xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 1ec7ccb4)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
105 
106 /**
107  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
108  * @phba: pointer to lpfc hba data structure.
109  *
110  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
111  * mailbox command. It retrieves the revision information from the HBA and
112  * collects the Vital Product Data (VPD) about the HBA for preparing the
113  * configuration of the HBA.
114  *
115  * Return codes:
116  *   0 - success.
117  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
118  *   Any other value - indicates an error.
119  **/
120 int
121 lpfc_config_port_prep(struct lpfc_hba *phba)
122 {
123 	lpfc_vpd_t *vp = &phba->vpd;
124 	int i = 0, rc;
125 	LPFC_MBOXQ_t *pmb;
126 	MAILBOX_t *mb;
127 	char *lpfc_vpd_data = NULL;
128 	uint16_t offset = 0;
129 	static char licensed[56] =
130 		    "key unlock for use with gnu public licensed code only\0";
131 	static int init_key = 1;
132 
133 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
134 	if (!pmb) {
135 		phba->link_state = LPFC_HBA_ERROR;
136 		return -ENOMEM;
137 	}
138 
139 	mb = &pmb->u.mb;
140 	phba->link_state = LPFC_INIT_MBX_CMDS;
141 
142 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
143 		if (init_key) {
144 			uint32_t *ptext = (uint32_t *) licensed;
145 
146 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
147 				*ptext = cpu_to_be32(*ptext);
148 			init_key = 0;
149 		}
150 
151 		lpfc_read_nv(phba, pmb);
152 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
153 			sizeof (mb->un.varRDnvp.rsvd3));
154 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
155 			 sizeof (licensed));
156 
157 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
158 
159 		if (rc != MBX_SUCCESS) {
160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
161 					"0324 Config Port initialization "
162 					"error, mbxCmd x%x READ_NVPARM, "
163 					"mbxStatus x%x\n",
164 					mb->mbxCommand, mb->mbxStatus);
165 			mempool_free(pmb, phba->mbox_mem_pool);
166 			return -ERESTART;
167 		}
168 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
169 		       sizeof(phba->wwnn));
170 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
171 		       sizeof(phba->wwpn));
172 	}
173 
174 	/*
175 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
176 	 * which was already set in lpfc_get_cfgparam()
177 	 */
178 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
179 
180 	/* Setup and issue mailbox READ REV command */
181 	lpfc_read_rev(phba, pmb);
182 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
183 	if (rc != MBX_SUCCESS) {
184 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
185 				"0439 Adapter failed to init, mbxCmd x%x "
186 				"READ_REV, mbxStatus x%x\n",
187 				mb->mbxCommand, mb->mbxStatus);
188 		mempool_free( pmb, phba->mbox_mem_pool);
189 		return -ERESTART;
190 	}
191 
192 
193 	/*
194 	 * The value of rr must be 1 since the driver set the cv field to 1.
195 	 * This setting requires the FW to set all revision fields.
196 	 */
197 	if (mb->un.varRdRev.rr == 0) {
198 		vp->rev.rBit = 0;
199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
200 				"0440 Adapter failed to init, READ_REV has "
201 				"missing revision information.\n");
202 		mempool_free(pmb, phba->mbox_mem_pool);
203 		return -ERESTART;
204 	}
205 
206 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
207 		mempool_free(pmb, phba->mbox_mem_pool);
208 		return -EINVAL;
209 	}
210 
211 	/* Save information as VPD data */
212 	vp->rev.rBit = 1;
213 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
214 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
215 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
216 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
217 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
218 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
219 	vp->rev.smRev = mb->un.varRdRev.smRev;
220 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
221 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
222 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
223 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
224 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
225 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
226 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
227 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
228 
229 	/* If the sli feature level is less then 9, we must
230 	 * tear down all RPIs and VPIs on link down if NPIV
231 	 * is enabled.
232 	 */
233 	if (vp->rev.feaLevelHigh < 9)
234 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
235 
236 	if (lpfc_is_LC_HBA(phba->pcidev->device))
237 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
238 						sizeof (phba->RandomData));
239 
240 	/* Get adapter VPD information */
241 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
242 	if (!lpfc_vpd_data)
243 		goto out_free_mbox;
244 	do {
245 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
246 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
247 
248 		if (rc != MBX_SUCCESS) {
249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
250 					"0441 VPD not present on adapter, "
251 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
252 					mb->mbxCommand, mb->mbxStatus);
253 			mb->un.varDmp.word_cnt = 0;
254 		}
255 		/* dump mem may return a zero when finished or we got a
256 		 * mailbox error, either way we are done.
257 		 */
258 		if (mb->un.varDmp.word_cnt == 0)
259 			break;
260 
261 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
262 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
263 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
264 				      lpfc_vpd_data + offset,
265 				      mb->un.varDmp.word_cnt);
266 		offset += mb->un.varDmp.word_cnt;
267 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
268 
269 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
270 
271 	kfree(lpfc_vpd_data);
272 out_free_mbox:
273 	mempool_free(pmb, phba->mbox_mem_pool);
274 	return 0;
275 }
276 
277 /**
278  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
279  * @phba: pointer to lpfc hba data structure.
280  * @pmboxq: pointer to the driver internal queue element for mailbox command.
281  *
282  * This is the completion handler for driver's configuring asynchronous event
283  * mailbox command to the device. If the mailbox command returns successfully,
284  * it will set internal async event support flag to 1; otherwise, it will
285  * set internal async event support flag to 0.
286  **/
287 static void
288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
289 {
290 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
291 		phba->temp_sensor_support = 1;
292 	else
293 		phba->temp_sensor_support = 0;
294 	mempool_free(pmboxq, phba->mbox_mem_pool);
295 	return;
296 }
297 
298 /**
299  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
300  * @phba: pointer to lpfc hba data structure.
301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
302  *
303  * This is the completion handler for dump mailbox command for getting
304  * wake up parameters. When this command complete, the response contain
305  * Option rom version of the HBA. This function translate the version number
306  * into a human readable string and store it in OptionROMVersion.
307  **/
308 static void
309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
310 {
311 	struct prog_id *prg;
312 	uint32_t prog_id_word;
313 	char dist = ' ';
314 	/* character array used for decoding dist type. */
315 	char dist_char[] = "nabx";
316 
317 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
318 		mempool_free(pmboxq, phba->mbox_mem_pool);
319 		return;
320 	}
321 
322 	prg = (struct prog_id *) &prog_id_word;
323 
324 	/* word 7 contain option rom version */
325 	prog_id_word = pmboxq->u.mb.un.varWords[7];
326 
327 	/* Decode the Option rom version word to a readable string */
328 	dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	struct lpfc_hba *phba = vport->phba;
353 
354 	/*
355 	 * If the name is empty or there exists a soft name
356 	 * then copy the service params name, otherwise use the fc name
357 	 */
358 	if (vport->fc_nodename.u.wwn[0] == 0)
359 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
360 			sizeof(struct lpfc_name));
361 	else
362 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
363 			sizeof(struct lpfc_name));
364 
365 	/*
366 	 * If the port name has changed, then set the Param changes flag
367 	 * to unreg the login
368 	 */
369 	if (vport->fc_portname.u.wwn[0] != 0 &&
370 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
371 		       sizeof(struct lpfc_name))) {
372 		vport->vport_flag |= FAWWPN_PARAM_CHG;
373 
374 		if (phba->sli_rev == LPFC_SLI_REV4 &&
375 		    vport->port_type == LPFC_PHYSICAL_PORT &&
376 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
377 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
378 				phba->sli4_hba.fawwpn_flag &=
379 						~LPFC_FAWWPN_FABRIC;
380 			lpfc_printf_log(phba, KERN_INFO,
381 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
382 					"2701 FA-PWWN change WWPN from %llx to "
383 					"%llx: vflag x%x fawwpn_flag x%x\n",
384 					wwn_to_u64(vport->fc_portname.u.wwn),
385 					wwn_to_u64
386 					   (vport->fc_sparam.portName.u.wwn),
387 					vport->vport_flag,
388 					phba->sli4_hba.fawwpn_flag);
389 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
390 			       sizeof(struct lpfc_name));
391 		}
392 	}
393 
394 	if (vport->fc_portname.u.wwn[0] == 0)
395 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
396 		       sizeof(struct lpfc_name));
397 	else
398 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
399 		       sizeof(struct lpfc_name));
400 }
401 
402 /**
403  * lpfc_config_port_post - Perform lpfc initialization after config port
404  * @phba: pointer to lpfc hba data structure.
405  *
406  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
407  * command call. It performs all internal resource and state setups on the
408  * port: post IOCB buffers, enable appropriate host interrupt attentions,
409  * ELS ring timers, etc.
410  *
411  * Return codes
412  *   0 - success.
413  *   Any other value - error.
414  **/
415 int
416 lpfc_config_port_post(struct lpfc_hba *phba)
417 {
418 	struct lpfc_vport *vport = phba->pport;
419 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
420 	LPFC_MBOXQ_t *pmb;
421 	MAILBOX_t *mb;
422 	struct lpfc_dmabuf *mp;
423 	struct lpfc_sli *psli = &phba->sli;
424 	uint32_t status, timeout;
425 	int i, j;
426 	int rc;
427 
428 	spin_lock_irq(&phba->hbalock);
429 	/*
430 	 * If the Config port completed correctly the HBA is not
431 	 * over heated any more.
432 	 */
433 	if (phba->over_temp_state == HBA_OVER_TEMP)
434 		phba->over_temp_state = HBA_NORMAL_TEMP;
435 	spin_unlock_irq(&phba->hbalock);
436 
437 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
438 	if (!pmb) {
439 		phba->link_state = LPFC_HBA_ERROR;
440 		return -ENOMEM;
441 	}
442 	mb = &pmb->u.mb;
443 
444 	/* Get login parameters for NID.  */
445 	rc = lpfc_read_sparam(phba, pmb, 0);
446 	if (rc) {
447 		mempool_free(pmb, phba->mbox_mem_pool);
448 		return -ENOMEM;
449 	}
450 
451 	pmb->vport = vport;
452 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
454 				"0448 Adapter failed init, mbxCmd x%x "
455 				"READ_SPARM mbxStatus x%x\n",
456 				mb->mbxCommand, mb->mbxStatus);
457 		phba->link_state = LPFC_HBA_ERROR;
458 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
465 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
466 	 * reused.
467 	 */
468 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
469 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
470 	kfree(mp);
471 	pmb->ctx_buf = NULL;
472 	lpfc_update_vport_wwn(vport);
473 
474 	/* Update the fc_host data structures with new wwn. */
475 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
476 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
477 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
478 
479 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
480 	/* This should be consolidated into parse_vpd ? - mr */
481 	if (phba->SerialNumber[0] == 0) {
482 		uint8_t *outptr;
483 
484 		outptr = &vport->fc_nodename.u.s.IEEE[0];
485 		for (i = 0; i < 12; i++) {
486 			status = *outptr++;
487 			j = ((status & 0xf0) >> 4);
488 			if (j <= 9)
489 				phba->SerialNumber[i] =
490 				    (char)((uint8_t) 0x30 + (uint8_t) j);
491 			else
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
494 			i++;
495 			j = (status & 0xf);
496 			if (j <= 9)
497 				phba->SerialNumber[i] =
498 				    (char)((uint8_t) 0x30 + (uint8_t) j);
499 			else
500 				phba->SerialNumber[i] =
501 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
502 		}
503 	}
504 
505 	lpfc_read_config(phba, pmb);
506 	pmb->vport = vport;
507 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
509 				"0453 Adapter failed to init, mbxCmd x%x "
510 				"READ_CONFIG, mbxStatus x%x\n",
511 				mb->mbxCommand, mb->mbxStatus);
512 		phba->link_state = LPFC_HBA_ERROR;
513 		mempool_free( pmb, phba->mbox_mem_pool);
514 		return -EIO;
515 	}
516 
517 	/* Check if the port is disabled */
518 	lpfc_sli_read_link_ste(phba);
519 
520 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
521 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
522 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
523 				"3359 HBA queue depth changed from %d to %d\n",
524 				phba->cfg_hba_queue_depth,
525 				mb->un.varRdConfig.max_xri);
526 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
527 	}
528 
529 	phba->lmt = mb->un.varRdConfig.lmt;
530 
531 	/* Get the default values for Model Name and Description */
532 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
533 
534 	phba->link_state = LPFC_LINK_DOWN;
535 
536 	/* Only process IOCBs on ELS ring till hba_state is READY */
537 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
538 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
539 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
540 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
541 
542 	/* Post receive buffers for desired rings */
543 	if (phba->sli_rev != 3)
544 		lpfc_post_rcv_buf(phba);
545 
546 	/*
547 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
548 	 */
549 	if (phba->intr_type == MSIX) {
550 		rc = lpfc_config_msi(phba, pmb);
551 		if (rc) {
552 			mempool_free(pmb, phba->mbox_mem_pool);
553 			return -EIO;
554 		}
555 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
556 		if (rc != MBX_SUCCESS) {
557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
558 					"0352 Config MSI mailbox command "
559 					"failed, mbxCmd x%x, mbxStatus x%x\n",
560 					pmb->u.mb.mbxCommand,
561 					pmb->u.mb.mbxStatus);
562 			mempool_free(pmb, phba->mbox_mem_pool);
563 			return -EIO;
564 		}
565 	}
566 
567 	spin_lock_irq(&phba->hbalock);
568 	/* Initialize ERATT handling flag */
569 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
570 
571 	/* Enable appropriate host interrupts */
572 	if (lpfc_readl(phba->HCregaddr, &status)) {
573 		spin_unlock_irq(&phba->hbalock);
574 		return -EIO;
575 	}
576 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
577 	if (psli->num_rings > 0)
578 		status |= HC_R0INT_ENA;
579 	if (psli->num_rings > 1)
580 		status |= HC_R1INT_ENA;
581 	if (psli->num_rings > 2)
582 		status |= HC_R2INT_ENA;
583 	if (psli->num_rings > 3)
584 		status |= HC_R3INT_ENA;
585 
586 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
587 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
588 		status &= ~(HC_R0INT_ENA);
589 
590 	writel(status, phba->HCregaddr);
591 	readl(phba->HCregaddr); /* flush */
592 	spin_unlock_irq(&phba->hbalock);
593 
594 	/* Set up ring-0 (ELS) timer */
595 	timeout = phba->fc_ratov * 2;
596 	mod_timer(&vport->els_tmofunc,
597 		  jiffies + msecs_to_jiffies(1000 * timeout));
598 	/* Set up heart beat (HB) timer */
599 	mod_timer(&phba->hb_tmofunc,
600 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
601 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
602 	phba->last_completion_time = jiffies;
603 	/* Set up error attention (ERATT) polling timer */
604 	mod_timer(&phba->eratt_poll,
605 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
606 
607 	if (phba->hba_flag & LINK_DISABLED) {
608 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
609 				"2598 Adapter Link is disabled.\n");
610 		lpfc_down_link(phba, pmb);
611 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
612 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
613 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
614 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
615 					"2599 Adapter failed to issue DOWN_LINK"
616 					" mbox command rc 0x%x\n", rc);
617 
618 			mempool_free(pmb, phba->mbox_mem_pool);
619 			return -EIO;
620 		}
621 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
622 		mempool_free(pmb, phba->mbox_mem_pool);
623 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
624 		if (rc)
625 			return rc;
626 	}
627 	/* MBOX buffer will be freed in mbox compl */
628 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
629 	if (!pmb) {
630 		phba->link_state = LPFC_HBA_ERROR;
631 		return -ENOMEM;
632 	}
633 
634 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
635 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
636 	pmb->vport = phba->pport;
637 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
638 
639 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
640 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
641 				"0456 Adapter failed to issue "
642 				"ASYNCEVT_ENABLE mbox status x%x\n",
643 				rc);
644 		mempool_free(pmb, phba->mbox_mem_pool);
645 	}
646 
647 	/* Get Option rom version */
648 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
649 	if (!pmb) {
650 		phba->link_state = LPFC_HBA_ERROR;
651 		return -ENOMEM;
652 	}
653 
654 	lpfc_dump_wakeup_param(phba, pmb);
655 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
656 	pmb->vport = phba->pport;
657 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
658 
659 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
661 				"0435 Adapter failed "
662 				"to get Option ROM version status x%x\n", rc);
663 		mempool_free(pmb, phba->mbox_mem_pool);
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  * lpfc_sli4_refresh_params - update driver copy of params.
671  * @phba: Pointer to HBA context object.
672  *
673  * This is called to refresh driver copy of dynamic fields from the
674  * common_get_sli4_parameters descriptor.
675  **/
676 int
677 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
678 {
679 	LPFC_MBOXQ_t *mboxq;
680 	struct lpfc_mqe *mqe;
681 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
682 	int length, rc;
683 
684 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
685 	if (!mboxq)
686 		return -ENOMEM;
687 
688 	mqe = &mboxq->u.mqe;
689 	/* Read the port's SLI4 Config Parameters */
690 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
691 		  sizeof(struct lpfc_sli4_cfg_mhdr));
692 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
693 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
694 			 length, LPFC_SLI4_MBX_EMBED);
695 
696 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
697 	if (unlikely(rc)) {
698 		mempool_free(mboxq, phba->mbox_mem_pool);
699 		return rc;
700 	}
701 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
702 	phba->sli4_hba.pc_sli4_params.mi_cap =
703 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
704 
705 	/* Are we forcing MI off via module parameter? */
706 	if (phba->cfg_enable_mi)
707 		phba->sli4_hba.pc_sli4_params.mi_ver =
708 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
709 	else
710 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
711 
712 	phba->sli4_hba.pc_sli4_params.cmf =
713 			bf_get(cfg_cmf, mbx_sli4_parameters);
714 	phba->sli4_hba.pc_sli4_params.pls =
715 			bf_get(cfg_pvl, mbx_sli4_parameters);
716 
717 	mempool_free(mboxq, phba->mbox_mem_pool);
718 	return rc;
719 }
720 
721 /**
722  * lpfc_hba_init_link - Initialize the FC link
723  * @phba: pointer to lpfc hba data structure.
724  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
725  *
726  * This routine will issue the INIT_LINK mailbox command call.
727  * It is available to other drivers through the lpfc_hba data
728  * structure for use as a delayed link up mechanism with the
729  * module parameter lpfc_suppress_link_up.
730  *
731  * Return code
732  *		0 - success
733  *		Any other value - error
734  **/
735 static int
736 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
737 {
738 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
739 }
740 
741 /**
742  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
743  * @phba: pointer to lpfc hba data structure.
744  * @fc_topology: desired fc topology.
745  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
746  *
747  * This routine will issue the INIT_LINK mailbox command call.
748  * It is available to other drivers through the lpfc_hba data
749  * structure for use as a delayed link up mechanism with the
750  * module parameter lpfc_suppress_link_up.
751  *
752  * Return code
753  *              0 - success
754  *              Any other value - error
755  **/
756 int
757 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
758 			       uint32_t flag)
759 {
760 	struct lpfc_vport *vport = phba->pport;
761 	LPFC_MBOXQ_t *pmb;
762 	MAILBOX_t *mb;
763 	int rc;
764 
765 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
766 	if (!pmb) {
767 		phba->link_state = LPFC_HBA_ERROR;
768 		return -ENOMEM;
769 	}
770 	mb = &pmb->u.mb;
771 	pmb->vport = vport;
772 
773 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
775 	     !(phba->lmt & LMT_1Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
777 	     !(phba->lmt & LMT_2Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
779 	     !(phba->lmt & LMT_4Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
781 	     !(phba->lmt & LMT_8Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
783 	     !(phba->lmt & LMT_10Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
785 	     !(phba->lmt & LMT_16Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
787 	     !(phba->lmt & LMT_32Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
789 	     !(phba->lmt & LMT_64Gb))) {
790 		/* Reset link speed to auto */
791 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
792 				"1302 Invalid speed for this board:%d "
793 				"Reset link speed to auto.\n",
794 				phba->cfg_link_speed);
795 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
796 	}
797 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
798 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 	if (phba->sli_rev < LPFC_SLI_REV4)
800 		lpfc_set_loopback_flag(phba);
801 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
802 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
803 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
804 				"0498 Adapter failed to init, mbxCmd x%x "
805 				"INIT_LINK, mbxStatus x%x\n",
806 				mb->mbxCommand, mb->mbxStatus);
807 		if (phba->sli_rev <= LPFC_SLI_REV3) {
808 			/* Clear all interrupt enable conditions */
809 			writel(0, phba->HCregaddr);
810 			readl(phba->HCregaddr); /* flush */
811 			/* Clear all pending interrupts */
812 			writel(0xffffffff, phba->HAregaddr);
813 			readl(phba->HAregaddr); /* flush */
814 		}
815 		phba->link_state = LPFC_HBA_ERROR;
816 		if (rc != MBX_BUSY || flag == MBX_POLL)
817 			mempool_free(pmb, phba->mbox_mem_pool);
818 		return -EIO;
819 	}
820 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
821 	if (flag == MBX_POLL)
822 		mempool_free(pmb, phba->mbox_mem_pool);
823 
824 	return 0;
825 }
826 
827 /**
828  * lpfc_hba_down_link - this routine downs the FC link
829  * @phba: pointer to lpfc hba data structure.
830  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
831  *
832  * This routine will issue the DOWN_LINK mailbox command call.
833  * It is available to other drivers through the lpfc_hba data
834  * structure for use to stop the link.
835  *
836  * Return code
837  *		0 - success
838  *		Any other value - error
839  **/
840 static int
841 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
842 {
843 	LPFC_MBOXQ_t *pmb;
844 	int rc;
845 
846 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
847 	if (!pmb) {
848 		phba->link_state = LPFC_HBA_ERROR;
849 		return -ENOMEM;
850 	}
851 
852 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
853 			"0491 Adapter Link is disabled.\n");
854 	lpfc_down_link(phba, pmb);
855 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
856 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
857 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
858 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
859 				"2522 Adapter failed to issue DOWN_LINK"
860 				" mbox command rc 0x%x\n", rc);
861 
862 		mempool_free(pmb, phba->mbox_mem_pool);
863 		return -EIO;
864 	}
865 	if (flag == MBX_POLL)
866 		mempool_free(pmb, phba->mbox_mem_pool);
867 
868 	return 0;
869 }
870 
871 /**
872  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
873  * @phba: pointer to lpfc HBA data structure.
874  *
875  * This routine will do LPFC uninitialization before the HBA is reset when
876  * bringing down the SLI Layer.
877  *
878  * Return codes
879  *   0 - success.
880  *   Any other value - error.
881  **/
882 int
883 lpfc_hba_down_prep(struct lpfc_hba *phba)
884 {
885 	struct lpfc_vport **vports;
886 	int i;
887 
888 	if (phba->sli_rev <= LPFC_SLI_REV3) {
889 		/* Disable interrupts */
890 		writel(0, phba->HCregaddr);
891 		readl(phba->HCregaddr); /* flush */
892 	}
893 
894 	if (phba->pport->load_flag & FC_UNLOADING)
895 		lpfc_cleanup_discovery_resources(phba->pport);
896 	else {
897 		vports = lpfc_create_vport_work_array(phba);
898 		if (vports != NULL)
899 			for (i = 0; i <= phba->max_vports &&
900 				vports[i] != NULL; i++)
901 				lpfc_cleanup_discovery_resources(vports[i]);
902 		lpfc_destroy_vport_work_array(phba, vports);
903 	}
904 	return 0;
905 }
906 
907 /**
908  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
909  * rspiocb which got deferred
910  *
911  * @phba: pointer to lpfc HBA data structure.
912  *
913  * This routine will cleanup completed slow path events after HBA is reset
914  * when bringing down the SLI Layer.
915  *
916  *
917  * Return codes
918  *   void.
919  **/
920 static void
921 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
922 {
923 	struct lpfc_iocbq *rspiocbq;
924 	struct hbq_dmabuf *dmabuf;
925 	struct lpfc_cq_event *cq_event;
926 
927 	spin_lock_irq(&phba->hbalock);
928 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
929 	spin_unlock_irq(&phba->hbalock);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 	unsigned long iflag;
1231 
1232 	phba = from_timer(phba, t, rrq_tmr);
1233 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1234 	if (!(phba->pport->load_flag & FC_UNLOADING))
1235 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1236 	else
1237 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1238 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1239 
1240 	if (!(phba->pport->load_flag & FC_UNLOADING))
1241 		lpfc_worker_wake_up(phba);
1242 }
1243 
1244 /**
1245  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1246  * @phba: pointer to lpfc hba data structure.
1247  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1248  *
1249  * This is the callback function to the lpfc heart-beat mailbox command.
1250  * If configured, the lpfc driver issues the heart-beat mailbox command to
1251  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1252  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1253  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1254  * heart-beat outstanding state. Once the mailbox command comes back and
1255  * no error conditions detected, the heart-beat mailbox command timer is
1256  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1257  * state is cleared for the next heart-beat. If the timer expired with the
1258  * heart-beat outstanding state set, the driver will put the HBA offline.
1259  **/
1260 static void
1261 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1262 {
1263 	unsigned long drvr_flag;
1264 
1265 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1266 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1267 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1268 
1269 	/* Check and reset heart-beat timer if necessary */
1270 	mempool_free(pmboxq, phba->mbox_mem_pool);
1271 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1272 		!(phba->link_state == LPFC_HBA_ERROR) &&
1273 		!(phba->pport->load_flag & FC_UNLOADING))
1274 		mod_timer(&phba->hb_tmofunc,
1275 			  jiffies +
1276 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1277 	return;
1278 }
1279 
1280 /*
1281  * lpfc_idle_stat_delay_work - idle_stat tracking
1282  *
1283  * This routine tracks per-eq idle_stat and determines polling decisions.
1284  *
1285  * Return codes:
1286  *   None
1287  **/
1288 static void
1289 lpfc_idle_stat_delay_work(struct work_struct *work)
1290 {
1291 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1292 					     struct lpfc_hba,
1293 					     idle_stat_delay_work);
1294 	struct lpfc_queue *eq;
1295 	struct lpfc_sli4_hdw_queue *hdwq;
1296 	struct lpfc_idle_stat *idle_stat;
1297 	u32 i, idle_percent;
1298 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1299 
1300 	if (phba->pport->load_flag & FC_UNLOADING)
1301 		return;
1302 
1303 	if (phba->link_state == LPFC_HBA_ERROR ||
1304 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1305 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1306 		goto requeue;
1307 
1308 	for_each_present_cpu(i) {
1309 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1310 		eq = hdwq->hba_eq;
1311 
1312 		/* Skip if we've already handled this eq's primary CPU */
1313 		if (eq->chann != i)
1314 			continue;
1315 
1316 		idle_stat = &phba->sli4_hba.idle_stat[i];
1317 
1318 		/* get_cpu_idle_time returns values as running counters. Thus,
1319 		 * to know the amount for this period, the prior counter values
1320 		 * need to be subtracted from the current counter values.
1321 		 * From there, the idle time stat can be calculated as a
1322 		 * percentage of 100 - the sum of the other consumption times.
1323 		 */
1324 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1325 		diff_idle = wall_idle - idle_stat->prev_idle;
1326 		diff_wall = wall - idle_stat->prev_wall;
1327 
1328 		if (diff_wall <= diff_idle)
1329 			busy_time = 0;
1330 		else
1331 			busy_time = diff_wall - diff_idle;
1332 
1333 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1334 		idle_percent = 100 - idle_percent;
1335 
1336 		if (idle_percent < 15)
1337 			eq->poll_mode = LPFC_QUEUE_WORK;
1338 		else
1339 			eq->poll_mode = LPFC_THREADED_IRQ;
1340 
1341 		idle_stat->prev_idle = wall_idle;
1342 		idle_stat->prev_wall = wall;
1343 	}
1344 
1345 requeue:
1346 	schedule_delayed_work(&phba->idle_stat_delay_work,
1347 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1348 }
1349 
1350 static void
1351 lpfc_hb_eq_delay_work(struct work_struct *work)
1352 {
1353 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1354 					     struct lpfc_hba, eq_delay_work);
1355 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1356 	struct lpfc_queue *eq, *eq_next;
1357 	unsigned char *ena_delay = NULL;
1358 	uint32_t usdelay;
1359 	int i;
1360 
1361 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1362 		return;
1363 
1364 	if (phba->link_state == LPFC_HBA_ERROR ||
1365 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1366 		goto requeue;
1367 
1368 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1369 			    GFP_KERNEL);
1370 	if (!ena_delay)
1371 		goto requeue;
1372 
1373 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1374 		/* Get the EQ corresponding to the IRQ vector */
1375 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1376 		if (!eq)
1377 			continue;
1378 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1379 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1380 			ena_delay[eq->last_cpu] = 1;
1381 		}
1382 	}
1383 
1384 	for_each_present_cpu(i) {
1385 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1386 		if (ena_delay[i]) {
1387 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1388 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1389 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1390 		} else {
1391 			usdelay = 0;
1392 		}
1393 
1394 		eqi->icnt = 0;
1395 
1396 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1397 			if (unlikely(eq->last_cpu != i)) {
1398 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1399 						      eq->last_cpu);
1400 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1401 				continue;
1402 			}
1403 			if (usdelay != eq->q_mode)
1404 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1405 							 usdelay);
1406 		}
1407 	}
1408 
1409 	kfree(ena_delay);
1410 
1411 requeue:
1412 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1413 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1414 }
1415 
1416 /**
1417  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1418  * @phba: pointer to lpfc hba data structure.
1419  *
1420  * For each heartbeat, this routine does some heuristic methods to adjust
1421  * XRI distribution. The goal is to fully utilize free XRIs.
1422  **/
1423 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1424 {
1425 	u32 i;
1426 	u32 hwq_count;
1427 
1428 	hwq_count = phba->cfg_hdw_queue;
1429 	for (i = 0; i < hwq_count; i++) {
1430 		/* Adjust XRIs in private pool */
1431 		lpfc_adjust_pvt_pool_count(phba, i);
1432 
1433 		/* Adjust high watermark */
1434 		lpfc_adjust_high_watermark(phba, i);
1435 
1436 #ifdef LPFC_MXP_STAT
1437 		/* Snapshot pbl, pvt and busy count */
1438 		lpfc_snapshot_mxp(phba, i);
1439 #endif
1440 	}
1441 }
1442 
1443 /**
1444  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1445  * @phba: pointer to lpfc hba data structure.
1446  *
1447  * If a HB mbox is not already in progrees, this routine will allocate
1448  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1449  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1450  **/
1451 int
1452 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1453 {
1454 	LPFC_MBOXQ_t *pmboxq;
1455 	int retval;
1456 
1457 	/* Is a Heartbeat mbox already in progress */
1458 	if (phba->hba_flag & HBA_HBEAT_INP)
1459 		return 0;
1460 
1461 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1462 	if (!pmboxq)
1463 		return -ENOMEM;
1464 
1465 	lpfc_heart_beat(phba, pmboxq);
1466 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1467 	pmboxq->vport = phba->pport;
1468 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1469 
1470 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1471 		mempool_free(pmboxq, phba->mbox_mem_pool);
1472 		return -ENXIO;
1473 	}
1474 	phba->hba_flag |= HBA_HBEAT_INP;
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1481  * @phba: pointer to lpfc hba data structure.
1482  *
1483  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1484  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1485  * of the value of lpfc_enable_hba_heartbeat.
1486  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1487  * try to issue a MBX_HEARTBEAT mbox command.
1488  **/
1489 void
1490 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1491 {
1492 	if (phba->cfg_enable_hba_heartbeat)
1493 		return;
1494 	phba->hba_flag |= HBA_HBEAT_TMO;
1495 }
1496 
1497 /**
1498  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1499  * @phba: pointer to lpfc hba data structure.
1500  *
1501  * This is the actual HBA-timer timeout handler to be invoked by the worker
1502  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1503  * handler performs any periodic operations needed for the device. If such
1504  * periodic event has already been attended to either in the interrupt handler
1505  * or by processing slow-ring or fast-ring events within the HBA-timer
1506  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1507  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1508  * is configured and there is no heart-beat mailbox command outstanding, a
1509  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1510  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1511  * to offline.
1512  **/
1513 void
1514 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1515 {
1516 	struct lpfc_vport **vports;
1517 	struct lpfc_dmabuf *buf_ptr;
1518 	int retval = 0;
1519 	int i, tmo;
1520 	struct lpfc_sli *psli = &phba->sli;
1521 	LIST_HEAD(completions);
1522 
1523 	if (phba->cfg_xri_rebalancing) {
1524 		/* Multi-XRI pools handler */
1525 		lpfc_hb_mxp_handler(phba);
1526 	}
1527 
1528 	vports = lpfc_create_vport_work_array(phba);
1529 	if (vports != NULL)
1530 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1531 			lpfc_rcv_seq_check_edtov(vports[i]);
1532 			lpfc_fdmi_change_check(vports[i]);
1533 		}
1534 	lpfc_destroy_vport_work_array(phba, vports);
1535 
1536 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1537 		(phba->pport->load_flag & FC_UNLOADING) ||
1538 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1539 		return;
1540 
1541 	if (phba->elsbuf_cnt &&
1542 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1543 		spin_lock_irq(&phba->hbalock);
1544 		list_splice_init(&phba->elsbuf, &completions);
1545 		phba->elsbuf_cnt = 0;
1546 		phba->elsbuf_prev_cnt = 0;
1547 		spin_unlock_irq(&phba->hbalock);
1548 
1549 		while (!list_empty(&completions)) {
1550 			list_remove_head(&completions, buf_ptr,
1551 				struct lpfc_dmabuf, list);
1552 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1553 			kfree(buf_ptr);
1554 		}
1555 	}
1556 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1557 
1558 	/* If there is no heart beat outstanding, issue a heartbeat command */
1559 	if (phba->cfg_enable_hba_heartbeat) {
1560 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1561 		spin_lock_irq(&phba->pport->work_port_lock);
1562 		if (time_after(phba->last_completion_time +
1563 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1564 				jiffies)) {
1565 			spin_unlock_irq(&phba->pport->work_port_lock);
1566 			if (phba->hba_flag & HBA_HBEAT_INP)
1567 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1568 			else
1569 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1570 			goto out;
1571 		}
1572 		spin_unlock_irq(&phba->pport->work_port_lock);
1573 
1574 		/* Check if a MBX_HEARTBEAT is already in progress */
1575 		if (phba->hba_flag & HBA_HBEAT_INP) {
1576 			/*
1577 			 * If heart beat timeout called with HBA_HBEAT_INP set
1578 			 * we need to give the hb mailbox cmd a chance to
1579 			 * complete or TMO.
1580 			 */
1581 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1582 				"0459 Adapter heartbeat still outstanding: "
1583 				"last compl time was %d ms.\n",
1584 				jiffies_to_msecs(jiffies
1585 					 - phba->last_completion_time));
1586 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1587 		} else {
1588 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1589 				(list_empty(&psli->mboxq))) {
1590 
1591 				retval = lpfc_issue_hb_mbox(phba);
1592 				if (retval) {
1593 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1594 					goto out;
1595 				}
1596 				phba->skipped_hb = 0;
1597 			} else if (time_before_eq(phba->last_completion_time,
1598 					phba->skipped_hb)) {
1599 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1600 					"2857 Last completion time not "
1601 					" updated in %d ms\n",
1602 					jiffies_to_msecs(jiffies
1603 						 - phba->last_completion_time));
1604 			} else
1605 				phba->skipped_hb = jiffies;
1606 
1607 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1608 			goto out;
1609 		}
1610 	} else {
1611 		/* Check to see if we want to force a MBX_HEARTBEAT */
1612 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1613 			retval = lpfc_issue_hb_mbox(phba);
1614 			if (retval)
1615 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 			else
1617 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1618 			goto out;
1619 		}
1620 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1621 	}
1622 out:
1623 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1624 }
1625 
1626 /**
1627  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1628  * @phba: pointer to lpfc hba data structure.
1629  *
1630  * This routine is called to bring the HBA offline when HBA hardware error
1631  * other than Port Error 6 has been detected.
1632  **/
1633 static void
1634 lpfc_offline_eratt(struct lpfc_hba *phba)
1635 {
1636 	struct lpfc_sli   *psli = &phba->sli;
1637 
1638 	spin_lock_irq(&phba->hbalock);
1639 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1640 	spin_unlock_irq(&phba->hbalock);
1641 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1642 
1643 	lpfc_offline(phba);
1644 	lpfc_reset_barrier(phba);
1645 	spin_lock_irq(&phba->hbalock);
1646 	lpfc_sli_brdreset(phba);
1647 	spin_unlock_irq(&phba->hbalock);
1648 	lpfc_hba_down_post(phba);
1649 	lpfc_sli_brdready(phba, HS_MBRDY);
1650 	lpfc_unblock_mgmt_io(phba);
1651 	phba->link_state = LPFC_HBA_ERROR;
1652 	return;
1653 }
1654 
1655 /**
1656  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1657  * @phba: pointer to lpfc hba data structure.
1658  *
1659  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1660  * other than Port Error 6 has been detected.
1661  **/
1662 void
1663 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1664 {
1665 	spin_lock_irq(&phba->hbalock);
1666 	if (phba->link_state == LPFC_HBA_ERROR &&
1667 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1668 		spin_unlock_irq(&phba->hbalock);
1669 		return;
1670 	}
1671 	phba->link_state = LPFC_HBA_ERROR;
1672 	spin_unlock_irq(&phba->hbalock);
1673 
1674 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1675 	lpfc_sli_flush_io_rings(phba);
1676 	lpfc_offline(phba);
1677 	lpfc_hba_down_post(phba);
1678 	lpfc_unblock_mgmt_io(phba);
1679 }
1680 
1681 /**
1682  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1683  * @phba: pointer to lpfc hba data structure.
1684  *
1685  * This routine is invoked to handle the deferred HBA hardware error
1686  * conditions. This type of error is indicated by HBA by setting ER1
1687  * and another ER bit in the host status register. The driver will
1688  * wait until the ER1 bit clears before handling the error condition.
1689  **/
1690 static void
1691 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1692 {
1693 	uint32_t old_host_status = phba->work_hs;
1694 	struct lpfc_sli *psli = &phba->sli;
1695 
1696 	/* If the pci channel is offline, ignore possible errors,
1697 	 * since we cannot communicate with the pci card anyway.
1698 	 */
1699 	if (pci_channel_offline(phba->pcidev)) {
1700 		spin_lock_irq(&phba->hbalock);
1701 		phba->hba_flag &= ~DEFER_ERATT;
1702 		spin_unlock_irq(&phba->hbalock);
1703 		return;
1704 	}
1705 
1706 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1707 			"0479 Deferred Adapter Hardware Error "
1708 			"Data: x%x x%x x%x\n",
1709 			phba->work_hs, phba->work_status[0],
1710 			phba->work_status[1]);
1711 
1712 	spin_lock_irq(&phba->hbalock);
1713 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1714 	spin_unlock_irq(&phba->hbalock);
1715 
1716 
1717 	/*
1718 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1719 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1720 	 * SCSI layer retry it after re-establishing link.
1721 	 */
1722 	lpfc_sli_abort_fcp_rings(phba);
1723 
1724 	/*
1725 	 * There was a firmware error. Take the hba offline and then
1726 	 * attempt to restart it.
1727 	 */
1728 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1729 	lpfc_offline(phba);
1730 
1731 	/* Wait for the ER1 bit to clear.*/
1732 	while (phba->work_hs & HS_FFER1) {
1733 		msleep(100);
1734 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1735 			phba->work_hs = UNPLUG_ERR ;
1736 			break;
1737 		}
1738 		/* If driver is unloading let the worker thread continue */
1739 		if (phba->pport->load_flag & FC_UNLOADING) {
1740 			phba->work_hs = 0;
1741 			break;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * This is to ptrotect against a race condition in which
1747 	 * first write to the host attention register clear the
1748 	 * host status register.
1749 	 */
1750 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1751 		phba->work_hs = old_host_status & ~HS_FFER1;
1752 
1753 	spin_lock_irq(&phba->hbalock);
1754 	phba->hba_flag &= ~DEFER_ERATT;
1755 	spin_unlock_irq(&phba->hbalock);
1756 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1757 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1758 }
1759 
1760 static void
1761 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1762 {
1763 	struct lpfc_board_event_header board_event;
1764 	struct Scsi_Host *shost;
1765 
1766 	board_event.event_type = FC_REG_BOARD_EVENT;
1767 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1768 	shost = lpfc_shost_from_vport(phba->pport);
1769 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1770 				  sizeof(board_event),
1771 				  (char *) &board_event,
1772 				  LPFC_NL_VENDOR_ID);
1773 }
1774 
1775 /**
1776  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1777  * @phba: pointer to lpfc hba data structure.
1778  *
1779  * This routine is invoked to handle the following HBA hardware error
1780  * conditions:
1781  * 1 - HBA error attention interrupt
1782  * 2 - DMA ring index out of range
1783  * 3 - Mailbox command came back as unknown
1784  **/
1785 static void
1786 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1787 {
1788 	struct lpfc_vport *vport = phba->pport;
1789 	struct lpfc_sli   *psli = &phba->sli;
1790 	uint32_t event_data;
1791 	unsigned long temperature;
1792 	struct temp_event temp_event_data;
1793 	struct Scsi_Host  *shost;
1794 
1795 	/* If the pci channel is offline, ignore possible errors,
1796 	 * since we cannot communicate with the pci card anyway.
1797 	 */
1798 	if (pci_channel_offline(phba->pcidev)) {
1799 		spin_lock_irq(&phba->hbalock);
1800 		phba->hba_flag &= ~DEFER_ERATT;
1801 		spin_unlock_irq(&phba->hbalock);
1802 		return;
1803 	}
1804 
1805 	/* If resets are disabled then leave the HBA alone and return */
1806 	if (!phba->cfg_enable_hba_reset)
1807 		return;
1808 
1809 	/* Send an internal error event to mgmt application */
1810 	lpfc_board_errevt_to_mgmt(phba);
1811 
1812 	if (phba->hba_flag & DEFER_ERATT)
1813 		lpfc_handle_deferred_eratt(phba);
1814 
1815 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1816 		if (phba->work_hs & HS_FFER6)
1817 			/* Re-establishing Link */
1818 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1819 					"1301 Re-establishing Link "
1820 					"Data: x%x x%x x%x\n",
1821 					phba->work_hs, phba->work_status[0],
1822 					phba->work_status[1]);
1823 		if (phba->work_hs & HS_FFER8)
1824 			/* Device Zeroization */
1825 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1826 					"2861 Host Authentication device "
1827 					"zeroization Data:x%x x%x x%x\n",
1828 					phba->work_hs, phba->work_status[0],
1829 					phba->work_status[1]);
1830 
1831 		spin_lock_irq(&phba->hbalock);
1832 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1833 		spin_unlock_irq(&phba->hbalock);
1834 
1835 		/*
1836 		* Firmware stops when it triggled erratt with HS_FFER6.
1837 		* That could cause the I/Os dropped by the firmware.
1838 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1839 		* retry it after re-establishing link.
1840 		*/
1841 		lpfc_sli_abort_fcp_rings(phba);
1842 
1843 		/*
1844 		 * There was a firmware error.  Take the hba offline and then
1845 		 * attempt to restart it.
1846 		 */
1847 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1848 		lpfc_offline(phba);
1849 		lpfc_sli_brdrestart(phba);
1850 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1851 			lpfc_unblock_mgmt_io(phba);
1852 			return;
1853 		}
1854 		lpfc_unblock_mgmt_io(phba);
1855 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1856 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1857 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1858 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1859 		temp_event_data.data = (uint32_t)temperature;
1860 
1861 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1862 				"0406 Adapter maximum temperature exceeded "
1863 				"(%ld), taking this port offline "
1864 				"Data: x%x x%x x%x\n",
1865 				temperature, phba->work_hs,
1866 				phba->work_status[0], phba->work_status[1]);
1867 
1868 		shost = lpfc_shost_from_vport(phba->pport);
1869 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1870 					  sizeof(temp_event_data),
1871 					  (char *) &temp_event_data,
1872 					  SCSI_NL_VID_TYPE_PCI
1873 					  | PCI_VENDOR_ID_EMULEX);
1874 
1875 		spin_lock_irq(&phba->hbalock);
1876 		phba->over_temp_state = HBA_OVER_TEMP;
1877 		spin_unlock_irq(&phba->hbalock);
1878 		lpfc_offline_eratt(phba);
1879 
1880 	} else {
1881 		/* The if clause above forces this code path when the status
1882 		 * failure is a value other than FFER6. Do not call the offline
1883 		 * twice. This is the adapter hardware error path.
1884 		 */
1885 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1886 				"0457 Adapter Hardware Error "
1887 				"Data: x%x x%x x%x\n",
1888 				phba->work_hs,
1889 				phba->work_status[0], phba->work_status[1]);
1890 
1891 		event_data = FC_REG_DUMP_EVENT;
1892 		shost = lpfc_shost_from_vport(vport);
1893 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1894 				sizeof(event_data), (char *) &event_data,
1895 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1896 
1897 		lpfc_offline_eratt(phba);
1898 	}
1899 	return;
1900 }
1901 
1902 /**
1903  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1904  * @phba: pointer to lpfc hba data structure.
1905  * @mbx_action: flag for mailbox shutdown action.
1906  * @en_rn_msg: send reset/port recovery message.
1907  * This routine is invoked to perform an SLI4 port PCI function reset in
1908  * response to port status register polling attention. It waits for port
1909  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1910  * During this process, interrupt vectors are freed and later requested
1911  * for handling possible port resource change.
1912  **/
1913 static int
1914 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1915 			    bool en_rn_msg)
1916 {
1917 	int rc;
1918 	uint32_t intr_mode;
1919 	LPFC_MBOXQ_t *mboxq;
1920 
1921 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1922 	    LPFC_SLI_INTF_IF_TYPE_2) {
1923 		/*
1924 		 * On error status condition, driver need to wait for port
1925 		 * ready before performing reset.
1926 		 */
1927 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1928 		if (rc)
1929 			return rc;
1930 	}
1931 
1932 	/* need reset: attempt for port recovery */
1933 	if (en_rn_msg)
1934 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1935 				"2887 Reset Needed: Attempting Port "
1936 				"Recovery...\n");
1937 
1938 	/* If we are no wait, the HBA has been reset and is not
1939 	 * functional, thus we should clear
1940 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1941 	 */
1942 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1943 		spin_lock_irq(&phba->hbalock);
1944 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1945 		if (phba->sli.mbox_active) {
1946 			mboxq = phba->sli.mbox_active;
1947 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1948 			__lpfc_mbox_cmpl_put(phba, mboxq);
1949 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1950 			phba->sli.mbox_active = NULL;
1951 		}
1952 		spin_unlock_irq(&phba->hbalock);
1953 	}
1954 
1955 	lpfc_offline_prep(phba, mbx_action);
1956 	lpfc_sli_flush_io_rings(phba);
1957 	lpfc_offline(phba);
1958 	/* release interrupt for possible resource change */
1959 	lpfc_sli4_disable_intr(phba);
1960 	rc = lpfc_sli_brdrestart(phba);
1961 	if (rc) {
1962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963 				"6309 Failed to restart board\n");
1964 		return rc;
1965 	}
1966 	/* request and enable interrupt */
1967 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1968 	if (intr_mode == LPFC_INTR_ERROR) {
1969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1970 				"3175 Failed to enable interrupt\n");
1971 		return -EIO;
1972 	}
1973 	phba->intr_mode = intr_mode;
1974 	rc = lpfc_online(phba);
1975 	if (rc == 0)
1976 		lpfc_unblock_mgmt_io(phba);
1977 
1978 	return rc;
1979 }
1980 
1981 /**
1982  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1983  * @phba: pointer to lpfc hba data structure.
1984  *
1985  * This routine is invoked to handle the SLI4 HBA hardware error attention
1986  * conditions.
1987  **/
1988 static void
1989 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1990 {
1991 	struct lpfc_vport *vport = phba->pport;
1992 	uint32_t event_data;
1993 	struct Scsi_Host *shost;
1994 	uint32_t if_type;
1995 	struct lpfc_register portstat_reg = {0};
1996 	uint32_t reg_err1, reg_err2;
1997 	uint32_t uerrlo_reg, uemasklo_reg;
1998 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1999 	bool en_rn_msg = true;
2000 	struct temp_event temp_event_data;
2001 	struct lpfc_register portsmphr_reg;
2002 	int rc, i;
2003 
2004 	/* If the pci channel is offline, ignore possible errors, since
2005 	 * we cannot communicate with the pci card anyway.
2006 	 */
2007 	if (pci_channel_offline(phba->pcidev)) {
2008 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2009 				"3166 pci channel is offline\n");
2010 		lpfc_sli_flush_io_rings(phba);
2011 		return;
2012 	}
2013 
2014 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2015 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2016 	switch (if_type) {
2017 	case LPFC_SLI_INTF_IF_TYPE_0:
2018 		pci_rd_rc1 = lpfc_readl(
2019 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2020 				&uerrlo_reg);
2021 		pci_rd_rc2 = lpfc_readl(
2022 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2023 				&uemasklo_reg);
2024 		/* consider PCI bus read error as pci_channel_offline */
2025 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2026 			return;
2027 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2028 			lpfc_sli4_offline_eratt(phba);
2029 			return;
2030 		}
2031 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2032 				"7623 Checking UE recoverable");
2033 
2034 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2035 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2036 				       &portsmphr_reg.word0))
2037 				continue;
2038 
2039 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2040 						   &portsmphr_reg);
2041 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2042 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2043 				break;
2044 			/*Sleep for 1Sec, before checking SEMAPHORE */
2045 			msleep(1000);
2046 		}
2047 
2048 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2049 				"4827 smphr_port_status x%x : Waited %dSec",
2050 				smphr_port_status, i);
2051 
2052 		/* Recoverable UE, reset the HBA device */
2053 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2054 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2055 			for (i = 0; i < 20; i++) {
2056 				msleep(1000);
2057 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2058 				    &portsmphr_reg.word0) &&
2059 				    (LPFC_POST_STAGE_PORT_READY ==
2060 				     bf_get(lpfc_port_smphr_port_status,
2061 				     &portsmphr_reg))) {
2062 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2063 						LPFC_MBX_NO_WAIT, en_rn_msg);
2064 					if (rc == 0)
2065 						return;
2066 					lpfc_printf_log(phba, KERN_ERR,
2067 						LOG_TRACE_EVENT,
2068 						"4215 Failed to recover UE");
2069 					break;
2070 				}
2071 			}
2072 		}
2073 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2074 				"7624 Firmware not ready: Failing UE recovery,"
2075 				" waited %dSec", i);
2076 		phba->link_state = LPFC_HBA_ERROR;
2077 		break;
2078 
2079 	case LPFC_SLI_INTF_IF_TYPE_2:
2080 	case LPFC_SLI_INTF_IF_TYPE_6:
2081 		pci_rd_rc1 = lpfc_readl(
2082 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2083 				&portstat_reg.word0);
2084 		/* consider PCI bus read error as pci_channel_offline */
2085 		if (pci_rd_rc1 == -EIO) {
2086 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2087 				"3151 PCI bus read access failure: x%x\n",
2088 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2089 			lpfc_sli4_offline_eratt(phba);
2090 			return;
2091 		}
2092 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2093 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2094 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2095 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2096 					"2889 Port Overtemperature event, "
2097 					"taking port offline Data: x%x x%x\n",
2098 					reg_err1, reg_err2);
2099 
2100 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2101 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2102 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2103 			temp_event_data.data = 0xFFFFFFFF;
2104 
2105 			shost = lpfc_shost_from_vport(phba->pport);
2106 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2107 						  sizeof(temp_event_data),
2108 						  (char *)&temp_event_data,
2109 						  SCSI_NL_VID_TYPE_PCI
2110 						  | PCI_VENDOR_ID_EMULEX);
2111 
2112 			spin_lock_irq(&phba->hbalock);
2113 			phba->over_temp_state = HBA_OVER_TEMP;
2114 			spin_unlock_irq(&phba->hbalock);
2115 			lpfc_sli4_offline_eratt(phba);
2116 			return;
2117 		}
2118 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2119 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2120 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2121 					"3143 Port Down: Firmware Update "
2122 					"Detected\n");
2123 			en_rn_msg = false;
2124 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2125 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2126 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2127 					"3144 Port Down: Debug Dump\n");
2128 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2129 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2130 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2131 					"3145 Port Down: Provisioning\n");
2132 
2133 		/* If resets are disabled then leave the HBA alone and return */
2134 		if (!phba->cfg_enable_hba_reset)
2135 			return;
2136 
2137 		/* Check port status register for function reset */
2138 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2139 				en_rn_msg);
2140 		if (rc == 0) {
2141 			/* don't report event on forced debug dump */
2142 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2143 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2144 				return;
2145 			else
2146 				break;
2147 		}
2148 		/* fall through for not able to recover */
2149 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2150 				"3152 Unrecoverable error\n");
2151 		lpfc_sli4_offline_eratt(phba);
2152 		break;
2153 	case LPFC_SLI_INTF_IF_TYPE_1:
2154 	default:
2155 		break;
2156 	}
2157 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2158 			"3123 Report dump event to upper layer\n");
2159 	/* Send an internal error event to mgmt application */
2160 	lpfc_board_errevt_to_mgmt(phba);
2161 
2162 	event_data = FC_REG_DUMP_EVENT;
2163 	shost = lpfc_shost_from_vport(vport);
2164 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2165 				  sizeof(event_data), (char *) &event_data,
2166 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2167 }
2168 
2169 /**
2170  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2171  * @phba: pointer to lpfc HBA data structure.
2172  *
2173  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2174  * routine from the API jump table function pointer from the lpfc_hba struct.
2175  *
2176  * Return codes
2177  *   0 - success.
2178  *   Any other value - error.
2179  **/
2180 void
2181 lpfc_handle_eratt(struct lpfc_hba *phba)
2182 {
2183 	(*phba->lpfc_handle_eratt)(phba);
2184 }
2185 
2186 /**
2187  * lpfc_handle_latt - The HBA link event handler
2188  * @phba: pointer to lpfc hba data structure.
2189  *
2190  * This routine is invoked from the worker thread to handle a HBA host
2191  * attention link event. SLI3 only.
2192  **/
2193 void
2194 lpfc_handle_latt(struct lpfc_hba *phba)
2195 {
2196 	struct lpfc_vport *vport = phba->pport;
2197 	struct lpfc_sli   *psli = &phba->sli;
2198 	LPFC_MBOXQ_t *pmb;
2199 	volatile uint32_t control;
2200 	int rc = 0;
2201 
2202 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2203 	if (!pmb) {
2204 		rc = 1;
2205 		goto lpfc_handle_latt_err_exit;
2206 	}
2207 
2208 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2209 	if (rc) {
2210 		rc = 2;
2211 		mempool_free(pmb, phba->mbox_mem_pool);
2212 		goto lpfc_handle_latt_err_exit;
2213 	}
2214 
2215 	/* Cleanup any outstanding ELS commands */
2216 	lpfc_els_flush_all_cmd(phba);
2217 	psli->slistat.link_event++;
2218 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2219 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2220 	pmb->vport = vport;
2221 	/* Block ELS IOCBs until we have processed this mbox command */
2222 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2223 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2224 	if (rc == MBX_NOT_FINISHED) {
2225 		rc = 4;
2226 		goto lpfc_handle_latt_free_mbuf;
2227 	}
2228 
2229 	/* Clear Link Attention in HA REG */
2230 	spin_lock_irq(&phba->hbalock);
2231 	writel(HA_LATT, phba->HAregaddr);
2232 	readl(phba->HAregaddr); /* flush */
2233 	spin_unlock_irq(&phba->hbalock);
2234 
2235 	return;
2236 
2237 lpfc_handle_latt_free_mbuf:
2238 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2239 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2240 lpfc_handle_latt_err_exit:
2241 	/* Enable Link attention interrupts */
2242 	spin_lock_irq(&phba->hbalock);
2243 	psli->sli_flag |= LPFC_PROCESS_LA;
2244 	control = readl(phba->HCregaddr);
2245 	control |= HC_LAINT_ENA;
2246 	writel(control, phba->HCregaddr);
2247 	readl(phba->HCregaddr); /* flush */
2248 
2249 	/* Clear Link Attention in HA REG */
2250 	writel(HA_LATT, phba->HAregaddr);
2251 	readl(phba->HAregaddr); /* flush */
2252 	spin_unlock_irq(&phba->hbalock);
2253 	lpfc_linkdown(phba);
2254 	phba->link_state = LPFC_HBA_ERROR;
2255 
2256 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2257 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2258 
2259 	return;
2260 }
2261 
2262 static void
2263 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2264 {
2265 	int i, j;
2266 
2267 	while (length > 0) {
2268 		/* Look for Serial Number */
2269 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2270 			*pindex += 2;
2271 			i = vpd[*pindex];
2272 			*pindex += 1;
2273 			j = 0;
2274 			length -= (3+i);
2275 			while (i--) {
2276 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2277 				if (j == 31)
2278 					break;
2279 			}
2280 			phba->SerialNumber[j] = 0;
2281 			continue;
2282 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2283 			phba->vpd_flag |= VPD_MODEL_DESC;
2284 			*pindex += 2;
2285 			i = vpd[*pindex];
2286 			*pindex += 1;
2287 			j = 0;
2288 			length -= (3+i);
2289 			while (i--) {
2290 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2291 				if (j == 255)
2292 					break;
2293 			}
2294 			phba->ModelDesc[j] = 0;
2295 			continue;
2296 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2297 			phba->vpd_flag |= VPD_MODEL_NAME;
2298 			*pindex += 2;
2299 			i = vpd[*pindex];
2300 			*pindex += 1;
2301 			j = 0;
2302 			length -= (3+i);
2303 			while (i--) {
2304 				phba->ModelName[j++] = vpd[(*pindex)++];
2305 				if (j == 79)
2306 					break;
2307 			}
2308 			phba->ModelName[j] = 0;
2309 			continue;
2310 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2311 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2312 			*pindex += 2;
2313 			i = vpd[*pindex];
2314 			*pindex += 1;
2315 			j = 0;
2316 			length -= (3+i);
2317 			while (i--) {
2318 				phba->ProgramType[j++] = vpd[(*pindex)++];
2319 				if (j == 255)
2320 					break;
2321 			}
2322 			phba->ProgramType[j] = 0;
2323 			continue;
2324 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2325 			phba->vpd_flag |= VPD_PORT;
2326 			*pindex += 2;
2327 			i = vpd[*pindex];
2328 			*pindex += 1;
2329 			j = 0;
2330 			length -= (3 + i);
2331 			while (i--) {
2332 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2333 				    (phba->sli4_hba.pport_name_sta ==
2334 				     LPFC_SLI4_PPNAME_GET)) {
2335 					j++;
2336 					(*pindex)++;
2337 				} else
2338 					phba->Port[j++] = vpd[(*pindex)++];
2339 				if (j == 19)
2340 					break;
2341 			}
2342 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2343 			    (phba->sli4_hba.pport_name_sta ==
2344 			     LPFC_SLI4_PPNAME_NON))
2345 				phba->Port[j] = 0;
2346 			continue;
2347 		} else {
2348 			*pindex += 2;
2349 			i = vpd[*pindex];
2350 			*pindex += 1;
2351 			*pindex += i;
2352 			length -= (3 + i);
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2359  * @phba: pointer to lpfc hba data structure.
2360  * @vpd: pointer to the vital product data.
2361  * @len: length of the vital product data in bytes.
2362  *
2363  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2364  * an array of characters. In this routine, the ModelName, ProgramType, and
2365  * ModelDesc, etc. fields of the phba data structure will be populated.
2366  *
2367  * Return codes
2368  *   0 - pointer to the VPD passed in is NULL
2369  *   1 - success
2370  **/
2371 int
2372 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2373 {
2374 	uint8_t lenlo, lenhi;
2375 	int Length;
2376 	int i;
2377 	int finished = 0;
2378 	int index = 0;
2379 
2380 	if (!vpd)
2381 		return 0;
2382 
2383 	/* Vital Product */
2384 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2385 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2386 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2387 			(uint32_t) vpd[3]);
2388 	while (!finished && (index < (len - 4))) {
2389 		switch (vpd[index]) {
2390 		case 0x82:
2391 		case 0x91:
2392 			index += 1;
2393 			lenlo = vpd[index];
2394 			index += 1;
2395 			lenhi = vpd[index];
2396 			index += 1;
2397 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2398 			index += i;
2399 			break;
2400 		case 0x90:
2401 			index += 1;
2402 			lenlo = vpd[index];
2403 			index += 1;
2404 			lenhi = vpd[index];
2405 			index += 1;
2406 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2407 			if (Length > len - index)
2408 				Length = len - index;
2409 
2410 			lpfc_fill_vpd(phba, vpd, Length, &index);
2411 			finished = 0;
2412 			break;
2413 		case 0x78:
2414 			finished = 1;
2415 			break;
2416 		default:
2417 			index ++;
2418 			break;
2419 		}
2420 	}
2421 
2422 	return(1);
2423 }
2424 
2425 /**
2426  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2427  * @phba: pointer to lpfc hba data structure.
2428  * @mdp: pointer to the data structure to hold the derived model name.
2429  * @descp: pointer to the data structure to hold the derived description.
2430  *
2431  * This routine retrieves HBA's description based on its registered PCI device
2432  * ID. The @descp passed into this function points to an array of 256 chars. It
2433  * shall be returned with the model name, maximum speed, and the host bus type.
2434  * The @mdp passed into this function points to an array of 80 chars. When the
2435  * function returns, the @mdp will be filled with the model name.
2436  **/
2437 static void
2438 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2439 {
2440 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2441 	char *model = "<Unknown>";
2442 	int tbolt = 0;
2443 
2444 	switch (sub_dev_id) {
2445 	case PCI_DEVICE_ID_CLRY_161E:
2446 		model = "161E";
2447 		break;
2448 	case PCI_DEVICE_ID_CLRY_162E:
2449 		model = "162E";
2450 		break;
2451 	case PCI_DEVICE_ID_CLRY_164E:
2452 		model = "164E";
2453 		break;
2454 	case PCI_DEVICE_ID_CLRY_161P:
2455 		model = "161P";
2456 		break;
2457 	case PCI_DEVICE_ID_CLRY_162P:
2458 		model = "162P";
2459 		break;
2460 	case PCI_DEVICE_ID_CLRY_164P:
2461 		model = "164P";
2462 		break;
2463 	case PCI_DEVICE_ID_CLRY_321E:
2464 		model = "321E";
2465 		break;
2466 	case PCI_DEVICE_ID_CLRY_322E:
2467 		model = "322E";
2468 		break;
2469 	case PCI_DEVICE_ID_CLRY_324E:
2470 		model = "324E";
2471 		break;
2472 	case PCI_DEVICE_ID_CLRY_321P:
2473 		model = "321P";
2474 		break;
2475 	case PCI_DEVICE_ID_CLRY_322P:
2476 		model = "322P";
2477 		break;
2478 	case PCI_DEVICE_ID_CLRY_324P:
2479 		model = "324P";
2480 		break;
2481 	case PCI_DEVICE_ID_TLFC_2XX2:
2482 		model = "2XX2";
2483 		tbolt = 1;
2484 		break;
2485 	case PCI_DEVICE_ID_TLFC_3162:
2486 		model = "3162";
2487 		tbolt = 1;
2488 		break;
2489 	case PCI_DEVICE_ID_TLFC_3322:
2490 		model = "3322";
2491 		tbolt = 1;
2492 		break;
2493 	default:
2494 		model = "Unknown";
2495 		break;
2496 	}
2497 
2498 	if (mdp && mdp[0] == '\0')
2499 		snprintf(mdp, 79, "%s", model);
2500 
2501 	if (descp && descp[0] == '\0')
2502 		snprintf(descp, 255,
2503 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2504 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2505 			 model,
2506 			 phba->Port);
2507 }
2508 
2509 /**
2510  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2511  * @phba: pointer to lpfc hba data structure.
2512  * @mdp: pointer to the data structure to hold the derived model name.
2513  * @descp: pointer to the data structure to hold the derived description.
2514  *
2515  * This routine retrieves HBA's description based on its registered PCI device
2516  * ID. The @descp passed into this function points to an array of 256 chars. It
2517  * shall be returned with the model name, maximum speed, and the host bus type.
2518  * The @mdp passed into this function points to an array of 80 chars. When the
2519  * function returns, the @mdp will be filled with the model name.
2520  **/
2521 static void
2522 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2523 {
2524 	lpfc_vpd_t *vp;
2525 	uint16_t dev_id = phba->pcidev->device;
2526 	int max_speed;
2527 	int GE = 0;
2528 	int oneConnect = 0; /* default is not a oneConnect */
2529 	struct {
2530 		char *name;
2531 		char *bus;
2532 		char *function;
2533 	} m = {"<Unknown>", "", ""};
2534 
2535 	if (mdp && mdp[0] != '\0'
2536 		&& descp && descp[0] != '\0')
2537 		return;
2538 
2539 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2540 		lpfc_get_atto_model_desc(phba, mdp, descp);
2541 		return;
2542 	}
2543 
2544 	if (phba->lmt & LMT_64Gb)
2545 		max_speed = 64;
2546 	else if (phba->lmt & LMT_32Gb)
2547 		max_speed = 32;
2548 	else if (phba->lmt & LMT_16Gb)
2549 		max_speed = 16;
2550 	else if (phba->lmt & LMT_10Gb)
2551 		max_speed = 10;
2552 	else if (phba->lmt & LMT_8Gb)
2553 		max_speed = 8;
2554 	else if (phba->lmt & LMT_4Gb)
2555 		max_speed = 4;
2556 	else if (phba->lmt & LMT_2Gb)
2557 		max_speed = 2;
2558 	else if (phba->lmt & LMT_1Gb)
2559 		max_speed = 1;
2560 	else
2561 		max_speed = 0;
2562 
2563 	vp = &phba->vpd;
2564 
2565 	switch (dev_id) {
2566 	case PCI_DEVICE_ID_FIREFLY:
2567 		m = (typeof(m)){"LP6000", "PCI",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_SUPERFLY:
2571 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2572 			m = (typeof(m)){"LP7000", "PCI", ""};
2573 		else
2574 			m = (typeof(m)){"LP7000E", "PCI", ""};
2575 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576 		break;
2577 	case PCI_DEVICE_ID_DRAGONFLY:
2578 		m = (typeof(m)){"LP8000", "PCI",
2579 				"Obsolete, Unsupported Fibre Channel Adapter"};
2580 		break;
2581 	case PCI_DEVICE_ID_CENTAUR:
2582 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2583 			m = (typeof(m)){"LP9002", "PCI", ""};
2584 		else
2585 			m = (typeof(m)){"LP9000", "PCI", ""};
2586 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2587 		break;
2588 	case PCI_DEVICE_ID_RFLY:
2589 		m = (typeof(m)){"LP952", "PCI",
2590 				"Obsolete, Unsupported Fibre Channel Adapter"};
2591 		break;
2592 	case PCI_DEVICE_ID_PEGASUS:
2593 		m = (typeof(m)){"LP9802", "PCI-X",
2594 				"Obsolete, Unsupported Fibre Channel Adapter"};
2595 		break;
2596 	case PCI_DEVICE_ID_THOR:
2597 		m = (typeof(m)){"LP10000", "PCI-X",
2598 				"Obsolete, Unsupported Fibre Channel Adapter"};
2599 		break;
2600 	case PCI_DEVICE_ID_VIPER:
2601 		m = (typeof(m)){"LPX1000",  "PCI-X",
2602 				"Obsolete, Unsupported Fibre Channel Adapter"};
2603 		break;
2604 	case PCI_DEVICE_ID_PFLY:
2605 		m = (typeof(m)){"LP982", "PCI-X",
2606 				"Obsolete, Unsupported Fibre Channel Adapter"};
2607 		break;
2608 	case PCI_DEVICE_ID_TFLY:
2609 		m = (typeof(m)){"LP1050", "PCI-X",
2610 				"Obsolete, Unsupported Fibre Channel Adapter"};
2611 		break;
2612 	case PCI_DEVICE_ID_HELIOS:
2613 		m = (typeof(m)){"LP11000", "PCI-X2",
2614 				"Obsolete, Unsupported Fibre Channel Adapter"};
2615 		break;
2616 	case PCI_DEVICE_ID_HELIOS_SCSP:
2617 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2618 				"Obsolete, Unsupported Fibre Channel Adapter"};
2619 		break;
2620 	case PCI_DEVICE_ID_HELIOS_DCSP:
2621 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2622 				"Obsolete, Unsupported Fibre Channel Adapter"};
2623 		break;
2624 	case PCI_DEVICE_ID_NEPTUNE:
2625 		m = (typeof(m)){"LPe1000", "PCIe",
2626 				"Obsolete, Unsupported Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2629 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2630 				"Obsolete, Unsupported Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2633 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2634 				"Obsolete, Unsupported Fibre Channel Adapter"};
2635 		break;
2636 	case PCI_DEVICE_ID_BMID:
2637 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2638 		break;
2639 	case PCI_DEVICE_ID_BSMB:
2640 		m = (typeof(m)){"LP111", "PCI-X2",
2641 				"Obsolete, Unsupported Fibre Channel Adapter"};
2642 		break;
2643 	case PCI_DEVICE_ID_ZEPHYR:
2644 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2645 		break;
2646 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2647 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2648 		break;
2649 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2650 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2651 		GE = 1;
2652 		break;
2653 	case PCI_DEVICE_ID_ZMID:
2654 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_ZSMB:
2657 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2658 		break;
2659 	case PCI_DEVICE_ID_LP101:
2660 		m = (typeof(m)){"LP101", "PCI-X",
2661 				"Obsolete, Unsupported Fibre Channel Adapter"};
2662 		break;
2663 	case PCI_DEVICE_ID_LP10000S:
2664 		m = (typeof(m)){"LP10000-S", "PCI",
2665 				"Obsolete, Unsupported Fibre Channel Adapter"};
2666 		break;
2667 	case PCI_DEVICE_ID_LP11000S:
2668 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2669 				"Obsolete, Unsupported Fibre Channel Adapter"};
2670 		break;
2671 	case PCI_DEVICE_ID_LPE11000S:
2672 		m = (typeof(m)){"LPe11000-S", "PCIe",
2673 				"Obsolete, Unsupported Fibre Channel Adapter"};
2674 		break;
2675 	case PCI_DEVICE_ID_SAT:
2676 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2677 		break;
2678 	case PCI_DEVICE_ID_SAT_MID:
2679 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2680 		break;
2681 	case PCI_DEVICE_ID_SAT_SMB:
2682 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2683 		break;
2684 	case PCI_DEVICE_ID_SAT_DCSP:
2685 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2686 		break;
2687 	case PCI_DEVICE_ID_SAT_SCSP:
2688 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_SAT_S:
2691 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2692 		break;
2693 	case PCI_DEVICE_ID_PROTEUS_VF:
2694 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2695 				"Obsolete, Unsupported Fibre Channel Adapter"};
2696 		break;
2697 	case PCI_DEVICE_ID_PROTEUS_PF:
2698 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2699 				"Obsolete, Unsupported Fibre Channel Adapter"};
2700 		break;
2701 	case PCI_DEVICE_ID_PROTEUS_S:
2702 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2703 				"Obsolete, Unsupported Fibre Channel Adapter"};
2704 		break;
2705 	case PCI_DEVICE_ID_TIGERSHARK:
2706 		oneConnect = 1;
2707 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2708 		break;
2709 	case PCI_DEVICE_ID_TOMCAT:
2710 		oneConnect = 1;
2711 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2712 		break;
2713 	case PCI_DEVICE_ID_FALCON:
2714 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2715 				"EmulexSecure Fibre"};
2716 		break;
2717 	case PCI_DEVICE_ID_BALIUS:
2718 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2719 				"Obsolete, Unsupported Fibre Channel Adapter"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FC:
2722 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2723 		break;
2724 	case PCI_DEVICE_ID_LANCER_FC_VF:
2725 		m = (typeof(m)){"LPe16000", "PCIe",
2726 				"Obsolete, Unsupported Fibre Channel Adapter"};
2727 		break;
2728 	case PCI_DEVICE_ID_LANCER_FCOE:
2729 		oneConnect = 1;
2730 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2733 		oneConnect = 1;
2734 		m = (typeof(m)){"OCe15100", "PCIe",
2735 				"Obsolete, Unsupported FCoE"};
2736 		break;
2737 	case PCI_DEVICE_ID_LANCER_G6_FC:
2738 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2739 		break;
2740 	case PCI_DEVICE_ID_LANCER_G7_FC:
2741 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2742 		break;
2743 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2744 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2745 		break;
2746 	case PCI_DEVICE_ID_SKYHAWK:
2747 	case PCI_DEVICE_ID_SKYHAWK_VF:
2748 		oneConnect = 1;
2749 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2750 		break;
2751 	default:
2752 		m = (typeof(m)){"Unknown", "", ""};
2753 		break;
2754 	}
2755 
2756 	if (mdp && mdp[0] == '\0')
2757 		snprintf(mdp, 79,"%s", m.name);
2758 	/*
2759 	 * oneConnect hba requires special processing, they are all initiators
2760 	 * and we put the port number on the end
2761 	 */
2762 	if (descp && descp[0] == '\0') {
2763 		if (oneConnect)
2764 			snprintf(descp, 255,
2765 				"Emulex OneConnect %s, %s Initiator %s",
2766 				m.name, m.function,
2767 				phba->Port);
2768 		else if (max_speed == 0)
2769 			snprintf(descp, 255,
2770 				"Emulex %s %s %s",
2771 				m.name, m.bus, m.function);
2772 		else
2773 			snprintf(descp, 255,
2774 				"Emulex %s %d%s %s %s",
2775 				m.name, max_speed, (GE) ? "GE" : "Gb",
2776 				m.bus, m.function);
2777 	}
2778 }
2779 
2780 /**
2781  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2782  * @phba: pointer to lpfc hba data structure.
2783  * @pring: pointer to a IOCB ring.
2784  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2785  *
2786  * This routine posts a given number of IOCBs with the associated DMA buffer
2787  * descriptors specified by the cnt argument to the given IOCB ring.
2788  *
2789  * Return codes
2790  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2791  **/
2792 int
2793 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2794 {
2795 	IOCB_t *icmd;
2796 	struct lpfc_iocbq *iocb;
2797 	struct lpfc_dmabuf *mp1, *mp2;
2798 
2799 	cnt += pring->missbufcnt;
2800 
2801 	/* While there are buffers to post */
2802 	while (cnt > 0) {
2803 		/* Allocate buffer for  command iocb */
2804 		iocb = lpfc_sli_get_iocbq(phba);
2805 		if (iocb == NULL) {
2806 			pring->missbufcnt = cnt;
2807 			return cnt;
2808 		}
2809 		icmd = &iocb->iocb;
2810 
2811 		/* 2 buffers can be posted per command */
2812 		/* Allocate buffer to post */
2813 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2814 		if (mp1)
2815 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2816 		if (!mp1 || !mp1->virt) {
2817 			kfree(mp1);
2818 			lpfc_sli_release_iocbq(phba, iocb);
2819 			pring->missbufcnt = cnt;
2820 			return cnt;
2821 		}
2822 
2823 		INIT_LIST_HEAD(&mp1->list);
2824 		/* Allocate buffer to post */
2825 		if (cnt > 1) {
2826 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2827 			if (mp2)
2828 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2829 							    &mp2->phys);
2830 			if (!mp2 || !mp2->virt) {
2831 				kfree(mp2);
2832 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2833 				kfree(mp1);
2834 				lpfc_sli_release_iocbq(phba, iocb);
2835 				pring->missbufcnt = cnt;
2836 				return cnt;
2837 			}
2838 
2839 			INIT_LIST_HEAD(&mp2->list);
2840 		} else {
2841 			mp2 = NULL;
2842 		}
2843 
2844 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2845 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2846 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2847 		icmd->ulpBdeCount = 1;
2848 		cnt--;
2849 		if (mp2) {
2850 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2851 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2852 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2853 			cnt--;
2854 			icmd->ulpBdeCount = 2;
2855 		}
2856 
2857 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2858 		icmd->ulpLe = 1;
2859 
2860 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2861 		    IOCB_ERROR) {
2862 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2863 			kfree(mp1);
2864 			cnt++;
2865 			if (mp2) {
2866 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2867 				kfree(mp2);
2868 				cnt++;
2869 			}
2870 			lpfc_sli_release_iocbq(phba, iocb);
2871 			pring->missbufcnt = cnt;
2872 			return cnt;
2873 		}
2874 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2875 		if (mp2)
2876 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2877 	}
2878 	pring->missbufcnt = 0;
2879 	return 0;
2880 }
2881 
2882 /**
2883  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2884  * @phba: pointer to lpfc hba data structure.
2885  *
2886  * This routine posts initial receive IOCB buffers to the ELS ring. The
2887  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2888  * set to 64 IOCBs. SLI3 only.
2889  *
2890  * Return codes
2891  *   0 - success (currently always success)
2892  **/
2893 static int
2894 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2895 {
2896 	struct lpfc_sli *psli = &phba->sli;
2897 
2898 	/* Ring 0, ELS / CT buffers */
2899 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2900 	/* Ring 2 - FCP no buffers needed */
2901 
2902 	return 0;
2903 }
2904 
2905 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2906 
2907 /**
2908  * lpfc_sha_init - Set up initial array of hash table entries
2909  * @HashResultPointer: pointer to an array as hash table.
2910  *
2911  * This routine sets up the initial values to the array of hash table entries
2912  * for the LC HBAs.
2913  **/
2914 static void
2915 lpfc_sha_init(uint32_t * HashResultPointer)
2916 {
2917 	HashResultPointer[0] = 0x67452301;
2918 	HashResultPointer[1] = 0xEFCDAB89;
2919 	HashResultPointer[2] = 0x98BADCFE;
2920 	HashResultPointer[3] = 0x10325476;
2921 	HashResultPointer[4] = 0xC3D2E1F0;
2922 }
2923 
2924 /**
2925  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2926  * @HashResultPointer: pointer to an initial/result hash table.
2927  * @HashWorkingPointer: pointer to an working hash table.
2928  *
2929  * This routine iterates an initial hash table pointed by @HashResultPointer
2930  * with the values from the working hash table pointeed by @HashWorkingPointer.
2931  * The results are putting back to the initial hash table, returned through
2932  * the @HashResultPointer as the result hash table.
2933  **/
2934 static void
2935 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2936 {
2937 	int t;
2938 	uint32_t TEMP;
2939 	uint32_t A, B, C, D, E;
2940 	t = 16;
2941 	do {
2942 		HashWorkingPointer[t] =
2943 		    S(1,
2944 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2945 								     8] ^
2946 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2947 	} while (++t <= 79);
2948 	t = 0;
2949 	A = HashResultPointer[0];
2950 	B = HashResultPointer[1];
2951 	C = HashResultPointer[2];
2952 	D = HashResultPointer[3];
2953 	E = HashResultPointer[4];
2954 
2955 	do {
2956 		if (t < 20) {
2957 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2958 		} else if (t < 40) {
2959 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2960 		} else if (t < 60) {
2961 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2962 		} else {
2963 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2964 		}
2965 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2966 		E = D;
2967 		D = C;
2968 		C = S(30, B);
2969 		B = A;
2970 		A = TEMP;
2971 	} while (++t <= 79);
2972 
2973 	HashResultPointer[0] += A;
2974 	HashResultPointer[1] += B;
2975 	HashResultPointer[2] += C;
2976 	HashResultPointer[3] += D;
2977 	HashResultPointer[4] += E;
2978 
2979 }
2980 
2981 /**
2982  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2983  * @RandomChallenge: pointer to the entry of host challenge random number array.
2984  * @HashWorking: pointer to the entry of the working hash array.
2985  *
2986  * This routine calculates the working hash array referred by @HashWorking
2987  * from the challenge random numbers associated with the host, referred by
2988  * @RandomChallenge. The result is put into the entry of the working hash
2989  * array and returned by reference through @HashWorking.
2990  **/
2991 static void
2992 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2993 {
2994 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2995 }
2996 
2997 /**
2998  * lpfc_hba_init - Perform special handling for LC HBA initialization
2999  * @phba: pointer to lpfc hba data structure.
3000  * @hbainit: pointer to an array of unsigned 32-bit integers.
3001  *
3002  * This routine performs the special handling for LC HBA initialization.
3003  **/
3004 void
3005 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3006 {
3007 	int t;
3008 	uint32_t *HashWorking;
3009 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3010 
3011 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3012 	if (!HashWorking)
3013 		return;
3014 
3015 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3016 	HashWorking[1] = HashWorking[79] = *pwwnn;
3017 
3018 	for (t = 0; t < 7; t++)
3019 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3020 
3021 	lpfc_sha_init(hbainit);
3022 	lpfc_sha_iterate(hbainit, HashWorking);
3023 	kfree(HashWorking);
3024 }
3025 
3026 /**
3027  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3028  * @vport: pointer to a virtual N_Port data structure.
3029  *
3030  * This routine performs the necessary cleanups before deleting the @vport.
3031  * It invokes the discovery state machine to perform necessary state
3032  * transitions and to release the ndlps associated with the @vport. Note,
3033  * the physical port is treated as @vport 0.
3034  **/
3035 void
3036 lpfc_cleanup(struct lpfc_vport *vport)
3037 {
3038 	struct lpfc_hba   *phba = vport->phba;
3039 	struct lpfc_nodelist *ndlp, *next_ndlp;
3040 	int i = 0;
3041 
3042 	if (phba->link_state > LPFC_LINK_DOWN)
3043 		lpfc_port_link_failure(vport);
3044 
3045 	/* Clean up VMID resources */
3046 	if (lpfc_is_vmid_enabled(phba))
3047 		lpfc_vmid_vport_cleanup(vport);
3048 
3049 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3050 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3051 		    ndlp->nlp_DID == Fabric_DID) {
3052 			/* Just free up ndlp with Fabric_DID for vports */
3053 			lpfc_nlp_put(ndlp);
3054 			continue;
3055 		}
3056 
3057 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3058 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3059 			lpfc_nlp_put(ndlp);
3060 			continue;
3061 		}
3062 
3063 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3064 		 * DEVICE_RM event.
3065 		 */
3066 		if (ndlp->nlp_type & NLP_FABRIC &&
3067 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3068 			lpfc_disc_state_machine(vport, ndlp, NULL,
3069 					NLP_EVT_DEVICE_RECOVERY);
3070 
3071 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3072 			lpfc_disc_state_machine(vport, ndlp, NULL,
3073 					NLP_EVT_DEVICE_RM);
3074 	}
3075 
3076 	/* This is a special case flush to return all
3077 	 * IOs before entering this loop. There are
3078 	 * two points in the code where a flush is
3079 	 * avoided if the FC_UNLOADING flag is set.
3080 	 * one is in the multipool destroy,
3081 	 * (this prevents a crash) and the other is
3082 	 * in the nvme abort handler, ( also prevents
3083 	 * a crash). Both of these exceptions are
3084 	 * cases where the slot is still accessible.
3085 	 * The flush here is only when the pci slot
3086 	 * is offline.
3087 	 */
3088 	if (vport->load_flag & FC_UNLOADING &&
3089 	    pci_channel_offline(phba->pcidev))
3090 		lpfc_sli_flush_io_rings(vport->phba);
3091 
3092 	/* At this point, ALL ndlp's should be gone
3093 	 * because of the previous NLP_EVT_DEVICE_RM.
3094 	 * Lets wait for this to happen, if needed.
3095 	 */
3096 	while (!list_empty(&vport->fc_nodes)) {
3097 		if (i++ > 3000) {
3098 			lpfc_printf_vlog(vport, KERN_ERR,
3099 					 LOG_TRACE_EVENT,
3100 				"0233 Nodelist not empty\n");
3101 			list_for_each_entry_safe(ndlp, next_ndlp,
3102 						&vport->fc_nodes, nlp_listp) {
3103 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3104 						 LOG_DISCOVERY,
3105 						 "0282 did:x%x ndlp:x%px "
3106 						 "refcnt:%d xflags x%x nflag x%x\n",
3107 						 ndlp->nlp_DID, (void *)ndlp,
3108 						 kref_read(&ndlp->kref),
3109 						 ndlp->fc4_xpt_flags,
3110 						 ndlp->nlp_flag);
3111 			}
3112 			break;
3113 		}
3114 
3115 		/* Wait for any activity on ndlps to settle */
3116 		msleep(10);
3117 	}
3118 	lpfc_cleanup_vports_rrqs(vport, NULL);
3119 }
3120 
3121 /**
3122  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3123  * @vport: pointer to a virtual N_Port data structure.
3124  *
3125  * This routine stops all the timers associated with a @vport. This function
3126  * is invoked before disabling or deleting a @vport. Note that the physical
3127  * port is treated as @vport 0.
3128  **/
3129 void
3130 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3131 {
3132 	del_timer_sync(&vport->els_tmofunc);
3133 	del_timer_sync(&vport->delayed_disc_tmo);
3134 	lpfc_can_disctmo(vport);
3135 	return;
3136 }
3137 
3138 /**
3139  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3140  * @phba: pointer to lpfc hba data structure.
3141  *
3142  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3143  * caller of this routine should already hold the host lock.
3144  **/
3145 void
3146 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3147 {
3148 	/* Clear pending FCF rediscovery wait flag */
3149 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3150 
3151 	/* Now, try to stop the timer */
3152 	del_timer(&phba->fcf.redisc_wait);
3153 }
3154 
3155 /**
3156  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3157  * @phba: pointer to lpfc hba data structure.
3158  *
3159  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3160  * checks whether the FCF rediscovery wait timer is pending with the host
3161  * lock held before proceeding with disabling the timer and clearing the
3162  * wait timer pendig flag.
3163  **/
3164 void
3165 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3166 {
3167 	spin_lock_irq(&phba->hbalock);
3168 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3169 		/* FCF rediscovery timer already fired or stopped */
3170 		spin_unlock_irq(&phba->hbalock);
3171 		return;
3172 	}
3173 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3174 	/* Clear failover in progress flags */
3175 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3176 	spin_unlock_irq(&phba->hbalock);
3177 }
3178 
3179 /**
3180  * lpfc_cmf_stop - Stop CMF processing
3181  * @phba: pointer to lpfc hba data structure.
3182  *
3183  * This is called when the link goes down or if CMF mode is turned OFF.
3184  * It is also called when going offline or unloaded just before the
3185  * congestion info buffer is unregistered.
3186  **/
3187 void
3188 lpfc_cmf_stop(struct lpfc_hba *phba)
3189 {
3190 	int cpu;
3191 	struct lpfc_cgn_stat *cgs;
3192 
3193 	/* We only do something if CMF is enabled */
3194 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3195 		return;
3196 
3197 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3198 			"6221 Stop CMF / Cancel Timer\n");
3199 
3200 	/* Cancel the CMF timer */
3201 	hrtimer_cancel(&phba->cmf_stats_timer);
3202 	hrtimer_cancel(&phba->cmf_timer);
3203 
3204 	/* Zero CMF counters */
3205 	atomic_set(&phba->cmf_busy, 0);
3206 	for_each_present_cpu(cpu) {
3207 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3208 		atomic64_set(&cgs->total_bytes, 0);
3209 		atomic64_set(&cgs->rcv_bytes, 0);
3210 		atomic_set(&cgs->rx_io_cnt, 0);
3211 		atomic64_set(&cgs->rx_latency, 0);
3212 	}
3213 	atomic_set(&phba->cmf_bw_wait, 0);
3214 
3215 	/* Resume any blocked IO - Queue unblock on workqueue */
3216 	queue_work(phba->wq, &phba->unblock_request_work);
3217 }
3218 
3219 static inline uint64_t
3220 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3221 {
3222 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3223 
3224 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3225 }
3226 
3227 void
3228 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3229 {
3230 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3231 			"6223 Signal CMF init\n");
3232 
3233 	/* Use the new fc_linkspeed to recalculate */
3234 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3235 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3236 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3237 					    phba->cmf_interval_rate, 1000);
3238 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3239 
3240 	/* This is a signal to firmware to sync up CMF BW with link speed */
3241 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3242 }
3243 
3244 /**
3245  * lpfc_cmf_start - Start CMF processing
3246  * @phba: pointer to lpfc hba data structure.
3247  *
3248  * This is called when the link comes up or if CMF mode is turned OFF
3249  * to Monitor or Managed.
3250  **/
3251 void
3252 lpfc_cmf_start(struct lpfc_hba *phba)
3253 {
3254 	struct lpfc_cgn_stat *cgs;
3255 	int cpu;
3256 
3257 	/* We only do something if CMF is enabled */
3258 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3259 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3260 		return;
3261 
3262 	/* Reinitialize congestion buffer info */
3263 	lpfc_init_congestion_buf(phba);
3264 
3265 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3266 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3267 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3268 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3269 
3270 	atomic_set(&phba->cmf_busy, 0);
3271 	for_each_present_cpu(cpu) {
3272 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3273 		atomic64_set(&cgs->total_bytes, 0);
3274 		atomic64_set(&cgs->rcv_bytes, 0);
3275 		atomic_set(&cgs->rx_io_cnt, 0);
3276 		atomic64_set(&cgs->rx_latency, 0);
3277 	}
3278 	phba->cmf_latency.tv_sec = 0;
3279 	phba->cmf_latency.tv_nsec = 0;
3280 
3281 	lpfc_cmf_signal_init(phba);
3282 
3283 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3284 			"6222 Start CMF / Timer\n");
3285 
3286 	phba->cmf_timer_cnt = 0;
3287 	hrtimer_start(&phba->cmf_timer,
3288 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3289 		      HRTIMER_MODE_REL);
3290 	hrtimer_start(&phba->cmf_stats_timer,
3291 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3292 		      HRTIMER_MODE_REL);
3293 	/* Setup for latency check in IO cmpl routines */
3294 	ktime_get_real_ts64(&phba->cmf_latency);
3295 
3296 	atomic_set(&phba->cmf_bw_wait, 0);
3297 	atomic_set(&phba->cmf_stop_io, 0);
3298 }
3299 
3300 /**
3301  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3302  * @phba: pointer to lpfc hba data structure.
3303  *
3304  * This routine stops all the timers associated with a HBA. This function is
3305  * invoked before either putting a HBA offline or unloading the driver.
3306  **/
3307 void
3308 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3309 {
3310 	if (phba->pport)
3311 		lpfc_stop_vport_timers(phba->pport);
3312 	cancel_delayed_work_sync(&phba->eq_delay_work);
3313 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3314 	del_timer_sync(&phba->sli.mbox_tmo);
3315 	del_timer_sync(&phba->fabric_block_timer);
3316 	del_timer_sync(&phba->eratt_poll);
3317 	del_timer_sync(&phba->hb_tmofunc);
3318 	if (phba->sli_rev == LPFC_SLI_REV4) {
3319 		del_timer_sync(&phba->rrq_tmr);
3320 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3321 	}
3322 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3323 
3324 	switch (phba->pci_dev_grp) {
3325 	case LPFC_PCI_DEV_LP:
3326 		/* Stop any LightPulse device specific driver timers */
3327 		del_timer_sync(&phba->fcp_poll_timer);
3328 		break;
3329 	case LPFC_PCI_DEV_OC:
3330 		/* Stop any OneConnect device specific driver timers */
3331 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3332 		break;
3333 	default:
3334 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3335 				"0297 Invalid device group (x%x)\n",
3336 				phba->pci_dev_grp);
3337 		break;
3338 	}
3339 	return;
3340 }
3341 
3342 /**
3343  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3344  * @phba: pointer to lpfc hba data structure.
3345  * @mbx_action: flag for mailbox no wait action.
3346  *
3347  * This routine marks a HBA's management interface as blocked. Once the HBA's
3348  * management interface is marked as blocked, all the user space access to
3349  * the HBA, whether they are from sysfs interface or libdfc interface will
3350  * all be blocked. The HBA is set to block the management interface when the
3351  * driver prepares the HBA interface for online or offline.
3352  **/
3353 static void
3354 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3355 {
3356 	unsigned long iflag;
3357 	uint8_t actcmd = MBX_HEARTBEAT;
3358 	unsigned long timeout;
3359 
3360 	spin_lock_irqsave(&phba->hbalock, iflag);
3361 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3362 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3363 	if (mbx_action == LPFC_MBX_NO_WAIT)
3364 		return;
3365 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3366 	spin_lock_irqsave(&phba->hbalock, iflag);
3367 	if (phba->sli.mbox_active) {
3368 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3369 		/* Determine how long we might wait for the active mailbox
3370 		 * command to be gracefully completed by firmware.
3371 		 */
3372 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3373 				phba->sli.mbox_active) * 1000) + jiffies;
3374 	}
3375 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3376 
3377 	/* Wait for the outstnading mailbox command to complete */
3378 	while (phba->sli.mbox_active) {
3379 		/* Check active mailbox complete status every 2ms */
3380 		msleep(2);
3381 		if (time_after(jiffies, timeout)) {
3382 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3383 					"2813 Mgmt IO is Blocked %x "
3384 					"- mbox cmd %x still active\n",
3385 					phba->sli.sli_flag, actcmd);
3386 			break;
3387 		}
3388 	}
3389 }
3390 
3391 /**
3392  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3393  * @phba: pointer to lpfc hba data structure.
3394  *
3395  * Allocate RPIs for all active remote nodes. This is needed whenever
3396  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3397  * is to fixup the temporary rpi assignments.
3398  **/
3399 void
3400 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3401 {
3402 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3403 	struct lpfc_vport **vports;
3404 	int i, rpi;
3405 
3406 	if (phba->sli_rev != LPFC_SLI_REV4)
3407 		return;
3408 
3409 	vports = lpfc_create_vport_work_array(phba);
3410 	if (vports == NULL)
3411 		return;
3412 
3413 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3414 		if (vports[i]->load_flag & FC_UNLOADING)
3415 			continue;
3416 
3417 		list_for_each_entry_safe(ndlp, next_ndlp,
3418 					 &vports[i]->fc_nodes,
3419 					 nlp_listp) {
3420 			rpi = lpfc_sli4_alloc_rpi(phba);
3421 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3422 				/* TODO print log? */
3423 				continue;
3424 			}
3425 			ndlp->nlp_rpi = rpi;
3426 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3427 					 LOG_NODE | LOG_DISCOVERY,
3428 					 "0009 Assign RPI x%x to ndlp x%px "
3429 					 "DID:x%06x flg:x%x\n",
3430 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3431 					 ndlp->nlp_flag);
3432 		}
3433 	}
3434 	lpfc_destroy_vport_work_array(phba, vports);
3435 }
3436 
3437 /**
3438  * lpfc_create_expedite_pool - create expedite pool
3439  * @phba: pointer to lpfc hba data structure.
3440  *
3441  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3442  * to expedite pool. Mark them as expedite.
3443  **/
3444 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3445 {
3446 	struct lpfc_sli4_hdw_queue *qp;
3447 	struct lpfc_io_buf *lpfc_ncmd;
3448 	struct lpfc_io_buf *lpfc_ncmd_next;
3449 	struct lpfc_epd_pool *epd_pool;
3450 	unsigned long iflag;
3451 
3452 	epd_pool = &phba->epd_pool;
3453 	qp = &phba->sli4_hba.hdwq[0];
3454 
3455 	spin_lock_init(&epd_pool->lock);
3456 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3457 	spin_lock(&epd_pool->lock);
3458 	INIT_LIST_HEAD(&epd_pool->list);
3459 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3460 				 &qp->lpfc_io_buf_list_put, list) {
3461 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3462 		lpfc_ncmd->expedite = true;
3463 		qp->put_io_bufs--;
3464 		epd_pool->count++;
3465 		if (epd_pool->count >= XRI_BATCH)
3466 			break;
3467 	}
3468 	spin_unlock(&epd_pool->lock);
3469 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3470 }
3471 
3472 /**
3473  * lpfc_destroy_expedite_pool - destroy expedite pool
3474  * @phba: pointer to lpfc hba data structure.
3475  *
3476  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3477  * of HWQ 0. Clear the mark.
3478  **/
3479 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3480 {
3481 	struct lpfc_sli4_hdw_queue *qp;
3482 	struct lpfc_io_buf *lpfc_ncmd;
3483 	struct lpfc_io_buf *lpfc_ncmd_next;
3484 	struct lpfc_epd_pool *epd_pool;
3485 	unsigned long iflag;
3486 
3487 	epd_pool = &phba->epd_pool;
3488 	qp = &phba->sli4_hba.hdwq[0];
3489 
3490 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3491 	spin_lock(&epd_pool->lock);
3492 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3493 				 &epd_pool->list, list) {
3494 		list_move_tail(&lpfc_ncmd->list,
3495 			       &qp->lpfc_io_buf_list_put);
3496 		lpfc_ncmd->flags = false;
3497 		qp->put_io_bufs++;
3498 		epd_pool->count--;
3499 	}
3500 	spin_unlock(&epd_pool->lock);
3501 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3502 }
3503 
3504 /**
3505  * lpfc_create_multixri_pools - create multi-XRI pools
3506  * @phba: pointer to lpfc hba data structure.
3507  *
3508  * This routine initialize public, private per HWQ. Then, move XRIs from
3509  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3510  * Initialized.
3511  **/
3512 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3513 {
3514 	u32 i, j;
3515 	u32 hwq_count;
3516 	u32 count_per_hwq;
3517 	struct lpfc_io_buf *lpfc_ncmd;
3518 	struct lpfc_io_buf *lpfc_ncmd_next;
3519 	unsigned long iflag;
3520 	struct lpfc_sli4_hdw_queue *qp;
3521 	struct lpfc_multixri_pool *multixri_pool;
3522 	struct lpfc_pbl_pool *pbl_pool;
3523 	struct lpfc_pvt_pool *pvt_pool;
3524 
3525 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3526 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3527 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3528 			phba->sli4_hba.io_xri_cnt);
3529 
3530 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3531 		lpfc_create_expedite_pool(phba);
3532 
3533 	hwq_count = phba->cfg_hdw_queue;
3534 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3535 
3536 	for (i = 0; i < hwq_count; i++) {
3537 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3538 
3539 		if (!multixri_pool) {
3540 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3541 					"1238 Failed to allocate memory for "
3542 					"multixri_pool\n");
3543 
3544 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3545 				lpfc_destroy_expedite_pool(phba);
3546 
3547 			j = 0;
3548 			while (j < i) {
3549 				qp = &phba->sli4_hba.hdwq[j];
3550 				kfree(qp->p_multixri_pool);
3551 				j++;
3552 			}
3553 			phba->cfg_xri_rebalancing = 0;
3554 			return;
3555 		}
3556 
3557 		qp = &phba->sli4_hba.hdwq[i];
3558 		qp->p_multixri_pool = multixri_pool;
3559 
3560 		multixri_pool->xri_limit = count_per_hwq;
3561 		multixri_pool->rrb_next_hwqid = i;
3562 
3563 		/* Deal with public free xri pool */
3564 		pbl_pool = &multixri_pool->pbl_pool;
3565 		spin_lock_init(&pbl_pool->lock);
3566 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3567 		spin_lock(&pbl_pool->lock);
3568 		INIT_LIST_HEAD(&pbl_pool->list);
3569 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3570 					 &qp->lpfc_io_buf_list_put, list) {
3571 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3572 			qp->put_io_bufs--;
3573 			pbl_pool->count++;
3574 		}
3575 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3576 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3577 				pbl_pool->count, i);
3578 		spin_unlock(&pbl_pool->lock);
3579 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3580 
3581 		/* Deal with private free xri pool */
3582 		pvt_pool = &multixri_pool->pvt_pool;
3583 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3584 		pvt_pool->low_watermark = XRI_BATCH;
3585 		spin_lock_init(&pvt_pool->lock);
3586 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3587 		INIT_LIST_HEAD(&pvt_pool->list);
3588 		pvt_pool->count = 0;
3589 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3590 	}
3591 }
3592 
3593 /**
3594  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3595  * @phba: pointer to lpfc hba data structure.
3596  *
3597  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3598  **/
3599 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3600 {
3601 	u32 i;
3602 	u32 hwq_count;
3603 	struct lpfc_io_buf *lpfc_ncmd;
3604 	struct lpfc_io_buf *lpfc_ncmd_next;
3605 	unsigned long iflag;
3606 	struct lpfc_sli4_hdw_queue *qp;
3607 	struct lpfc_multixri_pool *multixri_pool;
3608 	struct lpfc_pbl_pool *pbl_pool;
3609 	struct lpfc_pvt_pool *pvt_pool;
3610 
3611 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3612 		lpfc_destroy_expedite_pool(phba);
3613 
3614 	if (!(phba->pport->load_flag & FC_UNLOADING))
3615 		lpfc_sli_flush_io_rings(phba);
3616 
3617 	hwq_count = phba->cfg_hdw_queue;
3618 
3619 	for (i = 0; i < hwq_count; i++) {
3620 		qp = &phba->sli4_hba.hdwq[i];
3621 		multixri_pool = qp->p_multixri_pool;
3622 		if (!multixri_pool)
3623 			continue;
3624 
3625 		qp->p_multixri_pool = NULL;
3626 
3627 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3628 
3629 		/* Deal with public free xri pool */
3630 		pbl_pool = &multixri_pool->pbl_pool;
3631 		spin_lock(&pbl_pool->lock);
3632 
3633 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3634 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3635 				pbl_pool->count, i);
3636 
3637 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3638 					 &pbl_pool->list, list) {
3639 			list_move_tail(&lpfc_ncmd->list,
3640 				       &qp->lpfc_io_buf_list_put);
3641 			qp->put_io_bufs++;
3642 			pbl_pool->count--;
3643 		}
3644 
3645 		INIT_LIST_HEAD(&pbl_pool->list);
3646 		pbl_pool->count = 0;
3647 
3648 		spin_unlock(&pbl_pool->lock);
3649 
3650 		/* Deal with private free xri pool */
3651 		pvt_pool = &multixri_pool->pvt_pool;
3652 		spin_lock(&pvt_pool->lock);
3653 
3654 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3655 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3656 				pvt_pool->count, i);
3657 
3658 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3659 					 &pvt_pool->list, list) {
3660 			list_move_tail(&lpfc_ncmd->list,
3661 				       &qp->lpfc_io_buf_list_put);
3662 			qp->put_io_bufs++;
3663 			pvt_pool->count--;
3664 		}
3665 
3666 		INIT_LIST_HEAD(&pvt_pool->list);
3667 		pvt_pool->count = 0;
3668 
3669 		spin_unlock(&pvt_pool->lock);
3670 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3671 
3672 		kfree(multixri_pool);
3673 	}
3674 }
3675 
3676 /**
3677  * lpfc_online - Initialize and bring a HBA online
3678  * @phba: pointer to lpfc hba data structure.
3679  *
3680  * This routine initializes the HBA and brings a HBA online. During this
3681  * process, the management interface is blocked to prevent user space access
3682  * to the HBA interfering with the driver initialization.
3683  *
3684  * Return codes
3685  *   0 - successful
3686  *   1 - failed
3687  **/
3688 int
3689 lpfc_online(struct lpfc_hba *phba)
3690 {
3691 	struct lpfc_vport *vport;
3692 	struct lpfc_vport **vports;
3693 	int i, error = 0;
3694 	bool vpis_cleared = false;
3695 
3696 	if (!phba)
3697 		return 0;
3698 	vport = phba->pport;
3699 
3700 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3701 		return 0;
3702 
3703 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3704 			"0458 Bring Adapter online\n");
3705 
3706 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3707 
3708 	if (phba->sli_rev == LPFC_SLI_REV4) {
3709 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3710 			lpfc_unblock_mgmt_io(phba);
3711 			return 1;
3712 		}
3713 		spin_lock_irq(&phba->hbalock);
3714 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3715 			vpis_cleared = true;
3716 		spin_unlock_irq(&phba->hbalock);
3717 
3718 		/* Reestablish the local initiator port.
3719 		 * The offline process destroyed the previous lport.
3720 		 */
3721 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3722 				!phba->nvmet_support) {
3723 			error = lpfc_nvme_create_localport(phba->pport);
3724 			if (error)
3725 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3726 					"6132 NVME restore reg failed "
3727 					"on nvmei error x%x\n", error);
3728 		}
3729 	} else {
3730 		lpfc_sli_queue_init(phba);
3731 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3732 			lpfc_unblock_mgmt_io(phba);
3733 			return 1;
3734 		}
3735 	}
3736 
3737 	vports = lpfc_create_vport_work_array(phba);
3738 	if (vports != NULL) {
3739 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3740 			struct Scsi_Host *shost;
3741 			shost = lpfc_shost_from_vport(vports[i]);
3742 			spin_lock_irq(shost->host_lock);
3743 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3744 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3745 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3746 			if (phba->sli_rev == LPFC_SLI_REV4) {
3747 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3748 				if ((vpis_cleared) &&
3749 				    (vports[i]->port_type !=
3750 					LPFC_PHYSICAL_PORT))
3751 					vports[i]->vpi = 0;
3752 			}
3753 			spin_unlock_irq(shost->host_lock);
3754 		}
3755 	}
3756 	lpfc_destroy_vport_work_array(phba, vports);
3757 
3758 	if (phba->cfg_xri_rebalancing)
3759 		lpfc_create_multixri_pools(phba);
3760 
3761 	lpfc_cpuhp_add(phba);
3762 
3763 	lpfc_unblock_mgmt_io(phba);
3764 	return 0;
3765 }
3766 
3767 /**
3768  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3769  * @phba: pointer to lpfc hba data structure.
3770  *
3771  * This routine marks a HBA's management interface as not blocked. Once the
3772  * HBA's management interface is marked as not blocked, all the user space
3773  * access to the HBA, whether they are from sysfs interface or libdfc
3774  * interface will be allowed. The HBA is set to block the management interface
3775  * when the driver prepares the HBA interface for online or offline and then
3776  * set to unblock the management interface afterwards.
3777  **/
3778 void
3779 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3780 {
3781 	unsigned long iflag;
3782 
3783 	spin_lock_irqsave(&phba->hbalock, iflag);
3784 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3785 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3786 }
3787 
3788 /**
3789  * lpfc_offline_prep - Prepare a HBA to be brought offline
3790  * @phba: pointer to lpfc hba data structure.
3791  * @mbx_action: flag for mailbox shutdown action.
3792  *
3793  * This routine is invoked to prepare a HBA to be brought offline. It performs
3794  * unregistration login to all the nodes on all vports and flushes the mailbox
3795  * queue to make it ready to be brought offline.
3796  **/
3797 void
3798 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3799 {
3800 	struct lpfc_vport *vport = phba->pport;
3801 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3802 	struct lpfc_vport **vports;
3803 	struct Scsi_Host *shost;
3804 	int i;
3805 	int offline;
3806 	bool hba_pci_err;
3807 
3808 	if (vport->fc_flag & FC_OFFLINE_MODE)
3809 		return;
3810 
3811 	lpfc_block_mgmt_io(phba, mbx_action);
3812 
3813 	lpfc_linkdown(phba);
3814 
3815 	offline =  pci_channel_offline(phba->pcidev);
3816 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3817 
3818 	/* Issue an unreg_login to all nodes on all vports */
3819 	vports = lpfc_create_vport_work_array(phba);
3820 	if (vports != NULL) {
3821 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3822 			if (vports[i]->load_flag & FC_UNLOADING)
3823 				continue;
3824 			shost = lpfc_shost_from_vport(vports[i]);
3825 			spin_lock_irq(shost->host_lock);
3826 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3827 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3828 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3829 			spin_unlock_irq(shost->host_lock);
3830 
3831 			shost =	lpfc_shost_from_vport(vports[i]);
3832 			list_for_each_entry_safe(ndlp, next_ndlp,
3833 						 &vports[i]->fc_nodes,
3834 						 nlp_listp) {
3835 
3836 				spin_lock_irq(&ndlp->lock);
3837 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3838 				spin_unlock_irq(&ndlp->lock);
3839 
3840 				if (offline || hba_pci_err) {
3841 					spin_lock_irq(&ndlp->lock);
3842 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3843 							    NLP_RPI_REGISTERED);
3844 					spin_unlock_irq(&ndlp->lock);
3845 					if (phba->sli_rev == LPFC_SLI_REV4)
3846 						lpfc_sli_rpi_release(vports[i],
3847 								     ndlp);
3848 				} else {
3849 					lpfc_unreg_rpi(vports[i], ndlp);
3850 				}
3851 				/*
3852 				 * Whenever an SLI4 port goes offline, free the
3853 				 * RPI. Get a new RPI when the adapter port
3854 				 * comes back online.
3855 				 */
3856 				if (phba->sli_rev == LPFC_SLI_REV4) {
3857 					lpfc_printf_vlog(vports[i], KERN_INFO,
3858 						 LOG_NODE | LOG_DISCOVERY,
3859 						 "0011 Free RPI x%x on "
3860 						 "ndlp: x%px did x%x\n",
3861 						 ndlp->nlp_rpi, ndlp,
3862 						 ndlp->nlp_DID);
3863 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3864 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3865 				}
3866 
3867 				if (ndlp->nlp_type & NLP_FABRIC) {
3868 					lpfc_disc_state_machine(vports[i], ndlp,
3869 						NULL, NLP_EVT_DEVICE_RECOVERY);
3870 
3871 					/* Don't remove the node unless the node
3872 					 * has been unregistered with the
3873 					 * transport, and we're not in recovery
3874 					 * before dev_loss_tmo triggered.
3875 					 * Otherwise, let dev_loss take care of
3876 					 * the node.
3877 					 */
3878 					if (!(ndlp->save_flags &
3879 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3880 					    !(ndlp->fc4_xpt_flags &
3881 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3882 						lpfc_disc_state_machine
3883 							(vports[i], ndlp,
3884 							 NULL,
3885 							 NLP_EVT_DEVICE_RM);
3886 				}
3887 			}
3888 		}
3889 	}
3890 	lpfc_destroy_vport_work_array(phba, vports);
3891 
3892 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3893 
3894 	if (phba->wq)
3895 		flush_workqueue(phba->wq);
3896 }
3897 
3898 /**
3899  * lpfc_offline - Bring a HBA offline
3900  * @phba: pointer to lpfc hba data structure.
3901  *
3902  * This routine actually brings a HBA offline. It stops all the timers
3903  * associated with the HBA, brings down the SLI layer, and eventually
3904  * marks the HBA as in offline state for the upper layer protocol.
3905  **/
3906 void
3907 lpfc_offline(struct lpfc_hba *phba)
3908 {
3909 	struct Scsi_Host  *shost;
3910 	struct lpfc_vport **vports;
3911 	int i;
3912 
3913 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3914 		return;
3915 
3916 	/* stop port and all timers associated with this hba */
3917 	lpfc_stop_port(phba);
3918 
3919 	/* Tear down the local and target port registrations.  The
3920 	 * nvme transports need to cleanup.
3921 	 */
3922 	lpfc_nvmet_destroy_targetport(phba);
3923 	lpfc_nvme_destroy_localport(phba->pport);
3924 
3925 	vports = lpfc_create_vport_work_array(phba);
3926 	if (vports != NULL)
3927 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3928 			lpfc_stop_vport_timers(vports[i]);
3929 	lpfc_destroy_vport_work_array(phba, vports);
3930 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3931 			"0460 Bring Adapter offline\n");
3932 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3933 	   now.  */
3934 	lpfc_sli_hba_down(phba);
3935 	spin_lock_irq(&phba->hbalock);
3936 	phba->work_ha = 0;
3937 	spin_unlock_irq(&phba->hbalock);
3938 	vports = lpfc_create_vport_work_array(phba);
3939 	if (vports != NULL)
3940 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3941 			shost = lpfc_shost_from_vport(vports[i]);
3942 			spin_lock_irq(shost->host_lock);
3943 			vports[i]->work_port_events = 0;
3944 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3945 			spin_unlock_irq(shost->host_lock);
3946 		}
3947 	lpfc_destroy_vport_work_array(phba, vports);
3948 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3949 	 * in hba_unset
3950 	 */
3951 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3952 		__lpfc_cpuhp_remove(phba);
3953 
3954 	if (phba->cfg_xri_rebalancing)
3955 		lpfc_destroy_multixri_pools(phba);
3956 }
3957 
3958 /**
3959  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3960  * @phba: pointer to lpfc hba data structure.
3961  *
3962  * This routine is to free all the SCSI buffers and IOCBs from the driver
3963  * list back to kernel. It is called from lpfc_pci_remove_one to free
3964  * the internal resources before the device is removed from the system.
3965  **/
3966 static void
3967 lpfc_scsi_free(struct lpfc_hba *phba)
3968 {
3969 	struct lpfc_io_buf *sb, *sb_next;
3970 
3971 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3972 		return;
3973 
3974 	spin_lock_irq(&phba->hbalock);
3975 
3976 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3977 
3978 	spin_lock(&phba->scsi_buf_list_put_lock);
3979 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3980 				 list) {
3981 		list_del(&sb->list);
3982 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3983 			      sb->dma_handle);
3984 		kfree(sb);
3985 		phba->total_scsi_bufs--;
3986 	}
3987 	spin_unlock(&phba->scsi_buf_list_put_lock);
3988 
3989 	spin_lock(&phba->scsi_buf_list_get_lock);
3990 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3991 				 list) {
3992 		list_del(&sb->list);
3993 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3994 			      sb->dma_handle);
3995 		kfree(sb);
3996 		phba->total_scsi_bufs--;
3997 	}
3998 	spin_unlock(&phba->scsi_buf_list_get_lock);
3999 	spin_unlock_irq(&phba->hbalock);
4000 }
4001 
4002 /**
4003  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
4004  * @phba: pointer to lpfc hba data structure.
4005  *
4006  * This routine is to free all the IO buffers and IOCBs from the driver
4007  * list back to kernel. It is called from lpfc_pci_remove_one to free
4008  * the internal resources before the device is removed from the system.
4009  **/
4010 void
4011 lpfc_io_free(struct lpfc_hba *phba)
4012 {
4013 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4014 	struct lpfc_sli4_hdw_queue *qp;
4015 	int idx;
4016 
4017 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4018 		qp = &phba->sli4_hba.hdwq[idx];
4019 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4020 		spin_lock(&qp->io_buf_list_put_lock);
4021 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4022 					 &qp->lpfc_io_buf_list_put,
4023 					 list) {
4024 			list_del(&lpfc_ncmd->list);
4025 			qp->put_io_bufs--;
4026 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4027 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4028 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4029 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4030 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4031 			kfree(lpfc_ncmd);
4032 			qp->total_io_bufs--;
4033 		}
4034 		spin_unlock(&qp->io_buf_list_put_lock);
4035 
4036 		spin_lock(&qp->io_buf_list_get_lock);
4037 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4038 					 &qp->lpfc_io_buf_list_get,
4039 					 list) {
4040 			list_del(&lpfc_ncmd->list);
4041 			qp->get_io_bufs--;
4042 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4043 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4044 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4045 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4046 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4047 			kfree(lpfc_ncmd);
4048 			qp->total_io_bufs--;
4049 		}
4050 		spin_unlock(&qp->io_buf_list_get_lock);
4051 	}
4052 }
4053 
4054 /**
4055  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4056  * @phba: pointer to lpfc hba data structure.
4057  *
4058  * This routine first calculates the sizes of the current els and allocated
4059  * scsi sgl lists, and then goes through all sgls to updates the physical
4060  * XRIs assigned due to port function reset. During port initialization, the
4061  * current els and allocated scsi sgl lists are 0s.
4062  *
4063  * Return codes
4064  *   0 - successful (for now, it always returns 0)
4065  **/
4066 int
4067 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4068 {
4069 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4070 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4071 	LIST_HEAD(els_sgl_list);
4072 	int rc;
4073 
4074 	/*
4075 	 * update on pci function's els xri-sgl list
4076 	 */
4077 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4078 
4079 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4080 		/* els xri-sgl expanded */
4081 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4082 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4083 				"3157 ELS xri-sgl count increased from "
4084 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4085 				els_xri_cnt);
4086 		/* allocate the additional els sgls */
4087 		for (i = 0; i < xri_cnt; i++) {
4088 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4089 					     GFP_KERNEL);
4090 			if (sglq_entry == NULL) {
4091 				lpfc_printf_log(phba, KERN_ERR,
4092 						LOG_TRACE_EVENT,
4093 						"2562 Failure to allocate an "
4094 						"ELS sgl entry:%d\n", i);
4095 				rc = -ENOMEM;
4096 				goto out_free_mem;
4097 			}
4098 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4099 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4100 							   &sglq_entry->phys);
4101 			if (sglq_entry->virt == NULL) {
4102 				kfree(sglq_entry);
4103 				lpfc_printf_log(phba, KERN_ERR,
4104 						LOG_TRACE_EVENT,
4105 						"2563 Failure to allocate an "
4106 						"ELS mbuf:%d\n", i);
4107 				rc = -ENOMEM;
4108 				goto out_free_mem;
4109 			}
4110 			sglq_entry->sgl = sglq_entry->virt;
4111 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4112 			sglq_entry->state = SGL_FREED;
4113 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4114 		}
4115 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4116 		list_splice_init(&els_sgl_list,
4117 				 &phba->sli4_hba.lpfc_els_sgl_list);
4118 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4119 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4120 		/* els xri-sgl shrinked */
4121 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4122 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4123 				"3158 ELS xri-sgl count decreased from "
4124 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4125 				els_xri_cnt);
4126 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4127 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4128 				 &els_sgl_list);
4129 		/* release extra els sgls from list */
4130 		for (i = 0; i < xri_cnt; i++) {
4131 			list_remove_head(&els_sgl_list,
4132 					 sglq_entry, struct lpfc_sglq, list);
4133 			if (sglq_entry) {
4134 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4135 						 sglq_entry->phys);
4136 				kfree(sglq_entry);
4137 			}
4138 		}
4139 		list_splice_init(&els_sgl_list,
4140 				 &phba->sli4_hba.lpfc_els_sgl_list);
4141 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4142 	} else
4143 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4144 				"3163 ELS xri-sgl count unchanged: %d\n",
4145 				els_xri_cnt);
4146 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4147 
4148 	/* update xris to els sgls on the list */
4149 	sglq_entry = NULL;
4150 	sglq_entry_next = NULL;
4151 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4152 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4153 		lxri = lpfc_sli4_next_xritag(phba);
4154 		if (lxri == NO_XRI) {
4155 			lpfc_printf_log(phba, KERN_ERR,
4156 					LOG_TRACE_EVENT,
4157 					"2400 Failed to allocate xri for "
4158 					"ELS sgl\n");
4159 			rc = -ENOMEM;
4160 			goto out_free_mem;
4161 		}
4162 		sglq_entry->sli4_lxritag = lxri;
4163 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4164 	}
4165 	return 0;
4166 
4167 out_free_mem:
4168 	lpfc_free_els_sgl_list(phba);
4169 	return rc;
4170 }
4171 
4172 /**
4173  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4174  * @phba: pointer to lpfc hba data structure.
4175  *
4176  * This routine first calculates the sizes of the current els and allocated
4177  * scsi sgl lists, and then goes through all sgls to updates the physical
4178  * XRIs assigned due to port function reset. During port initialization, the
4179  * current els and allocated scsi sgl lists are 0s.
4180  *
4181  * Return codes
4182  *   0 - successful (for now, it always returns 0)
4183  **/
4184 int
4185 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4186 {
4187 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4188 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4189 	uint16_t nvmet_xri_cnt;
4190 	LIST_HEAD(nvmet_sgl_list);
4191 	int rc;
4192 
4193 	/*
4194 	 * update on pci function's nvmet xri-sgl list
4195 	 */
4196 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4197 
4198 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4199 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4200 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4201 		/* els xri-sgl expanded */
4202 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4203 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4204 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4205 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4206 		/* allocate the additional nvmet sgls */
4207 		for (i = 0; i < xri_cnt; i++) {
4208 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4209 					     GFP_KERNEL);
4210 			if (sglq_entry == NULL) {
4211 				lpfc_printf_log(phba, KERN_ERR,
4212 						LOG_TRACE_EVENT,
4213 						"6303 Failure to allocate an "
4214 						"NVMET sgl entry:%d\n", i);
4215 				rc = -ENOMEM;
4216 				goto out_free_mem;
4217 			}
4218 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4219 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4220 							   &sglq_entry->phys);
4221 			if (sglq_entry->virt == NULL) {
4222 				kfree(sglq_entry);
4223 				lpfc_printf_log(phba, KERN_ERR,
4224 						LOG_TRACE_EVENT,
4225 						"6304 Failure to allocate an "
4226 						"NVMET buf:%d\n", i);
4227 				rc = -ENOMEM;
4228 				goto out_free_mem;
4229 			}
4230 			sglq_entry->sgl = sglq_entry->virt;
4231 			memset(sglq_entry->sgl, 0,
4232 			       phba->cfg_sg_dma_buf_size);
4233 			sglq_entry->state = SGL_FREED;
4234 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4235 		}
4236 		spin_lock_irq(&phba->hbalock);
4237 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4238 		list_splice_init(&nvmet_sgl_list,
4239 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4240 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4241 		spin_unlock_irq(&phba->hbalock);
4242 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4243 		/* nvmet xri-sgl shrunk */
4244 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4245 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4246 				"6305 NVMET xri-sgl count decreased from "
4247 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4248 				nvmet_xri_cnt);
4249 		spin_lock_irq(&phba->hbalock);
4250 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4251 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4252 				 &nvmet_sgl_list);
4253 		/* release extra nvmet sgls from list */
4254 		for (i = 0; i < xri_cnt; i++) {
4255 			list_remove_head(&nvmet_sgl_list,
4256 					 sglq_entry, struct lpfc_sglq, list);
4257 			if (sglq_entry) {
4258 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4259 						    sglq_entry->phys);
4260 				kfree(sglq_entry);
4261 			}
4262 		}
4263 		list_splice_init(&nvmet_sgl_list,
4264 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4265 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4266 		spin_unlock_irq(&phba->hbalock);
4267 	} else
4268 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4269 				"6306 NVMET xri-sgl count unchanged: %d\n",
4270 				nvmet_xri_cnt);
4271 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4272 
4273 	/* update xris to nvmet sgls on the list */
4274 	sglq_entry = NULL;
4275 	sglq_entry_next = NULL;
4276 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4277 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4278 		lxri = lpfc_sli4_next_xritag(phba);
4279 		if (lxri == NO_XRI) {
4280 			lpfc_printf_log(phba, KERN_ERR,
4281 					LOG_TRACE_EVENT,
4282 					"6307 Failed to allocate xri for "
4283 					"NVMET sgl\n");
4284 			rc = -ENOMEM;
4285 			goto out_free_mem;
4286 		}
4287 		sglq_entry->sli4_lxritag = lxri;
4288 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4289 	}
4290 	return 0;
4291 
4292 out_free_mem:
4293 	lpfc_free_nvmet_sgl_list(phba);
4294 	return rc;
4295 }
4296 
4297 int
4298 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4299 {
4300 	LIST_HEAD(blist);
4301 	struct lpfc_sli4_hdw_queue *qp;
4302 	struct lpfc_io_buf *lpfc_cmd;
4303 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4304 	int idx, cnt, xri, inserted;
4305 
4306 	cnt = 0;
4307 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4308 		qp = &phba->sli4_hba.hdwq[idx];
4309 		spin_lock_irq(&qp->io_buf_list_get_lock);
4310 		spin_lock(&qp->io_buf_list_put_lock);
4311 
4312 		/* Take everything off the get and put lists */
4313 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4314 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4315 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4316 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4317 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4318 		qp->get_io_bufs = 0;
4319 		qp->put_io_bufs = 0;
4320 		qp->total_io_bufs = 0;
4321 		spin_unlock(&qp->io_buf_list_put_lock);
4322 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4323 	}
4324 
4325 	/*
4326 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4327 	 * This is because POST_SGL takes a sequential range of XRIs
4328 	 * to post to the firmware.
4329 	 */
4330 	for (idx = 0; idx < cnt; idx++) {
4331 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4332 		if (!lpfc_cmd)
4333 			return cnt;
4334 		if (idx == 0) {
4335 			list_add_tail(&lpfc_cmd->list, cbuf);
4336 			continue;
4337 		}
4338 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4339 		inserted = 0;
4340 		prev_iobufp = NULL;
4341 		list_for_each_entry(iobufp, cbuf, list) {
4342 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4343 				if (prev_iobufp)
4344 					list_add(&lpfc_cmd->list,
4345 						 &prev_iobufp->list);
4346 				else
4347 					list_add(&lpfc_cmd->list, cbuf);
4348 				inserted = 1;
4349 				break;
4350 			}
4351 			prev_iobufp = iobufp;
4352 		}
4353 		if (!inserted)
4354 			list_add_tail(&lpfc_cmd->list, cbuf);
4355 	}
4356 	return cnt;
4357 }
4358 
4359 int
4360 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4361 {
4362 	struct lpfc_sli4_hdw_queue *qp;
4363 	struct lpfc_io_buf *lpfc_cmd;
4364 	int idx, cnt;
4365 	unsigned long iflags;
4366 
4367 	qp = phba->sli4_hba.hdwq;
4368 	cnt = 0;
4369 	while (!list_empty(cbuf)) {
4370 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4371 			list_remove_head(cbuf, lpfc_cmd,
4372 					 struct lpfc_io_buf, list);
4373 			if (!lpfc_cmd)
4374 				return cnt;
4375 			cnt++;
4376 			qp = &phba->sli4_hba.hdwq[idx];
4377 			lpfc_cmd->hdwq_no = idx;
4378 			lpfc_cmd->hdwq = qp;
4379 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4380 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4381 			list_add_tail(&lpfc_cmd->list,
4382 				      &qp->lpfc_io_buf_list_put);
4383 			qp->put_io_bufs++;
4384 			qp->total_io_bufs++;
4385 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4386 					       iflags);
4387 		}
4388 	}
4389 	return cnt;
4390 }
4391 
4392 /**
4393  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4394  * @phba: pointer to lpfc hba data structure.
4395  *
4396  * This routine first calculates the sizes of the current els and allocated
4397  * scsi sgl lists, and then goes through all sgls to updates the physical
4398  * XRIs assigned due to port function reset. During port initialization, the
4399  * current els and allocated scsi sgl lists are 0s.
4400  *
4401  * Return codes
4402  *   0 - successful (for now, it always returns 0)
4403  **/
4404 int
4405 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4406 {
4407 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4408 	uint16_t i, lxri, els_xri_cnt;
4409 	uint16_t io_xri_cnt, io_xri_max;
4410 	LIST_HEAD(io_sgl_list);
4411 	int rc, cnt;
4412 
4413 	/*
4414 	 * update on pci function's allocated nvme xri-sgl list
4415 	 */
4416 
4417 	/* maximum number of xris available for nvme buffers */
4418 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4419 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4420 	phba->sli4_hba.io_xri_max = io_xri_max;
4421 
4422 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4423 			"6074 Current allocated XRI sgl count:%d, "
4424 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4425 			phba->sli4_hba.io_xri_cnt,
4426 			phba->sli4_hba.io_xri_max,
4427 			els_xri_cnt);
4428 
4429 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4430 
4431 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4432 		/* max nvme xri shrunk below the allocated nvme buffers */
4433 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4434 					phba->sli4_hba.io_xri_max;
4435 		/* release the extra allocated nvme buffers */
4436 		for (i = 0; i < io_xri_cnt; i++) {
4437 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4438 					 struct lpfc_io_buf, list);
4439 			if (lpfc_ncmd) {
4440 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4441 					      lpfc_ncmd->data,
4442 					      lpfc_ncmd->dma_handle);
4443 				kfree(lpfc_ncmd);
4444 			}
4445 		}
4446 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4447 	}
4448 
4449 	/* update xris associated to remaining allocated nvme buffers */
4450 	lpfc_ncmd = NULL;
4451 	lpfc_ncmd_next = NULL;
4452 	phba->sli4_hba.io_xri_cnt = cnt;
4453 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4454 				 &io_sgl_list, list) {
4455 		lxri = lpfc_sli4_next_xritag(phba);
4456 		if (lxri == NO_XRI) {
4457 			lpfc_printf_log(phba, KERN_ERR,
4458 					LOG_TRACE_EVENT,
4459 					"6075 Failed to allocate xri for "
4460 					"nvme buffer\n");
4461 			rc = -ENOMEM;
4462 			goto out_free_mem;
4463 		}
4464 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4465 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4466 	}
4467 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4468 	return 0;
4469 
4470 out_free_mem:
4471 	lpfc_io_free(phba);
4472 	return rc;
4473 }
4474 
4475 /**
4476  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4477  * @phba: Pointer to lpfc hba data structure.
4478  * @num_to_alloc: The requested number of buffers to allocate.
4479  *
4480  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4481  * the nvme buffer contains all the necessary information needed to initiate
4482  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4483  * them on a list, it post them to the port by using SGL block post.
4484  *
4485  * Return codes:
4486  *   int - number of IO buffers that were allocated and posted.
4487  *   0 = failure, less than num_to_alloc is a partial failure.
4488  **/
4489 int
4490 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4491 {
4492 	struct lpfc_io_buf *lpfc_ncmd;
4493 	struct lpfc_iocbq *pwqeq;
4494 	uint16_t iotag, lxri = 0;
4495 	int bcnt, num_posted;
4496 	LIST_HEAD(prep_nblist);
4497 	LIST_HEAD(post_nblist);
4498 	LIST_HEAD(nvme_nblist);
4499 
4500 	phba->sli4_hba.io_xri_cnt = 0;
4501 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4502 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4503 		if (!lpfc_ncmd)
4504 			break;
4505 		/*
4506 		 * Get memory from the pci pool to map the virt space to
4507 		 * pci bus space for an I/O. The DMA buffer includes the
4508 		 * number of SGE's necessary to support the sg_tablesize.
4509 		 */
4510 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4511 						  GFP_KERNEL,
4512 						  &lpfc_ncmd->dma_handle);
4513 		if (!lpfc_ncmd->data) {
4514 			kfree(lpfc_ncmd);
4515 			break;
4516 		}
4517 
4518 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4519 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4520 		} else {
4521 			/*
4522 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4523 			 * check to be sure.
4524 			 */
4525 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4526 			    (((unsigned long)(lpfc_ncmd->data) &
4527 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4528 				lpfc_printf_log(phba, KERN_ERR,
4529 						LOG_TRACE_EVENT,
4530 						"3369 Memory alignment err: "
4531 						"addr=%lx\n",
4532 						(unsigned long)lpfc_ncmd->data);
4533 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4534 					      lpfc_ncmd->data,
4535 					      lpfc_ncmd->dma_handle);
4536 				kfree(lpfc_ncmd);
4537 				break;
4538 			}
4539 		}
4540 
4541 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4542 
4543 		lxri = lpfc_sli4_next_xritag(phba);
4544 		if (lxri == NO_XRI) {
4545 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4546 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4547 			kfree(lpfc_ncmd);
4548 			break;
4549 		}
4550 		pwqeq = &lpfc_ncmd->cur_iocbq;
4551 
4552 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4553 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4554 		if (iotag == 0) {
4555 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4556 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4557 			kfree(lpfc_ncmd);
4558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4559 					"6121 Failed to allocate IOTAG for"
4560 					" XRI:0x%x\n", lxri);
4561 			lpfc_sli4_free_xri(phba, lxri);
4562 			break;
4563 		}
4564 		pwqeq->sli4_lxritag = lxri;
4565 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4566 
4567 		/* Initialize local short-hand pointers. */
4568 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4569 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4570 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4571 		spin_lock_init(&lpfc_ncmd->buf_lock);
4572 
4573 		/* add the nvme buffer to a post list */
4574 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4575 		phba->sli4_hba.io_xri_cnt++;
4576 	}
4577 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4578 			"6114 Allocate %d out of %d requested new NVME "
4579 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4580 			sizeof(*lpfc_ncmd));
4581 
4582 
4583 	/* post the list of nvme buffer sgls to port if available */
4584 	if (!list_empty(&post_nblist))
4585 		num_posted = lpfc_sli4_post_io_sgl_list(
4586 				phba, &post_nblist, bcnt);
4587 	else
4588 		num_posted = 0;
4589 
4590 	return num_posted;
4591 }
4592 
4593 static uint64_t
4594 lpfc_get_wwpn(struct lpfc_hba *phba)
4595 {
4596 	uint64_t wwn;
4597 	int rc;
4598 	LPFC_MBOXQ_t *mboxq;
4599 	MAILBOX_t *mb;
4600 
4601 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4602 						GFP_KERNEL);
4603 	if (!mboxq)
4604 		return (uint64_t)-1;
4605 
4606 	/* First get WWN of HBA instance */
4607 	lpfc_read_nv(phba, mboxq);
4608 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4609 	if (rc != MBX_SUCCESS) {
4610 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4611 				"6019 Mailbox failed , mbxCmd x%x "
4612 				"READ_NV, mbxStatus x%x\n",
4613 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4614 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4615 		mempool_free(mboxq, phba->mbox_mem_pool);
4616 		return (uint64_t) -1;
4617 	}
4618 	mb = &mboxq->u.mb;
4619 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4620 	/* wwn is WWPN of HBA instance */
4621 	mempool_free(mboxq, phba->mbox_mem_pool);
4622 	if (phba->sli_rev == LPFC_SLI_REV4)
4623 		return be64_to_cpu(wwn);
4624 	else
4625 		return rol64(wwn, 32);
4626 }
4627 
4628 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4629 {
4630 	if (phba->sli_rev == LPFC_SLI_REV4)
4631 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4632 			return LPFC_MAX_SG_TABLESIZE;
4633 		else
4634 			return phba->cfg_scsi_seg_cnt;
4635 	else
4636 		return phba->cfg_sg_seg_cnt;
4637 }
4638 
4639 /**
4640  * lpfc_vmid_res_alloc - Allocates resources for VMID
4641  * @phba: pointer to lpfc hba data structure.
4642  * @vport: pointer to vport data structure
4643  *
4644  * This routine allocated the resources needed for the VMID.
4645  *
4646  * Return codes
4647  *	0 on Success
4648  *	Non-0 on Failure
4649  */
4650 static int
4651 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4652 {
4653 	/* VMID feature is supported only on SLI4 */
4654 	if (phba->sli_rev == LPFC_SLI_REV3) {
4655 		phba->cfg_vmid_app_header = 0;
4656 		phba->cfg_vmid_priority_tagging = 0;
4657 	}
4658 
4659 	if (lpfc_is_vmid_enabled(phba)) {
4660 		vport->vmid =
4661 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4662 			    GFP_KERNEL);
4663 		if (!vport->vmid)
4664 			return -ENOMEM;
4665 
4666 		rwlock_init(&vport->vmid_lock);
4667 
4668 		/* Set the VMID parameters for the vport */
4669 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4670 		vport->vmid_inactivity_timeout =
4671 		    phba->cfg_vmid_inactivity_timeout;
4672 		vport->max_vmid = phba->cfg_max_vmid;
4673 		vport->cur_vmid_cnt = 0;
4674 
4675 		vport->vmid_priority_range = bitmap_zalloc
4676 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4677 
4678 		if (!vport->vmid_priority_range) {
4679 			kfree(vport->vmid);
4680 			return -ENOMEM;
4681 		}
4682 
4683 		hash_init(vport->hash_table);
4684 	}
4685 	return 0;
4686 }
4687 
4688 /**
4689  * lpfc_create_port - Create an FC port
4690  * @phba: pointer to lpfc hba data structure.
4691  * @instance: a unique integer ID to this FC port.
4692  * @dev: pointer to the device data structure.
4693  *
4694  * This routine creates a FC port for the upper layer protocol. The FC port
4695  * can be created on top of either a physical port or a virtual port provided
4696  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4697  * and associates the FC port created before adding the shost into the SCSI
4698  * layer.
4699  *
4700  * Return codes
4701  *   @vport - pointer to the virtual N_Port data structure.
4702  *   NULL - port create failed.
4703  **/
4704 struct lpfc_vport *
4705 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4706 {
4707 	struct lpfc_vport *vport;
4708 	struct Scsi_Host  *shost = NULL;
4709 	struct scsi_host_template *template;
4710 	int error = 0;
4711 	int i;
4712 	uint64_t wwn;
4713 	bool use_no_reset_hba = false;
4714 	int rc;
4715 
4716 	if (lpfc_no_hba_reset_cnt) {
4717 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4718 		    dev == &phba->pcidev->dev) {
4719 			/* Reset the port first */
4720 			lpfc_sli_brdrestart(phba);
4721 			rc = lpfc_sli_chipset_init(phba);
4722 			if (rc)
4723 				return NULL;
4724 		}
4725 		wwn = lpfc_get_wwpn(phba);
4726 	}
4727 
4728 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4729 		if (wwn == lpfc_no_hba_reset[i]) {
4730 			lpfc_printf_log(phba, KERN_ERR,
4731 					LOG_TRACE_EVENT,
4732 					"6020 Setting use_no_reset port=%llx\n",
4733 					wwn);
4734 			use_no_reset_hba = true;
4735 			break;
4736 		}
4737 	}
4738 
4739 	/* Seed template for SCSI host registration */
4740 	if (dev == &phba->pcidev->dev) {
4741 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4742 			/* Seed physical port template */
4743 			template = &lpfc_template;
4744 
4745 			if (use_no_reset_hba)
4746 				/* template is for a no reset SCSI Host */
4747 				template->eh_host_reset_handler = NULL;
4748 
4749 			/* Seed updated value of sg_tablesize */
4750 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4751 		} else {
4752 			/* NVMET is for physical port only */
4753 			template = &lpfc_template_nvme;
4754 		}
4755 	} else {
4756 		/* Seed vport template */
4757 		template = &lpfc_vport_template;
4758 
4759 		/* Seed updated value of sg_tablesize */
4760 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4761 	}
4762 
4763 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4764 	if (!shost)
4765 		goto out;
4766 
4767 	vport = (struct lpfc_vport *) shost->hostdata;
4768 	vport->phba = phba;
4769 	vport->load_flag |= FC_LOADING;
4770 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4771 	vport->fc_rscn_flush = 0;
4772 	lpfc_get_vport_cfgparam(vport);
4773 
4774 	/* Adjust value in vport */
4775 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4776 
4777 	shost->unique_id = instance;
4778 	shost->max_id = LPFC_MAX_TARGET;
4779 	shost->max_lun = vport->cfg_max_luns;
4780 	shost->this_id = -1;
4781 	shost->max_cmd_len = 16;
4782 
4783 	if (phba->sli_rev == LPFC_SLI_REV4) {
4784 		if (!phba->cfg_fcp_mq_threshold ||
4785 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4786 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4787 
4788 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4789 					    phba->cfg_fcp_mq_threshold);
4790 
4791 		shost->dma_boundary =
4792 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4793 	} else
4794 		/* SLI-3 has a limited number of hardware queues (3),
4795 		 * thus there is only one for FCP processing.
4796 		 */
4797 		shost->nr_hw_queues = 1;
4798 
4799 	/*
4800 	 * Set initial can_queue value since 0 is no longer supported and
4801 	 * scsi_add_host will fail. This will be adjusted later based on the
4802 	 * max xri value determined in hba setup.
4803 	 */
4804 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4805 	if (dev != &phba->pcidev->dev) {
4806 		shost->transportt = lpfc_vport_transport_template;
4807 		vport->port_type = LPFC_NPIV_PORT;
4808 	} else {
4809 		shost->transportt = lpfc_transport_template;
4810 		vport->port_type = LPFC_PHYSICAL_PORT;
4811 	}
4812 
4813 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4814 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4815 			"SEGcnt %d/%d\n",
4816 			vport->port_type, shost->sg_tablesize,
4817 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4818 
4819 	/* Allocate the resources for VMID */
4820 	rc = lpfc_vmid_res_alloc(phba, vport);
4821 
4822 	if (rc)
4823 		goto out_put_shost;
4824 
4825 	/* Initialize all internally managed lists. */
4826 	INIT_LIST_HEAD(&vport->fc_nodes);
4827 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4828 	spin_lock_init(&vport->work_port_lock);
4829 
4830 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4831 
4832 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4833 
4834 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4835 
4836 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4837 		lpfc_setup_bg(phba, shost);
4838 
4839 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4840 	if (error)
4841 		goto out_free_vmid;
4842 
4843 	spin_lock_irq(&phba->port_list_lock);
4844 	list_add_tail(&vport->listentry, &phba->port_list);
4845 	spin_unlock_irq(&phba->port_list_lock);
4846 	return vport;
4847 
4848 out_free_vmid:
4849 	kfree(vport->vmid);
4850 	bitmap_free(vport->vmid_priority_range);
4851 out_put_shost:
4852 	scsi_host_put(shost);
4853 out:
4854 	return NULL;
4855 }
4856 
4857 /**
4858  * destroy_port -  destroy an FC port
4859  * @vport: pointer to an lpfc virtual N_Port data structure.
4860  *
4861  * This routine destroys a FC port from the upper layer protocol. All the
4862  * resources associated with the port are released.
4863  **/
4864 void
4865 destroy_port(struct lpfc_vport *vport)
4866 {
4867 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4868 	struct lpfc_hba  *phba = vport->phba;
4869 
4870 	lpfc_debugfs_terminate(vport);
4871 	fc_remove_host(shost);
4872 	scsi_remove_host(shost);
4873 
4874 	spin_lock_irq(&phba->port_list_lock);
4875 	list_del_init(&vport->listentry);
4876 	spin_unlock_irq(&phba->port_list_lock);
4877 
4878 	lpfc_cleanup(vport);
4879 	return;
4880 }
4881 
4882 /**
4883  * lpfc_get_instance - Get a unique integer ID
4884  *
4885  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4886  * uses the kernel idr facility to perform the task.
4887  *
4888  * Return codes:
4889  *   instance - a unique integer ID allocated as the new instance.
4890  *   -1 - lpfc get instance failed.
4891  **/
4892 int
4893 lpfc_get_instance(void)
4894 {
4895 	int ret;
4896 
4897 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4898 	return ret < 0 ? -1 : ret;
4899 }
4900 
4901 /**
4902  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4903  * @shost: pointer to SCSI host data structure.
4904  * @time: elapsed time of the scan in jiffies.
4905  *
4906  * This routine is called by the SCSI layer with a SCSI host to determine
4907  * whether the scan host is finished.
4908  *
4909  * Note: there is no scan_start function as adapter initialization will have
4910  * asynchronously kicked off the link initialization.
4911  *
4912  * Return codes
4913  *   0 - SCSI host scan is not over yet.
4914  *   1 - SCSI host scan is over.
4915  **/
4916 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4917 {
4918 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4919 	struct lpfc_hba   *phba = vport->phba;
4920 	int stat = 0;
4921 
4922 	spin_lock_irq(shost->host_lock);
4923 
4924 	if (vport->load_flag & FC_UNLOADING) {
4925 		stat = 1;
4926 		goto finished;
4927 	}
4928 	if (time >= msecs_to_jiffies(30 * 1000)) {
4929 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4930 				"0461 Scanning longer than 30 "
4931 				"seconds.  Continuing initialization\n");
4932 		stat = 1;
4933 		goto finished;
4934 	}
4935 	if (time >= msecs_to_jiffies(15 * 1000) &&
4936 	    phba->link_state <= LPFC_LINK_DOWN) {
4937 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4938 				"0465 Link down longer than 15 "
4939 				"seconds.  Continuing initialization\n");
4940 		stat = 1;
4941 		goto finished;
4942 	}
4943 
4944 	if (vport->port_state != LPFC_VPORT_READY)
4945 		goto finished;
4946 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4947 		goto finished;
4948 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4949 		goto finished;
4950 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4951 		goto finished;
4952 
4953 	stat = 1;
4954 
4955 finished:
4956 	spin_unlock_irq(shost->host_lock);
4957 	return stat;
4958 }
4959 
4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4961 {
4962 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4963 	struct lpfc_hba   *phba = vport->phba;
4964 
4965 	fc_host_supported_speeds(shost) = 0;
4966 	/*
4967 	 * Avoid reporting supported link speed for FCoE as it can't be
4968 	 * controlled via FCoE.
4969 	 */
4970 	if (phba->hba_flag & HBA_FCOE_MODE)
4971 		return;
4972 
4973 	if (phba->lmt & LMT_256Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4975 	if (phba->lmt & LMT_128Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4977 	if (phba->lmt & LMT_64Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4979 	if (phba->lmt & LMT_32Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4981 	if (phba->lmt & LMT_16Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4983 	if (phba->lmt & LMT_10Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4985 	if (phba->lmt & LMT_8Gb)
4986 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4987 	if (phba->lmt & LMT_4Gb)
4988 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4989 	if (phba->lmt & LMT_2Gb)
4990 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4991 	if (phba->lmt & LMT_1Gb)
4992 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4993 }
4994 
4995 /**
4996  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4997  * @shost: pointer to SCSI host data structure.
4998  *
4999  * This routine initializes a given SCSI host attributes on a FC port. The
5000  * SCSI host can be either on top of a physical port or a virtual port.
5001  **/
5002 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5003 {
5004 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5005 	struct lpfc_hba   *phba = vport->phba;
5006 	/*
5007 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5008 	 */
5009 
5010 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5011 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5012 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5013 
5014 	memset(fc_host_supported_fc4s(shost), 0,
5015 	       sizeof(fc_host_supported_fc4s(shost)));
5016 	fc_host_supported_fc4s(shost)[2] = 1;
5017 	fc_host_supported_fc4s(shost)[7] = 1;
5018 
5019 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5020 				 sizeof fc_host_symbolic_name(shost));
5021 
5022 	lpfc_host_supported_speeds_set(shost);
5023 
5024 	fc_host_maxframe_size(shost) =
5025 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5026 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5027 
5028 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5029 
5030 	/* This value is also unchanging */
5031 	memset(fc_host_active_fc4s(shost), 0,
5032 	       sizeof(fc_host_active_fc4s(shost)));
5033 	fc_host_active_fc4s(shost)[2] = 1;
5034 	fc_host_active_fc4s(shost)[7] = 1;
5035 
5036 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5037 	spin_lock_irq(shost->host_lock);
5038 	vport->load_flag &= ~FC_LOADING;
5039 	spin_unlock_irq(shost->host_lock);
5040 }
5041 
5042 /**
5043  * lpfc_stop_port_s3 - Stop SLI3 device port
5044  * @phba: pointer to lpfc hba data structure.
5045  *
5046  * This routine is invoked to stop an SLI3 device port, it stops the device
5047  * from generating interrupts and stops the device driver's timers for the
5048  * device.
5049  **/
5050 static void
5051 lpfc_stop_port_s3(struct lpfc_hba *phba)
5052 {
5053 	/* Clear all interrupt enable conditions */
5054 	writel(0, phba->HCregaddr);
5055 	readl(phba->HCregaddr); /* flush */
5056 	/* Clear all pending interrupts */
5057 	writel(0xffffffff, phba->HAregaddr);
5058 	readl(phba->HAregaddr); /* flush */
5059 
5060 	/* Reset some HBA SLI setup states */
5061 	lpfc_stop_hba_timers(phba);
5062 	phba->pport->work_port_events = 0;
5063 }
5064 
5065 /**
5066  * lpfc_stop_port_s4 - Stop SLI4 device port
5067  * @phba: pointer to lpfc hba data structure.
5068  *
5069  * This routine is invoked to stop an SLI4 device port, it stops the device
5070  * from generating interrupts and stops the device driver's timers for the
5071  * device.
5072  **/
5073 static void
5074 lpfc_stop_port_s4(struct lpfc_hba *phba)
5075 {
5076 	/* Reset some HBA SLI4 setup states */
5077 	lpfc_stop_hba_timers(phba);
5078 	if (phba->pport)
5079 		phba->pport->work_port_events = 0;
5080 	phba->sli4_hba.intr_enable = 0;
5081 }
5082 
5083 /**
5084  * lpfc_stop_port - Wrapper function for stopping hba port
5085  * @phba: Pointer to HBA context object.
5086  *
5087  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5088  * the API jump table function pointer from the lpfc_hba struct.
5089  **/
5090 void
5091 lpfc_stop_port(struct lpfc_hba *phba)
5092 {
5093 	phba->lpfc_stop_port(phba);
5094 
5095 	if (phba->wq)
5096 		flush_workqueue(phba->wq);
5097 }
5098 
5099 /**
5100  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5101  * @phba: Pointer to hba for which this call is being executed.
5102  *
5103  * This routine starts the timer waiting for the FCF rediscovery to complete.
5104  **/
5105 void
5106 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5107 {
5108 	unsigned long fcf_redisc_wait_tmo =
5109 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5110 	/* Start fcf rediscovery wait period timer */
5111 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5112 	spin_lock_irq(&phba->hbalock);
5113 	/* Allow action to new fcf asynchronous event */
5114 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5115 	/* Mark the FCF rediscovery pending state */
5116 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5117 	spin_unlock_irq(&phba->hbalock);
5118 }
5119 
5120 /**
5121  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5122  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5123  *
5124  * This routine is invoked when waiting for FCF table rediscover has been
5125  * timed out. If new FCF record(s) has (have) been discovered during the
5126  * wait period, a new FCF event shall be added to the FCOE async event
5127  * list, and then worker thread shall be waked up for processing from the
5128  * worker thread context.
5129  **/
5130 static void
5131 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5132 {
5133 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5134 
5135 	/* Don't send FCF rediscovery event if timer cancelled */
5136 	spin_lock_irq(&phba->hbalock);
5137 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5138 		spin_unlock_irq(&phba->hbalock);
5139 		return;
5140 	}
5141 	/* Clear FCF rediscovery timer pending flag */
5142 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5143 	/* FCF rediscovery event to worker thread */
5144 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5145 	spin_unlock_irq(&phba->hbalock);
5146 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5147 			"2776 FCF rediscover quiescent timer expired\n");
5148 	/* wake up worker thread */
5149 	lpfc_worker_wake_up(phba);
5150 }
5151 
5152 /**
5153  * lpfc_vmid_poll - VMID timeout detection
5154  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5155  *
5156  * This routine is invoked when there is no I/O on by a VM for the specified
5157  * amount of time. When this situation is detected, the VMID has to be
5158  * deregistered from the switch and all the local resources freed. The VMID
5159  * will be reassigned to the VM once the I/O begins.
5160  **/
5161 static void
5162 lpfc_vmid_poll(struct timer_list *t)
5163 {
5164 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5165 	u32 wake_up = 0;
5166 
5167 	/* check if there is a need to issue QFPA */
5168 	if (phba->pport->vmid_priority_tagging) {
5169 		wake_up = 1;
5170 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5171 	}
5172 
5173 	/* Is the vmid inactivity timer enabled */
5174 	if (phba->pport->vmid_inactivity_timeout ||
5175 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5176 		wake_up = 1;
5177 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5178 	}
5179 
5180 	if (wake_up)
5181 		lpfc_worker_wake_up(phba);
5182 
5183 	/* restart the timer for the next iteration */
5184 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5185 							LPFC_VMID_TIMER));
5186 }
5187 
5188 /**
5189  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5190  * @phba: pointer to lpfc hba data structure.
5191  * @acqe_link: pointer to the async link completion queue entry.
5192  *
5193  * This routine is to parse the SLI4 link-attention link fault code.
5194  **/
5195 static void
5196 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5197 			   struct lpfc_acqe_link *acqe_link)
5198 {
5199 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5200 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5201 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5202 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5203 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5204 		break;
5205 	default:
5206 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5207 		case LPFC_ASYNC_LINK_FAULT_NONE:
5208 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5209 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5210 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5211 			break;
5212 		default:
5213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5214 					"0398 Unknown link fault code: x%x\n",
5215 					bf_get(lpfc_acqe_link_fault, acqe_link));
5216 			break;
5217 		}
5218 		break;
5219 	}
5220 }
5221 
5222 /**
5223  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5224  * @phba: pointer to lpfc hba data structure.
5225  * @acqe_link: pointer to the async link completion queue entry.
5226  *
5227  * This routine is to parse the SLI4 link attention type and translate it
5228  * into the base driver's link attention type coding.
5229  *
5230  * Return: Link attention type in terms of base driver's coding.
5231  **/
5232 static uint8_t
5233 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5234 			  struct lpfc_acqe_link *acqe_link)
5235 {
5236 	uint8_t att_type;
5237 
5238 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5239 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5240 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5241 		att_type = LPFC_ATT_LINK_DOWN;
5242 		break;
5243 	case LPFC_ASYNC_LINK_STATUS_UP:
5244 		/* Ignore physical link up events - wait for logical link up */
5245 		att_type = LPFC_ATT_RESERVED;
5246 		break;
5247 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5248 		att_type = LPFC_ATT_LINK_UP;
5249 		break;
5250 	default:
5251 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5252 				"0399 Invalid link attention type: x%x\n",
5253 				bf_get(lpfc_acqe_link_status, acqe_link));
5254 		att_type = LPFC_ATT_RESERVED;
5255 		break;
5256 	}
5257 	return att_type;
5258 }
5259 
5260 /**
5261  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5262  * @phba: pointer to lpfc hba data structure.
5263  *
5264  * This routine is to get an SLI3 FC port's link speed in Mbps.
5265  *
5266  * Return: link speed in terms of Mbps.
5267  **/
5268 uint32_t
5269 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5270 {
5271 	uint32_t link_speed;
5272 
5273 	if (!lpfc_is_link_up(phba))
5274 		return 0;
5275 
5276 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5277 		switch (phba->fc_linkspeed) {
5278 		case LPFC_LINK_SPEED_1GHZ:
5279 			link_speed = 1000;
5280 			break;
5281 		case LPFC_LINK_SPEED_2GHZ:
5282 			link_speed = 2000;
5283 			break;
5284 		case LPFC_LINK_SPEED_4GHZ:
5285 			link_speed = 4000;
5286 			break;
5287 		case LPFC_LINK_SPEED_8GHZ:
5288 			link_speed = 8000;
5289 			break;
5290 		case LPFC_LINK_SPEED_10GHZ:
5291 			link_speed = 10000;
5292 			break;
5293 		case LPFC_LINK_SPEED_16GHZ:
5294 			link_speed = 16000;
5295 			break;
5296 		default:
5297 			link_speed = 0;
5298 		}
5299 	} else {
5300 		if (phba->sli4_hba.link_state.logical_speed)
5301 			link_speed =
5302 			      phba->sli4_hba.link_state.logical_speed;
5303 		else
5304 			link_speed = phba->sli4_hba.link_state.speed;
5305 	}
5306 	return link_speed;
5307 }
5308 
5309 /**
5310  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5311  * @phba: pointer to lpfc hba data structure.
5312  * @evt_code: asynchronous event code.
5313  * @speed_code: asynchronous event link speed code.
5314  *
5315  * This routine is to parse the giving SLI4 async event link speed code into
5316  * value of Mbps for the link speed.
5317  *
5318  * Return: link speed in terms of Mbps.
5319  **/
5320 static uint32_t
5321 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5322 			   uint8_t speed_code)
5323 {
5324 	uint32_t port_speed;
5325 
5326 	switch (evt_code) {
5327 	case LPFC_TRAILER_CODE_LINK:
5328 		switch (speed_code) {
5329 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5330 			port_speed = 0;
5331 			break;
5332 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5333 			port_speed = 10;
5334 			break;
5335 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5336 			port_speed = 100;
5337 			break;
5338 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5339 			port_speed = 1000;
5340 			break;
5341 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5342 			port_speed = 10000;
5343 			break;
5344 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5345 			port_speed = 20000;
5346 			break;
5347 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5348 			port_speed = 25000;
5349 			break;
5350 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5351 			port_speed = 40000;
5352 			break;
5353 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5354 			port_speed = 100000;
5355 			break;
5356 		default:
5357 			port_speed = 0;
5358 		}
5359 		break;
5360 	case LPFC_TRAILER_CODE_FC:
5361 		switch (speed_code) {
5362 		case LPFC_FC_LA_SPEED_UNKNOWN:
5363 			port_speed = 0;
5364 			break;
5365 		case LPFC_FC_LA_SPEED_1G:
5366 			port_speed = 1000;
5367 			break;
5368 		case LPFC_FC_LA_SPEED_2G:
5369 			port_speed = 2000;
5370 			break;
5371 		case LPFC_FC_LA_SPEED_4G:
5372 			port_speed = 4000;
5373 			break;
5374 		case LPFC_FC_LA_SPEED_8G:
5375 			port_speed = 8000;
5376 			break;
5377 		case LPFC_FC_LA_SPEED_10G:
5378 			port_speed = 10000;
5379 			break;
5380 		case LPFC_FC_LA_SPEED_16G:
5381 			port_speed = 16000;
5382 			break;
5383 		case LPFC_FC_LA_SPEED_32G:
5384 			port_speed = 32000;
5385 			break;
5386 		case LPFC_FC_LA_SPEED_64G:
5387 			port_speed = 64000;
5388 			break;
5389 		case LPFC_FC_LA_SPEED_128G:
5390 			port_speed = 128000;
5391 			break;
5392 		case LPFC_FC_LA_SPEED_256G:
5393 			port_speed = 256000;
5394 			break;
5395 		default:
5396 			port_speed = 0;
5397 		}
5398 		break;
5399 	default:
5400 		port_speed = 0;
5401 	}
5402 	return port_speed;
5403 }
5404 
5405 /**
5406  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5407  * @phba: pointer to lpfc hba data structure.
5408  * @acqe_link: pointer to the async link completion queue entry.
5409  *
5410  * This routine is to handle the SLI4 asynchronous FCoE link event.
5411  **/
5412 static void
5413 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5414 			 struct lpfc_acqe_link *acqe_link)
5415 {
5416 	LPFC_MBOXQ_t *pmb;
5417 	MAILBOX_t *mb;
5418 	struct lpfc_mbx_read_top *la;
5419 	uint8_t att_type;
5420 	int rc;
5421 
5422 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5423 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5424 		return;
5425 	phba->fcoe_eventtag = acqe_link->event_tag;
5426 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5427 	if (!pmb) {
5428 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5429 				"0395 The mboxq allocation failed\n");
5430 		return;
5431 	}
5432 
5433 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5434 	if (rc) {
5435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5436 				"0396 mailbox allocation failed\n");
5437 		goto out_free_pmb;
5438 	}
5439 
5440 	/* Cleanup any outstanding ELS commands */
5441 	lpfc_els_flush_all_cmd(phba);
5442 
5443 	/* Block ELS IOCBs until we have done process link event */
5444 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5445 
5446 	/* Update link event statistics */
5447 	phba->sli.slistat.link_event++;
5448 
5449 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5450 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5451 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5452 	pmb->vport = phba->pport;
5453 
5454 	/* Keep the link status for extra SLI4 state machine reference */
5455 	phba->sli4_hba.link_state.speed =
5456 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5457 				bf_get(lpfc_acqe_link_speed, acqe_link));
5458 	phba->sli4_hba.link_state.duplex =
5459 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5460 	phba->sli4_hba.link_state.status =
5461 				bf_get(lpfc_acqe_link_status, acqe_link);
5462 	phba->sli4_hba.link_state.type =
5463 				bf_get(lpfc_acqe_link_type, acqe_link);
5464 	phba->sli4_hba.link_state.number =
5465 				bf_get(lpfc_acqe_link_number, acqe_link);
5466 	phba->sli4_hba.link_state.fault =
5467 				bf_get(lpfc_acqe_link_fault, acqe_link);
5468 	phba->sli4_hba.link_state.logical_speed =
5469 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5470 
5471 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5472 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5473 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5474 			"Logical speed:%dMbps Fault:%d\n",
5475 			phba->sli4_hba.link_state.speed,
5476 			phba->sli4_hba.link_state.topology,
5477 			phba->sli4_hba.link_state.status,
5478 			phba->sli4_hba.link_state.type,
5479 			phba->sli4_hba.link_state.number,
5480 			phba->sli4_hba.link_state.logical_speed,
5481 			phba->sli4_hba.link_state.fault);
5482 	/*
5483 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5484 	 * topology info. Note: Optional for non FC-AL ports.
5485 	 */
5486 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5487 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5488 		if (rc == MBX_NOT_FINISHED)
5489 			goto out_free_pmb;
5490 		return;
5491 	}
5492 	/*
5493 	 * For FCoE Mode: fill in all the topology information we need and call
5494 	 * the READ_TOPOLOGY completion routine to continue without actually
5495 	 * sending the READ_TOPOLOGY mailbox command to the port.
5496 	 */
5497 	/* Initialize completion status */
5498 	mb = &pmb->u.mb;
5499 	mb->mbxStatus = MBX_SUCCESS;
5500 
5501 	/* Parse port fault information field */
5502 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5503 
5504 	/* Parse and translate link attention fields */
5505 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5506 	la->eventTag = acqe_link->event_tag;
5507 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5508 	bf_set(lpfc_mbx_read_top_link_spd, la,
5509 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5510 
5511 	/* Fake the following irrelevant fields */
5512 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5513 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5514 	bf_set(lpfc_mbx_read_top_il, la, 0);
5515 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5516 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5517 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5518 
5519 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5520 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5521 
5522 	return;
5523 
5524 out_free_pmb:
5525 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5526 }
5527 
5528 /**
5529  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5530  * topology.
5531  * @phba: pointer to lpfc hba data structure.
5532  * @speed_code: asynchronous event link speed code.
5533  *
5534  * This routine is to parse the giving SLI4 async event link speed code into
5535  * value of Read topology link speed.
5536  *
5537  * Return: link speed in terms of Read topology.
5538  **/
5539 static uint8_t
5540 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5541 {
5542 	uint8_t port_speed;
5543 
5544 	switch (speed_code) {
5545 	case LPFC_FC_LA_SPEED_1G:
5546 		port_speed = LPFC_LINK_SPEED_1GHZ;
5547 		break;
5548 	case LPFC_FC_LA_SPEED_2G:
5549 		port_speed = LPFC_LINK_SPEED_2GHZ;
5550 		break;
5551 	case LPFC_FC_LA_SPEED_4G:
5552 		port_speed = LPFC_LINK_SPEED_4GHZ;
5553 		break;
5554 	case LPFC_FC_LA_SPEED_8G:
5555 		port_speed = LPFC_LINK_SPEED_8GHZ;
5556 		break;
5557 	case LPFC_FC_LA_SPEED_16G:
5558 		port_speed = LPFC_LINK_SPEED_16GHZ;
5559 		break;
5560 	case LPFC_FC_LA_SPEED_32G:
5561 		port_speed = LPFC_LINK_SPEED_32GHZ;
5562 		break;
5563 	case LPFC_FC_LA_SPEED_64G:
5564 		port_speed = LPFC_LINK_SPEED_64GHZ;
5565 		break;
5566 	case LPFC_FC_LA_SPEED_128G:
5567 		port_speed = LPFC_LINK_SPEED_128GHZ;
5568 		break;
5569 	case LPFC_FC_LA_SPEED_256G:
5570 		port_speed = LPFC_LINK_SPEED_256GHZ;
5571 		break;
5572 	default:
5573 		port_speed = 0;
5574 		break;
5575 	}
5576 
5577 	return port_speed;
5578 }
5579 
5580 void
5581 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5582 {
5583 	if (!phba->rx_monitor) {
5584 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5585 				"4411 Rx Monitor Info is empty.\n");
5586 	} else {
5587 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5588 				       LPFC_MAX_RXMONITOR_DUMP);
5589 	}
5590 }
5591 
5592 /**
5593  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5594  * @phba: pointer to lpfc hba data structure.
5595  * @dtag: FPIN descriptor received
5596  *
5597  * Increment the FPIN received counter/time when it happens.
5598  */
5599 void
5600 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5601 {
5602 	struct lpfc_cgn_info *cp;
5603 	u32 value;
5604 
5605 	/* Make sure we have a congestion info buffer */
5606 	if (!phba->cgn_i)
5607 		return;
5608 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5609 
5610 	/* Update congestion statistics */
5611 	switch (dtag) {
5612 	case ELS_DTAG_LNK_INTEGRITY:
5613 		le32_add_cpu(&cp->link_integ_notification, 1);
5614 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5615 		break;
5616 	case ELS_DTAG_DELIVERY:
5617 		le32_add_cpu(&cp->delivery_notification, 1);
5618 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5619 		break;
5620 	case ELS_DTAG_PEER_CONGEST:
5621 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5622 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5623 		break;
5624 	case ELS_DTAG_CONGESTION:
5625 		le32_add_cpu(&cp->cgn_notification, 1);
5626 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5627 	}
5628 	if (phba->cgn_fpin_frequency &&
5629 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5630 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5631 		cp->cgn_stat_npm = value;
5632 	}
5633 
5634 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5635 				    LPFC_CGN_CRC32_SEED);
5636 	cp->cgn_info_crc = cpu_to_le32(value);
5637 }
5638 
5639 /**
5640  * lpfc_cgn_update_tstamp - Update cmf timestamp
5641  * @phba: pointer to lpfc hba data structure.
5642  * @ts: structure to write the timestamp to.
5643  */
5644 void
5645 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5646 {
5647 	struct timespec64 cur_time;
5648 	struct tm tm_val;
5649 
5650 	ktime_get_real_ts64(&cur_time);
5651 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5652 
5653 	ts->month = tm_val.tm_mon + 1;
5654 	ts->day	= tm_val.tm_mday;
5655 	ts->year = tm_val.tm_year - 100;
5656 	ts->hour = tm_val.tm_hour;
5657 	ts->minute = tm_val.tm_min;
5658 	ts->second = tm_val.tm_sec;
5659 
5660 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5661 			"2646 Updated CMF timestamp : "
5662 			"%u/%u/%u %u:%u:%u\n",
5663 			ts->day, ts->month,
5664 			ts->year, ts->hour,
5665 			ts->minute, ts->second);
5666 }
5667 
5668 /**
5669  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5670  * @timer: Timer cookie to access lpfc private data
5671  *
5672  * Save the congestion event data every minute.
5673  * On the hour collapse all the minute data into hour data. Every day
5674  * collapse all the hour data into daily data. Separate driver
5675  * and fabrc congestion event counters that will be saved out
5676  * to the registered congestion buffer every minute.
5677  */
5678 static enum hrtimer_restart
5679 lpfc_cmf_stats_timer(struct hrtimer *timer)
5680 {
5681 	struct lpfc_hba *phba;
5682 	struct lpfc_cgn_info *cp;
5683 	uint32_t i, index;
5684 	uint16_t value, mvalue;
5685 	uint64_t bps;
5686 	uint32_t mbps;
5687 	uint32_t dvalue, wvalue, lvalue, avalue;
5688 	uint64_t latsum;
5689 	__le16 *ptr;
5690 	__le32 *lptr;
5691 	__le16 *mptr;
5692 
5693 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5694 	/* Make sure we have a congestion info buffer */
5695 	if (!phba->cgn_i)
5696 		return HRTIMER_NORESTART;
5697 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5698 
5699 	phba->cgn_evt_timestamp = jiffies +
5700 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5701 	phba->cgn_evt_minute++;
5702 
5703 	/* We should get to this point in the routine on 1 minute intervals */
5704 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5705 
5706 	if (phba->cgn_fpin_frequency &&
5707 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5708 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5709 		cp->cgn_stat_npm = value;
5710 	}
5711 
5712 	/* Read and clear the latency counters for this minute */
5713 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5714 	latsum = atomic64_read(&phba->cgn_latency_evt);
5715 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5716 	atomic64_set(&phba->cgn_latency_evt, 0);
5717 
5718 	/* We need to store MB/sec bandwidth in the congestion information.
5719 	 * block_cnt is count of 512 byte blocks for the entire minute,
5720 	 * bps will get bytes per sec before finally converting to MB/sec.
5721 	 */
5722 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5723 	phba->rx_block_cnt = 0;
5724 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5725 
5726 	/* Every minute */
5727 	/* cgn parameters */
5728 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5729 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5730 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5731 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5732 
5733 	/* Fill in default LUN qdepth */
5734 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5735 	cp->cgn_lunq = cpu_to_le16(value);
5736 
5737 	/* Record congestion buffer info - every minute
5738 	 * cgn_driver_evt_cnt (Driver events)
5739 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5740 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5741 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5742 	 */
5743 	index = ++cp->cgn_index_minute;
5744 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5745 		cp->cgn_index_minute = 0;
5746 		index = 0;
5747 	}
5748 
5749 	/* Get the number of driver events in this sample and reset counter */
5750 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5751 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5752 
5753 	/* Get the number of warning events - FPIN and Signal for this minute */
5754 	wvalue = 0;
5755 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5756 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5757 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5758 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5759 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5760 
5761 	/* Get the number of alarm events - FPIN and Signal for this minute */
5762 	avalue = 0;
5763 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5764 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5765 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5766 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5767 
5768 	/* Collect the driver, warning, alarm and latency counts for this
5769 	 * minute into the driver congestion buffer.
5770 	 */
5771 	ptr = &cp->cgn_drvr_min[index];
5772 	value = (uint16_t)dvalue;
5773 	*ptr = cpu_to_le16(value);
5774 
5775 	ptr = &cp->cgn_warn_min[index];
5776 	value = (uint16_t)wvalue;
5777 	*ptr = cpu_to_le16(value);
5778 
5779 	ptr = &cp->cgn_alarm_min[index];
5780 	value = (uint16_t)avalue;
5781 	*ptr = cpu_to_le16(value);
5782 
5783 	lptr = &cp->cgn_latency_min[index];
5784 	if (lvalue) {
5785 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5786 		*lptr = cpu_to_le32(lvalue);
5787 	} else {
5788 		*lptr = 0;
5789 	}
5790 
5791 	/* Collect the bandwidth value into the driver's congesion buffer. */
5792 	mptr = &cp->cgn_bw_min[index];
5793 	*mptr = cpu_to_le16(mvalue);
5794 
5795 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5796 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5797 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5798 
5799 	/* Every hour */
5800 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5801 		/* Record congestion buffer info - every hour
5802 		 * Collapse all minutes into an hour
5803 		 */
5804 		index = ++cp->cgn_index_hour;
5805 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5806 			cp->cgn_index_hour = 0;
5807 			index = 0;
5808 		}
5809 
5810 		dvalue = 0;
5811 		wvalue = 0;
5812 		lvalue = 0;
5813 		avalue = 0;
5814 		mvalue = 0;
5815 		mbps = 0;
5816 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5817 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5818 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5819 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5820 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5821 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5822 		}
5823 		if (lvalue)		/* Avg of latency averages */
5824 			lvalue /= LPFC_MIN_HOUR;
5825 		if (mbps)		/* Avg of Bandwidth averages */
5826 			mvalue = mbps / LPFC_MIN_HOUR;
5827 
5828 		lptr = &cp->cgn_drvr_hr[index];
5829 		*lptr = cpu_to_le32(dvalue);
5830 		lptr = &cp->cgn_warn_hr[index];
5831 		*lptr = cpu_to_le32(wvalue);
5832 		lptr = &cp->cgn_latency_hr[index];
5833 		*lptr = cpu_to_le32(lvalue);
5834 		mptr = &cp->cgn_bw_hr[index];
5835 		*mptr = cpu_to_le16(mvalue);
5836 		lptr = &cp->cgn_alarm_hr[index];
5837 		*lptr = cpu_to_le32(avalue);
5838 
5839 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5840 				"2419 Congestion Info - hour "
5841 				"(%d): %d %d %d %d %d\n",
5842 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5843 	}
5844 
5845 	/* Every day */
5846 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5847 		/* Record congestion buffer info - every hour
5848 		 * Collapse all hours into a day. Rotate days
5849 		 * after LPFC_MAX_CGN_DAYS.
5850 		 */
5851 		index = ++cp->cgn_index_day;
5852 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5853 			cp->cgn_index_day = 0;
5854 			index = 0;
5855 		}
5856 
5857 		dvalue = 0;
5858 		wvalue = 0;
5859 		lvalue = 0;
5860 		mvalue = 0;
5861 		mbps = 0;
5862 		avalue = 0;
5863 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5864 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5865 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5866 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5867 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5868 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5869 		}
5870 		if (lvalue)		/* Avg of latency averages */
5871 			lvalue /= LPFC_HOUR_DAY;
5872 		if (mbps)		/* Avg of Bandwidth averages */
5873 			mvalue = mbps / LPFC_HOUR_DAY;
5874 
5875 		lptr = &cp->cgn_drvr_day[index];
5876 		*lptr = cpu_to_le32(dvalue);
5877 		lptr = &cp->cgn_warn_day[index];
5878 		*lptr = cpu_to_le32(wvalue);
5879 		lptr = &cp->cgn_latency_day[index];
5880 		*lptr = cpu_to_le32(lvalue);
5881 		mptr = &cp->cgn_bw_day[index];
5882 		*mptr = cpu_to_le16(mvalue);
5883 		lptr = &cp->cgn_alarm_day[index];
5884 		*lptr = cpu_to_le32(avalue);
5885 
5886 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5887 				"2420 Congestion Info - daily (%d): "
5888 				"%d %d %d %d %d\n",
5889 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5890 	}
5891 
5892 	/* Use the frequency found in the last rcv'ed FPIN */
5893 	value = phba->cgn_fpin_frequency;
5894 	cp->cgn_warn_freq = cpu_to_le16(value);
5895 	cp->cgn_alarm_freq = cpu_to_le16(value);
5896 
5897 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5898 				     LPFC_CGN_CRC32_SEED);
5899 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5900 
5901 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5902 
5903 	return HRTIMER_RESTART;
5904 }
5905 
5906 /**
5907  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5908  * @phba: The Hba for which this call is being executed.
5909  *
5910  * The routine calculates the latency from the beginning of the CMF timer
5911  * interval to the current point in time. It is called from IO completion
5912  * when we exceed our Bandwidth limitation for the time interval.
5913  */
5914 uint32_t
5915 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5916 {
5917 	struct timespec64 cmpl_time;
5918 	uint32_t msec = 0;
5919 
5920 	ktime_get_real_ts64(&cmpl_time);
5921 
5922 	/* This routine works on a ms granularity so sec and usec are
5923 	 * converted accordingly.
5924 	 */
5925 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5926 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5927 			NSEC_PER_MSEC;
5928 	} else {
5929 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5930 			msec = (cmpl_time.tv_sec -
5931 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5932 			msec += ((cmpl_time.tv_nsec -
5933 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5934 		} else {
5935 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5936 				1) * MSEC_PER_SEC;
5937 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5938 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5939 		}
5940 	}
5941 	return msec;
5942 }
5943 
5944 /**
5945  * lpfc_cmf_timer -  This is the timer function for one congestion
5946  * rate interval.
5947  * @timer: Pointer to the high resolution timer that expired
5948  */
5949 static enum hrtimer_restart
5950 lpfc_cmf_timer(struct hrtimer *timer)
5951 {
5952 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5953 					     cmf_timer);
5954 	struct rx_info_entry entry;
5955 	uint32_t io_cnt;
5956 	uint32_t busy, max_read;
5957 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5958 	int timer_interval = LPFC_CMF_INTERVAL;
5959 	uint32_t ms;
5960 	struct lpfc_cgn_stat *cgs;
5961 	int cpu;
5962 
5963 	/* Only restart the timer if congestion mgmt is on */
5964 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5965 	    !phba->cmf_latency.tv_sec) {
5966 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5967 				"6224 CMF timer exit: %d %lld\n",
5968 				phba->cmf_active_mode,
5969 				(uint64_t)phba->cmf_latency.tv_sec);
5970 		return HRTIMER_NORESTART;
5971 	}
5972 
5973 	/* If pport is not ready yet, just exit and wait for
5974 	 * the next timer cycle to hit.
5975 	 */
5976 	if (!phba->pport)
5977 		goto skip;
5978 
5979 	/* Do not block SCSI IO while in the timer routine since
5980 	 * total_bytes will be cleared
5981 	 */
5982 	atomic_set(&phba->cmf_stop_io, 1);
5983 
5984 	/* First we need to calculate the actual ms between
5985 	 * the last timer interrupt and this one. We ask for
5986 	 * LPFC_CMF_INTERVAL, however the actual time may
5987 	 * vary depending on system overhead.
5988 	 */
5989 	ms = lpfc_calc_cmf_latency(phba);
5990 
5991 
5992 	/* Immediately after we calculate the time since the last
5993 	 * timer interrupt, set the start time for the next
5994 	 * interrupt
5995 	 */
5996 	ktime_get_real_ts64(&phba->cmf_latency);
5997 
5998 	phba->cmf_link_byte_count =
5999 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6000 
6001 	/* Collect all the stats from the prior timer interval */
6002 	total = 0;
6003 	io_cnt = 0;
6004 	lat = 0;
6005 	rcv = 0;
6006 	for_each_present_cpu(cpu) {
6007 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6008 		total += atomic64_xchg(&cgs->total_bytes, 0);
6009 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6010 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6011 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6012 	}
6013 
6014 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6015 	 * returned from the last CMF_SYNC_WQE issued, from
6016 	 * cmf_last_sync_bw. This will be the target BW for
6017 	 * this next timer interval.
6018 	 */
6019 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6020 	    phba->link_state != LPFC_LINK_DOWN &&
6021 	    phba->hba_flag & HBA_SETUP) {
6022 		mbpi = phba->cmf_last_sync_bw;
6023 		phba->cmf_last_sync_bw = 0;
6024 		extra = 0;
6025 
6026 		/* Calculate any extra bytes needed to account for the
6027 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6028 		 * calculate the adjustment needed for total to reflect
6029 		 * a full LPFC_CMF_INTERVAL.
6030 		 */
6031 		if (ms && ms < LPFC_CMF_INTERVAL) {
6032 			cnt = div_u64(total, ms); /* bytes per ms */
6033 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6034 			extra = cnt - total;
6035 		}
6036 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6037 	} else {
6038 		/* For Monitor mode or link down we want mbpi
6039 		 * to be the full link speed
6040 		 */
6041 		mbpi = phba->cmf_link_byte_count;
6042 		extra = 0;
6043 	}
6044 	phba->cmf_timer_cnt++;
6045 
6046 	if (io_cnt) {
6047 		/* Update congestion info buffer latency in us */
6048 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6049 		atomic64_add(lat, &phba->cgn_latency_evt);
6050 	}
6051 	busy = atomic_xchg(&phba->cmf_busy, 0);
6052 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6053 
6054 	/* Calculate MBPI for the next timer interval */
6055 	if (mbpi) {
6056 		if (mbpi > phba->cmf_link_byte_count ||
6057 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6058 			mbpi = phba->cmf_link_byte_count;
6059 
6060 		/* Change max_bytes_per_interval to what the prior
6061 		 * CMF_SYNC_WQE cmpl indicated.
6062 		 */
6063 		if (mbpi != phba->cmf_max_bytes_per_interval)
6064 			phba->cmf_max_bytes_per_interval = mbpi;
6065 	}
6066 
6067 	/* Save rxmonitor information for debug */
6068 	if (phba->rx_monitor) {
6069 		entry.total_bytes = total;
6070 		entry.cmf_bytes = total + extra;
6071 		entry.rcv_bytes = rcv;
6072 		entry.cmf_busy = busy;
6073 		entry.cmf_info = phba->cmf_active_info;
6074 		if (io_cnt) {
6075 			entry.avg_io_latency = div_u64(lat, io_cnt);
6076 			entry.avg_io_size = div_u64(rcv, io_cnt);
6077 		} else {
6078 			entry.avg_io_latency = 0;
6079 			entry.avg_io_size = 0;
6080 		}
6081 		entry.max_read_cnt = max_read;
6082 		entry.io_cnt = io_cnt;
6083 		entry.max_bytes_per_interval = mbpi;
6084 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6085 			entry.timer_utilization = phba->cmf_last_ts;
6086 		else
6087 			entry.timer_utilization = ms;
6088 		entry.timer_interval = ms;
6089 		phba->cmf_last_ts = 0;
6090 
6091 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6092 	}
6093 
6094 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6095 		/* If Monitor mode, check if we are oversubscribed
6096 		 * against the full line rate.
6097 		 */
6098 		if (mbpi && total > mbpi)
6099 			atomic_inc(&phba->cgn_driver_evt_cnt);
6100 	}
6101 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6102 
6103 	/* Since total_bytes has already been zero'ed, its okay to unblock
6104 	 * after max_bytes_per_interval is setup.
6105 	 */
6106 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6107 		queue_work(phba->wq, &phba->unblock_request_work);
6108 
6109 	/* SCSI IO is now unblocked */
6110 	atomic_set(&phba->cmf_stop_io, 0);
6111 
6112 skip:
6113 	hrtimer_forward_now(timer,
6114 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6115 	return HRTIMER_RESTART;
6116 }
6117 
6118 #define trunk_link_status(__idx)\
6119 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6120 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6121 		"Link up" : "Link down") : "NA"
6122 /* Did port __idx reported an error */
6123 #define trunk_port_fault(__idx)\
6124 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6125 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6126 
6127 static void
6128 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6129 			      struct lpfc_acqe_fc_la *acqe_fc)
6130 {
6131 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6132 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6133 	u8 cnt = 0;
6134 
6135 	phba->sli4_hba.link_state.speed =
6136 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6137 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6138 
6139 	phba->sli4_hba.link_state.logical_speed =
6140 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6141 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6142 	phba->fc_linkspeed =
6143 		 lpfc_async_link_speed_to_read_top(
6144 				phba,
6145 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6146 
6147 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6148 		phba->trunk_link.link0.state =
6149 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6150 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6151 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6152 		cnt++;
6153 	}
6154 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6155 		phba->trunk_link.link1.state =
6156 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6157 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6158 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6159 		cnt++;
6160 	}
6161 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6162 		phba->trunk_link.link2.state =
6163 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6164 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6165 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6166 		cnt++;
6167 	}
6168 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6169 		phba->trunk_link.link3.state =
6170 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6171 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6172 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6173 		cnt++;
6174 	}
6175 
6176 	if (cnt)
6177 		phba->trunk_link.phy_lnk_speed =
6178 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6179 	else
6180 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6181 
6182 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6183 			"2910 Async FC Trunking Event - Speed:%d\n"
6184 			"\tLogical speed:%d "
6185 			"port0: %s port1: %s port2: %s port3: %s\n",
6186 			phba->sli4_hba.link_state.speed,
6187 			phba->sli4_hba.link_state.logical_speed,
6188 			trunk_link_status(0), trunk_link_status(1),
6189 			trunk_link_status(2), trunk_link_status(3));
6190 
6191 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6192 		lpfc_cmf_signal_init(phba);
6193 
6194 	if (port_fault)
6195 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6196 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6197 				/*
6198 				 * SLI-4: We have only 0xA error codes
6199 				 * defined as of now. print an appropriate
6200 				 * message in case driver needs to be updated.
6201 				 */
6202 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6203 				"UNDEFINED. update driver." : trunk_errmsg[err],
6204 				trunk_port_fault(0), trunk_port_fault(1),
6205 				trunk_port_fault(2), trunk_port_fault(3));
6206 }
6207 
6208 
6209 /**
6210  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6211  * @phba: pointer to lpfc hba data structure.
6212  * @acqe_fc: pointer to the async fc completion queue entry.
6213  *
6214  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6215  * that the event was received and then issue a read_topology mailbox command so
6216  * that the rest of the driver will treat it the same as SLI3.
6217  **/
6218 static void
6219 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6220 {
6221 	LPFC_MBOXQ_t *pmb;
6222 	MAILBOX_t *mb;
6223 	struct lpfc_mbx_read_top *la;
6224 	char *log_level;
6225 	int rc;
6226 
6227 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6228 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6229 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6230 				"2895 Non FC link Event detected.(%d)\n",
6231 				bf_get(lpfc_trailer_type, acqe_fc));
6232 		return;
6233 	}
6234 
6235 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6236 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6237 		lpfc_update_trunk_link_status(phba, acqe_fc);
6238 		return;
6239 	}
6240 
6241 	/* Keep the link status for extra SLI4 state machine reference */
6242 	phba->sli4_hba.link_state.speed =
6243 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6244 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6245 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6246 	phba->sli4_hba.link_state.topology =
6247 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6248 	phba->sli4_hba.link_state.status =
6249 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6250 	phba->sli4_hba.link_state.type =
6251 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6252 	phba->sli4_hba.link_state.number =
6253 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6254 	phba->sli4_hba.link_state.fault =
6255 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6256 	phba->sli4_hba.link_state.link_status =
6257 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6258 
6259 	/*
6260 	 * Only select attention types need logical speed modification to what
6261 	 * was previously set.
6262 	 */
6263 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6264 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6265 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6266 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6267 			phba->sli4_hba.link_state.logical_speed = 0;
6268 		else if (!phba->sli4_hba.conf_trunk)
6269 			phba->sli4_hba.link_state.logical_speed =
6270 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6271 	}
6272 
6273 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6274 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6275 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6276 			"%dMbps Fault:x%x Link Status:x%x\n",
6277 			phba->sli4_hba.link_state.speed,
6278 			phba->sli4_hba.link_state.topology,
6279 			phba->sli4_hba.link_state.status,
6280 			phba->sli4_hba.link_state.type,
6281 			phba->sli4_hba.link_state.number,
6282 			phba->sli4_hba.link_state.logical_speed,
6283 			phba->sli4_hba.link_state.fault,
6284 			phba->sli4_hba.link_state.link_status);
6285 
6286 	/*
6287 	 * The following attention types are informational only, providing
6288 	 * further details about link status.  Overwrite the value of
6289 	 * link_state.status appropriately.  No further action is required.
6290 	 */
6291 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6292 		switch (phba->sli4_hba.link_state.status) {
6293 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6294 			log_level = KERN_WARNING;
6295 			phba->sli4_hba.link_state.status =
6296 					LPFC_FC_LA_TYPE_LINK_DOWN;
6297 			break;
6298 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6299 			/*
6300 			 * During bb credit recovery establishment, receiving
6301 			 * this attention type is normal.  Link Up attention
6302 			 * type is expected to occur before this informational
6303 			 * attention type so keep the Link Up status.
6304 			 */
6305 			log_level = KERN_INFO;
6306 			phba->sli4_hba.link_state.status =
6307 					LPFC_FC_LA_TYPE_LINK_UP;
6308 			break;
6309 		default:
6310 			log_level = KERN_INFO;
6311 			break;
6312 		}
6313 		lpfc_log_msg(phba, log_level, LOG_SLI,
6314 			     "2992 Async FC event - Informational Link "
6315 			     "Attention Type x%x\n",
6316 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6317 		return;
6318 	}
6319 
6320 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6321 	if (!pmb) {
6322 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6323 				"2897 The mboxq allocation failed\n");
6324 		return;
6325 	}
6326 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6327 	if (rc) {
6328 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6329 				"2898 The mboxq prep failed\n");
6330 		goto out_free_pmb;
6331 	}
6332 
6333 	/* Cleanup any outstanding ELS commands */
6334 	lpfc_els_flush_all_cmd(phba);
6335 
6336 	/* Block ELS IOCBs until we have done process link event */
6337 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6338 
6339 	/* Update link event statistics */
6340 	phba->sli.slistat.link_event++;
6341 
6342 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6343 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6344 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6345 	pmb->vport = phba->pport;
6346 
6347 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6348 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6349 
6350 		switch (phba->sli4_hba.link_state.status) {
6351 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6352 			phba->link_flag |= LS_MDS_LINK_DOWN;
6353 			break;
6354 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6355 			phba->link_flag |= LS_MDS_LOOPBACK;
6356 			break;
6357 		default:
6358 			break;
6359 		}
6360 
6361 		/* Initialize completion status */
6362 		mb = &pmb->u.mb;
6363 		mb->mbxStatus = MBX_SUCCESS;
6364 
6365 		/* Parse port fault information field */
6366 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6367 
6368 		/* Parse and translate link attention fields */
6369 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6370 		la->eventTag = acqe_fc->event_tag;
6371 
6372 		if (phba->sli4_hba.link_state.status ==
6373 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6374 			bf_set(lpfc_mbx_read_top_att_type, la,
6375 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6376 		} else {
6377 			bf_set(lpfc_mbx_read_top_att_type, la,
6378 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6379 		}
6380 		/* Invoke the mailbox command callback function */
6381 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6382 
6383 		return;
6384 	}
6385 
6386 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6387 	if (rc == MBX_NOT_FINISHED)
6388 		goto out_free_pmb;
6389 	return;
6390 
6391 out_free_pmb:
6392 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6393 }
6394 
6395 /**
6396  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6397  * @phba: pointer to lpfc hba data structure.
6398  * @acqe_sli: pointer to the async SLI completion queue entry.
6399  *
6400  * This routine is to handle the SLI4 asynchronous SLI events.
6401  **/
6402 static void
6403 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6404 {
6405 	char port_name;
6406 	char message[128];
6407 	uint8_t status;
6408 	uint8_t evt_type;
6409 	uint8_t operational = 0;
6410 	struct temp_event temp_event_data;
6411 	struct lpfc_acqe_misconfigured_event *misconfigured;
6412 	struct lpfc_acqe_cgn_signal *cgn_signal;
6413 	struct Scsi_Host  *shost;
6414 	struct lpfc_vport **vports;
6415 	int rc, i, cnt;
6416 
6417 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6418 
6419 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6420 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6421 			"x%08x x%08x x%08x\n", evt_type,
6422 			acqe_sli->event_data1, acqe_sli->event_data2,
6423 			acqe_sli->event_data3, acqe_sli->trailer);
6424 
6425 	port_name = phba->Port[0];
6426 	if (port_name == 0x00)
6427 		port_name = '?'; /* get port name is empty */
6428 
6429 	switch (evt_type) {
6430 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6431 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6432 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6433 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6434 
6435 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6436 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6437 				acqe_sli->event_data1, port_name);
6438 
6439 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6440 		shost = lpfc_shost_from_vport(phba->pport);
6441 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6442 					  sizeof(temp_event_data),
6443 					  (char *)&temp_event_data,
6444 					  SCSI_NL_VID_TYPE_PCI
6445 					  | PCI_VENDOR_ID_EMULEX);
6446 		break;
6447 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6448 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6449 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6450 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6451 
6452 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6453 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6454 				acqe_sli->event_data1, port_name);
6455 
6456 		shost = lpfc_shost_from_vport(phba->pport);
6457 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6458 					  sizeof(temp_event_data),
6459 					  (char *)&temp_event_data,
6460 					  SCSI_NL_VID_TYPE_PCI
6461 					  | PCI_VENDOR_ID_EMULEX);
6462 		break;
6463 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6464 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6465 					&acqe_sli->event_data1;
6466 
6467 		/* fetch the status for this port */
6468 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6469 		case LPFC_LINK_NUMBER_0:
6470 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6471 					&misconfigured->theEvent);
6472 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6473 					&misconfigured->theEvent);
6474 			break;
6475 		case LPFC_LINK_NUMBER_1:
6476 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6477 					&misconfigured->theEvent);
6478 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6479 					&misconfigured->theEvent);
6480 			break;
6481 		case LPFC_LINK_NUMBER_2:
6482 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6483 					&misconfigured->theEvent);
6484 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6485 					&misconfigured->theEvent);
6486 			break;
6487 		case LPFC_LINK_NUMBER_3:
6488 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6489 					&misconfigured->theEvent);
6490 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6491 					&misconfigured->theEvent);
6492 			break;
6493 		default:
6494 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6495 					"3296 "
6496 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6497 					"event: Invalid link %d",
6498 					phba->sli4_hba.lnk_info.lnk_no);
6499 			return;
6500 		}
6501 
6502 		/* Skip if optic state unchanged */
6503 		if (phba->sli4_hba.lnk_info.optic_state == status)
6504 			return;
6505 
6506 		switch (status) {
6507 		case LPFC_SLI_EVENT_STATUS_VALID:
6508 			sprintf(message, "Physical Link is functional");
6509 			break;
6510 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6511 			sprintf(message, "Optics faulted/incorrectly "
6512 				"installed/not installed - Reseat optics, "
6513 				"if issue not resolved, replace.");
6514 			break;
6515 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6516 			sprintf(message,
6517 				"Optics of two types installed - Remove one "
6518 				"optic or install matching pair of optics.");
6519 			break;
6520 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6521 			sprintf(message, "Incompatible optics - Replace with "
6522 				"compatible optics for card to function.");
6523 			break;
6524 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6525 			sprintf(message, "Unqualified optics - Replace with "
6526 				"Avago optics for Warranty and Technical "
6527 				"Support - Link is%s operational",
6528 				(operational) ? " not" : "");
6529 			break;
6530 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6531 			sprintf(message, "Uncertified optics - Replace with "
6532 				"Avago-certified optics to enable link "
6533 				"operation - Link is%s operational",
6534 				(operational) ? " not" : "");
6535 			break;
6536 		default:
6537 			/* firmware is reporting a status we don't know about */
6538 			sprintf(message, "Unknown event status x%02x", status);
6539 			break;
6540 		}
6541 
6542 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6543 		rc = lpfc_sli4_read_config(phba);
6544 		if (rc) {
6545 			phba->lmt = 0;
6546 			lpfc_printf_log(phba, KERN_ERR,
6547 					LOG_TRACE_EVENT,
6548 					"3194 Unable to retrieve supported "
6549 					"speeds, rc = 0x%x\n", rc);
6550 		}
6551 		rc = lpfc_sli4_refresh_params(phba);
6552 		if (rc) {
6553 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6554 					"3174 Unable to update pls support, "
6555 					"rc x%x\n", rc);
6556 		}
6557 		vports = lpfc_create_vport_work_array(phba);
6558 		if (vports != NULL) {
6559 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6560 					i++) {
6561 				shost = lpfc_shost_from_vport(vports[i]);
6562 				lpfc_host_supported_speeds_set(shost);
6563 			}
6564 		}
6565 		lpfc_destroy_vport_work_array(phba, vports);
6566 
6567 		phba->sli4_hba.lnk_info.optic_state = status;
6568 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6569 				"3176 Port Name %c %s\n", port_name, message);
6570 		break;
6571 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6572 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6573 				"3192 Remote DPort Test Initiated - "
6574 				"Event Data1:x%08x Event Data2: x%08x\n",
6575 				acqe_sli->event_data1, acqe_sli->event_data2);
6576 		break;
6577 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6578 		/* Call FW to obtain active parms */
6579 		lpfc_sli4_cgn_parm_chg_evt(phba);
6580 		break;
6581 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6582 		/* Misconfigured WWN. Reports that the SLI Port is configured
6583 		 * to use FA-WWN, but the attached device doesn’t support it.
6584 		 * Event Data1 - N.A, Event Data2 - N.A
6585 		 * This event only happens on the physical port.
6586 		 */
6587 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6588 			     "2699 Misconfigured FA-PWWN - Attached device "
6589 			     "does not support FA-PWWN\n");
6590 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6591 		memset(phba->pport->fc_portname.u.wwn, 0,
6592 		       sizeof(struct lpfc_name));
6593 		break;
6594 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6595 		/* EEPROM failure. No driver action is required */
6596 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6597 			     "2518 EEPROM failure - "
6598 			     "Event Data1: x%08x Event Data2: x%08x\n",
6599 			     acqe_sli->event_data1, acqe_sli->event_data2);
6600 		break;
6601 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6602 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6603 			break;
6604 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6605 					&acqe_sli->event_data1;
6606 		phba->cgn_acqe_cnt++;
6607 
6608 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6609 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6610 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6611 
6612 		/* no threshold for CMF, even 1 signal will trigger an event */
6613 
6614 		/* Alarm overrides warning, so check that first */
6615 		if (cgn_signal->alarm_cnt) {
6616 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6617 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6618 				atomic_add(cgn_signal->alarm_cnt,
6619 					   &phba->cgn_sync_alarm_cnt);
6620 			}
6621 		} else if (cnt) {
6622 			/* signal action needs to be taken */
6623 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6624 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6625 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6626 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6627 			}
6628 		}
6629 		break;
6630 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6631 		/* May be accompanied by a temperature event */
6632 		lpfc_printf_log(phba, KERN_INFO,
6633 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6634 				"2902 Remote Degrade Signaling: x%08x x%08x "
6635 				"x%08x\n",
6636 				acqe_sli->event_data1, acqe_sli->event_data2,
6637 				acqe_sli->event_data3);
6638 		break;
6639 	default:
6640 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6641 				"3193 Unrecognized SLI event, type: 0x%x",
6642 				evt_type);
6643 		break;
6644 	}
6645 }
6646 
6647 /**
6648  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6649  * @vport: pointer to vport data structure.
6650  *
6651  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6652  * response to a CVL event.
6653  *
6654  * Return the pointer to the ndlp with the vport if successful, otherwise
6655  * return NULL.
6656  **/
6657 static struct lpfc_nodelist *
6658 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6659 {
6660 	struct lpfc_nodelist *ndlp;
6661 	struct Scsi_Host *shost;
6662 	struct lpfc_hba *phba;
6663 
6664 	if (!vport)
6665 		return NULL;
6666 	phba = vport->phba;
6667 	if (!phba)
6668 		return NULL;
6669 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6670 	if (!ndlp) {
6671 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6672 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6673 		if (!ndlp)
6674 			return NULL;
6675 		/* Set the node type */
6676 		ndlp->nlp_type |= NLP_FABRIC;
6677 		/* Put ndlp onto node list */
6678 		lpfc_enqueue_node(vport, ndlp);
6679 	}
6680 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6681 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6682 		return NULL;
6683 	/* If virtual link is not yet instantiated ignore CVL */
6684 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6685 		&& (vport->port_state != LPFC_VPORT_FAILED))
6686 		return NULL;
6687 	shost = lpfc_shost_from_vport(vport);
6688 	if (!shost)
6689 		return NULL;
6690 	lpfc_linkdown_port(vport);
6691 	lpfc_cleanup_pending_mbox(vport);
6692 	spin_lock_irq(shost->host_lock);
6693 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6694 	spin_unlock_irq(shost->host_lock);
6695 
6696 	return ndlp;
6697 }
6698 
6699 /**
6700  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6701  * @phba: pointer to lpfc hba data structure.
6702  *
6703  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6704  * response to a FCF dead event.
6705  **/
6706 static void
6707 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6708 {
6709 	struct lpfc_vport **vports;
6710 	int i;
6711 
6712 	vports = lpfc_create_vport_work_array(phba);
6713 	if (vports)
6714 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6715 			lpfc_sli4_perform_vport_cvl(vports[i]);
6716 	lpfc_destroy_vport_work_array(phba, vports);
6717 }
6718 
6719 /**
6720  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6721  * @phba: pointer to lpfc hba data structure.
6722  * @acqe_fip: pointer to the async fcoe completion queue entry.
6723  *
6724  * This routine is to handle the SLI4 asynchronous fcoe event.
6725  **/
6726 static void
6727 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6728 			struct lpfc_acqe_fip *acqe_fip)
6729 {
6730 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6731 	int rc;
6732 	struct lpfc_vport *vport;
6733 	struct lpfc_nodelist *ndlp;
6734 	int active_vlink_present;
6735 	struct lpfc_vport **vports;
6736 	int i;
6737 
6738 	phba->fc_eventTag = acqe_fip->event_tag;
6739 	phba->fcoe_eventtag = acqe_fip->event_tag;
6740 	switch (event_type) {
6741 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6742 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6743 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6744 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6745 					"2546 New FCF event, evt_tag:x%x, "
6746 					"index:x%x\n",
6747 					acqe_fip->event_tag,
6748 					acqe_fip->index);
6749 		else
6750 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6751 					LOG_DISCOVERY,
6752 					"2788 FCF param modified event, "
6753 					"evt_tag:x%x, index:x%x\n",
6754 					acqe_fip->event_tag,
6755 					acqe_fip->index);
6756 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6757 			/*
6758 			 * During period of FCF discovery, read the FCF
6759 			 * table record indexed by the event to update
6760 			 * FCF roundrobin failover eligible FCF bmask.
6761 			 */
6762 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6763 					LOG_DISCOVERY,
6764 					"2779 Read FCF (x%x) for updating "
6765 					"roundrobin FCF failover bmask\n",
6766 					acqe_fip->index);
6767 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6768 		}
6769 
6770 		/* If the FCF discovery is in progress, do nothing. */
6771 		spin_lock_irq(&phba->hbalock);
6772 		if (phba->hba_flag & FCF_TS_INPROG) {
6773 			spin_unlock_irq(&phba->hbalock);
6774 			break;
6775 		}
6776 		/* If fast FCF failover rescan event is pending, do nothing */
6777 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6778 			spin_unlock_irq(&phba->hbalock);
6779 			break;
6780 		}
6781 
6782 		/* If the FCF has been in discovered state, do nothing. */
6783 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6784 			spin_unlock_irq(&phba->hbalock);
6785 			break;
6786 		}
6787 		spin_unlock_irq(&phba->hbalock);
6788 
6789 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6790 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6791 				"2770 Start FCF table scan per async FCF "
6792 				"event, evt_tag:x%x, index:x%x\n",
6793 				acqe_fip->event_tag, acqe_fip->index);
6794 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6795 						     LPFC_FCOE_FCF_GET_FIRST);
6796 		if (rc)
6797 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6798 					"2547 Issue FCF scan read FCF mailbox "
6799 					"command failed (x%x)\n", rc);
6800 		break;
6801 
6802 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6803 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6804 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6805 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6806 				acqe_fip->event_tag);
6807 		break;
6808 
6809 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6810 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6812 				"2549 FCF (x%x) disconnected from network, "
6813 				 "tag:x%x\n", acqe_fip->index,
6814 				 acqe_fip->event_tag);
6815 		/*
6816 		 * If we are in the middle of FCF failover process, clear
6817 		 * the corresponding FCF bit in the roundrobin bitmap.
6818 		 */
6819 		spin_lock_irq(&phba->hbalock);
6820 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6821 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6822 			spin_unlock_irq(&phba->hbalock);
6823 			/* Update FLOGI FCF failover eligible FCF bmask */
6824 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6825 			break;
6826 		}
6827 		spin_unlock_irq(&phba->hbalock);
6828 
6829 		/* If the event is not for currently used fcf do nothing */
6830 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6831 			break;
6832 
6833 		/*
6834 		 * Otherwise, request the port to rediscover the entire FCF
6835 		 * table for a fast recovery from case that the current FCF
6836 		 * is no longer valid as we are not in the middle of FCF
6837 		 * failover process already.
6838 		 */
6839 		spin_lock_irq(&phba->hbalock);
6840 		/* Mark the fast failover process in progress */
6841 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6842 		spin_unlock_irq(&phba->hbalock);
6843 
6844 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6845 				"2771 Start FCF fast failover process due to "
6846 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6847 				"\n", acqe_fip->event_tag, acqe_fip->index);
6848 		rc = lpfc_sli4_redisc_fcf_table(phba);
6849 		if (rc) {
6850 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6851 					LOG_TRACE_EVENT,
6852 					"2772 Issue FCF rediscover mailbox "
6853 					"command failed, fail through to FCF "
6854 					"dead event\n");
6855 			spin_lock_irq(&phba->hbalock);
6856 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6857 			spin_unlock_irq(&phba->hbalock);
6858 			/*
6859 			 * Last resort will fail over by treating this
6860 			 * as a link down to FCF registration.
6861 			 */
6862 			lpfc_sli4_fcf_dead_failthrough(phba);
6863 		} else {
6864 			/* Reset FCF roundrobin bmask for new discovery */
6865 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6866 			/*
6867 			 * Handling fast FCF failover to a DEAD FCF event is
6868 			 * considered equalivant to receiving CVL to all vports.
6869 			 */
6870 			lpfc_sli4_perform_all_vport_cvl(phba);
6871 		}
6872 		break;
6873 	case LPFC_FIP_EVENT_TYPE_CVL:
6874 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6875 		lpfc_printf_log(phba, KERN_ERR,
6876 				LOG_TRACE_EVENT,
6877 			"2718 Clear Virtual Link Received for VPI 0x%x"
6878 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6879 
6880 		vport = lpfc_find_vport_by_vpid(phba,
6881 						acqe_fip->index);
6882 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6883 		if (!ndlp)
6884 			break;
6885 		active_vlink_present = 0;
6886 
6887 		vports = lpfc_create_vport_work_array(phba);
6888 		if (vports) {
6889 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6890 					i++) {
6891 				if ((!(vports[i]->fc_flag &
6892 					FC_VPORT_CVL_RCVD)) &&
6893 					(vports[i]->port_state > LPFC_FDISC)) {
6894 					active_vlink_present = 1;
6895 					break;
6896 				}
6897 			}
6898 			lpfc_destroy_vport_work_array(phba, vports);
6899 		}
6900 
6901 		/*
6902 		 * Don't re-instantiate if vport is marked for deletion.
6903 		 * If we are here first then vport_delete is going to wait
6904 		 * for discovery to complete.
6905 		 */
6906 		if (!(vport->load_flag & FC_UNLOADING) &&
6907 					active_vlink_present) {
6908 			/*
6909 			 * If there are other active VLinks present,
6910 			 * re-instantiate the Vlink using FDISC.
6911 			 */
6912 			mod_timer(&ndlp->nlp_delayfunc,
6913 				  jiffies + msecs_to_jiffies(1000));
6914 			spin_lock_irq(&ndlp->lock);
6915 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6916 			spin_unlock_irq(&ndlp->lock);
6917 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6918 			vport->port_state = LPFC_FDISC;
6919 		} else {
6920 			/*
6921 			 * Otherwise, we request port to rediscover
6922 			 * the entire FCF table for a fast recovery
6923 			 * from possible case that the current FCF
6924 			 * is no longer valid if we are not already
6925 			 * in the FCF failover process.
6926 			 */
6927 			spin_lock_irq(&phba->hbalock);
6928 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6929 				spin_unlock_irq(&phba->hbalock);
6930 				break;
6931 			}
6932 			/* Mark the fast failover process in progress */
6933 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6934 			spin_unlock_irq(&phba->hbalock);
6935 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6936 					LOG_DISCOVERY,
6937 					"2773 Start FCF failover per CVL, "
6938 					"evt_tag:x%x\n", acqe_fip->event_tag);
6939 			rc = lpfc_sli4_redisc_fcf_table(phba);
6940 			if (rc) {
6941 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6942 						LOG_TRACE_EVENT,
6943 						"2774 Issue FCF rediscover "
6944 						"mailbox command failed, "
6945 						"through to CVL event\n");
6946 				spin_lock_irq(&phba->hbalock);
6947 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6948 				spin_unlock_irq(&phba->hbalock);
6949 				/*
6950 				 * Last resort will be re-try on the
6951 				 * the current registered FCF entry.
6952 				 */
6953 				lpfc_retry_pport_discovery(phba);
6954 			} else
6955 				/*
6956 				 * Reset FCF roundrobin bmask for new
6957 				 * discovery.
6958 				 */
6959 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6960 		}
6961 		break;
6962 	default:
6963 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6964 				"0288 Unknown FCoE event type 0x%x event tag "
6965 				"0x%x\n", event_type, acqe_fip->event_tag);
6966 		break;
6967 	}
6968 }
6969 
6970 /**
6971  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6972  * @phba: pointer to lpfc hba data structure.
6973  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6974  *
6975  * This routine is to handle the SLI4 asynchronous dcbx event.
6976  **/
6977 static void
6978 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6979 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6980 {
6981 	phba->fc_eventTag = acqe_dcbx->event_tag;
6982 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6983 			"0290 The SLI4 DCBX asynchronous event is not "
6984 			"handled yet\n");
6985 }
6986 
6987 /**
6988  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6989  * @phba: pointer to lpfc hba data structure.
6990  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6991  *
6992  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6993  * is an asynchronous notified of a logical link speed change.  The Port
6994  * reports the logical link speed in units of 10Mbps.
6995  **/
6996 static void
6997 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6998 			 struct lpfc_acqe_grp5 *acqe_grp5)
6999 {
7000 	uint16_t prev_ll_spd;
7001 
7002 	phba->fc_eventTag = acqe_grp5->event_tag;
7003 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7004 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7005 	phba->sli4_hba.link_state.logical_speed =
7006 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7007 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7008 			"2789 GRP5 Async Event: Updating logical link speed "
7009 			"from %dMbps to %dMbps\n", prev_ll_spd,
7010 			phba->sli4_hba.link_state.logical_speed);
7011 }
7012 
7013 /**
7014  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7015  * @phba: pointer to lpfc hba data structure.
7016  *
7017  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7018  * is an asynchronous notification of a request to reset CM stats.
7019  **/
7020 static void
7021 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7022 {
7023 	if (!phba->cgn_i)
7024 		return;
7025 	lpfc_init_congestion_stat(phba);
7026 }
7027 
7028 /**
7029  * lpfc_cgn_params_val - Validate FW congestion parameters.
7030  * @phba: pointer to lpfc hba data structure.
7031  * @p_cfg_param: pointer to FW provided congestion parameters.
7032  *
7033  * This routine validates the congestion parameters passed
7034  * by the FW to the driver via an ACQE event.
7035  **/
7036 static void
7037 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7038 {
7039 	spin_lock_irq(&phba->hbalock);
7040 
7041 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7042 			     LPFC_CFG_MONITOR)) {
7043 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7044 				"6225 CMF mode param out of range: %d\n",
7045 				 p_cfg_param->cgn_param_mode);
7046 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7047 	}
7048 
7049 	spin_unlock_irq(&phba->hbalock);
7050 }
7051 
7052 static const char * const lpfc_cmf_mode_to_str[] = {
7053 	"OFF",
7054 	"MANAGED",
7055 	"MONITOR",
7056 };
7057 
7058 /**
7059  * lpfc_cgn_params_parse - Process a FW cong parm change event
7060  * @phba: pointer to lpfc hba data structure.
7061  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7062  * @len: the size of pdata in bytes.
7063  *
7064  * This routine validates the congestion management buffer signature
7065  * from the FW, validates the contents and makes corrections for
7066  * valid, in-range values.  If the signature magic is correct and
7067  * after parameter validation, the contents are copied to the driver's
7068  * @phba structure. If the magic is incorrect, an error message is
7069  * logged.
7070  **/
7071 static void
7072 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7073 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7074 {
7075 	struct lpfc_cgn_info *cp;
7076 	uint32_t crc, oldmode;
7077 	char acr_string[4] = {0};
7078 
7079 	/* Make sure the FW has encoded the correct magic number to
7080 	 * validate the congestion parameter in FW memory.
7081 	 */
7082 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7083 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7084 				"4668 FW cgn parm buffer data: "
7085 				"magic 0x%x version %d mode %d "
7086 				"level0 %d level1 %d "
7087 				"level2 %d byte13 %d "
7088 				"byte14 %d byte15 %d "
7089 				"byte11 %d byte12 %d activeMode %d\n",
7090 				p_cgn_param->cgn_param_magic,
7091 				p_cgn_param->cgn_param_version,
7092 				p_cgn_param->cgn_param_mode,
7093 				p_cgn_param->cgn_param_level0,
7094 				p_cgn_param->cgn_param_level1,
7095 				p_cgn_param->cgn_param_level2,
7096 				p_cgn_param->byte13,
7097 				p_cgn_param->byte14,
7098 				p_cgn_param->byte15,
7099 				p_cgn_param->byte11,
7100 				p_cgn_param->byte12,
7101 				phba->cmf_active_mode);
7102 
7103 		oldmode = phba->cmf_active_mode;
7104 
7105 		/* Any parameters out of range are corrected to defaults
7106 		 * by this routine.  No need to fail.
7107 		 */
7108 		lpfc_cgn_params_val(phba, p_cgn_param);
7109 
7110 		/* Parameters are verified, move them into driver storage */
7111 		spin_lock_irq(&phba->hbalock);
7112 		memcpy(&phba->cgn_p, p_cgn_param,
7113 		       sizeof(struct lpfc_cgn_param));
7114 
7115 		/* Update parameters in congestion info buffer now */
7116 		if (phba->cgn_i) {
7117 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7118 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7119 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7120 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7121 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7122 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7123 						  LPFC_CGN_CRC32_SEED);
7124 			cp->cgn_info_crc = cpu_to_le32(crc);
7125 		}
7126 		spin_unlock_irq(&phba->hbalock);
7127 
7128 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7129 
7130 		switch (oldmode) {
7131 		case LPFC_CFG_OFF:
7132 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7133 				/* Turning CMF on */
7134 				lpfc_cmf_start(phba);
7135 
7136 				if (phba->link_state >= LPFC_LINK_UP) {
7137 					phba->cgn_reg_fpin =
7138 						phba->cgn_init_reg_fpin;
7139 					phba->cgn_reg_signal =
7140 						phba->cgn_init_reg_signal;
7141 					lpfc_issue_els_edc(phba->pport, 0);
7142 				}
7143 			}
7144 			break;
7145 		case LPFC_CFG_MANAGED:
7146 			switch (phba->cgn_p.cgn_param_mode) {
7147 			case LPFC_CFG_OFF:
7148 				/* Turning CMF off */
7149 				lpfc_cmf_stop(phba);
7150 				if (phba->link_state >= LPFC_LINK_UP)
7151 					lpfc_issue_els_edc(phba->pport, 0);
7152 				break;
7153 			case LPFC_CFG_MONITOR:
7154 				phba->cmf_max_bytes_per_interval =
7155 					phba->cmf_link_byte_count;
7156 
7157 				/* Resume blocked IO - unblock on workqueue */
7158 				queue_work(phba->wq,
7159 					   &phba->unblock_request_work);
7160 				break;
7161 			}
7162 			break;
7163 		case LPFC_CFG_MONITOR:
7164 			switch (phba->cgn_p.cgn_param_mode) {
7165 			case LPFC_CFG_OFF:
7166 				/* Turning CMF off */
7167 				lpfc_cmf_stop(phba);
7168 				if (phba->link_state >= LPFC_LINK_UP)
7169 					lpfc_issue_els_edc(phba->pport, 0);
7170 				break;
7171 			case LPFC_CFG_MANAGED:
7172 				lpfc_cmf_signal_init(phba);
7173 				break;
7174 			}
7175 			break;
7176 		}
7177 		if (oldmode != LPFC_CFG_OFF ||
7178 		    oldmode != phba->cgn_p.cgn_param_mode) {
7179 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7180 				scnprintf(acr_string, sizeof(acr_string), "%u",
7181 					  phba->cgn_p.cgn_param_level0);
7182 			else
7183 				scnprintf(acr_string, sizeof(acr_string), "NA");
7184 
7185 			dev_info(&phba->pcidev->dev, "%d: "
7186 				 "4663 CMF: Mode %s acr %s\n",
7187 				 phba->brd_no,
7188 				 lpfc_cmf_mode_to_str
7189 				 [phba->cgn_p.cgn_param_mode],
7190 				 acr_string);
7191 		}
7192 	} else {
7193 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7194 				"4669 FW cgn parm buf wrong magic 0x%x "
7195 				"version %d\n", p_cgn_param->cgn_param_magic,
7196 				p_cgn_param->cgn_param_version);
7197 	}
7198 }
7199 
7200 /**
7201  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7202  * @phba: pointer to lpfc hba data structure.
7203  *
7204  * This routine issues a read_object mailbox command to
7205  * get the congestion management parameters from the FW
7206  * parses it and updates the driver maintained values.
7207  *
7208  * Returns
7209  *  0     if the object was empty
7210  *  -Eval if an error was encountered
7211  *  Count if bytes were read from object
7212  **/
7213 int
7214 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7215 {
7216 	int ret = 0;
7217 	struct lpfc_cgn_param *p_cgn_param = NULL;
7218 	u32 *pdata = NULL;
7219 	u32 len = 0;
7220 
7221 	/* Find out if the FW has a new set of congestion parameters. */
7222 	len = sizeof(struct lpfc_cgn_param);
7223 	pdata = kzalloc(len, GFP_KERNEL);
7224 	if (!pdata)
7225 		return -ENOMEM;
7226 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7227 			       pdata, len);
7228 
7229 	/* 0 means no data.  A negative means error.  A positive means
7230 	 * bytes were copied.
7231 	 */
7232 	if (!ret) {
7233 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7234 				"4670 CGN RD OBJ returns no data\n");
7235 		goto rd_obj_err;
7236 	} else if (ret < 0) {
7237 		/* Some error.  Just exit and return it to the caller.*/
7238 		goto rd_obj_err;
7239 	}
7240 
7241 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7242 			"6234 READ CGN PARAMS Successful %d\n", len);
7243 
7244 	/* Parse data pointer over len and update the phba congestion
7245 	 * parameters with values passed back.  The receive rate values
7246 	 * may have been altered in FW, but take no action here.
7247 	 */
7248 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7249 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7250 
7251  rd_obj_err:
7252 	kfree(pdata);
7253 	return ret;
7254 }
7255 
7256 /**
7257  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7258  * @phba: pointer to lpfc hba data structure.
7259  *
7260  * The FW generated Async ACQE SLI event calls this routine when
7261  * the event type is an SLI Internal Port Event and the Event Code
7262  * indicates a change to the FW maintained congestion parameters.
7263  *
7264  * This routine executes a Read_Object mailbox call to obtain the
7265  * current congestion parameters maintained in FW and corrects
7266  * the driver's active congestion parameters.
7267  *
7268  * The acqe event is not passed because there is no further data
7269  * required.
7270  *
7271  * Returns nonzero error if event processing encountered an error.
7272  * Zero otherwise for success.
7273  **/
7274 static int
7275 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7276 {
7277 	int ret = 0;
7278 
7279 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7280 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7281 				"4664 Cgn Evt when E2E off. Drop event\n");
7282 		return -EACCES;
7283 	}
7284 
7285 	/* If the event is claiming an empty object, it's ok.  A write
7286 	 * could have cleared it.  Only error is a negative return
7287 	 * status.
7288 	 */
7289 	ret = lpfc_sli4_cgn_params_read(phba);
7290 	if (ret < 0) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7292 				"4667 Error reading Cgn Params (%d)\n",
7293 				ret);
7294 	} else if (!ret) {
7295 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7296 				"4673 CGN Event empty object.\n");
7297 	}
7298 	return ret;
7299 }
7300 
7301 /**
7302  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7303  * @phba: pointer to lpfc hba data structure.
7304  *
7305  * This routine is invoked by the worker thread to process all the pending
7306  * SLI4 asynchronous events.
7307  **/
7308 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7309 {
7310 	struct lpfc_cq_event *cq_event;
7311 	unsigned long iflags;
7312 
7313 	/* First, declare the async event has been handled */
7314 	spin_lock_irqsave(&phba->hbalock, iflags);
7315 	phba->hba_flag &= ~ASYNC_EVENT;
7316 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7317 
7318 	/* Now, handle all the async events */
7319 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7320 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7321 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7322 				 cq_event, struct lpfc_cq_event, list);
7323 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7324 				       iflags);
7325 
7326 		/* Process the asynchronous event */
7327 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7328 		case LPFC_TRAILER_CODE_LINK:
7329 			lpfc_sli4_async_link_evt(phba,
7330 						 &cq_event->cqe.acqe_link);
7331 			break;
7332 		case LPFC_TRAILER_CODE_FCOE:
7333 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7334 			break;
7335 		case LPFC_TRAILER_CODE_DCBX:
7336 			lpfc_sli4_async_dcbx_evt(phba,
7337 						 &cq_event->cqe.acqe_dcbx);
7338 			break;
7339 		case LPFC_TRAILER_CODE_GRP5:
7340 			lpfc_sli4_async_grp5_evt(phba,
7341 						 &cq_event->cqe.acqe_grp5);
7342 			break;
7343 		case LPFC_TRAILER_CODE_FC:
7344 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7345 			break;
7346 		case LPFC_TRAILER_CODE_SLI:
7347 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7348 			break;
7349 		case LPFC_TRAILER_CODE_CMSTAT:
7350 			lpfc_sli4_async_cmstat_evt(phba);
7351 			break;
7352 		default:
7353 			lpfc_printf_log(phba, KERN_ERR,
7354 					LOG_TRACE_EVENT,
7355 					"1804 Invalid asynchronous event code: "
7356 					"x%x\n", bf_get(lpfc_trailer_code,
7357 					&cq_event->cqe.mcqe_cmpl));
7358 			break;
7359 		}
7360 
7361 		/* Free the completion event processed to the free pool */
7362 		lpfc_sli4_cq_event_release(phba, cq_event);
7363 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7364 	}
7365 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7366 }
7367 
7368 /**
7369  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7370  * @phba: pointer to lpfc hba data structure.
7371  *
7372  * This routine is invoked by the worker thread to process FCF table
7373  * rediscovery pending completion event.
7374  **/
7375 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7376 {
7377 	int rc;
7378 
7379 	spin_lock_irq(&phba->hbalock);
7380 	/* Clear FCF rediscovery timeout event */
7381 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7382 	/* Clear driver fast failover FCF record flag */
7383 	phba->fcf.failover_rec.flag = 0;
7384 	/* Set state for FCF fast failover */
7385 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7386 	spin_unlock_irq(&phba->hbalock);
7387 
7388 	/* Scan FCF table from the first entry to re-discover SAN */
7389 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7390 			"2777 Start post-quiescent FCF table scan\n");
7391 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7392 	if (rc)
7393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7394 				"2747 Issue FCF scan read FCF mailbox "
7395 				"command failed 0x%x\n", rc);
7396 }
7397 
7398 /**
7399  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7400  * @phba: pointer to lpfc hba data structure.
7401  * @dev_grp: The HBA PCI-Device group number.
7402  *
7403  * This routine is invoked to set up the per HBA PCI-Device group function
7404  * API jump table entries.
7405  *
7406  * Return: 0 if success, otherwise -ENODEV
7407  **/
7408 int
7409 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7410 {
7411 	int rc;
7412 
7413 	/* Set up lpfc PCI-device group */
7414 	phba->pci_dev_grp = dev_grp;
7415 
7416 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7417 	if (dev_grp == LPFC_PCI_DEV_OC)
7418 		phba->sli_rev = LPFC_SLI_REV4;
7419 
7420 	/* Set up device INIT API function jump table */
7421 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7422 	if (rc)
7423 		return -ENODEV;
7424 	/* Set up SCSI API function jump table */
7425 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7426 	if (rc)
7427 		return -ENODEV;
7428 	/* Set up SLI API function jump table */
7429 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7430 	if (rc)
7431 		return -ENODEV;
7432 	/* Set up MBOX API function jump table */
7433 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7434 	if (rc)
7435 		return -ENODEV;
7436 
7437 	return 0;
7438 }
7439 
7440 /**
7441  * lpfc_log_intr_mode - Log the active interrupt mode
7442  * @phba: pointer to lpfc hba data structure.
7443  * @intr_mode: active interrupt mode adopted.
7444  *
7445  * This routine it invoked to log the currently used active interrupt mode
7446  * to the device.
7447  **/
7448 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7449 {
7450 	switch (intr_mode) {
7451 	case 0:
7452 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7453 				"0470 Enable INTx interrupt mode.\n");
7454 		break;
7455 	case 1:
7456 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7457 				"0481 Enabled MSI interrupt mode.\n");
7458 		break;
7459 	case 2:
7460 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7461 				"0480 Enabled MSI-X interrupt mode.\n");
7462 		break;
7463 	default:
7464 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7465 				"0482 Illegal interrupt mode.\n");
7466 		break;
7467 	}
7468 	return;
7469 }
7470 
7471 /**
7472  * lpfc_enable_pci_dev - Enable a generic PCI device.
7473  * @phba: pointer to lpfc hba data structure.
7474  *
7475  * This routine is invoked to enable the PCI device that is common to all
7476  * PCI devices.
7477  *
7478  * Return codes
7479  * 	0 - successful
7480  * 	other values - error
7481  **/
7482 static int
7483 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7484 {
7485 	struct pci_dev *pdev;
7486 
7487 	/* Obtain PCI device reference */
7488 	if (!phba->pcidev)
7489 		goto out_error;
7490 	else
7491 		pdev = phba->pcidev;
7492 	/* Enable PCI device */
7493 	if (pci_enable_device_mem(pdev))
7494 		goto out_error;
7495 	/* Request PCI resource for the device */
7496 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7497 		goto out_disable_device;
7498 	/* Set up device as PCI master and save state for EEH */
7499 	pci_set_master(pdev);
7500 	pci_try_set_mwi(pdev);
7501 	pci_save_state(pdev);
7502 
7503 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7504 	if (pci_is_pcie(pdev))
7505 		pdev->needs_freset = 1;
7506 
7507 	return 0;
7508 
7509 out_disable_device:
7510 	pci_disable_device(pdev);
7511 out_error:
7512 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7513 			"1401 Failed to enable pci device\n");
7514 	return -ENODEV;
7515 }
7516 
7517 /**
7518  * lpfc_disable_pci_dev - Disable a generic PCI device.
7519  * @phba: pointer to lpfc hba data structure.
7520  *
7521  * This routine is invoked to disable the PCI device that is common to all
7522  * PCI devices.
7523  **/
7524 static void
7525 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7526 {
7527 	struct pci_dev *pdev;
7528 
7529 	/* Obtain PCI device reference */
7530 	if (!phba->pcidev)
7531 		return;
7532 	else
7533 		pdev = phba->pcidev;
7534 	/* Release PCI resource and disable PCI device */
7535 	pci_release_mem_regions(pdev);
7536 	pci_disable_device(pdev);
7537 
7538 	return;
7539 }
7540 
7541 /**
7542  * lpfc_reset_hba - Reset a hba
7543  * @phba: pointer to lpfc hba data structure.
7544  *
7545  * This routine is invoked to reset a hba device. It brings the HBA
7546  * offline, performs a board restart, and then brings the board back
7547  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7548  * on outstanding mailbox commands.
7549  **/
7550 void
7551 lpfc_reset_hba(struct lpfc_hba *phba)
7552 {
7553 	int rc = 0;
7554 
7555 	/* If resets are disabled then set error state and return. */
7556 	if (!phba->cfg_enable_hba_reset) {
7557 		phba->link_state = LPFC_HBA_ERROR;
7558 		return;
7559 	}
7560 
7561 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7562 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7563 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7564 	} else {
7565 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7566 			/* Perform a PCI function reset to start from clean */
7567 			rc = lpfc_pci_function_reset(phba);
7568 			lpfc_els_flush_all_cmd(phba);
7569 		}
7570 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7571 		lpfc_sli_flush_io_rings(phba);
7572 	}
7573 	lpfc_offline(phba);
7574 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7575 	if (unlikely(rc)) {
7576 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7577 				"8888 PCI function reset failed rc %x\n",
7578 				rc);
7579 	} else {
7580 		lpfc_sli_brdrestart(phba);
7581 		lpfc_online(phba);
7582 		lpfc_unblock_mgmt_io(phba);
7583 	}
7584 }
7585 
7586 /**
7587  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7588  * @phba: pointer to lpfc hba data structure.
7589  *
7590  * This function enables the PCI SR-IOV virtual functions to a physical
7591  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7592  * enable the number of virtual functions to the physical function. As
7593  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7594  * API call does not considered as an error condition for most of the device.
7595  **/
7596 uint16_t
7597 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7598 {
7599 	struct pci_dev *pdev = phba->pcidev;
7600 	uint16_t nr_virtfn;
7601 	int pos;
7602 
7603 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7604 	if (pos == 0)
7605 		return 0;
7606 
7607 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7608 	return nr_virtfn;
7609 }
7610 
7611 /**
7612  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7613  * @phba: pointer to lpfc hba data structure.
7614  * @nr_vfn: number of virtual functions to be enabled.
7615  *
7616  * This function enables the PCI SR-IOV virtual functions to a physical
7617  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7618  * enable the number of virtual functions to the physical function. As
7619  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7620  * API call does not considered as an error condition for most of the device.
7621  **/
7622 int
7623 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7624 {
7625 	struct pci_dev *pdev = phba->pcidev;
7626 	uint16_t max_nr_vfn;
7627 	int rc;
7628 
7629 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7630 	if (nr_vfn > max_nr_vfn) {
7631 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7632 				"3057 Requested vfs (%d) greater than "
7633 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7634 		return -EINVAL;
7635 	}
7636 
7637 	rc = pci_enable_sriov(pdev, nr_vfn);
7638 	if (rc) {
7639 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7640 				"2806 Failed to enable sriov on this device "
7641 				"with vfn number nr_vf:%d, rc:%d\n",
7642 				nr_vfn, rc);
7643 	} else
7644 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7645 				"2807 Successful enable sriov on this device "
7646 				"with vfn number nr_vf:%d\n", nr_vfn);
7647 	return rc;
7648 }
7649 
7650 static void
7651 lpfc_unblock_requests_work(struct work_struct *work)
7652 {
7653 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7654 					     unblock_request_work);
7655 
7656 	lpfc_unblock_requests(phba);
7657 }
7658 
7659 /**
7660  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7661  * @phba: pointer to lpfc hba data structure.
7662  *
7663  * This routine is invoked to set up the driver internal resources before the
7664  * device specific resource setup to support the HBA device it attached to.
7665  *
7666  * Return codes
7667  *	0 - successful
7668  *	other values - error
7669  **/
7670 static int
7671 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7672 {
7673 	struct lpfc_sli *psli = &phba->sli;
7674 
7675 	/*
7676 	 * Driver resources common to all SLI revisions
7677 	 */
7678 	atomic_set(&phba->fast_event_count, 0);
7679 	atomic_set(&phba->dbg_log_idx, 0);
7680 	atomic_set(&phba->dbg_log_cnt, 0);
7681 	atomic_set(&phba->dbg_log_dmping, 0);
7682 	spin_lock_init(&phba->hbalock);
7683 
7684 	/* Initialize port_list spinlock */
7685 	spin_lock_init(&phba->port_list_lock);
7686 	INIT_LIST_HEAD(&phba->port_list);
7687 
7688 	INIT_LIST_HEAD(&phba->work_list);
7689 
7690 	/* Initialize the wait queue head for the kernel thread */
7691 	init_waitqueue_head(&phba->work_waitq);
7692 
7693 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7694 			"1403 Protocols supported %s %s %s\n",
7695 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7696 				"SCSI" : " "),
7697 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7698 				"NVME" : " "),
7699 			(phba->nvmet_support ? "NVMET" : " "));
7700 
7701 	/* ras_fwlog state */
7702 	spin_lock_init(&phba->ras_fwlog_lock);
7703 
7704 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7705 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7706 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7707 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7708 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7709 
7710 	/* Initialize the fabric iocb list */
7711 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7712 
7713 	/* Initialize list to save ELS buffers */
7714 	INIT_LIST_HEAD(&phba->elsbuf);
7715 
7716 	/* Initialize FCF connection rec list */
7717 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7718 
7719 	/* Initialize OAS configuration list */
7720 	spin_lock_init(&phba->devicelock);
7721 	INIT_LIST_HEAD(&phba->luns);
7722 
7723 	/* MBOX heartbeat timer */
7724 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7725 	/* Fabric block timer */
7726 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7727 	/* EA polling mode timer */
7728 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7729 	/* Heartbeat timer */
7730 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7731 
7732 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7733 
7734 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7735 			  lpfc_idle_stat_delay_work);
7736 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7737 	return 0;
7738 }
7739 
7740 /**
7741  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7742  * @phba: pointer to lpfc hba data structure.
7743  *
7744  * This routine is invoked to set up the driver internal resources specific to
7745  * support the SLI-3 HBA device it attached to.
7746  *
7747  * Return codes
7748  * 0 - successful
7749  * other values - error
7750  **/
7751 static int
7752 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7753 {
7754 	int rc, entry_sz;
7755 
7756 	/*
7757 	 * Initialize timers used by driver
7758 	 */
7759 
7760 	/* FCP polling mode timer */
7761 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7762 
7763 	/* Host attention work mask setup */
7764 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7765 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7766 
7767 	/* Get all the module params for configuring this host */
7768 	lpfc_get_cfgparam(phba);
7769 	/* Set up phase-1 common device driver resources */
7770 
7771 	rc = lpfc_setup_driver_resource_phase1(phba);
7772 	if (rc)
7773 		return -ENODEV;
7774 
7775 	if (!phba->sli.sli3_ring)
7776 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7777 					      sizeof(struct lpfc_sli_ring),
7778 					      GFP_KERNEL);
7779 	if (!phba->sli.sli3_ring)
7780 		return -ENOMEM;
7781 
7782 	/*
7783 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7784 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7785 	 */
7786 
7787 	if (phba->sli_rev == LPFC_SLI_REV4)
7788 		entry_sz = sizeof(struct sli4_sge);
7789 	else
7790 		entry_sz = sizeof(struct ulp_bde64);
7791 
7792 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7793 	if (phba->cfg_enable_bg) {
7794 		/*
7795 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7796 		 * the FCP rsp, and a BDE for each. Sice we have no control
7797 		 * over how many protection data segments the SCSI Layer
7798 		 * will hand us (ie: there could be one for every block
7799 		 * in the IO), we just allocate enough BDEs to accomidate
7800 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7801 		 * minimize the risk of running out.
7802 		 */
7803 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7804 			sizeof(struct fcp_rsp) +
7805 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7806 
7807 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7808 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7809 
7810 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7811 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7812 	} else {
7813 		/*
7814 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7815 		 * the FCP rsp, a BDE for each, and a BDE for up to
7816 		 * cfg_sg_seg_cnt data segments.
7817 		 */
7818 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7819 			sizeof(struct fcp_rsp) +
7820 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7821 
7822 		/* Total BDEs in BPL for scsi_sg_list */
7823 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7824 	}
7825 
7826 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7827 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7828 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7829 			phba->cfg_total_seg_cnt);
7830 
7831 	phba->max_vpi = LPFC_MAX_VPI;
7832 	/* This will be set to correct value after config_port mbox */
7833 	phba->max_vports = 0;
7834 
7835 	/*
7836 	 * Initialize the SLI Layer to run with lpfc HBAs.
7837 	 */
7838 	lpfc_sli_setup(phba);
7839 	lpfc_sli_queue_init(phba);
7840 
7841 	/* Allocate device driver memory */
7842 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7843 		return -ENOMEM;
7844 
7845 	phba->lpfc_sg_dma_buf_pool =
7846 		dma_pool_create("lpfc_sg_dma_buf_pool",
7847 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7848 				BPL_ALIGN_SZ, 0);
7849 
7850 	if (!phba->lpfc_sg_dma_buf_pool)
7851 		goto fail_free_mem;
7852 
7853 	phba->lpfc_cmd_rsp_buf_pool =
7854 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7855 					&phba->pcidev->dev,
7856 					sizeof(struct fcp_cmnd) +
7857 					sizeof(struct fcp_rsp),
7858 					BPL_ALIGN_SZ, 0);
7859 
7860 	if (!phba->lpfc_cmd_rsp_buf_pool)
7861 		goto fail_free_dma_buf_pool;
7862 
7863 	/*
7864 	 * Enable sr-iov virtual functions if supported and configured
7865 	 * through the module parameter.
7866 	 */
7867 	if (phba->cfg_sriov_nr_virtfn > 0) {
7868 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7869 						 phba->cfg_sriov_nr_virtfn);
7870 		if (rc) {
7871 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7872 					"2808 Requested number of SR-IOV "
7873 					"virtual functions (%d) is not "
7874 					"supported\n",
7875 					phba->cfg_sriov_nr_virtfn);
7876 			phba->cfg_sriov_nr_virtfn = 0;
7877 		}
7878 	}
7879 
7880 	return 0;
7881 
7882 fail_free_dma_buf_pool:
7883 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7884 	phba->lpfc_sg_dma_buf_pool = NULL;
7885 fail_free_mem:
7886 	lpfc_mem_free(phba);
7887 	return -ENOMEM;
7888 }
7889 
7890 /**
7891  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7892  * @phba: pointer to lpfc hba data structure.
7893  *
7894  * This routine is invoked to unset the driver internal resources set up
7895  * specific for supporting the SLI-3 HBA device it attached to.
7896  **/
7897 static void
7898 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7899 {
7900 	/* Free device driver memory allocated */
7901 	lpfc_mem_free_all(phba);
7902 
7903 	return;
7904 }
7905 
7906 /**
7907  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7908  * @phba: pointer to lpfc hba data structure.
7909  *
7910  * This routine is invoked to set up the driver internal resources specific to
7911  * support the SLI-4 HBA device it attached to.
7912  *
7913  * Return codes
7914  * 	0 - successful
7915  * 	other values - error
7916  **/
7917 static int
7918 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7919 {
7920 	LPFC_MBOXQ_t *mboxq;
7921 	MAILBOX_t *mb;
7922 	int rc, i, max_buf_size;
7923 	int longs;
7924 	int extra;
7925 	uint64_t wwn;
7926 	u32 if_type;
7927 	u32 if_fam;
7928 
7929 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7930 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7931 	phba->sli4_hba.curr_disp_cpu = 0;
7932 
7933 	/* Get all the module params for configuring this host */
7934 	lpfc_get_cfgparam(phba);
7935 
7936 	/* Set up phase-1 common device driver resources */
7937 	rc = lpfc_setup_driver_resource_phase1(phba);
7938 	if (rc)
7939 		return -ENODEV;
7940 
7941 	/* Before proceed, wait for POST done and device ready */
7942 	rc = lpfc_sli4_post_status_check(phba);
7943 	if (rc)
7944 		return -ENODEV;
7945 
7946 	/* Allocate all driver workqueues here */
7947 
7948 	/* The lpfc_wq workqueue for deferred irq use */
7949 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7950 	if (!phba->wq)
7951 		return -ENOMEM;
7952 
7953 	/*
7954 	 * Initialize timers used by driver
7955 	 */
7956 
7957 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7958 
7959 	/* FCF rediscover timer */
7960 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7961 
7962 	/* CMF congestion timer */
7963 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7964 	phba->cmf_timer.function = lpfc_cmf_timer;
7965 	/* CMF 1 minute stats collection timer */
7966 	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7967 	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7968 
7969 	/*
7970 	 * Control structure for handling external multi-buffer mailbox
7971 	 * command pass-through.
7972 	 */
7973 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7974 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7975 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7976 
7977 	phba->max_vpi = LPFC_MAX_VPI;
7978 
7979 	/* This will be set to correct value after the read_config mbox */
7980 	phba->max_vports = 0;
7981 
7982 	/* Program the default value of vlan_id and fc_map */
7983 	phba->valid_vlan = 0;
7984 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7985 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7986 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7987 
7988 	/*
7989 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7990 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7991 	 * The WQ create will allocate the ring.
7992 	 */
7993 
7994 	/* Initialize buffer queue management fields */
7995 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7996 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7997 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7998 
7999 	/* for VMID idle timeout if VMID is enabled */
8000 	if (lpfc_is_vmid_enabled(phba))
8001 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
8002 
8003 	/*
8004 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8005 	 */
8006 	/* Initialize the Abort buffer list used by driver */
8007 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8008 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8009 
8010 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8011 		/* Initialize the Abort nvme buffer list used by driver */
8012 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8013 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8014 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8015 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8016 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8017 	}
8018 
8019 	/* This abort list used by worker thread */
8020 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8021 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8022 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8023 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8024 
8025 	/*
8026 	 * Initialize driver internal slow-path work queues
8027 	 */
8028 
8029 	/* Driver internel slow-path CQ Event pool */
8030 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8031 	/* Response IOCB work queue list */
8032 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8033 	/* Asynchronous event CQ Event work queue list */
8034 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8035 	/* Slow-path XRI aborted CQ Event work queue list */
8036 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8037 	/* Receive queue CQ Event work queue list */
8038 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8039 
8040 	/* Initialize extent block lists. */
8041 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8042 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8043 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8044 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8045 
8046 	/* Initialize mboxq lists. If the early init routines fail
8047 	 * these lists need to be correctly initialized.
8048 	 */
8049 	INIT_LIST_HEAD(&phba->sli.mboxq);
8050 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8051 
8052 	/* initialize optic_state to 0xFF */
8053 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8054 
8055 	/* Allocate device driver memory */
8056 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8057 	if (rc)
8058 		goto out_destroy_workqueue;
8059 
8060 	/* IF Type 2 ports get initialized now. */
8061 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8062 	    LPFC_SLI_INTF_IF_TYPE_2) {
8063 		rc = lpfc_pci_function_reset(phba);
8064 		if (unlikely(rc)) {
8065 			rc = -ENODEV;
8066 			goto out_free_mem;
8067 		}
8068 		phba->temp_sensor_support = 1;
8069 	}
8070 
8071 	/* Create the bootstrap mailbox command */
8072 	rc = lpfc_create_bootstrap_mbox(phba);
8073 	if (unlikely(rc))
8074 		goto out_free_mem;
8075 
8076 	/* Set up the host's endian order with the device. */
8077 	rc = lpfc_setup_endian_order(phba);
8078 	if (unlikely(rc))
8079 		goto out_free_bsmbx;
8080 
8081 	/* Set up the hba's configuration parameters. */
8082 	rc = lpfc_sli4_read_config(phba);
8083 	if (unlikely(rc))
8084 		goto out_free_bsmbx;
8085 
8086 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8087 		/* Right now the link is down, if FA-PWWN is configured the
8088 		 * firmware will try FLOGI before the driver gets a link up.
8089 		 * If it fails, the driver should get a MISCONFIGURED async
8090 		 * event which will clear this flag. The only notification
8091 		 * the driver gets is if it fails, if it succeeds there is no
8092 		 * notification given. Assume success.
8093 		 */
8094 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8095 	}
8096 
8097 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8098 	if (unlikely(rc))
8099 		goto out_free_bsmbx;
8100 
8101 	/* IF Type 0 ports get initialized now. */
8102 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8103 	    LPFC_SLI_INTF_IF_TYPE_0) {
8104 		rc = lpfc_pci_function_reset(phba);
8105 		if (unlikely(rc))
8106 			goto out_free_bsmbx;
8107 	}
8108 
8109 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8110 						       GFP_KERNEL);
8111 	if (!mboxq) {
8112 		rc = -ENOMEM;
8113 		goto out_free_bsmbx;
8114 	}
8115 
8116 	/* Check for NVMET being configured */
8117 	phba->nvmet_support = 0;
8118 	if (lpfc_enable_nvmet_cnt) {
8119 
8120 		/* First get WWN of HBA instance */
8121 		lpfc_read_nv(phba, mboxq);
8122 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8123 		if (rc != MBX_SUCCESS) {
8124 			lpfc_printf_log(phba, KERN_ERR,
8125 					LOG_TRACE_EVENT,
8126 					"6016 Mailbox failed , mbxCmd x%x "
8127 					"READ_NV, mbxStatus x%x\n",
8128 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8129 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8130 			mempool_free(mboxq, phba->mbox_mem_pool);
8131 			rc = -EIO;
8132 			goto out_free_bsmbx;
8133 		}
8134 		mb = &mboxq->u.mb;
8135 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8136 		       sizeof(uint64_t));
8137 		wwn = cpu_to_be64(wwn);
8138 		phba->sli4_hba.wwnn.u.name = wwn;
8139 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8140 		       sizeof(uint64_t));
8141 		/* wwn is WWPN of HBA instance */
8142 		wwn = cpu_to_be64(wwn);
8143 		phba->sli4_hba.wwpn.u.name = wwn;
8144 
8145 		/* Check to see if it matches any module parameter */
8146 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8147 			if (wwn == lpfc_enable_nvmet[i]) {
8148 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8149 				if (lpfc_nvmet_mem_alloc(phba))
8150 					break;
8151 
8152 				phba->nvmet_support = 1; /* a match */
8153 
8154 				lpfc_printf_log(phba, KERN_ERR,
8155 						LOG_TRACE_EVENT,
8156 						"6017 NVME Target %016llx\n",
8157 						wwn);
8158 #else
8159 				lpfc_printf_log(phba, KERN_ERR,
8160 						LOG_TRACE_EVENT,
8161 						"6021 Can't enable NVME Target."
8162 						" NVME_TARGET_FC infrastructure"
8163 						" is not in kernel\n");
8164 #endif
8165 				/* Not supported for NVMET */
8166 				phba->cfg_xri_rebalancing = 0;
8167 				if (phba->irq_chann_mode == NHT_MODE) {
8168 					phba->cfg_irq_chann =
8169 						phba->sli4_hba.num_present_cpu;
8170 					phba->cfg_hdw_queue =
8171 						phba->sli4_hba.num_present_cpu;
8172 					phba->irq_chann_mode = NORMAL_MODE;
8173 				}
8174 				break;
8175 			}
8176 		}
8177 	}
8178 
8179 	lpfc_nvme_mod_param_dep(phba);
8180 
8181 	/*
8182 	 * Get sli4 parameters that override parameters from Port capabilities.
8183 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8184 	 * back in conflict.
8185 	 */
8186 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8187 	if (rc) {
8188 		if_type = bf_get(lpfc_sli_intf_if_type,
8189 				 &phba->sli4_hba.sli_intf);
8190 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8191 				&phba->sli4_hba.sli_intf);
8192 		if (phba->sli4_hba.extents_in_use &&
8193 		    phba->sli4_hba.rpi_hdrs_in_use) {
8194 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8195 					"2999 Unsupported SLI4 Parameters "
8196 					"Extents and RPI headers enabled.\n");
8197 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8198 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8199 				mempool_free(mboxq, phba->mbox_mem_pool);
8200 				rc = -EIO;
8201 				goto out_free_bsmbx;
8202 			}
8203 		}
8204 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8205 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8206 			mempool_free(mboxq, phba->mbox_mem_pool);
8207 			rc = -EIO;
8208 			goto out_free_bsmbx;
8209 		}
8210 	}
8211 
8212 	/*
8213 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8214 	 * for boundary conditions in its max_sgl_segment template.
8215 	 */
8216 	extra = 2;
8217 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8218 		extra++;
8219 
8220 	/*
8221 	 * It doesn't matter what family our adapter is in, we are
8222 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8223 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8224 	 */
8225 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8226 
8227 	/*
8228 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8229 	 * used to create the sg_dma_buf_pool must be calculated.
8230 	 */
8231 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8232 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8233 
8234 		/*
8235 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8236 		 * the FCP rsp, and a SGE. Sice we have no control
8237 		 * over how many protection segments the SCSI Layer
8238 		 * will hand us (ie: there could be one for every block
8239 		 * in the IO), just allocate enough SGEs to accomidate
8240 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8241 		 * to minimize the risk of running out.
8242 		 */
8243 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8244 				sizeof(struct fcp_rsp) + max_buf_size;
8245 
8246 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8247 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8248 
8249 		/*
8250 		 * If supporting DIF, reduce the seg count for scsi to
8251 		 * allow room for the DIF sges.
8252 		 */
8253 		if (phba->cfg_enable_bg &&
8254 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8255 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8256 		else
8257 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8258 
8259 	} else {
8260 		/*
8261 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8262 		 * the FCP rsp, a SGE for each, and a SGE for up to
8263 		 * cfg_sg_seg_cnt data segments.
8264 		 */
8265 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8266 				sizeof(struct fcp_rsp) +
8267 				((phba->cfg_sg_seg_cnt + extra) *
8268 				sizeof(struct sli4_sge));
8269 
8270 		/* Total SGEs for scsi_sg_list */
8271 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8272 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8273 
8274 		/*
8275 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8276 		 * need to post 1 page for the SGL.
8277 		 */
8278 	}
8279 
8280 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8281 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8282 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8283 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8284 	else
8285 		phba->cfg_sg_dma_buf_size =
8286 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8287 
8288 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8289 			       sizeof(struct sli4_sge);
8290 
8291 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8292 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8293 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8294 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8295 					"6300 Reducing NVME sg segment "
8296 					"cnt to %d\n",
8297 					LPFC_MAX_NVME_SEG_CNT);
8298 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8299 		} else
8300 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8301 	}
8302 
8303 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8304 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8305 			"total:%d scsi:%d nvme:%d\n",
8306 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8307 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8308 			phba->cfg_nvme_seg_cnt);
8309 
8310 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8311 		i = phba->cfg_sg_dma_buf_size;
8312 	else
8313 		i = SLI4_PAGE_SIZE;
8314 
8315 	phba->lpfc_sg_dma_buf_pool =
8316 			dma_pool_create("lpfc_sg_dma_buf_pool",
8317 					&phba->pcidev->dev,
8318 					phba->cfg_sg_dma_buf_size,
8319 					i, 0);
8320 	if (!phba->lpfc_sg_dma_buf_pool) {
8321 		rc = -ENOMEM;
8322 		goto out_free_bsmbx;
8323 	}
8324 
8325 	phba->lpfc_cmd_rsp_buf_pool =
8326 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8327 					&phba->pcidev->dev,
8328 					sizeof(struct fcp_cmnd) +
8329 					sizeof(struct fcp_rsp),
8330 					i, 0);
8331 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8332 		rc = -ENOMEM;
8333 		goto out_free_sg_dma_buf;
8334 	}
8335 
8336 	mempool_free(mboxq, phba->mbox_mem_pool);
8337 
8338 	/* Verify OAS is supported */
8339 	lpfc_sli4_oas_verify(phba);
8340 
8341 	/* Verify RAS support on adapter */
8342 	lpfc_sli4_ras_init(phba);
8343 
8344 	/* Verify all the SLI4 queues */
8345 	rc = lpfc_sli4_queue_verify(phba);
8346 	if (rc)
8347 		goto out_free_cmd_rsp_buf;
8348 
8349 	/* Create driver internal CQE event pool */
8350 	rc = lpfc_sli4_cq_event_pool_create(phba);
8351 	if (rc)
8352 		goto out_free_cmd_rsp_buf;
8353 
8354 	/* Initialize sgl lists per host */
8355 	lpfc_init_sgl_list(phba);
8356 
8357 	/* Allocate and initialize active sgl array */
8358 	rc = lpfc_init_active_sgl_array(phba);
8359 	if (rc) {
8360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8361 				"1430 Failed to initialize sgl list.\n");
8362 		goto out_destroy_cq_event_pool;
8363 	}
8364 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8365 	if (rc) {
8366 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8367 				"1432 Failed to initialize rpi headers.\n");
8368 		goto out_free_active_sgl;
8369 	}
8370 
8371 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8372 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8373 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8374 					 GFP_KERNEL);
8375 	if (!phba->fcf.fcf_rr_bmask) {
8376 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8377 				"2759 Failed allocate memory for FCF round "
8378 				"robin failover bmask\n");
8379 		rc = -ENOMEM;
8380 		goto out_remove_rpi_hdrs;
8381 	}
8382 
8383 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8384 					    sizeof(struct lpfc_hba_eq_hdl),
8385 					    GFP_KERNEL);
8386 	if (!phba->sli4_hba.hba_eq_hdl) {
8387 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8388 				"2572 Failed allocate memory for "
8389 				"fast-path per-EQ handle array\n");
8390 		rc = -ENOMEM;
8391 		goto out_free_fcf_rr_bmask;
8392 	}
8393 
8394 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8395 					sizeof(struct lpfc_vector_map_info),
8396 					GFP_KERNEL);
8397 	if (!phba->sli4_hba.cpu_map) {
8398 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8399 				"3327 Failed allocate memory for msi-x "
8400 				"interrupt vector mapping\n");
8401 		rc = -ENOMEM;
8402 		goto out_free_hba_eq_hdl;
8403 	}
8404 
8405 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8406 	if (!phba->sli4_hba.eq_info) {
8407 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8408 				"3321 Failed allocation for per_cpu stats\n");
8409 		rc = -ENOMEM;
8410 		goto out_free_hba_cpu_map;
8411 	}
8412 
8413 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8414 					   sizeof(*phba->sli4_hba.idle_stat),
8415 					   GFP_KERNEL);
8416 	if (!phba->sli4_hba.idle_stat) {
8417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8418 				"3390 Failed allocation for idle_stat\n");
8419 		rc = -ENOMEM;
8420 		goto out_free_hba_eq_info;
8421 	}
8422 
8423 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8424 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8425 	if (!phba->sli4_hba.c_stat) {
8426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8427 				"3332 Failed allocating per cpu hdwq stats\n");
8428 		rc = -ENOMEM;
8429 		goto out_free_hba_idle_stat;
8430 	}
8431 #endif
8432 
8433 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8434 	if (!phba->cmf_stat) {
8435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8436 				"3331 Failed allocating per cpu cgn stats\n");
8437 		rc = -ENOMEM;
8438 		goto out_free_hba_hdwq_info;
8439 	}
8440 
8441 	/*
8442 	 * Enable sr-iov virtual functions if supported and configured
8443 	 * through the module parameter.
8444 	 */
8445 	if (phba->cfg_sriov_nr_virtfn > 0) {
8446 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8447 						 phba->cfg_sriov_nr_virtfn);
8448 		if (rc) {
8449 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8450 					"3020 Requested number of SR-IOV "
8451 					"virtual functions (%d) is not "
8452 					"supported\n",
8453 					phba->cfg_sriov_nr_virtfn);
8454 			phba->cfg_sriov_nr_virtfn = 0;
8455 		}
8456 	}
8457 
8458 	return 0;
8459 
8460 out_free_hba_hdwq_info:
8461 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8462 	free_percpu(phba->sli4_hba.c_stat);
8463 out_free_hba_idle_stat:
8464 #endif
8465 	kfree(phba->sli4_hba.idle_stat);
8466 out_free_hba_eq_info:
8467 	free_percpu(phba->sli4_hba.eq_info);
8468 out_free_hba_cpu_map:
8469 	kfree(phba->sli4_hba.cpu_map);
8470 out_free_hba_eq_hdl:
8471 	kfree(phba->sli4_hba.hba_eq_hdl);
8472 out_free_fcf_rr_bmask:
8473 	kfree(phba->fcf.fcf_rr_bmask);
8474 out_remove_rpi_hdrs:
8475 	lpfc_sli4_remove_rpi_hdrs(phba);
8476 out_free_active_sgl:
8477 	lpfc_free_active_sgl(phba);
8478 out_destroy_cq_event_pool:
8479 	lpfc_sli4_cq_event_pool_destroy(phba);
8480 out_free_cmd_rsp_buf:
8481 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8482 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8483 out_free_sg_dma_buf:
8484 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8485 	phba->lpfc_sg_dma_buf_pool = NULL;
8486 out_free_bsmbx:
8487 	lpfc_destroy_bootstrap_mbox(phba);
8488 out_free_mem:
8489 	lpfc_mem_free(phba);
8490 out_destroy_workqueue:
8491 	destroy_workqueue(phba->wq);
8492 	phba->wq = NULL;
8493 	return rc;
8494 }
8495 
8496 /**
8497  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8498  * @phba: pointer to lpfc hba data structure.
8499  *
8500  * This routine is invoked to unset the driver internal resources set up
8501  * specific for supporting the SLI-4 HBA device it attached to.
8502  **/
8503 static void
8504 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8505 {
8506 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8507 
8508 	free_percpu(phba->sli4_hba.eq_info);
8509 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8510 	free_percpu(phba->sli4_hba.c_stat);
8511 #endif
8512 	free_percpu(phba->cmf_stat);
8513 	kfree(phba->sli4_hba.idle_stat);
8514 
8515 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8516 	kfree(phba->sli4_hba.cpu_map);
8517 	phba->sli4_hba.num_possible_cpu = 0;
8518 	phba->sli4_hba.num_present_cpu = 0;
8519 	phba->sli4_hba.curr_disp_cpu = 0;
8520 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8521 
8522 	/* Free memory allocated for fast-path work queue handles */
8523 	kfree(phba->sli4_hba.hba_eq_hdl);
8524 
8525 	/* Free the allocated rpi headers. */
8526 	lpfc_sli4_remove_rpi_hdrs(phba);
8527 	lpfc_sli4_remove_rpis(phba);
8528 
8529 	/* Free eligible FCF index bmask */
8530 	kfree(phba->fcf.fcf_rr_bmask);
8531 
8532 	/* Free the ELS sgl list */
8533 	lpfc_free_active_sgl(phba);
8534 	lpfc_free_els_sgl_list(phba);
8535 	lpfc_free_nvmet_sgl_list(phba);
8536 
8537 	/* Free the completion queue EQ event pool */
8538 	lpfc_sli4_cq_event_release_all(phba);
8539 	lpfc_sli4_cq_event_pool_destroy(phba);
8540 
8541 	/* Release resource identifiers. */
8542 	lpfc_sli4_dealloc_resource_identifiers(phba);
8543 
8544 	/* Free the bsmbx region. */
8545 	lpfc_destroy_bootstrap_mbox(phba);
8546 
8547 	/* Free the SLI Layer memory with SLI4 HBAs */
8548 	lpfc_mem_free_all(phba);
8549 
8550 	/* Free the current connect table */
8551 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8552 		&phba->fcf_conn_rec_list, list) {
8553 		list_del_init(&conn_entry->list);
8554 		kfree(conn_entry);
8555 	}
8556 
8557 	return;
8558 }
8559 
8560 /**
8561  * lpfc_init_api_table_setup - Set up init api function jump table
8562  * @phba: The hba struct for which this call is being executed.
8563  * @dev_grp: The HBA PCI-Device group number.
8564  *
8565  * This routine sets up the device INIT interface API function jump table
8566  * in @phba struct.
8567  *
8568  * Returns: 0 - success, -ENODEV - failure.
8569  **/
8570 int
8571 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8572 {
8573 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8574 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8575 	phba->lpfc_selective_reset = lpfc_selective_reset;
8576 	switch (dev_grp) {
8577 	case LPFC_PCI_DEV_LP:
8578 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8579 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8580 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8581 		break;
8582 	case LPFC_PCI_DEV_OC:
8583 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8584 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8585 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8586 		break;
8587 	default:
8588 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8589 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8590 				dev_grp);
8591 		return -ENODEV;
8592 	}
8593 	return 0;
8594 }
8595 
8596 /**
8597  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8598  * @phba: pointer to lpfc hba data structure.
8599  *
8600  * This routine is invoked to set up the driver internal resources after the
8601  * device specific resource setup to support the HBA device it attached to.
8602  *
8603  * Return codes
8604  * 	0 - successful
8605  * 	other values - error
8606  **/
8607 static int
8608 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8609 {
8610 	int error;
8611 
8612 	/* Startup the kernel thread for this host adapter. */
8613 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8614 					  "lpfc_worker_%d", phba->brd_no);
8615 	if (IS_ERR(phba->worker_thread)) {
8616 		error = PTR_ERR(phba->worker_thread);
8617 		return error;
8618 	}
8619 
8620 	return 0;
8621 }
8622 
8623 /**
8624  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8625  * @phba: pointer to lpfc hba data structure.
8626  *
8627  * This routine is invoked to unset the driver internal resources set up after
8628  * the device specific resource setup for supporting the HBA device it
8629  * attached to.
8630  **/
8631 static void
8632 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8633 {
8634 	if (phba->wq) {
8635 		destroy_workqueue(phba->wq);
8636 		phba->wq = NULL;
8637 	}
8638 
8639 	/* Stop kernel worker thread */
8640 	if (phba->worker_thread)
8641 		kthread_stop(phba->worker_thread);
8642 }
8643 
8644 /**
8645  * lpfc_free_iocb_list - Free iocb list.
8646  * @phba: pointer to lpfc hba data structure.
8647  *
8648  * This routine is invoked to free the driver's IOCB list and memory.
8649  **/
8650 void
8651 lpfc_free_iocb_list(struct lpfc_hba *phba)
8652 {
8653 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8654 
8655 	spin_lock_irq(&phba->hbalock);
8656 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8657 				 &phba->lpfc_iocb_list, list) {
8658 		list_del(&iocbq_entry->list);
8659 		kfree(iocbq_entry);
8660 		phba->total_iocbq_bufs--;
8661 	}
8662 	spin_unlock_irq(&phba->hbalock);
8663 
8664 	return;
8665 }
8666 
8667 /**
8668  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8669  * @phba: pointer to lpfc hba data structure.
8670  * @iocb_count: number of requested iocbs
8671  *
8672  * This routine is invoked to allocate and initizlize the driver's IOCB
8673  * list and set up the IOCB tag array accordingly.
8674  *
8675  * Return codes
8676  *	0 - successful
8677  *	other values - error
8678  **/
8679 int
8680 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8681 {
8682 	struct lpfc_iocbq *iocbq_entry = NULL;
8683 	uint16_t iotag;
8684 	int i;
8685 
8686 	/* Initialize and populate the iocb list per host.  */
8687 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8688 	for (i = 0; i < iocb_count; i++) {
8689 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8690 		if (iocbq_entry == NULL) {
8691 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8692 				"expected %d count. Unloading driver.\n",
8693 				__func__, i, iocb_count);
8694 			goto out_free_iocbq;
8695 		}
8696 
8697 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8698 		if (iotag == 0) {
8699 			kfree(iocbq_entry);
8700 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8701 				"Unloading driver.\n", __func__);
8702 			goto out_free_iocbq;
8703 		}
8704 		iocbq_entry->sli4_lxritag = NO_XRI;
8705 		iocbq_entry->sli4_xritag = NO_XRI;
8706 
8707 		spin_lock_irq(&phba->hbalock);
8708 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8709 		phba->total_iocbq_bufs++;
8710 		spin_unlock_irq(&phba->hbalock);
8711 	}
8712 
8713 	return 0;
8714 
8715 out_free_iocbq:
8716 	lpfc_free_iocb_list(phba);
8717 
8718 	return -ENOMEM;
8719 }
8720 
8721 /**
8722  * lpfc_free_sgl_list - Free a given sgl list.
8723  * @phba: pointer to lpfc hba data structure.
8724  * @sglq_list: pointer to the head of sgl list.
8725  *
8726  * This routine is invoked to free a give sgl list and memory.
8727  **/
8728 void
8729 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8730 {
8731 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8732 
8733 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8734 		list_del(&sglq_entry->list);
8735 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8736 		kfree(sglq_entry);
8737 	}
8738 }
8739 
8740 /**
8741  * lpfc_free_els_sgl_list - Free els sgl list.
8742  * @phba: pointer to lpfc hba data structure.
8743  *
8744  * This routine is invoked to free the driver's els sgl list and memory.
8745  **/
8746 static void
8747 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8748 {
8749 	LIST_HEAD(sglq_list);
8750 
8751 	/* Retrieve all els sgls from driver list */
8752 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8753 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8754 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8755 
8756 	/* Now free the sgl list */
8757 	lpfc_free_sgl_list(phba, &sglq_list);
8758 }
8759 
8760 /**
8761  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8762  * @phba: pointer to lpfc hba data structure.
8763  *
8764  * This routine is invoked to free the driver's nvmet sgl list and memory.
8765  **/
8766 static void
8767 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8768 {
8769 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8770 	LIST_HEAD(sglq_list);
8771 
8772 	/* Retrieve all nvmet sgls from driver list */
8773 	spin_lock_irq(&phba->hbalock);
8774 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8775 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8776 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8777 	spin_unlock_irq(&phba->hbalock);
8778 
8779 	/* Now free the sgl list */
8780 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8781 		list_del(&sglq_entry->list);
8782 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8783 		kfree(sglq_entry);
8784 	}
8785 
8786 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8787 	 * The next initialization cycle sets the count and allocates
8788 	 * the sgls over again.
8789 	 */
8790 	phba->sli4_hba.nvmet_xri_cnt = 0;
8791 }
8792 
8793 /**
8794  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8795  * @phba: pointer to lpfc hba data structure.
8796  *
8797  * This routine is invoked to allocate the driver's active sgl memory.
8798  * This array will hold the sglq_entry's for active IOs.
8799  **/
8800 static int
8801 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8802 {
8803 	int size;
8804 	size = sizeof(struct lpfc_sglq *);
8805 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8806 
8807 	phba->sli4_hba.lpfc_sglq_active_list =
8808 		kzalloc(size, GFP_KERNEL);
8809 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8810 		return -ENOMEM;
8811 	return 0;
8812 }
8813 
8814 /**
8815  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8816  * @phba: pointer to lpfc hba data structure.
8817  *
8818  * This routine is invoked to walk through the array of active sglq entries
8819  * and free all of the resources.
8820  * This is just a place holder for now.
8821  **/
8822 static void
8823 lpfc_free_active_sgl(struct lpfc_hba *phba)
8824 {
8825 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8826 }
8827 
8828 /**
8829  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8830  * @phba: pointer to lpfc hba data structure.
8831  *
8832  * This routine is invoked to allocate and initizlize the driver's sgl
8833  * list and set up the sgl xritag tag array accordingly.
8834  *
8835  **/
8836 static void
8837 lpfc_init_sgl_list(struct lpfc_hba *phba)
8838 {
8839 	/* Initialize and populate the sglq list per host/VF. */
8840 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8841 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8842 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8843 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8844 
8845 	/* els xri-sgl book keeping */
8846 	phba->sli4_hba.els_xri_cnt = 0;
8847 
8848 	/* nvme xri-buffer book keeping */
8849 	phba->sli4_hba.io_xri_cnt = 0;
8850 }
8851 
8852 /**
8853  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8854  * @phba: pointer to lpfc hba data structure.
8855  *
8856  * This routine is invoked to post rpi header templates to the
8857  * port for those SLI4 ports that do not support extents.  This routine
8858  * posts a PAGE_SIZE memory region to the port to hold up to
8859  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8860  * and should be called only when interrupts are disabled.
8861  *
8862  * Return codes
8863  * 	0 - successful
8864  *	-ERROR - otherwise.
8865  **/
8866 int
8867 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8868 {
8869 	int rc = 0;
8870 	struct lpfc_rpi_hdr *rpi_hdr;
8871 
8872 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8873 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8874 		return rc;
8875 	if (phba->sli4_hba.extents_in_use)
8876 		return -EIO;
8877 
8878 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8879 	if (!rpi_hdr) {
8880 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8881 				"0391 Error during rpi post operation\n");
8882 		lpfc_sli4_remove_rpis(phba);
8883 		rc = -ENODEV;
8884 	}
8885 
8886 	return rc;
8887 }
8888 
8889 /**
8890  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8891  * @phba: pointer to lpfc hba data structure.
8892  *
8893  * This routine is invoked to allocate a single 4KB memory region to
8894  * support rpis and stores them in the phba.  This single region
8895  * provides support for up to 64 rpis.  The region is used globally
8896  * by the device.
8897  *
8898  * Returns:
8899  *   A valid rpi hdr on success.
8900  *   A NULL pointer on any failure.
8901  **/
8902 struct lpfc_rpi_hdr *
8903 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8904 {
8905 	uint16_t rpi_limit, curr_rpi_range;
8906 	struct lpfc_dmabuf *dmabuf;
8907 	struct lpfc_rpi_hdr *rpi_hdr;
8908 
8909 	/*
8910 	 * If the SLI4 port supports extents, posting the rpi header isn't
8911 	 * required.  Set the expected maximum count and let the actual value
8912 	 * get set when extents are fully allocated.
8913 	 */
8914 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8915 		return NULL;
8916 	if (phba->sli4_hba.extents_in_use)
8917 		return NULL;
8918 
8919 	/* The limit on the logical index is just the max_rpi count. */
8920 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8921 
8922 	spin_lock_irq(&phba->hbalock);
8923 	/*
8924 	 * Establish the starting RPI in this header block.  The starting
8925 	 * rpi is normalized to a zero base because the physical rpi is
8926 	 * port based.
8927 	 */
8928 	curr_rpi_range = phba->sli4_hba.next_rpi;
8929 	spin_unlock_irq(&phba->hbalock);
8930 
8931 	/* Reached full RPI range */
8932 	if (curr_rpi_range == rpi_limit)
8933 		return NULL;
8934 
8935 	/*
8936 	 * First allocate the protocol header region for the port.  The
8937 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8938 	 */
8939 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8940 	if (!dmabuf)
8941 		return NULL;
8942 
8943 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8944 					  LPFC_HDR_TEMPLATE_SIZE,
8945 					  &dmabuf->phys, GFP_KERNEL);
8946 	if (!dmabuf->virt) {
8947 		rpi_hdr = NULL;
8948 		goto err_free_dmabuf;
8949 	}
8950 
8951 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8952 		rpi_hdr = NULL;
8953 		goto err_free_coherent;
8954 	}
8955 
8956 	/* Save the rpi header data for cleanup later. */
8957 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8958 	if (!rpi_hdr)
8959 		goto err_free_coherent;
8960 
8961 	rpi_hdr->dmabuf = dmabuf;
8962 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8963 	rpi_hdr->page_count = 1;
8964 	spin_lock_irq(&phba->hbalock);
8965 
8966 	/* The rpi_hdr stores the logical index only. */
8967 	rpi_hdr->start_rpi = curr_rpi_range;
8968 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8969 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8970 
8971 	spin_unlock_irq(&phba->hbalock);
8972 	return rpi_hdr;
8973 
8974  err_free_coherent:
8975 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8976 			  dmabuf->virt, dmabuf->phys);
8977  err_free_dmabuf:
8978 	kfree(dmabuf);
8979 	return NULL;
8980 }
8981 
8982 /**
8983  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8984  * @phba: pointer to lpfc hba data structure.
8985  *
8986  * This routine is invoked to remove all memory resources allocated
8987  * to support rpis for SLI4 ports not supporting extents. This routine
8988  * presumes the caller has released all rpis consumed by fabric or port
8989  * logins and is prepared to have the header pages removed.
8990  **/
8991 void
8992 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8993 {
8994 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8995 
8996 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8997 		goto exit;
8998 
8999 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
9000 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
9001 		list_del(&rpi_hdr->list);
9002 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9003 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9004 		kfree(rpi_hdr->dmabuf);
9005 		kfree(rpi_hdr);
9006 	}
9007  exit:
9008 	/* There are no rpis available to the port now. */
9009 	phba->sli4_hba.next_rpi = 0;
9010 }
9011 
9012 /**
9013  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9014  * @pdev: pointer to pci device data structure.
9015  *
9016  * This routine is invoked to allocate the driver hba data structure for an
9017  * HBA device. If the allocation is successful, the phba reference to the
9018  * PCI device data structure is set.
9019  *
9020  * Return codes
9021  *      pointer to @phba - successful
9022  *      NULL - error
9023  **/
9024 static struct lpfc_hba *
9025 lpfc_hba_alloc(struct pci_dev *pdev)
9026 {
9027 	struct lpfc_hba *phba;
9028 
9029 	/* Allocate memory for HBA structure */
9030 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9031 	if (!phba) {
9032 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9033 		return NULL;
9034 	}
9035 
9036 	/* Set reference to PCI device in HBA structure */
9037 	phba->pcidev = pdev;
9038 
9039 	/* Assign an unused board number */
9040 	phba->brd_no = lpfc_get_instance();
9041 	if (phba->brd_no < 0) {
9042 		kfree(phba);
9043 		return NULL;
9044 	}
9045 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9046 
9047 	spin_lock_init(&phba->ct_ev_lock);
9048 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9049 
9050 	return phba;
9051 }
9052 
9053 /**
9054  * lpfc_hba_free - Free driver hba data structure with a device.
9055  * @phba: pointer to lpfc hba data structure.
9056  *
9057  * This routine is invoked to free the driver hba data structure with an
9058  * HBA device.
9059  **/
9060 static void
9061 lpfc_hba_free(struct lpfc_hba *phba)
9062 {
9063 	if (phba->sli_rev == LPFC_SLI_REV4)
9064 		kfree(phba->sli4_hba.hdwq);
9065 
9066 	/* Release the driver assigned board number */
9067 	idr_remove(&lpfc_hba_index, phba->brd_no);
9068 
9069 	/* Free memory allocated with sli3 rings */
9070 	kfree(phba->sli.sli3_ring);
9071 	phba->sli.sli3_ring = NULL;
9072 
9073 	kfree(phba);
9074 	return;
9075 }
9076 
9077 /**
9078  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9079  * @vport: pointer to lpfc vport data structure.
9080  *
9081  * This routine is will setup initial FDMI attribute masks for
9082  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9083  * to get these attributes first before falling back, the attribute
9084  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9085  **/
9086 void
9087 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9088 {
9089 	struct lpfc_hba *phba = vport->phba;
9090 
9091 	vport->load_flag |= FC_ALLOW_FDMI;
9092 	if (phba->cfg_enable_SmartSAN ||
9093 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9094 		/* Setup appropriate attribute masks */
9095 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9096 		if (phba->cfg_enable_SmartSAN)
9097 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9098 		else
9099 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9100 	}
9101 
9102 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9103 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9104 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9105 }
9106 
9107 /**
9108  * lpfc_create_shost - Create hba physical port with associated scsi host.
9109  * @phba: pointer to lpfc hba data structure.
9110  *
9111  * This routine is invoked to create HBA physical port and associate a SCSI
9112  * host with it.
9113  *
9114  * Return codes
9115  *      0 - successful
9116  *      other values - error
9117  **/
9118 static int
9119 lpfc_create_shost(struct lpfc_hba *phba)
9120 {
9121 	struct lpfc_vport *vport;
9122 	struct Scsi_Host  *shost;
9123 
9124 	/* Initialize HBA FC structure */
9125 	phba->fc_edtov = FF_DEF_EDTOV;
9126 	phba->fc_ratov = FF_DEF_RATOV;
9127 	phba->fc_altov = FF_DEF_ALTOV;
9128 	phba->fc_arbtov = FF_DEF_ARBTOV;
9129 
9130 	atomic_set(&phba->sdev_cnt, 0);
9131 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9132 	if (!vport)
9133 		return -ENODEV;
9134 
9135 	shost = lpfc_shost_from_vport(vport);
9136 	phba->pport = vport;
9137 
9138 	if (phba->nvmet_support) {
9139 		/* Only 1 vport (pport) will support NVME target */
9140 		phba->targetport = NULL;
9141 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9142 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9143 				"6076 NVME Target Found\n");
9144 	}
9145 
9146 	lpfc_debugfs_initialize(vport);
9147 	/* Put reference to SCSI host to driver's device private data */
9148 	pci_set_drvdata(phba->pcidev, shost);
9149 
9150 	lpfc_setup_fdmi_mask(vport);
9151 
9152 	/*
9153 	 * At this point we are fully registered with PSA. In addition,
9154 	 * any initial discovery should be completed.
9155 	 */
9156 	return 0;
9157 }
9158 
9159 /**
9160  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9161  * @phba: pointer to lpfc hba data structure.
9162  *
9163  * This routine is invoked to destroy HBA physical port and the associated
9164  * SCSI host.
9165  **/
9166 static void
9167 lpfc_destroy_shost(struct lpfc_hba *phba)
9168 {
9169 	struct lpfc_vport *vport = phba->pport;
9170 
9171 	/* Destroy physical port that associated with the SCSI host */
9172 	destroy_port(vport);
9173 
9174 	return;
9175 }
9176 
9177 /**
9178  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9179  * @phba: pointer to lpfc hba data structure.
9180  * @shost: the shost to be used to detect Block guard settings.
9181  *
9182  * This routine sets up the local Block guard protocol settings for @shost.
9183  * This routine also allocates memory for debugging bg buffers.
9184  **/
9185 static void
9186 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9187 {
9188 	uint32_t old_mask;
9189 	uint32_t old_guard;
9190 
9191 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9192 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9193 				"1478 Registering BlockGuard with the "
9194 				"SCSI layer\n");
9195 
9196 		old_mask = phba->cfg_prot_mask;
9197 		old_guard = phba->cfg_prot_guard;
9198 
9199 		/* Only allow supported values */
9200 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9201 			SHOST_DIX_TYPE0_PROTECTION |
9202 			SHOST_DIX_TYPE1_PROTECTION);
9203 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9204 					 SHOST_DIX_GUARD_CRC);
9205 
9206 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9207 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9208 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9209 
9210 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9211 			if ((old_mask != phba->cfg_prot_mask) ||
9212 				(old_guard != phba->cfg_prot_guard))
9213 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9214 					"1475 Registering BlockGuard with the "
9215 					"SCSI layer: mask %d  guard %d\n",
9216 					phba->cfg_prot_mask,
9217 					phba->cfg_prot_guard);
9218 
9219 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9220 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9221 		} else
9222 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9223 				"1479 Not Registering BlockGuard with the SCSI "
9224 				"layer, Bad protection parameters: %d %d\n",
9225 				old_mask, old_guard);
9226 	}
9227 }
9228 
9229 /**
9230  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9231  * @phba: pointer to lpfc hba data structure.
9232  *
9233  * This routine is invoked to perform all the necessary post initialization
9234  * setup for the device.
9235  **/
9236 static void
9237 lpfc_post_init_setup(struct lpfc_hba *phba)
9238 {
9239 	struct Scsi_Host  *shost;
9240 	struct lpfc_adapter_event_header adapter_event;
9241 
9242 	/* Get the default values for Model Name and Description */
9243 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9244 
9245 	/*
9246 	 * hba setup may have changed the hba_queue_depth so we need to
9247 	 * adjust the value of can_queue.
9248 	 */
9249 	shost = pci_get_drvdata(phba->pcidev);
9250 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9251 
9252 	lpfc_host_attrib_init(shost);
9253 
9254 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9255 		spin_lock_irq(shost->host_lock);
9256 		lpfc_poll_start_timer(phba);
9257 		spin_unlock_irq(shost->host_lock);
9258 	}
9259 
9260 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9261 			"0428 Perform SCSI scan\n");
9262 	/* Send board arrival event to upper layer */
9263 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9264 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9265 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9266 				  sizeof(adapter_event),
9267 				  (char *) &adapter_event,
9268 				  LPFC_NL_VENDOR_ID);
9269 	return;
9270 }
9271 
9272 /**
9273  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9274  * @phba: pointer to lpfc hba data structure.
9275  *
9276  * This routine is invoked to set up the PCI device memory space for device
9277  * with SLI-3 interface spec.
9278  *
9279  * Return codes
9280  * 	0 - successful
9281  * 	other values - error
9282  **/
9283 static int
9284 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9285 {
9286 	struct pci_dev *pdev = phba->pcidev;
9287 	unsigned long bar0map_len, bar2map_len;
9288 	int i, hbq_count;
9289 	void *ptr;
9290 	int error;
9291 
9292 	if (!pdev)
9293 		return -ENODEV;
9294 
9295 	/* Set the device DMA mask size */
9296 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9297 	if (error)
9298 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9299 	if (error)
9300 		return error;
9301 	error = -ENODEV;
9302 
9303 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9304 	 * required by each mapping.
9305 	 */
9306 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9307 	bar0map_len = pci_resource_len(pdev, 0);
9308 
9309 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9310 	bar2map_len = pci_resource_len(pdev, 2);
9311 
9312 	/* Map HBA SLIM to a kernel virtual address. */
9313 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9314 	if (!phba->slim_memmap_p) {
9315 		dev_printk(KERN_ERR, &pdev->dev,
9316 			   "ioremap failed for SLIM memory.\n");
9317 		goto out;
9318 	}
9319 
9320 	/* Map HBA Control Registers to a kernel virtual address. */
9321 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9322 	if (!phba->ctrl_regs_memmap_p) {
9323 		dev_printk(KERN_ERR, &pdev->dev,
9324 			   "ioremap failed for HBA control registers.\n");
9325 		goto out_iounmap_slim;
9326 	}
9327 
9328 	/* Allocate memory for SLI-2 structures */
9329 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9330 					       &phba->slim2p.phys, GFP_KERNEL);
9331 	if (!phba->slim2p.virt)
9332 		goto out_iounmap;
9333 
9334 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9335 	phba->mbox_ext = (phba->slim2p.virt +
9336 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9337 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9338 	phba->IOCBs = (phba->slim2p.virt +
9339 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9340 
9341 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9342 						 lpfc_sli_hbq_size(),
9343 						 &phba->hbqslimp.phys,
9344 						 GFP_KERNEL);
9345 	if (!phba->hbqslimp.virt)
9346 		goto out_free_slim;
9347 
9348 	hbq_count = lpfc_sli_hbq_count();
9349 	ptr = phba->hbqslimp.virt;
9350 	for (i = 0; i < hbq_count; ++i) {
9351 		phba->hbqs[i].hbq_virt = ptr;
9352 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9353 		ptr += (lpfc_hbq_defs[i]->entry_count *
9354 			sizeof(struct lpfc_hbq_entry));
9355 	}
9356 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9357 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9358 
9359 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9360 
9361 	phba->MBslimaddr = phba->slim_memmap_p;
9362 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9363 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9364 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9365 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9366 
9367 	return 0;
9368 
9369 out_free_slim:
9370 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9371 			  phba->slim2p.virt, phba->slim2p.phys);
9372 out_iounmap:
9373 	iounmap(phba->ctrl_regs_memmap_p);
9374 out_iounmap_slim:
9375 	iounmap(phba->slim_memmap_p);
9376 out:
9377 	return error;
9378 }
9379 
9380 /**
9381  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9382  * @phba: pointer to lpfc hba data structure.
9383  *
9384  * This routine is invoked to unset the PCI device memory space for device
9385  * with SLI-3 interface spec.
9386  **/
9387 static void
9388 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9389 {
9390 	struct pci_dev *pdev;
9391 
9392 	/* Obtain PCI device reference */
9393 	if (!phba->pcidev)
9394 		return;
9395 	else
9396 		pdev = phba->pcidev;
9397 
9398 	/* Free coherent DMA memory allocated */
9399 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9400 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9401 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9402 			  phba->slim2p.virt, phba->slim2p.phys);
9403 
9404 	/* I/O memory unmap */
9405 	iounmap(phba->ctrl_regs_memmap_p);
9406 	iounmap(phba->slim_memmap_p);
9407 
9408 	return;
9409 }
9410 
9411 /**
9412  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9413  * @phba: pointer to lpfc hba data structure.
9414  *
9415  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9416  * done and check status.
9417  *
9418  * Return 0 if successful, otherwise -ENODEV.
9419  **/
9420 int
9421 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9422 {
9423 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9424 	struct lpfc_register reg_data;
9425 	int i, port_error = 0;
9426 	uint32_t if_type;
9427 
9428 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9429 	memset(&reg_data, 0, sizeof(reg_data));
9430 	if (!phba->sli4_hba.PSMPHRregaddr)
9431 		return -ENODEV;
9432 
9433 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9434 	for (i = 0; i < 3000; i++) {
9435 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9436 			&portsmphr_reg.word0) ||
9437 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9438 			/* Port has a fatal POST error, break out */
9439 			port_error = -ENODEV;
9440 			break;
9441 		}
9442 		if (LPFC_POST_STAGE_PORT_READY ==
9443 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9444 			break;
9445 		msleep(10);
9446 	}
9447 
9448 	/*
9449 	 * If there was a port error during POST, then don't proceed with
9450 	 * other register reads as the data may not be valid.  Just exit.
9451 	 */
9452 	if (port_error) {
9453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9454 			"1408 Port Failed POST - portsmphr=0x%x, "
9455 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9456 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9457 			portsmphr_reg.word0,
9458 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9459 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9460 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9461 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9462 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9463 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9464 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9465 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9466 	} else {
9467 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9468 				"2534 Device Info: SLIFamily=0x%x, "
9469 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9470 				"SLIHint_2=0x%x, FT=0x%x\n",
9471 				bf_get(lpfc_sli_intf_sli_family,
9472 				       &phba->sli4_hba.sli_intf),
9473 				bf_get(lpfc_sli_intf_slirev,
9474 				       &phba->sli4_hba.sli_intf),
9475 				bf_get(lpfc_sli_intf_if_type,
9476 				       &phba->sli4_hba.sli_intf),
9477 				bf_get(lpfc_sli_intf_sli_hint1,
9478 				       &phba->sli4_hba.sli_intf),
9479 				bf_get(lpfc_sli_intf_sli_hint2,
9480 				       &phba->sli4_hba.sli_intf),
9481 				bf_get(lpfc_sli_intf_func_type,
9482 				       &phba->sli4_hba.sli_intf));
9483 		/*
9484 		 * Check for other Port errors during the initialization
9485 		 * process.  Fail the load if the port did not come up
9486 		 * correctly.
9487 		 */
9488 		if_type = bf_get(lpfc_sli_intf_if_type,
9489 				 &phba->sli4_hba.sli_intf);
9490 		switch (if_type) {
9491 		case LPFC_SLI_INTF_IF_TYPE_0:
9492 			phba->sli4_hba.ue_mask_lo =
9493 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9494 			phba->sli4_hba.ue_mask_hi =
9495 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9496 			uerrlo_reg.word0 =
9497 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9498 			uerrhi_reg.word0 =
9499 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9500 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9501 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9502 				lpfc_printf_log(phba, KERN_ERR,
9503 						LOG_TRACE_EVENT,
9504 						"1422 Unrecoverable Error "
9505 						"Detected during POST "
9506 						"uerr_lo_reg=0x%x, "
9507 						"uerr_hi_reg=0x%x, "
9508 						"ue_mask_lo_reg=0x%x, "
9509 						"ue_mask_hi_reg=0x%x\n",
9510 						uerrlo_reg.word0,
9511 						uerrhi_reg.word0,
9512 						phba->sli4_hba.ue_mask_lo,
9513 						phba->sli4_hba.ue_mask_hi);
9514 				port_error = -ENODEV;
9515 			}
9516 			break;
9517 		case LPFC_SLI_INTF_IF_TYPE_2:
9518 		case LPFC_SLI_INTF_IF_TYPE_6:
9519 			/* Final checks.  The port status should be clean. */
9520 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9521 				&reg_data.word0) ||
9522 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9523 				phba->work_status[0] =
9524 					readl(phba->sli4_hba.u.if_type2.
9525 					      ERR1regaddr);
9526 				phba->work_status[1] =
9527 					readl(phba->sli4_hba.u.if_type2.
9528 					      ERR2regaddr);
9529 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9530 					"2888 Unrecoverable port error "
9531 					"following POST: port status reg "
9532 					"0x%x, port_smphr reg 0x%x, "
9533 					"error 1=0x%x, error 2=0x%x\n",
9534 					reg_data.word0,
9535 					portsmphr_reg.word0,
9536 					phba->work_status[0],
9537 					phba->work_status[1]);
9538 				port_error = -ENODEV;
9539 				break;
9540 			}
9541 
9542 			if (lpfc_pldv_detect &&
9543 			    bf_get(lpfc_sli_intf_sli_family,
9544 				   &phba->sli4_hba.sli_intf) ==
9545 					LPFC_SLI_INTF_FAMILY_G6)
9546 				pci_write_config_byte(phba->pcidev,
9547 						      LPFC_SLI_INTF, CFG_PLD);
9548 			break;
9549 		case LPFC_SLI_INTF_IF_TYPE_1:
9550 		default:
9551 			break;
9552 		}
9553 	}
9554 	return port_error;
9555 }
9556 
9557 /**
9558  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9559  * @phba: pointer to lpfc hba data structure.
9560  * @if_type:  The SLI4 interface type getting configured.
9561  *
9562  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9563  * memory map.
9564  **/
9565 static void
9566 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9567 {
9568 	switch (if_type) {
9569 	case LPFC_SLI_INTF_IF_TYPE_0:
9570 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9571 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9572 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9573 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9574 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9575 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9576 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9577 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9578 		phba->sli4_hba.SLIINTFregaddr =
9579 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9580 		break;
9581 	case LPFC_SLI_INTF_IF_TYPE_2:
9582 		phba->sli4_hba.u.if_type2.EQDregaddr =
9583 			phba->sli4_hba.conf_regs_memmap_p +
9584 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9585 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9586 			phba->sli4_hba.conf_regs_memmap_p +
9587 						LPFC_CTL_PORT_ER1_OFFSET;
9588 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9589 			phba->sli4_hba.conf_regs_memmap_p +
9590 						LPFC_CTL_PORT_ER2_OFFSET;
9591 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_CTL_OFFSET;
9594 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p +
9596 						LPFC_CTL_PORT_STA_OFFSET;
9597 		phba->sli4_hba.SLIINTFregaddr =
9598 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9599 		phba->sli4_hba.PSMPHRregaddr =
9600 			phba->sli4_hba.conf_regs_memmap_p +
9601 						LPFC_CTL_PORT_SEM_OFFSET;
9602 		phba->sli4_hba.RQDBregaddr =
9603 			phba->sli4_hba.conf_regs_memmap_p +
9604 						LPFC_ULP0_RQ_DOORBELL;
9605 		phba->sli4_hba.WQDBregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p +
9607 						LPFC_ULP0_WQ_DOORBELL;
9608 		phba->sli4_hba.CQDBregaddr =
9609 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9610 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9611 		phba->sli4_hba.MQDBregaddr =
9612 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9613 		phba->sli4_hba.BMBXregaddr =
9614 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9615 		break;
9616 	case LPFC_SLI_INTF_IF_TYPE_6:
9617 		phba->sli4_hba.u.if_type2.EQDregaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p +
9619 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9620 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9621 			phba->sli4_hba.conf_regs_memmap_p +
9622 						LPFC_CTL_PORT_ER1_OFFSET;
9623 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p +
9625 						LPFC_CTL_PORT_ER2_OFFSET;
9626 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9627 			phba->sli4_hba.conf_regs_memmap_p +
9628 						LPFC_CTL_PORT_CTL_OFFSET;
9629 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9630 			phba->sli4_hba.conf_regs_memmap_p +
9631 						LPFC_CTL_PORT_STA_OFFSET;
9632 		phba->sli4_hba.PSMPHRregaddr =
9633 			phba->sli4_hba.conf_regs_memmap_p +
9634 						LPFC_CTL_PORT_SEM_OFFSET;
9635 		phba->sli4_hba.BMBXregaddr =
9636 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9637 		break;
9638 	case LPFC_SLI_INTF_IF_TYPE_1:
9639 	default:
9640 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9641 			   "FATAL - unsupported SLI4 interface type - %d\n",
9642 			   if_type);
9643 		break;
9644 	}
9645 }
9646 
9647 /**
9648  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9649  * @phba: pointer to lpfc hba data structure.
9650  * @if_type: sli if type to operate on.
9651  *
9652  * This routine is invoked to set up SLI4 BAR1 register memory map.
9653  **/
9654 static void
9655 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9656 {
9657 	switch (if_type) {
9658 	case LPFC_SLI_INTF_IF_TYPE_0:
9659 		phba->sli4_hba.PSMPHRregaddr =
9660 			phba->sli4_hba.ctrl_regs_memmap_p +
9661 			LPFC_SLIPORT_IF0_SMPHR;
9662 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9663 			LPFC_HST_ISR0;
9664 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9665 			LPFC_HST_IMR0;
9666 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9667 			LPFC_HST_ISCR0;
9668 		break;
9669 	case LPFC_SLI_INTF_IF_TYPE_6:
9670 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9671 			LPFC_IF6_RQ_DOORBELL;
9672 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9673 			LPFC_IF6_WQ_DOORBELL;
9674 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9675 			LPFC_IF6_CQ_DOORBELL;
9676 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9677 			LPFC_IF6_EQ_DOORBELL;
9678 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9679 			LPFC_IF6_MQ_DOORBELL;
9680 		break;
9681 	case LPFC_SLI_INTF_IF_TYPE_2:
9682 	case LPFC_SLI_INTF_IF_TYPE_1:
9683 	default:
9684 		dev_err(&phba->pcidev->dev,
9685 			   "FATAL - unsupported SLI4 interface type - %d\n",
9686 			   if_type);
9687 		break;
9688 	}
9689 }
9690 
9691 /**
9692  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9693  * @phba: pointer to lpfc hba data structure.
9694  * @vf: virtual function number
9695  *
9696  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9697  * based on the given viftual function number, @vf.
9698  *
9699  * Return 0 if successful, otherwise -ENODEV.
9700  **/
9701 static int
9702 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9703 {
9704 	if (vf > LPFC_VIR_FUNC_MAX)
9705 		return -ENODEV;
9706 
9707 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9708 				vf * LPFC_VFR_PAGE_SIZE +
9709 					LPFC_ULP0_RQ_DOORBELL);
9710 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9711 				vf * LPFC_VFR_PAGE_SIZE +
9712 					LPFC_ULP0_WQ_DOORBELL);
9713 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9714 				vf * LPFC_VFR_PAGE_SIZE +
9715 					LPFC_EQCQ_DOORBELL);
9716 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9717 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9718 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9719 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9720 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9721 	return 0;
9722 }
9723 
9724 /**
9725  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9726  * @phba: pointer to lpfc hba data structure.
9727  *
9728  * This routine is invoked to create the bootstrap mailbox
9729  * region consistent with the SLI-4 interface spec.  This
9730  * routine allocates all memory necessary to communicate
9731  * mailbox commands to the port and sets up all alignment
9732  * needs.  No locks are expected to be held when calling
9733  * this routine.
9734  *
9735  * Return codes
9736  * 	0 - successful
9737  * 	-ENOMEM - could not allocated memory.
9738  **/
9739 static int
9740 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9741 {
9742 	uint32_t bmbx_size;
9743 	struct lpfc_dmabuf *dmabuf;
9744 	struct dma_address *dma_address;
9745 	uint32_t pa_addr;
9746 	uint64_t phys_addr;
9747 
9748 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9749 	if (!dmabuf)
9750 		return -ENOMEM;
9751 
9752 	/*
9753 	 * The bootstrap mailbox region is comprised of 2 parts
9754 	 * plus an alignment restriction of 16 bytes.
9755 	 */
9756 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9757 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9758 					  &dmabuf->phys, GFP_KERNEL);
9759 	if (!dmabuf->virt) {
9760 		kfree(dmabuf);
9761 		return -ENOMEM;
9762 	}
9763 
9764 	/*
9765 	 * Initialize the bootstrap mailbox pointers now so that the register
9766 	 * operations are simple later.  The mailbox dma address is required
9767 	 * to be 16-byte aligned.  Also align the virtual memory as each
9768 	 * maibox is copied into the bmbx mailbox region before issuing the
9769 	 * command to the port.
9770 	 */
9771 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9772 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9773 
9774 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9775 					      LPFC_ALIGN_16_BYTE);
9776 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9777 					      LPFC_ALIGN_16_BYTE);
9778 
9779 	/*
9780 	 * Set the high and low physical addresses now.  The SLI4 alignment
9781 	 * requirement is 16 bytes and the mailbox is posted to the port
9782 	 * as two 30-bit addresses.  The other data is a bit marking whether
9783 	 * the 30-bit address is the high or low address.
9784 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9785 	 * clean on 32 bit machines.
9786 	 */
9787 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9788 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9789 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9790 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9791 					   LPFC_BMBX_BIT1_ADDR_HI);
9792 
9793 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9794 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9795 					   LPFC_BMBX_BIT1_ADDR_LO);
9796 	return 0;
9797 }
9798 
9799 /**
9800  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9801  * @phba: pointer to lpfc hba data structure.
9802  *
9803  * This routine is invoked to teardown the bootstrap mailbox
9804  * region and release all host resources. This routine requires
9805  * the caller to ensure all mailbox commands recovered, no
9806  * additional mailbox comands are sent, and interrupts are disabled
9807  * before calling this routine.
9808  *
9809  **/
9810 static void
9811 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9812 {
9813 	dma_free_coherent(&phba->pcidev->dev,
9814 			  phba->sli4_hba.bmbx.bmbx_size,
9815 			  phba->sli4_hba.bmbx.dmabuf->virt,
9816 			  phba->sli4_hba.bmbx.dmabuf->phys);
9817 
9818 	kfree(phba->sli4_hba.bmbx.dmabuf);
9819 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9820 }
9821 
9822 static const char * const lpfc_topo_to_str[] = {
9823 	"Loop then P2P",
9824 	"Loopback",
9825 	"P2P Only",
9826 	"Unsupported",
9827 	"Loop Only",
9828 	"Unsupported",
9829 	"P2P then Loop",
9830 };
9831 
9832 #define	LINK_FLAGS_DEF	0x0
9833 #define	LINK_FLAGS_P2P	0x1
9834 #define	LINK_FLAGS_LOOP	0x2
9835 /**
9836  * lpfc_map_topology - Map the topology read from READ_CONFIG
9837  * @phba: pointer to lpfc hba data structure.
9838  * @rd_config: pointer to read config data
9839  *
9840  * This routine is invoked to map the topology values as read
9841  * from the read config mailbox command. If the persistent
9842  * topology feature is supported, the firmware will provide the
9843  * saved topology information to be used in INIT_LINK
9844  **/
9845 static void
9846 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9847 {
9848 	u8 ptv, tf, pt;
9849 
9850 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9851 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9852 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9853 
9854 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9855 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9856 			 ptv, tf, pt);
9857 	if (!ptv) {
9858 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9859 				"2019 FW does not support persistent topology "
9860 				"Using driver parameter defined value [%s]",
9861 				lpfc_topo_to_str[phba->cfg_topology]);
9862 		return;
9863 	}
9864 	/* FW supports persistent topology - override module parameter value */
9865 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9866 
9867 	/* if ASIC_GEN_NUM >= 0xC) */
9868 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9869 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9870 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9871 		    LPFC_SLI_INTF_FAMILY_G6)) {
9872 		if (!tf) {
9873 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9874 					? FLAGS_TOPOLOGY_MODE_LOOP
9875 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9876 		} else {
9877 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9878 		}
9879 	} else { /* G5 */
9880 		if (tf) {
9881 			/* If topology failover set - pt is '0' or '1' */
9882 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9883 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9884 		} else {
9885 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9886 					? FLAGS_TOPOLOGY_MODE_PT_PT
9887 					: FLAGS_TOPOLOGY_MODE_LOOP);
9888 		}
9889 	}
9890 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9891 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9892 				"2020 Using persistent topology value [%s]",
9893 				lpfc_topo_to_str[phba->cfg_topology]);
9894 	} else {
9895 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9896 				"2021 Invalid topology values from FW "
9897 				"Using driver parameter defined value [%s]",
9898 				lpfc_topo_to_str[phba->cfg_topology]);
9899 	}
9900 }
9901 
9902 /**
9903  * lpfc_sli4_read_config - Get the config parameters.
9904  * @phba: pointer to lpfc hba data structure.
9905  *
9906  * This routine is invoked to read the configuration parameters from the HBA.
9907  * The configuration parameters are used to set the base and maximum values
9908  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9909  * allocation for the port.
9910  *
9911  * Return codes
9912  * 	0 - successful
9913  * 	-ENOMEM - No available memory
9914  *      -EIO - The mailbox failed to complete successfully.
9915  **/
9916 int
9917 lpfc_sli4_read_config(struct lpfc_hba *phba)
9918 {
9919 	LPFC_MBOXQ_t *pmb;
9920 	struct lpfc_mbx_read_config *rd_config;
9921 	union  lpfc_sli4_cfg_shdr *shdr;
9922 	uint32_t shdr_status, shdr_add_status;
9923 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9924 	struct lpfc_rsrc_desc_fcfcoe *desc;
9925 	char *pdesc_0;
9926 	uint16_t forced_link_speed;
9927 	uint32_t if_type, qmin, fawwpn;
9928 	int length, i, rc = 0, rc2;
9929 
9930 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9931 	if (!pmb) {
9932 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9933 				"2011 Unable to allocate memory for issuing "
9934 				"SLI_CONFIG_SPECIAL mailbox command\n");
9935 		return -ENOMEM;
9936 	}
9937 
9938 	lpfc_read_config(phba, pmb);
9939 
9940 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9941 	if (rc != MBX_SUCCESS) {
9942 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9943 				"2012 Mailbox failed , mbxCmd x%x "
9944 				"READ_CONFIG, mbxStatus x%x\n",
9945 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9946 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9947 		rc = -EIO;
9948 	} else {
9949 		rd_config = &pmb->u.mqe.un.rd_config;
9950 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9951 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9952 			phba->sli4_hba.lnk_info.lnk_tp =
9953 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9954 			phba->sli4_hba.lnk_info.lnk_no =
9955 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9956 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9957 					"3081 lnk_type:%d, lnk_numb:%d\n",
9958 					phba->sli4_hba.lnk_info.lnk_tp,
9959 					phba->sli4_hba.lnk_info.lnk_no);
9960 		} else
9961 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9962 					"3082 Mailbox (x%x) returned ldv:x0\n",
9963 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9964 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9965 			phba->bbcredit_support = 1;
9966 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9967 		}
9968 
9969 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9970 
9971 		if (fawwpn) {
9972 			lpfc_printf_log(phba, KERN_INFO,
9973 					LOG_INIT | LOG_DISCOVERY,
9974 					"2702 READ_CONFIG: FA-PWWN is "
9975 					"configured on\n");
9976 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9977 		} else {
9978 			/* Clear FW configured flag, preserve driver flag */
9979 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9980 		}
9981 
9982 		phba->sli4_hba.conf_trunk =
9983 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9984 		phba->sli4_hba.extents_in_use =
9985 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9986 
9987 		phba->sli4_hba.max_cfg_param.max_xri =
9988 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9989 		/* Reduce resource usage in kdump environment */
9990 		if (is_kdump_kernel() &&
9991 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9992 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9993 		phba->sli4_hba.max_cfg_param.xri_base =
9994 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9995 		phba->sli4_hba.max_cfg_param.max_vpi =
9996 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9997 		/* Limit the max we support */
9998 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9999 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
10000 		phba->sli4_hba.max_cfg_param.vpi_base =
10001 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
10002 		phba->sli4_hba.max_cfg_param.max_rpi =
10003 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10004 		phba->sli4_hba.max_cfg_param.rpi_base =
10005 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10006 		phba->sli4_hba.max_cfg_param.max_vfi =
10007 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10008 		phba->sli4_hba.max_cfg_param.vfi_base =
10009 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10010 		phba->sli4_hba.max_cfg_param.max_fcfi =
10011 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10012 		phba->sli4_hba.max_cfg_param.max_eq =
10013 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10014 		phba->sli4_hba.max_cfg_param.max_rq =
10015 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10016 		phba->sli4_hba.max_cfg_param.max_wq =
10017 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10018 		phba->sli4_hba.max_cfg_param.max_cq =
10019 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10020 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10021 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10022 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10023 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10024 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10025 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10026 		phba->max_vports = phba->max_vpi;
10027 
10028 		/* Next decide on FPIN or Signal E2E CGN support
10029 		 * For congestion alarms and warnings valid combination are:
10030 		 * 1. FPIN alarms / FPIN warnings
10031 		 * 2. Signal alarms / Signal warnings
10032 		 * 3. FPIN alarms / Signal warnings
10033 		 * 4. Signal alarms / FPIN warnings
10034 		 *
10035 		 * Initialize the adapter frequency to 100 mSecs
10036 		 */
10037 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10038 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10039 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10040 
10041 		if (lpfc_use_cgn_signal) {
10042 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10043 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10044 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10045 			}
10046 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10047 				/* MUST support both alarm and warning
10048 				 * because EDC does not support alarm alone.
10049 				 */
10050 				if (phba->cgn_reg_signal !=
10051 				    EDC_CG_SIG_WARN_ONLY) {
10052 					/* Must support both or none */
10053 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10054 					phba->cgn_reg_signal =
10055 						EDC_CG_SIG_NOTSUPPORTED;
10056 				} else {
10057 					phba->cgn_reg_signal =
10058 						EDC_CG_SIG_WARN_ALARM;
10059 					phba->cgn_reg_fpin =
10060 						LPFC_CGN_FPIN_NONE;
10061 				}
10062 			}
10063 		}
10064 
10065 		/* Set the congestion initial signal and fpin values. */
10066 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10067 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10068 
10069 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10070 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10071 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10072 
10073 		lpfc_map_topology(phba, rd_config);
10074 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10075 				"2003 cfg params Extents? %d "
10076 				"XRI(B:%d M:%d), "
10077 				"VPI(B:%d M:%d) "
10078 				"VFI(B:%d M:%d) "
10079 				"RPI(B:%d M:%d) "
10080 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10081 				phba->sli4_hba.extents_in_use,
10082 				phba->sli4_hba.max_cfg_param.xri_base,
10083 				phba->sli4_hba.max_cfg_param.max_xri,
10084 				phba->sli4_hba.max_cfg_param.vpi_base,
10085 				phba->sli4_hba.max_cfg_param.max_vpi,
10086 				phba->sli4_hba.max_cfg_param.vfi_base,
10087 				phba->sli4_hba.max_cfg_param.max_vfi,
10088 				phba->sli4_hba.max_cfg_param.rpi_base,
10089 				phba->sli4_hba.max_cfg_param.max_rpi,
10090 				phba->sli4_hba.max_cfg_param.max_fcfi,
10091 				phba->sli4_hba.max_cfg_param.max_eq,
10092 				phba->sli4_hba.max_cfg_param.max_cq,
10093 				phba->sli4_hba.max_cfg_param.max_wq,
10094 				phba->sli4_hba.max_cfg_param.max_rq,
10095 				phba->lmt);
10096 
10097 		/*
10098 		 * Calculate queue resources based on how
10099 		 * many WQ/CQ/EQs are available.
10100 		 */
10101 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10102 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10103 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10104 		/*
10105 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10106 		 * the remainder can be used for NVME / FCP.
10107 		 */
10108 		qmin -= 4;
10109 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10110 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10111 
10112 		/* Check to see if there is enough for default cfg */
10113 		if ((phba->cfg_irq_chann > qmin) ||
10114 		    (phba->cfg_hdw_queue > qmin)) {
10115 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10116 					"2005 Reducing Queues - "
10117 					"FW resource limitation: "
10118 					"WQ %d CQ %d EQ %d: min %d: "
10119 					"IRQ %d HDWQ %d\n",
10120 					phba->sli4_hba.max_cfg_param.max_wq,
10121 					phba->sli4_hba.max_cfg_param.max_cq,
10122 					phba->sli4_hba.max_cfg_param.max_eq,
10123 					qmin, phba->cfg_irq_chann,
10124 					phba->cfg_hdw_queue);
10125 
10126 			if (phba->cfg_irq_chann > qmin)
10127 				phba->cfg_irq_chann = qmin;
10128 			if (phba->cfg_hdw_queue > qmin)
10129 				phba->cfg_hdw_queue = qmin;
10130 		}
10131 	}
10132 
10133 	if (rc)
10134 		goto read_cfg_out;
10135 
10136 	/* Update link speed if forced link speed is supported */
10137 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10138 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10139 		forced_link_speed =
10140 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10141 		if (forced_link_speed) {
10142 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10143 
10144 			switch (forced_link_speed) {
10145 			case LINK_SPEED_1G:
10146 				phba->cfg_link_speed =
10147 					LPFC_USER_LINK_SPEED_1G;
10148 				break;
10149 			case LINK_SPEED_2G:
10150 				phba->cfg_link_speed =
10151 					LPFC_USER_LINK_SPEED_2G;
10152 				break;
10153 			case LINK_SPEED_4G:
10154 				phba->cfg_link_speed =
10155 					LPFC_USER_LINK_SPEED_4G;
10156 				break;
10157 			case LINK_SPEED_8G:
10158 				phba->cfg_link_speed =
10159 					LPFC_USER_LINK_SPEED_8G;
10160 				break;
10161 			case LINK_SPEED_10G:
10162 				phba->cfg_link_speed =
10163 					LPFC_USER_LINK_SPEED_10G;
10164 				break;
10165 			case LINK_SPEED_16G:
10166 				phba->cfg_link_speed =
10167 					LPFC_USER_LINK_SPEED_16G;
10168 				break;
10169 			case LINK_SPEED_32G:
10170 				phba->cfg_link_speed =
10171 					LPFC_USER_LINK_SPEED_32G;
10172 				break;
10173 			case LINK_SPEED_64G:
10174 				phba->cfg_link_speed =
10175 					LPFC_USER_LINK_SPEED_64G;
10176 				break;
10177 			case 0xffff:
10178 				phba->cfg_link_speed =
10179 					LPFC_USER_LINK_SPEED_AUTO;
10180 				break;
10181 			default:
10182 				lpfc_printf_log(phba, KERN_ERR,
10183 						LOG_TRACE_EVENT,
10184 						"0047 Unrecognized link "
10185 						"speed : %d\n",
10186 						forced_link_speed);
10187 				phba->cfg_link_speed =
10188 					LPFC_USER_LINK_SPEED_AUTO;
10189 			}
10190 		}
10191 	}
10192 
10193 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10194 	length = phba->sli4_hba.max_cfg_param.max_xri -
10195 			lpfc_sli4_get_els_iocb_cnt(phba);
10196 	if (phba->cfg_hba_queue_depth > length) {
10197 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10198 				"3361 HBA queue depth changed from %d to %d\n",
10199 				phba->cfg_hba_queue_depth, length);
10200 		phba->cfg_hba_queue_depth = length;
10201 	}
10202 
10203 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10204 	    LPFC_SLI_INTF_IF_TYPE_2)
10205 		goto read_cfg_out;
10206 
10207 	/* get the pf# and vf# for SLI4 if_type 2 port */
10208 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10209 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10210 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10211 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10212 			 length, LPFC_SLI4_MBX_EMBED);
10213 
10214 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10215 	shdr = (union lpfc_sli4_cfg_shdr *)
10216 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10217 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10218 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10219 	if (rc2 || shdr_status || shdr_add_status) {
10220 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10221 				"3026 Mailbox failed , mbxCmd x%x "
10222 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10223 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10224 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10225 		goto read_cfg_out;
10226 	}
10227 
10228 	/* search for fc_fcoe resrouce descriptor */
10229 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10230 
10231 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10232 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10233 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10234 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10235 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10236 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10237 		goto read_cfg_out;
10238 
10239 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10240 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10241 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10242 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10243 			phba->sli4_hba.iov.pf_number =
10244 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10245 			phba->sli4_hba.iov.vf_number =
10246 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10247 			break;
10248 		}
10249 	}
10250 
10251 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10252 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10253 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10254 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10255 				phba->sli4_hba.iov.vf_number);
10256 	else
10257 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10258 				"3028 GET_FUNCTION_CONFIG: failed to find "
10259 				"Resource Descriptor:x%x\n",
10260 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10261 
10262 read_cfg_out:
10263 	mempool_free(pmb, phba->mbox_mem_pool);
10264 	return rc;
10265 }
10266 
10267 /**
10268  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10269  * @phba: pointer to lpfc hba data structure.
10270  *
10271  * This routine is invoked to setup the port-side endian order when
10272  * the port if_type is 0.  This routine has no function for other
10273  * if_types.
10274  *
10275  * Return codes
10276  * 	0 - successful
10277  * 	-ENOMEM - No available memory
10278  *      -EIO - The mailbox failed to complete successfully.
10279  **/
10280 static int
10281 lpfc_setup_endian_order(struct lpfc_hba *phba)
10282 {
10283 	LPFC_MBOXQ_t *mboxq;
10284 	uint32_t if_type, rc = 0;
10285 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10286 				      HOST_ENDIAN_HIGH_WORD1};
10287 
10288 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10289 	switch (if_type) {
10290 	case LPFC_SLI_INTF_IF_TYPE_0:
10291 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10292 						       GFP_KERNEL);
10293 		if (!mboxq) {
10294 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10295 					"0492 Unable to allocate memory for "
10296 					"issuing SLI_CONFIG_SPECIAL mailbox "
10297 					"command\n");
10298 			return -ENOMEM;
10299 		}
10300 
10301 		/*
10302 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10303 		 * two words to contain special data values and no other data.
10304 		 */
10305 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10306 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10307 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10308 		if (rc != MBX_SUCCESS) {
10309 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10310 					"0493 SLI_CONFIG_SPECIAL mailbox "
10311 					"failed with status x%x\n",
10312 					rc);
10313 			rc = -EIO;
10314 		}
10315 		mempool_free(mboxq, phba->mbox_mem_pool);
10316 		break;
10317 	case LPFC_SLI_INTF_IF_TYPE_6:
10318 	case LPFC_SLI_INTF_IF_TYPE_2:
10319 	case LPFC_SLI_INTF_IF_TYPE_1:
10320 	default:
10321 		break;
10322 	}
10323 	return rc;
10324 }
10325 
10326 /**
10327  * lpfc_sli4_queue_verify - Verify and update EQ counts
10328  * @phba: pointer to lpfc hba data structure.
10329  *
10330  * This routine is invoked to check the user settable queue counts for EQs.
10331  * After this routine is called the counts will be set to valid values that
10332  * adhere to the constraints of the system's interrupt vectors and the port's
10333  * queue resources.
10334  *
10335  * Return codes
10336  *      0 - successful
10337  *      -ENOMEM - No available memory
10338  **/
10339 static int
10340 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10341 {
10342 	/*
10343 	 * Sanity check for configured queue parameters against the run-time
10344 	 * device parameters
10345 	 */
10346 
10347 	if (phba->nvmet_support) {
10348 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10349 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10350 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10351 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10352 	}
10353 
10354 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10355 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10356 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10357 			phba->cfg_nvmet_mrq);
10358 
10359 	/* Get EQ depth from module parameter, fake the default for now */
10360 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10361 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10362 
10363 	/* Get CQ depth from module parameter, fake the default for now */
10364 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10365 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10366 	return 0;
10367 }
10368 
10369 static int
10370 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10371 {
10372 	struct lpfc_queue *qdesc;
10373 	u32 wqesize;
10374 	int cpu;
10375 
10376 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10377 	/* Create Fast Path IO CQs */
10378 	if (phba->enab_exp_wqcq_pages)
10379 		/* Increase the CQ size when WQEs contain an embedded cdb */
10380 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10381 					      phba->sli4_hba.cq_esize,
10382 					      LPFC_CQE_EXP_COUNT, cpu);
10383 
10384 	else
10385 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10386 					      phba->sli4_hba.cq_esize,
10387 					      phba->sli4_hba.cq_ecount, cpu);
10388 	if (!qdesc) {
10389 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10390 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10391 				idx);
10392 		return 1;
10393 	}
10394 	qdesc->qe_valid = 1;
10395 	qdesc->hdwq = idx;
10396 	qdesc->chann = cpu;
10397 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10398 
10399 	/* Create Fast Path IO WQs */
10400 	if (phba->enab_exp_wqcq_pages) {
10401 		/* Increase the WQ size when WQEs contain an embedded cdb */
10402 		wqesize = (phba->fcp_embed_io) ?
10403 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10404 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10405 					      wqesize,
10406 					      LPFC_WQE_EXP_COUNT, cpu);
10407 	} else
10408 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10409 					      phba->sli4_hba.wq_esize,
10410 					      phba->sli4_hba.wq_ecount, cpu);
10411 
10412 	if (!qdesc) {
10413 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10414 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10415 				idx);
10416 		return 1;
10417 	}
10418 	qdesc->hdwq = idx;
10419 	qdesc->chann = cpu;
10420 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10421 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10422 	return 0;
10423 }
10424 
10425 /**
10426  * lpfc_sli4_queue_create - Create all the SLI4 queues
10427  * @phba: pointer to lpfc hba data structure.
10428  *
10429  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10430  * operation. For each SLI4 queue type, the parameters such as queue entry
10431  * count (queue depth) shall be taken from the module parameter. For now,
10432  * we just use some constant number as place holder.
10433  *
10434  * Return codes
10435  *      0 - successful
10436  *      -ENOMEM - No availble memory
10437  *      -EIO - The mailbox failed to complete successfully.
10438  **/
10439 int
10440 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10441 {
10442 	struct lpfc_queue *qdesc;
10443 	int idx, cpu, eqcpu;
10444 	struct lpfc_sli4_hdw_queue *qp;
10445 	struct lpfc_vector_map_info *cpup;
10446 	struct lpfc_vector_map_info *eqcpup;
10447 	struct lpfc_eq_intr_info *eqi;
10448 
10449 	/*
10450 	 * Create HBA Record arrays.
10451 	 * Both NVME and FCP will share that same vectors / EQs
10452 	 */
10453 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10454 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10455 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10456 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10457 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10458 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10459 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10460 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10461 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10462 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10463 
10464 	if (!phba->sli4_hba.hdwq) {
10465 		phba->sli4_hba.hdwq = kcalloc(
10466 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10467 			GFP_KERNEL);
10468 		if (!phba->sli4_hba.hdwq) {
10469 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10470 					"6427 Failed allocate memory for "
10471 					"fast-path Hardware Queue array\n");
10472 			goto out_error;
10473 		}
10474 		/* Prepare hardware queues to take IO buffers */
10475 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10476 			qp = &phba->sli4_hba.hdwq[idx];
10477 			spin_lock_init(&qp->io_buf_list_get_lock);
10478 			spin_lock_init(&qp->io_buf_list_put_lock);
10479 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10480 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10481 			qp->get_io_bufs = 0;
10482 			qp->put_io_bufs = 0;
10483 			qp->total_io_bufs = 0;
10484 			spin_lock_init(&qp->abts_io_buf_list_lock);
10485 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10486 			qp->abts_scsi_io_bufs = 0;
10487 			qp->abts_nvme_io_bufs = 0;
10488 			INIT_LIST_HEAD(&qp->sgl_list);
10489 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10490 			spin_lock_init(&qp->hdwq_lock);
10491 		}
10492 	}
10493 
10494 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10495 		if (phba->nvmet_support) {
10496 			phba->sli4_hba.nvmet_cqset = kcalloc(
10497 					phba->cfg_nvmet_mrq,
10498 					sizeof(struct lpfc_queue *),
10499 					GFP_KERNEL);
10500 			if (!phba->sli4_hba.nvmet_cqset) {
10501 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10502 					"3121 Fail allocate memory for "
10503 					"fast-path CQ set array\n");
10504 				goto out_error;
10505 			}
10506 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10507 					phba->cfg_nvmet_mrq,
10508 					sizeof(struct lpfc_queue *),
10509 					GFP_KERNEL);
10510 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10511 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10512 					"3122 Fail allocate memory for "
10513 					"fast-path RQ set hdr array\n");
10514 				goto out_error;
10515 			}
10516 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10517 					phba->cfg_nvmet_mrq,
10518 					sizeof(struct lpfc_queue *),
10519 					GFP_KERNEL);
10520 			if (!phba->sli4_hba.nvmet_mrq_data) {
10521 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10522 					"3124 Fail allocate memory for "
10523 					"fast-path RQ set data array\n");
10524 				goto out_error;
10525 			}
10526 		}
10527 	}
10528 
10529 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10530 
10531 	/* Create HBA Event Queues (EQs) */
10532 	for_each_present_cpu(cpu) {
10533 		/* We only want to create 1 EQ per vector, even though
10534 		 * multiple CPUs might be using that vector. so only
10535 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10536 		 */
10537 		cpup = &phba->sli4_hba.cpu_map[cpu];
10538 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10539 			continue;
10540 
10541 		/* Get a ptr to the Hardware Queue associated with this CPU */
10542 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10543 
10544 		/* Allocate an EQ */
10545 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10546 					      phba->sli4_hba.eq_esize,
10547 					      phba->sli4_hba.eq_ecount, cpu);
10548 		if (!qdesc) {
10549 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10550 					"0497 Failed allocate EQ (%d)\n",
10551 					cpup->hdwq);
10552 			goto out_error;
10553 		}
10554 		qdesc->qe_valid = 1;
10555 		qdesc->hdwq = cpup->hdwq;
10556 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10557 		qdesc->last_cpu = qdesc->chann;
10558 
10559 		/* Save the allocated EQ in the Hardware Queue */
10560 		qp->hba_eq = qdesc;
10561 
10562 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10563 		list_add(&qdesc->cpu_list, &eqi->list);
10564 	}
10565 
10566 	/* Now we need to populate the other Hardware Queues, that share
10567 	 * an IRQ vector, with the associated EQ ptr.
10568 	 */
10569 	for_each_present_cpu(cpu) {
10570 		cpup = &phba->sli4_hba.cpu_map[cpu];
10571 
10572 		/* Check for EQ already allocated in previous loop */
10573 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10574 			continue;
10575 
10576 		/* Check for multiple CPUs per hdwq */
10577 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10578 		if (qp->hba_eq)
10579 			continue;
10580 
10581 		/* We need to share an EQ for this hdwq */
10582 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10583 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10584 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10585 	}
10586 
10587 	/* Allocate IO Path SLI4 CQ/WQs */
10588 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10589 		if (lpfc_alloc_io_wq_cq(phba, idx))
10590 			goto out_error;
10591 	}
10592 
10593 	if (phba->nvmet_support) {
10594 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10595 			cpu = lpfc_find_cpu_handle(phba, idx,
10596 						   LPFC_FIND_BY_HDWQ);
10597 			qdesc = lpfc_sli4_queue_alloc(phba,
10598 						      LPFC_DEFAULT_PAGE_SIZE,
10599 						      phba->sli4_hba.cq_esize,
10600 						      phba->sli4_hba.cq_ecount,
10601 						      cpu);
10602 			if (!qdesc) {
10603 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10604 						"3142 Failed allocate NVME "
10605 						"CQ Set (%d)\n", idx);
10606 				goto out_error;
10607 			}
10608 			qdesc->qe_valid = 1;
10609 			qdesc->hdwq = idx;
10610 			qdesc->chann = cpu;
10611 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10612 		}
10613 	}
10614 
10615 	/*
10616 	 * Create Slow Path Completion Queues (CQs)
10617 	 */
10618 
10619 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10620 	/* Create slow-path Mailbox Command Complete Queue */
10621 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10622 				      phba->sli4_hba.cq_esize,
10623 				      phba->sli4_hba.cq_ecount, cpu);
10624 	if (!qdesc) {
10625 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10626 				"0500 Failed allocate slow-path mailbox CQ\n");
10627 		goto out_error;
10628 	}
10629 	qdesc->qe_valid = 1;
10630 	phba->sli4_hba.mbx_cq = qdesc;
10631 
10632 	/* Create slow-path ELS Complete Queue */
10633 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10634 				      phba->sli4_hba.cq_esize,
10635 				      phba->sli4_hba.cq_ecount, cpu);
10636 	if (!qdesc) {
10637 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10638 				"0501 Failed allocate slow-path ELS CQ\n");
10639 		goto out_error;
10640 	}
10641 	qdesc->qe_valid = 1;
10642 	qdesc->chann = cpu;
10643 	phba->sli4_hba.els_cq = qdesc;
10644 
10645 
10646 	/*
10647 	 * Create Slow Path Work Queues (WQs)
10648 	 */
10649 
10650 	/* Create Mailbox Command Queue */
10651 
10652 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10653 				      phba->sli4_hba.mq_esize,
10654 				      phba->sli4_hba.mq_ecount, cpu);
10655 	if (!qdesc) {
10656 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10657 				"0505 Failed allocate slow-path MQ\n");
10658 		goto out_error;
10659 	}
10660 	qdesc->chann = cpu;
10661 	phba->sli4_hba.mbx_wq = qdesc;
10662 
10663 	/*
10664 	 * Create ELS Work Queues
10665 	 */
10666 
10667 	/* Create slow-path ELS Work Queue */
10668 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10669 				      phba->sli4_hba.wq_esize,
10670 				      phba->sli4_hba.wq_ecount, cpu);
10671 	if (!qdesc) {
10672 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10673 				"0504 Failed allocate slow-path ELS WQ\n");
10674 		goto out_error;
10675 	}
10676 	qdesc->chann = cpu;
10677 	phba->sli4_hba.els_wq = qdesc;
10678 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10679 
10680 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10681 		/* Create NVME LS Complete Queue */
10682 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10683 					      phba->sli4_hba.cq_esize,
10684 					      phba->sli4_hba.cq_ecount, cpu);
10685 		if (!qdesc) {
10686 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10687 					"6079 Failed allocate NVME LS CQ\n");
10688 			goto out_error;
10689 		}
10690 		qdesc->chann = cpu;
10691 		qdesc->qe_valid = 1;
10692 		phba->sli4_hba.nvmels_cq = qdesc;
10693 
10694 		/* Create NVME LS Work Queue */
10695 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10696 					      phba->sli4_hba.wq_esize,
10697 					      phba->sli4_hba.wq_ecount, cpu);
10698 		if (!qdesc) {
10699 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10700 					"6080 Failed allocate NVME LS WQ\n");
10701 			goto out_error;
10702 		}
10703 		qdesc->chann = cpu;
10704 		phba->sli4_hba.nvmels_wq = qdesc;
10705 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10706 	}
10707 
10708 	/*
10709 	 * Create Receive Queue (RQ)
10710 	 */
10711 
10712 	/* Create Receive Queue for header */
10713 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10714 				      phba->sli4_hba.rq_esize,
10715 				      phba->sli4_hba.rq_ecount, cpu);
10716 	if (!qdesc) {
10717 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10718 				"0506 Failed allocate receive HRQ\n");
10719 		goto out_error;
10720 	}
10721 	phba->sli4_hba.hdr_rq = qdesc;
10722 
10723 	/* Create Receive Queue for data */
10724 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10725 				      phba->sli4_hba.rq_esize,
10726 				      phba->sli4_hba.rq_ecount, cpu);
10727 	if (!qdesc) {
10728 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10729 				"0507 Failed allocate receive DRQ\n");
10730 		goto out_error;
10731 	}
10732 	phba->sli4_hba.dat_rq = qdesc;
10733 
10734 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10735 	    phba->nvmet_support) {
10736 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10737 			cpu = lpfc_find_cpu_handle(phba, idx,
10738 						   LPFC_FIND_BY_HDWQ);
10739 			/* Create NVMET Receive Queue for header */
10740 			qdesc = lpfc_sli4_queue_alloc(phba,
10741 						      LPFC_DEFAULT_PAGE_SIZE,
10742 						      phba->sli4_hba.rq_esize,
10743 						      LPFC_NVMET_RQE_DEF_COUNT,
10744 						      cpu);
10745 			if (!qdesc) {
10746 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10747 						"3146 Failed allocate "
10748 						"receive HRQ\n");
10749 				goto out_error;
10750 			}
10751 			qdesc->hdwq = idx;
10752 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10753 
10754 			/* Only needed for header of RQ pair */
10755 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10756 						   GFP_KERNEL,
10757 						   cpu_to_node(cpu));
10758 			if (qdesc->rqbp == NULL) {
10759 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10760 						"6131 Failed allocate "
10761 						"Header RQBP\n");
10762 				goto out_error;
10763 			}
10764 
10765 			/* Put list in known state in case driver load fails. */
10766 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10767 
10768 			/* Create NVMET Receive Queue for data */
10769 			qdesc = lpfc_sli4_queue_alloc(phba,
10770 						      LPFC_DEFAULT_PAGE_SIZE,
10771 						      phba->sli4_hba.rq_esize,
10772 						      LPFC_NVMET_RQE_DEF_COUNT,
10773 						      cpu);
10774 			if (!qdesc) {
10775 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10776 						"3156 Failed allocate "
10777 						"receive DRQ\n");
10778 				goto out_error;
10779 			}
10780 			qdesc->hdwq = idx;
10781 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10782 		}
10783 	}
10784 
10785 	/* Clear NVME stats */
10786 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10787 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10788 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10789 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10790 		}
10791 	}
10792 
10793 	/* Clear SCSI stats */
10794 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10795 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10796 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10797 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10798 		}
10799 	}
10800 
10801 	return 0;
10802 
10803 out_error:
10804 	lpfc_sli4_queue_destroy(phba);
10805 	return -ENOMEM;
10806 }
10807 
10808 static inline void
10809 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10810 {
10811 	if (*qp != NULL) {
10812 		lpfc_sli4_queue_free(*qp);
10813 		*qp = NULL;
10814 	}
10815 }
10816 
10817 static inline void
10818 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10819 {
10820 	int idx;
10821 
10822 	if (*qs == NULL)
10823 		return;
10824 
10825 	for (idx = 0; idx < max; idx++)
10826 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10827 
10828 	kfree(*qs);
10829 	*qs = NULL;
10830 }
10831 
10832 static inline void
10833 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10834 {
10835 	struct lpfc_sli4_hdw_queue *hdwq;
10836 	struct lpfc_queue *eq;
10837 	uint32_t idx;
10838 
10839 	hdwq = phba->sli4_hba.hdwq;
10840 
10841 	/* Loop thru all Hardware Queues */
10842 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10843 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10844 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10845 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10846 		hdwq[idx].hba_eq = NULL;
10847 		hdwq[idx].io_cq = NULL;
10848 		hdwq[idx].io_wq = NULL;
10849 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10850 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10851 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10852 	}
10853 	/* Loop thru all IRQ vectors */
10854 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10855 		/* Free the EQ corresponding to the IRQ vector */
10856 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10857 		lpfc_sli4_queue_free(eq);
10858 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10859 	}
10860 }
10861 
10862 /**
10863  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10864  * @phba: pointer to lpfc hba data structure.
10865  *
10866  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10867  * operation.
10868  *
10869  * Return codes
10870  *      0 - successful
10871  *      -ENOMEM - No available memory
10872  *      -EIO - The mailbox failed to complete successfully.
10873  **/
10874 void
10875 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10876 {
10877 	/*
10878 	 * Set FREE_INIT before beginning to free the queues.
10879 	 * Wait until the users of queues to acknowledge to
10880 	 * release queues by clearing FREE_WAIT.
10881 	 */
10882 	spin_lock_irq(&phba->hbalock);
10883 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10884 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10885 		spin_unlock_irq(&phba->hbalock);
10886 		msleep(20);
10887 		spin_lock_irq(&phba->hbalock);
10888 	}
10889 	spin_unlock_irq(&phba->hbalock);
10890 
10891 	lpfc_sli4_cleanup_poll_list(phba);
10892 
10893 	/* Release HBA eqs */
10894 	if (phba->sli4_hba.hdwq)
10895 		lpfc_sli4_release_hdwq(phba);
10896 
10897 	if (phba->nvmet_support) {
10898 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10899 					 phba->cfg_nvmet_mrq);
10900 
10901 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10902 					 phba->cfg_nvmet_mrq);
10903 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10904 					 phba->cfg_nvmet_mrq);
10905 	}
10906 
10907 	/* Release mailbox command work queue */
10908 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10909 
10910 	/* Release ELS work queue */
10911 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10912 
10913 	/* Release ELS work queue */
10914 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10915 
10916 	/* Release unsolicited receive queue */
10917 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10919 
10920 	/* Release ELS complete queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10922 
10923 	/* Release NVME LS complete queue */
10924 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10925 
10926 	/* Release mailbox command complete queue */
10927 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10928 
10929 	/* Everything on this list has been freed */
10930 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10931 
10932 	/* Done with freeing the queues */
10933 	spin_lock_irq(&phba->hbalock);
10934 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10935 	spin_unlock_irq(&phba->hbalock);
10936 }
10937 
10938 int
10939 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10940 {
10941 	struct lpfc_rqb *rqbp;
10942 	struct lpfc_dmabuf *h_buf;
10943 	struct rqb_dmabuf *rqb_buffer;
10944 
10945 	rqbp = rq->rqbp;
10946 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10947 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10948 				 struct lpfc_dmabuf, list);
10949 
10950 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10951 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10952 		rqbp->buffer_count--;
10953 	}
10954 	return 1;
10955 }
10956 
10957 static int
10958 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10959 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10960 	int qidx, uint32_t qtype)
10961 {
10962 	struct lpfc_sli_ring *pring;
10963 	int rc;
10964 
10965 	if (!eq || !cq || !wq) {
10966 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10967 			"6085 Fast-path %s (%d) not allocated\n",
10968 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10969 		return -ENOMEM;
10970 	}
10971 
10972 	/* create the Cq first */
10973 	rc = lpfc_cq_create(phba, cq, eq,
10974 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10975 	if (rc) {
10976 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10977 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10978 				qidx, (uint32_t)rc);
10979 		return rc;
10980 	}
10981 
10982 	if (qtype != LPFC_MBOX) {
10983 		/* Setup cq_map for fast lookup */
10984 		if (cq_map)
10985 			*cq_map = cq->queue_id;
10986 
10987 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10988 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10989 			qidx, cq->queue_id, qidx, eq->queue_id);
10990 
10991 		/* create the wq */
10992 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10993 		if (rc) {
10994 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10995 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10996 				qidx, (uint32_t)rc);
10997 			/* no need to tear down cq - caller will do so */
10998 			return rc;
10999 		}
11000 
11001 		/* Bind this CQ/WQ to the NVME ring */
11002 		pring = wq->pring;
11003 		pring->sli.sli4.wqp = (void *)wq;
11004 		cq->pring = pring;
11005 
11006 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11007 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11008 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11009 	} else {
11010 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11011 		if (rc) {
11012 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11013 					"0539 Failed setup of slow-path MQ: "
11014 					"rc = 0x%x\n", rc);
11015 			/* no need to tear down cq - caller will do so */
11016 			return rc;
11017 		}
11018 
11019 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11020 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11021 			phba->sli4_hba.mbx_wq->queue_id,
11022 			phba->sli4_hba.mbx_cq->queue_id);
11023 	}
11024 
11025 	return 0;
11026 }
11027 
11028 /**
11029  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11030  * @phba: pointer to lpfc hba data structure.
11031  *
11032  * This routine will populate the cq_lookup table by all
11033  * available CQ queue_id's.
11034  **/
11035 static void
11036 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11037 {
11038 	struct lpfc_queue *eq, *childq;
11039 	int qidx;
11040 
11041 	memset(phba->sli4_hba.cq_lookup, 0,
11042 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11043 	/* Loop thru all IRQ vectors */
11044 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11045 		/* Get the EQ corresponding to the IRQ vector */
11046 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11047 		if (!eq)
11048 			continue;
11049 		/* Loop through all CQs associated with that EQ */
11050 		list_for_each_entry(childq, &eq->child_list, list) {
11051 			if (childq->queue_id > phba->sli4_hba.cq_max)
11052 				continue;
11053 			if (childq->subtype == LPFC_IO)
11054 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11055 					childq;
11056 		}
11057 	}
11058 }
11059 
11060 /**
11061  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11062  * @phba: pointer to lpfc hba data structure.
11063  *
11064  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11065  * operation.
11066  *
11067  * Return codes
11068  *      0 - successful
11069  *      -ENOMEM - No available memory
11070  *      -EIO - The mailbox failed to complete successfully.
11071  **/
11072 int
11073 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11074 {
11075 	uint32_t shdr_status, shdr_add_status;
11076 	union lpfc_sli4_cfg_shdr *shdr;
11077 	struct lpfc_vector_map_info *cpup;
11078 	struct lpfc_sli4_hdw_queue *qp;
11079 	LPFC_MBOXQ_t *mboxq;
11080 	int qidx, cpu;
11081 	uint32_t length, usdelay;
11082 	int rc = -ENOMEM;
11083 
11084 	/* Check for dual-ULP support */
11085 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11086 	if (!mboxq) {
11087 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11088 				"3249 Unable to allocate memory for "
11089 				"QUERY_FW_CFG mailbox command\n");
11090 		return -ENOMEM;
11091 	}
11092 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11093 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11094 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11095 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11096 			 length, LPFC_SLI4_MBX_EMBED);
11097 
11098 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11099 
11100 	shdr = (union lpfc_sli4_cfg_shdr *)
11101 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11102 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11103 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11104 	if (shdr_status || shdr_add_status || rc) {
11105 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11106 				"3250 QUERY_FW_CFG mailbox failed with status "
11107 				"x%x add_status x%x, mbx status x%x\n",
11108 				shdr_status, shdr_add_status, rc);
11109 		mempool_free(mboxq, phba->mbox_mem_pool);
11110 		rc = -ENXIO;
11111 		goto out_error;
11112 	}
11113 
11114 	phba->sli4_hba.fw_func_mode =
11115 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11116 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11117 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11118 	phba->sli4_hba.physical_port =
11119 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11120 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11121 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11122 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11123 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11124 
11125 	mempool_free(mboxq, phba->mbox_mem_pool);
11126 
11127 	/*
11128 	 * Set up HBA Event Queues (EQs)
11129 	 */
11130 	qp = phba->sli4_hba.hdwq;
11131 
11132 	/* Set up HBA event queue */
11133 	if (!qp) {
11134 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11135 				"3147 Fast-path EQs not allocated\n");
11136 		rc = -ENOMEM;
11137 		goto out_error;
11138 	}
11139 
11140 	/* Loop thru all IRQ vectors */
11141 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11142 		/* Create HBA Event Queues (EQs) in order */
11143 		for_each_present_cpu(cpu) {
11144 			cpup = &phba->sli4_hba.cpu_map[cpu];
11145 
11146 			/* Look for the CPU thats using that vector with
11147 			 * LPFC_CPU_FIRST_IRQ set.
11148 			 */
11149 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11150 				continue;
11151 			if (qidx != cpup->eq)
11152 				continue;
11153 
11154 			/* Create an EQ for that vector */
11155 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11156 					    phba->cfg_fcp_imax);
11157 			if (rc) {
11158 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11159 						"0523 Failed setup of fast-path"
11160 						" EQ (%d), rc = 0x%x\n",
11161 						cpup->eq, (uint32_t)rc);
11162 				goto out_destroy;
11163 			}
11164 
11165 			/* Save the EQ for that vector in the hba_eq_hdl */
11166 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11167 				qp[cpup->hdwq].hba_eq;
11168 
11169 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11170 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11171 					cpup->eq,
11172 					qp[cpup->hdwq].hba_eq->queue_id);
11173 		}
11174 	}
11175 
11176 	/* Loop thru all Hardware Queues */
11177 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11178 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11179 		cpup = &phba->sli4_hba.cpu_map[cpu];
11180 
11181 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11182 		rc = lpfc_create_wq_cq(phba,
11183 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11184 				       qp[qidx].io_cq,
11185 				       qp[qidx].io_wq,
11186 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11187 				       qidx,
11188 				       LPFC_IO);
11189 		if (rc) {
11190 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11191 					"0535 Failed to setup fastpath "
11192 					"IO WQ/CQ (%d), rc = 0x%x\n",
11193 					qidx, (uint32_t)rc);
11194 			goto out_destroy;
11195 		}
11196 	}
11197 
11198 	/*
11199 	 * Set up Slow Path Complete Queues (CQs)
11200 	 */
11201 
11202 	/* Set up slow-path MBOX CQ/MQ */
11203 
11204 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11205 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11206 				"0528 %s not allocated\n",
11207 				phba->sli4_hba.mbx_cq ?
11208 				"Mailbox WQ" : "Mailbox CQ");
11209 		rc = -ENOMEM;
11210 		goto out_destroy;
11211 	}
11212 
11213 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11214 			       phba->sli4_hba.mbx_cq,
11215 			       phba->sli4_hba.mbx_wq,
11216 			       NULL, 0, LPFC_MBOX);
11217 	if (rc) {
11218 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11219 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11220 			(uint32_t)rc);
11221 		goto out_destroy;
11222 	}
11223 	if (phba->nvmet_support) {
11224 		if (!phba->sli4_hba.nvmet_cqset) {
11225 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11226 					"3165 Fast-path NVME CQ Set "
11227 					"array not allocated\n");
11228 			rc = -ENOMEM;
11229 			goto out_destroy;
11230 		}
11231 		if (phba->cfg_nvmet_mrq > 1) {
11232 			rc = lpfc_cq_create_set(phba,
11233 					phba->sli4_hba.nvmet_cqset,
11234 					qp,
11235 					LPFC_WCQ, LPFC_NVMET);
11236 			if (rc) {
11237 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11238 						"3164 Failed setup of NVME CQ "
11239 						"Set, rc = 0x%x\n",
11240 						(uint32_t)rc);
11241 				goto out_destroy;
11242 			}
11243 		} else {
11244 			/* Set up NVMET Receive Complete Queue */
11245 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11246 					    qp[0].hba_eq,
11247 					    LPFC_WCQ, LPFC_NVMET);
11248 			if (rc) {
11249 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11250 						"6089 Failed setup NVMET CQ: "
11251 						"rc = 0x%x\n", (uint32_t)rc);
11252 				goto out_destroy;
11253 			}
11254 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11255 
11256 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11257 					"6090 NVMET CQ setup: cq-id=%d, "
11258 					"parent eq-id=%d\n",
11259 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11260 					qp[0].hba_eq->queue_id);
11261 		}
11262 	}
11263 
11264 	/* Set up slow-path ELS WQ/CQ */
11265 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11266 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11267 				"0530 ELS %s not allocated\n",
11268 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11269 		rc = -ENOMEM;
11270 		goto out_destroy;
11271 	}
11272 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11273 			       phba->sli4_hba.els_cq,
11274 			       phba->sli4_hba.els_wq,
11275 			       NULL, 0, LPFC_ELS);
11276 	if (rc) {
11277 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11278 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11279 				(uint32_t)rc);
11280 		goto out_destroy;
11281 	}
11282 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11283 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11284 			phba->sli4_hba.els_wq->queue_id,
11285 			phba->sli4_hba.els_cq->queue_id);
11286 
11287 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11288 		/* Set up NVME LS Complete Queue */
11289 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11290 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11291 					"6091 LS %s not allocated\n",
11292 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11293 			rc = -ENOMEM;
11294 			goto out_destroy;
11295 		}
11296 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11297 				       phba->sli4_hba.nvmels_cq,
11298 				       phba->sli4_hba.nvmels_wq,
11299 				       NULL, 0, LPFC_NVME_LS);
11300 		if (rc) {
11301 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11302 					"0526 Failed setup of NVVME LS WQ/CQ: "
11303 					"rc = 0x%x\n", (uint32_t)rc);
11304 			goto out_destroy;
11305 		}
11306 
11307 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11308 				"6096 ELS WQ setup: wq-id=%d, "
11309 				"parent cq-id=%d\n",
11310 				phba->sli4_hba.nvmels_wq->queue_id,
11311 				phba->sli4_hba.nvmels_cq->queue_id);
11312 	}
11313 
11314 	/*
11315 	 * Create NVMET Receive Queue (RQ)
11316 	 */
11317 	if (phba->nvmet_support) {
11318 		if ((!phba->sli4_hba.nvmet_cqset) ||
11319 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11320 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11321 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11322 					"6130 MRQ CQ Queues not "
11323 					"allocated\n");
11324 			rc = -ENOMEM;
11325 			goto out_destroy;
11326 		}
11327 		if (phba->cfg_nvmet_mrq > 1) {
11328 			rc = lpfc_mrq_create(phba,
11329 					     phba->sli4_hba.nvmet_mrq_hdr,
11330 					     phba->sli4_hba.nvmet_mrq_data,
11331 					     phba->sli4_hba.nvmet_cqset,
11332 					     LPFC_NVMET);
11333 			if (rc) {
11334 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11335 						"6098 Failed setup of NVMET "
11336 						"MRQ: rc = 0x%x\n",
11337 						(uint32_t)rc);
11338 				goto out_destroy;
11339 			}
11340 
11341 		} else {
11342 			rc = lpfc_rq_create(phba,
11343 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11344 					    phba->sli4_hba.nvmet_mrq_data[0],
11345 					    phba->sli4_hba.nvmet_cqset[0],
11346 					    LPFC_NVMET);
11347 			if (rc) {
11348 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11349 						"6057 Failed setup of NVMET "
11350 						"Receive Queue: rc = 0x%x\n",
11351 						(uint32_t)rc);
11352 				goto out_destroy;
11353 			}
11354 
11355 			lpfc_printf_log(
11356 				phba, KERN_INFO, LOG_INIT,
11357 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11358 				"dat-rq-id=%d parent cq-id=%d\n",
11359 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11360 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11361 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11362 
11363 		}
11364 	}
11365 
11366 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11367 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11368 				"0540 Receive Queue not allocated\n");
11369 		rc = -ENOMEM;
11370 		goto out_destroy;
11371 	}
11372 
11373 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11374 			    phba->sli4_hba.els_cq, LPFC_USOL);
11375 	if (rc) {
11376 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11377 				"0541 Failed setup of Receive Queue: "
11378 				"rc = 0x%x\n", (uint32_t)rc);
11379 		goto out_destroy;
11380 	}
11381 
11382 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11383 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11384 			"parent cq-id=%d\n",
11385 			phba->sli4_hba.hdr_rq->queue_id,
11386 			phba->sli4_hba.dat_rq->queue_id,
11387 			phba->sli4_hba.els_cq->queue_id);
11388 
11389 	if (phba->cfg_fcp_imax)
11390 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11391 	else
11392 		usdelay = 0;
11393 
11394 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11395 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11396 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11397 					 usdelay);
11398 
11399 	if (phba->sli4_hba.cq_max) {
11400 		kfree(phba->sli4_hba.cq_lookup);
11401 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11402 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11403 		if (!phba->sli4_hba.cq_lookup) {
11404 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11405 					"0549 Failed setup of CQ Lookup table: "
11406 					"size 0x%x\n", phba->sli4_hba.cq_max);
11407 			rc = -ENOMEM;
11408 			goto out_destroy;
11409 		}
11410 		lpfc_setup_cq_lookup(phba);
11411 	}
11412 	return 0;
11413 
11414 out_destroy:
11415 	lpfc_sli4_queue_unset(phba);
11416 out_error:
11417 	return rc;
11418 }
11419 
11420 /**
11421  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11422  * @phba: pointer to lpfc hba data structure.
11423  *
11424  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11425  * operation.
11426  *
11427  * Return codes
11428  *      0 - successful
11429  *      -ENOMEM - No available memory
11430  *      -EIO - The mailbox failed to complete successfully.
11431  **/
11432 void
11433 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11434 {
11435 	struct lpfc_sli4_hdw_queue *qp;
11436 	struct lpfc_queue *eq;
11437 	int qidx;
11438 
11439 	/* Unset mailbox command work queue */
11440 	if (phba->sli4_hba.mbx_wq)
11441 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11442 
11443 	/* Unset NVME LS work queue */
11444 	if (phba->sli4_hba.nvmels_wq)
11445 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11446 
11447 	/* Unset ELS work queue */
11448 	if (phba->sli4_hba.els_wq)
11449 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11450 
11451 	/* Unset unsolicited receive queue */
11452 	if (phba->sli4_hba.hdr_rq)
11453 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11454 				phba->sli4_hba.dat_rq);
11455 
11456 	/* Unset mailbox command complete queue */
11457 	if (phba->sli4_hba.mbx_cq)
11458 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11459 
11460 	/* Unset ELS complete queue */
11461 	if (phba->sli4_hba.els_cq)
11462 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11463 
11464 	/* Unset NVME LS complete queue */
11465 	if (phba->sli4_hba.nvmels_cq)
11466 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11467 
11468 	if (phba->nvmet_support) {
11469 		/* Unset NVMET MRQ queue */
11470 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11471 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11472 				lpfc_rq_destroy(
11473 					phba,
11474 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11475 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11476 		}
11477 
11478 		/* Unset NVMET CQ Set complete queue */
11479 		if (phba->sli4_hba.nvmet_cqset) {
11480 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11481 				lpfc_cq_destroy(
11482 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11483 		}
11484 	}
11485 
11486 	/* Unset fast-path SLI4 queues */
11487 	if (phba->sli4_hba.hdwq) {
11488 		/* Loop thru all Hardware Queues */
11489 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11490 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11491 			qp = &phba->sli4_hba.hdwq[qidx];
11492 			lpfc_wq_destroy(phba, qp->io_wq);
11493 			lpfc_cq_destroy(phba, qp->io_cq);
11494 		}
11495 		/* Loop thru all IRQ vectors */
11496 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11497 			/* Destroy the EQ corresponding to the IRQ vector */
11498 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11499 			lpfc_eq_destroy(phba, eq);
11500 		}
11501 	}
11502 
11503 	kfree(phba->sli4_hba.cq_lookup);
11504 	phba->sli4_hba.cq_lookup = NULL;
11505 	phba->sli4_hba.cq_max = 0;
11506 }
11507 
11508 /**
11509  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11510  * @phba: pointer to lpfc hba data structure.
11511  *
11512  * This routine is invoked to allocate and set up a pool of completion queue
11513  * events. The body of the completion queue event is a completion queue entry
11514  * CQE. For now, this pool is used for the interrupt service routine to queue
11515  * the following HBA completion queue events for the worker thread to process:
11516  *   - Mailbox asynchronous events
11517  *   - Receive queue completion unsolicited events
11518  * Later, this can be used for all the slow-path events.
11519  *
11520  * Return codes
11521  *      0 - successful
11522  *      -ENOMEM - No available memory
11523  **/
11524 static int
11525 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11526 {
11527 	struct lpfc_cq_event *cq_event;
11528 	int i;
11529 
11530 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11531 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11532 		if (!cq_event)
11533 			goto out_pool_create_fail;
11534 		list_add_tail(&cq_event->list,
11535 			      &phba->sli4_hba.sp_cqe_event_pool);
11536 	}
11537 	return 0;
11538 
11539 out_pool_create_fail:
11540 	lpfc_sli4_cq_event_pool_destroy(phba);
11541 	return -ENOMEM;
11542 }
11543 
11544 /**
11545  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11546  * @phba: pointer to lpfc hba data structure.
11547  *
11548  * This routine is invoked to free the pool of completion queue events at
11549  * driver unload time. Note that, it is the responsibility of the driver
11550  * cleanup routine to free all the outstanding completion-queue events
11551  * allocated from this pool back into the pool before invoking this routine
11552  * to destroy the pool.
11553  **/
11554 static void
11555 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11556 {
11557 	struct lpfc_cq_event *cq_event, *next_cq_event;
11558 
11559 	list_for_each_entry_safe(cq_event, next_cq_event,
11560 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11561 		list_del(&cq_event->list);
11562 		kfree(cq_event);
11563 	}
11564 }
11565 
11566 /**
11567  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11568  * @phba: pointer to lpfc hba data structure.
11569  *
11570  * This routine is the lock free version of the API invoked to allocate a
11571  * completion-queue event from the free pool.
11572  *
11573  * Return: Pointer to the newly allocated completion-queue event if successful
11574  *         NULL otherwise.
11575  **/
11576 struct lpfc_cq_event *
11577 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11578 {
11579 	struct lpfc_cq_event *cq_event = NULL;
11580 
11581 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11582 			 struct lpfc_cq_event, list);
11583 	return cq_event;
11584 }
11585 
11586 /**
11587  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11588  * @phba: pointer to lpfc hba data structure.
11589  *
11590  * This routine is the lock version of the API invoked to allocate a
11591  * completion-queue event from the free pool.
11592  *
11593  * Return: Pointer to the newly allocated completion-queue event if successful
11594  *         NULL otherwise.
11595  **/
11596 struct lpfc_cq_event *
11597 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11598 {
11599 	struct lpfc_cq_event *cq_event;
11600 	unsigned long iflags;
11601 
11602 	spin_lock_irqsave(&phba->hbalock, iflags);
11603 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11604 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11605 	return cq_event;
11606 }
11607 
11608 /**
11609  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11610  * @phba: pointer to lpfc hba data structure.
11611  * @cq_event: pointer to the completion queue event to be freed.
11612  *
11613  * This routine is the lock free version of the API invoked to release a
11614  * completion-queue event back into the free pool.
11615  **/
11616 void
11617 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11618 			     struct lpfc_cq_event *cq_event)
11619 {
11620 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11621 }
11622 
11623 /**
11624  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11625  * @phba: pointer to lpfc hba data structure.
11626  * @cq_event: pointer to the completion queue event to be freed.
11627  *
11628  * This routine is the lock version of the API invoked to release a
11629  * completion-queue event back into the free pool.
11630  **/
11631 void
11632 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11633 			   struct lpfc_cq_event *cq_event)
11634 {
11635 	unsigned long iflags;
11636 	spin_lock_irqsave(&phba->hbalock, iflags);
11637 	__lpfc_sli4_cq_event_release(phba, cq_event);
11638 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11639 }
11640 
11641 /**
11642  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11643  * @phba: pointer to lpfc hba data structure.
11644  *
11645  * This routine is to free all the pending completion-queue events to the
11646  * back into the free pool for device reset.
11647  **/
11648 static void
11649 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11650 {
11651 	LIST_HEAD(cq_event_list);
11652 	struct lpfc_cq_event *cq_event;
11653 	unsigned long iflags;
11654 
11655 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11656 
11657 	/* Pending ELS XRI abort events */
11658 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11659 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11660 			 &cq_event_list);
11661 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11662 
11663 	/* Pending asynnc events */
11664 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11665 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11666 			 &cq_event_list);
11667 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11668 
11669 	while (!list_empty(&cq_event_list)) {
11670 		list_remove_head(&cq_event_list, cq_event,
11671 				 struct lpfc_cq_event, list);
11672 		lpfc_sli4_cq_event_release(phba, cq_event);
11673 	}
11674 }
11675 
11676 /**
11677  * lpfc_pci_function_reset - Reset pci function.
11678  * @phba: pointer to lpfc hba data structure.
11679  *
11680  * This routine is invoked to request a PCI function reset. It will destroys
11681  * all resources assigned to the PCI function which originates this request.
11682  *
11683  * Return codes
11684  *      0 - successful
11685  *      -ENOMEM - No available memory
11686  *      -EIO - The mailbox failed to complete successfully.
11687  **/
11688 int
11689 lpfc_pci_function_reset(struct lpfc_hba *phba)
11690 {
11691 	LPFC_MBOXQ_t *mboxq;
11692 	uint32_t rc = 0, if_type;
11693 	uint32_t shdr_status, shdr_add_status;
11694 	uint32_t rdy_chk;
11695 	uint32_t port_reset = 0;
11696 	union lpfc_sli4_cfg_shdr *shdr;
11697 	struct lpfc_register reg_data;
11698 	uint16_t devid;
11699 
11700 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11701 	switch (if_type) {
11702 	case LPFC_SLI_INTF_IF_TYPE_0:
11703 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11704 						       GFP_KERNEL);
11705 		if (!mboxq) {
11706 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11707 					"0494 Unable to allocate memory for "
11708 					"issuing SLI_FUNCTION_RESET mailbox "
11709 					"command\n");
11710 			return -ENOMEM;
11711 		}
11712 
11713 		/* Setup PCI function reset mailbox-ioctl command */
11714 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11715 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11716 				 LPFC_SLI4_MBX_EMBED);
11717 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11718 		shdr = (union lpfc_sli4_cfg_shdr *)
11719 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11720 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11721 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11722 					 &shdr->response);
11723 		mempool_free(mboxq, phba->mbox_mem_pool);
11724 		if (shdr_status || shdr_add_status || rc) {
11725 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11726 					"0495 SLI_FUNCTION_RESET mailbox "
11727 					"failed with status x%x add_status x%x,"
11728 					" mbx status x%x\n",
11729 					shdr_status, shdr_add_status, rc);
11730 			rc = -ENXIO;
11731 		}
11732 		break;
11733 	case LPFC_SLI_INTF_IF_TYPE_2:
11734 	case LPFC_SLI_INTF_IF_TYPE_6:
11735 wait:
11736 		/*
11737 		 * Poll the Port Status Register and wait for RDY for
11738 		 * up to 30 seconds. If the port doesn't respond, treat
11739 		 * it as an error.
11740 		 */
11741 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11742 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11743 				STATUSregaddr, &reg_data.word0)) {
11744 				rc = -ENODEV;
11745 				goto out;
11746 			}
11747 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11748 				break;
11749 			msleep(20);
11750 		}
11751 
11752 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11753 			phba->work_status[0] = readl(
11754 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11755 			phba->work_status[1] = readl(
11756 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11757 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11758 					"2890 Port not ready, port status reg "
11759 					"0x%x error 1=0x%x, error 2=0x%x\n",
11760 					reg_data.word0,
11761 					phba->work_status[0],
11762 					phba->work_status[1]);
11763 			rc = -ENODEV;
11764 			goto out;
11765 		}
11766 
11767 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11768 			lpfc_pldv_detect = true;
11769 
11770 		if (!port_reset) {
11771 			/*
11772 			 * Reset the port now
11773 			 */
11774 			reg_data.word0 = 0;
11775 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11776 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11777 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11778 			       LPFC_SLIPORT_INIT_PORT);
11779 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11780 			       CTRLregaddr);
11781 			/* flush */
11782 			pci_read_config_word(phba->pcidev,
11783 					     PCI_DEVICE_ID, &devid);
11784 
11785 			port_reset = 1;
11786 			msleep(20);
11787 			goto wait;
11788 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11789 			rc = -ENODEV;
11790 			goto out;
11791 		}
11792 		break;
11793 
11794 	case LPFC_SLI_INTF_IF_TYPE_1:
11795 	default:
11796 		break;
11797 	}
11798 
11799 out:
11800 	/* Catch the not-ready port failure after a port reset. */
11801 	if (rc) {
11802 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11803 				"3317 HBA not functional: IP Reset Failed "
11804 				"try: echo fw_reset > board_mode\n");
11805 		rc = -ENODEV;
11806 	}
11807 
11808 	return rc;
11809 }
11810 
11811 /**
11812  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11813  * @phba: pointer to lpfc hba data structure.
11814  *
11815  * This routine is invoked to set up the PCI device memory space for device
11816  * with SLI-4 interface spec.
11817  *
11818  * Return codes
11819  * 	0 - successful
11820  * 	other values - error
11821  **/
11822 static int
11823 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11824 {
11825 	struct pci_dev *pdev = phba->pcidev;
11826 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11827 	int error;
11828 	uint32_t if_type;
11829 
11830 	if (!pdev)
11831 		return -ENODEV;
11832 
11833 	/* Set the device DMA mask size */
11834 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11835 	if (error)
11836 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11837 	if (error)
11838 		return error;
11839 
11840 	/*
11841 	 * The BARs and register set definitions and offset locations are
11842 	 * dependent on the if_type.
11843 	 */
11844 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11845 				  &phba->sli4_hba.sli_intf.word0)) {
11846 		return -ENODEV;
11847 	}
11848 
11849 	/* There is no SLI3 failback for SLI4 devices. */
11850 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11851 	    LPFC_SLI_INTF_VALID) {
11852 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11853 				"2894 SLI_INTF reg contents invalid "
11854 				"sli_intf reg 0x%x\n",
11855 				phba->sli4_hba.sli_intf.word0);
11856 		return -ENODEV;
11857 	}
11858 
11859 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11860 	/*
11861 	 * Get the bus address of SLI4 device Bar regions and the
11862 	 * number of bytes required by each mapping. The mapping of the
11863 	 * particular PCI BARs regions is dependent on the type of
11864 	 * SLI4 device.
11865 	 */
11866 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11867 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11868 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11869 
11870 		/*
11871 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11872 		 * addr
11873 		 */
11874 		phba->sli4_hba.conf_regs_memmap_p =
11875 			ioremap(phba->pci_bar0_map, bar0map_len);
11876 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11877 			dev_printk(KERN_ERR, &pdev->dev,
11878 				   "ioremap failed for SLI4 PCI config "
11879 				   "registers.\n");
11880 			return -ENODEV;
11881 		}
11882 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11883 		/* Set up BAR0 PCI config space register memory map */
11884 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11885 	} else {
11886 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11887 		bar0map_len = pci_resource_len(pdev, 1);
11888 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11889 			dev_printk(KERN_ERR, &pdev->dev,
11890 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11891 			return -ENODEV;
11892 		}
11893 		phba->sli4_hba.conf_regs_memmap_p =
11894 				ioremap(phba->pci_bar0_map, bar0map_len);
11895 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11896 			dev_printk(KERN_ERR, &pdev->dev,
11897 				"ioremap failed for SLI4 PCI config "
11898 				"registers.\n");
11899 			return -ENODEV;
11900 		}
11901 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11902 	}
11903 
11904 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11905 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11906 			/*
11907 			 * Map SLI4 if type 0 HBA Control Register base to a
11908 			 * kernel virtual address and setup the registers.
11909 			 */
11910 			phba->pci_bar1_map = pci_resource_start(pdev,
11911 								PCI_64BIT_BAR2);
11912 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11913 			phba->sli4_hba.ctrl_regs_memmap_p =
11914 					ioremap(phba->pci_bar1_map,
11915 						bar1map_len);
11916 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11917 				dev_err(&pdev->dev,
11918 					   "ioremap failed for SLI4 HBA "
11919 					    "control registers.\n");
11920 				error = -ENOMEM;
11921 				goto out_iounmap_conf;
11922 			}
11923 			phba->pci_bar2_memmap_p =
11924 					 phba->sli4_hba.ctrl_regs_memmap_p;
11925 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11926 		} else {
11927 			error = -ENOMEM;
11928 			goto out_iounmap_conf;
11929 		}
11930 	}
11931 
11932 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11933 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11934 		/*
11935 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11936 		 * virtual address and setup the registers.
11937 		 */
11938 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11939 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11940 		phba->sli4_hba.drbl_regs_memmap_p =
11941 				ioremap(phba->pci_bar1_map, bar1map_len);
11942 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11943 			dev_err(&pdev->dev,
11944 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11945 			error = -ENOMEM;
11946 			goto out_iounmap_conf;
11947 		}
11948 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11949 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11950 	}
11951 
11952 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11953 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11954 			/*
11955 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11956 			 * a kernel virtual address and setup the registers.
11957 			 */
11958 			phba->pci_bar2_map = pci_resource_start(pdev,
11959 								PCI_64BIT_BAR4);
11960 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11961 			phba->sli4_hba.drbl_regs_memmap_p =
11962 					ioremap(phba->pci_bar2_map,
11963 						bar2map_len);
11964 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11965 				dev_err(&pdev->dev,
11966 					   "ioremap failed for SLI4 HBA"
11967 					   " doorbell registers.\n");
11968 				error = -ENOMEM;
11969 				goto out_iounmap_ctrl;
11970 			}
11971 			phba->pci_bar4_memmap_p =
11972 					phba->sli4_hba.drbl_regs_memmap_p;
11973 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11974 			if (error)
11975 				goto out_iounmap_all;
11976 		} else {
11977 			error = -ENOMEM;
11978 			goto out_iounmap_ctrl;
11979 		}
11980 	}
11981 
11982 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11983 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11984 		/*
11985 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11986 		 * virtual address and setup the registers.
11987 		 */
11988 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11989 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11990 		phba->sli4_hba.dpp_regs_memmap_p =
11991 				ioremap(phba->pci_bar2_map, bar2map_len);
11992 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11993 			dev_err(&pdev->dev,
11994 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11995 			error = -ENOMEM;
11996 			goto out_iounmap_all;
11997 		}
11998 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11999 	}
12000 
12001 	/* Set up the EQ/CQ register handeling functions now */
12002 	switch (if_type) {
12003 	case LPFC_SLI_INTF_IF_TYPE_0:
12004 	case LPFC_SLI_INTF_IF_TYPE_2:
12005 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12006 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12007 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12008 		break;
12009 	case LPFC_SLI_INTF_IF_TYPE_6:
12010 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12011 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12012 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12013 		break;
12014 	default:
12015 		break;
12016 	}
12017 
12018 	return 0;
12019 
12020 out_iounmap_all:
12021 	if (phba->sli4_hba.drbl_regs_memmap_p)
12022 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12023 out_iounmap_ctrl:
12024 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12025 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12026 out_iounmap_conf:
12027 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12028 
12029 	return error;
12030 }
12031 
12032 /**
12033  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12034  * @phba: pointer to lpfc hba data structure.
12035  *
12036  * This routine is invoked to unset the PCI device memory space for device
12037  * with SLI-4 interface spec.
12038  **/
12039 static void
12040 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12041 {
12042 	uint32_t if_type;
12043 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12044 
12045 	switch (if_type) {
12046 	case LPFC_SLI_INTF_IF_TYPE_0:
12047 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12048 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12049 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12050 		break;
12051 	case LPFC_SLI_INTF_IF_TYPE_2:
12052 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12053 		break;
12054 	case LPFC_SLI_INTF_IF_TYPE_6:
12055 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12056 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12057 		if (phba->sli4_hba.dpp_regs_memmap_p)
12058 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12059 		break;
12060 	case LPFC_SLI_INTF_IF_TYPE_1:
12061 		break;
12062 	default:
12063 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12064 			   "FATAL - unsupported SLI4 interface type - %d\n",
12065 			   if_type);
12066 		break;
12067 	}
12068 }
12069 
12070 /**
12071  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12072  * @phba: pointer to lpfc hba data structure.
12073  *
12074  * This routine is invoked to enable the MSI-X interrupt vectors to device
12075  * with SLI-3 interface specs.
12076  *
12077  * Return codes
12078  *   0 - successful
12079  *   other values - error
12080  **/
12081 static int
12082 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12083 {
12084 	int rc;
12085 	LPFC_MBOXQ_t *pmb;
12086 
12087 	/* Set up MSI-X multi-message vectors */
12088 	rc = pci_alloc_irq_vectors(phba->pcidev,
12089 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12090 	if (rc < 0) {
12091 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12092 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12093 		goto vec_fail_out;
12094 	}
12095 
12096 	/*
12097 	 * Assign MSI-X vectors to interrupt handlers
12098 	 */
12099 
12100 	/* vector-0 is associated to slow-path handler */
12101 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12102 			 &lpfc_sli_sp_intr_handler, 0,
12103 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12104 	if (rc) {
12105 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12106 				"0421 MSI-X slow-path request_irq failed "
12107 				"(%d)\n", rc);
12108 		goto msi_fail_out;
12109 	}
12110 
12111 	/* vector-1 is associated to fast-path handler */
12112 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12113 			 &lpfc_sli_fp_intr_handler, 0,
12114 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12115 
12116 	if (rc) {
12117 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12118 				"0429 MSI-X fast-path request_irq failed "
12119 				"(%d)\n", rc);
12120 		goto irq_fail_out;
12121 	}
12122 
12123 	/*
12124 	 * Configure HBA MSI-X attention conditions to messages
12125 	 */
12126 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12127 
12128 	if (!pmb) {
12129 		rc = -ENOMEM;
12130 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12131 				"0474 Unable to allocate memory for issuing "
12132 				"MBOX_CONFIG_MSI command\n");
12133 		goto mem_fail_out;
12134 	}
12135 	rc = lpfc_config_msi(phba, pmb);
12136 	if (rc)
12137 		goto mbx_fail_out;
12138 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12139 	if (rc != MBX_SUCCESS) {
12140 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12141 				"0351 Config MSI mailbox command failed, "
12142 				"mbxCmd x%x, mbxStatus x%x\n",
12143 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12144 		goto mbx_fail_out;
12145 	}
12146 
12147 	/* Free memory allocated for mailbox command */
12148 	mempool_free(pmb, phba->mbox_mem_pool);
12149 	return rc;
12150 
12151 mbx_fail_out:
12152 	/* Free memory allocated for mailbox command */
12153 	mempool_free(pmb, phba->mbox_mem_pool);
12154 
12155 mem_fail_out:
12156 	/* free the irq already requested */
12157 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12158 
12159 irq_fail_out:
12160 	/* free the irq already requested */
12161 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12162 
12163 msi_fail_out:
12164 	/* Unconfigure MSI-X capability structure */
12165 	pci_free_irq_vectors(phba->pcidev);
12166 
12167 vec_fail_out:
12168 	return rc;
12169 }
12170 
12171 /**
12172  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12173  * @phba: pointer to lpfc hba data structure.
12174  *
12175  * This routine is invoked to enable the MSI interrupt mode to device with
12176  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12177  * enable the MSI vector. The device driver is responsible for calling the
12178  * request_irq() to register MSI vector with a interrupt the handler, which
12179  * is done in this function.
12180  *
12181  * Return codes
12182  * 	0 - successful
12183  * 	other values - error
12184  */
12185 static int
12186 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12187 {
12188 	int rc;
12189 
12190 	rc = pci_enable_msi(phba->pcidev);
12191 	if (!rc)
12192 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12193 				"0012 PCI enable MSI mode success.\n");
12194 	else {
12195 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12196 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12197 		return rc;
12198 	}
12199 
12200 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12201 			 0, LPFC_DRIVER_NAME, phba);
12202 	if (rc) {
12203 		pci_disable_msi(phba->pcidev);
12204 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12205 				"0478 MSI request_irq failed (%d)\n", rc);
12206 	}
12207 	return rc;
12208 }
12209 
12210 /**
12211  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12212  * @phba: pointer to lpfc hba data structure.
12213  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12214  *
12215  * This routine is invoked to enable device interrupt and associate driver's
12216  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12217  * spec. Depends on the interrupt mode configured to the driver, the driver
12218  * will try to fallback from the configured interrupt mode to an interrupt
12219  * mode which is supported by the platform, kernel, and device in the order
12220  * of:
12221  * MSI-X -> MSI -> IRQ.
12222  *
12223  * Return codes
12224  *   0 - successful
12225  *   other values - error
12226  **/
12227 static uint32_t
12228 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12229 {
12230 	uint32_t intr_mode = LPFC_INTR_ERROR;
12231 	int retval;
12232 
12233 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12234 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12235 	if (retval)
12236 		return intr_mode;
12237 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12238 
12239 	if (cfg_mode == 2) {
12240 		/* Now, try to enable MSI-X interrupt mode */
12241 		retval = lpfc_sli_enable_msix(phba);
12242 		if (!retval) {
12243 			/* Indicate initialization to MSI-X mode */
12244 			phba->intr_type = MSIX;
12245 			intr_mode = 2;
12246 		}
12247 	}
12248 
12249 	/* Fallback to MSI if MSI-X initialization failed */
12250 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12251 		retval = lpfc_sli_enable_msi(phba);
12252 		if (!retval) {
12253 			/* Indicate initialization to MSI mode */
12254 			phba->intr_type = MSI;
12255 			intr_mode = 1;
12256 		}
12257 	}
12258 
12259 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12260 	if (phba->intr_type == NONE) {
12261 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12262 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12263 		if (!retval) {
12264 			/* Indicate initialization to INTx mode */
12265 			phba->intr_type = INTx;
12266 			intr_mode = 0;
12267 		}
12268 	}
12269 	return intr_mode;
12270 }
12271 
12272 /**
12273  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12274  * @phba: pointer to lpfc hba data structure.
12275  *
12276  * This routine is invoked to disable device interrupt and disassociate the
12277  * driver's interrupt handler(s) from interrupt vector(s) to device with
12278  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12279  * release the interrupt vector(s) for the message signaled interrupt.
12280  **/
12281 static void
12282 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12283 {
12284 	int nr_irqs, i;
12285 
12286 	if (phba->intr_type == MSIX)
12287 		nr_irqs = LPFC_MSIX_VECTORS;
12288 	else
12289 		nr_irqs = 1;
12290 
12291 	for (i = 0; i < nr_irqs; i++)
12292 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12293 	pci_free_irq_vectors(phba->pcidev);
12294 
12295 	/* Reset interrupt management states */
12296 	phba->intr_type = NONE;
12297 	phba->sli.slistat.sli_intr = 0;
12298 }
12299 
12300 /**
12301  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12302  * @phba: pointer to lpfc hba data structure.
12303  * @id: EQ vector index or Hardware Queue index
12304  * @match: LPFC_FIND_BY_EQ = match by EQ
12305  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12306  * Return the CPU that matches the selection criteria
12307  */
12308 static uint16_t
12309 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12310 {
12311 	struct lpfc_vector_map_info *cpup;
12312 	int cpu;
12313 
12314 	/* Loop through all CPUs */
12315 	for_each_present_cpu(cpu) {
12316 		cpup = &phba->sli4_hba.cpu_map[cpu];
12317 
12318 		/* If we are matching by EQ, there may be multiple CPUs using
12319 		 * using the same vector, so select the one with
12320 		 * LPFC_CPU_FIRST_IRQ set.
12321 		 */
12322 		if ((match == LPFC_FIND_BY_EQ) &&
12323 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12324 		    (cpup->eq == id))
12325 			return cpu;
12326 
12327 		/* If matching by HDWQ, select the first CPU that matches */
12328 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12329 			return cpu;
12330 	}
12331 	return 0;
12332 }
12333 
12334 #ifdef CONFIG_X86
12335 /**
12336  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12337  * @phba: pointer to lpfc hba data structure.
12338  * @cpu: CPU map index
12339  * @phys_id: CPU package physical id
12340  * @core_id: CPU core id
12341  */
12342 static int
12343 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12344 		uint16_t phys_id, uint16_t core_id)
12345 {
12346 	struct lpfc_vector_map_info *cpup;
12347 	int idx;
12348 
12349 	for_each_present_cpu(idx) {
12350 		cpup = &phba->sli4_hba.cpu_map[idx];
12351 		/* Does the cpup match the one we are looking for */
12352 		if ((cpup->phys_id == phys_id) &&
12353 		    (cpup->core_id == core_id) &&
12354 		    (cpu != idx))
12355 			return 1;
12356 	}
12357 	return 0;
12358 }
12359 #endif
12360 
12361 /*
12362  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12363  * @phba: pointer to lpfc hba data structure.
12364  * @eqidx: index for eq and irq vector
12365  * @flag: flags to set for vector_map structure
12366  * @cpu: cpu used to index vector_map structure
12367  *
12368  * The routine assigns eq info into vector_map structure
12369  */
12370 static inline void
12371 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12372 			unsigned int cpu)
12373 {
12374 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12375 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12376 
12377 	cpup->eq = eqidx;
12378 	cpup->flag |= flag;
12379 
12380 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12381 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12382 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12383 }
12384 
12385 /**
12386  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12387  * @phba: pointer to lpfc hba data structure.
12388  *
12389  * The routine initializes the cpu_map array structure
12390  */
12391 static void
12392 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12393 {
12394 	struct lpfc_vector_map_info *cpup;
12395 	struct lpfc_eq_intr_info *eqi;
12396 	int cpu;
12397 
12398 	for_each_possible_cpu(cpu) {
12399 		cpup = &phba->sli4_hba.cpu_map[cpu];
12400 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12401 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12402 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12403 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12404 		cpup->flag = 0;
12405 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12406 		INIT_LIST_HEAD(&eqi->list);
12407 		eqi->icnt = 0;
12408 	}
12409 }
12410 
12411 /**
12412  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12413  * @phba: pointer to lpfc hba data structure.
12414  *
12415  * The routine initializes the hba_eq_hdl array structure
12416  */
12417 static void
12418 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12419 {
12420 	struct lpfc_hba_eq_hdl *eqhdl;
12421 	int i;
12422 
12423 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12424 		eqhdl = lpfc_get_eq_hdl(i);
12425 		eqhdl->irq = LPFC_IRQ_EMPTY;
12426 		eqhdl->phba = phba;
12427 	}
12428 }
12429 
12430 /**
12431  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12432  * @phba: pointer to lpfc hba data structure.
12433  * @vectors: number of msix vectors allocated.
12434  *
12435  * The routine will figure out the CPU affinity assignment for every
12436  * MSI-X vector allocated for the HBA.
12437  * In addition, the CPU to IO channel mapping will be calculated
12438  * and the phba->sli4_hba.cpu_map array will reflect this.
12439  */
12440 static void
12441 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12442 {
12443 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12444 	int max_phys_id, min_phys_id;
12445 	int max_core_id, min_core_id;
12446 	struct lpfc_vector_map_info *cpup;
12447 	struct lpfc_vector_map_info *new_cpup;
12448 #ifdef CONFIG_X86
12449 	struct cpuinfo_x86 *cpuinfo;
12450 #endif
12451 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12452 	struct lpfc_hdwq_stat *c_stat;
12453 #endif
12454 
12455 	max_phys_id = 0;
12456 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12457 	max_core_id = 0;
12458 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12459 
12460 	/* Update CPU map with physical id and core id of each CPU */
12461 	for_each_present_cpu(cpu) {
12462 		cpup = &phba->sli4_hba.cpu_map[cpu];
12463 #ifdef CONFIG_X86
12464 		cpuinfo = &cpu_data(cpu);
12465 		cpup->phys_id = cpuinfo->phys_proc_id;
12466 		cpup->core_id = cpuinfo->cpu_core_id;
12467 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12468 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12469 #else
12470 		/* No distinction between CPUs for other platforms */
12471 		cpup->phys_id = 0;
12472 		cpup->core_id = cpu;
12473 #endif
12474 
12475 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12476 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12477 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12478 
12479 		if (cpup->phys_id > max_phys_id)
12480 			max_phys_id = cpup->phys_id;
12481 		if (cpup->phys_id < min_phys_id)
12482 			min_phys_id = cpup->phys_id;
12483 
12484 		if (cpup->core_id > max_core_id)
12485 			max_core_id = cpup->core_id;
12486 		if (cpup->core_id < min_core_id)
12487 			min_core_id = cpup->core_id;
12488 	}
12489 
12490 	/* After looking at each irq vector assigned to this pcidev, its
12491 	 * possible to see that not ALL CPUs have been accounted for.
12492 	 * Next we will set any unassigned (unaffinitized) cpu map
12493 	 * entries to a IRQ on the same phys_id.
12494 	 */
12495 	first_cpu = cpumask_first(cpu_present_mask);
12496 	start_cpu = first_cpu;
12497 
12498 	for_each_present_cpu(cpu) {
12499 		cpup = &phba->sli4_hba.cpu_map[cpu];
12500 
12501 		/* Is this CPU entry unassigned */
12502 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12503 			/* Mark CPU as IRQ not assigned by the kernel */
12504 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12505 
12506 			/* If so, find a new_cpup that is on the SAME
12507 			 * phys_id as cpup. start_cpu will start where we
12508 			 * left off so all unassigned entries don't get assgined
12509 			 * the IRQ of the first entry.
12510 			 */
12511 			new_cpu = start_cpu;
12512 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12513 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12514 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12515 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12516 				    (new_cpup->phys_id == cpup->phys_id))
12517 					goto found_same;
12518 				new_cpu = lpfc_next_present_cpu(new_cpu);
12519 			}
12520 			/* At this point, we leave the CPU as unassigned */
12521 			continue;
12522 found_same:
12523 			/* We found a matching phys_id, so copy the IRQ info */
12524 			cpup->eq = new_cpup->eq;
12525 
12526 			/* Bump start_cpu to the next slot to minmize the
12527 			 * chance of having multiple unassigned CPU entries
12528 			 * selecting the same IRQ.
12529 			 */
12530 			start_cpu = lpfc_next_present_cpu(new_cpu);
12531 
12532 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12533 					"3337 Set Affinity: CPU %d "
12534 					"eq %d from peer cpu %d same "
12535 					"phys_id (%d)\n",
12536 					cpu, cpup->eq, new_cpu,
12537 					cpup->phys_id);
12538 		}
12539 	}
12540 
12541 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12542 	start_cpu = first_cpu;
12543 
12544 	for_each_present_cpu(cpu) {
12545 		cpup = &phba->sli4_hba.cpu_map[cpu];
12546 
12547 		/* Is this entry unassigned */
12548 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12549 			/* Mark it as IRQ not assigned by the kernel */
12550 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12551 
12552 			/* If so, find a new_cpup thats on ANY phys_id
12553 			 * as the cpup. start_cpu will start where we
12554 			 * left off so all unassigned entries don't get
12555 			 * assigned the IRQ of the first entry.
12556 			 */
12557 			new_cpu = start_cpu;
12558 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12559 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12560 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12561 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12562 					goto found_any;
12563 				new_cpu = lpfc_next_present_cpu(new_cpu);
12564 			}
12565 			/* We should never leave an entry unassigned */
12566 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12567 					"3339 Set Affinity: CPU %d "
12568 					"eq %d UNASSIGNED\n",
12569 					cpup->hdwq, cpup->eq);
12570 			continue;
12571 found_any:
12572 			/* We found an available entry, copy the IRQ info */
12573 			cpup->eq = new_cpup->eq;
12574 
12575 			/* Bump start_cpu to the next slot to minmize the
12576 			 * chance of having multiple unassigned CPU entries
12577 			 * selecting the same IRQ.
12578 			 */
12579 			start_cpu = lpfc_next_present_cpu(new_cpu);
12580 
12581 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12582 					"3338 Set Affinity: CPU %d "
12583 					"eq %d from peer cpu %d (%d/%d)\n",
12584 					cpu, cpup->eq, new_cpu,
12585 					new_cpup->phys_id, new_cpup->core_id);
12586 		}
12587 	}
12588 
12589 	/* Assign hdwq indices that are unique across all cpus in the map
12590 	 * that are also FIRST_CPUs.
12591 	 */
12592 	idx = 0;
12593 	for_each_present_cpu(cpu) {
12594 		cpup = &phba->sli4_hba.cpu_map[cpu];
12595 
12596 		/* Only FIRST IRQs get a hdwq index assignment. */
12597 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12598 			continue;
12599 
12600 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12601 		cpup->hdwq = idx;
12602 		idx++;
12603 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12604 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12605 				"hdwq %d eq %d flg x%x\n",
12606 				cpu, cpup->phys_id, cpup->core_id,
12607 				cpup->hdwq, cpup->eq, cpup->flag);
12608 	}
12609 	/* Associate a hdwq with each cpu_map entry
12610 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12611 	 * hardware queues then CPUs. For that case we will just round-robin
12612 	 * the available hardware queues as they get assigned to CPUs.
12613 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12614 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12615 	 * and needs to start at 0.
12616 	 */
12617 	next_idx = idx;
12618 	start_cpu = 0;
12619 	idx = 0;
12620 	for_each_present_cpu(cpu) {
12621 		cpup = &phba->sli4_hba.cpu_map[cpu];
12622 
12623 		/* FIRST cpus are already mapped. */
12624 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12625 			continue;
12626 
12627 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12628 		 * of the unassigned cpus to the next idx so that all
12629 		 * hdw queues are fully utilized.
12630 		 */
12631 		if (next_idx < phba->cfg_hdw_queue) {
12632 			cpup->hdwq = next_idx;
12633 			next_idx++;
12634 			continue;
12635 		}
12636 
12637 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12638 		 * Hardware Queue for another CPU, so be smart about it
12639 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12640 		 * (CPU package) and core_id.
12641 		 */
12642 		new_cpu = start_cpu;
12643 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12644 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12645 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12646 			    new_cpup->phys_id == cpup->phys_id &&
12647 			    new_cpup->core_id == cpup->core_id) {
12648 				goto found_hdwq;
12649 			}
12650 			new_cpu = lpfc_next_present_cpu(new_cpu);
12651 		}
12652 
12653 		/* If we can't match both phys_id and core_id,
12654 		 * settle for just a phys_id match.
12655 		 */
12656 		new_cpu = start_cpu;
12657 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12658 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12659 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12660 			    new_cpup->phys_id == cpup->phys_id)
12661 				goto found_hdwq;
12662 			new_cpu = lpfc_next_present_cpu(new_cpu);
12663 		}
12664 
12665 		/* Otherwise just round robin on cfg_hdw_queue */
12666 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12667 		idx++;
12668 		goto logit;
12669  found_hdwq:
12670 		/* We found an available entry, copy the IRQ info */
12671 		start_cpu = lpfc_next_present_cpu(new_cpu);
12672 		cpup->hdwq = new_cpup->hdwq;
12673  logit:
12674 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12675 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12676 				"hdwq %d eq %d flg x%x\n",
12677 				cpu, cpup->phys_id, cpup->core_id,
12678 				cpup->hdwq, cpup->eq, cpup->flag);
12679 	}
12680 
12681 	/*
12682 	 * Initialize the cpu_map slots for not-present cpus in case
12683 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12684 	 */
12685 	idx = 0;
12686 	for_each_possible_cpu(cpu) {
12687 		cpup = &phba->sli4_hba.cpu_map[cpu];
12688 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12689 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12690 		c_stat->hdwq_no = cpup->hdwq;
12691 #endif
12692 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12693 			continue;
12694 
12695 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12696 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12697 		c_stat->hdwq_no = cpup->hdwq;
12698 #endif
12699 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12700 				"3340 Set Affinity: not present "
12701 				"CPU %d hdwq %d\n",
12702 				cpu, cpup->hdwq);
12703 	}
12704 
12705 	/* The cpu_map array will be used later during initialization
12706 	 * when EQ / CQ / WQs are allocated and configured.
12707 	 */
12708 	return;
12709 }
12710 
12711 /**
12712  * lpfc_cpuhp_get_eq
12713  *
12714  * @phba:   pointer to lpfc hba data structure.
12715  * @cpu:    cpu going offline
12716  * @eqlist: eq list to append to
12717  */
12718 static int
12719 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12720 		  struct list_head *eqlist)
12721 {
12722 	const struct cpumask *maskp;
12723 	struct lpfc_queue *eq;
12724 	struct cpumask *tmp;
12725 	u16 idx;
12726 
12727 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12728 	if (!tmp)
12729 		return -ENOMEM;
12730 
12731 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12732 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12733 		if (!maskp)
12734 			continue;
12735 		/*
12736 		 * if irq is not affinitized to the cpu going
12737 		 * then we don't need to poll the eq attached
12738 		 * to it.
12739 		 */
12740 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12741 			continue;
12742 		/* get the cpus that are online and are affini-
12743 		 * tized to this irq vector.  If the count is
12744 		 * more than 1 then cpuhp is not going to shut-
12745 		 * down this vector.  Since this cpu has not
12746 		 * gone offline yet, we need >1.
12747 		 */
12748 		cpumask_and(tmp, maskp, cpu_online_mask);
12749 		if (cpumask_weight(tmp) > 1)
12750 			continue;
12751 
12752 		/* Now that we have an irq to shutdown, get the eq
12753 		 * mapped to this irq.  Note: multiple hdwq's in
12754 		 * the software can share an eq, but eventually
12755 		 * only eq will be mapped to this vector
12756 		 */
12757 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12758 		list_add(&eq->_poll_list, eqlist);
12759 	}
12760 	kfree(tmp);
12761 	return 0;
12762 }
12763 
12764 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12765 {
12766 	if (phba->sli_rev != LPFC_SLI_REV4)
12767 		return;
12768 
12769 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12770 					    &phba->cpuhp);
12771 	/*
12772 	 * unregistering the instance doesn't stop the polling
12773 	 * timer. Wait for the poll timer to retire.
12774 	 */
12775 	synchronize_rcu();
12776 	del_timer_sync(&phba->cpuhp_poll_timer);
12777 }
12778 
12779 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12780 {
12781 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12782 		return;
12783 
12784 	__lpfc_cpuhp_remove(phba);
12785 }
12786 
12787 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12788 {
12789 	if (phba->sli_rev != LPFC_SLI_REV4)
12790 		return;
12791 
12792 	rcu_read_lock();
12793 
12794 	if (!list_empty(&phba->poll_list))
12795 		mod_timer(&phba->cpuhp_poll_timer,
12796 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12797 
12798 	rcu_read_unlock();
12799 
12800 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12801 					 &phba->cpuhp);
12802 }
12803 
12804 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12805 {
12806 	if (phba->pport->load_flag & FC_UNLOADING) {
12807 		*retval = -EAGAIN;
12808 		return true;
12809 	}
12810 
12811 	if (phba->sli_rev != LPFC_SLI_REV4) {
12812 		*retval = 0;
12813 		return true;
12814 	}
12815 
12816 	/* proceed with the hotplug */
12817 	return false;
12818 }
12819 
12820 /**
12821  * lpfc_irq_set_aff - set IRQ affinity
12822  * @eqhdl: EQ handle
12823  * @cpu: cpu to set affinity
12824  *
12825  **/
12826 static inline void
12827 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12828 {
12829 	cpumask_clear(&eqhdl->aff_mask);
12830 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12831 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12832 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12833 }
12834 
12835 /**
12836  * lpfc_irq_clear_aff - clear IRQ affinity
12837  * @eqhdl: EQ handle
12838  *
12839  **/
12840 static inline void
12841 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12842 {
12843 	cpumask_clear(&eqhdl->aff_mask);
12844 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12845 }
12846 
12847 /**
12848  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12849  * @phba: pointer to HBA context object.
12850  * @cpu: cpu going offline/online
12851  * @offline: true, cpu is going offline. false, cpu is coming online.
12852  *
12853  * If cpu is going offline, we'll try our best effort to find the next
12854  * online cpu on the phba's original_mask and migrate all offlining IRQ
12855  * affinities.
12856  *
12857  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12858  *
12859  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12860  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12861  *
12862  **/
12863 static void
12864 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12865 {
12866 	struct lpfc_vector_map_info *cpup;
12867 	struct cpumask *aff_mask;
12868 	unsigned int cpu_select, cpu_next, idx;
12869 	const struct cpumask *orig_mask;
12870 
12871 	if (phba->irq_chann_mode == NORMAL_MODE)
12872 		return;
12873 
12874 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12875 
12876 	if (!cpumask_test_cpu(cpu, orig_mask))
12877 		return;
12878 
12879 	cpup = &phba->sli4_hba.cpu_map[cpu];
12880 
12881 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12882 		return;
12883 
12884 	if (offline) {
12885 		/* Find next online CPU on original mask */
12886 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12887 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12888 
12889 		/* Found a valid CPU */
12890 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12891 			/* Go through each eqhdl and ensure offlining
12892 			 * cpu aff_mask is migrated
12893 			 */
12894 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12895 				aff_mask = lpfc_get_aff_mask(idx);
12896 
12897 				/* Migrate affinity */
12898 				if (cpumask_test_cpu(cpu, aff_mask))
12899 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12900 							 cpu_select);
12901 			}
12902 		} else {
12903 			/* Rely on irqbalance if no online CPUs left on NUMA */
12904 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12905 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12906 		}
12907 	} else {
12908 		/* Migrate affinity back to this CPU */
12909 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12910 	}
12911 }
12912 
12913 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12914 {
12915 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12916 	struct lpfc_queue *eq, *next;
12917 	LIST_HEAD(eqlist);
12918 	int retval;
12919 
12920 	if (!phba) {
12921 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12922 		return 0;
12923 	}
12924 
12925 	if (__lpfc_cpuhp_checks(phba, &retval))
12926 		return retval;
12927 
12928 	lpfc_irq_rebalance(phba, cpu, true);
12929 
12930 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12931 	if (retval)
12932 		return retval;
12933 
12934 	/* start polling on these eq's */
12935 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12936 		list_del_init(&eq->_poll_list);
12937 		lpfc_sli4_start_polling(eq);
12938 	}
12939 
12940 	return 0;
12941 }
12942 
12943 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12944 {
12945 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12946 	struct lpfc_queue *eq, *next;
12947 	unsigned int n;
12948 	int retval;
12949 
12950 	if (!phba) {
12951 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12952 		return 0;
12953 	}
12954 
12955 	if (__lpfc_cpuhp_checks(phba, &retval))
12956 		return retval;
12957 
12958 	lpfc_irq_rebalance(phba, cpu, false);
12959 
12960 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12961 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12962 		if (n == cpu)
12963 			lpfc_sli4_stop_polling(eq);
12964 	}
12965 
12966 	return 0;
12967 }
12968 
12969 /**
12970  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12971  * @phba: pointer to lpfc hba data structure.
12972  *
12973  * This routine is invoked to enable the MSI-X interrupt vectors to device
12974  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12975  * to cpus on the system.
12976  *
12977  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12978  * the number of cpus on the same numa node as this adapter.  The vectors are
12979  * allocated without requesting OS affinity mapping.  A vector will be
12980  * allocated and assigned to each online and offline cpu.  If the cpu is
12981  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12982  * affinity will be set to the nearest peer cpu within the numa node that is
12983  * online.  If there are no online cpus within the numa node, affinity is not
12984  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12985  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12986  * configured.
12987  *
12988  * If numa mode is not enabled and there is more than 1 vector allocated, then
12989  * the driver relies on the managed irq interface where the OS assigns vector to
12990  * cpu affinity.  The driver will then use that affinity mapping to setup its
12991  * cpu mapping table.
12992  *
12993  * Return codes
12994  * 0 - successful
12995  * other values - error
12996  **/
12997 static int
12998 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12999 {
13000 	int vectors, rc, index;
13001 	char *name;
13002 	const struct cpumask *aff_mask = NULL;
13003 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13004 	struct lpfc_vector_map_info *cpup;
13005 	struct lpfc_hba_eq_hdl *eqhdl;
13006 	const struct cpumask *maskp;
13007 	unsigned int flags = PCI_IRQ_MSIX;
13008 
13009 	/* Set up MSI-X multi-message vectors */
13010 	vectors = phba->cfg_irq_chann;
13011 
13012 	if (phba->irq_chann_mode != NORMAL_MODE)
13013 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13014 
13015 	if (aff_mask) {
13016 		cpu_cnt = cpumask_weight(aff_mask);
13017 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13018 
13019 		/* cpu: iterates over aff_mask including offline or online
13020 		 * cpu_select: iterates over online aff_mask to set affinity
13021 		 */
13022 		cpu = cpumask_first(aff_mask);
13023 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13024 	} else {
13025 		flags |= PCI_IRQ_AFFINITY;
13026 	}
13027 
13028 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13029 	if (rc < 0) {
13030 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13031 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13032 		goto vec_fail_out;
13033 	}
13034 	vectors = rc;
13035 
13036 	/* Assign MSI-X vectors to interrupt handlers */
13037 	for (index = 0; index < vectors; index++) {
13038 		eqhdl = lpfc_get_eq_hdl(index);
13039 		name = eqhdl->handler_name;
13040 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13041 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13042 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13043 
13044 		eqhdl->idx = index;
13045 		rc = pci_irq_vector(phba->pcidev, index);
13046 		if (rc < 0) {
13047 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13048 					"0489 MSI-X fast-path (%d) "
13049 					"pci_irq_vec failed (%d)\n", index, rc);
13050 			goto cfg_fail_out;
13051 		}
13052 		eqhdl->irq = rc;
13053 
13054 		rc = request_threaded_irq(eqhdl->irq,
13055 					  &lpfc_sli4_hba_intr_handler,
13056 					  &lpfc_sli4_hba_intr_handler_th,
13057 					  0, name, eqhdl);
13058 		if (rc) {
13059 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13060 					"0486 MSI-X fast-path (%d) "
13061 					"request_irq failed (%d)\n", index, rc);
13062 			goto cfg_fail_out;
13063 		}
13064 
13065 		if (aff_mask) {
13066 			/* If found a neighboring online cpu, set affinity */
13067 			if (cpu_select < nr_cpu_ids)
13068 				lpfc_irq_set_aff(eqhdl, cpu_select);
13069 
13070 			/* Assign EQ to cpu_map */
13071 			lpfc_assign_eq_map_info(phba, index,
13072 						LPFC_CPU_FIRST_IRQ,
13073 						cpu);
13074 
13075 			/* Iterate to next offline or online cpu in aff_mask */
13076 			cpu = cpumask_next(cpu, aff_mask);
13077 
13078 			/* Find next online cpu in aff_mask to set affinity */
13079 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13080 		} else if (vectors == 1) {
13081 			cpu = cpumask_first(cpu_present_mask);
13082 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13083 						cpu);
13084 		} else {
13085 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13086 
13087 			/* Loop through all CPUs associated with vector index */
13088 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13089 				cpup = &phba->sli4_hba.cpu_map[cpu];
13090 
13091 				/* If this is the first CPU thats assigned to
13092 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13093 				 *
13094 				 * With certain platforms its possible that irq
13095 				 * vectors are affinitized to all the cpu's.
13096 				 * This can result in each cpu_map.eq to be set
13097 				 * to the last vector, resulting in overwrite
13098 				 * of all the previous cpu_map.eq.  Ensure that
13099 				 * each vector receives a place in cpu_map.
13100 				 * Later call to lpfc_cpu_affinity_check will
13101 				 * ensure we are nicely balanced out.
13102 				 */
13103 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13104 					continue;
13105 				lpfc_assign_eq_map_info(phba, index,
13106 							LPFC_CPU_FIRST_IRQ,
13107 							cpu);
13108 				break;
13109 			}
13110 		}
13111 	}
13112 
13113 	if (vectors != phba->cfg_irq_chann) {
13114 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13115 				"3238 Reducing IO channels to match number of "
13116 				"MSI-X vectors, requested %d got %d\n",
13117 				phba->cfg_irq_chann, vectors);
13118 		if (phba->cfg_irq_chann > vectors)
13119 			phba->cfg_irq_chann = vectors;
13120 	}
13121 
13122 	return rc;
13123 
13124 cfg_fail_out:
13125 	/* free the irq already requested */
13126 	for (--index; index >= 0; index--) {
13127 		eqhdl = lpfc_get_eq_hdl(index);
13128 		lpfc_irq_clear_aff(eqhdl);
13129 		free_irq(eqhdl->irq, eqhdl);
13130 	}
13131 
13132 	/* Unconfigure MSI-X capability structure */
13133 	pci_free_irq_vectors(phba->pcidev);
13134 
13135 vec_fail_out:
13136 	return rc;
13137 }
13138 
13139 /**
13140  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13141  * @phba: pointer to lpfc hba data structure.
13142  *
13143  * This routine is invoked to enable the MSI interrupt mode to device with
13144  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13145  * called to enable the MSI vector. The device driver is responsible for
13146  * calling the request_irq() to register MSI vector with a interrupt the
13147  * handler, which is done in this function.
13148  *
13149  * Return codes
13150  * 	0 - successful
13151  * 	other values - error
13152  **/
13153 static int
13154 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13155 {
13156 	int rc, index;
13157 	unsigned int cpu;
13158 	struct lpfc_hba_eq_hdl *eqhdl;
13159 
13160 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13161 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13162 	if (rc > 0)
13163 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13164 				"0487 PCI enable MSI mode success.\n");
13165 	else {
13166 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13167 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13168 		return rc ? rc : -1;
13169 	}
13170 
13171 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13172 			 0, LPFC_DRIVER_NAME, phba);
13173 	if (rc) {
13174 		pci_free_irq_vectors(phba->pcidev);
13175 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13176 				"0490 MSI request_irq failed (%d)\n", rc);
13177 		return rc;
13178 	}
13179 
13180 	eqhdl = lpfc_get_eq_hdl(0);
13181 	rc = pci_irq_vector(phba->pcidev, 0);
13182 	if (rc < 0) {
13183 		pci_free_irq_vectors(phba->pcidev);
13184 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13185 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13186 		return rc;
13187 	}
13188 	eqhdl->irq = rc;
13189 
13190 	cpu = cpumask_first(cpu_present_mask);
13191 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13192 
13193 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13194 		eqhdl = lpfc_get_eq_hdl(index);
13195 		eqhdl->idx = index;
13196 	}
13197 
13198 	return 0;
13199 }
13200 
13201 /**
13202  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13203  * @phba: pointer to lpfc hba data structure.
13204  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13205  *
13206  * This routine is invoked to enable device interrupt and associate driver's
13207  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13208  * interface spec. Depends on the interrupt mode configured to the driver,
13209  * the driver will try to fallback from the configured interrupt mode to an
13210  * interrupt mode which is supported by the platform, kernel, and device in
13211  * the order of:
13212  * MSI-X -> MSI -> IRQ.
13213  *
13214  * Return codes
13215  *	Interrupt mode (2, 1, 0) - successful
13216  *	LPFC_INTR_ERROR - error
13217  **/
13218 static uint32_t
13219 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13220 {
13221 	uint32_t intr_mode = LPFC_INTR_ERROR;
13222 	int retval, idx;
13223 
13224 	if (cfg_mode == 2) {
13225 		/* Preparation before conf_msi mbox cmd */
13226 		retval = 0;
13227 		if (!retval) {
13228 			/* Now, try to enable MSI-X interrupt mode */
13229 			retval = lpfc_sli4_enable_msix(phba);
13230 			if (!retval) {
13231 				/* Indicate initialization to MSI-X mode */
13232 				phba->intr_type = MSIX;
13233 				intr_mode = 2;
13234 			}
13235 		}
13236 	}
13237 
13238 	/* Fallback to MSI if MSI-X initialization failed */
13239 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13240 		retval = lpfc_sli4_enable_msi(phba);
13241 		if (!retval) {
13242 			/* Indicate initialization to MSI mode */
13243 			phba->intr_type = MSI;
13244 			intr_mode = 1;
13245 		}
13246 	}
13247 
13248 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13249 	if (phba->intr_type == NONE) {
13250 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13251 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13252 		if (!retval) {
13253 			struct lpfc_hba_eq_hdl *eqhdl;
13254 			unsigned int cpu;
13255 
13256 			/* Indicate initialization to INTx mode */
13257 			phba->intr_type = INTx;
13258 			intr_mode = 0;
13259 
13260 			eqhdl = lpfc_get_eq_hdl(0);
13261 			retval = pci_irq_vector(phba->pcidev, 0);
13262 			if (retval < 0) {
13263 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13264 					"0502 INTR pci_irq_vec failed (%d)\n",
13265 					 retval);
13266 				return LPFC_INTR_ERROR;
13267 			}
13268 			eqhdl->irq = retval;
13269 
13270 			cpu = cpumask_first(cpu_present_mask);
13271 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13272 						cpu);
13273 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13274 				eqhdl = lpfc_get_eq_hdl(idx);
13275 				eqhdl->idx = idx;
13276 			}
13277 		}
13278 	}
13279 	return intr_mode;
13280 }
13281 
13282 /**
13283  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13284  * @phba: pointer to lpfc hba data structure.
13285  *
13286  * This routine is invoked to disable device interrupt and disassociate
13287  * the driver's interrupt handler(s) from interrupt vector(s) to device
13288  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13289  * will release the interrupt vector(s) for the message signaled interrupt.
13290  **/
13291 static void
13292 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13293 {
13294 	/* Disable the currently initialized interrupt mode */
13295 	if (phba->intr_type == MSIX) {
13296 		int index;
13297 		struct lpfc_hba_eq_hdl *eqhdl;
13298 
13299 		/* Free up MSI-X multi-message vectors */
13300 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13301 			eqhdl = lpfc_get_eq_hdl(index);
13302 			lpfc_irq_clear_aff(eqhdl);
13303 			free_irq(eqhdl->irq, eqhdl);
13304 		}
13305 	} else {
13306 		free_irq(phba->pcidev->irq, phba);
13307 	}
13308 
13309 	pci_free_irq_vectors(phba->pcidev);
13310 
13311 	/* Reset interrupt management states */
13312 	phba->intr_type = NONE;
13313 	phba->sli.slistat.sli_intr = 0;
13314 }
13315 
13316 /**
13317  * lpfc_unset_hba - Unset SLI3 hba device initialization
13318  * @phba: pointer to lpfc hba data structure.
13319  *
13320  * This routine is invoked to unset the HBA device initialization steps to
13321  * a device with SLI-3 interface spec.
13322  **/
13323 static void
13324 lpfc_unset_hba(struct lpfc_hba *phba)
13325 {
13326 	struct lpfc_vport *vport = phba->pport;
13327 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13328 
13329 	spin_lock_irq(shost->host_lock);
13330 	vport->load_flag |= FC_UNLOADING;
13331 	spin_unlock_irq(shost->host_lock);
13332 
13333 	kfree(phba->vpi_bmask);
13334 	kfree(phba->vpi_ids);
13335 
13336 	lpfc_stop_hba_timers(phba);
13337 
13338 	phba->pport->work_port_events = 0;
13339 
13340 	lpfc_sli_hba_down(phba);
13341 
13342 	lpfc_sli_brdrestart(phba);
13343 
13344 	lpfc_sli_disable_intr(phba);
13345 
13346 	return;
13347 }
13348 
13349 /**
13350  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13351  * @phba: Pointer to HBA context object.
13352  *
13353  * This function is called in the SLI4 code path to wait for completion
13354  * of device's XRIs exchange busy. It will check the XRI exchange busy
13355  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13356  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13357  * I/Os every 30 seconds, log error message, and wait forever. Only when
13358  * all XRI exchange busy complete, the driver unload shall proceed with
13359  * invoking the function reset ioctl mailbox command to the CNA and the
13360  * the rest of the driver unload resource release.
13361  **/
13362 static void
13363 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13364 {
13365 	struct lpfc_sli4_hdw_queue *qp;
13366 	int idx, ccnt;
13367 	int wait_time = 0;
13368 	int io_xri_cmpl = 1;
13369 	int nvmet_xri_cmpl = 1;
13370 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13371 
13372 	/* Driver just aborted IOs during the hba_unset process.  Pause
13373 	 * here to give the HBA time to complete the IO and get entries
13374 	 * into the abts lists.
13375 	 */
13376 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13377 
13378 	/* Wait for NVME pending IO to flush back to transport. */
13379 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13380 		lpfc_nvme_wait_for_io_drain(phba);
13381 
13382 	ccnt = 0;
13383 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13384 		qp = &phba->sli4_hba.hdwq[idx];
13385 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13386 		if (!io_xri_cmpl) /* if list is NOT empty */
13387 			ccnt++;
13388 	}
13389 	if (ccnt)
13390 		io_xri_cmpl = 0;
13391 
13392 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13393 		nvmet_xri_cmpl =
13394 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13395 	}
13396 
13397 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13398 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13399 			if (!nvmet_xri_cmpl)
13400 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13401 						"6424 NVMET XRI exchange busy "
13402 						"wait time: %d seconds.\n",
13403 						wait_time/1000);
13404 			if (!io_xri_cmpl)
13405 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13406 						"6100 IO XRI exchange busy "
13407 						"wait time: %d seconds.\n",
13408 						wait_time/1000);
13409 			if (!els_xri_cmpl)
13410 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13411 						"2878 ELS XRI exchange busy "
13412 						"wait time: %d seconds.\n",
13413 						wait_time/1000);
13414 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13415 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13416 		} else {
13417 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13418 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13419 		}
13420 
13421 		ccnt = 0;
13422 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13423 			qp = &phba->sli4_hba.hdwq[idx];
13424 			io_xri_cmpl = list_empty(
13425 			    &qp->lpfc_abts_io_buf_list);
13426 			if (!io_xri_cmpl) /* if list is NOT empty */
13427 				ccnt++;
13428 		}
13429 		if (ccnt)
13430 			io_xri_cmpl = 0;
13431 
13432 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13433 			nvmet_xri_cmpl = list_empty(
13434 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13435 		}
13436 		els_xri_cmpl =
13437 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13438 
13439 	}
13440 }
13441 
13442 /**
13443  * lpfc_sli4_hba_unset - Unset the fcoe hba
13444  * @phba: Pointer to HBA context object.
13445  *
13446  * This function is called in the SLI4 code path to reset the HBA's FCoE
13447  * function. The caller is not required to hold any lock. This routine
13448  * issues PCI function reset mailbox command to reset the FCoE function.
13449  * At the end of the function, it calls lpfc_hba_down_post function to
13450  * free any pending commands.
13451  **/
13452 static void
13453 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13454 {
13455 	int wait_cnt = 0;
13456 	LPFC_MBOXQ_t *mboxq;
13457 	struct pci_dev *pdev = phba->pcidev;
13458 
13459 	lpfc_stop_hba_timers(phba);
13460 	hrtimer_cancel(&phba->cmf_stats_timer);
13461 	hrtimer_cancel(&phba->cmf_timer);
13462 
13463 	if (phba->pport)
13464 		phba->sli4_hba.intr_enable = 0;
13465 
13466 	/*
13467 	 * Gracefully wait out the potential current outstanding asynchronous
13468 	 * mailbox command.
13469 	 */
13470 
13471 	/* First, block any pending async mailbox command from posted */
13472 	spin_lock_irq(&phba->hbalock);
13473 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13474 	spin_unlock_irq(&phba->hbalock);
13475 	/* Now, trying to wait it out if we can */
13476 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13477 		msleep(10);
13478 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13479 			break;
13480 	}
13481 	/* Forcefully release the outstanding mailbox command if timed out */
13482 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13483 		spin_lock_irq(&phba->hbalock);
13484 		mboxq = phba->sli.mbox_active;
13485 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13486 		__lpfc_mbox_cmpl_put(phba, mboxq);
13487 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13488 		phba->sli.mbox_active = NULL;
13489 		spin_unlock_irq(&phba->hbalock);
13490 	}
13491 
13492 	/* Abort all iocbs associated with the hba */
13493 	lpfc_sli_hba_iocb_abort(phba);
13494 
13495 	if (!pci_channel_offline(phba->pcidev))
13496 		/* Wait for completion of device XRI exchange busy */
13497 		lpfc_sli4_xri_exchange_busy_wait(phba);
13498 
13499 	/* per-phba callback de-registration for hotplug event */
13500 	if (phba->pport)
13501 		lpfc_cpuhp_remove(phba);
13502 
13503 	/* Disable PCI subsystem interrupt */
13504 	lpfc_sli4_disable_intr(phba);
13505 
13506 	/* Disable SR-IOV if enabled */
13507 	if (phba->cfg_sriov_nr_virtfn)
13508 		pci_disable_sriov(pdev);
13509 
13510 	/* Stop kthread signal shall trigger work_done one more time */
13511 	kthread_stop(phba->worker_thread);
13512 
13513 	/* Disable FW logging to host memory */
13514 	lpfc_ras_stop_fwlog(phba);
13515 
13516 	/* Reset SLI4 HBA FCoE function */
13517 	lpfc_pci_function_reset(phba);
13518 
13519 	/* release all queue allocated resources. */
13520 	lpfc_sli4_queue_destroy(phba);
13521 
13522 	/* Free RAS DMA memory */
13523 	if (phba->ras_fwlog.ras_enabled)
13524 		lpfc_sli4_ras_dma_free(phba);
13525 
13526 	/* Stop the SLI4 device port */
13527 	if (phba->pport)
13528 		phba->pport->work_port_events = 0;
13529 }
13530 
13531 static uint32_t
13532 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13533 {
13534 	uint32_t msb = 0;
13535 	uint32_t bit;
13536 
13537 	for (bit = 0; bit < 8; bit++) {
13538 		msb = (crc >> 31) & 1;
13539 		crc <<= 1;
13540 
13541 		if (msb ^ (byte & 1)) {
13542 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13543 			crc |= 1;
13544 		}
13545 		byte >>= 1;
13546 	}
13547 	return crc;
13548 }
13549 
13550 static uint32_t
13551 lpfc_cgn_reverse_bits(uint32_t wd)
13552 {
13553 	uint32_t result = 0;
13554 	uint32_t i;
13555 
13556 	for (i = 0; i < 32; i++) {
13557 		result <<= 1;
13558 		result |= (1 & (wd >> i));
13559 	}
13560 	return result;
13561 }
13562 
13563 /*
13564  * The routine corresponds with the algorithm the HBA firmware
13565  * uses to validate the data integrity.
13566  */
13567 uint32_t
13568 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13569 {
13570 	uint32_t  i;
13571 	uint32_t result;
13572 	uint8_t  *data = (uint8_t *)ptr;
13573 
13574 	for (i = 0; i < byteLen; ++i)
13575 		crc = lpfc_cgn_crc32(crc, data[i]);
13576 
13577 	result = ~lpfc_cgn_reverse_bits(crc);
13578 	return result;
13579 }
13580 
13581 void
13582 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13583 {
13584 	struct lpfc_cgn_info *cp;
13585 	uint16_t size;
13586 	uint32_t crc;
13587 
13588 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13589 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13590 
13591 	if (!phba->cgn_i)
13592 		return;
13593 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13594 
13595 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13596 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13597 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13598 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13599 
13600 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13601 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13602 	atomic64_set(&phba->cgn_latency_evt, 0);
13603 	phba->cgn_evt_minute = 0;
13604 
13605 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13606 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13607 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13608 
13609 	/* cgn parameters */
13610 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13611 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13612 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13613 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13614 
13615 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13616 
13617 	/* Fill in default LUN qdepth */
13618 	if (phba->pport) {
13619 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13620 		cp->cgn_lunq = cpu_to_le16(size);
13621 	}
13622 
13623 	/* last used Index initialized to 0xff already */
13624 
13625 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13626 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13627 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13628 	cp->cgn_info_crc = cpu_to_le32(crc);
13629 
13630 	phba->cgn_evt_timestamp = jiffies +
13631 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13632 }
13633 
13634 void
13635 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13636 {
13637 	struct lpfc_cgn_info *cp;
13638 	uint32_t crc;
13639 
13640 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13641 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13642 
13643 	if (!phba->cgn_i)
13644 		return;
13645 
13646 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13647 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13648 
13649 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13650 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13651 	cp->cgn_info_crc = cpu_to_le32(crc);
13652 }
13653 
13654 /**
13655  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13656  * @phba: Pointer to hba context object.
13657  * @reg: flag to determine register or unregister.
13658  */
13659 static int
13660 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13661 {
13662 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13663 	union  lpfc_sli4_cfg_shdr *shdr;
13664 	uint32_t shdr_status, shdr_add_status;
13665 	LPFC_MBOXQ_t *mboxq;
13666 	int length, rc;
13667 
13668 	if (!phba->cgn_i)
13669 		return -ENXIO;
13670 
13671 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13672 	if (!mboxq) {
13673 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13674 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13675 				"HBA state x%x reg %d\n",
13676 				phba->pport->port_state, reg);
13677 		return -ENOMEM;
13678 	}
13679 
13680 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13681 		sizeof(struct lpfc_sli4_cfg_mhdr));
13682 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13683 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13684 			 LPFC_SLI4_MBX_EMBED);
13685 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13686 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13687 	if (reg > 0)
13688 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13689 	else
13690 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13691 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13692 	reg_congestion_buf->addr_lo =
13693 		putPaddrLow(phba->cgn_i->phys);
13694 	reg_congestion_buf->addr_hi =
13695 		putPaddrHigh(phba->cgn_i->phys);
13696 
13697 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13698 	shdr = (union lpfc_sli4_cfg_shdr *)
13699 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13700 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13701 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13702 				 &shdr->response);
13703 	mempool_free(mboxq, phba->mbox_mem_pool);
13704 	if (shdr_status || shdr_add_status || rc) {
13705 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13706 				"2642 REG_CONGESTION_BUF mailbox "
13707 				"failed with status x%x add_status x%x,"
13708 				" mbx status x%x reg %d\n",
13709 				shdr_status, shdr_add_status, rc, reg);
13710 		return -ENXIO;
13711 	}
13712 	return 0;
13713 }
13714 
13715 int
13716 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13717 {
13718 	lpfc_cmf_stop(phba);
13719 	return __lpfc_reg_congestion_buf(phba, 0);
13720 }
13721 
13722 int
13723 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13724 {
13725 	return __lpfc_reg_congestion_buf(phba, 1);
13726 }
13727 
13728 /**
13729  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13730  * @phba: Pointer to HBA context object.
13731  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13732  *
13733  * This function is called in the SLI4 code path to read the port's
13734  * sli4 capabilities.
13735  *
13736  * This function may be be called from any context that can block-wait
13737  * for the completion.  The expectation is that this routine is called
13738  * typically from probe_one or from the online routine.
13739  **/
13740 int
13741 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13742 {
13743 	int rc;
13744 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13745 	struct lpfc_pc_sli4_params *sli4_params;
13746 	uint32_t mbox_tmo;
13747 	int length;
13748 	bool exp_wqcq_pages = true;
13749 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13750 
13751 	/*
13752 	 * By default, the driver assumes the SLI4 port requires RPI
13753 	 * header postings.  The SLI4_PARAM response will correct this
13754 	 * assumption.
13755 	 */
13756 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13757 
13758 	/* Read the port's SLI4 Config Parameters */
13759 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13760 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13761 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13762 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13763 			 length, LPFC_SLI4_MBX_EMBED);
13764 	if (!phba->sli4_hba.intr_enable)
13765 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13766 	else {
13767 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13768 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13769 	}
13770 	if (unlikely(rc))
13771 		return rc;
13772 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13773 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13774 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13775 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13776 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13777 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13778 					     mbx_sli4_parameters);
13779 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13780 					     mbx_sli4_parameters);
13781 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13782 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13783 	else
13784 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13785 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13786 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13787 					   mbx_sli4_parameters);
13788 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13789 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13790 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13791 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13792 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13793 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13794 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13795 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13796 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13797 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13798 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13799 					    mbx_sli4_parameters);
13800 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13801 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13802 					   mbx_sli4_parameters);
13803 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13804 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13805 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13806 
13807 	/* Check for Extended Pre-Registered SGL support */
13808 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13809 
13810 	/* Check for firmware nvme support */
13811 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13812 		     bf_get(cfg_xib, mbx_sli4_parameters));
13813 
13814 	if (rc) {
13815 		/* Save this to indicate the Firmware supports NVME */
13816 		sli4_params->nvme = 1;
13817 
13818 		/* Firmware NVME support, check driver FC4 NVME support */
13819 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13820 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13821 					"6133 Disabling NVME support: "
13822 					"FC4 type not supported: x%x\n",
13823 					phba->cfg_enable_fc4_type);
13824 			goto fcponly;
13825 		}
13826 	} else {
13827 		/* No firmware NVME support, check driver FC4 NVME support */
13828 		sli4_params->nvme = 0;
13829 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13830 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13831 					"6101 Disabling NVME support: Not "
13832 					"supported by firmware (%d %d) x%x\n",
13833 					bf_get(cfg_nvme, mbx_sli4_parameters),
13834 					bf_get(cfg_xib, mbx_sli4_parameters),
13835 					phba->cfg_enable_fc4_type);
13836 fcponly:
13837 			phba->nvmet_support = 0;
13838 			phba->cfg_nvmet_mrq = 0;
13839 			phba->cfg_nvme_seg_cnt = 0;
13840 
13841 			/* If no FC4 type support, move to just SCSI support */
13842 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13843 				return -ENODEV;
13844 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13845 		}
13846 	}
13847 
13848 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13849 	 * accommodate 512K and 1M IOs in a single nvme buf.
13850 	 */
13851 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13852 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13853 
13854 	/* Enable embedded Payload BDE if support is indicated */
13855 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13856 		phba->cfg_enable_pbde = 1;
13857 	else
13858 		phba->cfg_enable_pbde = 0;
13859 
13860 	/*
13861 	 * To support Suppress Response feature we must satisfy 3 conditions.
13862 	 * lpfc_suppress_rsp module parameter must be set (default).
13863 	 * In SLI4-Parameters Descriptor:
13864 	 * Extended Inline Buffers (XIB) must be supported.
13865 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13866 	 * (double negative).
13867 	 */
13868 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13869 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13870 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13871 	else
13872 		phba->cfg_suppress_rsp = 0;
13873 
13874 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13875 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13876 
13877 	/* Make sure that sge_supp_len can be handled by the driver */
13878 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13879 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13880 
13881 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13882 	if (unlikely(rc)) {
13883 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13884 				"6400 Can't set dma maximum segment size\n");
13885 		return rc;
13886 	}
13887 
13888 	/*
13889 	 * Check whether the adapter supports an embedded copy of the
13890 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13891 	 * to use this option, 128-byte WQEs must be used.
13892 	 */
13893 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13894 		phba->fcp_embed_io = 1;
13895 	else
13896 		phba->fcp_embed_io = 0;
13897 
13898 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13899 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13900 			bf_get(cfg_xib, mbx_sli4_parameters),
13901 			phba->cfg_enable_pbde,
13902 			phba->fcp_embed_io, sli4_params->nvme,
13903 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13904 
13905 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13906 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13907 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13908 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13909 		exp_wqcq_pages = false;
13910 
13911 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13912 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13913 	    exp_wqcq_pages &&
13914 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13915 		phba->enab_exp_wqcq_pages = 1;
13916 	else
13917 		phba->enab_exp_wqcq_pages = 0;
13918 	/*
13919 	 * Check if the SLI port supports MDS Diagnostics
13920 	 */
13921 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13922 		phba->mds_diags_support = 1;
13923 	else
13924 		phba->mds_diags_support = 0;
13925 
13926 	/*
13927 	 * Check if the SLI port supports NSLER
13928 	 */
13929 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13930 		phba->nsler = 1;
13931 	else
13932 		phba->nsler = 0;
13933 
13934 	return 0;
13935 }
13936 
13937 /**
13938  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13939  * @pdev: pointer to PCI device
13940  * @pid: pointer to PCI device identifier
13941  *
13942  * This routine is to be called to attach a device with SLI-3 interface spec
13943  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13944  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13945  * information of the device and driver to see if the driver state that it can
13946  * support this kind of device. If the match is successful, the driver core
13947  * invokes this routine. If this routine determines it can claim the HBA, it
13948  * does all the initialization that it needs to do to handle the HBA properly.
13949  *
13950  * Return code
13951  * 	0 - driver can claim the device
13952  * 	negative value - driver can not claim the device
13953  **/
13954 static int
13955 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13956 {
13957 	struct lpfc_hba   *phba;
13958 	struct lpfc_vport *vport = NULL;
13959 	struct Scsi_Host  *shost = NULL;
13960 	int error;
13961 	uint32_t cfg_mode, intr_mode;
13962 
13963 	/* Allocate memory for HBA structure */
13964 	phba = lpfc_hba_alloc(pdev);
13965 	if (!phba)
13966 		return -ENOMEM;
13967 
13968 	/* Perform generic PCI device enabling operation */
13969 	error = lpfc_enable_pci_dev(phba);
13970 	if (error)
13971 		goto out_free_phba;
13972 
13973 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13974 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13975 	if (error)
13976 		goto out_disable_pci_dev;
13977 
13978 	/* Set up SLI-3 specific device PCI memory space */
13979 	error = lpfc_sli_pci_mem_setup(phba);
13980 	if (error) {
13981 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13982 				"1402 Failed to set up pci memory space.\n");
13983 		goto out_disable_pci_dev;
13984 	}
13985 
13986 	/* Set up SLI-3 specific device driver resources */
13987 	error = lpfc_sli_driver_resource_setup(phba);
13988 	if (error) {
13989 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13990 				"1404 Failed to set up driver resource.\n");
13991 		goto out_unset_pci_mem_s3;
13992 	}
13993 
13994 	/* Initialize and populate the iocb list per host */
13995 
13996 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13997 	if (error) {
13998 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13999 				"1405 Failed to initialize iocb list.\n");
14000 		goto out_unset_driver_resource_s3;
14001 	}
14002 
14003 	/* Set up common device driver resources */
14004 	error = lpfc_setup_driver_resource_phase2(phba);
14005 	if (error) {
14006 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14007 				"1406 Failed to set up driver resource.\n");
14008 		goto out_free_iocb_list;
14009 	}
14010 
14011 	/* Get the default values for Model Name and Description */
14012 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14013 
14014 	/* Create SCSI host to the physical port */
14015 	error = lpfc_create_shost(phba);
14016 	if (error) {
14017 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14018 				"1407 Failed to create scsi host.\n");
14019 		goto out_unset_driver_resource;
14020 	}
14021 
14022 	/* Configure sysfs attributes */
14023 	vport = phba->pport;
14024 	error = lpfc_alloc_sysfs_attr(vport);
14025 	if (error) {
14026 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14027 				"1476 Failed to allocate sysfs attr\n");
14028 		goto out_destroy_shost;
14029 	}
14030 
14031 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14032 	/* Now, trying to enable interrupt and bring up the device */
14033 	cfg_mode = phba->cfg_use_msi;
14034 	while (true) {
14035 		/* Put device to a known state before enabling interrupt */
14036 		lpfc_stop_port(phba);
14037 		/* Configure and enable interrupt */
14038 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14039 		if (intr_mode == LPFC_INTR_ERROR) {
14040 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14041 					"0431 Failed to enable interrupt.\n");
14042 			error = -ENODEV;
14043 			goto out_free_sysfs_attr;
14044 		}
14045 		/* SLI-3 HBA setup */
14046 		if (lpfc_sli_hba_setup(phba)) {
14047 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14048 					"1477 Failed to set up hba\n");
14049 			error = -ENODEV;
14050 			goto out_remove_device;
14051 		}
14052 
14053 		/* Wait 50ms for the interrupts of previous mailbox commands */
14054 		msleep(50);
14055 		/* Check active interrupts on message signaled interrupts */
14056 		if (intr_mode == 0 ||
14057 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14058 			/* Log the current active interrupt mode */
14059 			phba->intr_mode = intr_mode;
14060 			lpfc_log_intr_mode(phba, intr_mode);
14061 			break;
14062 		} else {
14063 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14064 					"0447 Configure interrupt mode (%d) "
14065 					"failed active interrupt test.\n",
14066 					intr_mode);
14067 			/* Disable the current interrupt mode */
14068 			lpfc_sli_disable_intr(phba);
14069 			/* Try next level of interrupt mode */
14070 			cfg_mode = --intr_mode;
14071 		}
14072 	}
14073 
14074 	/* Perform post initialization setup */
14075 	lpfc_post_init_setup(phba);
14076 
14077 	/* Check if there are static vports to be created. */
14078 	lpfc_create_static_vport(phba);
14079 
14080 	return 0;
14081 
14082 out_remove_device:
14083 	lpfc_unset_hba(phba);
14084 out_free_sysfs_attr:
14085 	lpfc_free_sysfs_attr(vport);
14086 out_destroy_shost:
14087 	lpfc_destroy_shost(phba);
14088 out_unset_driver_resource:
14089 	lpfc_unset_driver_resource_phase2(phba);
14090 out_free_iocb_list:
14091 	lpfc_free_iocb_list(phba);
14092 out_unset_driver_resource_s3:
14093 	lpfc_sli_driver_resource_unset(phba);
14094 out_unset_pci_mem_s3:
14095 	lpfc_sli_pci_mem_unset(phba);
14096 out_disable_pci_dev:
14097 	lpfc_disable_pci_dev(phba);
14098 	if (shost)
14099 		scsi_host_put(shost);
14100 out_free_phba:
14101 	lpfc_hba_free(phba);
14102 	return error;
14103 }
14104 
14105 /**
14106  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14107  * @pdev: pointer to PCI device
14108  *
14109  * This routine is to be called to disattach a device with SLI-3 interface
14110  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14111  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14112  * device to be removed from the PCI subsystem properly.
14113  **/
14114 static void
14115 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14116 {
14117 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14118 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14119 	struct lpfc_vport **vports;
14120 	struct lpfc_hba   *phba = vport->phba;
14121 	int i;
14122 
14123 	spin_lock_irq(&phba->hbalock);
14124 	vport->load_flag |= FC_UNLOADING;
14125 	spin_unlock_irq(&phba->hbalock);
14126 
14127 	lpfc_free_sysfs_attr(vport);
14128 
14129 	/* Release all the vports against this physical port */
14130 	vports = lpfc_create_vport_work_array(phba);
14131 	if (vports != NULL)
14132 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14133 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14134 				continue;
14135 			fc_vport_terminate(vports[i]->fc_vport);
14136 		}
14137 	lpfc_destroy_vport_work_array(phba, vports);
14138 
14139 	/* Remove FC host with the physical port */
14140 	fc_remove_host(shost);
14141 	scsi_remove_host(shost);
14142 
14143 	/* Clean up all nodes, mailboxes and IOs. */
14144 	lpfc_cleanup(vport);
14145 
14146 	/*
14147 	 * Bring down the SLI Layer. This step disable all interrupts,
14148 	 * clears the rings, discards all mailbox commands, and resets
14149 	 * the HBA.
14150 	 */
14151 
14152 	/* HBA interrupt will be disabled after this call */
14153 	lpfc_sli_hba_down(phba);
14154 	/* Stop kthread signal shall trigger work_done one more time */
14155 	kthread_stop(phba->worker_thread);
14156 	/* Final cleanup of txcmplq and reset the HBA */
14157 	lpfc_sli_brdrestart(phba);
14158 
14159 	kfree(phba->vpi_bmask);
14160 	kfree(phba->vpi_ids);
14161 
14162 	lpfc_stop_hba_timers(phba);
14163 	spin_lock_irq(&phba->port_list_lock);
14164 	list_del_init(&vport->listentry);
14165 	spin_unlock_irq(&phba->port_list_lock);
14166 
14167 	lpfc_debugfs_terminate(vport);
14168 
14169 	/* Disable SR-IOV if enabled */
14170 	if (phba->cfg_sriov_nr_virtfn)
14171 		pci_disable_sriov(pdev);
14172 
14173 	/* Disable interrupt */
14174 	lpfc_sli_disable_intr(phba);
14175 
14176 	scsi_host_put(shost);
14177 
14178 	/*
14179 	 * Call scsi_free before mem_free since scsi bufs are released to their
14180 	 * corresponding pools here.
14181 	 */
14182 	lpfc_scsi_free(phba);
14183 	lpfc_free_iocb_list(phba);
14184 
14185 	lpfc_mem_free_all(phba);
14186 
14187 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14188 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14189 
14190 	/* Free resources associated with SLI2 interface */
14191 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14192 			  phba->slim2p.virt, phba->slim2p.phys);
14193 
14194 	/* unmap adapter SLIM and Control Registers */
14195 	iounmap(phba->ctrl_regs_memmap_p);
14196 	iounmap(phba->slim_memmap_p);
14197 
14198 	lpfc_hba_free(phba);
14199 
14200 	pci_release_mem_regions(pdev);
14201 	pci_disable_device(pdev);
14202 }
14203 
14204 /**
14205  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14206  * @dev_d: pointer to device
14207  *
14208  * This routine is to be called from the kernel's PCI subsystem to support
14209  * system Power Management (PM) to device with SLI-3 interface spec. When
14210  * PM invokes this method, it quiesces the device by stopping the driver's
14211  * worker thread for the device, turning off device's interrupt and DMA,
14212  * and bring the device offline. Note that as the driver implements the
14213  * minimum PM requirements to a power-aware driver's PM support for the
14214  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14215  * to the suspend() method call will be treated as SUSPEND and the driver will
14216  * fully reinitialize its device during resume() method call, the driver will
14217  * set device to PCI_D3hot state in PCI config space instead of setting it
14218  * according to the @msg provided by the PM.
14219  *
14220  * Return code
14221  * 	0 - driver suspended the device
14222  * 	Error otherwise
14223  **/
14224 static int __maybe_unused
14225 lpfc_pci_suspend_one_s3(struct device *dev_d)
14226 {
14227 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14228 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14229 
14230 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14231 			"0473 PCI device Power Management suspend.\n");
14232 
14233 	/* Bring down the device */
14234 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14235 	lpfc_offline(phba);
14236 	kthread_stop(phba->worker_thread);
14237 
14238 	/* Disable interrupt from device */
14239 	lpfc_sli_disable_intr(phba);
14240 
14241 	return 0;
14242 }
14243 
14244 /**
14245  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14246  * @dev_d: pointer to device
14247  *
14248  * This routine is to be called from the kernel's PCI subsystem to support
14249  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14250  * invokes this method, it restores the device's PCI config space state and
14251  * fully reinitializes the device and brings it online. Note that as the
14252  * driver implements the minimum PM requirements to a power-aware driver's
14253  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14254  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14255  * driver will fully reinitialize its device during resume() method call,
14256  * the device will be set to PCI_D0 directly in PCI config space before
14257  * restoring the state.
14258  *
14259  * Return code
14260  * 	0 - driver suspended the device
14261  * 	Error otherwise
14262  **/
14263 static int __maybe_unused
14264 lpfc_pci_resume_one_s3(struct device *dev_d)
14265 {
14266 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14267 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14268 	uint32_t intr_mode;
14269 	int error;
14270 
14271 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14272 			"0452 PCI device Power Management resume.\n");
14273 
14274 	/* Startup the kernel thread for this host adapter. */
14275 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14276 					"lpfc_worker_%d", phba->brd_no);
14277 	if (IS_ERR(phba->worker_thread)) {
14278 		error = PTR_ERR(phba->worker_thread);
14279 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14280 				"0434 PM resume failed to start worker "
14281 				"thread: error=x%x.\n", error);
14282 		return error;
14283 	}
14284 
14285 	/* Init cpu_map array */
14286 	lpfc_cpu_map_array_init(phba);
14287 	/* Init hba_eq_hdl array */
14288 	lpfc_hba_eq_hdl_array_init(phba);
14289 	/* Configure and enable interrupt */
14290 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14291 	if (intr_mode == LPFC_INTR_ERROR) {
14292 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14293 				"0430 PM resume Failed to enable interrupt\n");
14294 		return -EIO;
14295 	} else
14296 		phba->intr_mode = intr_mode;
14297 
14298 	/* Restart HBA and bring it online */
14299 	lpfc_sli_brdrestart(phba);
14300 	lpfc_online(phba);
14301 
14302 	/* Log the current active interrupt mode */
14303 	lpfc_log_intr_mode(phba, phba->intr_mode);
14304 
14305 	return 0;
14306 }
14307 
14308 /**
14309  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14310  * @phba: pointer to lpfc hba data structure.
14311  *
14312  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14313  * aborts all the outstanding SCSI I/Os to the pci device.
14314  **/
14315 static void
14316 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14317 {
14318 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14319 			"2723 PCI channel I/O abort preparing for recovery\n");
14320 
14321 	/*
14322 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14323 	 * and let the SCSI mid-layer to retry them to recover.
14324 	 */
14325 	lpfc_sli_abort_fcp_rings(phba);
14326 }
14327 
14328 /**
14329  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14330  * @phba: pointer to lpfc hba data structure.
14331  *
14332  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14333  * disables the device interrupt and pci device, and aborts the internal FCP
14334  * pending I/Os.
14335  **/
14336 static void
14337 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14338 {
14339 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14340 			"2710 PCI channel disable preparing for reset\n");
14341 
14342 	/* Block any management I/Os to the device */
14343 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14344 
14345 	/* Block all SCSI devices' I/Os on the host */
14346 	lpfc_scsi_dev_block(phba);
14347 
14348 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14349 	lpfc_sli_flush_io_rings(phba);
14350 
14351 	/* stop all timers */
14352 	lpfc_stop_hba_timers(phba);
14353 
14354 	/* Disable interrupt and pci device */
14355 	lpfc_sli_disable_intr(phba);
14356 	pci_disable_device(phba->pcidev);
14357 }
14358 
14359 /**
14360  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14361  * @phba: pointer to lpfc hba data structure.
14362  *
14363  * This routine is called to prepare the SLI3 device for PCI slot permanently
14364  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14365  * pending I/Os.
14366  **/
14367 static void
14368 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14369 {
14370 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14371 			"2711 PCI channel permanent disable for failure\n");
14372 	/* Block all SCSI devices' I/Os on the host */
14373 	lpfc_scsi_dev_block(phba);
14374 	lpfc_sli4_prep_dev_for_reset(phba);
14375 
14376 	/* stop all timers */
14377 	lpfc_stop_hba_timers(phba);
14378 
14379 	/* Clean up all driver's outstanding SCSI I/Os */
14380 	lpfc_sli_flush_io_rings(phba);
14381 }
14382 
14383 /**
14384  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14385  * @pdev: pointer to PCI device.
14386  * @state: the current PCI connection state.
14387  *
14388  * This routine is called from the PCI subsystem for I/O error handling to
14389  * device with SLI-3 interface spec. This function is called by the PCI
14390  * subsystem after a PCI bus error affecting this device has been detected.
14391  * When this function is invoked, it will need to stop all the I/Os and
14392  * interrupt(s) to the device. Once that is done, it will return
14393  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14394  * as desired.
14395  *
14396  * Return codes
14397  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14398  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14399  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14400  **/
14401 static pci_ers_result_t
14402 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14403 {
14404 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14405 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14406 
14407 	switch (state) {
14408 	case pci_channel_io_normal:
14409 		/* Non-fatal error, prepare for recovery */
14410 		lpfc_sli_prep_dev_for_recover(phba);
14411 		return PCI_ERS_RESULT_CAN_RECOVER;
14412 	case pci_channel_io_frozen:
14413 		/* Fatal error, prepare for slot reset */
14414 		lpfc_sli_prep_dev_for_reset(phba);
14415 		return PCI_ERS_RESULT_NEED_RESET;
14416 	case pci_channel_io_perm_failure:
14417 		/* Permanent failure, prepare for device down */
14418 		lpfc_sli_prep_dev_for_perm_failure(phba);
14419 		return PCI_ERS_RESULT_DISCONNECT;
14420 	default:
14421 		/* Unknown state, prepare and request slot reset */
14422 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14423 				"0472 Unknown PCI error state: x%x\n", state);
14424 		lpfc_sli_prep_dev_for_reset(phba);
14425 		return PCI_ERS_RESULT_NEED_RESET;
14426 	}
14427 }
14428 
14429 /**
14430  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14431  * @pdev: pointer to PCI device.
14432  *
14433  * This routine is called from the PCI subsystem for error handling to
14434  * device with SLI-3 interface spec. This is called after PCI bus has been
14435  * reset to restart the PCI card from scratch, as if from a cold-boot.
14436  * During the PCI subsystem error recovery, after driver returns
14437  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14438  * recovery and then call this routine before calling the .resume method
14439  * to recover the device. This function will initialize the HBA device,
14440  * enable the interrupt, but it will just put the HBA to offline state
14441  * without passing any I/O traffic.
14442  *
14443  * Return codes
14444  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14445  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14446  */
14447 static pci_ers_result_t
14448 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14449 {
14450 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14451 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14452 	struct lpfc_sli *psli = &phba->sli;
14453 	uint32_t intr_mode;
14454 
14455 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14456 	if (pci_enable_device_mem(pdev)) {
14457 		printk(KERN_ERR "lpfc: Cannot re-enable "
14458 			"PCI device after reset.\n");
14459 		return PCI_ERS_RESULT_DISCONNECT;
14460 	}
14461 
14462 	pci_restore_state(pdev);
14463 
14464 	/*
14465 	 * As the new kernel behavior of pci_restore_state() API call clears
14466 	 * device saved_state flag, need to save the restored state again.
14467 	 */
14468 	pci_save_state(pdev);
14469 
14470 	if (pdev->is_busmaster)
14471 		pci_set_master(pdev);
14472 
14473 	spin_lock_irq(&phba->hbalock);
14474 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14475 	spin_unlock_irq(&phba->hbalock);
14476 
14477 	/* Configure and enable interrupt */
14478 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14479 	if (intr_mode == LPFC_INTR_ERROR) {
14480 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14481 				"0427 Cannot re-enable interrupt after "
14482 				"slot reset.\n");
14483 		return PCI_ERS_RESULT_DISCONNECT;
14484 	} else
14485 		phba->intr_mode = intr_mode;
14486 
14487 	/* Take device offline, it will perform cleanup */
14488 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14489 	lpfc_offline(phba);
14490 	lpfc_sli_brdrestart(phba);
14491 
14492 	/* Log the current active interrupt mode */
14493 	lpfc_log_intr_mode(phba, phba->intr_mode);
14494 
14495 	return PCI_ERS_RESULT_RECOVERED;
14496 }
14497 
14498 /**
14499  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14500  * @pdev: pointer to PCI device
14501  *
14502  * This routine is called from the PCI subsystem for error handling to device
14503  * with SLI-3 interface spec. It is called when kernel error recovery tells
14504  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14505  * error recovery. After this call, traffic can start to flow from this device
14506  * again.
14507  */
14508 static void
14509 lpfc_io_resume_s3(struct pci_dev *pdev)
14510 {
14511 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14512 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14513 
14514 	/* Bring device online, it will be no-op for non-fatal error resume */
14515 	lpfc_online(phba);
14516 }
14517 
14518 /**
14519  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14520  * @phba: pointer to lpfc hba data structure.
14521  *
14522  * returns the number of ELS/CT IOCBs to reserve
14523  **/
14524 int
14525 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14526 {
14527 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14528 
14529 	if (phba->sli_rev == LPFC_SLI_REV4) {
14530 		if (max_xri <= 100)
14531 			return 10;
14532 		else if (max_xri <= 256)
14533 			return 25;
14534 		else if (max_xri <= 512)
14535 			return 50;
14536 		else if (max_xri <= 1024)
14537 			return 100;
14538 		else if (max_xri <= 1536)
14539 			return 150;
14540 		else if (max_xri <= 2048)
14541 			return 200;
14542 		else
14543 			return 250;
14544 	} else
14545 		return 0;
14546 }
14547 
14548 /**
14549  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14550  * @phba: pointer to lpfc hba data structure.
14551  *
14552  * returns the number of ELS/CT + NVMET IOCBs to reserve
14553  **/
14554 int
14555 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14556 {
14557 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14558 
14559 	if (phba->nvmet_support)
14560 		max_xri += LPFC_NVMET_BUF_POST;
14561 	return max_xri;
14562 }
14563 
14564 
14565 static int
14566 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14567 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14568 	const struct firmware *fw)
14569 {
14570 	int rc;
14571 	u8 sli_family;
14572 
14573 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14574 	/* Three cases:  (1) FW was not supported on the detected adapter.
14575 	 * (2) FW update has been locked out administratively.
14576 	 * (3) Some other error during FW update.
14577 	 * In each case, an unmaskable message is written to the console
14578 	 * for admin diagnosis.
14579 	 */
14580 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14581 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14582 	     magic_number != MAGIC_NUMBER_G6) ||
14583 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14584 	     magic_number != MAGIC_NUMBER_G7) ||
14585 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14586 	     magic_number != MAGIC_NUMBER_G7P)) {
14587 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14588 				"3030 This firmware version is not supported on"
14589 				" this HBA model. Device:%x Magic:%x Type:%x "
14590 				"ID:%x Size %d %zd\n",
14591 				phba->pcidev->device, magic_number, ftype, fid,
14592 				fsize, fw->size);
14593 		rc = -EINVAL;
14594 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14595 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14596 				"3021 Firmware downloads have been prohibited "
14597 				"by a system configuration setting on "
14598 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14599 				"%zd\n",
14600 				phba->pcidev->device, magic_number, ftype, fid,
14601 				fsize, fw->size);
14602 		rc = -EACCES;
14603 	} else {
14604 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14605 				"3022 FW Download failed. Add Status x%x "
14606 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14607 				"%zd\n",
14608 				offset, phba->pcidev->device, magic_number,
14609 				ftype, fid, fsize, fw->size);
14610 		rc = -EIO;
14611 	}
14612 	return rc;
14613 }
14614 
14615 /**
14616  * lpfc_write_firmware - attempt to write a firmware image to the port
14617  * @fw: pointer to firmware image returned from request_firmware.
14618  * @context: pointer to firmware image returned from request_firmware.
14619  *
14620  **/
14621 static void
14622 lpfc_write_firmware(const struct firmware *fw, void *context)
14623 {
14624 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14625 	char fwrev[FW_REV_STR_SIZE];
14626 	struct lpfc_grp_hdr *image;
14627 	struct list_head dma_buffer_list;
14628 	int i, rc = 0;
14629 	struct lpfc_dmabuf *dmabuf, *next;
14630 	uint32_t offset = 0, temp_offset = 0;
14631 	uint32_t magic_number, ftype, fid, fsize;
14632 
14633 	/* It can be null in no-wait mode, sanity check */
14634 	if (!fw) {
14635 		rc = -ENXIO;
14636 		goto out;
14637 	}
14638 	image = (struct lpfc_grp_hdr *)fw->data;
14639 
14640 	magic_number = be32_to_cpu(image->magic_number);
14641 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14642 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14643 	fsize = be32_to_cpu(image->size);
14644 
14645 	INIT_LIST_HEAD(&dma_buffer_list);
14646 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14647 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14648 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14649 			     "3023 Updating Firmware, Current Version:%s "
14650 			     "New Version:%s\n",
14651 			     fwrev, image->revision);
14652 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14653 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14654 					 GFP_KERNEL);
14655 			if (!dmabuf) {
14656 				rc = -ENOMEM;
14657 				goto release_out;
14658 			}
14659 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14660 							  SLI4_PAGE_SIZE,
14661 							  &dmabuf->phys,
14662 							  GFP_KERNEL);
14663 			if (!dmabuf->virt) {
14664 				kfree(dmabuf);
14665 				rc = -ENOMEM;
14666 				goto release_out;
14667 			}
14668 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14669 		}
14670 		while (offset < fw->size) {
14671 			temp_offset = offset;
14672 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14673 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14674 					memcpy(dmabuf->virt,
14675 					       fw->data + temp_offset,
14676 					       fw->size - temp_offset);
14677 					temp_offset = fw->size;
14678 					break;
14679 				}
14680 				memcpy(dmabuf->virt, fw->data + temp_offset,
14681 				       SLI4_PAGE_SIZE);
14682 				temp_offset += SLI4_PAGE_SIZE;
14683 			}
14684 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14685 				    (fw->size - offset), &offset);
14686 			if (rc) {
14687 				rc = lpfc_log_write_firmware_error(phba, offset,
14688 								   magic_number,
14689 								   ftype,
14690 								   fid,
14691 								   fsize,
14692 								   fw);
14693 				goto release_out;
14694 			}
14695 		}
14696 		rc = offset;
14697 	} else
14698 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14699 			     "3029 Skipped Firmware update, Current "
14700 			     "Version:%s New Version:%s\n",
14701 			     fwrev, image->revision);
14702 
14703 release_out:
14704 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14705 		list_del(&dmabuf->list);
14706 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14707 				  dmabuf->virt, dmabuf->phys);
14708 		kfree(dmabuf);
14709 	}
14710 	release_firmware(fw);
14711 out:
14712 	if (rc < 0)
14713 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14714 			     "3062 Firmware update error, status %d.\n", rc);
14715 	else
14716 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14717 			     "3024 Firmware update success: size %d.\n", rc);
14718 }
14719 
14720 /**
14721  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14722  * @phba: pointer to lpfc hba data structure.
14723  * @fw_upgrade: which firmware to update.
14724  *
14725  * This routine is called to perform Linux generic firmware upgrade on device
14726  * that supports such feature.
14727  **/
14728 int
14729 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14730 {
14731 	char file_name[ELX_FW_NAME_SIZE] = {0};
14732 	int ret;
14733 	const struct firmware *fw;
14734 
14735 	/* Only supported on SLI4 interface type 2 for now */
14736 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14737 	    LPFC_SLI_INTF_IF_TYPE_2)
14738 		return -EPERM;
14739 
14740 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14741 
14742 	if (fw_upgrade == INT_FW_UPGRADE) {
14743 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14744 					file_name, &phba->pcidev->dev,
14745 					GFP_KERNEL, (void *)phba,
14746 					lpfc_write_firmware);
14747 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14748 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14749 		if (!ret)
14750 			lpfc_write_firmware(fw, (void *)phba);
14751 	} else {
14752 		ret = -EINVAL;
14753 	}
14754 
14755 	return ret;
14756 }
14757 
14758 /**
14759  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14760  * @pdev: pointer to PCI device
14761  * @pid: pointer to PCI device identifier
14762  *
14763  * This routine is called from the kernel's PCI subsystem to device with
14764  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14765  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14766  * information of the device and driver to see if the driver state that it
14767  * can support this kind of device. If the match is successful, the driver
14768  * core invokes this routine. If this routine determines it can claim the HBA,
14769  * it does all the initialization that it needs to do to handle the HBA
14770  * properly.
14771  *
14772  * Return code
14773  * 	0 - driver can claim the device
14774  * 	negative value - driver can not claim the device
14775  **/
14776 static int
14777 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14778 {
14779 	struct lpfc_hba   *phba;
14780 	struct lpfc_vport *vport = NULL;
14781 	struct Scsi_Host  *shost = NULL;
14782 	int error;
14783 	uint32_t cfg_mode, intr_mode;
14784 
14785 	/* Allocate memory for HBA structure */
14786 	phba = lpfc_hba_alloc(pdev);
14787 	if (!phba)
14788 		return -ENOMEM;
14789 
14790 	INIT_LIST_HEAD(&phba->poll_list);
14791 
14792 	/* Perform generic PCI device enabling operation */
14793 	error = lpfc_enable_pci_dev(phba);
14794 	if (error)
14795 		goto out_free_phba;
14796 
14797 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14798 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14799 	if (error)
14800 		goto out_disable_pci_dev;
14801 
14802 	/* Set up SLI-4 specific device PCI memory space */
14803 	error = lpfc_sli4_pci_mem_setup(phba);
14804 	if (error) {
14805 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14806 				"1410 Failed to set up pci memory space.\n");
14807 		goto out_disable_pci_dev;
14808 	}
14809 
14810 	/* Set up SLI-4 Specific device driver resources */
14811 	error = lpfc_sli4_driver_resource_setup(phba);
14812 	if (error) {
14813 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14814 				"1412 Failed to set up driver resource.\n");
14815 		goto out_unset_pci_mem_s4;
14816 	}
14817 
14818 	INIT_LIST_HEAD(&phba->active_rrq_list);
14819 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14820 
14821 	/* Set up common device driver resources */
14822 	error = lpfc_setup_driver_resource_phase2(phba);
14823 	if (error) {
14824 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14825 				"1414 Failed to set up driver resource.\n");
14826 		goto out_unset_driver_resource_s4;
14827 	}
14828 
14829 	/* Get the default values for Model Name and Description */
14830 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14831 
14832 	/* Now, trying to enable interrupt and bring up the device */
14833 	cfg_mode = phba->cfg_use_msi;
14834 
14835 	/* Put device to a known state before enabling interrupt */
14836 	phba->pport = NULL;
14837 	lpfc_stop_port(phba);
14838 
14839 	/* Init cpu_map array */
14840 	lpfc_cpu_map_array_init(phba);
14841 
14842 	/* Init hba_eq_hdl array */
14843 	lpfc_hba_eq_hdl_array_init(phba);
14844 
14845 	/* Configure and enable interrupt */
14846 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14847 	if (intr_mode == LPFC_INTR_ERROR) {
14848 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14849 				"0426 Failed to enable interrupt.\n");
14850 		error = -ENODEV;
14851 		goto out_unset_driver_resource;
14852 	}
14853 	/* Default to single EQ for non-MSI-X */
14854 	if (phba->intr_type != MSIX) {
14855 		phba->cfg_irq_chann = 1;
14856 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14857 			if (phba->nvmet_support)
14858 				phba->cfg_nvmet_mrq = 1;
14859 		}
14860 	}
14861 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14862 
14863 	/* Create SCSI host to the physical port */
14864 	error = lpfc_create_shost(phba);
14865 	if (error) {
14866 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14867 				"1415 Failed to create scsi host.\n");
14868 		goto out_disable_intr;
14869 	}
14870 	vport = phba->pport;
14871 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14872 
14873 	/* Configure sysfs attributes */
14874 	error = lpfc_alloc_sysfs_attr(vport);
14875 	if (error) {
14876 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14877 				"1416 Failed to allocate sysfs attr\n");
14878 		goto out_destroy_shost;
14879 	}
14880 
14881 	/* Set up SLI-4 HBA */
14882 	if (lpfc_sli4_hba_setup(phba)) {
14883 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14884 				"1421 Failed to set up hba\n");
14885 		error = -ENODEV;
14886 		goto out_free_sysfs_attr;
14887 	}
14888 
14889 	/* Log the current active interrupt mode */
14890 	phba->intr_mode = intr_mode;
14891 	lpfc_log_intr_mode(phba, intr_mode);
14892 
14893 	/* Perform post initialization setup */
14894 	lpfc_post_init_setup(phba);
14895 
14896 	/* NVME support in FW earlier in the driver load corrects the
14897 	 * FC4 type making a check for nvme_support unnecessary.
14898 	 */
14899 	if (phba->nvmet_support == 0) {
14900 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14901 			/* Create NVME binding with nvme_fc_transport. This
14902 			 * ensures the vport is initialized.  If the localport
14903 			 * create fails, it should not unload the driver to
14904 			 * support field issues.
14905 			 */
14906 			error = lpfc_nvme_create_localport(vport);
14907 			if (error) {
14908 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14909 						"6004 NVME registration "
14910 						"failed, error x%x\n",
14911 						error);
14912 			}
14913 		}
14914 	}
14915 
14916 	/* check for firmware upgrade or downgrade */
14917 	if (phba->cfg_request_firmware_upgrade)
14918 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14919 
14920 	/* Check if there are static vports to be created. */
14921 	lpfc_create_static_vport(phba);
14922 
14923 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14924 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14925 
14926 	return 0;
14927 
14928 out_free_sysfs_attr:
14929 	lpfc_free_sysfs_attr(vport);
14930 out_destroy_shost:
14931 	lpfc_destroy_shost(phba);
14932 out_disable_intr:
14933 	lpfc_sli4_disable_intr(phba);
14934 out_unset_driver_resource:
14935 	lpfc_unset_driver_resource_phase2(phba);
14936 out_unset_driver_resource_s4:
14937 	lpfc_sli4_driver_resource_unset(phba);
14938 out_unset_pci_mem_s4:
14939 	lpfc_sli4_pci_mem_unset(phba);
14940 out_disable_pci_dev:
14941 	lpfc_disable_pci_dev(phba);
14942 	if (shost)
14943 		scsi_host_put(shost);
14944 out_free_phba:
14945 	lpfc_hba_free(phba);
14946 	return error;
14947 }
14948 
14949 /**
14950  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14951  * @pdev: pointer to PCI device
14952  *
14953  * This routine is called from the kernel's PCI subsystem to device with
14954  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14955  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14956  * device to be removed from the PCI subsystem properly.
14957  **/
14958 static void
14959 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14960 {
14961 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14962 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14963 	struct lpfc_vport **vports;
14964 	struct lpfc_hba *phba = vport->phba;
14965 	int i;
14966 
14967 	/* Mark the device unloading flag */
14968 	spin_lock_irq(&phba->hbalock);
14969 	vport->load_flag |= FC_UNLOADING;
14970 	spin_unlock_irq(&phba->hbalock);
14971 	if (phba->cgn_i)
14972 		lpfc_unreg_congestion_buf(phba);
14973 
14974 	lpfc_free_sysfs_attr(vport);
14975 
14976 	/* Release all the vports against this physical port */
14977 	vports = lpfc_create_vport_work_array(phba);
14978 	if (vports != NULL)
14979 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14980 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14981 				continue;
14982 			fc_vport_terminate(vports[i]->fc_vport);
14983 		}
14984 	lpfc_destroy_vport_work_array(phba, vports);
14985 
14986 	/* Remove FC host with the physical port */
14987 	fc_remove_host(shost);
14988 	scsi_remove_host(shost);
14989 
14990 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14991 	 * localports are destroyed after to cleanup all transport memory.
14992 	 */
14993 	lpfc_cleanup(vport);
14994 	lpfc_nvmet_destroy_targetport(phba);
14995 	lpfc_nvme_destroy_localport(vport);
14996 
14997 	/* De-allocate multi-XRI pools */
14998 	if (phba->cfg_xri_rebalancing)
14999 		lpfc_destroy_multixri_pools(phba);
15000 
15001 	/*
15002 	 * Bring down the SLI Layer. This step disables all interrupts,
15003 	 * clears the rings, discards all mailbox commands, and resets
15004 	 * the HBA FCoE function.
15005 	 */
15006 	lpfc_debugfs_terminate(vport);
15007 
15008 	lpfc_stop_hba_timers(phba);
15009 	spin_lock_irq(&phba->port_list_lock);
15010 	list_del_init(&vport->listentry);
15011 	spin_unlock_irq(&phba->port_list_lock);
15012 
15013 	/* Perform scsi free before driver resource_unset since scsi
15014 	 * buffers are released to their corresponding pools here.
15015 	 */
15016 	lpfc_io_free(phba);
15017 	lpfc_free_iocb_list(phba);
15018 	lpfc_sli4_hba_unset(phba);
15019 
15020 	lpfc_unset_driver_resource_phase2(phba);
15021 	lpfc_sli4_driver_resource_unset(phba);
15022 
15023 	/* Unmap adapter Control and Doorbell registers */
15024 	lpfc_sli4_pci_mem_unset(phba);
15025 
15026 	/* Release PCI resources and disable device's PCI function */
15027 	scsi_host_put(shost);
15028 	lpfc_disable_pci_dev(phba);
15029 
15030 	/* Finally, free the driver's device data structure */
15031 	lpfc_hba_free(phba);
15032 
15033 	return;
15034 }
15035 
15036 /**
15037  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15038  * @dev_d: pointer to device
15039  *
15040  * This routine is called from the kernel's PCI subsystem to support system
15041  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15042  * this method, it quiesces the device by stopping the driver's worker
15043  * thread for the device, turning off device's interrupt and DMA, and bring
15044  * the device offline. Note that as the driver implements the minimum PM
15045  * requirements to a power-aware driver's PM support for suspend/resume -- all
15046  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15047  * method call will be treated as SUSPEND and the driver will fully
15048  * reinitialize its device during resume() method call, the driver will set
15049  * device to PCI_D3hot state in PCI config space instead of setting it
15050  * according to the @msg provided by the PM.
15051  *
15052  * Return code
15053  * 	0 - driver suspended the device
15054  * 	Error otherwise
15055  **/
15056 static int __maybe_unused
15057 lpfc_pci_suspend_one_s4(struct device *dev_d)
15058 {
15059 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15060 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15061 
15062 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15063 			"2843 PCI device Power Management suspend.\n");
15064 
15065 	/* Bring down the device */
15066 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15067 	lpfc_offline(phba);
15068 	kthread_stop(phba->worker_thread);
15069 
15070 	/* Disable interrupt from device */
15071 	lpfc_sli4_disable_intr(phba);
15072 	lpfc_sli4_queue_destroy(phba);
15073 
15074 	return 0;
15075 }
15076 
15077 /**
15078  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15079  * @dev_d: pointer to device
15080  *
15081  * This routine is called from the kernel's PCI subsystem to support system
15082  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15083  * this method, it restores the device's PCI config space state and fully
15084  * reinitializes the device and brings it online. Note that as the driver
15085  * implements the minimum PM requirements to a power-aware driver's PM for
15086  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15087  * to the suspend() method call will be treated as SUSPEND and the driver
15088  * will fully reinitialize its device during resume() method call, the device
15089  * will be set to PCI_D0 directly in PCI config space before restoring the
15090  * state.
15091  *
15092  * Return code
15093  * 	0 - driver suspended the device
15094  * 	Error otherwise
15095  **/
15096 static int __maybe_unused
15097 lpfc_pci_resume_one_s4(struct device *dev_d)
15098 {
15099 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15100 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15101 	uint32_t intr_mode;
15102 	int error;
15103 
15104 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15105 			"0292 PCI device Power Management resume.\n");
15106 
15107 	 /* Startup the kernel thread for this host adapter. */
15108 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15109 					"lpfc_worker_%d", phba->brd_no);
15110 	if (IS_ERR(phba->worker_thread)) {
15111 		error = PTR_ERR(phba->worker_thread);
15112 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15113 				"0293 PM resume failed to start worker "
15114 				"thread: error=x%x.\n", error);
15115 		return error;
15116 	}
15117 
15118 	/* Configure and enable interrupt */
15119 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15120 	if (intr_mode == LPFC_INTR_ERROR) {
15121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15122 				"0294 PM resume Failed to enable interrupt\n");
15123 		return -EIO;
15124 	} else
15125 		phba->intr_mode = intr_mode;
15126 
15127 	/* Restart HBA and bring it online */
15128 	lpfc_sli_brdrestart(phba);
15129 	lpfc_online(phba);
15130 
15131 	/* Log the current active interrupt mode */
15132 	lpfc_log_intr_mode(phba, phba->intr_mode);
15133 
15134 	return 0;
15135 }
15136 
15137 /**
15138  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15139  * @phba: pointer to lpfc hba data structure.
15140  *
15141  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15142  * aborts all the outstanding SCSI I/Os to the pci device.
15143  **/
15144 static void
15145 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15146 {
15147 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15148 			"2828 PCI channel I/O abort preparing for recovery\n");
15149 	/*
15150 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15151 	 * and let the SCSI mid-layer to retry them to recover.
15152 	 */
15153 	lpfc_sli_abort_fcp_rings(phba);
15154 }
15155 
15156 /**
15157  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15158  * @phba: pointer to lpfc hba data structure.
15159  *
15160  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15161  * disables the device interrupt and pci device, and aborts the internal FCP
15162  * pending I/Os.
15163  **/
15164 static void
15165 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15166 {
15167 	int offline =  pci_channel_offline(phba->pcidev);
15168 
15169 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15170 			"2826 PCI channel disable preparing for reset offline"
15171 			" %d\n", offline);
15172 
15173 	/* Block any management I/Os to the device */
15174 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15175 
15176 
15177 	/* HBA_PCI_ERR was set in io_error_detect */
15178 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15179 	/* Flush all driver's outstanding I/Os as we are to reset */
15180 	lpfc_sli_flush_io_rings(phba);
15181 	lpfc_offline(phba);
15182 
15183 	/* stop all timers */
15184 	lpfc_stop_hba_timers(phba);
15185 
15186 	lpfc_sli4_queue_destroy(phba);
15187 	/* Disable interrupt and pci device */
15188 	lpfc_sli4_disable_intr(phba);
15189 	pci_disable_device(phba->pcidev);
15190 }
15191 
15192 /**
15193  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15194  * @phba: pointer to lpfc hba data structure.
15195  *
15196  * This routine is called to prepare the SLI4 device for PCI slot permanently
15197  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15198  * pending I/Os.
15199  **/
15200 static void
15201 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15202 {
15203 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15204 			"2827 PCI channel permanent disable for failure\n");
15205 
15206 	/* Block all SCSI devices' I/Os on the host */
15207 	lpfc_scsi_dev_block(phba);
15208 
15209 	/* stop all timers */
15210 	lpfc_stop_hba_timers(phba);
15211 
15212 	/* Clean up all driver's outstanding I/Os */
15213 	lpfc_sli_flush_io_rings(phba);
15214 }
15215 
15216 /**
15217  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15218  * @pdev: pointer to PCI device.
15219  * @state: the current PCI connection state.
15220  *
15221  * This routine is called from the PCI subsystem for error handling to device
15222  * with SLI-4 interface spec. This function is called by the PCI subsystem
15223  * after a PCI bus error affecting this device has been detected. When this
15224  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15225  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15226  * for the PCI subsystem to perform proper recovery as desired.
15227  *
15228  * Return codes
15229  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15230  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15231  **/
15232 static pci_ers_result_t
15233 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15234 {
15235 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15236 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15237 	bool hba_pci_err;
15238 
15239 	switch (state) {
15240 	case pci_channel_io_normal:
15241 		/* Non-fatal error, prepare for recovery */
15242 		lpfc_sli4_prep_dev_for_recover(phba);
15243 		return PCI_ERS_RESULT_CAN_RECOVER;
15244 	case pci_channel_io_frozen:
15245 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15246 		/* Fatal error, prepare for slot reset */
15247 		if (!hba_pci_err)
15248 			lpfc_sli4_prep_dev_for_reset(phba);
15249 		else
15250 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15251 					"2832  Already handling PCI error "
15252 					"state: x%x\n", state);
15253 		return PCI_ERS_RESULT_NEED_RESET;
15254 	case pci_channel_io_perm_failure:
15255 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15256 		/* Permanent failure, prepare for device down */
15257 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15258 		return PCI_ERS_RESULT_DISCONNECT;
15259 	default:
15260 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15261 		if (!hba_pci_err)
15262 			lpfc_sli4_prep_dev_for_reset(phba);
15263 		/* Unknown state, prepare and request slot reset */
15264 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15265 				"2825 Unknown PCI error state: x%x\n", state);
15266 		lpfc_sli4_prep_dev_for_reset(phba);
15267 		return PCI_ERS_RESULT_NEED_RESET;
15268 	}
15269 }
15270 
15271 /**
15272  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15273  * @pdev: pointer to PCI device.
15274  *
15275  * This routine is called from the PCI subsystem for error handling to device
15276  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15277  * restart the PCI card from scratch, as if from a cold-boot. During the
15278  * PCI subsystem error recovery, after the driver returns
15279  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15280  * recovery and then call this routine before calling the .resume method to
15281  * recover the device. This function will initialize the HBA device, enable
15282  * the interrupt, but it will just put the HBA to offline state without
15283  * passing any I/O traffic.
15284  *
15285  * Return codes
15286  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15287  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15288  */
15289 static pci_ers_result_t
15290 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15291 {
15292 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15293 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15294 	struct lpfc_sli *psli = &phba->sli;
15295 	uint32_t intr_mode;
15296 	bool hba_pci_err;
15297 
15298 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15299 	if (pci_enable_device_mem(pdev)) {
15300 		printk(KERN_ERR "lpfc: Cannot re-enable "
15301 		       "PCI device after reset.\n");
15302 		return PCI_ERS_RESULT_DISCONNECT;
15303 	}
15304 
15305 	pci_restore_state(pdev);
15306 
15307 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15308 	if (!hba_pci_err)
15309 		dev_info(&pdev->dev,
15310 			 "hba_pci_err was not set, recovering slot reset.\n");
15311 	/*
15312 	 * As the new kernel behavior of pci_restore_state() API call clears
15313 	 * device saved_state flag, need to save the restored state again.
15314 	 */
15315 	pci_save_state(pdev);
15316 
15317 	if (pdev->is_busmaster)
15318 		pci_set_master(pdev);
15319 
15320 	spin_lock_irq(&phba->hbalock);
15321 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15322 	spin_unlock_irq(&phba->hbalock);
15323 
15324 	/* Init cpu_map array */
15325 	lpfc_cpu_map_array_init(phba);
15326 	/* Configure and enable interrupt */
15327 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15328 	if (intr_mode == LPFC_INTR_ERROR) {
15329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15330 				"2824 Cannot re-enable interrupt after "
15331 				"slot reset.\n");
15332 		return PCI_ERS_RESULT_DISCONNECT;
15333 	} else
15334 		phba->intr_mode = intr_mode;
15335 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15336 
15337 	/* Log the current active interrupt mode */
15338 	lpfc_log_intr_mode(phba, phba->intr_mode);
15339 
15340 	return PCI_ERS_RESULT_RECOVERED;
15341 }
15342 
15343 /**
15344  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15345  * @pdev: pointer to PCI device
15346  *
15347  * This routine is called from the PCI subsystem for error handling to device
15348  * with SLI-4 interface spec. It is called when kernel error recovery tells
15349  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15350  * error recovery. After this call, traffic can start to flow from this device
15351  * again.
15352  **/
15353 static void
15354 lpfc_io_resume_s4(struct pci_dev *pdev)
15355 {
15356 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15357 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15358 
15359 	/*
15360 	 * In case of slot reset, as function reset is performed through
15361 	 * mailbox command which needs DMA to be enabled, this operation
15362 	 * has to be moved to the io resume phase. Taking device offline
15363 	 * will perform the necessary cleanup.
15364 	 */
15365 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15366 		/* Perform device reset */
15367 		lpfc_sli_brdrestart(phba);
15368 		/* Bring the device back online */
15369 		lpfc_online(phba);
15370 	}
15371 }
15372 
15373 /**
15374  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15375  * @pdev: pointer to PCI device
15376  * @pid: pointer to PCI device identifier
15377  *
15378  * This routine is to be registered to the kernel's PCI subsystem. When an
15379  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15380  * at PCI device-specific information of the device and driver to see if the
15381  * driver state that it can support this kind of device. If the match is
15382  * successful, the driver core invokes this routine. This routine dispatches
15383  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15384  * do all the initialization that it needs to do to handle the HBA device
15385  * properly.
15386  *
15387  * Return code
15388  * 	0 - driver can claim the device
15389  * 	negative value - driver can not claim the device
15390  **/
15391 static int
15392 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15393 {
15394 	int rc;
15395 	struct lpfc_sli_intf intf;
15396 
15397 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15398 		return -ENODEV;
15399 
15400 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15401 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15402 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15403 	else
15404 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15405 
15406 	return rc;
15407 }
15408 
15409 /**
15410  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15411  * @pdev: pointer to PCI device
15412  *
15413  * This routine is to be registered to the kernel's PCI subsystem. When an
15414  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15415  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15416  * remove routine, which will perform all the necessary cleanup for the
15417  * device to be removed from the PCI subsystem properly.
15418  **/
15419 static void
15420 lpfc_pci_remove_one(struct pci_dev *pdev)
15421 {
15422 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15423 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15424 
15425 	switch (phba->pci_dev_grp) {
15426 	case LPFC_PCI_DEV_LP:
15427 		lpfc_pci_remove_one_s3(pdev);
15428 		break;
15429 	case LPFC_PCI_DEV_OC:
15430 		lpfc_pci_remove_one_s4(pdev);
15431 		break;
15432 	default:
15433 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15434 				"1424 Invalid PCI device group: 0x%x\n",
15435 				phba->pci_dev_grp);
15436 		break;
15437 	}
15438 	return;
15439 }
15440 
15441 /**
15442  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15443  * @dev: pointer to device
15444  *
15445  * This routine is to be registered to the kernel's PCI subsystem to support
15446  * system Power Management (PM). When PM invokes this method, it dispatches
15447  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15448  * suspend the device.
15449  *
15450  * Return code
15451  * 	0 - driver suspended the device
15452  * 	Error otherwise
15453  **/
15454 static int __maybe_unused
15455 lpfc_pci_suspend_one(struct device *dev)
15456 {
15457 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15458 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15459 	int rc = -ENODEV;
15460 
15461 	switch (phba->pci_dev_grp) {
15462 	case LPFC_PCI_DEV_LP:
15463 		rc = lpfc_pci_suspend_one_s3(dev);
15464 		break;
15465 	case LPFC_PCI_DEV_OC:
15466 		rc = lpfc_pci_suspend_one_s4(dev);
15467 		break;
15468 	default:
15469 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15470 				"1425 Invalid PCI device group: 0x%x\n",
15471 				phba->pci_dev_grp);
15472 		break;
15473 	}
15474 	return rc;
15475 }
15476 
15477 /**
15478  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15479  * @dev: pointer to device
15480  *
15481  * This routine is to be registered to the kernel's PCI subsystem to support
15482  * system Power Management (PM). When PM invokes this method, it dispatches
15483  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15484  * resume the device.
15485  *
15486  * Return code
15487  * 	0 - driver suspended the device
15488  * 	Error otherwise
15489  **/
15490 static int __maybe_unused
15491 lpfc_pci_resume_one(struct device *dev)
15492 {
15493 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15494 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15495 	int rc = -ENODEV;
15496 
15497 	switch (phba->pci_dev_grp) {
15498 	case LPFC_PCI_DEV_LP:
15499 		rc = lpfc_pci_resume_one_s3(dev);
15500 		break;
15501 	case LPFC_PCI_DEV_OC:
15502 		rc = lpfc_pci_resume_one_s4(dev);
15503 		break;
15504 	default:
15505 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15506 				"1426 Invalid PCI device group: 0x%x\n",
15507 				phba->pci_dev_grp);
15508 		break;
15509 	}
15510 	return rc;
15511 }
15512 
15513 /**
15514  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15515  * @pdev: pointer to PCI device.
15516  * @state: the current PCI connection state.
15517  *
15518  * This routine is registered to the PCI subsystem for error handling. This
15519  * function is called by the PCI subsystem after a PCI bus error affecting
15520  * this device has been detected. When this routine is invoked, it dispatches
15521  * the action to the proper SLI-3 or SLI-4 device error detected handling
15522  * routine, which will perform the proper error detected operation.
15523  *
15524  * Return codes
15525  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15526  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15527  **/
15528 static pci_ers_result_t
15529 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15530 {
15531 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15532 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15533 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15534 
15535 	if (phba->link_state == LPFC_HBA_ERROR &&
15536 	    phba->hba_flag & HBA_IOQ_FLUSH)
15537 		return PCI_ERS_RESULT_NEED_RESET;
15538 
15539 	switch (phba->pci_dev_grp) {
15540 	case LPFC_PCI_DEV_LP:
15541 		rc = lpfc_io_error_detected_s3(pdev, state);
15542 		break;
15543 	case LPFC_PCI_DEV_OC:
15544 		rc = lpfc_io_error_detected_s4(pdev, state);
15545 		break;
15546 	default:
15547 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15548 				"1427 Invalid PCI device group: 0x%x\n",
15549 				phba->pci_dev_grp);
15550 		break;
15551 	}
15552 	return rc;
15553 }
15554 
15555 /**
15556  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15557  * @pdev: pointer to PCI device.
15558  *
15559  * This routine is registered to the PCI subsystem for error handling. This
15560  * function is called after PCI bus has been reset to restart the PCI card
15561  * from scratch, as if from a cold-boot. When this routine is invoked, it
15562  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15563  * routine, which will perform the proper device reset.
15564  *
15565  * Return codes
15566  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15567  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15568  **/
15569 static pci_ers_result_t
15570 lpfc_io_slot_reset(struct pci_dev *pdev)
15571 {
15572 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15573 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15574 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15575 
15576 	switch (phba->pci_dev_grp) {
15577 	case LPFC_PCI_DEV_LP:
15578 		rc = lpfc_io_slot_reset_s3(pdev);
15579 		break;
15580 	case LPFC_PCI_DEV_OC:
15581 		rc = lpfc_io_slot_reset_s4(pdev);
15582 		break;
15583 	default:
15584 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15585 				"1428 Invalid PCI device group: 0x%x\n",
15586 				phba->pci_dev_grp);
15587 		break;
15588 	}
15589 	return rc;
15590 }
15591 
15592 /**
15593  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15594  * @pdev: pointer to PCI device
15595  *
15596  * This routine is registered to the PCI subsystem for error handling. It
15597  * is called when kernel error recovery tells the lpfc driver that it is
15598  * OK to resume normal PCI operation after PCI bus error recovery. When
15599  * this routine is invoked, it dispatches the action to the proper SLI-3
15600  * or SLI-4 device io_resume routine, which will resume the device operation.
15601  **/
15602 static void
15603 lpfc_io_resume(struct pci_dev *pdev)
15604 {
15605 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15606 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15607 
15608 	switch (phba->pci_dev_grp) {
15609 	case LPFC_PCI_DEV_LP:
15610 		lpfc_io_resume_s3(pdev);
15611 		break;
15612 	case LPFC_PCI_DEV_OC:
15613 		lpfc_io_resume_s4(pdev);
15614 		break;
15615 	default:
15616 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15617 				"1429 Invalid PCI device group: 0x%x\n",
15618 				phba->pci_dev_grp);
15619 		break;
15620 	}
15621 	return;
15622 }
15623 
15624 /**
15625  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15626  * @phba: pointer to lpfc hba data structure.
15627  *
15628  * This routine checks to see if OAS is supported for this adapter. If
15629  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15630  * the enable oas flag is cleared and the pool created for OAS device data
15631  * is destroyed.
15632  *
15633  **/
15634 static void
15635 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15636 {
15637 
15638 	if (!phba->cfg_EnableXLane)
15639 		return;
15640 
15641 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15642 		phba->cfg_fof = 1;
15643 	} else {
15644 		phba->cfg_fof = 0;
15645 		mempool_destroy(phba->device_data_mem_pool);
15646 		phba->device_data_mem_pool = NULL;
15647 	}
15648 
15649 	return;
15650 }
15651 
15652 /**
15653  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15654  * @phba: pointer to lpfc hba data structure.
15655  *
15656  * This routine checks to see if RAS is supported by the adapter. Check the
15657  * function through which RAS support enablement is to be done.
15658  **/
15659 void
15660 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15661 {
15662 	/* if ASIC_GEN_NUM >= 0xC) */
15663 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15664 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15665 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15666 		    LPFC_SLI_INTF_FAMILY_G6)) {
15667 		phba->ras_fwlog.ras_hwsupport = true;
15668 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15669 		    phba->cfg_ras_fwlog_buffsize)
15670 			phba->ras_fwlog.ras_enabled = true;
15671 		else
15672 			phba->ras_fwlog.ras_enabled = false;
15673 	} else {
15674 		phba->ras_fwlog.ras_hwsupport = false;
15675 	}
15676 }
15677 
15678 
15679 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15680 
15681 static const struct pci_error_handlers lpfc_err_handler = {
15682 	.error_detected = lpfc_io_error_detected,
15683 	.slot_reset = lpfc_io_slot_reset,
15684 	.resume = lpfc_io_resume,
15685 };
15686 
15687 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15688 			 lpfc_pci_suspend_one,
15689 			 lpfc_pci_resume_one);
15690 
15691 static struct pci_driver lpfc_driver = {
15692 	.name		= LPFC_DRIVER_NAME,
15693 	.id_table	= lpfc_id_table,
15694 	.probe		= lpfc_pci_probe_one,
15695 	.remove		= lpfc_pci_remove_one,
15696 	.shutdown	= lpfc_pci_remove_one,
15697 	.driver.pm	= &lpfc_pci_pm_ops_one,
15698 	.err_handler    = &lpfc_err_handler,
15699 };
15700 
15701 static const struct file_operations lpfc_mgmt_fop = {
15702 	.owner = THIS_MODULE,
15703 };
15704 
15705 static struct miscdevice lpfc_mgmt_dev = {
15706 	.minor = MISC_DYNAMIC_MINOR,
15707 	.name = "lpfcmgmt",
15708 	.fops = &lpfc_mgmt_fop,
15709 };
15710 
15711 /**
15712  * lpfc_init - lpfc module initialization routine
15713  *
15714  * This routine is to be invoked when the lpfc module is loaded into the
15715  * kernel. The special kernel macro module_init() is used to indicate the
15716  * role of this routine to the kernel as lpfc module entry point.
15717  *
15718  * Return codes
15719  *   0 - successful
15720  *   -ENOMEM - FC attach transport failed
15721  *   all others - failed
15722  */
15723 static int __init
15724 lpfc_init(void)
15725 {
15726 	int error = 0;
15727 
15728 	pr_info(LPFC_MODULE_DESC "\n");
15729 	pr_info(LPFC_COPYRIGHT "\n");
15730 
15731 	error = misc_register(&lpfc_mgmt_dev);
15732 	if (error)
15733 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15734 			"misc_register returned with status %d", error);
15735 
15736 	error = -ENOMEM;
15737 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15738 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15739 	lpfc_transport_template =
15740 				fc_attach_transport(&lpfc_transport_functions);
15741 	if (lpfc_transport_template == NULL)
15742 		goto unregister;
15743 	lpfc_vport_transport_template =
15744 		fc_attach_transport(&lpfc_vport_transport_functions);
15745 	if (lpfc_vport_transport_template == NULL) {
15746 		fc_release_transport(lpfc_transport_template);
15747 		goto unregister;
15748 	}
15749 	lpfc_wqe_cmd_template();
15750 	lpfc_nvmet_cmd_template();
15751 
15752 	/* Initialize in case vector mapping is needed */
15753 	lpfc_present_cpu = num_present_cpus();
15754 
15755 	lpfc_pldv_detect = false;
15756 
15757 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15758 					"lpfc/sli4:online",
15759 					lpfc_cpu_online, lpfc_cpu_offline);
15760 	if (error < 0)
15761 		goto cpuhp_failure;
15762 	lpfc_cpuhp_state = error;
15763 
15764 	error = pci_register_driver(&lpfc_driver);
15765 	if (error)
15766 		goto unwind;
15767 
15768 	return error;
15769 
15770 unwind:
15771 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15772 cpuhp_failure:
15773 	fc_release_transport(lpfc_transport_template);
15774 	fc_release_transport(lpfc_vport_transport_template);
15775 unregister:
15776 	misc_deregister(&lpfc_mgmt_dev);
15777 
15778 	return error;
15779 }
15780 
15781 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15782 {
15783 	unsigned int start_idx;
15784 	unsigned int dbg_cnt;
15785 	unsigned int temp_idx;
15786 	int i;
15787 	int j = 0;
15788 	unsigned long rem_nsec;
15789 
15790 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15791 		return;
15792 
15793 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15794 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15795 	if (!dbg_cnt)
15796 		goto out;
15797 	temp_idx = start_idx;
15798 	if (dbg_cnt >= DBG_LOG_SZ) {
15799 		dbg_cnt = DBG_LOG_SZ;
15800 		temp_idx -= 1;
15801 	} else {
15802 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15803 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15804 		} else {
15805 			if (start_idx < dbg_cnt)
15806 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15807 			else
15808 				start_idx -= dbg_cnt;
15809 		}
15810 	}
15811 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15812 		 start_idx, temp_idx, dbg_cnt);
15813 
15814 	for (i = 0; i < dbg_cnt; i++) {
15815 		if ((start_idx + i) < DBG_LOG_SZ)
15816 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15817 		else
15818 			temp_idx = j++;
15819 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15820 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15821 			 temp_idx,
15822 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15823 			 rem_nsec / 1000,
15824 			 phba->dbg_log[temp_idx].log);
15825 	}
15826 out:
15827 	atomic_set(&phba->dbg_log_cnt, 0);
15828 	atomic_set(&phba->dbg_log_dmping, 0);
15829 }
15830 
15831 __printf(2, 3)
15832 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15833 {
15834 	unsigned int idx;
15835 	va_list args;
15836 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15837 	struct va_format vaf;
15838 
15839 
15840 	va_start(args, fmt);
15841 	if (unlikely(dbg_dmping)) {
15842 		vaf.fmt = fmt;
15843 		vaf.va = &args;
15844 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15845 		va_end(args);
15846 		return;
15847 	}
15848 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15849 		DBG_LOG_SZ;
15850 
15851 	atomic_inc(&phba->dbg_log_cnt);
15852 
15853 	vscnprintf(phba->dbg_log[idx].log,
15854 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15855 	va_end(args);
15856 
15857 	phba->dbg_log[idx].t_ns = local_clock();
15858 }
15859 
15860 /**
15861  * lpfc_exit - lpfc module removal routine
15862  *
15863  * This routine is invoked when the lpfc module is removed from the kernel.
15864  * The special kernel macro module_exit() is used to indicate the role of
15865  * this routine to the kernel as lpfc module exit point.
15866  */
15867 static void __exit
15868 lpfc_exit(void)
15869 {
15870 	misc_deregister(&lpfc_mgmt_dev);
15871 	pci_unregister_driver(&lpfc_driver);
15872 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15873 	fc_release_transport(lpfc_transport_template);
15874 	fc_release_transport(lpfc_vport_transport_template);
15875 	idr_destroy(&lpfc_hba_index);
15876 }
15877 
15878 module_init(lpfc_init);
15879 module_exit(lpfc_exit);
15880 MODULE_LICENSE("GPL");
15881 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15882 MODULE_AUTHOR("Broadcom");
15883 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15884