1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 97 static struct scsi_transport_template *lpfc_transport_template = NULL; 98 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 99 static DEFINE_IDR(lpfc_hba_index); 100 #define LPFC_NVMET_BUF_POST 254 101 102 /** 103 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 104 * @phba: pointer to lpfc hba data structure. 105 * 106 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 107 * mailbox command. It retrieves the revision information from the HBA and 108 * collects the Vital Product Data (VPD) about the HBA for preparing the 109 * configuration of the HBA. 110 * 111 * Return codes: 112 * 0 - success. 113 * -ERESTART - requests the SLI layer to reset the HBA and try again. 114 * Any other value - indicates an error. 115 **/ 116 int 117 lpfc_config_port_prep(struct lpfc_hba *phba) 118 { 119 lpfc_vpd_t *vp = &phba->vpd; 120 int i = 0, rc; 121 LPFC_MBOXQ_t *pmb; 122 MAILBOX_t *mb; 123 char *lpfc_vpd_data = NULL; 124 uint16_t offset = 0; 125 static char licensed[56] = 126 "key unlock for use with gnu public licensed code only\0"; 127 static int init_key = 1; 128 129 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 130 if (!pmb) { 131 phba->link_state = LPFC_HBA_ERROR; 132 return -ENOMEM; 133 } 134 135 mb = &pmb->u.mb; 136 phba->link_state = LPFC_INIT_MBX_CMDS; 137 138 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 139 if (init_key) { 140 uint32_t *ptext = (uint32_t *) licensed; 141 142 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 143 *ptext = cpu_to_be32(*ptext); 144 init_key = 0; 145 } 146 147 lpfc_read_nv(phba, pmb); 148 memset((char*)mb->un.varRDnvp.rsvd3, 0, 149 sizeof (mb->un.varRDnvp.rsvd3)); 150 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 151 sizeof (licensed)); 152 153 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 154 155 if (rc != MBX_SUCCESS) { 156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 157 "0324 Config Port initialization " 158 "error, mbxCmd x%x READ_NVPARM, " 159 "mbxStatus x%x\n", 160 mb->mbxCommand, mb->mbxStatus); 161 mempool_free(pmb, phba->mbox_mem_pool); 162 return -ERESTART; 163 } 164 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 165 sizeof(phba->wwnn)); 166 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 167 sizeof(phba->wwpn)); 168 } 169 170 /* 171 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 172 * which was already set in lpfc_get_cfgparam() 173 */ 174 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 175 176 /* Setup and issue mailbox READ REV command */ 177 lpfc_read_rev(phba, pmb); 178 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 179 if (rc != MBX_SUCCESS) { 180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 181 "0439 Adapter failed to init, mbxCmd x%x " 182 "READ_REV, mbxStatus x%x\n", 183 mb->mbxCommand, mb->mbxStatus); 184 mempool_free( pmb, phba->mbox_mem_pool); 185 return -ERESTART; 186 } 187 188 189 /* 190 * The value of rr must be 1 since the driver set the cv field to 1. 191 * This setting requires the FW to set all revision fields. 192 */ 193 if (mb->un.varRdRev.rr == 0) { 194 vp->rev.rBit = 0; 195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 196 "0440 Adapter failed to init, READ_REV has " 197 "missing revision information.\n"); 198 mempool_free(pmb, phba->mbox_mem_pool); 199 return -ERESTART; 200 } 201 202 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 203 mempool_free(pmb, phba->mbox_mem_pool); 204 return -EINVAL; 205 } 206 207 /* Save information as VPD data */ 208 vp->rev.rBit = 1; 209 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 210 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 211 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 212 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 213 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 214 vp->rev.biuRev = mb->un.varRdRev.biuRev; 215 vp->rev.smRev = mb->un.varRdRev.smRev; 216 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 217 vp->rev.endecRev = mb->un.varRdRev.endecRev; 218 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 219 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 220 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 221 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 222 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 223 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 224 225 /* If the sli feature level is less then 9, we must 226 * tear down all RPIs and VPIs on link down if NPIV 227 * is enabled. 228 */ 229 if (vp->rev.feaLevelHigh < 9) 230 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 231 232 if (lpfc_is_LC_HBA(phba->pcidev->device)) 233 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 234 sizeof (phba->RandomData)); 235 236 /* Get adapter VPD information */ 237 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 238 if (!lpfc_vpd_data) 239 goto out_free_mbox; 240 do { 241 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 242 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 243 244 if (rc != MBX_SUCCESS) { 245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 246 "0441 VPD not present on adapter, " 247 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 248 mb->mbxCommand, mb->mbxStatus); 249 mb->un.varDmp.word_cnt = 0; 250 } 251 /* dump mem may return a zero when finished or we got a 252 * mailbox error, either way we are done. 253 */ 254 if (mb->un.varDmp.word_cnt == 0) 255 break; 256 257 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 258 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 259 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 260 lpfc_vpd_data + offset, 261 mb->un.varDmp.word_cnt); 262 offset += mb->un.varDmp.word_cnt; 263 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 264 265 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 266 267 kfree(lpfc_vpd_data); 268 out_free_mbox: 269 mempool_free(pmb, phba->mbox_mem_pool); 270 return 0; 271 } 272 273 /** 274 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 275 * @phba: pointer to lpfc hba data structure. 276 * @pmboxq: pointer to the driver internal queue element for mailbox command. 277 * 278 * This is the completion handler for driver's configuring asynchronous event 279 * mailbox command to the device. If the mailbox command returns successfully, 280 * it will set internal async event support flag to 1; otherwise, it will 281 * set internal async event support flag to 0. 282 **/ 283 static void 284 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 285 { 286 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 287 phba->temp_sensor_support = 1; 288 else 289 phba->temp_sensor_support = 0; 290 mempool_free(pmboxq, phba->mbox_mem_pool); 291 return; 292 } 293 294 /** 295 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 296 * @phba: pointer to lpfc hba data structure. 297 * @pmboxq: pointer to the driver internal queue element for mailbox command. 298 * 299 * This is the completion handler for dump mailbox command for getting 300 * wake up parameters. When this command complete, the response contain 301 * Option rom version of the HBA. This function translate the version number 302 * into a human readable string and store it in OptionROMVersion. 303 **/ 304 static void 305 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 306 { 307 struct prog_id *prg; 308 uint32_t prog_id_word; 309 char dist = ' '; 310 /* character array used for decoding dist type. */ 311 char dist_char[] = "nabx"; 312 313 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 314 mempool_free(pmboxq, phba->mbox_mem_pool); 315 return; 316 } 317 318 prg = (struct prog_id *) &prog_id_word; 319 320 /* word 7 contain option rom version */ 321 prog_id_word = pmboxq->u.mb.un.varWords[7]; 322 323 /* Decode the Option rom version word to a readable string */ 324 if (prg->dist < 4) 325 dist = dist_char[prg->dist]; 326 327 if ((prg->dist == 3) && (prg->num == 0)) 328 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 329 prg->ver, prg->rev, prg->lev); 330 else 331 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 332 prg->ver, prg->rev, prg->lev, 333 dist, prg->num); 334 mempool_free(pmboxq, phba->mbox_mem_pool); 335 return; 336 } 337 338 /** 339 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 340 * cfg_soft_wwnn, cfg_soft_wwpn 341 * @vport: pointer to lpfc vport data structure. 342 * 343 * 344 * Return codes 345 * None. 346 **/ 347 void 348 lpfc_update_vport_wwn(struct lpfc_vport *vport) 349 { 350 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level; 351 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0]; 352 353 /* If the soft name exists then update it using the service params */ 354 if (vport->phba->cfg_soft_wwnn) 355 u64_to_wwn(vport->phba->cfg_soft_wwnn, 356 vport->fc_sparam.nodeName.u.wwn); 357 if (vport->phba->cfg_soft_wwpn) 358 u64_to_wwn(vport->phba->cfg_soft_wwpn, 359 vport->fc_sparam.portName.u.wwn); 360 361 /* 362 * If the name is empty or there exists a soft name 363 * then copy the service params name, otherwise use the fc name 364 */ 365 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn) 366 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 367 sizeof(struct lpfc_name)); 368 else 369 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 370 sizeof(struct lpfc_name)); 371 372 /* 373 * If the port name has changed, then set the Param changes flag 374 * to unreg the login 375 */ 376 if (vport->fc_portname.u.wwn[0] != 0 && 377 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 378 sizeof(struct lpfc_name))) 379 vport->vport_flag |= FAWWPN_PARAM_CHG; 380 381 if (vport->fc_portname.u.wwn[0] == 0 || 382 vport->phba->cfg_soft_wwpn || 383 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) || 384 vport->vport_flag & FAWWPN_SET) { 385 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 386 sizeof(struct lpfc_name)); 387 vport->vport_flag &= ~FAWWPN_SET; 388 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) 389 vport->vport_flag |= FAWWPN_SET; 390 } 391 else 392 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 393 sizeof(struct lpfc_name)); 394 } 395 396 /** 397 * lpfc_config_port_post - Perform lpfc initialization after config port 398 * @phba: pointer to lpfc hba data structure. 399 * 400 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 401 * command call. It performs all internal resource and state setups on the 402 * port: post IOCB buffers, enable appropriate host interrupt attentions, 403 * ELS ring timers, etc. 404 * 405 * Return codes 406 * 0 - success. 407 * Any other value - error. 408 **/ 409 int 410 lpfc_config_port_post(struct lpfc_hba *phba) 411 { 412 struct lpfc_vport *vport = phba->pport; 413 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 414 LPFC_MBOXQ_t *pmb; 415 MAILBOX_t *mb; 416 struct lpfc_dmabuf *mp; 417 struct lpfc_sli *psli = &phba->sli; 418 uint32_t status, timeout; 419 int i, j; 420 int rc; 421 422 spin_lock_irq(&phba->hbalock); 423 /* 424 * If the Config port completed correctly the HBA is not 425 * over heated any more. 426 */ 427 if (phba->over_temp_state == HBA_OVER_TEMP) 428 phba->over_temp_state = HBA_NORMAL_TEMP; 429 spin_unlock_irq(&phba->hbalock); 430 431 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 432 if (!pmb) { 433 phba->link_state = LPFC_HBA_ERROR; 434 return -ENOMEM; 435 } 436 mb = &pmb->u.mb; 437 438 /* Get login parameters for NID. */ 439 rc = lpfc_read_sparam(phba, pmb, 0); 440 if (rc) { 441 mempool_free(pmb, phba->mbox_mem_pool); 442 return -ENOMEM; 443 } 444 445 pmb->vport = vport; 446 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 448 "0448 Adapter failed init, mbxCmd x%x " 449 "READ_SPARM mbxStatus x%x\n", 450 mb->mbxCommand, mb->mbxStatus); 451 phba->link_state = LPFC_HBA_ERROR; 452 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 453 mempool_free(pmb, phba->mbox_mem_pool); 454 lpfc_mbuf_free(phba, mp->virt, mp->phys); 455 kfree(mp); 456 return -EIO; 457 } 458 459 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 460 461 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 462 lpfc_mbuf_free(phba, mp->virt, mp->phys); 463 kfree(mp); 464 pmb->ctx_buf = NULL; 465 lpfc_update_vport_wwn(vport); 466 467 /* Update the fc_host data structures with new wwn. */ 468 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 469 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 470 fc_host_max_npiv_vports(shost) = phba->max_vpi; 471 472 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 473 /* This should be consolidated into parse_vpd ? - mr */ 474 if (phba->SerialNumber[0] == 0) { 475 uint8_t *outptr; 476 477 outptr = &vport->fc_nodename.u.s.IEEE[0]; 478 for (i = 0; i < 12; i++) { 479 status = *outptr++; 480 j = ((status & 0xf0) >> 4); 481 if (j <= 9) 482 phba->SerialNumber[i] = 483 (char)((uint8_t) 0x30 + (uint8_t) j); 484 else 485 phba->SerialNumber[i] = 486 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 487 i++; 488 j = (status & 0xf); 489 if (j <= 9) 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x30 + (uint8_t) j); 492 else 493 phba->SerialNumber[i] = 494 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 495 } 496 } 497 498 lpfc_read_config(phba, pmb); 499 pmb->vport = vport; 500 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 502 "0453 Adapter failed to init, mbxCmd x%x " 503 "READ_CONFIG, mbxStatus x%x\n", 504 mb->mbxCommand, mb->mbxStatus); 505 phba->link_state = LPFC_HBA_ERROR; 506 mempool_free( pmb, phba->mbox_mem_pool); 507 return -EIO; 508 } 509 510 /* Check if the port is disabled */ 511 lpfc_sli_read_link_ste(phba); 512 513 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 514 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 515 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 516 "3359 HBA queue depth changed from %d to %d\n", 517 phba->cfg_hba_queue_depth, 518 mb->un.varRdConfig.max_xri); 519 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 520 } 521 522 phba->lmt = mb->un.varRdConfig.lmt; 523 524 /* Get the default values for Model Name and Description */ 525 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 526 527 phba->link_state = LPFC_LINK_DOWN; 528 529 /* Only process IOCBs on ELS ring till hba_state is READY */ 530 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 531 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 532 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 533 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 534 535 /* Post receive buffers for desired rings */ 536 if (phba->sli_rev != 3) 537 lpfc_post_rcv_buf(phba); 538 539 /* 540 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 541 */ 542 if (phba->intr_type == MSIX) { 543 rc = lpfc_config_msi(phba, pmb); 544 if (rc) { 545 mempool_free(pmb, phba->mbox_mem_pool); 546 return -EIO; 547 } 548 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 549 if (rc != MBX_SUCCESS) { 550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 551 "0352 Config MSI mailbox command " 552 "failed, mbxCmd x%x, mbxStatus x%x\n", 553 pmb->u.mb.mbxCommand, 554 pmb->u.mb.mbxStatus); 555 mempool_free(pmb, phba->mbox_mem_pool); 556 return -EIO; 557 } 558 } 559 560 spin_lock_irq(&phba->hbalock); 561 /* Initialize ERATT handling flag */ 562 phba->hba_flag &= ~HBA_ERATT_HANDLED; 563 564 /* Enable appropriate host interrupts */ 565 if (lpfc_readl(phba->HCregaddr, &status)) { 566 spin_unlock_irq(&phba->hbalock); 567 return -EIO; 568 } 569 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 570 if (psli->num_rings > 0) 571 status |= HC_R0INT_ENA; 572 if (psli->num_rings > 1) 573 status |= HC_R1INT_ENA; 574 if (psli->num_rings > 2) 575 status |= HC_R2INT_ENA; 576 if (psli->num_rings > 3) 577 status |= HC_R3INT_ENA; 578 579 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 580 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 581 status &= ~(HC_R0INT_ENA); 582 583 writel(status, phba->HCregaddr); 584 readl(phba->HCregaddr); /* flush */ 585 spin_unlock_irq(&phba->hbalock); 586 587 /* Set up ring-0 (ELS) timer */ 588 timeout = phba->fc_ratov * 2; 589 mod_timer(&vport->els_tmofunc, 590 jiffies + msecs_to_jiffies(1000 * timeout)); 591 /* Set up heart beat (HB) timer */ 592 mod_timer(&phba->hb_tmofunc, 593 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 594 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 595 phba->last_completion_time = jiffies; 596 /* Set up error attention (ERATT) polling timer */ 597 mod_timer(&phba->eratt_poll, 598 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 599 600 if (phba->hba_flag & LINK_DISABLED) { 601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 602 "2598 Adapter Link is disabled.\n"); 603 lpfc_down_link(phba, pmb); 604 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 605 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 606 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 608 "2599 Adapter failed to issue DOWN_LINK" 609 " mbox command rc 0x%x\n", rc); 610 611 mempool_free(pmb, phba->mbox_mem_pool); 612 return -EIO; 613 } 614 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 615 mempool_free(pmb, phba->mbox_mem_pool); 616 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 617 if (rc) 618 return rc; 619 } 620 /* MBOX buffer will be freed in mbox compl */ 621 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 622 if (!pmb) { 623 phba->link_state = LPFC_HBA_ERROR; 624 return -ENOMEM; 625 } 626 627 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 628 pmb->mbox_cmpl = lpfc_config_async_cmpl; 629 pmb->vport = phba->pport; 630 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 631 632 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 634 "0456 Adapter failed to issue " 635 "ASYNCEVT_ENABLE mbox status x%x\n", 636 rc); 637 mempool_free(pmb, phba->mbox_mem_pool); 638 } 639 640 /* Get Option rom version */ 641 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 642 if (!pmb) { 643 phba->link_state = LPFC_HBA_ERROR; 644 return -ENOMEM; 645 } 646 647 lpfc_dump_wakeup_param(phba, pmb); 648 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 649 pmb->vport = phba->pport; 650 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 651 652 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 654 "0435 Adapter failed " 655 "to get Option ROM version status x%x\n", rc); 656 mempool_free(pmb, phba->mbox_mem_pool); 657 } 658 659 return 0; 660 } 661 662 /** 663 * lpfc_hba_init_link - Initialize the FC link 664 * @phba: pointer to lpfc hba data structure. 665 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 666 * 667 * This routine will issue the INIT_LINK mailbox command call. 668 * It is available to other drivers through the lpfc_hba data 669 * structure for use as a delayed link up mechanism with the 670 * module parameter lpfc_suppress_link_up. 671 * 672 * Return code 673 * 0 - success 674 * Any other value - error 675 **/ 676 static int 677 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 678 { 679 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 680 } 681 682 /** 683 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 684 * @phba: pointer to lpfc hba data structure. 685 * @fc_topology: desired fc topology. 686 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 687 * 688 * This routine will issue the INIT_LINK mailbox command call. 689 * It is available to other drivers through the lpfc_hba data 690 * structure for use as a delayed link up mechanism with the 691 * module parameter lpfc_suppress_link_up. 692 * 693 * Return code 694 * 0 - success 695 * Any other value - error 696 **/ 697 int 698 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 699 uint32_t flag) 700 { 701 struct lpfc_vport *vport = phba->pport; 702 LPFC_MBOXQ_t *pmb; 703 MAILBOX_t *mb; 704 int rc; 705 706 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 707 if (!pmb) { 708 phba->link_state = LPFC_HBA_ERROR; 709 return -ENOMEM; 710 } 711 mb = &pmb->u.mb; 712 pmb->vport = vport; 713 714 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 715 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 716 !(phba->lmt & LMT_1Gb)) || 717 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 718 !(phba->lmt & LMT_2Gb)) || 719 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 720 !(phba->lmt & LMT_4Gb)) || 721 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 722 !(phba->lmt & LMT_8Gb)) || 723 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 724 !(phba->lmt & LMT_10Gb)) || 725 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 726 !(phba->lmt & LMT_16Gb)) || 727 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 728 !(phba->lmt & LMT_32Gb)) || 729 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 730 !(phba->lmt & LMT_64Gb))) { 731 /* Reset link speed to auto */ 732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 733 "1302 Invalid speed for this board:%d " 734 "Reset link speed to auto.\n", 735 phba->cfg_link_speed); 736 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 737 } 738 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 739 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 740 if (phba->sli_rev < LPFC_SLI_REV4) 741 lpfc_set_loopback_flag(phba); 742 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 743 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 745 "0498 Adapter failed to init, mbxCmd x%x " 746 "INIT_LINK, mbxStatus x%x\n", 747 mb->mbxCommand, mb->mbxStatus); 748 if (phba->sli_rev <= LPFC_SLI_REV3) { 749 /* Clear all interrupt enable conditions */ 750 writel(0, phba->HCregaddr); 751 readl(phba->HCregaddr); /* flush */ 752 /* Clear all pending interrupts */ 753 writel(0xffffffff, phba->HAregaddr); 754 readl(phba->HAregaddr); /* flush */ 755 } 756 phba->link_state = LPFC_HBA_ERROR; 757 if (rc != MBX_BUSY || flag == MBX_POLL) 758 mempool_free(pmb, phba->mbox_mem_pool); 759 return -EIO; 760 } 761 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 762 if (flag == MBX_POLL) 763 mempool_free(pmb, phba->mbox_mem_pool); 764 765 return 0; 766 } 767 768 /** 769 * lpfc_hba_down_link - this routine downs the FC link 770 * @phba: pointer to lpfc hba data structure. 771 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 772 * 773 * This routine will issue the DOWN_LINK mailbox command call. 774 * It is available to other drivers through the lpfc_hba data 775 * structure for use to stop the link. 776 * 777 * Return code 778 * 0 - success 779 * Any other value - error 780 **/ 781 static int 782 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 783 { 784 LPFC_MBOXQ_t *pmb; 785 int rc; 786 787 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 788 if (!pmb) { 789 phba->link_state = LPFC_HBA_ERROR; 790 return -ENOMEM; 791 } 792 793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 794 "0491 Adapter Link is disabled.\n"); 795 lpfc_down_link(phba, pmb); 796 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 797 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 798 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 800 "2522 Adapter failed to issue DOWN_LINK" 801 " mbox command rc 0x%x\n", rc); 802 803 mempool_free(pmb, phba->mbox_mem_pool); 804 return -EIO; 805 } 806 if (flag == MBX_POLL) 807 mempool_free(pmb, phba->mbox_mem_pool); 808 809 return 0; 810 } 811 812 /** 813 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 814 * @phba: pointer to lpfc HBA data structure. 815 * 816 * This routine will do LPFC uninitialization before the HBA is reset when 817 * bringing down the SLI Layer. 818 * 819 * Return codes 820 * 0 - success. 821 * Any other value - error. 822 **/ 823 int 824 lpfc_hba_down_prep(struct lpfc_hba *phba) 825 { 826 struct lpfc_vport **vports; 827 int i; 828 829 if (phba->sli_rev <= LPFC_SLI_REV3) { 830 /* Disable interrupts */ 831 writel(0, phba->HCregaddr); 832 readl(phba->HCregaddr); /* flush */ 833 } 834 835 if (phba->pport->load_flag & FC_UNLOADING) 836 lpfc_cleanup_discovery_resources(phba->pport); 837 else { 838 vports = lpfc_create_vport_work_array(phba); 839 if (vports != NULL) 840 for (i = 0; i <= phba->max_vports && 841 vports[i] != NULL; i++) 842 lpfc_cleanup_discovery_resources(vports[i]); 843 lpfc_destroy_vport_work_array(phba, vports); 844 } 845 return 0; 846 } 847 848 /** 849 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 850 * rspiocb which got deferred 851 * 852 * @phba: pointer to lpfc HBA data structure. 853 * 854 * This routine will cleanup completed slow path events after HBA is reset 855 * when bringing down the SLI Layer. 856 * 857 * 858 * Return codes 859 * void. 860 **/ 861 static void 862 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 863 { 864 struct lpfc_iocbq *rspiocbq; 865 struct hbq_dmabuf *dmabuf; 866 struct lpfc_cq_event *cq_event; 867 868 spin_lock_irq(&phba->hbalock); 869 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 870 spin_unlock_irq(&phba->hbalock); 871 872 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 873 /* Get the response iocb from the head of work queue */ 874 spin_lock_irq(&phba->hbalock); 875 list_remove_head(&phba->sli4_hba.sp_queue_event, 876 cq_event, struct lpfc_cq_event, list); 877 spin_unlock_irq(&phba->hbalock); 878 879 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 880 case CQE_CODE_COMPL_WQE: 881 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 882 cq_event); 883 lpfc_sli_release_iocbq(phba, rspiocbq); 884 break; 885 case CQE_CODE_RECEIVE: 886 case CQE_CODE_RECEIVE_V1: 887 dmabuf = container_of(cq_event, struct hbq_dmabuf, 888 cq_event); 889 lpfc_in_buf_free(phba, &dmabuf->dbuf); 890 } 891 } 892 } 893 894 /** 895 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 896 * @phba: pointer to lpfc HBA data structure. 897 * 898 * This routine will cleanup posted ELS buffers after the HBA is reset 899 * when bringing down the SLI Layer. 900 * 901 * 902 * Return codes 903 * void. 904 **/ 905 static void 906 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 907 { 908 struct lpfc_sli *psli = &phba->sli; 909 struct lpfc_sli_ring *pring; 910 struct lpfc_dmabuf *mp, *next_mp; 911 LIST_HEAD(buflist); 912 int count; 913 914 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 915 lpfc_sli_hbqbuf_free_all(phba); 916 else { 917 /* Cleanup preposted buffers on the ELS ring */ 918 pring = &psli->sli3_ring[LPFC_ELS_RING]; 919 spin_lock_irq(&phba->hbalock); 920 list_splice_init(&pring->postbufq, &buflist); 921 spin_unlock_irq(&phba->hbalock); 922 923 count = 0; 924 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 925 list_del(&mp->list); 926 count++; 927 lpfc_mbuf_free(phba, mp->virt, mp->phys); 928 kfree(mp); 929 } 930 931 spin_lock_irq(&phba->hbalock); 932 pring->postbufq_cnt -= count; 933 spin_unlock_irq(&phba->hbalock); 934 } 935 } 936 937 /** 938 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 939 * @phba: pointer to lpfc HBA data structure. 940 * 941 * This routine will cleanup the txcmplq after the HBA is reset when bringing 942 * down the SLI Layer. 943 * 944 * Return codes 945 * void 946 **/ 947 static void 948 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 949 { 950 struct lpfc_sli *psli = &phba->sli; 951 struct lpfc_queue *qp = NULL; 952 struct lpfc_sli_ring *pring; 953 LIST_HEAD(completions); 954 int i; 955 struct lpfc_iocbq *piocb, *next_iocb; 956 957 if (phba->sli_rev != LPFC_SLI_REV4) { 958 for (i = 0; i < psli->num_rings; i++) { 959 pring = &psli->sli3_ring[i]; 960 spin_lock_irq(&phba->hbalock); 961 /* At this point in time the HBA is either reset or DOA 962 * Nothing should be on txcmplq as it will 963 * NEVER complete. 964 */ 965 list_splice_init(&pring->txcmplq, &completions); 966 pring->txcmplq_cnt = 0; 967 spin_unlock_irq(&phba->hbalock); 968 969 lpfc_sli_abort_iocb_ring(phba, pring); 970 } 971 /* Cancel all the IOCBs from the completions list */ 972 lpfc_sli_cancel_iocbs(phba, &completions, 973 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 974 return; 975 } 976 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 977 pring = qp->pring; 978 if (!pring) 979 continue; 980 spin_lock_irq(&pring->ring_lock); 981 list_for_each_entry_safe(piocb, next_iocb, 982 &pring->txcmplq, list) 983 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 984 list_splice_init(&pring->txcmplq, &completions); 985 pring->txcmplq_cnt = 0; 986 spin_unlock_irq(&pring->ring_lock); 987 lpfc_sli_abort_iocb_ring(phba, pring); 988 } 989 /* Cancel all the IOCBs from the completions list */ 990 lpfc_sli_cancel_iocbs(phba, &completions, 991 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 992 } 993 994 /** 995 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 996 * @phba: pointer to lpfc HBA data structure. 997 * 998 * This routine will do uninitialization after the HBA is reset when bring 999 * down the SLI Layer. 1000 * 1001 * Return codes 1002 * 0 - success. 1003 * Any other value - error. 1004 **/ 1005 static int 1006 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1007 { 1008 lpfc_hba_free_post_buf(phba); 1009 lpfc_hba_clean_txcmplq(phba); 1010 return 0; 1011 } 1012 1013 /** 1014 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1015 * @phba: pointer to lpfc HBA data structure. 1016 * 1017 * This routine will do uninitialization after the HBA is reset when bring 1018 * down the SLI Layer. 1019 * 1020 * Return codes 1021 * 0 - success. 1022 * Any other value - error. 1023 **/ 1024 static int 1025 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1026 { 1027 struct lpfc_io_buf *psb, *psb_next; 1028 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1029 struct lpfc_sli4_hdw_queue *qp; 1030 LIST_HEAD(aborts); 1031 LIST_HEAD(nvme_aborts); 1032 LIST_HEAD(nvmet_aborts); 1033 struct lpfc_sglq *sglq_entry = NULL; 1034 int cnt, idx; 1035 1036 1037 lpfc_sli_hbqbuf_free_all(phba); 1038 lpfc_hba_clean_txcmplq(phba); 1039 1040 /* At this point in time the HBA is either reset or DOA. Either 1041 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1042 * on the lpfc_els_sgl_list so that it can either be freed if the 1043 * driver is unloading or reposted if the driver is restarting 1044 * the port. 1045 */ 1046 1047 /* sgl_list_lock required because worker thread uses this 1048 * list. 1049 */ 1050 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1051 list_for_each_entry(sglq_entry, 1052 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1053 sglq_entry->state = SGL_FREED; 1054 1055 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1056 &phba->sli4_hba.lpfc_els_sgl_list); 1057 1058 1059 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1060 1061 /* abts_xxxx_buf_list_lock required because worker thread uses this 1062 * list. 1063 */ 1064 spin_lock_irq(&phba->hbalock); 1065 cnt = 0; 1066 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1067 qp = &phba->sli4_hba.hdwq[idx]; 1068 1069 spin_lock(&qp->abts_io_buf_list_lock); 1070 list_splice_init(&qp->lpfc_abts_io_buf_list, 1071 &aborts); 1072 1073 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1074 psb->pCmd = NULL; 1075 psb->status = IOSTAT_SUCCESS; 1076 cnt++; 1077 } 1078 spin_lock(&qp->io_buf_list_put_lock); 1079 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1080 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1081 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1082 qp->abts_scsi_io_bufs = 0; 1083 qp->abts_nvme_io_bufs = 0; 1084 spin_unlock(&qp->io_buf_list_put_lock); 1085 spin_unlock(&qp->abts_io_buf_list_lock); 1086 } 1087 spin_unlock_irq(&phba->hbalock); 1088 1089 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1090 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1091 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1092 &nvmet_aborts); 1093 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1094 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1095 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1096 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1097 } 1098 } 1099 1100 lpfc_sli4_free_sp_events(phba); 1101 return cnt; 1102 } 1103 1104 /** 1105 * lpfc_hba_down_post - Wrapper func for hba down post routine 1106 * @phba: pointer to lpfc HBA data structure. 1107 * 1108 * This routine wraps the actual SLI3 or SLI4 routine for performing 1109 * uninitialization after the HBA is reset when bring down the SLI Layer. 1110 * 1111 * Return codes 1112 * 0 - success. 1113 * Any other value - error. 1114 **/ 1115 int 1116 lpfc_hba_down_post(struct lpfc_hba *phba) 1117 { 1118 return (*phba->lpfc_hba_down_post)(phba); 1119 } 1120 1121 /** 1122 * lpfc_hb_timeout - The HBA-timer timeout handler 1123 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1124 * 1125 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1126 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1127 * work-port-events bitmap and the worker thread is notified. This timeout 1128 * event will be used by the worker thread to invoke the actual timeout 1129 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1130 * be performed in the timeout handler and the HBA timeout event bit shall 1131 * be cleared by the worker thread after it has taken the event bitmap out. 1132 **/ 1133 static void 1134 lpfc_hb_timeout(struct timer_list *t) 1135 { 1136 struct lpfc_hba *phba; 1137 uint32_t tmo_posted; 1138 unsigned long iflag; 1139 1140 phba = from_timer(phba, t, hb_tmofunc); 1141 1142 /* Check for heart beat timeout conditions */ 1143 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1144 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1145 if (!tmo_posted) 1146 phba->pport->work_port_events |= WORKER_HB_TMO; 1147 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1148 1149 /* Tell the worker thread there is work to do */ 1150 if (!tmo_posted) 1151 lpfc_worker_wake_up(phba); 1152 return; 1153 } 1154 1155 /** 1156 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1157 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1158 * 1159 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1160 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1161 * work-port-events bitmap and the worker thread is notified. This timeout 1162 * event will be used by the worker thread to invoke the actual timeout 1163 * handler routine, lpfc_rrq_handler. Any periodical operations will 1164 * be performed in the timeout handler and the RRQ timeout event bit shall 1165 * be cleared by the worker thread after it has taken the event bitmap out. 1166 **/ 1167 static void 1168 lpfc_rrq_timeout(struct timer_list *t) 1169 { 1170 struct lpfc_hba *phba; 1171 unsigned long iflag; 1172 1173 phba = from_timer(phba, t, rrq_tmr); 1174 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1175 if (!(phba->pport->load_flag & FC_UNLOADING)) 1176 phba->hba_flag |= HBA_RRQ_ACTIVE; 1177 else 1178 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1179 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1180 1181 if (!(phba->pport->load_flag & FC_UNLOADING)) 1182 lpfc_worker_wake_up(phba); 1183 } 1184 1185 /** 1186 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1187 * @phba: pointer to lpfc hba data structure. 1188 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1189 * 1190 * This is the callback function to the lpfc heart-beat mailbox command. 1191 * If configured, the lpfc driver issues the heart-beat mailbox command to 1192 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1193 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1194 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1195 * heart-beat outstanding state. Once the mailbox command comes back and 1196 * no error conditions detected, the heart-beat mailbox command timer is 1197 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1198 * state is cleared for the next heart-beat. If the timer expired with the 1199 * heart-beat outstanding state set, the driver will put the HBA offline. 1200 **/ 1201 static void 1202 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1203 { 1204 unsigned long drvr_flag; 1205 1206 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1207 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 1208 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1209 1210 /* Check and reset heart-beat timer if necessary */ 1211 mempool_free(pmboxq, phba->mbox_mem_pool); 1212 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1213 !(phba->link_state == LPFC_HBA_ERROR) && 1214 !(phba->pport->load_flag & FC_UNLOADING)) 1215 mod_timer(&phba->hb_tmofunc, 1216 jiffies + 1217 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1218 return; 1219 } 1220 1221 /* 1222 * lpfc_idle_stat_delay_work - idle_stat tracking 1223 * 1224 * This routine tracks per-cq idle_stat and determines polling decisions. 1225 * 1226 * Return codes: 1227 * None 1228 **/ 1229 static void 1230 lpfc_idle_stat_delay_work(struct work_struct *work) 1231 { 1232 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1233 struct lpfc_hba, 1234 idle_stat_delay_work); 1235 struct lpfc_queue *cq; 1236 struct lpfc_sli4_hdw_queue *hdwq; 1237 struct lpfc_idle_stat *idle_stat; 1238 u32 i, idle_percent; 1239 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1240 1241 if (phba->pport->load_flag & FC_UNLOADING) 1242 return; 1243 1244 if (phba->link_state == LPFC_HBA_ERROR || 1245 phba->pport->fc_flag & FC_OFFLINE_MODE) 1246 goto requeue; 1247 1248 for_each_present_cpu(i) { 1249 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1250 cq = hdwq->io_cq; 1251 1252 /* Skip if we've already handled this cq's primary CPU */ 1253 if (cq->chann != i) 1254 continue; 1255 1256 idle_stat = &phba->sli4_hba.idle_stat[i]; 1257 1258 /* get_cpu_idle_time returns values as running counters. Thus, 1259 * to know the amount for this period, the prior counter values 1260 * need to be subtracted from the current counter values. 1261 * From there, the idle time stat can be calculated as a 1262 * percentage of 100 - the sum of the other consumption times. 1263 */ 1264 wall_idle = get_cpu_idle_time(i, &wall, 1); 1265 diff_idle = wall_idle - idle_stat->prev_idle; 1266 diff_wall = wall - idle_stat->prev_wall; 1267 1268 if (diff_wall <= diff_idle) 1269 busy_time = 0; 1270 else 1271 busy_time = diff_wall - diff_idle; 1272 1273 idle_percent = div64_u64(100 * busy_time, diff_wall); 1274 idle_percent = 100 - idle_percent; 1275 1276 if (idle_percent < 15) 1277 cq->poll_mode = LPFC_QUEUE_WORK; 1278 else 1279 cq->poll_mode = LPFC_IRQ_POLL; 1280 1281 idle_stat->prev_idle = wall_idle; 1282 idle_stat->prev_wall = wall; 1283 } 1284 1285 requeue: 1286 schedule_delayed_work(&phba->idle_stat_delay_work, 1287 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1288 } 1289 1290 static void 1291 lpfc_hb_eq_delay_work(struct work_struct *work) 1292 { 1293 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1294 struct lpfc_hba, eq_delay_work); 1295 struct lpfc_eq_intr_info *eqi, *eqi_new; 1296 struct lpfc_queue *eq, *eq_next; 1297 unsigned char *ena_delay = NULL; 1298 uint32_t usdelay; 1299 int i; 1300 1301 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1302 return; 1303 1304 if (phba->link_state == LPFC_HBA_ERROR || 1305 phba->pport->fc_flag & FC_OFFLINE_MODE) 1306 goto requeue; 1307 1308 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1309 GFP_KERNEL); 1310 if (!ena_delay) 1311 goto requeue; 1312 1313 for (i = 0; i < phba->cfg_irq_chann; i++) { 1314 /* Get the EQ corresponding to the IRQ vector */ 1315 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1316 if (!eq) 1317 continue; 1318 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1319 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1320 ena_delay[eq->last_cpu] = 1; 1321 } 1322 } 1323 1324 for_each_present_cpu(i) { 1325 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1326 if (ena_delay[i]) { 1327 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1328 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1329 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1330 } else { 1331 usdelay = 0; 1332 } 1333 1334 eqi->icnt = 0; 1335 1336 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1337 if (unlikely(eq->last_cpu != i)) { 1338 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1339 eq->last_cpu); 1340 list_move_tail(&eq->cpu_list, &eqi_new->list); 1341 continue; 1342 } 1343 if (usdelay != eq->q_mode) 1344 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1345 usdelay); 1346 } 1347 } 1348 1349 kfree(ena_delay); 1350 1351 requeue: 1352 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1353 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1354 } 1355 1356 /** 1357 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1358 * @phba: pointer to lpfc hba data structure. 1359 * 1360 * For each heartbeat, this routine does some heuristic methods to adjust 1361 * XRI distribution. The goal is to fully utilize free XRIs. 1362 **/ 1363 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1364 { 1365 u32 i; 1366 u32 hwq_count; 1367 1368 hwq_count = phba->cfg_hdw_queue; 1369 for (i = 0; i < hwq_count; i++) { 1370 /* Adjust XRIs in private pool */ 1371 lpfc_adjust_pvt_pool_count(phba, i); 1372 1373 /* Adjust high watermark */ 1374 lpfc_adjust_high_watermark(phba, i); 1375 1376 #ifdef LPFC_MXP_STAT 1377 /* Snapshot pbl, pvt and busy count */ 1378 lpfc_snapshot_mxp(phba, i); 1379 #endif 1380 } 1381 } 1382 1383 /** 1384 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1385 * @phba: pointer to lpfc hba data structure. 1386 * 1387 * If a HB mbox is not already in progrees, this routine will allocate 1388 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1389 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1390 **/ 1391 int 1392 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1393 { 1394 LPFC_MBOXQ_t *pmboxq; 1395 int retval; 1396 1397 /* Is a Heartbeat mbox already in progress */ 1398 if (phba->hba_flag & HBA_HBEAT_INP) 1399 return 0; 1400 1401 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1402 if (!pmboxq) 1403 return -ENOMEM; 1404 1405 lpfc_heart_beat(phba, pmboxq); 1406 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1407 pmboxq->vport = phba->pport; 1408 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1409 1410 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1411 mempool_free(pmboxq, phba->mbox_mem_pool); 1412 return -ENXIO; 1413 } 1414 phba->hba_flag |= HBA_HBEAT_INP; 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1421 * @phba: pointer to lpfc hba data structure. 1422 * 1423 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1424 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1425 * of the value of lpfc_enable_hba_heartbeat. 1426 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1427 * try to issue a MBX_HEARTBEAT mbox command. 1428 **/ 1429 void 1430 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1431 { 1432 if (phba->cfg_enable_hba_heartbeat) 1433 return; 1434 phba->hba_flag |= HBA_HBEAT_TMO; 1435 } 1436 1437 /** 1438 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1439 * @phba: pointer to lpfc hba data structure. 1440 * 1441 * This is the actual HBA-timer timeout handler to be invoked by the worker 1442 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1443 * handler performs any periodic operations needed for the device. If such 1444 * periodic event has already been attended to either in the interrupt handler 1445 * or by processing slow-ring or fast-ring events within the HBA-timer 1446 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1447 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1448 * is configured and there is no heart-beat mailbox command outstanding, a 1449 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1450 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1451 * to offline. 1452 **/ 1453 void 1454 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1455 { 1456 struct lpfc_vport **vports; 1457 struct lpfc_dmabuf *buf_ptr; 1458 int retval = 0; 1459 int i, tmo; 1460 struct lpfc_sli *psli = &phba->sli; 1461 LIST_HEAD(completions); 1462 1463 if (phba->cfg_xri_rebalancing) { 1464 /* Multi-XRI pools handler */ 1465 lpfc_hb_mxp_handler(phba); 1466 } 1467 1468 vports = lpfc_create_vport_work_array(phba); 1469 if (vports != NULL) 1470 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1471 lpfc_rcv_seq_check_edtov(vports[i]); 1472 lpfc_fdmi_change_check(vports[i]); 1473 } 1474 lpfc_destroy_vport_work_array(phba, vports); 1475 1476 if ((phba->link_state == LPFC_HBA_ERROR) || 1477 (phba->pport->load_flag & FC_UNLOADING) || 1478 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1479 return; 1480 1481 if (phba->elsbuf_cnt && 1482 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1483 spin_lock_irq(&phba->hbalock); 1484 list_splice_init(&phba->elsbuf, &completions); 1485 phba->elsbuf_cnt = 0; 1486 phba->elsbuf_prev_cnt = 0; 1487 spin_unlock_irq(&phba->hbalock); 1488 1489 while (!list_empty(&completions)) { 1490 list_remove_head(&completions, buf_ptr, 1491 struct lpfc_dmabuf, list); 1492 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1493 kfree(buf_ptr); 1494 } 1495 } 1496 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1497 1498 /* If there is no heart beat outstanding, issue a heartbeat command */ 1499 if (phba->cfg_enable_hba_heartbeat) { 1500 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1501 spin_lock_irq(&phba->pport->work_port_lock); 1502 if (time_after(phba->last_completion_time + 1503 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1504 jiffies)) { 1505 spin_unlock_irq(&phba->pport->work_port_lock); 1506 if (phba->hba_flag & HBA_HBEAT_INP) 1507 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1508 else 1509 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1510 goto out; 1511 } 1512 spin_unlock_irq(&phba->pport->work_port_lock); 1513 1514 /* Check if a MBX_HEARTBEAT is already in progress */ 1515 if (phba->hba_flag & HBA_HBEAT_INP) { 1516 /* 1517 * If heart beat timeout called with HBA_HBEAT_INP set 1518 * we need to give the hb mailbox cmd a chance to 1519 * complete or TMO. 1520 */ 1521 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1522 "0459 Adapter heartbeat still outstanding: " 1523 "last compl time was %d ms.\n", 1524 jiffies_to_msecs(jiffies 1525 - phba->last_completion_time)); 1526 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1527 } else { 1528 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1529 (list_empty(&psli->mboxq))) { 1530 1531 retval = lpfc_issue_hb_mbox(phba); 1532 if (retval) { 1533 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1534 goto out; 1535 } 1536 phba->skipped_hb = 0; 1537 } else if (time_before_eq(phba->last_completion_time, 1538 phba->skipped_hb)) { 1539 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1540 "2857 Last completion time not " 1541 " updated in %d ms\n", 1542 jiffies_to_msecs(jiffies 1543 - phba->last_completion_time)); 1544 } else 1545 phba->skipped_hb = jiffies; 1546 1547 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1548 goto out; 1549 } 1550 } else { 1551 /* Check to see if we want to force a MBX_HEARTBEAT */ 1552 if (phba->hba_flag & HBA_HBEAT_TMO) { 1553 retval = lpfc_issue_hb_mbox(phba); 1554 if (retval) 1555 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1556 else 1557 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1558 goto out; 1559 } 1560 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1561 } 1562 out: 1563 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1564 } 1565 1566 /** 1567 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1568 * @phba: pointer to lpfc hba data structure. 1569 * 1570 * This routine is called to bring the HBA offline when HBA hardware error 1571 * other than Port Error 6 has been detected. 1572 **/ 1573 static void 1574 lpfc_offline_eratt(struct lpfc_hba *phba) 1575 { 1576 struct lpfc_sli *psli = &phba->sli; 1577 1578 spin_lock_irq(&phba->hbalock); 1579 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1580 spin_unlock_irq(&phba->hbalock); 1581 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1582 1583 lpfc_offline(phba); 1584 lpfc_reset_barrier(phba); 1585 spin_lock_irq(&phba->hbalock); 1586 lpfc_sli_brdreset(phba); 1587 spin_unlock_irq(&phba->hbalock); 1588 lpfc_hba_down_post(phba); 1589 lpfc_sli_brdready(phba, HS_MBRDY); 1590 lpfc_unblock_mgmt_io(phba); 1591 phba->link_state = LPFC_HBA_ERROR; 1592 return; 1593 } 1594 1595 /** 1596 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1597 * @phba: pointer to lpfc hba data structure. 1598 * 1599 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1600 * other than Port Error 6 has been detected. 1601 **/ 1602 void 1603 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1604 { 1605 spin_lock_irq(&phba->hbalock); 1606 phba->link_state = LPFC_HBA_ERROR; 1607 spin_unlock_irq(&phba->hbalock); 1608 1609 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1610 lpfc_sli_flush_io_rings(phba); 1611 lpfc_offline(phba); 1612 lpfc_hba_down_post(phba); 1613 lpfc_unblock_mgmt_io(phba); 1614 } 1615 1616 /** 1617 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1618 * @phba: pointer to lpfc hba data structure. 1619 * 1620 * This routine is invoked to handle the deferred HBA hardware error 1621 * conditions. This type of error is indicated by HBA by setting ER1 1622 * and another ER bit in the host status register. The driver will 1623 * wait until the ER1 bit clears before handling the error condition. 1624 **/ 1625 static void 1626 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1627 { 1628 uint32_t old_host_status = phba->work_hs; 1629 struct lpfc_sli *psli = &phba->sli; 1630 1631 /* If the pci channel is offline, ignore possible errors, 1632 * since we cannot communicate with the pci card anyway. 1633 */ 1634 if (pci_channel_offline(phba->pcidev)) { 1635 spin_lock_irq(&phba->hbalock); 1636 phba->hba_flag &= ~DEFER_ERATT; 1637 spin_unlock_irq(&phba->hbalock); 1638 return; 1639 } 1640 1641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1642 "0479 Deferred Adapter Hardware Error " 1643 "Data: x%x x%x x%x\n", 1644 phba->work_hs, phba->work_status[0], 1645 phba->work_status[1]); 1646 1647 spin_lock_irq(&phba->hbalock); 1648 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1649 spin_unlock_irq(&phba->hbalock); 1650 1651 1652 /* 1653 * Firmware stops when it triggred erratt. That could cause the I/Os 1654 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1655 * SCSI layer retry it after re-establishing link. 1656 */ 1657 lpfc_sli_abort_fcp_rings(phba); 1658 1659 /* 1660 * There was a firmware error. Take the hba offline and then 1661 * attempt to restart it. 1662 */ 1663 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1664 lpfc_offline(phba); 1665 1666 /* Wait for the ER1 bit to clear.*/ 1667 while (phba->work_hs & HS_FFER1) { 1668 msleep(100); 1669 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1670 phba->work_hs = UNPLUG_ERR ; 1671 break; 1672 } 1673 /* If driver is unloading let the worker thread continue */ 1674 if (phba->pport->load_flag & FC_UNLOADING) { 1675 phba->work_hs = 0; 1676 break; 1677 } 1678 } 1679 1680 /* 1681 * This is to ptrotect against a race condition in which 1682 * first write to the host attention register clear the 1683 * host status register. 1684 */ 1685 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1686 phba->work_hs = old_host_status & ~HS_FFER1; 1687 1688 spin_lock_irq(&phba->hbalock); 1689 phba->hba_flag &= ~DEFER_ERATT; 1690 spin_unlock_irq(&phba->hbalock); 1691 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1692 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1693 } 1694 1695 static void 1696 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1697 { 1698 struct lpfc_board_event_header board_event; 1699 struct Scsi_Host *shost; 1700 1701 board_event.event_type = FC_REG_BOARD_EVENT; 1702 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1703 shost = lpfc_shost_from_vport(phba->pport); 1704 fc_host_post_vendor_event(shost, fc_get_event_number(), 1705 sizeof(board_event), 1706 (char *) &board_event, 1707 LPFC_NL_VENDOR_ID); 1708 } 1709 1710 /** 1711 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1712 * @phba: pointer to lpfc hba data structure. 1713 * 1714 * This routine is invoked to handle the following HBA hardware error 1715 * conditions: 1716 * 1 - HBA error attention interrupt 1717 * 2 - DMA ring index out of range 1718 * 3 - Mailbox command came back as unknown 1719 **/ 1720 static void 1721 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1722 { 1723 struct lpfc_vport *vport = phba->pport; 1724 struct lpfc_sli *psli = &phba->sli; 1725 uint32_t event_data; 1726 unsigned long temperature; 1727 struct temp_event temp_event_data; 1728 struct Scsi_Host *shost; 1729 1730 /* If the pci channel is offline, ignore possible errors, 1731 * since we cannot communicate with the pci card anyway. 1732 */ 1733 if (pci_channel_offline(phba->pcidev)) { 1734 spin_lock_irq(&phba->hbalock); 1735 phba->hba_flag &= ~DEFER_ERATT; 1736 spin_unlock_irq(&phba->hbalock); 1737 return; 1738 } 1739 1740 /* If resets are disabled then leave the HBA alone and return */ 1741 if (!phba->cfg_enable_hba_reset) 1742 return; 1743 1744 /* Send an internal error event to mgmt application */ 1745 lpfc_board_errevt_to_mgmt(phba); 1746 1747 if (phba->hba_flag & DEFER_ERATT) 1748 lpfc_handle_deferred_eratt(phba); 1749 1750 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1751 if (phba->work_hs & HS_FFER6) 1752 /* Re-establishing Link */ 1753 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1754 "1301 Re-establishing Link " 1755 "Data: x%x x%x x%x\n", 1756 phba->work_hs, phba->work_status[0], 1757 phba->work_status[1]); 1758 if (phba->work_hs & HS_FFER8) 1759 /* Device Zeroization */ 1760 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1761 "2861 Host Authentication device " 1762 "zeroization Data:x%x x%x x%x\n", 1763 phba->work_hs, phba->work_status[0], 1764 phba->work_status[1]); 1765 1766 spin_lock_irq(&phba->hbalock); 1767 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1768 spin_unlock_irq(&phba->hbalock); 1769 1770 /* 1771 * Firmware stops when it triggled erratt with HS_FFER6. 1772 * That could cause the I/Os dropped by the firmware. 1773 * Error iocb (I/O) on txcmplq and let the SCSI layer 1774 * retry it after re-establishing link. 1775 */ 1776 lpfc_sli_abort_fcp_rings(phba); 1777 1778 /* 1779 * There was a firmware error. Take the hba offline and then 1780 * attempt to restart it. 1781 */ 1782 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1783 lpfc_offline(phba); 1784 lpfc_sli_brdrestart(phba); 1785 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1786 lpfc_unblock_mgmt_io(phba); 1787 return; 1788 } 1789 lpfc_unblock_mgmt_io(phba); 1790 } else if (phba->work_hs & HS_CRIT_TEMP) { 1791 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1792 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1793 temp_event_data.event_code = LPFC_CRIT_TEMP; 1794 temp_event_data.data = (uint32_t)temperature; 1795 1796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1797 "0406 Adapter maximum temperature exceeded " 1798 "(%ld), taking this port offline " 1799 "Data: x%x x%x x%x\n", 1800 temperature, phba->work_hs, 1801 phba->work_status[0], phba->work_status[1]); 1802 1803 shost = lpfc_shost_from_vport(phba->pport); 1804 fc_host_post_vendor_event(shost, fc_get_event_number(), 1805 sizeof(temp_event_data), 1806 (char *) &temp_event_data, 1807 SCSI_NL_VID_TYPE_PCI 1808 | PCI_VENDOR_ID_EMULEX); 1809 1810 spin_lock_irq(&phba->hbalock); 1811 phba->over_temp_state = HBA_OVER_TEMP; 1812 spin_unlock_irq(&phba->hbalock); 1813 lpfc_offline_eratt(phba); 1814 1815 } else { 1816 /* The if clause above forces this code path when the status 1817 * failure is a value other than FFER6. Do not call the offline 1818 * twice. This is the adapter hardware error path. 1819 */ 1820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1821 "0457 Adapter Hardware Error " 1822 "Data: x%x x%x x%x\n", 1823 phba->work_hs, 1824 phba->work_status[0], phba->work_status[1]); 1825 1826 event_data = FC_REG_DUMP_EVENT; 1827 shost = lpfc_shost_from_vport(vport); 1828 fc_host_post_vendor_event(shost, fc_get_event_number(), 1829 sizeof(event_data), (char *) &event_data, 1830 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1831 1832 lpfc_offline_eratt(phba); 1833 } 1834 return; 1835 } 1836 1837 /** 1838 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1839 * @phba: pointer to lpfc hba data structure. 1840 * @mbx_action: flag for mailbox shutdown action. 1841 * @en_rn_msg: send reset/port recovery message. 1842 * This routine is invoked to perform an SLI4 port PCI function reset in 1843 * response to port status register polling attention. It waits for port 1844 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1845 * During this process, interrupt vectors are freed and later requested 1846 * for handling possible port resource change. 1847 **/ 1848 static int 1849 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1850 bool en_rn_msg) 1851 { 1852 int rc; 1853 uint32_t intr_mode; 1854 1855 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1856 LPFC_SLI_INTF_IF_TYPE_2) { 1857 /* 1858 * On error status condition, driver need to wait for port 1859 * ready before performing reset. 1860 */ 1861 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1862 if (rc) 1863 return rc; 1864 } 1865 1866 /* need reset: attempt for port recovery */ 1867 if (en_rn_msg) 1868 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1869 "2887 Reset Needed: Attempting Port " 1870 "Recovery...\n"); 1871 1872 /* If we are no wait, the HBA has been reset and is not 1873 * functional, thus we should clear LPFC_SLI_ACTIVE flag. 1874 */ 1875 if (mbx_action == LPFC_MBX_NO_WAIT) { 1876 spin_lock_irq(&phba->hbalock); 1877 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1878 spin_unlock_irq(&phba->hbalock); 1879 } 1880 1881 lpfc_offline_prep(phba, mbx_action); 1882 lpfc_sli_flush_io_rings(phba); 1883 lpfc_offline(phba); 1884 /* release interrupt for possible resource change */ 1885 lpfc_sli4_disable_intr(phba); 1886 rc = lpfc_sli_brdrestart(phba); 1887 if (rc) { 1888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1889 "6309 Failed to restart board\n"); 1890 return rc; 1891 } 1892 /* request and enable interrupt */ 1893 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1894 if (intr_mode == LPFC_INTR_ERROR) { 1895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1896 "3175 Failed to enable interrupt\n"); 1897 return -EIO; 1898 } 1899 phba->intr_mode = intr_mode; 1900 rc = lpfc_online(phba); 1901 if (rc == 0) 1902 lpfc_unblock_mgmt_io(phba); 1903 1904 return rc; 1905 } 1906 1907 /** 1908 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1909 * @phba: pointer to lpfc hba data structure. 1910 * 1911 * This routine is invoked to handle the SLI4 HBA hardware error attention 1912 * conditions. 1913 **/ 1914 static void 1915 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1916 { 1917 struct lpfc_vport *vport = phba->pport; 1918 uint32_t event_data; 1919 struct Scsi_Host *shost; 1920 uint32_t if_type; 1921 struct lpfc_register portstat_reg = {0}; 1922 uint32_t reg_err1, reg_err2; 1923 uint32_t uerrlo_reg, uemasklo_reg; 1924 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1925 bool en_rn_msg = true; 1926 struct temp_event temp_event_data; 1927 struct lpfc_register portsmphr_reg; 1928 int rc, i; 1929 1930 /* If the pci channel is offline, ignore possible errors, since 1931 * we cannot communicate with the pci card anyway. 1932 */ 1933 if (pci_channel_offline(phba->pcidev)) { 1934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1935 "3166 pci channel is offline\n"); 1936 lpfc_sli4_offline_eratt(phba); 1937 return; 1938 } 1939 1940 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 1941 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 1942 switch (if_type) { 1943 case LPFC_SLI_INTF_IF_TYPE_0: 1944 pci_rd_rc1 = lpfc_readl( 1945 phba->sli4_hba.u.if_type0.UERRLOregaddr, 1946 &uerrlo_reg); 1947 pci_rd_rc2 = lpfc_readl( 1948 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 1949 &uemasklo_reg); 1950 /* consider PCI bus read error as pci_channel_offline */ 1951 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 1952 return; 1953 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 1954 lpfc_sli4_offline_eratt(phba); 1955 return; 1956 } 1957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1958 "7623 Checking UE recoverable"); 1959 1960 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 1961 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1962 &portsmphr_reg.word0)) 1963 continue; 1964 1965 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 1966 &portsmphr_reg); 1967 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1968 LPFC_PORT_SEM_UE_RECOVERABLE) 1969 break; 1970 /*Sleep for 1Sec, before checking SEMAPHORE */ 1971 msleep(1000); 1972 } 1973 1974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1975 "4827 smphr_port_status x%x : Waited %dSec", 1976 smphr_port_status, i); 1977 1978 /* Recoverable UE, reset the HBA device */ 1979 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 1980 LPFC_PORT_SEM_UE_RECOVERABLE) { 1981 for (i = 0; i < 20; i++) { 1982 msleep(1000); 1983 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 1984 &portsmphr_reg.word0) && 1985 (LPFC_POST_STAGE_PORT_READY == 1986 bf_get(lpfc_port_smphr_port_status, 1987 &portsmphr_reg))) { 1988 rc = lpfc_sli4_port_sta_fn_reset(phba, 1989 LPFC_MBX_NO_WAIT, en_rn_msg); 1990 if (rc == 0) 1991 return; 1992 lpfc_printf_log(phba, KERN_ERR, 1993 LOG_TRACE_EVENT, 1994 "4215 Failed to recover UE"); 1995 break; 1996 } 1997 } 1998 } 1999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2000 "7624 Firmware not ready: Failing UE recovery," 2001 " waited %dSec", i); 2002 phba->link_state = LPFC_HBA_ERROR; 2003 break; 2004 2005 case LPFC_SLI_INTF_IF_TYPE_2: 2006 case LPFC_SLI_INTF_IF_TYPE_6: 2007 pci_rd_rc1 = lpfc_readl( 2008 phba->sli4_hba.u.if_type2.STATUSregaddr, 2009 &portstat_reg.word0); 2010 /* consider PCI bus read error as pci_channel_offline */ 2011 if (pci_rd_rc1 == -EIO) { 2012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2013 "3151 PCI bus read access failure: x%x\n", 2014 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2015 lpfc_sli4_offline_eratt(phba); 2016 return; 2017 } 2018 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2019 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2020 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2022 "2889 Port Overtemperature event, " 2023 "taking port offline Data: x%x x%x\n", 2024 reg_err1, reg_err2); 2025 2026 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2027 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2028 temp_event_data.event_code = LPFC_CRIT_TEMP; 2029 temp_event_data.data = 0xFFFFFFFF; 2030 2031 shost = lpfc_shost_from_vport(phba->pport); 2032 fc_host_post_vendor_event(shost, fc_get_event_number(), 2033 sizeof(temp_event_data), 2034 (char *)&temp_event_data, 2035 SCSI_NL_VID_TYPE_PCI 2036 | PCI_VENDOR_ID_EMULEX); 2037 2038 spin_lock_irq(&phba->hbalock); 2039 phba->over_temp_state = HBA_OVER_TEMP; 2040 spin_unlock_irq(&phba->hbalock); 2041 lpfc_sli4_offline_eratt(phba); 2042 return; 2043 } 2044 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2045 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2047 "3143 Port Down: Firmware Update " 2048 "Detected\n"); 2049 en_rn_msg = false; 2050 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2051 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "3144 Port Down: Debug Dump\n"); 2054 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2055 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2057 "3145 Port Down: Provisioning\n"); 2058 2059 /* If resets are disabled then leave the HBA alone and return */ 2060 if (!phba->cfg_enable_hba_reset) 2061 return; 2062 2063 /* Check port status register for function reset */ 2064 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2065 en_rn_msg); 2066 if (rc == 0) { 2067 /* don't report event on forced debug dump */ 2068 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2069 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2070 return; 2071 else 2072 break; 2073 } 2074 /* fall through for not able to recover */ 2075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2076 "3152 Unrecoverable error\n"); 2077 phba->link_state = LPFC_HBA_ERROR; 2078 break; 2079 case LPFC_SLI_INTF_IF_TYPE_1: 2080 default: 2081 break; 2082 } 2083 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2084 "3123 Report dump event to upper layer\n"); 2085 /* Send an internal error event to mgmt application */ 2086 lpfc_board_errevt_to_mgmt(phba); 2087 2088 event_data = FC_REG_DUMP_EVENT; 2089 shost = lpfc_shost_from_vport(vport); 2090 fc_host_post_vendor_event(shost, fc_get_event_number(), 2091 sizeof(event_data), (char *) &event_data, 2092 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2093 } 2094 2095 /** 2096 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2097 * @phba: pointer to lpfc HBA data structure. 2098 * 2099 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2100 * routine from the API jump table function pointer from the lpfc_hba struct. 2101 * 2102 * Return codes 2103 * 0 - success. 2104 * Any other value - error. 2105 **/ 2106 void 2107 lpfc_handle_eratt(struct lpfc_hba *phba) 2108 { 2109 (*phba->lpfc_handle_eratt)(phba); 2110 } 2111 2112 /** 2113 * lpfc_handle_latt - The HBA link event handler 2114 * @phba: pointer to lpfc hba data structure. 2115 * 2116 * This routine is invoked from the worker thread to handle a HBA host 2117 * attention link event. SLI3 only. 2118 **/ 2119 void 2120 lpfc_handle_latt(struct lpfc_hba *phba) 2121 { 2122 struct lpfc_vport *vport = phba->pport; 2123 struct lpfc_sli *psli = &phba->sli; 2124 LPFC_MBOXQ_t *pmb; 2125 volatile uint32_t control; 2126 struct lpfc_dmabuf *mp; 2127 int rc = 0; 2128 2129 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2130 if (!pmb) { 2131 rc = 1; 2132 goto lpfc_handle_latt_err_exit; 2133 } 2134 2135 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 2136 if (!mp) { 2137 rc = 2; 2138 goto lpfc_handle_latt_free_pmb; 2139 } 2140 2141 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 2142 if (!mp->virt) { 2143 rc = 3; 2144 goto lpfc_handle_latt_free_mp; 2145 } 2146 2147 /* Cleanup any outstanding ELS commands */ 2148 lpfc_els_flush_all_cmd(phba); 2149 2150 psli->slistat.link_event++; 2151 lpfc_read_topology(phba, pmb, mp); 2152 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2153 pmb->vport = vport; 2154 /* Block ELS IOCBs until we have processed this mbox command */ 2155 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2156 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2157 if (rc == MBX_NOT_FINISHED) { 2158 rc = 4; 2159 goto lpfc_handle_latt_free_mbuf; 2160 } 2161 2162 /* Clear Link Attention in HA REG */ 2163 spin_lock_irq(&phba->hbalock); 2164 writel(HA_LATT, phba->HAregaddr); 2165 readl(phba->HAregaddr); /* flush */ 2166 spin_unlock_irq(&phba->hbalock); 2167 2168 return; 2169 2170 lpfc_handle_latt_free_mbuf: 2171 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2172 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2173 lpfc_handle_latt_free_mp: 2174 kfree(mp); 2175 lpfc_handle_latt_free_pmb: 2176 mempool_free(pmb, phba->mbox_mem_pool); 2177 lpfc_handle_latt_err_exit: 2178 /* Enable Link attention interrupts */ 2179 spin_lock_irq(&phba->hbalock); 2180 psli->sli_flag |= LPFC_PROCESS_LA; 2181 control = readl(phba->HCregaddr); 2182 control |= HC_LAINT_ENA; 2183 writel(control, phba->HCregaddr); 2184 readl(phba->HCregaddr); /* flush */ 2185 2186 /* Clear Link Attention in HA REG */ 2187 writel(HA_LATT, phba->HAregaddr); 2188 readl(phba->HAregaddr); /* flush */ 2189 spin_unlock_irq(&phba->hbalock); 2190 lpfc_linkdown(phba); 2191 phba->link_state = LPFC_HBA_ERROR; 2192 2193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2194 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2195 2196 return; 2197 } 2198 2199 /** 2200 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2201 * @phba: pointer to lpfc hba data structure. 2202 * @vpd: pointer to the vital product data. 2203 * @len: length of the vital product data in bytes. 2204 * 2205 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2206 * an array of characters. In this routine, the ModelName, ProgramType, and 2207 * ModelDesc, etc. fields of the phba data structure will be populated. 2208 * 2209 * Return codes 2210 * 0 - pointer to the VPD passed in is NULL 2211 * 1 - success 2212 **/ 2213 int 2214 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2215 { 2216 uint8_t lenlo, lenhi; 2217 int Length; 2218 int i, j; 2219 int finished = 0; 2220 int index = 0; 2221 2222 if (!vpd) 2223 return 0; 2224 2225 /* Vital Product */ 2226 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2227 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2228 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2229 (uint32_t) vpd[3]); 2230 while (!finished && (index < (len - 4))) { 2231 switch (vpd[index]) { 2232 case 0x82: 2233 case 0x91: 2234 index += 1; 2235 lenlo = vpd[index]; 2236 index += 1; 2237 lenhi = vpd[index]; 2238 index += 1; 2239 i = ((((unsigned short)lenhi) << 8) + lenlo); 2240 index += i; 2241 break; 2242 case 0x90: 2243 index += 1; 2244 lenlo = vpd[index]; 2245 index += 1; 2246 lenhi = vpd[index]; 2247 index += 1; 2248 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2249 if (Length > len - index) 2250 Length = len - index; 2251 while (Length > 0) { 2252 /* Look for Serial Number */ 2253 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2254 index += 2; 2255 i = vpd[index]; 2256 index += 1; 2257 j = 0; 2258 Length -= (3+i); 2259 while(i--) { 2260 phba->SerialNumber[j++] = vpd[index++]; 2261 if (j == 31) 2262 break; 2263 } 2264 phba->SerialNumber[j] = 0; 2265 continue; 2266 } 2267 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2268 phba->vpd_flag |= VPD_MODEL_DESC; 2269 index += 2; 2270 i = vpd[index]; 2271 index += 1; 2272 j = 0; 2273 Length -= (3+i); 2274 while(i--) { 2275 phba->ModelDesc[j++] = vpd[index++]; 2276 if (j == 255) 2277 break; 2278 } 2279 phba->ModelDesc[j] = 0; 2280 continue; 2281 } 2282 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2283 phba->vpd_flag |= VPD_MODEL_NAME; 2284 index += 2; 2285 i = vpd[index]; 2286 index += 1; 2287 j = 0; 2288 Length -= (3+i); 2289 while(i--) { 2290 phba->ModelName[j++] = vpd[index++]; 2291 if (j == 79) 2292 break; 2293 } 2294 phba->ModelName[j] = 0; 2295 continue; 2296 } 2297 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2298 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2299 index += 2; 2300 i = vpd[index]; 2301 index += 1; 2302 j = 0; 2303 Length -= (3+i); 2304 while(i--) { 2305 phba->ProgramType[j++] = vpd[index++]; 2306 if (j == 255) 2307 break; 2308 } 2309 phba->ProgramType[j] = 0; 2310 continue; 2311 } 2312 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2313 phba->vpd_flag |= VPD_PORT; 2314 index += 2; 2315 i = vpd[index]; 2316 index += 1; 2317 j = 0; 2318 Length -= (3+i); 2319 while(i--) { 2320 if ((phba->sli_rev == LPFC_SLI_REV4) && 2321 (phba->sli4_hba.pport_name_sta == 2322 LPFC_SLI4_PPNAME_GET)) { 2323 j++; 2324 index++; 2325 } else 2326 phba->Port[j++] = vpd[index++]; 2327 if (j == 19) 2328 break; 2329 } 2330 if ((phba->sli_rev != LPFC_SLI_REV4) || 2331 (phba->sli4_hba.pport_name_sta == 2332 LPFC_SLI4_PPNAME_NON)) 2333 phba->Port[j] = 0; 2334 continue; 2335 } 2336 else { 2337 index += 2; 2338 i = vpd[index]; 2339 index += 1; 2340 index += i; 2341 Length -= (3 + i); 2342 } 2343 } 2344 finished = 0; 2345 break; 2346 case 0x78: 2347 finished = 1; 2348 break; 2349 default: 2350 index ++; 2351 break; 2352 } 2353 } 2354 2355 return(1); 2356 } 2357 2358 /** 2359 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2360 * @phba: pointer to lpfc hba data structure. 2361 * @mdp: pointer to the data structure to hold the derived model name. 2362 * @descp: pointer to the data structure to hold the derived description. 2363 * 2364 * This routine retrieves HBA's description based on its registered PCI device 2365 * ID. The @descp passed into this function points to an array of 256 chars. It 2366 * shall be returned with the model name, maximum speed, and the host bus type. 2367 * The @mdp passed into this function points to an array of 80 chars. When the 2368 * function returns, the @mdp will be filled with the model name. 2369 **/ 2370 static void 2371 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2372 { 2373 lpfc_vpd_t *vp; 2374 uint16_t dev_id = phba->pcidev->device; 2375 int max_speed; 2376 int GE = 0; 2377 int oneConnect = 0; /* default is not a oneConnect */ 2378 struct { 2379 char *name; 2380 char *bus; 2381 char *function; 2382 } m = {"<Unknown>", "", ""}; 2383 2384 if (mdp && mdp[0] != '\0' 2385 && descp && descp[0] != '\0') 2386 return; 2387 2388 if (phba->lmt & LMT_64Gb) 2389 max_speed = 64; 2390 else if (phba->lmt & LMT_32Gb) 2391 max_speed = 32; 2392 else if (phba->lmt & LMT_16Gb) 2393 max_speed = 16; 2394 else if (phba->lmt & LMT_10Gb) 2395 max_speed = 10; 2396 else if (phba->lmt & LMT_8Gb) 2397 max_speed = 8; 2398 else if (phba->lmt & LMT_4Gb) 2399 max_speed = 4; 2400 else if (phba->lmt & LMT_2Gb) 2401 max_speed = 2; 2402 else if (phba->lmt & LMT_1Gb) 2403 max_speed = 1; 2404 else 2405 max_speed = 0; 2406 2407 vp = &phba->vpd; 2408 2409 switch (dev_id) { 2410 case PCI_DEVICE_ID_FIREFLY: 2411 m = (typeof(m)){"LP6000", "PCI", 2412 "Obsolete, Unsupported Fibre Channel Adapter"}; 2413 break; 2414 case PCI_DEVICE_ID_SUPERFLY: 2415 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2416 m = (typeof(m)){"LP7000", "PCI", ""}; 2417 else 2418 m = (typeof(m)){"LP7000E", "PCI", ""}; 2419 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2420 break; 2421 case PCI_DEVICE_ID_DRAGONFLY: 2422 m = (typeof(m)){"LP8000", "PCI", 2423 "Obsolete, Unsupported Fibre Channel Adapter"}; 2424 break; 2425 case PCI_DEVICE_ID_CENTAUR: 2426 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2427 m = (typeof(m)){"LP9002", "PCI", ""}; 2428 else 2429 m = (typeof(m)){"LP9000", "PCI", ""}; 2430 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2431 break; 2432 case PCI_DEVICE_ID_RFLY: 2433 m = (typeof(m)){"LP952", "PCI", 2434 "Obsolete, Unsupported Fibre Channel Adapter"}; 2435 break; 2436 case PCI_DEVICE_ID_PEGASUS: 2437 m = (typeof(m)){"LP9802", "PCI-X", 2438 "Obsolete, Unsupported Fibre Channel Adapter"}; 2439 break; 2440 case PCI_DEVICE_ID_THOR: 2441 m = (typeof(m)){"LP10000", "PCI-X", 2442 "Obsolete, Unsupported Fibre Channel Adapter"}; 2443 break; 2444 case PCI_DEVICE_ID_VIPER: 2445 m = (typeof(m)){"LPX1000", "PCI-X", 2446 "Obsolete, Unsupported Fibre Channel Adapter"}; 2447 break; 2448 case PCI_DEVICE_ID_PFLY: 2449 m = (typeof(m)){"LP982", "PCI-X", 2450 "Obsolete, Unsupported Fibre Channel Adapter"}; 2451 break; 2452 case PCI_DEVICE_ID_TFLY: 2453 m = (typeof(m)){"LP1050", "PCI-X", 2454 "Obsolete, Unsupported Fibre Channel Adapter"}; 2455 break; 2456 case PCI_DEVICE_ID_HELIOS: 2457 m = (typeof(m)){"LP11000", "PCI-X2", 2458 "Obsolete, Unsupported Fibre Channel Adapter"}; 2459 break; 2460 case PCI_DEVICE_ID_HELIOS_SCSP: 2461 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2462 "Obsolete, Unsupported Fibre Channel Adapter"}; 2463 break; 2464 case PCI_DEVICE_ID_HELIOS_DCSP: 2465 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2466 "Obsolete, Unsupported Fibre Channel Adapter"}; 2467 break; 2468 case PCI_DEVICE_ID_NEPTUNE: 2469 m = (typeof(m)){"LPe1000", "PCIe", 2470 "Obsolete, Unsupported Fibre Channel Adapter"}; 2471 break; 2472 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2473 m = (typeof(m)){"LPe1000-SP", "PCIe", 2474 "Obsolete, Unsupported Fibre Channel Adapter"}; 2475 break; 2476 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2477 m = (typeof(m)){"LPe1002-SP", "PCIe", 2478 "Obsolete, Unsupported Fibre Channel Adapter"}; 2479 break; 2480 case PCI_DEVICE_ID_BMID: 2481 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2482 break; 2483 case PCI_DEVICE_ID_BSMB: 2484 m = (typeof(m)){"LP111", "PCI-X2", 2485 "Obsolete, Unsupported Fibre Channel Adapter"}; 2486 break; 2487 case PCI_DEVICE_ID_ZEPHYR: 2488 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2489 break; 2490 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2491 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2492 break; 2493 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2494 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2495 GE = 1; 2496 break; 2497 case PCI_DEVICE_ID_ZMID: 2498 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2499 break; 2500 case PCI_DEVICE_ID_ZSMB: 2501 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2502 break; 2503 case PCI_DEVICE_ID_LP101: 2504 m = (typeof(m)){"LP101", "PCI-X", 2505 "Obsolete, Unsupported Fibre Channel Adapter"}; 2506 break; 2507 case PCI_DEVICE_ID_LP10000S: 2508 m = (typeof(m)){"LP10000-S", "PCI", 2509 "Obsolete, Unsupported Fibre Channel Adapter"}; 2510 break; 2511 case PCI_DEVICE_ID_LP11000S: 2512 m = (typeof(m)){"LP11000-S", "PCI-X2", 2513 "Obsolete, Unsupported Fibre Channel Adapter"}; 2514 break; 2515 case PCI_DEVICE_ID_LPE11000S: 2516 m = (typeof(m)){"LPe11000-S", "PCIe", 2517 "Obsolete, Unsupported Fibre Channel Adapter"}; 2518 break; 2519 case PCI_DEVICE_ID_SAT: 2520 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2521 break; 2522 case PCI_DEVICE_ID_SAT_MID: 2523 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2524 break; 2525 case PCI_DEVICE_ID_SAT_SMB: 2526 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2527 break; 2528 case PCI_DEVICE_ID_SAT_DCSP: 2529 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2530 break; 2531 case PCI_DEVICE_ID_SAT_SCSP: 2532 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2533 break; 2534 case PCI_DEVICE_ID_SAT_S: 2535 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2536 break; 2537 case PCI_DEVICE_ID_HORNET: 2538 m = (typeof(m)){"LP21000", "PCIe", 2539 "Obsolete, Unsupported FCoE Adapter"}; 2540 GE = 1; 2541 break; 2542 case PCI_DEVICE_ID_PROTEUS_VF: 2543 m = (typeof(m)){"LPev12000", "PCIe IOV", 2544 "Obsolete, Unsupported Fibre Channel Adapter"}; 2545 break; 2546 case PCI_DEVICE_ID_PROTEUS_PF: 2547 m = (typeof(m)){"LPev12000", "PCIe IOV", 2548 "Obsolete, Unsupported Fibre Channel Adapter"}; 2549 break; 2550 case PCI_DEVICE_ID_PROTEUS_S: 2551 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2552 "Obsolete, Unsupported Fibre Channel Adapter"}; 2553 break; 2554 case PCI_DEVICE_ID_TIGERSHARK: 2555 oneConnect = 1; 2556 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2557 break; 2558 case PCI_DEVICE_ID_TOMCAT: 2559 oneConnect = 1; 2560 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2561 break; 2562 case PCI_DEVICE_ID_FALCON: 2563 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2564 "EmulexSecure Fibre"}; 2565 break; 2566 case PCI_DEVICE_ID_BALIUS: 2567 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2568 "Obsolete, Unsupported Fibre Channel Adapter"}; 2569 break; 2570 case PCI_DEVICE_ID_LANCER_FC: 2571 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2572 break; 2573 case PCI_DEVICE_ID_LANCER_FC_VF: 2574 m = (typeof(m)){"LPe16000", "PCIe", 2575 "Obsolete, Unsupported Fibre Channel Adapter"}; 2576 break; 2577 case PCI_DEVICE_ID_LANCER_FCOE: 2578 oneConnect = 1; 2579 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2580 break; 2581 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2582 oneConnect = 1; 2583 m = (typeof(m)){"OCe15100", "PCIe", 2584 "Obsolete, Unsupported FCoE"}; 2585 break; 2586 case PCI_DEVICE_ID_LANCER_G6_FC: 2587 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2588 break; 2589 case PCI_DEVICE_ID_LANCER_G7_FC: 2590 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2591 break; 2592 case PCI_DEVICE_ID_SKYHAWK: 2593 case PCI_DEVICE_ID_SKYHAWK_VF: 2594 oneConnect = 1; 2595 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2596 break; 2597 default: 2598 m = (typeof(m)){"Unknown", "", ""}; 2599 break; 2600 } 2601 2602 if (mdp && mdp[0] == '\0') 2603 snprintf(mdp, 79,"%s", m.name); 2604 /* 2605 * oneConnect hba requires special processing, they are all initiators 2606 * and we put the port number on the end 2607 */ 2608 if (descp && descp[0] == '\0') { 2609 if (oneConnect) 2610 snprintf(descp, 255, 2611 "Emulex OneConnect %s, %s Initiator %s", 2612 m.name, m.function, 2613 phba->Port); 2614 else if (max_speed == 0) 2615 snprintf(descp, 255, 2616 "Emulex %s %s %s", 2617 m.name, m.bus, m.function); 2618 else 2619 snprintf(descp, 255, 2620 "Emulex %s %d%s %s %s", 2621 m.name, max_speed, (GE) ? "GE" : "Gb", 2622 m.bus, m.function); 2623 } 2624 } 2625 2626 /** 2627 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2628 * @phba: pointer to lpfc hba data structure. 2629 * @pring: pointer to a IOCB ring. 2630 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2631 * 2632 * This routine posts a given number of IOCBs with the associated DMA buffer 2633 * descriptors specified by the cnt argument to the given IOCB ring. 2634 * 2635 * Return codes 2636 * The number of IOCBs NOT able to be posted to the IOCB ring. 2637 **/ 2638 int 2639 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2640 { 2641 IOCB_t *icmd; 2642 struct lpfc_iocbq *iocb; 2643 struct lpfc_dmabuf *mp1, *mp2; 2644 2645 cnt += pring->missbufcnt; 2646 2647 /* While there are buffers to post */ 2648 while (cnt > 0) { 2649 /* Allocate buffer for command iocb */ 2650 iocb = lpfc_sli_get_iocbq(phba); 2651 if (iocb == NULL) { 2652 pring->missbufcnt = cnt; 2653 return cnt; 2654 } 2655 icmd = &iocb->iocb; 2656 2657 /* 2 buffers can be posted per command */ 2658 /* Allocate buffer to post */ 2659 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2660 if (mp1) 2661 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2662 if (!mp1 || !mp1->virt) { 2663 kfree(mp1); 2664 lpfc_sli_release_iocbq(phba, iocb); 2665 pring->missbufcnt = cnt; 2666 return cnt; 2667 } 2668 2669 INIT_LIST_HEAD(&mp1->list); 2670 /* Allocate buffer to post */ 2671 if (cnt > 1) { 2672 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2673 if (mp2) 2674 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2675 &mp2->phys); 2676 if (!mp2 || !mp2->virt) { 2677 kfree(mp2); 2678 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2679 kfree(mp1); 2680 lpfc_sli_release_iocbq(phba, iocb); 2681 pring->missbufcnt = cnt; 2682 return cnt; 2683 } 2684 2685 INIT_LIST_HEAD(&mp2->list); 2686 } else { 2687 mp2 = NULL; 2688 } 2689 2690 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2691 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2692 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2693 icmd->ulpBdeCount = 1; 2694 cnt--; 2695 if (mp2) { 2696 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2697 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2698 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2699 cnt--; 2700 icmd->ulpBdeCount = 2; 2701 } 2702 2703 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2704 icmd->ulpLe = 1; 2705 2706 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2707 IOCB_ERROR) { 2708 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2709 kfree(mp1); 2710 cnt++; 2711 if (mp2) { 2712 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2713 kfree(mp2); 2714 cnt++; 2715 } 2716 lpfc_sli_release_iocbq(phba, iocb); 2717 pring->missbufcnt = cnt; 2718 return cnt; 2719 } 2720 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2721 if (mp2) 2722 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2723 } 2724 pring->missbufcnt = 0; 2725 return 0; 2726 } 2727 2728 /** 2729 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2730 * @phba: pointer to lpfc hba data structure. 2731 * 2732 * This routine posts initial receive IOCB buffers to the ELS ring. The 2733 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2734 * set to 64 IOCBs. SLI3 only. 2735 * 2736 * Return codes 2737 * 0 - success (currently always success) 2738 **/ 2739 static int 2740 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2741 { 2742 struct lpfc_sli *psli = &phba->sli; 2743 2744 /* Ring 0, ELS / CT buffers */ 2745 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2746 /* Ring 2 - FCP no buffers needed */ 2747 2748 return 0; 2749 } 2750 2751 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2752 2753 /** 2754 * lpfc_sha_init - Set up initial array of hash table entries 2755 * @HashResultPointer: pointer to an array as hash table. 2756 * 2757 * This routine sets up the initial values to the array of hash table entries 2758 * for the LC HBAs. 2759 **/ 2760 static void 2761 lpfc_sha_init(uint32_t * HashResultPointer) 2762 { 2763 HashResultPointer[0] = 0x67452301; 2764 HashResultPointer[1] = 0xEFCDAB89; 2765 HashResultPointer[2] = 0x98BADCFE; 2766 HashResultPointer[3] = 0x10325476; 2767 HashResultPointer[4] = 0xC3D2E1F0; 2768 } 2769 2770 /** 2771 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2772 * @HashResultPointer: pointer to an initial/result hash table. 2773 * @HashWorkingPointer: pointer to an working hash table. 2774 * 2775 * This routine iterates an initial hash table pointed by @HashResultPointer 2776 * with the values from the working hash table pointeed by @HashWorkingPointer. 2777 * The results are putting back to the initial hash table, returned through 2778 * the @HashResultPointer as the result hash table. 2779 **/ 2780 static void 2781 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2782 { 2783 int t; 2784 uint32_t TEMP; 2785 uint32_t A, B, C, D, E; 2786 t = 16; 2787 do { 2788 HashWorkingPointer[t] = 2789 S(1, 2790 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2791 8] ^ 2792 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2793 } while (++t <= 79); 2794 t = 0; 2795 A = HashResultPointer[0]; 2796 B = HashResultPointer[1]; 2797 C = HashResultPointer[2]; 2798 D = HashResultPointer[3]; 2799 E = HashResultPointer[4]; 2800 2801 do { 2802 if (t < 20) { 2803 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2804 } else if (t < 40) { 2805 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2806 } else if (t < 60) { 2807 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2808 } else { 2809 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2810 } 2811 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2812 E = D; 2813 D = C; 2814 C = S(30, B); 2815 B = A; 2816 A = TEMP; 2817 } while (++t <= 79); 2818 2819 HashResultPointer[0] += A; 2820 HashResultPointer[1] += B; 2821 HashResultPointer[2] += C; 2822 HashResultPointer[3] += D; 2823 HashResultPointer[4] += E; 2824 2825 } 2826 2827 /** 2828 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2829 * @RandomChallenge: pointer to the entry of host challenge random number array. 2830 * @HashWorking: pointer to the entry of the working hash array. 2831 * 2832 * This routine calculates the working hash array referred by @HashWorking 2833 * from the challenge random numbers associated with the host, referred by 2834 * @RandomChallenge. The result is put into the entry of the working hash 2835 * array and returned by reference through @HashWorking. 2836 **/ 2837 static void 2838 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2839 { 2840 *HashWorking = (*RandomChallenge ^ *HashWorking); 2841 } 2842 2843 /** 2844 * lpfc_hba_init - Perform special handling for LC HBA initialization 2845 * @phba: pointer to lpfc hba data structure. 2846 * @hbainit: pointer to an array of unsigned 32-bit integers. 2847 * 2848 * This routine performs the special handling for LC HBA initialization. 2849 **/ 2850 void 2851 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 2852 { 2853 int t; 2854 uint32_t *HashWorking; 2855 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 2856 2857 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 2858 if (!HashWorking) 2859 return; 2860 2861 HashWorking[0] = HashWorking[78] = *pwwnn++; 2862 HashWorking[1] = HashWorking[79] = *pwwnn; 2863 2864 for (t = 0; t < 7; t++) 2865 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 2866 2867 lpfc_sha_init(hbainit); 2868 lpfc_sha_iterate(hbainit, HashWorking); 2869 kfree(HashWorking); 2870 } 2871 2872 /** 2873 * lpfc_cleanup - Performs vport cleanups before deleting a vport 2874 * @vport: pointer to a virtual N_Port data structure. 2875 * 2876 * This routine performs the necessary cleanups before deleting the @vport. 2877 * It invokes the discovery state machine to perform necessary state 2878 * transitions and to release the ndlps associated with the @vport. Note, 2879 * the physical port is treated as @vport 0. 2880 **/ 2881 void 2882 lpfc_cleanup(struct lpfc_vport *vport) 2883 { 2884 struct lpfc_hba *phba = vport->phba; 2885 struct lpfc_nodelist *ndlp, *next_ndlp; 2886 int i = 0; 2887 2888 if (phba->link_state > LPFC_LINK_DOWN) 2889 lpfc_port_link_failure(vport); 2890 2891 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 2892 if (vport->port_type != LPFC_PHYSICAL_PORT && 2893 ndlp->nlp_DID == Fabric_DID) { 2894 /* Just free up ndlp with Fabric_DID for vports */ 2895 lpfc_nlp_put(ndlp); 2896 continue; 2897 } 2898 2899 if (ndlp->nlp_DID == Fabric_Cntl_DID && 2900 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 2901 lpfc_nlp_put(ndlp); 2902 continue; 2903 } 2904 2905 /* Fabric Ports not in UNMAPPED state are cleaned up in the 2906 * DEVICE_RM event. 2907 */ 2908 if (ndlp->nlp_type & NLP_FABRIC && 2909 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 2910 lpfc_disc_state_machine(vport, ndlp, NULL, 2911 NLP_EVT_DEVICE_RECOVERY); 2912 2913 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 2914 lpfc_disc_state_machine(vport, ndlp, NULL, 2915 NLP_EVT_DEVICE_RM); 2916 } 2917 2918 /* At this point, ALL ndlp's should be gone 2919 * because of the previous NLP_EVT_DEVICE_RM. 2920 * Lets wait for this to happen, if needed. 2921 */ 2922 while (!list_empty(&vport->fc_nodes)) { 2923 if (i++ > 3000) { 2924 lpfc_printf_vlog(vport, KERN_ERR, 2925 LOG_TRACE_EVENT, 2926 "0233 Nodelist not empty\n"); 2927 list_for_each_entry_safe(ndlp, next_ndlp, 2928 &vport->fc_nodes, nlp_listp) { 2929 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 2930 LOG_TRACE_EVENT, 2931 "0282 did:x%x ndlp:x%px " 2932 "refcnt:%d xflags x%x nflag x%x\n", 2933 ndlp->nlp_DID, (void *)ndlp, 2934 kref_read(&ndlp->kref), 2935 ndlp->fc4_xpt_flags, 2936 ndlp->nlp_flag); 2937 } 2938 break; 2939 } 2940 2941 /* Wait for any activity on ndlps to settle */ 2942 msleep(10); 2943 } 2944 lpfc_cleanup_vports_rrqs(vport, NULL); 2945 } 2946 2947 /** 2948 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 2949 * @vport: pointer to a virtual N_Port data structure. 2950 * 2951 * This routine stops all the timers associated with a @vport. This function 2952 * is invoked before disabling or deleting a @vport. Note that the physical 2953 * port is treated as @vport 0. 2954 **/ 2955 void 2956 lpfc_stop_vport_timers(struct lpfc_vport *vport) 2957 { 2958 del_timer_sync(&vport->els_tmofunc); 2959 del_timer_sync(&vport->delayed_disc_tmo); 2960 lpfc_can_disctmo(vport); 2961 return; 2962 } 2963 2964 /** 2965 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2966 * @phba: pointer to lpfc hba data structure. 2967 * 2968 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 2969 * caller of this routine should already hold the host lock. 2970 **/ 2971 void 2972 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2973 { 2974 /* Clear pending FCF rediscovery wait flag */ 2975 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 2976 2977 /* Now, try to stop the timer */ 2978 del_timer(&phba->fcf.redisc_wait); 2979 } 2980 2981 /** 2982 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 2983 * @phba: pointer to lpfc hba data structure. 2984 * 2985 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 2986 * checks whether the FCF rediscovery wait timer is pending with the host 2987 * lock held before proceeding with disabling the timer and clearing the 2988 * wait timer pendig flag. 2989 **/ 2990 void 2991 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 2992 { 2993 spin_lock_irq(&phba->hbalock); 2994 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 2995 /* FCF rediscovery timer already fired or stopped */ 2996 spin_unlock_irq(&phba->hbalock); 2997 return; 2998 } 2999 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3000 /* Clear failover in progress flags */ 3001 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3002 spin_unlock_irq(&phba->hbalock); 3003 } 3004 3005 /** 3006 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3007 * @phba: pointer to lpfc hba data structure. 3008 * 3009 * This routine stops all the timers associated with a HBA. This function is 3010 * invoked before either putting a HBA offline or unloading the driver. 3011 **/ 3012 void 3013 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3014 { 3015 if (phba->pport) 3016 lpfc_stop_vport_timers(phba->pport); 3017 cancel_delayed_work_sync(&phba->eq_delay_work); 3018 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3019 del_timer_sync(&phba->sli.mbox_tmo); 3020 del_timer_sync(&phba->fabric_block_timer); 3021 del_timer_sync(&phba->eratt_poll); 3022 del_timer_sync(&phba->hb_tmofunc); 3023 if (phba->sli_rev == LPFC_SLI_REV4) { 3024 del_timer_sync(&phba->rrq_tmr); 3025 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 3026 } 3027 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 3028 3029 switch (phba->pci_dev_grp) { 3030 case LPFC_PCI_DEV_LP: 3031 /* Stop any LightPulse device specific driver timers */ 3032 del_timer_sync(&phba->fcp_poll_timer); 3033 break; 3034 case LPFC_PCI_DEV_OC: 3035 /* Stop any OneConnect device specific driver timers */ 3036 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3037 break; 3038 default: 3039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3040 "0297 Invalid device group (x%x)\n", 3041 phba->pci_dev_grp); 3042 break; 3043 } 3044 return; 3045 } 3046 3047 /** 3048 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3049 * @phba: pointer to lpfc hba data structure. 3050 * @mbx_action: flag for mailbox no wait action. 3051 * 3052 * This routine marks a HBA's management interface as blocked. Once the HBA's 3053 * management interface is marked as blocked, all the user space access to 3054 * the HBA, whether they are from sysfs interface or libdfc interface will 3055 * all be blocked. The HBA is set to block the management interface when the 3056 * driver prepares the HBA interface for online or offline. 3057 **/ 3058 static void 3059 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3060 { 3061 unsigned long iflag; 3062 uint8_t actcmd = MBX_HEARTBEAT; 3063 unsigned long timeout; 3064 3065 spin_lock_irqsave(&phba->hbalock, iflag); 3066 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3067 spin_unlock_irqrestore(&phba->hbalock, iflag); 3068 if (mbx_action == LPFC_MBX_NO_WAIT) 3069 return; 3070 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3071 spin_lock_irqsave(&phba->hbalock, iflag); 3072 if (phba->sli.mbox_active) { 3073 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3074 /* Determine how long we might wait for the active mailbox 3075 * command to be gracefully completed by firmware. 3076 */ 3077 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3078 phba->sli.mbox_active) * 1000) + jiffies; 3079 } 3080 spin_unlock_irqrestore(&phba->hbalock, iflag); 3081 3082 /* Wait for the outstnading mailbox command to complete */ 3083 while (phba->sli.mbox_active) { 3084 /* Check active mailbox complete status every 2ms */ 3085 msleep(2); 3086 if (time_after(jiffies, timeout)) { 3087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3088 "2813 Mgmt IO is Blocked %x " 3089 "- mbox cmd %x still active\n", 3090 phba->sli.sli_flag, actcmd); 3091 break; 3092 } 3093 } 3094 } 3095 3096 /** 3097 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3098 * @phba: pointer to lpfc hba data structure. 3099 * 3100 * Allocate RPIs for all active remote nodes. This is needed whenever 3101 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3102 * is to fixup the temporary rpi assignments. 3103 **/ 3104 void 3105 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3106 { 3107 struct lpfc_nodelist *ndlp, *next_ndlp; 3108 struct lpfc_vport **vports; 3109 int i, rpi; 3110 3111 if (phba->sli_rev != LPFC_SLI_REV4) 3112 return; 3113 3114 vports = lpfc_create_vport_work_array(phba); 3115 if (vports == NULL) 3116 return; 3117 3118 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3119 if (vports[i]->load_flag & FC_UNLOADING) 3120 continue; 3121 3122 list_for_each_entry_safe(ndlp, next_ndlp, 3123 &vports[i]->fc_nodes, 3124 nlp_listp) { 3125 rpi = lpfc_sli4_alloc_rpi(phba); 3126 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3127 /* TODO print log? */ 3128 continue; 3129 } 3130 ndlp->nlp_rpi = rpi; 3131 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3132 LOG_NODE | LOG_DISCOVERY, 3133 "0009 Assign RPI x%x to ndlp x%px " 3134 "DID:x%06x flg:x%x\n", 3135 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3136 ndlp->nlp_flag); 3137 } 3138 } 3139 lpfc_destroy_vport_work_array(phba, vports); 3140 } 3141 3142 /** 3143 * lpfc_create_expedite_pool - create expedite pool 3144 * @phba: pointer to lpfc hba data structure. 3145 * 3146 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3147 * to expedite pool. Mark them as expedite. 3148 **/ 3149 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3150 { 3151 struct lpfc_sli4_hdw_queue *qp; 3152 struct lpfc_io_buf *lpfc_ncmd; 3153 struct lpfc_io_buf *lpfc_ncmd_next; 3154 struct lpfc_epd_pool *epd_pool; 3155 unsigned long iflag; 3156 3157 epd_pool = &phba->epd_pool; 3158 qp = &phba->sli4_hba.hdwq[0]; 3159 3160 spin_lock_init(&epd_pool->lock); 3161 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3162 spin_lock(&epd_pool->lock); 3163 INIT_LIST_HEAD(&epd_pool->list); 3164 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3165 &qp->lpfc_io_buf_list_put, list) { 3166 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3167 lpfc_ncmd->expedite = true; 3168 qp->put_io_bufs--; 3169 epd_pool->count++; 3170 if (epd_pool->count >= XRI_BATCH) 3171 break; 3172 } 3173 spin_unlock(&epd_pool->lock); 3174 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3175 } 3176 3177 /** 3178 * lpfc_destroy_expedite_pool - destroy expedite pool 3179 * @phba: pointer to lpfc hba data structure. 3180 * 3181 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3182 * of HWQ 0. Clear the mark. 3183 **/ 3184 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3185 { 3186 struct lpfc_sli4_hdw_queue *qp; 3187 struct lpfc_io_buf *lpfc_ncmd; 3188 struct lpfc_io_buf *lpfc_ncmd_next; 3189 struct lpfc_epd_pool *epd_pool; 3190 unsigned long iflag; 3191 3192 epd_pool = &phba->epd_pool; 3193 qp = &phba->sli4_hba.hdwq[0]; 3194 3195 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3196 spin_lock(&epd_pool->lock); 3197 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3198 &epd_pool->list, list) { 3199 list_move_tail(&lpfc_ncmd->list, 3200 &qp->lpfc_io_buf_list_put); 3201 lpfc_ncmd->flags = false; 3202 qp->put_io_bufs++; 3203 epd_pool->count--; 3204 } 3205 spin_unlock(&epd_pool->lock); 3206 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3207 } 3208 3209 /** 3210 * lpfc_create_multixri_pools - create multi-XRI pools 3211 * @phba: pointer to lpfc hba data structure. 3212 * 3213 * This routine initialize public, private per HWQ. Then, move XRIs from 3214 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3215 * Initialized. 3216 **/ 3217 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3218 { 3219 u32 i, j; 3220 u32 hwq_count; 3221 u32 count_per_hwq; 3222 struct lpfc_io_buf *lpfc_ncmd; 3223 struct lpfc_io_buf *lpfc_ncmd_next; 3224 unsigned long iflag; 3225 struct lpfc_sli4_hdw_queue *qp; 3226 struct lpfc_multixri_pool *multixri_pool; 3227 struct lpfc_pbl_pool *pbl_pool; 3228 struct lpfc_pvt_pool *pvt_pool; 3229 3230 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3231 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3232 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3233 phba->sli4_hba.io_xri_cnt); 3234 3235 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3236 lpfc_create_expedite_pool(phba); 3237 3238 hwq_count = phba->cfg_hdw_queue; 3239 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3240 3241 for (i = 0; i < hwq_count; i++) { 3242 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3243 3244 if (!multixri_pool) { 3245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3246 "1238 Failed to allocate memory for " 3247 "multixri_pool\n"); 3248 3249 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3250 lpfc_destroy_expedite_pool(phba); 3251 3252 j = 0; 3253 while (j < i) { 3254 qp = &phba->sli4_hba.hdwq[j]; 3255 kfree(qp->p_multixri_pool); 3256 j++; 3257 } 3258 phba->cfg_xri_rebalancing = 0; 3259 return; 3260 } 3261 3262 qp = &phba->sli4_hba.hdwq[i]; 3263 qp->p_multixri_pool = multixri_pool; 3264 3265 multixri_pool->xri_limit = count_per_hwq; 3266 multixri_pool->rrb_next_hwqid = i; 3267 3268 /* Deal with public free xri pool */ 3269 pbl_pool = &multixri_pool->pbl_pool; 3270 spin_lock_init(&pbl_pool->lock); 3271 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3272 spin_lock(&pbl_pool->lock); 3273 INIT_LIST_HEAD(&pbl_pool->list); 3274 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3275 &qp->lpfc_io_buf_list_put, list) { 3276 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3277 qp->put_io_bufs--; 3278 pbl_pool->count++; 3279 } 3280 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3281 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3282 pbl_pool->count, i); 3283 spin_unlock(&pbl_pool->lock); 3284 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3285 3286 /* Deal with private free xri pool */ 3287 pvt_pool = &multixri_pool->pvt_pool; 3288 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3289 pvt_pool->low_watermark = XRI_BATCH; 3290 spin_lock_init(&pvt_pool->lock); 3291 spin_lock_irqsave(&pvt_pool->lock, iflag); 3292 INIT_LIST_HEAD(&pvt_pool->list); 3293 pvt_pool->count = 0; 3294 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3295 } 3296 } 3297 3298 /** 3299 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3300 * @phba: pointer to lpfc hba data structure. 3301 * 3302 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3303 **/ 3304 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3305 { 3306 u32 i; 3307 u32 hwq_count; 3308 struct lpfc_io_buf *lpfc_ncmd; 3309 struct lpfc_io_buf *lpfc_ncmd_next; 3310 unsigned long iflag; 3311 struct lpfc_sli4_hdw_queue *qp; 3312 struct lpfc_multixri_pool *multixri_pool; 3313 struct lpfc_pbl_pool *pbl_pool; 3314 struct lpfc_pvt_pool *pvt_pool; 3315 3316 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3317 lpfc_destroy_expedite_pool(phba); 3318 3319 if (!(phba->pport->load_flag & FC_UNLOADING)) 3320 lpfc_sli_flush_io_rings(phba); 3321 3322 hwq_count = phba->cfg_hdw_queue; 3323 3324 for (i = 0; i < hwq_count; i++) { 3325 qp = &phba->sli4_hba.hdwq[i]; 3326 multixri_pool = qp->p_multixri_pool; 3327 if (!multixri_pool) 3328 continue; 3329 3330 qp->p_multixri_pool = NULL; 3331 3332 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3333 3334 /* Deal with public free xri pool */ 3335 pbl_pool = &multixri_pool->pbl_pool; 3336 spin_lock(&pbl_pool->lock); 3337 3338 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3339 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3340 pbl_pool->count, i); 3341 3342 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3343 &pbl_pool->list, list) { 3344 list_move_tail(&lpfc_ncmd->list, 3345 &qp->lpfc_io_buf_list_put); 3346 qp->put_io_bufs++; 3347 pbl_pool->count--; 3348 } 3349 3350 INIT_LIST_HEAD(&pbl_pool->list); 3351 pbl_pool->count = 0; 3352 3353 spin_unlock(&pbl_pool->lock); 3354 3355 /* Deal with private free xri pool */ 3356 pvt_pool = &multixri_pool->pvt_pool; 3357 spin_lock(&pvt_pool->lock); 3358 3359 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3360 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3361 pvt_pool->count, i); 3362 3363 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3364 &pvt_pool->list, list) { 3365 list_move_tail(&lpfc_ncmd->list, 3366 &qp->lpfc_io_buf_list_put); 3367 qp->put_io_bufs++; 3368 pvt_pool->count--; 3369 } 3370 3371 INIT_LIST_HEAD(&pvt_pool->list); 3372 pvt_pool->count = 0; 3373 3374 spin_unlock(&pvt_pool->lock); 3375 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3376 3377 kfree(multixri_pool); 3378 } 3379 } 3380 3381 /** 3382 * lpfc_online - Initialize and bring a HBA online 3383 * @phba: pointer to lpfc hba data structure. 3384 * 3385 * This routine initializes the HBA and brings a HBA online. During this 3386 * process, the management interface is blocked to prevent user space access 3387 * to the HBA interfering with the driver initialization. 3388 * 3389 * Return codes 3390 * 0 - successful 3391 * 1 - failed 3392 **/ 3393 int 3394 lpfc_online(struct lpfc_hba *phba) 3395 { 3396 struct lpfc_vport *vport; 3397 struct lpfc_vport **vports; 3398 int i, error = 0; 3399 bool vpis_cleared = false; 3400 3401 if (!phba) 3402 return 0; 3403 vport = phba->pport; 3404 3405 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3406 return 0; 3407 3408 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3409 "0458 Bring Adapter online\n"); 3410 3411 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3412 3413 if (phba->sli_rev == LPFC_SLI_REV4) { 3414 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3415 lpfc_unblock_mgmt_io(phba); 3416 return 1; 3417 } 3418 spin_lock_irq(&phba->hbalock); 3419 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3420 vpis_cleared = true; 3421 spin_unlock_irq(&phba->hbalock); 3422 3423 /* Reestablish the local initiator port. 3424 * The offline process destroyed the previous lport. 3425 */ 3426 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3427 !phba->nvmet_support) { 3428 error = lpfc_nvme_create_localport(phba->pport); 3429 if (error) 3430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3431 "6132 NVME restore reg failed " 3432 "on nvmei error x%x\n", error); 3433 } 3434 } else { 3435 lpfc_sli_queue_init(phba); 3436 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3437 lpfc_unblock_mgmt_io(phba); 3438 return 1; 3439 } 3440 } 3441 3442 vports = lpfc_create_vport_work_array(phba); 3443 if (vports != NULL) { 3444 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3445 struct Scsi_Host *shost; 3446 shost = lpfc_shost_from_vport(vports[i]); 3447 spin_lock_irq(shost->host_lock); 3448 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3449 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3450 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3451 if (phba->sli_rev == LPFC_SLI_REV4) { 3452 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3453 if ((vpis_cleared) && 3454 (vports[i]->port_type != 3455 LPFC_PHYSICAL_PORT)) 3456 vports[i]->vpi = 0; 3457 } 3458 spin_unlock_irq(shost->host_lock); 3459 } 3460 } 3461 lpfc_destroy_vport_work_array(phba, vports); 3462 3463 if (phba->cfg_xri_rebalancing) 3464 lpfc_create_multixri_pools(phba); 3465 3466 lpfc_cpuhp_add(phba); 3467 3468 lpfc_unblock_mgmt_io(phba); 3469 return 0; 3470 } 3471 3472 /** 3473 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3474 * @phba: pointer to lpfc hba data structure. 3475 * 3476 * This routine marks a HBA's management interface as not blocked. Once the 3477 * HBA's management interface is marked as not blocked, all the user space 3478 * access to the HBA, whether they are from sysfs interface or libdfc 3479 * interface will be allowed. The HBA is set to block the management interface 3480 * when the driver prepares the HBA interface for online or offline and then 3481 * set to unblock the management interface afterwards. 3482 **/ 3483 void 3484 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3485 { 3486 unsigned long iflag; 3487 3488 spin_lock_irqsave(&phba->hbalock, iflag); 3489 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3490 spin_unlock_irqrestore(&phba->hbalock, iflag); 3491 } 3492 3493 /** 3494 * lpfc_offline_prep - Prepare a HBA to be brought offline 3495 * @phba: pointer to lpfc hba data structure. 3496 * @mbx_action: flag for mailbox shutdown action. 3497 * 3498 * This routine is invoked to prepare a HBA to be brought offline. It performs 3499 * unregistration login to all the nodes on all vports and flushes the mailbox 3500 * queue to make it ready to be brought offline. 3501 **/ 3502 void 3503 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3504 { 3505 struct lpfc_vport *vport = phba->pport; 3506 struct lpfc_nodelist *ndlp, *next_ndlp; 3507 struct lpfc_vport **vports; 3508 struct Scsi_Host *shost; 3509 int i; 3510 3511 if (vport->fc_flag & FC_OFFLINE_MODE) 3512 return; 3513 3514 lpfc_block_mgmt_io(phba, mbx_action); 3515 3516 lpfc_linkdown(phba); 3517 3518 /* Issue an unreg_login to all nodes on all vports */ 3519 vports = lpfc_create_vport_work_array(phba); 3520 if (vports != NULL) { 3521 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3522 if (vports[i]->load_flag & FC_UNLOADING) 3523 continue; 3524 shost = lpfc_shost_from_vport(vports[i]); 3525 spin_lock_irq(shost->host_lock); 3526 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3527 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3528 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3529 spin_unlock_irq(shost->host_lock); 3530 3531 shost = lpfc_shost_from_vport(vports[i]); 3532 list_for_each_entry_safe(ndlp, next_ndlp, 3533 &vports[i]->fc_nodes, 3534 nlp_listp) { 3535 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3536 /* Driver must assume RPI is invalid for 3537 * any unused or inactive node. 3538 */ 3539 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3540 continue; 3541 } 3542 3543 spin_lock_irq(&ndlp->lock); 3544 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3545 spin_unlock_irq(&ndlp->lock); 3546 /* 3547 * Whenever an SLI4 port goes offline, free the 3548 * RPI. Get a new RPI when the adapter port 3549 * comes back online. 3550 */ 3551 if (phba->sli_rev == LPFC_SLI_REV4) { 3552 lpfc_printf_vlog(vports[i], KERN_INFO, 3553 LOG_NODE | LOG_DISCOVERY, 3554 "0011 Free RPI x%x on " 3555 "ndlp: x%px did x%x\n", 3556 ndlp->nlp_rpi, ndlp, 3557 ndlp->nlp_DID); 3558 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3559 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3560 } 3561 lpfc_unreg_rpi(vports[i], ndlp); 3562 3563 if (ndlp->nlp_type & NLP_FABRIC) { 3564 lpfc_disc_state_machine(vports[i], ndlp, 3565 NULL, NLP_EVT_DEVICE_RECOVERY); 3566 3567 /* Don't remove the node unless the 3568 * has been unregistered with the 3569 * transport. If so, let dev_loss 3570 * take care of the node. 3571 */ 3572 if (!(ndlp->fc4_xpt_flags & 3573 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3574 lpfc_disc_state_machine 3575 (vports[i], ndlp, 3576 NULL, 3577 NLP_EVT_DEVICE_RM); 3578 } 3579 } 3580 } 3581 } 3582 lpfc_destroy_vport_work_array(phba, vports); 3583 3584 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3585 3586 if (phba->wq) 3587 flush_workqueue(phba->wq); 3588 } 3589 3590 /** 3591 * lpfc_offline - Bring a HBA offline 3592 * @phba: pointer to lpfc hba data structure. 3593 * 3594 * This routine actually brings a HBA offline. It stops all the timers 3595 * associated with the HBA, brings down the SLI layer, and eventually 3596 * marks the HBA as in offline state for the upper layer protocol. 3597 **/ 3598 void 3599 lpfc_offline(struct lpfc_hba *phba) 3600 { 3601 struct Scsi_Host *shost; 3602 struct lpfc_vport **vports; 3603 int i; 3604 3605 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3606 return; 3607 3608 /* stop port and all timers associated with this hba */ 3609 lpfc_stop_port(phba); 3610 3611 /* Tear down the local and target port registrations. The 3612 * nvme transports need to cleanup. 3613 */ 3614 lpfc_nvmet_destroy_targetport(phba); 3615 lpfc_nvme_destroy_localport(phba->pport); 3616 3617 vports = lpfc_create_vport_work_array(phba); 3618 if (vports != NULL) 3619 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3620 lpfc_stop_vport_timers(vports[i]); 3621 lpfc_destroy_vport_work_array(phba, vports); 3622 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3623 "0460 Bring Adapter offline\n"); 3624 /* Bring down the SLI Layer and cleanup. The HBA is offline 3625 now. */ 3626 lpfc_sli_hba_down(phba); 3627 spin_lock_irq(&phba->hbalock); 3628 phba->work_ha = 0; 3629 spin_unlock_irq(&phba->hbalock); 3630 vports = lpfc_create_vport_work_array(phba); 3631 if (vports != NULL) 3632 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3633 shost = lpfc_shost_from_vport(vports[i]); 3634 spin_lock_irq(shost->host_lock); 3635 vports[i]->work_port_events = 0; 3636 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3637 spin_unlock_irq(shost->host_lock); 3638 } 3639 lpfc_destroy_vport_work_array(phba, vports); 3640 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3641 * in hba_unset 3642 */ 3643 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3644 __lpfc_cpuhp_remove(phba); 3645 3646 if (phba->cfg_xri_rebalancing) 3647 lpfc_destroy_multixri_pools(phba); 3648 } 3649 3650 /** 3651 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3652 * @phba: pointer to lpfc hba data structure. 3653 * 3654 * This routine is to free all the SCSI buffers and IOCBs from the driver 3655 * list back to kernel. It is called from lpfc_pci_remove_one to free 3656 * the internal resources before the device is removed from the system. 3657 **/ 3658 static void 3659 lpfc_scsi_free(struct lpfc_hba *phba) 3660 { 3661 struct lpfc_io_buf *sb, *sb_next; 3662 3663 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3664 return; 3665 3666 spin_lock_irq(&phba->hbalock); 3667 3668 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3669 3670 spin_lock(&phba->scsi_buf_list_put_lock); 3671 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3672 list) { 3673 list_del(&sb->list); 3674 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3675 sb->dma_handle); 3676 kfree(sb); 3677 phba->total_scsi_bufs--; 3678 } 3679 spin_unlock(&phba->scsi_buf_list_put_lock); 3680 3681 spin_lock(&phba->scsi_buf_list_get_lock); 3682 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3683 list) { 3684 list_del(&sb->list); 3685 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3686 sb->dma_handle); 3687 kfree(sb); 3688 phba->total_scsi_bufs--; 3689 } 3690 spin_unlock(&phba->scsi_buf_list_get_lock); 3691 spin_unlock_irq(&phba->hbalock); 3692 } 3693 3694 /** 3695 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3696 * @phba: pointer to lpfc hba data structure. 3697 * 3698 * This routine is to free all the IO buffers and IOCBs from the driver 3699 * list back to kernel. It is called from lpfc_pci_remove_one to free 3700 * the internal resources before the device is removed from the system. 3701 **/ 3702 void 3703 lpfc_io_free(struct lpfc_hba *phba) 3704 { 3705 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 3706 struct lpfc_sli4_hdw_queue *qp; 3707 int idx; 3708 3709 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 3710 qp = &phba->sli4_hba.hdwq[idx]; 3711 /* Release all the lpfc_nvme_bufs maintained by this host. */ 3712 spin_lock(&qp->io_buf_list_put_lock); 3713 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3714 &qp->lpfc_io_buf_list_put, 3715 list) { 3716 list_del(&lpfc_ncmd->list); 3717 qp->put_io_bufs--; 3718 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3719 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3720 if (phba->cfg_xpsgl && !phba->nvmet_support) 3721 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3722 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3723 kfree(lpfc_ncmd); 3724 qp->total_io_bufs--; 3725 } 3726 spin_unlock(&qp->io_buf_list_put_lock); 3727 3728 spin_lock(&qp->io_buf_list_get_lock); 3729 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3730 &qp->lpfc_io_buf_list_get, 3731 list) { 3732 list_del(&lpfc_ncmd->list); 3733 qp->get_io_bufs--; 3734 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 3735 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 3736 if (phba->cfg_xpsgl && !phba->nvmet_support) 3737 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 3738 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 3739 kfree(lpfc_ncmd); 3740 qp->total_io_bufs--; 3741 } 3742 spin_unlock(&qp->io_buf_list_get_lock); 3743 } 3744 } 3745 3746 /** 3747 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 3748 * @phba: pointer to lpfc hba data structure. 3749 * 3750 * This routine first calculates the sizes of the current els and allocated 3751 * scsi sgl lists, and then goes through all sgls to updates the physical 3752 * XRIs assigned due to port function reset. During port initialization, the 3753 * current els and allocated scsi sgl lists are 0s. 3754 * 3755 * Return codes 3756 * 0 - successful (for now, it always returns 0) 3757 **/ 3758 int 3759 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 3760 { 3761 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3762 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3763 LIST_HEAD(els_sgl_list); 3764 int rc; 3765 3766 /* 3767 * update on pci function's els xri-sgl list 3768 */ 3769 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3770 3771 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 3772 /* els xri-sgl expanded */ 3773 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 3774 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3775 "3157 ELS xri-sgl count increased from " 3776 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3777 els_xri_cnt); 3778 /* allocate the additional els sgls */ 3779 for (i = 0; i < xri_cnt; i++) { 3780 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3781 GFP_KERNEL); 3782 if (sglq_entry == NULL) { 3783 lpfc_printf_log(phba, KERN_ERR, 3784 LOG_TRACE_EVENT, 3785 "2562 Failure to allocate an " 3786 "ELS sgl entry:%d\n", i); 3787 rc = -ENOMEM; 3788 goto out_free_mem; 3789 } 3790 sglq_entry->buff_type = GEN_BUFF_TYPE; 3791 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 3792 &sglq_entry->phys); 3793 if (sglq_entry->virt == NULL) { 3794 kfree(sglq_entry); 3795 lpfc_printf_log(phba, KERN_ERR, 3796 LOG_TRACE_EVENT, 3797 "2563 Failure to allocate an " 3798 "ELS mbuf:%d\n", i); 3799 rc = -ENOMEM; 3800 goto out_free_mem; 3801 } 3802 sglq_entry->sgl = sglq_entry->virt; 3803 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 3804 sglq_entry->state = SGL_FREED; 3805 list_add_tail(&sglq_entry->list, &els_sgl_list); 3806 } 3807 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 3808 list_splice_init(&els_sgl_list, 3809 &phba->sli4_hba.lpfc_els_sgl_list); 3810 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 3811 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 3812 /* els xri-sgl shrinked */ 3813 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 3814 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3815 "3158 ELS xri-sgl count decreased from " 3816 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 3817 els_xri_cnt); 3818 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 3819 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 3820 &els_sgl_list); 3821 /* release extra els sgls from list */ 3822 for (i = 0; i < xri_cnt; i++) { 3823 list_remove_head(&els_sgl_list, 3824 sglq_entry, struct lpfc_sglq, list); 3825 if (sglq_entry) { 3826 __lpfc_mbuf_free(phba, sglq_entry->virt, 3827 sglq_entry->phys); 3828 kfree(sglq_entry); 3829 } 3830 } 3831 list_splice_init(&els_sgl_list, 3832 &phba->sli4_hba.lpfc_els_sgl_list); 3833 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 3834 } else 3835 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3836 "3163 ELS xri-sgl count unchanged: %d\n", 3837 els_xri_cnt); 3838 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 3839 3840 /* update xris to els sgls on the list */ 3841 sglq_entry = NULL; 3842 sglq_entry_next = NULL; 3843 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3844 &phba->sli4_hba.lpfc_els_sgl_list, list) { 3845 lxri = lpfc_sli4_next_xritag(phba); 3846 if (lxri == NO_XRI) { 3847 lpfc_printf_log(phba, KERN_ERR, 3848 LOG_TRACE_EVENT, 3849 "2400 Failed to allocate xri for " 3850 "ELS sgl\n"); 3851 rc = -ENOMEM; 3852 goto out_free_mem; 3853 } 3854 sglq_entry->sli4_lxritag = lxri; 3855 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3856 } 3857 return 0; 3858 3859 out_free_mem: 3860 lpfc_free_els_sgl_list(phba); 3861 return rc; 3862 } 3863 3864 /** 3865 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 3866 * @phba: pointer to lpfc hba data structure. 3867 * 3868 * This routine first calculates the sizes of the current els and allocated 3869 * scsi sgl lists, and then goes through all sgls to updates the physical 3870 * XRIs assigned due to port function reset. During port initialization, the 3871 * current els and allocated scsi sgl lists are 0s. 3872 * 3873 * Return codes 3874 * 0 - successful (for now, it always returns 0) 3875 **/ 3876 int 3877 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 3878 { 3879 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 3880 uint16_t i, lxri, xri_cnt, els_xri_cnt; 3881 uint16_t nvmet_xri_cnt; 3882 LIST_HEAD(nvmet_sgl_list); 3883 int rc; 3884 3885 /* 3886 * update on pci function's nvmet xri-sgl list 3887 */ 3888 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 3889 3890 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 3891 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 3892 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 3893 /* els xri-sgl expanded */ 3894 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 3895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3896 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 3897 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 3898 /* allocate the additional nvmet sgls */ 3899 for (i = 0; i < xri_cnt; i++) { 3900 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 3901 GFP_KERNEL); 3902 if (sglq_entry == NULL) { 3903 lpfc_printf_log(phba, KERN_ERR, 3904 LOG_TRACE_EVENT, 3905 "6303 Failure to allocate an " 3906 "NVMET sgl entry:%d\n", i); 3907 rc = -ENOMEM; 3908 goto out_free_mem; 3909 } 3910 sglq_entry->buff_type = NVMET_BUFF_TYPE; 3911 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 3912 &sglq_entry->phys); 3913 if (sglq_entry->virt == NULL) { 3914 kfree(sglq_entry); 3915 lpfc_printf_log(phba, KERN_ERR, 3916 LOG_TRACE_EVENT, 3917 "6304 Failure to allocate an " 3918 "NVMET buf:%d\n", i); 3919 rc = -ENOMEM; 3920 goto out_free_mem; 3921 } 3922 sglq_entry->sgl = sglq_entry->virt; 3923 memset(sglq_entry->sgl, 0, 3924 phba->cfg_sg_dma_buf_size); 3925 sglq_entry->state = SGL_FREED; 3926 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 3927 } 3928 spin_lock_irq(&phba->hbalock); 3929 spin_lock(&phba->sli4_hba.sgl_list_lock); 3930 list_splice_init(&nvmet_sgl_list, 3931 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3932 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3933 spin_unlock_irq(&phba->hbalock); 3934 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 3935 /* nvmet xri-sgl shrunk */ 3936 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 3937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3938 "6305 NVMET xri-sgl count decreased from " 3939 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 3940 nvmet_xri_cnt); 3941 spin_lock_irq(&phba->hbalock); 3942 spin_lock(&phba->sli4_hba.sgl_list_lock); 3943 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 3944 &nvmet_sgl_list); 3945 /* release extra nvmet sgls from list */ 3946 for (i = 0; i < xri_cnt; i++) { 3947 list_remove_head(&nvmet_sgl_list, 3948 sglq_entry, struct lpfc_sglq, list); 3949 if (sglq_entry) { 3950 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 3951 sglq_entry->phys); 3952 kfree(sglq_entry); 3953 } 3954 } 3955 list_splice_init(&nvmet_sgl_list, 3956 &phba->sli4_hba.lpfc_nvmet_sgl_list); 3957 spin_unlock(&phba->sli4_hba.sgl_list_lock); 3958 spin_unlock_irq(&phba->hbalock); 3959 } else 3960 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3961 "6306 NVMET xri-sgl count unchanged: %d\n", 3962 nvmet_xri_cnt); 3963 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 3964 3965 /* update xris to nvmet sgls on the list */ 3966 sglq_entry = NULL; 3967 sglq_entry_next = NULL; 3968 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 3969 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 3970 lxri = lpfc_sli4_next_xritag(phba); 3971 if (lxri == NO_XRI) { 3972 lpfc_printf_log(phba, KERN_ERR, 3973 LOG_TRACE_EVENT, 3974 "6307 Failed to allocate xri for " 3975 "NVMET sgl\n"); 3976 rc = -ENOMEM; 3977 goto out_free_mem; 3978 } 3979 sglq_entry->sli4_lxritag = lxri; 3980 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 3981 } 3982 return 0; 3983 3984 out_free_mem: 3985 lpfc_free_nvmet_sgl_list(phba); 3986 return rc; 3987 } 3988 3989 int 3990 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 3991 { 3992 LIST_HEAD(blist); 3993 struct lpfc_sli4_hdw_queue *qp; 3994 struct lpfc_io_buf *lpfc_cmd; 3995 struct lpfc_io_buf *iobufp, *prev_iobufp; 3996 int idx, cnt, xri, inserted; 3997 3998 cnt = 0; 3999 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4000 qp = &phba->sli4_hba.hdwq[idx]; 4001 spin_lock_irq(&qp->io_buf_list_get_lock); 4002 spin_lock(&qp->io_buf_list_put_lock); 4003 4004 /* Take everything off the get and put lists */ 4005 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4006 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4007 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4008 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4009 cnt += qp->get_io_bufs + qp->put_io_bufs; 4010 qp->get_io_bufs = 0; 4011 qp->put_io_bufs = 0; 4012 qp->total_io_bufs = 0; 4013 spin_unlock(&qp->io_buf_list_put_lock); 4014 spin_unlock_irq(&qp->io_buf_list_get_lock); 4015 } 4016 4017 /* 4018 * Take IO buffers off blist and put on cbuf sorted by XRI. 4019 * This is because POST_SGL takes a sequential range of XRIs 4020 * to post to the firmware. 4021 */ 4022 for (idx = 0; idx < cnt; idx++) { 4023 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4024 if (!lpfc_cmd) 4025 return cnt; 4026 if (idx == 0) { 4027 list_add_tail(&lpfc_cmd->list, cbuf); 4028 continue; 4029 } 4030 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4031 inserted = 0; 4032 prev_iobufp = NULL; 4033 list_for_each_entry(iobufp, cbuf, list) { 4034 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4035 if (prev_iobufp) 4036 list_add(&lpfc_cmd->list, 4037 &prev_iobufp->list); 4038 else 4039 list_add(&lpfc_cmd->list, cbuf); 4040 inserted = 1; 4041 break; 4042 } 4043 prev_iobufp = iobufp; 4044 } 4045 if (!inserted) 4046 list_add_tail(&lpfc_cmd->list, cbuf); 4047 } 4048 return cnt; 4049 } 4050 4051 int 4052 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4053 { 4054 struct lpfc_sli4_hdw_queue *qp; 4055 struct lpfc_io_buf *lpfc_cmd; 4056 int idx, cnt; 4057 4058 qp = phba->sli4_hba.hdwq; 4059 cnt = 0; 4060 while (!list_empty(cbuf)) { 4061 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4062 list_remove_head(cbuf, lpfc_cmd, 4063 struct lpfc_io_buf, list); 4064 if (!lpfc_cmd) 4065 return cnt; 4066 cnt++; 4067 qp = &phba->sli4_hba.hdwq[idx]; 4068 lpfc_cmd->hdwq_no = idx; 4069 lpfc_cmd->hdwq = qp; 4070 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL; 4071 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL; 4072 spin_lock(&qp->io_buf_list_put_lock); 4073 list_add_tail(&lpfc_cmd->list, 4074 &qp->lpfc_io_buf_list_put); 4075 qp->put_io_bufs++; 4076 qp->total_io_bufs++; 4077 spin_unlock(&qp->io_buf_list_put_lock); 4078 } 4079 } 4080 return cnt; 4081 } 4082 4083 /** 4084 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4085 * @phba: pointer to lpfc hba data structure. 4086 * 4087 * This routine first calculates the sizes of the current els and allocated 4088 * scsi sgl lists, and then goes through all sgls to updates the physical 4089 * XRIs assigned due to port function reset. During port initialization, the 4090 * current els and allocated scsi sgl lists are 0s. 4091 * 4092 * Return codes 4093 * 0 - successful (for now, it always returns 0) 4094 **/ 4095 int 4096 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4097 { 4098 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4099 uint16_t i, lxri, els_xri_cnt; 4100 uint16_t io_xri_cnt, io_xri_max; 4101 LIST_HEAD(io_sgl_list); 4102 int rc, cnt; 4103 4104 /* 4105 * update on pci function's allocated nvme xri-sgl list 4106 */ 4107 4108 /* maximum number of xris available for nvme buffers */ 4109 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4110 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4111 phba->sli4_hba.io_xri_max = io_xri_max; 4112 4113 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4114 "6074 Current allocated XRI sgl count:%d, " 4115 "maximum XRI count:%d\n", 4116 phba->sli4_hba.io_xri_cnt, 4117 phba->sli4_hba.io_xri_max); 4118 4119 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4120 4121 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4122 /* max nvme xri shrunk below the allocated nvme buffers */ 4123 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4124 phba->sli4_hba.io_xri_max; 4125 /* release the extra allocated nvme buffers */ 4126 for (i = 0; i < io_xri_cnt; i++) { 4127 list_remove_head(&io_sgl_list, lpfc_ncmd, 4128 struct lpfc_io_buf, list); 4129 if (lpfc_ncmd) { 4130 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4131 lpfc_ncmd->data, 4132 lpfc_ncmd->dma_handle); 4133 kfree(lpfc_ncmd); 4134 } 4135 } 4136 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4137 } 4138 4139 /* update xris associated to remaining allocated nvme buffers */ 4140 lpfc_ncmd = NULL; 4141 lpfc_ncmd_next = NULL; 4142 phba->sli4_hba.io_xri_cnt = cnt; 4143 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4144 &io_sgl_list, list) { 4145 lxri = lpfc_sli4_next_xritag(phba); 4146 if (lxri == NO_XRI) { 4147 lpfc_printf_log(phba, KERN_ERR, 4148 LOG_TRACE_EVENT, 4149 "6075 Failed to allocate xri for " 4150 "nvme buffer\n"); 4151 rc = -ENOMEM; 4152 goto out_free_mem; 4153 } 4154 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4155 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4156 } 4157 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4158 return 0; 4159 4160 out_free_mem: 4161 lpfc_io_free(phba); 4162 return rc; 4163 } 4164 4165 /** 4166 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4167 * @phba: Pointer to lpfc hba data structure. 4168 * @num_to_alloc: The requested number of buffers to allocate. 4169 * 4170 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4171 * the nvme buffer contains all the necessary information needed to initiate 4172 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4173 * them on a list, it post them to the port by using SGL block post. 4174 * 4175 * Return codes: 4176 * int - number of IO buffers that were allocated and posted. 4177 * 0 = failure, less than num_to_alloc is a partial failure. 4178 **/ 4179 int 4180 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4181 { 4182 struct lpfc_io_buf *lpfc_ncmd; 4183 struct lpfc_iocbq *pwqeq; 4184 uint16_t iotag, lxri = 0; 4185 int bcnt, num_posted; 4186 LIST_HEAD(prep_nblist); 4187 LIST_HEAD(post_nblist); 4188 LIST_HEAD(nvme_nblist); 4189 4190 phba->sli4_hba.io_xri_cnt = 0; 4191 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4192 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4193 if (!lpfc_ncmd) 4194 break; 4195 /* 4196 * Get memory from the pci pool to map the virt space to 4197 * pci bus space for an I/O. The DMA buffer includes the 4198 * number of SGE's necessary to support the sg_tablesize. 4199 */ 4200 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4201 GFP_KERNEL, 4202 &lpfc_ncmd->dma_handle); 4203 if (!lpfc_ncmd->data) { 4204 kfree(lpfc_ncmd); 4205 break; 4206 } 4207 4208 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4209 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4210 } else { 4211 /* 4212 * 4K Page alignment is CRITICAL to BlockGuard, double 4213 * check to be sure. 4214 */ 4215 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4216 (((unsigned long)(lpfc_ncmd->data) & 4217 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4218 lpfc_printf_log(phba, KERN_ERR, 4219 LOG_TRACE_EVENT, 4220 "3369 Memory alignment err: " 4221 "addr=%lx\n", 4222 (unsigned long)lpfc_ncmd->data); 4223 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4224 lpfc_ncmd->data, 4225 lpfc_ncmd->dma_handle); 4226 kfree(lpfc_ncmd); 4227 break; 4228 } 4229 } 4230 4231 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4232 4233 lxri = lpfc_sli4_next_xritag(phba); 4234 if (lxri == NO_XRI) { 4235 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4236 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4237 kfree(lpfc_ncmd); 4238 break; 4239 } 4240 pwqeq = &lpfc_ncmd->cur_iocbq; 4241 4242 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4243 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4244 if (iotag == 0) { 4245 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4246 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4247 kfree(lpfc_ncmd); 4248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4249 "6121 Failed to allocate IOTAG for" 4250 " XRI:0x%x\n", lxri); 4251 lpfc_sli4_free_xri(phba, lxri); 4252 break; 4253 } 4254 pwqeq->sli4_lxritag = lxri; 4255 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4256 pwqeq->context1 = lpfc_ncmd; 4257 4258 /* Initialize local short-hand pointers. */ 4259 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4260 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4261 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd; 4262 spin_lock_init(&lpfc_ncmd->buf_lock); 4263 4264 /* add the nvme buffer to a post list */ 4265 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4266 phba->sli4_hba.io_xri_cnt++; 4267 } 4268 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4269 "6114 Allocate %d out of %d requested new NVME " 4270 "buffers\n", bcnt, num_to_alloc); 4271 4272 /* post the list of nvme buffer sgls to port if available */ 4273 if (!list_empty(&post_nblist)) 4274 num_posted = lpfc_sli4_post_io_sgl_list( 4275 phba, &post_nblist, bcnt); 4276 else 4277 num_posted = 0; 4278 4279 return num_posted; 4280 } 4281 4282 static uint64_t 4283 lpfc_get_wwpn(struct lpfc_hba *phba) 4284 { 4285 uint64_t wwn; 4286 int rc; 4287 LPFC_MBOXQ_t *mboxq; 4288 MAILBOX_t *mb; 4289 4290 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4291 GFP_KERNEL); 4292 if (!mboxq) 4293 return (uint64_t)-1; 4294 4295 /* First get WWN of HBA instance */ 4296 lpfc_read_nv(phba, mboxq); 4297 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4298 if (rc != MBX_SUCCESS) { 4299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4300 "6019 Mailbox failed , mbxCmd x%x " 4301 "READ_NV, mbxStatus x%x\n", 4302 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4303 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4304 mempool_free(mboxq, phba->mbox_mem_pool); 4305 return (uint64_t) -1; 4306 } 4307 mb = &mboxq->u.mb; 4308 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4309 /* wwn is WWPN of HBA instance */ 4310 mempool_free(mboxq, phba->mbox_mem_pool); 4311 if (phba->sli_rev == LPFC_SLI_REV4) 4312 return be64_to_cpu(wwn); 4313 else 4314 return rol64(wwn, 32); 4315 } 4316 4317 /** 4318 * lpfc_create_port - Create an FC port 4319 * @phba: pointer to lpfc hba data structure. 4320 * @instance: a unique integer ID to this FC port. 4321 * @dev: pointer to the device data structure. 4322 * 4323 * This routine creates a FC port for the upper layer protocol. The FC port 4324 * can be created on top of either a physical port or a virtual port provided 4325 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4326 * and associates the FC port created before adding the shost into the SCSI 4327 * layer. 4328 * 4329 * Return codes 4330 * @vport - pointer to the virtual N_Port data structure. 4331 * NULL - port create failed. 4332 **/ 4333 struct lpfc_vport * 4334 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4335 { 4336 struct lpfc_vport *vport; 4337 struct Scsi_Host *shost = NULL; 4338 struct scsi_host_template *template; 4339 int error = 0; 4340 int i; 4341 uint64_t wwn; 4342 bool use_no_reset_hba = false; 4343 int rc; 4344 4345 if (lpfc_no_hba_reset_cnt) { 4346 if (phba->sli_rev < LPFC_SLI_REV4 && 4347 dev == &phba->pcidev->dev) { 4348 /* Reset the port first */ 4349 lpfc_sli_brdrestart(phba); 4350 rc = lpfc_sli_chipset_init(phba); 4351 if (rc) 4352 return NULL; 4353 } 4354 wwn = lpfc_get_wwpn(phba); 4355 } 4356 4357 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4358 if (wwn == lpfc_no_hba_reset[i]) { 4359 lpfc_printf_log(phba, KERN_ERR, 4360 LOG_TRACE_EVENT, 4361 "6020 Setting use_no_reset port=%llx\n", 4362 wwn); 4363 use_no_reset_hba = true; 4364 break; 4365 } 4366 } 4367 4368 /* Seed template for SCSI host registration */ 4369 if (dev == &phba->pcidev->dev) { 4370 template = &phba->port_template; 4371 4372 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4373 /* Seed physical port template */ 4374 memcpy(template, &lpfc_template, sizeof(*template)); 4375 4376 if (use_no_reset_hba) 4377 /* template is for a no reset SCSI Host */ 4378 template->eh_host_reset_handler = NULL; 4379 4380 /* Template for all vports this physical port creates */ 4381 memcpy(&phba->vport_template, &lpfc_template, 4382 sizeof(*template)); 4383 phba->vport_template.shost_attrs = lpfc_vport_attrs; 4384 phba->vport_template.eh_bus_reset_handler = NULL; 4385 phba->vport_template.eh_host_reset_handler = NULL; 4386 phba->vport_template.vendor_id = 0; 4387 4388 /* Initialize the host templates with updated value */ 4389 if (phba->sli_rev == LPFC_SLI_REV4) { 4390 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4391 phba->vport_template.sg_tablesize = 4392 phba->cfg_scsi_seg_cnt; 4393 } else { 4394 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4395 phba->vport_template.sg_tablesize = 4396 phba->cfg_sg_seg_cnt; 4397 } 4398 4399 } else { 4400 /* NVMET is for physical port only */ 4401 memcpy(template, &lpfc_template_nvme, 4402 sizeof(*template)); 4403 } 4404 } else { 4405 template = &phba->vport_template; 4406 } 4407 4408 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4409 if (!shost) 4410 goto out; 4411 4412 vport = (struct lpfc_vport *) shost->hostdata; 4413 vport->phba = phba; 4414 vport->load_flag |= FC_LOADING; 4415 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4416 vport->fc_rscn_flush = 0; 4417 lpfc_get_vport_cfgparam(vport); 4418 4419 /* Adjust value in vport */ 4420 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4421 4422 shost->unique_id = instance; 4423 shost->max_id = LPFC_MAX_TARGET; 4424 shost->max_lun = vport->cfg_max_luns; 4425 shost->this_id = -1; 4426 shost->max_cmd_len = 16; 4427 4428 if (phba->sli_rev == LPFC_SLI_REV4) { 4429 if (!phba->cfg_fcp_mq_threshold || 4430 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4431 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4432 4433 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4434 phba->cfg_fcp_mq_threshold); 4435 4436 shost->dma_boundary = 4437 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4438 4439 if (phba->cfg_xpsgl && !phba->nvmet_support) 4440 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4441 else 4442 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4443 } else 4444 /* SLI-3 has a limited number of hardware queues (3), 4445 * thus there is only one for FCP processing. 4446 */ 4447 shost->nr_hw_queues = 1; 4448 4449 /* 4450 * Set initial can_queue value since 0 is no longer supported and 4451 * scsi_add_host will fail. This will be adjusted later based on the 4452 * max xri value determined in hba setup. 4453 */ 4454 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4455 if (dev != &phba->pcidev->dev) { 4456 shost->transportt = lpfc_vport_transport_template; 4457 vport->port_type = LPFC_NPIV_PORT; 4458 } else { 4459 shost->transportt = lpfc_transport_template; 4460 vport->port_type = LPFC_PHYSICAL_PORT; 4461 } 4462 4463 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4464 "9081 CreatePort TMPLATE type %x TBLsize %d " 4465 "SEGcnt %d/%d\n", 4466 vport->port_type, shost->sg_tablesize, 4467 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4468 4469 /* Initialize all internally managed lists. */ 4470 INIT_LIST_HEAD(&vport->fc_nodes); 4471 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4472 spin_lock_init(&vport->work_port_lock); 4473 4474 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4475 4476 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4477 4478 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4479 4480 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4481 lpfc_setup_bg(phba, shost); 4482 4483 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4484 if (error) 4485 goto out_put_shost; 4486 4487 spin_lock_irq(&phba->port_list_lock); 4488 list_add_tail(&vport->listentry, &phba->port_list); 4489 spin_unlock_irq(&phba->port_list_lock); 4490 return vport; 4491 4492 out_put_shost: 4493 scsi_host_put(shost); 4494 out: 4495 return NULL; 4496 } 4497 4498 /** 4499 * destroy_port - destroy an FC port 4500 * @vport: pointer to an lpfc virtual N_Port data structure. 4501 * 4502 * This routine destroys a FC port from the upper layer protocol. All the 4503 * resources associated with the port are released. 4504 **/ 4505 void 4506 destroy_port(struct lpfc_vport *vport) 4507 { 4508 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4509 struct lpfc_hba *phba = vport->phba; 4510 4511 lpfc_debugfs_terminate(vport); 4512 fc_remove_host(shost); 4513 scsi_remove_host(shost); 4514 4515 spin_lock_irq(&phba->port_list_lock); 4516 list_del_init(&vport->listentry); 4517 spin_unlock_irq(&phba->port_list_lock); 4518 4519 lpfc_cleanup(vport); 4520 return; 4521 } 4522 4523 /** 4524 * lpfc_get_instance - Get a unique integer ID 4525 * 4526 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4527 * uses the kernel idr facility to perform the task. 4528 * 4529 * Return codes: 4530 * instance - a unique integer ID allocated as the new instance. 4531 * -1 - lpfc get instance failed. 4532 **/ 4533 int 4534 lpfc_get_instance(void) 4535 { 4536 int ret; 4537 4538 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4539 return ret < 0 ? -1 : ret; 4540 } 4541 4542 /** 4543 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4544 * @shost: pointer to SCSI host data structure. 4545 * @time: elapsed time of the scan in jiffies. 4546 * 4547 * This routine is called by the SCSI layer with a SCSI host to determine 4548 * whether the scan host is finished. 4549 * 4550 * Note: there is no scan_start function as adapter initialization will have 4551 * asynchronously kicked off the link initialization. 4552 * 4553 * Return codes 4554 * 0 - SCSI host scan is not over yet. 4555 * 1 - SCSI host scan is over. 4556 **/ 4557 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4558 { 4559 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4560 struct lpfc_hba *phba = vport->phba; 4561 int stat = 0; 4562 4563 spin_lock_irq(shost->host_lock); 4564 4565 if (vport->load_flag & FC_UNLOADING) { 4566 stat = 1; 4567 goto finished; 4568 } 4569 if (time >= msecs_to_jiffies(30 * 1000)) { 4570 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4571 "0461 Scanning longer than 30 " 4572 "seconds. Continuing initialization\n"); 4573 stat = 1; 4574 goto finished; 4575 } 4576 if (time >= msecs_to_jiffies(15 * 1000) && 4577 phba->link_state <= LPFC_LINK_DOWN) { 4578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4579 "0465 Link down longer than 15 " 4580 "seconds. Continuing initialization\n"); 4581 stat = 1; 4582 goto finished; 4583 } 4584 4585 if (vport->port_state != LPFC_VPORT_READY) 4586 goto finished; 4587 if (vport->num_disc_nodes || vport->fc_prli_sent) 4588 goto finished; 4589 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4590 goto finished; 4591 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4592 goto finished; 4593 4594 stat = 1; 4595 4596 finished: 4597 spin_unlock_irq(shost->host_lock); 4598 return stat; 4599 } 4600 4601 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4602 { 4603 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4604 struct lpfc_hba *phba = vport->phba; 4605 4606 fc_host_supported_speeds(shost) = 0; 4607 /* 4608 * Avoid reporting supported link speed for FCoE as it can't be 4609 * controlled via FCoE. 4610 */ 4611 if (phba->hba_flag & HBA_FCOE_MODE) 4612 return; 4613 4614 if (phba->lmt & LMT_128Gb) 4615 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4616 if (phba->lmt & LMT_64Gb) 4617 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4618 if (phba->lmt & LMT_32Gb) 4619 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4620 if (phba->lmt & LMT_16Gb) 4621 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4622 if (phba->lmt & LMT_10Gb) 4623 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4624 if (phba->lmt & LMT_8Gb) 4625 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4626 if (phba->lmt & LMT_4Gb) 4627 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4628 if (phba->lmt & LMT_2Gb) 4629 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4630 if (phba->lmt & LMT_1Gb) 4631 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4632 } 4633 4634 /** 4635 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4636 * @shost: pointer to SCSI host data structure. 4637 * 4638 * This routine initializes a given SCSI host attributes on a FC port. The 4639 * SCSI host can be either on top of a physical port or a virtual port. 4640 **/ 4641 void lpfc_host_attrib_init(struct Scsi_Host *shost) 4642 { 4643 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4644 struct lpfc_hba *phba = vport->phba; 4645 /* 4646 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 4647 */ 4648 4649 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 4650 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 4651 fc_host_supported_classes(shost) = FC_COS_CLASS3; 4652 4653 memset(fc_host_supported_fc4s(shost), 0, 4654 sizeof(fc_host_supported_fc4s(shost))); 4655 fc_host_supported_fc4s(shost)[2] = 1; 4656 fc_host_supported_fc4s(shost)[7] = 1; 4657 4658 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 4659 sizeof fc_host_symbolic_name(shost)); 4660 4661 lpfc_host_supported_speeds_set(shost); 4662 4663 fc_host_maxframe_size(shost) = 4664 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 4665 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 4666 4667 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 4668 4669 /* This value is also unchanging */ 4670 memset(fc_host_active_fc4s(shost), 0, 4671 sizeof(fc_host_active_fc4s(shost))); 4672 fc_host_active_fc4s(shost)[2] = 1; 4673 fc_host_active_fc4s(shost)[7] = 1; 4674 4675 fc_host_max_npiv_vports(shost) = phba->max_vpi; 4676 spin_lock_irq(shost->host_lock); 4677 vport->load_flag &= ~FC_LOADING; 4678 spin_unlock_irq(shost->host_lock); 4679 } 4680 4681 /** 4682 * lpfc_stop_port_s3 - Stop SLI3 device port 4683 * @phba: pointer to lpfc hba data structure. 4684 * 4685 * This routine is invoked to stop an SLI3 device port, it stops the device 4686 * from generating interrupts and stops the device driver's timers for the 4687 * device. 4688 **/ 4689 static void 4690 lpfc_stop_port_s3(struct lpfc_hba *phba) 4691 { 4692 /* Clear all interrupt enable conditions */ 4693 writel(0, phba->HCregaddr); 4694 readl(phba->HCregaddr); /* flush */ 4695 /* Clear all pending interrupts */ 4696 writel(0xffffffff, phba->HAregaddr); 4697 readl(phba->HAregaddr); /* flush */ 4698 4699 /* Reset some HBA SLI setup states */ 4700 lpfc_stop_hba_timers(phba); 4701 phba->pport->work_port_events = 0; 4702 } 4703 4704 /** 4705 * lpfc_stop_port_s4 - Stop SLI4 device port 4706 * @phba: pointer to lpfc hba data structure. 4707 * 4708 * This routine is invoked to stop an SLI4 device port, it stops the device 4709 * from generating interrupts and stops the device driver's timers for the 4710 * device. 4711 **/ 4712 static void 4713 lpfc_stop_port_s4(struct lpfc_hba *phba) 4714 { 4715 /* Reset some HBA SLI4 setup states */ 4716 lpfc_stop_hba_timers(phba); 4717 if (phba->pport) 4718 phba->pport->work_port_events = 0; 4719 phba->sli4_hba.intr_enable = 0; 4720 } 4721 4722 /** 4723 * lpfc_stop_port - Wrapper function for stopping hba port 4724 * @phba: Pointer to HBA context object. 4725 * 4726 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 4727 * the API jump table function pointer from the lpfc_hba struct. 4728 **/ 4729 void 4730 lpfc_stop_port(struct lpfc_hba *phba) 4731 { 4732 phba->lpfc_stop_port(phba); 4733 4734 if (phba->wq) 4735 flush_workqueue(phba->wq); 4736 } 4737 4738 /** 4739 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 4740 * @phba: Pointer to hba for which this call is being executed. 4741 * 4742 * This routine starts the timer waiting for the FCF rediscovery to complete. 4743 **/ 4744 void 4745 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 4746 { 4747 unsigned long fcf_redisc_wait_tmo = 4748 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 4749 /* Start fcf rediscovery wait period timer */ 4750 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 4751 spin_lock_irq(&phba->hbalock); 4752 /* Allow action to new fcf asynchronous event */ 4753 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 4754 /* Mark the FCF rediscovery pending state */ 4755 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 4756 spin_unlock_irq(&phba->hbalock); 4757 } 4758 4759 /** 4760 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 4761 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 4762 * 4763 * This routine is invoked when waiting for FCF table rediscover has been 4764 * timed out. If new FCF record(s) has (have) been discovered during the 4765 * wait period, a new FCF event shall be added to the FCOE async event 4766 * list, and then worker thread shall be waked up for processing from the 4767 * worker thread context. 4768 **/ 4769 static void 4770 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 4771 { 4772 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 4773 4774 /* Don't send FCF rediscovery event if timer cancelled */ 4775 spin_lock_irq(&phba->hbalock); 4776 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 4777 spin_unlock_irq(&phba->hbalock); 4778 return; 4779 } 4780 /* Clear FCF rediscovery timer pending flag */ 4781 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 4782 /* FCF rediscovery event to worker thread */ 4783 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 4784 spin_unlock_irq(&phba->hbalock); 4785 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 4786 "2776 FCF rediscover quiescent timer expired\n"); 4787 /* wake up worker thread */ 4788 lpfc_worker_wake_up(phba); 4789 } 4790 4791 /** 4792 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 4793 * @phba: pointer to lpfc hba data structure. 4794 * @acqe_link: pointer to the async link completion queue entry. 4795 * 4796 * This routine is to parse the SLI4 link-attention link fault code. 4797 **/ 4798 static void 4799 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 4800 struct lpfc_acqe_link *acqe_link) 4801 { 4802 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 4803 case LPFC_ASYNC_LINK_FAULT_NONE: 4804 case LPFC_ASYNC_LINK_FAULT_LOCAL: 4805 case LPFC_ASYNC_LINK_FAULT_REMOTE: 4806 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 4807 break; 4808 default: 4809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4810 "0398 Unknown link fault code: x%x\n", 4811 bf_get(lpfc_acqe_link_fault, acqe_link)); 4812 break; 4813 } 4814 } 4815 4816 /** 4817 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 4818 * @phba: pointer to lpfc hba data structure. 4819 * @acqe_link: pointer to the async link completion queue entry. 4820 * 4821 * This routine is to parse the SLI4 link attention type and translate it 4822 * into the base driver's link attention type coding. 4823 * 4824 * Return: Link attention type in terms of base driver's coding. 4825 **/ 4826 static uint8_t 4827 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 4828 struct lpfc_acqe_link *acqe_link) 4829 { 4830 uint8_t att_type; 4831 4832 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 4833 case LPFC_ASYNC_LINK_STATUS_DOWN: 4834 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 4835 att_type = LPFC_ATT_LINK_DOWN; 4836 break; 4837 case LPFC_ASYNC_LINK_STATUS_UP: 4838 /* Ignore physical link up events - wait for logical link up */ 4839 att_type = LPFC_ATT_RESERVED; 4840 break; 4841 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 4842 att_type = LPFC_ATT_LINK_UP; 4843 break; 4844 default: 4845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4846 "0399 Invalid link attention type: x%x\n", 4847 bf_get(lpfc_acqe_link_status, acqe_link)); 4848 att_type = LPFC_ATT_RESERVED; 4849 break; 4850 } 4851 return att_type; 4852 } 4853 4854 /** 4855 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 4856 * @phba: pointer to lpfc hba data structure. 4857 * 4858 * This routine is to get an SLI3 FC port's link speed in Mbps. 4859 * 4860 * Return: link speed in terms of Mbps. 4861 **/ 4862 uint32_t 4863 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 4864 { 4865 uint32_t link_speed; 4866 4867 if (!lpfc_is_link_up(phba)) 4868 return 0; 4869 4870 if (phba->sli_rev <= LPFC_SLI_REV3) { 4871 switch (phba->fc_linkspeed) { 4872 case LPFC_LINK_SPEED_1GHZ: 4873 link_speed = 1000; 4874 break; 4875 case LPFC_LINK_SPEED_2GHZ: 4876 link_speed = 2000; 4877 break; 4878 case LPFC_LINK_SPEED_4GHZ: 4879 link_speed = 4000; 4880 break; 4881 case LPFC_LINK_SPEED_8GHZ: 4882 link_speed = 8000; 4883 break; 4884 case LPFC_LINK_SPEED_10GHZ: 4885 link_speed = 10000; 4886 break; 4887 case LPFC_LINK_SPEED_16GHZ: 4888 link_speed = 16000; 4889 break; 4890 default: 4891 link_speed = 0; 4892 } 4893 } else { 4894 if (phba->sli4_hba.link_state.logical_speed) 4895 link_speed = 4896 phba->sli4_hba.link_state.logical_speed; 4897 else 4898 link_speed = phba->sli4_hba.link_state.speed; 4899 } 4900 return link_speed; 4901 } 4902 4903 /** 4904 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 4905 * @phba: pointer to lpfc hba data structure. 4906 * @evt_code: asynchronous event code. 4907 * @speed_code: asynchronous event link speed code. 4908 * 4909 * This routine is to parse the giving SLI4 async event link speed code into 4910 * value of Mbps for the link speed. 4911 * 4912 * Return: link speed in terms of Mbps. 4913 **/ 4914 static uint32_t 4915 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 4916 uint8_t speed_code) 4917 { 4918 uint32_t port_speed; 4919 4920 switch (evt_code) { 4921 case LPFC_TRAILER_CODE_LINK: 4922 switch (speed_code) { 4923 case LPFC_ASYNC_LINK_SPEED_ZERO: 4924 port_speed = 0; 4925 break; 4926 case LPFC_ASYNC_LINK_SPEED_10MBPS: 4927 port_speed = 10; 4928 break; 4929 case LPFC_ASYNC_LINK_SPEED_100MBPS: 4930 port_speed = 100; 4931 break; 4932 case LPFC_ASYNC_LINK_SPEED_1GBPS: 4933 port_speed = 1000; 4934 break; 4935 case LPFC_ASYNC_LINK_SPEED_10GBPS: 4936 port_speed = 10000; 4937 break; 4938 case LPFC_ASYNC_LINK_SPEED_20GBPS: 4939 port_speed = 20000; 4940 break; 4941 case LPFC_ASYNC_LINK_SPEED_25GBPS: 4942 port_speed = 25000; 4943 break; 4944 case LPFC_ASYNC_LINK_SPEED_40GBPS: 4945 port_speed = 40000; 4946 break; 4947 case LPFC_ASYNC_LINK_SPEED_100GBPS: 4948 port_speed = 100000; 4949 break; 4950 default: 4951 port_speed = 0; 4952 } 4953 break; 4954 case LPFC_TRAILER_CODE_FC: 4955 switch (speed_code) { 4956 case LPFC_FC_LA_SPEED_UNKNOWN: 4957 port_speed = 0; 4958 break; 4959 case LPFC_FC_LA_SPEED_1G: 4960 port_speed = 1000; 4961 break; 4962 case LPFC_FC_LA_SPEED_2G: 4963 port_speed = 2000; 4964 break; 4965 case LPFC_FC_LA_SPEED_4G: 4966 port_speed = 4000; 4967 break; 4968 case LPFC_FC_LA_SPEED_8G: 4969 port_speed = 8000; 4970 break; 4971 case LPFC_FC_LA_SPEED_10G: 4972 port_speed = 10000; 4973 break; 4974 case LPFC_FC_LA_SPEED_16G: 4975 port_speed = 16000; 4976 break; 4977 case LPFC_FC_LA_SPEED_32G: 4978 port_speed = 32000; 4979 break; 4980 case LPFC_FC_LA_SPEED_64G: 4981 port_speed = 64000; 4982 break; 4983 case LPFC_FC_LA_SPEED_128G: 4984 port_speed = 128000; 4985 break; 4986 default: 4987 port_speed = 0; 4988 } 4989 break; 4990 default: 4991 port_speed = 0; 4992 } 4993 return port_speed; 4994 } 4995 4996 /** 4997 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 4998 * @phba: pointer to lpfc hba data structure. 4999 * @acqe_link: pointer to the async link completion queue entry. 5000 * 5001 * This routine is to handle the SLI4 asynchronous FCoE link event. 5002 **/ 5003 static void 5004 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5005 struct lpfc_acqe_link *acqe_link) 5006 { 5007 struct lpfc_dmabuf *mp; 5008 LPFC_MBOXQ_t *pmb; 5009 MAILBOX_t *mb; 5010 struct lpfc_mbx_read_top *la; 5011 uint8_t att_type; 5012 int rc; 5013 5014 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5015 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5016 return; 5017 phba->fcoe_eventtag = acqe_link->event_tag; 5018 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5019 if (!pmb) { 5020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5021 "0395 The mboxq allocation failed\n"); 5022 return; 5023 } 5024 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5025 if (!mp) { 5026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5027 "0396 The lpfc_dmabuf allocation failed\n"); 5028 goto out_free_pmb; 5029 } 5030 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5031 if (!mp->virt) { 5032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5033 "0397 The mbuf allocation failed\n"); 5034 goto out_free_dmabuf; 5035 } 5036 5037 /* Cleanup any outstanding ELS commands */ 5038 lpfc_els_flush_all_cmd(phba); 5039 5040 /* Block ELS IOCBs until we have done process link event */ 5041 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5042 5043 /* Update link event statistics */ 5044 phba->sli.slistat.link_event++; 5045 5046 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5047 lpfc_read_topology(phba, pmb, mp); 5048 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5049 pmb->vport = phba->pport; 5050 5051 /* Keep the link status for extra SLI4 state machine reference */ 5052 phba->sli4_hba.link_state.speed = 5053 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5054 bf_get(lpfc_acqe_link_speed, acqe_link)); 5055 phba->sli4_hba.link_state.duplex = 5056 bf_get(lpfc_acqe_link_duplex, acqe_link); 5057 phba->sli4_hba.link_state.status = 5058 bf_get(lpfc_acqe_link_status, acqe_link); 5059 phba->sli4_hba.link_state.type = 5060 bf_get(lpfc_acqe_link_type, acqe_link); 5061 phba->sli4_hba.link_state.number = 5062 bf_get(lpfc_acqe_link_number, acqe_link); 5063 phba->sli4_hba.link_state.fault = 5064 bf_get(lpfc_acqe_link_fault, acqe_link); 5065 phba->sli4_hba.link_state.logical_speed = 5066 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5067 5068 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5069 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5070 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5071 "Logical speed:%dMbps Fault:%d\n", 5072 phba->sli4_hba.link_state.speed, 5073 phba->sli4_hba.link_state.topology, 5074 phba->sli4_hba.link_state.status, 5075 phba->sli4_hba.link_state.type, 5076 phba->sli4_hba.link_state.number, 5077 phba->sli4_hba.link_state.logical_speed, 5078 phba->sli4_hba.link_state.fault); 5079 /* 5080 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5081 * topology info. Note: Optional for non FC-AL ports. 5082 */ 5083 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5084 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5085 if (rc == MBX_NOT_FINISHED) 5086 goto out_free_dmabuf; 5087 return; 5088 } 5089 /* 5090 * For FCoE Mode: fill in all the topology information we need and call 5091 * the READ_TOPOLOGY completion routine to continue without actually 5092 * sending the READ_TOPOLOGY mailbox command to the port. 5093 */ 5094 /* Initialize completion status */ 5095 mb = &pmb->u.mb; 5096 mb->mbxStatus = MBX_SUCCESS; 5097 5098 /* Parse port fault information field */ 5099 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5100 5101 /* Parse and translate link attention fields */ 5102 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5103 la->eventTag = acqe_link->event_tag; 5104 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5105 bf_set(lpfc_mbx_read_top_link_spd, la, 5106 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5107 5108 /* Fake the the following irrelvant fields */ 5109 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5110 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5111 bf_set(lpfc_mbx_read_top_il, la, 0); 5112 bf_set(lpfc_mbx_read_top_pb, la, 0); 5113 bf_set(lpfc_mbx_read_top_fa, la, 0); 5114 bf_set(lpfc_mbx_read_top_mm, la, 0); 5115 5116 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5117 lpfc_mbx_cmpl_read_topology(phba, pmb); 5118 5119 return; 5120 5121 out_free_dmabuf: 5122 kfree(mp); 5123 out_free_pmb: 5124 mempool_free(pmb, phba->mbox_mem_pool); 5125 } 5126 5127 /** 5128 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5129 * topology. 5130 * @phba: pointer to lpfc hba data structure. 5131 * @speed_code: asynchronous event link speed code. 5132 * 5133 * This routine is to parse the giving SLI4 async event link speed code into 5134 * value of Read topology link speed. 5135 * 5136 * Return: link speed in terms of Read topology. 5137 **/ 5138 static uint8_t 5139 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5140 { 5141 uint8_t port_speed; 5142 5143 switch (speed_code) { 5144 case LPFC_FC_LA_SPEED_1G: 5145 port_speed = LPFC_LINK_SPEED_1GHZ; 5146 break; 5147 case LPFC_FC_LA_SPEED_2G: 5148 port_speed = LPFC_LINK_SPEED_2GHZ; 5149 break; 5150 case LPFC_FC_LA_SPEED_4G: 5151 port_speed = LPFC_LINK_SPEED_4GHZ; 5152 break; 5153 case LPFC_FC_LA_SPEED_8G: 5154 port_speed = LPFC_LINK_SPEED_8GHZ; 5155 break; 5156 case LPFC_FC_LA_SPEED_16G: 5157 port_speed = LPFC_LINK_SPEED_16GHZ; 5158 break; 5159 case LPFC_FC_LA_SPEED_32G: 5160 port_speed = LPFC_LINK_SPEED_32GHZ; 5161 break; 5162 case LPFC_FC_LA_SPEED_64G: 5163 port_speed = LPFC_LINK_SPEED_64GHZ; 5164 break; 5165 case LPFC_FC_LA_SPEED_128G: 5166 port_speed = LPFC_LINK_SPEED_128GHZ; 5167 break; 5168 case LPFC_FC_LA_SPEED_256G: 5169 port_speed = LPFC_LINK_SPEED_256GHZ; 5170 break; 5171 default: 5172 port_speed = 0; 5173 break; 5174 } 5175 5176 return port_speed; 5177 } 5178 5179 #define trunk_link_status(__idx)\ 5180 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5181 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 5182 "Link up" : "Link down") : "NA" 5183 /* Did port __idx reported an error */ 5184 #define trunk_port_fault(__idx)\ 5185 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 5186 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 5187 5188 static void 5189 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 5190 struct lpfc_acqe_fc_la *acqe_fc) 5191 { 5192 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 5193 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 5194 5195 phba->sli4_hba.link_state.speed = 5196 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5197 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5198 5199 phba->sli4_hba.link_state.logical_speed = 5200 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5201 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 5202 phba->fc_linkspeed = 5203 lpfc_async_link_speed_to_read_top( 5204 phba, 5205 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5206 5207 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 5208 phba->trunk_link.link0.state = 5209 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 5210 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5211 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 5212 } 5213 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 5214 phba->trunk_link.link1.state = 5215 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 5216 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5217 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 5218 } 5219 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 5220 phba->trunk_link.link2.state = 5221 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 5222 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5223 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 5224 } 5225 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 5226 phba->trunk_link.link3.state = 5227 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 5228 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 5229 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 5230 } 5231 5232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5233 "2910 Async FC Trunking Event - Speed:%d\n" 5234 "\tLogical speed:%d " 5235 "port0: %s port1: %s port2: %s port3: %s\n", 5236 phba->sli4_hba.link_state.speed, 5237 phba->sli4_hba.link_state.logical_speed, 5238 trunk_link_status(0), trunk_link_status(1), 5239 trunk_link_status(2), trunk_link_status(3)); 5240 5241 if (port_fault) 5242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5243 "3202 trunk error:0x%x (%s) seen on port0:%s " 5244 /* 5245 * SLI-4: We have only 0xA error codes 5246 * defined as of now. print an appropriate 5247 * message in case driver needs to be updated. 5248 */ 5249 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 5250 "UNDEFINED. update driver." : trunk_errmsg[err], 5251 trunk_port_fault(0), trunk_port_fault(1), 5252 trunk_port_fault(2), trunk_port_fault(3)); 5253 } 5254 5255 5256 /** 5257 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 5258 * @phba: pointer to lpfc hba data structure. 5259 * @acqe_fc: pointer to the async fc completion queue entry. 5260 * 5261 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 5262 * that the event was received and then issue a read_topology mailbox command so 5263 * that the rest of the driver will treat it the same as SLI3. 5264 **/ 5265 static void 5266 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 5267 { 5268 struct lpfc_dmabuf *mp; 5269 LPFC_MBOXQ_t *pmb; 5270 MAILBOX_t *mb; 5271 struct lpfc_mbx_read_top *la; 5272 int rc; 5273 5274 if (bf_get(lpfc_trailer_type, acqe_fc) != 5275 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 5276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5277 "2895 Non FC link Event detected.(%d)\n", 5278 bf_get(lpfc_trailer_type, acqe_fc)); 5279 return; 5280 } 5281 5282 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5283 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 5284 lpfc_update_trunk_link_status(phba, acqe_fc); 5285 return; 5286 } 5287 5288 /* Keep the link status for extra SLI4 state machine reference */ 5289 phba->sli4_hba.link_state.speed = 5290 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 5291 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 5292 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 5293 phba->sli4_hba.link_state.topology = 5294 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 5295 phba->sli4_hba.link_state.status = 5296 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 5297 phba->sli4_hba.link_state.type = 5298 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 5299 phba->sli4_hba.link_state.number = 5300 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 5301 phba->sli4_hba.link_state.fault = 5302 bf_get(lpfc_acqe_link_fault, acqe_fc); 5303 5304 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 5305 LPFC_FC_LA_TYPE_LINK_DOWN) 5306 phba->sli4_hba.link_state.logical_speed = 0; 5307 else if (!phba->sli4_hba.conf_trunk) 5308 phba->sli4_hba.link_state.logical_speed = 5309 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 5310 5311 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5312 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 5313 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 5314 "%dMbps Fault:%d\n", 5315 phba->sli4_hba.link_state.speed, 5316 phba->sli4_hba.link_state.topology, 5317 phba->sli4_hba.link_state.status, 5318 phba->sli4_hba.link_state.type, 5319 phba->sli4_hba.link_state.number, 5320 phba->sli4_hba.link_state.logical_speed, 5321 phba->sli4_hba.link_state.fault); 5322 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5323 if (!pmb) { 5324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5325 "2897 The mboxq allocation failed\n"); 5326 return; 5327 } 5328 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5329 if (!mp) { 5330 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5331 "2898 The lpfc_dmabuf allocation failed\n"); 5332 goto out_free_pmb; 5333 } 5334 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys); 5335 if (!mp->virt) { 5336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5337 "2899 The mbuf allocation failed\n"); 5338 goto out_free_dmabuf; 5339 } 5340 5341 /* Cleanup any outstanding ELS commands */ 5342 lpfc_els_flush_all_cmd(phba); 5343 5344 /* Block ELS IOCBs until we have done process link event */ 5345 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5346 5347 /* Update link event statistics */ 5348 phba->sli.slistat.link_event++; 5349 5350 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5351 lpfc_read_topology(phba, pmb, mp); 5352 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5353 pmb->vport = phba->pport; 5354 5355 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 5356 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 5357 5358 switch (phba->sli4_hba.link_state.status) { 5359 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 5360 phba->link_flag |= LS_MDS_LINK_DOWN; 5361 break; 5362 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 5363 phba->link_flag |= LS_MDS_LOOPBACK; 5364 break; 5365 default: 5366 break; 5367 } 5368 5369 /* Initialize completion status */ 5370 mb = &pmb->u.mb; 5371 mb->mbxStatus = MBX_SUCCESS; 5372 5373 /* Parse port fault information field */ 5374 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 5375 5376 /* Parse and translate link attention fields */ 5377 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 5378 la->eventTag = acqe_fc->event_tag; 5379 5380 if (phba->sli4_hba.link_state.status == 5381 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 5382 bf_set(lpfc_mbx_read_top_att_type, la, 5383 LPFC_FC_LA_TYPE_UNEXP_WWPN); 5384 } else { 5385 bf_set(lpfc_mbx_read_top_att_type, la, 5386 LPFC_FC_LA_TYPE_LINK_DOWN); 5387 } 5388 /* Invoke the mailbox command callback function */ 5389 lpfc_mbx_cmpl_read_topology(phba, pmb); 5390 5391 return; 5392 } 5393 5394 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5395 if (rc == MBX_NOT_FINISHED) 5396 goto out_free_dmabuf; 5397 return; 5398 5399 out_free_dmabuf: 5400 kfree(mp); 5401 out_free_pmb: 5402 mempool_free(pmb, phba->mbox_mem_pool); 5403 } 5404 5405 /** 5406 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 5407 * @phba: pointer to lpfc hba data structure. 5408 * @acqe_sli: pointer to the async SLI completion queue entry. 5409 * 5410 * This routine is to handle the SLI4 asynchronous SLI events. 5411 **/ 5412 static void 5413 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 5414 { 5415 char port_name; 5416 char message[128]; 5417 uint8_t status; 5418 uint8_t evt_type; 5419 uint8_t operational = 0; 5420 struct temp_event temp_event_data; 5421 struct lpfc_acqe_misconfigured_event *misconfigured; 5422 struct Scsi_Host *shost; 5423 struct lpfc_vport **vports; 5424 int rc, i; 5425 5426 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 5427 5428 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5429 "2901 Async SLI event - Type:%d, Event Data: x%08x " 5430 "x%08x x%08x x%08x\n", evt_type, 5431 acqe_sli->event_data1, acqe_sli->event_data2, 5432 acqe_sli->reserved, acqe_sli->trailer); 5433 5434 port_name = phba->Port[0]; 5435 if (port_name == 0x00) 5436 port_name = '?'; /* get port name is empty */ 5437 5438 switch (evt_type) { 5439 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 5440 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5441 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 5442 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5443 5444 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5445 "3190 Over Temperature:%d Celsius- Port Name %c\n", 5446 acqe_sli->event_data1, port_name); 5447 5448 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 5449 shost = lpfc_shost_from_vport(phba->pport); 5450 fc_host_post_vendor_event(shost, fc_get_event_number(), 5451 sizeof(temp_event_data), 5452 (char *)&temp_event_data, 5453 SCSI_NL_VID_TYPE_PCI 5454 | PCI_VENDOR_ID_EMULEX); 5455 break; 5456 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 5457 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 5458 temp_event_data.event_code = LPFC_NORMAL_TEMP; 5459 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 5460 5461 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5462 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 5463 acqe_sli->event_data1, port_name); 5464 5465 shost = lpfc_shost_from_vport(phba->pport); 5466 fc_host_post_vendor_event(shost, fc_get_event_number(), 5467 sizeof(temp_event_data), 5468 (char *)&temp_event_data, 5469 SCSI_NL_VID_TYPE_PCI 5470 | PCI_VENDOR_ID_EMULEX); 5471 break; 5472 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 5473 misconfigured = (struct lpfc_acqe_misconfigured_event *) 5474 &acqe_sli->event_data1; 5475 5476 /* fetch the status for this port */ 5477 switch (phba->sli4_hba.lnk_info.lnk_no) { 5478 case LPFC_LINK_NUMBER_0: 5479 status = bf_get(lpfc_sli_misconfigured_port0_state, 5480 &misconfigured->theEvent); 5481 operational = bf_get(lpfc_sli_misconfigured_port0_op, 5482 &misconfigured->theEvent); 5483 break; 5484 case LPFC_LINK_NUMBER_1: 5485 status = bf_get(lpfc_sli_misconfigured_port1_state, 5486 &misconfigured->theEvent); 5487 operational = bf_get(lpfc_sli_misconfigured_port1_op, 5488 &misconfigured->theEvent); 5489 break; 5490 case LPFC_LINK_NUMBER_2: 5491 status = bf_get(lpfc_sli_misconfigured_port2_state, 5492 &misconfigured->theEvent); 5493 operational = bf_get(lpfc_sli_misconfigured_port2_op, 5494 &misconfigured->theEvent); 5495 break; 5496 case LPFC_LINK_NUMBER_3: 5497 status = bf_get(lpfc_sli_misconfigured_port3_state, 5498 &misconfigured->theEvent); 5499 operational = bf_get(lpfc_sli_misconfigured_port3_op, 5500 &misconfigured->theEvent); 5501 break; 5502 default: 5503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5504 "3296 " 5505 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 5506 "event: Invalid link %d", 5507 phba->sli4_hba.lnk_info.lnk_no); 5508 return; 5509 } 5510 5511 /* Skip if optic state unchanged */ 5512 if (phba->sli4_hba.lnk_info.optic_state == status) 5513 return; 5514 5515 switch (status) { 5516 case LPFC_SLI_EVENT_STATUS_VALID: 5517 sprintf(message, "Physical Link is functional"); 5518 break; 5519 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 5520 sprintf(message, "Optics faulted/incorrectly " 5521 "installed/not installed - Reseat optics, " 5522 "if issue not resolved, replace."); 5523 break; 5524 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 5525 sprintf(message, 5526 "Optics of two types installed - Remove one " 5527 "optic or install matching pair of optics."); 5528 break; 5529 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 5530 sprintf(message, "Incompatible optics - Replace with " 5531 "compatible optics for card to function."); 5532 break; 5533 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 5534 sprintf(message, "Unqualified optics - Replace with " 5535 "Avago optics for Warranty and Technical " 5536 "Support - Link is%s operational", 5537 (operational) ? " not" : ""); 5538 break; 5539 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 5540 sprintf(message, "Uncertified optics - Replace with " 5541 "Avago-certified optics to enable link " 5542 "operation - Link is%s operational", 5543 (operational) ? " not" : ""); 5544 break; 5545 default: 5546 /* firmware is reporting a status we don't know about */ 5547 sprintf(message, "Unknown event status x%02x", status); 5548 break; 5549 } 5550 5551 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 5552 rc = lpfc_sli4_read_config(phba); 5553 if (rc) { 5554 phba->lmt = 0; 5555 lpfc_printf_log(phba, KERN_ERR, 5556 LOG_TRACE_EVENT, 5557 "3194 Unable to retrieve supported " 5558 "speeds, rc = 0x%x\n", rc); 5559 } 5560 vports = lpfc_create_vport_work_array(phba); 5561 if (vports != NULL) { 5562 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5563 i++) { 5564 shost = lpfc_shost_from_vport(vports[i]); 5565 lpfc_host_supported_speeds_set(shost); 5566 } 5567 } 5568 lpfc_destroy_vport_work_array(phba, vports); 5569 5570 phba->sli4_hba.lnk_info.optic_state = status; 5571 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5572 "3176 Port Name %c %s\n", port_name, message); 5573 break; 5574 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 5575 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5576 "3192 Remote DPort Test Initiated - " 5577 "Event Data1:x%08x Event Data2: x%08x\n", 5578 acqe_sli->event_data1, acqe_sli->event_data2); 5579 break; 5580 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 5581 /* Misconfigured WWN. Reports that the SLI Port is configured 5582 * to use FA-WWN, but the attached device doesn’t support it. 5583 * No driver action is required. 5584 * Event Data1 - N.A, Event Data2 - N.A 5585 */ 5586 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI, 5587 "2699 Misconfigured FA-WWN - Attached device does " 5588 "not support FA-WWN\n"); 5589 break; 5590 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 5591 /* EEPROM failure. No driver action is required */ 5592 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5593 "2518 EEPROM failure - " 5594 "Event Data1: x%08x Event Data2: x%08x\n", 5595 acqe_sli->event_data1, acqe_sli->event_data2); 5596 break; 5597 default: 5598 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5599 "3193 Unrecognized SLI event, type: 0x%x", 5600 evt_type); 5601 break; 5602 } 5603 } 5604 5605 /** 5606 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 5607 * @vport: pointer to vport data structure. 5608 * 5609 * This routine is to perform Clear Virtual Link (CVL) on a vport in 5610 * response to a CVL event. 5611 * 5612 * Return the pointer to the ndlp with the vport if successful, otherwise 5613 * return NULL. 5614 **/ 5615 static struct lpfc_nodelist * 5616 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 5617 { 5618 struct lpfc_nodelist *ndlp; 5619 struct Scsi_Host *shost; 5620 struct lpfc_hba *phba; 5621 5622 if (!vport) 5623 return NULL; 5624 phba = vport->phba; 5625 if (!phba) 5626 return NULL; 5627 ndlp = lpfc_findnode_did(vport, Fabric_DID); 5628 if (!ndlp) { 5629 /* Cannot find existing Fabric ndlp, so allocate a new one */ 5630 ndlp = lpfc_nlp_init(vport, Fabric_DID); 5631 if (!ndlp) 5632 return 0; 5633 /* Set the node type */ 5634 ndlp->nlp_type |= NLP_FABRIC; 5635 /* Put ndlp onto node list */ 5636 lpfc_enqueue_node(vport, ndlp); 5637 } 5638 if ((phba->pport->port_state < LPFC_FLOGI) && 5639 (phba->pport->port_state != LPFC_VPORT_FAILED)) 5640 return NULL; 5641 /* If virtual link is not yet instantiated ignore CVL */ 5642 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 5643 && (vport->port_state != LPFC_VPORT_FAILED)) 5644 return NULL; 5645 shost = lpfc_shost_from_vport(vport); 5646 if (!shost) 5647 return NULL; 5648 lpfc_linkdown_port(vport); 5649 lpfc_cleanup_pending_mbox(vport); 5650 spin_lock_irq(shost->host_lock); 5651 vport->fc_flag |= FC_VPORT_CVL_RCVD; 5652 spin_unlock_irq(shost->host_lock); 5653 5654 return ndlp; 5655 } 5656 5657 /** 5658 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 5659 * @phba: pointer to lpfc hba data structure. 5660 * 5661 * This routine is to perform Clear Virtual Link (CVL) on all vports in 5662 * response to a FCF dead event. 5663 **/ 5664 static void 5665 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 5666 { 5667 struct lpfc_vport **vports; 5668 int i; 5669 5670 vports = lpfc_create_vport_work_array(phba); 5671 if (vports) 5672 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 5673 lpfc_sli4_perform_vport_cvl(vports[i]); 5674 lpfc_destroy_vport_work_array(phba, vports); 5675 } 5676 5677 /** 5678 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 5679 * @phba: pointer to lpfc hba data structure. 5680 * @acqe_fip: pointer to the async fcoe completion queue entry. 5681 * 5682 * This routine is to handle the SLI4 asynchronous fcoe event. 5683 **/ 5684 static void 5685 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 5686 struct lpfc_acqe_fip *acqe_fip) 5687 { 5688 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 5689 int rc; 5690 struct lpfc_vport *vport; 5691 struct lpfc_nodelist *ndlp; 5692 int active_vlink_present; 5693 struct lpfc_vport **vports; 5694 int i; 5695 5696 phba->fc_eventTag = acqe_fip->event_tag; 5697 phba->fcoe_eventtag = acqe_fip->event_tag; 5698 switch (event_type) { 5699 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 5700 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 5701 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 5702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5703 "2546 New FCF event, evt_tag:x%x, " 5704 "index:x%x\n", 5705 acqe_fip->event_tag, 5706 acqe_fip->index); 5707 else 5708 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 5709 LOG_DISCOVERY, 5710 "2788 FCF param modified event, " 5711 "evt_tag:x%x, index:x%x\n", 5712 acqe_fip->event_tag, 5713 acqe_fip->index); 5714 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5715 /* 5716 * During period of FCF discovery, read the FCF 5717 * table record indexed by the event to update 5718 * FCF roundrobin failover eligible FCF bmask. 5719 */ 5720 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5721 LOG_DISCOVERY, 5722 "2779 Read FCF (x%x) for updating " 5723 "roundrobin FCF failover bmask\n", 5724 acqe_fip->index); 5725 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 5726 } 5727 5728 /* If the FCF discovery is in progress, do nothing. */ 5729 spin_lock_irq(&phba->hbalock); 5730 if (phba->hba_flag & FCF_TS_INPROG) { 5731 spin_unlock_irq(&phba->hbalock); 5732 break; 5733 } 5734 /* If fast FCF failover rescan event is pending, do nothing */ 5735 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 5736 spin_unlock_irq(&phba->hbalock); 5737 break; 5738 } 5739 5740 /* If the FCF has been in discovered state, do nothing. */ 5741 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 5742 spin_unlock_irq(&phba->hbalock); 5743 break; 5744 } 5745 spin_unlock_irq(&phba->hbalock); 5746 5747 /* Otherwise, scan the entire FCF table and re-discover SAN */ 5748 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5749 "2770 Start FCF table scan per async FCF " 5750 "event, evt_tag:x%x, index:x%x\n", 5751 acqe_fip->event_tag, acqe_fip->index); 5752 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 5753 LPFC_FCOE_FCF_GET_FIRST); 5754 if (rc) 5755 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5756 "2547 Issue FCF scan read FCF mailbox " 5757 "command failed (x%x)\n", rc); 5758 break; 5759 5760 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 5761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5762 "2548 FCF Table full count 0x%x tag 0x%x\n", 5763 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 5764 acqe_fip->event_tag); 5765 break; 5766 5767 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 5768 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5770 "2549 FCF (x%x) disconnected from network, " 5771 "tag:x%x\n", acqe_fip->index, 5772 acqe_fip->event_tag); 5773 /* 5774 * If we are in the middle of FCF failover process, clear 5775 * the corresponding FCF bit in the roundrobin bitmap. 5776 */ 5777 spin_lock_irq(&phba->hbalock); 5778 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 5779 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 5780 spin_unlock_irq(&phba->hbalock); 5781 /* Update FLOGI FCF failover eligible FCF bmask */ 5782 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 5783 break; 5784 } 5785 spin_unlock_irq(&phba->hbalock); 5786 5787 /* If the event is not for currently used fcf do nothing */ 5788 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 5789 break; 5790 5791 /* 5792 * Otherwise, request the port to rediscover the entire FCF 5793 * table for a fast recovery from case that the current FCF 5794 * is no longer valid as we are not in the middle of FCF 5795 * failover process already. 5796 */ 5797 spin_lock_irq(&phba->hbalock); 5798 /* Mark the fast failover process in progress */ 5799 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 5800 spin_unlock_irq(&phba->hbalock); 5801 5802 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 5803 "2771 Start FCF fast failover process due to " 5804 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 5805 "\n", acqe_fip->event_tag, acqe_fip->index); 5806 rc = lpfc_sli4_redisc_fcf_table(phba); 5807 if (rc) { 5808 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5809 LOG_TRACE_EVENT, 5810 "2772 Issue FCF rediscover mailbox " 5811 "command failed, fail through to FCF " 5812 "dead event\n"); 5813 spin_lock_irq(&phba->hbalock); 5814 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 5815 spin_unlock_irq(&phba->hbalock); 5816 /* 5817 * Last resort will fail over by treating this 5818 * as a link down to FCF registration. 5819 */ 5820 lpfc_sli4_fcf_dead_failthrough(phba); 5821 } else { 5822 /* Reset FCF roundrobin bmask for new discovery */ 5823 lpfc_sli4_clear_fcf_rr_bmask(phba); 5824 /* 5825 * Handling fast FCF failover to a DEAD FCF event is 5826 * considered equalivant to receiving CVL to all vports. 5827 */ 5828 lpfc_sli4_perform_all_vport_cvl(phba); 5829 } 5830 break; 5831 case LPFC_FIP_EVENT_TYPE_CVL: 5832 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 5833 lpfc_printf_log(phba, KERN_ERR, 5834 LOG_TRACE_EVENT, 5835 "2718 Clear Virtual Link Received for VPI 0x%x" 5836 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 5837 5838 vport = lpfc_find_vport_by_vpid(phba, 5839 acqe_fip->index); 5840 ndlp = lpfc_sli4_perform_vport_cvl(vport); 5841 if (!ndlp) 5842 break; 5843 active_vlink_present = 0; 5844 5845 vports = lpfc_create_vport_work_array(phba); 5846 if (vports) { 5847 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 5848 i++) { 5849 if ((!(vports[i]->fc_flag & 5850 FC_VPORT_CVL_RCVD)) && 5851 (vports[i]->port_state > LPFC_FDISC)) { 5852 active_vlink_present = 1; 5853 break; 5854 } 5855 } 5856 lpfc_destroy_vport_work_array(phba, vports); 5857 } 5858 5859 /* 5860 * Don't re-instantiate if vport is marked for deletion. 5861 * If we are here first then vport_delete is going to wait 5862 * for discovery to complete. 5863 */ 5864 if (!(vport->load_flag & FC_UNLOADING) && 5865 active_vlink_present) { 5866 /* 5867 * If there are other active VLinks present, 5868 * re-instantiate the Vlink using FDISC. 5869 */ 5870 mod_timer(&ndlp->nlp_delayfunc, 5871 jiffies + msecs_to_jiffies(1000)); 5872 spin_lock_irq(&ndlp->lock); 5873 ndlp->nlp_flag |= NLP_DELAY_TMO; 5874 spin_unlock_irq(&ndlp->lock); 5875 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 5876 vport->port_state = LPFC_FDISC; 5877 } else { 5878 /* 5879 * Otherwise, we request port to rediscover 5880 * the entire FCF table for a fast recovery 5881 * from possible case that the current FCF 5882 * is no longer valid if we are not already 5883 * in the FCF failover process. 5884 */ 5885 spin_lock_irq(&phba->hbalock); 5886 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 5887 spin_unlock_irq(&phba->hbalock); 5888 break; 5889 } 5890 /* Mark the fast failover process in progress */ 5891 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 5892 spin_unlock_irq(&phba->hbalock); 5893 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 5894 LOG_DISCOVERY, 5895 "2773 Start FCF failover per CVL, " 5896 "evt_tag:x%x\n", acqe_fip->event_tag); 5897 rc = lpfc_sli4_redisc_fcf_table(phba); 5898 if (rc) { 5899 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 5900 LOG_TRACE_EVENT, 5901 "2774 Issue FCF rediscover " 5902 "mailbox command failed, " 5903 "through to CVL event\n"); 5904 spin_lock_irq(&phba->hbalock); 5905 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 5906 spin_unlock_irq(&phba->hbalock); 5907 /* 5908 * Last resort will be re-try on the 5909 * the current registered FCF entry. 5910 */ 5911 lpfc_retry_pport_discovery(phba); 5912 } else 5913 /* 5914 * Reset FCF roundrobin bmask for new 5915 * discovery. 5916 */ 5917 lpfc_sli4_clear_fcf_rr_bmask(phba); 5918 } 5919 break; 5920 default: 5921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5922 "0288 Unknown FCoE event type 0x%x event tag " 5923 "0x%x\n", event_type, acqe_fip->event_tag); 5924 break; 5925 } 5926 } 5927 5928 /** 5929 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 5930 * @phba: pointer to lpfc hba data structure. 5931 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 5932 * 5933 * This routine is to handle the SLI4 asynchronous dcbx event. 5934 **/ 5935 static void 5936 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 5937 struct lpfc_acqe_dcbx *acqe_dcbx) 5938 { 5939 phba->fc_eventTag = acqe_dcbx->event_tag; 5940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5941 "0290 The SLI4 DCBX asynchronous event is not " 5942 "handled yet\n"); 5943 } 5944 5945 /** 5946 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 5947 * @phba: pointer to lpfc hba data structure. 5948 * @acqe_grp5: pointer to the async grp5 completion queue entry. 5949 * 5950 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 5951 * is an asynchronous notified of a logical link speed change. The Port 5952 * reports the logical link speed in units of 10Mbps. 5953 **/ 5954 static void 5955 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 5956 struct lpfc_acqe_grp5 *acqe_grp5) 5957 { 5958 uint16_t prev_ll_spd; 5959 5960 phba->fc_eventTag = acqe_grp5->event_tag; 5961 phba->fcoe_eventtag = acqe_grp5->event_tag; 5962 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 5963 phba->sli4_hba.link_state.logical_speed = 5964 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 5965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5966 "2789 GRP5 Async Event: Updating logical link speed " 5967 "from %dMbps to %dMbps\n", prev_ll_spd, 5968 phba->sli4_hba.link_state.logical_speed); 5969 } 5970 5971 /** 5972 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 5973 * @phba: pointer to lpfc hba data structure. 5974 * 5975 * This routine is invoked by the worker thread to process all the pending 5976 * SLI4 asynchronous events. 5977 **/ 5978 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 5979 { 5980 struct lpfc_cq_event *cq_event; 5981 unsigned long iflags; 5982 5983 /* First, declare the async event has been handled */ 5984 spin_lock_irqsave(&phba->hbalock, iflags); 5985 phba->hba_flag &= ~ASYNC_EVENT; 5986 spin_unlock_irqrestore(&phba->hbalock, iflags); 5987 5988 /* Now, handle all the async events */ 5989 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 5990 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 5991 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 5992 cq_event, struct lpfc_cq_event, list); 5993 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 5994 iflags); 5995 5996 /* Process the asynchronous event */ 5997 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 5998 case LPFC_TRAILER_CODE_LINK: 5999 lpfc_sli4_async_link_evt(phba, 6000 &cq_event->cqe.acqe_link); 6001 break; 6002 case LPFC_TRAILER_CODE_FCOE: 6003 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 6004 break; 6005 case LPFC_TRAILER_CODE_DCBX: 6006 lpfc_sli4_async_dcbx_evt(phba, 6007 &cq_event->cqe.acqe_dcbx); 6008 break; 6009 case LPFC_TRAILER_CODE_GRP5: 6010 lpfc_sli4_async_grp5_evt(phba, 6011 &cq_event->cqe.acqe_grp5); 6012 break; 6013 case LPFC_TRAILER_CODE_FC: 6014 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 6015 break; 6016 case LPFC_TRAILER_CODE_SLI: 6017 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 6018 break; 6019 default: 6020 lpfc_printf_log(phba, KERN_ERR, 6021 LOG_TRACE_EVENT, 6022 "1804 Invalid asynchronous event code: " 6023 "x%x\n", bf_get(lpfc_trailer_code, 6024 &cq_event->cqe.mcqe_cmpl)); 6025 break; 6026 } 6027 6028 /* Free the completion event processed to the free pool */ 6029 lpfc_sli4_cq_event_release(phba, cq_event); 6030 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 6031 } 6032 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 6033 } 6034 6035 /** 6036 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 6037 * @phba: pointer to lpfc hba data structure. 6038 * 6039 * This routine is invoked by the worker thread to process FCF table 6040 * rediscovery pending completion event. 6041 **/ 6042 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 6043 { 6044 int rc; 6045 6046 spin_lock_irq(&phba->hbalock); 6047 /* Clear FCF rediscovery timeout event */ 6048 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 6049 /* Clear driver fast failover FCF record flag */ 6050 phba->fcf.failover_rec.flag = 0; 6051 /* Set state for FCF fast failover */ 6052 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 6053 spin_unlock_irq(&phba->hbalock); 6054 6055 /* Scan FCF table from the first entry to re-discover SAN */ 6056 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6057 "2777 Start post-quiescent FCF table scan\n"); 6058 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 6059 if (rc) 6060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6061 "2747 Issue FCF scan read FCF mailbox " 6062 "command failed 0x%x\n", rc); 6063 } 6064 6065 /** 6066 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 6067 * @phba: pointer to lpfc hba data structure. 6068 * @dev_grp: The HBA PCI-Device group number. 6069 * 6070 * This routine is invoked to set up the per HBA PCI-Device group function 6071 * API jump table entries. 6072 * 6073 * Return: 0 if success, otherwise -ENODEV 6074 **/ 6075 int 6076 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 6077 { 6078 int rc; 6079 6080 /* Set up lpfc PCI-device group */ 6081 phba->pci_dev_grp = dev_grp; 6082 6083 /* The LPFC_PCI_DEV_OC uses SLI4 */ 6084 if (dev_grp == LPFC_PCI_DEV_OC) 6085 phba->sli_rev = LPFC_SLI_REV4; 6086 6087 /* Set up device INIT API function jump table */ 6088 rc = lpfc_init_api_table_setup(phba, dev_grp); 6089 if (rc) 6090 return -ENODEV; 6091 /* Set up SCSI API function jump table */ 6092 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 6093 if (rc) 6094 return -ENODEV; 6095 /* Set up SLI API function jump table */ 6096 rc = lpfc_sli_api_table_setup(phba, dev_grp); 6097 if (rc) 6098 return -ENODEV; 6099 /* Set up MBOX API function jump table */ 6100 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 6101 if (rc) 6102 return -ENODEV; 6103 6104 return 0; 6105 } 6106 6107 /** 6108 * lpfc_log_intr_mode - Log the active interrupt mode 6109 * @phba: pointer to lpfc hba data structure. 6110 * @intr_mode: active interrupt mode adopted. 6111 * 6112 * This routine it invoked to log the currently used active interrupt mode 6113 * to the device. 6114 **/ 6115 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 6116 { 6117 switch (intr_mode) { 6118 case 0: 6119 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6120 "0470 Enable INTx interrupt mode.\n"); 6121 break; 6122 case 1: 6123 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6124 "0481 Enabled MSI interrupt mode.\n"); 6125 break; 6126 case 2: 6127 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6128 "0480 Enabled MSI-X interrupt mode.\n"); 6129 break; 6130 default: 6131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6132 "0482 Illegal interrupt mode.\n"); 6133 break; 6134 } 6135 return; 6136 } 6137 6138 /** 6139 * lpfc_enable_pci_dev - Enable a generic PCI device. 6140 * @phba: pointer to lpfc hba data structure. 6141 * 6142 * This routine is invoked to enable the PCI device that is common to all 6143 * PCI devices. 6144 * 6145 * Return codes 6146 * 0 - successful 6147 * other values - error 6148 **/ 6149 static int 6150 lpfc_enable_pci_dev(struct lpfc_hba *phba) 6151 { 6152 struct pci_dev *pdev; 6153 6154 /* Obtain PCI device reference */ 6155 if (!phba->pcidev) 6156 goto out_error; 6157 else 6158 pdev = phba->pcidev; 6159 /* Enable PCI device */ 6160 if (pci_enable_device_mem(pdev)) 6161 goto out_error; 6162 /* Request PCI resource for the device */ 6163 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 6164 goto out_disable_device; 6165 /* Set up device as PCI master and save state for EEH */ 6166 pci_set_master(pdev); 6167 pci_try_set_mwi(pdev); 6168 pci_save_state(pdev); 6169 6170 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6171 if (pci_is_pcie(pdev)) 6172 pdev->needs_freset = 1; 6173 6174 return 0; 6175 6176 out_disable_device: 6177 pci_disable_device(pdev); 6178 out_error: 6179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6180 "1401 Failed to enable pci device\n"); 6181 return -ENODEV; 6182 } 6183 6184 /** 6185 * lpfc_disable_pci_dev - Disable a generic PCI device. 6186 * @phba: pointer to lpfc hba data structure. 6187 * 6188 * This routine is invoked to disable the PCI device that is common to all 6189 * PCI devices. 6190 **/ 6191 static void 6192 lpfc_disable_pci_dev(struct lpfc_hba *phba) 6193 { 6194 struct pci_dev *pdev; 6195 6196 /* Obtain PCI device reference */ 6197 if (!phba->pcidev) 6198 return; 6199 else 6200 pdev = phba->pcidev; 6201 /* Release PCI resource and disable PCI device */ 6202 pci_release_mem_regions(pdev); 6203 pci_disable_device(pdev); 6204 6205 return; 6206 } 6207 6208 /** 6209 * lpfc_reset_hba - Reset a hba 6210 * @phba: pointer to lpfc hba data structure. 6211 * 6212 * This routine is invoked to reset a hba device. It brings the HBA 6213 * offline, performs a board restart, and then brings the board back 6214 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 6215 * on outstanding mailbox commands. 6216 **/ 6217 void 6218 lpfc_reset_hba(struct lpfc_hba *phba) 6219 { 6220 /* If resets are disabled then set error state and return. */ 6221 if (!phba->cfg_enable_hba_reset) { 6222 phba->link_state = LPFC_HBA_ERROR; 6223 return; 6224 } 6225 6226 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 6227 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 6228 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 6229 } else { 6230 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 6231 lpfc_sli_flush_io_rings(phba); 6232 } 6233 lpfc_offline(phba); 6234 lpfc_sli_brdrestart(phba); 6235 lpfc_online(phba); 6236 lpfc_unblock_mgmt_io(phba); 6237 } 6238 6239 /** 6240 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 6241 * @phba: pointer to lpfc hba data structure. 6242 * 6243 * This function enables the PCI SR-IOV virtual functions to a physical 6244 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6245 * enable the number of virtual functions to the physical function. As 6246 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6247 * API call does not considered as an error condition for most of the device. 6248 **/ 6249 uint16_t 6250 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 6251 { 6252 struct pci_dev *pdev = phba->pcidev; 6253 uint16_t nr_virtfn; 6254 int pos; 6255 6256 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 6257 if (pos == 0) 6258 return 0; 6259 6260 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 6261 return nr_virtfn; 6262 } 6263 6264 /** 6265 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 6266 * @phba: pointer to lpfc hba data structure. 6267 * @nr_vfn: number of virtual functions to be enabled. 6268 * 6269 * This function enables the PCI SR-IOV virtual functions to a physical 6270 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 6271 * enable the number of virtual functions to the physical function. As 6272 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 6273 * API call does not considered as an error condition for most of the device. 6274 **/ 6275 int 6276 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 6277 { 6278 struct pci_dev *pdev = phba->pcidev; 6279 uint16_t max_nr_vfn; 6280 int rc; 6281 6282 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 6283 if (nr_vfn > max_nr_vfn) { 6284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6285 "3057 Requested vfs (%d) greater than " 6286 "supported vfs (%d)", nr_vfn, max_nr_vfn); 6287 return -EINVAL; 6288 } 6289 6290 rc = pci_enable_sriov(pdev, nr_vfn); 6291 if (rc) { 6292 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6293 "2806 Failed to enable sriov on this device " 6294 "with vfn number nr_vf:%d, rc:%d\n", 6295 nr_vfn, rc); 6296 } else 6297 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6298 "2807 Successful enable sriov on this device " 6299 "with vfn number nr_vf:%d\n", nr_vfn); 6300 return rc; 6301 } 6302 6303 /** 6304 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 6305 * @phba: pointer to lpfc hba data structure. 6306 * 6307 * This routine is invoked to set up the driver internal resources before the 6308 * device specific resource setup to support the HBA device it attached to. 6309 * 6310 * Return codes 6311 * 0 - successful 6312 * other values - error 6313 **/ 6314 static int 6315 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 6316 { 6317 struct lpfc_sli *psli = &phba->sli; 6318 6319 /* 6320 * Driver resources common to all SLI revisions 6321 */ 6322 atomic_set(&phba->fast_event_count, 0); 6323 atomic_set(&phba->dbg_log_idx, 0); 6324 atomic_set(&phba->dbg_log_cnt, 0); 6325 atomic_set(&phba->dbg_log_dmping, 0); 6326 spin_lock_init(&phba->hbalock); 6327 6328 /* Initialize port_list spinlock */ 6329 spin_lock_init(&phba->port_list_lock); 6330 INIT_LIST_HEAD(&phba->port_list); 6331 6332 INIT_LIST_HEAD(&phba->work_list); 6333 init_waitqueue_head(&phba->wait_4_mlo_m_q); 6334 6335 /* Initialize the wait queue head for the kernel thread */ 6336 init_waitqueue_head(&phba->work_waitq); 6337 6338 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6339 "1403 Protocols supported %s %s %s\n", 6340 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 6341 "SCSI" : " "), 6342 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 6343 "NVME" : " "), 6344 (phba->nvmet_support ? "NVMET" : " ")); 6345 6346 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 6347 spin_lock_init(&phba->scsi_buf_list_get_lock); 6348 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 6349 spin_lock_init(&phba->scsi_buf_list_put_lock); 6350 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 6351 6352 /* Initialize the fabric iocb list */ 6353 INIT_LIST_HEAD(&phba->fabric_iocb_list); 6354 6355 /* Initialize list to save ELS buffers */ 6356 INIT_LIST_HEAD(&phba->elsbuf); 6357 6358 /* Initialize FCF connection rec list */ 6359 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 6360 6361 /* Initialize OAS configuration list */ 6362 spin_lock_init(&phba->devicelock); 6363 INIT_LIST_HEAD(&phba->luns); 6364 6365 /* MBOX heartbeat timer */ 6366 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 6367 /* Fabric block timer */ 6368 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 6369 /* EA polling mode timer */ 6370 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 6371 /* Heartbeat timer */ 6372 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 6373 6374 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 6375 6376 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 6377 lpfc_idle_stat_delay_work); 6378 6379 return 0; 6380 } 6381 6382 /** 6383 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 6384 * @phba: pointer to lpfc hba data structure. 6385 * 6386 * This routine is invoked to set up the driver internal resources specific to 6387 * support the SLI-3 HBA device it attached to. 6388 * 6389 * Return codes 6390 * 0 - successful 6391 * other values - error 6392 **/ 6393 static int 6394 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 6395 { 6396 int rc, entry_sz; 6397 6398 /* 6399 * Initialize timers used by driver 6400 */ 6401 6402 /* FCP polling mode timer */ 6403 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 6404 6405 /* Host attention work mask setup */ 6406 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 6407 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 6408 6409 /* Get all the module params for configuring this host */ 6410 lpfc_get_cfgparam(phba); 6411 /* Set up phase-1 common device driver resources */ 6412 6413 rc = lpfc_setup_driver_resource_phase1(phba); 6414 if (rc) 6415 return -ENODEV; 6416 6417 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 6418 phba->menlo_flag |= HBA_MENLO_SUPPORT; 6419 /* check for menlo minimum sg count */ 6420 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 6421 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 6422 } 6423 6424 if (!phba->sli.sli3_ring) 6425 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 6426 sizeof(struct lpfc_sli_ring), 6427 GFP_KERNEL); 6428 if (!phba->sli.sli3_ring) 6429 return -ENOMEM; 6430 6431 /* 6432 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 6433 * used to create the sg_dma_buf_pool must be dynamically calculated. 6434 */ 6435 6436 if (phba->sli_rev == LPFC_SLI_REV4) 6437 entry_sz = sizeof(struct sli4_sge); 6438 else 6439 entry_sz = sizeof(struct ulp_bde64); 6440 6441 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 6442 if (phba->cfg_enable_bg) { 6443 /* 6444 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 6445 * the FCP rsp, and a BDE for each. Sice we have no control 6446 * over how many protection data segments the SCSI Layer 6447 * will hand us (ie: there could be one for every block 6448 * in the IO), we just allocate enough BDEs to accomidate 6449 * our max amount and we need to limit lpfc_sg_seg_cnt to 6450 * minimize the risk of running out. 6451 */ 6452 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6453 sizeof(struct fcp_rsp) + 6454 (LPFC_MAX_SG_SEG_CNT * entry_sz); 6455 6456 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 6457 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 6458 6459 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 6460 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 6461 } else { 6462 /* 6463 * The scsi_buf for a regular I/O will hold the FCP cmnd, 6464 * the FCP rsp, a BDE for each, and a BDE for up to 6465 * cfg_sg_seg_cnt data segments. 6466 */ 6467 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6468 sizeof(struct fcp_rsp) + 6469 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 6470 6471 /* Total BDEs in BPL for scsi_sg_list */ 6472 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 6473 } 6474 6475 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6476 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 6477 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6478 phba->cfg_total_seg_cnt); 6479 6480 phba->max_vpi = LPFC_MAX_VPI; 6481 /* This will be set to correct value after config_port mbox */ 6482 phba->max_vports = 0; 6483 6484 /* 6485 * Initialize the SLI Layer to run with lpfc HBAs. 6486 */ 6487 lpfc_sli_setup(phba); 6488 lpfc_sli_queue_init(phba); 6489 6490 /* Allocate device driver memory */ 6491 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 6492 return -ENOMEM; 6493 6494 phba->lpfc_sg_dma_buf_pool = 6495 dma_pool_create("lpfc_sg_dma_buf_pool", 6496 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 6497 BPL_ALIGN_SZ, 0); 6498 6499 if (!phba->lpfc_sg_dma_buf_pool) 6500 goto fail_free_mem; 6501 6502 phba->lpfc_cmd_rsp_buf_pool = 6503 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6504 &phba->pcidev->dev, 6505 sizeof(struct fcp_cmnd) + 6506 sizeof(struct fcp_rsp), 6507 BPL_ALIGN_SZ, 0); 6508 6509 if (!phba->lpfc_cmd_rsp_buf_pool) 6510 goto fail_free_dma_buf_pool; 6511 6512 /* 6513 * Enable sr-iov virtual functions if supported and configured 6514 * through the module parameter. 6515 */ 6516 if (phba->cfg_sriov_nr_virtfn > 0) { 6517 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 6518 phba->cfg_sriov_nr_virtfn); 6519 if (rc) { 6520 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6521 "2808 Requested number of SR-IOV " 6522 "virtual functions (%d) is not " 6523 "supported\n", 6524 phba->cfg_sriov_nr_virtfn); 6525 phba->cfg_sriov_nr_virtfn = 0; 6526 } 6527 } 6528 6529 return 0; 6530 6531 fail_free_dma_buf_pool: 6532 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 6533 phba->lpfc_sg_dma_buf_pool = NULL; 6534 fail_free_mem: 6535 lpfc_mem_free(phba); 6536 return -ENOMEM; 6537 } 6538 6539 /** 6540 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 6541 * @phba: pointer to lpfc hba data structure. 6542 * 6543 * This routine is invoked to unset the driver internal resources set up 6544 * specific for supporting the SLI-3 HBA device it attached to. 6545 **/ 6546 static void 6547 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 6548 { 6549 /* Free device driver memory allocated */ 6550 lpfc_mem_free_all(phba); 6551 6552 return; 6553 } 6554 6555 /** 6556 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 6557 * @phba: pointer to lpfc hba data structure. 6558 * 6559 * This routine is invoked to set up the driver internal resources specific to 6560 * support the SLI-4 HBA device it attached to. 6561 * 6562 * Return codes 6563 * 0 - successful 6564 * other values - error 6565 **/ 6566 static int 6567 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 6568 { 6569 LPFC_MBOXQ_t *mboxq; 6570 MAILBOX_t *mb; 6571 int rc, i, max_buf_size; 6572 int longs; 6573 int extra; 6574 uint64_t wwn; 6575 u32 if_type; 6576 u32 if_fam; 6577 6578 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 6579 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 6580 phba->sli4_hba.curr_disp_cpu = 0; 6581 6582 /* Get all the module params for configuring this host */ 6583 lpfc_get_cfgparam(phba); 6584 6585 /* Set up phase-1 common device driver resources */ 6586 rc = lpfc_setup_driver_resource_phase1(phba); 6587 if (rc) 6588 return -ENODEV; 6589 6590 /* Before proceed, wait for POST done and device ready */ 6591 rc = lpfc_sli4_post_status_check(phba); 6592 if (rc) 6593 return -ENODEV; 6594 6595 /* Allocate all driver workqueues here */ 6596 6597 /* The lpfc_wq workqueue for deferred irq use */ 6598 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 6599 6600 /* 6601 * Initialize timers used by driver 6602 */ 6603 6604 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 6605 6606 /* FCF rediscover timer */ 6607 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 6608 6609 /* 6610 * Control structure for handling external multi-buffer mailbox 6611 * command pass-through. 6612 */ 6613 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 6614 sizeof(struct lpfc_mbox_ext_buf_ctx)); 6615 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 6616 6617 phba->max_vpi = LPFC_MAX_VPI; 6618 6619 /* This will be set to correct value after the read_config mbox */ 6620 phba->max_vports = 0; 6621 6622 /* Program the default value of vlan_id and fc_map */ 6623 phba->valid_vlan = 0; 6624 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 6625 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 6626 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 6627 6628 /* 6629 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 6630 * we will associate a new ring, for each EQ/CQ/WQ tuple. 6631 * The WQ create will allocate the ring. 6632 */ 6633 6634 /* Initialize buffer queue management fields */ 6635 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 6636 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 6637 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 6638 6639 /* 6640 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 6641 */ 6642 /* Initialize the Abort buffer list used by driver */ 6643 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 6644 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 6645 6646 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6647 /* Initialize the Abort nvme buffer list used by driver */ 6648 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 6649 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 6650 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 6651 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 6652 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 6653 } 6654 6655 /* This abort list used by worker thread */ 6656 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 6657 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 6658 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 6659 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 6660 6661 /* 6662 * Initialize driver internal slow-path work queues 6663 */ 6664 6665 /* Driver internel slow-path CQ Event pool */ 6666 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 6667 /* Response IOCB work queue list */ 6668 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 6669 /* Asynchronous event CQ Event work queue list */ 6670 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 6671 /* Slow-path XRI aborted CQ Event work queue list */ 6672 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 6673 /* Receive queue CQ Event work queue list */ 6674 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 6675 6676 /* Initialize extent block lists. */ 6677 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 6678 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 6679 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 6680 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 6681 6682 /* Initialize mboxq lists. If the early init routines fail 6683 * these lists need to be correctly initialized. 6684 */ 6685 INIT_LIST_HEAD(&phba->sli.mboxq); 6686 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 6687 6688 /* initialize optic_state to 0xFF */ 6689 phba->sli4_hba.lnk_info.optic_state = 0xff; 6690 6691 /* Allocate device driver memory */ 6692 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 6693 if (rc) 6694 return -ENOMEM; 6695 6696 /* IF Type 2 ports get initialized now. */ 6697 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 6698 LPFC_SLI_INTF_IF_TYPE_2) { 6699 rc = lpfc_pci_function_reset(phba); 6700 if (unlikely(rc)) { 6701 rc = -ENODEV; 6702 goto out_free_mem; 6703 } 6704 phba->temp_sensor_support = 1; 6705 } 6706 6707 /* Create the bootstrap mailbox command */ 6708 rc = lpfc_create_bootstrap_mbox(phba); 6709 if (unlikely(rc)) 6710 goto out_free_mem; 6711 6712 /* Set up the host's endian order with the device. */ 6713 rc = lpfc_setup_endian_order(phba); 6714 if (unlikely(rc)) 6715 goto out_free_bsmbx; 6716 6717 /* Set up the hba's configuration parameters. */ 6718 rc = lpfc_sli4_read_config(phba); 6719 if (unlikely(rc)) 6720 goto out_free_bsmbx; 6721 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 6722 if (unlikely(rc)) 6723 goto out_free_bsmbx; 6724 6725 /* IF Type 0 ports get initialized now. */ 6726 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6727 LPFC_SLI_INTF_IF_TYPE_0) { 6728 rc = lpfc_pci_function_reset(phba); 6729 if (unlikely(rc)) 6730 goto out_free_bsmbx; 6731 } 6732 6733 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 6734 GFP_KERNEL); 6735 if (!mboxq) { 6736 rc = -ENOMEM; 6737 goto out_free_bsmbx; 6738 } 6739 6740 /* Check for NVMET being configured */ 6741 phba->nvmet_support = 0; 6742 if (lpfc_enable_nvmet_cnt) { 6743 6744 /* First get WWN of HBA instance */ 6745 lpfc_read_nv(phba, mboxq); 6746 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6747 if (rc != MBX_SUCCESS) { 6748 lpfc_printf_log(phba, KERN_ERR, 6749 LOG_TRACE_EVENT, 6750 "6016 Mailbox failed , mbxCmd x%x " 6751 "READ_NV, mbxStatus x%x\n", 6752 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6753 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 6754 mempool_free(mboxq, phba->mbox_mem_pool); 6755 rc = -EIO; 6756 goto out_free_bsmbx; 6757 } 6758 mb = &mboxq->u.mb; 6759 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 6760 sizeof(uint64_t)); 6761 wwn = cpu_to_be64(wwn); 6762 phba->sli4_hba.wwnn.u.name = wwn; 6763 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 6764 sizeof(uint64_t)); 6765 /* wwn is WWPN of HBA instance */ 6766 wwn = cpu_to_be64(wwn); 6767 phba->sli4_hba.wwpn.u.name = wwn; 6768 6769 /* Check to see if it matches any module parameter */ 6770 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 6771 if (wwn == lpfc_enable_nvmet[i]) { 6772 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 6773 if (lpfc_nvmet_mem_alloc(phba)) 6774 break; 6775 6776 phba->nvmet_support = 1; /* a match */ 6777 6778 lpfc_printf_log(phba, KERN_ERR, 6779 LOG_TRACE_EVENT, 6780 "6017 NVME Target %016llx\n", 6781 wwn); 6782 #else 6783 lpfc_printf_log(phba, KERN_ERR, 6784 LOG_TRACE_EVENT, 6785 "6021 Can't enable NVME Target." 6786 " NVME_TARGET_FC infrastructure" 6787 " is not in kernel\n"); 6788 #endif 6789 /* Not supported for NVMET */ 6790 phba->cfg_xri_rebalancing = 0; 6791 if (phba->irq_chann_mode == NHT_MODE) { 6792 phba->cfg_irq_chann = 6793 phba->sli4_hba.num_present_cpu; 6794 phba->cfg_hdw_queue = 6795 phba->sli4_hba.num_present_cpu; 6796 phba->irq_chann_mode = NORMAL_MODE; 6797 } 6798 break; 6799 } 6800 } 6801 } 6802 6803 lpfc_nvme_mod_param_dep(phba); 6804 6805 /* 6806 * Get sli4 parameters that override parameters from Port capabilities. 6807 * If this call fails, it isn't critical unless the SLI4 parameters come 6808 * back in conflict. 6809 */ 6810 rc = lpfc_get_sli4_parameters(phba, mboxq); 6811 if (rc) { 6812 if_type = bf_get(lpfc_sli_intf_if_type, 6813 &phba->sli4_hba.sli_intf); 6814 if_fam = bf_get(lpfc_sli_intf_sli_family, 6815 &phba->sli4_hba.sli_intf); 6816 if (phba->sli4_hba.extents_in_use && 6817 phba->sli4_hba.rpi_hdrs_in_use) { 6818 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6819 "2999 Unsupported SLI4 Parameters " 6820 "Extents and RPI headers enabled.\n"); 6821 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6822 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 6823 mempool_free(mboxq, phba->mbox_mem_pool); 6824 rc = -EIO; 6825 goto out_free_bsmbx; 6826 } 6827 } 6828 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 6829 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 6830 mempool_free(mboxq, phba->mbox_mem_pool); 6831 rc = -EIO; 6832 goto out_free_bsmbx; 6833 } 6834 } 6835 6836 /* 6837 * 1 for cmd, 1 for rsp, NVME adds an extra one 6838 * for boundary conditions in its max_sgl_segment template. 6839 */ 6840 extra = 2; 6841 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 6842 extra++; 6843 6844 /* 6845 * It doesn't matter what family our adapter is in, we are 6846 * limited to 2 Pages, 512 SGEs, for our SGL. 6847 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 6848 */ 6849 max_buf_size = (2 * SLI4_PAGE_SIZE); 6850 6851 /* 6852 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 6853 * used to create the sg_dma_buf_pool must be calculated. 6854 */ 6855 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 6856 /* Both cfg_enable_bg and cfg_external_dif code paths */ 6857 6858 /* 6859 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 6860 * the FCP rsp, and a SGE. Sice we have no control 6861 * over how many protection segments the SCSI Layer 6862 * will hand us (ie: there could be one for every block 6863 * in the IO), just allocate enough SGEs to accomidate 6864 * our max amount and we need to limit lpfc_sg_seg_cnt 6865 * to minimize the risk of running out. 6866 */ 6867 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6868 sizeof(struct fcp_rsp) + max_buf_size; 6869 6870 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 6871 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 6872 6873 /* 6874 * If supporting DIF, reduce the seg count for scsi to 6875 * allow room for the DIF sges. 6876 */ 6877 if (phba->cfg_enable_bg && 6878 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 6879 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 6880 else 6881 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6882 6883 } else { 6884 /* 6885 * The scsi_buf for a regular I/O holds the FCP cmnd, 6886 * the FCP rsp, a SGE for each, and a SGE for up to 6887 * cfg_sg_seg_cnt data segments. 6888 */ 6889 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 6890 sizeof(struct fcp_rsp) + 6891 ((phba->cfg_sg_seg_cnt + extra) * 6892 sizeof(struct sli4_sge)); 6893 6894 /* Total SGEs for scsi_sg_list */ 6895 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 6896 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 6897 6898 /* 6899 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 6900 * need to post 1 page for the SGL. 6901 */ 6902 } 6903 6904 if (phba->cfg_xpsgl && !phba->nvmet_support) 6905 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 6906 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 6907 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 6908 else 6909 phba->cfg_sg_dma_buf_size = 6910 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 6911 6912 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 6913 sizeof(struct sli4_sge); 6914 6915 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 6916 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 6917 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 6918 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 6919 "6300 Reducing NVME sg segment " 6920 "cnt to %d\n", 6921 LPFC_MAX_NVME_SEG_CNT); 6922 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 6923 } else 6924 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 6925 } 6926 6927 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 6928 "9087 sg_seg_cnt:%d dmabuf_size:%d " 6929 "total:%d scsi:%d nvme:%d\n", 6930 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 6931 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 6932 phba->cfg_nvme_seg_cnt); 6933 6934 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 6935 i = phba->cfg_sg_dma_buf_size; 6936 else 6937 i = SLI4_PAGE_SIZE; 6938 6939 phba->lpfc_sg_dma_buf_pool = 6940 dma_pool_create("lpfc_sg_dma_buf_pool", 6941 &phba->pcidev->dev, 6942 phba->cfg_sg_dma_buf_size, 6943 i, 0); 6944 if (!phba->lpfc_sg_dma_buf_pool) 6945 goto out_free_bsmbx; 6946 6947 phba->lpfc_cmd_rsp_buf_pool = 6948 dma_pool_create("lpfc_cmd_rsp_buf_pool", 6949 &phba->pcidev->dev, 6950 sizeof(struct fcp_cmnd) + 6951 sizeof(struct fcp_rsp), 6952 i, 0); 6953 if (!phba->lpfc_cmd_rsp_buf_pool) 6954 goto out_free_sg_dma_buf; 6955 6956 mempool_free(mboxq, phba->mbox_mem_pool); 6957 6958 /* Verify OAS is supported */ 6959 lpfc_sli4_oas_verify(phba); 6960 6961 /* Verify RAS support on adapter */ 6962 lpfc_sli4_ras_init(phba); 6963 6964 /* Verify all the SLI4 queues */ 6965 rc = lpfc_sli4_queue_verify(phba); 6966 if (rc) 6967 goto out_free_cmd_rsp_buf; 6968 6969 /* Create driver internal CQE event pool */ 6970 rc = lpfc_sli4_cq_event_pool_create(phba); 6971 if (rc) 6972 goto out_free_cmd_rsp_buf; 6973 6974 /* Initialize sgl lists per host */ 6975 lpfc_init_sgl_list(phba); 6976 6977 /* Allocate and initialize active sgl array */ 6978 rc = lpfc_init_active_sgl_array(phba); 6979 if (rc) { 6980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6981 "1430 Failed to initialize sgl list.\n"); 6982 goto out_destroy_cq_event_pool; 6983 } 6984 rc = lpfc_sli4_init_rpi_hdrs(phba); 6985 if (rc) { 6986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6987 "1432 Failed to initialize rpi headers.\n"); 6988 goto out_free_active_sgl; 6989 } 6990 6991 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 6992 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 6993 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 6994 GFP_KERNEL); 6995 if (!phba->fcf.fcf_rr_bmask) { 6996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6997 "2759 Failed allocate memory for FCF round " 6998 "robin failover bmask\n"); 6999 rc = -ENOMEM; 7000 goto out_remove_rpi_hdrs; 7001 } 7002 7003 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 7004 sizeof(struct lpfc_hba_eq_hdl), 7005 GFP_KERNEL); 7006 if (!phba->sli4_hba.hba_eq_hdl) { 7007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7008 "2572 Failed allocate memory for " 7009 "fast-path per-EQ handle array\n"); 7010 rc = -ENOMEM; 7011 goto out_free_fcf_rr_bmask; 7012 } 7013 7014 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 7015 sizeof(struct lpfc_vector_map_info), 7016 GFP_KERNEL); 7017 if (!phba->sli4_hba.cpu_map) { 7018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7019 "3327 Failed allocate memory for msi-x " 7020 "interrupt vector mapping\n"); 7021 rc = -ENOMEM; 7022 goto out_free_hba_eq_hdl; 7023 } 7024 7025 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 7026 if (!phba->sli4_hba.eq_info) { 7027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7028 "3321 Failed allocation for per_cpu stats\n"); 7029 rc = -ENOMEM; 7030 goto out_free_hba_cpu_map; 7031 } 7032 7033 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 7034 sizeof(*phba->sli4_hba.idle_stat), 7035 GFP_KERNEL); 7036 if (!phba->sli4_hba.idle_stat) { 7037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7038 "3390 Failed allocation for idle_stat\n"); 7039 rc = -ENOMEM; 7040 goto out_free_hba_eq_info; 7041 } 7042 7043 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7044 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 7045 if (!phba->sli4_hba.c_stat) { 7046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7047 "3332 Failed allocating per cpu hdwq stats\n"); 7048 rc = -ENOMEM; 7049 goto out_free_hba_idle_stat; 7050 } 7051 #endif 7052 7053 /* 7054 * Enable sr-iov virtual functions if supported and configured 7055 * through the module parameter. 7056 */ 7057 if (phba->cfg_sriov_nr_virtfn > 0) { 7058 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7059 phba->cfg_sriov_nr_virtfn); 7060 if (rc) { 7061 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7062 "3020 Requested number of SR-IOV " 7063 "virtual functions (%d) is not " 7064 "supported\n", 7065 phba->cfg_sriov_nr_virtfn); 7066 phba->cfg_sriov_nr_virtfn = 0; 7067 } 7068 } 7069 7070 return 0; 7071 7072 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7073 out_free_hba_idle_stat: 7074 kfree(phba->sli4_hba.idle_stat); 7075 #endif 7076 out_free_hba_eq_info: 7077 free_percpu(phba->sli4_hba.eq_info); 7078 out_free_hba_cpu_map: 7079 kfree(phba->sli4_hba.cpu_map); 7080 out_free_hba_eq_hdl: 7081 kfree(phba->sli4_hba.hba_eq_hdl); 7082 out_free_fcf_rr_bmask: 7083 kfree(phba->fcf.fcf_rr_bmask); 7084 out_remove_rpi_hdrs: 7085 lpfc_sli4_remove_rpi_hdrs(phba); 7086 out_free_active_sgl: 7087 lpfc_free_active_sgl(phba); 7088 out_destroy_cq_event_pool: 7089 lpfc_sli4_cq_event_pool_destroy(phba); 7090 out_free_cmd_rsp_buf: 7091 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 7092 phba->lpfc_cmd_rsp_buf_pool = NULL; 7093 out_free_sg_dma_buf: 7094 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7095 phba->lpfc_sg_dma_buf_pool = NULL; 7096 out_free_bsmbx: 7097 lpfc_destroy_bootstrap_mbox(phba); 7098 out_free_mem: 7099 lpfc_mem_free(phba); 7100 return rc; 7101 } 7102 7103 /** 7104 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 7105 * @phba: pointer to lpfc hba data structure. 7106 * 7107 * This routine is invoked to unset the driver internal resources set up 7108 * specific for supporting the SLI-4 HBA device it attached to. 7109 **/ 7110 static void 7111 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 7112 { 7113 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 7114 7115 free_percpu(phba->sli4_hba.eq_info); 7116 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 7117 free_percpu(phba->sli4_hba.c_stat); 7118 #endif 7119 kfree(phba->sli4_hba.idle_stat); 7120 7121 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 7122 kfree(phba->sli4_hba.cpu_map); 7123 phba->sli4_hba.num_possible_cpu = 0; 7124 phba->sli4_hba.num_present_cpu = 0; 7125 phba->sli4_hba.curr_disp_cpu = 0; 7126 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 7127 7128 /* Free memory allocated for fast-path work queue handles */ 7129 kfree(phba->sli4_hba.hba_eq_hdl); 7130 7131 /* Free the allocated rpi headers. */ 7132 lpfc_sli4_remove_rpi_hdrs(phba); 7133 lpfc_sli4_remove_rpis(phba); 7134 7135 /* Free eligible FCF index bmask */ 7136 kfree(phba->fcf.fcf_rr_bmask); 7137 7138 /* Free the ELS sgl list */ 7139 lpfc_free_active_sgl(phba); 7140 lpfc_free_els_sgl_list(phba); 7141 lpfc_free_nvmet_sgl_list(phba); 7142 7143 /* Free the completion queue EQ event pool */ 7144 lpfc_sli4_cq_event_release_all(phba); 7145 lpfc_sli4_cq_event_pool_destroy(phba); 7146 7147 /* Release resource identifiers. */ 7148 lpfc_sli4_dealloc_resource_identifiers(phba); 7149 7150 /* Free the bsmbx region. */ 7151 lpfc_destroy_bootstrap_mbox(phba); 7152 7153 /* Free the SLI Layer memory with SLI4 HBAs */ 7154 lpfc_mem_free_all(phba); 7155 7156 /* Free the current connect table */ 7157 list_for_each_entry_safe(conn_entry, next_conn_entry, 7158 &phba->fcf_conn_rec_list, list) { 7159 list_del_init(&conn_entry->list); 7160 kfree(conn_entry); 7161 } 7162 7163 return; 7164 } 7165 7166 /** 7167 * lpfc_init_api_table_setup - Set up init api function jump table 7168 * @phba: The hba struct for which this call is being executed. 7169 * @dev_grp: The HBA PCI-Device group number. 7170 * 7171 * This routine sets up the device INIT interface API function jump table 7172 * in @phba struct. 7173 * 7174 * Returns: 0 - success, -ENODEV - failure. 7175 **/ 7176 int 7177 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7178 { 7179 phba->lpfc_hba_init_link = lpfc_hba_init_link; 7180 phba->lpfc_hba_down_link = lpfc_hba_down_link; 7181 phba->lpfc_selective_reset = lpfc_selective_reset; 7182 switch (dev_grp) { 7183 case LPFC_PCI_DEV_LP: 7184 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 7185 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 7186 phba->lpfc_stop_port = lpfc_stop_port_s3; 7187 break; 7188 case LPFC_PCI_DEV_OC: 7189 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 7190 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 7191 phba->lpfc_stop_port = lpfc_stop_port_s4; 7192 break; 7193 default: 7194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7195 "1431 Invalid HBA PCI-device group: 0x%x\n", 7196 dev_grp); 7197 return -ENODEV; 7198 } 7199 return 0; 7200 } 7201 7202 /** 7203 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 7204 * @phba: pointer to lpfc hba data structure. 7205 * 7206 * This routine is invoked to set up the driver internal resources after the 7207 * device specific resource setup to support the HBA device it attached to. 7208 * 7209 * Return codes 7210 * 0 - successful 7211 * other values - error 7212 **/ 7213 static int 7214 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 7215 { 7216 int error; 7217 7218 /* Startup the kernel thread for this host adapter. */ 7219 phba->worker_thread = kthread_run(lpfc_do_work, phba, 7220 "lpfc_worker_%d", phba->brd_no); 7221 if (IS_ERR(phba->worker_thread)) { 7222 error = PTR_ERR(phba->worker_thread); 7223 return error; 7224 } 7225 7226 return 0; 7227 } 7228 7229 /** 7230 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 7231 * @phba: pointer to lpfc hba data structure. 7232 * 7233 * This routine is invoked to unset the driver internal resources set up after 7234 * the device specific resource setup for supporting the HBA device it 7235 * attached to. 7236 **/ 7237 static void 7238 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 7239 { 7240 if (phba->wq) { 7241 flush_workqueue(phba->wq); 7242 destroy_workqueue(phba->wq); 7243 phba->wq = NULL; 7244 } 7245 7246 /* Stop kernel worker thread */ 7247 if (phba->worker_thread) 7248 kthread_stop(phba->worker_thread); 7249 } 7250 7251 /** 7252 * lpfc_free_iocb_list - Free iocb list. 7253 * @phba: pointer to lpfc hba data structure. 7254 * 7255 * This routine is invoked to free the driver's IOCB list and memory. 7256 **/ 7257 void 7258 lpfc_free_iocb_list(struct lpfc_hba *phba) 7259 { 7260 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 7261 7262 spin_lock_irq(&phba->hbalock); 7263 list_for_each_entry_safe(iocbq_entry, iocbq_next, 7264 &phba->lpfc_iocb_list, list) { 7265 list_del(&iocbq_entry->list); 7266 kfree(iocbq_entry); 7267 phba->total_iocbq_bufs--; 7268 } 7269 spin_unlock_irq(&phba->hbalock); 7270 7271 return; 7272 } 7273 7274 /** 7275 * lpfc_init_iocb_list - Allocate and initialize iocb list. 7276 * @phba: pointer to lpfc hba data structure. 7277 * @iocb_count: number of requested iocbs 7278 * 7279 * This routine is invoked to allocate and initizlize the driver's IOCB 7280 * list and set up the IOCB tag array accordingly. 7281 * 7282 * Return codes 7283 * 0 - successful 7284 * other values - error 7285 **/ 7286 int 7287 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 7288 { 7289 struct lpfc_iocbq *iocbq_entry = NULL; 7290 uint16_t iotag; 7291 int i; 7292 7293 /* Initialize and populate the iocb list per host. */ 7294 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 7295 for (i = 0; i < iocb_count; i++) { 7296 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 7297 if (iocbq_entry == NULL) { 7298 printk(KERN_ERR "%s: only allocated %d iocbs of " 7299 "expected %d count. Unloading driver.\n", 7300 __func__, i, iocb_count); 7301 goto out_free_iocbq; 7302 } 7303 7304 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 7305 if (iotag == 0) { 7306 kfree(iocbq_entry); 7307 printk(KERN_ERR "%s: failed to allocate IOTAG. " 7308 "Unloading driver.\n", __func__); 7309 goto out_free_iocbq; 7310 } 7311 iocbq_entry->sli4_lxritag = NO_XRI; 7312 iocbq_entry->sli4_xritag = NO_XRI; 7313 7314 spin_lock_irq(&phba->hbalock); 7315 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 7316 phba->total_iocbq_bufs++; 7317 spin_unlock_irq(&phba->hbalock); 7318 } 7319 7320 return 0; 7321 7322 out_free_iocbq: 7323 lpfc_free_iocb_list(phba); 7324 7325 return -ENOMEM; 7326 } 7327 7328 /** 7329 * lpfc_free_sgl_list - Free a given sgl list. 7330 * @phba: pointer to lpfc hba data structure. 7331 * @sglq_list: pointer to the head of sgl list. 7332 * 7333 * This routine is invoked to free a give sgl list and memory. 7334 **/ 7335 void 7336 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 7337 { 7338 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7339 7340 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 7341 list_del(&sglq_entry->list); 7342 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 7343 kfree(sglq_entry); 7344 } 7345 } 7346 7347 /** 7348 * lpfc_free_els_sgl_list - Free els sgl list. 7349 * @phba: pointer to lpfc hba data structure. 7350 * 7351 * This routine is invoked to free the driver's els sgl list and memory. 7352 **/ 7353 static void 7354 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 7355 { 7356 LIST_HEAD(sglq_list); 7357 7358 /* Retrieve all els sgls from driver list */ 7359 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 7360 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 7361 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 7362 7363 /* Now free the sgl list */ 7364 lpfc_free_sgl_list(phba, &sglq_list); 7365 } 7366 7367 /** 7368 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 7369 * @phba: pointer to lpfc hba data structure. 7370 * 7371 * This routine is invoked to free the driver's nvmet sgl list and memory. 7372 **/ 7373 static void 7374 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 7375 { 7376 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 7377 LIST_HEAD(sglq_list); 7378 7379 /* Retrieve all nvmet sgls from driver list */ 7380 spin_lock_irq(&phba->hbalock); 7381 spin_lock(&phba->sli4_hba.sgl_list_lock); 7382 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 7383 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7384 spin_unlock_irq(&phba->hbalock); 7385 7386 /* Now free the sgl list */ 7387 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 7388 list_del(&sglq_entry->list); 7389 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 7390 kfree(sglq_entry); 7391 } 7392 7393 /* Update the nvmet_xri_cnt to reflect no current sgls. 7394 * The next initialization cycle sets the count and allocates 7395 * the sgls over again. 7396 */ 7397 phba->sli4_hba.nvmet_xri_cnt = 0; 7398 } 7399 7400 /** 7401 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 7402 * @phba: pointer to lpfc hba data structure. 7403 * 7404 * This routine is invoked to allocate the driver's active sgl memory. 7405 * This array will hold the sglq_entry's for active IOs. 7406 **/ 7407 static int 7408 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 7409 { 7410 int size; 7411 size = sizeof(struct lpfc_sglq *); 7412 size *= phba->sli4_hba.max_cfg_param.max_xri; 7413 7414 phba->sli4_hba.lpfc_sglq_active_list = 7415 kzalloc(size, GFP_KERNEL); 7416 if (!phba->sli4_hba.lpfc_sglq_active_list) 7417 return -ENOMEM; 7418 return 0; 7419 } 7420 7421 /** 7422 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 7423 * @phba: pointer to lpfc hba data structure. 7424 * 7425 * This routine is invoked to walk through the array of active sglq entries 7426 * and free all of the resources. 7427 * This is just a place holder for now. 7428 **/ 7429 static void 7430 lpfc_free_active_sgl(struct lpfc_hba *phba) 7431 { 7432 kfree(phba->sli4_hba.lpfc_sglq_active_list); 7433 } 7434 7435 /** 7436 * lpfc_init_sgl_list - Allocate and initialize sgl list. 7437 * @phba: pointer to lpfc hba data structure. 7438 * 7439 * This routine is invoked to allocate and initizlize the driver's sgl 7440 * list and set up the sgl xritag tag array accordingly. 7441 * 7442 **/ 7443 static void 7444 lpfc_init_sgl_list(struct lpfc_hba *phba) 7445 { 7446 /* Initialize and populate the sglq list per host/VF. */ 7447 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 7448 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 7449 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 7450 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 7451 7452 /* els xri-sgl book keeping */ 7453 phba->sli4_hba.els_xri_cnt = 0; 7454 7455 /* nvme xri-buffer book keeping */ 7456 phba->sli4_hba.io_xri_cnt = 0; 7457 } 7458 7459 /** 7460 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 7461 * @phba: pointer to lpfc hba data structure. 7462 * 7463 * This routine is invoked to post rpi header templates to the 7464 * port for those SLI4 ports that do not support extents. This routine 7465 * posts a PAGE_SIZE memory region to the port to hold up to 7466 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 7467 * and should be called only when interrupts are disabled. 7468 * 7469 * Return codes 7470 * 0 - successful 7471 * -ERROR - otherwise. 7472 **/ 7473 int 7474 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 7475 { 7476 int rc = 0; 7477 struct lpfc_rpi_hdr *rpi_hdr; 7478 7479 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 7480 if (!phba->sli4_hba.rpi_hdrs_in_use) 7481 return rc; 7482 if (phba->sli4_hba.extents_in_use) 7483 return -EIO; 7484 7485 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 7486 if (!rpi_hdr) { 7487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7488 "0391 Error during rpi post operation\n"); 7489 lpfc_sli4_remove_rpis(phba); 7490 rc = -ENODEV; 7491 } 7492 7493 return rc; 7494 } 7495 7496 /** 7497 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 7498 * @phba: pointer to lpfc hba data structure. 7499 * 7500 * This routine is invoked to allocate a single 4KB memory region to 7501 * support rpis and stores them in the phba. This single region 7502 * provides support for up to 64 rpis. The region is used globally 7503 * by the device. 7504 * 7505 * Returns: 7506 * A valid rpi hdr on success. 7507 * A NULL pointer on any failure. 7508 **/ 7509 struct lpfc_rpi_hdr * 7510 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 7511 { 7512 uint16_t rpi_limit, curr_rpi_range; 7513 struct lpfc_dmabuf *dmabuf; 7514 struct lpfc_rpi_hdr *rpi_hdr; 7515 7516 /* 7517 * If the SLI4 port supports extents, posting the rpi header isn't 7518 * required. Set the expected maximum count and let the actual value 7519 * get set when extents are fully allocated. 7520 */ 7521 if (!phba->sli4_hba.rpi_hdrs_in_use) 7522 return NULL; 7523 if (phba->sli4_hba.extents_in_use) 7524 return NULL; 7525 7526 /* The limit on the logical index is just the max_rpi count. */ 7527 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 7528 7529 spin_lock_irq(&phba->hbalock); 7530 /* 7531 * Establish the starting RPI in this header block. The starting 7532 * rpi is normalized to a zero base because the physical rpi is 7533 * port based. 7534 */ 7535 curr_rpi_range = phba->sli4_hba.next_rpi; 7536 spin_unlock_irq(&phba->hbalock); 7537 7538 /* Reached full RPI range */ 7539 if (curr_rpi_range == rpi_limit) 7540 return NULL; 7541 7542 /* 7543 * First allocate the protocol header region for the port. The 7544 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 7545 */ 7546 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 7547 if (!dmabuf) 7548 return NULL; 7549 7550 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 7551 LPFC_HDR_TEMPLATE_SIZE, 7552 &dmabuf->phys, GFP_KERNEL); 7553 if (!dmabuf->virt) { 7554 rpi_hdr = NULL; 7555 goto err_free_dmabuf; 7556 } 7557 7558 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 7559 rpi_hdr = NULL; 7560 goto err_free_coherent; 7561 } 7562 7563 /* Save the rpi header data for cleanup later. */ 7564 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 7565 if (!rpi_hdr) 7566 goto err_free_coherent; 7567 7568 rpi_hdr->dmabuf = dmabuf; 7569 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 7570 rpi_hdr->page_count = 1; 7571 spin_lock_irq(&phba->hbalock); 7572 7573 /* The rpi_hdr stores the logical index only. */ 7574 rpi_hdr->start_rpi = curr_rpi_range; 7575 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 7576 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 7577 7578 spin_unlock_irq(&phba->hbalock); 7579 return rpi_hdr; 7580 7581 err_free_coherent: 7582 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 7583 dmabuf->virt, dmabuf->phys); 7584 err_free_dmabuf: 7585 kfree(dmabuf); 7586 return NULL; 7587 } 7588 7589 /** 7590 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 7591 * @phba: pointer to lpfc hba data structure. 7592 * 7593 * This routine is invoked to remove all memory resources allocated 7594 * to support rpis for SLI4 ports not supporting extents. This routine 7595 * presumes the caller has released all rpis consumed by fabric or port 7596 * logins and is prepared to have the header pages removed. 7597 **/ 7598 void 7599 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 7600 { 7601 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 7602 7603 if (!phba->sli4_hba.rpi_hdrs_in_use) 7604 goto exit; 7605 7606 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 7607 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 7608 list_del(&rpi_hdr->list); 7609 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 7610 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 7611 kfree(rpi_hdr->dmabuf); 7612 kfree(rpi_hdr); 7613 } 7614 exit: 7615 /* There are no rpis available to the port now. */ 7616 phba->sli4_hba.next_rpi = 0; 7617 } 7618 7619 /** 7620 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 7621 * @pdev: pointer to pci device data structure. 7622 * 7623 * This routine is invoked to allocate the driver hba data structure for an 7624 * HBA device. If the allocation is successful, the phba reference to the 7625 * PCI device data structure is set. 7626 * 7627 * Return codes 7628 * pointer to @phba - successful 7629 * NULL - error 7630 **/ 7631 static struct lpfc_hba * 7632 lpfc_hba_alloc(struct pci_dev *pdev) 7633 { 7634 struct lpfc_hba *phba; 7635 7636 /* Allocate memory for HBA structure */ 7637 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 7638 if (!phba) { 7639 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 7640 return NULL; 7641 } 7642 7643 /* Set reference to PCI device in HBA structure */ 7644 phba->pcidev = pdev; 7645 7646 /* Assign an unused board number */ 7647 phba->brd_no = lpfc_get_instance(); 7648 if (phba->brd_no < 0) { 7649 kfree(phba); 7650 return NULL; 7651 } 7652 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 7653 7654 spin_lock_init(&phba->ct_ev_lock); 7655 INIT_LIST_HEAD(&phba->ct_ev_waiters); 7656 7657 return phba; 7658 } 7659 7660 /** 7661 * lpfc_hba_free - Free driver hba data structure with a device. 7662 * @phba: pointer to lpfc hba data structure. 7663 * 7664 * This routine is invoked to free the driver hba data structure with an 7665 * HBA device. 7666 **/ 7667 static void 7668 lpfc_hba_free(struct lpfc_hba *phba) 7669 { 7670 if (phba->sli_rev == LPFC_SLI_REV4) 7671 kfree(phba->sli4_hba.hdwq); 7672 7673 /* Release the driver assigned board number */ 7674 idr_remove(&lpfc_hba_index, phba->brd_no); 7675 7676 /* Free memory allocated with sli3 rings */ 7677 kfree(phba->sli.sli3_ring); 7678 phba->sli.sli3_ring = NULL; 7679 7680 kfree(phba); 7681 return; 7682 } 7683 7684 /** 7685 * lpfc_create_shost - Create hba physical port with associated scsi host. 7686 * @phba: pointer to lpfc hba data structure. 7687 * 7688 * This routine is invoked to create HBA physical port and associate a SCSI 7689 * host with it. 7690 * 7691 * Return codes 7692 * 0 - successful 7693 * other values - error 7694 **/ 7695 static int 7696 lpfc_create_shost(struct lpfc_hba *phba) 7697 { 7698 struct lpfc_vport *vport; 7699 struct Scsi_Host *shost; 7700 7701 /* Initialize HBA FC structure */ 7702 phba->fc_edtov = FF_DEF_EDTOV; 7703 phba->fc_ratov = FF_DEF_RATOV; 7704 phba->fc_altov = FF_DEF_ALTOV; 7705 phba->fc_arbtov = FF_DEF_ARBTOV; 7706 7707 atomic_set(&phba->sdev_cnt, 0); 7708 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 7709 if (!vport) 7710 return -ENODEV; 7711 7712 shost = lpfc_shost_from_vport(vport); 7713 phba->pport = vport; 7714 7715 if (phba->nvmet_support) { 7716 /* Only 1 vport (pport) will support NVME target */ 7717 phba->targetport = NULL; 7718 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 7719 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 7720 "6076 NVME Target Found\n"); 7721 } 7722 7723 lpfc_debugfs_initialize(vport); 7724 /* Put reference to SCSI host to driver's device private data */ 7725 pci_set_drvdata(phba->pcidev, shost); 7726 7727 /* 7728 * At this point we are fully registered with PSA. In addition, 7729 * any initial discovery should be completed. 7730 */ 7731 vport->load_flag |= FC_ALLOW_FDMI; 7732 if (phba->cfg_enable_SmartSAN || 7733 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) { 7734 7735 /* Setup appropriate attribute masks */ 7736 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 7737 if (phba->cfg_enable_SmartSAN) 7738 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 7739 else 7740 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 7741 } 7742 return 0; 7743 } 7744 7745 /** 7746 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 7747 * @phba: pointer to lpfc hba data structure. 7748 * 7749 * This routine is invoked to destroy HBA physical port and the associated 7750 * SCSI host. 7751 **/ 7752 static void 7753 lpfc_destroy_shost(struct lpfc_hba *phba) 7754 { 7755 struct lpfc_vport *vport = phba->pport; 7756 7757 /* Destroy physical port that associated with the SCSI host */ 7758 destroy_port(vport); 7759 7760 return; 7761 } 7762 7763 /** 7764 * lpfc_setup_bg - Setup Block guard structures and debug areas. 7765 * @phba: pointer to lpfc hba data structure. 7766 * @shost: the shost to be used to detect Block guard settings. 7767 * 7768 * This routine sets up the local Block guard protocol settings for @shost. 7769 * This routine also allocates memory for debugging bg buffers. 7770 **/ 7771 static void 7772 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 7773 { 7774 uint32_t old_mask; 7775 uint32_t old_guard; 7776 7777 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7778 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7779 "1478 Registering BlockGuard with the " 7780 "SCSI layer\n"); 7781 7782 old_mask = phba->cfg_prot_mask; 7783 old_guard = phba->cfg_prot_guard; 7784 7785 /* Only allow supported values */ 7786 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 7787 SHOST_DIX_TYPE0_PROTECTION | 7788 SHOST_DIX_TYPE1_PROTECTION); 7789 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 7790 SHOST_DIX_GUARD_CRC); 7791 7792 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 7793 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 7794 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 7795 7796 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 7797 if ((old_mask != phba->cfg_prot_mask) || 7798 (old_guard != phba->cfg_prot_guard)) 7799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7800 "1475 Registering BlockGuard with the " 7801 "SCSI layer: mask %d guard %d\n", 7802 phba->cfg_prot_mask, 7803 phba->cfg_prot_guard); 7804 7805 scsi_host_set_prot(shost, phba->cfg_prot_mask); 7806 scsi_host_set_guard(shost, phba->cfg_prot_guard); 7807 } else 7808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7809 "1479 Not Registering BlockGuard with the SCSI " 7810 "layer, Bad protection parameters: %d %d\n", 7811 old_mask, old_guard); 7812 } 7813 } 7814 7815 /** 7816 * lpfc_post_init_setup - Perform necessary device post initialization setup. 7817 * @phba: pointer to lpfc hba data structure. 7818 * 7819 * This routine is invoked to perform all the necessary post initialization 7820 * setup for the device. 7821 **/ 7822 static void 7823 lpfc_post_init_setup(struct lpfc_hba *phba) 7824 { 7825 struct Scsi_Host *shost; 7826 struct lpfc_adapter_event_header adapter_event; 7827 7828 /* Get the default values for Model Name and Description */ 7829 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 7830 7831 /* 7832 * hba setup may have changed the hba_queue_depth so we need to 7833 * adjust the value of can_queue. 7834 */ 7835 shost = pci_get_drvdata(phba->pcidev); 7836 shost->can_queue = phba->cfg_hba_queue_depth - 10; 7837 7838 lpfc_host_attrib_init(shost); 7839 7840 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 7841 spin_lock_irq(shost->host_lock); 7842 lpfc_poll_start_timer(phba); 7843 spin_unlock_irq(shost->host_lock); 7844 } 7845 7846 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7847 "0428 Perform SCSI scan\n"); 7848 /* Send board arrival event to upper layer */ 7849 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 7850 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 7851 fc_host_post_vendor_event(shost, fc_get_event_number(), 7852 sizeof(adapter_event), 7853 (char *) &adapter_event, 7854 LPFC_NL_VENDOR_ID); 7855 return; 7856 } 7857 7858 /** 7859 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 7860 * @phba: pointer to lpfc hba data structure. 7861 * 7862 * This routine is invoked to set up the PCI device memory space for device 7863 * with SLI-3 interface spec. 7864 * 7865 * Return codes 7866 * 0 - successful 7867 * other values - error 7868 **/ 7869 static int 7870 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 7871 { 7872 struct pci_dev *pdev = phba->pcidev; 7873 unsigned long bar0map_len, bar2map_len; 7874 int i, hbq_count; 7875 void *ptr; 7876 int error; 7877 7878 if (!pdev) 7879 return -ENODEV; 7880 7881 /* Set the device DMA mask size */ 7882 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7883 if (error) 7884 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7885 if (error) 7886 return error; 7887 error = -ENODEV; 7888 7889 /* Get the bus address of Bar0 and Bar2 and the number of bytes 7890 * required by each mapping. 7891 */ 7892 phba->pci_bar0_map = pci_resource_start(pdev, 0); 7893 bar0map_len = pci_resource_len(pdev, 0); 7894 7895 phba->pci_bar2_map = pci_resource_start(pdev, 2); 7896 bar2map_len = pci_resource_len(pdev, 2); 7897 7898 /* Map HBA SLIM to a kernel virtual address. */ 7899 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 7900 if (!phba->slim_memmap_p) { 7901 dev_printk(KERN_ERR, &pdev->dev, 7902 "ioremap failed for SLIM memory.\n"); 7903 goto out; 7904 } 7905 7906 /* Map HBA Control Registers to a kernel virtual address. */ 7907 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 7908 if (!phba->ctrl_regs_memmap_p) { 7909 dev_printk(KERN_ERR, &pdev->dev, 7910 "ioremap failed for HBA control registers.\n"); 7911 goto out_iounmap_slim; 7912 } 7913 7914 /* Allocate memory for SLI-2 structures */ 7915 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7916 &phba->slim2p.phys, GFP_KERNEL); 7917 if (!phba->slim2p.virt) 7918 goto out_iounmap; 7919 7920 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 7921 phba->mbox_ext = (phba->slim2p.virt + 7922 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 7923 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 7924 phba->IOCBs = (phba->slim2p.virt + 7925 offsetof(struct lpfc_sli2_slim, IOCBs)); 7926 7927 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 7928 lpfc_sli_hbq_size(), 7929 &phba->hbqslimp.phys, 7930 GFP_KERNEL); 7931 if (!phba->hbqslimp.virt) 7932 goto out_free_slim; 7933 7934 hbq_count = lpfc_sli_hbq_count(); 7935 ptr = phba->hbqslimp.virt; 7936 for (i = 0; i < hbq_count; ++i) { 7937 phba->hbqs[i].hbq_virt = ptr; 7938 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 7939 ptr += (lpfc_hbq_defs[i]->entry_count * 7940 sizeof(struct lpfc_hbq_entry)); 7941 } 7942 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 7943 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 7944 7945 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 7946 7947 phba->MBslimaddr = phba->slim_memmap_p; 7948 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 7949 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 7950 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 7951 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 7952 7953 return 0; 7954 7955 out_free_slim: 7956 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7957 phba->slim2p.virt, phba->slim2p.phys); 7958 out_iounmap: 7959 iounmap(phba->ctrl_regs_memmap_p); 7960 out_iounmap_slim: 7961 iounmap(phba->slim_memmap_p); 7962 out: 7963 return error; 7964 } 7965 7966 /** 7967 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 7968 * @phba: pointer to lpfc hba data structure. 7969 * 7970 * This routine is invoked to unset the PCI device memory space for device 7971 * with SLI-3 interface spec. 7972 **/ 7973 static void 7974 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 7975 { 7976 struct pci_dev *pdev; 7977 7978 /* Obtain PCI device reference */ 7979 if (!phba->pcidev) 7980 return; 7981 else 7982 pdev = phba->pcidev; 7983 7984 /* Free coherent DMA memory allocated */ 7985 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 7986 phba->hbqslimp.virt, phba->hbqslimp.phys); 7987 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 7988 phba->slim2p.virt, phba->slim2p.phys); 7989 7990 /* I/O memory unmap */ 7991 iounmap(phba->ctrl_regs_memmap_p); 7992 iounmap(phba->slim_memmap_p); 7993 7994 return; 7995 } 7996 7997 /** 7998 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 7999 * @phba: pointer to lpfc hba data structure. 8000 * 8001 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 8002 * done and check status. 8003 * 8004 * Return 0 if successful, otherwise -ENODEV. 8005 **/ 8006 int 8007 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 8008 { 8009 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 8010 struct lpfc_register reg_data; 8011 int i, port_error = 0; 8012 uint32_t if_type; 8013 8014 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 8015 memset(®_data, 0, sizeof(reg_data)); 8016 if (!phba->sli4_hba.PSMPHRregaddr) 8017 return -ENODEV; 8018 8019 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 8020 for (i = 0; i < 3000; i++) { 8021 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 8022 &portsmphr_reg.word0) || 8023 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 8024 /* Port has a fatal POST error, break out */ 8025 port_error = -ENODEV; 8026 break; 8027 } 8028 if (LPFC_POST_STAGE_PORT_READY == 8029 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 8030 break; 8031 msleep(10); 8032 } 8033 8034 /* 8035 * If there was a port error during POST, then don't proceed with 8036 * other register reads as the data may not be valid. Just exit. 8037 */ 8038 if (port_error) { 8039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8040 "1408 Port Failed POST - portsmphr=0x%x, " 8041 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 8042 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 8043 portsmphr_reg.word0, 8044 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 8045 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 8046 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 8047 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 8048 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 8049 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 8050 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 8051 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 8052 } else { 8053 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8054 "2534 Device Info: SLIFamily=0x%x, " 8055 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 8056 "SLIHint_2=0x%x, FT=0x%x\n", 8057 bf_get(lpfc_sli_intf_sli_family, 8058 &phba->sli4_hba.sli_intf), 8059 bf_get(lpfc_sli_intf_slirev, 8060 &phba->sli4_hba.sli_intf), 8061 bf_get(lpfc_sli_intf_if_type, 8062 &phba->sli4_hba.sli_intf), 8063 bf_get(lpfc_sli_intf_sli_hint1, 8064 &phba->sli4_hba.sli_intf), 8065 bf_get(lpfc_sli_intf_sli_hint2, 8066 &phba->sli4_hba.sli_intf), 8067 bf_get(lpfc_sli_intf_func_type, 8068 &phba->sli4_hba.sli_intf)); 8069 /* 8070 * Check for other Port errors during the initialization 8071 * process. Fail the load if the port did not come up 8072 * correctly. 8073 */ 8074 if_type = bf_get(lpfc_sli_intf_if_type, 8075 &phba->sli4_hba.sli_intf); 8076 switch (if_type) { 8077 case LPFC_SLI_INTF_IF_TYPE_0: 8078 phba->sli4_hba.ue_mask_lo = 8079 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 8080 phba->sli4_hba.ue_mask_hi = 8081 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 8082 uerrlo_reg.word0 = 8083 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 8084 uerrhi_reg.word0 = 8085 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 8086 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 8087 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 8088 lpfc_printf_log(phba, KERN_ERR, 8089 LOG_TRACE_EVENT, 8090 "1422 Unrecoverable Error " 8091 "Detected during POST " 8092 "uerr_lo_reg=0x%x, " 8093 "uerr_hi_reg=0x%x, " 8094 "ue_mask_lo_reg=0x%x, " 8095 "ue_mask_hi_reg=0x%x\n", 8096 uerrlo_reg.word0, 8097 uerrhi_reg.word0, 8098 phba->sli4_hba.ue_mask_lo, 8099 phba->sli4_hba.ue_mask_hi); 8100 port_error = -ENODEV; 8101 } 8102 break; 8103 case LPFC_SLI_INTF_IF_TYPE_2: 8104 case LPFC_SLI_INTF_IF_TYPE_6: 8105 /* Final checks. The port status should be clean. */ 8106 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8107 ®_data.word0) || 8108 (bf_get(lpfc_sliport_status_err, ®_data) && 8109 !bf_get(lpfc_sliport_status_rn, ®_data))) { 8110 phba->work_status[0] = 8111 readl(phba->sli4_hba.u.if_type2. 8112 ERR1regaddr); 8113 phba->work_status[1] = 8114 readl(phba->sli4_hba.u.if_type2. 8115 ERR2regaddr); 8116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8117 "2888 Unrecoverable port error " 8118 "following POST: port status reg " 8119 "0x%x, port_smphr reg 0x%x, " 8120 "error 1=0x%x, error 2=0x%x\n", 8121 reg_data.word0, 8122 portsmphr_reg.word0, 8123 phba->work_status[0], 8124 phba->work_status[1]); 8125 port_error = -ENODEV; 8126 } 8127 break; 8128 case LPFC_SLI_INTF_IF_TYPE_1: 8129 default: 8130 break; 8131 } 8132 } 8133 return port_error; 8134 } 8135 8136 /** 8137 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 8138 * @phba: pointer to lpfc hba data structure. 8139 * @if_type: The SLI4 interface type getting configured. 8140 * 8141 * This routine is invoked to set up SLI4 BAR0 PCI config space register 8142 * memory map. 8143 **/ 8144 static void 8145 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8146 { 8147 switch (if_type) { 8148 case LPFC_SLI_INTF_IF_TYPE_0: 8149 phba->sli4_hba.u.if_type0.UERRLOregaddr = 8150 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 8151 phba->sli4_hba.u.if_type0.UERRHIregaddr = 8152 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 8153 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 8154 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 8155 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 8156 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 8157 phba->sli4_hba.SLIINTFregaddr = 8158 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8159 break; 8160 case LPFC_SLI_INTF_IF_TYPE_2: 8161 phba->sli4_hba.u.if_type2.EQDregaddr = 8162 phba->sli4_hba.conf_regs_memmap_p + 8163 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8164 phba->sli4_hba.u.if_type2.ERR1regaddr = 8165 phba->sli4_hba.conf_regs_memmap_p + 8166 LPFC_CTL_PORT_ER1_OFFSET; 8167 phba->sli4_hba.u.if_type2.ERR2regaddr = 8168 phba->sli4_hba.conf_regs_memmap_p + 8169 LPFC_CTL_PORT_ER2_OFFSET; 8170 phba->sli4_hba.u.if_type2.CTRLregaddr = 8171 phba->sli4_hba.conf_regs_memmap_p + 8172 LPFC_CTL_PORT_CTL_OFFSET; 8173 phba->sli4_hba.u.if_type2.STATUSregaddr = 8174 phba->sli4_hba.conf_regs_memmap_p + 8175 LPFC_CTL_PORT_STA_OFFSET; 8176 phba->sli4_hba.SLIINTFregaddr = 8177 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 8178 phba->sli4_hba.PSMPHRregaddr = 8179 phba->sli4_hba.conf_regs_memmap_p + 8180 LPFC_CTL_PORT_SEM_OFFSET; 8181 phba->sli4_hba.RQDBregaddr = 8182 phba->sli4_hba.conf_regs_memmap_p + 8183 LPFC_ULP0_RQ_DOORBELL; 8184 phba->sli4_hba.WQDBregaddr = 8185 phba->sli4_hba.conf_regs_memmap_p + 8186 LPFC_ULP0_WQ_DOORBELL; 8187 phba->sli4_hba.CQDBregaddr = 8188 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 8189 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8190 phba->sli4_hba.MQDBregaddr = 8191 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 8192 phba->sli4_hba.BMBXregaddr = 8193 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8194 break; 8195 case LPFC_SLI_INTF_IF_TYPE_6: 8196 phba->sli4_hba.u.if_type2.EQDregaddr = 8197 phba->sli4_hba.conf_regs_memmap_p + 8198 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 8199 phba->sli4_hba.u.if_type2.ERR1regaddr = 8200 phba->sli4_hba.conf_regs_memmap_p + 8201 LPFC_CTL_PORT_ER1_OFFSET; 8202 phba->sli4_hba.u.if_type2.ERR2regaddr = 8203 phba->sli4_hba.conf_regs_memmap_p + 8204 LPFC_CTL_PORT_ER2_OFFSET; 8205 phba->sli4_hba.u.if_type2.CTRLregaddr = 8206 phba->sli4_hba.conf_regs_memmap_p + 8207 LPFC_CTL_PORT_CTL_OFFSET; 8208 phba->sli4_hba.u.if_type2.STATUSregaddr = 8209 phba->sli4_hba.conf_regs_memmap_p + 8210 LPFC_CTL_PORT_STA_OFFSET; 8211 phba->sli4_hba.PSMPHRregaddr = 8212 phba->sli4_hba.conf_regs_memmap_p + 8213 LPFC_CTL_PORT_SEM_OFFSET; 8214 phba->sli4_hba.BMBXregaddr = 8215 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 8216 break; 8217 case LPFC_SLI_INTF_IF_TYPE_1: 8218 default: 8219 dev_printk(KERN_ERR, &phba->pcidev->dev, 8220 "FATAL - unsupported SLI4 interface type - %d\n", 8221 if_type); 8222 break; 8223 } 8224 } 8225 8226 /** 8227 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 8228 * @phba: pointer to lpfc hba data structure. 8229 * @if_type: sli if type to operate on. 8230 * 8231 * This routine is invoked to set up SLI4 BAR1 register memory map. 8232 **/ 8233 static void 8234 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 8235 { 8236 switch (if_type) { 8237 case LPFC_SLI_INTF_IF_TYPE_0: 8238 phba->sli4_hba.PSMPHRregaddr = 8239 phba->sli4_hba.ctrl_regs_memmap_p + 8240 LPFC_SLIPORT_IF0_SMPHR; 8241 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8242 LPFC_HST_ISR0; 8243 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8244 LPFC_HST_IMR0; 8245 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 8246 LPFC_HST_ISCR0; 8247 break; 8248 case LPFC_SLI_INTF_IF_TYPE_6: 8249 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8250 LPFC_IF6_RQ_DOORBELL; 8251 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8252 LPFC_IF6_WQ_DOORBELL; 8253 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8254 LPFC_IF6_CQ_DOORBELL; 8255 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8256 LPFC_IF6_EQ_DOORBELL; 8257 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 8258 LPFC_IF6_MQ_DOORBELL; 8259 break; 8260 case LPFC_SLI_INTF_IF_TYPE_2: 8261 case LPFC_SLI_INTF_IF_TYPE_1: 8262 default: 8263 dev_err(&phba->pcidev->dev, 8264 "FATAL - unsupported SLI4 interface type - %d\n", 8265 if_type); 8266 break; 8267 } 8268 } 8269 8270 /** 8271 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 8272 * @phba: pointer to lpfc hba data structure. 8273 * @vf: virtual function number 8274 * 8275 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 8276 * based on the given viftual function number, @vf. 8277 * 8278 * Return 0 if successful, otherwise -ENODEV. 8279 **/ 8280 static int 8281 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 8282 { 8283 if (vf > LPFC_VIR_FUNC_MAX) 8284 return -ENODEV; 8285 8286 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8287 vf * LPFC_VFR_PAGE_SIZE + 8288 LPFC_ULP0_RQ_DOORBELL); 8289 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8290 vf * LPFC_VFR_PAGE_SIZE + 8291 LPFC_ULP0_WQ_DOORBELL); 8292 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8293 vf * LPFC_VFR_PAGE_SIZE + 8294 LPFC_EQCQ_DOORBELL); 8295 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 8296 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8297 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 8298 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 8299 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 8300 return 0; 8301 } 8302 8303 /** 8304 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 8305 * @phba: pointer to lpfc hba data structure. 8306 * 8307 * This routine is invoked to create the bootstrap mailbox 8308 * region consistent with the SLI-4 interface spec. This 8309 * routine allocates all memory necessary to communicate 8310 * mailbox commands to the port and sets up all alignment 8311 * needs. No locks are expected to be held when calling 8312 * this routine. 8313 * 8314 * Return codes 8315 * 0 - successful 8316 * -ENOMEM - could not allocated memory. 8317 **/ 8318 static int 8319 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 8320 { 8321 uint32_t bmbx_size; 8322 struct lpfc_dmabuf *dmabuf; 8323 struct dma_address *dma_address; 8324 uint32_t pa_addr; 8325 uint64_t phys_addr; 8326 8327 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8328 if (!dmabuf) 8329 return -ENOMEM; 8330 8331 /* 8332 * The bootstrap mailbox region is comprised of 2 parts 8333 * plus an alignment restriction of 16 bytes. 8334 */ 8335 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 8336 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 8337 &dmabuf->phys, GFP_KERNEL); 8338 if (!dmabuf->virt) { 8339 kfree(dmabuf); 8340 return -ENOMEM; 8341 } 8342 8343 /* 8344 * Initialize the bootstrap mailbox pointers now so that the register 8345 * operations are simple later. The mailbox dma address is required 8346 * to be 16-byte aligned. Also align the virtual memory as each 8347 * maibox is copied into the bmbx mailbox region before issuing the 8348 * command to the port. 8349 */ 8350 phba->sli4_hba.bmbx.dmabuf = dmabuf; 8351 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 8352 8353 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 8354 LPFC_ALIGN_16_BYTE); 8355 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 8356 LPFC_ALIGN_16_BYTE); 8357 8358 /* 8359 * Set the high and low physical addresses now. The SLI4 alignment 8360 * requirement is 16 bytes and the mailbox is posted to the port 8361 * as two 30-bit addresses. The other data is a bit marking whether 8362 * the 30-bit address is the high or low address. 8363 * Upcast bmbx aphys to 64bits so shift instruction compiles 8364 * clean on 32 bit machines. 8365 */ 8366 dma_address = &phba->sli4_hba.bmbx.dma_address; 8367 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 8368 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 8369 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 8370 LPFC_BMBX_BIT1_ADDR_HI); 8371 8372 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 8373 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 8374 LPFC_BMBX_BIT1_ADDR_LO); 8375 return 0; 8376 } 8377 8378 /** 8379 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 8380 * @phba: pointer to lpfc hba data structure. 8381 * 8382 * This routine is invoked to teardown the bootstrap mailbox 8383 * region and release all host resources. This routine requires 8384 * the caller to ensure all mailbox commands recovered, no 8385 * additional mailbox comands are sent, and interrupts are disabled 8386 * before calling this routine. 8387 * 8388 **/ 8389 static void 8390 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 8391 { 8392 dma_free_coherent(&phba->pcidev->dev, 8393 phba->sli4_hba.bmbx.bmbx_size, 8394 phba->sli4_hba.bmbx.dmabuf->virt, 8395 phba->sli4_hba.bmbx.dmabuf->phys); 8396 8397 kfree(phba->sli4_hba.bmbx.dmabuf); 8398 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 8399 } 8400 8401 static const char * const lpfc_topo_to_str[] = { 8402 "Loop then P2P", 8403 "Loopback", 8404 "P2P Only", 8405 "Unsupported", 8406 "Loop Only", 8407 "Unsupported", 8408 "P2P then Loop", 8409 }; 8410 8411 #define LINK_FLAGS_DEF 0x0 8412 #define LINK_FLAGS_P2P 0x1 8413 #define LINK_FLAGS_LOOP 0x2 8414 /** 8415 * lpfc_map_topology - Map the topology read from READ_CONFIG 8416 * @phba: pointer to lpfc hba data structure. 8417 * @rd_config: pointer to read config data 8418 * 8419 * This routine is invoked to map the topology values as read 8420 * from the read config mailbox command. If the persistent 8421 * topology feature is supported, the firmware will provide the 8422 * saved topology information to be used in INIT_LINK 8423 **/ 8424 static void 8425 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 8426 { 8427 u8 ptv, tf, pt; 8428 8429 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 8430 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 8431 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 8432 8433 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8434 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 8435 ptv, tf, pt); 8436 if (!ptv) { 8437 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8438 "2019 FW does not support persistent topology " 8439 "Using driver parameter defined value [%s]", 8440 lpfc_topo_to_str[phba->cfg_topology]); 8441 return; 8442 } 8443 /* FW supports persistent topology - override module parameter value */ 8444 phba->hba_flag |= HBA_PERSISTENT_TOPO; 8445 switch (phba->pcidev->device) { 8446 case PCI_DEVICE_ID_LANCER_G7_FC: 8447 case PCI_DEVICE_ID_LANCER_G6_FC: 8448 if (!tf) { 8449 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 8450 ? FLAGS_TOPOLOGY_MODE_LOOP 8451 : FLAGS_TOPOLOGY_MODE_PT_PT); 8452 } else { 8453 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 8454 } 8455 break; 8456 default: /* G5 */ 8457 if (tf) { 8458 /* If topology failover set - pt is '0' or '1' */ 8459 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 8460 FLAGS_TOPOLOGY_MODE_LOOP_PT); 8461 } else { 8462 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 8463 ? FLAGS_TOPOLOGY_MODE_PT_PT 8464 : FLAGS_TOPOLOGY_MODE_LOOP); 8465 } 8466 break; 8467 } 8468 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 8469 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8470 "2020 Using persistent topology value [%s]", 8471 lpfc_topo_to_str[phba->cfg_topology]); 8472 } else { 8473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8474 "2021 Invalid topology values from FW " 8475 "Using driver parameter defined value [%s]", 8476 lpfc_topo_to_str[phba->cfg_topology]); 8477 } 8478 } 8479 8480 /** 8481 * lpfc_sli4_read_config - Get the config parameters. 8482 * @phba: pointer to lpfc hba data structure. 8483 * 8484 * This routine is invoked to read the configuration parameters from the HBA. 8485 * The configuration parameters are used to set the base and maximum values 8486 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 8487 * allocation for the port. 8488 * 8489 * Return codes 8490 * 0 - successful 8491 * -ENOMEM - No available memory 8492 * -EIO - The mailbox failed to complete successfully. 8493 **/ 8494 int 8495 lpfc_sli4_read_config(struct lpfc_hba *phba) 8496 { 8497 LPFC_MBOXQ_t *pmb; 8498 struct lpfc_mbx_read_config *rd_config; 8499 union lpfc_sli4_cfg_shdr *shdr; 8500 uint32_t shdr_status, shdr_add_status; 8501 struct lpfc_mbx_get_func_cfg *get_func_cfg; 8502 struct lpfc_rsrc_desc_fcfcoe *desc; 8503 char *pdesc_0; 8504 uint16_t forced_link_speed; 8505 uint32_t if_type, qmin; 8506 int length, i, rc = 0, rc2; 8507 8508 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8509 if (!pmb) { 8510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8511 "2011 Unable to allocate memory for issuing " 8512 "SLI_CONFIG_SPECIAL mailbox command\n"); 8513 return -ENOMEM; 8514 } 8515 8516 lpfc_read_config(phba, pmb); 8517 8518 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8519 if (rc != MBX_SUCCESS) { 8520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8521 "2012 Mailbox failed , mbxCmd x%x " 8522 "READ_CONFIG, mbxStatus x%x\n", 8523 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8524 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8525 rc = -EIO; 8526 } else { 8527 rd_config = &pmb->u.mqe.un.rd_config; 8528 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 8529 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 8530 phba->sli4_hba.lnk_info.lnk_tp = 8531 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 8532 phba->sli4_hba.lnk_info.lnk_no = 8533 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 8534 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8535 "3081 lnk_type:%d, lnk_numb:%d\n", 8536 phba->sli4_hba.lnk_info.lnk_tp, 8537 phba->sli4_hba.lnk_info.lnk_no); 8538 } else 8539 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8540 "3082 Mailbox (x%x) returned ldv:x0\n", 8541 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 8542 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 8543 phba->bbcredit_support = 1; 8544 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 8545 } 8546 8547 phba->sli4_hba.conf_trunk = 8548 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 8549 phba->sli4_hba.extents_in_use = 8550 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 8551 phba->sli4_hba.max_cfg_param.max_xri = 8552 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 8553 /* Reduce resource usage in kdump environment */ 8554 if (is_kdump_kernel() && 8555 phba->sli4_hba.max_cfg_param.max_xri > 512) 8556 phba->sli4_hba.max_cfg_param.max_xri = 512; 8557 phba->sli4_hba.max_cfg_param.xri_base = 8558 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 8559 phba->sli4_hba.max_cfg_param.max_vpi = 8560 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 8561 /* Limit the max we support */ 8562 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 8563 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 8564 phba->sli4_hba.max_cfg_param.vpi_base = 8565 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 8566 phba->sli4_hba.max_cfg_param.max_rpi = 8567 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 8568 phba->sli4_hba.max_cfg_param.rpi_base = 8569 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 8570 phba->sli4_hba.max_cfg_param.max_vfi = 8571 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 8572 phba->sli4_hba.max_cfg_param.vfi_base = 8573 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 8574 phba->sli4_hba.max_cfg_param.max_fcfi = 8575 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 8576 phba->sli4_hba.max_cfg_param.max_eq = 8577 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 8578 phba->sli4_hba.max_cfg_param.max_rq = 8579 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 8580 phba->sli4_hba.max_cfg_param.max_wq = 8581 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 8582 phba->sli4_hba.max_cfg_param.max_cq = 8583 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 8584 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 8585 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 8586 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 8587 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 8588 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 8589 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 8590 phba->max_vports = phba->max_vpi; 8591 lpfc_map_topology(phba, rd_config); 8592 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8593 "2003 cfg params Extents? %d " 8594 "XRI(B:%d M:%d), " 8595 "VPI(B:%d M:%d) " 8596 "VFI(B:%d M:%d) " 8597 "RPI(B:%d M:%d) " 8598 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 8599 phba->sli4_hba.extents_in_use, 8600 phba->sli4_hba.max_cfg_param.xri_base, 8601 phba->sli4_hba.max_cfg_param.max_xri, 8602 phba->sli4_hba.max_cfg_param.vpi_base, 8603 phba->sli4_hba.max_cfg_param.max_vpi, 8604 phba->sli4_hba.max_cfg_param.vfi_base, 8605 phba->sli4_hba.max_cfg_param.max_vfi, 8606 phba->sli4_hba.max_cfg_param.rpi_base, 8607 phba->sli4_hba.max_cfg_param.max_rpi, 8608 phba->sli4_hba.max_cfg_param.max_fcfi, 8609 phba->sli4_hba.max_cfg_param.max_eq, 8610 phba->sli4_hba.max_cfg_param.max_cq, 8611 phba->sli4_hba.max_cfg_param.max_wq, 8612 phba->sli4_hba.max_cfg_param.max_rq, 8613 phba->lmt); 8614 8615 /* 8616 * Calculate queue resources based on how 8617 * many WQ/CQ/EQs are available. 8618 */ 8619 qmin = phba->sli4_hba.max_cfg_param.max_wq; 8620 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 8621 qmin = phba->sli4_hba.max_cfg_param.max_cq; 8622 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 8623 qmin = phba->sli4_hba.max_cfg_param.max_eq; 8624 /* 8625 * Whats left after this can go toward NVME / FCP. 8626 * The minus 4 accounts for ELS, NVME LS, MBOX 8627 * plus one extra. When configured for 8628 * NVMET, FCP io channel WQs are not created. 8629 */ 8630 qmin -= 4; 8631 8632 /* Check to see if there is enough for NVME */ 8633 if ((phba->cfg_irq_chann > qmin) || 8634 (phba->cfg_hdw_queue > qmin)) { 8635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8636 "2005 Reducing Queues - " 8637 "FW resource limitation: " 8638 "WQ %d CQ %d EQ %d: min %d: " 8639 "IRQ %d HDWQ %d\n", 8640 phba->sli4_hba.max_cfg_param.max_wq, 8641 phba->sli4_hba.max_cfg_param.max_cq, 8642 phba->sli4_hba.max_cfg_param.max_eq, 8643 qmin, phba->cfg_irq_chann, 8644 phba->cfg_hdw_queue); 8645 8646 if (phba->cfg_irq_chann > qmin) 8647 phba->cfg_irq_chann = qmin; 8648 if (phba->cfg_hdw_queue > qmin) 8649 phba->cfg_hdw_queue = qmin; 8650 } 8651 } 8652 8653 if (rc) 8654 goto read_cfg_out; 8655 8656 /* Update link speed if forced link speed is supported */ 8657 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8658 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 8659 forced_link_speed = 8660 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 8661 if (forced_link_speed) { 8662 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 8663 8664 switch (forced_link_speed) { 8665 case LINK_SPEED_1G: 8666 phba->cfg_link_speed = 8667 LPFC_USER_LINK_SPEED_1G; 8668 break; 8669 case LINK_SPEED_2G: 8670 phba->cfg_link_speed = 8671 LPFC_USER_LINK_SPEED_2G; 8672 break; 8673 case LINK_SPEED_4G: 8674 phba->cfg_link_speed = 8675 LPFC_USER_LINK_SPEED_4G; 8676 break; 8677 case LINK_SPEED_8G: 8678 phba->cfg_link_speed = 8679 LPFC_USER_LINK_SPEED_8G; 8680 break; 8681 case LINK_SPEED_10G: 8682 phba->cfg_link_speed = 8683 LPFC_USER_LINK_SPEED_10G; 8684 break; 8685 case LINK_SPEED_16G: 8686 phba->cfg_link_speed = 8687 LPFC_USER_LINK_SPEED_16G; 8688 break; 8689 case LINK_SPEED_32G: 8690 phba->cfg_link_speed = 8691 LPFC_USER_LINK_SPEED_32G; 8692 break; 8693 case LINK_SPEED_64G: 8694 phba->cfg_link_speed = 8695 LPFC_USER_LINK_SPEED_64G; 8696 break; 8697 case 0xffff: 8698 phba->cfg_link_speed = 8699 LPFC_USER_LINK_SPEED_AUTO; 8700 break; 8701 default: 8702 lpfc_printf_log(phba, KERN_ERR, 8703 LOG_TRACE_EVENT, 8704 "0047 Unrecognized link " 8705 "speed : %d\n", 8706 forced_link_speed); 8707 phba->cfg_link_speed = 8708 LPFC_USER_LINK_SPEED_AUTO; 8709 } 8710 } 8711 } 8712 8713 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 8714 length = phba->sli4_hba.max_cfg_param.max_xri - 8715 lpfc_sli4_get_els_iocb_cnt(phba); 8716 if (phba->cfg_hba_queue_depth > length) { 8717 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8718 "3361 HBA queue depth changed from %d to %d\n", 8719 phba->cfg_hba_queue_depth, length); 8720 phba->cfg_hba_queue_depth = length; 8721 } 8722 8723 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 8724 LPFC_SLI_INTF_IF_TYPE_2) 8725 goto read_cfg_out; 8726 8727 /* get the pf# and vf# for SLI4 if_type 2 port */ 8728 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 8729 sizeof(struct lpfc_sli4_cfg_mhdr)); 8730 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 8731 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 8732 length, LPFC_SLI4_MBX_EMBED); 8733 8734 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 8735 shdr = (union lpfc_sli4_cfg_shdr *) 8736 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 8737 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 8738 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 8739 if (rc2 || shdr_status || shdr_add_status) { 8740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8741 "3026 Mailbox failed , mbxCmd x%x " 8742 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 8743 bf_get(lpfc_mqe_command, &pmb->u.mqe), 8744 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 8745 goto read_cfg_out; 8746 } 8747 8748 /* search for fc_fcoe resrouce descriptor */ 8749 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 8750 8751 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 8752 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 8753 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 8754 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 8755 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 8756 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 8757 goto read_cfg_out; 8758 8759 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 8760 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 8761 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 8762 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 8763 phba->sli4_hba.iov.pf_number = 8764 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 8765 phba->sli4_hba.iov.vf_number = 8766 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 8767 break; 8768 } 8769 } 8770 8771 if (i < LPFC_RSRC_DESC_MAX_NUM) 8772 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8773 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 8774 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 8775 phba->sli4_hba.iov.vf_number); 8776 else 8777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8778 "3028 GET_FUNCTION_CONFIG: failed to find " 8779 "Resource Descriptor:x%x\n", 8780 LPFC_RSRC_DESC_TYPE_FCFCOE); 8781 8782 read_cfg_out: 8783 mempool_free(pmb, phba->mbox_mem_pool); 8784 return rc; 8785 } 8786 8787 /** 8788 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 8789 * @phba: pointer to lpfc hba data structure. 8790 * 8791 * This routine is invoked to setup the port-side endian order when 8792 * the port if_type is 0. This routine has no function for other 8793 * if_types. 8794 * 8795 * Return codes 8796 * 0 - successful 8797 * -ENOMEM - No available memory 8798 * -EIO - The mailbox failed to complete successfully. 8799 **/ 8800 static int 8801 lpfc_setup_endian_order(struct lpfc_hba *phba) 8802 { 8803 LPFC_MBOXQ_t *mboxq; 8804 uint32_t if_type, rc = 0; 8805 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 8806 HOST_ENDIAN_HIGH_WORD1}; 8807 8808 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8809 switch (if_type) { 8810 case LPFC_SLI_INTF_IF_TYPE_0: 8811 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8812 GFP_KERNEL); 8813 if (!mboxq) { 8814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8815 "0492 Unable to allocate memory for " 8816 "issuing SLI_CONFIG_SPECIAL mailbox " 8817 "command\n"); 8818 return -ENOMEM; 8819 } 8820 8821 /* 8822 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 8823 * two words to contain special data values and no other data. 8824 */ 8825 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 8826 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 8827 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8828 if (rc != MBX_SUCCESS) { 8829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8830 "0493 SLI_CONFIG_SPECIAL mailbox " 8831 "failed with status x%x\n", 8832 rc); 8833 rc = -EIO; 8834 } 8835 mempool_free(mboxq, phba->mbox_mem_pool); 8836 break; 8837 case LPFC_SLI_INTF_IF_TYPE_6: 8838 case LPFC_SLI_INTF_IF_TYPE_2: 8839 case LPFC_SLI_INTF_IF_TYPE_1: 8840 default: 8841 break; 8842 } 8843 return rc; 8844 } 8845 8846 /** 8847 * lpfc_sli4_queue_verify - Verify and update EQ counts 8848 * @phba: pointer to lpfc hba data structure. 8849 * 8850 * This routine is invoked to check the user settable queue counts for EQs. 8851 * After this routine is called the counts will be set to valid values that 8852 * adhere to the constraints of the system's interrupt vectors and the port's 8853 * queue resources. 8854 * 8855 * Return codes 8856 * 0 - successful 8857 * -ENOMEM - No available memory 8858 **/ 8859 static int 8860 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 8861 { 8862 /* 8863 * Sanity check for configured queue parameters against the run-time 8864 * device parameters 8865 */ 8866 8867 if (phba->nvmet_support) { 8868 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 8869 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 8870 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 8871 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 8872 } 8873 8874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8875 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 8876 phba->cfg_hdw_queue, phba->cfg_irq_chann, 8877 phba->cfg_nvmet_mrq); 8878 8879 /* Get EQ depth from module parameter, fake the default for now */ 8880 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8881 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8882 8883 /* Get CQ depth from module parameter, fake the default for now */ 8884 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8885 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8886 return 0; 8887 } 8888 8889 static int 8890 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 8891 { 8892 struct lpfc_queue *qdesc; 8893 u32 wqesize; 8894 int cpu; 8895 8896 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 8897 /* Create Fast Path IO CQs */ 8898 if (phba->enab_exp_wqcq_pages) 8899 /* Increase the CQ size when WQEs contain an embedded cdb */ 8900 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8901 phba->sli4_hba.cq_esize, 8902 LPFC_CQE_EXP_COUNT, cpu); 8903 8904 else 8905 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8906 phba->sli4_hba.cq_esize, 8907 phba->sli4_hba.cq_ecount, cpu); 8908 if (!qdesc) { 8909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8910 "0499 Failed allocate fast-path IO CQ (%d)\n", 8911 idx); 8912 return 1; 8913 } 8914 qdesc->qe_valid = 1; 8915 qdesc->hdwq = idx; 8916 qdesc->chann = cpu; 8917 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 8918 8919 /* Create Fast Path IO WQs */ 8920 if (phba->enab_exp_wqcq_pages) { 8921 /* Increase the WQ size when WQEs contain an embedded cdb */ 8922 wqesize = (phba->fcp_embed_io) ? 8923 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 8924 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 8925 wqesize, 8926 LPFC_WQE_EXP_COUNT, cpu); 8927 } else 8928 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 8929 phba->sli4_hba.wq_esize, 8930 phba->sli4_hba.wq_ecount, cpu); 8931 8932 if (!qdesc) { 8933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8934 "0503 Failed allocate fast-path IO WQ (%d)\n", 8935 idx); 8936 return 1; 8937 } 8938 qdesc->hdwq = idx; 8939 qdesc->chann = cpu; 8940 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 8941 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 8942 return 0; 8943 } 8944 8945 /** 8946 * lpfc_sli4_queue_create - Create all the SLI4 queues 8947 * @phba: pointer to lpfc hba data structure. 8948 * 8949 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 8950 * operation. For each SLI4 queue type, the parameters such as queue entry 8951 * count (queue depth) shall be taken from the module parameter. For now, 8952 * we just use some constant number as place holder. 8953 * 8954 * Return codes 8955 * 0 - successful 8956 * -ENOMEM - No availble memory 8957 * -EIO - The mailbox failed to complete successfully. 8958 **/ 8959 int 8960 lpfc_sli4_queue_create(struct lpfc_hba *phba) 8961 { 8962 struct lpfc_queue *qdesc; 8963 int idx, cpu, eqcpu; 8964 struct lpfc_sli4_hdw_queue *qp; 8965 struct lpfc_vector_map_info *cpup; 8966 struct lpfc_vector_map_info *eqcpup; 8967 struct lpfc_eq_intr_info *eqi; 8968 8969 /* 8970 * Create HBA Record arrays. 8971 * Both NVME and FCP will share that same vectors / EQs 8972 */ 8973 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 8974 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 8975 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 8976 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 8977 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 8978 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 8979 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 8980 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 8981 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 8982 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 8983 8984 if (!phba->sli4_hba.hdwq) { 8985 phba->sli4_hba.hdwq = kcalloc( 8986 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 8987 GFP_KERNEL); 8988 if (!phba->sli4_hba.hdwq) { 8989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8990 "6427 Failed allocate memory for " 8991 "fast-path Hardware Queue array\n"); 8992 goto out_error; 8993 } 8994 /* Prepare hardware queues to take IO buffers */ 8995 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 8996 qp = &phba->sli4_hba.hdwq[idx]; 8997 spin_lock_init(&qp->io_buf_list_get_lock); 8998 spin_lock_init(&qp->io_buf_list_put_lock); 8999 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 9000 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 9001 qp->get_io_bufs = 0; 9002 qp->put_io_bufs = 0; 9003 qp->total_io_bufs = 0; 9004 spin_lock_init(&qp->abts_io_buf_list_lock); 9005 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 9006 qp->abts_scsi_io_bufs = 0; 9007 qp->abts_nvme_io_bufs = 0; 9008 INIT_LIST_HEAD(&qp->sgl_list); 9009 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 9010 spin_lock_init(&qp->hdwq_lock); 9011 } 9012 } 9013 9014 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9015 if (phba->nvmet_support) { 9016 phba->sli4_hba.nvmet_cqset = kcalloc( 9017 phba->cfg_nvmet_mrq, 9018 sizeof(struct lpfc_queue *), 9019 GFP_KERNEL); 9020 if (!phba->sli4_hba.nvmet_cqset) { 9021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9022 "3121 Fail allocate memory for " 9023 "fast-path CQ set array\n"); 9024 goto out_error; 9025 } 9026 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 9027 phba->cfg_nvmet_mrq, 9028 sizeof(struct lpfc_queue *), 9029 GFP_KERNEL); 9030 if (!phba->sli4_hba.nvmet_mrq_hdr) { 9031 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9032 "3122 Fail allocate memory for " 9033 "fast-path RQ set hdr array\n"); 9034 goto out_error; 9035 } 9036 phba->sli4_hba.nvmet_mrq_data = kcalloc( 9037 phba->cfg_nvmet_mrq, 9038 sizeof(struct lpfc_queue *), 9039 GFP_KERNEL); 9040 if (!phba->sli4_hba.nvmet_mrq_data) { 9041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9042 "3124 Fail allocate memory for " 9043 "fast-path RQ set data array\n"); 9044 goto out_error; 9045 } 9046 } 9047 } 9048 9049 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9050 9051 /* Create HBA Event Queues (EQs) */ 9052 for_each_present_cpu(cpu) { 9053 /* We only want to create 1 EQ per vector, even though 9054 * multiple CPUs might be using that vector. so only 9055 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 9056 */ 9057 cpup = &phba->sli4_hba.cpu_map[cpu]; 9058 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9059 continue; 9060 9061 /* Get a ptr to the Hardware Queue associated with this CPU */ 9062 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 9063 9064 /* Allocate an EQ */ 9065 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9066 phba->sli4_hba.eq_esize, 9067 phba->sli4_hba.eq_ecount, cpu); 9068 if (!qdesc) { 9069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9070 "0497 Failed allocate EQ (%d)\n", 9071 cpup->hdwq); 9072 goto out_error; 9073 } 9074 qdesc->qe_valid = 1; 9075 qdesc->hdwq = cpup->hdwq; 9076 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 9077 qdesc->last_cpu = qdesc->chann; 9078 9079 /* Save the allocated EQ in the Hardware Queue */ 9080 qp->hba_eq = qdesc; 9081 9082 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 9083 list_add(&qdesc->cpu_list, &eqi->list); 9084 } 9085 9086 /* Now we need to populate the other Hardware Queues, that share 9087 * an IRQ vector, with the associated EQ ptr. 9088 */ 9089 for_each_present_cpu(cpu) { 9090 cpup = &phba->sli4_hba.cpu_map[cpu]; 9091 9092 /* Check for EQ already allocated in previous loop */ 9093 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 9094 continue; 9095 9096 /* Check for multiple CPUs per hdwq */ 9097 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 9098 if (qp->hba_eq) 9099 continue; 9100 9101 /* We need to share an EQ for this hdwq */ 9102 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 9103 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 9104 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 9105 } 9106 9107 /* Allocate IO Path SLI4 CQ/WQs */ 9108 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9109 if (lpfc_alloc_io_wq_cq(phba, idx)) 9110 goto out_error; 9111 } 9112 9113 if (phba->nvmet_support) { 9114 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9115 cpu = lpfc_find_cpu_handle(phba, idx, 9116 LPFC_FIND_BY_HDWQ); 9117 qdesc = lpfc_sli4_queue_alloc(phba, 9118 LPFC_DEFAULT_PAGE_SIZE, 9119 phba->sli4_hba.cq_esize, 9120 phba->sli4_hba.cq_ecount, 9121 cpu); 9122 if (!qdesc) { 9123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9124 "3142 Failed allocate NVME " 9125 "CQ Set (%d)\n", idx); 9126 goto out_error; 9127 } 9128 qdesc->qe_valid = 1; 9129 qdesc->hdwq = idx; 9130 qdesc->chann = cpu; 9131 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 9132 } 9133 } 9134 9135 /* 9136 * Create Slow Path Completion Queues (CQs) 9137 */ 9138 9139 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 9140 /* Create slow-path Mailbox Command Complete Queue */ 9141 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9142 phba->sli4_hba.cq_esize, 9143 phba->sli4_hba.cq_ecount, cpu); 9144 if (!qdesc) { 9145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9146 "0500 Failed allocate slow-path mailbox CQ\n"); 9147 goto out_error; 9148 } 9149 qdesc->qe_valid = 1; 9150 phba->sli4_hba.mbx_cq = qdesc; 9151 9152 /* Create slow-path ELS Complete Queue */ 9153 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9154 phba->sli4_hba.cq_esize, 9155 phba->sli4_hba.cq_ecount, cpu); 9156 if (!qdesc) { 9157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9158 "0501 Failed allocate slow-path ELS CQ\n"); 9159 goto out_error; 9160 } 9161 qdesc->qe_valid = 1; 9162 qdesc->chann = cpu; 9163 phba->sli4_hba.els_cq = qdesc; 9164 9165 9166 /* 9167 * Create Slow Path Work Queues (WQs) 9168 */ 9169 9170 /* Create Mailbox Command Queue */ 9171 9172 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9173 phba->sli4_hba.mq_esize, 9174 phba->sli4_hba.mq_ecount, cpu); 9175 if (!qdesc) { 9176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9177 "0505 Failed allocate slow-path MQ\n"); 9178 goto out_error; 9179 } 9180 qdesc->chann = cpu; 9181 phba->sli4_hba.mbx_wq = qdesc; 9182 9183 /* 9184 * Create ELS Work Queues 9185 */ 9186 9187 /* Create slow-path ELS Work Queue */ 9188 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9189 phba->sli4_hba.wq_esize, 9190 phba->sli4_hba.wq_ecount, cpu); 9191 if (!qdesc) { 9192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9193 "0504 Failed allocate slow-path ELS WQ\n"); 9194 goto out_error; 9195 } 9196 qdesc->chann = cpu; 9197 phba->sli4_hba.els_wq = qdesc; 9198 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9199 9200 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9201 /* Create NVME LS Complete Queue */ 9202 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9203 phba->sli4_hba.cq_esize, 9204 phba->sli4_hba.cq_ecount, cpu); 9205 if (!qdesc) { 9206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9207 "6079 Failed allocate NVME LS CQ\n"); 9208 goto out_error; 9209 } 9210 qdesc->chann = cpu; 9211 qdesc->qe_valid = 1; 9212 phba->sli4_hba.nvmels_cq = qdesc; 9213 9214 /* Create NVME LS Work Queue */ 9215 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9216 phba->sli4_hba.wq_esize, 9217 phba->sli4_hba.wq_ecount, cpu); 9218 if (!qdesc) { 9219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9220 "6080 Failed allocate NVME LS WQ\n"); 9221 goto out_error; 9222 } 9223 qdesc->chann = cpu; 9224 phba->sli4_hba.nvmels_wq = qdesc; 9225 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 9226 } 9227 9228 /* 9229 * Create Receive Queue (RQ) 9230 */ 9231 9232 /* Create Receive Queue for header */ 9233 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9234 phba->sli4_hba.rq_esize, 9235 phba->sli4_hba.rq_ecount, cpu); 9236 if (!qdesc) { 9237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9238 "0506 Failed allocate receive HRQ\n"); 9239 goto out_error; 9240 } 9241 phba->sli4_hba.hdr_rq = qdesc; 9242 9243 /* Create Receive Queue for data */ 9244 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 9245 phba->sli4_hba.rq_esize, 9246 phba->sli4_hba.rq_ecount, cpu); 9247 if (!qdesc) { 9248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9249 "0507 Failed allocate receive DRQ\n"); 9250 goto out_error; 9251 } 9252 phba->sli4_hba.dat_rq = qdesc; 9253 9254 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 9255 phba->nvmet_support) { 9256 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 9257 cpu = lpfc_find_cpu_handle(phba, idx, 9258 LPFC_FIND_BY_HDWQ); 9259 /* Create NVMET Receive Queue for header */ 9260 qdesc = lpfc_sli4_queue_alloc(phba, 9261 LPFC_DEFAULT_PAGE_SIZE, 9262 phba->sli4_hba.rq_esize, 9263 LPFC_NVMET_RQE_DEF_COUNT, 9264 cpu); 9265 if (!qdesc) { 9266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9267 "3146 Failed allocate " 9268 "receive HRQ\n"); 9269 goto out_error; 9270 } 9271 qdesc->hdwq = idx; 9272 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 9273 9274 /* Only needed for header of RQ pair */ 9275 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 9276 GFP_KERNEL, 9277 cpu_to_node(cpu)); 9278 if (qdesc->rqbp == NULL) { 9279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9280 "6131 Failed allocate " 9281 "Header RQBP\n"); 9282 goto out_error; 9283 } 9284 9285 /* Put list in known state in case driver load fails. */ 9286 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 9287 9288 /* Create NVMET Receive Queue for data */ 9289 qdesc = lpfc_sli4_queue_alloc(phba, 9290 LPFC_DEFAULT_PAGE_SIZE, 9291 phba->sli4_hba.rq_esize, 9292 LPFC_NVMET_RQE_DEF_COUNT, 9293 cpu); 9294 if (!qdesc) { 9295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9296 "3156 Failed allocate " 9297 "receive DRQ\n"); 9298 goto out_error; 9299 } 9300 qdesc->hdwq = idx; 9301 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 9302 } 9303 } 9304 9305 /* Clear NVME stats */ 9306 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9307 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9308 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 9309 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 9310 } 9311 } 9312 9313 /* Clear SCSI stats */ 9314 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 9315 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9316 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 9317 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 9318 } 9319 } 9320 9321 return 0; 9322 9323 out_error: 9324 lpfc_sli4_queue_destroy(phba); 9325 return -ENOMEM; 9326 } 9327 9328 static inline void 9329 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 9330 { 9331 if (*qp != NULL) { 9332 lpfc_sli4_queue_free(*qp); 9333 *qp = NULL; 9334 } 9335 } 9336 9337 static inline void 9338 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 9339 { 9340 int idx; 9341 9342 if (*qs == NULL) 9343 return; 9344 9345 for (idx = 0; idx < max; idx++) 9346 __lpfc_sli4_release_queue(&(*qs)[idx]); 9347 9348 kfree(*qs); 9349 *qs = NULL; 9350 } 9351 9352 static inline void 9353 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 9354 { 9355 struct lpfc_sli4_hdw_queue *hdwq; 9356 struct lpfc_queue *eq; 9357 uint32_t idx; 9358 9359 hdwq = phba->sli4_hba.hdwq; 9360 9361 /* Loop thru all Hardware Queues */ 9362 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 9363 /* Free the CQ/WQ corresponding to the Hardware Queue */ 9364 lpfc_sli4_queue_free(hdwq[idx].io_cq); 9365 lpfc_sli4_queue_free(hdwq[idx].io_wq); 9366 hdwq[idx].hba_eq = NULL; 9367 hdwq[idx].io_cq = NULL; 9368 hdwq[idx].io_wq = NULL; 9369 if (phba->cfg_xpsgl && !phba->nvmet_support) 9370 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 9371 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 9372 } 9373 /* Loop thru all IRQ vectors */ 9374 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 9375 /* Free the EQ corresponding to the IRQ vector */ 9376 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 9377 lpfc_sli4_queue_free(eq); 9378 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 9379 } 9380 } 9381 9382 /** 9383 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 9384 * @phba: pointer to lpfc hba data structure. 9385 * 9386 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 9387 * operation. 9388 * 9389 * Return codes 9390 * 0 - successful 9391 * -ENOMEM - No available memory 9392 * -EIO - The mailbox failed to complete successfully. 9393 **/ 9394 void 9395 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 9396 { 9397 /* 9398 * Set FREE_INIT before beginning to free the queues. 9399 * Wait until the users of queues to acknowledge to 9400 * release queues by clearing FREE_WAIT. 9401 */ 9402 spin_lock_irq(&phba->hbalock); 9403 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 9404 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 9405 spin_unlock_irq(&phba->hbalock); 9406 msleep(20); 9407 spin_lock_irq(&phba->hbalock); 9408 } 9409 spin_unlock_irq(&phba->hbalock); 9410 9411 lpfc_sli4_cleanup_poll_list(phba); 9412 9413 /* Release HBA eqs */ 9414 if (phba->sli4_hba.hdwq) 9415 lpfc_sli4_release_hdwq(phba); 9416 9417 if (phba->nvmet_support) { 9418 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 9419 phba->cfg_nvmet_mrq); 9420 9421 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 9422 phba->cfg_nvmet_mrq); 9423 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 9424 phba->cfg_nvmet_mrq); 9425 } 9426 9427 /* Release mailbox command work queue */ 9428 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 9429 9430 /* Release ELS work queue */ 9431 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 9432 9433 /* Release ELS work queue */ 9434 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 9435 9436 /* Release unsolicited receive queue */ 9437 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 9438 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 9439 9440 /* Release ELS complete queue */ 9441 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 9442 9443 /* Release NVME LS complete queue */ 9444 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 9445 9446 /* Release mailbox command complete queue */ 9447 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 9448 9449 /* Everything on this list has been freed */ 9450 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 9451 9452 /* Done with freeing the queues */ 9453 spin_lock_irq(&phba->hbalock); 9454 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 9455 spin_unlock_irq(&phba->hbalock); 9456 } 9457 9458 int 9459 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 9460 { 9461 struct lpfc_rqb *rqbp; 9462 struct lpfc_dmabuf *h_buf; 9463 struct rqb_dmabuf *rqb_buffer; 9464 9465 rqbp = rq->rqbp; 9466 while (!list_empty(&rqbp->rqb_buffer_list)) { 9467 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 9468 struct lpfc_dmabuf, list); 9469 9470 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 9471 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 9472 rqbp->buffer_count--; 9473 } 9474 return 1; 9475 } 9476 9477 static int 9478 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 9479 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 9480 int qidx, uint32_t qtype) 9481 { 9482 struct lpfc_sli_ring *pring; 9483 int rc; 9484 9485 if (!eq || !cq || !wq) { 9486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9487 "6085 Fast-path %s (%d) not allocated\n", 9488 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 9489 return -ENOMEM; 9490 } 9491 9492 /* create the Cq first */ 9493 rc = lpfc_cq_create(phba, cq, eq, 9494 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 9495 if (rc) { 9496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9497 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 9498 qidx, (uint32_t)rc); 9499 return rc; 9500 } 9501 9502 if (qtype != LPFC_MBOX) { 9503 /* Setup cq_map for fast lookup */ 9504 if (cq_map) 9505 *cq_map = cq->queue_id; 9506 9507 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9508 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 9509 qidx, cq->queue_id, qidx, eq->queue_id); 9510 9511 /* create the wq */ 9512 rc = lpfc_wq_create(phba, wq, cq, qtype); 9513 if (rc) { 9514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9515 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 9516 qidx, (uint32_t)rc); 9517 /* no need to tear down cq - caller will do so */ 9518 return rc; 9519 } 9520 9521 /* Bind this CQ/WQ to the NVME ring */ 9522 pring = wq->pring; 9523 pring->sli.sli4.wqp = (void *)wq; 9524 cq->pring = pring; 9525 9526 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9527 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 9528 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 9529 } else { 9530 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 9531 if (rc) { 9532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9533 "0539 Failed setup of slow-path MQ: " 9534 "rc = 0x%x\n", rc); 9535 /* no need to tear down cq - caller will do so */ 9536 return rc; 9537 } 9538 9539 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9540 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 9541 phba->sli4_hba.mbx_wq->queue_id, 9542 phba->sli4_hba.mbx_cq->queue_id); 9543 } 9544 9545 return 0; 9546 } 9547 9548 /** 9549 * lpfc_setup_cq_lookup - Setup the CQ lookup table 9550 * @phba: pointer to lpfc hba data structure. 9551 * 9552 * This routine will populate the cq_lookup table by all 9553 * available CQ queue_id's. 9554 **/ 9555 static void 9556 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 9557 { 9558 struct lpfc_queue *eq, *childq; 9559 int qidx; 9560 9561 memset(phba->sli4_hba.cq_lookup, 0, 9562 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 9563 /* Loop thru all IRQ vectors */ 9564 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9565 /* Get the EQ corresponding to the IRQ vector */ 9566 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 9567 if (!eq) 9568 continue; 9569 /* Loop through all CQs associated with that EQ */ 9570 list_for_each_entry(childq, &eq->child_list, list) { 9571 if (childq->queue_id > phba->sli4_hba.cq_max) 9572 continue; 9573 if (childq->subtype == LPFC_IO) 9574 phba->sli4_hba.cq_lookup[childq->queue_id] = 9575 childq; 9576 } 9577 } 9578 } 9579 9580 /** 9581 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 9582 * @phba: pointer to lpfc hba data structure. 9583 * 9584 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 9585 * operation. 9586 * 9587 * Return codes 9588 * 0 - successful 9589 * -ENOMEM - No available memory 9590 * -EIO - The mailbox failed to complete successfully. 9591 **/ 9592 int 9593 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 9594 { 9595 uint32_t shdr_status, shdr_add_status; 9596 union lpfc_sli4_cfg_shdr *shdr; 9597 struct lpfc_vector_map_info *cpup; 9598 struct lpfc_sli4_hdw_queue *qp; 9599 LPFC_MBOXQ_t *mboxq; 9600 int qidx, cpu; 9601 uint32_t length, usdelay; 9602 int rc = -ENOMEM; 9603 9604 /* Check for dual-ULP support */ 9605 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9606 if (!mboxq) { 9607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9608 "3249 Unable to allocate memory for " 9609 "QUERY_FW_CFG mailbox command\n"); 9610 return -ENOMEM; 9611 } 9612 length = (sizeof(struct lpfc_mbx_query_fw_config) - 9613 sizeof(struct lpfc_sli4_cfg_mhdr)); 9614 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 9615 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 9616 length, LPFC_SLI4_MBX_EMBED); 9617 9618 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9619 9620 shdr = (union lpfc_sli4_cfg_shdr *) 9621 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 9622 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 9623 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 9624 if (shdr_status || shdr_add_status || rc) { 9625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9626 "3250 QUERY_FW_CFG mailbox failed with status " 9627 "x%x add_status x%x, mbx status x%x\n", 9628 shdr_status, shdr_add_status, rc); 9629 mempool_free(mboxq, phba->mbox_mem_pool); 9630 rc = -ENXIO; 9631 goto out_error; 9632 } 9633 9634 phba->sli4_hba.fw_func_mode = 9635 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 9636 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 9637 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 9638 phba->sli4_hba.physical_port = 9639 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 9640 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9641 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 9642 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 9643 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 9644 9645 mempool_free(mboxq, phba->mbox_mem_pool); 9646 9647 /* 9648 * Set up HBA Event Queues (EQs) 9649 */ 9650 qp = phba->sli4_hba.hdwq; 9651 9652 /* Set up HBA event queue */ 9653 if (!qp) { 9654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9655 "3147 Fast-path EQs not allocated\n"); 9656 rc = -ENOMEM; 9657 goto out_error; 9658 } 9659 9660 /* Loop thru all IRQ vectors */ 9661 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 9662 /* Create HBA Event Queues (EQs) in order */ 9663 for_each_present_cpu(cpu) { 9664 cpup = &phba->sli4_hba.cpu_map[cpu]; 9665 9666 /* Look for the CPU thats using that vector with 9667 * LPFC_CPU_FIRST_IRQ set. 9668 */ 9669 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 9670 continue; 9671 if (qidx != cpup->eq) 9672 continue; 9673 9674 /* Create an EQ for that vector */ 9675 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 9676 phba->cfg_fcp_imax); 9677 if (rc) { 9678 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9679 "0523 Failed setup of fast-path" 9680 " EQ (%d), rc = 0x%x\n", 9681 cpup->eq, (uint32_t)rc); 9682 goto out_destroy; 9683 } 9684 9685 /* Save the EQ for that vector in the hba_eq_hdl */ 9686 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 9687 qp[cpup->hdwq].hba_eq; 9688 9689 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9690 "2584 HBA EQ setup: queue[%d]-id=%d\n", 9691 cpup->eq, 9692 qp[cpup->hdwq].hba_eq->queue_id); 9693 } 9694 } 9695 9696 /* Loop thru all Hardware Queues */ 9697 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 9698 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 9699 cpup = &phba->sli4_hba.cpu_map[cpu]; 9700 9701 /* Create the CQ/WQ corresponding to the Hardware Queue */ 9702 rc = lpfc_create_wq_cq(phba, 9703 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 9704 qp[qidx].io_cq, 9705 qp[qidx].io_wq, 9706 &phba->sli4_hba.hdwq[qidx].io_cq_map, 9707 qidx, 9708 LPFC_IO); 9709 if (rc) { 9710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9711 "0535 Failed to setup fastpath " 9712 "IO WQ/CQ (%d), rc = 0x%x\n", 9713 qidx, (uint32_t)rc); 9714 goto out_destroy; 9715 } 9716 } 9717 9718 /* 9719 * Set up Slow Path Complete Queues (CQs) 9720 */ 9721 9722 /* Set up slow-path MBOX CQ/MQ */ 9723 9724 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 9725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9726 "0528 %s not allocated\n", 9727 phba->sli4_hba.mbx_cq ? 9728 "Mailbox WQ" : "Mailbox CQ"); 9729 rc = -ENOMEM; 9730 goto out_destroy; 9731 } 9732 9733 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9734 phba->sli4_hba.mbx_cq, 9735 phba->sli4_hba.mbx_wq, 9736 NULL, 0, LPFC_MBOX); 9737 if (rc) { 9738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9739 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 9740 (uint32_t)rc); 9741 goto out_destroy; 9742 } 9743 if (phba->nvmet_support) { 9744 if (!phba->sli4_hba.nvmet_cqset) { 9745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9746 "3165 Fast-path NVME CQ Set " 9747 "array not allocated\n"); 9748 rc = -ENOMEM; 9749 goto out_destroy; 9750 } 9751 if (phba->cfg_nvmet_mrq > 1) { 9752 rc = lpfc_cq_create_set(phba, 9753 phba->sli4_hba.nvmet_cqset, 9754 qp, 9755 LPFC_WCQ, LPFC_NVMET); 9756 if (rc) { 9757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9758 "3164 Failed setup of NVME CQ " 9759 "Set, rc = 0x%x\n", 9760 (uint32_t)rc); 9761 goto out_destroy; 9762 } 9763 } else { 9764 /* Set up NVMET Receive Complete Queue */ 9765 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 9766 qp[0].hba_eq, 9767 LPFC_WCQ, LPFC_NVMET); 9768 if (rc) { 9769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9770 "6089 Failed setup NVMET CQ: " 9771 "rc = 0x%x\n", (uint32_t)rc); 9772 goto out_destroy; 9773 } 9774 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 9775 9776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9777 "6090 NVMET CQ setup: cq-id=%d, " 9778 "parent eq-id=%d\n", 9779 phba->sli4_hba.nvmet_cqset[0]->queue_id, 9780 qp[0].hba_eq->queue_id); 9781 } 9782 } 9783 9784 /* Set up slow-path ELS WQ/CQ */ 9785 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 9786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9787 "0530 ELS %s not allocated\n", 9788 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 9789 rc = -ENOMEM; 9790 goto out_destroy; 9791 } 9792 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9793 phba->sli4_hba.els_cq, 9794 phba->sli4_hba.els_wq, 9795 NULL, 0, LPFC_ELS); 9796 if (rc) { 9797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9798 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 9799 (uint32_t)rc); 9800 goto out_destroy; 9801 } 9802 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9803 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 9804 phba->sli4_hba.els_wq->queue_id, 9805 phba->sli4_hba.els_cq->queue_id); 9806 9807 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 9808 /* Set up NVME LS Complete Queue */ 9809 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 9810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9811 "6091 LS %s not allocated\n", 9812 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 9813 rc = -ENOMEM; 9814 goto out_destroy; 9815 } 9816 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 9817 phba->sli4_hba.nvmels_cq, 9818 phba->sli4_hba.nvmels_wq, 9819 NULL, 0, LPFC_NVME_LS); 9820 if (rc) { 9821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9822 "0526 Failed setup of NVVME LS WQ/CQ: " 9823 "rc = 0x%x\n", (uint32_t)rc); 9824 goto out_destroy; 9825 } 9826 9827 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9828 "6096 ELS WQ setup: wq-id=%d, " 9829 "parent cq-id=%d\n", 9830 phba->sli4_hba.nvmels_wq->queue_id, 9831 phba->sli4_hba.nvmels_cq->queue_id); 9832 } 9833 9834 /* 9835 * Create NVMET Receive Queue (RQ) 9836 */ 9837 if (phba->nvmet_support) { 9838 if ((!phba->sli4_hba.nvmet_cqset) || 9839 (!phba->sli4_hba.nvmet_mrq_hdr) || 9840 (!phba->sli4_hba.nvmet_mrq_data)) { 9841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9842 "6130 MRQ CQ Queues not " 9843 "allocated\n"); 9844 rc = -ENOMEM; 9845 goto out_destroy; 9846 } 9847 if (phba->cfg_nvmet_mrq > 1) { 9848 rc = lpfc_mrq_create(phba, 9849 phba->sli4_hba.nvmet_mrq_hdr, 9850 phba->sli4_hba.nvmet_mrq_data, 9851 phba->sli4_hba.nvmet_cqset, 9852 LPFC_NVMET); 9853 if (rc) { 9854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9855 "6098 Failed setup of NVMET " 9856 "MRQ: rc = 0x%x\n", 9857 (uint32_t)rc); 9858 goto out_destroy; 9859 } 9860 9861 } else { 9862 rc = lpfc_rq_create(phba, 9863 phba->sli4_hba.nvmet_mrq_hdr[0], 9864 phba->sli4_hba.nvmet_mrq_data[0], 9865 phba->sli4_hba.nvmet_cqset[0], 9866 LPFC_NVMET); 9867 if (rc) { 9868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9869 "6057 Failed setup of NVMET " 9870 "Receive Queue: rc = 0x%x\n", 9871 (uint32_t)rc); 9872 goto out_destroy; 9873 } 9874 9875 lpfc_printf_log( 9876 phba, KERN_INFO, LOG_INIT, 9877 "6099 NVMET RQ setup: hdr-rq-id=%d, " 9878 "dat-rq-id=%d parent cq-id=%d\n", 9879 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 9880 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 9881 phba->sli4_hba.nvmet_cqset[0]->queue_id); 9882 9883 } 9884 } 9885 9886 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 9887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9888 "0540 Receive Queue not allocated\n"); 9889 rc = -ENOMEM; 9890 goto out_destroy; 9891 } 9892 9893 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 9894 phba->sli4_hba.els_cq, LPFC_USOL); 9895 if (rc) { 9896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9897 "0541 Failed setup of Receive Queue: " 9898 "rc = 0x%x\n", (uint32_t)rc); 9899 goto out_destroy; 9900 } 9901 9902 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9903 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 9904 "parent cq-id=%d\n", 9905 phba->sli4_hba.hdr_rq->queue_id, 9906 phba->sli4_hba.dat_rq->queue_id, 9907 phba->sli4_hba.els_cq->queue_id); 9908 9909 if (phba->cfg_fcp_imax) 9910 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 9911 else 9912 usdelay = 0; 9913 9914 for (qidx = 0; qidx < phba->cfg_irq_chann; 9915 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 9916 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 9917 usdelay); 9918 9919 if (phba->sli4_hba.cq_max) { 9920 kfree(phba->sli4_hba.cq_lookup); 9921 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 9922 sizeof(struct lpfc_queue *), GFP_KERNEL); 9923 if (!phba->sli4_hba.cq_lookup) { 9924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9925 "0549 Failed setup of CQ Lookup table: " 9926 "size 0x%x\n", phba->sli4_hba.cq_max); 9927 rc = -ENOMEM; 9928 goto out_destroy; 9929 } 9930 lpfc_setup_cq_lookup(phba); 9931 } 9932 return 0; 9933 9934 out_destroy: 9935 lpfc_sli4_queue_unset(phba); 9936 out_error: 9937 return rc; 9938 } 9939 9940 /** 9941 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 9942 * @phba: pointer to lpfc hba data structure. 9943 * 9944 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 9945 * operation. 9946 * 9947 * Return codes 9948 * 0 - successful 9949 * -ENOMEM - No available memory 9950 * -EIO - The mailbox failed to complete successfully. 9951 **/ 9952 void 9953 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 9954 { 9955 struct lpfc_sli4_hdw_queue *qp; 9956 struct lpfc_queue *eq; 9957 int qidx; 9958 9959 /* Unset mailbox command work queue */ 9960 if (phba->sli4_hba.mbx_wq) 9961 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 9962 9963 /* Unset NVME LS work queue */ 9964 if (phba->sli4_hba.nvmels_wq) 9965 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 9966 9967 /* Unset ELS work queue */ 9968 if (phba->sli4_hba.els_wq) 9969 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 9970 9971 /* Unset unsolicited receive queue */ 9972 if (phba->sli4_hba.hdr_rq) 9973 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 9974 phba->sli4_hba.dat_rq); 9975 9976 /* Unset mailbox command complete queue */ 9977 if (phba->sli4_hba.mbx_cq) 9978 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 9979 9980 /* Unset ELS complete queue */ 9981 if (phba->sli4_hba.els_cq) 9982 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 9983 9984 /* Unset NVME LS complete queue */ 9985 if (phba->sli4_hba.nvmels_cq) 9986 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 9987 9988 if (phba->nvmet_support) { 9989 /* Unset NVMET MRQ queue */ 9990 if (phba->sli4_hba.nvmet_mrq_hdr) { 9991 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 9992 lpfc_rq_destroy( 9993 phba, 9994 phba->sli4_hba.nvmet_mrq_hdr[qidx], 9995 phba->sli4_hba.nvmet_mrq_data[qidx]); 9996 } 9997 9998 /* Unset NVMET CQ Set complete queue */ 9999 if (phba->sli4_hba.nvmet_cqset) { 10000 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 10001 lpfc_cq_destroy( 10002 phba, phba->sli4_hba.nvmet_cqset[qidx]); 10003 } 10004 } 10005 10006 /* Unset fast-path SLI4 queues */ 10007 if (phba->sli4_hba.hdwq) { 10008 /* Loop thru all Hardware Queues */ 10009 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 10010 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 10011 qp = &phba->sli4_hba.hdwq[qidx]; 10012 lpfc_wq_destroy(phba, qp->io_wq); 10013 lpfc_cq_destroy(phba, qp->io_cq); 10014 } 10015 /* Loop thru all IRQ vectors */ 10016 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 10017 /* Destroy the EQ corresponding to the IRQ vector */ 10018 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 10019 lpfc_eq_destroy(phba, eq); 10020 } 10021 } 10022 10023 kfree(phba->sli4_hba.cq_lookup); 10024 phba->sli4_hba.cq_lookup = NULL; 10025 phba->sli4_hba.cq_max = 0; 10026 } 10027 10028 /** 10029 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 10030 * @phba: pointer to lpfc hba data structure. 10031 * 10032 * This routine is invoked to allocate and set up a pool of completion queue 10033 * events. The body of the completion queue event is a completion queue entry 10034 * CQE. For now, this pool is used for the interrupt service routine to queue 10035 * the following HBA completion queue events for the worker thread to process: 10036 * - Mailbox asynchronous events 10037 * - Receive queue completion unsolicited events 10038 * Later, this can be used for all the slow-path events. 10039 * 10040 * Return codes 10041 * 0 - successful 10042 * -ENOMEM - No available memory 10043 **/ 10044 static int 10045 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 10046 { 10047 struct lpfc_cq_event *cq_event; 10048 int i; 10049 10050 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 10051 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 10052 if (!cq_event) 10053 goto out_pool_create_fail; 10054 list_add_tail(&cq_event->list, 10055 &phba->sli4_hba.sp_cqe_event_pool); 10056 } 10057 return 0; 10058 10059 out_pool_create_fail: 10060 lpfc_sli4_cq_event_pool_destroy(phba); 10061 return -ENOMEM; 10062 } 10063 10064 /** 10065 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 10066 * @phba: pointer to lpfc hba data structure. 10067 * 10068 * This routine is invoked to free the pool of completion queue events at 10069 * driver unload time. Note that, it is the responsibility of the driver 10070 * cleanup routine to free all the outstanding completion-queue events 10071 * allocated from this pool back into the pool before invoking this routine 10072 * to destroy the pool. 10073 **/ 10074 static void 10075 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 10076 { 10077 struct lpfc_cq_event *cq_event, *next_cq_event; 10078 10079 list_for_each_entry_safe(cq_event, next_cq_event, 10080 &phba->sli4_hba.sp_cqe_event_pool, list) { 10081 list_del(&cq_event->list); 10082 kfree(cq_event); 10083 } 10084 } 10085 10086 /** 10087 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 10088 * @phba: pointer to lpfc hba data structure. 10089 * 10090 * This routine is the lock free version of the API invoked to allocate a 10091 * completion-queue event from the free pool. 10092 * 10093 * Return: Pointer to the newly allocated completion-queue event if successful 10094 * NULL otherwise. 10095 **/ 10096 struct lpfc_cq_event * 10097 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10098 { 10099 struct lpfc_cq_event *cq_event = NULL; 10100 10101 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 10102 struct lpfc_cq_event, list); 10103 return cq_event; 10104 } 10105 10106 /** 10107 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 10108 * @phba: pointer to lpfc hba data structure. 10109 * 10110 * This routine is the lock version of the API invoked to allocate a 10111 * completion-queue event from the free pool. 10112 * 10113 * Return: Pointer to the newly allocated completion-queue event if successful 10114 * NULL otherwise. 10115 **/ 10116 struct lpfc_cq_event * 10117 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 10118 { 10119 struct lpfc_cq_event *cq_event; 10120 unsigned long iflags; 10121 10122 spin_lock_irqsave(&phba->hbalock, iflags); 10123 cq_event = __lpfc_sli4_cq_event_alloc(phba); 10124 spin_unlock_irqrestore(&phba->hbalock, iflags); 10125 return cq_event; 10126 } 10127 10128 /** 10129 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10130 * @phba: pointer to lpfc hba data structure. 10131 * @cq_event: pointer to the completion queue event to be freed. 10132 * 10133 * This routine is the lock free version of the API invoked to release a 10134 * completion-queue event back into the free pool. 10135 **/ 10136 void 10137 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10138 struct lpfc_cq_event *cq_event) 10139 { 10140 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 10141 } 10142 10143 /** 10144 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 10145 * @phba: pointer to lpfc hba data structure. 10146 * @cq_event: pointer to the completion queue event to be freed. 10147 * 10148 * This routine is the lock version of the API invoked to release a 10149 * completion-queue event back into the free pool. 10150 **/ 10151 void 10152 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 10153 struct lpfc_cq_event *cq_event) 10154 { 10155 unsigned long iflags; 10156 spin_lock_irqsave(&phba->hbalock, iflags); 10157 __lpfc_sli4_cq_event_release(phba, cq_event); 10158 spin_unlock_irqrestore(&phba->hbalock, iflags); 10159 } 10160 10161 /** 10162 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 10163 * @phba: pointer to lpfc hba data structure. 10164 * 10165 * This routine is to free all the pending completion-queue events to the 10166 * back into the free pool for device reset. 10167 **/ 10168 static void 10169 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 10170 { 10171 LIST_HEAD(cq_event_list); 10172 struct lpfc_cq_event *cq_event; 10173 unsigned long iflags; 10174 10175 /* Retrieve all the pending WCQEs from pending WCQE lists */ 10176 10177 /* Pending ELS XRI abort events */ 10178 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 10179 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 10180 &cq_event_list); 10181 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 10182 10183 /* Pending asynnc events */ 10184 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 10185 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 10186 &cq_event_list); 10187 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 10188 10189 while (!list_empty(&cq_event_list)) { 10190 list_remove_head(&cq_event_list, cq_event, 10191 struct lpfc_cq_event, list); 10192 lpfc_sli4_cq_event_release(phba, cq_event); 10193 } 10194 } 10195 10196 /** 10197 * lpfc_pci_function_reset - Reset pci function. 10198 * @phba: pointer to lpfc hba data structure. 10199 * 10200 * This routine is invoked to request a PCI function reset. It will destroys 10201 * all resources assigned to the PCI function which originates this request. 10202 * 10203 * Return codes 10204 * 0 - successful 10205 * -ENOMEM - No available memory 10206 * -EIO - The mailbox failed to complete successfully. 10207 **/ 10208 int 10209 lpfc_pci_function_reset(struct lpfc_hba *phba) 10210 { 10211 LPFC_MBOXQ_t *mboxq; 10212 uint32_t rc = 0, if_type; 10213 uint32_t shdr_status, shdr_add_status; 10214 uint32_t rdy_chk; 10215 uint32_t port_reset = 0; 10216 union lpfc_sli4_cfg_shdr *shdr; 10217 struct lpfc_register reg_data; 10218 uint16_t devid; 10219 10220 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10221 switch (if_type) { 10222 case LPFC_SLI_INTF_IF_TYPE_0: 10223 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10224 GFP_KERNEL); 10225 if (!mboxq) { 10226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10227 "0494 Unable to allocate memory for " 10228 "issuing SLI_FUNCTION_RESET mailbox " 10229 "command\n"); 10230 return -ENOMEM; 10231 } 10232 10233 /* Setup PCI function reset mailbox-ioctl command */ 10234 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 10235 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 10236 LPFC_SLI4_MBX_EMBED); 10237 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10238 shdr = (union lpfc_sli4_cfg_shdr *) 10239 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 10240 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10241 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 10242 &shdr->response); 10243 mempool_free(mboxq, phba->mbox_mem_pool); 10244 if (shdr_status || shdr_add_status || rc) { 10245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10246 "0495 SLI_FUNCTION_RESET mailbox " 10247 "failed with status x%x add_status x%x," 10248 " mbx status x%x\n", 10249 shdr_status, shdr_add_status, rc); 10250 rc = -ENXIO; 10251 } 10252 break; 10253 case LPFC_SLI_INTF_IF_TYPE_2: 10254 case LPFC_SLI_INTF_IF_TYPE_6: 10255 wait: 10256 /* 10257 * Poll the Port Status Register and wait for RDY for 10258 * up to 30 seconds. If the port doesn't respond, treat 10259 * it as an error. 10260 */ 10261 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 10262 if (lpfc_readl(phba->sli4_hba.u.if_type2. 10263 STATUSregaddr, ®_data.word0)) { 10264 rc = -ENODEV; 10265 goto out; 10266 } 10267 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 10268 break; 10269 msleep(20); 10270 } 10271 10272 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 10273 phba->work_status[0] = readl( 10274 phba->sli4_hba.u.if_type2.ERR1regaddr); 10275 phba->work_status[1] = readl( 10276 phba->sli4_hba.u.if_type2.ERR2regaddr); 10277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10278 "2890 Port not ready, port status reg " 10279 "0x%x error 1=0x%x, error 2=0x%x\n", 10280 reg_data.word0, 10281 phba->work_status[0], 10282 phba->work_status[1]); 10283 rc = -ENODEV; 10284 goto out; 10285 } 10286 10287 if (!port_reset) { 10288 /* 10289 * Reset the port now 10290 */ 10291 reg_data.word0 = 0; 10292 bf_set(lpfc_sliport_ctrl_end, ®_data, 10293 LPFC_SLIPORT_LITTLE_ENDIAN); 10294 bf_set(lpfc_sliport_ctrl_ip, ®_data, 10295 LPFC_SLIPORT_INIT_PORT); 10296 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 10297 CTRLregaddr); 10298 /* flush */ 10299 pci_read_config_word(phba->pcidev, 10300 PCI_DEVICE_ID, &devid); 10301 10302 port_reset = 1; 10303 msleep(20); 10304 goto wait; 10305 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 10306 rc = -ENODEV; 10307 goto out; 10308 } 10309 break; 10310 10311 case LPFC_SLI_INTF_IF_TYPE_1: 10312 default: 10313 break; 10314 } 10315 10316 out: 10317 /* Catch the not-ready port failure after a port reset. */ 10318 if (rc) { 10319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10320 "3317 HBA not functional: IP Reset Failed " 10321 "try: echo fw_reset > board_mode\n"); 10322 rc = -ENODEV; 10323 } 10324 10325 return rc; 10326 } 10327 10328 /** 10329 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 10330 * @phba: pointer to lpfc hba data structure. 10331 * 10332 * This routine is invoked to set up the PCI device memory space for device 10333 * with SLI-4 interface spec. 10334 * 10335 * Return codes 10336 * 0 - successful 10337 * other values - error 10338 **/ 10339 static int 10340 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 10341 { 10342 struct pci_dev *pdev = phba->pcidev; 10343 unsigned long bar0map_len, bar1map_len, bar2map_len; 10344 int error; 10345 uint32_t if_type; 10346 10347 if (!pdev) 10348 return -ENODEV; 10349 10350 /* Set the device DMA mask size */ 10351 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 10352 if (error) 10353 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 10354 if (error) 10355 return error; 10356 10357 /* 10358 * The BARs and register set definitions and offset locations are 10359 * dependent on the if_type. 10360 */ 10361 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 10362 &phba->sli4_hba.sli_intf.word0)) { 10363 return -ENODEV; 10364 } 10365 10366 /* There is no SLI3 failback for SLI4 devices. */ 10367 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 10368 LPFC_SLI_INTF_VALID) { 10369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10370 "2894 SLI_INTF reg contents invalid " 10371 "sli_intf reg 0x%x\n", 10372 phba->sli4_hba.sli_intf.word0); 10373 return -ENODEV; 10374 } 10375 10376 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10377 /* 10378 * Get the bus address of SLI4 device Bar regions and the 10379 * number of bytes required by each mapping. The mapping of the 10380 * particular PCI BARs regions is dependent on the type of 10381 * SLI4 device. 10382 */ 10383 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 10384 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 10385 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 10386 10387 /* 10388 * Map SLI4 PCI Config Space Register base to a kernel virtual 10389 * addr 10390 */ 10391 phba->sli4_hba.conf_regs_memmap_p = 10392 ioremap(phba->pci_bar0_map, bar0map_len); 10393 if (!phba->sli4_hba.conf_regs_memmap_p) { 10394 dev_printk(KERN_ERR, &pdev->dev, 10395 "ioremap failed for SLI4 PCI config " 10396 "registers.\n"); 10397 return -ENODEV; 10398 } 10399 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 10400 /* Set up BAR0 PCI config space register memory map */ 10401 lpfc_sli4_bar0_register_memmap(phba, if_type); 10402 } else { 10403 phba->pci_bar0_map = pci_resource_start(pdev, 1); 10404 bar0map_len = pci_resource_len(pdev, 1); 10405 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10406 dev_printk(KERN_ERR, &pdev->dev, 10407 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 10408 return -ENODEV; 10409 } 10410 phba->sli4_hba.conf_regs_memmap_p = 10411 ioremap(phba->pci_bar0_map, bar0map_len); 10412 if (!phba->sli4_hba.conf_regs_memmap_p) { 10413 dev_printk(KERN_ERR, &pdev->dev, 10414 "ioremap failed for SLI4 PCI config " 10415 "registers.\n"); 10416 return -ENODEV; 10417 } 10418 lpfc_sli4_bar0_register_memmap(phba, if_type); 10419 } 10420 10421 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10422 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 10423 /* 10424 * Map SLI4 if type 0 HBA Control Register base to a 10425 * kernel virtual address and setup the registers. 10426 */ 10427 phba->pci_bar1_map = pci_resource_start(pdev, 10428 PCI_64BIT_BAR2); 10429 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10430 phba->sli4_hba.ctrl_regs_memmap_p = 10431 ioremap(phba->pci_bar1_map, 10432 bar1map_len); 10433 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 10434 dev_err(&pdev->dev, 10435 "ioremap failed for SLI4 HBA " 10436 "control registers.\n"); 10437 error = -ENOMEM; 10438 goto out_iounmap_conf; 10439 } 10440 phba->pci_bar2_memmap_p = 10441 phba->sli4_hba.ctrl_regs_memmap_p; 10442 lpfc_sli4_bar1_register_memmap(phba, if_type); 10443 } else { 10444 error = -ENOMEM; 10445 goto out_iounmap_conf; 10446 } 10447 } 10448 10449 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 10450 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 10451 /* 10452 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 10453 * virtual address and setup the registers. 10454 */ 10455 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 10456 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 10457 phba->sli4_hba.drbl_regs_memmap_p = 10458 ioremap(phba->pci_bar1_map, bar1map_len); 10459 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10460 dev_err(&pdev->dev, 10461 "ioremap failed for SLI4 HBA doorbell registers.\n"); 10462 error = -ENOMEM; 10463 goto out_iounmap_conf; 10464 } 10465 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 10466 lpfc_sli4_bar1_register_memmap(phba, if_type); 10467 } 10468 10469 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 10470 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10471 /* 10472 * Map SLI4 if type 0 HBA Doorbell Register base to 10473 * a kernel virtual address and setup the registers. 10474 */ 10475 phba->pci_bar2_map = pci_resource_start(pdev, 10476 PCI_64BIT_BAR4); 10477 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10478 phba->sli4_hba.drbl_regs_memmap_p = 10479 ioremap(phba->pci_bar2_map, 10480 bar2map_len); 10481 if (!phba->sli4_hba.drbl_regs_memmap_p) { 10482 dev_err(&pdev->dev, 10483 "ioremap failed for SLI4 HBA" 10484 " doorbell registers.\n"); 10485 error = -ENOMEM; 10486 goto out_iounmap_ctrl; 10487 } 10488 phba->pci_bar4_memmap_p = 10489 phba->sli4_hba.drbl_regs_memmap_p; 10490 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 10491 if (error) 10492 goto out_iounmap_all; 10493 } else { 10494 error = -ENOMEM; 10495 goto out_iounmap_all; 10496 } 10497 } 10498 10499 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 10500 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 10501 /* 10502 * Map SLI4 if type 6 HBA DPP Register base to a kernel 10503 * virtual address and setup the registers. 10504 */ 10505 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 10506 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 10507 phba->sli4_hba.dpp_regs_memmap_p = 10508 ioremap(phba->pci_bar2_map, bar2map_len); 10509 if (!phba->sli4_hba.dpp_regs_memmap_p) { 10510 dev_err(&pdev->dev, 10511 "ioremap failed for SLI4 HBA dpp registers.\n"); 10512 error = -ENOMEM; 10513 goto out_iounmap_ctrl; 10514 } 10515 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 10516 } 10517 10518 /* Set up the EQ/CQ register handeling functions now */ 10519 switch (if_type) { 10520 case LPFC_SLI_INTF_IF_TYPE_0: 10521 case LPFC_SLI_INTF_IF_TYPE_2: 10522 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 10523 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 10524 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 10525 break; 10526 case LPFC_SLI_INTF_IF_TYPE_6: 10527 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 10528 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 10529 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 10530 break; 10531 default: 10532 break; 10533 } 10534 10535 return 0; 10536 10537 out_iounmap_all: 10538 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10539 out_iounmap_ctrl: 10540 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10541 out_iounmap_conf: 10542 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10543 10544 return error; 10545 } 10546 10547 /** 10548 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 10549 * @phba: pointer to lpfc hba data structure. 10550 * 10551 * This routine is invoked to unset the PCI device memory space for device 10552 * with SLI-4 interface spec. 10553 **/ 10554 static void 10555 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 10556 { 10557 uint32_t if_type; 10558 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10559 10560 switch (if_type) { 10561 case LPFC_SLI_INTF_IF_TYPE_0: 10562 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10563 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 10564 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10565 break; 10566 case LPFC_SLI_INTF_IF_TYPE_2: 10567 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10568 break; 10569 case LPFC_SLI_INTF_IF_TYPE_6: 10570 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 10571 iounmap(phba->sli4_hba.conf_regs_memmap_p); 10572 if (phba->sli4_hba.dpp_regs_memmap_p) 10573 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 10574 break; 10575 case LPFC_SLI_INTF_IF_TYPE_1: 10576 default: 10577 dev_printk(KERN_ERR, &phba->pcidev->dev, 10578 "FATAL - unsupported SLI4 interface type - %d\n", 10579 if_type); 10580 break; 10581 } 10582 } 10583 10584 /** 10585 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 10586 * @phba: pointer to lpfc hba data structure. 10587 * 10588 * This routine is invoked to enable the MSI-X interrupt vectors to device 10589 * with SLI-3 interface specs. 10590 * 10591 * Return codes 10592 * 0 - successful 10593 * other values - error 10594 **/ 10595 static int 10596 lpfc_sli_enable_msix(struct lpfc_hba *phba) 10597 { 10598 int rc; 10599 LPFC_MBOXQ_t *pmb; 10600 10601 /* Set up MSI-X multi-message vectors */ 10602 rc = pci_alloc_irq_vectors(phba->pcidev, 10603 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 10604 if (rc < 0) { 10605 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10606 "0420 PCI enable MSI-X failed (%d)\n", rc); 10607 goto vec_fail_out; 10608 } 10609 10610 /* 10611 * Assign MSI-X vectors to interrupt handlers 10612 */ 10613 10614 /* vector-0 is associated to slow-path handler */ 10615 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 10616 &lpfc_sli_sp_intr_handler, 0, 10617 LPFC_SP_DRIVER_HANDLER_NAME, phba); 10618 if (rc) { 10619 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10620 "0421 MSI-X slow-path request_irq failed " 10621 "(%d)\n", rc); 10622 goto msi_fail_out; 10623 } 10624 10625 /* vector-1 is associated to fast-path handler */ 10626 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 10627 &lpfc_sli_fp_intr_handler, 0, 10628 LPFC_FP_DRIVER_HANDLER_NAME, phba); 10629 10630 if (rc) { 10631 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10632 "0429 MSI-X fast-path request_irq failed " 10633 "(%d)\n", rc); 10634 goto irq_fail_out; 10635 } 10636 10637 /* 10638 * Configure HBA MSI-X attention conditions to messages 10639 */ 10640 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 10641 10642 if (!pmb) { 10643 rc = -ENOMEM; 10644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10645 "0474 Unable to allocate memory for issuing " 10646 "MBOX_CONFIG_MSI command\n"); 10647 goto mem_fail_out; 10648 } 10649 rc = lpfc_config_msi(phba, pmb); 10650 if (rc) 10651 goto mbx_fail_out; 10652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10653 if (rc != MBX_SUCCESS) { 10654 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 10655 "0351 Config MSI mailbox command failed, " 10656 "mbxCmd x%x, mbxStatus x%x\n", 10657 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 10658 goto mbx_fail_out; 10659 } 10660 10661 /* Free memory allocated for mailbox command */ 10662 mempool_free(pmb, phba->mbox_mem_pool); 10663 return rc; 10664 10665 mbx_fail_out: 10666 /* Free memory allocated for mailbox command */ 10667 mempool_free(pmb, phba->mbox_mem_pool); 10668 10669 mem_fail_out: 10670 /* free the irq already requested */ 10671 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 10672 10673 irq_fail_out: 10674 /* free the irq already requested */ 10675 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 10676 10677 msi_fail_out: 10678 /* Unconfigure MSI-X capability structure */ 10679 pci_free_irq_vectors(phba->pcidev); 10680 10681 vec_fail_out: 10682 return rc; 10683 } 10684 10685 /** 10686 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 10687 * @phba: pointer to lpfc hba data structure. 10688 * 10689 * This routine is invoked to enable the MSI interrupt mode to device with 10690 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 10691 * enable the MSI vector. The device driver is responsible for calling the 10692 * request_irq() to register MSI vector with a interrupt the handler, which 10693 * is done in this function. 10694 * 10695 * Return codes 10696 * 0 - successful 10697 * other values - error 10698 */ 10699 static int 10700 lpfc_sli_enable_msi(struct lpfc_hba *phba) 10701 { 10702 int rc; 10703 10704 rc = pci_enable_msi(phba->pcidev); 10705 if (!rc) 10706 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10707 "0462 PCI enable MSI mode success.\n"); 10708 else { 10709 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10710 "0471 PCI enable MSI mode failed (%d)\n", rc); 10711 return rc; 10712 } 10713 10714 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10715 0, LPFC_DRIVER_NAME, phba); 10716 if (rc) { 10717 pci_disable_msi(phba->pcidev); 10718 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10719 "0478 MSI request_irq failed (%d)\n", rc); 10720 } 10721 return rc; 10722 } 10723 10724 /** 10725 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 10726 * @phba: pointer to lpfc hba data structure. 10727 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 10728 * 10729 * This routine is invoked to enable device interrupt and associate driver's 10730 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 10731 * spec. Depends on the interrupt mode configured to the driver, the driver 10732 * will try to fallback from the configured interrupt mode to an interrupt 10733 * mode which is supported by the platform, kernel, and device in the order 10734 * of: 10735 * MSI-X -> MSI -> IRQ. 10736 * 10737 * Return codes 10738 * 0 - successful 10739 * other values - error 10740 **/ 10741 static uint32_t 10742 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 10743 { 10744 uint32_t intr_mode = LPFC_INTR_ERROR; 10745 int retval; 10746 10747 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 10748 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 10749 if (retval) 10750 return intr_mode; 10751 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 10752 10753 if (cfg_mode == 2) { 10754 /* Now, try to enable MSI-X interrupt mode */ 10755 retval = lpfc_sli_enable_msix(phba); 10756 if (!retval) { 10757 /* Indicate initialization to MSI-X mode */ 10758 phba->intr_type = MSIX; 10759 intr_mode = 2; 10760 } 10761 } 10762 10763 /* Fallback to MSI if MSI-X initialization failed */ 10764 if (cfg_mode >= 1 && phba->intr_type == NONE) { 10765 retval = lpfc_sli_enable_msi(phba); 10766 if (!retval) { 10767 /* Indicate initialization to MSI mode */ 10768 phba->intr_type = MSI; 10769 intr_mode = 1; 10770 } 10771 } 10772 10773 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 10774 if (phba->intr_type == NONE) { 10775 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 10776 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 10777 if (!retval) { 10778 /* Indicate initialization to INTx mode */ 10779 phba->intr_type = INTx; 10780 intr_mode = 0; 10781 } 10782 } 10783 return intr_mode; 10784 } 10785 10786 /** 10787 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 10788 * @phba: pointer to lpfc hba data structure. 10789 * 10790 * This routine is invoked to disable device interrupt and disassociate the 10791 * driver's interrupt handler(s) from interrupt vector(s) to device with 10792 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 10793 * release the interrupt vector(s) for the message signaled interrupt. 10794 **/ 10795 static void 10796 lpfc_sli_disable_intr(struct lpfc_hba *phba) 10797 { 10798 int nr_irqs, i; 10799 10800 if (phba->intr_type == MSIX) 10801 nr_irqs = LPFC_MSIX_VECTORS; 10802 else 10803 nr_irqs = 1; 10804 10805 for (i = 0; i < nr_irqs; i++) 10806 free_irq(pci_irq_vector(phba->pcidev, i), phba); 10807 pci_free_irq_vectors(phba->pcidev); 10808 10809 /* Reset interrupt management states */ 10810 phba->intr_type = NONE; 10811 phba->sli.slistat.sli_intr = 0; 10812 } 10813 10814 /** 10815 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 10816 * @phba: pointer to lpfc hba data structure. 10817 * @id: EQ vector index or Hardware Queue index 10818 * @match: LPFC_FIND_BY_EQ = match by EQ 10819 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 10820 * Return the CPU that matches the selection criteria 10821 */ 10822 static uint16_t 10823 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 10824 { 10825 struct lpfc_vector_map_info *cpup; 10826 int cpu; 10827 10828 /* Loop through all CPUs */ 10829 for_each_present_cpu(cpu) { 10830 cpup = &phba->sli4_hba.cpu_map[cpu]; 10831 10832 /* If we are matching by EQ, there may be multiple CPUs using 10833 * using the same vector, so select the one with 10834 * LPFC_CPU_FIRST_IRQ set. 10835 */ 10836 if ((match == LPFC_FIND_BY_EQ) && 10837 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 10838 (cpup->eq == id)) 10839 return cpu; 10840 10841 /* If matching by HDWQ, select the first CPU that matches */ 10842 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 10843 return cpu; 10844 } 10845 return 0; 10846 } 10847 10848 #ifdef CONFIG_X86 10849 /** 10850 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 10851 * @phba: pointer to lpfc hba data structure. 10852 * @cpu: CPU map index 10853 * @phys_id: CPU package physical id 10854 * @core_id: CPU core id 10855 */ 10856 static int 10857 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 10858 uint16_t phys_id, uint16_t core_id) 10859 { 10860 struct lpfc_vector_map_info *cpup; 10861 int idx; 10862 10863 for_each_present_cpu(idx) { 10864 cpup = &phba->sli4_hba.cpu_map[idx]; 10865 /* Does the cpup match the one we are looking for */ 10866 if ((cpup->phys_id == phys_id) && 10867 (cpup->core_id == core_id) && 10868 (cpu != idx)) 10869 return 1; 10870 } 10871 return 0; 10872 } 10873 #endif 10874 10875 /* 10876 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 10877 * @phba: pointer to lpfc hba data structure. 10878 * @eqidx: index for eq and irq vector 10879 * @flag: flags to set for vector_map structure 10880 * @cpu: cpu used to index vector_map structure 10881 * 10882 * The routine assigns eq info into vector_map structure 10883 */ 10884 static inline void 10885 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 10886 unsigned int cpu) 10887 { 10888 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 10889 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 10890 10891 cpup->eq = eqidx; 10892 cpup->flag |= flag; 10893 10894 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10895 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 10896 cpu, eqhdl->irq, cpup->eq, cpup->flag); 10897 } 10898 10899 /** 10900 * lpfc_cpu_map_array_init - Initialize cpu_map structure 10901 * @phba: pointer to lpfc hba data structure. 10902 * 10903 * The routine initializes the cpu_map array structure 10904 */ 10905 static void 10906 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 10907 { 10908 struct lpfc_vector_map_info *cpup; 10909 struct lpfc_eq_intr_info *eqi; 10910 int cpu; 10911 10912 for_each_possible_cpu(cpu) { 10913 cpup = &phba->sli4_hba.cpu_map[cpu]; 10914 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 10915 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 10916 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 10917 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 10918 cpup->flag = 0; 10919 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 10920 INIT_LIST_HEAD(&eqi->list); 10921 eqi->icnt = 0; 10922 } 10923 } 10924 10925 /** 10926 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 10927 * @phba: pointer to lpfc hba data structure. 10928 * 10929 * The routine initializes the hba_eq_hdl array structure 10930 */ 10931 static void 10932 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 10933 { 10934 struct lpfc_hba_eq_hdl *eqhdl; 10935 int i; 10936 10937 for (i = 0; i < phba->cfg_irq_chann; i++) { 10938 eqhdl = lpfc_get_eq_hdl(i); 10939 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 10940 eqhdl->phba = phba; 10941 } 10942 } 10943 10944 /** 10945 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 10946 * @phba: pointer to lpfc hba data structure. 10947 * @vectors: number of msix vectors allocated. 10948 * 10949 * The routine will figure out the CPU affinity assignment for every 10950 * MSI-X vector allocated for the HBA. 10951 * In addition, the CPU to IO channel mapping will be calculated 10952 * and the phba->sli4_hba.cpu_map array will reflect this. 10953 */ 10954 static void 10955 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 10956 { 10957 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 10958 int max_phys_id, min_phys_id; 10959 int max_core_id, min_core_id; 10960 struct lpfc_vector_map_info *cpup; 10961 struct lpfc_vector_map_info *new_cpup; 10962 #ifdef CONFIG_X86 10963 struct cpuinfo_x86 *cpuinfo; 10964 #endif 10965 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 10966 struct lpfc_hdwq_stat *c_stat; 10967 #endif 10968 10969 max_phys_id = 0; 10970 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 10971 max_core_id = 0; 10972 min_core_id = LPFC_VECTOR_MAP_EMPTY; 10973 10974 /* Update CPU map with physical id and core id of each CPU */ 10975 for_each_present_cpu(cpu) { 10976 cpup = &phba->sli4_hba.cpu_map[cpu]; 10977 #ifdef CONFIG_X86 10978 cpuinfo = &cpu_data(cpu); 10979 cpup->phys_id = cpuinfo->phys_proc_id; 10980 cpup->core_id = cpuinfo->cpu_core_id; 10981 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 10982 cpup->flag |= LPFC_CPU_MAP_HYPER; 10983 #else 10984 /* No distinction between CPUs for other platforms */ 10985 cpup->phys_id = 0; 10986 cpup->core_id = cpu; 10987 #endif 10988 10989 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10990 "3328 CPU %d physid %d coreid %d flag x%x\n", 10991 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 10992 10993 if (cpup->phys_id > max_phys_id) 10994 max_phys_id = cpup->phys_id; 10995 if (cpup->phys_id < min_phys_id) 10996 min_phys_id = cpup->phys_id; 10997 10998 if (cpup->core_id > max_core_id) 10999 max_core_id = cpup->core_id; 11000 if (cpup->core_id < min_core_id) 11001 min_core_id = cpup->core_id; 11002 } 11003 11004 /* After looking at each irq vector assigned to this pcidev, its 11005 * possible to see that not ALL CPUs have been accounted for. 11006 * Next we will set any unassigned (unaffinitized) cpu map 11007 * entries to a IRQ on the same phys_id. 11008 */ 11009 first_cpu = cpumask_first(cpu_present_mask); 11010 start_cpu = first_cpu; 11011 11012 for_each_present_cpu(cpu) { 11013 cpup = &phba->sli4_hba.cpu_map[cpu]; 11014 11015 /* Is this CPU entry unassigned */ 11016 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 11017 /* Mark CPU as IRQ not assigned by the kernel */ 11018 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 11019 11020 /* If so, find a new_cpup thats on the the SAME 11021 * phys_id as cpup. start_cpu will start where we 11022 * left off so all unassigned entries don't get assgined 11023 * the IRQ of the first entry. 11024 */ 11025 new_cpu = start_cpu; 11026 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11027 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11028 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 11029 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 11030 (new_cpup->phys_id == cpup->phys_id)) 11031 goto found_same; 11032 new_cpu = cpumask_next( 11033 new_cpu, cpu_present_mask); 11034 if (new_cpu == nr_cpumask_bits) 11035 new_cpu = first_cpu; 11036 } 11037 /* At this point, we leave the CPU as unassigned */ 11038 continue; 11039 found_same: 11040 /* We found a matching phys_id, so copy the IRQ info */ 11041 cpup->eq = new_cpup->eq; 11042 11043 /* Bump start_cpu to the next slot to minmize the 11044 * chance of having multiple unassigned CPU entries 11045 * selecting the same IRQ. 11046 */ 11047 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11048 if (start_cpu == nr_cpumask_bits) 11049 start_cpu = first_cpu; 11050 11051 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11052 "3337 Set Affinity: CPU %d " 11053 "eq %d from peer cpu %d same " 11054 "phys_id (%d)\n", 11055 cpu, cpup->eq, new_cpu, 11056 cpup->phys_id); 11057 } 11058 } 11059 11060 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 11061 start_cpu = first_cpu; 11062 11063 for_each_present_cpu(cpu) { 11064 cpup = &phba->sli4_hba.cpu_map[cpu]; 11065 11066 /* Is this entry unassigned */ 11067 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 11068 /* Mark it as IRQ not assigned by the kernel */ 11069 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 11070 11071 /* If so, find a new_cpup thats on ANY phys_id 11072 * as the cpup. start_cpu will start where we 11073 * left off so all unassigned entries don't get 11074 * assigned the IRQ of the first entry. 11075 */ 11076 new_cpu = start_cpu; 11077 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11078 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11079 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 11080 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 11081 goto found_any; 11082 new_cpu = cpumask_next( 11083 new_cpu, cpu_present_mask); 11084 if (new_cpu == nr_cpumask_bits) 11085 new_cpu = first_cpu; 11086 } 11087 /* We should never leave an entry unassigned */ 11088 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11089 "3339 Set Affinity: CPU %d " 11090 "eq %d UNASSIGNED\n", 11091 cpup->hdwq, cpup->eq); 11092 continue; 11093 found_any: 11094 /* We found an available entry, copy the IRQ info */ 11095 cpup->eq = new_cpup->eq; 11096 11097 /* Bump start_cpu to the next slot to minmize the 11098 * chance of having multiple unassigned CPU entries 11099 * selecting the same IRQ. 11100 */ 11101 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11102 if (start_cpu == nr_cpumask_bits) 11103 start_cpu = first_cpu; 11104 11105 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11106 "3338 Set Affinity: CPU %d " 11107 "eq %d from peer cpu %d (%d/%d)\n", 11108 cpu, cpup->eq, new_cpu, 11109 new_cpup->phys_id, new_cpup->core_id); 11110 } 11111 } 11112 11113 /* Assign hdwq indices that are unique across all cpus in the map 11114 * that are also FIRST_CPUs. 11115 */ 11116 idx = 0; 11117 for_each_present_cpu(cpu) { 11118 cpup = &phba->sli4_hba.cpu_map[cpu]; 11119 11120 /* Only FIRST IRQs get a hdwq index assignment. */ 11121 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11122 continue; 11123 11124 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 11125 cpup->hdwq = idx; 11126 idx++; 11127 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11128 "3333 Set Affinity: CPU %d (phys %d core %d): " 11129 "hdwq %d eq %d flg x%x\n", 11130 cpu, cpup->phys_id, cpup->core_id, 11131 cpup->hdwq, cpup->eq, cpup->flag); 11132 } 11133 /* Associate a hdwq with each cpu_map entry 11134 * This will be 1 to 1 - hdwq to cpu, unless there are less 11135 * hardware queues then CPUs. For that case we will just round-robin 11136 * the available hardware queues as they get assigned to CPUs. 11137 * The next_idx is the idx from the FIRST_CPU loop above to account 11138 * for irq_chann < hdwq. The idx is used for round-robin assignments 11139 * and needs to start at 0. 11140 */ 11141 next_idx = idx; 11142 start_cpu = 0; 11143 idx = 0; 11144 for_each_present_cpu(cpu) { 11145 cpup = &phba->sli4_hba.cpu_map[cpu]; 11146 11147 /* FIRST cpus are already mapped. */ 11148 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 11149 continue; 11150 11151 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 11152 * of the unassigned cpus to the next idx so that all 11153 * hdw queues are fully utilized. 11154 */ 11155 if (next_idx < phba->cfg_hdw_queue) { 11156 cpup->hdwq = next_idx; 11157 next_idx++; 11158 continue; 11159 } 11160 11161 /* Not a First CPU and all hdw_queues are used. Reuse a 11162 * Hardware Queue for another CPU, so be smart about it 11163 * and pick one that has its IRQ/EQ mapped to the same phys_id 11164 * (CPU package) and core_id. 11165 */ 11166 new_cpu = start_cpu; 11167 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11168 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11169 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11170 new_cpup->phys_id == cpup->phys_id && 11171 new_cpup->core_id == cpup->core_id) { 11172 goto found_hdwq; 11173 } 11174 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11175 if (new_cpu == nr_cpumask_bits) 11176 new_cpu = first_cpu; 11177 } 11178 11179 /* If we can't match both phys_id and core_id, 11180 * settle for just a phys_id match. 11181 */ 11182 new_cpu = start_cpu; 11183 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 11184 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 11185 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 11186 new_cpup->phys_id == cpup->phys_id) 11187 goto found_hdwq; 11188 11189 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 11190 if (new_cpu == nr_cpumask_bits) 11191 new_cpu = first_cpu; 11192 } 11193 11194 /* Otherwise just round robin on cfg_hdw_queue */ 11195 cpup->hdwq = idx % phba->cfg_hdw_queue; 11196 idx++; 11197 goto logit; 11198 found_hdwq: 11199 /* We found an available entry, copy the IRQ info */ 11200 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 11201 if (start_cpu == nr_cpumask_bits) 11202 start_cpu = first_cpu; 11203 cpup->hdwq = new_cpup->hdwq; 11204 logit: 11205 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11206 "3335 Set Affinity: CPU %d (phys %d core %d): " 11207 "hdwq %d eq %d flg x%x\n", 11208 cpu, cpup->phys_id, cpup->core_id, 11209 cpup->hdwq, cpup->eq, cpup->flag); 11210 } 11211 11212 /* 11213 * Initialize the cpu_map slots for not-present cpus in case 11214 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 11215 */ 11216 idx = 0; 11217 for_each_possible_cpu(cpu) { 11218 cpup = &phba->sli4_hba.cpu_map[cpu]; 11219 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11220 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 11221 c_stat->hdwq_no = cpup->hdwq; 11222 #endif 11223 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 11224 continue; 11225 11226 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 11227 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 11228 c_stat->hdwq_no = cpup->hdwq; 11229 #endif 11230 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11231 "3340 Set Affinity: not present " 11232 "CPU %d hdwq %d\n", 11233 cpu, cpup->hdwq); 11234 } 11235 11236 /* The cpu_map array will be used later during initialization 11237 * when EQ / CQ / WQs are allocated and configured. 11238 */ 11239 return; 11240 } 11241 11242 /** 11243 * lpfc_cpuhp_get_eq 11244 * 11245 * @phba: pointer to lpfc hba data structure. 11246 * @cpu: cpu going offline 11247 * @eqlist: eq list to append to 11248 */ 11249 static int 11250 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 11251 struct list_head *eqlist) 11252 { 11253 const struct cpumask *maskp; 11254 struct lpfc_queue *eq; 11255 struct cpumask *tmp; 11256 u16 idx; 11257 11258 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 11259 if (!tmp) 11260 return -ENOMEM; 11261 11262 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11263 maskp = pci_irq_get_affinity(phba->pcidev, idx); 11264 if (!maskp) 11265 continue; 11266 /* 11267 * if irq is not affinitized to the cpu going 11268 * then we don't need to poll the eq attached 11269 * to it. 11270 */ 11271 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 11272 continue; 11273 /* get the cpus that are online and are affini- 11274 * tized to this irq vector. If the count is 11275 * more than 1 then cpuhp is not going to shut- 11276 * down this vector. Since this cpu has not 11277 * gone offline yet, we need >1. 11278 */ 11279 cpumask_and(tmp, maskp, cpu_online_mask); 11280 if (cpumask_weight(tmp) > 1) 11281 continue; 11282 11283 /* Now that we have an irq to shutdown, get the eq 11284 * mapped to this irq. Note: multiple hdwq's in 11285 * the software can share an eq, but eventually 11286 * only eq will be mapped to this vector 11287 */ 11288 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 11289 list_add(&eq->_poll_list, eqlist); 11290 } 11291 kfree(tmp); 11292 return 0; 11293 } 11294 11295 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 11296 { 11297 if (phba->sli_rev != LPFC_SLI_REV4) 11298 return; 11299 11300 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 11301 &phba->cpuhp); 11302 /* 11303 * unregistering the instance doesn't stop the polling 11304 * timer. Wait for the poll timer to retire. 11305 */ 11306 synchronize_rcu(); 11307 del_timer_sync(&phba->cpuhp_poll_timer); 11308 } 11309 11310 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 11311 { 11312 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 11313 return; 11314 11315 __lpfc_cpuhp_remove(phba); 11316 } 11317 11318 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 11319 { 11320 if (phba->sli_rev != LPFC_SLI_REV4) 11321 return; 11322 11323 rcu_read_lock(); 11324 11325 if (!list_empty(&phba->poll_list)) 11326 mod_timer(&phba->cpuhp_poll_timer, 11327 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 11328 11329 rcu_read_unlock(); 11330 11331 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 11332 &phba->cpuhp); 11333 } 11334 11335 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 11336 { 11337 if (phba->pport->load_flag & FC_UNLOADING) { 11338 *retval = -EAGAIN; 11339 return true; 11340 } 11341 11342 if (phba->sli_rev != LPFC_SLI_REV4) { 11343 *retval = 0; 11344 return true; 11345 } 11346 11347 /* proceed with the hotplug */ 11348 return false; 11349 } 11350 11351 /** 11352 * lpfc_irq_set_aff - set IRQ affinity 11353 * @eqhdl: EQ handle 11354 * @cpu: cpu to set affinity 11355 * 11356 **/ 11357 static inline void 11358 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 11359 { 11360 cpumask_clear(&eqhdl->aff_mask); 11361 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 11362 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11363 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask); 11364 } 11365 11366 /** 11367 * lpfc_irq_clear_aff - clear IRQ affinity 11368 * @eqhdl: EQ handle 11369 * 11370 **/ 11371 static inline void 11372 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 11373 { 11374 cpumask_clear(&eqhdl->aff_mask); 11375 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 11376 } 11377 11378 /** 11379 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 11380 * @phba: pointer to HBA context object. 11381 * @cpu: cpu going offline/online 11382 * @offline: true, cpu is going offline. false, cpu is coming online. 11383 * 11384 * If cpu is going offline, we'll try our best effort to find the next 11385 * online cpu on the phba's original_mask and migrate all offlining IRQ 11386 * affinities. 11387 * 11388 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 11389 * 11390 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 11391 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 11392 * 11393 **/ 11394 static void 11395 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 11396 { 11397 struct lpfc_vector_map_info *cpup; 11398 struct cpumask *aff_mask; 11399 unsigned int cpu_select, cpu_next, idx; 11400 const struct cpumask *orig_mask; 11401 11402 if (phba->irq_chann_mode == NORMAL_MODE) 11403 return; 11404 11405 orig_mask = &phba->sli4_hba.irq_aff_mask; 11406 11407 if (!cpumask_test_cpu(cpu, orig_mask)) 11408 return; 11409 11410 cpup = &phba->sli4_hba.cpu_map[cpu]; 11411 11412 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11413 return; 11414 11415 if (offline) { 11416 /* Find next online CPU on original mask */ 11417 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 11418 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 11419 11420 /* Found a valid CPU */ 11421 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 11422 /* Go through each eqhdl and ensure offlining 11423 * cpu aff_mask is migrated 11424 */ 11425 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11426 aff_mask = lpfc_get_aff_mask(idx); 11427 11428 /* Migrate affinity */ 11429 if (cpumask_test_cpu(cpu, aff_mask)) 11430 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 11431 cpu_select); 11432 } 11433 } else { 11434 /* Rely on irqbalance if no online CPUs left on NUMA */ 11435 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 11436 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 11437 } 11438 } else { 11439 /* Migrate affinity back to this CPU */ 11440 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 11441 } 11442 } 11443 11444 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 11445 { 11446 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11447 struct lpfc_queue *eq, *next; 11448 LIST_HEAD(eqlist); 11449 int retval; 11450 11451 if (!phba) { 11452 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11453 return 0; 11454 } 11455 11456 if (__lpfc_cpuhp_checks(phba, &retval)) 11457 return retval; 11458 11459 lpfc_irq_rebalance(phba, cpu, true); 11460 11461 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 11462 if (retval) 11463 return retval; 11464 11465 /* start polling on these eq's */ 11466 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 11467 list_del_init(&eq->_poll_list); 11468 lpfc_sli4_start_polling(eq); 11469 } 11470 11471 return 0; 11472 } 11473 11474 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 11475 { 11476 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 11477 struct lpfc_queue *eq, *next; 11478 unsigned int n; 11479 int retval; 11480 11481 if (!phba) { 11482 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 11483 return 0; 11484 } 11485 11486 if (__lpfc_cpuhp_checks(phba, &retval)) 11487 return retval; 11488 11489 lpfc_irq_rebalance(phba, cpu, false); 11490 11491 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 11492 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 11493 if (n == cpu) 11494 lpfc_sli4_stop_polling(eq); 11495 } 11496 11497 return 0; 11498 } 11499 11500 /** 11501 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 11502 * @phba: pointer to lpfc hba data structure. 11503 * 11504 * This routine is invoked to enable the MSI-X interrupt vectors to device 11505 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 11506 * to cpus on the system. 11507 * 11508 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 11509 * the number of cpus on the same numa node as this adapter. The vectors are 11510 * allocated without requesting OS affinity mapping. A vector will be 11511 * allocated and assigned to each online and offline cpu. If the cpu is 11512 * online, then affinity will be set to that cpu. If the cpu is offline, then 11513 * affinity will be set to the nearest peer cpu within the numa node that is 11514 * online. If there are no online cpus within the numa node, affinity is not 11515 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 11516 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 11517 * configured. 11518 * 11519 * If numa mode is not enabled and there is more than 1 vector allocated, then 11520 * the driver relies on the managed irq interface where the OS assigns vector to 11521 * cpu affinity. The driver will then use that affinity mapping to setup its 11522 * cpu mapping table. 11523 * 11524 * Return codes 11525 * 0 - successful 11526 * other values - error 11527 **/ 11528 static int 11529 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 11530 { 11531 int vectors, rc, index; 11532 char *name; 11533 const struct cpumask *aff_mask = NULL; 11534 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 11535 struct lpfc_vector_map_info *cpup; 11536 struct lpfc_hba_eq_hdl *eqhdl; 11537 const struct cpumask *maskp; 11538 unsigned int flags = PCI_IRQ_MSIX; 11539 11540 /* Set up MSI-X multi-message vectors */ 11541 vectors = phba->cfg_irq_chann; 11542 11543 if (phba->irq_chann_mode != NORMAL_MODE) 11544 aff_mask = &phba->sli4_hba.irq_aff_mask; 11545 11546 if (aff_mask) { 11547 cpu_cnt = cpumask_weight(aff_mask); 11548 vectors = min(phba->cfg_irq_chann, cpu_cnt); 11549 11550 /* cpu: iterates over aff_mask including offline or online 11551 * cpu_select: iterates over online aff_mask to set affinity 11552 */ 11553 cpu = cpumask_first(aff_mask); 11554 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11555 } else { 11556 flags |= PCI_IRQ_AFFINITY; 11557 } 11558 11559 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 11560 if (rc < 0) { 11561 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11562 "0484 PCI enable MSI-X failed (%d)\n", rc); 11563 goto vec_fail_out; 11564 } 11565 vectors = rc; 11566 11567 /* Assign MSI-X vectors to interrupt handlers */ 11568 for (index = 0; index < vectors; index++) { 11569 eqhdl = lpfc_get_eq_hdl(index); 11570 name = eqhdl->handler_name; 11571 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 11572 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 11573 LPFC_DRIVER_HANDLER_NAME"%d", index); 11574 11575 eqhdl->idx = index; 11576 rc = request_irq(pci_irq_vector(phba->pcidev, index), 11577 &lpfc_sli4_hba_intr_handler, 0, 11578 name, eqhdl); 11579 if (rc) { 11580 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11581 "0486 MSI-X fast-path (%d) " 11582 "request_irq failed (%d)\n", index, rc); 11583 goto cfg_fail_out; 11584 } 11585 11586 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 11587 11588 if (aff_mask) { 11589 /* If found a neighboring online cpu, set affinity */ 11590 if (cpu_select < nr_cpu_ids) 11591 lpfc_irq_set_aff(eqhdl, cpu_select); 11592 11593 /* Assign EQ to cpu_map */ 11594 lpfc_assign_eq_map_info(phba, index, 11595 LPFC_CPU_FIRST_IRQ, 11596 cpu); 11597 11598 /* Iterate to next offline or online cpu in aff_mask */ 11599 cpu = cpumask_next(cpu, aff_mask); 11600 11601 /* Find next online cpu in aff_mask to set affinity */ 11602 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 11603 } else if (vectors == 1) { 11604 cpu = cpumask_first(cpu_present_mask); 11605 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 11606 cpu); 11607 } else { 11608 maskp = pci_irq_get_affinity(phba->pcidev, index); 11609 11610 /* Loop through all CPUs associated with vector index */ 11611 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 11612 cpup = &phba->sli4_hba.cpu_map[cpu]; 11613 11614 /* If this is the first CPU thats assigned to 11615 * this vector, set LPFC_CPU_FIRST_IRQ. 11616 * 11617 * With certain platforms its possible that irq 11618 * vectors are affinitized to all the cpu's. 11619 * This can result in each cpu_map.eq to be set 11620 * to the last vector, resulting in overwrite 11621 * of all the previous cpu_map.eq. Ensure that 11622 * each vector receives a place in cpu_map. 11623 * Later call to lpfc_cpu_affinity_check will 11624 * ensure we are nicely balanced out. 11625 */ 11626 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 11627 continue; 11628 lpfc_assign_eq_map_info(phba, index, 11629 LPFC_CPU_FIRST_IRQ, 11630 cpu); 11631 break; 11632 } 11633 } 11634 } 11635 11636 if (vectors != phba->cfg_irq_chann) { 11637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11638 "3238 Reducing IO channels to match number of " 11639 "MSI-X vectors, requested %d got %d\n", 11640 phba->cfg_irq_chann, vectors); 11641 if (phba->cfg_irq_chann > vectors) 11642 phba->cfg_irq_chann = vectors; 11643 } 11644 11645 return rc; 11646 11647 cfg_fail_out: 11648 /* free the irq already requested */ 11649 for (--index; index >= 0; index--) { 11650 eqhdl = lpfc_get_eq_hdl(index); 11651 lpfc_irq_clear_aff(eqhdl); 11652 irq_set_affinity_hint(eqhdl->irq, NULL); 11653 free_irq(eqhdl->irq, eqhdl); 11654 } 11655 11656 /* Unconfigure MSI-X capability structure */ 11657 pci_free_irq_vectors(phba->pcidev); 11658 11659 vec_fail_out: 11660 return rc; 11661 } 11662 11663 /** 11664 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 11665 * @phba: pointer to lpfc hba data structure. 11666 * 11667 * This routine is invoked to enable the MSI interrupt mode to device with 11668 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 11669 * called to enable the MSI vector. The device driver is responsible for 11670 * calling the request_irq() to register MSI vector with a interrupt the 11671 * handler, which is done in this function. 11672 * 11673 * Return codes 11674 * 0 - successful 11675 * other values - error 11676 **/ 11677 static int 11678 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 11679 { 11680 int rc, index; 11681 unsigned int cpu; 11682 struct lpfc_hba_eq_hdl *eqhdl; 11683 11684 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 11685 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 11686 if (rc > 0) 11687 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11688 "0487 PCI enable MSI mode success.\n"); 11689 else { 11690 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11691 "0488 PCI enable MSI mode failed (%d)\n", rc); 11692 return rc ? rc : -1; 11693 } 11694 11695 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11696 0, LPFC_DRIVER_NAME, phba); 11697 if (rc) { 11698 pci_free_irq_vectors(phba->pcidev); 11699 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 11700 "0490 MSI request_irq failed (%d)\n", rc); 11701 return rc; 11702 } 11703 11704 eqhdl = lpfc_get_eq_hdl(0); 11705 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11706 11707 cpu = cpumask_first(cpu_present_mask); 11708 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 11709 11710 for (index = 0; index < phba->cfg_irq_chann; index++) { 11711 eqhdl = lpfc_get_eq_hdl(index); 11712 eqhdl->idx = index; 11713 } 11714 11715 return 0; 11716 } 11717 11718 /** 11719 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 11720 * @phba: pointer to lpfc hba data structure. 11721 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 11722 * 11723 * This routine is invoked to enable device interrupt and associate driver's 11724 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 11725 * interface spec. Depends on the interrupt mode configured to the driver, 11726 * the driver will try to fallback from the configured interrupt mode to an 11727 * interrupt mode which is supported by the platform, kernel, and device in 11728 * the order of: 11729 * MSI-X -> MSI -> IRQ. 11730 * 11731 * Return codes 11732 * 0 - successful 11733 * other values - error 11734 **/ 11735 static uint32_t 11736 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 11737 { 11738 uint32_t intr_mode = LPFC_INTR_ERROR; 11739 int retval, idx; 11740 11741 if (cfg_mode == 2) { 11742 /* Preparation before conf_msi mbox cmd */ 11743 retval = 0; 11744 if (!retval) { 11745 /* Now, try to enable MSI-X interrupt mode */ 11746 retval = lpfc_sli4_enable_msix(phba); 11747 if (!retval) { 11748 /* Indicate initialization to MSI-X mode */ 11749 phba->intr_type = MSIX; 11750 intr_mode = 2; 11751 } 11752 } 11753 } 11754 11755 /* Fallback to MSI if MSI-X initialization failed */ 11756 if (cfg_mode >= 1 && phba->intr_type == NONE) { 11757 retval = lpfc_sli4_enable_msi(phba); 11758 if (!retval) { 11759 /* Indicate initialization to MSI mode */ 11760 phba->intr_type = MSI; 11761 intr_mode = 1; 11762 } 11763 } 11764 11765 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 11766 if (phba->intr_type == NONE) { 11767 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 11768 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 11769 if (!retval) { 11770 struct lpfc_hba_eq_hdl *eqhdl; 11771 unsigned int cpu; 11772 11773 /* Indicate initialization to INTx mode */ 11774 phba->intr_type = INTx; 11775 intr_mode = 0; 11776 11777 eqhdl = lpfc_get_eq_hdl(0); 11778 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 11779 11780 cpu = cpumask_first(cpu_present_mask); 11781 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 11782 cpu); 11783 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 11784 eqhdl = lpfc_get_eq_hdl(idx); 11785 eqhdl->idx = idx; 11786 } 11787 } 11788 } 11789 return intr_mode; 11790 } 11791 11792 /** 11793 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 11794 * @phba: pointer to lpfc hba data structure. 11795 * 11796 * This routine is invoked to disable device interrupt and disassociate 11797 * the driver's interrupt handler(s) from interrupt vector(s) to device 11798 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 11799 * will release the interrupt vector(s) for the message signaled interrupt. 11800 **/ 11801 static void 11802 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 11803 { 11804 /* Disable the currently initialized interrupt mode */ 11805 if (phba->intr_type == MSIX) { 11806 int index; 11807 struct lpfc_hba_eq_hdl *eqhdl; 11808 11809 /* Free up MSI-X multi-message vectors */ 11810 for (index = 0; index < phba->cfg_irq_chann; index++) { 11811 eqhdl = lpfc_get_eq_hdl(index); 11812 lpfc_irq_clear_aff(eqhdl); 11813 irq_set_affinity_hint(eqhdl->irq, NULL); 11814 free_irq(eqhdl->irq, eqhdl); 11815 } 11816 } else { 11817 free_irq(phba->pcidev->irq, phba); 11818 } 11819 11820 pci_free_irq_vectors(phba->pcidev); 11821 11822 /* Reset interrupt management states */ 11823 phba->intr_type = NONE; 11824 phba->sli.slistat.sli_intr = 0; 11825 } 11826 11827 /** 11828 * lpfc_unset_hba - Unset SLI3 hba device initialization 11829 * @phba: pointer to lpfc hba data structure. 11830 * 11831 * This routine is invoked to unset the HBA device initialization steps to 11832 * a device with SLI-3 interface spec. 11833 **/ 11834 static void 11835 lpfc_unset_hba(struct lpfc_hba *phba) 11836 { 11837 struct lpfc_vport *vport = phba->pport; 11838 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 11839 11840 spin_lock_irq(shost->host_lock); 11841 vport->load_flag |= FC_UNLOADING; 11842 spin_unlock_irq(shost->host_lock); 11843 11844 kfree(phba->vpi_bmask); 11845 kfree(phba->vpi_ids); 11846 11847 lpfc_stop_hba_timers(phba); 11848 11849 phba->pport->work_port_events = 0; 11850 11851 lpfc_sli_hba_down(phba); 11852 11853 lpfc_sli_brdrestart(phba); 11854 11855 lpfc_sli_disable_intr(phba); 11856 11857 return; 11858 } 11859 11860 /** 11861 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 11862 * @phba: Pointer to HBA context object. 11863 * 11864 * This function is called in the SLI4 code path to wait for completion 11865 * of device's XRIs exchange busy. It will check the XRI exchange busy 11866 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 11867 * that, it will check the XRI exchange busy on outstanding FCP and ELS 11868 * I/Os every 30 seconds, log error message, and wait forever. Only when 11869 * all XRI exchange busy complete, the driver unload shall proceed with 11870 * invoking the function reset ioctl mailbox command to the CNA and the 11871 * the rest of the driver unload resource release. 11872 **/ 11873 static void 11874 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 11875 { 11876 struct lpfc_sli4_hdw_queue *qp; 11877 int idx, ccnt; 11878 int wait_time = 0; 11879 int io_xri_cmpl = 1; 11880 int nvmet_xri_cmpl = 1; 11881 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11882 11883 /* Driver just aborted IOs during the hba_unset process. Pause 11884 * here to give the HBA time to complete the IO and get entries 11885 * into the abts lists. 11886 */ 11887 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 11888 11889 /* Wait for NVME pending IO to flush back to transport. */ 11890 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 11891 lpfc_nvme_wait_for_io_drain(phba); 11892 11893 ccnt = 0; 11894 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11895 qp = &phba->sli4_hba.hdwq[idx]; 11896 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 11897 if (!io_xri_cmpl) /* if list is NOT empty */ 11898 ccnt++; 11899 } 11900 if (ccnt) 11901 io_xri_cmpl = 0; 11902 11903 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11904 nvmet_xri_cmpl = 11905 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11906 } 11907 11908 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 11909 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 11910 if (!nvmet_xri_cmpl) 11911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11912 "6424 NVMET XRI exchange busy " 11913 "wait time: %d seconds.\n", 11914 wait_time/1000); 11915 if (!io_xri_cmpl) 11916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11917 "6100 IO XRI exchange busy " 11918 "wait time: %d seconds.\n", 11919 wait_time/1000); 11920 if (!els_xri_cmpl) 11921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11922 "2878 ELS XRI exchange busy " 11923 "wait time: %d seconds.\n", 11924 wait_time/1000); 11925 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 11926 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 11927 } else { 11928 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 11929 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 11930 } 11931 11932 ccnt = 0; 11933 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 11934 qp = &phba->sli4_hba.hdwq[idx]; 11935 io_xri_cmpl = list_empty( 11936 &qp->lpfc_abts_io_buf_list); 11937 if (!io_xri_cmpl) /* if list is NOT empty */ 11938 ccnt++; 11939 } 11940 if (ccnt) 11941 io_xri_cmpl = 0; 11942 11943 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11944 nvmet_xri_cmpl = list_empty( 11945 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 11946 } 11947 els_xri_cmpl = 11948 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 11949 11950 } 11951 } 11952 11953 /** 11954 * lpfc_sli4_hba_unset - Unset the fcoe hba 11955 * @phba: Pointer to HBA context object. 11956 * 11957 * This function is called in the SLI4 code path to reset the HBA's FCoE 11958 * function. The caller is not required to hold any lock. This routine 11959 * issues PCI function reset mailbox command to reset the FCoE function. 11960 * At the end of the function, it calls lpfc_hba_down_post function to 11961 * free any pending commands. 11962 **/ 11963 static void 11964 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 11965 { 11966 int wait_cnt = 0; 11967 LPFC_MBOXQ_t *mboxq; 11968 struct pci_dev *pdev = phba->pcidev; 11969 11970 lpfc_stop_hba_timers(phba); 11971 if (phba->pport) 11972 phba->sli4_hba.intr_enable = 0; 11973 11974 /* 11975 * Gracefully wait out the potential current outstanding asynchronous 11976 * mailbox command. 11977 */ 11978 11979 /* First, block any pending async mailbox command from posted */ 11980 spin_lock_irq(&phba->hbalock); 11981 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11982 spin_unlock_irq(&phba->hbalock); 11983 /* Now, trying to wait it out if we can */ 11984 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11985 msleep(10); 11986 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 11987 break; 11988 } 11989 /* Forcefully release the outstanding mailbox command if timed out */ 11990 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 11991 spin_lock_irq(&phba->hbalock); 11992 mboxq = phba->sli.mbox_active; 11993 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 11994 __lpfc_mbox_cmpl_put(phba, mboxq); 11995 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11996 phba->sli.mbox_active = NULL; 11997 spin_unlock_irq(&phba->hbalock); 11998 } 11999 12000 /* Abort all iocbs associated with the hba */ 12001 lpfc_sli_hba_iocb_abort(phba); 12002 12003 /* Wait for completion of device XRI exchange busy */ 12004 lpfc_sli4_xri_exchange_busy_wait(phba); 12005 12006 /* per-phba callback de-registration for hotplug event */ 12007 if (phba->pport) 12008 lpfc_cpuhp_remove(phba); 12009 12010 /* Disable PCI subsystem interrupt */ 12011 lpfc_sli4_disable_intr(phba); 12012 12013 /* Disable SR-IOV if enabled */ 12014 if (phba->cfg_sriov_nr_virtfn) 12015 pci_disable_sriov(pdev); 12016 12017 /* Stop kthread signal shall trigger work_done one more time */ 12018 kthread_stop(phba->worker_thread); 12019 12020 /* Disable FW logging to host memory */ 12021 lpfc_ras_stop_fwlog(phba); 12022 12023 /* Unset the queues shared with the hardware then release all 12024 * allocated resources. 12025 */ 12026 lpfc_sli4_queue_unset(phba); 12027 lpfc_sli4_queue_destroy(phba); 12028 12029 /* Reset SLI4 HBA FCoE function */ 12030 lpfc_pci_function_reset(phba); 12031 12032 /* Free RAS DMA memory */ 12033 if (phba->ras_fwlog.ras_enabled) 12034 lpfc_sli4_ras_dma_free(phba); 12035 12036 /* Stop the SLI4 device port */ 12037 if (phba->pport) 12038 phba->pport->work_port_events = 0; 12039 } 12040 12041 /** 12042 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 12043 * @phba: Pointer to HBA context object. 12044 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 12045 * 12046 * This function is called in the SLI4 code path to read the port's 12047 * sli4 capabilities. 12048 * 12049 * This function may be be called from any context that can block-wait 12050 * for the completion. The expectation is that this routine is called 12051 * typically from probe_one or from the online routine. 12052 **/ 12053 int 12054 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 12055 { 12056 int rc; 12057 struct lpfc_mqe *mqe = &mboxq->u.mqe; 12058 struct lpfc_pc_sli4_params *sli4_params; 12059 uint32_t mbox_tmo; 12060 int length; 12061 bool exp_wqcq_pages = true; 12062 struct lpfc_sli4_parameters *mbx_sli4_parameters; 12063 12064 /* 12065 * By default, the driver assumes the SLI4 port requires RPI 12066 * header postings. The SLI4_PARAM response will correct this 12067 * assumption. 12068 */ 12069 phba->sli4_hba.rpi_hdrs_in_use = 1; 12070 12071 /* Read the port's SLI4 Config Parameters */ 12072 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 12073 sizeof(struct lpfc_sli4_cfg_mhdr)); 12074 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 12075 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 12076 length, LPFC_SLI4_MBX_EMBED); 12077 if (!phba->sli4_hba.intr_enable) 12078 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 12079 else { 12080 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 12081 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 12082 } 12083 if (unlikely(rc)) 12084 return rc; 12085 sli4_params = &phba->sli4_hba.pc_sli4_params; 12086 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 12087 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 12088 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 12089 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 12090 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 12091 mbx_sli4_parameters); 12092 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 12093 mbx_sli4_parameters); 12094 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 12095 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 12096 else 12097 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 12098 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 12099 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 12100 mbx_sli4_parameters); 12101 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 12102 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 12103 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 12104 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 12105 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 12106 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 12107 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 12108 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 12109 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 12110 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 12111 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 12112 mbx_sli4_parameters); 12113 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 12114 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 12115 mbx_sli4_parameters); 12116 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 12117 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 12118 12119 /* Check for Extended Pre-Registered SGL support */ 12120 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 12121 12122 /* Check for firmware nvme support */ 12123 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 12124 bf_get(cfg_xib, mbx_sli4_parameters)); 12125 12126 if (rc) { 12127 /* Save this to indicate the Firmware supports NVME */ 12128 sli4_params->nvme = 1; 12129 12130 /* Firmware NVME support, check driver FC4 NVME support */ 12131 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 12132 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12133 "6133 Disabling NVME support: " 12134 "FC4 type not supported: x%x\n", 12135 phba->cfg_enable_fc4_type); 12136 goto fcponly; 12137 } 12138 } else { 12139 /* No firmware NVME support, check driver FC4 NVME support */ 12140 sli4_params->nvme = 0; 12141 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 12142 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 12143 "6101 Disabling NVME support: Not " 12144 "supported by firmware (%d %d) x%x\n", 12145 bf_get(cfg_nvme, mbx_sli4_parameters), 12146 bf_get(cfg_xib, mbx_sli4_parameters), 12147 phba->cfg_enable_fc4_type); 12148 fcponly: 12149 phba->nvme_support = 0; 12150 phba->nvmet_support = 0; 12151 phba->cfg_nvmet_mrq = 0; 12152 phba->cfg_nvme_seg_cnt = 0; 12153 12154 /* If no FC4 type support, move to just SCSI support */ 12155 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 12156 return -ENODEV; 12157 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 12158 } 12159 } 12160 12161 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 12162 * accommodate 512K and 1M IOs in a single nvme buf. 12163 */ 12164 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 12165 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 12166 12167 /* Only embed PBDE for if_type 6, PBDE support requires xib be set */ 12168 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != 12169 LPFC_SLI_INTF_IF_TYPE_6) || (!bf_get(cfg_xib, mbx_sli4_parameters))) 12170 phba->cfg_enable_pbde = 0; 12171 12172 /* 12173 * To support Suppress Response feature we must satisfy 3 conditions. 12174 * lpfc_suppress_rsp module parameter must be set (default). 12175 * In SLI4-Parameters Descriptor: 12176 * Extended Inline Buffers (XIB) must be supported. 12177 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 12178 * (double negative). 12179 */ 12180 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 12181 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 12182 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 12183 else 12184 phba->cfg_suppress_rsp = 0; 12185 12186 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 12187 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 12188 12189 /* Make sure that sge_supp_len can be handled by the driver */ 12190 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 12191 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 12192 12193 /* 12194 * Check whether the adapter supports an embedded copy of the 12195 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 12196 * to use this option, 128-byte WQEs must be used. 12197 */ 12198 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 12199 phba->fcp_embed_io = 1; 12200 else 12201 phba->fcp_embed_io = 0; 12202 12203 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 12204 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 12205 bf_get(cfg_xib, mbx_sli4_parameters), 12206 phba->cfg_enable_pbde, 12207 phba->fcp_embed_io, phba->nvme_support, 12208 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 12209 12210 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 12211 LPFC_SLI_INTF_IF_TYPE_2) && 12212 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 12213 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 12214 exp_wqcq_pages = false; 12215 12216 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 12217 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 12218 exp_wqcq_pages && 12219 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 12220 phba->enab_exp_wqcq_pages = 1; 12221 else 12222 phba->enab_exp_wqcq_pages = 0; 12223 /* 12224 * Check if the SLI port supports MDS Diagnostics 12225 */ 12226 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 12227 phba->mds_diags_support = 1; 12228 else 12229 phba->mds_diags_support = 0; 12230 12231 /* 12232 * Check if the SLI port supports NSLER 12233 */ 12234 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 12235 phba->nsler = 1; 12236 else 12237 phba->nsler = 0; 12238 12239 /* Save PB info for use during HBA setup */ 12240 sli4_params->mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); 12241 sli4_params->mib_bde_cnt = bf_get(cfg_mib_bde_cnt, mbx_sli4_parameters); 12242 sli4_params->mib_size = mbx_sli4_parameters->mib_size; 12243 sli4_params->mi_value = LPFC_DFLT_MIB_VAL; 12244 12245 /* Next we check for Vendor MIB support */ 12246 if (sli4_params->mi_ver && phba->cfg_enable_mi) 12247 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 12248 12249 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12250 "6461 MIB attr %d enable %d FDMI %d buf %d:%d\n", 12251 sli4_params->mi_ver, phba->cfg_enable_mi, 12252 sli4_params->mi_value, sli4_params->mib_bde_cnt, 12253 sli4_params->mib_size); 12254 return 0; 12255 } 12256 12257 /** 12258 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 12259 * @pdev: pointer to PCI device 12260 * @pid: pointer to PCI device identifier 12261 * 12262 * This routine is to be called to attach a device with SLI-3 interface spec 12263 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12264 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 12265 * information of the device and driver to see if the driver state that it can 12266 * support this kind of device. If the match is successful, the driver core 12267 * invokes this routine. If this routine determines it can claim the HBA, it 12268 * does all the initialization that it needs to do to handle the HBA properly. 12269 * 12270 * Return code 12271 * 0 - driver can claim the device 12272 * negative value - driver can not claim the device 12273 **/ 12274 static int 12275 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 12276 { 12277 struct lpfc_hba *phba; 12278 struct lpfc_vport *vport = NULL; 12279 struct Scsi_Host *shost = NULL; 12280 int error; 12281 uint32_t cfg_mode, intr_mode; 12282 12283 /* Allocate memory for HBA structure */ 12284 phba = lpfc_hba_alloc(pdev); 12285 if (!phba) 12286 return -ENOMEM; 12287 12288 /* Perform generic PCI device enabling operation */ 12289 error = lpfc_enable_pci_dev(phba); 12290 if (error) 12291 goto out_free_phba; 12292 12293 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 12294 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 12295 if (error) 12296 goto out_disable_pci_dev; 12297 12298 /* Set up SLI-3 specific device PCI memory space */ 12299 error = lpfc_sli_pci_mem_setup(phba); 12300 if (error) { 12301 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12302 "1402 Failed to set up pci memory space.\n"); 12303 goto out_disable_pci_dev; 12304 } 12305 12306 /* Set up SLI-3 specific device driver resources */ 12307 error = lpfc_sli_driver_resource_setup(phba); 12308 if (error) { 12309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12310 "1404 Failed to set up driver resource.\n"); 12311 goto out_unset_pci_mem_s3; 12312 } 12313 12314 /* Initialize and populate the iocb list per host */ 12315 12316 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 12317 if (error) { 12318 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12319 "1405 Failed to initialize iocb list.\n"); 12320 goto out_unset_driver_resource_s3; 12321 } 12322 12323 /* Set up common device driver resources */ 12324 error = lpfc_setup_driver_resource_phase2(phba); 12325 if (error) { 12326 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12327 "1406 Failed to set up driver resource.\n"); 12328 goto out_free_iocb_list; 12329 } 12330 12331 /* Get the default values for Model Name and Description */ 12332 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 12333 12334 /* Create SCSI host to the physical port */ 12335 error = lpfc_create_shost(phba); 12336 if (error) { 12337 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12338 "1407 Failed to create scsi host.\n"); 12339 goto out_unset_driver_resource; 12340 } 12341 12342 /* Configure sysfs attributes */ 12343 vport = phba->pport; 12344 error = lpfc_alloc_sysfs_attr(vport); 12345 if (error) { 12346 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12347 "1476 Failed to allocate sysfs attr\n"); 12348 goto out_destroy_shost; 12349 } 12350 12351 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 12352 /* Now, trying to enable interrupt and bring up the device */ 12353 cfg_mode = phba->cfg_use_msi; 12354 while (true) { 12355 /* Put device to a known state before enabling interrupt */ 12356 lpfc_stop_port(phba); 12357 /* Configure and enable interrupt */ 12358 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 12359 if (intr_mode == LPFC_INTR_ERROR) { 12360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12361 "0431 Failed to enable interrupt.\n"); 12362 error = -ENODEV; 12363 goto out_free_sysfs_attr; 12364 } 12365 /* SLI-3 HBA setup */ 12366 if (lpfc_sli_hba_setup(phba)) { 12367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12368 "1477 Failed to set up hba\n"); 12369 error = -ENODEV; 12370 goto out_remove_device; 12371 } 12372 12373 /* Wait 50ms for the interrupts of previous mailbox commands */ 12374 msleep(50); 12375 /* Check active interrupts on message signaled interrupts */ 12376 if (intr_mode == 0 || 12377 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 12378 /* Log the current active interrupt mode */ 12379 phba->intr_mode = intr_mode; 12380 lpfc_log_intr_mode(phba, intr_mode); 12381 break; 12382 } else { 12383 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12384 "0447 Configure interrupt mode (%d) " 12385 "failed active interrupt test.\n", 12386 intr_mode); 12387 /* Disable the current interrupt mode */ 12388 lpfc_sli_disable_intr(phba); 12389 /* Try next level of interrupt mode */ 12390 cfg_mode = --intr_mode; 12391 } 12392 } 12393 12394 /* Perform post initialization setup */ 12395 lpfc_post_init_setup(phba); 12396 12397 /* Check if there are static vports to be created. */ 12398 lpfc_create_static_vport(phba); 12399 12400 return 0; 12401 12402 out_remove_device: 12403 lpfc_unset_hba(phba); 12404 out_free_sysfs_attr: 12405 lpfc_free_sysfs_attr(vport); 12406 out_destroy_shost: 12407 lpfc_destroy_shost(phba); 12408 out_unset_driver_resource: 12409 lpfc_unset_driver_resource_phase2(phba); 12410 out_free_iocb_list: 12411 lpfc_free_iocb_list(phba); 12412 out_unset_driver_resource_s3: 12413 lpfc_sli_driver_resource_unset(phba); 12414 out_unset_pci_mem_s3: 12415 lpfc_sli_pci_mem_unset(phba); 12416 out_disable_pci_dev: 12417 lpfc_disable_pci_dev(phba); 12418 if (shost) 12419 scsi_host_put(shost); 12420 out_free_phba: 12421 lpfc_hba_free(phba); 12422 return error; 12423 } 12424 12425 /** 12426 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 12427 * @pdev: pointer to PCI device 12428 * 12429 * This routine is to be called to disattach a device with SLI-3 interface 12430 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 12431 * removed from PCI bus, it performs all the necessary cleanup for the HBA 12432 * device to be removed from the PCI subsystem properly. 12433 **/ 12434 static void 12435 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 12436 { 12437 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12438 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 12439 struct lpfc_vport **vports; 12440 struct lpfc_hba *phba = vport->phba; 12441 int i; 12442 12443 spin_lock_irq(&phba->hbalock); 12444 vport->load_flag |= FC_UNLOADING; 12445 spin_unlock_irq(&phba->hbalock); 12446 12447 lpfc_free_sysfs_attr(vport); 12448 12449 /* Release all the vports against this physical port */ 12450 vports = lpfc_create_vport_work_array(phba); 12451 if (vports != NULL) 12452 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 12453 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 12454 continue; 12455 fc_vport_terminate(vports[i]->fc_vport); 12456 } 12457 lpfc_destroy_vport_work_array(phba, vports); 12458 12459 /* Remove FC host with the physical port */ 12460 fc_remove_host(shost); 12461 scsi_remove_host(shost); 12462 12463 /* Clean up all nodes, mailboxes and IOs. */ 12464 lpfc_cleanup(vport); 12465 12466 /* 12467 * Bring down the SLI Layer. This step disable all interrupts, 12468 * clears the rings, discards all mailbox commands, and resets 12469 * the HBA. 12470 */ 12471 12472 /* HBA interrupt will be disabled after this call */ 12473 lpfc_sli_hba_down(phba); 12474 /* Stop kthread signal shall trigger work_done one more time */ 12475 kthread_stop(phba->worker_thread); 12476 /* Final cleanup of txcmplq and reset the HBA */ 12477 lpfc_sli_brdrestart(phba); 12478 12479 kfree(phba->vpi_bmask); 12480 kfree(phba->vpi_ids); 12481 12482 lpfc_stop_hba_timers(phba); 12483 spin_lock_irq(&phba->port_list_lock); 12484 list_del_init(&vport->listentry); 12485 spin_unlock_irq(&phba->port_list_lock); 12486 12487 lpfc_debugfs_terminate(vport); 12488 12489 /* Disable SR-IOV if enabled */ 12490 if (phba->cfg_sriov_nr_virtfn) 12491 pci_disable_sriov(pdev); 12492 12493 /* Disable interrupt */ 12494 lpfc_sli_disable_intr(phba); 12495 12496 scsi_host_put(shost); 12497 12498 /* 12499 * Call scsi_free before mem_free since scsi bufs are released to their 12500 * corresponding pools here. 12501 */ 12502 lpfc_scsi_free(phba); 12503 lpfc_free_iocb_list(phba); 12504 12505 lpfc_mem_free_all(phba); 12506 12507 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 12508 phba->hbqslimp.virt, phba->hbqslimp.phys); 12509 12510 /* Free resources associated with SLI2 interface */ 12511 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 12512 phba->slim2p.virt, phba->slim2p.phys); 12513 12514 /* unmap adapter SLIM and Control Registers */ 12515 iounmap(phba->ctrl_regs_memmap_p); 12516 iounmap(phba->slim_memmap_p); 12517 12518 lpfc_hba_free(phba); 12519 12520 pci_release_mem_regions(pdev); 12521 pci_disable_device(pdev); 12522 } 12523 12524 /** 12525 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 12526 * @dev_d: pointer to device 12527 * 12528 * This routine is to be called from the kernel's PCI subsystem to support 12529 * system Power Management (PM) to device with SLI-3 interface spec. When 12530 * PM invokes this method, it quiesces the device by stopping the driver's 12531 * worker thread for the device, turning off device's interrupt and DMA, 12532 * and bring the device offline. Note that as the driver implements the 12533 * minimum PM requirements to a power-aware driver's PM support for the 12534 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 12535 * to the suspend() method call will be treated as SUSPEND and the driver will 12536 * fully reinitialize its device during resume() method call, the driver will 12537 * set device to PCI_D3hot state in PCI config space instead of setting it 12538 * according to the @msg provided by the PM. 12539 * 12540 * Return code 12541 * 0 - driver suspended the device 12542 * Error otherwise 12543 **/ 12544 static int __maybe_unused 12545 lpfc_pci_suspend_one_s3(struct device *dev_d) 12546 { 12547 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 12548 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12549 12550 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12551 "0473 PCI device Power Management suspend.\n"); 12552 12553 /* Bring down the device */ 12554 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12555 lpfc_offline(phba); 12556 kthread_stop(phba->worker_thread); 12557 12558 /* Disable interrupt from device */ 12559 lpfc_sli_disable_intr(phba); 12560 12561 return 0; 12562 } 12563 12564 /** 12565 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 12566 * @dev_d: pointer to device 12567 * 12568 * This routine is to be called from the kernel's PCI subsystem to support 12569 * system Power Management (PM) to device with SLI-3 interface spec. When PM 12570 * invokes this method, it restores the device's PCI config space state and 12571 * fully reinitializes the device and brings it online. Note that as the 12572 * driver implements the minimum PM requirements to a power-aware driver's 12573 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 12574 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 12575 * driver will fully reinitialize its device during resume() method call, 12576 * the device will be set to PCI_D0 directly in PCI config space before 12577 * restoring the state. 12578 * 12579 * Return code 12580 * 0 - driver suspended the device 12581 * Error otherwise 12582 **/ 12583 static int __maybe_unused 12584 lpfc_pci_resume_one_s3(struct device *dev_d) 12585 { 12586 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 12587 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12588 uint32_t intr_mode; 12589 int error; 12590 12591 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12592 "0452 PCI device Power Management resume.\n"); 12593 12594 /* Startup the kernel thread for this host adapter. */ 12595 phba->worker_thread = kthread_run(lpfc_do_work, phba, 12596 "lpfc_worker_%d", phba->brd_no); 12597 if (IS_ERR(phba->worker_thread)) { 12598 error = PTR_ERR(phba->worker_thread); 12599 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12600 "0434 PM resume failed to start worker " 12601 "thread: error=x%x.\n", error); 12602 return error; 12603 } 12604 12605 /* Configure and enable interrupt */ 12606 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12607 if (intr_mode == LPFC_INTR_ERROR) { 12608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12609 "0430 PM resume Failed to enable interrupt\n"); 12610 return -EIO; 12611 } else 12612 phba->intr_mode = intr_mode; 12613 12614 /* Restart HBA and bring it online */ 12615 lpfc_sli_brdrestart(phba); 12616 lpfc_online(phba); 12617 12618 /* Log the current active interrupt mode */ 12619 lpfc_log_intr_mode(phba, phba->intr_mode); 12620 12621 return 0; 12622 } 12623 12624 /** 12625 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 12626 * @phba: pointer to lpfc hba data structure. 12627 * 12628 * This routine is called to prepare the SLI3 device for PCI slot recover. It 12629 * aborts all the outstanding SCSI I/Os to the pci device. 12630 **/ 12631 static void 12632 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 12633 { 12634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12635 "2723 PCI channel I/O abort preparing for recovery\n"); 12636 12637 /* 12638 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 12639 * and let the SCSI mid-layer to retry them to recover. 12640 */ 12641 lpfc_sli_abort_fcp_rings(phba); 12642 } 12643 12644 /** 12645 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 12646 * @phba: pointer to lpfc hba data structure. 12647 * 12648 * This routine is called to prepare the SLI3 device for PCI slot reset. It 12649 * disables the device interrupt and pci device, and aborts the internal FCP 12650 * pending I/Os. 12651 **/ 12652 static void 12653 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 12654 { 12655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12656 "2710 PCI channel disable preparing for reset\n"); 12657 12658 /* Block any management I/Os to the device */ 12659 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 12660 12661 /* Block all SCSI devices' I/Os on the host */ 12662 lpfc_scsi_dev_block(phba); 12663 12664 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 12665 lpfc_sli_flush_io_rings(phba); 12666 12667 /* stop all timers */ 12668 lpfc_stop_hba_timers(phba); 12669 12670 /* Disable interrupt and pci device */ 12671 lpfc_sli_disable_intr(phba); 12672 pci_disable_device(phba->pcidev); 12673 } 12674 12675 /** 12676 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 12677 * @phba: pointer to lpfc hba data structure. 12678 * 12679 * This routine is called to prepare the SLI3 device for PCI slot permanently 12680 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 12681 * pending I/Os. 12682 **/ 12683 static void 12684 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 12685 { 12686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12687 "2711 PCI channel permanent disable for failure\n"); 12688 /* Block all SCSI devices' I/Os on the host */ 12689 lpfc_scsi_dev_block(phba); 12690 12691 /* stop all timers */ 12692 lpfc_stop_hba_timers(phba); 12693 12694 /* Clean up all driver's outstanding SCSI I/Os */ 12695 lpfc_sli_flush_io_rings(phba); 12696 } 12697 12698 /** 12699 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 12700 * @pdev: pointer to PCI device. 12701 * @state: the current PCI connection state. 12702 * 12703 * This routine is called from the PCI subsystem for I/O error handling to 12704 * device with SLI-3 interface spec. This function is called by the PCI 12705 * subsystem after a PCI bus error affecting this device has been detected. 12706 * When this function is invoked, it will need to stop all the I/Os and 12707 * interrupt(s) to the device. Once that is done, it will return 12708 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 12709 * as desired. 12710 * 12711 * Return codes 12712 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 12713 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 12714 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12715 **/ 12716 static pci_ers_result_t 12717 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 12718 { 12719 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12720 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12721 12722 switch (state) { 12723 case pci_channel_io_normal: 12724 /* Non-fatal error, prepare for recovery */ 12725 lpfc_sli_prep_dev_for_recover(phba); 12726 return PCI_ERS_RESULT_CAN_RECOVER; 12727 case pci_channel_io_frozen: 12728 /* Fatal error, prepare for slot reset */ 12729 lpfc_sli_prep_dev_for_reset(phba); 12730 return PCI_ERS_RESULT_NEED_RESET; 12731 case pci_channel_io_perm_failure: 12732 /* Permanent failure, prepare for device down */ 12733 lpfc_sli_prep_dev_for_perm_failure(phba); 12734 return PCI_ERS_RESULT_DISCONNECT; 12735 default: 12736 /* Unknown state, prepare and request slot reset */ 12737 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12738 "0472 Unknown PCI error state: x%x\n", state); 12739 lpfc_sli_prep_dev_for_reset(phba); 12740 return PCI_ERS_RESULT_NEED_RESET; 12741 } 12742 } 12743 12744 /** 12745 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 12746 * @pdev: pointer to PCI device. 12747 * 12748 * This routine is called from the PCI subsystem for error handling to 12749 * device with SLI-3 interface spec. This is called after PCI bus has been 12750 * reset to restart the PCI card from scratch, as if from a cold-boot. 12751 * During the PCI subsystem error recovery, after driver returns 12752 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 12753 * recovery and then call this routine before calling the .resume method 12754 * to recover the device. This function will initialize the HBA device, 12755 * enable the interrupt, but it will just put the HBA to offline state 12756 * without passing any I/O traffic. 12757 * 12758 * Return codes 12759 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 12760 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 12761 */ 12762 static pci_ers_result_t 12763 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 12764 { 12765 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12766 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12767 struct lpfc_sli *psli = &phba->sli; 12768 uint32_t intr_mode; 12769 12770 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 12771 if (pci_enable_device_mem(pdev)) { 12772 printk(KERN_ERR "lpfc: Cannot re-enable " 12773 "PCI device after reset.\n"); 12774 return PCI_ERS_RESULT_DISCONNECT; 12775 } 12776 12777 pci_restore_state(pdev); 12778 12779 /* 12780 * As the new kernel behavior of pci_restore_state() API call clears 12781 * device saved_state flag, need to save the restored state again. 12782 */ 12783 pci_save_state(pdev); 12784 12785 if (pdev->is_busmaster) 12786 pci_set_master(pdev); 12787 12788 spin_lock_irq(&phba->hbalock); 12789 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 12790 spin_unlock_irq(&phba->hbalock); 12791 12792 /* Configure and enable interrupt */ 12793 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 12794 if (intr_mode == LPFC_INTR_ERROR) { 12795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12796 "0427 Cannot re-enable interrupt after " 12797 "slot reset.\n"); 12798 return PCI_ERS_RESULT_DISCONNECT; 12799 } else 12800 phba->intr_mode = intr_mode; 12801 12802 /* Take device offline, it will perform cleanup */ 12803 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 12804 lpfc_offline(phba); 12805 lpfc_sli_brdrestart(phba); 12806 12807 /* Log the current active interrupt mode */ 12808 lpfc_log_intr_mode(phba, phba->intr_mode); 12809 12810 return PCI_ERS_RESULT_RECOVERED; 12811 } 12812 12813 /** 12814 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 12815 * @pdev: pointer to PCI device 12816 * 12817 * This routine is called from the PCI subsystem for error handling to device 12818 * with SLI-3 interface spec. It is called when kernel error recovery tells 12819 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 12820 * error recovery. After this call, traffic can start to flow from this device 12821 * again. 12822 */ 12823 static void 12824 lpfc_io_resume_s3(struct pci_dev *pdev) 12825 { 12826 struct Scsi_Host *shost = pci_get_drvdata(pdev); 12827 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 12828 12829 /* Bring device online, it will be no-op for non-fatal error resume */ 12830 lpfc_online(phba); 12831 } 12832 12833 /** 12834 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 12835 * @phba: pointer to lpfc hba data structure. 12836 * 12837 * returns the number of ELS/CT IOCBs to reserve 12838 **/ 12839 int 12840 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 12841 { 12842 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 12843 12844 if (phba->sli_rev == LPFC_SLI_REV4) { 12845 if (max_xri <= 100) 12846 return 10; 12847 else if (max_xri <= 256) 12848 return 25; 12849 else if (max_xri <= 512) 12850 return 50; 12851 else if (max_xri <= 1024) 12852 return 100; 12853 else if (max_xri <= 1536) 12854 return 150; 12855 else if (max_xri <= 2048) 12856 return 200; 12857 else 12858 return 250; 12859 } else 12860 return 0; 12861 } 12862 12863 /** 12864 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 12865 * @phba: pointer to lpfc hba data structure. 12866 * 12867 * returns the number of ELS/CT + NVMET IOCBs to reserve 12868 **/ 12869 int 12870 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 12871 { 12872 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 12873 12874 if (phba->nvmet_support) 12875 max_xri += LPFC_NVMET_BUF_POST; 12876 return max_xri; 12877 } 12878 12879 12880 static int 12881 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 12882 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 12883 const struct firmware *fw) 12884 { 12885 int rc; 12886 12887 /* Three cases: (1) FW was not supported on the detected adapter. 12888 * (2) FW update has been locked out administratively. 12889 * (3) Some other error during FW update. 12890 * In each case, an unmaskable message is written to the console 12891 * for admin diagnosis. 12892 */ 12893 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 12894 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G6_FC && 12895 magic_number != MAGIC_NUMBER_G6) || 12896 (phba->pcidev->device == PCI_DEVICE_ID_LANCER_G7_FC && 12897 magic_number != MAGIC_NUMBER_G7)) { 12898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12899 "3030 This firmware version is not supported on" 12900 " this HBA model. Device:%x Magic:%x Type:%x " 12901 "ID:%x Size %d %zd\n", 12902 phba->pcidev->device, magic_number, ftype, fid, 12903 fsize, fw->size); 12904 rc = -EINVAL; 12905 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 12906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12907 "3021 Firmware downloads have been prohibited " 12908 "by a system configuration setting on " 12909 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12910 "%zd\n", 12911 phba->pcidev->device, magic_number, ftype, fid, 12912 fsize, fw->size); 12913 rc = -EACCES; 12914 } else { 12915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12916 "3022 FW Download failed. Add Status x%x " 12917 "Device:%x Magic:%x Type:%x ID:%x Size %d " 12918 "%zd\n", 12919 offset, phba->pcidev->device, magic_number, 12920 ftype, fid, fsize, fw->size); 12921 rc = -EIO; 12922 } 12923 return rc; 12924 } 12925 12926 /** 12927 * lpfc_write_firmware - attempt to write a firmware image to the port 12928 * @fw: pointer to firmware image returned from request_firmware. 12929 * @context: pointer to firmware image returned from request_firmware. 12930 * 12931 **/ 12932 static void 12933 lpfc_write_firmware(const struct firmware *fw, void *context) 12934 { 12935 struct lpfc_hba *phba = (struct lpfc_hba *)context; 12936 char fwrev[FW_REV_STR_SIZE]; 12937 struct lpfc_grp_hdr *image; 12938 struct list_head dma_buffer_list; 12939 int i, rc = 0; 12940 struct lpfc_dmabuf *dmabuf, *next; 12941 uint32_t offset = 0, temp_offset = 0; 12942 uint32_t magic_number, ftype, fid, fsize; 12943 12944 /* It can be null in no-wait mode, sanity check */ 12945 if (!fw) { 12946 rc = -ENXIO; 12947 goto out; 12948 } 12949 image = (struct lpfc_grp_hdr *)fw->data; 12950 12951 magic_number = be32_to_cpu(image->magic_number); 12952 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 12953 fid = bf_get_be32(lpfc_grp_hdr_id, image); 12954 fsize = be32_to_cpu(image->size); 12955 12956 INIT_LIST_HEAD(&dma_buffer_list); 12957 lpfc_decode_firmware_rev(phba, fwrev, 1); 12958 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 12959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12960 "3023 Updating Firmware, Current Version:%s " 12961 "New Version:%s\n", 12962 fwrev, image->revision); 12963 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 12964 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 12965 GFP_KERNEL); 12966 if (!dmabuf) { 12967 rc = -ENOMEM; 12968 goto release_out; 12969 } 12970 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 12971 SLI4_PAGE_SIZE, 12972 &dmabuf->phys, 12973 GFP_KERNEL); 12974 if (!dmabuf->virt) { 12975 kfree(dmabuf); 12976 rc = -ENOMEM; 12977 goto release_out; 12978 } 12979 list_add_tail(&dmabuf->list, &dma_buffer_list); 12980 } 12981 while (offset < fw->size) { 12982 temp_offset = offset; 12983 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 12984 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 12985 memcpy(dmabuf->virt, 12986 fw->data + temp_offset, 12987 fw->size - temp_offset); 12988 temp_offset = fw->size; 12989 break; 12990 } 12991 memcpy(dmabuf->virt, fw->data + temp_offset, 12992 SLI4_PAGE_SIZE); 12993 temp_offset += SLI4_PAGE_SIZE; 12994 } 12995 rc = lpfc_wr_object(phba, &dma_buffer_list, 12996 (fw->size - offset), &offset); 12997 if (rc) { 12998 rc = lpfc_log_write_firmware_error(phba, offset, 12999 magic_number, 13000 ftype, 13001 fid, 13002 fsize, 13003 fw); 13004 goto release_out; 13005 } 13006 } 13007 rc = offset; 13008 } else 13009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13010 "3029 Skipped Firmware update, Current " 13011 "Version:%s New Version:%s\n", 13012 fwrev, image->revision); 13013 13014 release_out: 13015 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 13016 list_del(&dmabuf->list); 13017 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 13018 dmabuf->virt, dmabuf->phys); 13019 kfree(dmabuf); 13020 } 13021 release_firmware(fw); 13022 out: 13023 if (rc < 0) 13024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13025 "3062 Firmware update error, status %d.\n", rc); 13026 else 13027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13028 "3024 Firmware update success: size %d.\n", rc); 13029 } 13030 13031 /** 13032 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 13033 * @phba: pointer to lpfc hba data structure. 13034 * @fw_upgrade: which firmware to update. 13035 * 13036 * This routine is called to perform Linux generic firmware upgrade on device 13037 * that supports such feature. 13038 **/ 13039 int 13040 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 13041 { 13042 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 13043 int ret; 13044 const struct firmware *fw; 13045 13046 /* Only supported on SLI4 interface type 2 for now */ 13047 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 13048 LPFC_SLI_INTF_IF_TYPE_2) 13049 return -EPERM; 13050 13051 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 13052 13053 if (fw_upgrade == INT_FW_UPGRADE) { 13054 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 13055 file_name, &phba->pcidev->dev, 13056 GFP_KERNEL, (void *)phba, 13057 lpfc_write_firmware); 13058 } else if (fw_upgrade == RUN_FW_UPGRADE) { 13059 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 13060 if (!ret) 13061 lpfc_write_firmware(fw, (void *)phba); 13062 } else { 13063 ret = -EINVAL; 13064 } 13065 13066 return ret; 13067 } 13068 13069 /** 13070 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 13071 * @pdev: pointer to PCI device 13072 * @pid: pointer to PCI device identifier 13073 * 13074 * This routine is called from the kernel's PCI subsystem to device with 13075 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13076 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13077 * information of the device and driver to see if the driver state that it 13078 * can support this kind of device. If the match is successful, the driver 13079 * core invokes this routine. If this routine determines it can claim the HBA, 13080 * it does all the initialization that it needs to do to handle the HBA 13081 * properly. 13082 * 13083 * Return code 13084 * 0 - driver can claim the device 13085 * negative value - driver can not claim the device 13086 **/ 13087 static int 13088 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 13089 { 13090 struct lpfc_hba *phba; 13091 struct lpfc_vport *vport = NULL; 13092 struct Scsi_Host *shost = NULL; 13093 int error; 13094 uint32_t cfg_mode, intr_mode; 13095 13096 /* Allocate memory for HBA structure */ 13097 phba = lpfc_hba_alloc(pdev); 13098 if (!phba) 13099 return -ENOMEM; 13100 13101 /* Perform generic PCI device enabling operation */ 13102 error = lpfc_enable_pci_dev(phba); 13103 if (error) 13104 goto out_free_phba; 13105 13106 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 13107 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 13108 if (error) 13109 goto out_disable_pci_dev; 13110 13111 /* Set up SLI-4 specific device PCI memory space */ 13112 error = lpfc_sli4_pci_mem_setup(phba); 13113 if (error) { 13114 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13115 "1410 Failed to set up pci memory space.\n"); 13116 goto out_disable_pci_dev; 13117 } 13118 13119 /* Set up SLI-4 Specific device driver resources */ 13120 error = lpfc_sli4_driver_resource_setup(phba); 13121 if (error) { 13122 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13123 "1412 Failed to set up driver resource.\n"); 13124 goto out_unset_pci_mem_s4; 13125 } 13126 13127 INIT_LIST_HEAD(&phba->active_rrq_list); 13128 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 13129 13130 /* Set up common device driver resources */ 13131 error = lpfc_setup_driver_resource_phase2(phba); 13132 if (error) { 13133 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13134 "1414 Failed to set up driver resource.\n"); 13135 goto out_unset_driver_resource_s4; 13136 } 13137 13138 /* Get the default values for Model Name and Description */ 13139 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 13140 13141 /* Now, trying to enable interrupt and bring up the device */ 13142 cfg_mode = phba->cfg_use_msi; 13143 13144 /* Put device to a known state before enabling interrupt */ 13145 phba->pport = NULL; 13146 lpfc_stop_port(phba); 13147 13148 /* Init cpu_map array */ 13149 lpfc_cpu_map_array_init(phba); 13150 13151 /* Init hba_eq_hdl array */ 13152 lpfc_hba_eq_hdl_array_init(phba); 13153 13154 /* Configure and enable interrupt */ 13155 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 13156 if (intr_mode == LPFC_INTR_ERROR) { 13157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13158 "0426 Failed to enable interrupt.\n"); 13159 error = -ENODEV; 13160 goto out_unset_driver_resource; 13161 } 13162 /* Default to single EQ for non-MSI-X */ 13163 if (phba->intr_type != MSIX) { 13164 phba->cfg_irq_chann = 1; 13165 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13166 if (phba->nvmet_support) 13167 phba->cfg_nvmet_mrq = 1; 13168 } 13169 } 13170 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 13171 13172 /* Create SCSI host to the physical port */ 13173 error = lpfc_create_shost(phba); 13174 if (error) { 13175 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13176 "1415 Failed to create scsi host.\n"); 13177 goto out_disable_intr; 13178 } 13179 vport = phba->pport; 13180 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 13181 13182 /* Configure sysfs attributes */ 13183 error = lpfc_alloc_sysfs_attr(vport); 13184 if (error) { 13185 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13186 "1416 Failed to allocate sysfs attr\n"); 13187 goto out_destroy_shost; 13188 } 13189 13190 /* Set up SLI-4 HBA */ 13191 if (lpfc_sli4_hba_setup(phba)) { 13192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13193 "1421 Failed to set up hba\n"); 13194 error = -ENODEV; 13195 goto out_free_sysfs_attr; 13196 } 13197 13198 /* Log the current active interrupt mode */ 13199 phba->intr_mode = intr_mode; 13200 lpfc_log_intr_mode(phba, intr_mode); 13201 13202 /* Perform post initialization setup */ 13203 lpfc_post_init_setup(phba); 13204 13205 /* NVME support in FW earlier in the driver load corrects the 13206 * FC4 type making a check for nvme_support unnecessary. 13207 */ 13208 if (phba->nvmet_support == 0) { 13209 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13210 /* Create NVME binding with nvme_fc_transport. This 13211 * ensures the vport is initialized. If the localport 13212 * create fails, it should not unload the driver to 13213 * support field issues. 13214 */ 13215 error = lpfc_nvme_create_localport(vport); 13216 if (error) { 13217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13218 "6004 NVME registration " 13219 "failed, error x%x\n", 13220 error); 13221 } 13222 } 13223 } 13224 13225 /* check for firmware upgrade or downgrade */ 13226 if (phba->cfg_request_firmware_upgrade) 13227 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 13228 13229 /* Check if there are static vports to be created. */ 13230 lpfc_create_static_vport(phba); 13231 13232 /* Enable RAS FW log support */ 13233 lpfc_sli4_ras_setup(phba); 13234 13235 INIT_LIST_HEAD(&phba->poll_list); 13236 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 13237 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 13238 13239 return 0; 13240 13241 out_free_sysfs_attr: 13242 lpfc_free_sysfs_attr(vport); 13243 out_destroy_shost: 13244 lpfc_destroy_shost(phba); 13245 out_disable_intr: 13246 lpfc_sli4_disable_intr(phba); 13247 out_unset_driver_resource: 13248 lpfc_unset_driver_resource_phase2(phba); 13249 out_unset_driver_resource_s4: 13250 lpfc_sli4_driver_resource_unset(phba); 13251 out_unset_pci_mem_s4: 13252 lpfc_sli4_pci_mem_unset(phba); 13253 out_disable_pci_dev: 13254 lpfc_disable_pci_dev(phba); 13255 if (shost) 13256 scsi_host_put(shost); 13257 out_free_phba: 13258 lpfc_hba_free(phba); 13259 return error; 13260 } 13261 13262 /** 13263 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 13264 * @pdev: pointer to PCI device 13265 * 13266 * This routine is called from the kernel's PCI subsystem to device with 13267 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 13268 * removed from PCI bus, it performs all the necessary cleanup for the HBA 13269 * device to be removed from the PCI subsystem properly. 13270 **/ 13271 static void 13272 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 13273 { 13274 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13275 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 13276 struct lpfc_vport **vports; 13277 struct lpfc_hba *phba = vport->phba; 13278 int i; 13279 13280 /* Mark the device unloading flag */ 13281 spin_lock_irq(&phba->hbalock); 13282 vport->load_flag |= FC_UNLOADING; 13283 spin_unlock_irq(&phba->hbalock); 13284 13285 lpfc_free_sysfs_attr(vport); 13286 13287 /* Release all the vports against this physical port */ 13288 vports = lpfc_create_vport_work_array(phba); 13289 if (vports != NULL) 13290 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 13291 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 13292 continue; 13293 fc_vport_terminate(vports[i]->fc_vport); 13294 } 13295 lpfc_destroy_vport_work_array(phba, vports); 13296 13297 /* Remove FC host with the physical port */ 13298 fc_remove_host(shost); 13299 scsi_remove_host(shost); 13300 13301 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 13302 * localports are destroyed after to cleanup all transport memory. 13303 */ 13304 lpfc_cleanup(vport); 13305 lpfc_nvmet_destroy_targetport(phba); 13306 lpfc_nvme_destroy_localport(vport); 13307 13308 /* De-allocate multi-XRI pools */ 13309 if (phba->cfg_xri_rebalancing) 13310 lpfc_destroy_multixri_pools(phba); 13311 13312 /* 13313 * Bring down the SLI Layer. This step disables all interrupts, 13314 * clears the rings, discards all mailbox commands, and resets 13315 * the HBA FCoE function. 13316 */ 13317 lpfc_debugfs_terminate(vport); 13318 13319 lpfc_stop_hba_timers(phba); 13320 spin_lock_irq(&phba->port_list_lock); 13321 list_del_init(&vport->listentry); 13322 spin_unlock_irq(&phba->port_list_lock); 13323 13324 /* Perform scsi free before driver resource_unset since scsi 13325 * buffers are released to their corresponding pools here. 13326 */ 13327 lpfc_io_free(phba); 13328 lpfc_free_iocb_list(phba); 13329 lpfc_sli4_hba_unset(phba); 13330 13331 lpfc_unset_driver_resource_phase2(phba); 13332 lpfc_sli4_driver_resource_unset(phba); 13333 13334 /* Unmap adapter Control and Doorbell registers */ 13335 lpfc_sli4_pci_mem_unset(phba); 13336 13337 /* Release PCI resources and disable device's PCI function */ 13338 scsi_host_put(shost); 13339 lpfc_disable_pci_dev(phba); 13340 13341 /* Finally, free the driver's device data structure */ 13342 lpfc_hba_free(phba); 13343 13344 return; 13345 } 13346 13347 /** 13348 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 13349 * @dev_d: pointer to device 13350 * 13351 * This routine is called from the kernel's PCI subsystem to support system 13352 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 13353 * this method, it quiesces the device by stopping the driver's worker 13354 * thread for the device, turning off device's interrupt and DMA, and bring 13355 * the device offline. Note that as the driver implements the minimum PM 13356 * requirements to a power-aware driver's PM support for suspend/resume -- all 13357 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 13358 * method call will be treated as SUSPEND and the driver will fully 13359 * reinitialize its device during resume() method call, the driver will set 13360 * device to PCI_D3hot state in PCI config space instead of setting it 13361 * according to the @msg provided by the PM. 13362 * 13363 * Return code 13364 * 0 - driver suspended the device 13365 * Error otherwise 13366 **/ 13367 static int __maybe_unused 13368 lpfc_pci_suspend_one_s4(struct device *dev_d) 13369 { 13370 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 13371 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13372 13373 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13374 "2843 PCI device Power Management suspend.\n"); 13375 13376 /* Bring down the device */ 13377 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13378 lpfc_offline(phba); 13379 kthread_stop(phba->worker_thread); 13380 13381 /* Disable interrupt from device */ 13382 lpfc_sli4_disable_intr(phba); 13383 lpfc_sli4_queue_destroy(phba); 13384 13385 return 0; 13386 } 13387 13388 /** 13389 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 13390 * @dev_d: pointer to device 13391 * 13392 * This routine is called from the kernel's PCI subsystem to support system 13393 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 13394 * this method, it restores the device's PCI config space state and fully 13395 * reinitializes the device and brings it online. Note that as the driver 13396 * implements the minimum PM requirements to a power-aware driver's PM for 13397 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 13398 * to the suspend() method call will be treated as SUSPEND and the driver 13399 * will fully reinitialize its device during resume() method call, the device 13400 * will be set to PCI_D0 directly in PCI config space before restoring the 13401 * state. 13402 * 13403 * Return code 13404 * 0 - driver suspended the device 13405 * Error otherwise 13406 **/ 13407 static int __maybe_unused 13408 lpfc_pci_resume_one_s4(struct device *dev_d) 13409 { 13410 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 13411 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13412 uint32_t intr_mode; 13413 int error; 13414 13415 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13416 "0292 PCI device Power Management resume.\n"); 13417 13418 /* Startup the kernel thread for this host adapter. */ 13419 phba->worker_thread = kthread_run(lpfc_do_work, phba, 13420 "lpfc_worker_%d", phba->brd_no); 13421 if (IS_ERR(phba->worker_thread)) { 13422 error = PTR_ERR(phba->worker_thread); 13423 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13424 "0293 PM resume failed to start worker " 13425 "thread: error=x%x.\n", error); 13426 return error; 13427 } 13428 13429 /* Configure and enable interrupt */ 13430 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13431 if (intr_mode == LPFC_INTR_ERROR) { 13432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13433 "0294 PM resume Failed to enable interrupt\n"); 13434 return -EIO; 13435 } else 13436 phba->intr_mode = intr_mode; 13437 13438 /* Restart HBA and bring it online */ 13439 lpfc_sli_brdrestart(phba); 13440 lpfc_online(phba); 13441 13442 /* Log the current active interrupt mode */ 13443 lpfc_log_intr_mode(phba, phba->intr_mode); 13444 13445 return 0; 13446 } 13447 13448 /** 13449 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 13450 * @phba: pointer to lpfc hba data structure. 13451 * 13452 * This routine is called to prepare the SLI4 device for PCI slot recover. It 13453 * aborts all the outstanding SCSI I/Os to the pci device. 13454 **/ 13455 static void 13456 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 13457 { 13458 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13459 "2828 PCI channel I/O abort preparing for recovery\n"); 13460 /* 13461 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 13462 * and let the SCSI mid-layer to retry them to recover. 13463 */ 13464 lpfc_sli_abort_fcp_rings(phba); 13465 } 13466 13467 /** 13468 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 13469 * @phba: pointer to lpfc hba data structure. 13470 * 13471 * This routine is called to prepare the SLI4 device for PCI slot reset. It 13472 * disables the device interrupt and pci device, and aborts the internal FCP 13473 * pending I/Os. 13474 **/ 13475 static void 13476 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 13477 { 13478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13479 "2826 PCI channel disable preparing for reset\n"); 13480 13481 /* Block any management I/Os to the device */ 13482 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 13483 13484 /* Block all SCSI devices' I/Os on the host */ 13485 lpfc_scsi_dev_block(phba); 13486 13487 /* Flush all driver's outstanding I/Os as we are to reset */ 13488 lpfc_sli_flush_io_rings(phba); 13489 13490 /* stop all timers */ 13491 lpfc_stop_hba_timers(phba); 13492 13493 /* Disable interrupt and pci device */ 13494 lpfc_sli4_disable_intr(phba); 13495 lpfc_sli4_queue_destroy(phba); 13496 pci_disable_device(phba->pcidev); 13497 } 13498 13499 /** 13500 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 13501 * @phba: pointer to lpfc hba data structure. 13502 * 13503 * This routine is called to prepare the SLI4 device for PCI slot permanently 13504 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 13505 * pending I/Os. 13506 **/ 13507 static void 13508 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 13509 { 13510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13511 "2827 PCI channel permanent disable for failure\n"); 13512 13513 /* Block all SCSI devices' I/Os on the host */ 13514 lpfc_scsi_dev_block(phba); 13515 13516 /* stop all timers */ 13517 lpfc_stop_hba_timers(phba); 13518 13519 /* Clean up all driver's outstanding I/Os */ 13520 lpfc_sli_flush_io_rings(phba); 13521 } 13522 13523 /** 13524 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 13525 * @pdev: pointer to PCI device. 13526 * @state: the current PCI connection state. 13527 * 13528 * This routine is called from the PCI subsystem for error handling to device 13529 * with SLI-4 interface spec. This function is called by the PCI subsystem 13530 * after a PCI bus error affecting this device has been detected. When this 13531 * function is invoked, it will need to stop all the I/Os and interrupt(s) 13532 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 13533 * for the PCI subsystem to perform proper recovery as desired. 13534 * 13535 * Return codes 13536 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13537 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13538 **/ 13539 static pci_ers_result_t 13540 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 13541 { 13542 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13543 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13544 13545 switch (state) { 13546 case pci_channel_io_normal: 13547 /* Non-fatal error, prepare for recovery */ 13548 lpfc_sli4_prep_dev_for_recover(phba); 13549 return PCI_ERS_RESULT_CAN_RECOVER; 13550 case pci_channel_io_frozen: 13551 /* Fatal error, prepare for slot reset */ 13552 lpfc_sli4_prep_dev_for_reset(phba); 13553 return PCI_ERS_RESULT_NEED_RESET; 13554 case pci_channel_io_perm_failure: 13555 /* Permanent failure, prepare for device down */ 13556 lpfc_sli4_prep_dev_for_perm_failure(phba); 13557 return PCI_ERS_RESULT_DISCONNECT; 13558 default: 13559 /* Unknown state, prepare and request slot reset */ 13560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13561 "2825 Unknown PCI error state: x%x\n", state); 13562 lpfc_sli4_prep_dev_for_reset(phba); 13563 return PCI_ERS_RESULT_NEED_RESET; 13564 } 13565 } 13566 13567 /** 13568 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 13569 * @pdev: pointer to PCI device. 13570 * 13571 * This routine is called from the PCI subsystem for error handling to device 13572 * with SLI-4 interface spec. It is called after PCI bus has been reset to 13573 * restart the PCI card from scratch, as if from a cold-boot. During the 13574 * PCI subsystem error recovery, after the driver returns 13575 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 13576 * recovery and then call this routine before calling the .resume method to 13577 * recover the device. This function will initialize the HBA device, enable 13578 * the interrupt, but it will just put the HBA to offline state without 13579 * passing any I/O traffic. 13580 * 13581 * Return codes 13582 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13583 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13584 */ 13585 static pci_ers_result_t 13586 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 13587 { 13588 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13589 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13590 struct lpfc_sli *psli = &phba->sli; 13591 uint32_t intr_mode; 13592 13593 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 13594 if (pci_enable_device_mem(pdev)) { 13595 printk(KERN_ERR "lpfc: Cannot re-enable " 13596 "PCI device after reset.\n"); 13597 return PCI_ERS_RESULT_DISCONNECT; 13598 } 13599 13600 pci_restore_state(pdev); 13601 13602 /* 13603 * As the new kernel behavior of pci_restore_state() API call clears 13604 * device saved_state flag, need to save the restored state again. 13605 */ 13606 pci_save_state(pdev); 13607 13608 if (pdev->is_busmaster) 13609 pci_set_master(pdev); 13610 13611 spin_lock_irq(&phba->hbalock); 13612 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 13613 spin_unlock_irq(&phba->hbalock); 13614 13615 /* Configure and enable interrupt */ 13616 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 13617 if (intr_mode == LPFC_INTR_ERROR) { 13618 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13619 "2824 Cannot re-enable interrupt after " 13620 "slot reset.\n"); 13621 return PCI_ERS_RESULT_DISCONNECT; 13622 } else 13623 phba->intr_mode = intr_mode; 13624 13625 /* Log the current active interrupt mode */ 13626 lpfc_log_intr_mode(phba, phba->intr_mode); 13627 13628 return PCI_ERS_RESULT_RECOVERED; 13629 } 13630 13631 /** 13632 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 13633 * @pdev: pointer to PCI device 13634 * 13635 * This routine is called from the PCI subsystem for error handling to device 13636 * with SLI-4 interface spec. It is called when kernel error recovery tells 13637 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 13638 * error recovery. After this call, traffic can start to flow from this device 13639 * again. 13640 **/ 13641 static void 13642 lpfc_io_resume_s4(struct pci_dev *pdev) 13643 { 13644 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13645 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13646 13647 /* 13648 * In case of slot reset, as function reset is performed through 13649 * mailbox command which needs DMA to be enabled, this operation 13650 * has to be moved to the io resume phase. Taking device offline 13651 * will perform the necessary cleanup. 13652 */ 13653 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 13654 /* Perform device reset */ 13655 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 13656 lpfc_offline(phba); 13657 lpfc_sli_brdrestart(phba); 13658 /* Bring the device back online */ 13659 lpfc_online(phba); 13660 } 13661 } 13662 13663 /** 13664 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 13665 * @pdev: pointer to PCI device 13666 * @pid: pointer to PCI device identifier 13667 * 13668 * This routine is to be registered to the kernel's PCI subsystem. When an 13669 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 13670 * at PCI device-specific information of the device and driver to see if the 13671 * driver state that it can support this kind of device. If the match is 13672 * successful, the driver core invokes this routine. This routine dispatches 13673 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 13674 * do all the initialization that it needs to do to handle the HBA device 13675 * properly. 13676 * 13677 * Return code 13678 * 0 - driver can claim the device 13679 * negative value - driver can not claim the device 13680 **/ 13681 static int 13682 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 13683 { 13684 int rc; 13685 struct lpfc_sli_intf intf; 13686 13687 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 13688 return -ENODEV; 13689 13690 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 13691 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 13692 rc = lpfc_pci_probe_one_s4(pdev, pid); 13693 else 13694 rc = lpfc_pci_probe_one_s3(pdev, pid); 13695 13696 return rc; 13697 } 13698 13699 /** 13700 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 13701 * @pdev: pointer to PCI device 13702 * 13703 * This routine is to be registered to the kernel's PCI subsystem. When an 13704 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 13705 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 13706 * remove routine, which will perform all the necessary cleanup for the 13707 * device to be removed from the PCI subsystem properly. 13708 **/ 13709 static void 13710 lpfc_pci_remove_one(struct pci_dev *pdev) 13711 { 13712 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13713 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13714 13715 switch (phba->pci_dev_grp) { 13716 case LPFC_PCI_DEV_LP: 13717 lpfc_pci_remove_one_s3(pdev); 13718 break; 13719 case LPFC_PCI_DEV_OC: 13720 lpfc_pci_remove_one_s4(pdev); 13721 break; 13722 default: 13723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13724 "1424 Invalid PCI device group: 0x%x\n", 13725 phba->pci_dev_grp); 13726 break; 13727 } 13728 return; 13729 } 13730 13731 /** 13732 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 13733 * @dev: pointer to device 13734 * 13735 * This routine is to be registered to the kernel's PCI subsystem to support 13736 * system Power Management (PM). When PM invokes this method, it dispatches 13737 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 13738 * suspend the device. 13739 * 13740 * Return code 13741 * 0 - driver suspended the device 13742 * Error otherwise 13743 **/ 13744 static int __maybe_unused 13745 lpfc_pci_suspend_one(struct device *dev) 13746 { 13747 struct Scsi_Host *shost = dev_get_drvdata(dev); 13748 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13749 int rc = -ENODEV; 13750 13751 switch (phba->pci_dev_grp) { 13752 case LPFC_PCI_DEV_LP: 13753 rc = lpfc_pci_suspend_one_s3(dev); 13754 break; 13755 case LPFC_PCI_DEV_OC: 13756 rc = lpfc_pci_suspend_one_s4(dev); 13757 break; 13758 default: 13759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13760 "1425 Invalid PCI device group: 0x%x\n", 13761 phba->pci_dev_grp); 13762 break; 13763 } 13764 return rc; 13765 } 13766 13767 /** 13768 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 13769 * @dev: pointer to device 13770 * 13771 * This routine is to be registered to the kernel's PCI subsystem to support 13772 * system Power Management (PM). When PM invokes this method, it dispatches 13773 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 13774 * resume the device. 13775 * 13776 * Return code 13777 * 0 - driver suspended the device 13778 * Error otherwise 13779 **/ 13780 static int __maybe_unused 13781 lpfc_pci_resume_one(struct device *dev) 13782 { 13783 struct Scsi_Host *shost = dev_get_drvdata(dev); 13784 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13785 int rc = -ENODEV; 13786 13787 switch (phba->pci_dev_grp) { 13788 case LPFC_PCI_DEV_LP: 13789 rc = lpfc_pci_resume_one_s3(dev); 13790 break; 13791 case LPFC_PCI_DEV_OC: 13792 rc = lpfc_pci_resume_one_s4(dev); 13793 break; 13794 default: 13795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13796 "1426 Invalid PCI device group: 0x%x\n", 13797 phba->pci_dev_grp); 13798 break; 13799 } 13800 return rc; 13801 } 13802 13803 /** 13804 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 13805 * @pdev: pointer to PCI device. 13806 * @state: the current PCI connection state. 13807 * 13808 * This routine is registered to the PCI subsystem for error handling. This 13809 * function is called by the PCI subsystem after a PCI bus error affecting 13810 * this device has been detected. When this routine is invoked, it dispatches 13811 * the action to the proper SLI-3 or SLI-4 device error detected handling 13812 * routine, which will perform the proper error detected operation. 13813 * 13814 * Return codes 13815 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 13816 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13817 **/ 13818 static pci_ers_result_t 13819 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 13820 { 13821 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13822 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13823 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13824 13825 switch (phba->pci_dev_grp) { 13826 case LPFC_PCI_DEV_LP: 13827 rc = lpfc_io_error_detected_s3(pdev, state); 13828 break; 13829 case LPFC_PCI_DEV_OC: 13830 rc = lpfc_io_error_detected_s4(pdev, state); 13831 break; 13832 default: 13833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13834 "1427 Invalid PCI device group: 0x%x\n", 13835 phba->pci_dev_grp); 13836 break; 13837 } 13838 return rc; 13839 } 13840 13841 /** 13842 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 13843 * @pdev: pointer to PCI device. 13844 * 13845 * This routine is registered to the PCI subsystem for error handling. This 13846 * function is called after PCI bus has been reset to restart the PCI card 13847 * from scratch, as if from a cold-boot. When this routine is invoked, it 13848 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 13849 * routine, which will perform the proper device reset. 13850 * 13851 * Return codes 13852 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 13853 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 13854 **/ 13855 static pci_ers_result_t 13856 lpfc_io_slot_reset(struct pci_dev *pdev) 13857 { 13858 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13859 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13860 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 13861 13862 switch (phba->pci_dev_grp) { 13863 case LPFC_PCI_DEV_LP: 13864 rc = lpfc_io_slot_reset_s3(pdev); 13865 break; 13866 case LPFC_PCI_DEV_OC: 13867 rc = lpfc_io_slot_reset_s4(pdev); 13868 break; 13869 default: 13870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13871 "1428 Invalid PCI device group: 0x%x\n", 13872 phba->pci_dev_grp); 13873 break; 13874 } 13875 return rc; 13876 } 13877 13878 /** 13879 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 13880 * @pdev: pointer to PCI device 13881 * 13882 * This routine is registered to the PCI subsystem for error handling. It 13883 * is called when kernel error recovery tells the lpfc driver that it is 13884 * OK to resume normal PCI operation after PCI bus error recovery. When 13885 * this routine is invoked, it dispatches the action to the proper SLI-3 13886 * or SLI-4 device io_resume routine, which will resume the device operation. 13887 **/ 13888 static void 13889 lpfc_io_resume(struct pci_dev *pdev) 13890 { 13891 struct Scsi_Host *shost = pci_get_drvdata(pdev); 13892 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 13893 13894 switch (phba->pci_dev_grp) { 13895 case LPFC_PCI_DEV_LP: 13896 lpfc_io_resume_s3(pdev); 13897 break; 13898 case LPFC_PCI_DEV_OC: 13899 lpfc_io_resume_s4(pdev); 13900 break; 13901 default: 13902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13903 "1429 Invalid PCI device group: 0x%x\n", 13904 phba->pci_dev_grp); 13905 break; 13906 } 13907 return; 13908 } 13909 13910 /** 13911 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 13912 * @phba: pointer to lpfc hba data structure. 13913 * 13914 * This routine checks to see if OAS is supported for this adapter. If 13915 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 13916 * the enable oas flag is cleared and the pool created for OAS device data 13917 * is destroyed. 13918 * 13919 **/ 13920 static void 13921 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 13922 { 13923 13924 if (!phba->cfg_EnableXLane) 13925 return; 13926 13927 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 13928 phba->cfg_fof = 1; 13929 } else { 13930 phba->cfg_fof = 0; 13931 mempool_destroy(phba->device_data_mem_pool); 13932 phba->device_data_mem_pool = NULL; 13933 } 13934 13935 return; 13936 } 13937 13938 /** 13939 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 13940 * @phba: pointer to lpfc hba data structure. 13941 * 13942 * This routine checks to see if RAS is supported by the adapter. Check the 13943 * function through which RAS support enablement is to be done. 13944 **/ 13945 void 13946 lpfc_sli4_ras_init(struct lpfc_hba *phba) 13947 { 13948 switch (phba->pcidev->device) { 13949 case PCI_DEVICE_ID_LANCER_G6_FC: 13950 case PCI_DEVICE_ID_LANCER_G7_FC: 13951 phba->ras_fwlog.ras_hwsupport = true; 13952 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 13953 phba->cfg_ras_fwlog_buffsize) 13954 phba->ras_fwlog.ras_enabled = true; 13955 else 13956 phba->ras_fwlog.ras_enabled = false; 13957 break; 13958 default: 13959 phba->ras_fwlog.ras_hwsupport = false; 13960 } 13961 } 13962 13963 13964 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 13965 13966 static const struct pci_error_handlers lpfc_err_handler = { 13967 .error_detected = lpfc_io_error_detected, 13968 .slot_reset = lpfc_io_slot_reset, 13969 .resume = lpfc_io_resume, 13970 }; 13971 13972 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 13973 lpfc_pci_suspend_one, 13974 lpfc_pci_resume_one); 13975 13976 static struct pci_driver lpfc_driver = { 13977 .name = LPFC_DRIVER_NAME, 13978 .id_table = lpfc_id_table, 13979 .probe = lpfc_pci_probe_one, 13980 .remove = lpfc_pci_remove_one, 13981 .shutdown = lpfc_pci_remove_one, 13982 .driver.pm = &lpfc_pci_pm_ops_one, 13983 .err_handler = &lpfc_err_handler, 13984 }; 13985 13986 static const struct file_operations lpfc_mgmt_fop = { 13987 .owner = THIS_MODULE, 13988 }; 13989 13990 static struct miscdevice lpfc_mgmt_dev = { 13991 .minor = MISC_DYNAMIC_MINOR, 13992 .name = "lpfcmgmt", 13993 .fops = &lpfc_mgmt_fop, 13994 }; 13995 13996 /** 13997 * lpfc_init - lpfc module initialization routine 13998 * 13999 * This routine is to be invoked when the lpfc module is loaded into the 14000 * kernel. The special kernel macro module_init() is used to indicate the 14001 * role of this routine to the kernel as lpfc module entry point. 14002 * 14003 * Return codes 14004 * 0 - successful 14005 * -ENOMEM - FC attach transport failed 14006 * all others - failed 14007 */ 14008 static int __init 14009 lpfc_init(void) 14010 { 14011 int error = 0; 14012 14013 pr_info(LPFC_MODULE_DESC "\n"); 14014 pr_info(LPFC_COPYRIGHT "\n"); 14015 14016 error = misc_register(&lpfc_mgmt_dev); 14017 if (error) 14018 printk(KERN_ERR "Could not register lpfcmgmt device, " 14019 "misc_register returned with status %d", error); 14020 14021 error = -ENOMEM; 14022 lpfc_transport_functions.vport_create = lpfc_vport_create; 14023 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 14024 lpfc_transport_template = 14025 fc_attach_transport(&lpfc_transport_functions); 14026 if (lpfc_transport_template == NULL) 14027 goto unregister; 14028 lpfc_vport_transport_template = 14029 fc_attach_transport(&lpfc_vport_transport_functions); 14030 if (lpfc_vport_transport_template == NULL) { 14031 fc_release_transport(lpfc_transport_template); 14032 goto unregister; 14033 } 14034 lpfc_wqe_cmd_template(); 14035 lpfc_nvmet_cmd_template(); 14036 14037 /* Initialize in case vector mapping is needed */ 14038 lpfc_present_cpu = num_present_cpus(); 14039 14040 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 14041 "lpfc/sli4:online", 14042 lpfc_cpu_online, lpfc_cpu_offline); 14043 if (error < 0) 14044 goto cpuhp_failure; 14045 lpfc_cpuhp_state = error; 14046 14047 error = pci_register_driver(&lpfc_driver); 14048 if (error) 14049 goto unwind; 14050 14051 return error; 14052 14053 unwind: 14054 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14055 cpuhp_failure: 14056 fc_release_transport(lpfc_transport_template); 14057 fc_release_transport(lpfc_vport_transport_template); 14058 unregister: 14059 misc_deregister(&lpfc_mgmt_dev); 14060 14061 return error; 14062 } 14063 14064 void lpfc_dmp_dbg(struct lpfc_hba *phba) 14065 { 14066 unsigned int start_idx; 14067 unsigned int dbg_cnt; 14068 unsigned int temp_idx; 14069 int i; 14070 int j = 0; 14071 unsigned long rem_nsec; 14072 struct lpfc_vport **vports; 14073 14074 /* Don't dump messages if we explicitly set log_verbose for the 14075 * physical port or any vport. 14076 */ 14077 if (phba->cfg_log_verbose) 14078 return; 14079 14080 vports = lpfc_create_vport_work_array(phba); 14081 if (vports != NULL) { 14082 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14083 if (vports[i]->cfg_log_verbose) { 14084 lpfc_destroy_vport_work_array(phba, vports); 14085 return; 14086 } 14087 } 14088 } 14089 lpfc_destroy_vport_work_array(phba, vports); 14090 14091 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 14092 return; 14093 14094 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 14095 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 14096 if (!dbg_cnt) 14097 goto out; 14098 temp_idx = start_idx; 14099 if (dbg_cnt >= DBG_LOG_SZ) { 14100 dbg_cnt = DBG_LOG_SZ; 14101 temp_idx -= 1; 14102 } else { 14103 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 14104 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 14105 } else { 14106 if (start_idx < dbg_cnt) 14107 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 14108 else 14109 start_idx -= dbg_cnt; 14110 } 14111 } 14112 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 14113 start_idx, temp_idx, dbg_cnt); 14114 14115 for (i = 0; i < dbg_cnt; i++) { 14116 if ((start_idx + i) < DBG_LOG_SZ) 14117 temp_idx = (start_idx + i) % DBG_LOG_SZ; 14118 else 14119 temp_idx = j++; 14120 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 14121 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 14122 temp_idx, 14123 (unsigned long)phba->dbg_log[temp_idx].t_ns, 14124 rem_nsec / 1000, 14125 phba->dbg_log[temp_idx].log); 14126 } 14127 out: 14128 atomic_set(&phba->dbg_log_cnt, 0); 14129 atomic_set(&phba->dbg_log_dmping, 0); 14130 } 14131 14132 __printf(2, 3) 14133 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 14134 { 14135 unsigned int idx; 14136 va_list args; 14137 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 14138 struct va_format vaf; 14139 14140 14141 va_start(args, fmt); 14142 if (unlikely(dbg_dmping)) { 14143 vaf.fmt = fmt; 14144 vaf.va = &args; 14145 dev_info(&phba->pcidev->dev, "%pV", &vaf); 14146 va_end(args); 14147 return; 14148 } 14149 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 14150 DBG_LOG_SZ; 14151 14152 atomic_inc(&phba->dbg_log_cnt); 14153 14154 vscnprintf(phba->dbg_log[idx].log, 14155 sizeof(phba->dbg_log[idx].log), fmt, args); 14156 va_end(args); 14157 14158 phba->dbg_log[idx].t_ns = local_clock(); 14159 } 14160 14161 /** 14162 * lpfc_exit - lpfc module removal routine 14163 * 14164 * This routine is invoked when the lpfc module is removed from the kernel. 14165 * The special kernel macro module_exit() is used to indicate the role of 14166 * this routine to the kernel as lpfc module exit point. 14167 */ 14168 static void __exit 14169 lpfc_exit(void) 14170 { 14171 misc_deregister(&lpfc_mgmt_dev); 14172 pci_unregister_driver(&lpfc_driver); 14173 cpuhp_remove_multi_state(lpfc_cpuhp_state); 14174 fc_release_transport(lpfc_transport_template); 14175 fc_release_transport(lpfc_vport_transport_template); 14176 idr_destroy(&lpfc_hba_index); 14177 } 14178 14179 module_init(lpfc_init); 14180 module_exit(lpfc_exit); 14181 MODULE_LICENSE("GPL"); 14182 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 14183 MODULE_AUTHOR("Broadcom"); 14184 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 14185