;
10724 	}
10725 	qdesc->chann = cpu;
10726 	phba->sli4_hba.els_wq = qdesc;
10727 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10728 
10729 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10730 		/* Create NVME LS Complete Queue */
10731 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10732 					      phba->sli4_hba.cq_esize,
10733 					      phba->sli4_hba.cq_ecount, cpu);
10734 		if (!qdesc) {
10735 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10736 					"6079 Failed allocate NVME LS CQ\n");
10737 			goto out_error;
10738 		}
10739 		qdesc->chann = cpu;
10740 		qdesc->qe_valid = 1;
10741 		phba->sli4_hba.nvmels_cq = qdesc;
10742 
10743 		/* Create NVME LS Work Queue */
10744 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10745 					      phba->sli4_hba.wq_esize,
10746 					      phba->sli4_hba.wq_ecount, cpu);
10747 		if (!qdesc) {
10748 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10749 					"6080 Failed allocate NVME LS WQ\n");
10750 			goto out_error;
10751 		}
10752 		qdesc->chann = cpu;
10753 		phba->sli4_hba.nvmels_wq = qdesc;
10754 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10755 	}
10756 
10757 	/*
10758 	 * Create Receive Queue (RQ)
10759 	 */
10760 
10761 	/* Create Receive Queue for header */
10762 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10763 				      phba->sli4_hba.rq_esize,
10764 				      phba->sli4_hba.rq_ecount, cpu);
10765 	if (!qdesc) {
10766 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10767 				"0506 Failed allocate receive HRQ\n");
10768 		goto out_error;
10769 	}
10770 	phba->sli4_hba.hdr_rq = qdesc;
10771 
10772 	/* Create Receive Queue for data */
10773 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10774 				      phba->sli4_hba.rq_esize,
10775 				      phba->sli4_hba.rq_ecount, cpu);
10776 	if (!qdesc) {
10777 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10778 				"0507 Failed allocate receive DRQ\n");
10779 		goto out_error;
10780 	}
10781 	phba->sli4_hba.dat_rq = qdesc;
10782 
10783 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10784 	    phba->nvmet_support) {
10785 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10786 			cpu = lpfc_find_cpu_handle(phba, idx,
10787 						   LPFC_FIND_BY_HDWQ);
10788 			/* Create NVMET Receive Queue for header */
10789 			qdesc = lpfc_sli4_queue_alloc(phba,
10790 						      LPFC_DEFAULT_PAGE_SIZE,
10791 						      phba->sli4_hba.rq_esize,
10792 						      LPFC_NVMET_RQE_DEF_COUNT,
10793 						      cpu);
10794 			if (!qdesc) {
10795 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10796 						"3146 Failed allocate "
10797 						"receive HRQ\n");
10798 				goto out_error;
10799 			}
10800 			qdesc->hdwq = idx;
10801 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10802 
10803 			/* Only needed for header of RQ pair */
10804 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10805 						   GFP_KERNEL,
10806 						   cpu_to_node(cpu));
10807 			if (qdesc->rqbp == NULL) {
10808 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10809 						"6131 Failed allocate "
10810 						"Header RQBP\n");
10811 				goto out_error;
10812 			}
10813 
10814 			/* Put list in known state in case driver load fails. */
10815 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10816 
10817 			/* Create NVMET Receive Queue for data */
10818 			qdesc = lpfc_sli4_queue_alloc(phba,
10819 						      LPFC_DEFAULT_PAGE_SIZE,
10820 						      phba->sli4_hba.rq_esize,
10821 						      LPFC_NVMET_RQE_DEF_COUNT,
10822 						      cpu);
10823 			if (!qdesc) {
10824 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10825 						"3156 Failed allocate "
10826 						"receive DRQ\n");
10827 				goto out_error;
10828 			}
10829 			qdesc->hdwq = idx;
10830 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10831 		}
10832 	}
10833 
10834 	/* Clear NVME stats */
10835 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10836 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10837 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10838 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10839 		}
10840 	}
10841 
10842 	/* Clear SCSI stats */
10843 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10844 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10845 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10846 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10847 		}
10848 	}
10849 
10850 	return 0;
10851 
10852 out_error:
10853 	lpfc_sli4_queue_destroy(phba);
10854 	return -ENOMEM;
10855 }
10856 
10857 static inline void
10858 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10859 {
10860 	if (*qp != NULL) {
10861 		lpfc_sli4_queue_free(*qp);
10862 		*qp = NULL;
10863 	}
10864 }
10865 
10866 static inline void
10867 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10868 {
10869 	int idx;
10870 
10871 	if (*qs == NULL)
10872 		return;
10873 
10874 	for (idx = 0; idx < max; idx++)
10875 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10876 
10877 	kfree(*qs);
10878 	*qs = NULL;
10879 }
10880 
10881 static inline void
10882 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10883 {
10884 	struct lpfc_sli4_hdw_queue *hdwq;
10885 	struct lpfc_queue *eq;
10886 	uint32_t idx;
10887 
10888 	hdwq = phba->sli4_hba.hdwq;
10889 
10890 	/* Loop thru all Hardware Queues */
10891 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10892 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10893 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10894 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10895 		hdwq[idx].hba_eq = NULL;
10896 		hdwq[idx].io_cq = NULL;
10897 		hdwq[idx].io_wq = NULL;
10898 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10899 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10900 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10901 	}
10902 	/* Loop thru all IRQ vectors */
10903 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10904 		/* Free the EQ corresponding to the IRQ vector */
10905 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10906 		lpfc_sli4_queue_free(eq);
10907 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10908 	}
10909 }
10910 
10911 /**
10912  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10913  * @phba: pointer to lpfc hba data structure.
10914  *
10915  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10916  * operation.
10917  *
10918  * Return codes
10919  *      0 - successful
10920  *      -ENOMEM - No available memory
10921  *      -EIO - The mailbox failed to complete successfully.
10922  **/
10923 void
10924 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10925 {
10926 	/*
10927 	 * Set FREE_INIT before beginning to free the queues.
10928 	 * Wait until the users of queues to acknowledge to
10929 	 * release queues by clearing FREE_WAIT.
10930 	 */
10931 	spin_lock_irq(&phba->hbalock);
10932 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10933 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10934 		spin_unlock_irq(&phba->hbalock);
10935 		msleep(20);
10936 		spin_lock_irq(&phba->hbalock);
10937 	}
10938 	spin_unlock_irq(&phba->hbalock);
10939 
10940 	lpfc_sli4_cleanup_poll_list(phba);
10941 
10942 	/* Release HBA eqs */
10943 	if (phba->sli4_hba.hdwq)
10944 		lpfc_sli4_release_hdwq(phba);
10945 
10946 	if (phba->nvmet_support) {
10947 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10948 					 phba->cfg_nvmet_mrq);
10949 
10950 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10951 					 phba->cfg_nvmet_mrq);
10952 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10953 					 phba->cfg_nvmet_mrq);
10954 	}
10955 
10956 	/* Release mailbox command work queue */
10957 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10958 
10959 	/* Release ELS work queue */
10960 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10961 
10962 	/* Release ELS work queue */
10963 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10964 
10965 	/* Release unsolicited receive queue */
10966 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10967 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10968 
10969 	/* Release ELS complete queue */
10970 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10971 
10972 	/* Release NVME LS complete queue */
10973 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10974 
10975 	/* Release mailbox command complete queue */
10976 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10977 
10978 	/* Everything on this list has been freed */
10979 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10980 
10981 	/* Done with freeing the queues */
10982 	spin_lock_irq(&phba->hbalock);
10983 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10984 	spin_unlock_irq(&phba->hbalock);
10985 }
10986 
10987 int
10988 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10989 {
10990 	struct lpfc_rqb *rqbp;
10991 	struct lpfc_dmabuf *h_buf;
10992 	struct rqb_dmabuf *rqb_buffer;
10993 
10994 	rqbp = rq->rqbp;
10995 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10996 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10997 				 struct lpfc_dmabuf, list);
10998 
10999 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
11000 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
11001 		rqbp->buffer_count--;
11002 	}
11003 	return 1;
11004 }
11005 
11006 static int
11007 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
11008 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
11009 	int qidx, uint32_t qtype)
11010 {
11011 	struct lpfc_sli_ring *pring;
11012 	int rc;
11013 
11014 	if (!eq || !cq || !wq) {
11015 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11016 			"6085 Fast-path %s (%d) not allocated\n",
11017 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
11018 		return -ENOMEM;
11019 	}
11020 
11021 	/* create the Cq first */
11022 	rc = lpfc_cq_create(phba, cq, eq,
11023 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
11024 	if (rc) {
11025 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11026 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
11027 				qidx, (uint32_t)rc);
11028 		return rc;
11029 	}
11030 
11031 	if (qtype != LPFC_MBOX) {
11032 		/* Setup cq_map for fast lookup */
11033 		if (cq_map)
11034 			*cq_map = cq->queue_id;
11035 
11036 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11037 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
11038 			qidx, cq->queue_id, qidx, eq->queue_id);
11039 
11040 		/* create the wq */
11041 		rc = lpfc_wq_create(phba, wq, cq, qtype);
11042 		if (rc) {
11043 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11044 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
11045 				qidx, (uint32_t)rc);
11046 			/* no need to tear down cq - caller will do so */
11047 			return rc;
11048 		}
11049 
11050 		/* Bind this CQ/WQ to the NVME ring */
11051 		pring = wq->pring;
11052 		pring->sli.sli4.wqp = (void *)wq;
11053 		cq->pring = pring;
11054 
11055 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11056 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11057 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11058 	} else {
11059 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11060 		if (rc) {
11061 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11062 					"0539 Failed setup of slow-path MQ: "
11063 					"rc = 0x%x\n", rc);
11064 			/* no need to tear down cq - caller will do so */
11065 			return rc;
11066 		}
11067 
11068 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11069 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11070 			phba->sli4_hba.mbx_wq->queue_id,
11071 			phba->sli4_hba.mbx_cq->queue_id);
11072 	}
11073 
11074 	return 0;
11075 }
11076 
11077 /**
11078  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11079  * @phba: pointer to lpfc hba data structure.
11080  *
11081  * This routine will populate the cq_lookup table by all
11082  * available CQ queue_id's.
11083  **/
11084 static void
11085 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11086 {
11087 	struct lpfc_queue *eq, *childq;
11088 	int qidx;
11089 
11090 	memset(phba->sli4_hba.cq_lookup, 0,
11091 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11092 	/* Loop thru all IRQ vectors */
11093 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11094 		/* Get the EQ corresponding to the IRQ vector */
11095 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11096 		if (!eq)
11097 			continue;
11098 		/* Loop through all CQs associated with that EQ */
11099 		list_for_each_entry(childq, &eq->child_list, list) {
11100 			if (childq->queue_id > phba->sli4_hba.cq_max)
11101 				continue;
11102 			if (childq->subtype == LPFC_IO)
11103 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11104 					childq;
11105 		}
11106 	}
11107 }
11108 
11109 /**
11110  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11111  * @phba: pointer to lpfc hba data structure.
11112  *
11113  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11114  * operation.
11115  *
11116  * Return codes
11117  *      0 - successful
11118  *      -ENOMEM - No available memory
11119  *      -EIO - The mailbox failed to complete successfully.
11120  **/
11121 int
11122 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11123 {
11124 	uint32_t shdr_status, shdr_add_status;
11125 	union lpfc_sli4_cfg_shdr *shdr;
11126 	struct lpfc_vector_map_info *cpup;
11127 	struct lpfc_sli4_hdw_queue *qp;
11128 	LPFC_MBOXQ_t *mboxq;
11129 	int qidx, cpu;
11130 	uint32_t length, usdelay;
11131 	int rc = -ENOMEM;
11132 
11133 	/* Check for dual-ULP support */
11134 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11135 	if (!mboxq) {
11136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11137 				"3249 Unable to allocate memory for "
11138 				"QUERY_FW_CFG mailbox command\n");
11139 		return -ENOMEM;
11140 	}
11141 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11142 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11143 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11144 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11145 			 length, LPFC_SLI4_MBX_EMBED);
11146 
11147 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11148 
11149 	shdr = (union lpfc_sli4_cfg_shdr *)
11150 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11151 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11152 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11153 	if (shdr_status || shdr_add_status || rc) {
11154 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11155 				"3250 QUERY_FW_CFG mailbox failed with status "
11156 				"x%x add_status x%x, mbx status x%x\n",
11157 				shdr_status, shdr_add_status, rc);
11158 		mempool_free(mboxq, phba->mbox_mem_pool);
11159 		rc = -ENXIO;
11160 		goto out_error;
11161 	}
11162 
11163 	phba->sli4_hba.fw_func_mode =
11164 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11165 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11166 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11167 	phba->sli4_hba.physical_port =
11168 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11169 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11170 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11171 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11172 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11173 
11174 	mempool_free(mboxq, phba->mbox_mem_pool);
11175 
11176 	/*
11177 	 * Set up HBA Event Queues (EQs)
11178 	 */
11179 	qp = phba->sli4_hba.hdwq;
11180 
11181 	/* Set up HBA event queue */
11182 	if (!qp) {
11183 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11184 				"3147 Fast-path EQs not allocated\n");
11185 		rc = -ENOMEM;
11186 		goto out_error;
11187 	}
11188 
11189 	/* Loop thru all IRQ vectors */
11190 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11191 		/* Create HBA Event Queues (EQs) in order */
11192 		for_each_present_cpu(cpu) {
11193 			cpup = &phba->sli4_hba.cpu_map[cpu];
11194 
11195 			/* Look for the CPU thats using that vector with
11196 			 * LPFC_CPU_FIRST_IRQ set.
11197 			 */
11198 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11199 				continue;
11200 			if (qidx != cpup->eq)
11201 				continue;
11202 
11203 			/* Create an EQ for that vector */
11204 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11205 					    phba->cfg_fcp_imax);
11206 			if (rc) {
11207 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11208 						"0523 Failed setup of fast-path"
11209 						" EQ (%d), rc = 0x%x\n",
11210 						cpup->eq, (uint32_t)rc);
11211 				goto out_destroy;
11212 			}
11213 
11214 			/* Save the EQ for that vector in the hba_eq_hdl */
11215 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11216 				qp[cpup->hdwq].hba_eq;
11217 
11218 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11219 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11220 					cpup->eq,
11221 					qp[cpup->hdwq].hba_eq->queue_id);
11222 		}
11223 	}
11224 
11225 	/* Loop thru all Hardware Queues */
11226 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11227 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11228 		cpup = &phba->sli4_hba.cpu_map[cpu];
11229 
11230 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11231 		rc = lpfc_create_wq_cq(phba,
11232 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11233 				       qp[qidx].io_cq,
11234 				       qp[qidx].io_wq,
11235 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11236 				       qidx,
11237 				       LPFC_IO);
11238 		if (rc) {
11239 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11240 					"0535 Failed to setup fastpath "
11241 					"IO WQ/CQ (%d), rc = 0x%x\n",
11242 					qidx, (uint32_t)rc);
11243 			goto out_destroy;
11244 		}
11245 	}
11246 
11247 	/*
11248 	 * Set up Slow Path Complete Queues (CQs)
11249 	 */
11250 
11251 	/* Set up slow-path MBOX CQ/MQ */
11252 
11253 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11255 				"0528 %s not allocated\n",
11256 				phba->sli4_hba.mbx_cq ?
11257 				"Mailbox WQ" : "Mailbox CQ");
11258 		rc = -ENOMEM;
11259 		goto out_destroy;
11260 	}
11261 
11262 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11263 			       phba->sli4_hba.mbx_cq,
11264 			       phba->sli4_hba.mbx_wq,
11265 			       NULL, 0, LPFC_MBOX);
11266 	if (rc) {
11267 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11268 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11269 			(uint32_t)rc);
11270 		goto out_destroy;
11271 	}
11272 	if (phba->nvmet_support) {
11273 		if (!phba->sli4_hba.nvmet_cqset) {
11274 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11275 					"3165 Fast-path NVME CQ Set "
11276 					"array not allocated\n");
11277 			rc = -ENOMEM;
11278 			goto out_destroy;
11279 		}
11280 		if (phba->cfg_nvmet_mrq > 1) {
11281 			rc = lpfc_cq_create_set(phba,
11282 					phba->sli4_hba.nvmet_cqset,
11283 					qp,
11284 					LPFC_WCQ, LPFC_NVMET);
11285 			if (rc) {
11286 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11287 						"3164 Failed setup of NVME CQ "
11288 						"Set, rc = 0x%x\n",
11289 						(uint32_t)rc);
11290 				goto out_destroy;
11291 			}
11292 		} else {
11293 			/* Set up NVMET Receive Complete Queue */
11294 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11295 					    qp[0].hba_eq,
11296 					    LPFC_WCQ, LPFC_NVMET);
11297 			if (rc) {
11298 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11299 						"6089 Failed setup NVMET CQ: "
11300 						"rc = 0x%x\n", (uint32_t)rc);
11301 				goto out_destroy;
11302 			}
11303 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11304 
11305 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11306 					"6090 NVMET CQ setup: cq-id=%d, "
11307 					"parent eq-id=%d\n",
11308 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11309 					qp[0].hba_eq->queue_id);
11310 		}
11311 	}
11312 
11313 	/* Set up slow-path ELS WQ/CQ */
11314 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11315 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11316 				"0530 ELS %s not allocated\n",
11317 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11318 		rc = -ENOMEM;
11319 		goto out_destroy;
11320 	}
11321 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11322 			       phba->sli4_hba.els_cq,
11323 			       phba->sli4_hba.els_wq,
11324 			       NULL, 0, LPFC_ELS);
11325 	if (rc) {
11326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11327 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11328 				(uint32_t)rc);
11329 		goto out_destroy;
11330 	}
11331 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11332 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11333 			phba->sli4_hba.els_wq->queue_id,
11334 			phba->sli4_hba.els_cq->queue_id);
11335 
11336 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11337 		/* Set up NVME LS Complete Queue */
11338 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11339 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11340 					"6091 LS %s not allocated\n",
11341 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11342 			rc = -ENOMEM;
11343 			goto out_destroy;
11344 		}
11345 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11346 				       phba->sli4_hba.nvmels_cq,
11347 				       phba->sli4_hba.nvmels_wq,
11348 				       NULL, 0, LPFC_NVME_LS);
11349 		if (rc) {
11350 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11351 					"0526 Failed setup of NVVME LS WQ/CQ: "
11352 					"rc = 0x%x\n", (uint32_t)rc);
11353 			goto out_destroy;
11354 		}
11355 
11356 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11357 				"6096 ELS WQ setup: wq-id=%d, "
11358 				"parent cq-id=%d\n",
11359 				phba->sli4_hba.nvmels_wq->queue_id,
11360 				phba->sli4_hba.nvmels_cq->queue_id);
11361 	}
11362 
11363 	/*
11364 	 * Create NVMET Receive Queue (RQ)
11365 	 */
11366 	if (phba->nvmet_support) {
11367 		if ((!phba->sli4_hba.nvmet_cqset) ||
11368 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11369 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11370 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11371 					"6130 MRQ CQ Queues not "
11372 					"allocated\n");
11373 			rc = -ENOMEM;
11374 			goto out_destroy;
11375 		}
11376 		if (phba->cfg_nvmet_mrq > 1) {
11377 			rc = lpfc_mrq_create(phba,
11378 					     phba->sli4_hba.nvmet_mrq_hdr,
11379 					     phba->sli4_hba.nvmet_mrq_data,
11380 					     phba->sli4_hba.nvmet_cqset,
11381 					     LPFC_NVMET);
11382 			if (rc) {
11383 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11384 						"6098 Failed setup of NVMET "
11385 						"MRQ: rc = 0x%x\n",
11386 						(uint32_t)rc);
11387 				goto out_destroy;
11388 			}
11389 
11390 		} else {
11391 			rc = lpfc_rq_create(phba,
11392 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11393 					    phba->sli4_hba.nvmet_mrq_data[0],
11394 					    phba->sli4_hba.nvmet_cqset[0],
11395 					    LPFC_NVMET);
11396 			if (rc) {
11397 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11398 						"6057 Failed setup of NVMET "
11399 						"Receive Queue: rc = 0x%x\n",
11400 						(uint32_t)rc);
11401 				goto out_destroy;
11402 			}
11403 
11404 			lpfc_printf_log(
11405 				phba, KERN_INFO, LOG_INIT,
11406 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11407 				"dat-rq-id=%d parent cq-id=%d\n",
11408 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11409 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11410 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11411 
11412 		}
11413 	}
11414 
11415 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11416 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11417 				"0540 Receive Queue not allocated\n");
11418 		rc = -ENOMEM;
11419 		goto out_destroy;
11420 	}
11421 
11422 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11423 			    phba->sli4_hba.els_cq, LPFC_USOL);
11424 	if (rc) {
11425 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11426 				"0541 Failed setup of Receive Queue: "
11427 				"rc = 0x%x\n", (uint32_t)rc);
11428 		goto out_destroy;
11429 	}
11430 
11431 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11432 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11433 			"parent cq-id=%d\n",
11434 			phba->sli4_hba.hdr_rq->queue_id,
11435 			phba->sli4_hba.dat_rq->queue_id,
11436 			phba->sli4_hba.els_cq->queue_id);
11437 
11438 	if (phba->cfg_fcp_imax)
11439 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11440 	else
11441 		usdelay = 0;
11442 
11443 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11444 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11445 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11446 					 usdelay);
11447 
11448 	if (phba->sli4_hba.cq_max) {
11449 		kfree(phba->sli4_hba.cq_lookup);
11450 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11451 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11452 		if (!phba->sli4_hba.cq_lookup) {
11453 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11454 					"0549 Failed setup of CQ Lookup table: "
11455 					"size 0x%x\n", phba->sli4_hba.cq_max);
11456 			rc = -ENOMEM;
11457 			goto out_destroy;
11458 		}
11459 		lpfc_setup_cq_lookup(phba);
11460 	}
11461 	return 0;
11462 
11463 out_destroy:
11464 	lpfc_sli4_queue_unset(phba);
11465 out_error:
11466 	return rc;
11467 }
11468 
11469 /**
11470  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11471  * @phba: pointer to lpfc hba data structure.
11472  *
11473  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11474  * operation.
11475  *
11476  * Return codes
11477  *      0 - successful
11478  *      -ENOMEM - No available memory
11479  *      -EIO - The mailbox failed to complete successfully.
11480  **/
11481 void
11482 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11483 {
11484 	struct lpfc_sli4_hdw_queue *qp;
11485 	struct lpfc_queue *eq;
11486 	int qidx;
11487 
11488 	/* Unset mailbox command work queue */
11489 	if (phba->sli4_hba.mbx_wq)
11490 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11491 
11492 	/* Unset NVME LS work queue */
11493 	if (phba->sli4_hba.nvmels_wq)
11494 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11495 
11496 	/* Unset ELS work queue */
11497 	if (phba->sli4_hba.els_wq)
11498 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11499 
11500 	/* Unset unsolicited receive queue */
11501 	if (phba->sli4_hba.hdr_rq)
11502 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11503 				phba->sli4_hba.dat_rq);
11504 
11505 	/* Unset mailbox command complete queue */
11506 	if (phba->sli4_hba.mbx_cq)
11507 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11508 
11509 	/* Unset ELS complete queue */
11510 	if (phba->sli4_hba.els_cq)
11511 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11512 
11513 	/* Unset NVME LS complete queue */
11514 	if (phba->sli4_hba.nvmels_cq)
11515 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11516 
11517 	if (phba->nvmet_support) {
11518 		/* Unset NVMET MRQ queue */
11519 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11520 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11521 				lpfc_rq_destroy(
11522 					phba,
11523 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11524 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11525 		}
11526 
11527 		/* Unset NVMET CQ Set complete queue */
11528 		if (phba->sli4_hba.nvmet_cqset) {
11529 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11530 				lpfc_cq_destroy(
11531 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11532 		}
11533 	}
11534 
11535 	/* Unset fast-path SLI4 queues */
11536 	if (phba->sli4_hba.hdwq) {
11537 		/* Loop thru all Hardware Queues */
11538 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11539 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11540 			qp = &phba->sli4_hba.hdwq[qidx];
11541 			lpfc_wq_destroy(phba, qp->io_wq);
11542 			lpfc_cq_destroy(phba, qp->io_cq);
11543 		}
11544 		/* Loop thru all IRQ vectors */
11545 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11546 			/* Destroy the EQ corresponding to the IRQ vector */
11547 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11548 			lpfc_eq_destroy(phba, eq);
11549 		}
11550 	}
11551 
11552 	kfree(phba->sli4_hba.cq_lookup);
11553 	phba->sli4_hba.cq_lookup = NULL;
11554 	phba->sli4_hba.cq_max = 0;
11555 }
11556 
11557 /**
11558  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11559  * @phba: pointer to lpfc hba data structure.
11560  *
11561  * This routine is invoked to allocate and set up a pool of completion queue
11562  * events. The body of the completion queue event is a completion queue entry
11563  * CQE. For now, this pool is used for the interrupt service routine to queue
11564  * the following HBA completion queue events for the worker thread to process:
11565  *   - Mailbox asynchronous events
11566  *   - Receive queue completion unsolicited events
11567  * Later, this can be used for all the slow-path events.
11568  *
11569  * Return codes
11570  *      0 - successful
11571  *      -ENOMEM - No available memory
11572  **/
11573 static int
11574 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11575 {
11576 	struct lpfc_cq_event *cq_event;
11577 	int i;
11578 
11579 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11580 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11581 		if (!cq_event)
11582 			goto out_pool_create_fail;
11583 		list_add_tail(&cq_event->list,
11584 			      &phba->sli4_hba.sp_cqe_event_pool);
11585 	}
11586 	return 0;
11587 
11588 out_pool_create_fail:
11589 	lpfc_sli4_cq_event_pool_destroy(phba);
11590 	return -ENOMEM;
11591 }
11592 
11593 /**
11594  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11595  * @phba: pointer to lpfc hba data structure.
11596  *
11597  * This routine is invoked to free the pool of completion queue events at
11598  * driver unload time. Note that, it is the responsibility of the driver
11599  * cleanup routine to free all the outstanding completion-queue events
11600  * allocated from this pool back into the pool before invoking this routine
11601  * to destroy the pool.
11602  **/
11603 static void
11604 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11605 {
11606 	struct lpfc_cq_event *cq_event, *next_cq_event;
11607 
11608 	list_for_each_entry_safe(cq_event, next_cq_event,
11609 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11610 		list_del(&cq_event->list);
11611 		kfree(cq_event);
11612 	}
11613 }
11614 
11615 /**
11616  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11617  * @phba: pointer to lpfc hba data structure.
11618  *
11619  * This routine is the lock free version of the API invoked to allocate a
11620  * completion-queue event from the free pool.
11621  *
11622  * Return: Pointer to the newly allocated completion-queue event if successful
11623  *         NULL otherwise.
11624  **/
11625 struct lpfc_cq_event *
11626 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11627 {
11628 	struct lpfc_cq_event *cq_event = NULL;
11629 
11630 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11631 			 struct lpfc_cq_event, list);
11632 	return cq_event;
11633 }
11634 
11635 /**
11636  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11637  * @phba: pointer to lpfc hba data structure.
11638  *
11639  * This routine is the lock version of the API invoked to allocate a
11640  * completion-queue event from the free pool.
11641  *
11642  * Return: Pointer to the newly allocated completion-queue event if successful
11643  *         NULL otherwise.
11644  **/
11645 struct lpfc_cq_event *
11646 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11647 {
11648 	struct lpfc_cq_event *cq_event;
11649 	unsigned long iflags;
11650 
11651 	spin_lock_irqsave(&phba->hbalock, iflags);
11652 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11653 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11654 	return cq_event;
11655 }
11656 
11657 /**
11658  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11659  * @phba: pointer to lpfc hba data structure.
11660  * @cq_event: pointer to the completion queue event to be freed.
11661  *
11662  * This routine is the lock free version of the API invoked to release a
11663  * completion-queue event back into the free pool.
11664  **/
11665 void
11666 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11667 			     struct lpfc_cq_event *cq_event)
11668 {
11669 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11670 }
11671 
11672 /**
11673  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11674  * @phba: pointer to lpfc hba data structure.
11675  * @cq_event: pointer to the completion queue event to be freed.
11676  *
11677  * This routine is the lock version of the API invoked to release a
11678  * completion-queue event back into the free pool.
11679  **/
11680 void
11681 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11682 			   struct lpfc_cq_event *cq_event)
11683 {
11684 	unsigned long iflags;
11685 	spin_lock_irqsave(&phba->hbalock, iflags);
11686 	__lpfc_sli4_cq_event_release(phba, cq_event);
11687 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11688 }
11689 
11690 /**
11691  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11692  * @phba: pointer to lpfc hba data structure.
11693  *
11694  * This routine is to free all the pending completion-queue events to the
11695  * back into the free pool for device reset.
11696  **/
11697 static void
11698 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11699 {
11700 	LIST_HEAD(cq_event_list);
11701 	struct lpfc_cq_event *cq_event;
11702 	unsigned long iflags;
11703 
11704 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11705 
11706 	/* Pending ELS XRI abort events */
11707 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11708 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11709 			 &cq_event_list);
11710 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11711 
11712 	/* Pending asynnc events */
11713 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11714 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11715 			 &cq_event_list);
11716 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11717 
11718 	while (!list_empty(&cq_event_list)) {
11719 		list_remove_head(&cq_event_list, cq_event,
11720 				 struct lpfc_cq_event, list);
11721 		lpfc_sli4_cq_event_release(phba, cq_event);
11722 	}
11723 }
11724 
11725 /**
11726  * lpfc_pci_function_reset - Reset pci function.
11727  * @phba: pointer to lpfc hba data structure.
11728  *
11729  * This routine is invoked to request a PCI function reset. It will destroys
11730  * all resources assigned to the PCI function which originates this request.
11731  *
11732  * Return codes
11733  *      0 - successful
11734  *      -ENOMEM - No available memory
11735  *      -EIO - The mailbox failed to complete successfully.
11736  **/
11737 int
11738 lpfc_pci_function_reset(struct lpfc_hba *phba)
11739 {
11740 	LPFC_MBOXQ_t *mboxq;
11741 	uint32_t rc = 0, if_type;
11742 	uint32_t shdr_status, shdr_add_status;
11743 	uint32_t rdy_chk;
11744 	uint32_t port_reset = 0;
11745 	union lpfc_sli4_cfg_shdr *shdr;
11746 	struct lpfc_register reg_data;
11747 	uint16_t devid;
11748 
11749 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11750 	switch (if_type) {
11751 	case LPFC_SLI_INTF_IF_TYPE_0:
11752 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11753 						       GFP_KERNEL);
11754 		if (!mboxq) {
11755 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11756 					"0494 Unable to allocate memory for "
11757 					"issuing SLI_FUNCTION_RESET mailbox "
11758 					"command\n");
11759 			return -ENOMEM;
11760 		}
11761 
11762 		/* Setup PCI function reset mailbox-ioctl command */
11763 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11764 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11765 				 LPFC_SLI4_MBX_EMBED);
11766 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11767 		shdr = (union lpfc_sli4_cfg_shdr *)
11768 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11769 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11770 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11771 					 &shdr->response);
11772 		mempool_free(mboxq, phba->mbox_mem_pool);
11773 		if (shdr_status || shdr_add_status || rc) {
11774 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11775 					"0495 SLI_FUNCTION_RESET mailbox "
11776 					"failed with status x%x add_status x%x,"
11777 					" mbx status x%x\n",
11778 					shdr_status, shdr_add_status, rc);
11779 			rc = -ENXIO;
11780 		}
11781 		break;
11782 	case LPFC_SLI_INTF_IF_TYPE_2:
11783 	case LPFC_SLI_INTF_IF_TYPE_6:
11784 wait:
11785 		/*
11786 		 * Poll the Port Status Register and wait for RDY for
11787 		 * up to 30 seconds. If the port doesn't respond, treat
11788 		 * it as an error.
11789 		 */
11790 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11791 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11792 				STATUSregaddr, &reg_data.word0)) {
11793 				rc = -ENODEV;
11794 				goto out;
11795 			}
11796 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11797 				break;
11798 			msleep(20);
11799 		}
11800 
11801 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11802 			phba->work_status[0] = readl(
11803 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11804 			phba->work_status[1] = readl(
11805 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11806 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11807 					"2890 Port not ready, port status reg "
11808 					"0x%x error 1=0x%x, error 2=0x%x\n",
11809 					reg_data.word0,
11810 					phba->work_status[0],
11811 					phba->work_status[1]);
11812 			rc = -ENODEV;
11813 			goto out;
11814 		}
11815 
11816 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11817 			lpfc_pldv_detect = true;
11818 
11819 		if (!port_reset) {
11820 			/*
11821 			 * Reset the port now
11822 			 */
11823 			reg_data.word0 = 0;
11824 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11825 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11826 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11827 			       LPFC_SLIPORT_INIT_PORT);
11828 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11829 			       CTRLregaddr);
11830 			/* flush */
11831 			pci_read_config_word(phba->pcidev,
11832 					     PCI_DEVICE_ID, &devid);
11833 
11834 			port_reset = 1;
11835 			msleep(20);
11836 			goto wait;
11837 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11838 			rc = -ENODEV;
11839 			goto out;
11840 		}
11841 		break;
11842 
11843 	case LPFC_SLI_INTF_IF_TYPE_1:
11844 	default:
11845 		break;
11846 	}
11847 
11848 out:
11849 	/* Catch the not-ready port failure after a port reset. */
11850 	if (rc) {
11851 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11852 				"3317 HBA not functional: IP Reset Failed "
11853 				"try: echo fw_reset > board_mode\n");
11854 		rc = -ENODEV;
11855 	}
11856 
11857 	return rc;
11858 }
11859 
11860 /**
11861  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11862  * @phba: pointer to lpfc hba data structure.
11863  *
11864  * This routine is invoked to set up the PCI device memory space for device
11865  * with SLI-4 interface spec.
11866  *
11867  * Return codes
11868  * 	0 - successful
11869  * 	other values - error
11870  **/
11871 static int
11872 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11873 {
11874 	struct pci_dev *pdev = phba->pcidev;
11875 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11876 	int error;
11877 	uint32_t if_type;
11878 
11879 	if (!pdev)
11880 		return -ENODEV;
11881 
11882 	/* Set the device DMA mask size */
11883 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11884 	if (error)
11885 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11886 	if (error)
11887 		return error;
11888 
11889 	/*
11890 	 * The BARs and register set definitions and offset locations are
11891 	 * dependent on the if_type.
11892 	 */
11893 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11894 				  &phba->sli4_hba.sli_intf.word0)) {
11895 		return -ENODEV;
11896 	}
11897 
11898 	/* There is no SLI3 failback for SLI4 devices. */
11899 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11900 	    LPFC_SLI_INTF_VALID) {
11901 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11902 				"2894 SLI_INTF reg contents invalid "
11903 				"sli_intf reg 0x%x\n",
11904 				phba->sli4_hba.sli_intf.word0);
11905 		return -ENODEV;
11906 	}
11907 
11908 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11909 	/*
11910 	 * Get the bus address of SLI4 device Bar regions and the
11911 	 * number of bytes required by each mapping. The mapping of the
11912 	 * particular PCI BARs regions is dependent on the type of
11913 	 * SLI4 device.
11914 	 */
11915 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11916 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11917 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11918 
11919 		/*
11920 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11921 		 * addr
11922 		 */
11923 		phba->sli4_hba.conf_regs_memmap_p =
11924 			ioremap(phba->pci_bar0_map, bar0map_len);
11925 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11926 			dev_printk(KERN_ERR, &pdev->dev,
11927 				   "ioremap failed for SLI4 PCI config "
11928 				   "registers.\n");
11929 			return -ENODEV;
11930 		}
11931 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11932 		/* Set up BAR0 PCI config space register memory map */
11933 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11934 	} else {
11935 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11936 		bar0map_len = pci_resource_len(pdev, 1);
11937 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11938 			dev_printk(KERN_ERR, &pdev->dev,
11939 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11940 			return -ENODEV;
11941 		}
11942 		phba->sli4_hba.conf_regs_memmap_p =
11943 				ioremap(phba->pci_bar0_map, bar0map_len);
11944 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11945 			dev_printk(KERN_ERR, &pdev->dev,
11946 				"ioremap failed for SLI4 PCI config "
11947 				"registers.\n");
11948 			return -ENODEV;
11949 		}
11950 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11951 	}
11952 
11953 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11954 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11955 			/*
11956 			 * Map SLI4 if type 0 HBA Control Register base to a
11957 			 * kernel virtual address and setup the registers.
11958 			 */
11959 			phba->pci_bar1_map = pci_resource_start(pdev,
11960 								PCI_64BIT_BAR2);
11961 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11962 			phba->sli4_hba.ctrl_regs_memmap_p =
11963 					ioremap(phba->pci_bar1_map,
11964 						bar1map_len);
11965 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11966 				dev_err(&pdev->dev,
11967 					   "ioremap failed for SLI4 HBA "
11968 					    "control registers.\n");
11969 				error = -ENOMEM;
11970 				goto out_iounmap_conf;
11971 			}
11972 			phba->pci_bar2_memmap_p =
11973 					 phba->sli4_hba.ctrl_regs_memmap_p;
11974 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11975 		} else {
11976 			error = -ENOMEM;
11977 			goto out_iounmap_conf;
11978 		}
11979 	}
11980 
11981 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11982 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11983 		/*
11984 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11985 		 * virtual address and setup the registers.
11986 		 */
11987 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11988 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11989 		phba->sli4_hba.drbl_regs_memmap_p =
11990 				ioremap(phba->pci_bar1_map, bar1map_len);
11991 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11992 			dev_err(&pdev->dev,
11993 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11994 			error = -ENOMEM;
11995 			goto out_iounmap_conf;
11996 		}
11997 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11998 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11999 	}
12000 
12001 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
12002 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
12003 			/*
12004 			 * Map SLI4 if type 0 HBA Doorbell Register base to
12005 			 * a kernel virtual address and setup the registers.
12006 			 */
12007 			phba->pci_bar2_map = pci_resource_start(pdev,
12008 								PCI_64BIT_BAR4);
12009 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12010 			phba->sli4_hba.drbl_regs_memmap_p =
12011 					ioremap(phba->pci_bar2_map,
12012 						bar2map_len);
12013 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
12014 				dev_err(&pdev->dev,
12015 					   "ioremap failed for SLI4 HBA"
12016 					   " doorbell registers.\n");
12017 				error = -ENOMEM;
12018 				goto out_iounmap_ctrl;
12019 			}
12020 			phba->pci_bar4_memmap_p =
12021 					phba->sli4_hba.drbl_regs_memmap_p;
12022 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
12023 			if (error)
12024 				goto out_iounmap_all;
12025 		} else {
12026 			error = -ENOMEM;
12027 			goto out_iounmap_all;
12028 		}
12029 	}
12030 
12031 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
12032 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
12033 		/*
12034 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
12035 		 * virtual address and setup the registers.
12036 		 */
12037 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
12038 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
12039 		phba->sli4_hba.dpp_regs_memmap_p =
12040 				ioremap(phba->pci_bar2_map, bar2map_len);
12041 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
12042 			dev_err(&pdev->dev,
12043 			   "ioremap failed for SLI4 HBA dpp registers.\n");
12044 			error = -ENOMEM;
12045 			goto out_iounmap_ctrl;
12046 		}
12047 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
12048 	}
12049 
12050 	/* Set up the EQ/CQ register handeling functions now */
12051 	switch (if_type) {
12052 	case LPFC_SLI_INTF_IF_TYPE_0:
12053 	case LPFC_SLI_INTF_IF_TYPE_2:
12054 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12055 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12056 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12057 		break;
12058 	case LPFC_SLI_INTF_IF_TYPE_6:
12059 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12060 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12061 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12062 		break;
12063 	default:
12064 		break;
12065 	}
12066 
12067 	return 0;
12068 
12069 out_iounmap_all:
12070 	iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12071 out_iounmap_ctrl:
12072 	iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12073 out_iounmap_conf:
12074 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12075 
12076 	return error;
12077 }
12078 
12079 /**
12080  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12081  * @phba: pointer to lpfc hba data structure.
12082  *
12083  * This routine is invoked to unset the PCI device memory space for device
12084  * with SLI-4 interface spec.
12085  **/
12086 static void
12087 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12088 {
12089 	uint32_t if_type;
12090 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12091 
12092 	switch (if_type) {
12093 	case LPFC_SLI_INTF_IF_TYPE_0:
12094 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12095 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12096 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12097 		break;
12098 	case LPFC_SLI_INTF_IF_TYPE_2:
12099 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12100 		break;
12101 	case LPFC_SLI_INTF_IF_TYPE_6:
12102 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12103 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12104 		if (phba->sli4_hba.dpp_regs_memmap_p)
12105 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12106 		break;
12107 	case LPFC_SLI_INTF_IF_TYPE_1:
12108 	default:
12109 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12110 			   "FATAL - unsupported SLI4 interface type - %d\n",
12111 			   if_type);
12112 		break;
12113 	}
12114 }
12115 
12116 /**
12117  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12118  * @phba: pointer to lpfc hba data structure.
12119  *
12120  * This routine is invoked to enable the MSI-X interrupt vectors to device
12121  * with SLI-3 interface specs.
12122  *
12123  * Return codes
12124  *   0 - successful
12125  *   other values - error
12126  **/
12127 static int
12128 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12129 {
12130 	int rc;
12131 	LPFC_MBOXQ_t *pmb;
12132 
12133 	/* Set up MSI-X multi-message vectors */
12134 	rc = pci_alloc_irq_vectors(phba->pcidev,
12135 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12136 	if (rc < 0) {
12137 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12138 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12139 		goto vec_fail_out;
12140 	}
12141 
12142 	/*
12143 	 * Assign MSI-X vectors to interrupt handlers
12144 	 */
12145 
12146 	/* vector-0 is associated to slow-path handler */
12147 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12148 			 &lpfc_sli_sp_intr_handler, 0,
12149 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12150 	if (rc) {
12151 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12152 				"0421 MSI-X slow-path request_irq failed "
12153 				"(%d)\n", rc);
12154 		goto msi_fail_out;
12155 	}
12156 
12157 	/* vector-1 is associated to fast-path handler */
12158 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12159 			 &lpfc_sli_fp_intr_handler, 0,
12160 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12161 
12162 	if (rc) {
12163 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12164 				"0429 MSI-X fast-path request_irq failed "
12165 				"(%d)\n", rc);
12166 		goto irq_fail_out;
12167 	}
12168 
12169 	/*
12170 	 * Configure HBA MSI-X attention conditions to messages
12171 	 */
12172 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12173 
12174 	if (!pmb) {
12175 		rc = -ENOMEM;
12176 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12177 				"0474 Unable to allocate memory for issuing "
12178 				"MBOX_CONFIG_MSI command\n");
12179 		goto mem_fail_out;
12180 	}
12181 	rc = lpfc_config_msi(phba, pmb);
12182 	if (rc)
12183 		goto mbx_fail_out;
12184 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12185 	if (rc != MBX_SUCCESS) {
12186 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12187 				"0351 Config MSI mailbox command failed, "
12188 				"mbxCmd x%x, mbxStatus x%x\n",
12189 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12190 		goto mbx_fail_out;
12191 	}
12192 
12193 	/* Free memory allocated for mailbox command */
12194 	mempool_free(pmb, phba->mbox_mem_pool);
12195 	return rc;
12196 
12197 mbx_fail_out:
12198 	/* Free memory allocated for mailbox command */
12199 	mempool_free(pmb, phba->mbox_mem_pool);
12200 
12201 mem_fail_out:
12202 	/* free the irq already requested */
12203 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12204 
12205 irq_fail_out:
12206 	/* free the irq already requested */
12207 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12208 
12209 msi_fail_out:
12210 	/* Unconfigure MSI-X capability structure */
12211 	pci_free_irq_vectors(phba->pcidev);
12212 
12213 vec_fail_out:
12214 	return rc;
12215 }
12216 
12217 /**
12218  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12219  * @phba: pointer to lpfc hba data structure.
12220  *
12221  * This routine is invoked to enable the MSI interrupt mode to device with
12222  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12223  * enable the MSI vector. The device driver is responsible for calling the
12224  * request_irq() to register MSI vector with a interrupt the handler, which
12225  * is done in this function.
12226  *
12227  * Return codes
12228  * 	0 - successful
12229  * 	other values - error
12230  */
12231 static int
12232 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12233 {
12234 	int rc;
12235 
12236 	rc = pci_enable_msi(phba->pcidev);
12237 	if (!rc)
12238 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12239 				"0012 PCI enable MSI mode success.\n");
12240 	else {
12241 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12242 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12243 		return rc;
12244 	}
12245 
12246 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12247 			 0, LPFC_DRIVER_NAME, phba);
12248 	if (rc) {
12249 		pci_disable_msi(phba->pcidev);
12250 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12251 				"0478 MSI request_irq failed (%d)\n", rc);
12252 	}
12253 	return rc;
12254 }
12255 
12256 /**
12257  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12258  * @phba: pointer to lpfc hba data structure.
12259  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12260  *
12261  * This routine is invoked to enable device interrupt and associate driver's
12262  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12263  * spec. Depends on the interrupt mode configured to the driver, the driver
12264  * will try to fallback from the configured interrupt mode to an interrupt
12265  * mode which is supported by the platform, kernel, and device in the order
12266  * of:
12267  * MSI-X -> MSI -> IRQ.
12268  *
12269  * Return codes
12270  *   0 - successful
12271  *   other values - error
12272  **/
12273 static uint32_t
12274 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12275 {
12276 	uint32_t intr_mode = LPFC_INTR_ERROR;
12277 	int retval;
12278 
12279 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12280 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12281 	if (retval)
12282 		return intr_mode;
12283 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12284 
12285 	if (cfg_mode == 2) {
12286 		/* Now, try to enable MSI-X interrupt mode */
12287 		retval = lpfc_sli_enable_msix(phba);
12288 		if (!retval) {
12289 			/* Indicate initialization to MSI-X mode */
12290 			phba->intr_type = MSIX;
12291 			intr_mode = 2;
12292 		}
12293 	}
12294 
12295 	/* Fallback to MSI if MSI-X initialization failed */
12296 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12297 		retval = lpfc_sli_enable_msi(phba);
12298 		if (!retval) {
12299 			/* Indicate initialization to MSI mode */
12300 			phba->intr_type = MSI;
12301 			intr_mode = 1;
12302 		}
12303 	}
12304 
12305 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12306 	if (phba->intr_type == NONE) {
12307 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12308 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12309 		if (!retval) {
12310 			/* Indicate initialization to INTx mode */
12311 			phba->intr_type = INTx;
12312 			intr_mode = 0;
12313 		}
12314 	}
12315 	return intr_mode;
12316 }
12317 
12318 /**
12319  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12320  * @phba: pointer to lpfc hba data structure.
12321  *
12322  * This routine is invoked to disable device interrupt and disassociate the
12323  * driver's interrupt handler(s) from interrupt vector(s) to device with
12324  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12325  * release the interrupt vector(s) for the message signaled interrupt.
12326  **/
12327 static void
12328 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12329 {
12330 	int nr_irqs, i;
12331 
12332 	if (phba->intr_type == MSIX)
12333 		nr_irqs = LPFC_MSIX_VECTORS;
12334 	else
12335 		nr_irqs = 1;
12336 
12337 	for (i = 0; i < nr_irqs; i++)
12338 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12339 	pci_free_irq_vectors(phba->pcidev);
12340 
12341 	/* Reset interrupt management states */
12342 	phba->intr_type = NONE;
12343 	phba->sli.slistat.sli_intr = 0;
12344 }
12345 
12346 /**
12347  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12348  * @phba: pointer to lpfc hba data structure.
12349  * @id: EQ vector index or Hardware Queue index
12350  * @match: LPFC_FIND_BY_EQ = match by EQ
12351  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12352  * Return the CPU that matches the selection criteria
12353  */
12354 static uint16_t
12355 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12356 {
12357 	struct lpfc_vector_map_info *cpup;
12358 	int cpu;
12359 
12360 	/* Loop through all CPUs */
12361 	for_each_present_cpu(cpu) {
12362 		cpup = &phba->sli4_hba.cpu_map[cpu];
12363 
12364 		/* If we are matching by EQ, there may be multiple CPUs using
12365 		 * using the same vector, so select the one with
12366 		 * LPFC_CPU_FIRST_IRQ set.
12367 		 */
12368 		if ((match == LPFC_FIND_BY_EQ) &&
12369 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12370 		    (cpup->eq == id))
12371 			return cpu;
12372 
12373 		/* If matching by HDWQ, select the first CPU that matches */
12374 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12375 			return cpu;
12376 	}
12377 	return 0;
12378 }
12379 
12380 #ifdef CONFIG_X86
12381 /**
12382  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12383  * @phba: pointer to lpfc hba data structure.
12384  * @cpu: CPU map index
12385  * @phys_id: CPU package physical id
12386  * @core_id: CPU core id
12387  */
12388 static int
12389 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12390 		uint16_t phys_id, uint16_t core_id)
12391 {
12392 	struct lpfc_vector_map_info *cpup;
12393 	int idx;
12394 
12395 	for_each_present_cpu(idx) {
12396 		cpup = &phba->sli4_hba.cpu_map[idx];
12397 		/* Does the cpup match the one we are looking for */
12398 		if ((cpup->phys_id == phys_id) &&
12399 		    (cpup->core_id == core_id) &&
12400 		    (cpu != idx))
12401 			return 1;
12402 	}
12403 	return 0;
12404 }
12405 #endif
12406 
12407 /*
12408  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12409  * @phba: pointer to lpfc hba data structure.
12410  * @eqidx: index for eq and irq vector
12411  * @flag: flags to set for vector_map structure
12412  * @cpu: cpu used to index vector_map structure
12413  *
12414  * The routine assigns eq info into vector_map structure
12415  */
12416 static inline void
12417 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12418 			unsigned int cpu)
12419 {
12420 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12421 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12422 
12423 	cpup->eq = eqidx;
12424 	cpup->flag |= flag;
12425 
12426 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12427 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12428 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12429 }
12430 
12431 /**
12432  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12433  * @phba: pointer to lpfc hba data structure.
12434  *
12435  * The routine initializes the cpu_map array structure
12436  */
12437 static void
12438 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12439 {
12440 	struct lpfc_vector_map_info *cpup;
12441 	struct lpfc_eq_intr_info *eqi;
12442 	int cpu;
12443 
12444 	for_each_possible_cpu(cpu) {
12445 		cpup = &phba->sli4_hba.cpu_map[cpu];
12446 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12447 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12448 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12449 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12450 		cpup->flag = 0;
12451 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12452 		INIT_LIST_HEAD(&eqi->list);
12453 		eqi->icnt = 0;
12454 	}
12455 }
12456 
12457 /**
12458  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12459  * @phba: pointer to lpfc hba data structure.
12460  *
12461  * The routine initializes the hba_eq_hdl array structure
12462  */
12463 static void
12464 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12465 {
12466 	struct lpfc_hba_eq_hdl *eqhdl;
12467 	int i;
12468 
12469 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12470 		eqhdl = lpfc_get_eq_hdl(i);
12471 		eqhdl->irq = LPFC_IRQ_EMPTY;
12472 		eqhdl->phba = phba;
12473 	}
12474 }
12475 
12476 /**
12477  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12478  * @phba: pointer to lpfc hba data structure.
12479  * @vectors: number of msix vectors allocated.
12480  *
12481  * The routine will figure out the CPU affinity assignment for every
12482  * MSI-X vector allocated for the HBA.
12483  * In addition, the CPU to IO channel mapping will be calculated
12484  * and the phba->sli4_hba.cpu_map array will reflect this.
12485  */
12486 static void
12487 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12488 {
12489 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12490 	int max_phys_id, min_phys_id;
12491 	int max_core_id, min_core_id;
12492 	struct lpfc_vector_map_info *cpup;
12493 	struct lpfc_vector_map_info *new_cpup;
12494 #ifdef CONFIG_X86
12495 	struct cpuinfo_x86 *cpuinfo;
12496 #endif
12497 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12498 	struct lpfc_hdwq_stat *c_stat;
12499 #endif
12500 
12501 	max_phys_id = 0;
12502 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12503 	max_core_id = 0;
12504 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12505 
12506 	/* Update CPU map with physical id and core id of each CPU */
12507 	for_each_present_cpu(cpu) {
12508 		cpup = &phba->sli4_hba.cpu_map[cpu];
12509 #ifdef CONFIG_X86
12510 		cpuinfo = &cpu_data(cpu);
12511 		cpup->phys_id = cpuinfo->phys_proc_id;
12512 		cpup->core_id = cpuinfo->cpu_core_id;
12513 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12514 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12515 #else
12516 		/* No distinction between CPUs for other platforms */
12517 		cpup->phys_id = 0;
12518 		cpup->core_id = cpu;
12519 #endif
12520 
12521 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12522 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12523 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12524 
12525 		if (cpup->phys_id > max_phys_id)
12526 			max_phys_id = cpup->phys_id;
12527 		if (cpup->phys_id < min_phys_id)
12528 			min_phys_id = cpup->phys_id;
12529 
12530 		if (cpup->core_id > max_core_id)
12531 			max_core_id = cpup->core_id;
12532 		if (cpup->core_id < min_core_id)
12533 			min_core_id = cpup->core_id;
12534 	}
12535 
12536 	/* After looking at each irq vector assigned to this pcidev, its
12537 	 * possible to see that not ALL CPUs have been accounted for.
12538 	 * Next we will set any unassigned (unaffinitized) cpu map
12539 	 * entries to a IRQ on the same phys_id.
12540 	 */
12541 	first_cpu = cpumask_first(cpu_present_mask);
12542 	start_cpu = first_cpu;
12543 
12544 	for_each_present_cpu(cpu) {
12545 		cpup = &phba->sli4_hba.cpu_map[cpu];
12546 
12547 		/* Is this CPU entry unassigned */
12548 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12549 			/* Mark CPU as IRQ not assigned by the kernel */
12550 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12551 
12552 			/* If so, find a new_cpup that is on the SAME
12553 			 * phys_id as cpup. start_cpu will start where we
12554 			 * left off so all unassigned entries don't get assgined
12555 			 * the IRQ of the first entry.
12556 			 */
12557 			new_cpu = start_cpu;
12558 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12559 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12560 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12561 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12562 				    (new_cpup->phys_id == cpup->phys_id))
12563 					goto found_same;
12564 				new_cpu = cpumask_next(
12565 					new_cpu, cpu_present_mask);
12566 				if (new_cpu == nr_cpumask_bits)
12567 					new_cpu = first_cpu;
12568 			}
12569 			/* At this point, we leave the CPU as unassigned */
12570 			continue;
12571 found_same:
12572 			/* We found a matching phys_id, so copy the IRQ info */
12573 			cpup->eq = new_cpup->eq;
12574 
12575 			/* Bump start_cpu to the next slot to minmize the
12576 			 * chance of having multiple unassigned CPU entries
12577 			 * selecting the same IRQ.
12578 			 */
12579 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12580 			if (start_cpu == nr_cpumask_bits)
12581 				start_cpu = first_cpu;
12582 
12583 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12584 					"3337 Set Affinity: CPU %d "
12585 					"eq %d from peer cpu %d same "
12586 					"phys_id (%d)\n",
12587 					cpu, cpup->eq, new_cpu,
12588 					cpup->phys_id);
12589 		}
12590 	}
12591 
12592 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12593 	start_cpu = first_cpu;
12594 
12595 	for_each_present_cpu(cpu) {
12596 		cpup = &phba->sli4_hba.cpu_map[cpu];
12597 
12598 		/* Is this entry unassigned */
12599 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12600 			/* Mark it as IRQ not assigned by the kernel */
12601 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12602 
12603 			/* If so, find a new_cpup thats on ANY phys_id
12604 			 * as the cpup. start_cpu will start where we
12605 			 * left off so all unassigned entries don't get
12606 			 * assigned the IRQ of the first entry.
12607 			 */
12608 			new_cpu = start_cpu;
12609 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12610 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12611 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12612 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12613 					goto found_any;
12614 				new_cpu = cpumask_next(
12615 					new_cpu, cpu_present_mask);
12616 				if (new_cpu == nr_cpumask_bits)
12617 					new_cpu = first_cpu;
12618 			}
12619 			/* We should never leave an entry unassigned */
12620 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12621 					"3339 Set Affinity: CPU %d "
12622 					"eq %d UNASSIGNED\n",
12623 					cpup->hdwq, cpup->eq);
12624 			continue;
12625 found_any:
12626 			/* We found an available entry, copy the IRQ info */
12627 			cpup->eq = new_cpup->eq;
12628 
12629 			/* Bump start_cpu to the next slot to minmize the
12630 			 * chance of having multiple unassigned CPU entries
12631 			 * selecting the same IRQ.
12632 			 */
12633 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12634 			if (start_cpu == nr_cpumask_bits)
12635 				start_cpu = first_cpu;
12636 
12637 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12638 					"3338 Set Affinity: CPU %d "
12639 					"eq %d from peer cpu %d (%d/%d)\n",
12640 					cpu, cpup->eq, new_cpu,
12641 					new_cpup->phys_id, new_cpup->core_id);
12642 		}
12643 	}
12644 
12645 	/* Assign hdwq indices that are unique across all cpus in the map
12646 	 * that are also FIRST_CPUs.
12647 	 */
12648 	idx = 0;
12649 	for_each_present_cpu(cpu) {
12650 		cpup = &phba->sli4_hba.cpu_map[cpu];
12651 
12652 		/* Only FIRST IRQs get a hdwq index assignment. */
12653 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12654 			continue;
12655 
12656 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12657 		cpup->hdwq = idx;
12658 		idx++;
12659 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12660 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12661 				"hdwq %d eq %d flg x%x\n",
12662 				cpu, cpup->phys_id, cpup->core_id,
12663 				cpup->hdwq, cpup->eq, cpup->flag);
12664 	}
12665 	/* Associate a hdwq with each cpu_map entry
12666 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12667 	 * hardware queues then CPUs. For that case we will just round-robin
12668 	 * the available hardware queues as they get assigned to CPUs.
12669 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12670 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12671 	 * and needs to start at 0.
12672 	 */
12673 	next_idx = idx;
12674 	start_cpu = 0;
12675 	idx = 0;
12676 	for_each_present_cpu(cpu) {
12677 		cpup = &phba->sli4_hba.cpu_map[cpu];
12678 
12679 		/* FIRST cpus are already mapped. */
12680 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12681 			continue;
12682 
12683 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12684 		 * of the unassigned cpus to the next idx so that all
12685 		 * hdw queues are fully utilized.
12686 		 */
12687 		if (next_idx < phba->cfg_hdw_queue) {
12688 			cpup->hdwq = next_idx;
12689 			next_idx++;
12690 			continue;
12691 		}
12692 
12693 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12694 		 * Hardware Queue for another CPU, so be smart about it
12695 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12696 		 * (CPU package) and core_id.
12697 		 */
12698 		new_cpu = start_cpu;
12699 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12700 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12701 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12702 			    new_cpup->phys_id == cpup->phys_id &&
12703 			    new_cpup->core_id == cpup->core_id) {
12704 				goto found_hdwq;
12705 			}
12706 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12707 			if (new_cpu == nr_cpumask_bits)
12708 				new_cpu = first_cpu;
12709 		}
12710 
12711 		/* If we can't match both phys_id and core_id,
12712 		 * settle for just a phys_id match.
12713 		 */
12714 		new_cpu = start_cpu;
12715 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12716 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12717 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12718 			    new_cpup->phys_id == cpup->phys_id)
12719 				goto found_hdwq;
12720 
12721 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12722 			if (new_cpu == nr_cpumask_bits)
12723 				new_cpu = first_cpu;
12724 		}
12725 
12726 		/* Otherwise just round robin on cfg_hdw_queue */
12727 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12728 		idx++;
12729 		goto logit;
12730  found_hdwq:
12731 		/* We found an available entry, copy the IRQ info */
12732 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12733 		if (start_cpu == nr_cpumask_bits)
12734 			start_cpu = first_cpu;
12735 		cpup->hdwq = new_cpup->hdwq;
12736  logit:
12737 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12738 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12739 				"hdwq %d eq %d flg x%x\n",
12740 				cpu, cpup->phys_id, cpup->core_id,
12741 				cpup->hdwq, cpup->eq, cpup->flag);
12742 	}
12743 
12744 	/*
12745 	 * Initialize the cpu_map slots for not-present cpus in case
12746 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12747 	 */
12748 	idx = 0;
12749 	for_each_possible_cpu(cpu) {
12750 		cpup = &phba->sli4_hba.cpu_map[cpu];
12751 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12752 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12753 		c_stat->hdwq_no = cpup->hdwq;
12754 #endif
12755 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12756 			continue;
12757 
12758 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12759 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12760 		c_stat->hdwq_no = cpup->hdwq;
12761 #endif
12762 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12763 				"3340 Set Affinity: not present "
12764 				"CPU %d hdwq %d\n",
12765 				cpu, cpup->hdwq);
12766 	}
12767 
12768 	/* The cpu_map array will be used later during initialization
12769 	 * when EQ / CQ / WQs are allocated and configured.
12770 	 */
12771 	return;
12772 }
12773 
12774 /**
12775  * lpfc_cpuhp_get_eq
12776  *
12777  * @phba:   pointer to lpfc hba data structure.
12778  * @cpu:    cpu going offline
12779  * @eqlist: eq list to append to
12780  */
12781 static int
12782 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12783 		  struct list_head *eqlist)
12784 {
12785 	const struct cpumask *maskp;
12786 	struct lpfc_queue *eq;
12787 	struct cpumask *tmp;
12788 	u16 idx;
12789 
12790 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12791 	if (!tmp)
12792 		return -ENOMEM;
12793 
12794 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12795 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12796 		if (!maskp)
12797 			continue;
12798 		/*
12799 		 * if irq is not affinitized to the cpu going
12800 		 * then we don't need to poll the eq attached
12801 		 * to it.
12802 		 */
12803 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12804 			continue;
12805 		/* get the cpus that are online and are affini-
12806 		 * tized to this irq vector.  If the count is
12807 		 * more than 1 then cpuhp is not going to shut-
12808 		 * down this vector.  Since this cpu has not
12809 		 * gone offline yet, we need >1.
12810 		 */
12811 		cpumask_and(tmp, maskp, cpu_online_mask);
12812 		if (cpumask_weight(tmp) > 1)
12813 			continue;
12814 
12815 		/* Now that we have an irq to shutdown, get the eq
12816 		 * mapped to this irq.  Note: multiple hdwq's in
12817 		 * the software can share an eq, but eventually
12818 		 * only eq will be mapped to this vector
12819 		 */
12820 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12821 		list_add(&eq->_poll_list, eqlist);
12822 	}
12823 	kfree(tmp);
12824 	return 0;
12825 }
12826 
12827 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12828 {
12829 	if (phba->sli_rev != LPFC_SLI_REV4)
12830 		return;
12831 
12832 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12833 					    &phba->cpuhp);
12834 	/*
12835 	 * unregistering the instance doesn't stop the polling
12836 	 * timer. Wait for the poll timer to retire.
12837 	 */
12838 	synchronize_rcu();
12839 	del_timer_sync(&phba->cpuhp_poll_timer);
12840 }
12841 
12842 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12843 {
12844 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12845 		return;
12846 
12847 	__lpfc_cpuhp_remove(phba);
12848 }
12849 
12850 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12851 {
12852 	if (phba->sli_rev != LPFC_SLI_REV4)
12853 		return;
12854 
12855 	rcu_read_lock();
12856 
12857 	if (!list_empty(&phba->poll_list))
12858 		mod_timer(&phba->cpuhp_poll_timer,
12859 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12860 
12861 	rcu_read_unlock();
12862 
12863 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12864 					 &phba->cpuhp);
12865 }
12866 
12867 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12868 {
12869 	if (phba->pport->load_flag & FC_UNLOADING) {
12870 		*retval = -EAGAIN;
12871 		return true;
12872 	}
12873 
12874 	if (phba->sli_rev != LPFC_SLI_REV4) {
12875 		*retval = 0;
12876 		return true;
12877 	}
12878 
12879 	/* proceed with the hotplug */
12880 	return false;
12881 }
12882 
12883 /**
12884  * lpfc_irq_set_aff - set IRQ affinity
12885  * @eqhdl: EQ handle
12886  * @cpu: cpu to set affinity
12887  *
12888  **/
12889 static inline void
12890 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12891 {
12892 	cpumask_clear(&eqhdl->aff_mask);
12893 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12894 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12895 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12896 }
12897 
12898 /**
12899  * lpfc_irq_clear_aff - clear IRQ affinity
12900  * @eqhdl: EQ handle
12901  *
12902  **/
12903 static inline void
12904 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12905 {
12906 	cpumask_clear(&eqhdl->aff_mask);
12907 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12908 }
12909 
12910 /**
12911  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12912  * @phba: pointer to HBA context object.
12913  * @cpu: cpu going offline/online
12914  * @offline: true, cpu is going offline. false, cpu is coming online.
12915  *
12916  * If cpu is going offline, we'll try our best effort to find the next
12917  * online cpu on the phba's original_mask and migrate all offlining IRQ
12918  * affinities.
12919  *
12920  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12921  *
12922  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12923  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12924  *
12925  **/
12926 static void
12927 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12928 {
12929 	struct lpfc_vector_map_info *cpup;
12930 	struct cpumask *aff_mask;
12931 	unsigned int cpu_select, cpu_next, idx;
12932 	const struct cpumask *orig_mask;
12933 
12934 	if (phba->irq_chann_mode == NORMAL_MODE)
12935 		return;
12936 
12937 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12938 
12939 	if (!cpumask_test_cpu(cpu, orig_mask))
12940 		return;
12941 
12942 	cpup = &phba->sli4_hba.cpu_map[cpu];
12943 
12944 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12945 		return;
12946 
12947 	if (offline) {
12948 		/* Find next online CPU on original mask */
12949 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12950 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12951 
12952 		/* Found a valid CPU */
12953 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12954 			/* Go through each eqhdl and ensure offlining
12955 			 * cpu aff_mask is migrated
12956 			 */
12957 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12958 				aff_mask = lpfc_get_aff_mask(idx);
12959 
12960 				/* Migrate affinity */
12961 				if (cpumask_test_cpu(cpu, aff_mask))
12962 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12963 							 cpu_select);
12964 			}
12965 		} else {
12966 			/* Rely on irqbalance if no online CPUs left on NUMA */
12967 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12968 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12969 		}
12970 	} else {
12971 		/* Migrate affinity back to this CPU */
12972 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12973 	}
12974 }
12975 
12976 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12977 {
12978 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12979 	struct lpfc_queue *eq, *next;
12980 	LIST_HEAD(eqlist);
12981 	int retval;
12982 
12983 	if (!phba) {
12984 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12985 		return 0;
12986 	}
12987 
12988 	if (__lpfc_cpuhp_checks(phba, &retval))
12989 		return retval;
12990 
12991 	lpfc_irq_rebalance(phba, cpu, true);
12992 
12993 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12994 	if (retval)
12995 		return retval;
12996 
12997 	/* start polling on these eq's */
12998 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12999 		list_del_init(&eq->_poll_list);
13000 		lpfc_sli4_start_polling(eq);
13001 	}
13002 
13003 	return 0;
13004 }
13005 
13006 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
13007 {
13008 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
13009 	struct lpfc_queue *eq, *next;
13010 	unsigned int n;
13011 	int retval;
13012 
13013 	if (!phba) {
13014 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
13015 		return 0;
13016 	}
13017 
13018 	if (__lpfc_cpuhp_checks(phba, &retval))
13019 		return retval;
13020 
13021 	lpfc_irq_rebalance(phba, cpu, false);
13022 
13023 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
13024 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
13025 		if (n == cpu)
13026 			lpfc_sli4_stop_polling(eq);
13027 	}
13028 
13029 	return 0;
13030 }
13031 
13032 /**
13033  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
13034  * @phba: pointer to lpfc hba data structure.
13035  *
13036  * This routine is invoked to enable the MSI-X interrupt vectors to device
13037  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
13038  * to cpus on the system.
13039  *
13040  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
13041  * the number of cpus on the same numa node as this adapter.  The vectors are
13042  * allocated without requesting OS affinity mapping.  A vector will be
13043  * allocated and assigned to each online and offline cpu.  If the cpu is
13044  * online, then affinity will be set to that cpu.  If the cpu is offline, then
13045  * affinity will be set to the nearest peer cpu within the numa node that is
13046  * online.  If there are no online cpus within the numa node, affinity is not
13047  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
13048  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
13049  * configured.
13050  *
13051  * If numa mode is not enabled and there is more than 1 vector allocated, then
13052  * the driver relies on the managed irq interface where the OS assigns vector to
13053  * cpu affinity.  The driver will then use that affinity mapping to setup its
13054  * cpu mapping table.
13055  *
13056  * Return codes
13057  * 0 - successful
13058  * other values - error
13059  **/
13060 static int
13061 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
13062 {
13063 	int vectors, rc, index;
13064 	char *name;
13065 	const struct cpumask *aff_mask = NULL;
13066 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13067 	struct lpfc_vector_map_info *cpup;
13068 	struct lpfc_hba_eq_hdl *eqhdl;
13069 	const struct cpumask *maskp;
13070 	unsigned int flags = PCI_IRQ_MSIX;
13071 
13072 	/* Set up MSI-X multi-message vectors */
13073 	vectors = phba->cfg_irq_chann;
13074 
13075 	if (phba->irq_chann_mode != NORMAL_MODE)
13076 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13077 
13078 	if (aff_mask) {
13079 		cpu_cnt = cpumask_weight(aff_mask);
13080 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13081 
13082 		/* cpu: iterates over aff_mask including offline or online
13083 		 * cpu_select: iterates over online aff_mask to set affinity
13084 		 */
13085 		cpu = cpumask_first(aff_mask);
13086 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13087 	} else {
13088 		flags |= PCI_IRQ_AFFINITY;
13089 	}
13090 
13091 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13092 	if (rc < 0) {
13093 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13094 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13095 		goto vec_fail_out;
13096 	}
13097 	vectors = rc;
13098 
13099 	/* Assign MSI-X vectors to interrupt handlers */
13100 	for (index = 0; index < vectors; index++) {
13101 		eqhdl = lpfc_get_eq_hdl(index);
13102 		name = eqhdl->handler_name;
13103 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13104 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13105 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13106 
13107 		eqhdl->idx = index;
13108 		rc = pci_irq_vector(phba->pcidev, index);
13109 		if (rc < 0) {
13110 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13111 					"0489 MSI-X fast-path (%d) "
13112 					"pci_irq_vec failed (%d)\n", index, rc);
13113 			goto cfg_fail_out;
13114 		}
13115 		eqhdl->irq = rc;
13116 
13117 		rc = request_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, 0,
13118 				 name, eqhdl);
13119 		if (rc) {
13120 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13121 					"0486 MSI-X fast-path (%d) "
13122 					"request_irq failed (%d)\n", index, rc);
13123 			goto cfg_fail_out;
13124 		}
13125 
13126 		if (aff_mask) {
13127 			/* If found a neighboring online cpu, set affinity */
13128 			if (cpu_select < nr_cpu_ids)
13129 				lpfc_irq_set_aff(eqhdl, cpu_select);
13130 
13131 			/* Assign EQ to cpu_map */
13132 			lpfc_assign_eq_map_info(phba, index,
13133 						LPFC_CPU_FIRST_IRQ,
13134 						cpu);
13135 
13136 			/* Iterate to next offline or online cpu in aff_mask */
13137 			cpu = cpumask_next(cpu, aff_mask);
13138 
13139 			/* Find next online cpu in aff_mask to set affinity */
13140 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13141 		} else if (vectors == 1) {
13142 			cpu = cpumask_first(cpu_present_mask);
13143 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13144 						cpu);
13145 		} else {
13146 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13147 
13148 			/* Loop through all CPUs associated with vector index */
13149 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13150 				cpup = &phba->sli4_hba.cpu_map[cpu];
13151 
13152 				/* If this is the first CPU thats assigned to
13153 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13154 				 *
13155 				 * With certain platforms its possible that irq
13156 				 * vectors are affinitized to all the cpu's.
13157 				 * This can result in each cpu_map.eq to be set
13158 				 * to the last vector, resulting in overwrite
13159 				 * of all the previous cpu_map.eq.  Ensure that
13160 				 * each vector receives a place in cpu_map.
13161 				 * Later call to lpfc_cpu_affinity_check will
13162 				 * ensure we are nicely balanced out.
13163 				 */
13164 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13165 					continue;
13166 				lpfc_assign_eq_map_info(phba, index,
13167 							LPFC_CPU_FIRST_IRQ,
13168 							cpu);
13169 				break;
13170 			}
13171 		}
13172 	}
13173 
13174 	if (vectors != phba->cfg_irq_chann) {
13175 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13176 				"3238 Reducing IO channels to match number of "
13177 				"MSI-X vectors, requested %d got %d\n",
13178 				phba->cfg_irq_chann, vectors);
13179 		if (phba->cfg_irq_chann > vectors)
13180 			phba->cfg_irq_chann = vectors;
13181 	}
13182 
13183 	return rc;
13184 
13185 cfg_fail_out:
13186 	/* free the irq already requested */
13187 	for (--index; index >= 0; index--) {
13188 		eqhdl = lpfc_get_eq_hdl(index);
13189 		lpfc_irq_clear_aff(eqhdl);
13190 		free_irq(eqhdl->irq, eqhdl);
13191 	}
13192 
13193 	/* Unconfigure MSI-X capability structure */
13194 	pci_free_irq_vectors(phba->pcidev);
13195 
13196 vec_fail_out:
13197 	return rc;
13198 }
13199 
13200 /**
13201  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13202  * @phba: pointer to lpfc hba data structure.
13203  *
13204  * This routine is invoked to enable the MSI interrupt mode to device with
13205  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13206  * called to enable the MSI vector. The device driver is responsible for
13207  * calling the request_irq() to register MSI vector with a interrupt the
13208  * handler, which is done in this function.
13209  *
13210  * Return codes
13211  * 	0 - successful
13212  * 	other values - error
13213  **/
13214 static int
13215 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13216 {
13217 	int rc, index;
13218 	unsigned int cpu;
13219 	struct lpfc_hba_eq_hdl *eqhdl;
13220 
13221 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13222 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13223 	if (rc > 0)
13224 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13225 				"0487 PCI enable MSI mode success.\n");
13226 	else {
13227 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13228 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13229 		return rc ? rc : -1;
13230 	}
13231 
13232 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13233 			 0, LPFC_DRIVER_NAME, phba);
13234 	if (rc) {
13235 		pci_free_irq_vectors(phba->pcidev);
13236 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13237 				"0490 MSI request_irq failed (%d)\n", rc);
13238 		return rc;
13239 	}
13240 
13241 	eqhdl = lpfc_get_eq_hdl(0);
13242 	rc = pci_irq_vector(phba->pcidev, 0);
13243 	if (rc < 0) {
13244 		pci_free_irq_vectors(phba->pcidev);
13245 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13246 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13247 		return rc;
13248 	}
13249 	eqhdl->irq = rc;
13250 
13251 	cpu = cpumask_first(cpu_present_mask);
13252 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13253 
13254 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13255 		eqhdl = lpfc_get_eq_hdl(index);
13256 		eqhdl->idx = index;
13257 	}
13258 
13259 	return 0;
13260 }
13261 
13262 /**
13263  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13264  * @phba: pointer to lpfc hba data structure.
13265  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13266  *
13267  * This routine is invoked to enable device interrupt and associate driver's
13268  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13269  * interface spec. Depends on the interrupt mode configured to the driver,
13270  * the driver will try to fallback from the configured interrupt mode to an
13271  * interrupt mode which is supported by the platform, kernel, and device in
13272  * the order of:
13273  * MSI-X -> MSI -> IRQ.
13274  *
13275  * Return codes
13276  *	Interrupt mode (2, 1, 0) - successful
13277  *	LPFC_INTR_ERROR - error
13278  **/
13279 static uint32_t
13280 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13281 {
13282 	uint32_t intr_mode = LPFC_INTR_ERROR;
13283 	int retval, idx;
13284 
13285 	if (cfg_mode == 2) {
13286 		/* Preparation before conf_msi mbox cmd */
13287 		retval = 0;
13288 		if (!retval) {
13289 			/* Now, try to enable MSI-X interrupt mode */
13290 			retval = lpfc_sli4_enable_msix(phba);
13291 			if (!retval) {
13292 				/* Indicate initialization to MSI-X mode */
13293 				phba->intr_type = MSIX;
13294 				intr_mode = 2;
13295 			}
13296 		}
13297 	}
13298 
13299 	/* Fallback to MSI if MSI-X initialization failed */
13300 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13301 		retval = lpfc_sli4_enable_msi(phba);
13302 		if (!retval) {
13303 			/* Indicate initialization to MSI mode */
13304 			phba->intr_type = MSI;
13305 			intr_mode = 1;
13306 		}
13307 	}
13308 
13309 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13310 	if (phba->intr_type == NONE) {
13311 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13312 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13313 		if (!retval) {
13314 			struct lpfc_hba_eq_hdl *eqhdl;
13315 			unsigned int cpu;
13316 
13317 			/* Indicate initialization to INTx mode */
13318 			phba->intr_type = INTx;
13319 			intr_mode = 0;
13320 
13321 			eqhdl = lpfc_get_eq_hdl(0);
13322 			retval = pci_irq_vector(phba->pcidev, 0);
13323 			if (retval < 0) {
13324 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13325 					"0502 INTR pci_irq_vec failed (%d)\n",
13326 					 retval);
13327 				return LPFC_INTR_ERROR;
13328 			}
13329 			eqhdl->irq = retval;
13330 
13331 			cpu = cpumask_first(cpu_present_mask);
13332 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13333 						cpu);
13334 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13335 				eqhdl = lpfc_get_eq_hdl(idx);
13336 				eqhdl->idx = idx;
13337 			}
13338 		}
13339 	}
13340 	return intr_mode;
13341 }
13342 
13343 /**
13344  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13345  * @phba: pointer to lpfc hba data structure.
13346  *
13347  * This routine is invoked to disable device interrupt and disassociate
13348  * the driver's interrupt handler(s) from interrupt vector(s) to device
13349  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13350  * will release the interrupt vector(s) for the message signaled interrupt.
13351  **/
13352 static void
13353 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13354 {
13355 	/* Disable the currently initialized interrupt mode */
13356 	if (phba->intr_type == MSIX) {
13357 		int index;
13358 		struct lpfc_hba_eq_hdl *eqhdl;
13359 
13360 		/* Free up MSI-X multi-message vectors */
13361 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13362 			eqhdl = lpfc_get_eq_hdl(index);
13363 			lpfc_irq_clear_aff(eqhdl);
13364 			free_irq(eqhdl->irq, eqhdl);
13365 		}
13366 	} else {
13367 		free_irq(phba->pcidev->irq, phba);
13368 	}
13369 
13370 	pci_free_irq_vectors(phba->pcidev);
13371 
13372 	/* Reset interrupt management states */
13373 	phba->intr_type = NONE;
13374 	phba->sli.slistat.sli_intr = 0;
13375 }
13376 
13377 /**
13378  * lpfc_unset_hba - Unset SLI3 hba device initialization
13379  * @phba: pointer to lpfc hba data structure.
13380  *
13381  * This routine is invoked to unset the HBA device initialization steps to
13382  * a device with SLI-3 interface spec.
13383  **/
13384 static void
13385 lpfc_unset_hba(struct lpfc_hba *phba)
13386 {
13387 	struct lpfc_vport *vport = phba->pport;
13388 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13389 
13390 	spin_lock_irq(shost->host_lock);
13391 	vport->load_flag |= FC_UNLOADING;
13392 	spin_unlock_irq(shost->host_lock);
13393 
13394 	kfree(phba->vpi_bmask);
13395 	kfree(phba->vpi_ids);
13396 
13397 	lpfc_stop_hba_timers(phba);
13398 
13399 	phba->pport->work_port_events = 0;
13400 
13401 	lpfc_sli_hba_down(phba);
13402 
13403 	lpfc_sli_brdrestart(phba);
13404 
13405 	lpfc_sli_disable_intr(phba);
13406 
13407 	return;
13408 }
13409 
13410 /**
13411  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13412  * @phba: Pointer to HBA context object.
13413  *
13414  * This function is called in the SLI4 code path to wait for completion
13415  * of device's XRIs exchange busy. It will check the XRI exchange busy
13416  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13417  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13418  * I/Os every 30 seconds, log error message, and wait forever. Only when
13419  * all XRI exchange busy complete, the driver unload shall proceed with
13420  * invoking the function reset ioctl mailbox command to the CNA and the
13421  * the rest of the driver unload resource release.
13422  **/
13423 static void
13424 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13425 {
13426 	struct lpfc_sli4_hdw_queue *qp;
13427 	int idx, ccnt;
13428 	int wait_time = 0;
13429 	int io_xri_cmpl = 1;
13430 	int nvmet_xri_cmpl = 1;
13431 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13432 
13433 	/* Driver just aborted IOs during the hba_unset process.  Pause
13434 	 * here to give the HBA time to complete the IO and get entries
13435 	 * into the abts lists.
13436 	 */
13437 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13438 
13439 	/* Wait for NVME pending IO to flush back to transport. */
13440 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13441 		lpfc_nvme_wait_for_io_drain(phba);
13442 
13443 	ccnt = 0;
13444 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13445 		qp = &phba->sli4_hba.hdwq[idx];
13446 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13447 		if (!io_xri_cmpl) /* if list is NOT empty */
13448 			ccnt++;
13449 	}
13450 	if (ccnt)
13451 		io_xri_cmpl = 0;
13452 
13453 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13454 		nvmet_xri_cmpl =
13455 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13456 	}
13457 
13458 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13459 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13460 			if (!nvmet_xri_cmpl)
13461 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13462 						"6424 NVMET XRI exchange busy "
13463 						"wait time: %d seconds.\n",
13464 						wait_time/1000);
13465 			if (!io_xri_cmpl)
13466 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13467 						"6100 IO XRI exchange busy "
13468 						"wait time: %d seconds.\n",
13469 						wait_time/1000);
13470 			if (!els_xri_cmpl)
13471 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13472 						"2878 ELS XRI exchange busy "
13473 						"wait time: %d seconds.\n",
13474 						wait_time/1000);
13475 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13476 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13477 		} else {
13478 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13479 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13480 		}
13481 
13482 		ccnt = 0;
13483 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13484 			qp = &phba->sli4_hba.hdwq[idx];
13485 			io_xri_cmpl = list_empty(
13486 			    &qp->lpfc_abts_io_buf_list);
13487 			if (!io_xri_cmpl) /* if list is NOT empty */
13488 				ccnt++;
13489 		}
13490 		if (ccnt)
13491 			io_xri_cmpl = 0;
13492 
13493 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13494 			nvmet_xri_cmpl = list_empty(
13495 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13496 		}
13497 		els_xri_cmpl =
13498 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13499 
13500 	}
13501 }
13502 
13503 /**
13504  * lpfc_sli4_hba_unset - Unset the fcoe hba
13505  * @phba: Pointer to HBA context object.
13506  *
13507  * This function is called in the SLI4 code path to reset the HBA's FCoE
13508  * function. The caller is not required to hold any lock. This routine
13509  * issues PCI function reset mailbox command to reset the FCoE function.
13510  * At the end of the function, it calls lpfc_hba_down_post function to
13511  * free any pending commands.
13512  **/
13513 static void
13514 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13515 {
13516 	int wait_cnt = 0;
13517 	LPFC_MBOXQ_t *mboxq;
13518 	struct pci_dev *pdev = phba->pcidev;
13519 
13520 	lpfc_stop_hba_timers(phba);
13521 	hrtimer_cancel(&phba->cmf_timer);
13522 
13523 	if (phba->pport)
13524 		phba->sli4_hba.intr_enable = 0;
13525 
13526 	/*
13527 	 * Gracefully wait out the potential current outstanding asynchronous
13528 	 * mailbox command.
13529 	 */
13530 
13531 	/* First, block any pending async mailbox command from posted */
13532 	spin_lock_irq(&phba->hbalock);
13533 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13534 	spin_unlock_irq(&phba->hbalock);
13535 	/* Now, trying to wait it out if we can */
13536 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13537 		msleep(10);
13538 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13539 			break;
13540 	}
13541 	/* Forcefully release the outstanding mailbox command if timed out */
13542 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13543 		spin_lock_irq(&phba->hbalock);
13544 		mboxq = phba->sli.mbox_active;
13545 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13546 		__lpfc_mbox_cmpl_put(phba, mboxq);
13547 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13548 		phba->sli.mbox_active = NULL;
13549 		spin_unlock_irq(&phba->hbalock);
13550 	}
13551 
13552 	/* Abort all iocbs associated with the hba */
13553 	lpfc_sli_hba_iocb_abort(phba);
13554 
13555 	if (!pci_channel_offline(phba->pcidev))
13556 		/* Wait for completion of device XRI exchange busy */
13557 		lpfc_sli4_xri_exchange_busy_wait(phba);
13558 
13559 	/* per-phba callback de-registration for hotplug event */
13560 	if (phba->pport)
13561 		lpfc_cpuhp_remove(phba);
13562 
13563 	/* Disable PCI subsystem interrupt */
13564 	lpfc_sli4_disable_intr(phba);
13565 
13566 	/* Disable SR-IOV if enabled */
13567 	if (phba->cfg_sriov_nr_virtfn)
13568 		pci_disable_sriov(pdev);
13569 
13570 	/* Stop kthread signal shall trigger work_done one more time */
13571 	kthread_stop(phba->worker_thread);
13572 
13573 	/* Disable FW logging to host memory */
13574 	lpfc_ras_stop_fwlog(phba);
13575 
13576 	/* Reset SLI4 HBA FCoE function */
13577 	lpfc_pci_function_reset(phba);
13578 
13579 	/* release all queue allocated resources. */
13580 	lpfc_sli4_queue_destroy(phba);
13581 
13582 	/* Free RAS DMA memory */
13583 	if (phba->ras_fwlog.ras_enabled)
13584 		lpfc_sli4_ras_dma_free(phba);
13585 
13586 	/* Stop the SLI4 device port */
13587 	if (phba->pport)
13588 		phba->pport->work_port_events = 0;
13589 }
13590 
13591 static uint32_t
13592 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13593 {
13594 	uint32_t msb = 0;
13595 	uint32_t bit;
13596 
13597 	for (bit = 0; bit < 8; bit++) {
13598 		msb = (crc >> 31) & 1;
13599 		crc <<= 1;
13600 
13601 		if (msb ^ (byte & 1)) {
13602 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13603 			crc |= 1;
13604 		}
13605 		byte >>= 1;
13606 	}
13607 	return crc;
13608 }
13609 
13610 static uint32_t
13611 lpfc_cgn_reverse_bits(uint32_t wd)
13612 {
13613 	uint32_t result = 0;
13614 	uint32_t i;
13615 
13616 	for (i = 0; i < 32; i++) {
13617 		result <<= 1;
13618 		result |= (1 & (wd >> i));
13619 	}
13620 	return result;
13621 }
13622 
13623 /*
13624  * The routine corresponds with the algorithm the HBA firmware
13625  * uses to validate the data integrity.
13626  */
13627 uint32_t
13628 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13629 {
13630 	uint32_t  i;
13631 	uint32_t result;
13632 	uint8_t  *data = (uint8_t *)ptr;
13633 
13634 	for (i = 0; i < byteLen; ++i)
13635 		crc = lpfc_cgn_crc32(crc, data[i]);
13636 
13637 	result = ~lpfc_cgn_reverse_bits(crc);
13638 	return result;
13639 }
13640 
13641 void
13642 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13643 {
13644 	struct lpfc_cgn_info *cp;
13645 	struct timespec64 cmpl_time;
13646 	struct tm broken;
13647 	uint16_t size;
13648 	uint32_t crc;
13649 
13650 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13651 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13652 
13653 	if (!phba->cgn_i)
13654 		return;
13655 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13656 
13657 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13658 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13659 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13660 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13661 
13662 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13663 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13664 	atomic64_set(&phba->cgn_latency_evt, 0);
13665 	phba->cgn_evt_minute = 0;
13666 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13667 
13668 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13669 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13670 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13671 
13672 	/* cgn parameters */
13673 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13674 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13675 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13676 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13677 
13678 	ktime_get_real_ts64(&cmpl_time);
13679 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13680 
13681 	cp->cgn_info_month = broken.tm_mon + 1;
13682 	cp->cgn_info_day = broken.tm_mday;
13683 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13684 	cp->cgn_info_hour = broken.tm_hour;
13685 	cp->cgn_info_minute = broken.tm_min;
13686 	cp->cgn_info_second = broken.tm_sec;
13687 
13688 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13689 			"2643 CGNInfo Init: Start Time "
13690 			"%d/%d/%d %d:%d:%d\n",
13691 			cp->cgn_info_day, cp->cgn_info_month,
13692 			cp->cgn_info_year, cp->cgn_info_hour,
13693 			cp->cgn_info_minute, cp->cgn_info_second);
13694 
13695 	/* Fill in default LUN qdepth */
13696 	if (phba->pport) {
13697 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13698 		cp->cgn_lunq = cpu_to_le16(size);
13699 	}
13700 
13701 	/* last used Index initialized to 0xff already */
13702 
13703 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13704 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13705 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13706 	cp->cgn_info_crc = cpu_to_le32(crc);
13707 
13708 	phba->cgn_evt_timestamp = jiffies +
13709 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13710 }
13711 
13712 void
13713 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13714 {
13715 	struct lpfc_cgn_info *cp;
13716 	struct timespec64 cmpl_time;
13717 	struct tm broken;
13718 	uint32_t crc;
13719 
13720 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13721 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13722 
13723 	if (!phba->cgn_i)
13724 		return;
13725 
13726 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13727 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13728 
13729 	ktime_get_real_ts64(&cmpl_time);
13730 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13731 
13732 	cp->cgn_stat_month = broken.tm_mon + 1;
13733 	cp->cgn_stat_day = broken.tm_mday;
13734 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13735 	cp->cgn_stat_hour = broken.tm_hour;
13736 	cp->cgn_stat_minute = broken.tm_min;
13737 
13738 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13739 			"2647 CGNstat Init: Start Time "
13740 			"%d/%d/%d %d:%d\n",
13741 			cp->cgn_stat_day, cp->cgn_stat_month,
13742 			cp->cgn_stat_year, cp->cgn_stat_hour,
13743 			cp->cgn_stat_minute);
13744 
13745 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13746 	cp->cgn_info_crc = cpu_to_le32(crc);
13747 }
13748 
13749 /**
13750  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13751  * @phba: Pointer to hba context object.
13752  * @reg: flag to determine register or unregister.
13753  */
13754 static int
13755 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13756 {
13757 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13758 	union  lpfc_sli4_cfg_shdr *shdr;
13759 	uint32_t shdr_status, shdr_add_status;
13760 	LPFC_MBOXQ_t *mboxq;
13761 	int length, rc;
13762 
13763 	if (!phba->cgn_i)
13764 		return -ENXIO;
13765 
13766 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13767 	if (!mboxq) {
13768 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13769 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13770 				"HBA state x%x reg %d\n",
13771 				phba->pport->port_state, reg);
13772 		return -ENOMEM;
13773 	}
13774 
13775 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13776 		sizeof(struct lpfc_sli4_cfg_mhdr));
13777 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13778 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13779 			 LPFC_SLI4_MBX_EMBED);
13780 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13781 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13782 	if (reg > 0)
13783 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13784 	else
13785 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13786 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13787 	reg_congestion_buf->addr_lo =
13788 		putPaddrLow(phba->cgn_i->phys);
13789 	reg_congestion_buf->addr_hi =
13790 		putPaddrHigh(phba->cgn_i->phys);
13791 
13792 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13793 	shdr = (union lpfc_sli4_cfg_shdr *)
13794 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13795 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13796 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13797 				 &shdr->response);
13798 	mempool_free(mboxq, phba->mbox_mem_pool);
13799 	if (shdr_status || shdr_add_status || rc) {
13800 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13801 				"2642 REG_CONGESTION_BUF mailbox "
13802 				"failed with status x%x add_status x%x,"
13803 				" mbx status x%x reg %d\n",
13804 				shdr_status, shdr_add_status, rc, reg);
13805 		return -ENXIO;
13806 	}
13807 	return 0;
13808 }
13809 
13810 int
13811 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13812 {
13813 	lpfc_cmf_stop(phba);
13814 	return __lpfc_reg_congestion_buf(phba, 0);
13815 }
13816 
13817 int
13818 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13819 {
13820 	return __lpfc_reg_congestion_buf(phba, 1);
13821 }
13822 
13823 /**
13824  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13825  * @phba: Pointer to HBA context object.
13826  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13827  *
13828  * This function is called in the SLI4 code path to read the port's
13829  * sli4 capabilities.
13830  *
13831  * This function may be be called from any context that can block-wait
13832  * for the completion.  The expectation is that this routine is called
13833  * typically from probe_one or from the online routine.
13834  **/
13835 int
13836 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13837 {
13838 	int rc;
13839 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13840 	struct lpfc_pc_sli4_params *sli4_params;
13841 	uint32_t mbox_tmo;
13842 	int length;
13843 	bool exp_wqcq_pages = true;
13844 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13845 
13846 	/*
13847 	 * By default, the driver assumes the SLI4 port requires RPI
13848 	 * header postings.  The SLI4_PARAM response will correct this
13849 	 * assumption.
13850 	 */
13851 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13852 
13853 	/* Read the port's SLI4 Config Parameters */
13854 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13855 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13856 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13857 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13858 			 length, LPFC_SLI4_MBX_EMBED);
13859 	if (!phba->sli4_hba.intr_enable)
13860 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13861 	else {
13862 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13863 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13864 	}
13865 	if (unlikely(rc))
13866 		return rc;
13867 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13868 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13869 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13870 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13871 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13872 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13873 					     mbx_sli4_parameters);
13874 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13875 					     mbx_sli4_parameters);
13876 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13877 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13878 	else
13879 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13880 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13881 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13882 					   mbx_sli4_parameters);
13883 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13884 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13885 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13886 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13887 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13888 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13889 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13890 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13891 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13892 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13893 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13894 					    mbx_sli4_parameters);
13895 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13896 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13897 					   mbx_sli4_parameters);
13898 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13899 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13900 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13901 
13902 	/* Check for Extended Pre-Registered SGL support */
13903 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13904 
13905 	/* Check for firmware nvme support */
13906 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13907 		     bf_get(cfg_xib, mbx_sli4_parameters));
13908 
13909 	if (rc) {
13910 		/* Save this to indicate the Firmware supports NVME */
13911 		sli4_params->nvme = 1;
13912 
13913 		/* Firmware NVME support, check driver FC4 NVME support */
13914 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13915 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13916 					"6133 Disabling NVME support: "
13917 					"FC4 type not supported: x%x\n",
13918 					phba->cfg_enable_fc4_type);
13919 			goto fcponly;
13920 		}
13921 	} else {
13922 		/* No firmware NVME support, check driver FC4 NVME support */
13923 		sli4_params->nvme = 0;
13924 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13925 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13926 					"6101 Disabling NVME support: Not "
13927 					"supported by firmware (%d %d) x%x\n",
13928 					bf_get(cfg_nvme, mbx_sli4_parameters),
13929 					bf_get(cfg_xib, mbx_sli4_parameters),
13930 					phba->cfg_enable_fc4_type);
13931 fcponly:
13932 			phba->nvmet_support = 0;
13933 			phba->cfg_nvmet_mrq = 0;
13934 			phba->cfg_nvme_seg_cnt = 0;
13935 
13936 			/* If no FC4 type support, move to just SCSI support */
13937 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13938 				return -ENODEV;
13939 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13940 		}
13941 	}
13942 
13943 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13944 	 * accommodate 512K and 1M IOs in a single nvme buf.
13945 	 */
13946 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13947 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13948 
13949 	/* Enable embedded Payload BDE if support is indicated */
13950 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13951 		phba->cfg_enable_pbde = 1;
13952 	else
13953 		phba->cfg_enable_pbde = 0;
13954 
13955 	/*
13956 	 * To support Suppress Response feature we must satisfy 3 conditions.
13957 	 * lpfc_suppress_rsp module parameter must be set (default).
13958 	 * In SLI4-Parameters Descriptor:
13959 	 * Extended Inline Buffers (XIB) must be supported.
13960 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13961 	 * (double negative).
13962 	 */
13963 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13964 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13965 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13966 	else
13967 		phba->cfg_suppress_rsp = 0;
13968 
13969 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13970 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13971 
13972 	/* Make sure that sge_supp_len can be handled by the driver */
13973 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13974 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13975 
13976 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13977 	if (unlikely(rc)) {
13978 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13979 				"6400 Can't set dma maximum segment size\n");
13980 		return rc;
13981 	}
13982 
13983 	/*
13984 	 * Check whether the adapter supports an embedded copy of the
13985 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13986 	 * to use this option, 128-byte WQEs must be used.
13987 	 */
13988 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13989 		phba->fcp_embed_io = 1;
13990 	else
13991 		phba->fcp_embed_io = 0;
13992 
13993 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13994 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13995 			bf_get(cfg_xib, mbx_sli4_parameters),
13996 			phba->cfg_enable_pbde,
13997 			phba->fcp_embed_io, sli4_params->nvme,
13998 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13999 
14000 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
14001 	    LPFC_SLI_INTF_IF_TYPE_2) &&
14002 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
14003 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
14004 		exp_wqcq_pages = false;
14005 
14006 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
14007 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
14008 	    exp_wqcq_pages &&
14009 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
14010 		phba->enab_exp_wqcq_pages = 1;
14011 	else
14012 		phba->enab_exp_wqcq_pages = 0;
14013 	/*
14014 	 * Check if the SLI port supports MDS Diagnostics
14015 	 */
14016 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
14017 		phba->mds_diags_support = 1;
14018 	else
14019 		phba->mds_diags_support = 0;
14020 
14021 	/*
14022 	 * Check if the SLI port supports NSLER
14023 	 */
14024 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
14025 		phba->nsler = 1;
14026 	else
14027 		phba->nsler = 0;
14028 
14029 	return 0;
14030 }
14031 
14032 /**
14033  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
14034  * @pdev: pointer to PCI device
14035  * @pid: pointer to PCI device identifier
14036  *
14037  * This routine is to be called to attach a device with SLI-3 interface spec
14038  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14039  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14040  * information of the device and driver to see if the driver state that it can
14041  * support this kind of device. If the match is successful, the driver core
14042  * invokes this routine. If this routine determines it can claim the HBA, it
14043  * does all the initialization that it needs to do to handle the HBA properly.
14044  *
14045  * Return code
14046  * 	0 - driver can claim the device
14047  * 	negative value - driver can not claim the device
14048  **/
14049 static int
14050 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
14051 {
14052 	struct lpfc_hba   *phba;
14053 	struct lpfc_vport *vport = NULL;
14054 	struct Scsi_Host  *shost = NULL;
14055 	int error;
14056 	uint32_t cfg_mode, intr_mode;
14057 
14058 	/* Allocate memory for HBA structure */
14059 	phba = lpfc_hba_alloc(pdev);
14060 	if (!phba)
14061 		return -ENOMEM;
14062 
14063 	/* Perform generic PCI device enabling operation */
14064 	error = lpfc_enable_pci_dev(phba);
14065 	if (error)
14066 		goto out_free_phba;
14067 
14068 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
14069 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
14070 	if (error)
14071 		goto out_disable_pci_dev;
14072 
14073 	/* Set up SLI-3 specific device PCI memory space */
14074 	error = lpfc_sli_pci_mem_setup(phba);
14075 	if (error) {
14076 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14077 				"1402 Failed to set up pci memory space.\n");
14078 		goto out_disable_pci_dev;
14079 	}
14080 
14081 	/* Set up SLI-3 specific device driver resources */
14082 	error = lpfc_sli_driver_resource_setup(phba);
14083 	if (error) {
14084 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14085 				"1404 Failed to set up driver resource.\n");
14086 		goto out_unset_pci_mem_s3;
14087 	}
14088 
14089 	/* Initialize and populate the iocb list per host */
14090 
14091 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
14092 	if (error) {
14093 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14094 				"1405 Failed to initialize iocb list.\n");
14095 		goto out_unset_driver_resource_s3;
14096 	}
14097 
14098 	/* Set up common device driver resources */
14099 	error = lpfc_setup_driver_resource_phase2(phba);
14100 	if (error) {
14101 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14102 				"1406 Failed to set up driver resource.\n");
14103 		goto out_free_iocb_list;
14104 	}
14105 
14106 	/* Get the default values for Model Name and Description */
14107 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14108 
14109 	/* Create SCSI host to the physical port */
14110 	error = lpfc_create_shost(phba);
14111 	if (error) {
14112 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14113 				"1407 Failed to create scsi host.\n");
14114 		goto out_unset_driver_resource;
14115 	}
14116 
14117 	/* Configure sysfs attributes */
14118 	vport = phba->pport;
14119 	error = lpfc_alloc_sysfs_attr(vport);
14120 	if (error) {
14121 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14122 				"1476 Failed to allocate sysfs attr\n");
14123 		goto out_destroy_shost;
14124 	}
14125 
14126 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14127 	/* Now, trying to enable interrupt and bring up the device */
14128 	cfg_mode = phba->cfg_use_msi;
14129 	while (true) {
14130 		/* Put device to a known state before enabling interrupt */
14131 		lpfc_stop_port(phba);
14132 		/* Configure and enable interrupt */
14133 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14134 		if (intr_mode == LPFC_INTR_ERROR) {
14135 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14136 					"0431 Failed to enable interrupt.\n");
14137 			error = -ENODEV;
14138 			goto out_free_sysfs_attr;
14139 		}
14140 		/* SLI-3 HBA setup */
14141 		if (lpfc_sli_hba_setup(phba)) {
14142 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14143 					"1477 Failed to set up hba\n");
14144 			error = -ENODEV;
14145 			goto out_remove_device;
14146 		}
14147 
14148 		/* Wait 50ms for the interrupts of previous mailbox commands */
14149 		msleep(50);
14150 		/* Check active interrupts on message signaled interrupts */
14151 		if (intr_mode == 0 ||
14152 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14153 			/* Log the current active interrupt mode */
14154 			phba->intr_mode = intr_mode;
14155 			lpfc_log_intr_mode(phba, intr_mode);
14156 			break;
14157 		} else {
14158 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14159 					"0447 Configure interrupt mode (%d) "
14160 					"failed active interrupt test.\n",
14161 					intr_mode);
14162 			/* Disable the current interrupt mode */
14163 			lpfc_sli_disable_intr(phba);
14164 			/* Try next level of interrupt mode */
14165 			cfg_mode = --intr_mode;
14166 		}
14167 	}
14168 
14169 	/* Perform post initialization setup */
14170 	lpfc_post_init_setup(phba);
14171 
14172 	/* Check if there are static vports to be created. */
14173 	lpfc_create_static_vport(phba);
14174 
14175 	return 0;
14176 
14177 out_remove_device:
14178 	lpfc_unset_hba(phba);
14179 out_free_sysfs_attr:
14180 	lpfc_free_sysfs_attr(vport);
14181 out_destroy_shost:
14182 	lpfc_destroy_shost(phba);
14183 out_unset_driver_resource:
14184 	lpfc_unset_driver_resource_phase2(phba);
14185 out_free_iocb_list:
14186 	lpfc_free_iocb_list(phba);
14187 out_unset_driver_resource_s3:
14188 	lpfc_sli_driver_resource_unset(phba);
14189 out_unset_pci_mem_s3:
14190 	lpfc_sli_pci_mem_unset(phba);
14191 out_disable_pci_dev:
14192 	lpfc_disable_pci_dev(phba);
14193 	if (shost)
14194 		scsi_host_put(shost);
14195 out_free_phba:
14196 	lpfc_hba_free(phba);
14197 	return error;
14198 }
14199 
14200 /**
14201  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14202  * @pdev: pointer to PCI device
14203  *
14204  * This routine is to be called to disattach a device with SLI-3 interface
14205  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14206  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14207  * device to be removed from the PCI subsystem properly.
14208  **/
14209 static void
14210 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14211 {
14212 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14213 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14214 	struct lpfc_vport **vports;
14215 	struct lpfc_hba   *phba = vport->phba;
14216 	int i;
14217 
14218 	spin_lock_irq(&phba->hbalock);
14219 	vport->load_flag |= FC_UNLOADING;
14220 	spin_unlock_irq(&phba->hbalock);
14221 
14222 	lpfc_free_sysfs_attr(vport);
14223 
14224 	/* Release all the vports against this physical port */
14225 	vports = lpfc_create_vport_work_array(phba);
14226 	if (vports != NULL)
14227 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14228 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14229 				continue;
14230 			fc_vport_terminate(vports[i]->fc_vport);
14231 		}
14232 	lpfc_destroy_vport_work_array(phba, vports);
14233 
14234 	/* Remove FC host with the physical port */
14235 	fc_remove_host(shost);
14236 	scsi_remove_host(shost);
14237 
14238 	/* Clean up all nodes, mailboxes and IOs. */
14239 	lpfc_cleanup(vport);
14240 
14241 	/*
14242 	 * Bring down the SLI Layer. This step disable all interrupts,
14243 	 * clears the rings, discards all mailbox commands, and resets
14244 	 * the HBA.
14245 	 */
14246 
14247 	/* HBA interrupt will be disabled after this call */
14248 	lpfc_sli_hba_down(phba);
14249 	/* Stop kthread signal shall trigger work_done one more time */
14250 	kthread_stop(phba->worker_thread);
14251 	/* Final cleanup of txcmplq and reset the HBA */
14252 	lpfc_sli_brdrestart(phba);
14253 
14254 	kfree(phba->vpi_bmask);
14255 	kfree(phba->vpi_ids);
14256 
14257 	lpfc_stop_hba_timers(phba);
14258 	spin_lock_irq(&phba->port_list_lock);
14259 	list_del_init(&vport->listentry);
14260 	spin_unlock_irq(&phba->port_list_lock);
14261 
14262 	lpfc_debugfs_terminate(vport);
14263 
14264 	/* Disable SR-IOV if enabled */
14265 	if (phba->cfg_sriov_nr_virtfn)
14266 		pci_disable_sriov(pdev);
14267 
14268 	/* Disable interrupt */
14269 	lpfc_sli_disable_intr(phba);
14270 
14271 	scsi_host_put(shost);
14272 
14273 	/*
14274 	 * Call scsi_free before mem_free since scsi bufs are released to their
14275 	 * corresponding pools here.
14276 	 */
14277 	lpfc_scsi_free(phba);
14278 	lpfc_free_iocb_list(phba);
14279 
14280 	lpfc_mem_free_all(phba);
14281 
14282 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14283 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14284 
14285 	/* Free resources associated with SLI2 interface */
14286 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14287 			  phba->slim2p.virt, phba->slim2p.phys);
14288 
14289 	/* unmap adapter SLIM and Control Registers */
14290 	iounmap(phba->ctrl_regs_memmap_p);
14291 	iounmap(phba->slim_memmap_p);
14292 
14293 	lpfc_hba_free(phba);
14294 
14295 	pci_release_mem_regions(pdev);
14296 	pci_disable_device(pdev);
14297 }
14298 
14299 /**
14300  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14301  * @dev_d: pointer to device
14302  *
14303  * This routine is to be called from the kernel's PCI subsystem to support
14304  * system Power Management (PM) to device with SLI-3 interface spec. When
14305  * PM invokes this method, it quiesces the device by stopping the driver's
14306  * worker thread for the device, turning off device's interrupt and DMA,
14307  * and bring the device offline. Note that as the driver implements the
14308  * minimum PM requirements to a power-aware driver's PM support for the
14309  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14310  * to the suspend() method call will be treated as SUSPEND and the driver will
14311  * fully reinitialize its device during resume() method call, the driver will
14312  * set device to PCI_D3hot state in PCI config space instead of setting it
14313  * according to the @msg provided by the PM.
14314  *
14315  * Return code
14316  * 	0 - driver suspended the device
14317  * 	Error otherwise
14318  **/
14319 static int __maybe_unused
14320 lpfc_pci_suspend_one_s3(struct device *dev_d)
14321 {
14322 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14323 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14324 
14325 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14326 			"0473 PCI device Power Management suspend.\n");
14327 
14328 	/* Bring down the device */
14329 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14330 	lpfc_offline(phba);
14331 	kthread_stop(phba->worker_thread);
14332 
14333 	/* Disable interrupt from device */
14334 	lpfc_sli_disable_intr(phba);
14335 
14336 	return 0;
14337 }
14338 
14339 /**
14340  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14341  * @dev_d: pointer to device
14342  *
14343  * This routine is to be called from the kernel's PCI subsystem to support
14344  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14345  * invokes this method, it restores the device's PCI config space state and
14346  * fully reinitializes the device and brings it online. Note that as the
14347  * driver implements the minimum PM requirements to a power-aware driver's
14348  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14349  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14350  * driver will fully reinitialize its device during resume() method call,
14351  * the device will be set to PCI_D0 directly in PCI config space before
14352  * restoring the state.
14353  *
14354  * Return code
14355  * 	0 - driver suspended the device
14356  * 	Error otherwise
14357  **/
14358 static int __maybe_unused
14359 lpfc_pci_resume_one_s3(struct device *dev_d)
14360 {
14361 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14362 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14363 	uint32_t intr_mode;
14364 	int error;
14365 
14366 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14367 			"0452 PCI device Power Management resume.\n");
14368 
14369 	/* Startup the kernel thread for this host adapter. */
14370 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14371 					"lpfc_worker_%d", phba->brd_no);
14372 	if (IS_ERR(phba->worker_thread)) {
14373 		error = PTR_ERR(phba->worker_thread);
14374 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14375 				"0434 PM resume failed to start worker "
14376 				"thread: error=x%x.\n", error);
14377 		return error;
14378 	}
14379 
14380 	/* Init cpu_map array */
14381 	lpfc_cpu_map_array_init(phba);
14382 	/* Init hba_eq_hdl array */
14383 	lpfc_hba_eq_hdl_array_init(phba);
14384 	/* Configure and enable interrupt */
14385 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14386 	if (intr_mode == LPFC_INTR_ERROR) {
14387 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14388 				"0430 PM resume Failed to enable interrupt\n");
14389 		return -EIO;
14390 	} else
14391 		phba->intr_mode = intr_mode;
14392 
14393 	/* Restart HBA and bring it online */
14394 	lpfc_sli_brdrestart(phba);
14395 	lpfc_online(phba);
14396 
14397 	/* Log the current active interrupt mode */
14398 	lpfc_log_intr_mode(phba, phba->intr_mode);
14399 
14400 	return 0;
14401 }
14402 
14403 /**
14404  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14405  * @phba: pointer to lpfc hba data structure.
14406  *
14407  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14408  * aborts all the outstanding SCSI I/Os to the pci device.
14409  **/
14410 static void
14411 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14412 {
14413 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14414 			"2723 PCI channel I/O abort preparing for recovery\n");
14415 
14416 	/*
14417 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14418 	 * and let the SCSI mid-layer to retry them to recover.
14419 	 */
14420 	lpfc_sli_abort_fcp_rings(phba);
14421 }
14422 
14423 /**
14424  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14425  * @phba: pointer to lpfc hba data structure.
14426  *
14427  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14428  * disables the device interrupt and pci device, and aborts the internal FCP
14429  * pending I/Os.
14430  **/
14431 static void
14432 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14433 {
14434 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14435 			"2710 PCI channel disable preparing for reset\n");
14436 
14437 	/* Block any management I/Os to the device */
14438 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14439 
14440 	/* Block all SCSI devices' I/Os on the host */
14441 	lpfc_scsi_dev_block(phba);
14442 
14443 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14444 	lpfc_sli_flush_io_rings(phba);
14445 
14446 	/* stop all timers */
14447 	lpfc_stop_hba_timers(phba);
14448 
14449 	/* Disable interrupt and pci device */
14450 	lpfc_sli_disable_intr(phba);
14451 	pci_disable_device(phba->pcidev);
14452 }
14453 
14454 /**
14455  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14456  * @phba: pointer to lpfc hba data structure.
14457  *
14458  * This routine is called to prepare the SLI3 device for PCI slot permanently
14459  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14460  * pending I/Os.
14461  **/
14462 static void
14463 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14464 {
14465 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14466 			"2711 PCI channel permanent disable for failure\n");
14467 	/* Block all SCSI devices' I/Os on the host */
14468 	lpfc_scsi_dev_block(phba);
14469 	lpfc_sli4_prep_dev_for_reset(phba);
14470 
14471 	/* stop all timers */
14472 	lpfc_stop_hba_timers(phba);
14473 
14474 	/* Clean up all driver's outstanding SCSI I/Os */
14475 	lpfc_sli_flush_io_rings(phba);
14476 }
14477 
14478 /**
14479  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14480  * @pdev: pointer to PCI device.
14481  * @state: the current PCI connection state.
14482  *
14483  * This routine is called from the PCI subsystem for I/O error handling to
14484  * device with SLI-3 interface spec. This function is called by the PCI
14485  * subsystem after a PCI bus error affecting this device has been detected.
14486  * When this function is invoked, it will need to stop all the I/Os and
14487  * interrupt(s) to the device. Once that is done, it will return
14488  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14489  * as desired.
14490  *
14491  * Return codes
14492  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14493  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14494  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14495  **/
14496 static pci_ers_result_t
14497 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14498 {
14499 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14500 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14501 
14502 	switch (state) {
14503 	case pci_channel_io_normal:
14504 		/* Non-fatal error, prepare for recovery */
14505 		lpfc_sli_prep_dev_for_recover(phba);
14506 		return PCI_ERS_RESULT_CAN_RECOVER;
14507 	case pci_channel_io_frozen:
14508 		/* Fatal error, prepare for slot reset */
14509 		lpfc_sli_prep_dev_for_reset(phba);
14510 		return PCI_ERS_RESULT_NEED_RESET;
14511 	case pci_channel_io_perm_failure:
14512 		/* Permanent failure, prepare for device down */
14513 		lpfc_sli_prep_dev_for_perm_failure(phba);
14514 		return PCI_ERS_RESULT_DISCONNECT;
14515 	default:
14516 		/* Unknown state, prepare and request slot reset */
14517 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14518 				"0472 Unknown PCI error state: x%x\n", state);
14519 		lpfc_sli_prep_dev_for_reset(phba);
14520 		return PCI_ERS_RESULT_NEED_RESET;
14521 	}
14522 }
14523 
14524 /**
14525  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14526  * @pdev: pointer to PCI device.
14527  *
14528  * This routine is called from the PCI subsystem for error handling to
14529  * device with SLI-3 interface spec. This is called after PCI bus has been
14530  * reset to restart the PCI card from scratch, as if from a cold-boot.
14531  * During the PCI subsystem error recovery, after driver returns
14532  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14533  * recovery and then call this routine before calling the .resume method
14534  * to recover the device. This function will initialize the HBA device,
14535  * enable the interrupt, but it will just put the HBA to offline state
14536  * without passing any I/O traffic.
14537  *
14538  * Return codes
14539  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14540  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14541  */
14542 static pci_ers_result_t
14543 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14544 {
14545 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14546 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14547 	struct lpfc_sli *psli = &phba->sli;
14548 	uint32_t intr_mode;
14549 
14550 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14551 	if (pci_enable_device_mem(pdev)) {
14552 		printk(KERN_ERR "lpfc: Cannot re-enable "
14553 			"PCI device after reset.\n");
14554 		return PCI_ERS_RESULT_DISCONNECT;
14555 	}
14556 
14557 	pci_restore_state(pdev);
14558 
14559 	/*
14560 	 * As the new kernel behavior of pci_restore_state() API call clears
14561 	 * device saved_state flag, need to save the restored state again.
14562 	 */
14563 	pci_save_state(pdev);
14564 
14565 	if (pdev->is_busmaster)
14566 		pci_set_master(pdev);
14567 
14568 	spin_lock_irq(&phba->hbalock);
14569 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14570 	spin_unlock_irq(&phba->hbalock);
14571 
14572 	/* Configure and enable interrupt */
14573 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14574 	if (intr_mode == LPFC_INTR_ERROR) {
14575 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14576 				"0427 Cannot re-enable interrupt after "
14577 				"slot reset.\n");
14578 		return PCI_ERS_RESULT_DISCONNECT;
14579 	} else
14580 		phba->intr_mode = intr_mode;
14581 
14582 	/* Take device offline, it will perform cleanup */
14583 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14584 	lpfc_offline(phba);
14585 	lpfc_sli_brdrestart(phba);
14586 
14587 	/* Log the current active interrupt mode */
14588 	lpfc_log_intr_mode(phba, phba->intr_mode);
14589 
14590 	return PCI_ERS_RESULT_RECOVERED;
14591 }
14592 
14593 /**
14594  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14595  * @pdev: pointer to PCI device
14596  *
14597  * This routine is called from the PCI subsystem for error handling to device
14598  * with SLI-3 interface spec. It is called when kernel error recovery tells
14599  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14600  * error recovery. After this call, traffic can start to flow from this device
14601  * again.
14602  */
14603 static void
14604 lpfc_io_resume_s3(struct pci_dev *pdev)
14605 {
14606 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14607 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14608 
14609 	/* Bring device online, it will be no-op for non-fatal error resume */
14610 	lpfc_online(phba);
14611 }
14612 
14613 /**
14614  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14615  * @phba: pointer to lpfc hba data structure.
14616  *
14617  * returns the number of ELS/CT IOCBs to reserve
14618  **/
14619 int
14620 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14621 {
14622 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14623 
14624 	if (phba->sli_rev == LPFC_SLI_REV4) {
14625 		if (max_xri <= 100)
14626 			return 10;
14627 		else if (max_xri <= 256)
14628 			return 25;
14629 		else if (max_xri <= 512)
14630 			return 50;
14631 		else if (max_xri <= 1024)
14632 			return 100;
14633 		else if (max_xri <= 1536)
14634 			return 150;
14635 		else if (max_xri <= 2048)
14636 			return 200;
14637 		else
14638 			return 250;
14639 	} else
14640 		return 0;
14641 }
14642 
14643 /**
14644  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14645  * @phba: pointer to lpfc hba data structure.
14646  *
14647  * returns the number of ELS/CT + NVMET IOCBs to reserve
14648  **/
14649 int
14650 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14651 {
14652 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14653 
14654 	if (phba->nvmet_support)
14655 		max_xri += LPFC_NVMET_BUF_POST;
14656 	return max_xri;
14657 }
14658 
14659 
14660 static int
14661 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14662 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14663 	const struct firmware *fw)
14664 {
14665 	int rc;
14666 	u8 sli_family;
14667 
14668 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14669 	/* Three cases:  (1) FW was not supported on the detected adapter.
14670 	 * (2) FW update has been locked out administratively.
14671 	 * (3) Some other error during FW update.
14672 	 * In each case, an unmaskable message is written to the console
14673 	 * for admin diagnosis.
14674 	 */
14675 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14676 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14677 	     magic_number != MAGIC_NUMBER_G6) ||
14678 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14679 	     magic_number != MAGIC_NUMBER_G7) ||
14680 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14681 	     magic_number != MAGIC_NUMBER_G7P)) {
14682 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14683 				"3030 This firmware version is not supported on"
14684 				" this HBA model. Device:%x Magic:%x Type:%x "
14685 				"ID:%x Size %d %zd\n",
14686 				phba->pcidev->device, magic_number, ftype, fid,
14687 				fsize, fw->size);
14688 		rc = -EINVAL;
14689 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14690 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14691 				"3021 Firmware downloads have been prohibited "
14692 				"by a system configuration setting on "
14693 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14694 				"%zd\n",
14695 				phba->pcidev->device, magic_number, ftype, fid,
14696 				fsize, fw->size);
14697 		rc = -EACCES;
14698 	} else {
14699 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14700 				"3022 FW Download failed. Add Status x%x "
14701 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14702 				"%zd\n",
14703 				offset, phba->pcidev->device, magic_number,
14704 				ftype, fid, fsize, fw->size);
14705 		rc = -EIO;
14706 	}
14707 	return rc;
14708 }
14709 
14710 /**
14711  * lpfc_write_firmware - attempt to write a firmware image to the port
14712  * @fw: pointer to firmware image returned from request_firmware.
14713  * @context: pointer to firmware image returned from request_firmware.
14714  *
14715  **/
14716 static void
14717 lpfc_write_firmware(const struct firmware *fw, void *context)
14718 {
14719 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14720 	char fwrev[FW_REV_STR_SIZE];
14721 	struct lpfc_grp_hdr *image;
14722 	struct list_head dma_buffer_list;
14723 	int i, rc = 0;
14724 	struct lpfc_dmabuf *dmabuf, *next;
14725 	uint32_t offset = 0, temp_offset = 0;
14726 	uint32_t magic_number, ftype, fid, fsize;
14727 
14728 	/* It can be null in no-wait mode, sanity check */
14729 	if (!fw) {
14730 		rc = -ENXIO;
14731 		goto out;
14732 	}
14733 	image = (struct lpfc_grp_hdr *)fw->data;
14734 
14735 	magic_number = be32_to_cpu(image->magic_number);
14736 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14737 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14738 	fsize = be32_to_cpu(image->size);
14739 
14740 	INIT_LIST_HEAD(&dma_buffer_list);
14741 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14742 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14743 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14744 				"3023 Updating Firmware, Current Version:%s "
14745 				"New Version:%s\n",
14746 				fwrev, image->revision);
14747 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14748 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14749 					 GFP_KERNEL);
14750 			if (!dmabuf) {
14751 				rc = -ENOMEM;
14752 				goto release_out;
14753 			}
14754 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14755 							  SLI4_PAGE_SIZE,
14756 							  &dmabuf->phys,
14757 							  GFP_KERNEL);
14758 			if (!dmabuf->virt) {
14759 				kfree(dmabuf);
14760 				rc = -ENOMEM;
14761 				goto release_out;
14762 			}
14763 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14764 		}
14765 		while (offset < fw->size) {
14766 			temp_offset = offset;
14767 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14768 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14769 					memcpy(dmabuf->virt,
14770 					       fw->data + temp_offset,
14771 					       fw->size - temp_offset);
14772 					temp_offset = fw->size;
14773 					break;
14774 				}
14775 				memcpy(dmabuf->virt, fw->data + temp_offset,
14776 				       SLI4_PAGE_SIZE);
14777 				temp_offset += SLI4_PAGE_SIZE;
14778 			}
14779 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14780 				    (fw->size - offset), &offset);
14781 			if (rc) {
14782 				rc = lpfc_log_write_firmware_error(phba, offset,
14783 								   magic_number,
14784 								   ftype,
14785 								   fid,
14786 								   fsize,
14787 								   fw);
14788 				goto release_out;
14789 			}
14790 		}
14791 		rc = offset;
14792 	} else
14793 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14794 				"3029 Skipped Firmware update, Current "
14795 				"Version:%s New Version:%s\n",
14796 				fwrev, image->revision);
14797 
14798 release_out:
14799 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14800 		list_del(&dmabuf->list);
14801 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14802 				  dmabuf->virt, dmabuf->phys);
14803 		kfree(dmabuf);
14804 	}
14805 	release_firmware(fw);
14806 out:
14807 	if (rc < 0)
14808 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14809 				"3062 Firmware update error, status %d.\n", rc);
14810 	else
14811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14812 				"3024 Firmware update success: size %d.\n", rc);
14813 }
14814 
14815 /**
14816  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14817  * @phba: pointer to lpfc hba data structure.
14818  * @fw_upgrade: which firmware to update.
14819  *
14820  * This routine is called to perform Linux generic firmware upgrade on device
14821  * that supports such feature.
14822  **/
14823 int
14824 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14825 {
14826 	uint8_t file_name[ELX_MODEL_NAME_SIZE];
14827 	int ret;
14828 	const struct firmware *fw;
14829 
14830 	/* Only supported on SLI4 interface type 2 for now */
14831 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14832 	    LPFC_SLI_INTF_IF_TYPE_2)
14833 		return -EPERM;
14834 
14835 	snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName);
14836 
14837 	if (fw_upgrade == INT_FW_UPGRADE) {
14838 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14839 					file_name, &phba->pcidev->dev,
14840 					GFP_KERNEL, (void *)phba,
14841 					lpfc_write_firmware);
14842 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14843 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14844 		if (!ret)
14845 			lpfc_write_firmware(fw, (void *)phba);
14846 	} else {
14847 		ret = -EINVAL;
14848 	}
14849 
14850 	return ret;
14851 }
14852 
14853 /**
14854  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14855  * @pdev: pointer to PCI device
14856  * @pid: pointer to PCI device identifier
14857  *
14858  * This routine is called from the kernel's PCI subsystem to device with
14859  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14860  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14861  * information of the device and driver to see if the driver state that it
14862  * can support this kind of device. If the match is successful, the driver
14863  * core invokes this routine. If this routine determines it can claim the HBA,
14864  * it does all the initialization that it needs to do to handle the HBA
14865  * properly.
14866  *
14867  * Return code
14868  * 	0 - driver can claim the device
14869  * 	negative value - driver can not claim the device
14870  **/
14871 static int
14872 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14873 {
14874 	struct lpfc_hba   *phba;
14875 	struct lpfc_vport *vport = NULL;
14876 	struct Scsi_Host  *shost = NULL;
14877 	int error;
14878 	uint32_t cfg_mode, intr_mode;
14879 
14880 	/* Allocate memory for HBA structure */
14881 	phba = lpfc_hba_alloc(pdev);
14882 	if (!phba)
14883 		return -ENOMEM;
14884 
14885 	INIT_LIST_HEAD(&phba->poll_list);
14886 
14887 	/* Perform generic PCI device enabling operation */
14888 	error = lpfc_enable_pci_dev(phba);
14889 	if (error)
14890 		goto out_free_phba;
14891 
14892 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14893 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14894 	if (error)
14895 		goto out_disable_pci_dev;
14896 
14897 	/* Set up SLI-4 specific device PCI memory space */
14898 	error = lpfc_sli4_pci_mem_setup(phba);
14899 	if (error) {
14900 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14901 				"1410 Failed to set up pci memory space.\n");
14902 		goto out_disable_pci_dev;
14903 	}
14904 
14905 	/* Set up SLI-4 Specific device driver resources */
14906 	error = lpfc_sli4_driver_resource_setup(phba);
14907 	if (error) {
14908 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14909 				"1412 Failed to set up driver resource.\n");
14910 		goto out_unset_pci_mem_s4;
14911 	}
14912 
14913 	INIT_LIST_HEAD(&phba->active_rrq_list);
14914 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14915 
14916 	/* Set up common device driver resources */
14917 	error = lpfc_setup_driver_resource_phase2(phba);
14918 	if (error) {
14919 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14920 				"1414 Failed to set up driver resource.\n");
14921 		goto out_unset_driver_resource_s4;
14922 	}
14923 
14924 	/* Get the default values for Model Name and Description */
14925 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14926 
14927 	/* Now, trying to enable interrupt and bring up the device */
14928 	cfg_mode = phba->cfg_use_msi;
14929 
14930 	/* Put device to a known state before enabling interrupt */
14931 	phba->pport = NULL;
14932 	lpfc_stop_port(phba);
14933 
14934 	/* Init cpu_map array */
14935 	lpfc_cpu_map_array_init(phba);
14936 
14937 	/* Init hba_eq_hdl array */
14938 	lpfc_hba_eq_hdl_array_init(phba);
14939 
14940 	/* Configure and enable interrupt */
14941 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14942 	if (intr_mode == LPFC_INTR_ERROR) {
14943 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14944 				"0426 Failed to enable interrupt.\n");
14945 		error = -ENODEV;
14946 		goto out_unset_driver_resource;
14947 	}
14948 	/* Default to single EQ for non-MSI-X */
14949 	if (phba->intr_type != MSIX) {
14950 		phba->cfg_irq_chann = 1;
14951 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14952 			if (phba->nvmet_support)
14953 				phba->cfg_nvmet_mrq = 1;
14954 		}
14955 	}
14956 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14957 
14958 	/* Create SCSI host to the physical port */
14959 	error = lpfc_create_shost(phba);
14960 	if (error) {
14961 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14962 				"1415 Failed to create scsi host.\n");
14963 		goto out_disable_intr;
14964 	}
14965 	vport = phba->pport;
14966 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14967 
14968 	/* Configure sysfs attributes */
14969 	error = lpfc_alloc_sysfs_attr(vport);
14970 	if (error) {
14971 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14972 				"1416 Failed to allocate sysfs attr\n");
14973 		goto out_destroy_shost;
14974 	}
14975 
14976 	/* Set up SLI-4 HBA */
14977 	if (lpfc_sli4_hba_setup(phba)) {
14978 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14979 				"1421 Failed to set up hba\n");
14980 		error = -ENODEV;
14981 		goto out_free_sysfs_attr;
14982 	}
14983 
14984 	/* Log the current active interrupt mode */
14985 	phba->intr_mode = intr_mode;
14986 	lpfc_log_intr_mode(phba, intr_mode);
14987 
14988 	/* Perform post initialization setup */
14989 	lpfc_post_init_setup(phba);
14990 
14991 	/* NVME support in FW earlier in the driver load corrects the
14992 	 * FC4 type making a check for nvme_support unnecessary.
14993 	 */
14994 	if (phba->nvmet_support == 0) {
14995 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14996 			/* Create NVME binding with nvme_fc_transport. This
14997 			 * ensures the vport is initialized.  If the localport
14998 			 * create fails, it should not unload the driver to
14999 			 * support field issues.
15000 			 */
15001 			error = lpfc_nvme_create_localport(vport);
15002 			if (error) {
15003 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15004 						"6004 NVME registration "
15005 						"failed, error x%x\n",
15006 						error);
15007 			}
15008 		}
15009 	}
15010 
15011 	/* check for firmware upgrade or downgrade */
15012 	if (phba->cfg_request_firmware_upgrade)
15013 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
15014 
15015 	/* Check if there are static vports to be created. */
15016 	lpfc_create_static_vport(phba);
15017 
15018 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
15019 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
15020 
15021 	return 0;
15022 
15023 out_free_sysfs_attr:
15024 	lpfc_free_sysfs_attr(vport);
15025 out_destroy_shost:
15026 	lpfc_destroy_shost(phba);
15027 out_disable_intr:
15028 	lpfc_sli4_disable_intr(phba);
15029 out_unset_driver_resource:
15030 	lpfc_unset_driver_resource_phase2(phba);
15031 out_unset_driver_resource_s4:
15032 	lpfc_sli4_driver_resource_unset(phba);
15033 out_unset_pci_mem_s4:
15034 	lpfc_sli4_pci_mem_unset(phba);
15035 out_disable_pci_dev:
15036 	lpfc_disable_pci_dev(phba);
15037 	if (shost)
15038 		scsi_host_put(shost);
15039 out_free_phba:
15040 	lpfc_hba_free(phba);
15041 	return error;
15042 }
15043 
15044 /**
15045  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
15046  * @pdev: pointer to PCI device
15047  *
15048  * This routine is called from the kernel's PCI subsystem to device with
15049  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
15050  * removed from PCI bus, it performs all the necessary cleanup for the HBA
15051  * device to be removed from the PCI subsystem properly.
15052  **/
15053 static void
15054 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
15055 {
15056 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15057 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
15058 	struct lpfc_vport **vports;
15059 	struct lpfc_hba *phba = vport->phba;
15060 	int i;
15061 
15062 	/* Mark the device unloading flag */
15063 	spin_lock_irq(&phba->hbalock);
15064 	vport->load_flag |= FC_UNLOADING;
15065 	spin_unlock_irq(&phba->hbalock);
15066 	if (phba->cgn_i)
15067 		lpfc_unreg_congestion_buf(phba);
15068 
15069 	lpfc_free_sysfs_attr(vport);
15070 
15071 	/* Release all the vports against this physical port */
15072 	vports = lpfc_create_vport_work_array(phba);
15073 	if (vports != NULL)
15074 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
15075 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
15076 				continue;
15077 			fc_vport_terminate(vports[i]->fc_vport);
15078 		}
15079 	lpfc_destroy_vport_work_array(phba, vports);
15080 
15081 	/* Remove FC host with the physical port */
15082 	fc_remove_host(shost);
15083 	scsi_remove_host(shost);
15084 
15085 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
15086 	 * localports are destroyed after to cleanup all transport memory.
15087 	 */
15088 	lpfc_cleanup(vport);
15089 	lpfc_nvmet_destroy_targetport(phba);
15090 	lpfc_nvme_destroy_localport(vport);
15091 
15092 	/* De-allocate multi-XRI pools */
15093 	if (phba->cfg_xri_rebalancing)
15094 		lpfc_destroy_multixri_pools(phba);
15095 
15096 	/*
15097 	 * Bring down the SLI Layer. This step disables all interrupts,
15098 	 * clears the rings, discards all mailbox commands, and resets
15099 	 * the HBA FCoE function.
15100 	 */
15101 	lpfc_debugfs_terminate(vport);
15102 
15103 	lpfc_stop_hba_timers(phba);
15104 	spin_lock_irq(&phba->port_list_lock);
15105 	list_del_init(&vport->listentry);
15106 	spin_unlock_irq(&phba->port_list_lock);
15107 
15108 	/* Perform scsi free before driver resource_unset since scsi
15109 	 * buffers are released to their corresponding pools here.
15110 	 */
15111 	lpfc_io_free(phba);
15112 	lpfc_free_iocb_list(phba);
15113 	lpfc_sli4_hba_unset(phba);
15114 
15115 	lpfc_unset_driver_resource_phase2(phba);
15116 	lpfc_sli4_driver_resource_unset(phba);
15117 
15118 	/* Unmap adapter Control and Doorbell registers */
15119 	lpfc_sli4_pci_mem_unset(phba);
15120 
15121 	/* Release PCI resources and disable device's PCI function */
15122 	scsi_host_put(shost);
15123 	lpfc_disable_pci_dev(phba);
15124 
15125 	/* Finally, free the driver's device data structure */
15126 	lpfc_hba_free(phba);
15127 
15128 	return;
15129 }
15130 
15131 /**
15132  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15133  * @dev_d: pointer to device
15134  *
15135  * This routine is called from the kernel's PCI subsystem to support system
15136  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15137  * this method, it quiesces the device by stopping the driver's worker
15138  * thread for the device, turning off device's interrupt and DMA, and bring
15139  * the device offline. Note that as the driver implements the minimum PM
15140  * requirements to a power-aware driver's PM support for suspend/resume -- all
15141  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15142  * method call will be treated as SUSPEND and the driver will fully
15143  * reinitialize its device during resume() method call, the driver will set
15144  * device to PCI_D3hot state in PCI config space instead of setting it
15145  * according to the @msg provided by the PM.
15146  *
15147  * Return code
15148  * 	0 - driver suspended the device
15149  * 	Error otherwise
15150  **/
15151 static int __maybe_unused
15152 lpfc_pci_suspend_one_s4(struct device *dev_d)
15153 {
15154 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15155 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15156 
15157 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15158 			"2843 PCI device Power Management suspend.\n");
15159 
15160 	/* Bring down the device */
15161 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15162 	lpfc_offline(phba);
15163 	kthread_stop(phba->worker_thread);
15164 
15165 	/* Disable interrupt from device */
15166 	lpfc_sli4_disable_intr(phba);
15167 	lpfc_sli4_queue_destroy(phba);
15168 
15169 	return 0;
15170 }
15171 
15172 /**
15173  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15174  * @dev_d: pointer to device
15175  *
15176  * This routine is called from the kernel's PCI subsystem to support system
15177  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15178  * this method, it restores the device's PCI config space state and fully
15179  * reinitializes the device and brings it online. Note that as the driver
15180  * implements the minimum PM requirements to a power-aware driver's PM for
15181  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15182  * to the suspend() method call will be treated as SUSPEND and the driver
15183  * will fully reinitialize its device during resume() method call, the device
15184  * will be set to PCI_D0 directly in PCI config space before restoring the
15185  * state.
15186  *
15187  * Return code
15188  * 	0 - driver suspended the device
15189  * 	Error otherwise
15190  **/
15191 static int __maybe_unused
15192 lpfc_pci_resume_one_s4(struct device *dev_d)
15193 {
15194 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15195 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15196 	uint32_t intr_mode;
15197 	int error;
15198 
15199 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15200 			"0292 PCI device Power Management resume.\n");
15201 
15202 	 /* Startup the kernel thread for this host adapter. */
15203 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15204 					"lpfc_worker_%d", phba->brd_no);
15205 	if (IS_ERR(phba->worker_thread)) {
15206 		error = PTR_ERR(phba->worker_thread);
15207 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15208 				"0293 PM resume failed to start worker "
15209 				"thread: error=x%x.\n", error);
15210 		return error;
15211 	}
15212 
15213 	/* Configure and enable interrupt */
15214 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15215 	if (intr_mode == LPFC_INTR_ERROR) {
15216 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15217 				"0294 PM resume Failed to enable interrupt\n");
15218 		return -EIO;
15219 	} else
15220 		phba->intr_mode = intr_mode;
15221 
15222 	/* Restart HBA and bring it online */
15223 	lpfc_sli_brdrestart(phba);
15224 	lpfc_online(phba);
15225 
15226 	/* Log the current active interrupt mode */
15227 	lpfc_log_intr_mode(phba, phba->intr_mode);
15228 
15229 	return 0;
15230 }
15231 
15232 /**
15233  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15234  * @phba: pointer to lpfc hba data structure.
15235  *
15236  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15237  * aborts all the outstanding SCSI I/Os to the pci device.
15238  **/
15239 static void
15240 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15241 {
15242 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15243 			"2828 PCI channel I/O abort preparing for recovery\n");
15244 	/*
15245 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15246 	 * and let the SCSI mid-layer to retry them to recover.
15247 	 */
15248 	lpfc_sli_abort_fcp_rings(phba);
15249 }
15250 
15251 /**
15252  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15253  * @phba: pointer to lpfc hba data structure.
15254  *
15255  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15256  * disables the device interrupt and pci device, and aborts the internal FCP
15257  * pending I/Os.
15258  **/
15259 static void
15260 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15261 {
15262 	int offline =  pci_channel_offline(phba->pcidev);
15263 
15264 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15265 			"2826 PCI channel disable preparing for reset offline"
15266 			" %d\n", offline);
15267 
15268 	/* Block any management I/Os to the device */
15269 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15270 
15271 
15272 	/* HBA_PCI_ERR was set in io_error_detect */
15273 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15274 	/* Flush all driver's outstanding I/Os as we are to reset */
15275 	lpfc_sli_flush_io_rings(phba);
15276 	lpfc_offline(phba);
15277 
15278 	/* stop all timers */
15279 	lpfc_stop_hba_timers(phba);
15280 
15281 	lpfc_sli4_queue_destroy(phba);
15282 	/* Disable interrupt and pci device */
15283 	lpfc_sli4_disable_intr(phba);
15284 	pci_disable_device(phba->pcidev);
15285 }
15286 
15287 /**
15288  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15289  * @phba: pointer to lpfc hba data structure.
15290  *
15291  * This routine is called to prepare the SLI4 device for PCI slot permanently
15292  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15293  * pending I/Os.
15294  **/
15295 static void
15296 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15297 {
15298 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15299 			"2827 PCI channel permanent disable for failure\n");
15300 
15301 	/* Block all SCSI devices' I/Os on the host */
15302 	lpfc_scsi_dev_block(phba);
15303 
15304 	/* stop all timers */
15305 	lpfc_stop_hba_timers(phba);
15306 
15307 	/* Clean up all driver's outstanding I/Os */
15308 	lpfc_sli_flush_io_rings(phba);
15309 }
15310 
15311 /**
15312  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15313  * @pdev: pointer to PCI device.
15314  * @state: the current PCI connection state.
15315  *
15316  * This routine is called from the PCI subsystem for error handling to device
15317  * with SLI-4 interface spec. This function is called by the PCI subsystem
15318  * after a PCI bus error affecting this device has been detected. When this
15319  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15320  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15321  * for the PCI subsystem to perform proper recovery as desired.
15322  *
15323  * Return codes
15324  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15325  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15326  **/
15327 static pci_ers_result_t
15328 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15329 {
15330 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15331 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15332 	bool hba_pci_err;
15333 
15334 	switch (state) {
15335 	case pci_channel_io_normal:
15336 		/* Non-fatal error, prepare for recovery */
15337 		lpfc_sli4_prep_dev_for_recover(phba);
15338 		return PCI_ERS_RESULT_CAN_RECOVER;
15339 	case pci_channel_io_frozen:
15340 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15341 		/* Fatal error, prepare for slot reset */
15342 		if (!hba_pci_err)
15343 			lpfc_sli4_prep_dev_for_reset(phba);
15344 		else
15345 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15346 					"2832  Already handling PCI error "
15347 					"state: x%x\n", state);
15348 		return PCI_ERS_RESULT_NEED_RESET;
15349 	case pci_channel_io_perm_failure:
15350 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15351 		/* Permanent failure, prepare for device down */
15352 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15353 		return PCI_ERS_RESULT_DISCONNECT;
15354 	default:
15355 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15356 		if (!hba_pci_err)
15357 			lpfc_sli4_prep_dev_for_reset(phba);
15358 		/* Unknown state, prepare and request slot reset */
15359 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15360 				"2825 Unknown PCI error state: x%x\n", state);
15361 		lpfc_sli4_prep_dev_for_reset(phba);
15362 		return PCI_ERS_RESULT_NEED_RESET;
15363 	}
15364 }
15365 
15366 /**
15367  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15368  * @pdev: pointer to PCI device.
15369  *
15370  * This routine is called from the PCI subsystem for error handling to device
15371  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15372  * restart the PCI card from scratch, as if from a cold-boot. During the
15373  * PCI subsystem error recovery, after the driver returns
15374  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15375  * recovery and then call this routine before calling the .resume method to
15376  * recover the device. This function will initialize the HBA device, enable
15377  * the interrupt, but it will just put the HBA to offline state without
15378  * passing any I/O traffic.
15379  *
15380  * Return codes
15381  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15382  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15383  */
15384 static pci_ers_result_t
15385 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15386 {
15387 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15388 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15389 	struct lpfc_sli *psli = &phba->sli;
15390 	uint32_t intr_mode;
15391 	bool hba_pci_err;
15392 
15393 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15394 	if (pci_enable_device_mem(pdev)) {
15395 		printk(KERN_ERR "lpfc: Cannot re-enable "
15396 		       "PCI device after reset.\n");
15397 		return PCI_ERS_RESULT_DISCONNECT;
15398 	}
15399 
15400 	pci_restore_state(pdev);
15401 
15402 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15403 	if (!hba_pci_err)
15404 		dev_info(&pdev->dev,
15405 			 "hba_pci_err was not set, recovering slot reset.\n");
15406 	/*
15407 	 * As the new kernel behavior of pci_restore_state() API call clears
15408 	 * device saved_state flag, need to save the restored state again.
15409 	 */
15410 	pci_save_state(pdev);
15411 
15412 	if (pdev->is_busmaster)
15413 		pci_set_master(pdev);
15414 
15415 	spin_lock_irq(&phba->hbalock);
15416 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15417 	spin_unlock_irq(&phba->hbalock);
15418 
15419 	/* Init cpu_map array */
15420 	lpfc_cpu_map_array_init(phba);
15421 	/* Configure and enable interrupt */
15422 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15423 	if (intr_mode == LPFC_INTR_ERROR) {
15424 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15425 				"2824 Cannot re-enable interrupt after "
15426 				"slot reset.\n");
15427 		return PCI_ERS_RESULT_DISCONNECT;
15428 	} else
15429 		phba->intr_mode = intr_mode;
15430 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15431 
15432 	/* Log the current active interrupt mode */
15433 	lpfc_log_intr_mode(phba, phba->intr_mode);
15434 
15435 	return PCI_ERS_RESULT_RECOVERED;
15436 }
15437 
15438 /**
15439  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15440  * @pdev: pointer to PCI device
15441  *
15442  * This routine is called from the PCI subsystem for error handling to device
15443  * with SLI-4 interface spec. It is called when kernel error recovery tells
15444  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15445  * error recovery. After this call, traffic can start to flow from this device
15446  * again.
15447  **/
15448 static void
15449 lpfc_io_resume_s4(struct pci_dev *pdev)
15450 {
15451 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15452 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15453 
15454 	/*
15455 	 * In case of slot reset, as function reset is performed through
15456 	 * mailbox command which needs DMA to be enabled, this operation
15457 	 * has to be moved to the io resume phase. Taking device offline
15458 	 * will perform the necessary cleanup.
15459 	 */
15460 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15461 		/* Perform device reset */
15462 		lpfc_sli_brdrestart(phba);
15463 		/* Bring the device back online */
15464 		lpfc_online(phba);
15465 	}
15466 }
15467 
15468 /**
15469  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15470  * @pdev: pointer to PCI device
15471  * @pid: pointer to PCI device identifier
15472  *
15473  * This routine is to be registered to the kernel's PCI subsystem. When an
15474  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15475  * at PCI device-specific information of the device and driver to see if the
15476  * driver state that it can support this kind of device. If the match is
15477  * successful, the driver core invokes this routine. This routine dispatches
15478  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15479  * do all the initialization that it needs to do to handle the HBA device
15480  * properly.
15481  *
15482  * Return code
15483  * 	0 - driver can claim the device
15484  * 	negative value - driver can not claim the device
15485  **/
15486 static int
15487 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15488 {
15489 	int rc;
15490 	struct lpfc_sli_intf intf;
15491 
15492 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15493 		return -ENODEV;
15494 
15495 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15496 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15497 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15498 	else
15499 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15500 
15501 	return rc;
15502 }
15503 
15504 /**
15505  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15506  * @pdev: pointer to PCI device
15507  *
15508  * This routine is to be registered to the kernel's PCI subsystem. When an
15509  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15510  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15511  * remove routine, which will perform all the necessary cleanup for the
15512  * device to be removed from the PCI subsystem properly.
15513  **/
15514 static void
15515 lpfc_pci_remove_one(struct pci_dev *pdev)
15516 {
15517 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15518 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15519 
15520 	switch (phba->pci_dev_grp) {
15521 	case LPFC_PCI_DEV_LP:
15522 		lpfc_pci_remove_one_s3(pdev);
15523 		break;
15524 	case LPFC_PCI_DEV_OC:
15525 		lpfc_pci_remove_one_s4(pdev);
15526 		break;
15527 	default:
15528 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15529 				"1424 Invalid PCI device group: 0x%x\n",
15530 				phba->pci_dev_grp);
15531 		break;
15532 	}
15533 	return;
15534 }
15535 
15536 /**
15537  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15538  * @dev: pointer to device
15539  *
15540  * This routine is to be registered to the kernel's PCI subsystem to support
15541  * system Power Management (PM). When PM invokes this method, it dispatches
15542  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15543  * suspend the device.
15544  *
15545  * Return code
15546  * 	0 - driver suspended the device
15547  * 	Error otherwise
15548  **/
15549 static int __maybe_unused
15550 lpfc_pci_suspend_one(struct device *dev)
15551 {
15552 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15553 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15554 	int rc = -ENODEV;
15555 
15556 	switch (phba->pci_dev_grp) {
15557 	case LPFC_PCI_DEV_LP:
15558 		rc = lpfc_pci_suspend_one_s3(dev);
15559 		break;
15560 	case LPFC_PCI_DEV_OC:
15561 		rc = lpfc_pci_suspend_one_s4(dev);
15562 		break;
15563 	default:
15564 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15565 				"1425 Invalid PCI device group: 0x%x\n",
15566 				phba->pci_dev_grp);
15567 		break;
15568 	}
15569 	return rc;
15570 }
15571 
15572 /**
15573  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15574  * @dev: pointer to device
15575  *
15576  * This routine is to be registered to the kernel's PCI subsystem to support
15577  * system Power Management (PM). When PM invokes this method, it dispatches
15578  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15579  * resume the device.
15580  *
15581  * Return code
15582  * 	0 - driver suspended the device
15583  * 	Error otherwise
15584  **/
15585 static int __maybe_unused
15586 lpfc_pci_resume_one(struct device *dev)
15587 {
15588 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15589 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15590 	int rc = -ENODEV;
15591 
15592 	switch (phba->pci_dev_grp) {
15593 	case LPFC_PCI_DEV_LP:
15594 		rc = lpfc_pci_resume_one_s3(dev);
15595 		break;
15596 	case LPFC_PCI_DEV_OC:
15597 		rc = lpfc_pci_resume_one_s4(dev);
15598 		break;
15599 	default:
15600 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15601 				"1426 Invalid PCI device group: 0x%x\n",
15602 				phba->pci_dev_grp);
15603 		break;
15604 	}
15605 	return rc;
15606 }
15607 
15608 /**
15609  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15610  * @pdev: pointer to PCI device.
15611  * @state: the current PCI connection state.
15612  *
15613  * This routine is registered to the PCI subsystem for error handling. This
15614  * function is called by the PCI subsystem after a PCI bus error affecting
15615  * this device has been detected. When this routine is invoked, it dispatches
15616  * the action to the proper SLI-3 or SLI-4 device error detected handling
15617  * routine, which will perform the proper error detected operation.
15618  *
15619  * Return codes
15620  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15621  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15622  **/
15623 static pci_ers_result_t
15624 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15625 {
15626 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15627 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15628 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15629 
15630 	if (phba->link_state == LPFC_HBA_ERROR &&
15631 	    phba->hba_flag & HBA_IOQ_FLUSH)
15632 		return PCI_ERS_RESULT_NEED_RESET;
15633 
15634 	switch (phba->pci_dev_grp) {
15635 	case LPFC_PCI_DEV_LP:
15636 		rc = lpfc_io_error_detected_s3(pdev, state);
15637 		break;
15638 	case LPFC_PCI_DEV_OC:
15639 		rc = lpfc_io_error_detected_s4(pdev, state);
15640 		break;
15641 	default:
15642 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15643 				"1427 Invalid PCI device group: 0x%x\n",
15644 				phba->pci_dev_grp);
15645 		break;
15646 	}
15647 	return rc;
15648 }
15649 
15650 /**
15651  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15652  * @pdev: pointer to PCI device.
15653  *
15654  * This routine is registered to the PCI subsystem for error handling. This
15655  * function is called after PCI bus has been reset to restart the PCI card
15656  * from scratch, as if from a cold-boot. When this routine is invoked, it
15657  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15658  * routine, which will perform the proper device reset.
15659  *
15660  * Return codes
15661  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15662  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15663  **/
15664 static pci_ers_result_t
15665 lpfc_io_slot_reset(struct pci_dev *pdev)
15666 {
15667 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15668 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15669 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15670 
15671 	switch (phba->pci_dev_grp) {
15672 	case LPFC_PCI_DEV_LP:
15673 		rc = lpfc_io_slot_reset_s3(pdev);
15674 		break;
15675 	case LPFC_PCI_DEV_OC:
15676 		rc = lpfc_io_slot_reset_s4(pdev);
15677 		break;
15678 	default:
15679 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15680 				"1428 Invalid PCI device group: 0x%x\n",
15681 				phba->pci_dev_grp);
15682 		break;
15683 	}
15684 	return rc;
15685 }
15686 
15687 /**
15688  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15689  * @pdev: pointer to PCI device
15690  *
15691  * This routine is registered to the PCI subsystem for error handling. It
15692  * is called when kernel error recovery tells the lpfc driver that it is
15693  * OK to resume normal PCI operation after PCI bus error recovery. When
15694  * this routine is invoked, it dispatches the action to the proper SLI-3
15695  * or SLI-4 device io_resume routine, which will resume the device operation.
15696  **/
15697 static void
15698 lpfc_io_resume(struct pci_dev *pdev)
15699 {
15700 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15701 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15702 
15703 	switch (phba->pci_dev_grp) {
15704 	case LPFC_PCI_DEV_LP:
15705 		lpfc_io_resume_s3(pdev);
15706 		break;
15707 	case LPFC_PCI_DEV_OC:
15708 		lpfc_io_resume_s4(pdev);
15709 		break;
15710 	default:
15711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15712 				"1429 Invalid PCI device group: 0x%x\n",
15713 				phba->pci_dev_grp);
15714 		break;
15715 	}
15716 	return;
15717 }
15718 
15719 /**
15720  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15721  * @phba: pointer to lpfc hba data structure.
15722  *
15723  * This routine checks to see if OAS is supported for this adapter. If
15724  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15725  * the enable oas flag is cleared and the pool created for OAS device data
15726  * is destroyed.
15727  *
15728  **/
15729 static void
15730 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15731 {
15732 
15733 	if (!phba->cfg_EnableXLane)
15734 		return;
15735 
15736 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15737 		phba->cfg_fof = 1;
15738 	} else {
15739 		phba->cfg_fof = 0;
15740 		mempool_destroy(phba->device_data_mem_pool);
15741 		phba->device_data_mem_pool = NULL;
15742 	}
15743 
15744 	return;
15745 }
15746 
15747 /**
15748  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15749  * @phba: pointer to lpfc hba data structure.
15750  *
15751  * This routine checks to see if RAS is supported by the adapter. Check the
15752  * function through which RAS support enablement is to be done.
15753  **/
15754 void
15755 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15756 {
15757 	/* if ASIC_GEN_NUM >= 0xC) */
15758 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15759 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15760 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15761 		    LPFC_SLI_INTF_FAMILY_G6)) {
15762 		phba->ras_fwlog.ras_hwsupport = true;
15763 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15764 		    phba->cfg_ras_fwlog_buffsize)
15765 			phba->ras_fwlog.ras_enabled = true;
15766 		else
15767 			phba->ras_fwlog.ras_enabled = false;
15768 	} else {
15769 		phba->ras_fwlog.ras_hwsupport = false;
15770 	}
15771 }
15772 
15773 
15774 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15775 
15776 static const struct pci_error_handlers lpfc_err_handler = {
15777 	.error_detected = lpfc_io_error_detected,
15778 	.slot_reset = lpfc_io_slot_reset,
15779 	.resume = lpfc_io_resume,
15780 };
15781 
15782 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15783 			 lpfc_pci_suspend_one,
15784 			 lpfc_pci_resume_one);
15785 
15786 static struct pci_driver lpfc_driver = {
15787 	.name		= LPFC_DRIVER_NAME,
15788 	.id_table	= lpfc_id_table,
15789 	.probe		= lpfc_pci_probe_one,
15790 	.remove		= lpfc_pci_remove_one,
15791 	.shutdown	= lpfc_pci_remove_one,
15792 	.driver.pm	= &lpfc_pci_pm_ops_one,
15793 	.err_handler    = &lpfc_err_handler,
15794 };
15795 
15796 static const struct file_operations lpfc_mgmt_fop = {
15797 	.owner = THIS_MODULE,
15798 };
15799 
15800 static struct miscdevice lpfc_mgmt_dev = {
15801 	.minor = MISC_DYNAMIC_MINOR,
15802 	.name = "lpfcmgmt",
15803 	.fops = &lpfc_mgmt_fop,
15804 };
15805 
15806 /**
15807  * lpfc_init - lpfc module initialization routine
15808  *
15809  * This routine is to be invoked when the lpfc module is loaded into the
15810  * kernel. The special kernel macro module_init() is used to indicate the
15811  * role of this routine to the kernel as lpfc module entry point.
15812  *
15813  * Return codes
15814  *   0 - successful
15815  *   -ENOMEM - FC attach transport failed
15816  *   all others - failed
15817  */
15818 static int __init
15819 lpfc_init(void)
15820 {
15821 	int error = 0;
15822 
15823 	pr_info(LPFC_MODULE_DESC "\n");
15824 	pr_info(LPFC_COPYRIGHT "\n");
15825 
15826 	error = misc_register(&lpfc_mgmt_dev);
15827 	if (error)
15828 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15829 			"misc_register returned with status %d", error);
15830 
15831 	error = -ENOMEM;
15832 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15833 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15834 	lpfc_transport_template =
15835 				fc_attach_transport(&lpfc_transport_functions);
15836 	if (lpfc_transport_template == NULL)
15837 		goto unregister;
15838 	lpfc_vport_transport_template =
15839 		fc_attach_transport(&lpfc_vport_transport_functions);
15840 	if (lpfc_vport_transport_template == NULL) {
15841 		fc_release_transport(lpfc_transport_template);
15842 		goto unregister;
15843 	}
15844 	lpfc_wqe_cmd_template();
15845 	lpfc_nvmet_cmd_template();
15846 
15847 	/* Initialize in case vector mapping is needed */
15848 	lpfc_present_cpu = num_present_cpus();
15849 
15850 	lpfc_pldv_detect = false;
15851 
15852 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15853 					"lpfc/sli4:online",
15854 					lpfc_cpu_online, lpfc_cpu_offline);
15855 	if (error < 0)
15856 		goto cpuhp_failure;
15857 	lpfc_cpuhp_state = error;
15858 
15859 	error = pci_register_driver(&lpfc_driver);
15860 	if (error)
15861 		goto unwind;
15862 
15863 	return error;
15864 
15865 unwind:
15866 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15867 cpuhp_failure:
15868 	fc_release_transport(lpfc_transport_template);
15869 	fc_release_transport(lpfc_vport_transport_template);
15870 unregister:
15871 	misc_deregister(&lpfc_mgmt_dev);
15872 
15873 	return error;
15874 }
15875 
15876 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15877 {
15878 	unsigned int start_idx;
15879 	unsigned int dbg_cnt;
15880 	unsigned int temp_idx;
15881 	int i;
15882 	int j = 0;
15883 	unsigned long rem_nsec;
15884 
15885 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15886 		return;
15887 
15888 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15889 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15890 	if (!dbg_cnt)
15891 		goto out;
15892 	temp_idx = start_idx;
15893 	if (dbg_cnt >= DBG_LOG_SZ) {
15894 		dbg_cnt = DBG_LOG_SZ;
15895 		temp_idx -= 1;
15896 	} else {
15897 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15898 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15899 		} else {
15900 			if (start_idx < dbg_cnt)
15901 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15902 			else
15903 				start_idx -= dbg_cnt;
15904 		}
15905 	}
15906 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15907 		 start_idx, temp_idx, dbg_cnt);
15908 
15909 	for (i = 0; i < dbg_cnt; i++) {
15910 		if ((start_idx + i) < DBG_LOG_SZ)
15911 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15912 		else
15913 			temp_idx = j++;
15914 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15915 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15916 			 temp_idx,
15917 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15918 			 rem_nsec / 1000,
15919 			 phba->dbg_log[temp_idx].log);
15920 	}
15921 out:
15922 	atomic_set(&phba->dbg_log_cnt, 0);
15923 	atomic_set(&phba->dbg_log_dmping, 0);
15924 }
15925 
15926 __printf(2, 3)
15927 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15928 {
15929 	unsigned int idx;
15930 	va_list args;
15931 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15932 	struct va_format vaf;
15933 
15934 
15935 	va_start(args, fmt);
15936 	if (unlikely(dbg_dmping)) {
15937 		vaf.fmt = fmt;
15938 		vaf.va = &args;
15939 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15940 		va_end(args);
15941 		return;
15942 	}
15943 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15944 		DBG_LOG_SZ;
15945 
15946 	atomic_inc(&phba->dbg_log_cnt);
15947 
15948 	vscnprintf(phba->dbg_log[idx].log,
15949 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15950 	va_end(args);
15951 
15952 	phba->dbg_log[idx].t_ns = local_clock();
15953 }
15954 
15955 /**
15956  * lpfc_exit - lpfc module removal routine
15957  *
15958  * This routine is invoked when the lpfc module is removed from the kernel.
15959  * The special kernel macro module_exit() is used to indicate the role of
15960  * this routine to the kernel as lpfc module exit point.
15961  */
15962 static void __exit
15963 lpfc_exit(void)
15964 {
15965 	misc_deregister(&lpfc_mgmt_dev);
15966 	pci_unregister_driver(&lpfc_driver);
15967 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15968 	fc_release_transport(lpfc_transport_template);
15969 	fc_release_transport(lpfc_vport_transport_template);
15970 	idr_destroy(&lpfc_hba_index);
15971 }
15972 
15973 module_init(lpfc_init);
15974 module_exit(lpfc_exit);
15975 MODULE_LICENSE("GPL");
15976 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15977 MODULE_AUTHOR("Broadcom");
15978 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15979