xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_init.c (revision 19758688)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/sched/clock.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/irq.h>
40 #include <linux/bitops.h>
41 #include <linux/crash_dump.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuhotplug.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_transport_fc.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/fc/fc_fs.h>
51 
52 #include "lpfc_hw4.h"
53 #include "lpfc_hw.h"
54 #include "lpfc_sli.h"
55 #include "lpfc_sli4.h"
56 #include "lpfc_nl.h"
57 #include "lpfc_disc.h"
58 #include "lpfc.h"
59 #include "lpfc_scsi.h"
60 #include "lpfc_nvme.h"
61 #include "lpfc_logmsg.h"
62 #include "lpfc_crtn.h"
63 #include "lpfc_vport.h"
64 #include "lpfc_version.h"
65 #include "lpfc_ids.h"
66 
67 static enum cpuhp_state lpfc_cpuhp_state;
68 /* Used when mapping IRQ vectors in a driver centric manner */
69 static uint32_t lpfc_present_cpu;
70 static bool lpfc_pldv_detect;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba);
98 
99 static struct scsi_transport_template *lpfc_transport_template = NULL;
100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
101 static DEFINE_IDR(lpfc_hba_index);
102 #define LPFC_NVMET_BUF_POST 254
103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
104 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts);
105 
106 /**
107  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
108  * @phba: pointer to lpfc hba data structure.
109  *
110  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
111  * mailbox command. It retrieves the revision information from the HBA and
112  * collects the Vital Product Data (VPD) about the HBA for preparing the
113  * configuration of the HBA.
114  *
115  * Return codes:
116  *   0 - success.
117  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
118  *   Any other value - indicates an error.
119  **/
120 int
121 lpfc_config_port_prep(struct lpfc_hba *phba)
122 {
123 	lpfc_vpd_t *vp = &phba->vpd;
124 	int i = 0, rc;
125 	LPFC_MBOXQ_t *pmb;
126 	MAILBOX_t *mb;
127 	char *lpfc_vpd_data = NULL;
128 	uint16_t offset = 0;
129 	static char licensed[56] =
130 		    "key unlock for use with gnu public licensed code only\0";
131 	static int init_key = 1;
132 
133 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
134 	if (!pmb) {
135 		phba->link_state = LPFC_HBA_ERROR;
136 		return -ENOMEM;
137 	}
138 
139 	mb = &pmb->u.mb;
140 	phba->link_state = LPFC_INIT_MBX_CMDS;
141 
142 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
143 		if (init_key) {
144 			uint32_t *ptext = (uint32_t *) licensed;
145 
146 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
147 				*ptext = cpu_to_be32(*ptext);
148 			init_key = 0;
149 		}
150 
151 		lpfc_read_nv(phba, pmb);
152 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
153 			sizeof (mb->un.varRDnvp.rsvd3));
154 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
155 			 sizeof (licensed));
156 
157 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
158 
159 		if (rc != MBX_SUCCESS) {
160 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
161 					"0324 Config Port initialization "
162 					"error, mbxCmd x%x READ_NVPARM, "
163 					"mbxStatus x%x\n",
164 					mb->mbxCommand, mb->mbxStatus);
165 			mempool_free(pmb, phba->mbox_mem_pool);
166 			return -ERESTART;
167 		}
168 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
169 		       sizeof(phba->wwnn));
170 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
171 		       sizeof(phba->wwpn));
172 	}
173 
174 	/*
175 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
176 	 * which was already set in lpfc_get_cfgparam()
177 	 */
178 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
179 
180 	/* Setup and issue mailbox READ REV command */
181 	lpfc_read_rev(phba, pmb);
182 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
183 	if (rc != MBX_SUCCESS) {
184 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
185 				"0439 Adapter failed to init, mbxCmd x%x "
186 				"READ_REV, mbxStatus x%x\n",
187 				mb->mbxCommand, mb->mbxStatus);
188 		mempool_free( pmb, phba->mbox_mem_pool);
189 		return -ERESTART;
190 	}
191 
192 
193 	/*
194 	 * The value of rr must be 1 since the driver set the cv field to 1.
195 	 * This setting requires the FW to set all revision fields.
196 	 */
197 	if (mb->un.varRdRev.rr == 0) {
198 		vp->rev.rBit = 0;
199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
200 				"0440 Adapter failed to init, READ_REV has "
201 				"missing revision information.\n");
202 		mempool_free(pmb, phba->mbox_mem_pool);
203 		return -ERESTART;
204 	}
205 
206 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
207 		mempool_free(pmb, phba->mbox_mem_pool);
208 		return -EINVAL;
209 	}
210 
211 	/* Save information as VPD data */
212 	vp->rev.rBit = 1;
213 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
214 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
215 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
216 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
217 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
218 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
219 	vp->rev.smRev = mb->un.varRdRev.smRev;
220 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
221 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
222 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
223 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
224 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
225 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
226 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
227 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
228 
229 	/* If the sli feature level is less then 9, we must
230 	 * tear down all RPIs and VPIs on link down if NPIV
231 	 * is enabled.
232 	 */
233 	if (vp->rev.feaLevelHigh < 9)
234 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
235 
236 	if (lpfc_is_LC_HBA(phba->pcidev->device))
237 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
238 						sizeof (phba->RandomData));
239 
240 	/* Get adapter VPD information */
241 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
242 	if (!lpfc_vpd_data)
243 		goto out_free_mbox;
244 	do {
245 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
246 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
247 
248 		if (rc != MBX_SUCCESS) {
249 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
250 					"0441 VPD not present on adapter, "
251 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
252 					mb->mbxCommand, mb->mbxStatus);
253 			mb->un.varDmp.word_cnt = 0;
254 		}
255 		/* dump mem may return a zero when finished or we got a
256 		 * mailbox error, either way we are done.
257 		 */
258 		if (mb->un.varDmp.word_cnt == 0)
259 			break;
260 
261 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
262 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
263 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
264 				      lpfc_vpd_data + offset,
265 				      mb->un.varDmp.word_cnt);
266 		offset += mb->un.varDmp.word_cnt;
267 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
268 
269 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
270 
271 	kfree(lpfc_vpd_data);
272 out_free_mbox:
273 	mempool_free(pmb, phba->mbox_mem_pool);
274 	return 0;
275 }
276 
277 /**
278  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
279  * @phba: pointer to lpfc hba data structure.
280  * @pmboxq: pointer to the driver internal queue element for mailbox command.
281  *
282  * This is the completion handler for driver's configuring asynchronous event
283  * mailbox command to the device. If the mailbox command returns successfully,
284  * it will set internal async event support flag to 1; otherwise, it will
285  * set internal async event support flag to 0.
286  **/
287 static void
288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
289 {
290 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
291 		phba->temp_sensor_support = 1;
292 	else
293 		phba->temp_sensor_support = 0;
294 	mempool_free(pmboxq, phba->mbox_mem_pool);
295 	return;
296 }
297 
298 /**
299  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
300  * @phba: pointer to lpfc hba data structure.
301  * @pmboxq: pointer to the driver internal queue element for mailbox command.
302  *
303  * This is the completion handler for dump mailbox command for getting
304  * wake up parameters. When this command complete, the response contain
305  * Option rom version of the HBA. This function translate the version number
306  * into a human readable string and store it in OptionROMVersion.
307  **/
308 static void
309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
310 {
311 	struct prog_id *prg;
312 	uint32_t prog_id_word;
313 	char dist = ' ';
314 	/* character array used for decoding dist type. */
315 	char dist_char[] = "nabx";
316 
317 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
318 		mempool_free(pmboxq, phba->mbox_mem_pool);
319 		return;
320 	}
321 
322 	prg = (struct prog_id *) &prog_id_word;
323 
324 	/* word 7 contain option rom version */
325 	prog_id_word = pmboxq->u.mb.un.varWords[7];
326 
327 	/* Decode the Option rom version word to a readable string */
328 	dist = dist_char[prg->dist];
329 
330 	if ((prg->dist == 3) && (prg->num == 0))
331 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
332 			prg->ver, prg->rev, prg->lev);
333 	else
334 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
335 			prg->ver, prg->rev, prg->lev,
336 			dist, prg->num);
337 	mempool_free(pmboxq, phba->mbox_mem_pool);
338 	return;
339 }
340 
341 /**
342  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	struct lpfc_hba *phba = vport->phba;
353 
354 	/*
355 	 * If the name is empty or there exists a soft name
356 	 * then copy the service params name, otherwise use the fc name
357 	 */
358 	if (vport->fc_nodename.u.wwn[0] == 0)
359 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
360 			sizeof(struct lpfc_name));
361 	else
362 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
363 			sizeof(struct lpfc_name));
364 
365 	/*
366 	 * If the port name has changed, then set the Param changes flag
367 	 * to unreg the login
368 	 */
369 	if (vport->fc_portname.u.wwn[0] != 0 &&
370 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
371 		       sizeof(struct lpfc_name))) {
372 		vport->vport_flag |= FAWWPN_PARAM_CHG;
373 
374 		if (phba->sli_rev == LPFC_SLI_REV4 &&
375 		    vport->port_type == LPFC_PHYSICAL_PORT &&
376 		    phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) {
377 			if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG))
378 				phba->sli4_hba.fawwpn_flag &=
379 						~LPFC_FAWWPN_FABRIC;
380 			lpfc_printf_log(phba, KERN_INFO,
381 					LOG_SLI | LOG_DISCOVERY | LOG_ELS,
382 					"2701 FA-PWWN change WWPN from %llx to "
383 					"%llx: vflag x%x fawwpn_flag x%x\n",
384 					wwn_to_u64(vport->fc_portname.u.wwn),
385 					wwn_to_u64
386 					   (vport->fc_sparam.portName.u.wwn),
387 					vport->vport_flag,
388 					phba->sli4_hba.fawwpn_flag);
389 			memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
390 			       sizeof(struct lpfc_name));
391 		}
392 	}
393 
394 	if (vport->fc_portname.u.wwn[0] == 0)
395 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
396 		       sizeof(struct lpfc_name));
397 	else
398 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
399 		       sizeof(struct lpfc_name));
400 }
401 
402 /**
403  * lpfc_config_port_post - Perform lpfc initialization after config port
404  * @phba: pointer to lpfc hba data structure.
405  *
406  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
407  * command call. It performs all internal resource and state setups on the
408  * port: post IOCB buffers, enable appropriate host interrupt attentions,
409  * ELS ring timers, etc.
410  *
411  * Return codes
412  *   0 - success.
413  *   Any other value - error.
414  **/
415 int
416 lpfc_config_port_post(struct lpfc_hba *phba)
417 {
418 	struct lpfc_vport *vport = phba->pport;
419 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
420 	LPFC_MBOXQ_t *pmb;
421 	MAILBOX_t *mb;
422 	struct lpfc_dmabuf *mp;
423 	struct lpfc_sli *psli = &phba->sli;
424 	uint32_t status, timeout;
425 	int i, j;
426 	int rc;
427 
428 	spin_lock_irq(&phba->hbalock);
429 	/*
430 	 * If the Config port completed correctly the HBA is not
431 	 * over heated any more.
432 	 */
433 	if (phba->over_temp_state == HBA_OVER_TEMP)
434 		phba->over_temp_state = HBA_NORMAL_TEMP;
435 	spin_unlock_irq(&phba->hbalock);
436 
437 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
438 	if (!pmb) {
439 		phba->link_state = LPFC_HBA_ERROR;
440 		return -ENOMEM;
441 	}
442 	mb = &pmb->u.mb;
443 
444 	/* Get login parameters for NID.  */
445 	rc = lpfc_read_sparam(phba, pmb, 0);
446 	if (rc) {
447 		mempool_free(pmb, phba->mbox_mem_pool);
448 		return -ENOMEM;
449 	}
450 
451 	pmb->vport = vport;
452 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
453 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
454 				"0448 Adapter failed init, mbxCmd x%x "
455 				"READ_SPARM mbxStatus x%x\n",
456 				mb->mbxCommand, mb->mbxStatus);
457 		phba->link_state = LPFC_HBA_ERROR;
458 		lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
459 		return -EIO;
460 	}
461 
462 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
463 
464 	/* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no
465 	 * longer needed.  Prevent unintended ctx_buf access as the mbox is
466 	 * reused.
467 	 */
468 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
469 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
470 	kfree(mp);
471 	pmb->ctx_buf = NULL;
472 	lpfc_update_vport_wwn(vport);
473 
474 	/* Update the fc_host data structures with new wwn. */
475 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
476 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
477 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
478 
479 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
480 	/* This should be consolidated into parse_vpd ? - mr */
481 	if (phba->SerialNumber[0] == 0) {
482 		uint8_t *outptr;
483 
484 		outptr = &vport->fc_nodename.u.s.IEEE[0];
485 		for (i = 0; i < 12; i++) {
486 			status = *outptr++;
487 			j = ((status & 0xf0) >> 4);
488 			if (j <= 9)
489 				phba->SerialNumber[i] =
490 				    (char)((uint8_t) 0x30 + (uint8_t) j);
491 			else
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
494 			i++;
495 			j = (status & 0xf);
496 			if (j <= 9)
497 				phba->SerialNumber[i] =
498 				    (char)((uint8_t) 0x30 + (uint8_t) j);
499 			else
500 				phba->SerialNumber[i] =
501 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
502 		}
503 	}
504 
505 	lpfc_read_config(phba, pmb);
506 	pmb->vport = vport;
507 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
508 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
509 				"0453 Adapter failed to init, mbxCmd x%x "
510 				"READ_CONFIG, mbxStatus x%x\n",
511 				mb->mbxCommand, mb->mbxStatus);
512 		phba->link_state = LPFC_HBA_ERROR;
513 		mempool_free( pmb, phba->mbox_mem_pool);
514 		return -EIO;
515 	}
516 
517 	/* Check if the port is disabled */
518 	lpfc_sli_read_link_ste(phba);
519 
520 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
521 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
522 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
523 				"3359 HBA queue depth changed from %d to %d\n",
524 				phba->cfg_hba_queue_depth,
525 				mb->un.varRdConfig.max_xri);
526 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
527 	}
528 
529 	phba->lmt = mb->un.varRdConfig.lmt;
530 
531 	/* Get the default values for Model Name and Description */
532 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
533 
534 	phba->link_state = LPFC_LINK_DOWN;
535 
536 	/* Only process IOCBs on ELS ring till hba_state is READY */
537 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
538 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
539 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
540 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
541 
542 	/* Post receive buffers for desired rings */
543 	if (phba->sli_rev != 3)
544 		lpfc_post_rcv_buf(phba);
545 
546 	/*
547 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
548 	 */
549 	if (phba->intr_type == MSIX) {
550 		rc = lpfc_config_msi(phba, pmb);
551 		if (rc) {
552 			mempool_free(pmb, phba->mbox_mem_pool);
553 			return -EIO;
554 		}
555 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
556 		if (rc != MBX_SUCCESS) {
557 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
558 					"0352 Config MSI mailbox command "
559 					"failed, mbxCmd x%x, mbxStatus x%x\n",
560 					pmb->u.mb.mbxCommand,
561 					pmb->u.mb.mbxStatus);
562 			mempool_free(pmb, phba->mbox_mem_pool);
563 			return -EIO;
564 		}
565 	}
566 
567 	spin_lock_irq(&phba->hbalock);
568 	/* Initialize ERATT handling flag */
569 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
570 
571 	/* Enable appropriate host interrupts */
572 	if (lpfc_readl(phba->HCregaddr, &status)) {
573 		spin_unlock_irq(&phba->hbalock);
574 		return -EIO;
575 	}
576 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
577 	if (psli->num_rings > 0)
578 		status |= HC_R0INT_ENA;
579 	if (psli->num_rings > 1)
580 		status |= HC_R1INT_ENA;
581 	if (psli->num_rings > 2)
582 		status |= HC_R2INT_ENA;
583 	if (psli->num_rings > 3)
584 		status |= HC_R3INT_ENA;
585 
586 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
587 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
588 		status &= ~(HC_R0INT_ENA);
589 
590 	writel(status, phba->HCregaddr);
591 	readl(phba->HCregaddr); /* flush */
592 	spin_unlock_irq(&phba->hbalock);
593 
594 	/* Set up ring-0 (ELS) timer */
595 	timeout = phba->fc_ratov * 2;
596 	mod_timer(&vport->els_tmofunc,
597 		  jiffies + msecs_to_jiffies(1000 * timeout));
598 	/* Set up heart beat (HB) timer */
599 	mod_timer(&phba->hb_tmofunc,
600 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
601 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
602 	phba->last_completion_time = jiffies;
603 	/* Set up error attention (ERATT) polling timer */
604 	mod_timer(&phba->eratt_poll,
605 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
606 
607 	if (phba->hba_flag & LINK_DISABLED) {
608 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
609 				"2598 Adapter Link is disabled.\n");
610 		lpfc_down_link(phba, pmb);
611 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
612 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
613 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
614 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
615 					"2599 Adapter failed to issue DOWN_LINK"
616 					" mbox command rc 0x%x\n", rc);
617 
618 			mempool_free(pmb, phba->mbox_mem_pool);
619 			return -EIO;
620 		}
621 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
622 		mempool_free(pmb, phba->mbox_mem_pool);
623 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
624 		if (rc)
625 			return rc;
626 	}
627 	/* MBOX buffer will be freed in mbox compl */
628 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
629 	if (!pmb) {
630 		phba->link_state = LPFC_HBA_ERROR;
631 		return -ENOMEM;
632 	}
633 
634 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
635 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
636 	pmb->vport = phba->pport;
637 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
638 
639 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
640 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
641 				"0456 Adapter failed to issue "
642 				"ASYNCEVT_ENABLE mbox status x%x\n",
643 				rc);
644 		mempool_free(pmb, phba->mbox_mem_pool);
645 	}
646 
647 	/* Get Option rom version */
648 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
649 	if (!pmb) {
650 		phba->link_state = LPFC_HBA_ERROR;
651 		return -ENOMEM;
652 	}
653 
654 	lpfc_dump_wakeup_param(phba, pmb);
655 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
656 	pmb->vport = phba->pport;
657 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
658 
659 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
660 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
661 				"0435 Adapter failed "
662 				"to get Option ROM version status x%x\n", rc);
663 		mempool_free(pmb, phba->mbox_mem_pool);
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  * lpfc_sli4_refresh_params - update driver copy of params.
671  * @phba: Pointer to HBA context object.
672  *
673  * This is called to refresh driver copy of dynamic fields from the
674  * common_get_sli4_parameters descriptor.
675  **/
676 int
677 lpfc_sli4_refresh_params(struct lpfc_hba *phba)
678 {
679 	LPFC_MBOXQ_t *mboxq;
680 	struct lpfc_mqe *mqe;
681 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
682 	int length, rc;
683 
684 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
685 	if (!mboxq)
686 		return -ENOMEM;
687 
688 	mqe = &mboxq->u.mqe;
689 	/* Read the port's SLI4 Config Parameters */
690 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
691 		  sizeof(struct lpfc_sli4_cfg_mhdr));
692 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
693 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
694 			 length, LPFC_SLI4_MBX_EMBED);
695 
696 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
697 	if (unlikely(rc)) {
698 		mempool_free(mboxq, phba->mbox_mem_pool);
699 		return rc;
700 	}
701 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
702 	phba->sli4_hba.pc_sli4_params.mi_cap =
703 		bf_get(cfg_mi_ver, mbx_sli4_parameters);
704 
705 	/* Are we forcing MI off via module parameter? */
706 	if (phba->cfg_enable_mi)
707 		phba->sli4_hba.pc_sli4_params.mi_ver =
708 			bf_get(cfg_mi_ver, mbx_sli4_parameters);
709 	else
710 		phba->sli4_hba.pc_sli4_params.mi_ver = 0;
711 
712 	phba->sli4_hba.pc_sli4_params.cmf =
713 			bf_get(cfg_cmf, mbx_sli4_parameters);
714 	phba->sli4_hba.pc_sli4_params.pls =
715 			bf_get(cfg_pvl, mbx_sli4_parameters);
716 
717 	mempool_free(mboxq, phba->mbox_mem_pool);
718 	return rc;
719 }
720 
721 /**
722  * lpfc_hba_init_link - Initialize the FC link
723  * @phba: pointer to lpfc hba data structure.
724  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
725  *
726  * This routine will issue the INIT_LINK mailbox command call.
727  * It is available to other drivers through the lpfc_hba data
728  * structure for use as a delayed link up mechanism with the
729  * module parameter lpfc_suppress_link_up.
730  *
731  * Return code
732  *		0 - success
733  *		Any other value - error
734  **/
735 static int
736 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
737 {
738 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
739 }
740 
741 /**
742  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
743  * @phba: pointer to lpfc hba data structure.
744  * @fc_topology: desired fc topology.
745  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
746  *
747  * This routine will issue the INIT_LINK mailbox command call.
748  * It is available to other drivers through the lpfc_hba data
749  * structure for use as a delayed link up mechanism with the
750  * module parameter lpfc_suppress_link_up.
751  *
752  * Return code
753  *              0 - success
754  *              Any other value - error
755  **/
756 int
757 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
758 			       uint32_t flag)
759 {
760 	struct lpfc_vport *vport = phba->pport;
761 	LPFC_MBOXQ_t *pmb;
762 	MAILBOX_t *mb;
763 	int rc;
764 
765 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
766 	if (!pmb) {
767 		phba->link_state = LPFC_HBA_ERROR;
768 		return -ENOMEM;
769 	}
770 	mb = &pmb->u.mb;
771 	pmb->vport = vport;
772 
773 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
774 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
775 	     !(phba->lmt & LMT_1Gb)) ||
776 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
777 	     !(phba->lmt & LMT_2Gb)) ||
778 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
779 	     !(phba->lmt & LMT_4Gb)) ||
780 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
781 	     !(phba->lmt & LMT_8Gb)) ||
782 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
783 	     !(phba->lmt & LMT_10Gb)) ||
784 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
785 	     !(phba->lmt & LMT_16Gb)) ||
786 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
787 	     !(phba->lmt & LMT_32Gb)) ||
788 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
789 	     !(phba->lmt & LMT_64Gb))) {
790 		/* Reset link speed to auto */
791 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
792 				"1302 Invalid speed for this board:%d "
793 				"Reset link speed to auto.\n",
794 				phba->cfg_link_speed);
795 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
796 	}
797 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
798 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 	if (phba->sli_rev < LPFC_SLI_REV4)
800 		lpfc_set_loopback_flag(phba);
801 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
802 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
803 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
804 				"0498 Adapter failed to init, mbxCmd x%x "
805 				"INIT_LINK, mbxStatus x%x\n",
806 				mb->mbxCommand, mb->mbxStatus);
807 		if (phba->sli_rev <= LPFC_SLI_REV3) {
808 			/* Clear all interrupt enable conditions */
809 			writel(0, phba->HCregaddr);
810 			readl(phba->HCregaddr); /* flush */
811 			/* Clear all pending interrupts */
812 			writel(0xffffffff, phba->HAregaddr);
813 			readl(phba->HAregaddr); /* flush */
814 		}
815 		phba->link_state = LPFC_HBA_ERROR;
816 		if (rc != MBX_BUSY || flag == MBX_POLL)
817 			mempool_free(pmb, phba->mbox_mem_pool);
818 		return -EIO;
819 	}
820 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
821 	if (flag == MBX_POLL)
822 		mempool_free(pmb, phba->mbox_mem_pool);
823 
824 	return 0;
825 }
826 
827 /**
828  * lpfc_hba_down_link - this routine downs the FC link
829  * @phba: pointer to lpfc hba data structure.
830  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
831  *
832  * This routine will issue the DOWN_LINK mailbox command call.
833  * It is available to other drivers through the lpfc_hba data
834  * structure for use to stop the link.
835  *
836  * Return code
837  *		0 - success
838  *		Any other value - error
839  **/
840 static int
841 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
842 {
843 	LPFC_MBOXQ_t *pmb;
844 	int rc;
845 
846 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
847 	if (!pmb) {
848 		phba->link_state = LPFC_HBA_ERROR;
849 		return -ENOMEM;
850 	}
851 
852 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
853 			"0491 Adapter Link is disabled.\n");
854 	lpfc_down_link(phba, pmb);
855 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
856 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
857 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
858 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
859 				"2522 Adapter failed to issue DOWN_LINK"
860 				" mbox command rc 0x%x\n", rc);
861 
862 		mempool_free(pmb, phba->mbox_mem_pool);
863 		return -EIO;
864 	}
865 	if (flag == MBX_POLL)
866 		mempool_free(pmb, phba->mbox_mem_pool);
867 
868 	return 0;
869 }
870 
871 /**
872  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
873  * @phba: pointer to lpfc HBA data structure.
874  *
875  * This routine will do LPFC uninitialization before the HBA is reset when
876  * bringing down the SLI Layer.
877  *
878  * Return codes
879  *   0 - success.
880  *   Any other value - error.
881  **/
882 int
883 lpfc_hba_down_prep(struct lpfc_hba *phba)
884 {
885 	struct lpfc_vport **vports;
886 	int i;
887 
888 	if (phba->sli_rev <= LPFC_SLI_REV3) {
889 		/* Disable interrupts */
890 		writel(0, phba->HCregaddr);
891 		readl(phba->HCregaddr); /* flush */
892 	}
893 
894 	if (phba->pport->load_flag & FC_UNLOADING)
895 		lpfc_cleanup_discovery_resources(phba->pport);
896 	else {
897 		vports = lpfc_create_vport_work_array(phba);
898 		if (vports != NULL)
899 			for (i = 0; i <= phba->max_vports &&
900 				vports[i] != NULL; i++)
901 				lpfc_cleanup_discovery_resources(vports[i]);
902 		lpfc_destroy_vport_work_array(phba, vports);
903 	}
904 	return 0;
905 }
906 
907 /**
908  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
909  * rspiocb which got deferred
910  *
911  * @phba: pointer to lpfc HBA data structure.
912  *
913  * This routine will cleanup completed slow path events after HBA is reset
914  * when bringing down the SLI Layer.
915  *
916  *
917  * Return codes
918  *   void.
919  **/
920 static void
921 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
922 {
923 	struct lpfc_iocbq *rspiocbq;
924 	struct hbq_dmabuf *dmabuf;
925 	struct lpfc_cq_event *cq_event;
926 
927 	spin_lock_irq(&phba->hbalock);
928 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
929 	spin_unlock_irq(&phba->hbalock);
930 
931 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
932 		/* Get the response iocb from the head of work queue */
933 		spin_lock_irq(&phba->hbalock);
934 		list_remove_head(&phba->sli4_hba.sp_queue_event,
935 				 cq_event, struct lpfc_cq_event, list);
936 		spin_unlock_irq(&phba->hbalock);
937 
938 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
939 		case CQE_CODE_COMPL_WQE:
940 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
941 						 cq_event);
942 			lpfc_sli_release_iocbq(phba, rspiocbq);
943 			break;
944 		case CQE_CODE_RECEIVE:
945 		case CQE_CODE_RECEIVE_V1:
946 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
947 					      cq_event);
948 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
949 		}
950 	}
951 }
952 
953 /**
954  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
955  * @phba: pointer to lpfc HBA data structure.
956  *
957  * This routine will cleanup posted ELS buffers after the HBA is reset
958  * when bringing down the SLI Layer.
959  *
960  *
961  * Return codes
962  *   void.
963  **/
964 static void
965 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
966 {
967 	struct lpfc_sli *psli = &phba->sli;
968 	struct lpfc_sli_ring *pring;
969 	struct lpfc_dmabuf *mp, *next_mp;
970 	LIST_HEAD(buflist);
971 	int count;
972 
973 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
974 		lpfc_sli_hbqbuf_free_all(phba);
975 	else {
976 		/* Cleanup preposted buffers on the ELS ring */
977 		pring = &psli->sli3_ring[LPFC_ELS_RING];
978 		spin_lock_irq(&phba->hbalock);
979 		list_splice_init(&pring->postbufq, &buflist);
980 		spin_unlock_irq(&phba->hbalock);
981 
982 		count = 0;
983 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
984 			list_del(&mp->list);
985 			count++;
986 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
987 			kfree(mp);
988 		}
989 
990 		spin_lock_irq(&phba->hbalock);
991 		pring->postbufq_cnt -= count;
992 		spin_unlock_irq(&phba->hbalock);
993 	}
994 }
995 
996 /**
997  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will cleanup the txcmplq after the HBA is reset when bringing
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   void
1005  **/
1006 static void
1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
1008 {
1009 	struct lpfc_sli *psli = &phba->sli;
1010 	struct lpfc_queue *qp = NULL;
1011 	struct lpfc_sli_ring *pring;
1012 	LIST_HEAD(completions);
1013 	int i;
1014 	struct lpfc_iocbq *piocb, *next_iocb;
1015 
1016 	if (phba->sli_rev != LPFC_SLI_REV4) {
1017 		for (i = 0; i < psli->num_rings; i++) {
1018 			pring = &psli->sli3_ring[i];
1019 			spin_lock_irq(&phba->hbalock);
1020 			/* At this point in time the HBA is either reset or DOA
1021 			 * Nothing should be on txcmplq as it will
1022 			 * NEVER complete.
1023 			 */
1024 			list_splice_init(&pring->txcmplq, &completions);
1025 			pring->txcmplq_cnt = 0;
1026 			spin_unlock_irq(&phba->hbalock);
1027 
1028 			lpfc_sli_abort_iocb_ring(phba, pring);
1029 		}
1030 		/* Cancel all the IOCBs from the completions list */
1031 		lpfc_sli_cancel_iocbs(phba, &completions,
1032 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1033 		return;
1034 	}
1035 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
1036 		pring = qp->pring;
1037 		if (!pring)
1038 			continue;
1039 		spin_lock_irq(&pring->ring_lock);
1040 		list_for_each_entry_safe(piocb, next_iocb,
1041 					 &pring->txcmplq, list)
1042 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
1043 		list_splice_init(&pring->txcmplq, &completions);
1044 		pring->txcmplq_cnt = 0;
1045 		spin_unlock_irq(&pring->ring_lock);
1046 		lpfc_sli_abort_iocb_ring(phba, pring);
1047 	}
1048 	/* Cancel all the IOCBs from the completions list */
1049 	lpfc_sli_cancel_iocbs(phba, &completions,
1050 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
1051 }
1052 
1053 /**
1054  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
1055  * @phba: pointer to lpfc HBA data structure.
1056  *
1057  * This routine will do uninitialization after the HBA is reset when bring
1058  * down the SLI Layer.
1059  *
1060  * Return codes
1061  *   0 - success.
1062  *   Any other value - error.
1063  **/
1064 static int
1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1066 {
1067 	lpfc_hba_free_post_buf(phba);
1068 	lpfc_hba_clean_txcmplq(phba);
1069 	return 0;
1070 }
1071 
1072 /**
1073  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1074  * @phba: pointer to lpfc HBA data structure.
1075  *
1076  * This routine will do uninitialization after the HBA is reset when bring
1077  * down the SLI Layer.
1078  *
1079  * Return codes
1080  *   0 - success.
1081  *   Any other value - error.
1082  **/
1083 static int
1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1085 {
1086 	struct lpfc_io_buf *psb, *psb_next;
1087 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1088 	struct lpfc_sli4_hdw_queue *qp;
1089 	LIST_HEAD(aborts);
1090 	LIST_HEAD(nvme_aborts);
1091 	LIST_HEAD(nvmet_aborts);
1092 	struct lpfc_sglq *sglq_entry = NULL;
1093 	int cnt, idx;
1094 
1095 
1096 	lpfc_sli_hbqbuf_free_all(phba);
1097 	lpfc_hba_clean_txcmplq(phba);
1098 
1099 	/* At this point in time the HBA is either reset or DOA. Either
1100 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1101 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1102 	 * driver is unloading or reposted if the driver is restarting
1103 	 * the port.
1104 	 */
1105 
1106 	/* sgl_list_lock required because worker thread uses this
1107 	 * list.
1108 	 */
1109 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1110 	list_for_each_entry(sglq_entry,
1111 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1112 		sglq_entry->state = SGL_FREED;
1113 
1114 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1115 			&phba->sli4_hba.lpfc_els_sgl_list);
1116 
1117 
1118 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1119 
1120 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1121 	 * list.
1122 	 */
1123 	spin_lock_irq(&phba->hbalock);
1124 	cnt = 0;
1125 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1126 		qp = &phba->sli4_hba.hdwq[idx];
1127 
1128 		spin_lock(&qp->abts_io_buf_list_lock);
1129 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1130 				 &aborts);
1131 
1132 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1133 			psb->pCmd = NULL;
1134 			psb->status = IOSTAT_SUCCESS;
1135 			cnt++;
1136 		}
1137 		spin_lock(&qp->io_buf_list_put_lock);
1138 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1139 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1140 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1141 		qp->abts_scsi_io_bufs = 0;
1142 		qp->abts_nvme_io_bufs = 0;
1143 		spin_unlock(&qp->io_buf_list_put_lock);
1144 		spin_unlock(&qp->abts_io_buf_list_lock);
1145 	}
1146 	spin_unlock_irq(&phba->hbalock);
1147 
1148 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1149 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1150 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1151 				 &nvmet_aborts);
1152 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1153 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1154 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1155 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1156 		}
1157 	}
1158 
1159 	lpfc_sli4_free_sp_events(phba);
1160 	return cnt;
1161 }
1162 
1163 /**
1164  * lpfc_hba_down_post - Wrapper func for hba down post routine
1165  * @phba: pointer to lpfc HBA data structure.
1166  *
1167  * This routine wraps the actual SLI3 or SLI4 routine for performing
1168  * uninitialization after the HBA is reset when bring down the SLI Layer.
1169  *
1170  * Return codes
1171  *   0 - success.
1172  *   Any other value - error.
1173  **/
1174 int
1175 lpfc_hba_down_post(struct lpfc_hba *phba)
1176 {
1177 	return (*phba->lpfc_hba_down_post)(phba);
1178 }
1179 
1180 /**
1181  * lpfc_hb_timeout - The HBA-timer timeout handler
1182  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1183  *
1184  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1185  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1186  * work-port-events bitmap and the worker thread is notified. This timeout
1187  * event will be used by the worker thread to invoke the actual timeout
1188  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1189  * be performed in the timeout handler and the HBA timeout event bit shall
1190  * be cleared by the worker thread after it has taken the event bitmap out.
1191  **/
1192 static void
1193 lpfc_hb_timeout(struct timer_list *t)
1194 {
1195 	struct lpfc_hba *phba;
1196 	uint32_t tmo_posted;
1197 	unsigned long iflag;
1198 
1199 	phba = from_timer(phba, t, hb_tmofunc);
1200 
1201 	/* Check for heart beat timeout conditions */
1202 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1203 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1204 	if (!tmo_posted)
1205 		phba->pport->work_port_events |= WORKER_HB_TMO;
1206 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1207 
1208 	/* Tell the worker thread there is work to do */
1209 	if (!tmo_posted)
1210 		lpfc_worker_wake_up(phba);
1211 	return;
1212 }
1213 
1214 /**
1215  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1216  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1217  *
1218  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1219  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1220  * work-port-events bitmap and the worker thread is notified. This timeout
1221  * event will be used by the worker thread to invoke the actual timeout
1222  * handler routine, lpfc_rrq_handler. Any periodical operations will
1223  * be performed in the timeout handler and the RRQ timeout event bit shall
1224  * be cleared by the worker thread after it has taken the event bitmap out.
1225  **/
1226 static void
1227 lpfc_rrq_timeout(struct timer_list *t)
1228 {
1229 	struct lpfc_hba *phba;
1230 	unsigned long iflag;
1231 
1232 	phba = from_timer(phba, t, rrq_tmr);
1233 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1234 	if (!(phba->pport->load_flag & FC_UNLOADING))
1235 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1236 	else
1237 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1238 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1239 
1240 	if (!(phba->pport->load_flag & FC_UNLOADING))
1241 		lpfc_worker_wake_up(phba);
1242 }
1243 
1244 /**
1245  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1246  * @phba: pointer to lpfc hba data structure.
1247  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1248  *
1249  * This is the callback function to the lpfc heart-beat mailbox command.
1250  * If configured, the lpfc driver issues the heart-beat mailbox command to
1251  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1252  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1253  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1254  * heart-beat outstanding state. Once the mailbox command comes back and
1255  * no error conditions detected, the heart-beat mailbox command timer is
1256  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1257  * state is cleared for the next heart-beat. If the timer expired with the
1258  * heart-beat outstanding state set, the driver will put the HBA offline.
1259  **/
1260 static void
1261 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1262 {
1263 	unsigned long drvr_flag;
1264 
1265 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1266 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1267 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1268 
1269 	/* Check and reset heart-beat timer if necessary */
1270 	mempool_free(pmboxq, phba->mbox_mem_pool);
1271 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1272 		!(phba->link_state == LPFC_HBA_ERROR) &&
1273 		!(phba->pport->load_flag & FC_UNLOADING))
1274 		mod_timer(&phba->hb_tmofunc,
1275 			  jiffies +
1276 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1277 	return;
1278 }
1279 
1280 /*
1281  * lpfc_idle_stat_delay_work - idle_stat tracking
1282  *
1283  * This routine tracks per-eq idle_stat and determines polling decisions.
1284  *
1285  * Return codes:
1286  *   None
1287  **/
1288 static void
1289 lpfc_idle_stat_delay_work(struct work_struct *work)
1290 {
1291 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1292 					     struct lpfc_hba,
1293 					     idle_stat_delay_work);
1294 	struct lpfc_queue *eq;
1295 	struct lpfc_sli4_hdw_queue *hdwq;
1296 	struct lpfc_idle_stat *idle_stat;
1297 	u32 i, idle_percent;
1298 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1299 
1300 	if (phba->pport->load_flag & FC_UNLOADING)
1301 		return;
1302 
1303 	if (phba->link_state == LPFC_HBA_ERROR ||
1304 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1305 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1306 		goto requeue;
1307 
1308 	for_each_present_cpu(i) {
1309 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1310 		eq = hdwq->hba_eq;
1311 
1312 		/* Skip if we've already handled this eq's primary CPU */
1313 		if (eq->chann != i)
1314 			continue;
1315 
1316 		idle_stat = &phba->sli4_hba.idle_stat[i];
1317 
1318 		/* get_cpu_idle_time returns values as running counters. Thus,
1319 		 * to know the amount for this period, the prior counter values
1320 		 * need to be subtracted from the current counter values.
1321 		 * From there, the idle time stat can be calculated as a
1322 		 * percentage of 100 - the sum of the other consumption times.
1323 		 */
1324 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1325 		diff_idle = wall_idle - idle_stat->prev_idle;
1326 		diff_wall = wall - idle_stat->prev_wall;
1327 
1328 		if (diff_wall <= diff_idle)
1329 			busy_time = 0;
1330 		else
1331 			busy_time = diff_wall - diff_idle;
1332 
1333 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1334 		idle_percent = 100 - idle_percent;
1335 
1336 		if (idle_percent < 15)
1337 			eq->poll_mode = LPFC_QUEUE_WORK;
1338 		else
1339 			eq->poll_mode = LPFC_THREADED_IRQ;
1340 
1341 		idle_stat->prev_idle = wall_idle;
1342 		idle_stat->prev_wall = wall;
1343 	}
1344 
1345 requeue:
1346 	schedule_delayed_work(&phba->idle_stat_delay_work,
1347 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1348 }
1349 
1350 static void
1351 lpfc_hb_eq_delay_work(struct work_struct *work)
1352 {
1353 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1354 					     struct lpfc_hba, eq_delay_work);
1355 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1356 	struct lpfc_queue *eq, *eq_next;
1357 	unsigned char *ena_delay = NULL;
1358 	uint32_t usdelay;
1359 	int i;
1360 
1361 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1362 		return;
1363 
1364 	if (phba->link_state == LPFC_HBA_ERROR ||
1365 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1366 		goto requeue;
1367 
1368 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1369 			    GFP_KERNEL);
1370 	if (!ena_delay)
1371 		goto requeue;
1372 
1373 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1374 		/* Get the EQ corresponding to the IRQ vector */
1375 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1376 		if (!eq)
1377 			continue;
1378 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1379 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1380 			ena_delay[eq->last_cpu] = 1;
1381 		}
1382 	}
1383 
1384 	for_each_present_cpu(i) {
1385 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1386 		if (ena_delay[i]) {
1387 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1388 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1389 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1390 		} else {
1391 			usdelay = 0;
1392 		}
1393 
1394 		eqi->icnt = 0;
1395 
1396 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1397 			if (unlikely(eq->last_cpu != i)) {
1398 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1399 						      eq->last_cpu);
1400 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1401 				continue;
1402 			}
1403 			if (usdelay != eq->q_mode)
1404 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1405 							 usdelay);
1406 		}
1407 	}
1408 
1409 	kfree(ena_delay);
1410 
1411 requeue:
1412 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1413 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1414 }
1415 
1416 /**
1417  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1418  * @phba: pointer to lpfc hba data structure.
1419  *
1420  * For each heartbeat, this routine does some heuristic methods to adjust
1421  * XRI distribution. The goal is to fully utilize free XRIs.
1422  **/
1423 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1424 {
1425 	u32 i;
1426 	u32 hwq_count;
1427 
1428 	hwq_count = phba->cfg_hdw_queue;
1429 	for (i = 0; i < hwq_count; i++) {
1430 		/* Adjust XRIs in private pool */
1431 		lpfc_adjust_pvt_pool_count(phba, i);
1432 
1433 		/* Adjust high watermark */
1434 		lpfc_adjust_high_watermark(phba, i);
1435 
1436 #ifdef LPFC_MXP_STAT
1437 		/* Snapshot pbl, pvt and busy count */
1438 		lpfc_snapshot_mxp(phba, i);
1439 #endif
1440 	}
1441 }
1442 
1443 /**
1444  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1445  * @phba: pointer to lpfc hba data structure.
1446  *
1447  * If a HB mbox is not already in progrees, this routine will allocate
1448  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1449  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1450  **/
1451 int
1452 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1453 {
1454 	LPFC_MBOXQ_t *pmboxq;
1455 	int retval;
1456 
1457 	/* Is a Heartbeat mbox already in progress */
1458 	if (phba->hba_flag & HBA_HBEAT_INP)
1459 		return 0;
1460 
1461 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1462 	if (!pmboxq)
1463 		return -ENOMEM;
1464 
1465 	lpfc_heart_beat(phba, pmboxq);
1466 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1467 	pmboxq->vport = phba->pport;
1468 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1469 
1470 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1471 		mempool_free(pmboxq, phba->mbox_mem_pool);
1472 		return -ENXIO;
1473 	}
1474 	phba->hba_flag |= HBA_HBEAT_INP;
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1481  * @phba: pointer to lpfc hba data structure.
1482  *
1483  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1484  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1485  * of the value of lpfc_enable_hba_heartbeat.
1486  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1487  * try to issue a MBX_HEARTBEAT mbox command.
1488  **/
1489 void
1490 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1491 {
1492 	if (phba->cfg_enable_hba_heartbeat)
1493 		return;
1494 	phba->hba_flag |= HBA_HBEAT_TMO;
1495 }
1496 
1497 /**
1498  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1499  * @phba: pointer to lpfc hba data structure.
1500  *
1501  * This is the actual HBA-timer timeout handler to be invoked by the worker
1502  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1503  * handler performs any periodic operations needed for the device. If such
1504  * periodic event has already been attended to either in the interrupt handler
1505  * or by processing slow-ring or fast-ring events within the HBA-timer
1506  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1507  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1508  * is configured and there is no heart-beat mailbox command outstanding, a
1509  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1510  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1511  * to offline.
1512  **/
1513 void
1514 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1515 {
1516 	struct lpfc_vport **vports;
1517 	struct lpfc_dmabuf *buf_ptr;
1518 	int retval = 0;
1519 	int i, tmo;
1520 	struct lpfc_sli *psli = &phba->sli;
1521 	LIST_HEAD(completions);
1522 
1523 	if (phba->cfg_xri_rebalancing) {
1524 		/* Multi-XRI pools handler */
1525 		lpfc_hb_mxp_handler(phba);
1526 	}
1527 
1528 	vports = lpfc_create_vport_work_array(phba);
1529 	if (vports != NULL)
1530 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1531 			lpfc_rcv_seq_check_edtov(vports[i]);
1532 			lpfc_fdmi_change_check(vports[i]);
1533 		}
1534 	lpfc_destroy_vport_work_array(phba, vports);
1535 
1536 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1537 		(phba->pport->load_flag & FC_UNLOADING) ||
1538 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1539 		return;
1540 
1541 	if (phba->elsbuf_cnt &&
1542 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1543 		spin_lock_irq(&phba->hbalock);
1544 		list_splice_init(&phba->elsbuf, &completions);
1545 		phba->elsbuf_cnt = 0;
1546 		phba->elsbuf_prev_cnt = 0;
1547 		spin_unlock_irq(&phba->hbalock);
1548 
1549 		while (!list_empty(&completions)) {
1550 			list_remove_head(&completions, buf_ptr,
1551 				struct lpfc_dmabuf, list);
1552 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1553 			kfree(buf_ptr);
1554 		}
1555 	}
1556 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1557 
1558 	/* If there is no heart beat outstanding, issue a heartbeat command */
1559 	if (phba->cfg_enable_hba_heartbeat) {
1560 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1561 		spin_lock_irq(&phba->pport->work_port_lock);
1562 		if (time_after(phba->last_completion_time +
1563 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1564 				jiffies)) {
1565 			spin_unlock_irq(&phba->pport->work_port_lock);
1566 			if (phba->hba_flag & HBA_HBEAT_INP)
1567 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1568 			else
1569 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1570 			goto out;
1571 		}
1572 		spin_unlock_irq(&phba->pport->work_port_lock);
1573 
1574 		/* Check if a MBX_HEARTBEAT is already in progress */
1575 		if (phba->hba_flag & HBA_HBEAT_INP) {
1576 			/*
1577 			 * If heart beat timeout called with HBA_HBEAT_INP set
1578 			 * we need to give the hb mailbox cmd a chance to
1579 			 * complete or TMO.
1580 			 */
1581 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1582 				"0459 Adapter heartbeat still outstanding: "
1583 				"last compl time was %d ms.\n",
1584 				jiffies_to_msecs(jiffies
1585 					 - phba->last_completion_time));
1586 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1587 		} else {
1588 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1589 				(list_empty(&psli->mboxq))) {
1590 
1591 				retval = lpfc_issue_hb_mbox(phba);
1592 				if (retval) {
1593 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1594 					goto out;
1595 				}
1596 				phba->skipped_hb = 0;
1597 			} else if (time_before_eq(phba->last_completion_time,
1598 					phba->skipped_hb)) {
1599 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1600 					"2857 Last completion time not "
1601 					" updated in %d ms\n",
1602 					jiffies_to_msecs(jiffies
1603 						 - phba->last_completion_time));
1604 			} else
1605 				phba->skipped_hb = jiffies;
1606 
1607 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1608 			goto out;
1609 		}
1610 	} else {
1611 		/* Check to see if we want to force a MBX_HEARTBEAT */
1612 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1613 			retval = lpfc_issue_hb_mbox(phba);
1614 			if (retval)
1615 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1616 			else
1617 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1618 			goto out;
1619 		}
1620 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1621 	}
1622 out:
1623 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1624 }
1625 
1626 /**
1627  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1628  * @phba: pointer to lpfc hba data structure.
1629  *
1630  * This routine is called to bring the HBA offline when HBA hardware error
1631  * other than Port Error 6 has been detected.
1632  **/
1633 static void
1634 lpfc_offline_eratt(struct lpfc_hba *phba)
1635 {
1636 	struct lpfc_sli   *psli = &phba->sli;
1637 
1638 	spin_lock_irq(&phba->hbalock);
1639 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1640 	spin_unlock_irq(&phba->hbalock);
1641 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1642 
1643 	lpfc_offline(phba);
1644 	lpfc_reset_barrier(phba);
1645 	spin_lock_irq(&phba->hbalock);
1646 	lpfc_sli_brdreset(phba);
1647 	spin_unlock_irq(&phba->hbalock);
1648 	lpfc_hba_down_post(phba);
1649 	lpfc_sli_brdready(phba, HS_MBRDY);
1650 	lpfc_unblock_mgmt_io(phba);
1651 	phba->link_state = LPFC_HBA_ERROR;
1652 	return;
1653 }
1654 
1655 /**
1656  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1657  * @phba: pointer to lpfc hba data structure.
1658  *
1659  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1660  * other than Port Error 6 has been detected.
1661  **/
1662 void
1663 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1664 {
1665 	spin_lock_irq(&phba->hbalock);
1666 	if (phba->link_state == LPFC_HBA_ERROR &&
1667 		test_bit(HBA_PCI_ERR, &phba->bit_flags)) {
1668 		spin_unlock_irq(&phba->hbalock);
1669 		return;
1670 	}
1671 	phba->link_state = LPFC_HBA_ERROR;
1672 	spin_unlock_irq(&phba->hbalock);
1673 
1674 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1675 	lpfc_sli_flush_io_rings(phba);
1676 	lpfc_offline(phba);
1677 	lpfc_hba_down_post(phba);
1678 	lpfc_unblock_mgmt_io(phba);
1679 }
1680 
1681 /**
1682  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1683  * @phba: pointer to lpfc hba data structure.
1684  *
1685  * This routine is invoked to handle the deferred HBA hardware error
1686  * conditions. This type of error is indicated by HBA by setting ER1
1687  * and another ER bit in the host status register. The driver will
1688  * wait until the ER1 bit clears before handling the error condition.
1689  **/
1690 static void
1691 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1692 {
1693 	uint32_t old_host_status = phba->work_hs;
1694 	struct lpfc_sli *psli = &phba->sli;
1695 
1696 	/* If the pci channel is offline, ignore possible errors,
1697 	 * since we cannot communicate with the pci card anyway.
1698 	 */
1699 	if (pci_channel_offline(phba->pcidev)) {
1700 		spin_lock_irq(&phba->hbalock);
1701 		phba->hba_flag &= ~DEFER_ERATT;
1702 		spin_unlock_irq(&phba->hbalock);
1703 		return;
1704 	}
1705 
1706 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1707 			"0479 Deferred Adapter Hardware Error "
1708 			"Data: x%x x%x x%x\n",
1709 			phba->work_hs, phba->work_status[0],
1710 			phba->work_status[1]);
1711 
1712 	spin_lock_irq(&phba->hbalock);
1713 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1714 	spin_unlock_irq(&phba->hbalock);
1715 
1716 
1717 	/*
1718 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1719 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1720 	 * SCSI layer retry it after re-establishing link.
1721 	 */
1722 	lpfc_sli_abort_fcp_rings(phba);
1723 
1724 	/*
1725 	 * There was a firmware error. Take the hba offline and then
1726 	 * attempt to restart it.
1727 	 */
1728 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1729 	lpfc_offline(phba);
1730 
1731 	/* Wait for the ER1 bit to clear.*/
1732 	while (phba->work_hs & HS_FFER1) {
1733 		msleep(100);
1734 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1735 			phba->work_hs = UNPLUG_ERR ;
1736 			break;
1737 		}
1738 		/* If driver is unloading let the worker thread continue */
1739 		if (phba->pport->load_flag & FC_UNLOADING) {
1740 			phba->work_hs = 0;
1741 			break;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * This is to ptrotect against a race condition in which
1747 	 * first write to the host attention register clear the
1748 	 * host status register.
1749 	 */
1750 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1751 		phba->work_hs = old_host_status & ~HS_FFER1;
1752 
1753 	spin_lock_irq(&phba->hbalock);
1754 	phba->hba_flag &= ~DEFER_ERATT;
1755 	spin_unlock_irq(&phba->hbalock);
1756 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1757 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1758 }
1759 
1760 static void
1761 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1762 {
1763 	struct lpfc_board_event_header board_event;
1764 	struct Scsi_Host *shost;
1765 
1766 	board_event.event_type = FC_REG_BOARD_EVENT;
1767 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1768 	shost = lpfc_shost_from_vport(phba->pport);
1769 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1770 				  sizeof(board_event),
1771 				  (char *) &board_event,
1772 				  LPFC_NL_VENDOR_ID);
1773 }
1774 
1775 /**
1776  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1777  * @phba: pointer to lpfc hba data structure.
1778  *
1779  * This routine is invoked to handle the following HBA hardware error
1780  * conditions:
1781  * 1 - HBA error attention interrupt
1782  * 2 - DMA ring index out of range
1783  * 3 - Mailbox command came back as unknown
1784  **/
1785 static void
1786 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1787 {
1788 	struct lpfc_vport *vport = phba->pport;
1789 	struct lpfc_sli   *psli = &phba->sli;
1790 	uint32_t event_data;
1791 	unsigned long temperature;
1792 	struct temp_event temp_event_data;
1793 	struct Scsi_Host  *shost;
1794 
1795 	/* If the pci channel is offline, ignore possible errors,
1796 	 * since we cannot communicate with the pci card anyway.
1797 	 */
1798 	if (pci_channel_offline(phba->pcidev)) {
1799 		spin_lock_irq(&phba->hbalock);
1800 		phba->hba_flag &= ~DEFER_ERATT;
1801 		spin_unlock_irq(&phba->hbalock);
1802 		return;
1803 	}
1804 
1805 	/* If resets are disabled then leave the HBA alone and return */
1806 	if (!phba->cfg_enable_hba_reset)
1807 		return;
1808 
1809 	/* Send an internal error event to mgmt application */
1810 	lpfc_board_errevt_to_mgmt(phba);
1811 
1812 	if (phba->hba_flag & DEFER_ERATT)
1813 		lpfc_handle_deferred_eratt(phba);
1814 
1815 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1816 		if (phba->work_hs & HS_FFER6)
1817 			/* Re-establishing Link */
1818 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1819 					"1301 Re-establishing Link "
1820 					"Data: x%x x%x x%x\n",
1821 					phba->work_hs, phba->work_status[0],
1822 					phba->work_status[1]);
1823 		if (phba->work_hs & HS_FFER8)
1824 			/* Device Zeroization */
1825 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1826 					"2861 Host Authentication device "
1827 					"zeroization Data:x%x x%x x%x\n",
1828 					phba->work_hs, phba->work_status[0],
1829 					phba->work_status[1]);
1830 
1831 		spin_lock_irq(&phba->hbalock);
1832 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1833 		spin_unlock_irq(&phba->hbalock);
1834 
1835 		/*
1836 		* Firmware stops when it triggled erratt with HS_FFER6.
1837 		* That could cause the I/Os dropped by the firmware.
1838 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1839 		* retry it after re-establishing link.
1840 		*/
1841 		lpfc_sli_abort_fcp_rings(phba);
1842 
1843 		/*
1844 		 * There was a firmware error.  Take the hba offline and then
1845 		 * attempt to restart it.
1846 		 */
1847 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1848 		lpfc_offline(phba);
1849 		lpfc_sli_brdrestart(phba);
1850 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1851 			lpfc_unblock_mgmt_io(phba);
1852 			return;
1853 		}
1854 		lpfc_unblock_mgmt_io(phba);
1855 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1856 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1857 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1858 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1859 		temp_event_data.data = (uint32_t)temperature;
1860 
1861 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1862 				"0406 Adapter maximum temperature exceeded "
1863 				"(%ld), taking this port offline "
1864 				"Data: x%x x%x x%x\n",
1865 				temperature, phba->work_hs,
1866 				phba->work_status[0], phba->work_status[1]);
1867 
1868 		shost = lpfc_shost_from_vport(phba->pport);
1869 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1870 					  sizeof(temp_event_data),
1871 					  (char *) &temp_event_data,
1872 					  SCSI_NL_VID_TYPE_PCI
1873 					  | PCI_VENDOR_ID_EMULEX);
1874 
1875 		spin_lock_irq(&phba->hbalock);
1876 		phba->over_temp_state = HBA_OVER_TEMP;
1877 		spin_unlock_irq(&phba->hbalock);
1878 		lpfc_offline_eratt(phba);
1879 
1880 	} else {
1881 		/* The if clause above forces this code path when the status
1882 		 * failure is a value other than FFER6. Do not call the offline
1883 		 * twice. This is the adapter hardware error path.
1884 		 */
1885 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1886 				"0457 Adapter Hardware Error "
1887 				"Data: x%x x%x x%x\n",
1888 				phba->work_hs,
1889 				phba->work_status[0], phba->work_status[1]);
1890 
1891 		event_data = FC_REG_DUMP_EVENT;
1892 		shost = lpfc_shost_from_vport(vport);
1893 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1894 				sizeof(event_data), (char *) &event_data,
1895 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1896 
1897 		lpfc_offline_eratt(phba);
1898 	}
1899 	return;
1900 }
1901 
1902 /**
1903  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1904  * @phba: pointer to lpfc hba data structure.
1905  * @mbx_action: flag for mailbox shutdown action.
1906  * @en_rn_msg: send reset/port recovery message.
1907  * This routine is invoked to perform an SLI4 port PCI function reset in
1908  * response to port status register polling attention. It waits for port
1909  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1910  * During this process, interrupt vectors are freed and later requested
1911  * for handling possible port resource change.
1912  **/
1913 static int
1914 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1915 			    bool en_rn_msg)
1916 {
1917 	int rc;
1918 	uint32_t intr_mode;
1919 	LPFC_MBOXQ_t *mboxq;
1920 
1921 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1922 	    LPFC_SLI_INTF_IF_TYPE_2) {
1923 		/*
1924 		 * On error status condition, driver need to wait for port
1925 		 * ready before performing reset.
1926 		 */
1927 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1928 		if (rc)
1929 			return rc;
1930 	}
1931 
1932 	/* need reset: attempt for port recovery */
1933 	if (en_rn_msg)
1934 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1935 				"2887 Reset Needed: Attempting Port "
1936 				"Recovery...\n");
1937 
1938 	/* If we are no wait, the HBA has been reset and is not
1939 	 * functional, thus we should clear
1940 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1941 	 */
1942 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1943 		spin_lock_irq(&phba->hbalock);
1944 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1945 		if (phba->sli.mbox_active) {
1946 			mboxq = phba->sli.mbox_active;
1947 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1948 			__lpfc_mbox_cmpl_put(phba, mboxq);
1949 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1950 			phba->sli.mbox_active = NULL;
1951 		}
1952 		spin_unlock_irq(&phba->hbalock);
1953 	}
1954 
1955 	lpfc_offline_prep(phba, mbx_action);
1956 	lpfc_sli_flush_io_rings(phba);
1957 	lpfc_offline(phba);
1958 	/* release interrupt for possible resource change */
1959 	lpfc_sli4_disable_intr(phba);
1960 	rc = lpfc_sli_brdrestart(phba);
1961 	if (rc) {
1962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963 				"6309 Failed to restart board\n");
1964 		return rc;
1965 	}
1966 	/* request and enable interrupt */
1967 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1968 	if (intr_mode == LPFC_INTR_ERROR) {
1969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1970 				"3175 Failed to enable interrupt\n");
1971 		return -EIO;
1972 	}
1973 	phba->intr_mode = intr_mode;
1974 	rc = lpfc_online(phba);
1975 	if (rc == 0)
1976 		lpfc_unblock_mgmt_io(phba);
1977 
1978 	return rc;
1979 }
1980 
1981 /**
1982  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1983  * @phba: pointer to lpfc hba data structure.
1984  *
1985  * This routine is invoked to handle the SLI4 HBA hardware error attention
1986  * conditions.
1987  **/
1988 static void
1989 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1990 {
1991 	struct lpfc_vport *vport = phba->pport;
1992 	uint32_t event_data;
1993 	struct Scsi_Host *shost;
1994 	uint32_t if_type;
1995 	struct lpfc_register portstat_reg = {0};
1996 	uint32_t reg_err1, reg_err2;
1997 	uint32_t uerrlo_reg, uemasklo_reg;
1998 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1999 	bool en_rn_msg = true;
2000 	struct temp_event temp_event_data;
2001 	struct lpfc_register portsmphr_reg;
2002 	int rc, i;
2003 
2004 	/* If the pci channel is offline, ignore possible errors, since
2005 	 * we cannot communicate with the pci card anyway.
2006 	 */
2007 	if (pci_channel_offline(phba->pcidev)) {
2008 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2009 				"3166 pci channel is offline\n");
2010 		lpfc_sli_flush_io_rings(phba);
2011 		return;
2012 	}
2013 
2014 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
2015 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
2016 	switch (if_type) {
2017 	case LPFC_SLI_INTF_IF_TYPE_0:
2018 		pci_rd_rc1 = lpfc_readl(
2019 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
2020 				&uerrlo_reg);
2021 		pci_rd_rc2 = lpfc_readl(
2022 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
2023 				&uemasklo_reg);
2024 		/* consider PCI bus read error as pci_channel_offline */
2025 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
2026 			return;
2027 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
2028 			lpfc_sli4_offline_eratt(phba);
2029 			return;
2030 		}
2031 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2032 				"7623 Checking UE recoverable");
2033 
2034 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
2035 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2036 				       &portsmphr_reg.word0))
2037 				continue;
2038 
2039 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
2040 						   &portsmphr_reg);
2041 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2042 			    LPFC_PORT_SEM_UE_RECOVERABLE)
2043 				break;
2044 			/*Sleep for 1Sec, before checking SEMAPHORE */
2045 			msleep(1000);
2046 		}
2047 
2048 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2049 				"4827 smphr_port_status x%x : Waited %dSec",
2050 				smphr_port_status, i);
2051 
2052 		/* Recoverable UE, reset the HBA device */
2053 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
2054 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
2055 			for (i = 0; i < 20; i++) {
2056 				msleep(1000);
2057 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2058 				    &portsmphr_reg.word0) &&
2059 				    (LPFC_POST_STAGE_PORT_READY ==
2060 				     bf_get(lpfc_port_smphr_port_status,
2061 				     &portsmphr_reg))) {
2062 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2063 						LPFC_MBX_NO_WAIT, en_rn_msg);
2064 					if (rc == 0)
2065 						return;
2066 					lpfc_printf_log(phba, KERN_ERR,
2067 						LOG_TRACE_EVENT,
2068 						"4215 Failed to recover UE");
2069 					break;
2070 				}
2071 			}
2072 		}
2073 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2074 				"7624 Firmware not ready: Failing UE recovery,"
2075 				" waited %dSec", i);
2076 		phba->link_state = LPFC_HBA_ERROR;
2077 		break;
2078 
2079 	case LPFC_SLI_INTF_IF_TYPE_2:
2080 	case LPFC_SLI_INTF_IF_TYPE_6:
2081 		pci_rd_rc1 = lpfc_readl(
2082 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2083 				&portstat_reg.word0);
2084 		/* consider PCI bus read error as pci_channel_offline */
2085 		if (pci_rd_rc1 == -EIO) {
2086 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2087 				"3151 PCI bus read access failure: x%x\n",
2088 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2089 			lpfc_sli4_offline_eratt(phba);
2090 			return;
2091 		}
2092 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2093 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2094 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2095 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2096 					"2889 Port Overtemperature event, "
2097 					"taking port offline Data: x%x x%x\n",
2098 					reg_err1, reg_err2);
2099 
2100 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2101 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2102 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2103 			temp_event_data.data = 0xFFFFFFFF;
2104 
2105 			shost = lpfc_shost_from_vport(phba->pport);
2106 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2107 						  sizeof(temp_event_data),
2108 						  (char *)&temp_event_data,
2109 						  SCSI_NL_VID_TYPE_PCI
2110 						  | PCI_VENDOR_ID_EMULEX);
2111 
2112 			spin_lock_irq(&phba->hbalock);
2113 			phba->over_temp_state = HBA_OVER_TEMP;
2114 			spin_unlock_irq(&phba->hbalock);
2115 			lpfc_sli4_offline_eratt(phba);
2116 			return;
2117 		}
2118 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2119 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2120 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2121 					"3143 Port Down: Firmware Update "
2122 					"Detected\n");
2123 			en_rn_msg = false;
2124 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2125 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2126 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2127 					"3144 Port Down: Debug Dump\n");
2128 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2129 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2130 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2131 					"3145 Port Down: Provisioning\n");
2132 
2133 		/* If resets are disabled then leave the HBA alone and return */
2134 		if (!phba->cfg_enable_hba_reset)
2135 			return;
2136 
2137 		/* Check port status register for function reset */
2138 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2139 				en_rn_msg);
2140 		if (rc == 0) {
2141 			/* don't report event on forced debug dump */
2142 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2143 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2144 				return;
2145 			else
2146 				break;
2147 		}
2148 		/* fall through for not able to recover */
2149 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2150 				"3152 Unrecoverable error\n");
2151 		lpfc_sli4_offline_eratt(phba);
2152 		break;
2153 	case LPFC_SLI_INTF_IF_TYPE_1:
2154 	default:
2155 		break;
2156 	}
2157 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2158 			"3123 Report dump event to upper layer\n");
2159 	/* Send an internal error event to mgmt application */
2160 	lpfc_board_errevt_to_mgmt(phba);
2161 
2162 	event_data = FC_REG_DUMP_EVENT;
2163 	shost = lpfc_shost_from_vport(vport);
2164 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2165 				  sizeof(event_data), (char *) &event_data,
2166 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2167 }
2168 
2169 /**
2170  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2171  * @phba: pointer to lpfc HBA data structure.
2172  *
2173  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2174  * routine from the API jump table function pointer from the lpfc_hba struct.
2175  *
2176  * Return codes
2177  *   0 - success.
2178  *   Any other value - error.
2179  **/
2180 void
2181 lpfc_handle_eratt(struct lpfc_hba *phba)
2182 {
2183 	(*phba->lpfc_handle_eratt)(phba);
2184 }
2185 
2186 /**
2187  * lpfc_handle_latt - The HBA link event handler
2188  * @phba: pointer to lpfc hba data structure.
2189  *
2190  * This routine is invoked from the worker thread to handle a HBA host
2191  * attention link event. SLI3 only.
2192  **/
2193 void
2194 lpfc_handle_latt(struct lpfc_hba *phba)
2195 {
2196 	struct lpfc_vport *vport = phba->pport;
2197 	struct lpfc_sli   *psli = &phba->sli;
2198 	LPFC_MBOXQ_t *pmb;
2199 	volatile uint32_t control;
2200 	int rc = 0;
2201 
2202 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2203 	if (!pmb) {
2204 		rc = 1;
2205 		goto lpfc_handle_latt_err_exit;
2206 	}
2207 
2208 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
2209 	if (rc) {
2210 		rc = 2;
2211 		mempool_free(pmb, phba->mbox_mem_pool);
2212 		goto lpfc_handle_latt_err_exit;
2213 	}
2214 
2215 	/* Cleanup any outstanding ELS commands */
2216 	lpfc_els_flush_all_cmd(phba);
2217 	psli->slistat.link_event++;
2218 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
2219 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2220 	pmb->vport = vport;
2221 	/* Block ELS IOCBs until we have processed this mbox command */
2222 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2223 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2224 	if (rc == MBX_NOT_FINISHED) {
2225 		rc = 4;
2226 		goto lpfc_handle_latt_free_mbuf;
2227 	}
2228 
2229 	/* Clear Link Attention in HA REG */
2230 	spin_lock_irq(&phba->hbalock);
2231 	writel(HA_LATT, phba->HAregaddr);
2232 	readl(phba->HAregaddr); /* flush */
2233 	spin_unlock_irq(&phba->hbalock);
2234 
2235 	return;
2236 
2237 lpfc_handle_latt_free_mbuf:
2238 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2239 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
2240 lpfc_handle_latt_err_exit:
2241 	/* Enable Link attention interrupts */
2242 	spin_lock_irq(&phba->hbalock);
2243 	psli->sli_flag |= LPFC_PROCESS_LA;
2244 	control = readl(phba->HCregaddr);
2245 	control |= HC_LAINT_ENA;
2246 	writel(control, phba->HCregaddr);
2247 	readl(phba->HCregaddr); /* flush */
2248 
2249 	/* Clear Link Attention in HA REG */
2250 	writel(HA_LATT, phba->HAregaddr);
2251 	readl(phba->HAregaddr); /* flush */
2252 	spin_unlock_irq(&phba->hbalock);
2253 	lpfc_linkdown(phba);
2254 	phba->link_state = LPFC_HBA_ERROR;
2255 
2256 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2257 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2258 
2259 	return;
2260 }
2261 
2262 static void
2263 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex)
2264 {
2265 	int i, j;
2266 
2267 	while (length > 0) {
2268 		/* Look for Serial Number */
2269 		if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) {
2270 			*pindex += 2;
2271 			i = vpd[*pindex];
2272 			*pindex += 1;
2273 			j = 0;
2274 			length -= (3+i);
2275 			while (i--) {
2276 				phba->SerialNumber[j++] = vpd[(*pindex)++];
2277 				if (j == 31)
2278 					break;
2279 			}
2280 			phba->SerialNumber[j] = 0;
2281 			continue;
2282 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) {
2283 			phba->vpd_flag |= VPD_MODEL_DESC;
2284 			*pindex += 2;
2285 			i = vpd[*pindex];
2286 			*pindex += 1;
2287 			j = 0;
2288 			length -= (3+i);
2289 			while (i--) {
2290 				phba->ModelDesc[j++] = vpd[(*pindex)++];
2291 				if (j == 255)
2292 					break;
2293 			}
2294 			phba->ModelDesc[j] = 0;
2295 			continue;
2296 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) {
2297 			phba->vpd_flag |= VPD_MODEL_NAME;
2298 			*pindex += 2;
2299 			i = vpd[*pindex];
2300 			*pindex += 1;
2301 			j = 0;
2302 			length -= (3+i);
2303 			while (i--) {
2304 				phba->ModelName[j++] = vpd[(*pindex)++];
2305 				if (j == 79)
2306 					break;
2307 			}
2308 			phba->ModelName[j] = 0;
2309 			continue;
2310 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) {
2311 			phba->vpd_flag |= VPD_PROGRAM_TYPE;
2312 			*pindex += 2;
2313 			i = vpd[*pindex];
2314 			*pindex += 1;
2315 			j = 0;
2316 			length -= (3+i);
2317 			while (i--) {
2318 				phba->ProgramType[j++] = vpd[(*pindex)++];
2319 				if (j == 255)
2320 					break;
2321 			}
2322 			phba->ProgramType[j] = 0;
2323 			continue;
2324 		} else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) {
2325 			phba->vpd_flag |= VPD_PORT;
2326 			*pindex += 2;
2327 			i = vpd[*pindex];
2328 			*pindex += 1;
2329 			j = 0;
2330 			length -= (3 + i);
2331 			while (i--) {
2332 				if ((phba->sli_rev == LPFC_SLI_REV4) &&
2333 				    (phba->sli4_hba.pport_name_sta ==
2334 				     LPFC_SLI4_PPNAME_GET)) {
2335 					j++;
2336 					(*pindex)++;
2337 				} else
2338 					phba->Port[j++] = vpd[(*pindex)++];
2339 				if (j == 19)
2340 					break;
2341 			}
2342 			if ((phba->sli_rev != LPFC_SLI_REV4) ||
2343 			    (phba->sli4_hba.pport_name_sta ==
2344 			     LPFC_SLI4_PPNAME_NON))
2345 				phba->Port[j] = 0;
2346 			continue;
2347 		} else {
2348 			*pindex += 2;
2349 			i = vpd[*pindex];
2350 			*pindex += 1;
2351 			*pindex += i;
2352 			length -= (3 + i);
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2359  * @phba: pointer to lpfc hba data structure.
2360  * @vpd: pointer to the vital product data.
2361  * @len: length of the vital product data in bytes.
2362  *
2363  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2364  * an array of characters. In this routine, the ModelName, ProgramType, and
2365  * ModelDesc, etc. fields of the phba data structure will be populated.
2366  *
2367  * Return codes
2368  *   0 - pointer to the VPD passed in is NULL
2369  *   1 - success
2370  **/
2371 int
2372 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2373 {
2374 	uint8_t lenlo, lenhi;
2375 	int Length;
2376 	int i;
2377 	int finished = 0;
2378 	int index = 0;
2379 
2380 	if (!vpd)
2381 		return 0;
2382 
2383 	/* Vital Product */
2384 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2385 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2386 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2387 			(uint32_t) vpd[3]);
2388 	while (!finished && (index < (len - 4))) {
2389 		switch (vpd[index]) {
2390 		case 0x82:
2391 		case 0x91:
2392 			index += 1;
2393 			lenlo = vpd[index];
2394 			index += 1;
2395 			lenhi = vpd[index];
2396 			index += 1;
2397 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2398 			index += i;
2399 			break;
2400 		case 0x90:
2401 			index += 1;
2402 			lenlo = vpd[index];
2403 			index += 1;
2404 			lenhi = vpd[index];
2405 			index += 1;
2406 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2407 			if (Length > len - index)
2408 				Length = len - index;
2409 
2410 			lpfc_fill_vpd(phba, vpd, Length, &index);
2411 			finished = 0;
2412 			break;
2413 		case 0x78:
2414 			finished = 1;
2415 			break;
2416 		default:
2417 			index ++;
2418 			break;
2419 		}
2420 	}
2421 
2422 	return(1);
2423 }
2424 
2425 /**
2426  * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description
2427  * @phba: pointer to lpfc hba data structure.
2428  * @mdp: pointer to the data structure to hold the derived model name.
2429  * @descp: pointer to the data structure to hold the derived description.
2430  *
2431  * This routine retrieves HBA's description based on its registered PCI device
2432  * ID. The @descp passed into this function points to an array of 256 chars. It
2433  * shall be returned with the model name, maximum speed, and the host bus type.
2434  * The @mdp passed into this function points to an array of 80 chars. When the
2435  * function returns, the @mdp will be filled with the model name.
2436  **/
2437 static void
2438 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2439 {
2440 	uint16_t sub_dev_id = phba->pcidev->subsystem_device;
2441 	char *model = "<Unknown>";
2442 	int tbolt = 0;
2443 
2444 	switch (sub_dev_id) {
2445 	case PCI_DEVICE_ID_CLRY_161E:
2446 		model = "161E";
2447 		break;
2448 	case PCI_DEVICE_ID_CLRY_162E:
2449 		model = "162E";
2450 		break;
2451 	case PCI_DEVICE_ID_CLRY_164E:
2452 		model = "164E";
2453 		break;
2454 	case PCI_DEVICE_ID_CLRY_161P:
2455 		model = "161P";
2456 		break;
2457 	case PCI_DEVICE_ID_CLRY_162P:
2458 		model = "162P";
2459 		break;
2460 	case PCI_DEVICE_ID_CLRY_164P:
2461 		model = "164P";
2462 		break;
2463 	case PCI_DEVICE_ID_CLRY_321E:
2464 		model = "321E";
2465 		break;
2466 	case PCI_DEVICE_ID_CLRY_322E:
2467 		model = "322E";
2468 		break;
2469 	case PCI_DEVICE_ID_CLRY_324E:
2470 		model = "324E";
2471 		break;
2472 	case PCI_DEVICE_ID_CLRY_321P:
2473 		model = "321P";
2474 		break;
2475 	case PCI_DEVICE_ID_CLRY_322P:
2476 		model = "322P";
2477 		break;
2478 	case PCI_DEVICE_ID_CLRY_324P:
2479 		model = "324P";
2480 		break;
2481 	case PCI_DEVICE_ID_TLFC_2XX2:
2482 		model = "2XX2";
2483 		tbolt = 1;
2484 		break;
2485 	case PCI_DEVICE_ID_TLFC_3162:
2486 		model = "3162";
2487 		tbolt = 1;
2488 		break;
2489 	case PCI_DEVICE_ID_TLFC_3322:
2490 		model = "3322";
2491 		tbolt = 1;
2492 		break;
2493 	default:
2494 		model = "Unknown";
2495 		break;
2496 	}
2497 
2498 	if (mdp && mdp[0] == '\0')
2499 		snprintf(mdp, 79, "%s", model);
2500 
2501 	if (descp && descp[0] == '\0')
2502 		snprintf(descp, 255,
2503 			 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s",
2504 			 (tbolt) ? "ThunderLink FC " : "Celerity FC-",
2505 			 model,
2506 			 phba->Port);
2507 }
2508 
2509 /**
2510  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2511  * @phba: pointer to lpfc hba data structure.
2512  * @mdp: pointer to the data structure to hold the derived model name.
2513  * @descp: pointer to the data structure to hold the derived description.
2514  *
2515  * This routine retrieves HBA's description based on its registered PCI device
2516  * ID. The @descp passed into this function points to an array of 256 chars. It
2517  * shall be returned with the model name, maximum speed, and the host bus type.
2518  * The @mdp passed into this function points to an array of 80 chars. When the
2519  * function returns, the @mdp will be filled with the model name.
2520  **/
2521 static void
2522 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2523 {
2524 	lpfc_vpd_t *vp;
2525 	uint16_t dev_id = phba->pcidev->device;
2526 	int max_speed;
2527 	int GE = 0;
2528 	int oneConnect = 0; /* default is not a oneConnect */
2529 	struct {
2530 		char *name;
2531 		char *bus;
2532 		char *function;
2533 	} m = {"<Unknown>", "", ""};
2534 
2535 	if (mdp && mdp[0] != '\0'
2536 		&& descp && descp[0] != '\0')
2537 		return;
2538 
2539 	if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) {
2540 		lpfc_get_atto_model_desc(phba, mdp, descp);
2541 		return;
2542 	}
2543 
2544 	if (phba->lmt & LMT_64Gb)
2545 		max_speed = 64;
2546 	else if (phba->lmt & LMT_32Gb)
2547 		max_speed = 32;
2548 	else if (phba->lmt & LMT_16Gb)
2549 		max_speed = 16;
2550 	else if (phba->lmt & LMT_10Gb)
2551 		max_speed = 10;
2552 	else if (phba->lmt & LMT_8Gb)
2553 		max_speed = 8;
2554 	else if (phba->lmt & LMT_4Gb)
2555 		max_speed = 4;
2556 	else if (phba->lmt & LMT_2Gb)
2557 		max_speed = 2;
2558 	else if (phba->lmt & LMT_1Gb)
2559 		max_speed = 1;
2560 	else
2561 		max_speed = 0;
2562 
2563 	vp = &phba->vpd;
2564 
2565 	switch (dev_id) {
2566 	case PCI_DEVICE_ID_FIREFLY:
2567 		m = (typeof(m)){"LP6000", "PCI",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_SUPERFLY:
2571 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2572 			m = (typeof(m)){"LP7000", "PCI", ""};
2573 		else
2574 			m = (typeof(m)){"LP7000E", "PCI", ""};
2575 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2576 		break;
2577 	case PCI_DEVICE_ID_DRAGONFLY:
2578 		m = (typeof(m)){"LP8000", "PCI",
2579 				"Obsolete, Unsupported Fibre Channel Adapter"};
2580 		break;
2581 	case PCI_DEVICE_ID_CENTAUR:
2582 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2583 			m = (typeof(m)){"LP9002", "PCI", ""};
2584 		else
2585 			m = (typeof(m)){"LP9000", "PCI", ""};
2586 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2587 		break;
2588 	case PCI_DEVICE_ID_RFLY:
2589 		m = (typeof(m)){"LP952", "PCI",
2590 				"Obsolete, Unsupported Fibre Channel Adapter"};
2591 		break;
2592 	case PCI_DEVICE_ID_PEGASUS:
2593 		m = (typeof(m)){"LP9802", "PCI-X",
2594 				"Obsolete, Unsupported Fibre Channel Adapter"};
2595 		break;
2596 	case PCI_DEVICE_ID_THOR:
2597 		m = (typeof(m)){"LP10000", "PCI-X",
2598 				"Obsolete, Unsupported Fibre Channel Adapter"};
2599 		break;
2600 	case PCI_DEVICE_ID_VIPER:
2601 		m = (typeof(m)){"LPX1000",  "PCI-X",
2602 				"Obsolete, Unsupported Fibre Channel Adapter"};
2603 		break;
2604 	case PCI_DEVICE_ID_PFLY:
2605 		m = (typeof(m)){"LP982", "PCI-X",
2606 				"Obsolete, Unsupported Fibre Channel Adapter"};
2607 		break;
2608 	case PCI_DEVICE_ID_TFLY:
2609 		m = (typeof(m)){"LP1050", "PCI-X",
2610 				"Obsolete, Unsupported Fibre Channel Adapter"};
2611 		break;
2612 	case PCI_DEVICE_ID_HELIOS:
2613 		m = (typeof(m)){"LP11000", "PCI-X2",
2614 				"Obsolete, Unsupported Fibre Channel Adapter"};
2615 		break;
2616 	case PCI_DEVICE_ID_HELIOS_SCSP:
2617 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2618 				"Obsolete, Unsupported Fibre Channel Adapter"};
2619 		break;
2620 	case PCI_DEVICE_ID_HELIOS_DCSP:
2621 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2622 				"Obsolete, Unsupported Fibre Channel Adapter"};
2623 		break;
2624 	case PCI_DEVICE_ID_NEPTUNE:
2625 		m = (typeof(m)){"LPe1000", "PCIe",
2626 				"Obsolete, Unsupported Fibre Channel Adapter"};
2627 		break;
2628 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2629 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2630 				"Obsolete, Unsupported Fibre Channel Adapter"};
2631 		break;
2632 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2633 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2634 				"Obsolete, Unsupported Fibre Channel Adapter"};
2635 		break;
2636 	case PCI_DEVICE_ID_BMID:
2637 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2638 		break;
2639 	case PCI_DEVICE_ID_BSMB:
2640 		m = (typeof(m)){"LP111", "PCI-X2",
2641 				"Obsolete, Unsupported Fibre Channel Adapter"};
2642 		break;
2643 	case PCI_DEVICE_ID_ZEPHYR:
2644 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2645 		break;
2646 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2647 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2648 		break;
2649 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2650 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2651 		GE = 1;
2652 		break;
2653 	case PCI_DEVICE_ID_ZMID:
2654 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2655 		break;
2656 	case PCI_DEVICE_ID_ZSMB:
2657 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2658 		break;
2659 	case PCI_DEVICE_ID_LP101:
2660 		m = (typeof(m)){"LP101", "PCI-X",
2661 				"Obsolete, Unsupported Fibre Channel Adapter"};
2662 		break;
2663 	case PCI_DEVICE_ID_LP10000S:
2664 		m = (typeof(m)){"LP10000-S", "PCI",
2665 				"Obsolete, Unsupported Fibre Channel Adapter"};
2666 		break;
2667 	case PCI_DEVICE_ID_LP11000S:
2668 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2669 				"Obsolete, Unsupported Fibre Channel Adapter"};
2670 		break;
2671 	case PCI_DEVICE_ID_LPE11000S:
2672 		m = (typeof(m)){"LPe11000-S", "PCIe",
2673 				"Obsolete, Unsupported Fibre Channel Adapter"};
2674 		break;
2675 	case PCI_DEVICE_ID_SAT:
2676 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2677 		break;
2678 	case PCI_DEVICE_ID_SAT_MID:
2679 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2680 		break;
2681 	case PCI_DEVICE_ID_SAT_SMB:
2682 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2683 		break;
2684 	case PCI_DEVICE_ID_SAT_DCSP:
2685 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2686 		break;
2687 	case PCI_DEVICE_ID_SAT_SCSP:
2688 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2689 		break;
2690 	case PCI_DEVICE_ID_SAT_S:
2691 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2692 		break;
2693 	case PCI_DEVICE_ID_PROTEUS_VF:
2694 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2695 				"Obsolete, Unsupported Fibre Channel Adapter"};
2696 		break;
2697 	case PCI_DEVICE_ID_PROTEUS_PF:
2698 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2699 				"Obsolete, Unsupported Fibre Channel Adapter"};
2700 		break;
2701 	case PCI_DEVICE_ID_PROTEUS_S:
2702 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2703 				"Obsolete, Unsupported Fibre Channel Adapter"};
2704 		break;
2705 	case PCI_DEVICE_ID_TIGERSHARK:
2706 		oneConnect = 1;
2707 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2708 		break;
2709 	case PCI_DEVICE_ID_TOMCAT:
2710 		oneConnect = 1;
2711 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2712 		break;
2713 	case PCI_DEVICE_ID_FALCON:
2714 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2715 				"EmulexSecure Fibre"};
2716 		break;
2717 	case PCI_DEVICE_ID_BALIUS:
2718 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2719 				"Obsolete, Unsupported Fibre Channel Adapter"};
2720 		break;
2721 	case PCI_DEVICE_ID_LANCER_FC:
2722 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2723 		break;
2724 	case PCI_DEVICE_ID_LANCER_FC_VF:
2725 		m = (typeof(m)){"LPe16000", "PCIe",
2726 				"Obsolete, Unsupported Fibre Channel Adapter"};
2727 		break;
2728 	case PCI_DEVICE_ID_LANCER_FCOE:
2729 		oneConnect = 1;
2730 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2731 		break;
2732 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2733 		oneConnect = 1;
2734 		m = (typeof(m)){"OCe15100", "PCIe",
2735 				"Obsolete, Unsupported FCoE"};
2736 		break;
2737 	case PCI_DEVICE_ID_LANCER_G6_FC:
2738 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2739 		break;
2740 	case PCI_DEVICE_ID_LANCER_G7_FC:
2741 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2742 		break;
2743 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2744 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2745 		break;
2746 	case PCI_DEVICE_ID_SKYHAWK:
2747 	case PCI_DEVICE_ID_SKYHAWK_VF:
2748 		oneConnect = 1;
2749 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2750 		break;
2751 	default:
2752 		m = (typeof(m)){"Unknown", "", ""};
2753 		break;
2754 	}
2755 
2756 	if (mdp && mdp[0] == '\0')
2757 		snprintf(mdp, 79,"%s", m.name);
2758 	/*
2759 	 * oneConnect hba requires special processing, they are all initiators
2760 	 * and we put the port number on the end
2761 	 */
2762 	if (descp && descp[0] == '\0') {
2763 		if (oneConnect)
2764 			snprintf(descp, 255,
2765 				"Emulex OneConnect %s, %s Initiator %s",
2766 				m.name, m.function,
2767 				phba->Port);
2768 		else if (max_speed == 0)
2769 			snprintf(descp, 255,
2770 				"Emulex %s %s %s",
2771 				m.name, m.bus, m.function);
2772 		else
2773 			snprintf(descp, 255,
2774 				"Emulex %s %d%s %s %s",
2775 				m.name, max_speed, (GE) ? "GE" : "Gb",
2776 				m.bus, m.function);
2777 	}
2778 }
2779 
2780 /**
2781  * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2782  * @phba: pointer to lpfc hba data structure.
2783  * @pring: pointer to a IOCB ring.
2784  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2785  *
2786  * This routine posts a given number of IOCBs with the associated DMA buffer
2787  * descriptors specified by the cnt argument to the given IOCB ring.
2788  *
2789  * Return codes
2790  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2791  **/
2792 int
2793 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2794 {
2795 	IOCB_t *icmd;
2796 	struct lpfc_iocbq *iocb;
2797 	struct lpfc_dmabuf *mp1, *mp2;
2798 
2799 	cnt += pring->missbufcnt;
2800 
2801 	/* While there are buffers to post */
2802 	while (cnt > 0) {
2803 		/* Allocate buffer for  command iocb */
2804 		iocb = lpfc_sli_get_iocbq(phba);
2805 		if (iocb == NULL) {
2806 			pring->missbufcnt = cnt;
2807 			return cnt;
2808 		}
2809 		icmd = &iocb->iocb;
2810 
2811 		/* 2 buffers can be posted per command */
2812 		/* Allocate buffer to post */
2813 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2814 		if (mp1)
2815 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2816 		if (!mp1 || !mp1->virt) {
2817 			kfree(mp1);
2818 			lpfc_sli_release_iocbq(phba, iocb);
2819 			pring->missbufcnt = cnt;
2820 			return cnt;
2821 		}
2822 
2823 		INIT_LIST_HEAD(&mp1->list);
2824 		/* Allocate buffer to post */
2825 		if (cnt > 1) {
2826 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2827 			if (mp2)
2828 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2829 							    &mp2->phys);
2830 			if (!mp2 || !mp2->virt) {
2831 				kfree(mp2);
2832 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2833 				kfree(mp1);
2834 				lpfc_sli_release_iocbq(phba, iocb);
2835 				pring->missbufcnt = cnt;
2836 				return cnt;
2837 			}
2838 
2839 			INIT_LIST_HEAD(&mp2->list);
2840 		} else {
2841 			mp2 = NULL;
2842 		}
2843 
2844 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2845 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2846 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2847 		icmd->ulpBdeCount = 1;
2848 		cnt--;
2849 		if (mp2) {
2850 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2851 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2852 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2853 			cnt--;
2854 			icmd->ulpBdeCount = 2;
2855 		}
2856 
2857 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2858 		icmd->ulpLe = 1;
2859 
2860 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2861 		    IOCB_ERROR) {
2862 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2863 			kfree(mp1);
2864 			cnt++;
2865 			if (mp2) {
2866 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2867 				kfree(mp2);
2868 				cnt++;
2869 			}
2870 			lpfc_sli_release_iocbq(phba, iocb);
2871 			pring->missbufcnt = cnt;
2872 			return cnt;
2873 		}
2874 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2875 		if (mp2)
2876 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2877 	}
2878 	pring->missbufcnt = 0;
2879 	return 0;
2880 }
2881 
2882 /**
2883  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2884  * @phba: pointer to lpfc hba data structure.
2885  *
2886  * This routine posts initial receive IOCB buffers to the ELS ring. The
2887  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2888  * set to 64 IOCBs. SLI3 only.
2889  *
2890  * Return codes
2891  *   0 - success (currently always success)
2892  **/
2893 static int
2894 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2895 {
2896 	struct lpfc_sli *psli = &phba->sli;
2897 
2898 	/* Ring 0, ELS / CT buffers */
2899 	lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2900 	/* Ring 2 - FCP no buffers needed */
2901 
2902 	return 0;
2903 }
2904 
2905 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2906 
2907 /**
2908  * lpfc_sha_init - Set up initial array of hash table entries
2909  * @HashResultPointer: pointer to an array as hash table.
2910  *
2911  * This routine sets up the initial values to the array of hash table entries
2912  * for the LC HBAs.
2913  **/
2914 static void
2915 lpfc_sha_init(uint32_t * HashResultPointer)
2916 {
2917 	HashResultPointer[0] = 0x67452301;
2918 	HashResultPointer[1] = 0xEFCDAB89;
2919 	HashResultPointer[2] = 0x98BADCFE;
2920 	HashResultPointer[3] = 0x10325476;
2921 	HashResultPointer[4] = 0xC3D2E1F0;
2922 }
2923 
2924 /**
2925  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2926  * @HashResultPointer: pointer to an initial/result hash table.
2927  * @HashWorkingPointer: pointer to an working hash table.
2928  *
2929  * This routine iterates an initial hash table pointed by @HashResultPointer
2930  * with the values from the working hash table pointeed by @HashWorkingPointer.
2931  * The results are putting back to the initial hash table, returned through
2932  * the @HashResultPointer as the result hash table.
2933  **/
2934 static void
2935 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2936 {
2937 	int t;
2938 	uint32_t TEMP;
2939 	uint32_t A, B, C, D, E;
2940 	t = 16;
2941 	do {
2942 		HashWorkingPointer[t] =
2943 		    S(1,
2944 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2945 								     8] ^
2946 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2947 	} while (++t <= 79);
2948 	t = 0;
2949 	A = HashResultPointer[0];
2950 	B = HashResultPointer[1];
2951 	C = HashResultPointer[2];
2952 	D = HashResultPointer[3];
2953 	E = HashResultPointer[4];
2954 
2955 	do {
2956 		if (t < 20) {
2957 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2958 		} else if (t < 40) {
2959 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2960 		} else if (t < 60) {
2961 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2962 		} else {
2963 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2964 		}
2965 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2966 		E = D;
2967 		D = C;
2968 		C = S(30, B);
2969 		B = A;
2970 		A = TEMP;
2971 	} while (++t <= 79);
2972 
2973 	HashResultPointer[0] += A;
2974 	HashResultPointer[1] += B;
2975 	HashResultPointer[2] += C;
2976 	HashResultPointer[3] += D;
2977 	HashResultPointer[4] += E;
2978 
2979 }
2980 
2981 /**
2982  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2983  * @RandomChallenge: pointer to the entry of host challenge random number array.
2984  * @HashWorking: pointer to the entry of the working hash array.
2985  *
2986  * This routine calculates the working hash array referred by @HashWorking
2987  * from the challenge random numbers associated with the host, referred by
2988  * @RandomChallenge. The result is put into the entry of the working hash
2989  * array and returned by reference through @HashWorking.
2990  **/
2991 static void
2992 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2993 {
2994 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2995 }
2996 
2997 /**
2998  * lpfc_hba_init - Perform special handling for LC HBA initialization
2999  * @phba: pointer to lpfc hba data structure.
3000  * @hbainit: pointer to an array of unsigned 32-bit integers.
3001  *
3002  * This routine performs the special handling for LC HBA initialization.
3003  **/
3004 void
3005 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
3006 {
3007 	int t;
3008 	uint32_t *HashWorking;
3009 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
3010 
3011 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
3012 	if (!HashWorking)
3013 		return;
3014 
3015 	HashWorking[0] = HashWorking[78] = *pwwnn++;
3016 	HashWorking[1] = HashWorking[79] = *pwwnn;
3017 
3018 	for (t = 0; t < 7; t++)
3019 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
3020 
3021 	lpfc_sha_init(hbainit);
3022 	lpfc_sha_iterate(hbainit, HashWorking);
3023 	kfree(HashWorking);
3024 }
3025 
3026 /**
3027  * lpfc_cleanup - Performs vport cleanups before deleting a vport
3028  * @vport: pointer to a virtual N_Port data structure.
3029  *
3030  * This routine performs the necessary cleanups before deleting the @vport.
3031  * It invokes the discovery state machine to perform necessary state
3032  * transitions and to release the ndlps associated with the @vport. Note,
3033  * the physical port is treated as @vport 0.
3034  **/
3035 void
3036 lpfc_cleanup(struct lpfc_vport *vport)
3037 {
3038 	struct lpfc_hba   *phba = vport->phba;
3039 	struct lpfc_nodelist *ndlp, *next_ndlp;
3040 	int i = 0;
3041 
3042 	if (phba->link_state > LPFC_LINK_DOWN)
3043 		lpfc_port_link_failure(vport);
3044 
3045 	/* Clean up VMID resources */
3046 	if (lpfc_is_vmid_enabled(phba))
3047 		lpfc_vmid_vport_cleanup(vport);
3048 
3049 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
3050 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
3051 		    ndlp->nlp_DID == Fabric_DID) {
3052 			/* Just free up ndlp with Fabric_DID for vports */
3053 			lpfc_nlp_put(ndlp);
3054 			continue;
3055 		}
3056 
3057 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
3058 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
3059 			lpfc_nlp_put(ndlp);
3060 			continue;
3061 		}
3062 
3063 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
3064 		 * DEVICE_RM event.
3065 		 */
3066 		if (ndlp->nlp_type & NLP_FABRIC &&
3067 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
3068 			lpfc_disc_state_machine(vport, ndlp, NULL,
3069 					NLP_EVT_DEVICE_RECOVERY);
3070 
3071 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
3072 			lpfc_disc_state_machine(vport, ndlp, NULL,
3073 					NLP_EVT_DEVICE_RM);
3074 	}
3075 
3076 	/* This is a special case flush to return all
3077 	 * IOs before entering this loop. There are
3078 	 * two points in the code where a flush is
3079 	 * avoided if the FC_UNLOADING flag is set.
3080 	 * one is in the multipool destroy,
3081 	 * (this prevents a crash) and the other is
3082 	 * in the nvme abort handler, ( also prevents
3083 	 * a crash). Both of these exceptions are
3084 	 * cases where the slot is still accessible.
3085 	 * The flush here is only when the pci slot
3086 	 * is offline.
3087 	 */
3088 	if (vport->load_flag & FC_UNLOADING &&
3089 	    pci_channel_offline(phba->pcidev))
3090 		lpfc_sli_flush_io_rings(vport->phba);
3091 
3092 	/* At this point, ALL ndlp's should be gone
3093 	 * because of the previous NLP_EVT_DEVICE_RM.
3094 	 * Lets wait for this to happen, if needed.
3095 	 */
3096 	while (!list_empty(&vport->fc_nodes)) {
3097 		if (i++ > 3000) {
3098 			lpfc_printf_vlog(vport, KERN_ERR,
3099 					 LOG_TRACE_EVENT,
3100 				"0233 Nodelist not empty\n");
3101 			list_for_each_entry_safe(ndlp, next_ndlp,
3102 						&vport->fc_nodes, nlp_listp) {
3103 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
3104 						 LOG_DISCOVERY,
3105 						 "0282 did:x%x ndlp:x%px "
3106 						 "refcnt:%d xflags x%x nflag x%x\n",
3107 						 ndlp->nlp_DID, (void *)ndlp,
3108 						 kref_read(&ndlp->kref),
3109 						 ndlp->fc4_xpt_flags,
3110 						 ndlp->nlp_flag);
3111 			}
3112 			break;
3113 		}
3114 
3115 		/* Wait for any activity on ndlps to settle */
3116 		msleep(10);
3117 	}
3118 	lpfc_cleanup_vports_rrqs(vport, NULL);
3119 }
3120 
3121 /**
3122  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
3123  * @vport: pointer to a virtual N_Port data structure.
3124  *
3125  * This routine stops all the timers associated with a @vport. This function
3126  * is invoked before disabling or deleting a @vport. Note that the physical
3127  * port is treated as @vport 0.
3128  **/
3129 void
3130 lpfc_stop_vport_timers(struct lpfc_vport *vport)
3131 {
3132 	del_timer_sync(&vport->els_tmofunc);
3133 	del_timer_sync(&vport->delayed_disc_tmo);
3134 	lpfc_can_disctmo(vport);
3135 	return;
3136 }
3137 
3138 /**
3139  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3140  * @phba: pointer to lpfc hba data structure.
3141  *
3142  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
3143  * caller of this routine should already hold the host lock.
3144  **/
3145 void
3146 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3147 {
3148 	/* Clear pending FCF rediscovery wait flag */
3149 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
3150 
3151 	/* Now, try to stop the timer */
3152 	del_timer(&phba->fcf.redisc_wait);
3153 }
3154 
3155 /**
3156  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3157  * @phba: pointer to lpfc hba data structure.
3158  *
3159  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3160  * checks whether the FCF rediscovery wait timer is pending with the host
3161  * lock held before proceeding with disabling the timer and clearing the
3162  * wait timer pendig flag.
3163  **/
3164 void
3165 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3166 {
3167 	spin_lock_irq(&phba->hbalock);
3168 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3169 		/* FCF rediscovery timer already fired or stopped */
3170 		spin_unlock_irq(&phba->hbalock);
3171 		return;
3172 	}
3173 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3174 	/* Clear failover in progress flags */
3175 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3176 	spin_unlock_irq(&phba->hbalock);
3177 }
3178 
3179 /**
3180  * lpfc_cmf_stop - Stop CMF processing
3181  * @phba: pointer to lpfc hba data structure.
3182  *
3183  * This is called when the link goes down or if CMF mode is turned OFF.
3184  * It is also called when going offline or unloaded just before the
3185  * congestion info buffer is unregistered.
3186  **/
3187 void
3188 lpfc_cmf_stop(struct lpfc_hba *phba)
3189 {
3190 	int cpu;
3191 	struct lpfc_cgn_stat *cgs;
3192 
3193 	/* We only do something if CMF is enabled */
3194 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3195 		return;
3196 
3197 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3198 			"6221 Stop CMF / Cancel Timer\n");
3199 
3200 	/* Cancel the CMF timer */
3201 	hrtimer_cancel(&phba->cmf_stats_timer);
3202 	hrtimer_cancel(&phba->cmf_timer);
3203 
3204 	/* Zero CMF counters */
3205 	atomic_set(&phba->cmf_busy, 0);
3206 	for_each_present_cpu(cpu) {
3207 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3208 		atomic64_set(&cgs->total_bytes, 0);
3209 		atomic64_set(&cgs->rcv_bytes, 0);
3210 		atomic_set(&cgs->rx_io_cnt, 0);
3211 		atomic64_set(&cgs->rx_latency, 0);
3212 	}
3213 	atomic_set(&phba->cmf_bw_wait, 0);
3214 
3215 	/* Resume any blocked IO - Queue unblock on workqueue */
3216 	queue_work(phba->wq, &phba->unblock_request_work);
3217 }
3218 
3219 static inline uint64_t
3220 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3221 {
3222 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3223 
3224 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3225 }
3226 
3227 void
3228 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3229 {
3230 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3231 			"6223 Signal CMF init\n");
3232 
3233 	/* Use the new fc_linkspeed to recalculate */
3234 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3235 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3236 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3237 					    phba->cmf_interval_rate, 1000);
3238 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3239 
3240 	/* This is a signal to firmware to sync up CMF BW with link speed */
3241 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3242 }
3243 
3244 /**
3245  * lpfc_cmf_start - Start CMF processing
3246  * @phba: pointer to lpfc hba data structure.
3247  *
3248  * This is called when the link comes up or if CMF mode is turned OFF
3249  * to Monitor or Managed.
3250  **/
3251 void
3252 lpfc_cmf_start(struct lpfc_hba *phba)
3253 {
3254 	struct lpfc_cgn_stat *cgs;
3255 	int cpu;
3256 
3257 	/* We only do something if CMF is enabled */
3258 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3259 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3260 		return;
3261 
3262 	/* Reinitialize congestion buffer info */
3263 	lpfc_init_congestion_buf(phba);
3264 
3265 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3266 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3267 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3268 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3269 
3270 	atomic_set(&phba->cmf_busy, 0);
3271 	for_each_present_cpu(cpu) {
3272 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3273 		atomic64_set(&cgs->total_bytes, 0);
3274 		atomic64_set(&cgs->rcv_bytes, 0);
3275 		atomic_set(&cgs->rx_io_cnt, 0);
3276 		atomic64_set(&cgs->rx_latency, 0);
3277 	}
3278 	phba->cmf_latency.tv_sec = 0;
3279 	phba->cmf_latency.tv_nsec = 0;
3280 
3281 	lpfc_cmf_signal_init(phba);
3282 
3283 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3284 			"6222 Start CMF / Timer\n");
3285 
3286 	phba->cmf_timer_cnt = 0;
3287 	hrtimer_start(&phba->cmf_timer,
3288 		      ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC),
3289 		      HRTIMER_MODE_REL);
3290 	hrtimer_start(&phba->cmf_stats_timer,
3291 		      ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC),
3292 		      HRTIMER_MODE_REL);
3293 	/* Setup for latency check in IO cmpl routines */
3294 	ktime_get_real_ts64(&phba->cmf_latency);
3295 
3296 	atomic_set(&phba->cmf_bw_wait, 0);
3297 	atomic_set(&phba->cmf_stop_io, 0);
3298 }
3299 
3300 /**
3301  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3302  * @phba: pointer to lpfc hba data structure.
3303  *
3304  * This routine stops all the timers associated with a HBA. This function is
3305  * invoked before either putting a HBA offline or unloading the driver.
3306  **/
3307 void
3308 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3309 {
3310 	if (phba->pport)
3311 		lpfc_stop_vport_timers(phba->pport);
3312 	cancel_delayed_work_sync(&phba->eq_delay_work);
3313 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3314 	del_timer_sync(&phba->sli.mbox_tmo);
3315 	del_timer_sync(&phba->fabric_block_timer);
3316 	del_timer_sync(&phba->eratt_poll);
3317 	del_timer_sync(&phba->hb_tmofunc);
3318 	if (phba->sli_rev == LPFC_SLI_REV4) {
3319 		del_timer_sync(&phba->rrq_tmr);
3320 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3321 	}
3322 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3323 
3324 	switch (phba->pci_dev_grp) {
3325 	case LPFC_PCI_DEV_LP:
3326 		/* Stop any LightPulse device specific driver timers */
3327 		del_timer_sync(&phba->fcp_poll_timer);
3328 		break;
3329 	case LPFC_PCI_DEV_OC:
3330 		/* Stop any OneConnect device specific driver timers */
3331 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3332 		break;
3333 	default:
3334 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3335 				"0297 Invalid device group (x%x)\n",
3336 				phba->pci_dev_grp);
3337 		break;
3338 	}
3339 	return;
3340 }
3341 
3342 /**
3343  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3344  * @phba: pointer to lpfc hba data structure.
3345  * @mbx_action: flag for mailbox no wait action.
3346  *
3347  * This routine marks a HBA's management interface as blocked. Once the HBA's
3348  * management interface is marked as blocked, all the user space access to
3349  * the HBA, whether they are from sysfs interface or libdfc interface will
3350  * all be blocked. The HBA is set to block the management interface when the
3351  * driver prepares the HBA interface for online or offline.
3352  **/
3353 static void
3354 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3355 {
3356 	unsigned long iflag;
3357 	uint8_t actcmd = MBX_HEARTBEAT;
3358 	unsigned long timeout;
3359 
3360 	spin_lock_irqsave(&phba->hbalock, iflag);
3361 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3362 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3363 	if (mbx_action == LPFC_MBX_NO_WAIT)
3364 		return;
3365 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3366 	spin_lock_irqsave(&phba->hbalock, iflag);
3367 	if (phba->sli.mbox_active) {
3368 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3369 		/* Determine how long we might wait for the active mailbox
3370 		 * command to be gracefully completed by firmware.
3371 		 */
3372 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3373 				phba->sli.mbox_active) * 1000) + jiffies;
3374 	}
3375 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3376 
3377 	/* Wait for the outstnading mailbox command to complete */
3378 	while (phba->sli.mbox_active) {
3379 		/* Check active mailbox complete status every 2ms */
3380 		msleep(2);
3381 		if (time_after(jiffies, timeout)) {
3382 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3383 					"2813 Mgmt IO is Blocked %x "
3384 					"- mbox cmd %x still active\n",
3385 					phba->sli.sli_flag, actcmd);
3386 			break;
3387 		}
3388 	}
3389 }
3390 
3391 /**
3392  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3393  * @phba: pointer to lpfc hba data structure.
3394  *
3395  * Allocate RPIs for all active remote nodes. This is needed whenever
3396  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3397  * is to fixup the temporary rpi assignments.
3398  **/
3399 void
3400 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3401 {
3402 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3403 	struct lpfc_vport **vports;
3404 	int i, rpi;
3405 
3406 	if (phba->sli_rev != LPFC_SLI_REV4)
3407 		return;
3408 
3409 	vports = lpfc_create_vport_work_array(phba);
3410 	if (vports == NULL)
3411 		return;
3412 
3413 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3414 		if (vports[i]->load_flag & FC_UNLOADING)
3415 			continue;
3416 
3417 		list_for_each_entry_safe(ndlp, next_ndlp,
3418 					 &vports[i]->fc_nodes,
3419 					 nlp_listp) {
3420 			rpi = lpfc_sli4_alloc_rpi(phba);
3421 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3422 				/* TODO print log? */
3423 				continue;
3424 			}
3425 			ndlp->nlp_rpi = rpi;
3426 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3427 					 LOG_NODE | LOG_DISCOVERY,
3428 					 "0009 Assign RPI x%x to ndlp x%px "
3429 					 "DID:x%06x flg:x%x\n",
3430 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3431 					 ndlp->nlp_flag);
3432 		}
3433 	}
3434 	lpfc_destroy_vport_work_array(phba, vports);
3435 }
3436 
3437 /**
3438  * lpfc_create_expedite_pool - create expedite pool
3439  * @phba: pointer to lpfc hba data structure.
3440  *
3441  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3442  * to expedite pool. Mark them as expedite.
3443  **/
3444 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3445 {
3446 	struct lpfc_sli4_hdw_queue *qp;
3447 	struct lpfc_io_buf *lpfc_ncmd;
3448 	struct lpfc_io_buf *lpfc_ncmd_next;
3449 	struct lpfc_epd_pool *epd_pool;
3450 	unsigned long iflag;
3451 
3452 	epd_pool = &phba->epd_pool;
3453 	qp = &phba->sli4_hba.hdwq[0];
3454 
3455 	spin_lock_init(&epd_pool->lock);
3456 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3457 	spin_lock(&epd_pool->lock);
3458 	INIT_LIST_HEAD(&epd_pool->list);
3459 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3460 				 &qp->lpfc_io_buf_list_put, list) {
3461 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3462 		lpfc_ncmd->expedite = true;
3463 		qp->put_io_bufs--;
3464 		epd_pool->count++;
3465 		if (epd_pool->count >= XRI_BATCH)
3466 			break;
3467 	}
3468 	spin_unlock(&epd_pool->lock);
3469 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3470 }
3471 
3472 /**
3473  * lpfc_destroy_expedite_pool - destroy expedite pool
3474  * @phba: pointer to lpfc hba data structure.
3475  *
3476  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3477  * of HWQ 0. Clear the mark.
3478  **/
3479 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3480 {
3481 	struct lpfc_sli4_hdw_queue *qp;
3482 	struct lpfc_io_buf *lpfc_ncmd;
3483 	struct lpfc_io_buf *lpfc_ncmd_next;
3484 	struct lpfc_epd_pool *epd_pool;
3485 	unsigned long iflag;
3486 
3487 	epd_pool = &phba->epd_pool;
3488 	qp = &phba->sli4_hba.hdwq[0];
3489 
3490 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3491 	spin_lock(&epd_pool->lock);
3492 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3493 				 &epd_pool->list, list) {
3494 		list_move_tail(&lpfc_ncmd->list,
3495 			       &qp->lpfc_io_buf_list_put);
3496 		lpfc_ncmd->flags = false;
3497 		qp->put_io_bufs++;
3498 		epd_pool->count--;
3499 	}
3500 	spin_unlock(&epd_pool->lock);
3501 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3502 }
3503 
3504 /**
3505  * lpfc_create_multixri_pools - create multi-XRI pools
3506  * @phba: pointer to lpfc hba data structure.
3507  *
3508  * This routine initialize public, private per HWQ. Then, move XRIs from
3509  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3510  * Initialized.
3511  **/
3512 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3513 {
3514 	u32 i, j;
3515 	u32 hwq_count;
3516 	u32 count_per_hwq;
3517 	struct lpfc_io_buf *lpfc_ncmd;
3518 	struct lpfc_io_buf *lpfc_ncmd_next;
3519 	unsigned long iflag;
3520 	struct lpfc_sli4_hdw_queue *qp;
3521 	struct lpfc_multixri_pool *multixri_pool;
3522 	struct lpfc_pbl_pool *pbl_pool;
3523 	struct lpfc_pvt_pool *pvt_pool;
3524 
3525 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3526 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3527 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3528 			phba->sli4_hba.io_xri_cnt);
3529 
3530 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3531 		lpfc_create_expedite_pool(phba);
3532 
3533 	hwq_count = phba->cfg_hdw_queue;
3534 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3535 
3536 	for (i = 0; i < hwq_count; i++) {
3537 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3538 
3539 		if (!multixri_pool) {
3540 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3541 					"1238 Failed to allocate memory for "
3542 					"multixri_pool\n");
3543 
3544 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3545 				lpfc_destroy_expedite_pool(phba);
3546 
3547 			j = 0;
3548 			while (j < i) {
3549 				qp = &phba->sli4_hba.hdwq[j];
3550 				kfree(qp->p_multixri_pool);
3551 				j++;
3552 			}
3553 			phba->cfg_xri_rebalancing = 0;
3554 			return;
3555 		}
3556 
3557 		qp = &phba->sli4_hba.hdwq[i];
3558 		qp->p_multixri_pool = multixri_pool;
3559 
3560 		multixri_pool->xri_limit = count_per_hwq;
3561 		multixri_pool->rrb_next_hwqid = i;
3562 
3563 		/* Deal with public free xri pool */
3564 		pbl_pool = &multixri_pool->pbl_pool;
3565 		spin_lock_init(&pbl_pool->lock);
3566 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3567 		spin_lock(&pbl_pool->lock);
3568 		INIT_LIST_HEAD(&pbl_pool->list);
3569 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3570 					 &qp->lpfc_io_buf_list_put, list) {
3571 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3572 			qp->put_io_bufs--;
3573 			pbl_pool->count++;
3574 		}
3575 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3576 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3577 				pbl_pool->count, i);
3578 		spin_unlock(&pbl_pool->lock);
3579 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3580 
3581 		/* Deal with private free xri pool */
3582 		pvt_pool = &multixri_pool->pvt_pool;
3583 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3584 		pvt_pool->low_watermark = XRI_BATCH;
3585 		spin_lock_init(&pvt_pool->lock);
3586 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3587 		INIT_LIST_HEAD(&pvt_pool->list);
3588 		pvt_pool->count = 0;
3589 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3590 	}
3591 }
3592 
3593 /**
3594  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3595  * @phba: pointer to lpfc hba data structure.
3596  *
3597  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3598  **/
3599 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3600 {
3601 	u32 i;
3602 	u32 hwq_count;
3603 	struct lpfc_io_buf *lpfc_ncmd;
3604 	struct lpfc_io_buf *lpfc_ncmd_next;
3605 	unsigned long iflag;
3606 	struct lpfc_sli4_hdw_queue *qp;
3607 	struct lpfc_multixri_pool *multixri_pool;
3608 	struct lpfc_pbl_pool *pbl_pool;
3609 	struct lpfc_pvt_pool *pvt_pool;
3610 
3611 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3612 		lpfc_destroy_expedite_pool(phba);
3613 
3614 	if (!(phba->pport->load_flag & FC_UNLOADING))
3615 		lpfc_sli_flush_io_rings(phba);
3616 
3617 	hwq_count = phba->cfg_hdw_queue;
3618 
3619 	for (i = 0; i < hwq_count; i++) {
3620 		qp = &phba->sli4_hba.hdwq[i];
3621 		multixri_pool = qp->p_multixri_pool;
3622 		if (!multixri_pool)
3623 			continue;
3624 
3625 		qp->p_multixri_pool = NULL;
3626 
3627 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3628 
3629 		/* Deal with public free xri pool */
3630 		pbl_pool = &multixri_pool->pbl_pool;
3631 		spin_lock(&pbl_pool->lock);
3632 
3633 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3634 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3635 				pbl_pool->count, i);
3636 
3637 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3638 					 &pbl_pool->list, list) {
3639 			list_move_tail(&lpfc_ncmd->list,
3640 				       &qp->lpfc_io_buf_list_put);
3641 			qp->put_io_bufs++;
3642 			pbl_pool->count--;
3643 		}
3644 
3645 		INIT_LIST_HEAD(&pbl_pool->list);
3646 		pbl_pool->count = 0;
3647 
3648 		spin_unlock(&pbl_pool->lock);
3649 
3650 		/* Deal with private free xri pool */
3651 		pvt_pool = &multixri_pool->pvt_pool;
3652 		spin_lock(&pvt_pool->lock);
3653 
3654 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3655 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3656 				pvt_pool->count, i);
3657 
3658 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3659 					 &pvt_pool->list, list) {
3660 			list_move_tail(&lpfc_ncmd->list,
3661 				       &qp->lpfc_io_buf_list_put);
3662 			qp->put_io_bufs++;
3663 			pvt_pool->count--;
3664 		}
3665 
3666 		INIT_LIST_HEAD(&pvt_pool->list);
3667 		pvt_pool->count = 0;
3668 
3669 		spin_unlock(&pvt_pool->lock);
3670 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3671 
3672 		kfree(multixri_pool);
3673 	}
3674 }
3675 
3676 /**
3677  * lpfc_online - Initialize and bring a HBA online
3678  * @phba: pointer to lpfc hba data structure.
3679  *
3680  * This routine initializes the HBA and brings a HBA online. During this
3681  * process, the management interface is blocked to prevent user space access
3682  * to the HBA interfering with the driver initialization.
3683  *
3684  * Return codes
3685  *   0 - successful
3686  *   1 - failed
3687  **/
3688 int
3689 lpfc_online(struct lpfc_hba *phba)
3690 {
3691 	struct lpfc_vport *vport;
3692 	struct lpfc_vport **vports;
3693 	int i, error = 0;
3694 	bool vpis_cleared = false;
3695 
3696 	if (!phba)
3697 		return 0;
3698 	vport = phba->pport;
3699 
3700 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3701 		return 0;
3702 
3703 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3704 			"0458 Bring Adapter online\n");
3705 
3706 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3707 
3708 	if (phba->sli_rev == LPFC_SLI_REV4) {
3709 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3710 			lpfc_unblock_mgmt_io(phba);
3711 			return 1;
3712 		}
3713 		spin_lock_irq(&phba->hbalock);
3714 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3715 			vpis_cleared = true;
3716 		spin_unlock_irq(&phba->hbalock);
3717 
3718 		/* Reestablish the local initiator port.
3719 		 * The offline process destroyed the previous lport.
3720 		 */
3721 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3722 				!phba->nvmet_support) {
3723 			error = lpfc_nvme_create_localport(phba->pport);
3724 			if (error)
3725 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3726 					"6132 NVME restore reg failed "
3727 					"on nvmei error x%x\n", error);
3728 		}
3729 	} else {
3730 		lpfc_sli_queue_init(phba);
3731 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3732 			lpfc_unblock_mgmt_io(phba);
3733 			return 1;
3734 		}
3735 	}
3736 
3737 	vports = lpfc_create_vport_work_array(phba);
3738 	if (vports != NULL) {
3739 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3740 			struct Scsi_Host *shost;
3741 			shost = lpfc_shost_from_vport(vports[i]);
3742 			spin_lock_irq(shost->host_lock);
3743 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3744 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3745 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3746 			if (phba->sli_rev == LPFC_SLI_REV4) {
3747 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3748 				if ((vpis_cleared) &&
3749 				    (vports[i]->port_type !=
3750 					LPFC_PHYSICAL_PORT))
3751 					vports[i]->vpi = 0;
3752 			}
3753 			spin_unlock_irq(shost->host_lock);
3754 		}
3755 	}
3756 	lpfc_destroy_vport_work_array(phba, vports);
3757 
3758 	if (phba->cfg_xri_rebalancing)
3759 		lpfc_create_multixri_pools(phba);
3760 
3761 	lpfc_cpuhp_add(phba);
3762 
3763 	lpfc_unblock_mgmt_io(phba);
3764 	return 0;
3765 }
3766 
3767 /**
3768  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3769  * @phba: pointer to lpfc hba data structure.
3770  *
3771  * This routine marks a HBA's management interface as not blocked. Once the
3772  * HBA's management interface is marked as not blocked, all the user space
3773  * access to the HBA, whether they are from sysfs interface or libdfc
3774  * interface will be allowed. The HBA is set to block the management interface
3775  * when the driver prepares the HBA interface for online or offline and then
3776  * set to unblock the management interface afterwards.
3777  **/
3778 void
3779 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3780 {
3781 	unsigned long iflag;
3782 
3783 	spin_lock_irqsave(&phba->hbalock, iflag);
3784 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3785 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3786 }
3787 
3788 /**
3789  * lpfc_offline_prep - Prepare a HBA to be brought offline
3790  * @phba: pointer to lpfc hba data structure.
3791  * @mbx_action: flag for mailbox shutdown action.
3792  *
3793  * This routine is invoked to prepare a HBA to be brought offline. It performs
3794  * unregistration login to all the nodes on all vports and flushes the mailbox
3795  * queue to make it ready to be brought offline.
3796  **/
3797 void
3798 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3799 {
3800 	struct lpfc_vport *vport = phba->pport;
3801 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3802 	struct lpfc_vport **vports;
3803 	struct Scsi_Host *shost;
3804 	int i;
3805 	int offline;
3806 	bool hba_pci_err;
3807 
3808 	if (vport->fc_flag & FC_OFFLINE_MODE)
3809 		return;
3810 
3811 	lpfc_block_mgmt_io(phba, mbx_action);
3812 
3813 	lpfc_linkdown(phba);
3814 
3815 	offline =  pci_channel_offline(phba->pcidev);
3816 	hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags);
3817 
3818 	/* Issue an unreg_login to all nodes on all vports */
3819 	vports = lpfc_create_vport_work_array(phba);
3820 	if (vports != NULL) {
3821 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3822 			if (vports[i]->load_flag & FC_UNLOADING)
3823 				continue;
3824 			shost = lpfc_shost_from_vport(vports[i]);
3825 			spin_lock_irq(shost->host_lock);
3826 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3827 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3828 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3829 			spin_unlock_irq(shost->host_lock);
3830 
3831 			shost =	lpfc_shost_from_vport(vports[i]);
3832 			list_for_each_entry_safe(ndlp, next_ndlp,
3833 						 &vports[i]->fc_nodes,
3834 						 nlp_listp) {
3835 
3836 				spin_lock_irq(&ndlp->lock);
3837 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3838 				spin_unlock_irq(&ndlp->lock);
3839 
3840 				if (offline || hba_pci_err) {
3841 					spin_lock_irq(&ndlp->lock);
3842 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3843 							    NLP_RPI_REGISTERED);
3844 					spin_unlock_irq(&ndlp->lock);
3845 					if (phba->sli_rev == LPFC_SLI_REV4)
3846 						lpfc_sli_rpi_release(vports[i],
3847 								     ndlp);
3848 				} else {
3849 					lpfc_unreg_rpi(vports[i], ndlp);
3850 				}
3851 				/*
3852 				 * Whenever an SLI4 port goes offline, free the
3853 				 * RPI. Get a new RPI when the adapter port
3854 				 * comes back online.
3855 				 */
3856 				if (phba->sli_rev == LPFC_SLI_REV4) {
3857 					lpfc_printf_vlog(vports[i], KERN_INFO,
3858 						 LOG_NODE | LOG_DISCOVERY,
3859 						 "0011 Free RPI x%x on "
3860 						 "ndlp: x%px did x%x\n",
3861 						 ndlp->nlp_rpi, ndlp,
3862 						 ndlp->nlp_DID);
3863 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3864 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3865 				}
3866 
3867 				if (ndlp->nlp_type & NLP_FABRIC) {
3868 					lpfc_disc_state_machine(vports[i], ndlp,
3869 						NULL, NLP_EVT_DEVICE_RECOVERY);
3870 
3871 					/* Don't remove the node unless the node
3872 					 * has been unregistered with the
3873 					 * transport, and we're not in recovery
3874 					 * before dev_loss_tmo triggered.
3875 					 * Otherwise, let dev_loss take care of
3876 					 * the node.
3877 					 */
3878 					if (!(ndlp->save_flags &
3879 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3880 					    !(ndlp->fc4_xpt_flags &
3881 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3882 						lpfc_disc_state_machine
3883 							(vports[i], ndlp,
3884 							 NULL,
3885 							 NLP_EVT_DEVICE_RM);
3886 				}
3887 			}
3888 		}
3889 	}
3890 	lpfc_destroy_vport_work_array(phba, vports);
3891 
3892 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3893 
3894 	if (phba->wq)
3895 		flush_workqueue(phba->wq);
3896 }
3897 
3898 /**
3899  * lpfc_offline - Bring a HBA offline
3900  * @phba: pointer to lpfc hba data structure.
3901  *
3902  * This routine actually brings a HBA offline. It stops all the timers
3903  * associated with the HBA, brings down the SLI layer, and eventually
3904  * marks the HBA as in offline state for the upper layer protocol.
3905  **/
3906 void
3907 lpfc_offline(struct lpfc_hba *phba)
3908 {
3909 	struct Scsi_Host  *shost;
3910 	struct lpfc_vport **vports;
3911 	int i;
3912 
3913 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3914 		return;
3915 
3916 	/* stop port and all timers associated with this hba */
3917 	lpfc_stop_port(phba);
3918 
3919 	/* Tear down the local and target port registrations.  The
3920 	 * nvme transports need to cleanup.
3921 	 */
3922 	lpfc_nvmet_destroy_targetport(phba);
3923 	lpfc_nvme_destroy_localport(phba->pport);
3924 
3925 	vports = lpfc_create_vport_work_array(phba);
3926 	if (vports != NULL)
3927 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3928 			lpfc_stop_vport_timers(vports[i]);
3929 	lpfc_destroy_vport_work_array(phba, vports);
3930 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3931 			"0460 Bring Adapter offline\n");
3932 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3933 	   now.  */
3934 	lpfc_sli_hba_down(phba);
3935 	spin_lock_irq(&phba->hbalock);
3936 	phba->work_ha = 0;
3937 	spin_unlock_irq(&phba->hbalock);
3938 	vports = lpfc_create_vport_work_array(phba);
3939 	if (vports != NULL)
3940 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3941 			shost = lpfc_shost_from_vport(vports[i]);
3942 			spin_lock_irq(shost->host_lock);
3943 			vports[i]->work_port_events = 0;
3944 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3945 			spin_unlock_irq(shost->host_lock);
3946 		}
3947 	lpfc_destroy_vport_work_array(phba, vports);
3948 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3949 	 * in hba_unset
3950 	 */
3951 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3952 		__lpfc_cpuhp_remove(phba);
3953 
3954 	if (phba->cfg_xri_rebalancing)
3955 		lpfc_destroy_multixri_pools(phba);
3956 }
3957 
3958 /**
3959  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3960  * @phba: pointer to lpfc hba data structure.
3961  *
3962  * This routine is to free all the SCSI buffers and IOCBs from the driver
3963  * list back to kernel. It is called from lpfc_pci_remove_one to free
3964  * the internal resources before the device is removed from the system.
3965  **/
3966 static void
3967 lpfc_scsi_free(struct lpfc_hba *phba)
3968 {
3969 	struct lpfc_io_buf *sb, *sb_next;
3970 
3971 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3972 		return;
3973 
3974 	spin_lock_irq(&phba->hbalock);
3975 
3976 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3977 
3978 	spin_lock(&phba->scsi_buf_list_put_lock);
3979 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3980 				 list) {
3981 		list_del(&sb->list);
3982 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3983 			      sb->dma_handle);
3984 		kfree(sb);
3985 		phba->total_scsi_bufs--;
3986 	}
3987 	spin_unlock(&phba->scsi_buf_list_put_lock);
3988 
3989 	spin_lock(&phba->scsi_buf_list_get_lock);
3990 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3991 				 list) {
3992 		list_del(&sb->list);
3993 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3994 			      sb->dma_handle);
3995 		kfree(sb);
3996 		phba->total_scsi_bufs--;
3997 	}
3998 	spin_unlock(&phba->scsi_buf_list_get_lock);
3999 	spin_unlock_irq(&phba->hbalock);
4000 }
4001 
4002 /**
4003  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
4004  * @phba: pointer to lpfc hba data structure.
4005  *
4006  * This routine is to free all the IO buffers and IOCBs from the driver
4007  * list back to kernel. It is called from lpfc_pci_remove_one to free
4008  * the internal resources before the device is removed from the system.
4009  **/
4010 void
4011 lpfc_io_free(struct lpfc_hba *phba)
4012 {
4013 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
4014 	struct lpfc_sli4_hdw_queue *qp;
4015 	int idx;
4016 
4017 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4018 		qp = &phba->sli4_hba.hdwq[idx];
4019 		/* Release all the lpfc_nvme_bufs maintained by this host. */
4020 		spin_lock(&qp->io_buf_list_put_lock);
4021 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4022 					 &qp->lpfc_io_buf_list_put,
4023 					 list) {
4024 			list_del(&lpfc_ncmd->list);
4025 			qp->put_io_bufs--;
4026 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4027 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4028 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4029 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4030 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4031 			kfree(lpfc_ncmd);
4032 			qp->total_io_bufs--;
4033 		}
4034 		spin_unlock(&qp->io_buf_list_put_lock);
4035 
4036 		spin_lock(&qp->io_buf_list_get_lock);
4037 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4038 					 &qp->lpfc_io_buf_list_get,
4039 					 list) {
4040 			list_del(&lpfc_ncmd->list);
4041 			qp->get_io_bufs--;
4042 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4043 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4044 			if (phba->cfg_xpsgl && !phba->nvmet_support)
4045 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
4046 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
4047 			kfree(lpfc_ncmd);
4048 			qp->total_io_bufs--;
4049 		}
4050 		spin_unlock(&qp->io_buf_list_get_lock);
4051 	}
4052 }
4053 
4054 /**
4055  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
4056  * @phba: pointer to lpfc hba data structure.
4057  *
4058  * This routine first calculates the sizes of the current els and allocated
4059  * scsi sgl lists, and then goes through all sgls to updates the physical
4060  * XRIs assigned due to port function reset. During port initialization, the
4061  * current els and allocated scsi sgl lists are 0s.
4062  *
4063  * Return codes
4064  *   0 - successful (for now, it always returns 0)
4065  **/
4066 int
4067 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
4068 {
4069 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4070 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4071 	LIST_HEAD(els_sgl_list);
4072 	int rc;
4073 
4074 	/*
4075 	 * update on pci function's els xri-sgl list
4076 	 */
4077 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4078 
4079 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
4080 		/* els xri-sgl expanded */
4081 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
4082 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4083 				"3157 ELS xri-sgl count increased from "
4084 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4085 				els_xri_cnt);
4086 		/* allocate the additional els sgls */
4087 		for (i = 0; i < xri_cnt; i++) {
4088 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4089 					     GFP_KERNEL);
4090 			if (sglq_entry == NULL) {
4091 				lpfc_printf_log(phba, KERN_ERR,
4092 						LOG_TRACE_EVENT,
4093 						"2562 Failure to allocate an "
4094 						"ELS sgl entry:%d\n", i);
4095 				rc = -ENOMEM;
4096 				goto out_free_mem;
4097 			}
4098 			sglq_entry->buff_type = GEN_BUFF_TYPE;
4099 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
4100 							   &sglq_entry->phys);
4101 			if (sglq_entry->virt == NULL) {
4102 				kfree(sglq_entry);
4103 				lpfc_printf_log(phba, KERN_ERR,
4104 						LOG_TRACE_EVENT,
4105 						"2563 Failure to allocate an "
4106 						"ELS mbuf:%d\n", i);
4107 				rc = -ENOMEM;
4108 				goto out_free_mem;
4109 			}
4110 			sglq_entry->sgl = sglq_entry->virt;
4111 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
4112 			sglq_entry->state = SGL_FREED;
4113 			list_add_tail(&sglq_entry->list, &els_sgl_list);
4114 		}
4115 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4116 		list_splice_init(&els_sgl_list,
4117 				 &phba->sli4_hba.lpfc_els_sgl_list);
4118 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4119 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
4120 		/* els xri-sgl shrinked */
4121 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
4122 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4123 				"3158 ELS xri-sgl count decreased from "
4124 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
4125 				els_xri_cnt);
4126 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
4127 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
4128 				 &els_sgl_list);
4129 		/* release extra els sgls from list */
4130 		for (i = 0; i < xri_cnt; i++) {
4131 			list_remove_head(&els_sgl_list,
4132 					 sglq_entry, struct lpfc_sglq, list);
4133 			if (sglq_entry) {
4134 				__lpfc_mbuf_free(phba, sglq_entry->virt,
4135 						 sglq_entry->phys);
4136 				kfree(sglq_entry);
4137 			}
4138 		}
4139 		list_splice_init(&els_sgl_list,
4140 				 &phba->sli4_hba.lpfc_els_sgl_list);
4141 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
4142 	} else
4143 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4144 				"3163 ELS xri-sgl count unchanged: %d\n",
4145 				els_xri_cnt);
4146 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
4147 
4148 	/* update xris to els sgls on the list */
4149 	sglq_entry = NULL;
4150 	sglq_entry_next = NULL;
4151 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4152 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
4153 		lxri = lpfc_sli4_next_xritag(phba);
4154 		if (lxri == NO_XRI) {
4155 			lpfc_printf_log(phba, KERN_ERR,
4156 					LOG_TRACE_EVENT,
4157 					"2400 Failed to allocate xri for "
4158 					"ELS sgl\n");
4159 			rc = -ENOMEM;
4160 			goto out_free_mem;
4161 		}
4162 		sglq_entry->sli4_lxritag = lxri;
4163 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4164 	}
4165 	return 0;
4166 
4167 out_free_mem:
4168 	lpfc_free_els_sgl_list(phba);
4169 	return rc;
4170 }
4171 
4172 /**
4173  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4174  * @phba: pointer to lpfc hba data structure.
4175  *
4176  * This routine first calculates the sizes of the current els and allocated
4177  * scsi sgl lists, and then goes through all sgls to updates the physical
4178  * XRIs assigned due to port function reset. During port initialization, the
4179  * current els and allocated scsi sgl lists are 0s.
4180  *
4181  * Return codes
4182  *   0 - successful (for now, it always returns 0)
4183  **/
4184 int
4185 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4186 {
4187 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4188 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4189 	uint16_t nvmet_xri_cnt;
4190 	LIST_HEAD(nvmet_sgl_list);
4191 	int rc;
4192 
4193 	/*
4194 	 * update on pci function's nvmet xri-sgl list
4195 	 */
4196 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4197 
4198 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4199 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4200 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4201 		/* els xri-sgl expanded */
4202 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4203 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4204 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4205 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4206 		/* allocate the additional nvmet sgls */
4207 		for (i = 0; i < xri_cnt; i++) {
4208 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4209 					     GFP_KERNEL);
4210 			if (sglq_entry == NULL) {
4211 				lpfc_printf_log(phba, KERN_ERR,
4212 						LOG_TRACE_EVENT,
4213 						"6303 Failure to allocate an "
4214 						"NVMET sgl entry:%d\n", i);
4215 				rc = -ENOMEM;
4216 				goto out_free_mem;
4217 			}
4218 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4219 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4220 							   &sglq_entry->phys);
4221 			if (sglq_entry->virt == NULL) {
4222 				kfree(sglq_entry);
4223 				lpfc_printf_log(phba, KERN_ERR,
4224 						LOG_TRACE_EVENT,
4225 						"6304 Failure to allocate an "
4226 						"NVMET buf:%d\n", i);
4227 				rc = -ENOMEM;
4228 				goto out_free_mem;
4229 			}
4230 			sglq_entry->sgl = sglq_entry->virt;
4231 			memset(sglq_entry->sgl, 0,
4232 			       phba->cfg_sg_dma_buf_size);
4233 			sglq_entry->state = SGL_FREED;
4234 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4235 		}
4236 		spin_lock_irq(&phba->hbalock);
4237 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4238 		list_splice_init(&nvmet_sgl_list,
4239 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4240 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4241 		spin_unlock_irq(&phba->hbalock);
4242 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4243 		/* nvmet xri-sgl shrunk */
4244 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4245 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4246 				"6305 NVMET xri-sgl count decreased from "
4247 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4248 				nvmet_xri_cnt);
4249 		spin_lock_irq(&phba->hbalock);
4250 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4251 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4252 				 &nvmet_sgl_list);
4253 		/* release extra nvmet sgls from list */
4254 		for (i = 0; i < xri_cnt; i++) {
4255 			list_remove_head(&nvmet_sgl_list,
4256 					 sglq_entry, struct lpfc_sglq, list);
4257 			if (sglq_entry) {
4258 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4259 						    sglq_entry->phys);
4260 				kfree(sglq_entry);
4261 			}
4262 		}
4263 		list_splice_init(&nvmet_sgl_list,
4264 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4265 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4266 		spin_unlock_irq(&phba->hbalock);
4267 	} else
4268 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4269 				"6306 NVMET xri-sgl count unchanged: %d\n",
4270 				nvmet_xri_cnt);
4271 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4272 
4273 	/* update xris to nvmet sgls on the list */
4274 	sglq_entry = NULL;
4275 	sglq_entry_next = NULL;
4276 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4277 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4278 		lxri = lpfc_sli4_next_xritag(phba);
4279 		if (lxri == NO_XRI) {
4280 			lpfc_printf_log(phba, KERN_ERR,
4281 					LOG_TRACE_EVENT,
4282 					"6307 Failed to allocate xri for "
4283 					"NVMET sgl\n");
4284 			rc = -ENOMEM;
4285 			goto out_free_mem;
4286 		}
4287 		sglq_entry->sli4_lxritag = lxri;
4288 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4289 	}
4290 	return 0;
4291 
4292 out_free_mem:
4293 	lpfc_free_nvmet_sgl_list(phba);
4294 	return rc;
4295 }
4296 
4297 int
4298 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4299 {
4300 	LIST_HEAD(blist);
4301 	struct lpfc_sli4_hdw_queue *qp;
4302 	struct lpfc_io_buf *lpfc_cmd;
4303 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4304 	int idx, cnt, xri, inserted;
4305 
4306 	cnt = 0;
4307 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4308 		qp = &phba->sli4_hba.hdwq[idx];
4309 		spin_lock_irq(&qp->io_buf_list_get_lock);
4310 		spin_lock(&qp->io_buf_list_put_lock);
4311 
4312 		/* Take everything off the get and put lists */
4313 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4314 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4315 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4316 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4317 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4318 		qp->get_io_bufs = 0;
4319 		qp->put_io_bufs = 0;
4320 		qp->total_io_bufs = 0;
4321 		spin_unlock(&qp->io_buf_list_put_lock);
4322 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4323 	}
4324 
4325 	/*
4326 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4327 	 * This is because POST_SGL takes a sequential range of XRIs
4328 	 * to post to the firmware.
4329 	 */
4330 	for (idx = 0; idx < cnt; idx++) {
4331 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4332 		if (!lpfc_cmd)
4333 			return cnt;
4334 		if (idx == 0) {
4335 			list_add_tail(&lpfc_cmd->list, cbuf);
4336 			continue;
4337 		}
4338 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4339 		inserted = 0;
4340 		prev_iobufp = NULL;
4341 		list_for_each_entry(iobufp, cbuf, list) {
4342 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4343 				if (prev_iobufp)
4344 					list_add(&lpfc_cmd->list,
4345 						 &prev_iobufp->list);
4346 				else
4347 					list_add(&lpfc_cmd->list, cbuf);
4348 				inserted = 1;
4349 				break;
4350 			}
4351 			prev_iobufp = iobufp;
4352 		}
4353 		if (!inserted)
4354 			list_add_tail(&lpfc_cmd->list, cbuf);
4355 	}
4356 	return cnt;
4357 }
4358 
4359 int
4360 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4361 {
4362 	struct lpfc_sli4_hdw_queue *qp;
4363 	struct lpfc_io_buf *lpfc_cmd;
4364 	int idx, cnt;
4365 	unsigned long iflags;
4366 
4367 	qp = phba->sli4_hba.hdwq;
4368 	cnt = 0;
4369 	while (!list_empty(cbuf)) {
4370 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4371 			list_remove_head(cbuf, lpfc_cmd,
4372 					 struct lpfc_io_buf, list);
4373 			if (!lpfc_cmd)
4374 				return cnt;
4375 			cnt++;
4376 			qp = &phba->sli4_hba.hdwq[idx];
4377 			lpfc_cmd->hdwq_no = idx;
4378 			lpfc_cmd->hdwq = qp;
4379 			lpfc_cmd->cur_iocbq.cmd_cmpl = NULL;
4380 			spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags);
4381 			list_add_tail(&lpfc_cmd->list,
4382 				      &qp->lpfc_io_buf_list_put);
4383 			qp->put_io_bufs++;
4384 			qp->total_io_bufs++;
4385 			spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
4386 					       iflags);
4387 		}
4388 	}
4389 	return cnt;
4390 }
4391 
4392 /**
4393  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4394  * @phba: pointer to lpfc hba data structure.
4395  *
4396  * This routine first calculates the sizes of the current els and allocated
4397  * scsi sgl lists, and then goes through all sgls to updates the physical
4398  * XRIs assigned due to port function reset. During port initialization, the
4399  * current els and allocated scsi sgl lists are 0s.
4400  *
4401  * Return codes
4402  *   0 - successful (for now, it always returns 0)
4403  **/
4404 int
4405 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4406 {
4407 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4408 	uint16_t i, lxri, els_xri_cnt;
4409 	uint16_t io_xri_cnt, io_xri_max;
4410 	LIST_HEAD(io_sgl_list);
4411 	int rc, cnt;
4412 
4413 	/*
4414 	 * update on pci function's allocated nvme xri-sgl list
4415 	 */
4416 
4417 	/* maximum number of xris available for nvme buffers */
4418 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4419 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4420 	phba->sli4_hba.io_xri_max = io_xri_max;
4421 
4422 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4423 			"6074 Current allocated XRI sgl count:%d, "
4424 			"maximum XRI count:%d els_xri_cnt:%d\n\n",
4425 			phba->sli4_hba.io_xri_cnt,
4426 			phba->sli4_hba.io_xri_max,
4427 			els_xri_cnt);
4428 
4429 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4430 
4431 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4432 		/* max nvme xri shrunk below the allocated nvme buffers */
4433 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4434 					phba->sli4_hba.io_xri_max;
4435 		/* release the extra allocated nvme buffers */
4436 		for (i = 0; i < io_xri_cnt; i++) {
4437 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4438 					 struct lpfc_io_buf, list);
4439 			if (lpfc_ncmd) {
4440 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4441 					      lpfc_ncmd->data,
4442 					      lpfc_ncmd->dma_handle);
4443 				kfree(lpfc_ncmd);
4444 			}
4445 		}
4446 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4447 	}
4448 
4449 	/* update xris associated to remaining allocated nvme buffers */
4450 	lpfc_ncmd = NULL;
4451 	lpfc_ncmd_next = NULL;
4452 	phba->sli4_hba.io_xri_cnt = cnt;
4453 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4454 				 &io_sgl_list, list) {
4455 		lxri = lpfc_sli4_next_xritag(phba);
4456 		if (lxri == NO_XRI) {
4457 			lpfc_printf_log(phba, KERN_ERR,
4458 					LOG_TRACE_EVENT,
4459 					"6075 Failed to allocate xri for "
4460 					"nvme buffer\n");
4461 			rc = -ENOMEM;
4462 			goto out_free_mem;
4463 		}
4464 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4465 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4466 	}
4467 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4468 	return 0;
4469 
4470 out_free_mem:
4471 	lpfc_io_free(phba);
4472 	return rc;
4473 }
4474 
4475 /**
4476  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4477  * @phba: Pointer to lpfc hba data structure.
4478  * @num_to_alloc: The requested number of buffers to allocate.
4479  *
4480  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4481  * the nvme buffer contains all the necessary information needed to initiate
4482  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4483  * them on a list, it post them to the port by using SGL block post.
4484  *
4485  * Return codes:
4486  *   int - number of IO buffers that were allocated and posted.
4487  *   0 = failure, less than num_to_alloc is a partial failure.
4488  **/
4489 int
4490 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4491 {
4492 	struct lpfc_io_buf *lpfc_ncmd;
4493 	struct lpfc_iocbq *pwqeq;
4494 	uint16_t iotag, lxri = 0;
4495 	int bcnt, num_posted;
4496 	LIST_HEAD(prep_nblist);
4497 	LIST_HEAD(post_nblist);
4498 	LIST_HEAD(nvme_nblist);
4499 
4500 	phba->sli4_hba.io_xri_cnt = 0;
4501 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4502 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4503 		if (!lpfc_ncmd)
4504 			break;
4505 		/*
4506 		 * Get memory from the pci pool to map the virt space to
4507 		 * pci bus space for an I/O. The DMA buffer includes the
4508 		 * number of SGE's necessary to support the sg_tablesize.
4509 		 */
4510 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4511 						  GFP_KERNEL,
4512 						  &lpfc_ncmd->dma_handle);
4513 		if (!lpfc_ncmd->data) {
4514 			kfree(lpfc_ncmd);
4515 			break;
4516 		}
4517 
4518 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4519 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4520 		} else {
4521 			/*
4522 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4523 			 * check to be sure.
4524 			 */
4525 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4526 			    (((unsigned long)(lpfc_ncmd->data) &
4527 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4528 				lpfc_printf_log(phba, KERN_ERR,
4529 						LOG_TRACE_EVENT,
4530 						"3369 Memory alignment err: "
4531 						"addr=%lx\n",
4532 						(unsigned long)lpfc_ncmd->data);
4533 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4534 					      lpfc_ncmd->data,
4535 					      lpfc_ncmd->dma_handle);
4536 				kfree(lpfc_ncmd);
4537 				break;
4538 			}
4539 		}
4540 
4541 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4542 
4543 		lxri = lpfc_sli4_next_xritag(phba);
4544 		if (lxri == NO_XRI) {
4545 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4546 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4547 			kfree(lpfc_ncmd);
4548 			break;
4549 		}
4550 		pwqeq = &lpfc_ncmd->cur_iocbq;
4551 
4552 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4553 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4554 		if (iotag == 0) {
4555 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4556 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4557 			kfree(lpfc_ncmd);
4558 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4559 					"6121 Failed to allocate IOTAG for"
4560 					" XRI:0x%x\n", lxri);
4561 			lpfc_sli4_free_xri(phba, lxri);
4562 			break;
4563 		}
4564 		pwqeq->sli4_lxritag = lxri;
4565 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4566 
4567 		/* Initialize local short-hand pointers. */
4568 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4569 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4570 		lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd;
4571 		spin_lock_init(&lpfc_ncmd->buf_lock);
4572 
4573 		/* add the nvme buffer to a post list */
4574 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4575 		phba->sli4_hba.io_xri_cnt++;
4576 	}
4577 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4578 			"6114 Allocate %d out of %d requested new NVME "
4579 			"buffers of size x%zu bytes\n", bcnt, num_to_alloc,
4580 			sizeof(*lpfc_ncmd));
4581 
4582 
4583 	/* post the list of nvme buffer sgls to port if available */
4584 	if (!list_empty(&post_nblist))
4585 		num_posted = lpfc_sli4_post_io_sgl_list(
4586 				phba, &post_nblist, bcnt);
4587 	else
4588 		num_posted = 0;
4589 
4590 	return num_posted;
4591 }
4592 
4593 static uint64_t
4594 lpfc_get_wwpn(struct lpfc_hba *phba)
4595 {
4596 	uint64_t wwn;
4597 	int rc;
4598 	LPFC_MBOXQ_t *mboxq;
4599 	MAILBOX_t *mb;
4600 
4601 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4602 						GFP_KERNEL);
4603 	if (!mboxq)
4604 		return (uint64_t)-1;
4605 
4606 	/* First get WWN of HBA instance */
4607 	lpfc_read_nv(phba, mboxq);
4608 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4609 	if (rc != MBX_SUCCESS) {
4610 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4611 				"6019 Mailbox failed , mbxCmd x%x "
4612 				"READ_NV, mbxStatus x%x\n",
4613 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4614 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4615 		mempool_free(mboxq, phba->mbox_mem_pool);
4616 		return (uint64_t) -1;
4617 	}
4618 	mb = &mboxq->u.mb;
4619 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4620 	/* wwn is WWPN of HBA instance */
4621 	mempool_free(mboxq, phba->mbox_mem_pool);
4622 	if (phba->sli_rev == LPFC_SLI_REV4)
4623 		return be64_to_cpu(wwn);
4624 	else
4625 		return rol64(wwn, 32);
4626 }
4627 
4628 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba)
4629 {
4630 	if (phba->sli_rev == LPFC_SLI_REV4)
4631 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4632 			return LPFC_MAX_SG_TABLESIZE;
4633 		else
4634 			return phba->cfg_scsi_seg_cnt;
4635 	else
4636 		return phba->cfg_sg_seg_cnt;
4637 }
4638 
4639 /**
4640  * lpfc_vmid_res_alloc - Allocates resources for VMID
4641  * @phba: pointer to lpfc hba data structure.
4642  * @vport: pointer to vport data structure
4643  *
4644  * This routine allocated the resources needed for the VMID.
4645  *
4646  * Return codes
4647  *	0 on Success
4648  *	Non-0 on Failure
4649  */
4650 static int
4651 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4652 {
4653 	/* VMID feature is supported only on SLI4 */
4654 	if (phba->sli_rev == LPFC_SLI_REV3) {
4655 		phba->cfg_vmid_app_header = 0;
4656 		phba->cfg_vmid_priority_tagging = 0;
4657 	}
4658 
4659 	if (lpfc_is_vmid_enabled(phba)) {
4660 		vport->vmid =
4661 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4662 			    GFP_KERNEL);
4663 		if (!vport->vmid)
4664 			return -ENOMEM;
4665 
4666 		rwlock_init(&vport->vmid_lock);
4667 
4668 		/* Set the VMID parameters for the vport */
4669 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4670 		vport->vmid_inactivity_timeout =
4671 		    phba->cfg_vmid_inactivity_timeout;
4672 		vport->max_vmid = phba->cfg_max_vmid;
4673 		vport->cur_vmid_cnt = 0;
4674 
4675 		vport->vmid_priority_range = bitmap_zalloc
4676 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4677 
4678 		if (!vport->vmid_priority_range) {
4679 			kfree(vport->vmid);
4680 			return -ENOMEM;
4681 		}
4682 
4683 		hash_init(vport->hash_table);
4684 	}
4685 	return 0;
4686 }
4687 
4688 /**
4689  * lpfc_create_port - Create an FC port
4690  * @phba: pointer to lpfc hba data structure.
4691  * @instance: a unique integer ID to this FC port.
4692  * @dev: pointer to the device data structure.
4693  *
4694  * This routine creates a FC port for the upper layer protocol. The FC port
4695  * can be created on top of either a physical port or a virtual port provided
4696  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4697  * and associates the FC port created before adding the shost into the SCSI
4698  * layer.
4699  *
4700  * Return codes
4701  *   @vport - pointer to the virtual N_Port data structure.
4702  *   NULL - port create failed.
4703  **/
4704 struct lpfc_vport *
4705 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4706 {
4707 	struct lpfc_vport *vport;
4708 	struct Scsi_Host  *shost = NULL;
4709 	struct scsi_host_template *template;
4710 	int error = 0;
4711 	int i;
4712 	uint64_t wwn;
4713 	bool use_no_reset_hba = false;
4714 	int rc;
4715 
4716 	if (lpfc_no_hba_reset_cnt) {
4717 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4718 		    dev == &phba->pcidev->dev) {
4719 			/* Reset the port first */
4720 			lpfc_sli_brdrestart(phba);
4721 			rc = lpfc_sli_chipset_init(phba);
4722 			if (rc)
4723 				return NULL;
4724 		}
4725 		wwn = lpfc_get_wwpn(phba);
4726 	}
4727 
4728 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4729 		if (wwn == lpfc_no_hba_reset[i]) {
4730 			lpfc_printf_log(phba, KERN_ERR,
4731 					LOG_TRACE_EVENT,
4732 					"6020 Setting use_no_reset port=%llx\n",
4733 					wwn);
4734 			use_no_reset_hba = true;
4735 			break;
4736 		}
4737 	}
4738 
4739 	/* Seed template for SCSI host registration */
4740 	if (dev == &phba->pcidev->dev) {
4741 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4742 			/* Seed physical port template */
4743 			template = &lpfc_template;
4744 
4745 			if (use_no_reset_hba)
4746 				/* template is for a no reset SCSI Host */
4747 				template->eh_host_reset_handler = NULL;
4748 
4749 			/* Seed updated value of sg_tablesize */
4750 			template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4751 		} else {
4752 			/* NVMET is for physical port only */
4753 			template = &lpfc_template_nvme;
4754 		}
4755 	} else {
4756 		/* Seed vport template */
4757 		template = &lpfc_vport_template;
4758 
4759 		/* Seed updated value of sg_tablesize */
4760 		template->sg_tablesize = lpfc_get_sg_tablesize(phba);
4761 	}
4762 
4763 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4764 	if (!shost)
4765 		goto out;
4766 
4767 	vport = (struct lpfc_vport *) shost->hostdata;
4768 	vport->phba = phba;
4769 	vport->load_flag |= FC_LOADING;
4770 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4771 	vport->fc_rscn_flush = 0;
4772 	lpfc_get_vport_cfgparam(vport);
4773 
4774 	/* Adjust value in vport */
4775 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4776 
4777 	shost->unique_id = instance;
4778 	shost->max_id = LPFC_MAX_TARGET;
4779 	shost->max_lun = vport->cfg_max_luns;
4780 	shost->this_id = -1;
4781 	shost->max_cmd_len = 16;
4782 
4783 	if (phba->sli_rev == LPFC_SLI_REV4) {
4784 		if (!phba->cfg_fcp_mq_threshold ||
4785 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4786 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4787 
4788 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4789 					    phba->cfg_fcp_mq_threshold);
4790 
4791 		shost->dma_boundary =
4792 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4793 	} else
4794 		/* SLI-3 has a limited number of hardware queues (3),
4795 		 * thus there is only one for FCP processing.
4796 		 */
4797 		shost->nr_hw_queues = 1;
4798 
4799 	/*
4800 	 * Set initial can_queue value since 0 is no longer supported and
4801 	 * scsi_add_host will fail. This will be adjusted later based on the
4802 	 * max xri value determined in hba setup.
4803 	 */
4804 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4805 	if (dev != &phba->pcidev->dev) {
4806 		shost->transportt = lpfc_vport_transport_template;
4807 		vport->port_type = LPFC_NPIV_PORT;
4808 	} else {
4809 		shost->transportt = lpfc_transport_template;
4810 		vport->port_type = LPFC_PHYSICAL_PORT;
4811 	}
4812 
4813 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4814 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4815 			"SEGcnt %d/%d\n",
4816 			vport->port_type, shost->sg_tablesize,
4817 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4818 
4819 	/* Allocate the resources for VMID */
4820 	rc = lpfc_vmid_res_alloc(phba, vport);
4821 
4822 	if (rc)
4823 		goto out_put_shost;
4824 
4825 	/* Initialize all internally managed lists. */
4826 	INIT_LIST_HEAD(&vport->fc_nodes);
4827 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4828 	spin_lock_init(&vport->work_port_lock);
4829 
4830 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4831 
4832 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4833 
4834 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4835 
4836 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4837 		lpfc_setup_bg(phba, shost);
4838 
4839 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4840 	if (error)
4841 		goto out_free_vmid;
4842 
4843 	spin_lock_irq(&phba->port_list_lock);
4844 	list_add_tail(&vport->listentry, &phba->port_list);
4845 	spin_unlock_irq(&phba->port_list_lock);
4846 	return vport;
4847 
4848 out_free_vmid:
4849 	kfree(vport->vmid);
4850 	bitmap_free(vport->vmid_priority_range);
4851 out_put_shost:
4852 	scsi_host_put(shost);
4853 out:
4854 	return NULL;
4855 }
4856 
4857 /**
4858  * destroy_port -  destroy an FC port
4859  * @vport: pointer to an lpfc virtual N_Port data structure.
4860  *
4861  * This routine destroys a FC port from the upper layer protocol. All the
4862  * resources associated with the port are released.
4863  **/
4864 void
4865 destroy_port(struct lpfc_vport *vport)
4866 {
4867 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4868 	struct lpfc_hba  *phba = vport->phba;
4869 
4870 	lpfc_debugfs_terminate(vport);
4871 	fc_remove_host(shost);
4872 	scsi_remove_host(shost);
4873 
4874 	spin_lock_irq(&phba->port_list_lock);
4875 	list_del_init(&vport->listentry);
4876 	spin_unlock_irq(&phba->port_list_lock);
4877 
4878 	lpfc_cleanup(vport);
4879 	return;
4880 }
4881 
4882 /**
4883  * lpfc_get_instance - Get a unique integer ID
4884  *
4885  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4886  * uses the kernel idr facility to perform the task.
4887  *
4888  * Return codes:
4889  *   instance - a unique integer ID allocated as the new instance.
4890  *   -1 - lpfc get instance failed.
4891  **/
4892 int
4893 lpfc_get_instance(void)
4894 {
4895 	int ret;
4896 
4897 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4898 	return ret < 0 ? -1 : ret;
4899 }
4900 
4901 /**
4902  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4903  * @shost: pointer to SCSI host data structure.
4904  * @time: elapsed time of the scan in jiffies.
4905  *
4906  * This routine is called by the SCSI layer with a SCSI host to determine
4907  * whether the scan host is finished.
4908  *
4909  * Note: there is no scan_start function as adapter initialization will have
4910  * asynchronously kicked off the link initialization.
4911  *
4912  * Return codes
4913  *   0 - SCSI host scan is not over yet.
4914  *   1 - SCSI host scan is over.
4915  **/
4916 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4917 {
4918 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4919 	struct lpfc_hba   *phba = vport->phba;
4920 	int stat = 0;
4921 
4922 	spin_lock_irq(shost->host_lock);
4923 
4924 	if (vport->load_flag & FC_UNLOADING) {
4925 		stat = 1;
4926 		goto finished;
4927 	}
4928 	if (time >= msecs_to_jiffies(30 * 1000)) {
4929 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4930 				"0461 Scanning longer than 30 "
4931 				"seconds.  Continuing initialization\n");
4932 		stat = 1;
4933 		goto finished;
4934 	}
4935 	if (time >= msecs_to_jiffies(15 * 1000) &&
4936 	    phba->link_state <= LPFC_LINK_DOWN) {
4937 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4938 				"0465 Link down longer than 15 "
4939 				"seconds.  Continuing initialization\n");
4940 		stat = 1;
4941 		goto finished;
4942 	}
4943 
4944 	if (vport->port_state != LPFC_VPORT_READY)
4945 		goto finished;
4946 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4947 		goto finished;
4948 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4949 		goto finished;
4950 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4951 		goto finished;
4952 
4953 	stat = 1;
4954 
4955 finished:
4956 	spin_unlock_irq(shost->host_lock);
4957 	return stat;
4958 }
4959 
4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4961 {
4962 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4963 	struct lpfc_hba   *phba = vport->phba;
4964 
4965 	fc_host_supported_speeds(shost) = 0;
4966 	/*
4967 	 * Avoid reporting supported link speed for FCoE as it can't be
4968 	 * controlled via FCoE.
4969 	 */
4970 	if (phba->hba_flag & HBA_FCOE_MODE)
4971 		return;
4972 
4973 	if (phba->lmt & LMT_256Gb)
4974 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4975 	if (phba->lmt & LMT_128Gb)
4976 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4977 	if (phba->lmt & LMT_64Gb)
4978 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4979 	if (phba->lmt & LMT_32Gb)
4980 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4981 	if (phba->lmt & LMT_16Gb)
4982 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4983 	if (phba->lmt & LMT_10Gb)
4984 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4985 	if (phba->lmt & LMT_8Gb)
4986 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4987 	if (phba->lmt & LMT_4Gb)
4988 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4989 	if (phba->lmt & LMT_2Gb)
4990 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4991 	if (phba->lmt & LMT_1Gb)
4992 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4993 }
4994 
4995 /**
4996  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4997  * @shost: pointer to SCSI host data structure.
4998  *
4999  * This routine initializes a given SCSI host attributes on a FC port. The
5000  * SCSI host can be either on top of a physical port or a virtual port.
5001  **/
5002 void lpfc_host_attrib_init(struct Scsi_Host *shost)
5003 {
5004 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
5005 	struct lpfc_hba   *phba = vport->phba;
5006 	/*
5007 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
5008 	 */
5009 
5010 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
5011 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
5012 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
5013 
5014 	memset(fc_host_supported_fc4s(shost), 0,
5015 	       sizeof(fc_host_supported_fc4s(shost)));
5016 	fc_host_supported_fc4s(shost)[2] = 1;
5017 	fc_host_supported_fc4s(shost)[7] = 1;
5018 
5019 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
5020 				 sizeof fc_host_symbolic_name(shost));
5021 
5022 	lpfc_host_supported_speeds_set(shost);
5023 
5024 	fc_host_maxframe_size(shost) =
5025 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
5026 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
5027 
5028 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
5029 
5030 	/* This value is also unchanging */
5031 	memset(fc_host_active_fc4s(shost), 0,
5032 	       sizeof(fc_host_active_fc4s(shost)));
5033 	fc_host_active_fc4s(shost)[2] = 1;
5034 	fc_host_active_fc4s(shost)[7] = 1;
5035 
5036 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
5037 	spin_lock_irq(shost->host_lock);
5038 	vport->load_flag &= ~FC_LOADING;
5039 	spin_unlock_irq(shost->host_lock);
5040 }
5041 
5042 /**
5043  * lpfc_stop_port_s3 - Stop SLI3 device port
5044  * @phba: pointer to lpfc hba data structure.
5045  *
5046  * This routine is invoked to stop an SLI3 device port, it stops the device
5047  * from generating interrupts and stops the device driver's timers for the
5048  * device.
5049  **/
5050 static void
5051 lpfc_stop_port_s3(struct lpfc_hba *phba)
5052 {
5053 	/* Clear all interrupt enable conditions */
5054 	writel(0, phba->HCregaddr);
5055 	readl(phba->HCregaddr); /* flush */
5056 	/* Clear all pending interrupts */
5057 	writel(0xffffffff, phba->HAregaddr);
5058 	readl(phba->HAregaddr); /* flush */
5059 
5060 	/* Reset some HBA SLI setup states */
5061 	lpfc_stop_hba_timers(phba);
5062 	phba->pport->work_port_events = 0;
5063 }
5064 
5065 /**
5066  * lpfc_stop_port_s4 - Stop SLI4 device port
5067  * @phba: pointer to lpfc hba data structure.
5068  *
5069  * This routine is invoked to stop an SLI4 device port, it stops the device
5070  * from generating interrupts and stops the device driver's timers for the
5071  * device.
5072  **/
5073 static void
5074 lpfc_stop_port_s4(struct lpfc_hba *phba)
5075 {
5076 	/* Reset some HBA SLI4 setup states */
5077 	lpfc_stop_hba_timers(phba);
5078 	if (phba->pport)
5079 		phba->pport->work_port_events = 0;
5080 	phba->sli4_hba.intr_enable = 0;
5081 }
5082 
5083 /**
5084  * lpfc_stop_port - Wrapper function for stopping hba port
5085  * @phba: Pointer to HBA context object.
5086  *
5087  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
5088  * the API jump table function pointer from the lpfc_hba struct.
5089  **/
5090 void
5091 lpfc_stop_port(struct lpfc_hba *phba)
5092 {
5093 	phba->lpfc_stop_port(phba);
5094 
5095 	if (phba->wq)
5096 		flush_workqueue(phba->wq);
5097 }
5098 
5099 /**
5100  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
5101  * @phba: Pointer to hba for which this call is being executed.
5102  *
5103  * This routine starts the timer waiting for the FCF rediscovery to complete.
5104  **/
5105 void
5106 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
5107 {
5108 	unsigned long fcf_redisc_wait_tmo =
5109 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
5110 	/* Start fcf rediscovery wait period timer */
5111 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
5112 	spin_lock_irq(&phba->hbalock);
5113 	/* Allow action to new fcf asynchronous event */
5114 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
5115 	/* Mark the FCF rediscovery pending state */
5116 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
5117 	spin_unlock_irq(&phba->hbalock);
5118 }
5119 
5120 /**
5121  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
5122  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5123  *
5124  * This routine is invoked when waiting for FCF table rediscover has been
5125  * timed out. If new FCF record(s) has (have) been discovered during the
5126  * wait period, a new FCF event shall be added to the FCOE async event
5127  * list, and then worker thread shall be waked up for processing from the
5128  * worker thread context.
5129  **/
5130 static void
5131 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
5132 {
5133 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
5134 
5135 	/* Don't send FCF rediscovery event if timer cancelled */
5136 	spin_lock_irq(&phba->hbalock);
5137 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
5138 		spin_unlock_irq(&phba->hbalock);
5139 		return;
5140 	}
5141 	/* Clear FCF rediscovery timer pending flag */
5142 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
5143 	/* FCF rediscovery event to worker thread */
5144 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
5145 	spin_unlock_irq(&phba->hbalock);
5146 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
5147 			"2776 FCF rediscover quiescent timer expired\n");
5148 	/* wake up worker thread */
5149 	lpfc_worker_wake_up(phba);
5150 }
5151 
5152 /**
5153  * lpfc_vmid_poll - VMID timeout detection
5154  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5155  *
5156  * This routine is invoked when there is no I/O on by a VM for the specified
5157  * amount of time. When this situation is detected, the VMID has to be
5158  * deregistered from the switch and all the local resources freed. The VMID
5159  * will be reassigned to the VM once the I/O begins.
5160  **/
5161 static void
5162 lpfc_vmid_poll(struct timer_list *t)
5163 {
5164 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5165 	u32 wake_up = 0;
5166 
5167 	/* check if there is a need to issue QFPA */
5168 	if (phba->pport->vmid_priority_tagging) {
5169 		wake_up = 1;
5170 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5171 	}
5172 
5173 	/* Is the vmid inactivity timer enabled */
5174 	if (phba->pport->vmid_inactivity_timeout ||
5175 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5176 		wake_up = 1;
5177 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5178 	}
5179 
5180 	if (wake_up)
5181 		lpfc_worker_wake_up(phba);
5182 
5183 	/* restart the timer for the next iteration */
5184 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5185 							LPFC_VMID_TIMER));
5186 }
5187 
5188 /**
5189  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5190  * @phba: pointer to lpfc hba data structure.
5191  * @acqe_link: pointer to the async link completion queue entry.
5192  *
5193  * This routine is to parse the SLI4 link-attention link fault code.
5194  **/
5195 static void
5196 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5197 			   struct lpfc_acqe_link *acqe_link)
5198 {
5199 	switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) {
5200 	case LPFC_FC_LA_TYPE_LINK_DOWN:
5201 	case LPFC_FC_LA_TYPE_TRUNKING_EVENT:
5202 	case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
5203 	case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
5204 		break;
5205 	default:
5206 		switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5207 		case LPFC_ASYNC_LINK_FAULT_NONE:
5208 		case LPFC_ASYNC_LINK_FAULT_LOCAL:
5209 		case LPFC_ASYNC_LINK_FAULT_REMOTE:
5210 		case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5211 			break;
5212 		default:
5213 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5214 					"0398 Unknown link fault code: x%x\n",
5215 					bf_get(lpfc_acqe_link_fault, acqe_link));
5216 			break;
5217 		}
5218 		break;
5219 	}
5220 }
5221 
5222 /**
5223  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5224  * @phba: pointer to lpfc hba data structure.
5225  * @acqe_link: pointer to the async link completion queue entry.
5226  *
5227  * This routine is to parse the SLI4 link attention type and translate it
5228  * into the base driver's link attention type coding.
5229  *
5230  * Return: Link attention type in terms of base driver's coding.
5231  **/
5232 static uint8_t
5233 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5234 			  struct lpfc_acqe_link *acqe_link)
5235 {
5236 	uint8_t att_type;
5237 
5238 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5239 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5240 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5241 		att_type = LPFC_ATT_LINK_DOWN;
5242 		break;
5243 	case LPFC_ASYNC_LINK_STATUS_UP:
5244 		/* Ignore physical link up events - wait for logical link up */
5245 		att_type = LPFC_ATT_RESERVED;
5246 		break;
5247 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5248 		att_type = LPFC_ATT_LINK_UP;
5249 		break;
5250 	default:
5251 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5252 				"0399 Invalid link attention type: x%x\n",
5253 				bf_get(lpfc_acqe_link_status, acqe_link));
5254 		att_type = LPFC_ATT_RESERVED;
5255 		break;
5256 	}
5257 	return att_type;
5258 }
5259 
5260 /**
5261  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5262  * @phba: pointer to lpfc hba data structure.
5263  *
5264  * This routine is to get an SLI3 FC port's link speed in Mbps.
5265  *
5266  * Return: link speed in terms of Mbps.
5267  **/
5268 uint32_t
5269 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5270 {
5271 	uint32_t link_speed;
5272 
5273 	if (!lpfc_is_link_up(phba))
5274 		return 0;
5275 
5276 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5277 		switch (phba->fc_linkspeed) {
5278 		case LPFC_LINK_SPEED_1GHZ:
5279 			link_speed = 1000;
5280 			break;
5281 		case LPFC_LINK_SPEED_2GHZ:
5282 			link_speed = 2000;
5283 			break;
5284 		case LPFC_LINK_SPEED_4GHZ:
5285 			link_speed = 4000;
5286 			break;
5287 		case LPFC_LINK_SPEED_8GHZ:
5288 			link_speed = 8000;
5289 			break;
5290 		case LPFC_LINK_SPEED_10GHZ:
5291 			link_speed = 10000;
5292 			break;
5293 		case LPFC_LINK_SPEED_16GHZ:
5294 			link_speed = 16000;
5295 			break;
5296 		default:
5297 			link_speed = 0;
5298 		}
5299 	} else {
5300 		if (phba->sli4_hba.link_state.logical_speed)
5301 			link_speed =
5302 			      phba->sli4_hba.link_state.logical_speed;
5303 		else
5304 			link_speed = phba->sli4_hba.link_state.speed;
5305 	}
5306 	return link_speed;
5307 }
5308 
5309 /**
5310  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5311  * @phba: pointer to lpfc hba data structure.
5312  * @evt_code: asynchronous event code.
5313  * @speed_code: asynchronous event link speed code.
5314  *
5315  * This routine is to parse the giving SLI4 async event link speed code into
5316  * value of Mbps for the link speed.
5317  *
5318  * Return: link speed in terms of Mbps.
5319  **/
5320 static uint32_t
5321 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5322 			   uint8_t speed_code)
5323 {
5324 	uint32_t port_speed;
5325 
5326 	switch (evt_code) {
5327 	case LPFC_TRAILER_CODE_LINK:
5328 		switch (speed_code) {
5329 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5330 			port_speed = 0;
5331 			break;
5332 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5333 			port_speed = 10;
5334 			break;
5335 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5336 			port_speed = 100;
5337 			break;
5338 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5339 			port_speed = 1000;
5340 			break;
5341 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5342 			port_speed = 10000;
5343 			break;
5344 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5345 			port_speed = 20000;
5346 			break;
5347 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5348 			port_speed = 25000;
5349 			break;
5350 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5351 			port_speed = 40000;
5352 			break;
5353 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5354 			port_speed = 100000;
5355 			break;
5356 		default:
5357 			port_speed = 0;
5358 		}
5359 		break;
5360 	case LPFC_TRAILER_CODE_FC:
5361 		switch (speed_code) {
5362 		case LPFC_FC_LA_SPEED_UNKNOWN:
5363 			port_speed = 0;
5364 			break;
5365 		case LPFC_FC_LA_SPEED_1G:
5366 			port_speed = 1000;
5367 			break;
5368 		case LPFC_FC_LA_SPEED_2G:
5369 			port_speed = 2000;
5370 			break;
5371 		case LPFC_FC_LA_SPEED_4G:
5372 			port_speed = 4000;
5373 			break;
5374 		case LPFC_FC_LA_SPEED_8G:
5375 			port_speed = 8000;
5376 			break;
5377 		case LPFC_FC_LA_SPEED_10G:
5378 			port_speed = 10000;
5379 			break;
5380 		case LPFC_FC_LA_SPEED_16G:
5381 			port_speed = 16000;
5382 			break;
5383 		case LPFC_FC_LA_SPEED_32G:
5384 			port_speed = 32000;
5385 			break;
5386 		case LPFC_FC_LA_SPEED_64G:
5387 			port_speed = 64000;
5388 			break;
5389 		case LPFC_FC_LA_SPEED_128G:
5390 			port_speed = 128000;
5391 			break;
5392 		case LPFC_FC_LA_SPEED_256G:
5393 			port_speed = 256000;
5394 			break;
5395 		default:
5396 			port_speed = 0;
5397 		}
5398 		break;
5399 	default:
5400 		port_speed = 0;
5401 	}
5402 	return port_speed;
5403 }
5404 
5405 /**
5406  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5407  * @phba: pointer to lpfc hba data structure.
5408  * @acqe_link: pointer to the async link completion queue entry.
5409  *
5410  * This routine is to handle the SLI4 asynchronous FCoE link event.
5411  **/
5412 static void
5413 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5414 			 struct lpfc_acqe_link *acqe_link)
5415 {
5416 	LPFC_MBOXQ_t *pmb;
5417 	MAILBOX_t *mb;
5418 	struct lpfc_mbx_read_top *la;
5419 	uint8_t att_type;
5420 	int rc;
5421 
5422 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5423 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5424 		return;
5425 	phba->fcoe_eventtag = acqe_link->event_tag;
5426 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5427 	if (!pmb) {
5428 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5429 				"0395 The mboxq allocation failed\n");
5430 		return;
5431 	}
5432 
5433 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
5434 	if (rc) {
5435 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5436 				"0396 mailbox allocation failed\n");
5437 		goto out_free_pmb;
5438 	}
5439 
5440 	/* Cleanup any outstanding ELS commands */
5441 	lpfc_els_flush_all_cmd(phba);
5442 
5443 	/* Block ELS IOCBs until we have done process link event */
5444 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5445 
5446 	/* Update link event statistics */
5447 	phba->sli.slistat.link_event++;
5448 
5449 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5450 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
5451 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5452 	pmb->vport = phba->pport;
5453 
5454 	/* Keep the link status for extra SLI4 state machine reference */
5455 	phba->sli4_hba.link_state.speed =
5456 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5457 				bf_get(lpfc_acqe_link_speed, acqe_link));
5458 	phba->sli4_hba.link_state.duplex =
5459 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5460 	phba->sli4_hba.link_state.status =
5461 				bf_get(lpfc_acqe_link_status, acqe_link);
5462 	phba->sli4_hba.link_state.type =
5463 				bf_get(lpfc_acqe_link_type, acqe_link);
5464 	phba->sli4_hba.link_state.number =
5465 				bf_get(lpfc_acqe_link_number, acqe_link);
5466 	phba->sli4_hba.link_state.fault =
5467 				bf_get(lpfc_acqe_link_fault, acqe_link);
5468 	phba->sli4_hba.link_state.logical_speed =
5469 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5470 
5471 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5472 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5473 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5474 			"Logical speed:%dMbps Fault:%d\n",
5475 			phba->sli4_hba.link_state.speed,
5476 			phba->sli4_hba.link_state.topology,
5477 			phba->sli4_hba.link_state.status,
5478 			phba->sli4_hba.link_state.type,
5479 			phba->sli4_hba.link_state.number,
5480 			phba->sli4_hba.link_state.logical_speed,
5481 			phba->sli4_hba.link_state.fault);
5482 	/*
5483 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5484 	 * topology info. Note: Optional for non FC-AL ports.
5485 	 */
5486 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5487 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5488 		if (rc == MBX_NOT_FINISHED)
5489 			goto out_free_pmb;
5490 		return;
5491 	}
5492 	/*
5493 	 * For FCoE Mode: fill in all the topology information we need and call
5494 	 * the READ_TOPOLOGY completion routine to continue without actually
5495 	 * sending the READ_TOPOLOGY mailbox command to the port.
5496 	 */
5497 	/* Initialize completion status */
5498 	mb = &pmb->u.mb;
5499 	mb->mbxStatus = MBX_SUCCESS;
5500 
5501 	/* Parse port fault information field */
5502 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5503 
5504 	/* Parse and translate link attention fields */
5505 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5506 	la->eventTag = acqe_link->event_tag;
5507 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5508 	bf_set(lpfc_mbx_read_top_link_spd, la,
5509 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5510 
5511 	/* Fake the following irrelevant fields */
5512 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5513 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5514 	bf_set(lpfc_mbx_read_top_il, la, 0);
5515 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5516 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5517 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5518 
5519 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5520 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5521 
5522 	return;
5523 
5524 out_free_pmb:
5525 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
5526 }
5527 
5528 /**
5529  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5530  * topology.
5531  * @phba: pointer to lpfc hba data structure.
5532  * @speed_code: asynchronous event link speed code.
5533  *
5534  * This routine is to parse the giving SLI4 async event link speed code into
5535  * value of Read topology link speed.
5536  *
5537  * Return: link speed in terms of Read topology.
5538  **/
5539 static uint8_t
5540 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5541 {
5542 	uint8_t port_speed;
5543 
5544 	switch (speed_code) {
5545 	case LPFC_FC_LA_SPEED_1G:
5546 		port_speed = LPFC_LINK_SPEED_1GHZ;
5547 		break;
5548 	case LPFC_FC_LA_SPEED_2G:
5549 		port_speed = LPFC_LINK_SPEED_2GHZ;
5550 		break;
5551 	case LPFC_FC_LA_SPEED_4G:
5552 		port_speed = LPFC_LINK_SPEED_4GHZ;
5553 		break;
5554 	case LPFC_FC_LA_SPEED_8G:
5555 		port_speed = LPFC_LINK_SPEED_8GHZ;
5556 		break;
5557 	case LPFC_FC_LA_SPEED_16G:
5558 		port_speed = LPFC_LINK_SPEED_16GHZ;
5559 		break;
5560 	case LPFC_FC_LA_SPEED_32G:
5561 		port_speed = LPFC_LINK_SPEED_32GHZ;
5562 		break;
5563 	case LPFC_FC_LA_SPEED_64G:
5564 		port_speed = LPFC_LINK_SPEED_64GHZ;
5565 		break;
5566 	case LPFC_FC_LA_SPEED_128G:
5567 		port_speed = LPFC_LINK_SPEED_128GHZ;
5568 		break;
5569 	case LPFC_FC_LA_SPEED_256G:
5570 		port_speed = LPFC_LINK_SPEED_256GHZ;
5571 		break;
5572 	default:
5573 		port_speed = 0;
5574 		break;
5575 	}
5576 
5577 	return port_speed;
5578 }
5579 
5580 void
5581 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5582 {
5583 	if (!phba->rx_monitor) {
5584 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5585 				"4411 Rx Monitor Info is empty.\n");
5586 	} else {
5587 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5588 				       LPFC_MAX_RXMONITOR_DUMP);
5589 	}
5590 }
5591 
5592 /**
5593  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5594  * @phba: pointer to lpfc hba data structure.
5595  * @dtag: FPIN descriptor received
5596  *
5597  * Increment the FPIN received counter/time when it happens.
5598  */
5599 void
5600 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5601 {
5602 	struct lpfc_cgn_info *cp;
5603 	u32 value;
5604 
5605 	/* Make sure we have a congestion info buffer */
5606 	if (!phba->cgn_i)
5607 		return;
5608 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5609 
5610 	/* Update congestion statistics */
5611 	switch (dtag) {
5612 	case ELS_DTAG_LNK_INTEGRITY:
5613 		le32_add_cpu(&cp->link_integ_notification, 1);
5614 		lpfc_cgn_update_tstamp(phba, &cp->stat_lnk);
5615 		break;
5616 	case ELS_DTAG_DELIVERY:
5617 		le32_add_cpu(&cp->delivery_notification, 1);
5618 		lpfc_cgn_update_tstamp(phba, &cp->stat_delivery);
5619 		break;
5620 	case ELS_DTAG_PEER_CONGEST:
5621 		le32_add_cpu(&cp->cgn_peer_notification, 1);
5622 		lpfc_cgn_update_tstamp(phba, &cp->stat_peer);
5623 		break;
5624 	case ELS_DTAG_CONGESTION:
5625 		le32_add_cpu(&cp->cgn_notification, 1);
5626 		lpfc_cgn_update_tstamp(phba, &cp->stat_fpin);
5627 	}
5628 	if (phba->cgn_fpin_frequency &&
5629 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5630 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5631 		cp->cgn_stat_npm = value;
5632 	}
5633 
5634 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5635 				    LPFC_CGN_CRC32_SEED);
5636 	cp->cgn_info_crc = cpu_to_le32(value);
5637 }
5638 
5639 /**
5640  * lpfc_cgn_update_tstamp - Update cmf timestamp
5641  * @phba: pointer to lpfc hba data structure.
5642  * @ts: structure to write the timestamp to.
5643  */
5644 void
5645 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts)
5646 {
5647 	struct timespec64 cur_time;
5648 	struct tm tm_val;
5649 
5650 	ktime_get_real_ts64(&cur_time);
5651 	time64_to_tm(cur_time.tv_sec, 0, &tm_val);
5652 
5653 	ts->month = tm_val.tm_mon + 1;
5654 	ts->day	= tm_val.tm_mday;
5655 	ts->year = tm_val.tm_year - 100;
5656 	ts->hour = tm_val.tm_hour;
5657 	ts->minute = tm_val.tm_min;
5658 	ts->second = tm_val.tm_sec;
5659 
5660 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5661 			"2646 Updated CMF timestamp : "
5662 			"%u/%u/%u %u:%u:%u\n",
5663 			ts->day, ts->month,
5664 			ts->year, ts->hour,
5665 			ts->minute, ts->second);
5666 }
5667 
5668 /**
5669  * lpfc_cmf_stats_timer - Save data into registered congestion buffer
5670  * @timer: Timer cookie to access lpfc private data
5671  *
5672  * Save the congestion event data every minute.
5673  * On the hour collapse all the minute data into hour data. Every day
5674  * collapse all the hour data into daily data. Separate driver
5675  * and fabrc congestion event counters that will be saved out
5676  * to the registered congestion buffer every minute.
5677  */
5678 static enum hrtimer_restart
5679 lpfc_cmf_stats_timer(struct hrtimer *timer)
5680 {
5681 	struct lpfc_hba *phba;
5682 	struct lpfc_cgn_info *cp;
5683 	uint32_t i, index;
5684 	uint16_t value, mvalue;
5685 	uint64_t bps;
5686 	uint32_t mbps;
5687 	uint32_t dvalue, wvalue, lvalue, avalue;
5688 	uint64_t latsum;
5689 	__le16 *ptr;
5690 	__le32 *lptr;
5691 	__le16 *mptr;
5692 
5693 	phba = container_of(timer, struct lpfc_hba, cmf_stats_timer);
5694 	/* Make sure we have a congestion info buffer */
5695 	if (!phba->cgn_i)
5696 		return HRTIMER_NORESTART;
5697 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5698 
5699 	phba->cgn_evt_timestamp = jiffies +
5700 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5701 	phba->cgn_evt_minute++;
5702 
5703 	/* We should get to this point in the routine on 1 minute intervals */
5704 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
5705 
5706 	if (phba->cgn_fpin_frequency &&
5707 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5708 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5709 		cp->cgn_stat_npm = value;
5710 	}
5711 
5712 	/* Read and clear the latency counters for this minute */
5713 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5714 	latsum = atomic64_read(&phba->cgn_latency_evt);
5715 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5716 	atomic64_set(&phba->cgn_latency_evt, 0);
5717 
5718 	/* We need to store MB/sec bandwidth in the congestion information.
5719 	 * block_cnt is count of 512 byte blocks for the entire minute,
5720 	 * bps will get bytes per sec before finally converting to MB/sec.
5721 	 */
5722 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5723 	phba->rx_block_cnt = 0;
5724 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5725 
5726 	/* Every minute */
5727 	/* cgn parameters */
5728 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5729 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5730 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5731 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5732 
5733 	/* Fill in default LUN qdepth */
5734 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5735 	cp->cgn_lunq = cpu_to_le16(value);
5736 
5737 	/* Record congestion buffer info - every minute
5738 	 * cgn_driver_evt_cnt (Driver events)
5739 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5740 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5741 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5742 	 */
5743 	index = ++cp->cgn_index_minute;
5744 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5745 		cp->cgn_index_minute = 0;
5746 		index = 0;
5747 	}
5748 
5749 	/* Get the number of driver events in this sample and reset counter */
5750 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5751 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5752 
5753 	/* Get the number of warning events - FPIN and Signal for this minute */
5754 	wvalue = 0;
5755 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5756 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5757 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5758 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5759 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5760 
5761 	/* Get the number of alarm events - FPIN and Signal for this minute */
5762 	avalue = 0;
5763 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5764 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5765 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5766 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5767 
5768 	/* Collect the driver, warning, alarm and latency counts for this
5769 	 * minute into the driver congestion buffer.
5770 	 */
5771 	ptr = &cp->cgn_drvr_min[index];
5772 	value = (uint16_t)dvalue;
5773 	*ptr = cpu_to_le16(value);
5774 
5775 	ptr = &cp->cgn_warn_min[index];
5776 	value = (uint16_t)wvalue;
5777 	*ptr = cpu_to_le16(value);
5778 
5779 	ptr = &cp->cgn_alarm_min[index];
5780 	value = (uint16_t)avalue;
5781 	*ptr = cpu_to_le16(value);
5782 
5783 	lptr = &cp->cgn_latency_min[index];
5784 	if (lvalue) {
5785 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5786 		*lptr = cpu_to_le32(lvalue);
5787 	} else {
5788 		*lptr = 0;
5789 	}
5790 
5791 	/* Collect the bandwidth value into the driver's congesion buffer. */
5792 	mptr = &cp->cgn_bw_min[index];
5793 	*mptr = cpu_to_le16(mvalue);
5794 
5795 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5796 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5797 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5798 
5799 	/* Every hour */
5800 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5801 		/* Record congestion buffer info - every hour
5802 		 * Collapse all minutes into an hour
5803 		 */
5804 		index = ++cp->cgn_index_hour;
5805 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5806 			cp->cgn_index_hour = 0;
5807 			index = 0;
5808 		}
5809 
5810 		dvalue = 0;
5811 		wvalue = 0;
5812 		lvalue = 0;
5813 		avalue = 0;
5814 		mvalue = 0;
5815 		mbps = 0;
5816 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5817 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5818 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5819 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5820 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5821 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5822 		}
5823 		if (lvalue)		/* Avg of latency averages */
5824 			lvalue /= LPFC_MIN_HOUR;
5825 		if (mbps)		/* Avg of Bandwidth averages */
5826 			mvalue = mbps / LPFC_MIN_HOUR;
5827 
5828 		lptr = &cp->cgn_drvr_hr[index];
5829 		*lptr = cpu_to_le32(dvalue);
5830 		lptr = &cp->cgn_warn_hr[index];
5831 		*lptr = cpu_to_le32(wvalue);
5832 		lptr = &cp->cgn_latency_hr[index];
5833 		*lptr = cpu_to_le32(lvalue);
5834 		mptr = &cp->cgn_bw_hr[index];
5835 		*mptr = cpu_to_le16(mvalue);
5836 		lptr = &cp->cgn_alarm_hr[index];
5837 		*lptr = cpu_to_le32(avalue);
5838 
5839 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5840 				"2419 Congestion Info - hour "
5841 				"(%d): %d %d %d %d %d\n",
5842 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5843 	}
5844 
5845 	/* Every day */
5846 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5847 		/* Record congestion buffer info - every hour
5848 		 * Collapse all hours into a day. Rotate days
5849 		 * after LPFC_MAX_CGN_DAYS.
5850 		 */
5851 		index = ++cp->cgn_index_day;
5852 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5853 			cp->cgn_index_day = 0;
5854 			index = 0;
5855 		}
5856 
5857 		dvalue = 0;
5858 		wvalue = 0;
5859 		lvalue = 0;
5860 		mvalue = 0;
5861 		mbps = 0;
5862 		avalue = 0;
5863 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5864 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5865 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5866 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5867 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5868 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5869 		}
5870 		if (lvalue)		/* Avg of latency averages */
5871 			lvalue /= LPFC_HOUR_DAY;
5872 		if (mbps)		/* Avg of Bandwidth averages */
5873 			mvalue = mbps / LPFC_HOUR_DAY;
5874 
5875 		lptr = &cp->cgn_drvr_day[index];
5876 		*lptr = cpu_to_le32(dvalue);
5877 		lptr = &cp->cgn_warn_day[index];
5878 		*lptr = cpu_to_le32(wvalue);
5879 		lptr = &cp->cgn_latency_day[index];
5880 		*lptr = cpu_to_le32(lvalue);
5881 		mptr = &cp->cgn_bw_day[index];
5882 		*mptr = cpu_to_le16(mvalue);
5883 		lptr = &cp->cgn_alarm_day[index];
5884 		*lptr = cpu_to_le32(avalue);
5885 
5886 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5887 				"2420 Congestion Info - daily (%d): "
5888 				"%d %d %d %d %d\n",
5889 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5890 	}
5891 
5892 	/* Use the frequency found in the last rcv'ed FPIN */
5893 	value = phba->cgn_fpin_frequency;
5894 	cp->cgn_warn_freq = cpu_to_le16(value);
5895 	cp->cgn_alarm_freq = cpu_to_le16(value);
5896 
5897 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5898 				     LPFC_CGN_CRC32_SEED);
5899 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5900 
5901 	hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC));
5902 
5903 	return HRTIMER_RESTART;
5904 }
5905 
5906 /**
5907  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5908  * @phba: The Hba for which this call is being executed.
5909  *
5910  * The routine calculates the latency from the beginning of the CMF timer
5911  * interval to the current point in time. It is called from IO completion
5912  * when we exceed our Bandwidth limitation for the time interval.
5913  */
5914 uint32_t
5915 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5916 {
5917 	struct timespec64 cmpl_time;
5918 	uint32_t msec = 0;
5919 
5920 	ktime_get_real_ts64(&cmpl_time);
5921 
5922 	/* This routine works on a ms granularity so sec and usec are
5923 	 * converted accordingly.
5924 	 */
5925 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5926 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5927 			NSEC_PER_MSEC;
5928 	} else {
5929 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5930 			msec = (cmpl_time.tv_sec -
5931 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5932 			msec += ((cmpl_time.tv_nsec -
5933 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5934 		} else {
5935 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5936 				1) * MSEC_PER_SEC;
5937 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5938 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5939 		}
5940 	}
5941 	return msec;
5942 }
5943 
5944 /**
5945  * lpfc_cmf_timer -  This is the timer function for one congestion
5946  * rate interval.
5947  * @timer: Pointer to the high resolution timer that expired
5948  */
5949 static enum hrtimer_restart
5950 lpfc_cmf_timer(struct hrtimer *timer)
5951 {
5952 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5953 					     cmf_timer);
5954 	struct rx_info_entry entry;
5955 	uint32_t io_cnt;
5956 	uint32_t busy, max_read;
5957 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5958 	int timer_interval = LPFC_CMF_INTERVAL;
5959 	uint32_t ms;
5960 	struct lpfc_cgn_stat *cgs;
5961 	int cpu;
5962 
5963 	/* Only restart the timer if congestion mgmt is on */
5964 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5965 	    !phba->cmf_latency.tv_sec) {
5966 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5967 				"6224 CMF timer exit: %d %lld\n",
5968 				phba->cmf_active_mode,
5969 				(uint64_t)phba->cmf_latency.tv_sec);
5970 		return HRTIMER_NORESTART;
5971 	}
5972 
5973 	/* If pport is not ready yet, just exit and wait for
5974 	 * the next timer cycle to hit.
5975 	 */
5976 	if (!phba->pport)
5977 		goto skip;
5978 
5979 	/* Do not block SCSI IO while in the timer routine since
5980 	 * total_bytes will be cleared
5981 	 */
5982 	atomic_set(&phba->cmf_stop_io, 1);
5983 
5984 	/* First we need to calculate the actual ms between
5985 	 * the last timer interrupt and this one. We ask for
5986 	 * LPFC_CMF_INTERVAL, however the actual time may
5987 	 * vary depending on system overhead.
5988 	 */
5989 	ms = lpfc_calc_cmf_latency(phba);
5990 
5991 
5992 	/* Immediately after we calculate the time since the last
5993 	 * timer interrupt, set the start time for the next
5994 	 * interrupt
5995 	 */
5996 	ktime_get_real_ts64(&phba->cmf_latency);
5997 
5998 	phba->cmf_link_byte_count =
5999 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
6000 
6001 	/* Collect all the stats from the prior timer interval */
6002 	total = 0;
6003 	io_cnt = 0;
6004 	lat = 0;
6005 	rcv = 0;
6006 	for_each_present_cpu(cpu) {
6007 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
6008 		total += atomic64_xchg(&cgs->total_bytes, 0);
6009 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
6010 		lat += atomic64_xchg(&cgs->rx_latency, 0);
6011 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
6012 	}
6013 
6014 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
6015 	 * returned from the last CMF_SYNC_WQE issued, from
6016 	 * cmf_last_sync_bw. This will be the target BW for
6017 	 * this next timer interval.
6018 	 */
6019 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
6020 	    phba->link_state != LPFC_LINK_DOWN &&
6021 	    phba->hba_flag & HBA_SETUP) {
6022 		mbpi = phba->cmf_last_sync_bw;
6023 		phba->cmf_last_sync_bw = 0;
6024 		extra = 0;
6025 
6026 		/* Calculate any extra bytes needed to account for the
6027 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
6028 		 * calculate the adjustment needed for total to reflect
6029 		 * a full LPFC_CMF_INTERVAL.
6030 		 */
6031 		if (ms && ms < LPFC_CMF_INTERVAL) {
6032 			cnt = div_u64(total, ms); /* bytes per ms */
6033 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
6034 			extra = cnt - total;
6035 		}
6036 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
6037 	} else {
6038 		/* For Monitor mode or link down we want mbpi
6039 		 * to be the full link speed
6040 		 */
6041 		mbpi = phba->cmf_link_byte_count;
6042 		extra = 0;
6043 	}
6044 	phba->cmf_timer_cnt++;
6045 
6046 	if (io_cnt) {
6047 		/* Update congestion info buffer latency in us */
6048 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
6049 		atomic64_add(lat, &phba->cgn_latency_evt);
6050 	}
6051 	busy = atomic_xchg(&phba->cmf_busy, 0);
6052 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
6053 
6054 	/* Calculate MBPI for the next timer interval */
6055 	if (mbpi) {
6056 		if (mbpi > phba->cmf_link_byte_count ||
6057 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
6058 			mbpi = phba->cmf_link_byte_count;
6059 
6060 		/* Change max_bytes_per_interval to what the prior
6061 		 * CMF_SYNC_WQE cmpl indicated.
6062 		 */
6063 		if (mbpi != phba->cmf_max_bytes_per_interval)
6064 			phba->cmf_max_bytes_per_interval = mbpi;
6065 	}
6066 
6067 	/* Save rxmonitor information for debug */
6068 	if (phba->rx_monitor) {
6069 		entry.total_bytes = total;
6070 		entry.cmf_bytes = total + extra;
6071 		entry.rcv_bytes = rcv;
6072 		entry.cmf_busy = busy;
6073 		entry.cmf_info = phba->cmf_active_info;
6074 		if (io_cnt) {
6075 			entry.avg_io_latency = div_u64(lat, io_cnt);
6076 			entry.avg_io_size = div_u64(rcv, io_cnt);
6077 		} else {
6078 			entry.avg_io_latency = 0;
6079 			entry.avg_io_size = 0;
6080 		}
6081 		entry.max_read_cnt = max_read;
6082 		entry.io_cnt = io_cnt;
6083 		entry.max_bytes_per_interval = mbpi;
6084 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
6085 			entry.timer_utilization = phba->cmf_last_ts;
6086 		else
6087 			entry.timer_utilization = ms;
6088 		entry.timer_interval = ms;
6089 		phba->cmf_last_ts = 0;
6090 
6091 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
6092 	}
6093 
6094 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
6095 		/* If Monitor mode, check if we are oversubscribed
6096 		 * against the full line rate.
6097 		 */
6098 		if (mbpi && total > mbpi)
6099 			atomic_inc(&phba->cgn_driver_evt_cnt);
6100 	}
6101 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
6102 
6103 	/* Since total_bytes has already been zero'ed, its okay to unblock
6104 	 * after max_bytes_per_interval is setup.
6105 	 */
6106 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6107 		queue_work(phba->wq, &phba->unblock_request_work);
6108 
6109 	/* SCSI IO is now unblocked */
6110 	atomic_set(&phba->cmf_stop_io, 0);
6111 
6112 skip:
6113 	hrtimer_forward_now(timer,
6114 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6115 	return HRTIMER_RESTART;
6116 }
6117 
6118 #define trunk_link_status(__idx)\
6119 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6120 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6121 		"Link up" : "Link down") : "NA"
6122 /* Did port __idx reported an error */
6123 #define trunk_port_fault(__idx)\
6124 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6125 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6126 
6127 static void
6128 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6129 			      struct lpfc_acqe_fc_la *acqe_fc)
6130 {
6131 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6132 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6133 	u8 cnt = 0;
6134 
6135 	phba->sli4_hba.link_state.speed =
6136 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6137 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6138 
6139 	phba->sli4_hba.link_state.logical_speed =
6140 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6141 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6142 	phba->fc_linkspeed =
6143 		 lpfc_async_link_speed_to_read_top(
6144 				phba,
6145 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6146 
6147 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6148 		phba->trunk_link.link0.state =
6149 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6150 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6151 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6152 		cnt++;
6153 	}
6154 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6155 		phba->trunk_link.link1.state =
6156 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6157 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6158 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6159 		cnt++;
6160 	}
6161 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6162 		phba->trunk_link.link2.state =
6163 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6164 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6165 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6166 		cnt++;
6167 	}
6168 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6169 		phba->trunk_link.link3.state =
6170 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6171 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6172 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6173 		cnt++;
6174 	}
6175 
6176 	if (cnt)
6177 		phba->trunk_link.phy_lnk_speed =
6178 			phba->sli4_hba.link_state.logical_speed / (cnt * 1000);
6179 	else
6180 		phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN;
6181 
6182 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6183 			"2910 Async FC Trunking Event - Speed:%d\n"
6184 			"\tLogical speed:%d "
6185 			"port0: %s port1: %s port2: %s port3: %s\n",
6186 			phba->sli4_hba.link_state.speed,
6187 			phba->sli4_hba.link_state.logical_speed,
6188 			trunk_link_status(0), trunk_link_status(1),
6189 			trunk_link_status(2), trunk_link_status(3));
6190 
6191 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6192 		lpfc_cmf_signal_init(phba);
6193 
6194 	if (port_fault)
6195 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6196 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6197 				/*
6198 				 * SLI-4: We have only 0xA error codes
6199 				 * defined as of now. print an appropriate
6200 				 * message in case driver needs to be updated.
6201 				 */
6202 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6203 				"UNDEFINED. update driver." : trunk_errmsg[err],
6204 				trunk_port_fault(0), trunk_port_fault(1),
6205 				trunk_port_fault(2), trunk_port_fault(3));
6206 }
6207 
6208 
6209 /**
6210  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6211  * @phba: pointer to lpfc hba data structure.
6212  * @acqe_fc: pointer to the async fc completion queue entry.
6213  *
6214  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6215  * that the event was received and then issue a read_topology mailbox command so
6216  * that the rest of the driver will treat it the same as SLI3.
6217  **/
6218 static void
6219 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6220 {
6221 	LPFC_MBOXQ_t *pmb;
6222 	MAILBOX_t *mb;
6223 	struct lpfc_mbx_read_top *la;
6224 	char *log_level;
6225 	int rc;
6226 
6227 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6228 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6229 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6230 				"2895 Non FC link Event detected.(%d)\n",
6231 				bf_get(lpfc_trailer_type, acqe_fc));
6232 		return;
6233 	}
6234 
6235 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6236 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6237 		lpfc_update_trunk_link_status(phba, acqe_fc);
6238 		return;
6239 	}
6240 
6241 	/* Keep the link status for extra SLI4 state machine reference */
6242 	phba->sli4_hba.link_state.speed =
6243 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6244 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6245 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6246 	phba->sli4_hba.link_state.topology =
6247 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6248 	phba->sli4_hba.link_state.status =
6249 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6250 	phba->sli4_hba.link_state.type =
6251 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6252 	phba->sli4_hba.link_state.number =
6253 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6254 	phba->sli4_hba.link_state.fault =
6255 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6256 	phba->sli4_hba.link_state.link_status =
6257 				bf_get(lpfc_acqe_fc_la_link_status, acqe_fc);
6258 
6259 	/*
6260 	 * Only select attention types need logical speed modification to what
6261 	 * was previously set.
6262 	 */
6263 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP &&
6264 	    phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6265 		if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6266 		    LPFC_FC_LA_TYPE_LINK_DOWN)
6267 			phba->sli4_hba.link_state.logical_speed = 0;
6268 		else if (!phba->sli4_hba.conf_trunk)
6269 			phba->sli4_hba.link_state.logical_speed =
6270 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6271 	}
6272 
6273 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6274 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6275 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6276 			"%dMbps Fault:x%x Link Status:x%x\n",
6277 			phba->sli4_hba.link_state.speed,
6278 			phba->sli4_hba.link_state.topology,
6279 			phba->sli4_hba.link_state.status,
6280 			phba->sli4_hba.link_state.type,
6281 			phba->sli4_hba.link_state.number,
6282 			phba->sli4_hba.link_state.logical_speed,
6283 			phba->sli4_hba.link_state.fault,
6284 			phba->sli4_hba.link_state.link_status);
6285 
6286 	/*
6287 	 * The following attention types are informational only, providing
6288 	 * further details about link status.  Overwrite the value of
6289 	 * link_state.status appropriately.  No further action is required.
6290 	 */
6291 	if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) {
6292 		switch (phba->sli4_hba.link_state.status) {
6293 		case LPFC_FC_LA_TYPE_ACTIVATE_FAIL:
6294 			log_level = KERN_WARNING;
6295 			phba->sli4_hba.link_state.status =
6296 					LPFC_FC_LA_TYPE_LINK_DOWN;
6297 			break;
6298 		case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT:
6299 			/*
6300 			 * During bb credit recovery establishment, receiving
6301 			 * this attention type is normal.  Link Up attention
6302 			 * type is expected to occur before this informational
6303 			 * attention type so keep the Link Up status.
6304 			 */
6305 			log_level = KERN_INFO;
6306 			phba->sli4_hba.link_state.status =
6307 					LPFC_FC_LA_TYPE_LINK_UP;
6308 			break;
6309 		default:
6310 			log_level = KERN_INFO;
6311 			break;
6312 		}
6313 		lpfc_log_msg(phba, log_level, LOG_SLI,
6314 			     "2992 Async FC event - Informational Link "
6315 			     "Attention Type x%x\n",
6316 			     bf_get(lpfc_acqe_fc_la_att_type, acqe_fc));
6317 		return;
6318 	}
6319 
6320 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6321 	if (!pmb) {
6322 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6323 				"2897 The mboxq allocation failed\n");
6324 		return;
6325 	}
6326 	rc = lpfc_mbox_rsrc_prep(phba, pmb);
6327 	if (rc) {
6328 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6329 				"2898 The mboxq prep failed\n");
6330 		goto out_free_pmb;
6331 	}
6332 
6333 	/* Cleanup any outstanding ELS commands */
6334 	lpfc_els_flush_all_cmd(phba);
6335 
6336 	/* Block ELS IOCBs until we have done process link event */
6337 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6338 
6339 	/* Update link event statistics */
6340 	phba->sli.slistat.link_event++;
6341 
6342 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6343 	lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf);
6344 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6345 	pmb->vport = phba->pport;
6346 
6347 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6348 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6349 
6350 		switch (phba->sli4_hba.link_state.status) {
6351 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6352 			phba->link_flag |= LS_MDS_LINK_DOWN;
6353 			break;
6354 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6355 			phba->link_flag |= LS_MDS_LOOPBACK;
6356 			break;
6357 		default:
6358 			break;
6359 		}
6360 
6361 		/* Initialize completion status */
6362 		mb = &pmb->u.mb;
6363 		mb->mbxStatus = MBX_SUCCESS;
6364 
6365 		/* Parse port fault information field */
6366 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6367 
6368 		/* Parse and translate link attention fields */
6369 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6370 		la->eventTag = acqe_fc->event_tag;
6371 
6372 		if (phba->sli4_hba.link_state.status ==
6373 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6374 			bf_set(lpfc_mbx_read_top_att_type, la,
6375 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6376 		} else {
6377 			bf_set(lpfc_mbx_read_top_att_type, la,
6378 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6379 		}
6380 		/* Invoke the mailbox command callback function */
6381 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6382 
6383 		return;
6384 	}
6385 
6386 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6387 	if (rc == MBX_NOT_FINISHED)
6388 		goto out_free_pmb;
6389 	return;
6390 
6391 out_free_pmb:
6392 	lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED);
6393 }
6394 
6395 /**
6396  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6397  * @phba: pointer to lpfc hba data structure.
6398  * @acqe_sli: pointer to the async SLI completion queue entry.
6399  *
6400  * This routine is to handle the SLI4 asynchronous SLI events.
6401  **/
6402 static void
6403 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6404 {
6405 	char port_name;
6406 	char message[128];
6407 	uint8_t status;
6408 	uint8_t evt_type;
6409 	uint8_t operational = 0;
6410 	struct temp_event temp_event_data;
6411 	struct lpfc_acqe_misconfigured_event *misconfigured;
6412 	struct lpfc_acqe_cgn_signal *cgn_signal;
6413 	struct Scsi_Host  *shost;
6414 	struct lpfc_vport **vports;
6415 	int rc, i, cnt;
6416 
6417 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6418 
6419 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6420 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6421 			"x%08x x%08x x%08x\n", evt_type,
6422 			acqe_sli->event_data1, acqe_sli->event_data2,
6423 			acqe_sli->event_data3, acqe_sli->trailer);
6424 
6425 	port_name = phba->Port[0];
6426 	if (port_name == 0x00)
6427 		port_name = '?'; /* get port name is empty */
6428 
6429 	switch (evt_type) {
6430 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6431 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6432 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6433 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6434 
6435 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6436 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6437 				acqe_sli->event_data1, port_name);
6438 
6439 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6440 		shost = lpfc_shost_from_vport(phba->pport);
6441 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6442 					  sizeof(temp_event_data),
6443 					  (char *)&temp_event_data,
6444 					  SCSI_NL_VID_TYPE_PCI
6445 					  | PCI_VENDOR_ID_EMULEX);
6446 		break;
6447 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6448 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6449 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6450 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6451 
6452 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT,
6453 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6454 				acqe_sli->event_data1, port_name);
6455 
6456 		shost = lpfc_shost_from_vport(phba->pport);
6457 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6458 					  sizeof(temp_event_data),
6459 					  (char *)&temp_event_data,
6460 					  SCSI_NL_VID_TYPE_PCI
6461 					  | PCI_VENDOR_ID_EMULEX);
6462 		break;
6463 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6464 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6465 					&acqe_sli->event_data1;
6466 
6467 		/* fetch the status for this port */
6468 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6469 		case LPFC_LINK_NUMBER_0:
6470 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6471 					&misconfigured->theEvent);
6472 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6473 					&misconfigured->theEvent);
6474 			break;
6475 		case LPFC_LINK_NUMBER_1:
6476 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6477 					&misconfigured->theEvent);
6478 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6479 					&misconfigured->theEvent);
6480 			break;
6481 		case LPFC_LINK_NUMBER_2:
6482 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6483 					&misconfigured->theEvent);
6484 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6485 					&misconfigured->theEvent);
6486 			break;
6487 		case LPFC_LINK_NUMBER_3:
6488 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6489 					&misconfigured->theEvent);
6490 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6491 					&misconfigured->theEvent);
6492 			break;
6493 		default:
6494 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6495 					"3296 "
6496 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6497 					"event: Invalid link %d",
6498 					phba->sli4_hba.lnk_info.lnk_no);
6499 			return;
6500 		}
6501 
6502 		/* Skip if optic state unchanged */
6503 		if (phba->sli4_hba.lnk_info.optic_state == status)
6504 			return;
6505 
6506 		switch (status) {
6507 		case LPFC_SLI_EVENT_STATUS_VALID:
6508 			sprintf(message, "Physical Link is functional");
6509 			break;
6510 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6511 			sprintf(message, "Optics faulted/incorrectly "
6512 				"installed/not installed - Reseat optics, "
6513 				"if issue not resolved, replace.");
6514 			break;
6515 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6516 			sprintf(message,
6517 				"Optics of two types installed - Remove one "
6518 				"optic or install matching pair of optics.");
6519 			break;
6520 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6521 			sprintf(message, "Incompatible optics - Replace with "
6522 				"compatible optics for card to function.");
6523 			break;
6524 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6525 			sprintf(message, "Unqualified optics - Replace with "
6526 				"Avago optics for Warranty and Technical "
6527 				"Support - Link is%s operational",
6528 				(operational) ? " not" : "");
6529 			break;
6530 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6531 			sprintf(message, "Uncertified optics - Replace with "
6532 				"Avago-certified optics to enable link "
6533 				"operation - Link is%s operational",
6534 				(operational) ? " not" : "");
6535 			break;
6536 		default:
6537 			/* firmware is reporting a status we don't know about */
6538 			sprintf(message, "Unknown event status x%02x", status);
6539 			break;
6540 		}
6541 
6542 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6543 		rc = lpfc_sli4_read_config(phba);
6544 		if (rc) {
6545 			phba->lmt = 0;
6546 			lpfc_printf_log(phba, KERN_ERR,
6547 					LOG_TRACE_EVENT,
6548 					"3194 Unable to retrieve supported "
6549 					"speeds, rc = 0x%x\n", rc);
6550 		}
6551 		rc = lpfc_sli4_refresh_params(phba);
6552 		if (rc) {
6553 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6554 					"3174 Unable to update pls support, "
6555 					"rc x%x\n", rc);
6556 		}
6557 		vports = lpfc_create_vport_work_array(phba);
6558 		if (vports != NULL) {
6559 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6560 					i++) {
6561 				shost = lpfc_shost_from_vport(vports[i]);
6562 				lpfc_host_supported_speeds_set(shost);
6563 			}
6564 		}
6565 		lpfc_destroy_vport_work_array(phba, vports);
6566 
6567 		phba->sli4_hba.lnk_info.optic_state = status;
6568 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6569 				"3176 Port Name %c %s\n", port_name, message);
6570 		break;
6571 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6572 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6573 				"3192 Remote DPort Test Initiated - "
6574 				"Event Data1:x%08x Event Data2: x%08x\n",
6575 				acqe_sli->event_data1, acqe_sli->event_data2);
6576 		break;
6577 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6578 		/* Call FW to obtain active parms */
6579 		lpfc_sli4_cgn_parm_chg_evt(phba);
6580 		break;
6581 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6582 		/* Misconfigured WWN. Reports that the SLI Port is configured
6583 		 * to use FA-WWN, but the attached device doesn’t support it.
6584 		 * Event Data1 - N.A, Event Data2 - N.A
6585 		 * This event only happens on the physical port.
6586 		 */
6587 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY,
6588 			     "2699 Misconfigured FA-PWWN - Attached device "
6589 			     "does not support FA-PWWN\n");
6590 		phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC;
6591 		memset(phba->pport->fc_portname.u.wwn, 0,
6592 		       sizeof(struct lpfc_name));
6593 		break;
6594 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6595 		/* EEPROM failure. No driver action is required */
6596 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6597 			     "2518 EEPROM failure - "
6598 			     "Event Data1: x%08x Event Data2: x%08x\n",
6599 			     acqe_sli->event_data1, acqe_sli->event_data2);
6600 		break;
6601 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6602 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6603 			break;
6604 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6605 					&acqe_sli->event_data1;
6606 		phba->cgn_acqe_cnt++;
6607 
6608 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6609 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6610 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6611 
6612 		/* no threshold for CMF, even 1 signal will trigger an event */
6613 
6614 		/* Alarm overrides warning, so check that first */
6615 		if (cgn_signal->alarm_cnt) {
6616 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6617 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6618 				atomic_add(cgn_signal->alarm_cnt,
6619 					   &phba->cgn_sync_alarm_cnt);
6620 			}
6621 		} else if (cnt) {
6622 			/* signal action needs to be taken */
6623 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6624 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6625 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6626 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6627 			}
6628 		}
6629 		break;
6630 	case LPFC_SLI_EVENT_TYPE_RD_SIGNAL:
6631 		/* May be accompanied by a temperature event */
6632 		lpfc_printf_log(phba, KERN_INFO,
6633 				LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT,
6634 				"2902 Remote Degrade Signaling: x%08x x%08x "
6635 				"x%08x\n",
6636 				acqe_sli->event_data1, acqe_sli->event_data2,
6637 				acqe_sli->event_data3);
6638 		break;
6639 	default:
6640 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6641 				"3193 Unrecognized SLI event, type: 0x%x",
6642 				evt_type);
6643 		break;
6644 	}
6645 }
6646 
6647 /**
6648  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6649  * @vport: pointer to vport data structure.
6650  *
6651  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6652  * response to a CVL event.
6653  *
6654  * Return the pointer to the ndlp with the vport if successful, otherwise
6655  * return NULL.
6656  **/
6657 static struct lpfc_nodelist *
6658 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6659 {
6660 	struct lpfc_nodelist *ndlp;
6661 	struct Scsi_Host *shost;
6662 	struct lpfc_hba *phba;
6663 
6664 	if (!vport)
6665 		return NULL;
6666 	phba = vport->phba;
6667 	if (!phba)
6668 		return NULL;
6669 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6670 	if (!ndlp) {
6671 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6672 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6673 		if (!ndlp)
6674 			return NULL;
6675 		/* Set the node type */
6676 		ndlp->nlp_type |= NLP_FABRIC;
6677 		/* Put ndlp onto node list */
6678 		lpfc_enqueue_node(vport, ndlp);
6679 	}
6680 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6681 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6682 		return NULL;
6683 	/* If virtual link is not yet instantiated ignore CVL */
6684 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6685 		&& (vport->port_state != LPFC_VPORT_FAILED))
6686 		return NULL;
6687 	shost = lpfc_shost_from_vport(vport);
6688 	if (!shost)
6689 		return NULL;
6690 	lpfc_linkdown_port(vport);
6691 	lpfc_cleanup_pending_mbox(vport);
6692 	spin_lock_irq(shost->host_lock);
6693 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6694 	spin_unlock_irq(shost->host_lock);
6695 
6696 	return ndlp;
6697 }
6698 
6699 /**
6700  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6701  * @phba: pointer to lpfc hba data structure.
6702  *
6703  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6704  * response to a FCF dead event.
6705  **/
6706 static void
6707 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6708 {
6709 	struct lpfc_vport **vports;
6710 	int i;
6711 
6712 	vports = lpfc_create_vport_work_array(phba);
6713 	if (vports)
6714 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6715 			lpfc_sli4_perform_vport_cvl(vports[i]);
6716 	lpfc_destroy_vport_work_array(phba, vports);
6717 }
6718 
6719 /**
6720  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6721  * @phba: pointer to lpfc hba data structure.
6722  * @acqe_fip: pointer to the async fcoe completion queue entry.
6723  *
6724  * This routine is to handle the SLI4 asynchronous fcoe event.
6725  **/
6726 static void
6727 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6728 			struct lpfc_acqe_fip *acqe_fip)
6729 {
6730 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6731 	int rc;
6732 	struct lpfc_vport *vport;
6733 	struct lpfc_nodelist *ndlp;
6734 	int active_vlink_present;
6735 	struct lpfc_vport **vports;
6736 	int i;
6737 
6738 	phba->fc_eventTag = acqe_fip->event_tag;
6739 	phba->fcoe_eventtag = acqe_fip->event_tag;
6740 	switch (event_type) {
6741 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6742 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6743 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6744 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6745 					"2546 New FCF event, evt_tag:x%x, "
6746 					"index:x%x\n",
6747 					acqe_fip->event_tag,
6748 					acqe_fip->index);
6749 		else
6750 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6751 					LOG_DISCOVERY,
6752 					"2788 FCF param modified event, "
6753 					"evt_tag:x%x, index:x%x\n",
6754 					acqe_fip->event_tag,
6755 					acqe_fip->index);
6756 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6757 			/*
6758 			 * During period of FCF discovery, read the FCF
6759 			 * table record indexed by the event to update
6760 			 * FCF roundrobin failover eligible FCF bmask.
6761 			 */
6762 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6763 					LOG_DISCOVERY,
6764 					"2779 Read FCF (x%x) for updating "
6765 					"roundrobin FCF failover bmask\n",
6766 					acqe_fip->index);
6767 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6768 		}
6769 
6770 		/* If the FCF discovery is in progress, do nothing. */
6771 		spin_lock_irq(&phba->hbalock);
6772 		if (phba->hba_flag & FCF_TS_INPROG) {
6773 			spin_unlock_irq(&phba->hbalock);
6774 			break;
6775 		}
6776 		/* If fast FCF failover rescan event is pending, do nothing */
6777 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6778 			spin_unlock_irq(&phba->hbalock);
6779 			break;
6780 		}
6781 
6782 		/* If the FCF has been in discovered state, do nothing. */
6783 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6784 			spin_unlock_irq(&phba->hbalock);
6785 			break;
6786 		}
6787 		spin_unlock_irq(&phba->hbalock);
6788 
6789 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6790 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6791 				"2770 Start FCF table scan per async FCF "
6792 				"event, evt_tag:x%x, index:x%x\n",
6793 				acqe_fip->event_tag, acqe_fip->index);
6794 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6795 						     LPFC_FCOE_FCF_GET_FIRST);
6796 		if (rc)
6797 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6798 					"2547 Issue FCF scan read FCF mailbox "
6799 					"command failed (x%x)\n", rc);
6800 		break;
6801 
6802 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6803 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6804 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6805 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6806 				acqe_fip->event_tag);
6807 		break;
6808 
6809 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6810 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6811 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6812 				"2549 FCF (x%x) disconnected from network, "
6813 				 "tag:x%x\n", acqe_fip->index,
6814 				 acqe_fip->event_tag);
6815 		/*
6816 		 * If we are in the middle of FCF failover process, clear
6817 		 * the corresponding FCF bit in the roundrobin bitmap.
6818 		 */
6819 		spin_lock_irq(&phba->hbalock);
6820 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6821 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6822 			spin_unlock_irq(&phba->hbalock);
6823 			/* Update FLOGI FCF failover eligible FCF bmask */
6824 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6825 			break;
6826 		}
6827 		spin_unlock_irq(&phba->hbalock);
6828 
6829 		/* If the event is not for currently used fcf do nothing */
6830 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6831 			break;
6832 
6833 		/*
6834 		 * Otherwise, request the port to rediscover the entire FCF
6835 		 * table for a fast recovery from case that the current FCF
6836 		 * is no longer valid as we are not in the middle of FCF
6837 		 * failover process already.
6838 		 */
6839 		spin_lock_irq(&phba->hbalock);
6840 		/* Mark the fast failover process in progress */
6841 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6842 		spin_unlock_irq(&phba->hbalock);
6843 
6844 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6845 				"2771 Start FCF fast failover process due to "
6846 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6847 				"\n", acqe_fip->event_tag, acqe_fip->index);
6848 		rc = lpfc_sli4_redisc_fcf_table(phba);
6849 		if (rc) {
6850 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6851 					LOG_TRACE_EVENT,
6852 					"2772 Issue FCF rediscover mailbox "
6853 					"command failed, fail through to FCF "
6854 					"dead event\n");
6855 			spin_lock_irq(&phba->hbalock);
6856 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6857 			spin_unlock_irq(&phba->hbalock);
6858 			/*
6859 			 * Last resort will fail over by treating this
6860 			 * as a link down to FCF registration.
6861 			 */
6862 			lpfc_sli4_fcf_dead_failthrough(phba);
6863 		} else {
6864 			/* Reset FCF roundrobin bmask for new discovery */
6865 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6866 			/*
6867 			 * Handling fast FCF failover to a DEAD FCF event is
6868 			 * considered equalivant to receiving CVL to all vports.
6869 			 */
6870 			lpfc_sli4_perform_all_vport_cvl(phba);
6871 		}
6872 		break;
6873 	case LPFC_FIP_EVENT_TYPE_CVL:
6874 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6875 		lpfc_printf_log(phba, KERN_ERR,
6876 				LOG_TRACE_EVENT,
6877 			"2718 Clear Virtual Link Received for VPI 0x%x"
6878 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6879 
6880 		vport = lpfc_find_vport_by_vpid(phba,
6881 						acqe_fip->index);
6882 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6883 		if (!ndlp)
6884 			break;
6885 		active_vlink_present = 0;
6886 
6887 		vports = lpfc_create_vport_work_array(phba);
6888 		if (vports) {
6889 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6890 					i++) {
6891 				if ((!(vports[i]->fc_flag &
6892 					FC_VPORT_CVL_RCVD)) &&
6893 					(vports[i]->port_state > LPFC_FDISC)) {
6894 					active_vlink_present = 1;
6895 					break;
6896 				}
6897 			}
6898 			lpfc_destroy_vport_work_array(phba, vports);
6899 		}
6900 
6901 		/*
6902 		 * Don't re-instantiate if vport is marked for deletion.
6903 		 * If we are here first then vport_delete is going to wait
6904 		 * for discovery to complete.
6905 		 */
6906 		if (!(vport->load_flag & FC_UNLOADING) &&
6907 					active_vlink_present) {
6908 			/*
6909 			 * If there are other active VLinks present,
6910 			 * re-instantiate the Vlink using FDISC.
6911 			 */
6912 			mod_timer(&ndlp->nlp_delayfunc,
6913 				  jiffies + msecs_to_jiffies(1000));
6914 			spin_lock_irq(&ndlp->lock);
6915 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6916 			spin_unlock_irq(&ndlp->lock);
6917 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6918 			vport->port_state = LPFC_FDISC;
6919 		} else {
6920 			/*
6921 			 * Otherwise, we request port to rediscover
6922 			 * the entire FCF table for a fast recovery
6923 			 * from possible case that the current FCF
6924 			 * is no longer valid if we are not already
6925 			 * in the FCF failover process.
6926 			 */
6927 			spin_lock_irq(&phba->hbalock);
6928 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6929 				spin_unlock_irq(&phba->hbalock);
6930 				break;
6931 			}
6932 			/* Mark the fast failover process in progress */
6933 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6934 			spin_unlock_irq(&phba->hbalock);
6935 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6936 					LOG_DISCOVERY,
6937 					"2773 Start FCF failover per CVL, "
6938 					"evt_tag:x%x\n", acqe_fip->event_tag);
6939 			rc = lpfc_sli4_redisc_fcf_table(phba);
6940 			if (rc) {
6941 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6942 						LOG_TRACE_EVENT,
6943 						"2774 Issue FCF rediscover "
6944 						"mailbox command failed, "
6945 						"through to CVL event\n");
6946 				spin_lock_irq(&phba->hbalock);
6947 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6948 				spin_unlock_irq(&phba->hbalock);
6949 				/*
6950 				 * Last resort will be re-try on the
6951 				 * the current registered FCF entry.
6952 				 */
6953 				lpfc_retry_pport_discovery(phba);
6954 			} else
6955 				/*
6956 				 * Reset FCF roundrobin bmask for new
6957 				 * discovery.
6958 				 */
6959 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6960 		}
6961 		break;
6962 	default:
6963 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6964 				"0288 Unknown FCoE event type 0x%x event tag "
6965 				"0x%x\n", event_type, acqe_fip->event_tag);
6966 		break;
6967 	}
6968 }
6969 
6970 /**
6971  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6972  * @phba: pointer to lpfc hba data structure.
6973  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6974  *
6975  * This routine is to handle the SLI4 asynchronous dcbx event.
6976  **/
6977 static void
6978 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6979 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6980 {
6981 	phba->fc_eventTag = acqe_dcbx->event_tag;
6982 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6983 			"0290 The SLI4 DCBX asynchronous event is not "
6984 			"handled yet\n");
6985 }
6986 
6987 /**
6988  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6989  * @phba: pointer to lpfc hba data structure.
6990  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6991  *
6992  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6993  * is an asynchronous notified of a logical link speed change.  The Port
6994  * reports the logical link speed in units of 10Mbps.
6995  **/
6996 static void
6997 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6998 			 struct lpfc_acqe_grp5 *acqe_grp5)
6999 {
7000 	uint16_t prev_ll_spd;
7001 
7002 	phba->fc_eventTag = acqe_grp5->event_tag;
7003 	phba->fcoe_eventtag = acqe_grp5->event_tag;
7004 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
7005 	phba->sli4_hba.link_state.logical_speed =
7006 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
7007 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
7008 			"2789 GRP5 Async Event: Updating logical link speed "
7009 			"from %dMbps to %dMbps\n", prev_ll_spd,
7010 			phba->sli4_hba.link_state.logical_speed);
7011 }
7012 
7013 /**
7014  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
7015  * @phba: pointer to lpfc hba data structure.
7016  *
7017  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
7018  * is an asynchronous notification of a request to reset CM stats.
7019  **/
7020 static void
7021 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
7022 {
7023 	if (!phba->cgn_i)
7024 		return;
7025 	lpfc_init_congestion_stat(phba);
7026 }
7027 
7028 /**
7029  * lpfc_cgn_params_val - Validate FW congestion parameters.
7030  * @phba: pointer to lpfc hba data structure.
7031  * @p_cfg_param: pointer to FW provided congestion parameters.
7032  *
7033  * This routine validates the congestion parameters passed
7034  * by the FW to the driver via an ACQE event.
7035  **/
7036 static void
7037 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
7038 {
7039 	spin_lock_irq(&phba->hbalock);
7040 
7041 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
7042 			     LPFC_CFG_MONITOR)) {
7043 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
7044 				"6225 CMF mode param out of range: %d\n",
7045 				 p_cfg_param->cgn_param_mode);
7046 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
7047 	}
7048 
7049 	spin_unlock_irq(&phba->hbalock);
7050 }
7051 
7052 static const char * const lpfc_cmf_mode_to_str[] = {
7053 	"OFF",
7054 	"MANAGED",
7055 	"MONITOR",
7056 };
7057 
7058 /**
7059  * lpfc_cgn_params_parse - Process a FW cong parm change event
7060  * @phba: pointer to lpfc hba data structure.
7061  * @p_cgn_param: pointer to a data buffer with the FW cong params.
7062  * @len: the size of pdata in bytes.
7063  *
7064  * This routine validates the congestion management buffer signature
7065  * from the FW, validates the contents and makes corrections for
7066  * valid, in-range values.  If the signature magic is correct and
7067  * after parameter validation, the contents are copied to the driver's
7068  * @phba structure. If the magic is incorrect, an error message is
7069  * logged.
7070  **/
7071 static void
7072 lpfc_cgn_params_parse(struct lpfc_hba *phba,
7073 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
7074 {
7075 	struct lpfc_cgn_info *cp;
7076 	uint32_t crc, oldmode;
7077 	char acr_string[4] = {0};
7078 
7079 	/* Make sure the FW has encoded the correct magic number to
7080 	 * validate the congestion parameter in FW memory.
7081 	 */
7082 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
7083 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7084 				"4668 FW cgn parm buffer data: "
7085 				"magic 0x%x version %d mode %d "
7086 				"level0 %d level1 %d "
7087 				"level2 %d byte13 %d "
7088 				"byte14 %d byte15 %d "
7089 				"byte11 %d byte12 %d activeMode %d\n",
7090 				p_cgn_param->cgn_param_magic,
7091 				p_cgn_param->cgn_param_version,
7092 				p_cgn_param->cgn_param_mode,
7093 				p_cgn_param->cgn_param_level0,
7094 				p_cgn_param->cgn_param_level1,
7095 				p_cgn_param->cgn_param_level2,
7096 				p_cgn_param->byte13,
7097 				p_cgn_param->byte14,
7098 				p_cgn_param->byte15,
7099 				p_cgn_param->byte11,
7100 				p_cgn_param->byte12,
7101 				phba->cmf_active_mode);
7102 
7103 		oldmode = phba->cmf_active_mode;
7104 
7105 		/* Any parameters out of range are corrected to defaults
7106 		 * by this routine.  No need to fail.
7107 		 */
7108 		lpfc_cgn_params_val(phba, p_cgn_param);
7109 
7110 		/* Parameters are verified, move them into driver storage */
7111 		spin_lock_irq(&phba->hbalock);
7112 		memcpy(&phba->cgn_p, p_cgn_param,
7113 		       sizeof(struct lpfc_cgn_param));
7114 
7115 		/* Update parameters in congestion info buffer now */
7116 		if (phba->cgn_i) {
7117 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
7118 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
7119 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
7120 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
7121 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
7122 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
7123 						  LPFC_CGN_CRC32_SEED);
7124 			cp->cgn_info_crc = cpu_to_le32(crc);
7125 		}
7126 		spin_unlock_irq(&phba->hbalock);
7127 
7128 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
7129 
7130 		switch (oldmode) {
7131 		case LPFC_CFG_OFF:
7132 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
7133 				/* Turning CMF on */
7134 				lpfc_cmf_start(phba);
7135 
7136 				if (phba->link_state >= LPFC_LINK_UP) {
7137 					phba->cgn_reg_fpin =
7138 						phba->cgn_init_reg_fpin;
7139 					phba->cgn_reg_signal =
7140 						phba->cgn_init_reg_signal;
7141 					lpfc_issue_els_edc(phba->pport, 0);
7142 				}
7143 			}
7144 			break;
7145 		case LPFC_CFG_MANAGED:
7146 			switch (phba->cgn_p.cgn_param_mode) {
7147 			case LPFC_CFG_OFF:
7148 				/* Turning CMF off */
7149 				lpfc_cmf_stop(phba);
7150 				if (phba->link_state >= LPFC_LINK_UP)
7151 					lpfc_issue_els_edc(phba->pport, 0);
7152 				break;
7153 			case LPFC_CFG_MONITOR:
7154 				phba->cmf_max_bytes_per_interval =
7155 					phba->cmf_link_byte_count;
7156 
7157 				/* Resume blocked IO - unblock on workqueue */
7158 				queue_work(phba->wq,
7159 					   &phba->unblock_request_work);
7160 				break;
7161 			}
7162 			break;
7163 		case LPFC_CFG_MONITOR:
7164 			switch (phba->cgn_p.cgn_param_mode) {
7165 			case LPFC_CFG_OFF:
7166 				/* Turning CMF off */
7167 				lpfc_cmf_stop(phba);
7168 				if (phba->link_state >= LPFC_LINK_UP)
7169 					lpfc_issue_els_edc(phba->pport, 0);
7170 				break;
7171 			case LPFC_CFG_MANAGED:
7172 				lpfc_cmf_signal_init(phba);
7173 				break;
7174 			}
7175 			break;
7176 		}
7177 		if (oldmode != LPFC_CFG_OFF ||
7178 		    oldmode != phba->cgn_p.cgn_param_mode) {
7179 			if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED)
7180 				scnprintf(acr_string, sizeof(acr_string), "%u",
7181 					  phba->cgn_p.cgn_param_level0);
7182 			else
7183 				scnprintf(acr_string, sizeof(acr_string), "NA");
7184 
7185 			dev_info(&phba->pcidev->dev, "%d: "
7186 				 "4663 CMF: Mode %s acr %s\n",
7187 				 phba->brd_no,
7188 				 lpfc_cmf_mode_to_str
7189 				 [phba->cgn_p.cgn_param_mode],
7190 				 acr_string);
7191 		}
7192 	} else {
7193 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7194 				"4669 FW cgn parm buf wrong magic 0x%x "
7195 				"version %d\n", p_cgn_param->cgn_param_magic,
7196 				p_cgn_param->cgn_param_version);
7197 	}
7198 }
7199 
7200 /**
7201  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7202  * @phba: pointer to lpfc hba data structure.
7203  *
7204  * This routine issues a read_object mailbox command to
7205  * get the congestion management parameters from the FW
7206  * parses it and updates the driver maintained values.
7207  *
7208  * Returns
7209  *  0     if the object was empty
7210  *  -Eval if an error was encountered
7211  *  Count if bytes were read from object
7212  **/
7213 int
7214 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7215 {
7216 	int ret = 0;
7217 	struct lpfc_cgn_param *p_cgn_param = NULL;
7218 	u32 *pdata = NULL;
7219 	u32 len = 0;
7220 
7221 	/* Find out if the FW has a new set of congestion parameters. */
7222 	len = sizeof(struct lpfc_cgn_param);
7223 	pdata = kzalloc(len, GFP_KERNEL);
7224 	if (!pdata)
7225 		return -ENOMEM;
7226 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7227 			       pdata, len);
7228 
7229 	/* 0 means no data.  A negative means error.  A positive means
7230 	 * bytes were copied.
7231 	 */
7232 	if (!ret) {
7233 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7234 				"4670 CGN RD OBJ returns no data\n");
7235 		goto rd_obj_err;
7236 	} else if (ret < 0) {
7237 		/* Some error.  Just exit and return it to the caller.*/
7238 		goto rd_obj_err;
7239 	}
7240 
7241 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7242 			"6234 READ CGN PARAMS Successful %d\n", len);
7243 
7244 	/* Parse data pointer over len and update the phba congestion
7245 	 * parameters with values passed back.  The receive rate values
7246 	 * may have been altered in FW, but take no action here.
7247 	 */
7248 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7249 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7250 
7251  rd_obj_err:
7252 	kfree(pdata);
7253 	return ret;
7254 }
7255 
7256 /**
7257  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7258  * @phba: pointer to lpfc hba data structure.
7259  *
7260  * The FW generated Async ACQE SLI event calls this routine when
7261  * the event type is an SLI Internal Port Event and the Event Code
7262  * indicates a change to the FW maintained congestion parameters.
7263  *
7264  * This routine executes a Read_Object mailbox call to obtain the
7265  * current congestion parameters maintained in FW and corrects
7266  * the driver's active congestion parameters.
7267  *
7268  * The acqe event is not passed because there is no further data
7269  * required.
7270  *
7271  * Returns nonzero error if event processing encountered an error.
7272  * Zero otherwise for success.
7273  **/
7274 static int
7275 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7276 {
7277 	int ret = 0;
7278 
7279 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7280 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7281 				"4664 Cgn Evt when E2E off. Drop event\n");
7282 		return -EACCES;
7283 	}
7284 
7285 	/* If the event is claiming an empty object, it's ok.  A write
7286 	 * could have cleared it.  Only error is a negative return
7287 	 * status.
7288 	 */
7289 	ret = lpfc_sli4_cgn_params_read(phba);
7290 	if (ret < 0) {
7291 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7292 				"4667 Error reading Cgn Params (%d)\n",
7293 				ret);
7294 	} else if (!ret) {
7295 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7296 				"4673 CGN Event empty object.\n");
7297 	}
7298 	return ret;
7299 }
7300 
7301 /**
7302  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7303  * @phba: pointer to lpfc hba data structure.
7304  *
7305  * This routine is invoked by the worker thread to process all the pending
7306  * SLI4 asynchronous events.
7307  **/
7308 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7309 {
7310 	struct lpfc_cq_event *cq_event;
7311 	unsigned long iflags;
7312 
7313 	/* First, declare the async event has been handled */
7314 	spin_lock_irqsave(&phba->hbalock, iflags);
7315 	phba->hba_flag &= ~ASYNC_EVENT;
7316 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7317 
7318 	/* Now, handle all the async events */
7319 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7320 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7321 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7322 				 cq_event, struct lpfc_cq_event, list);
7323 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7324 				       iflags);
7325 
7326 		/* Process the asynchronous event */
7327 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7328 		case LPFC_TRAILER_CODE_LINK:
7329 			lpfc_sli4_async_link_evt(phba,
7330 						 &cq_event->cqe.acqe_link);
7331 			break;
7332 		case LPFC_TRAILER_CODE_FCOE:
7333 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7334 			break;
7335 		case LPFC_TRAILER_CODE_DCBX:
7336 			lpfc_sli4_async_dcbx_evt(phba,
7337 						 &cq_event->cqe.acqe_dcbx);
7338 			break;
7339 		case LPFC_TRAILER_CODE_GRP5:
7340 			lpfc_sli4_async_grp5_evt(phba,
7341 						 &cq_event->cqe.acqe_grp5);
7342 			break;
7343 		case LPFC_TRAILER_CODE_FC:
7344 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7345 			break;
7346 		case LPFC_TRAILER_CODE_SLI:
7347 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7348 			break;
7349 		case LPFC_TRAILER_CODE_CMSTAT:
7350 			lpfc_sli4_async_cmstat_evt(phba);
7351 			break;
7352 		default:
7353 			lpfc_printf_log(phba, KERN_ERR,
7354 					LOG_TRACE_EVENT,
7355 					"1804 Invalid asynchronous event code: "
7356 					"x%x\n", bf_get(lpfc_trailer_code,
7357 					&cq_event->cqe.mcqe_cmpl));
7358 			break;
7359 		}
7360 
7361 		/* Free the completion event processed to the free pool */
7362 		lpfc_sli4_cq_event_release(phba, cq_event);
7363 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7364 	}
7365 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7366 }
7367 
7368 /**
7369  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7370  * @phba: pointer to lpfc hba data structure.
7371  *
7372  * This routine is invoked by the worker thread to process FCF table
7373  * rediscovery pending completion event.
7374  **/
7375 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7376 {
7377 	int rc;
7378 
7379 	spin_lock_irq(&phba->hbalock);
7380 	/* Clear FCF rediscovery timeout event */
7381 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7382 	/* Clear driver fast failover FCF record flag */
7383 	phba->fcf.failover_rec.flag = 0;
7384 	/* Set state for FCF fast failover */
7385 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7386 	spin_unlock_irq(&phba->hbalock);
7387 
7388 	/* Scan FCF table from the first entry to re-discover SAN */
7389 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7390 			"2777 Start post-quiescent FCF table scan\n");
7391 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7392 	if (rc)
7393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7394 				"2747 Issue FCF scan read FCF mailbox "
7395 				"command failed 0x%x\n", rc);
7396 }
7397 
7398 /**
7399  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7400  * @phba: pointer to lpfc hba data structure.
7401  * @dev_grp: The HBA PCI-Device group number.
7402  *
7403  * This routine is invoked to set up the per HBA PCI-Device group function
7404  * API jump table entries.
7405  *
7406  * Return: 0 if success, otherwise -ENODEV
7407  **/
7408 int
7409 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7410 {
7411 	int rc;
7412 
7413 	/* Set up lpfc PCI-device group */
7414 	phba->pci_dev_grp = dev_grp;
7415 
7416 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7417 	if (dev_grp == LPFC_PCI_DEV_OC)
7418 		phba->sli_rev = LPFC_SLI_REV4;
7419 
7420 	/* Set up device INIT API function jump table */
7421 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7422 	if (rc)
7423 		return -ENODEV;
7424 	/* Set up SCSI API function jump table */
7425 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7426 	if (rc)
7427 		return -ENODEV;
7428 	/* Set up SLI API function jump table */
7429 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7430 	if (rc)
7431 		return -ENODEV;
7432 	/* Set up MBOX API function jump table */
7433 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7434 	if (rc)
7435 		return -ENODEV;
7436 
7437 	return 0;
7438 }
7439 
7440 /**
7441  * lpfc_log_intr_mode - Log the active interrupt mode
7442  * @phba: pointer to lpfc hba data structure.
7443  * @intr_mode: active interrupt mode adopted.
7444  *
7445  * This routine it invoked to log the currently used active interrupt mode
7446  * to the device.
7447  **/
7448 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7449 {
7450 	switch (intr_mode) {
7451 	case 0:
7452 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7453 				"0470 Enable INTx interrupt mode.\n");
7454 		break;
7455 	case 1:
7456 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7457 				"0481 Enabled MSI interrupt mode.\n");
7458 		break;
7459 	case 2:
7460 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7461 				"0480 Enabled MSI-X interrupt mode.\n");
7462 		break;
7463 	default:
7464 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7465 				"0482 Illegal interrupt mode.\n");
7466 		break;
7467 	}
7468 	return;
7469 }
7470 
7471 /**
7472  * lpfc_enable_pci_dev - Enable a generic PCI device.
7473  * @phba: pointer to lpfc hba data structure.
7474  *
7475  * This routine is invoked to enable the PCI device that is common to all
7476  * PCI devices.
7477  *
7478  * Return codes
7479  * 	0 - successful
7480  * 	other values - error
7481  **/
7482 static int
7483 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7484 {
7485 	struct pci_dev *pdev;
7486 
7487 	/* Obtain PCI device reference */
7488 	if (!phba->pcidev)
7489 		goto out_error;
7490 	else
7491 		pdev = phba->pcidev;
7492 	/* Enable PCI device */
7493 	if (pci_enable_device_mem(pdev))
7494 		goto out_error;
7495 	/* Request PCI resource for the device */
7496 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7497 		goto out_disable_device;
7498 	/* Set up device as PCI master and save state for EEH */
7499 	pci_set_master(pdev);
7500 	pci_try_set_mwi(pdev);
7501 	pci_save_state(pdev);
7502 
7503 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7504 	if (pci_is_pcie(pdev))
7505 		pdev->needs_freset = 1;
7506 
7507 	return 0;
7508 
7509 out_disable_device:
7510 	pci_disable_device(pdev);
7511 out_error:
7512 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7513 			"1401 Failed to enable pci device\n");
7514 	return -ENODEV;
7515 }
7516 
7517 /**
7518  * lpfc_disable_pci_dev - Disable a generic PCI device.
7519  * @phba: pointer to lpfc hba data structure.
7520  *
7521  * This routine is invoked to disable the PCI device that is common to all
7522  * PCI devices.
7523  **/
7524 static void
7525 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7526 {
7527 	struct pci_dev *pdev;
7528 
7529 	/* Obtain PCI device reference */
7530 	if (!phba->pcidev)
7531 		return;
7532 	else
7533 		pdev = phba->pcidev;
7534 	/* Release PCI resource and disable PCI device */
7535 	pci_release_mem_regions(pdev);
7536 	pci_disable_device(pdev);
7537 
7538 	return;
7539 }
7540 
7541 /**
7542  * lpfc_reset_hba - Reset a hba
7543  * @phba: pointer to lpfc hba data structure.
7544  *
7545  * This routine is invoked to reset a hba device. It brings the HBA
7546  * offline, performs a board restart, and then brings the board back
7547  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7548  * on outstanding mailbox commands.
7549  **/
7550 void
7551 lpfc_reset_hba(struct lpfc_hba *phba)
7552 {
7553 	int rc = 0;
7554 
7555 	/* If resets are disabled then set error state and return. */
7556 	if (!phba->cfg_enable_hba_reset) {
7557 		phba->link_state = LPFC_HBA_ERROR;
7558 		return;
7559 	}
7560 
7561 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7562 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7563 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7564 	} else {
7565 		if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) {
7566 			/* Perform a PCI function reset to start from clean */
7567 			rc = lpfc_pci_function_reset(phba);
7568 			lpfc_els_flush_all_cmd(phba);
7569 		}
7570 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7571 		lpfc_sli_flush_io_rings(phba);
7572 	}
7573 	lpfc_offline(phba);
7574 	clear_bit(MBX_TMO_ERR, &phba->bit_flags);
7575 	if (unlikely(rc)) {
7576 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7577 				"8888 PCI function reset failed rc %x\n",
7578 				rc);
7579 	} else {
7580 		lpfc_sli_brdrestart(phba);
7581 		lpfc_online(phba);
7582 		lpfc_unblock_mgmt_io(phba);
7583 	}
7584 }
7585 
7586 /**
7587  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7588  * @phba: pointer to lpfc hba data structure.
7589  *
7590  * This function enables the PCI SR-IOV virtual functions to a physical
7591  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7592  * enable the number of virtual functions to the physical function. As
7593  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7594  * API call does not considered as an error condition for most of the device.
7595  **/
7596 uint16_t
7597 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7598 {
7599 	struct pci_dev *pdev = phba->pcidev;
7600 	uint16_t nr_virtfn;
7601 	int pos;
7602 
7603 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7604 	if (pos == 0)
7605 		return 0;
7606 
7607 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7608 	return nr_virtfn;
7609 }
7610 
7611 /**
7612  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7613  * @phba: pointer to lpfc hba data structure.
7614  * @nr_vfn: number of virtual functions to be enabled.
7615  *
7616  * This function enables the PCI SR-IOV virtual functions to a physical
7617  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7618  * enable the number of virtual functions to the physical function. As
7619  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7620  * API call does not considered as an error condition for most of the device.
7621  **/
7622 int
7623 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7624 {
7625 	struct pci_dev *pdev = phba->pcidev;
7626 	uint16_t max_nr_vfn;
7627 	int rc;
7628 
7629 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7630 	if (nr_vfn > max_nr_vfn) {
7631 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7632 				"3057 Requested vfs (%d) greater than "
7633 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7634 		return -EINVAL;
7635 	}
7636 
7637 	rc = pci_enable_sriov(pdev, nr_vfn);
7638 	if (rc) {
7639 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7640 				"2806 Failed to enable sriov on this device "
7641 				"with vfn number nr_vf:%d, rc:%d\n",
7642 				nr_vfn, rc);
7643 	} else
7644 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7645 				"2807 Successful enable sriov on this device "
7646 				"with vfn number nr_vf:%d\n", nr_vfn);
7647 	return rc;
7648 }
7649 
7650 static void
7651 lpfc_unblock_requests_work(struct work_struct *work)
7652 {
7653 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7654 					     unblock_request_work);
7655 
7656 	lpfc_unblock_requests(phba);
7657 }
7658 
7659 /**
7660  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7661  * @phba: pointer to lpfc hba data structure.
7662  *
7663  * This routine is invoked to set up the driver internal resources before the
7664  * device specific resource setup to support the HBA device it attached to.
7665  *
7666  * Return codes
7667  *	0 - successful
7668  *	other values - error
7669  **/
7670 static int
7671 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7672 {
7673 	struct lpfc_sli *psli = &phba->sli;
7674 
7675 	/*
7676 	 * Driver resources common to all SLI revisions
7677 	 */
7678 	atomic_set(&phba->fast_event_count, 0);
7679 	atomic_set(&phba->dbg_log_idx, 0);
7680 	atomic_set(&phba->dbg_log_cnt, 0);
7681 	atomic_set(&phba->dbg_log_dmping, 0);
7682 	spin_lock_init(&phba->hbalock);
7683 
7684 	/* Initialize port_list spinlock */
7685 	spin_lock_init(&phba->port_list_lock);
7686 	INIT_LIST_HEAD(&phba->port_list);
7687 
7688 	INIT_LIST_HEAD(&phba->work_list);
7689 
7690 	/* Initialize the wait queue head for the kernel thread */
7691 	init_waitqueue_head(&phba->work_waitq);
7692 
7693 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7694 			"1403 Protocols supported %s %s %s\n",
7695 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7696 				"SCSI" : " "),
7697 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7698 				"NVME" : " "),
7699 			(phba->nvmet_support ? "NVMET" : " "));
7700 
7701 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7702 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7703 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7704 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7705 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7706 
7707 	/* Initialize the fabric iocb list */
7708 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7709 
7710 	/* Initialize list to save ELS buffers */
7711 	INIT_LIST_HEAD(&phba->elsbuf);
7712 
7713 	/* Initialize FCF connection rec list */
7714 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7715 
7716 	/* Initialize OAS configuration list */
7717 	spin_lock_init(&phba->devicelock);
7718 	INIT_LIST_HEAD(&phba->luns);
7719 
7720 	/* MBOX heartbeat timer */
7721 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7722 	/* Fabric block timer */
7723 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7724 	/* EA polling mode timer */
7725 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7726 	/* Heartbeat timer */
7727 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7728 
7729 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7730 
7731 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7732 			  lpfc_idle_stat_delay_work);
7733 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7734 	return 0;
7735 }
7736 
7737 /**
7738  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7739  * @phba: pointer to lpfc hba data structure.
7740  *
7741  * This routine is invoked to set up the driver internal resources specific to
7742  * support the SLI-3 HBA device it attached to.
7743  *
7744  * Return codes
7745  * 0 - successful
7746  * other values - error
7747  **/
7748 static int
7749 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7750 {
7751 	int rc, entry_sz;
7752 
7753 	/*
7754 	 * Initialize timers used by driver
7755 	 */
7756 
7757 	/* FCP polling mode timer */
7758 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7759 
7760 	/* Host attention work mask setup */
7761 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7762 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7763 
7764 	/* Get all the module params for configuring this host */
7765 	lpfc_get_cfgparam(phba);
7766 	/* Set up phase-1 common device driver resources */
7767 
7768 	rc = lpfc_setup_driver_resource_phase1(phba);
7769 	if (rc)
7770 		return -ENODEV;
7771 
7772 	if (!phba->sli.sli3_ring)
7773 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7774 					      sizeof(struct lpfc_sli_ring),
7775 					      GFP_KERNEL);
7776 	if (!phba->sli.sli3_ring)
7777 		return -ENOMEM;
7778 
7779 	/*
7780 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7781 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7782 	 */
7783 
7784 	if (phba->sli_rev == LPFC_SLI_REV4)
7785 		entry_sz = sizeof(struct sli4_sge);
7786 	else
7787 		entry_sz = sizeof(struct ulp_bde64);
7788 
7789 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7790 	if (phba->cfg_enable_bg) {
7791 		/*
7792 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7793 		 * the FCP rsp, and a BDE for each. Sice we have no control
7794 		 * over how many protection data segments the SCSI Layer
7795 		 * will hand us (ie: there could be one for every block
7796 		 * in the IO), we just allocate enough BDEs to accomidate
7797 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7798 		 * minimize the risk of running out.
7799 		 */
7800 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7801 			sizeof(struct fcp_rsp) +
7802 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7803 
7804 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7805 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7806 
7807 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7808 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7809 	} else {
7810 		/*
7811 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7812 		 * the FCP rsp, a BDE for each, and a BDE for up to
7813 		 * cfg_sg_seg_cnt data segments.
7814 		 */
7815 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7816 			sizeof(struct fcp_rsp) +
7817 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7818 
7819 		/* Total BDEs in BPL for scsi_sg_list */
7820 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7821 	}
7822 
7823 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7824 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7825 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7826 			phba->cfg_total_seg_cnt);
7827 
7828 	phba->max_vpi = LPFC_MAX_VPI;
7829 	/* This will be set to correct value after config_port mbox */
7830 	phba->max_vports = 0;
7831 
7832 	/*
7833 	 * Initialize the SLI Layer to run with lpfc HBAs.
7834 	 */
7835 	lpfc_sli_setup(phba);
7836 	lpfc_sli_queue_init(phba);
7837 
7838 	/* Allocate device driver memory */
7839 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7840 		return -ENOMEM;
7841 
7842 	phba->lpfc_sg_dma_buf_pool =
7843 		dma_pool_create("lpfc_sg_dma_buf_pool",
7844 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7845 				BPL_ALIGN_SZ, 0);
7846 
7847 	if (!phba->lpfc_sg_dma_buf_pool)
7848 		goto fail_free_mem;
7849 
7850 	phba->lpfc_cmd_rsp_buf_pool =
7851 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7852 					&phba->pcidev->dev,
7853 					sizeof(struct fcp_cmnd) +
7854 					sizeof(struct fcp_rsp),
7855 					BPL_ALIGN_SZ, 0);
7856 
7857 	if (!phba->lpfc_cmd_rsp_buf_pool)
7858 		goto fail_free_dma_buf_pool;
7859 
7860 	/*
7861 	 * Enable sr-iov virtual functions if supported and configured
7862 	 * through the module parameter.
7863 	 */
7864 	if (phba->cfg_sriov_nr_virtfn > 0) {
7865 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7866 						 phba->cfg_sriov_nr_virtfn);
7867 		if (rc) {
7868 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7869 					"2808 Requested number of SR-IOV "
7870 					"virtual functions (%d) is not "
7871 					"supported\n",
7872 					phba->cfg_sriov_nr_virtfn);
7873 			phba->cfg_sriov_nr_virtfn = 0;
7874 		}
7875 	}
7876 
7877 	return 0;
7878 
7879 fail_free_dma_buf_pool:
7880 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7881 	phba->lpfc_sg_dma_buf_pool = NULL;
7882 fail_free_mem:
7883 	lpfc_mem_free(phba);
7884 	return -ENOMEM;
7885 }
7886 
7887 /**
7888  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7889  * @phba: pointer to lpfc hba data structure.
7890  *
7891  * This routine is invoked to unset the driver internal resources set up
7892  * specific for supporting the SLI-3 HBA device it attached to.
7893  **/
7894 static void
7895 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7896 {
7897 	/* Free device driver memory allocated */
7898 	lpfc_mem_free_all(phba);
7899 
7900 	return;
7901 }
7902 
7903 /**
7904  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7905  * @phba: pointer to lpfc hba data structure.
7906  *
7907  * This routine is invoked to set up the driver internal resources specific to
7908  * support the SLI-4 HBA device it attached to.
7909  *
7910  * Return codes
7911  * 	0 - successful
7912  * 	other values - error
7913  **/
7914 static int
7915 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7916 {
7917 	LPFC_MBOXQ_t *mboxq;
7918 	MAILBOX_t *mb;
7919 	int rc, i, max_buf_size;
7920 	int longs;
7921 	int extra;
7922 	uint64_t wwn;
7923 	u32 if_type;
7924 	u32 if_fam;
7925 
7926 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7927 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7928 	phba->sli4_hba.curr_disp_cpu = 0;
7929 
7930 	/* Get all the module params for configuring this host */
7931 	lpfc_get_cfgparam(phba);
7932 
7933 	/* Set up phase-1 common device driver resources */
7934 	rc = lpfc_setup_driver_resource_phase1(phba);
7935 	if (rc)
7936 		return -ENODEV;
7937 
7938 	/* Before proceed, wait for POST done and device ready */
7939 	rc = lpfc_sli4_post_status_check(phba);
7940 	if (rc)
7941 		return -ENODEV;
7942 
7943 	/* Allocate all driver workqueues here */
7944 
7945 	/* The lpfc_wq workqueue for deferred irq use */
7946 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7947 	if (!phba->wq)
7948 		return -ENOMEM;
7949 
7950 	/*
7951 	 * Initialize timers used by driver
7952 	 */
7953 
7954 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7955 
7956 	/* FCF rediscover timer */
7957 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7958 
7959 	/* CMF congestion timer */
7960 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7961 	phba->cmf_timer.function = lpfc_cmf_timer;
7962 	/* CMF 1 minute stats collection timer */
7963 	hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7964 	phba->cmf_stats_timer.function = lpfc_cmf_stats_timer;
7965 
7966 	/*
7967 	 * Control structure for handling external multi-buffer mailbox
7968 	 * command pass-through.
7969 	 */
7970 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7971 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7972 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7973 
7974 	phba->max_vpi = LPFC_MAX_VPI;
7975 
7976 	/* This will be set to correct value after the read_config mbox */
7977 	phba->max_vports = 0;
7978 
7979 	/* Program the default value of vlan_id and fc_map */
7980 	phba->valid_vlan = 0;
7981 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7982 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7983 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7984 
7985 	/*
7986 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7987 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7988 	 * The WQ create will allocate the ring.
7989 	 */
7990 
7991 	/* Initialize buffer queue management fields */
7992 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7993 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7994 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7995 
7996 	/* for VMID idle timeout if VMID is enabled */
7997 	if (lpfc_is_vmid_enabled(phba))
7998 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7999 
8000 	/*
8001 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
8002 	 */
8003 	/* Initialize the Abort buffer list used by driver */
8004 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
8005 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
8006 
8007 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8008 		/* Initialize the Abort nvme buffer list used by driver */
8009 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
8010 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8011 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
8012 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
8013 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
8014 	}
8015 
8016 	/* This abort list used by worker thread */
8017 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
8018 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
8019 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
8020 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
8021 
8022 	/*
8023 	 * Initialize driver internal slow-path work queues
8024 	 */
8025 
8026 	/* Driver internel slow-path CQ Event pool */
8027 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
8028 	/* Response IOCB work queue list */
8029 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
8030 	/* Asynchronous event CQ Event work queue list */
8031 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
8032 	/* Slow-path XRI aborted CQ Event work queue list */
8033 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
8034 	/* Receive queue CQ Event work queue list */
8035 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
8036 
8037 	/* Initialize extent block lists. */
8038 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
8039 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
8040 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
8041 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
8042 
8043 	/* Initialize mboxq lists. If the early init routines fail
8044 	 * these lists need to be correctly initialized.
8045 	 */
8046 	INIT_LIST_HEAD(&phba->sli.mboxq);
8047 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
8048 
8049 	/* initialize optic_state to 0xFF */
8050 	phba->sli4_hba.lnk_info.optic_state = 0xff;
8051 
8052 	/* Allocate device driver memory */
8053 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
8054 	if (rc)
8055 		goto out_destroy_workqueue;
8056 
8057 	/* IF Type 2 ports get initialized now. */
8058 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
8059 	    LPFC_SLI_INTF_IF_TYPE_2) {
8060 		rc = lpfc_pci_function_reset(phba);
8061 		if (unlikely(rc)) {
8062 			rc = -ENODEV;
8063 			goto out_free_mem;
8064 		}
8065 		phba->temp_sensor_support = 1;
8066 	}
8067 
8068 	/* Create the bootstrap mailbox command */
8069 	rc = lpfc_create_bootstrap_mbox(phba);
8070 	if (unlikely(rc))
8071 		goto out_free_mem;
8072 
8073 	/* Set up the host's endian order with the device. */
8074 	rc = lpfc_setup_endian_order(phba);
8075 	if (unlikely(rc))
8076 		goto out_free_bsmbx;
8077 
8078 	/* Set up the hba's configuration parameters. */
8079 	rc = lpfc_sli4_read_config(phba);
8080 	if (unlikely(rc))
8081 		goto out_free_bsmbx;
8082 
8083 	if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) {
8084 		/* Right now the link is down, if FA-PWWN is configured the
8085 		 * firmware will try FLOGI before the driver gets a link up.
8086 		 * If it fails, the driver should get a MISCONFIGURED async
8087 		 * event which will clear this flag. The only notification
8088 		 * the driver gets is if it fails, if it succeeds there is no
8089 		 * notification given. Assume success.
8090 		 */
8091 		phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC;
8092 	}
8093 
8094 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
8095 	if (unlikely(rc))
8096 		goto out_free_bsmbx;
8097 
8098 	/* IF Type 0 ports get initialized now. */
8099 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8100 	    LPFC_SLI_INTF_IF_TYPE_0) {
8101 		rc = lpfc_pci_function_reset(phba);
8102 		if (unlikely(rc))
8103 			goto out_free_bsmbx;
8104 	}
8105 
8106 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
8107 						       GFP_KERNEL);
8108 	if (!mboxq) {
8109 		rc = -ENOMEM;
8110 		goto out_free_bsmbx;
8111 	}
8112 
8113 	/* Check for NVMET being configured */
8114 	phba->nvmet_support = 0;
8115 	if (lpfc_enable_nvmet_cnt) {
8116 
8117 		/* First get WWN of HBA instance */
8118 		lpfc_read_nv(phba, mboxq);
8119 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8120 		if (rc != MBX_SUCCESS) {
8121 			lpfc_printf_log(phba, KERN_ERR,
8122 					LOG_TRACE_EVENT,
8123 					"6016 Mailbox failed , mbxCmd x%x "
8124 					"READ_NV, mbxStatus x%x\n",
8125 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8126 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
8127 			mempool_free(mboxq, phba->mbox_mem_pool);
8128 			rc = -EIO;
8129 			goto out_free_bsmbx;
8130 		}
8131 		mb = &mboxq->u.mb;
8132 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
8133 		       sizeof(uint64_t));
8134 		wwn = cpu_to_be64(wwn);
8135 		phba->sli4_hba.wwnn.u.name = wwn;
8136 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
8137 		       sizeof(uint64_t));
8138 		/* wwn is WWPN of HBA instance */
8139 		wwn = cpu_to_be64(wwn);
8140 		phba->sli4_hba.wwpn.u.name = wwn;
8141 
8142 		/* Check to see if it matches any module parameter */
8143 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
8144 			if (wwn == lpfc_enable_nvmet[i]) {
8145 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
8146 				if (lpfc_nvmet_mem_alloc(phba))
8147 					break;
8148 
8149 				phba->nvmet_support = 1; /* a match */
8150 
8151 				lpfc_printf_log(phba, KERN_ERR,
8152 						LOG_TRACE_EVENT,
8153 						"6017 NVME Target %016llx\n",
8154 						wwn);
8155 #else
8156 				lpfc_printf_log(phba, KERN_ERR,
8157 						LOG_TRACE_EVENT,
8158 						"6021 Can't enable NVME Target."
8159 						" NVME_TARGET_FC infrastructure"
8160 						" is not in kernel\n");
8161 #endif
8162 				/* Not supported for NVMET */
8163 				phba->cfg_xri_rebalancing = 0;
8164 				if (phba->irq_chann_mode == NHT_MODE) {
8165 					phba->cfg_irq_chann =
8166 						phba->sli4_hba.num_present_cpu;
8167 					phba->cfg_hdw_queue =
8168 						phba->sli4_hba.num_present_cpu;
8169 					phba->irq_chann_mode = NORMAL_MODE;
8170 				}
8171 				break;
8172 			}
8173 		}
8174 	}
8175 
8176 	lpfc_nvme_mod_param_dep(phba);
8177 
8178 	/*
8179 	 * Get sli4 parameters that override parameters from Port capabilities.
8180 	 * If this call fails, it isn't critical unless the SLI4 parameters come
8181 	 * back in conflict.
8182 	 */
8183 	rc = lpfc_get_sli4_parameters(phba, mboxq);
8184 	if (rc) {
8185 		if_type = bf_get(lpfc_sli_intf_if_type,
8186 				 &phba->sli4_hba.sli_intf);
8187 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8188 				&phba->sli4_hba.sli_intf);
8189 		if (phba->sli4_hba.extents_in_use &&
8190 		    phba->sli4_hba.rpi_hdrs_in_use) {
8191 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8192 					"2999 Unsupported SLI4 Parameters "
8193 					"Extents and RPI headers enabled.\n");
8194 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8195 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8196 				mempool_free(mboxq, phba->mbox_mem_pool);
8197 				rc = -EIO;
8198 				goto out_free_bsmbx;
8199 			}
8200 		}
8201 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8202 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8203 			mempool_free(mboxq, phba->mbox_mem_pool);
8204 			rc = -EIO;
8205 			goto out_free_bsmbx;
8206 		}
8207 	}
8208 
8209 	/*
8210 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8211 	 * for boundary conditions in its max_sgl_segment template.
8212 	 */
8213 	extra = 2;
8214 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8215 		extra++;
8216 
8217 	/*
8218 	 * It doesn't matter what family our adapter is in, we are
8219 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8220 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8221 	 */
8222 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8223 
8224 	/*
8225 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8226 	 * used to create the sg_dma_buf_pool must be calculated.
8227 	 */
8228 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8229 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8230 
8231 		/*
8232 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8233 		 * the FCP rsp, and a SGE. Sice we have no control
8234 		 * over how many protection segments the SCSI Layer
8235 		 * will hand us (ie: there could be one for every block
8236 		 * in the IO), just allocate enough SGEs to accomidate
8237 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8238 		 * to minimize the risk of running out.
8239 		 */
8240 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8241 				sizeof(struct fcp_rsp) + max_buf_size;
8242 
8243 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8244 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8245 
8246 		/*
8247 		 * If supporting DIF, reduce the seg count for scsi to
8248 		 * allow room for the DIF sges.
8249 		 */
8250 		if (phba->cfg_enable_bg &&
8251 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8252 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8253 		else
8254 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8255 
8256 	} else {
8257 		/*
8258 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8259 		 * the FCP rsp, a SGE for each, and a SGE for up to
8260 		 * cfg_sg_seg_cnt data segments.
8261 		 */
8262 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8263 				sizeof(struct fcp_rsp) +
8264 				((phba->cfg_sg_seg_cnt + extra) *
8265 				sizeof(struct sli4_sge));
8266 
8267 		/* Total SGEs for scsi_sg_list */
8268 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8269 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8270 
8271 		/*
8272 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8273 		 * need to post 1 page for the SGL.
8274 		 */
8275 	}
8276 
8277 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8278 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8279 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8280 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8281 	else
8282 		phba->cfg_sg_dma_buf_size =
8283 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8284 
8285 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8286 			       sizeof(struct sli4_sge);
8287 
8288 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8289 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8290 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8291 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8292 					"6300 Reducing NVME sg segment "
8293 					"cnt to %d\n",
8294 					LPFC_MAX_NVME_SEG_CNT);
8295 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8296 		} else
8297 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8298 	}
8299 
8300 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8301 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8302 			"total:%d scsi:%d nvme:%d\n",
8303 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8304 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8305 			phba->cfg_nvme_seg_cnt);
8306 
8307 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8308 		i = phba->cfg_sg_dma_buf_size;
8309 	else
8310 		i = SLI4_PAGE_SIZE;
8311 
8312 	phba->lpfc_sg_dma_buf_pool =
8313 			dma_pool_create("lpfc_sg_dma_buf_pool",
8314 					&phba->pcidev->dev,
8315 					phba->cfg_sg_dma_buf_size,
8316 					i, 0);
8317 	if (!phba->lpfc_sg_dma_buf_pool) {
8318 		rc = -ENOMEM;
8319 		goto out_free_bsmbx;
8320 	}
8321 
8322 	phba->lpfc_cmd_rsp_buf_pool =
8323 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8324 					&phba->pcidev->dev,
8325 					sizeof(struct fcp_cmnd) +
8326 					sizeof(struct fcp_rsp),
8327 					i, 0);
8328 	if (!phba->lpfc_cmd_rsp_buf_pool) {
8329 		rc = -ENOMEM;
8330 		goto out_free_sg_dma_buf;
8331 	}
8332 
8333 	mempool_free(mboxq, phba->mbox_mem_pool);
8334 
8335 	/* Verify OAS is supported */
8336 	lpfc_sli4_oas_verify(phba);
8337 
8338 	/* Verify RAS support on adapter */
8339 	lpfc_sli4_ras_init(phba);
8340 
8341 	/* Verify all the SLI4 queues */
8342 	rc = lpfc_sli4_queue_verify(phba);
8343 	if (rc)
8344 		goto out_free_cmd_rsp_buf;
8345 
8346 	/* Create driver internal CQE event pool */
8347 	rc = lpfc_sli4_cq_event_pool_create(phba);
8348 	if (rc)
8349 		goto out_free_cmd_rsp_buf;
8350 
8351 	/* Initialize sgl lists per host */
8352 	lpfc_init_sgl_list(phba);
8353 
8354 	/* Allocate and initialize active sgl array */
8355 	rc = lpfc_init_active_sgl_array(phba);
8356 	if (rc) {
8357 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8358 				"1430 Failed to initialize sgl list.\n");
8359 		goto out_destroy_cq_event_pool;
8360 	}
8361 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8362 	if (rc) {
8363 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8364 				"1432 Failed to initialize rpi headers.\n");
8365 		goto out_free_active_sgl;
8366 	}
8367 
8368 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8369 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8370 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8371 					 GFP_KERNEL);
8372 	if (!phba->fcf.fcf_rr_bmask) {
8373 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8374 				"2759 Failed allocate memory for FCF round "
8375 				"robin failover bmask\n");
8376 		rc = -ENOMEM;
8377 		goto out_remove_rpi_hdrs;
8378 	}
8379 
8380 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8381 					    sizeof(struct lpfc_hba_eq_hdl),
8382 					    GFP_KERNEL);
8383 	if (!phba->sli4_hba.hba_eq_hdl) {
8384 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8385 				"2572 Failed allocate memory for "
8386 				"fast-path per-EQ handle array\n");
8387 		rc = -ENOMEM;
8388 		goto out_free_fcf_rr_bmask;
8389 	}
8390 
8391 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8392 					sizeof(struct lpfc_vector_map_info),
8393 					GFP_KERNEL);
8394 	if (!phba->sli4_hba.cpu_map) {
8395 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8396 				"3327 Failed allocate memory for msi-x "
8397 				"interrupt vector mapping\n");
8398 		rc = -ENOMEM;
8399 		goto out_free_hba_eq_hdl;
8400 	}
8401 
8402 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8403 	if (!phba->sli4_hba.eq_info) {
8404 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8405 				"3321 Failed allocation for per_cpu stats\n");
8406 		rc = -ENOMEM;
8407 		goto out_free_hba_cpu_map;
8408 	}
8409 
8410 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8411 					   sizeof(*phba->sli4_hba.idle_stat),
8412 					   GFP_KERNEL);
8413 	if (!phba->sli4_hba.idle_stat) {
8414 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8415 				"3390 Failed allocation for idle_stat\n");
8416 		rc = -ENOMEM;
8417 		goto out_free_hba_eq_info;
8418 	}
8419 
8420 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8421 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8422 	if (!phba->sli4_hba.c_stat) {
8423 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8424 				"3332 Failed allocating per cpu hdwq stats\n");
8425 		rc = -ENOMEM;
8426 		goto out_free_hba_idle_stat;
8427 	}
8428 #endif
8429 
8430 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8431 	if (!phba->cmf_stat) {
8432 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8433 				"3331 Failed allocating per cpu cgn stats\n");
8434 		rc = -ENOMEM;
8435 		goto out_free_hba_hdwq_info;
8436 	}
8437 
8438 	/*
8439 	 * Enable sr-iov virtual functions if supported and configured
8440 	 * through the module parameter.
8441 	 */
8442 	if (phba->cfg_sriov_nr_virtfn > 0) {
8443 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8444 						 phba->cfg_sriov_nr_virtfn);
8445 		if (rc) {
8446 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8447 					"3020 Requested number of SR-IOV "
8448 					"virtual functions (%d) is not "
8449 					"supported\n",
8450 					phba->cfg_sriov_nr_virtfn);
8451 			phba->cfg_sriov_nr_virtfn = 0;
8452 		}
8453 	}
8454 
8455 	return 0;
8456 
8457 out_free_hba_hdwq_info:
8458 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8459 	free_percpu(phba->sli4_hba.c_stat);
8460 out_free_hba_idle_stat:
8461 #endif
8462 	kfree(phba->sli4_hba.idle_stat);
8463 out_free_hba_eq_info:
8464 	free_percpu(phba->sli4_hba.eq_info);
8465 out_free_hba_cpu_map:
8466 	kfree(phba->sli4_hba.cpu_map);
8467 out_free_hba_eq_hdl:
8468 	kfree(phba->sli4_hba.hba_eq_hdl);
8469 out_free_fcf_rr_bmask:
8470 	kfree(phba->fcf.fcf_rr_bmask);
8471 out_remove_rpi_hdrs:
8472 	lpfc_sli4_remove_rpi_hdrs(phba);
8473 out_free_active_sgl:
8474 	lpfc_free_active_sgl(phba);
8475 out_destroy_cq_event_pool:
8476 	lpfc_sli4_cq_event_pool_destroy(phba);
8477 out_free_cmd_rsp_buf:
8478 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8479 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8480 out_free_sg_dma_buf:
8481 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8482 	phba->lpfc_sg_dma_buf_pool = NULL;
8483 out_free_bsmbx:
8484 	lpfc_destroy_bootstrap_mbox(phba);
8485 out_free_mem:
8486 	lpfc_mem_free(phba);
8487 out_destroy_workqueue:
8488 	destroy_workqueue(phba->wq);
8489 	phba->wq = NULL;
8490 	return rc;
8491 }
8492 
8493 /**
8494  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8495  * @phba: pointer to lpfc hba data structure.
8496  *
8497  * This routine is invoked to unset the driver internal resources set up
8498  * specific for supporting the SLI-4 HBA device it attached to.
8499  **/
8500 static void
8501 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8502 {
8503 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8504 
8505 	free_percpu(phba->sli4_hba.eq_info);
8506 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8507 	free_percpu(phba->sli4_hba.c_stat);
8508 #endif
8509 	free_percpu(phba->cmf_stat);
8510 	kfree(phba->sli4_hba.idle_stat);
8511 
8512 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8513 	kfree(phba->sli4_hba.cpu_map);
8514 	phba->sli4_hba.num_possible_cpu = 0;
8515 	phba->sli4_hba.num_present_cpu = 0;
8516 	phba->sli4_hba.curr_disp_cpu = 0;
8517 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8518 
8519 	/* Free memory allocated for fast-path work queue handles */
8520 	kfree(phba->sli4_hba.hba_eq_hdl);
8521 
8522 	/* Free the allocated rpi headers. */
8523 	lpfc_sli4_remove_rpi_hdrs(phba);
8524 	lpfc_sli4_remove_rpis(phba);
8525 
8526 	/* Free eligible FCF index bmask */
8527 	kfree(phba->fcf.fcf_rr_bmask);
8528 
8529 	/* Free the ELS sgl list */
8530 	lpfc_free_active_sgl(phba);
8531 	lpfc_free_els_sgl_list(phba);
8532 	lpfc_free_nvmet_sgl_list(phba);
8533 
8534 	/* Free the completion queue EQ event pool */
8535 	lpfc_sli4_cq_event_release_all(phba);
8536 	lpfc_sli4_cq_event_pool_destroy(phba);
8537 
8538 	/* Release resource identifiers. */
8539 	lpfc_sli4_dealloc_resource_identifiers(phba);
8540 
8541 	/* Free the bsmbx region. */
8542 	lpfc_destroy_bootstrap_mbox(phba);
8543 
8544 	/* Free the SLI Layer memory with SLI4 HBAs */
8545 	lpfc_mem_free_all(phba);
8546 
8547 	/* Free the current connect table */
8548 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8549 		&phba->fcf_conn_rec_list, list) {
8550 		list_del_init(&conn_entry->list);
8551 		kfree(conn_entry);
8552 	}
8553 
8554 	return;
8555 }
8556 
8557 /**
8558  * lpfc_init_api_table_setup - Set up init api function jump table
8559  * @phba: The hba struct for which this call is being executed.
8560  * @dev_grp: The HBA PCI-Device group number.
8561  *
8562  * This routine sets up the device INIT interface API function jump table
8563  * in @phba struct.
8564  *
8565  * Returns: 0 - success, -ENODEV - failure.
8566  **/
8567 int
8568 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8569 {
8570 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8571 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8572 	phba->lpfc_selective_reset = lpfc_selective_reset;
8573 	switch (dev_grp) {
8574 	case LPFC_PCI_DEV_LP:
8575 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8576 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8577 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8578 		break;
8579 	case LPFC_PCI_DEV_OC:
8580 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8581 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8582 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8583 		break;
8584 	default:
8585 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8586 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8587 				dev_grp);
8588 		return -ENODEV;
8589 	}
8590 	return 0;
8591 }
8592 
8593 /**
8594  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8595  * @phba: pointer to lpfc hba data structure.
8596  *
8597  * This routine is invoked to set up the driver internal resources after the
8598  * device specific resource setup to support the HBA device it attached to.
8599  *
8600  * Return codes
8601  * 	0 - successful
8602  * 	other values - error
8603  **/
8604 static int
8605 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8606 {
8607 	int error;
8608 
8609 	/* Startup the kernel thread for this host adapter. */
8610 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8611 					  "lpfc_worker_%d", phba->brd_no);
8612 	if (IS_ERR(phba->worker_thread)) {
8613 		error = PTR_ERR(phba->worker_thread);
8614 		return error;
8615 	}
8616 
8617 	return 0;
8618 }
8619 
8620 /**
8621  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8622  * @phba: pointer to lpfc hba data structure.
8623  *
8624  * This routine is invoked to unset the driver internal resources set up after
8625  * the device specific resource setup for supporting the HBA device it
8626  * attached to.
8627  **/
8628 static void
8629 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8630 {
8631 	if (phba->wq) {
8632 		destroy_workqueue(phba->wq);
8633 		phba->wq = NULL;
8634 	}
8635 
8636 	/* Stop kernel worker thread */
8637 	if (phba->worker_thread)
8638 		kthread_stop(phba->worker_thread);
8639 }
8640 
8641 /**
8642  * lpfc_free_iocb_list - Free iocb list.
8643  * @phba: pointer to lpfc hba data structure.
8644  *
8645  * This routine is invoked to free the driver's IOCB list and memory.
8646  **/
8647 void
8648 lpfc_free_iocb_list(struct lpfc_hba *phba)
8649 {
8650 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8651 
8652 	spin_lock_irq(&phba->hbalock);
8653 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8654 				 &phba->lpfc_iocb_list, list) {
8655 		list_del(&iocbq_entry->list);
8656 		kfree(iocbq_entry);
8657 		phba->total_iocbq_bufs--;
8658 	}
8659 	spin_unlock_irq(&phba->hbalock);
8660 
8661 	return;
8662 }
8663 
8664 /**
8665  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8666  * @phba: pointer to lpfc hba data structure.
8667  * @iocb_count: number of requested iocbs
8668  *
8669  * This routine is invoked to allocate and initizlize the driver's IOCB
8670  * list and set up the IOCB tag array accordingly.
8671  *
8672  * Return codes
8673  *	0 - successful
8674  *	other values - error
8675  **/
8676 int
8677 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8678 {
8679 	struct lpfc_iocbq *iocbq_entry = NULL;
8680 	uint16_t iotag;
8681 	int i;
8682 
8683 	/* Initialize and populate the iocb list per host.  */
8684 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8685 	for (i = 0; i < iocb_count; i++) {
8686 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8687 		if (iocbq_entry == NULL) {
8688 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8689 				"expected %d count. Unloading driver.\n",
8690 				__func__, i, iocb_count);
8691 			goto out_free_iocbq;
8692 		}
8693 
8694 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8695 		if (iotag == 0) {
8696 			kfree(iocbq_entry);
8697 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8698 				"Unloading driver.\n", __func__);
8699 			goto out_free_iocbq;
8700 		}
8701 		iocbq_entry->sli4_lxritag = NO_XRI;
8702 		iocbq_entry->sli4_xritag = NO_XRI;
8703 
8704 		spin_lock_irq(&phba->hbalock);
8705 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8706 		phba->total_iocbq_bufs++;
8707 		spin_unlock_irq(&phba->hbalock);
8708 	}
8709 
8710 	return 0;
8711 
8712 out_free_iocbq:
8713 	lpfc_free_iocb_list(phba);
8714 
8715 	return -ENOMEM;
8716 }
8717 
8718 /**
8719  * lpfc_free_sgl_list - Free a given sgl list.
8720  * @phba: pointer to lpfc hba data structure.
8721  * @sglq_list: pointer to the head of sgl list.
8722  *
8723  * This routine is invoked to free a give sgl list and memory.
8724  **/
8725 void
8726 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8727 {
8728 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8729 
8730 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8731 		list_del(&sglq_entry->list);
8732 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8733 		kfree(sglq_entry);
8734 	}
8735 }
8736 
8737 /**
8738  * lpfc_free_els_sgl_list - Free els sgl list.
8739  * @phba: pointer to lpfc hba data structure.
8740  *
8741  * This routine is invoked to free the driver's els sgl list and memory.
8742  **/
8743 static void
8744 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8745 {
8746 	LIST_HEAD(sglq_list);
8747 
8748 	/* Retrieve all els sgls from driver list */
8749 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8750 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8751 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8752 
8753 	/* Now free the sgl list */
8754 	lpfc_free_sgl_list(phba, &sglq_list);
8755 }
8756 
8757 /**
8758  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8759  * @phba: pointer to lpfc hba data structure.
8760  *
8761  * This routine is invoked to free the driver's nvmet sgl list and memory.
8762  **/
8763 static void
8764 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8765 {
8766 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8767 	LIST_HEAD(sglq_list);
8768 
8769 	/* Retrieve all nvmet sgls from driver list */
8770 	spin_lock_irq(&phba->hbalock);
8771 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8772 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8773 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8774 	spin_unlock_irq(&phba->hbalock);
8775 
8776 	/* Now free the sgl list */
8777 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8778 		list_del(&sglq_entry->list);
8779 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8780 		kfree(sglq_entry);
8781 	}
8782 
8783 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8784 	 * The next initialization cycle sets the count and allocates
8785 	 * the sgls over again.
8786 	 */
8787 	phba->sli4_hba.nvmet_xri_cnt = 0;
8788 }
8789 
8790 /**
8791  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8792  * @phba: pointer to lpfc hba data structure.
8793  *
8794  * This routine is invoked to allocate the driver's active sgl memory.
8795  * This array will hold the sglq_entry's for active IOs.
8796  **/
8797 static int
8798 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8799 {
8800 	int size;
8801 	size = sizeof(struct lpfc_sglq *);
8802 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8803 
8804 	phba->sli4_hba.lpfc_sglq_active_list =
8805 		kzalloc(size, GFP_KERNEL);
8806 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8807 		return -ENOMEM;
8808 	return 0;
8809 }
8810 
8811 /**
8812  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8813  * @phba: pointer to lpfc hba data structure.
8814  *
8815  * This routine is invoked to walk through the array of active sglq entries
8816  * and free all of the resources.
8817  * This is just a place holder for now.
8818  **/
8819 static void
8820 lpfc_free_active_sgl(struct lpfc_hba *phba)
8821 {
8822 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8823 }
8824 
8825 /**
8826  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8827  * @phba: pointer to lpfc hba data structure.
8828  *
8829  * This routine is invoked to allocate and initizlize the driver's sgl
8830  * list and set up the sgl xritag tag array accordingly.
8831  *
8832  **/
8833 static void
8834 lpfc_init_sgl_list(struct lpfc_hba *phba)
8835 {
8836 	/* Initialize and populate the sglq list per host/VF. */
8837 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8838 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8839 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8840 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8841 
8842 	/* els xri-sgl book keeping */
8843 	phba->sli4_hba.els_xri_cnt = 0;
8844 
8845 	/* nvme xri-buffer book keeping */
8846 	phba->sli4_hba.io_xri_cnt = 0;
8847 }
8848 
8849 /**
8850  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8851  * @phba: pointer to lpfc hba data structure.
8852  *
8853  * This routine is invoked to post rpi header templates to the
8854  * port for those SLI4 ports that do not support extents.  This routine
8855  * posts a PAGE_SIZE memory region to the port to hold up to
8856  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8857  * and should be called only when interrupts are disabled.
8858  *
8859  * Return codes
8860  * 	0 - successful
8861  *	-ERROR - otherwise.
8862  **/
8863 int
8864 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8865 {
8866 	int rc = 0;
8867 	struct lpfc_rpi_hdr *rpi_hdr;
8868 
8869 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8870 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8871 		return rc;
8872 	if (phba->sli4_hba.extents_in_use)
8873 		return -EIO;
8874 
8875 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8876 	if (!rpi_hdr) {
8877 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8878 				"0391 Error during rpi post operation\n");
8879 		lpfc_sli4_remove_rpis(phba);
8880 		rc = -ENODEV;
8881 	}
8882 
8883 	return rc;
8884 }
8885 
8886 /**
8887  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8888  * @phba: pointer to lpfc hba data structure.
8889  *
8890  * This routine is invoked to allocate a single 4KB memory region to
8891  * support rpis and stores them in the phba.  This single region
8892  * provides support for up to 64 rpis.  The region is used globally
8893  * by the device.
8894  *
8895  * Returns:
8896  *   A valid rpi hdr on success.
8897  *   A NULL pointer on any failure.
8898  **/
8899 struct lpfc_rpi_hdr *
8900 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8901 {
8902 	uint16_t rpi_limit, curr_rpi_range;
8903 	struct lpfc_dmabuf *dmabuf;
8904 	struct lpfc_rpi_hdr *rpi_hdr;
8905 
8906 	/*
8907 	 * If the SLI4 port supports extents, posting the rpi header isn't
8908 	 * required.  Set the expected maximum count and let the actual value
8909 	 * get set when extents are fully allocated.
8910 	 */
8911 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8912 		return NULL;
8913 	if (phba->sli4_hba.extents_in_use)
8914 		return NULL;
8915 
8916 	/* The limit on the logical index is just the max_rpi count. */
8917 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8918 
8919 	spin_lock_irq(&phba->hbalock);
8920 	/*
8921 	 * Establish the starting RPI in this header block.  The starting
8922 	 * rpi is normalized to a zero base because the physical rpi is
8923 	 * port based.
8924 	 */
8925 	curr_rpi_range = phba->sli4_hba.next_rpi;
8926 	spin_unlock_irq(&phba->hbalock);
8927 
8928 	/* Reached full RPI range */
8929 	if (curr_rpi_range == rpi_limit)
8930 		return NULL;
8931 
8932 	/*
8933 	 * First allocate the protocol header region for the port.  The
8934 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8935 	 */
8936 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8937 	if (!dmabuf)
8938 		return NULL;
8939 
8940 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8941 					  LPFC_HDR_TEMPLATE_SIZE,
8942 					  &dmabuf->phys, GFP_KERNEL);
8943 	if (!dmabuf->virt) {
8944 		rpi_hdr = NULL;
8945 		goto err_free_dmabuf;
8946 	}
8947 
8948 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8949 		rpi_hdr = NULL;
8950 		goto err_free_coherent;
8951 	}
8952 
8953 	/* Save the rpi header data for cleanup later. */
8954 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8955 	if (!rpi_hdr)
8956 		goto err_free_coherent;
8957 
8958 	rpi_hdr->dmabuf = dmabuf;
8959 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8960 	rpi_hdr->page_count = 1;
8961 	spin_lock_irq(&phba->hbalock);
8962 
8963 	/* The rpi_hdr stores the logical index only. */
8964 	rpi_hdr->start_rpi = curr_rpi_range;
8965 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8966 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8967 
8968 	spin_unlock_irq(&phba->hbalock);
8969 	return rpi_hdr;
8970 
8971  err_free_coherent:
8972 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8973 			  dmabuf->virt, dmabuf->phys);
8974  err_free_dmabuf:
8975 	kfree(dmabuf);
8976 	return NULL;
8977 }
8978 
8979 /**
8980  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8981  * @phba: pointer to lpfc hba data structure.
8982  *
8983  * This routine is invoked to remove all memory resources allocated
8984  * to support rpis for SLI4 ports not supporting extents. This routine
8985  * presumes the caller has released all rpis consumed by fabric or port
8986  * logins and is prepared to have the header pages removed.
8987  **/
8988 void
8989 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8990 {
8991 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8992 
8993 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8994 		goto exit;
8995 
8996 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8997 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8998 		list_del(&rpi_hdr->list);
8999 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
9000 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
9001 		kfree(rpi_hdr->dmabuf);
9002 		kfree(rpi_hdr);
9003 	}
9004  exit:
9005 	/* There are no rpis available to the port now. */
9006 	phba->sli4_hba.next_rpi = 0;
9007 }
9008 
9009 /**
9010  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
9011  * @pdev: pointer to pci device data structure.
9012  *
9013  * This routine is invoked to allocate the driver hba data structure for an
9014  * HBA device. If the allocation is successful, the phba reference to the
9015  * PCI device data structure is set.
9016  *
9017  * Return codes
9018  *      pointer to @phba - successful
9019  *      NULL - error
9020  **/
9021 static struct lpfc_hba *
9022 lpfc_hba_alloc(struct pci_dev *pdev)
9023 {
9024 	struct lpfc_hba *phba;
9025 
9026 	/* Allocate memory for HBA structure */
9027 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
9028 	if (!phba) {
9029 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
9030 		return NULL;
9031 	}
9032 
9033 	/* Set reference to PCI device in HBA structure */
9034 	phba->pcidev = pdev;
9035 
9036 	/* Assign an unused board number */
9037 	phba->brd_no = lpfc_get_instance();
9038 	if (phba->brd_no < 0) {
9039 		kfree(phba);
9040 		return NULL;
9041 	}
9042 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
9043 
9044 	spin_lock_init(&phba->ct_ev_lock);
9045 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
9046 
9047 	return phba;
9048 }
9049 
9050 /**
9051  * lpfc_hba_free - Free driver hba data structure with a device.
9052  * @phba: pointer to lpfc hba data structure.
9053  *
9054  * This routine is invoked to free the driver hba data structure with an
9055  * HBA device.
9056  **/
9057 static void
9058 lpfc_hba_free(struct lpfc_hba *phba)
9059 {
9060 	if (phba->sli_rev == LPFC_SLI_REV4)
9061 		kfree(phba->sli4_hba.hdwq);
9062 
9063 	/* Release the driver assigned board number */
9064 	idr_remove(&lpfc_hba_index, phba->brd_no);
9065 
9066 	/* Free memory allocated with sli3 rings */
9067 	kfree(phba->sli.sli3_ring);
9068 	phba->sli.sli3_ring = NULL;
9069 
9070 	kfree(phba);
9071 	return;
9072 }
9073 
9074 /**
9075  * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes
9076  * @vport: pointer to lpfc vport data structure.
9077  *
9078  * This routine is will setup initial FDMI attribute masks for
9079  * FDMI2 or SmartSAN depending on module parameters. The driver will attempt
9080  * to get these attributes first before falling back, the attribute
9081  * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1
9082  **/
9083 void
9084 lpfc_setup_fdmi_mask(struct lpfc_vport *vport)
9085 {
9086 	struct lpfc_hba *phba = vport->phba;
9087 
9088 	vport->load_flag |= FC_ALLOW_FDMI;
9089 	if (phba->cfg_enable_SmartSAN ||
9090 	    phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) {
9091 		/* Setup appropriate attribute masks */
9092 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
9093 		if (phba->cfg_enable_SmartSAN)
9094 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
9095 		else
9096 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
9097 	}
9098 
9099 	lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY,
9100 			"6077 Setup FDMI mask: hba x%x port x%x\n",
9101 			vport->fdmi_hba_mask, vport->fdmi_port_mask);
9102 }
9103 
9104 /**
9105  * lpfc_create_shost - Create hba physical port with associated scsi host.
9106  * @phba: pointer to lpfc hba data structure.
9107  *
9108  * This routine is invoked to create HBA physical port and associate a SCSI
9109  * host with it.
9110  *
9111  * Return codes
9112  *      0 - successful
9113  *      other values - error
9114  **/
9115 static int
9116 lpfc_create_shost(struct lpfc_hba *phba)
9117 {
9118 	struct lpfc_vport *vport;
9119 	struct Scsi_Host  *shost;
9120 
9121 	/* Initialize HBA FC structure */
9122 	phba->fc_edtov = FF_DEF_EDTOV;
9123 	phba->fc_ratov = FF_DEF_RATOV;
9124 	phba->fc_altov = FF_DEF_ALTOV;
9125 	phba->fc_arbtov = FF_DEF_ARBTOV;
9126 
9127 	atomic_set(&phba->sdev_cnt, 0);
9128 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
9129 	if (!vport)
9130 		return -ENODEV;
9131 
9132 	shost = lpfc_shost_from_vport(vport);
9133 	phba->pport = vport;
9134 
9135 	if (phba->nvmet_support) {
9136 		/* Only 1 vport (pport) will support NVME target */
9137 		phba->targetport = NULL;
9138 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
9139 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
9140 				"6076 NVME Target Found\n");
9141 	}
9142 
9143 	lpfc_debugfs_initialize(vport);
9144 	/* Put reference to SCSI host to driver's device private data */
9145 	pci_set_drvdata(phba->pcidev, shost);
9146 
9147 	lpfc_setup_fdmi_mask(vport);
9148 
9149 	/*
9150 	 * At this point we are fully registered with PSA. In addition,
9151 	 * any initial discovery should be completed.
9152 	 */
9153 	return 0;
9154 }
9155 
9156 /**
9157  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
9158  * @phba: pointer to lpfc hba data structure.
9159  *
9160  * This routine is invoked to destroy HBA physical port and the associated
9161  * SCSI host.
9162  **/
9163 static void
9164 lpfc_destroy_shost(struct lpfc_hba *phba)
9165 {
9166 	struct lpfc_vport *vport = phba->pport;
9167 
9168 	/* Destroy physical port that associated with the SCSI host */
9169 	destroy_port(vport);
9170 
9171 	return;
9172 }
9173 
9174 /**
9175  * lpfc_setup_bg - Setup Block guard structures and debug areas.
9176  * @phba: pointer to lpfc hba data structure.
9177  * @shost: the shost to be used to detect Block guard settings.
9178  *
9179  * This routine sets up the local Block guard protocol settings for @shost.
9180  * This routine also allocates memory for debugging bg buffers.
9181  **/
9182 static void
9183 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
9184 {
9185 	uint32_t old_mask;
9186 	uint32_t old_guard;
9187 
9188 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9189 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9190 				"1478 Registering BlockGuard with the "
9191 				"SCSI layer\n");
9192 
9193 		old_mask = phba->cfg_prot_mask;
9194 		old_guard = phba->cfg_prot_guard;
9195 
9196 		/* Only allow supported values */
9197 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
9198 			SHOST_DIX_TYPE0_PROTECTION |
9199 			SHOST_DIX_TYPE1_PROTECTION);
9200 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
9201 					 SHOST_DIX_GUARD_CRC);
9202 
9203 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
9204 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
9205 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
9206 
9207 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
9208 			if ((old_mask != phba->cfg_prot_mask) ||
9209 				(old_guard != phba->cfg_prot_guard))
9210 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9211 					"1475 Registering BlockGuard with the "
9212 					"SCSI layer: mask %d  guard %d\n",
9213 					phba->cfg_prot_mask,
9214 					phba->cfg_prot_guard);
9215 
9216 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9217 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9218 		} else
9219 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9220 				"1479 Not Registering BlockGuard with the SCSI "
9221 				"layer, Bad protection parameters: %d %d\n",
9222 				old_mask, old_guard);
9223 	}
9224 }
9225 
9226 /**
9227  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9228  * @phba: pointer to lpfc hba data structure.
9229  *
9230  * This routine is invoked to perform all the necessary post initialization
9231  * setup for the device.
9232  **/
9233 static void
9234 lpfc_post_init_setup(struct lpfc_hba *phba)
9235 {
9236 	struct Scsi_Host  *shost;
9237 	struct lpfc_adapter_event_header adapter_event;
9238 
9239 	/* Get the default values for Model Name and Description */
9240 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9241 
9242 	/*
9243 	 * hba setup may have changed the hba_queue_depth so we need to
9244 	 * adjust the value of can_queue.
9245 	 */
9246 	shost = pci_get_drvdata(phba->pcidev);
9247 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9248 
9249 	lpfc_host_attrib_init(shost);
9250 
9251 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9252 		spin_lock_irq(shost->host_lock);
9253 		lpfc_poll_start_timer(phba);
9254 		spin_unlock_irq(shost->host_lock);
9255 	}
9256 
9257 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9258 			"0428 Perform SCSI scan\n");
9259 	/* Send board arrival event to upper layer */
9260 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9261 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9262 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9263 				  sizeof(adapter_event),
9264 				  (char *) &adapter_event,
9265 				  LPFC_NL_VENDOR_ID);
9266 	return;
9267 }
9268 
9269 /**
9270  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9271  * @phba: pointer to lpfc hba data structure.
9272  *
9273  * This routine is invoked to set up the PCI device memory space for device
9274  * with SLI-3 interface spec.
9275  *
9276  * Return codes
9277  * 	0 - successful
9278  * 	other values - error
9279  **/
9280 static int
9281 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9282 {
9283 	struct pci_dev *pdev = phba->pcidev;
9284 	unsigned long bar0map_len, bar2map_len;
9285 	int i, hbq_count;
9286 	void *ptr;
9287 	int error;
9288 
9289 	if (!pdev)
9290 		return -ENODEV;
9291 
9292 	/* Set the device DMA mask size */
9293 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9294 	if (error)
9295 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9296 	if (error)
9297 		return error;
9298 	error = -ENODEV;
9299 
9300 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9301 	 * required by each mapping.
9302 	 */
9303 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9304 	bar0map_len = pci_resource_len(pdev, 0);
9305 
9306 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9307 	bar2map_len = pci_resource_len(pdev, 2);
9308 
9309 	/* Map HBA SLIM to a kernel virtual address. */
9310 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9311 	if (!phba->slim_memmap_p) {
9312 		dev_printk(KERN_ERR, &pdev->dev,
9313 			   "ioremap failed for SLIM memory.\n");
9314 		goto out;
9315 	}
9316 
9317 	/* Map HBA Control Registers to a kernel virtual address. */
9318 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9319 	if (!phba->ctrl_regs_memmap_p) {
9320 		dev_printk(KERN_ERR, &pdev->dev,
9321 			   "ioremap failed for HBA control registers.\n");
9322 		goto out_iounmap_slim;
9323 	}
9324 
9325 	/* Allocate memory for SLI-2 structures */
9326 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9327 					       &phba->slim2p.phys, GFP_KERNEL);
9328 	if (!phba->slim2p.virt)
9329 		goto out_iounmap;
9330 
9331 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9332 	phba->mbox_ext = (phba->slim2p.virt +
9333 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9334 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9335 	phba->IOCBs = (phba->slim2p.virt +
9336 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9337 
9338 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9339 						 lpfc_sli_hbq_size(),
9340 						 &phba->hbqslimp.phys,
9341 						 GFP_KERNEL);
9342 	if (!phba->hbqslimp.virt)
9343 		goto out_free_slim;
9344 
9345 	hbq_count = lpfc_sli_hbq_count();
9346 	ptr = phba->hbqslimp.virt;
9347 	for (i = 0; i < hbq_count; ++i) {
9348 		phba->hbqs[i].hbq_virt = ptr;
9349 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9350 		ptr += (lpfc_hbq_defs[i]->entry_count *
9351 			sizeof(struct lpfc_hbq_entry));
9352 	}
9353 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9354 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9355 
9356 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9357 
9358 	phba->MBslimaddr = phba->slim_memmap_p;
9359 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9360 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9361 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9362 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9363 
9364 	return 0;
9365 
9366 out_free_slim:
9367 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9368 			  phba->slim2p.virt, phba->slim2p.phys);
9369 out_iounmap:
9370 	iounmap(phba->ctrl_regs_memmap_p);
9371 out_iounmap_slim:
9372 	iounmap(phba->slim_memmap_p);
9373 out:
9374 	return error;
9375 }
9376 
9377 /**
9378  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9379  * @phba: pointer to lpfc hba data structure.
9380  *
9381  * This routine is invoked to unset the PCI device memory space for device
9382  * with SLI-3 interface spec.
9383  **/
9384 static void
9385 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9386 {
9387 	struct pci_dev *pdev;
9388 
9389 	/* Obtain PCI device reference */
9390 	if (!phba->pcidev)
9391 		return;
9392 	else
9393 		pdev = phba->pcidev;
9394 
9395 	/* Free coherent DMA memory allocated */
9396 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9397 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9398 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9399 			  phba->slim2p.virt, phba->slim2p.phys);
9400 
9401 	/* I/O memory unmap */
9402 	iounmap(phba->ctrl_regs_memmap_p);
9403 	iounmap(phba->slim_memmap_p);
9404 
9405 	return;
9406 }
9407 
9408 /**
9409  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9410  * @phba: pointer to lpfc hba data structure.
9411  *
9412  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9413  * done and check status.
9414  *
9415  * Return 0 if successful, otherwise -ENODEV.
9416  **/
9417 int
9418 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9419 {
9420 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9421 	struct lpfc_register reg_data;
9422 	int i, port_error = 0;
9423 	uint32_t if_type;
9424 
9425 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9426 	memset(&reg_data, 0, sizeof(reg_data));
9427 	if (!phba->sli4_hba.PSMPHRregaddr)
9428 		return -ENODEV;
9429 
9430 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9431 	for (i = 0; i < 3000; i++) {
9432 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9433 			&portsmphr_reg.word0) ||
9434 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9435 			/* Port has a fatal POST error, break out */
9436 			port_error = -ENODEV;
9437 			break;
9438 		}
9439 		if (LPFC_POST_STAGE_PORT_READY ==
9440 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9441 			break;
9442 		msleep(10);
9443 	}
9444 
9445 	/*
9446 	 * If there was a port error during POST, then don't proceed with
9447 	 * other register reads as the data may not be valid.  Just exit.
9448 	 */
9449 	if (port_error) {
9450 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9451 			"1408 Port Failed POST - portsmphr=0x%x, "
9452 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9453 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9454 			portsmphr_reg.word0,
9455 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9456 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9457 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9458 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9459 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9460 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9461 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9462 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9463 	} else {
9464 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9465 				"2534 Device Info: SLIFamily=0x%x, "
9466 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9467 				"SLIHint_2=0x%x, FT=0x%x\n",
9468 				bf_get(lpfc_sli_intf_sli_family,
9469 				       &phba->sli4_hba.sli_intf),
9470 				bf_get(lpfc_sli_intf_slirev,
9471 				       &phba->sli4_hba.sli_intf),
9472 				bf_get(lpfc_sli_intf_if_type,
9473 				       &phba->sli4_hba.sli_intf),
9474 				bf_get(lpfc_sli_intf_sli_hint1,
9475 				       &phba->sli4_hba.sli_intf),
9476 				bf_get(lpfc_sli_intf_sli_hint2,
9477 				       &phba->sli4_hba.sli_intf),
9478 				bf_get(lpfc_sli_intf_func_type,
9479 				       &phba->sli4_hba.sli_intf));
9480 		/*
9481 		 * Check for other Port errors during the initialization
9482 		 * process.  Fail the load if the port did not come up
9483 		 * correctly.
9484 		 */
9485 		if_type = bf_get(lpfc_sli_intf_if_type,
9486 				 &phba->sli4_hba.sli_intf);
9487 		switch (if_type) {
9488 		case LPFC_SLI_INTF_IF_TYPE_0:
9489 			phba->sli4_hba.ue_mask_lo =
9490 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9491 			phba->sli4_hba.ue_mask_hi =
9492 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9493 			uerrlo_reg.word0 =
9494 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9495 			uerrhi_reg.word0 =
9496 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9497 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9498 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9499 				lpfc_printf_log(phba, KERN_ERR,
9500 						LOG_TRACE_EVENT,
9501 						"1422 Unrecoverable Error "
9502 						"Detected during POST "
9503 						"uerr_lo_reg=0x%x, "
9504 						"uerr_hi_reg=0x%x, "
9505 						"ue_mask_lo_reg=0x%x, "
9506 						"ue_mask_hi_reg=0x%x\n",
9507 						uerrlo_reg.word0,
9508 						uerrhi_reg.word0,
9509 						phba->sli4_hba.ue_mask_lo,
9510 						phba->sli4_hba.ue_mask_hi);
9511 				port_error = -ENODEV;
9512 			}
9513 			break;
9514 		case LPFC_SLI_INTF_IF_TYPE_2:
9515 		case LPFC_SLI_INTF_IF_TYPE_6:
9516 			/* Final checks.  The port status should be clean. */
9517 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9518 				&reg_data.word0) ||
9519 				lpfc_sli4_unrecoverable_port(&reg_data)) {
9520 				phba->work_status[0] =
9521 					readl(phba->sli4_hba.u.if_type2.
9522 					      ERR1regaddr);
9523 				phba->work_status[1] =
9524 					readl(phba->sli4_hba.u.if_type2.
9525 					      ERR2regaddr);
9526 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9527 					"2888 Unrecoverable port error "
9528 					"following POST: port status reg "
9529 					"0x%x, port_smphr reg 0x%x, "
9530 					"error 1=0x%x, error 2=0x%x\n",
9531 					reg_data.word0,
9532 					portsmphr_reg.word0,
9533 					phba->work_status[0],
9534 					phba->work_status[1]);
9535 				port_error = -ENODEV;
9536 				break;
9537 			}
9538 
9539 			if (lpfc_pldv_detect &&
9540 			    bf_get(lpfc_sli_intf_sli_family,
9541 				   &phba->sli4_hba.sli_intf) ==
9542 					LPFC_SLI_INTF_FAMILY_G6)
9543 				pci_write_config_byte(phba->pcidev,
9544 						      LPFC_SLI_INTF, CFG_PLD);
9545 			break;
9546 		case LPFC_SLI_INTF_IF_TYPE_1:
9547 		default:
9548 			break;
9549 		}
9550 	}
9551 	return port_error;
9552 }
9553 
9554 /**
9555  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9556  * @phba: pointer to lpfc hba data structure.
9557  * @if_type:  The SLI4 interface type getting configured.
9558  *
9559  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9560  * memory map.
9561  **/
9562 static void
9563 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9564 {
9565 	switch (if_type) {
9566 	case LPFC_SLI_INTF_IF_TYPE_0:
9567 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9568 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9569 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9570 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9571 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9572 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9573 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9574 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9575 		phba->sli4_hba.SLIINTFregaddr =
9576 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9577 		break;
9578 	case LPFC_SLI_INTF_IF_TYPE_2:
9579 		phba->sli4_hba.u.if_type2.EQDregaddr =
9580 			phba->sli4_hba.conf_regs_memmap_p +
9581 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9582 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9583 			phba->sli4_hba.conf_regs_memmap_p +
9584 						LPFC_CTL_PORT_ER1_OFFSET;
9585 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9586 			phba->sli4_hba.conf_regs_memmap_p +
9587 						LPFC_CTL_PORT_ER2_OFFSET;
9588 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9589 			phba->sli4_hba.conf_regs_memmap_p +
9590 						LPFC_CTL_PORT_CTL_OFFSET;
9591 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9592 			phba->sli4_hba.conf_regs_memmap_p +
9593 						LPFC_CTL_PORT_STA_OFFSET;
9594 		phba->sli4_hba.SLIINTFregaddr =
9595 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9596 		phba->sli4_hba.PSMPHRregaddr =
9597 			phba->sli4_hba.conf_regs_memmap_p +
9598 						LPFC_CTL_PORT_SEM_OFFSET;
9599 		phba->sli4_hba.RQDBregaddr =
9600 			phba->sli4_hba.conf_regs_memmap_p +
9601 						LPFC_ULP0_RQ_DOORBELL;
9602 		phba->sli4_hba.WQDBregaddr =
9603 			phba->sli4_hba.conf_regs_memmap_p +
9604 						LPFC_ULP0_WQ_DOORBELL;
9605 		phba->sli4_hba.CQDBregaddr =
9606 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9607 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9608 		phba->sli4_hba.MQDBregaddr =
9609 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9610 		phba->sli4_hba.BMBXregaddr =
9611 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9612 		break;
9613 	case LPFC_SLI_INTF_IF_TYPE_6:
9614 		phba->sli4_hba.u.if_type2.EQDregaddr =
9615 			phba->sli4_hba.conf_regs_memmap_p +
9616 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9617 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9618 			phba->sli4_hba.conf_regs_memmap_p +
9619 						LPFC_CTL_PORT_ER1_OFFSET;
9620 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9621 			phba->sli4_hba.conf_regs_memmap_p +
9622 						LPFC_CTL_PORT_ER2_OFFSET;
9623 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9624 			phba->sli4_hba.conf_regs_memmap_p +
9625 						LPFC_CTL_PORT_CTL_OFFSET;
9626 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9627 			phba->sli4_hba.conf_regs_memmap_p +
9628 						LPFC_CTL_PORT_STA_OFFSET;
9629 		phba->sli4_hba.PSMPHRregaddr =
9630 			phba->sli4_hba.conf_regs_memmap_p +
9631 						LPFC_CTL_PORT_SEM_OFFSET;
9632 		phba->sli4_hba.BMBXregaddr =
9633 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9634 		break;
9635 	case LPFC_SLI_INTF_IF_TYPE_1:
9636 	default:
9637 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9638 			   "FATAL - unsupported SLI4 interface type - %d\n",
9639 			   if_type);
9640 		break;
9641 	}
9642 }
9643 
9644 /**
9645  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9646  * @phba: pointer to lpfc hba data structure.
9647  * @if_type: sli if type to operate on.
9648  *
9649  * This routine is invoked to set up SLI4 BAR1 register memory map.
9650  **/
9651 static void
9652 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9653 {
9654 	switch (if_type) {
9655 	case LPFC_SLI_INTF_IF_TYPE_0:
9656 		phba->sli4_hba.PSMPHRregaddr =
9657 			phba->sli4_hba.ctrl_regs_memmap_p +
9658 			LPFC_SLIPORT_IF0_SMPHR;
9659 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9660 			LPFC_HST_ISR0;
9661 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9662 			LPFC_HST_IMR0;
9663 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9664 			LPFC_HST_ISCR0;
9665 		break;
9666 	case LPFC_SLI_INTF_IF_TYPE_6:
9667 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9668 			LPFC_IF6_RQ_DOORBELL;
9669 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9670 			LPFC_IF6_WQ_DOORBELL;
9671 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9672 			LPFC_IF6_CQ_DOORBELL;
9673 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9674 			LPFC_IF6_EQ_DOORBELL;
9675 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9676 			LPFC_IF6_MQ_DOORBELL;
9677 		break;
9678 	case LPFC_SLI_INTF_IF_TYPE_2:
9679 	case LPFC_SLI_INTF_IF_TYPE_1:
9680 	default:
9681 		dev_err(&phba->pcidev->dev,
9682 			   "FATAL - unsupported SLI4 interface type - %d\n",
9683 			   if_type);
9684 		break;
9685 	}
9686 }
9687 
9688 /**
9689  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9690  * @phba: pointer to lpfc hba data structure.
9691  * @vf: virtual function number
9692  *
9693  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9694  * based on the given viftual function number, @vf.
9695  *
9696  * Return 0 if successful, otherwise -ENODEV.
9697  **/
9698 static int
9699 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9700 {
9701 	if (vf > LPFC_VIR_FUNC_MAX)
9702 		return -ENODEV;
9703 
9704 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9705 				vf * LPFC_VFR_PAGE_SIZE +
9706 					LPFC_ULP0_RQ_DOORBELL);
9707 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9708 				vf * LPFC_VFR_PAGE_SIZE +
9709 					LPFC_ULP0_WQ_DOORBELL);
9710 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9711 				vf * LPFC_VFR_PAGE_SIZE +
9712 					LPFC_EQCQ_DOORBELL);
9713 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9714 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9715 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9716 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9717 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9718 	return 0;
9719 }
9720 
9721 /**
9722  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9723  * @phba: pointer to lpfc hba data structure.
9724  *
9725  * This routine is invoked to create the bootstrap mailbox
9726  * region consistent with the SLI-4 interface spec.  This
9727  * routine allocates all memory necessary to communicate
9728  * mailbox commands to the port and sets up all alignment
9729  * needs.  No locks are expected to be held when calling
9730  * this routine.
9731  *
9732  * Return codes
9733  * 	0 - successful
9734  * 	-ENOMEM - could not allocated memory.
9735  **/
9736 static int
9737 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9738 {
9739 	uint32_t bmbx_size;
9740 	struct lpfc_dmabuf *dmabuf;
9741 	struct dma_address *dma_address;
9742 	uint32_t pa_addr;
9743 	uint64_t phys_addr;
9744 
9745 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9746 	if (!dmabuf)
9747 		return -ENOMEM;
9748 
9749 	/*
9750 	 * The bootstrap mailbox region is comprised of 2 parts
9751 	 * plus an alignment restriction of 16 bytes.
9752 	 */
9753 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9754 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9755 					  &dmabuf->phys, GFP_KERNEL);
9756 	if (!dmabuf->virt) {
9757 		kfree(dmabuf);
9758 		return -ENOMEM;
9759 	}
9760 
9761 	/*
9762 	 * Initialize the bootstrap mailbox pointers now so that the register
9763 	 * operations are simple later.  The mailbox dma address is required
9764 	 * to be 16-byte aligned.  Also align the virtual memory as each
9765 	 * maibox is copied into the bmbx mailbox region before issuing the
9766 	 * command to the port.
9767 	 */
9768 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9769 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9770 
9771 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9772 					      LPFC_ALIGN_16_BYTE);
9773 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9774 					      LPFC_ALIGN_16_BYTE);
9775 
9776 	/*
9777 	 * Set the high and low physical addresses now.  The SLI4 alignment
9778 	 * requirement is 16 bytes and the mailbox is posted to the port
9779 	 * as two 30-bit addresses.  The other data is a bit marking whether
9780 	 * the 30-bit address is the high or low address.
9781 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9782 	 * clean on 32 bit machines.
9783 	 */
9784 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9785 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9786 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9787 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9788 					   LPFC_BMBX_BIT1_ADDR_HI);
9789 
9790 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9791 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9792 					   LPFC_BMBX_BIT1_ADDR_LO);
9793 	return 0;
9794 }
9795 
9796 /**
9797  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9798  * @phba: pointer to lpfc hba data structure.
9799  *
9800  * This routine is invoked to teardown the bootstrap mailbox
9801  * region and release all host resources. This routine requires
9802  * the caller to ensure all mailbox commands recovered, no
9803  * additional mailbox comands are sent, and interrupts are disabled
9804  * before calling this routine.
9805  *
9806  **/
9807 static void
9808 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9809 {
9810 	dma_free_coherent(&phba->pcidev->dev,
9811 			  phba->sli4_hba.bmbx.bmbx_size,
9812 			  phba->sli4_hba.bmbx.dmabuf->virt,
9813 			  phba->sli4_hba.bmbx.dmabuf->phys);
9814 
9815 	kfree(phba->sli4_hba.bmbx.dmabuf);
9816 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9817 }
9818 
9819 static const char * const lpfc_topo_to_str[] = {
9820 	"Loop then P2P",
9821 	"Loopback",
9822 	"P2P Only",
9823 	"Unsupported",
9824 	"Loop Only",
9825 	"Unsupported",
9826 	"P2P then Loop",
9827 };
9828 
9829 #define	LINK_FLAGS_DEF	0x0
9830 #define	LINK_FLAGS_P2P	0x1
9831 #define	LINK_FLAGS_LOOP	0x2
9832 /**
9833  * lpfc_map_topology - Map the topology read from READ_CONFIG
9834  * @phba: pointer to lpfc hba data structure.
9835  * @rd_config: pointer to read config data
9836  *
9837  * This routine is invoked to map the topology values as read
9838  * from the read config mailbox command. If the persistent
9839  * topology feature is supported, the firmware will provide the
9840  * saved topology information to be used in INIT_LINK
9841  **/
9842 static void
9843 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9844 {
9845 	u8 ptv, tf, pt;
9846 
9847 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9848 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9849 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9850 
9851 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9852 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9853 			 ptv, tf, pt);
9854 	if (!ptv) {
9855 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9856 				"2019 FW does not support persistent topology "
9857 				"Using driver parameter defined value [%s]",
9858 				lpfc_topo_to_str[phba->cfg_topology]);
9859 		return;
9860 	}
9861 	/* FW supports persistent topology - override module parameter value */
9862 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9863 
9864 	/* if ASIC_GEN_NUM >= 0xC) */
9865 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9866 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9867 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9868 		    LPFC_SLI_INTF_FAMILY_G6)) {
9869 		if (!tf) {
9870 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9871 					? FLAGS_TOPOLOGY_MODE_LOOP
9872 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9873 		} else {
9874 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9875 		}
9876 	} else { /* G5 */
9877 		if (tf) {
9878 			/* If topology failover set - pt is '0' or '1' */
9879 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9880 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9881 		} else {
9882 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9883 					? FLAGS_TOPOLOGY_MODE_PT_PT
9884 					: FLAGS_TOPOLOGY_MODE_LOOP);
9885 		}
9886 	}
9887 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9888 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9889 				"2020 Using persistent topology value [%s]",
9890 				lpfc_topo_to_str[phba->cfg_topology]);
9891 	} else {
9892 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9893 				"2021 Invalid topology values from FW "
9894 				"Using driver parameter defined value [%s]",
9895 				lpfc_topo_to_str[phba->cfg_topology]);
9896 	}
9897 }
9898 
9899 /**
9900  * lpfc_sli4_read_config - Get the config parameters.
9901  * @phba: pointer to lpfc hba data structure.
9902  *
9903  * This routine is invoked to read the configuration parameters from the HBA.
9904  * The configuration parameters are used to set the base and maximum values
9905  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9906  * allocation for the port.
9907  *
9908  * Return codes
9909  * 	0 - successful
9910  * 	-ENOMEM - No available memory
9911  *      -EIO - The mailbox failed to complete successfully.
9912  **/
9913 int
9914 lpfc_sli4_read_config(struct lpfc_hba *phba)
9915 {
9916 	LPFC_MBOXQ_t *pmb;
9917 	struct lpfc_mbx_read_config *rd_config;
9918 	union  lpfc_sli4_cfg_shdr *shdr;
9919 	uint32_t shdr_status, shdr_add_status;
9920 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9921 	struct lpfc_rsrc_desc_fcfcoe *desc;
9922 	char *pdesc_0;
9923 	uint16_t forced_link_speed;
9924 	uint32_t if_type, qmin, fawwpn;
9925 	int length, i, rc = 0, rc2;
9926 
9927 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9928 	if (!pmb) {
9929 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9930 				"2011 Unable to allocate memory for issuing "
9931 				"SLI_CONFIG_SPECIAL mailbox command\n");
9932 		return -ENOMEM;
9933 	}
9934 
9935 	lpfc_read_config(phba, pmb);
9936 
9937 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9938 	if (rc != MBX_SUCCESS) {
9939 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9940 				"2012 Mailbox failed , mbxCmd x%x "
9941 				"READ_CONFIG, mbxStatus x%x\n",
9942 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9943 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9944 		rc = -EIO;
9945 	} else {
9946 		rd_config = &pmb->u.mqe.un.rd_config;
9947 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9948 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9949 			phba->sli4_hba.lnk_info.lnk_tp =
9950 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9951 			phba->sli4_hba.lnk_info.lnk_no =
9952 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9953 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9954 					"3081 lnk_type:%d, lnk_numb:%d\n",
9955 					phba->sli4_hba.lnk_info.lnk_tp,
9956 					phba->sli4_hba.lnk_info.lnk_no);
9957 		} else
9958 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9959 					"3082 Mailbox (x%x) returned ldv:x0\n",
9960 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9961 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9962 			phba->bbcredit_support = 1;
9963 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9964 		}
9965 
9966 		fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config);
9967 
9968 		if (fawwpn) {
9969 			lpfc_printf_log(phba, KERN_INFO,
9970 					LOG_INIT | LOG_DISCOVERY,
9971 					"2702 READ_CONFIG: FA-PWWN is "
9972 					"configured on\n");
9973 			phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG;
9974 		} else {
9975 			/* Clear FW configured flag, preserve driver flag */
9976 			phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG;
9977 		}
9978 
9979 		phba->sli4_hba.conf_trunk =
9980 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9981 		phba->sli4_hba.extents_in_use =
9982 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9983 
9984 		phba->sli4_hba.max_cfg_param.max_xri =
9985 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9986 		/* Reduce resource usage in kdump environment */
9987 		if (is_kdump_kernel() &&
9988 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9989 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9990 		phba->sli4_hba.max_cfg_param.xri_base =
9991 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9992 		phba->sli4_hba.max_cfg_param.max_vpi =
9993 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9994 		/* Limit the max we support */
9995 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9996 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9997 		phba->sli4_hba.max_cfg_param.vpi_base =
9998 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9999 		phba->sli4_hba.max_cfg_param.max_rpi =
10000 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
10001 		phba->sli4_hba.max_cfg_param.rpi_base =
10002 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
10003 		phba->sli4_hba.max_cfg_param.max_vfi =
10004 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
10005 		phba->sli4_hba.max_cfg_param.vfi_base =
10006 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
10007 		phba->sli4_hba.max_cfg_param.max_fcfi =
10008 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
10009 		phba->sli4_hba.max_cfg_param.max_eq =
10010 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
10011 		phba->sli4_hba.max_cfg_param.max_rq =
10012 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
10013 		phba->sli4_hba.max_cfg_param.max_wq =
10014 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
10015 		phba->sli4_hba.max_cfg_param.max_cq =
10016 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
10017 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
10018 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
10019 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
10020 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
10021 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
10022 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
10023 		phba->max_vports = phba->max_vpi;
10024 
10025 		/* Next decide on FPIN or Signal E2E CGN support
10026 		 * For congestion alarms and warnings valid combination are:
10027 		 * 1. FPIN alarms / FPIN warnings
10028 		 * 2. Signal alarms / Signal warnings
10029 		 * 3. FPIN alarms / Signal warnings
10030 		 * 4. Signal alarms / FPIN warnings
10031 		 *
10032 		 * Initialize the adapter frequency to 100 mSecs
10033 		 */
10034 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10035 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
10036 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
10037 
10038 		if (lpfc_use_cgn_signal) {
10039 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
10040 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
10041 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
10042 			}
10043 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
10044 				/* MUST support both alarm and warning
10045 				 * because EDC does not support alarm alone.
10046 				 */
10047 				if (phba->cgn_reg_signal !=
10048 				    EDC_CG_SIG_WARN_ONLY) {
10049 					/* Must support both or none */
10050 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
10051 					phba->cgn_reg_signal =
10052 						EDC_CG_SIG_NOTSUPPORTED;
10053 				} else {
10054 					phba->cgn_reg_signal =
10055 						EDC_CG_SIG_WARN_ALARM;
10056 					phba->cgn_reg_fpin =
10057 						LPFC_CGN_FPIN_NONE;
10058 				}
10059 			}
10060 		}
10061 
10062 		/* Set the congestion initial signal and fpin values. */
10063 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
10064 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
10065 
10066 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
10067 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
10068 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
10069 
10070 		lpfc_map_topology(phba, rd_config);
10071 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10072 				"2003 cfg params Extents? %d "
10073 				"XRI(B:%d M:%d), "
10074 				"VPI(B:%d M:%d) "
10075 				"VFI(B:%d M:%d) "
10076 				"RPI(B:%d M:%d) "
10077 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
10078 				phba->sli4_hba.extents_in_use,
10079 				phba->sli4_hba.max_cfg_param.xri_base,
10080 				phba->sli4_hba.max_cfg_param.max_xri,
10081 				phba->sli4_hba.max_cfg_param.vpi_base,
10082 				phba->sli4_hba.max_cfg_param.max_vpi,
10083 				phba->sli4_hba.max_cfg_param.vfi_base,
10084 				phba->sli4_hba.max_cfg_param.max_vfi,
10085 				phba->sli4_hba.max_cfg_param.rpi_base,
10086 				phba->sli4_hba.max_cfg_param.max_rpi,
10087 				phba->sli4_hba.max_cfg_param.max_fcfi,
10088 				phba->sli4_hba.max_cfg_param.max_eq,
10089 				phba->sli4_hba.max_cfg_param.max_cq,
10090 				phba->sli4_hba.max_cfg_param.max_wq,
10091 				phba->sli4_hba.max_cfg_param.max_rq,
10092 				phba->lmt);
10093 
10094 		/*
10095 		 * Calculate queue resources based on how
10096 		 * many WQ/CQ/EQs are available.
10097 		 */
10098 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
10099 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
10100 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
10101 		/*
10102 		 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and
10103 		 * the remainder can be used for NVME / FCP.
10104 		 */
10105 		qmin -= 4;
10106 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
10107 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
10108 
10109 		/* Check to see if there is enough for default cfg */
10110 		if ((phba->cfg_irq_chann > qmin) ||
10111 		    (phba->cfg_hdw_queue > qmin)) {
10112 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10113 					"2005 Reducing Queues - "
10114 					"FW resource limitation: "
10115 					"WQ %d CQ %d EQ %d: min %d: "
10116 					"IRQ %d HDWQ %d\n",
10117 					phba->sli4_hba.max_cfg_param.max_wq,
10118 					phba->sli4_hba.max_cfg_param.max_cq,
10119 					phba->sli4_hba.max_cfg_param.max_eq,
10120 					qmin, phba->cfg_irq_chann,
10121 					phba->cfg_hdw_queue);
10122 
10123 			if (phba->cfg_irq_chann > qmin)
10124 				phba->cfg_irq_chann = qmin;
10125 			if (phba->cfg_hdw_queue > qmin)
10126 				phba->cfg_hdw_queue = qmin;
10127 		}
10128 	}
10129 
10130 	if (rc)
10131 		goto read_cfg_out;
10132 
10133 	/* Update link speed if forced link speed is supported */
10134 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10135 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10136 		forced_link_speed =
10137 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
10138 		if (forced_link_speed) {
10139 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
10140 
10141 			switch (forced_link_speed) {
10142 			case LINK_SPEED_1G:
10143 				phba->cfg_link_speed =
10144 					LPFC_USER_LINK_SPEED_1G;
10145 				break;
10146 			case LINK_SPEED_2G:
10147 				phba->cfg_link_speed =
10148 					LPFC_USER_LINK_SPEED_2G;
10149 				break;
10150 			case LINK_SPEED_4G:
10151 				phba->cfg_link_speed =
10152 					LPFC_USER_LINK_SPEED_4G;
10153 				break;
10154 			case LINK_SPEED_8G:
10155 				phba->cfg_link_speed =
10156 					LPFC_USER_LINK_SPEED_8G;
10157 				break;
10158 			case LINK_SPEED_10G:
10159 				phba->cfg_link_speed =
10160 					LPFC_USER_LINK_SPEED_10G;
10161 				break;
10162 			case LINK_SPEED_16G:
10163 				phba->cfg_link_speed =
10164 					LPFC_USER_LINK_SPEED_16G;
10165 				break;
10166 			case LINK_SPEED_32G:
10167 				phba->cfg_link_speed =
10168 					LPFC_USER_LINK_SPEED_32G;
10169 				break;
10170 			case LINK_SPEED_64G:
10171 				phba->cfg_link_speed =
10172 					LPFC_USER_LINK_SPEED_64G;
10173 				break;
10174 			case 0xffff:
10175 				phba->cfg_link_speed =
10176 					LPFC_USER_LINK_SPEED_AUTO;
10177 				break;
10178 			default:
10179 				lpfc_printf_log(phba, KERN_ERR,
10180 						LOG_TRACE_EVENT,
10181 						"0047 Unrecognized link "
10182 						"speed : %d\n",
10183 						forced_link_speed);
10184 				phba->cfg_link_speed =
10185 					LPFC_USER_LINK_SPEED_AUTO;
10186 			}
10187 		}
10188 	}
10189 
10190 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
10191 	length = phba->sli4_hba.max_cfg_param.max_xri -
10192 			lpfc_sli4_get_els_iocb_cnt(phba);
10193 	if (phba->cfg_hba_queue_depth > length) {
10194 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
10195 				"3361 HBA queue depth changed from %d to %d\n",
10196 				phba->cfg_hba_queue_depth, length);
10197 		phba->cfg_hba_queue_depth = length;
10198 	}
10199 
10200 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
10201 	    LPFC_SLI_INTF_IF_TYPE_2)
10202 		goto read_cfg_out;
10203 
10204 	/* get the pf# and vf# for SLI4 if_type 2 port */
10205 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
10206 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10207 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
10208 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
10209 			 length, LPFC_SLI4_MBX_EMBED);
10210 
10211 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
10212 	shdr = (union lpfc_sli4_cfg_shdr *)
10213 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
10214 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10215 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10216 	if (rc2 || shdr_status || shdr_add_status) {
10217 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10218 				"3026 Mailbox failed , mbxCmd x%x "
10219 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
10220 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
10221 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
10222 		goto read_cfg_out;
10223 	}
10224 
10225 	/* search for fc_fcoe resrouce descriptor */
10226 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
10227 
10228 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
10229 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
10230 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10231 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10232 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10233 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10234 		goto read_cfg_out;
10235 
10236 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10237 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10238 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10239 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10240 			phba->sli4_hba.iov.pf_number =
10241 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10242 			phba->sli4_hba.iov.vf_number =
10243 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10244 			break;
10245 		}
10246 	}
10247 
10248 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10249 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10250 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10251 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10252 				phba->sli4_hba.iov.vf_number);
10253 	else
10254 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10255 				"3028 GET_FUNCTION_CONFIG: failed to find "
10256 				"Resource Descriptor:x%x\n",
10257 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10258 
10259 read_cfg_out:
10260 	mempool_free(pmb, phba->mbox_mem_pool);
10261 	return rc;
10262 }
10263 
10264 /**
10265  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10266  * @phba: pointer to lpfc hba data structure.
10267  *
10268  * This routine is invoked to setup the port-side endian order when
10269  * the port if_type is 0.  This routine has no function for other
10270  * if_types.
10271  *
10272  * Return codes
10273  * 	0 - successful
10274  * 	-ENOMEM - No available memory
10275  *      -EIO - The mailbox failed to complete successfully.
10276  **/
10277 static int
10278 lpfc_setup_endian_order(struct lpfc_hba *phba)
10279 {
10280 	LPFC_MBOXQ_t *mboxq;
10281 	uint32_t if_type, rc = 0;
10282 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10283 				      HOST_ENDIAN_HIGH_WORD1};
10284 
10285 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10286 	switch (if_type) {
10287 	case LPFC_SLI_INTF_IF_TYPE_0:
10288 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10289 						       GFP_KERNEL);
10290 		if (!mboxq) {
10291 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10292 					"0492 Unable to allocate memory for "
10293 					"issuing SLI_CONFIG_SPECIAL mailbox "
10294 					"command\n");
10295 			return -ENOMEM;
10296 		}
10297 
10298 		/*
10299 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10300 		 * two words to contain special data values and no other data.
10301 		 */
10302 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10303 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10304 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10305 		if (rc != MBX_SUCCESS) {
10306 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10307 					"0493 SLI_CONFIG_SPECIAL mailbox "
10308 					"failed with status x%x\n",
10309 					rc);
10310 			rc = -EIO;
10311 		}
10312 		mempool_free(mboxq, phba->mbox_mem_pool);
10313 		break;
10314 	case LPFC_SLI_INTF_IF_TYPE_6:
10315 	case LPFC_SLI_INTF_IF_TYPE_2:
10316 	case LPFC_SLI_INTF_IF_TYPE_1:
10317 	default:
10318 		break;
10319 	}
10320 	return rc;
10321 }
10322 
10323 /**
10324  * lpfc_sli4_queue_verify - Verify and update EQ counts
10325  * @phba: pointer to lpfc hba data structure.
10326  *
10327  * This routine is invoked to check the user settable queue counts for EQs.
10328  * After this routine is called the counts will be set to valid values that
10329  * adhere to the constraints of the system's interrupt vectors and the port's
10330  * queue resources.
10331  *
10332  * Return codes
10333  *      0 - successful
10334  *      -ENOMEM - No available memory
10335  **/
10336 static int
10337 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10338 {
10339 	/*
10340 	 * Sanity check for configured queue parameters against the run-time
10341 	 * device parameters
10342 	 */
10343 
10344 	if (phba->nvmet_support) {
10345 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10346 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10347 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10348 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10349 	}
10350 
10351 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10352 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10353 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10354 			phba->cfg_nvmet_mrq);
10355 
10356 	/* Get EQ depth from module parameter, fake the default for now */
10357 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10358 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10359 
10360 	/* Get CQ depth from module parameter, fake the default for now */
10361 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10362 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10363 	return 0;
10364 }
10365 
10366 static int
10367 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10368 {
10369 	struct lpfc_queue *qdesc;
10370 	u32 wqesize;
10371 	int cpu;
10372 
10373 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10374 	/* Create Fast Path IO CQs */
10375 	if (phba->enab_exp_wqcq_pages)
10376 		/* Increase the CQ size when WQEs contain an embedded cdb */
10377 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10378 					      phba->sli4_hba.cq_esize,
10379 					      LPFC_CQE_EXP_COUNT, cpu);
10380 
10381 	else
10382 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10383 					      phba->sli4_hba.cq_esize,
10384 					      phba->sli4_hba.cq_ecount, cpu);
10385 	if (!qdesc) {
10386 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10387 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10388 				idx);
10389 		return 1;
10390 	}
10391 	qdesc->qe_valid = 1;
10392 	qdesc->hdwq = idx;
10393 	qdesc->chann = cpu;
10394 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10395 
10396 	/* Create Fast Path IO WQs */
10397 	if (phba->enab_exp_wqcq_pages) {
10398 		/* Increase the WQ size when WQEs contain an embedded cdb */
10399 		wqesize = (phba->fcp_embed_io) ?
10400 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10401 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10402 					      wqesize,
10403 					      LPFC_WQE_EXP_COUNT, cpu);
10404 	} else
10405 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10406 					      phba->sli4_hba.wq_esize,
10407 					      phba->sli4_hba.wq_ecount, cpu);
10408 
10409 	if (!qdesc) {
10410 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10411 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10412 				idx);
10413 		return 1;
10414 	}
10415 	qdesc->hdwq = idx;
10416 	qdesc->chann = cpu;
10417 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10418 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10419 	return 0;
10420 }
10421 
10422 /**
10423  * lpfc_sli4_queue_create - Create all the SLI4 queues
10424  * @phba: pointer to lpfc hba data structure.
10425  *
10426  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10427  * operation. For each SLI4 queue type, the parameters such as queue entry
10428  * count (queue depth) shall be taken from the module parameter. For now,
10429  * we just use some constant number as place holder.
10430  *
10431  * Return codes
10432  *      0 - successful
10433  *      -ENOMEM - No availble memory
10434  *      -EIO - The mailbox failed to complete successfully.
10435  **/
10436 int
10437 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10438 {
10439 	struct lpfc_queue *qdesc;
10440 	int idx, cpu, eqcpu;
10441 	struct lpfc_sli4_hdw_queue *qp;
10442 	struct lpfc_vector_map_info *cpup;
10443 	struct lpfc_vector_map_info *eqcpup;
10444 	struct lpfc_eq_intr_info *eqi;
10445 
10446 	/*
10447 	 * Create HBA Record arrays.
10448 	 * Both NVME and FCP will share that same vectors / EQs
10449 	 */
10450 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10451 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10452 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10453 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10454 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10455 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10456 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10457 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10458 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10459 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10460 
10461 	if (!phba->sli4_hba.hdwq) {
10462 		phba->sli4_hba.hdwq = kcalloc(
10463 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10464 			GFP_KERNEL);
10465 		if (!phba->sli4_hba.hdwq) {
10466 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10467 					"6427 Failed allocate memory for "
10468 					"fast-path Hardware Queue array\n");
10469 			goto out_error;
10470 		}
10471 		/* Prepare hardware queues to take IO buffers */
10472 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10473 			qp = &phba->sli4_hba.hdwq[idx];
10474 			spin_lock_init(&qp->io_buf_list_get_lock);
10475 			spin_lock_init(&qp->io_buf_list_put_lock);
10476 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10477 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10478 			qp->get_io_bufs = 0;
10479 			qp->put_io_bufs = 0;
10480 			qp->total_io_bufs = 0;
10481 			spin_lock_init(&qp->abts_io_buf_list_lock);
10482 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10483 			qp->abts_scsi_io_bufs = 0;
10484 			qp->abts_nvme_io_bufs = 0;
10485 			INIT_LIST_HEAD(&qp->sgl_list);
10486 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10487 			spin_lock_init(&qp->hdwq_lock);
10488 		}
10489 	}
10490 
10491 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10492 		if (phba->nvmet_support) {
10493 			phba->sli4_hba.nvmet_cqset = kcalloc(
10494 					phba->cfg_nvmet_mrq,
10495 					sizeof(struct lpfc_queue *),
10496 					GFP_KERNEL);
10497 			if (!phba->sli4_hba.nvmet_cqset) {
10498 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10499 					"3121 Fail allocate memory for "
10500 					"fast-path CQ set array\n");
10501 				goto out_error;
10502 			}
10503 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10504 					phba->cfg_nvmet_mrq,
10505 					sizeof(struct lpfc_queue *),
10506 					GFP_KERNEL);
10507 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10508 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10509 					"3122 Fail allocate memory for "
10510 					"fast-path RQ set hdr array\n");
10511 				goto out_error;
10512 			}
10513 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10514 					phba->cfg_nvmet_mrq,
10515 					sizeof(struct lpfc_queue *),
10516 					GFP_KERNEL);
10517 			if (!phba->sli4_hba.nvmet_mrq_data) {
10518 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10519 					"3124 Fail allocate memory for "
10520 					"fast-path RQ set data array\n");
10521 				goto out_error;
10522 			}
10523 		}
10524 	}
10525 
10526 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10527 
10528 	/* Create HBA Event Queues (EQs) */
10529 	for_each_present_cpu(cpu) {
10530 		/* We only want to create 1 EQ per vector, even though
10531 		 * multiple CPUs might be using that vector. so only
10532 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10533 		 */
10534 		cpup = &phba->sli4_hba.cpu_map[cpu];
10535 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10536 			continue;
10537 
10538 		/* Get a ptr to the Hardware Queue associated with this CPU */
10539 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10540 
10541 		/* Allocate an EQ */
10542 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10543 					      phba->sli4_hba.eq_esize,
10544 					      phba->sli4_hba.eq_ecount, cpu);
10545 		if (!qdesc) {
10546 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10547 					"0497 Failed allocate EQ (%d)\n",
10548 					cpup->hdwq);
10549 			goto out_error;
10550 		}
10551 		qdesc->qe_valid = 1;
10552 		qdesc->hdwq = cpup->hdwq;
10553 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10554 		qdesc->last_cpu = qdesc->chann;
10555 
10556 		/* Save the allocated EQ in the Hardware Queue */
10557 		qp->hba_eq = qdesc;
10558 
10559 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10560 		list_add(&qdesc->cpu_list, &eqi->list);
10561 	}
10562 
10563 	/* Now we need to populate the other Hardware Queues, that share
10564 	 * an IRQ vector, with the associated EQ ptr.
10565 	 */
10566 	for_each_present_cpu(cpu) {
10567 		cpup = &phba->sli4_hba.cpu_map[cpu];
10568 
10569 		/* Check for EQ already allocated in previous loop */
10570 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10571 			continue;
10572 
10573 		/* Check for multiple CPUs per hdwq */
10574 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10575 		if (qp->hba_eq)
10576 			continue;
10577 
10578 		/* We need to share an EQ for this hdwq */
10579 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10580 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10581 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10582 	}
10583 
10584 	/* Allocate IO Path SLI4 CQ/WQs */
10585 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10586 		if (lpfc_alloc_io_wq_cq(phba, idx))
10587 			goto out_error;
10588 	}
10589 
10590 	if (phba->nvmet_support) {
10591 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10592 			cpu = lpfc_find_cpu_handle(phba, idx,
10593 						   LPFC_FIND_BY_HDWQ);
10594 			qdesc = lpfc_sli4_queue_alloc(phba,
10595 						      LPFC_DEFAULT_PAGE_SIZE,
10596 						      phba->sli4_hba.cq_esize,
10597 						      phba->sli4_hba.cq_ecount,
10598 						      cpu);
10599 			if (!qdesc) {
10600 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10601 						"3142 Failed allocate NVME "
10602 						"CQ Set (%d)\n", idx);
10603 				goto out_error;
10604 			}
10605 			qdesc->qe_valid = 1;
10606 			qdesc->hdwq = idx;
10607 			qdesc->chann = cpu;
10608 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10609 		}
10610 	}
10611 
10612 	/*
10613 	 * Create Slow Path Completion Queues (CQs)
10614 	 */
10615 
10616 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10617 	/* Create slow-path Mailbox Command Complete Queue */
10618 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10619 				      phba->sli4_hba.cq_esize,
10620 				      phba->sli4_hba.cq_ecount, cpu);
10621 	if (!qdesc) {
10622 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10623 				"0500 Failed allocate slow-path mailbox CQ\n");
10624 		goto out_error;
10625 	}
10626 	qdesc->qe_valid = 1;
10627 	phba->sli4_hba.mbx_cq = qdesc;
10628 
10629 	/* Create slow-path ELS Complete Queue */
10630 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10631 				      phba->sli4_hba.cq_esize,
10632 				      phba->sli4_hba.cq_ecount, cpu);
10633 	if (!qdesc) {
10634 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10635 				"0501 Failed allocate slow-path ELS CQ\n");
10636 		goto out_error;
10637 	}
10638 	qdesc->qe_valid = 1;
10639 	qdesc->chann = cpu;
10640 	phba->sli4_hba.els_cq = qdesc;
10641 
10642 
10643 	/*
10644 	 * Create Slow Path Work Queues (WQs)
10645 	 */
10646 
10647 	/* Create Mailbox Command Queue */
10648 
10649 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10650 				      phba->sli4_hba.mq_esize,
10651 				      phba->sli4_hba.mq_ecount, cpu);
10652 	if (!qdesc) {
10653 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10654 				"0505 Failed allocate slow-path MQ\n");
10655 		goto out_error;
10656 	}
10657 	qdesc->chann = cpu;
10658 	phba->sli4_hba.mbx_wq = qdesc;
10659 
10660 	/*
10661 	 * Create ELS Work Queues
10662 	 */
10663 
10664 	/* Create slow-path ELS Work Queue */
10665 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10666 				      phba->sli4_hba.wq_esize,
10667 				      phba->sli4_hba.wq_ecount, cpu);
10668 	if (!qdesc) {
10669 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10670 				"0504 Failed allocate slow-path ELS WQ\n");
10671 		goto out_error;
10672 	}
10673 	qdesc->chann = cpu;
10674 	phba->sli4_hba.els_wq = qdesc;
10675 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10676 
10677 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10678 		/* Create NVME LS Complete Queue */
10679 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10680 					      phba->sli4_hba.cq_esize,
10681 					      phba->sli4_hba.cq_ecount, cpu);
10682 		if (!qdesc) {
10683 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10684 					"6079 Failed allocate NVME LS CQ\n");
10685 			goto out_error;
10686 		}
10687 		qdesc->chann = cpu;
10688 		qdesc->qe_valid = 1;
10689 		phba->sli4_hba.nvmels_cq = qdesc;
10690 
10691 		/* Create NVME LS Work Queue */
10692 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10693 					      phba->sli4_hba.wq_esize,
10694 					      phba->sli4_hba.wq_ecount, cpu);
10695 		if (!qdesc) {
10696 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10697 					"6080 Failed allocate NVME LS WQ\n");
10698 			goto out_error;
10699 		}
10700 		qdesc->chann = cpu;
10701 		phba->sli4_hba.nvmels_wq = qdesc;
10702 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10703 	}
10704 
10705 	/*
10706 	 * Create Receive Queue (RQ)
10707 	 */
10708 
10709 	/* Create Receive Queue for header */
10710 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10711 				      phba->sli4_hba.rq_esize,
10712 				      phba->sli4_hba.rq_ecount, cpu);
10713 	if (!qdesc) {
10714 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10715 				"0506 Failed allocate receive HRQ\n");
10716 		goto out_error;
10717 	}
10718 	phba->sli4_hba.hdr_rq = qdesc;
10719 
10720 	/* Create Receive Queue for data */
10721 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10722 				      phba->sli4_hba.rq_esize,
10723 				      phba->sli4_hba.rq_ecount, cpu);
10724 	if (!qdesc) {
10725 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10726 				"0507 Failed allocate receive DRQ\n");
10727 		goto out_error;
10728 	}
10729 	phba->sli4_hba.dat_rq = qdesc;
10730 
10731 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10732 	    phba->nvmet_support) {
10733 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10734 			cpu = lpfc_find_cpu_handle(phba, idx,
10735 						   LPFC_FIND_BY_HDWQ);
10736 			/* Create NVMET Receive Queue for header */
10737 			qdesc = lpfc_sli4_queue_alloc(phba,
10738 						      LPFC_DEFAULT_PAGE_SIZE,
10739 						      phba->sli4_hba.rq_esize,
10740 						      LPFC_NVMET_RQE_DEF_COUNT,
10741 						      cpu);
10742 			if (!qdesc) {
10743 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10744 						"3146 Failed allocate "
10745 						"receive HRQ\n");
10746 				goto out_error;
10747 			}
10748 			qdesc->hdwq = idx;
10749 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10750 
10751 			/* Only needed for header of RQ pair */
10752 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10753 						   GFP_KERNEL,
10754 						   cpu_to_node(cpu));
10755 			if (qdesc->rqbp == NULL) {
10756 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10757 						"6131 Failed allocate "
10758 						"Header RQBP\n");
10759 				goto out_error;
10760 			}
10761 
10762 			/* Put list in known state in case driver load fails. */
10763 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10764 
10765 			/* Create NVMET Receive Queue for data */
10766 			qdesc = lpfc_sli4_queue_alloc(phba,
10767 						      LPFC_DEFAULT_PAGE_SIZE,
10768 						      phba->sli4_hba.rq_esize,
10769 						      LPFC_NVMET_RQE_DEF_COUNT,
10770 						      cpu);
10771 			if (!qdesc) {
10772 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10773 						"3156 Failed allocate "
10774 						"receive DRQ\n");
10775 				goto out_error;
10776 			}
10777 			qdesc->hdwq = idx;
10778 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10779 		}
10780 	}
10781 
10782 	/* Clear NVME stats */
10783 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10784 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10785 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10786 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10787 		}
10788 	}
10789 
10790 	/* Clear SCSI stats */
10791 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10792 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10793 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10794 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10795 		}
10796 	}
10797 
10798 	return 0;
10799 
10800 out_error:
10801 	lpfc_sli4_queue_destroy(phba);
10802 	return -ENOMEM;
10803 }
10804 
10805 static inline void
10806 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10807 {
10808 	if (*qp != NULL) {
10809 		lpfc_sli4_queue_free(*qp);
10810 		*qp = NULL;
10811 	}
10812 }
10813 
10814 static inline void
10815 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10816 {
10817 	int idx;
10818 
10819 	if (*qs == NULL)
10820 		return;
10821 
10822 	for (idx = 0; idx < max; idx++)
10823 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10824 
10825 	kfree(*qs);
10826 	*qs = NULL;
10827 }
10828 
10829 static inline void
10830 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10831 {
10832 	struct lpfc_sli4_hdw_queue *hdwq;
10833 	struct lpfc_queue *eq;
10834 	uint32_t idx;
10835 
10836 	hdwq = phba->sli4_hba.hdwq;
10837 
10838 	/* Loop thru all Hardware Queues */
10839 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10840 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10841 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10842 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10843 		hdwq[idx].hba_eq = NULL;
10844 		hdwq[idx].io_cq = NULL;
10845 		hdwq[idx].io_wq = NULL;
10846 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10847 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10848 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10849 	}
10850 	/* Loop thru all IRQ vectors */
10851 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10852 		/* Free the EQ corresponding to the IRQ vector */
10853 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10854 		lpfc_sli4_queue_free(eq);
10855 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10856 	}
10857 }
10858 
10859 /**
10860  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10861  * @phba: pointer to lpfc hba data structure.
10862  *
10863  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10864  * operation.
10865  *
10866  * Return codes
10867  *      0 - successful
10868  *      -ENOMEM - No available memory
10869  *      -EIO - The mailbox failed to complete successfully.
10870  **/
10871 void
10872 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10873 {
10874 	/*
10875 	 * Set FREE_INIT before beginning to free the queues.
10876 	 * Wait until the users of queues to acknowledge to
10877 	 * release queues by clearing FREE_WAIT.
10878 	 */
10879 	spin_lock_irq(&phba->hbalock);
10880 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10881 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10882 		spin_unlock_irq(&phba->hbalock);
10883 		msleep(20);
10884 		spin_lock_irq(&phba->hbalock);
10885 	}
10886 	spin_unlock_irq(&phba->hbalock);
10887 
10888 	lpfc_sli4_cleanup_poll_list(phba);
10889 
10890 	/* Release HBA eqs */
10891 	if (phba->sli4_hba.hdwq)
10892 		lpfc_sli4_release_hdwq(phba);
10893 
10894 	if (phba->nvmet_support) {
10895 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10896 					 phba->cfg_nvmet_mrq);
10897 
10898 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10899 					 phba->cfg_nvmet_mrq);
10900 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10901 					 phba->cfg_nvmet_mrq);
10902 	}
10903 
10904 	/* Release mailbox command work queue */
10905 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10906 
10907 	/* Release ELS work queue */
10908 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10909 
10910 	/* Release ELS work queue */
10911 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10912 
10913 	/* Release unsolicited receive queue */
10914 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10915 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10916 
10917 	/* Release ELS complete queue */
10918 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10919 
10920 	/* Release NVME LS complete queue */
10921 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10922 
10923 	/* Release mailbox command complete queue */
10924 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10925 
10926 	/* Everything on this list has been freed */
10927 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10928 
10929 	/* Done with freeing the queues */
10930 	spin_lock_irq(&phba->hbalock);
10931 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10932 	spin_unlock_irq(&phba->hbalock);
10933 }
10934 
10935 int
10936 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10937 {
10938 	struct lpfc_rqb *rqbp;
10939 	struct lpfc_dmabuf *h_buf;
10940 	struct rqb_dmabuf *rqb_buffer;
10941 
10942 	rqbp = rq->rqbp;
10943 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10944 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10945 				 struct lpfc_dmabuf, list);
10946 
10947 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10948 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10949 		rqbp->buffer_count--;
10950 	}
10951 	return 1;
10952 }
10953 
10954 static int
10955 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10956 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10957 	int qidx, uint32_t qtype)
10958 {
10959 	struct lpfc_sli_ring *pring;
10960 	int rc;
10961 
10962 	if (!eq || !cq || !wq) {
10963 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10964 			"6085 Fast-path %s (%d) not allocated\n",
10965 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10966 		return -ENOMEM;
10967 	}
10968 
10969 	/* create the Cq first */
10970 	rc = lpfc_cq_create(phba, cq, eq,
10971 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10972 	if (rc) {
10973 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10974 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10975 				qidx, (uint32_t)rc);
10976 		return rc;
10977 	}
10978 
10979 	if (qtype != LPFC_MBOX) {
10980 		/* Setup cq_map for fast lookup */
10981 		if (cq_map)
10982 			*cq_map = cq->queue_id;
10983 
10984 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10985 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10986 			qidx, cq->queue_id, qidx, eq->queue_id);
10987 
10988 		/* create the wq */
10989 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10990 		if (rc) {
10991 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10992 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10993 				qidx, (uint32_t)rc);
10994 			/* no need to tear down cq - caller will do so */
10995 			return rc;
10996 		}
10997 
10998 		/* Bind this CQ/WQ to the NVME ring */
10999 		pring = wq->pring;
11000 		pring->sli.sli4.wqp = (void *)wq;
11001 		cq->pring = pring;
11002 
11003 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11004 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
11005 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
11006 	} else {
11007 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
11008 		if (rc) {
11009 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11010 					"0539 Failed setup of slow-path MQ: "
11011 					"rc = 0x%x\n", rc);
11012 			/* no need to tear down cq - caller will do so */
11013 			return rc;
11014 		}
11015 
11016 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11017 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
11018 			phba->sli4_hba.mbx_wq->queue_id,
11019 			phba->sli4_hba.mbx_cq->queue_id);
11020 	}
11021 
11022 	return 0;
11023 }
11024 
11025 /**
11026  * lpfc_setup_cq_lookup - Setup the CQ lookup table
11027  * @phba: pointer to lpfc hba data structure.
11028  *
11029  * This routine will populate the cq_lookup table by all
11030  * available CQ queue_id's.
11031  **/
11032 static void
11033 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
11034 {
11035 	struct lpfc_queue *eq, *childq;
11036 	int qidx;
11037 
11038 	memset(phba->sli4_hba.cq_lookup, 0,
11039 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
11040 	/* Loop thru all IRQ vectors */
11041 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11042 		/* Get the EQ corresponding to the IRQ vector */
11043 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11044 		if (!eq)
11045 			continue;
11046 		/* Loop through all CQs associated with that EQ */
11047 		list_for_each_entry(childq, &eq->child_list, list) {
11048 			if (childq->queue_id > phba->sli4_hba.cq_max)
11049 				continue;
11050 			if (childq->subtype == LPFC_IO)
11051 				phba->sli4_hba.cq_lookup[childq->queue_id] =
11052 					childq;
11053 		}
11054 	}
11055 }
11056 
11057 /**
11058  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
11059  * @phba: pointer to lpfc hba data structure.
11060  *
11061  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
11062  * operation.
11063  *
11064  * Return codes
11065  *      0 - successful
11066  *      -ENOMEM - No available memory
11067  *      -EIO - The mailbox failed to complete successfully.
11068  **/
11069 int
11070 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
11071 {
11072 	uint32_t shdr_status, shdr_add_status;
11073 	union lpfc_sli4_cfg_shdr *shdr;
11074 	struct lpfc_vector_map_info *cpup;
11075 	struct lpfc_sli4_hdw_queue *qp;
11076 	LPFC_MBOXQ_t *mboxq;
11077 	int qidx, cpu;
11078 	uint32_t length, usdelay;
11079 	int rc = -ENOMEM;
11080 
11081 	/* Check for dual-ULP support */
11082 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11083 	if (!mboxq) {
11084 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11085 				"3249 Unable to allocate memory for "
11086 				"QUERY_FW_CFG mailbox command\n");
11087 		return -ENOMEM;
11088 	}
11089 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
11090 		  sizeof(struct lpfc_sli4_cfg_mhdr));
11091 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11092 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
11093 			 length, LPFC_SLI4_MBX_EMBED);
11094 
11095 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11096 
11097 	shdr = (union lpfc_sli4_cfg_shdr *)
11098 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11099 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11100 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11101 	if (shdr_status || shdr_add_status || rc) {
11102 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11103 				"3250 QUERY_FW_CFG mailbox failed with status "
11104 				"x%x add_status x%x, mbx status x%x\n",
11105 				shdr_status, shdr_add_status, rc);
11106 		mempool_free(mboxq, phba->mbox_mem_pool);
11107 		rc = -ENXIO;
11108 		goto out_error;
11109 	}
11110 
11111 	phba->sli4_hba.fw_func_mode =
11112 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
11113 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
11114 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
11115 	phba->sli4_hba.physical_port =
11116 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
11117 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11118 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
11119 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
11120 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
11121 
11122 	mempool_free(mboxq, phba->mbox_mem_pool);
11123 
11124 	/*
11125 	 * Set up HBA Event Queues (EQs)
11126 	 */
11127 	qp = phba->sli4_hba.hdwq;
11128 
11129 	/* Set up HBA event queue */
11130 	if (!qp) {
11131 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11132 				"3147 Fast-path EQs not allocated\n");
11133 		rc = -ENOMEM;
11134 		goto out_error;
11135 	}
11136 
11137 	/* Loop thru all IRQ vectors */
11138 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11139 		/* Create HBA Event Queues (EQs) in order */
11140 		for_each_present_cpu(cpu) {
11141 			cpup = &phba->sli4_hba.cpu_map[cpu];
11142 
11143 			/* Look for the CPU thats using that vector with
11144 			 * LPFC_CPU_FIRST_IRQ set.
11145 			 */
11146 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
11147 				continue;
11148 			if (qidx != cpup->eq)
11149 				continue;
11150 
11151 			/* Create an EQ for that vector */
11152 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
11153 					    phba->cfg_fcp_imax);
11154 			if (rc) {
11155 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11156 						"0523 Failed setup of fast-path"
11157 						" EQ (%d), rc = 0x%x\n",
11158 						cpup->eq, (uint32_t)rc);
11159 				goto out_destroy;
11160 			}
11161 
11162 			/* Save the EQ for that vector in the hba_eq_hdl */
11163 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
11164 				qp[cpup->hdwq].hba_eq;
11165 
11166 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11167 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
11168 					cpup->eq,
11169 					qp[cpup->hdwq].hba_eq->queue_id);
11170 		}
11171 	}
11172 
11173 	/* Loop thru all Hardware Queues */
11174 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11175 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
11176 		cpup = &phba->sli4_hba.cpu_map[cpu];
11177 
11178 		/* Create the CQ/WQ corresponding to the Hardware Queue */
11179 		rc = lpfc_create_wq_cq(phba,
11180 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
11181 				       qp[qidx].io_cq,
11182 				       qp[qidx].io_wq,
11183 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
11184 				       qidx,
11185 				       LPFC_IO);
11186 		if (rc) {
11187 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11188 					"0535 Failed to setup fastpath "
11189 					"IO WQ/CQ (%d), rc = 0x%x\n",
11190 					qidx, (uint32_t)rc);
11191 			goto out_destroy;
11192 		}
11193 	}
11194 
11195 	/*
11196 	 * Set up Slow Path Complete Queues (CQs)
11197 	 */
11198 
11199 	/* Set up slow-path MBOX CQ/MQ */
11200 
11201 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
11202 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11203 				"0528 %s not allocated\n",
11204 				phba->sli4_hba.mbx_cq ?
11205 				"Mailbox WQ" : "Mailbox CQ");
11206 		rc = -ENOMEM;
11207 		goto out_destroy;
11208 	}
11209 
11210 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11211 			       phba->sli4_hba.mbx_cq,
11212 			       phba->sli4_hba.mbx_wq,
11213 			       NULL, 0, LPFC_MBOX);
11214 	if (rc) {
11215 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11216 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
11217 			(uint32_t)rc);
11218 		goto out_destroy;
11219 	}
11220 	if (phba->nvmet_support) {
11221 		if (!phba->sli4_hba.nvmet_cqset) {
11222 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11223 					"3165 Fast-path NVME CQ Set "
11224 					"array not allocated\n");
11225 			rc = -ENOMEM;
11226 			goto out_destroy;
11227 		}
11228 		if (phba->cfg_nvmet_mrq > 1) {
11229 			rc = lpfc_cq_create_set(phba,
11230 					phba->sli4_hba.nvmet_cqset,
11231 					qp,
11232 					LPFC_WCQ, LPFC_NVMET);
11233 			if (rc) {
11234 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11235 						"3164 Failed setup of NVME CQ "
11236 						"Set, rc = 0x%x\n",
11237 						(uint32_t)rc);
11238 				goto out_destroy;
11239 			}
11240 		} else {
11241 			/* Set up NVMET Receive Complete Queue */
11242 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11243 					    qp[0].hba_eq,
11244 					    LPFC_WCQ, LPFC_NVMET);
11245 			if (rc) {
11246 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11247 						"6089 Failed setup NVMET CQ: "
11248 						"rc = 0x%x\n", (uint32_t)rc);
11249 				goto out_destroy;
11250 			}
11251 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11252 
11253 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11254 					"6090 NVMET CQ setup: cq-id=%d, "
11255 					"parent eq-id=%d\n",
11256 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11257 					qp[0].hba_eq->queue_id);
11258 		}
11259 	}
11260 
11261 	/* Set up slow-path ELS WQ/CQ */
11262 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11263 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11264 				"0530 ELS %s not allocated\n",
11265 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11266 		rc = -ENOMEM;
11267 		goto out_destroy;
11268 	}
11269 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11270 			       phba->sli4_hba.els_cq,
11271 			       phba->sli4_hba.els_wq,
11272 			       NULL, 0, LPFC_ELS);
11273 	if (rc) {
11274 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11275 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11276 				(uint32_t)rc);
11277 		goto out_destroy;
11278 	}
11279 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11280 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11281 			phba->sli4_hba.els_wq->queue_id,
11282 			phba->sli4_hba.els_cq->queue_id);
11283 
11284 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11285 		/* Set up NVME LS Complete Queue */
11286 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11287 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11288 					"6091 LS %s not allocated\n",
11289 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11290 			rc = -ENOMEM;
11291 			goto out_destroy;
11292 		}
11293 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11294 				       phba->sli4_hba.nvmels_cq,
11295 				       phba->sli4_hba.nvmels_wq,
11296 				       NULL, 0, LPFC_NVME_LS);
11297 		if (rc) {
11298 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11299 					"0526 Failed setup of NVVME LS WQ/CQ: "
11300 					"rc = 0x%x\n", (uint32_t)rc);
11301 			goto out_destroy;
11302 		}
11303 
11304 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11305 				"6096 ELS WQ setup: wq-id=%d, "
11306 				"parent cq-id=%d\n",
11307 				phba->sli4_hba.nvmels_wq->queue_id,
11308 				phba->sli4_hba.nvmels_cq->queue_id);
11309 	}
11310 
11311 	/*
11312 	 * Create NVMET Receive Queue (RQ)
11313 	 */
11314 	if (phba->nvmet_support) {
11315 		if ((!phba->sli4_hba.nvmet_cqset) ||
11316 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11317 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11318 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11319 					"6130 MRQ CQ Queues not "
11320 					"allocated\n");
11321 			rc = -ENOMEM;
11322 			goto out_destroy;
11323 		}
11324 		if (phba->cfg_nvmet_mrq > 1) {
11325 			rc = lpfc_mrq_create(phba,
11326 					     phba->sli4_hba.nvmet_mrq_hdr,
11327 					     phba->sli4_hba.nvmet_mrq_data,
11328 					     phba->sli4_hba.nvmet_cqset,
11329 					     LPFC_NVMET);
11330 			if (rc) {
11331 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11332 						"6098 Failed setup of NVMET "
11333 						"MRQ: rc = 0x%x\n",
11334 						(uint32_t)rc);
11335 				goto out_destroy;
11336 			}
11337 
11338 		} else {
11339 			rc = lpfc_rq_create(phba,
11340 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11341 					    phba->sli4_hba.nvmet_mrq_data[0],
11342 					    phba->sli4_hba.nvmet_cqset[0],
11343 					    LPFC_NVMET);
11344 			if (rc) {
11345 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11346 						"6057 Failed setup of NVMET "
11347 						"Receive Queue: rc = 0x%x\n",
11348 						(uint32_t)rc);
11349 				goto out_destroy;
11350 			}
11351 
11352 			lpfc_printf_log(
11353 				phba, KERN_INFO, LOG_INIT,
11354 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11355 				"dat-rq-id=%d parent cq-id=%d\n",
11356 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11357 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11358 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11359 
11360 		}
11361 	}
11362 
11363 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11364 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11365 				"0540 Receive Queue not allocated\n");
11366 		rc = -ENOMEM;
11367 		goto out_destroy;
11368 	}
11369 
11370 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11371 			    phba->sli4_hba.els_cq, LPFC_USOL);
11372 	if (rc) {
11373 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11374 				"0541 Failed setup of Receive Queue: "
11375 				"rc = 0x%x\n", (uint32_t)rc);
11376 		goto out_destroy;
11377 	}
11378 
11379 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11380 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11381 			"parent cq-id=%d\n",
11382 			phba->sli4_hba.hdr_rq->queue_id,
11383 			phba->sli4_hba.dat_rq->queue_id,
11384 			phba->sli4_hba.els_cq->queue_id);
11385 
11386 	if (phba->cfg_fcp_imax)
11387 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11388 	else
11389 		usdelay = 0;
11390 
11391 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11392 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11393 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11394 					 usdelay);
11395 
11396 	if (phba->sli4_hba.cq_max) {
11397 		kfree(phba->sli4_hba.cq_lookup);
11398 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11399 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11400 		if (!phba->sli4_hba.cq_lookup) {
11401 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11402 					"0549 Failed setup of CQ Lookup table: "
11403 					"size 0x%x\n", phba->sli4_hba.cq_max);
11404 			rc = -ENOMEM;
11405 			goto out_destroy;
11406 		}
11407 		lpfc_setup_cq_lookup(phba);
11408 	}
11409 	return 0;
11410 
11411 out_destroy:
11412 	lpfc_sli4_queue_unset(phba);
11413 out_error:
11414 	return rc;
11415 }
11416 
11417 /**
11418  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11419  * @phba: pointer to lpfc hba data structure.
11420  *
11421  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11422  * operation.
11423  *
11424  * Return codes
11425  *      0 - successful
11426  *      -ENOMEM - No available memory
11427  *      -EIO - The mailbox failed to complete successfully.
11428  **/
11429 void
11430 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11431 {
11432 	struct lpfc_sli4_hdw_queue *qp;
11433 	struct lpfc_queue *eq;
11434 	int qidx;
11435 
11436 	/* Unset mailbox command work queue */
11437 	if (phba->sli4_hba.mbx_wq)
11438 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11439 
11440 	/* Unset NVME LS work queue */
11441 	if (phba->sli4_hba.nvmels_wq)
11442 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11443 
11444 	/* Unset ELS work queue */
11445 	if (phba->sli4_hba.els_wq)
11446 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11447 
11448 	/* Unset unsolicited receive queue */
11449 	if (phba->sli4_hba.hdr_rq)
11450 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11451 				phba->sli4_hba.dat_rq);
11452 
11453 	/* Unset mailbox command complete queue */
11454 	if (phba->sli4_hba.mbx_cq)
11455 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11456 
11457 	/* Unset ELS complete queue */
11458 	if (phba->sli4_hba.els_cq)
11459 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11460 
11461 	/* Unset NVME LS complete queue */
11462 	if (phba->sli4_hba.nvmels_cq)
11463 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11464 
11465 	if (phba->nvmet_support) {
11466 		/* Unset NVMET MRQ queue */
11467 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11468 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11469 				lpfc_rq_destroy(
11470 					phba,
11471 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11472 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11473 		}
11474 
11475 		/* Unset NVMET CQ Set complete queue */
11476 		if (phba->sli4_hba.nvmet_cqset) {
11477 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11478 				lpfc_cq_destroy(
11479 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11480 		}
11481 	}
11482 
11483 	/* Unset fast-path SLI4 queues */
11484 	if (phba->sli4_hba.hdwq) {
11485 		/* Loop thru all Hardware Queues */
11486 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11487 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11488 			qp = &phba->sli4_hba.hdwq[qidx];
11489 			lpfc_wq_destroy(phba, qp->io_wq);
11490 			lpfc_cq_destroy(phba, qp->io_cq);
11491 		}
11492 		/* Loop thru all IRQ vectors */
11493 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11494 			/* Destroy the EQ corresponding to the IRQ vector */
11495 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11496 			lpfc_eq_destroy(phba, eq);
11497 		}
11498 	}
11499 
11500 	kfree(phba->sli4_hba.cq_lookup);
11501 	phba->sli4_hba.cq_lookup = NULL;
11502 	phba->sli4_hba.cq_max = 0;
11503 }
11504 
11505 /**
11506  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11507  * @phba: pointer to lpfc hba data structure.
11508  *
11509  * This routine is invoked to allocate and set up a pool of completion queue
11510  * events. The body of the completion queue event is a completion queue entry
11511  * CQE. For now, this pool is used for the interrupt service routine to queue
11512  * the following HBA completion queue events for the worker thread to process:
11513  *   - Mailbox asynchronous events
11514  *   - Receive queue completion unsolicited events
11515  * Later, this can be used for all the slow-path events.
11516  *
11517  * Return codes
11518  *      0 - successful
11519  *      -ENOMEM - No available memory
11520  **/
11521 static int
11522 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11523 {
11524 	struct lpfc_cq_event *cq_event;
11525 	int i;
11526 
11527 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11528 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11529 		if (!cq_event)
11530 			goto out_pool_create_fail;
11531 		list_add_tail(&cq_event->list,
11532 			      &phba->sli4_hba.sp_cqe_event_pool);
11533 	}
11534 	return 0;
11535 
11536 out_pool_create_fail:
11537 	lpfc_sli4_cq_event_pool_destroy(phba);
11538 	return -ENOMEM;
11539 }
11540 
11541 /**
11542  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11543  * @phba: pointer to lpfc hba data structure.
11544  *
11545  * This routine is invoked to free the pool of completion queue events at
11546  * driver unload time. Note that, it is the responsibility of the driver
11547  * cleanup routine to free all the outstanding completion-queue events
11548  * allocated from this pool back into the pool before invoking this routine
11549  * to destroy the pool.
11550  **/
11551 static void
11552 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11553 {
11554 	struct lpfc_cq_event *cq_event, *next_cq_event;
11555 
11556 	list_for_each_entry_safe(cq_event, next_cq_event,
11557 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11558 		list_del(&cq_event->list);
11559 		kfree(cq_event);
11560 	}
11561 }
11562 
11563 /**
11564  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11565  * @phba: pointer to lpfc hba data structure.
11566  *
11567  * This routine is the lock free version of the API invoked to allocate a
11568  * completion-queue event from the free pool.
11569  *
11570  * Return: Pointer to the newly allocated completion-queue event if successful
11571  *         NULL otherwise.
11572  **/
11573 struct lpfc_cq_event *
11574 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11575 {
11576 	struct lpfc_cq_event *cq_event = NULL;
11577 
11578 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11579 			 struct lpfc_cq_event, list);
11580 	return cq_event;
11581 }
11582 
11583 /**
11584  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11585  * @phba: pointer to lpfc hba data structure.
11586  *
11587  * This routine is the lock version of the API invoked to allocate a
11588  * completion-queue event from the free pool.
11589  *
11590  * Return: Pointer to the newly allocated completion-queue event if successful
11591  *         NULL otherwise.
11592  **/
11593 struct lpfc_cq_event *
11594 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11595 {
11596 	struct lpfc_cq_event *cq_event;
11597 	unsigned long iflags;
11598 
11599 	spin_lock_irqsave(&phba->hbalock, iflags);
11600 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11601 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11602 	return cq_event;
11603 }
11604 
11605 /**
11606  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11607  * @phba: pointer to lpfc hba data structure.
11608  * @cq_event: pointer to the completion queue event to be freed.
11609  *
11610  * This routine is the lock free version of the API invoked to release a
11611  * completion-queue event back into the free pool.
11612  **/
11613 void
11614 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11615 			     struct lpfc_cq_event *cq_event)
11616 {
11617 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11618 }
11619 
11620 /**
11621  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11622  * @phba: pointer to lpfc hba data structure.
11623  * @cq_event: pointer to the completion queue event to be freed.
11624  *
11625  * This routine is the lock version of the API invoked to release a
11626  * completion-queue event back into the free pool.
11627  **/
11628 void
11629 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11630 			   struct lpfc_cq_event *cq_event)
11631 {
11632 	unsigned long iflags;
11633 	spin_lock_irqsave(&phba->hbalock, iflags);
11634 	__lpfc_sli4_cq_event_release(phba, cq_event);
11635 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11636 }
11637 
11638 /**
11639  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11640  * @phba: pointer to lpfc hba data structure.
11641  *
11642  * This routine is to free all the pending completion-queue events to the
11643  * back into the free pool for device reset.
11644  **/
11645 static void
11646 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11647 {
11648 	LIST_HEAD(cq_event_list);
11649 	struct lpfc_cq_event *cq_event;
11650 	unsigned long iflags;
11651 
11652 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11653 
11654 	/* Pending ELS XRI abort events */
11655 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11656 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11657 			 &cq_event_list);
11658 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11659 
11660 	/* Pending asynnc events */
11661 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11662 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11663 			 &cq_event_list);
11664 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11665 
11666 	while (!list_empty(&cq_event_list)) {
11667 		list_remove_head(&cq_event_list, cq_event,
11668 				 struct lpfc_cq_event, list);
11669 		lpfc_sli4_cq_event_release(phba, cq_event);
11670 	}
11671 }
11672 
11673 /**
11674  * lpfc_pci_function_reset - Reset pci function.
11675  * @phba: pointer to lpfc hba data structure.
11676  *
11677  * This routine is invoked to request a PCI function reset. It will destroys
11678  * all resources assigned to the PCI function which originates this request.
11679  *
11680  * Return codes
11681  *      0 - successful
11682  *      -ENOMEM - No available memory
11683  *      -EIO - The mailbox failed to complete successfully.
11684  **/
11685 int
11686 lpfc_pci_function_reset(struct lpfc_hba *phba)
11687 {
11688 	LPFC_MBOXQ_t *mboxq;
11689 	uint32_t rc = 0, if_type;
11690 	uint32_t shdr_status, shdr_add_status;
11691 	uint32_t rdy_chk;
11692 	uint32_t port_reset = 0;
11693 	union lpfc_sli4_cfg_shdr *shdr;
11694 	struct lpfc_register reg_data;
11695 	uint16_t devid;
11696 
11697 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11698 	switch (if_type) {
11699 	case LPFC_SLI_INTF_IF_TYPE_0:
11700 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11701 						       GFP_KERNEL);
11702 		if (!mboxq) {
11703 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11704 					"0494 Unable to allocate memory for "
11705 					"issuing SLI_FUNCTION_RESET mailbox "
11706 					"command\n");
11707 			return -ENOMEM;
11708 		}
11709 
11710 		/* Setup PCI function reset mailbox-ioctl command */
11711 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11712 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11713 				 LPFC_SLI4_MBX_EMBED);
11714 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11715 		shdr = (union lpfc_sli4_cfg_shdr *)
11716 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11717 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11718 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11719 					 &shdr->response);
11720 		mempool_free(mboxq, phba->mbox_mem_pool);
11721 		if (shdr_status || shdr_add_status || rc) {
11722 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11723 					"0495 SLI_FUNCTION_RESET mailbox "
11724 					"failed with status x%x add_status x%x,"
11725 					" mbx status x%x\n",
11726 					shdr_status, shdr_add_status, rc);
11727 			rc = -ENXIO;
11728 		}
11729 		break;
11730 	case LPFC_SLI_INTF_IF_TYPE_2:
11731 	case LPFC_SLI_INTF_IF_TYPE_6:
11732 wait:
11733 		/*
11734 		 * Poll the Port Status Register and wait for RDY for
11735 		 * up to 30 seconds. If the port doesn't respond, treat
11736 		 * it as an error.
11737 		 */
11738 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11739 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11740 				STATUSregaddr, &reg_data.word0)) {
11741 				rc = -ENODEV;
11742 				goto out;
11743 			}
11744 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11745 				break;
11746 			msleep(20);
11747 		}
11748 
11749 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11750 			phba->work_status[0] = readl(
11751 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11752 			phba->work_status[1] = readl(
11753 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11754 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11755 					"2890 Port not ready, port status reg "
11756 					"0x%x error 1=0x%x, error 2=0x%x\n",
11757 					reg_data.word0,
11758 					phba->work_status[0],
11759 					phba->work_status[1]);
11760 			rc = -ENODEV;
11761 			goto out;
11762 		}
11763 
11764 		if (bf_get(lpfc_sliport_status_pldv, &reg_data))
11765 			lpfc_pldv_detect = true;
11766 
11767 		if (!port_reset) {
11768 			/*
11769 			 * Reset the port now
11770 			 */
11771 			reg_data.word0 = 0;
11772 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11773 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11774 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11775 			       LPFC_SLIPORT_INIT_PORT);
11776 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11777 			       CTRLregaddr);
11778 			/* flush */
11779 			pci_read_config_word(phba->pcidev,
11780 					     PCI_DEVICE_ID, &devid);
11781 
11782 			port_reset = 1;
11783 			msleep(20);
11784 			goto wait;
11785 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11786 			rc = -ENODEV;
11787 			goto out;
11788 		}
11789 		break;
11790 
11791 	case LPFC_SLI_INTF_IF_TYPE_1:
11792 	default:
11793 		break;
11794 	}
11795 
11796 out:
11797 	/* Catch the not-ready port failure after a port reset. */
11798 	if (rc) {
11799 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11800 				"3317 HBA not functional: IP Reset Failed "
11801 				"try: echo fw_reset > board_mode\n");
11802 		rc = -ENODEV;
11803 	}
11804 
11805 	return rc;
11806 }
11807 
11808 /**
11809  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11810  * @phba: pointer to lpfc hba data structure.
11811  *
11812  * This routine is invoked to set up the PCI device memory space for device
11813  * with SLI-4 interface spec.
11814  *
11815  * Return codes
11816  * 	0 - successful
11817  * 	other values - error
11818  **/
11819 static int
11820 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11821 {
11822 	struct pci_dev *pdev = phba->pcidev;
11823 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11824 	int error;
11825 	uint32_t if_type;
11826 
11827 	if (!pdev)
11828 		return -ENODEV;
11829 
11830 	/* Set the device DMA mask size */
11831 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11832 	if (error)
11833 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11834 	if (error)
11835 		return error;
11836 
11837 	/*
11838 	 * The BARs and register set definitions and offset locations are
11839 	 * dependent on the if_type.
11840 	 */
11841 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11842 				  &phba->sli4_hba.sli_intf.word0)) {
11843 		return -ENODEV;
11844 	}
11845 
11846 	/* There is no SLI3 failback for SLI4 devices. */
11847 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11848 	    LPFC_SLI_INTF_VALID) {
11849 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11850 				"2894 SLI_INTF reg contents invalid "
11851 				"sli_intf reg 0x%x\n",
11852 				phba->sli4_hba.sli_intf.word0);
11853 		return -ENODEV;
11854 	}
11855 
11856 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11857 	/*
11858 	 * Get the bus address of SLI4 device Bar regions and the
11859 	 * number of bytes required by each mapping. The mapping of the
11860 	 * particular PCI BARs regions is dependent on the type of
11861 	 * SLI4 device.
11862 	 */
11863 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11864 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11865 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11866 
11867 		/*
11868 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11869 		 * addr
11870 		 */
11871 		phba->sli4_hba.conf_regs_memmap_p =
11872 			ioremap(phba->pci_bar0_map, bar0map_len);
11873 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11874 			dev_printk(KERN_ERR, &pdev->dev,
11875 				   "ioremap failed for SLI4 PCI config "
11876 				   "registers.\n");
11877 			return -ENODEV;
11878 		}
11879 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11880 		/* Set up BAR0 PCI config space register memory map */
11881 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11882 	} else {
11883 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11884 		bar0map_len = pci_resource_len(pdev, 1);
11885 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11886 			dev_printk(KERN_ERR, &pdev->dev,
11887 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11888 			return -ENODEV;
11889 		}
11890 		phba->sli4_hba.conf_regs_memmap_p =
11891 				ioremap(phba->pci_bar0_map, bar0map_len);
11892 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11893 			dev_printk(KERN_ERR, &pdev->dev,
11894 				"ioremap failed for SLI4 PCI config "
11895 				"registers.\n");
11896 			return -ENODEV;
11897 		}
11898 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11899 	}
11900 
11901 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11902 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11903 			/*
11904 			 * Map SLI4 if type 0 HBA Control Register base to a
11905 			 * kernel virtual address and setup the registers.
11906 			 */
11907 			phba->pci_bar1_map = pci_resource_start(pdev,
11908 								PCI_64BIT_BAR2);
11909 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11910 			phba->sli4_hba.ctrl_regs_memmap_p =
11911 					ioremap(phba->pci_bar1_map,
11912 						bar1map_len);
11913 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11914 				dev_err(&pdev->dev,
11915 					   "ioremap failed for SLI4 HBA "
11916 					    "control registers.\n");
11917 				error = -ENOMEM;
11918 				goto out_iounmap_conf;
11919 			}
11920 			phba->pci_bar2_memmap_p =
11921 					 phba->sli4_hba.ctrl_regs_memmap_p;
11922 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11923 		} else {
11924 			error = -ENOMEM;
11925 			goto out_iounmap_conf;
11926 		}
11927 	}
11928 
11929 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11930 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11931 		/*
11932 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11933 		 * virtual address and setup the registers.
11934 		 */
11935 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11936 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11937 		phba->sli4_hba.drbl_regs_memmap_p =
11938 				ioremap(phba->pci_bar1_map, bar1map_len);
11939 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11940 			dev_err(&pdev->dev,
11941 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11942 			error = -ENOMEM;
11943 			goto out_iounmap_conf;
11944 		}
11945 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11946 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11947 	}
11948 
11949 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11950 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11951 			/*
11952 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11953 			 * a kernel virtual address and setup the registers.
11954 			 */
11955 			phba->pci_bar2_map = pci_resource_start(pdev,
11956 								PCI_64BIT_BAR4);
11957 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11958 			phba->sli4_hba.drbl_regs_memmap_p =
11959 					ioremap(phba->pci_bar2_map,
11960 						bar2map_len);
11961 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11962 				dev_err(&pdev->dev,
11963 					   "ioremap failed for SLI4 HBA"
11964 					   " doorbell registers.\n");
11965 				error = -ENOMEM;
11966 				goto out_iounmap_ctrl;
11967 			}
11968 			phba->pci_bar4_memmap_p =
11969 					phba->sli4_hba.drbl_regs_memmap_p;
11970 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11971 			if (error)
11972 				goto out_iounmap_all;
11973 		} else {
11974 			error = -ENOMEM;
11975 			goto out_iounmap_ctrl;
11976 		}
11977 	}
11978 
11979 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11980 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11981 		/*
11982 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11983 		 * virtual address and setup the registers.
11984 		 */
11985 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11986 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11987 		phba->sli4_hba.dpp_regs_memmap_p =
11988 				ioremap(phba->pci_bar2_map, bar2map_len);
11989 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11990 			dev_err(&pdev->dev,
11991 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11992 			error = -ENOMEM;
11993 			goto out_iounmap_all;
11994 		}
11995 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11996 	}
11997 
11998 	/* Set up the EQ/CQ register handeling functions now */
11999 	switch (if_type) {
12000 	case LPFC_SLI_INTF_IF_TYPE_0:
12001 	case LPFC_SLI_INTF_IF_TYPE_2:
12002 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
12003 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
12004 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
12005 		break;
12006 	case LPFC_SLI_INTF_IF_TYPE_6:
12007 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
12008 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
12009 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
12010 		break;
12011 	default:
12012 		break;
12013 	}
12014 
12015 	return 0;
12016 
12017 out_iounmap_all:
12018 	if (phba->sli4_hba.drbl_regs_memmap_p)
12019 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12020 out_iounmap_ctrl:
12021 	if (phba->sli4_hba.ctrl_regs_memmap_p)
12022 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12023 out_iounmap_conf:
12024 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
12025 
12026 	return error;
12027 }
12028 
12029 /**
12030  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
12031  * @phba: pointer to lpfc hba data structure.
12032  *
12033  * This routine is invoked to unset the PCI device memory space for device
12034  * with SLI-4 interface spec.
12035  **/
12036 static void
12037 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
12038 {
12039 	uint32_t if_type;
12040 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12041 
12042 	switch (if_type) {
12043 	case LPFC_SLI_INTF_IF_TYPE_0:
12044 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12045 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
12046 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12047 		break;
12048 	case LPFC_SLI_INTF_IF_TYPE_2:
12049 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12050 		break;
12051 	case LPFC_SLI_INTF_IF_TYPE_6:
12052 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
12053 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
12054 		if (phba->sli4_hba.dpp_regs_memmap_p)
12055 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
12056 		break;
12057 	case LPFC_SLI_INTF_IF_TYPE_1:
12058 		break;
12059 	default:
12060 		dev_printk(KERN_ERR, &phba->pcidev->dev,
12061 			   "FATAL - unsupported SLI4 interface type - %d\n",
12062 			   if_type);
12063 		break;
12064 	}
12065 }
12066 
12067 /**
12068  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
12069  * @phba: pointer to lpfc hba data structure.
12070  *
12071  * This routine is invoked to enable the MSI-X interrupt vectors to device
12072  * with SLI-3 interface specs.
12073  *
12074  * Return codes
12075  *   0 - successful
12076  *   other values - error
12077  **/
12078 static int
12079 lpfc_sli_enable_msix(struct lpfc_hba *phba)
12080 {
12081 	int rc;
12082 	LPFC_MBOXQ_t *pmb;
12083 
12084 	/* Set up MSI-X multi-message vectors */
12085 	rc = pci_alloc_irq_vectors(phba->pcidev,
12086 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
12087 	if (rc < 0) {
12088 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12089 				"0420 PCI enable MSI-X failed (%d)\n", rc);
12090 		goto vec_fail_out;
12091 	}
12092 
12093 	/*
12094 	 * Assign MSI-X vectors to interrupt handlers
12095 	 */
12096 
12097 	/* vector-0 is associated to slow-path handler */
12098 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
12099 			 &lpfc_sli_sp_intr_handler, 0,
12100 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
12101 	if (rc) {
12102 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12103 				"0421 MSI-X slow-path request_irq failed "
12104 				"(%d)\n", rc);
12105 		goto msi_fail_out;
12106 	}
12107 
12108 	/* vector-1 is associated to fast-path handler */
12109 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
12110 			 &lpfc_sli_fp_intr_handler, 0,
12111 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
12112 
12113 	if (rc) {
12114 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12115 				"0429 MSI-X fast-path request_irq failed "
12116 				"(%d)\n", rc);
12117 		goto irq_fail_out;
12118 	}
12119 
12120 	/*
12121 	 * Configure HBA MSI-X attention conditions to messages
12122 	 */
12123 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12124 
12125 	if (!pmb) {
12126 		rc = -ENOMEM;
12127 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12128 				"0474 Unable to allocate memory for issuing "
12129 				"MBOX_CONFIG_MSI command\n");
12130 		goto mem_fail_out;
12131 	}
12132 	rc = lpfc_config_msi(phba, pmb);
12133 	if (rc)
12134 		goto mbx_fail_out;
12135 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
12136 	if (rc != MBX_SUCCESS) {
12137 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
12138 				"0351 Config MSI mailbox command failed, "
12139 				"mbxCmd x%x, mbxStatus x%x\n",
12140 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
12141 		goto mbx_fail_out;
12142 	}
12143 
12144 	/* Free memory allocated for mailbox command */
12145 	mempool_free(pmb, phba->mbox_mem_pool);
12146 	return rc;
12147 
12148 mbx_fail_out:
12149 	/* Free memory allocated for mailbox command */
12150 	mempool_free(pmb, phba->mbox_mem_pool);
12151 
12152 mem_fail_out:
12153 	/* free the irq already requested */
12154 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
12155 
12156 irq_fail_out:
12157 	/* free the irq already requested */
12158 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
12159 
12160 msi_fail_out:
12161 	/* Unconfigure MSI-X capability structure */
12162 	pci_free_irq_vectors(phba->pcidev);
12163 
12164 vec_fail_out:
12165 	return rc;
12166 }
12167 
12168 /**
12169  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
12170  * @phba: pointer to lpfc hba data structure.
12171  *
12172  * This routine is invoked to enable the MSI interrupt mode to device with
12173  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
12174  * enable the MSI vector. The device driver is responsible for calling the
12175  * request_irq() to register MSI vector with a interrupt the handler, which
12176  * is done in this function.
12177  *
12178  * Return codes
12179  * 	0 - successful
12180  * 	other values - error
12181  */
12182 static int
12183 lpfc_sli_enable_msi(struct lpfc_hba *phba)
12184 {
12185 	int rc;
12186 
12187 	rc = pci_enable_msi(phba->pcidev);
12188 	if (!rc)
12189 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12190 				"0012 PCI enable MSI mode success.\n");
12191 	else {
12192 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12193 				"0471 PCI enable MSI mode failed (%d)\n", rc);
12194 		return rc;
12195 	}
12196 
12197 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12198 			 0, LPFC_DRIVER_NAME, phba);
12199 	if (rc) {
12200 		pci_disable_msi(phba->pcidev);
12201 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12202 				"0478 MSI request_irq failed (%d)\n", rc);
12203 	}
12204 	return rc;
12205 }
12206 
12207 /**
12208  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
12209  * @phba: pointer to lpfc hba data structure.
12210  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12211  *
12212  * This routine is invoked to enable device interrupt and associate driver's
12213  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
12214  * spec. Depends on the interrupt mode configured to the driver, the driver
12215  * will try to fallback from the configured interrupt mode to an interrupt
12216  * mode which is supported by the platform, kernel, and device in the order
12217  * of:
12218  * MSI-X -> MSI -> IRQ.
12219  *
12220  * Return codes
12221  *   0 - successful
12222  *   other values - error
12223  **/
12224 static uint32_t
12225 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12226 {
12227 	uint32_t intr_mode = LPFC_INTR_ERROR;
12228 	int retval;
12229 
12230 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
12231 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
12232 	if (retval)
12233 		return intr_mode;
12234 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12235 
12236 	if (cfg_mode == 2) {
12237 		/* Now, try to enable MSI-X interrupt mode */
12238 		retval = lpfc_sli_enable_msix(phba);
12239 		if (!retval) {
12240 			/* Indicate initialization to MSI-X mode */
12241 			phba->intr_type = MSIX;
12242 			intr_mode = 2;
12243 		}
12244 	}
12245 
12246 	/* Fallback to MSI if MSI-X initialization failed */
12247 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12248 		retval = lpfc_sli_enable_msi(phba);
12249 		if (!retval) {
12250 			/* Indicate initialization to MSI mode */
12251 			phba->intr_type = MSI;
12252 			intr_mode = 1;
12253 		}
12254 	}
12255 
12256 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12257 	if (phba->intr_type == NONE) {
12258 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12259 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12260 		if (!retval) {
12261 			/* Indicate initialization to INTx mode */
12262 			phba->intr_type = INTx;
12263 			intr_mode = 0;
12264 		}
12265 	}
12266 	return intr_mode;
12267 }
12268 
12269 /**
12270  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12271  * @phba: pointer to lpfc hba data structure.
12272  *
12273  * This routine is invoked to disable device interrupt and disassociate the
12274  * driver's interrupt handler(s) from interrupt vector(s) to device with
12275  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12276  * release the interrupt vector(s) for the message signaled interrupt.
12277  **/
12278 static void
12279 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12280 {
12281 	int nr_irqs, i;
12282 
12283 	if (phba->intr_type == MSIX)
12284 		nr_irqs = LPFC_MSIX_VECTORS;
12285 	else
12286 		nr_irqs = 1;
12287 
12288 	for (i = 0; i < nr_irqs; i++)
12289 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12290 	pci_free_irq_vectors(phba->pcidev);
12291 
12292 	/* Reset interrupt management states */
12293 	phba->intr_type = NONE;
12294 	phba->sli.slistat.sli_intr = 0;
12295 }
12296 
12297 /**
12298  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12299  * @phba: pointer to lpfc hba data structure.
12300  * @id: EQ vector index or Hardware Queue index
12301  * @match: LPFC_FIND_BY_EQ = match by EQ
12302  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12303  * Return the CPU that matches the selection criteria
12304  */
12305 static uint16_t
12306 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12307 {
12308 	struct lpfc_vector_map_info *cpup;
12309 	int cpu;
12310 
12311 	/* Loop through all CPUs */
12312 	for_each_present_cpu(cpu) {
12313 		cpup = &phba->sli4_hba.cpu_map[cpu];
12314 
12315 		/* If we are matching by EQ, there may be multiple CPUs using
12316 		 * using the same vector, so select the one with
12317 		 * LPFC_CPU_FIRST_IRQ set.
12318 		 */
12319 		if ((match == LPFC_FIND_BY_EQ) &&
12320 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12321 		    (cpup->eq == id))
12322 			return cpu;
12323 
12324 		/* If matching by HDWQ, select the first CPU that matches */
12325 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12326 			return cpu;
12327 	}
12328 	return 0;
12329 }
12330 
12331 #ifdef CONFIG_X86
12332 /**
12333  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12334  * @phba: pointer to lpfc hba data structure.
12335  * @cpu: CPU map index
12336  * @phys_id: CPU package physical id
12337  * @core_id: CPU core id
12338  */
12339 static int
12340 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12341 		uint16_t phys_id, uint16_t core_id)
12342 {
12343 	struct lpfc_vector_map_info *cpup;
12344 	int idx;
12345 
12346 	for_each_present_cpu(idx) {
12347 		cpup = &phba->sli4_hba.cpu_map[idx];
12348 		/* Does the cpup match the one we are looking for */
12349 		if ((cpup->phys_id == phys_id) &&
12350 		    (cpup->core_id == core_id) &&
12351 		    (cpu != idx))
12352 			return 1;
12353 	}
12354 	return 0;
12355 }
12356 #endif
12357 
12358 /*
12359  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12360  * @phba: pointer to lpfc hba data structure.
12361  * @eqidx: index for eq and irq vector
12362  * @flag: flags to set for vector_map structure
12363  * @cpu: cpu used to index vector_map structure
12364  *
12365  * The routine assigns eq info into vector_map structure
12366  */
12367 static inline void
12368 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12369 			unsigned int cpu)
12370 {
12371 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12372 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12373 
12374 	cpup->eq = eqidx;
12375 	cpup->flag |= flag;
12376 
12377 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12378 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12379 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12380 }
12381 
12382 /**
12383  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12384  * @phba: pointer to lpfc hba data structure.
12385  *
12386  * The routine initializes the cpu_map array structure
12387  */
12388 static void
12389 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12390 {
12391 	struct lpfc_vector_map_info *cpup;
12392 	struct lpfc_eq_intr_info *eqi;
12393 	int cpu;
12394 
12395 	for_each_possible_cpu(cpu) {
12396 		cpup = &phba->sli4_hba.cpu_map[cpu];
12397 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12398 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12399 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12400 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12401 		cpup->flag = 0;
12402 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12403 		INIT_LIST_HEAD(&eqi->list);
12404 		eqi->icnt = 0;
12405 	}
12406 }
12407 
12408 /**
12409  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12410  * @phba: pointer to lpfc hba data structure.
12411  *
12412  * The routine initializes the hba_eq_hdl array structure
12413  */
12414 static void
12415 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12416 {
12417 	struct lpfc_hba_eq_hdl *eqhdl;
12418 	int i;
12419 
12420 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12421 		eqhdl = lpfc_get_eq_hdl(i);
12422 		eqhdl->irq = LPFC_IRQ_EMPTY;
12423 		eqhdl->phba = phba;
12424 	}
12425 }
12426 
12427 /**
12428  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12429  * @phba: pointer to lpfc hba data structure.
12430  * @vectors: number of msix vectors allocated.
12431  *
12432  * The routine will figure out the CPU affinity assignment for every
12433  * MSI-X vector allocated for the HBA.
12434  * In addition, the CPU to IO channel mapping will be calculated
12435  * and the phba->sli4_hba.cpu_map array will reflect this.
12436  */
12437 static void
12438 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12439 {
12440 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12441 	int max_phys_id, min_phys_id;
12442 	int max_core_id, min_core_id;
12443 	struct lpfc_vector_map_info *cpup;
12444 	struct lpfc_vector_map_info *new_cpup;
12445 #ifdef CONFIG_X86
12446 	struct cpuinfo_x86 *cpuinfo;
12447 #endif
12448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12449 	struct lpfc_hdwq_stat *c_stat;
12450 #endif
12451 
12452 	max_phys_id = 0;
12453 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12454 	max_core_id = 0;
12455 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12456 
12457 	/* Update CPU map with physical id and core id of each CPU */
12458 	for_each_present_cpu(cpu) {
12459 		cpup = &phba->sli4_hba.cpu_map[cpu];
12460 #ifdef CONFIG_X86
12461 		cpuinfo = &cpu_data(cpu);
12462 		cpup->phys_id = cpuinfo->phys_proc_id;
12463 		cpup->core_id = cpuinfo->cpu_core_id;
12464 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12465 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12466 #else
12467 		/* No distinction between CPUs for other platforms */
12468 		cpup->phys_id = 0;
12469 		cpup->core_id = cpu;
12470 #endif
12471 
12472 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12473 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12474 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12475 
12476 		if (cpup->phys_id > max_phys_id)
12477 			max_phys_id = cpup->phys_id;
12478 		if (cpup->phys_id < min_phys_id)
12479 			min_phys_id = cpup->phys_id;
12480 
12481 		if (cpup->core_id > max_core_id)
12482 			max_core_id = cpup->core_id;
12483 		if (cpup->core_id < min_core_id)
12484 			min_core_id = cpup->core_id;
12485 	}
12486 
12487 	/* After looking at each irq vector assigned to this pcidev, its
12488 	 * possible to see that not ALL CPUs have been accounted for.
12489 	 * Next we will set any unassigned (unaffinitized) cpu map
12490 	 * entries to a IRQ on the same phys_id.
12491 	 */
12492 	first_cpu = cpumask_first(cpu_present_mask);
12493 	start_cpu = first_cpu;
12494 
12495 	for_each_present_cpu(cpu) {
12496 		cpup = &phba->sli4_hba.cpu_map[cpu];
12497 
12498 		/* Is this CPU entry unassigned */
12499 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12500 			/* Mark CPU as IRQ not assigned by the kernel */
12501 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12502 
12503 			/* If so, find a new_cpup that is on the SAME
12504 			 * phys_id as cpup. start_cpu will start where we
12505 			 * left off so all unassigned entries don't get assgined
12506 			 * the IRQ of the first entry.
12507 			 */
12508 			new_cpu = start_cpu;
12509 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12510 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12511 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12512 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12513 				    (new_cpup->phys_id == cpup->phys_id))
12514 					goto found_same;
12515 				new_cpu = lpfc_next_present_cpu(new_cpu);
12516 			}
12517 			/* At this point, we leave the CPU as unassigned */
12518 			continue;
12519 found_same:
12520 			/* We found a matching phys_id, so copy the IRQ info */
12521 			cpup->eq = new_cpup->eq;
12522 
12523 			/* Bump start_cpu to the next slot to minmize the
12524 			 * chance of having multiple unassigned CPU entries
12525 			 * selecting the same IRQ.
12526 			 */
12527 			start_cpu = lpfc_next_present_cpu(new_cpu);
12528 
12529 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12530 					"3337 Set Affinity: CPU %d "
12531 					"eq %d from peer cpu %d same "
12532 					"phys_id (%d)\n",
12533 					cpu, cpup->eq, new_cpu,
12534 					cpup->phys_id);
12535 		}
12536 	}
12537 
12538 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12539 	start_cpu = first_cpu;
12540 
12541 	for_each_present_cpu(cpu) {
12542 		cpup = &phba->sli4_hba.cpu_map[cpu];
12543 
12544 		/* Is this entry unassigned */
12545 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12546 			/* Mark it as IRQ not assigned by the kernel */
12547 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12548 
12549 			/* If so, find a new_cpup thats on ANY phys_id
12550 			 * as the cpup. start_cpu will start where we
12551 			 * left off so all unassigned entries don't get
12552 			 * assigned the IRQ of the first entry.
12553 			 */
12554 			new_cpu = start_cpu;
12555 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12556 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12557 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12558 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12559 					goto found_any;
12560 				new_cpu = lpfc_next_present_cpu(new_cpu);
12561 			}
12562 			/* We should never leave an entry unassigned */
12563 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12564 					"3339 Set Affinity: CPU %d "
12565 					"eq %d UNASSIGNED\n",
12566 					cpup->hdwq, cpup->eq);
12567 			continue;
12568 found_any:
12569 			/* We found an available entry, copy the IRQ info */
12570 			cpup->eq = new_cpup->eq;
12571 
12572 			/* Bump start_cpu to the next slot to minmize the
12573 			 * chance of having multiple unassigned CPU entries
12574 			 * selecting the same IRQ.
12575 			 */
12576 			start_cpu = lpfc_next_present_cpu(new_cpu);
12577 
12578 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12579 					"3338 Set Affinity: CPU %d "
12580 					"eq %d from peer cpu %d (%d/%d)\n",
12581 					cpu, cpup->eq, new_cpu,
12582 					new_cpup->phys_id, new_cpup->core_id);
12583 		}
12584 	}
12585 
12586 	/* Assign hdwq indices that are unique across all cpus in the map
12587 	 * that are also FIRST_CPUs.
12588 	 */
12589 	idx = 0;
12590 	for_each_present_cpu(cpu) {
12591 		cpup = &phba->sli4_hba.cpu_map[cpu];
12592 
12593 		/* Only FIRST IRQs get a hdwq index assignment. */
12594 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12595 			continue;
12596 
12597 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12598 		cpup->hdwq = idx;
12599 		idx++;
12600 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12601 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12602 				"hdwq %d eq %d flg x%x\n",
12603 				cpu, cpup->phys_id, cpup->core_id,
12604 				cpup->hdwq, cpup->eq, cpup->flag);
12605 	}
12606 	/* Associate a hdwq with each cpu_map entry
12607 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12608 	 * hardware queues then CPUs. For that case we will just round-robin
12609 	 * the available hardware queues as they get assigned to CPUs.
12610 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12611 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12612 	 * and needs to start at 0.
12613 	 */
12614 	next_idx = idx;
12615 	start_cpu = 0;
12616 	idx = 0;
12617 	for_each_present_cpu(cpu) {
12618 		cpup = &phba->sli4_hba.cpu_map[cpu];
12619 
12620 		/* FIRST cpus are already mapped. */
12621 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12622 			continue;
12623 
12624 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12625 		 * of the unassigned cpus to the next idx so that all
12626 		 * hdw queues are fully utilized.
12627 		 */
12628 		if (next_idx < phba->cfg_hdw_queue) {
12629 			cpup->hdwq = next_idx;
12630 			next_idx++;
12631 			continue;
12632 		}
12633 
12634 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12635 		 * Hardware Queue for another CPU, so be smart about it
12636 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12637 		 * (CPU package) and core_id.
12638 		 */
12639 		new_cpu = start_cpu;
12640 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12641 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12642 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12643 			    new_cpup->phys_id == cpup->phys_id &&
12644 			    new_cpup->core_id == cpup->core_id) {
12645 				goto found_hdwq;
12646 			}
12647 			new_cpu = lpfc_next_present_cpu(new_cpu);
12648 		}
12649 
12650 		/* If we can't match both phys_id and core_id,
12651 		 * settle for just a phys_id match.
12652 		 */
12653 		new_cpu = start_cpu;
12654 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12655 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12656 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12657 			    new_cpup->phys_id == cpup->phys_id)
12658 				goto found_hdwq;
12659 			new_cpu = lpfc_next_present_cpu(new_cpu);
12660 		}
12661 
12662 		/* Otherwise just round robin on cfg_hdw_queue */
12663 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12664 		idx++;
12665 		goto logit;
12666  found_hdwq:
12667 		/* We found an available entry, copy the IRQ info */
12668 		start_cpu = lpfc_next_present_cpu(new_cpu);
12669 		cpup->hdwq = new_cpup->hdwq;
12670  logit:
12671 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12672 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12673 				"hdwq %d eq %d flg x%x\n",
12674 				cpu, cpup->phys_id, cpup->core_id,
12675 				cpup->hdwq, cpup->eq, cpup->flag);
12676 	}
12677 
12678 	/*
12679 	 * Initialize the cpu_map slots for not-present cpus in case
12680 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12681 	 */
12682 	idx = 0;
12683 	for_each_possible_cpu(cpu) {
12684 		cpup = &phba->sli4_hba.cpu_map[cpu];
12685 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12686 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12687 		c_stat->hdwq_no = cpup->hdwq;
12688 #endif
12689 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12690 			continue;
12691 
12692 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12693 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12694 		c_stat->hdwq_no = cpup->hdwq;
12695 #endif
12696 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12697 				"3340 Set Affinity: not present "
12698 				"CPU %d hdwq %d\n",
12699 				cpu, cpup->hdwq);
12700 	}
12701 
12702 	/* The cpu_map array will be used later during initialization
12703 	 * when EQ / CQ / WQs are allocated and configured.
12704 	 */
12705 	return;
12706 }
12707 
12708 /**
12709  * lpfc_cpuhp_get_eq
12710  *
12711  * @phba:   pointer to lpfc hba data structure.
12712  * @cpu:    cpu going offline
12713  * @eqlist: eq list to append to
12714  */
12715 static int
12716 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12717 		  struct list_head *eqlist)
12718 {
12719 	const struct cpumask *maskp;
12720 	struct lpfc_queue *eq;
12721 	struct cpumask *tmp;
12722 	u16 idx;
12723 
12724 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12725 	if (!tmp)
12726 		return -ENOMEM;
12727 
12728 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12729 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12730 		if (!maskp)
12731 			continue;
12732 		/*
12733 		 * if irq is not affinitized to the cpu going
12734 		 * then we don't need to poll the eq attached
12735 		 * to it.
12736 		 */
12737 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12738 			continue;
12739 		/* get the cpus that are online and are affini-
12740 		 * tized to this irq vector.  If the count is
12741 		 * more than 1 then cpuhp is not going to shut-
12742 		 * down this vector.  Since this cpu has not
12743 		 * gone offline yet, we need >1.
12744 		 */
12745 		cpumask_and(tmp, maskp, cpu_online_mask);
12746 		if (cpumask_weight(tmp) > 1)
12747 			continue;
12748 
12749 		/* Now that we have an irq to shutdown, get the eq
12750 		 * mapped to this irq.  Note: multiple hdwq's in
12751 		 * the software can share an eq, but eventually
12752 		 * only eq will be mapped to this vector
12753 		 */
12754 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12755 		list_add(&eq->_poll_list, eqlist);
12756 	}
12757 	kfree(tmp);
12758 	return 0;
12759 }
12760 
12761 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12762 {
12763 	if (phba->sli_rev != LPFC_SLI_REV4)
12764 		return;
12765 
12766 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12767 					    &phba->cpuhp);
12768 	/*
12769 	 * unregistering the instance doesn't stop the polling
12770 	 * timer. Wait for the poll timer to retire.
12771 	 */
12772 	synchronize_rcu();
12773 	del_timer_sync(&phba->cpuhp_poll_timer);
12774 }
12775 
12776 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12777 {
12778 	if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE))
12779 		return;
12780 
12781 	__lpfc_cpuhp_remove(phba);
12782 }
12783 
12784 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12785 {
12786 	if (phba->sli_rev != LPFC_SLI_REV4)
12787 		return;
12788 
12789 	rcu_read_lock();
12790 
12791 	if (!list_empty(&phba->poll_list))
12792 		mod_timer(&phba->cpuhp_poll_timer,
12793 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12794 
12795 	rcu_read_unlock();
12796 
12797 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12798 					 &phba->cpuhp);
12799 }
12800 
12801 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12802 {
12803 	if (phba->pport->load_flag & FC_UNLOADING) {
12804 		*retval = -EAGAIN;
12805 		return true;
12806 	}
12807 
12808 	if (phba->sli_rev != LPFC_SLI_REV4) {
12809 		*retval = 0;
12810 		return true;
12811 	}
12812 
12813 	/* proceed with the hotplug */
12814 	return false;
12815 }
12816 
12817 /**
12818  * lpfc_irq_set_aff - set IRQ affinity
12819  * @eqhdl: EQ handle
12820  * @cpu: cpu to set affinity
12821  *
12822  **/
12823 static inline void
12824 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12825 {
12826 	cpumask_clear(&eqhdl->aff_mask);
12827 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12828 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12829 	irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask);
12830 }
12831 
12832 /**
12833  * lpfc_irq_clear_aff - clear IRQ affinity
12834  * @eqhdl: EQ handle
12835  *
12836  **/
12837 static inline void
12838 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12839 {
12840 	cpumask_clear(&eqhdl->aff_mask);
12841 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12842 }
12843 
12844 /**
12845  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12846  * @phba: pointer to HBA context object.
12847  * @cpu: cpu going offline/online
12848  * @offline: true, cpu is going offline. false, cpu is coming online.
12849  *
12850  * If cpu is going offline, we'll try our best effort to find the next
12851  * online cpu on the phba's original_mask and migrate all offlining IRQ
12852  * affinities.
12853  *
12854  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12855  *
12856  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12857  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12858  *
12859  **/
12860 static void
12861 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12862 {
12863 	struct lpfc_vector_map_info *cpup;
12864 	struct cpumask *aff_mask;
12865 	unsigned int cpu_select, cpu_next, idx;
12866 	const struct cpumask *orig_mask;
12867 
12868 	if (phba->irq_chann_mode == NORMAL_MODE)
12869 		return;
12870 
12871 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12872 
12873 	if (!cpumask_test_cpu(cpu, orig_mask))
12874 		return;
12875 
12876 	cpup = &phba->sli4_hba.cpu_map[cpu];
12877 
12878 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12879 		return;
12880 
12881 	if (offline) {
12882 		/* Find next online CPU on original mask */
12883 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12884 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12885 
12886 		/* Found a valid CPU */
12887 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12888 			/* Go through each eqhdl and ensure offlining
12889 			 * cpu aff_mask is migrated
12890 			 */
12891 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12892 				aff_mask = lpfc_get_aff_mask(idx);
12893 
12894 				/* Migrate affinity */
12895 				if (cpumask_test_cpu(cpu, aff_mask))
12896 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12897 							 cpu_select);
12898 			}
12899 		} else {
12900 			/* Rely on irqbalance if no online CPUs left on NUMA */
12901 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12902 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12903 		}
12904 	} else {
12905 		/* Migrate affinity back to this CPU */
12906 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12907 	}
12908 }
12909 
12910 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12911 {
12912 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12913 	struct lpfc_queue *eq, *next;
12914 	LIST_HEAD(eqlist);
12915 	int retval;
12916 
12917 	if (!phba) {
12918 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12919 		return 0;
12920 	}
12921 
12922 	if (__lpfc_cpuhp_checks(phba, &retval))
12923 		return retval;
12924 
12925 	lpfc_irq_rebalance(phba, cpu, true);
12926 
12927 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12928 	if (retval)
12929 		return retval;
12930 
12931 	/* start polling on these eq's */
12932 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12933 		list_del_init(&eq->_poll_list);
12934 		lpfc_sli4_start_polling(eq);
12935 	}
12936 
12937 	return 0;
12938 }
12939 
12940 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12941 {
12942 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12943 	struct lpfc_queue *eq, *next;
12944 	unsigned int n;
12945 	int retval;
12946 
12947 	if (!phba) {
12948 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12949 		return 0;
12950 	}
12951 
12952 	if (__lpfc_cpuhp_checks(phba, &retval))
12953 		return retval;
12954 
12955 	lpfc_irq_rebalance(phba, cpu, false);
12956 
12957 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12958 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12959 		if (n == cpu)
12960 			lpfc_sli4_stop_polling(eq);
12961 	}
12962 
12963 	return 0;
12964 }
12965 
12966 /**
12967  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12968  * @phba: pointer to lpfc hba data structure.
12969  *
12970  * This routine is invoked to enable the MSI-X interrupt vectors to device
12971  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12972  * to cpus on the system.
12973  *
12974  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12975  * the number of cpus on the same numa node as this adapter.  The vectors are
12976  * allocated without requesting OS affinity mapping.  A vector will be
12977  * allocated and assigned to each online and offline cpu.  If the cpu is
12978  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12979  * affinity will be set to the nearest peer cpu within the numa node that is
12980  * online.  If there are no online cpus within the numa node, affinity is not
12981  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12982  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12983  * configured.
12984  *
12985  * If numa mode is not enabled and there is more than 1 vector allocated, then
12986  * the driver relies on the managed irq interface where the OS assigns vector to
12987  * cpu affinity.  The driver will then use that affinity mapping to setup its
12988  * cpu mapping table.
12989  *
12990  * Return codes
12991  * 0 - successful
12992  * other values - error
12993  **/
12994 static int
12995 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12996 {
12997 	int vectors, rc, index;
12998 	char *name;
12999 	const struct cpumask *aff_mask = NULL;
13000 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
13001 	struct lpfc_vector_map_info *cpup;
13002 	struct lpfc_hba_eq_hdl *eqhdl;
13003 	const struct cpumask *maskp;
13004 	unsigned int flags = PCI_IRQ_MSIX;
13005 
13006 	/* Set up MSI-X multi-message vectors */
13007 	vectors = phba->cfg_irq_chann;
13008 
13009 	if (phba->irq_chann_mode != NORMAL_MODE)
13010 		aff_mask = &phba->sli4_hba.irq_aff_mask;
13011 
13012 	if (aff_mask) {
13013 		cpu_cnt = cpumask_weight(aff_mask);
13014 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
13015 
13016 		/* cpu: iterates over aff_mask including offline or online
13017 		 * cpu_select: iterates over online aff_mask to set affinity
13018 		 */
13019 		cpu = cpumask_first(aff_mask);
13020 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13021 	} else {
13022 		flags |= PCI_IRQ_AFFINITY;
13023 	}
13024 
13025 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
13026 	if (rc < 0) {
13027 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13028 				"0484 PCI enable MSI-X failed (%d)\n", rc);
13029 		goto vec_fail_out;
13030 	}
13031 	vectors = rc;
13032 
13033 	/* Assign MSI-X vectors to interrupt handlers */
13034 	for (index = 0; index < vectors; index++) {
13035 		eqhdl = lpfc_get_eq_hdl(index);
13036 		name = eqhdl->handler_name;
13037 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
13038 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
13039 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
13040 
13041 		eqhdl->idx = index;
13042 		rc = pci_irq_vector(phba->pcidev, index);
13043 		if (rc < 0) {
13044 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13045 					"0489 MSI-X fast-path (%d) "
13046 					"pci_irq_vec failed (%d)\n", index, rc);
13047 			goto cfg_fail_out;
13048 		}
13049 		eqhdl->irq = rc;
13050 
13051 		rc = request_threaded_irq(eqhdl->irq,
13052 					  &lpfc_sli4_hba_intr_handler,
13053 					  &lpfc_sli4_hba_intr_handler_th,
13054 					  IRQF_ONESHOT, name, eqhdl);
13055 		if (rc) {
13056 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13057 					"0486 MSI-X fast-path (%d) "
13058 					"request_irq failed (%d)\n", index, rc);
13059 			goto cfg_fail_out;
13060 		}
13061 
13062 		if (aff_mask) {
13063 			/* If found a neighboring online cpu, set affinity */
13064 			if (cpu_select < nr_cpu_ids)
13065 				lpfc_irq_set_aff(eqhdl, cpu_select);
13066 
13067 			/* Assign EQ to cpu_map */
13068 			lpfc_assign_eq_map_info(phba, index,
13069 						LPFC_CPU_FIRST_IRQ,
13070 						cpu);
13071 
13072 			/* Iterate to next offline or online cpu in aff_mask */
13073 			cpu = cpumask_next(cpu, aff_mask);
13074 
13075 			/* Find next online cpu in aff_mask to set affinity */
13076 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
13077 		} else if (vectors == 1) {
13078 			cpu = cpumask_first(cpu_present_mask);
13079 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
13080 						cpu);
13081 		} else {
13082 			maskp = pci_irq_get_affinity(phba->pcidev, index);
13083 
13084 			/* Loop through all CPUs associated with vector index */
13085 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
13086 				cpup = &phba->sli4_hba.cpu_map[cpu];
13087 
13088 				/* If this is the first CPU thats assigned to
13089 				 * this vector, set LPFC_CPU_FIRST_IRQ.
13090 				 *
13091 				 * With certain platforms its possible that irq
13092 				 * vectors are affinitized to all the cpu's.
13093 				 * This can result in each cpu_map.eq to be set
13094 				 * to the last vector, resulting in overwrite
13095 				 * of all the previous cpu_map.eq.  Ensure that
13096 				 * each vector receives a place in cpu_map.
13097 				 * Later call to lpfc_cpu_affinity_check will
13098 				 * ensure we are nicely balanced out.
13099 				 */
13100 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
13101 					continue;
13102 				lpfc_assign_eq_map_info(phba, index,
13103 							LPFC_CPU_FIRST_IRQ,
13104 							cpu);
13105 				break;
13106 			}
13107 		}
13108 	}
13109 
13110 	if (vectors != phba->cfg_irq_chann) {
13111 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13112 				"3238 Reducing IO channels to match number of "
13113 				"MSI-X vectors, requested %d got %d\n",
13114 				phba->cfg_irq_chann, vectors);
13115 		if (phba->cfg_irq_chann > vectors)
13116 			phba->cfg_irq_chann = vectors;
13117 	}
13118 
13119 	return rc;
13120 
13121 cfg_fail_out:
13122 	/* free the irq already requested */
13123 	for (--index; index >= 0; index--) {
13124 		eqhdl = lpfc_get_eq_hdl(index);
13125 		lpfc_irq_clear_aff(eqhdl);
13126 		free_irq(eqhdl->irq, eqhdl);
13127 	}
13128 
13129 	/* Unconfigure MSI-X capability structure */
13130 	pci_free_irq_vectors(phba->pcidev);
13131 
13132 vec_fail_out:
13133 	return rc;
13134 }
13135 
13136 /**
13137  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
13138  * @phba: pointer to lpfc hba data structure.
13139  *
13140  * This routine is invoked to enable the MSI interrupt mode to device with
13141  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
13142  * called to enable the MSI vector. The device driver is responsible for
13143  * calling the request_irq() to register MSI vector with a interrupt the
13144  * handler, which is done in this function.
13145  *
13146  * Return codes
13147  * 	0 - successful
13148  * 	other values - error
13149  **/
13150 static int
13151 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
13152 {
13153 	int rc, index;
13154 	unsigned int cpu;
13155 	struct lpfc_hba_eq_hdl *eqhdl;
13156 
13157 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
13158 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
13159 	if (rc > 0)
13160 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13161 				"0487 PCI enable MSI mode success.\n");
13162 	else {
13163 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13164 				"0488 PCI enable MSI mode failed (%d)\n", rc);
13165 		return rc ? rc : -1;
13166 	}
13167 
13168 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13169 			 0, LPFC_DRIVER_NAME, phba);
13170 	if (rc) {
13171 		pci_free_irq_vectors(phba->pcidev);
13172 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13173 				"0490 MSI request_irq failed (%d)\n", rc);
13174 		return rc;
13175 	}
13176 
13177 	eqhdl = lpfc_get_eq_hdl(0);
13178 	rc = pci_irq_vector(phba->pcidev, 0);
13179 	if (rc < 0) {
13180 		pci_free_irq_vectors(phba->pcidev);
13181 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13182 				"0496 MSI pci_irq_vec failed (%d)\n", rc);
13183 		return rc;
13184 	}
13185 	eqhdl->irq = rc;
13186 
13187 	cpu = cpumask_first(cpu_present_mask);
13188 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
13189 
13190 	for (index = 0; index < phba->cfg_irq_chann; index++) {
13191 		eqhdl = lpfc_get_eq_hdl(index);
13192 		eqhdl->idx = index;
13193 	}
13194 
13195 	return 0;
13196 }
13197 
13198 /**
13199  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
13200  * @phba: pointer to lpfc hba data structure.
13201  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
13202  *
13203  * This routine is invoked to enable device interrupt and associate driver's
13204  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
13205  * interface spec. Depends on the interrupt mode configured to the driver,
13206  * the driver will try to fallback from the configured interrupt mode to an
13207  * interrupt mode which is supported by the platform, kernel, and device in
13208  * the order of:
13209  * MSI-X -> MSI -> IRQ.
13210  *
13211  * Return codes
13212  *	Interrupt mode (2, 1, 0) - successful
13213  *	LPFC_INTR_ERROR - error
13214  **/
13215 static uint32_t
13216 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
13217 {
13218 	uint32_t intr_mode = LPFC_INTR_ERROR;
13219 	int retval, idx;
13220 
13221 	if (cfg_mode == 2) {
13222 		/* Preparation before conf_msi mbox cmd */
13223 		retval = 0;
13224 		if (!retval) {
13225 			/* Now, try to enable MSI-X interrupt mode */
13226 			retval = lpfc_sli4_enable_msix(phba);
13227 			if (!retval) {
13228 				/* Indicate initialization to MSI-X mode */
13229 				phba->intr_type = MSIX;
13230 				intr_mode = 2;
13231 			}
13232 		}
13233 	}
13234 
13235 	/* Fallback to MSI if MSI-X initialization failed */
13236 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13237 		retval = lpfc_sli4_enable_msi(phba);
13238 		if (!retval) {
13239 			/* Indicate initialization to MSI mode */
13240 			phba->intr_type = MSI;
13241 			intr_mode = 1;
13242 		}
13243 	}
13244 
13245 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13246 	if (phba->intr_type == NONE) {
13247 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13248 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13249 		if (!retval) {
13250 			struct lpfc_hba_eq_hdl *eqhdl;
13251 			unsigned int cpu;
13252 
13253 			/* Indicate initialization to INTx mode */
13254 			phba->intr_type = INTx;
13255 			intr_mode = 0;
13256 
13257 			eqhdl = lpfc_get_eq_hdl(0);
13258 			retval = pci_irq_vector(phba->pcidev, 0);
13259 			if (retval < 0) {
13260 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13261 					"0502 INTR pci_irq_vec failed (%d)\n",
13262 					 retval);
13263 				return LPFC_INTR_ERROR;
13264 			}
13265 			eqhdl->irq = retval;
13266 
13267 			cpu = cpumask_first(cpu_present_mask);
13268 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13269 						cpu);
13270 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13271 				eqhdl = lpfc_get_eq_hdl(idx);
13272 				eqhdl->idx = idx;
13273 			}
13274 		}
13275 	}
13276 	return intr_mode;
13277 }
13278 
13279 /**
13280  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13281  * @phba: pointer to lpfc hba data structure.
13282  *
13283  * This routine is invoked to disable device interrupt and disassociate
13284  * the driver's interrupt handler(s) from interrupt vector(s) to device
13285  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13286  * will release the interrupt vector(s) for the message signaled interrupt.
13287  **/
13288 static void
13289 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13290 {
13291 	/* Disable the currently initialized interrupt mode */
13292 	if (phba->intr_type == MSIX) {
13293 		int index;
13294 		struct lpfc_hba_eq_hdl *eqhdl;
13295 
13296 		/* Free up MSI-X multi-message vectors */
13297 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13298 			eqhdl = lpfc_get_eq_hdl(index);
13299 			lpfc_irq_clear_aff(eqhdl);
13300 			free_irq(eqhdl->irq, eqhdl);
13301 		}
13302 	} else {
13303 		free_irq(phba->pcidev->irq, phba);
13304 	}
13305 
13306 	pci_free_irq_vectors(phba->pcidev);
13307 
13308 	/* Reset interrupt management states */
13309 	phba->intr_type = NONE;
13310 	phba->sli.slistat.sli_intr = 0;
13311 }
13312 
13313 /**
13314  * lpfc_unset_hba - Unset SLI3 hba device initialization
13315  * @phba: pointer to lpfc hba data structure.
13316  *
13317  * This routine is invoked to unset the HBA device initialization steps to
13318  * a device with SLI-3 interface spec.
13319  **/
13320 static void
13321 lpfc_unset_hba(struct lpfc_hba *phba)
13322 {
13323 	struct lpfc_vport *vport = phba->pport;
13324 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13325 
13326 	spin_lock_irq(shost->host_lock);
13327 	vport->load_flag |= FC_UNLOADING;
13328 	spin_unlock_irq(shost->host_lock);
13329 
13330 	kfree(phba->vpi_bmask);
13331 	kfree(phba->vpi_ids);
13332 
13333 	lpfc_stop_hba_timers(phba);
13334 
13335 	phba->pport->work_port_events = 0;
13336 
13337 	lpfc_sli_hba_down(phba);
13338 
13339 	lpfc_sli_brdrestart(phba);
13340 
13341 	lpfc_sli_disable_intr(phba);
13342 
13343 	return;
13344 }
13345 
13346 /**
13347  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13348  * @phba: Pointer to HBA context object.
13349  *
13350  * This function is called in the SLI4 code path to wait for completion
13351  * of device's XRIs exchange busy. It will check the XRI exchange busy
13352  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13353  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13354  * I/Os every 30 seconds, log error message, and wait forever. Only when
13355  * all XRI exchange busy complete, the driver unload shall proceed with
13356  * invoking the function reset ioctl mailbox command to the CNA and the
13357  * the rest of the driver unload resource release.
13358  **/
13359 static void
13360 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13361 {
13362 	struct lpfc_sli4_hdw_queue *qp;
13363 	int idx, ccnt;
13364 	int wait_time = 0;
13365 	int io_xri_cmpl = 1;
13366 	int nvmet_xri_cmpl = 1;
13367 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13368 
13369 	/* Driver just aborted IOs during the hba_unset process.  Pause
13370 	 * here to give the HBA time to complete the IO and get entries
13371 	 * into the abts lists.
13372 	 */
13373 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13374 
13375 	/* Wait for NVME pending IO to flush back to transport. */
13376 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13377 		lpfc_nvme_wait_for_io_drain(phba);
13378 
13379 	ccnt = 0;
13380 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13381 		qp = &phba->sli4_hba.hdwq[idx];
13382 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13383 		if (!io_xri_cmpl) /* if list is NOT empty */
13384 			ccnt++;
13385 	}
13386 	if (ccnt)
13387 		io_xri_cmpl = 0;
13388 
13389 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13390 		nvmet_xri_cmpl =
13391 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13392 	}
13393 
13394 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13395 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13396 			if (!nvmet_xri_cmpl)
13397 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13398 						"6424 NVMET XRI exchange busy "
13399 						"wait time: %d seconds.\n",
13400 						wait_time/1000);
13401 			if (!io_xri_cmpl)
13402 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13403 						"6100 IO XRI exchange busy "
13404 						"wait time: %d seconds.\n",
13405 						wait_time/1000);
13406 			if (!els_xri_cmpl)
13407 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13408 						"2878 ELS XRI exchange busy "
13409 						"wait time: %d seconds.\n",
13410 						wait_time/1000);
13411 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13412 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13413 		} else {
13414 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13415 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13416 		}
13417 
13418 		ccnt = 0;
13419 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13420 			qp = &phba->sli4_hba.hdwq[idx];
13421 			io_xri_cmpl = list_empty(
13422 			    &qp->lpfc_abts_io_buf_list);
13423 			if (!io_xri_cmpl) /* if list is NOT empty */
13424 				ccnt++;
13425 		}
13426 		if (ccnt)
13427 			io_xri_cmpl = 0;
13428 
13429 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13430 			nvmet_xri_cmpl = list_empty(
13431 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13432 		}
13433 		els_xri_cmpl =
13434 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13435 
13436 	}
13437 }
13438 
13439 /**
13440  * lpfc_sli4_hba_unset - Unset the fcoe hba
13441  * @phba: Pointer to HBA context object.
13442  *
13443  * This function is called in the SLI4 code path to reset the HBA's FCoE
13444  * function. The caller is not required to hold any lock. This routine
13445  * issues PCI function reset mailbox command to reset the FCoE function.
13446  * At the end of the function, it calls lpfc_hba_down_post function to
13447  * free any pending commands.
13448  **/
13449 static void
13450 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13451 {
13452 	int wait_cnt = 0;
13453 	LPFC_MBOXQ_t *mboxq;
13454 	struct pci_dev *pdev = phba->pcidev;
13455 
13456 	lpfc_stop_hba_timers(phba);
13457 	hrtimer_cancel(&phba->cmf_stats_timer);
13458 	hrtimer_cancel(&phba->cmf_timer);
13459 
13460 	if (phba->pport)
13461 		phba->sli4_hba.intr_enable = 0;
13462 
13463 	/*
13464 	 * Gracefully wait out the potential current outstanding asynchronous
13465 	 * mailbox command.
13466 	 */
13467 
13468 	/* First, block any pending async mailbox command from posted */
13469 	spin_lock_irq(&phba->hbalock);
13470 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13471 	spin_unlock_irq(&phba->hbalock);
13472 	/* Now, trying to wait it out if we can */
13473 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13474 		msleep(10);
13475 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13476 			break;
13477 	}
13478 	/* Forcefully release the outstanding mailbox command if timed out */
13479 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13480 		spin_lock_irq(&phba->hbalock);
13481 		mboxq = phba->sli.mbox_active;
13482 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13483 		__lpfc_mbox_cmpl_put(phba, mboxq);
13484 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13485 		phba->sli.mbox_active = NULL;
13486 		spin_unlock_irq(&phba->hbalock);
13487 	}
13488 
13489 	/* Abort all iocbs associated with the hba */
13490 	lpfc_sli_hba_iocb_abort(phba);
13491 
13492 	if (!pci_channel_offline(phba->pcidev))
13493 		/* Wait for completion of device XRI exchange busy */
13494 		lpfc_sli4_xri_exchange_busy_wait(phba);
13495 
13496 	/* per-phba callback de-registration for hotplug event */
13497 	if (phba->pport)
13498 		lpfc_cpuhp_remove(phba);
13499 
13500 	/* Disable PCI subsystem interrupt */
13501 	lpfc_sli4_disable_intr(phba);
13502 
13503 	/* Disable SR-IOV if enabled */
13504 	if (phba->cfg_sriov_nr_virtfn)
13505 		pci_disable_sriov(pdev);
13506 
13507 	/* Stop kthread signal shall trigger work_done one more time */
13508 	kthread_stop(phba->worker_thread);
13509 
13510 	/* Disable FW logging to host memory */
13511 	lpfc_ras_stop_fwlog(phba);
13512 
13513 	/* Reset SLI4 HBA FCoE function */
13514 	lpfc_pci_function_reset(phba);
13515 
13516 	/* release all queue allocated resources. */
13517 	lpfc_sli4_queue_destroy(phba);
13518 
13519 	/* Free RAS DMA memory */
13520 	if (phba->ras_fwlog.ras_enabled)
13521 		lpfc_sli4_ras_dma_free(phba);
13522 
13523 	/* Stop the SLI4 device port */
13524 	if (phba->pport)
13525 		phba->pport->work_port_events = 0;
13526 }
13527 
13528 static uint32_t
13529 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13530 {
13531 	uint32_t msb = 0;
13532 	uint32_t bit;
13533 
13534 	for (bit = 0; bit < 8; bit++) {
13535 		msb = (crc >> 31) & 1;
13536 		crc <<= 1;
13537 
13538 		if (msb ^ (byte & 1)) {
13539 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13540 			crc |= 1;
13541 		}
13542 		byte >>= 1;
13543 	}
13544 	return crc;
13545 }
13546 
13547 static uint32_t
13548 lpfc_cgn_reverse_bits(uint32_t wd)
13549 {
13550 	uint32_t result = 0;
13551 	uint32_t i;
13552 
13553 	for (i = 0; i < 32; i++) {
13554 		result <<= 1;
13555 		result |= (1 & (wd >> i));
13556 	}
13557 	return result;
13558 }
13559 
13560 /*
13561  * The routine corresponds with the algorithm the HBA firmware
13562  * uses to validate the data integrity.
13563  */
13564 uint32_t
13565 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13566 {
13567 	uint32_t  i;
13568 	uint32_t result;
13569 	uint8_t  *data = (uint8_t *)ptr;
13570 
13571 	for (i = 0; i < byteLen; ++i)
13572 		crc = lpfc_cgn_crc32(crc, data[i]);
13573 
13574 	result = ~lpfc_cgn_reverse_bits(crc);
13575 	return result;
13576 }
13577 
13578 void
13579 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13580 {
13581 	struct lpfc_cgn_info *cp;
13582 	uint16_t size;
13583 	uint32_t crc;
13584 
13585 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13586 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13587 
13588 	if (!phba->cgn_i)
13589 		return;
13590 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13591 
13592 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13593 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13594 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13595 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13596 
13597 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13598 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13599 	atomic64_set(&phba->cgn_latency_evt, 0);
13600 	phba->cgn_evt_minute = 0;
13601 
13602 	memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat));
13603 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13604 	cp->cgn_info_version = LPFC_CGN_INFO_V4;
13605 
13606 	/* cgn parameters */
13607 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13608 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13609 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13610 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13611 
13612 	lpfc_cgn_update_tstamp(phba, &cp->base_time);
13613 
13614 	/* Fill in default LUN qdepth */
13615 	if (phba->pport) {
13616 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13617 		cp->cgn_lunq = cpu_to_le16(size);
13618 	}
13619 
13620 	/* last used Index initialized to 0xff already */
13621 
13622 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13623 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13624 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13625 	cp->cgn_info_crc = cpu_to_le32(crc);
13626 
13627 	phba->cgn_evt_timestamp = jiffies +
13628 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13629 }
13630 
13631 void
13632 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13633 {
13634 	struct lpfc_cgn_info *cp;
13635 	uint32_t crc;
13636 
13637 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13638 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13639 
13640 	if (!phba->cgn_i)
13641 		return;
13642 
13643 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13644 	memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat));
13645 
13646 	lpfc_cgn_update_tstamp(phba, &cp->stat_start);
13647 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13648 	cp->cgn_info_crc = cpu_to_le32(crc);
13649 }
13650 
13651 /**
13652  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13653  * @phba: Pointer to hba context object.
13654  * @reg: flag to determine register or unregister.
13655  */
13656 static int
13657 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13658 {
13659 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13660 	union  lpfc_sli4_cfg_shdr *shdr;
13661 	uint32_t shdr_status, shdr_add_status;
13662 	LPFC_MBOXQ_t *mboxq;
13663 	int length, rc;
13664 
13665 	if (!phba->cgn_i)
13666 		return -ENXIO;
13667 
13668 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13669 	if (!mboxq) {
13670 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13671 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13672 				"HBA state x%x reg %d\n",
13673 				phba->pport->port_state, reg);
13674 		return -ENOMEM;
13675 	}
13676 
13677 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13678 		sizeof(struct lpfc_sli4_cfg_mhdr));
13679 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13680 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13681 			 LPFC_SLI4_MBX_EMBED);
13682 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13683 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13684 	if (reg > 0)
13685 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13686 	else
13687 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13688 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13689 	reg_congestion_buf->addr_lo =
13690 		putPaddrLow(phba->cgn_i->phys);
13691 	reg_congestion_buf->addr_hi =
13692 		putPaddrHigh(phba->cgn_i->phys);
13693 
13694 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13695 	shdr = (union lpfc_sli4_cfg_shdr *)
13696 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13697 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13698 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13699 				 &shdr->response);
13700 	mempool_free(mboxq, phba->mbox_mem_pool);
13701 	if (shdr_status || shdr_add_status || rc) {
13702 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13703 				"2642 REG_CONGESTION_BUF mailbox "
13704 				"failed with status x%x add_status x%x,"
13705 				" mbx status x%x reg %d\n",
13706 				shdr_status, shdr_add_status, rc, reg);
13707 		return -ENXIO;
13708 	}
13709 	return 0;
13710 }
13711 
13712 int
13713 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13714 {
13715 	lpfc_cmf_stop(phba);
13716 	return __lpfc_reg_congestion_buf(phba, 0);
13717 }
13718 
13719 int
13720 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13721 {
13722 	return __lpfc_reg_congestion_buf(phba, 1);
13723 }
13724 
13725 /**
13726  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13727  * @phba: Pointer to HBA context object.
13728  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13729  *
13730  * This function is called in the SLI4 code path to read the port's
13731  * sli4 capabilities.
13732  *
13733  * This function may be be called from any context that can block-wait
13734  * for the completion.  The expectation is that this routine is called
13735  * typically from probe_one or from the online routine.
13736  **/
13737 int
13738 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13739 {
13740 	int rc;
13741 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13742 	struct lpfc_pc_sli4_params *sli4_params;
13743 	uint32_t mbox_tmo;
13744 	int length;
13745 	bool exp_wqcq_pages = true;
13746 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13747 
13748 	/*
13749 	 * By default, the driver assumes the SLI4 port requires RPI
13750 	 * header postings.  The SLI4_PARAM response will correct this
13751 	 * assumption.
13752 	 */
13753 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13754 
13755 	/* Read the port's SLI4 Config Parameters */
13756 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13757 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13758 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13759 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13760 			 length, LPFC_SLI4_MBX_EMBED);
13761 	if (!phba->sli4_hba.intr_enable)
13762 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13763 	else {
13764 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13765 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13766 	}
13767 	if (unlikely(rc))
13768 		return rc;
13769 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13770 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13771 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13772 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13773 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13774 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13775 					     mbx_sli4_parameters);
13776 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13777 					     mbx_sli4_parameters);
13778 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13779 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13780 	else
13781 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13782 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13783 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13784 					   mbx_sli4_parameters);
13785 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13786 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13787 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13788 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13789 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13790 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13791 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13792 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13793 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13794 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13795 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13796 					    mbx_sli4_parameters);
13797 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13798 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13799 					   mbx_sli4_parameters);
13800 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13801 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13802 	sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters);
13803 
13804 	/* Check for Extended Pre-Registered SGL support */
13805 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13806 
13807 	/* Check for firmware nvme support */
13808 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13809 		     bf_get(cfg_xib, mbx_sli4_parameters));
13810 
13811 	if (rc) {
13812 		/* Save this to indicate the Firmware supports NVME */
13813 		sli4_params->nvme = 1;
13814 
13815 		/* Firmware NVME support, check driver FC4 NVME support */
13816 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13817 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13818 					"6133 Disabling NVME support: "
13819 					"FC4 type not supported: x%x\n",
13820 					phba->cfg_enable_fc4_type);
13821 			goto fcponly;
13822 		}
13823 	} else {
13824 		/* No firmware NVME support, check driver FC4 NVME support */
13825 		sli4_params->nvme = 0;
13826 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13827 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13828 					"6101 Disabling NVME support: Not "
13829 					"supported by firmware (%d %d) x%x\n",
13830 					bf_get(cfg_nvme, mbx_sli4_parameters),
13831 					bf_get(cfg_xib, mbx_sli4_parameters),
13832 					phba->cfg_enable_fc4_type);
13833 fcponly:
13834 			phba->nvmet_support = 0;
13835 			phba->cfg_nvmet_mrq = 0;
13836 			phba->cfg_nvme_seg_cnt = 0;
13837 
13838 			/* If no FC4 type support, move to just SCSI support */
13839 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13840 				return -ENODEV;
13841 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13842 		}
13843 	}
13844 
13845 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13846 	 * accommodate 512K and 1M IOs in a single nvme buf.
13847 	 */
13848 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13849 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13850 
13851 	/* Enable embedded Payload BDE if support is indicated */
13852 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13853 		phba->cfg_enable_pbde = 1;
13854 	else
13855 		phba->cfg_enable_pbde = 0;
13856 
13857 	/*
13858 	 * To support Suppress Response feature we must satisfy 3 conditions.
13859 	 * lpfc_suppress_rsp module parameter must be set (default).
13860 	 * In SLI4-Parameters Descriptor:
13861 	 * Extended Inline Buffers (XIB) must be supported.
13862 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13863 	 * (double negative).
13864 	 */
13865 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13866 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13867 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13868 	else
13869 		phba->cfg_suppress_rsp = 0;
13870 
13871 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13872 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13873 
13874 	/* Make sure that sge_supp_len can be handled by the driver */
13875 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13876 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13877 
13878 	rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len);
13879 	if (unlikely(rc)) {
13880 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13881 				"6400 Can't set dma maximum segment size\n");
13882 		return rc;
13883 	}
13884 
13885 	/*
13886 	 * Check whether the adapter supports an embedded copy of the
13887 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13888 	 * to use this option, 128-byte WQEs must be used.
13889 	 */
13890 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13891 		phba->fcp_embed_io = 1;
13892 	else
13893 		phba->fcp_embed_io = 0;
13894 
13895 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13896 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13897 			bf_get(cfg_xib, mbx_sli4_parameters),
13898 			phba->cfg_enable_pbde,
13899 			phba->fcp_embed_io, sli4_params->nvme,
13900 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13901 
13902 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13903 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13904 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13905 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13906 		exp_wqcq_pages = false;
13907 
13908 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13909 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13910 	    exp_wqcq_pages &&
13911 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13912 		phba->enab_exp_wqcq_pages = 1;
13913 	else
13914 		phba->enab_exp_wqcq_pages = 0;
13915 	/*
13916 	 * Check if the SLI port supports MDS Diagnostics
13917 	 */
13918 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13919 		phba->mds_diags_support = 1;
13920 	else
13921 		phba->mds_diags_support = 0;
13922 
13923 	/*
13924 	 * Check if the SLI port supports NSLER
13925 	 */
13926 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13927 		phba->nsler = 1;
13928 	else
13929 		phba->nsler = 0;
13930 
13931 	return 0;
13932 }
13933 
13934 /**
13935  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13936  * @pdev: pointer to PCI device
13937  * @pid: pointer to PCI device identifier
13938  *
13939  * This routine is to be called to attach a device with SLI-3 interface spec
13940  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13941  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13942  * information of the device and driver to see if the driver state that it can
13943  * support this kind of device. If the match is successful, the driver core
13944  * invokes this routine. If this routine determines it can claim the HBA, it
13945  * does all the initialization that it needs to do to handle the HBA properly.
13946  *
13947  * Return code
13948  * 	0 - driver can claim the device
13949  * 	negative value - driver can not claim the device
13950  **/
13951 static int
13952 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13953 {
13954 	struct lpfc_hba   *phba;
13955 	struct lpfc_vport *vport = NULL;
13956 	struct Scsi_Host  *shost = NULL;
13957 	int error;
13958 	uint32_t cfg_mode, intr_mode;
13959 
13960 	/* Allocate memory for HBA structure */
13961 	phba = lpfc_hba_alloc(pdev);
13962 	if (!phba)
13963 		return -ENOMEM;
13964 
13965 	/* Perform generic PCI device enabling operation */
13966 	error = lpfc_enable_pci_dev(phba);
13967 	if (error)
13968 		goto out_free_phba;
13969 
13970 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13971 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13972 	if (error)
13973 		goto out_disable_pci_dev;
13974 
13975 	/* Set up SLI-3 specific device PCI memory space */
13976 	error = lpfc_sli_pci_mem_setup(phba);
13977 	if (error) {
13978 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13979 				"1402 Failed to set up pci memory space.\n");
13980 		goto out_disable_pci_dev;
13981 	}
13982 
13983 	/* Set up SLI-3 specific device driver resources */
13984 	error = lpfc_sli_driver_resource_setup(phba);
13985 	if (error) {
13986 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13987 				"1404 Failed to set up driver resource.\n");
13988 		goto out_unset_pci_mem_s3;
13989 	}
13990 
13991 	/* Initialize and populate the iocb list per host */
13992 
13993 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13994 	if (error) {
13995 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13996 				"1405 Failed to initialize iocb list.\n");
13997 		goto out_unset_driver_resource_s3;
13998 	}
13999 
14000 	/* Set up common device driver resources */
14001 	error = lpfc_setup_driver_resource_phase2(phba);
14002 	if (error) {
14003 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14004 				"1406 Failed to set up driver resource.\n");
14005 		goto out_free_iocb_list;
14006 	}
14007 
14008 	/* Get the default values for Model Name and Description */
14009 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14010 
14011 	/* Create SCSI host to the physical port */
14012 	error = lpfc_create_shost(phba);
14013 	if (error) {
14014 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14015 				"1407 Failed to create scsi host.\n");
14016 		goto out_unset_driver_resource;
14017 	}
14018 
14019 	/* Configure sysfs attributes */
14020 	vport = phba->pport;
14021 	error = lpfc_alloc_sysfs_attr(vport);
14022 	if (error) {
14023 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14024 				"1476 Failed to allocate sysfs attr\n");
14025 		goto out_destroy_shost;
14026 	}
14027 
14028 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14029 	/* Now, trying to enable interrupt and bring up the device */
14030 	cfg_mode = phba->cfg_use_msi;
14031 	while (true) {
14032 		/* Put device to a known state before enabling interrupt */
14033 		lpfc_stop_port(phba);
14034 		/* Configure and enable interrupt */
14035 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
14036 		if (intr_mode == LPFC_INTR_ERROR) {
14037 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14038 					"0431 Failed to enable interrupt.\n");
14039 			error = -ENODEV;
14040 			goto out_free_sysfs_attr;
14041 		}
14042 		/* SLI-3 HBA setup */
14043 		if (lpfc_sli_hba_setup(phba)) {
14044 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14045 					"1477 Failed to set up hba\n");
14046 			error = -ENODEV;
14047 			goto out_remove_device;
14048 		}
14049 
14050 		/* Wait 50ms for the interrupts of previous mailbox commands */
14051 		msleep(50);
14052 		/* Check active interrupts on message signaled interrupts */
14053 		if (intr_mode == 0 ||
14054 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
14055 			/* Log the current active interrupt mode */
14056 			phba->intr_mode = intr_mode;
14057 			lpfc_log_intr_mode(phba, intr_mode);
14058 			break;
14059 		} else {
14060 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14061 					"0447 Configure interrupt mode (%d) "
14062 					"failed active interrupt test.\n",
14063 					intr_mode);
14064 			/* Disable the current interrupt mode */
14065 			lpfc_sli_disable_intr(phba);
14066 			/* Try next level of interrupt mode */
14067 			cfg_mode = --intr_mode;
14068 		}
14069 	}
14070 
14071 	/* Perform post initialization setup */
14072 	lpfc_post_init_setup(phba);
14073 
14074 	/* Check if there are static vports to be created. */
14075 	lpfc_create_static_vport(phba);
14076 
14077 	return 0;
14078 
14079 out_remove_device:
14080 	lpfc_unset_hba(phba);
14081 out_free_sysfs_attr:
14082 	lpfc_free_sysfs_attr(vport);
14083 out_destroy_shost:
14084 	lpfc_destroy_shost(phba);
14085 out_unset_driver_resource:
14086 	lpfc_unset_driver_resource_phase2(phba);
14087 out_free_iocb_list:
14088 	lpfc_free_iocb_list(phba);
14089 out_unset_driver_resource_s3:
14090 	lpfc_sli_driver_resource_unset(phba);
14091 out_unset_pci_mem_s3:
14092 	lpfc_sli_pci_mem_unset(phba);
14093 out_disable_pci_dev:
14094 	lpfc_disable_pci_dev(phba);
14095 	if (shost)
14096 		scsi_host_put(shost);
14097 out_free_phba:
14098 	lpfc_hba_free(phba);
14099 	return error;
14100 }
14101 
14102 /**
14103  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
14104  * @pdev: pointer to PCI device
14105  *
14106  * This routine is to be called to disattach a device with SLI-3 interface
14107  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
14108  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14109  * device to be removed from the PCI subsystem properly.
14110  **/
14111 static void
14112 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
14113 {
14114 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
14115 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14116 	struct lpfc_vport **vports;
14117 	struct lpfc_hba   *phba = vport->phba;
14118 	int i;
14119 
14120 	spin_lock_irq(&phba->hbalock);
14121 	vport->load_flag |= FC_UNLOADING;
14122 	spin_unlock_irq(&phba->hbalock);
14123 
14124 	lpfc_free_sysfs_attr(vport);
14125 
14126 	/* Release all the vports against this physical port */
14127 	vports = lpfc_create_vport_work_array(phba);
14128 	if (vports != NULL)
14129 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14130 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14131 				continue;
14132 			fc_vport_terminate(vports[i]->fc_vport);
14133 		}
14134 	lpfc_destroy_vport_work_array(phba, vports);
14135 
14136 	/* Remove FC host with the physical port */
14137 	fc_remove_host(shost);
14138 	scsi_remove_host(shost);
14139 
14140 	/* Clean up all nodes, mailboxes and IOs. */
14141 	lpfc_cleanup(vport);
14142 
14143 	/*
14144 	 * Bring down the SLI Layer. This step disable all interrupts,
14145 	 * clears the rings, discards all mailbox commands, and resets
14146 	 * the HBA.
14147 	 */
14148 
14149 	/* HBA interrupt will be disabled after this call */
14150 	lpfc_sli_hba_down(phba);
14151 	/* Stop kthread signal shall trigger work_done one more time */
14152 	kthread_stop(phba->worker_thread);
14153 	/* Final cleanup of txcmplq and reset the HBA */
14154 	lpfc_sli_brdrestart(phba);
14155 
14156 	kfree(phba->vpi_bmask);
14157 	kfree(phba->vpi_ids);
14158 
14159 	lpfc_stop_hba_timers(phba);
14160 	spin_lock_irq(&phba->port_list_lock);
14161 	list_del_init(&vport->listentry);
14162 	spin_unlock_irq(&phba->port_list_lock);
14163 
14164 	lpfc_debugfs_terminate(vport);
14165 
14166 	/* Disable SR-IOV if enabled */
14167 	if (phba->cfg_sriov_nr_virtfn)
14168 		pci_disable_sriov(pdev);
14169 
14170 	/* Disable interrupt */
14171 	lpfc_sli_disable_intr(phba);
14172 
14173 	scsi_host_put(shost);
14174 
14175 	/*
14176 	 * Call scsi_free before mem_free since scsi bufs are released to their
14177 	 * corresponding pools here.
14178 	 */
14179 	lpfc_scsi_free(phba);
14180 	lpfc_free_iocb_list(phba);
14181 
14182 	lpfc_mem_free_all(phba);
14183 
14184 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
14185 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
14186 
14187 	/* Free resources associated with SLI2 interface */
14188 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
14189 			  phba->slim2p.virt, phba->slim2p.phys);
14190 
14191 	/* unmap adapter SLIM and Control Registers */
14192 	iounmap(phba->ctrl_regs_memmap_p);
14193 	iounmap(phba->slim_memmap_p);
14194 
14195 	lpfc_hba_free(phba);
14196 
14197 	pci_release_mem_regions(pdev);
14198 	pci_disable_device(pdev);
14199 }
14200 
14201 /**
14202  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
14203  * @dev_d: pointer to device
14204  *
14205  * This routine is to be called from the kernel's PCI subsystem to support
14206  * system Power Management (PM) to device with SLI-3 interface spec. When
14207  * PM invokes this method, it quiesces the device by stopping the driver's
14208  * worker thread for the device, turning off device's interrupt and DMA,
14209  * and bring the device offline. Note that as the driver implements the
14210  * minimum PM requirements to a power-aware driver's PM support for the
14211  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14212  * to the suspend() method call will be treated as SUSPEND and the driver will
14213  * fully reinitialize its device during resume() method call, the driver will
14214  * set device to PCI_D3hot state in PCI config space instead of setting it
14215  * according to the @msg provided by the PM.
14216  *
14217  * Return code
14218  * 	0 - driver suspended the device
14219  * 	Error otherwise
14220  **/
14221 static int __maybe_unused
14222 lpfc_pci_suspend_one_s3(struct device *dev_d)
14223 {
14224 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14225 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14226 
14227 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14228 			"0473 PCI device Power Management suspend.\n");
14229 
14230 	/* Bring down the device */
14231 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14232 	lpfc_offline(phba);
14233 	kthread_stop(phba->worker_thread);
14234 
14235 	/* Disable interrupt from device */
14236 	lpfc_sli_disable_intr(phba);
14237 
14238 	return 0;
14239 }
14240 
14241 /**
14242  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14243  * @dev_d: pointer to device
14244  *
14245  * This routine is to be called from the kernel's PCI subsystem to support
14246  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14247  * invokes this method, it restores the device's PCI config space state and
14248  * fully reinitializes the device and brings it online. Note that as the
14249  * driver implements the minimum PM requirements to a power-aware driver's
14250  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14251  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14252  * driver will fully reinitialize its device during resume() method call,
14253  * the device will be set to PCI_D0 directly in PCI config space before
14254  * restoring the state.
14255  *
14256  * Return code
14257  * 	0 - driver suspended the device
14258  * 	Error otherwise
14259  **/
14260 static int __maybe_unused
14261 lpfc_pci_resume_one_s3(struct device *dev_d)
14262 {
14263 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14264 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14265 	uint32_t intr_mode;
14266 	int error;
14267 
14268 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14269 			"0452 PCI device Power Management resume.\n");
14270 
14271 	/* Startup the kernel thread for this host adapter. */
14272 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14273 					"lpfc_worker_%d", phba->brd_no);
14274 	if (IS_ERR(phba->worker_thread)) {
14275 		error = PTR_ERR(phba->worker_thread);
14276 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14277 				"0434 PM resume failed to start worker "
14278 				"thread: error=x%x.\n", error);
14279 		return error;
14280 	}
14281 
14282 	/* Init cpu_map array */
14283 	lpfc_cpu_map_array_init(phba);
14284 	/* Init hba_eq_hdl array */
14285 	lpfc_hba_eq_hdl_array_init(phba);
14286 	/* Configure and enable interrupt */
14287 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14288 	if (intr_mode == LPFC_INTR_ERROR) {
14289 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14290 				"0430 PM resume Failed to enable interrupt\n");
14291 		return -EIO;
14292 	} else
14293 		phba->intr_mode = intr_mode;
14294 
14295 	/* Restart HBA and bring it online */
14296 	lpfc_sli_brdrestart(phba);
14297 	lpfc_online(phba);
14298 
14299 	/* Log the current active interrupt mode */
14300 	lpfc_log_intr_mode(phba, phba->intr_mode);
14301 
14302 	return 0;
14303 }
14304 
14305 /**
14306  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14307  * @phba: pointer to lpfc hba data structure.
14308  *
14309  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14310  * aborts all the outstanding SCSI I/Os to the pci device.
14311  **/
14312 static void
14313 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14314 {
14315 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14316 			"2723 PCI channel I/O abort preparing for recovery\n");
14317 
14318 	/*
14319 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14320 	 * and let the SCSI mid-layer to retry them to recover.
14321 	 */
14322 	lpfc_sli_abort_fcp_rings(phba);
14323 }
14324 
14325 /**
14326  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14327  * @phba: pointer to lpfc hba data structure.
14328  *
14329  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14330  * disables the device interrupt and pci device, and aborts the internal FCP
14331  * pending I/Os.
14332  **/
14333 static void
14334 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14335 {
14336 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14337 			"2710 PCI channel disable preparing for reset\n");
14338 
14339 	/* Block any management I/Os to the device */
14340 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14341 
14342 	/* Block all SCSI devices' I/Os on the host */
14343 	lpfc_scsi_dev_block(phba);
14344 
14345 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14346 	lpfc_sli_flush_io_rings(phba);
14347 
14348 	/* stop all timers */
14349 	lpfc_stop_hba_timers(phba);
14350 
14351 	/* Disable interrupt and pci device */
14352 	lpfc_sli_disable_intr(phba);
14353 	pci_disable_device(phba->pcidev);
14354 }
14355 
14356 /**
14357  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14358  * @phba: pointer to lpfc hba data structure.
14359  *
14360  * This routine is called to prepare the SLI3 device for PCI slot permanently
14361  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14362  * pending I/Os.
14363  **/
14364 static void
14365 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14366 {
14367 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14368 			"2711 PCI channel permanent disable for failure\n");
14369 	/* Block all SCSI devices' I/Os on the host */
14370 	lpfc_scsi_dev_block(phba);
14371 	lpfc_sli4_prep_dev_for_reset(phba);
14372 
14373 	/* stop all timers */
14374 	lpfc_stop_hba_timers(phba);
14375 
14376 	/* Clean up all driver's outstanding SCSI I/Os */
14377 	lpfc_sli_flush_io_rings(phba);
14378 }
14379 
14380 /**
14381  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14382  * @pdev: pointer to PCI device.
14383  * @state: the current PCI connection state.
14384  *
14385  * This routine is called from the PCI subsystem for I/O error handling to
14386  * device with SLI-3 interface spec. This function is called by the PCI
14387  * subsystem after a PCI bus error affecting this device has been detected.
14388  * When this function is invoked, it will need to stop all the I/Os and
14389  * interrupt(s) to the device. Once that is done, it will return
14390  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14391  * as desired.
14392  *
14393  * Return codes
14394  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14395  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14396  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14397  **/
14398 static pci_ers_result_t
14399 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14400 {
14401 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14402 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14403 
14404 	switch (state) {
14405 	case pci_channel_io_normal:
14406 		/* Non-fatal error, prepare for recovery */
14407 		lpfc_sli_prep_dev_for_recover(phba);
14408 		return PCI_ERS_RESULT_CAN_RECOVER;
14409 	case pci_channel_io_frozen:
14410 		/* Fatal error, prepare for slot reset */
14411 		lpfc_sli_prep_dev_for_reset(phba);
14412 		return PCI_ERS_RESULT_NEED_RESET;
14413 	case pci_channel_io_perm_failure:
14414 		/* Permanent failure, prepare for device down */
14415 		lpfc_sli_prep_dev_for_perm_failure(phba);
14416 		return PCI_ERS_RESULT_DISCONNECT;
14417 	default:
14418 		/* Unknown state, prepare and request slot reset */
14419 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14420 				"0472 Unknown PCI error state: x%x\n", state);
14421 		lpfc_sli_prep_dev_for_reset(phba);
14422 		return PCI_ERS_RESULT_NEED_RESET;
14423 	}
14424 }
14425 
14426 /**
14427  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14428  * @pdev: pointer to PCI device.
14429  *
14430  * This routine is called from the PCI subsystem for error handling to
14431  * device with SLI-3 interface spec. This is called after PCI bus has been
14432  * reset to restart the PCI card from scratch, as if from a cold-boot.
14433  * During the PCI subsystem error recovery, after driver returns
14434  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14435  * recovery and then call this routine before calling the .resume method
14436  * to recover the device. This function will initialize the HBA device,
14437  * enable the interrupt, but it will just put the HBA to offline state
14438  * without passing any I/O traffic.
14439  *
14440  * Return codes
14441  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14442  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14443  */
14444 static pci_ers_result_t
14445 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14446 {
14447 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14448 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14449 	struct lpfc_sli *psli = &phba->sli;
14450 	uint32_t intr_mode;
14451 
14452 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14453 	if (pci_enable_device_mem(pdev)) {
14454 		printk(KERN_ERR "lpfc: Cannot re-enable "
14455 			"PCI device after reset.\n");
14456 		return PCI_ERS_RESULT_DISCONNECT;
14457 	}
14458 
14459 	pci_restore_state(pdev);
14460 
14461 	/*
14462 	 * As the new kernel behavior of pci_restore_state() API call clears
14463 	 * device saved_state flag, need to save the restored state again.
14464 	 */
14465 	pci_save_state(pdev);
14466 
14467 	if (pdev->is_busmaster)
14468 		pci_set_master(pdev);
14469 
14470 	spin_lock_irq(&phba->hbalock);
14471 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14472 	spin_unlock_irq(&phba->hbalock);
14473 
14474 	/* Configure and enable interrupt */
14475 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14476 	if (intr_mode == LPFC_INTR_ERROR) {
14477 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14478 				"0427 Cannot re-enable interrupt after "
14479 				"slot reset.\n");
14480 		return PCI_ERS_RESULT_DISCONNECT;
14481 	} else
14482 		phba->intr_mode = intr_mode;
14483 
14484 	/* Take device offline, it will perform cleanup */
14485 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14486 	lpfc_offline(phba);
14487 	lpfc_sli_brdrestart(phba);
14488 
14489 	/* Log the current active interrupt mode */
14490 	lpfc_log_intr_mode(phba, phba->intr_mode);
14491 
14492 	return PCI_ERS_RESULT_RECOVERED;
14493 }
14494 
14495 /**
14496  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14497  * @pdev: pointer to PCI device
14498  *
14499  * This routine is called from the PCI subsystem for error handling to device
14500  * with SLI-3 interface spec. It is called when kernel error recovery tells
14501  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14502  * error recovery. After this call, traffic can start to flow from this device
14503  * again.
14504  */
14505 static void
14506 lpfc_io_resume_s3(struct pci_dev *pdev)
14507 {
14508 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14509 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14510 
14511 	/* Bring device online, it will be no-op for non-fatal error resume */
14512 	lpfc_online(phba);
14513 }
14514 
14515 /**
14516  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14517  * @phba: pointer to lpfc hba data structure.
14518  *
14519  * returns the number of ELS/CT IOCBs to reserve
14520  **/
14521 int
14522 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14523 {
14524 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14525 
14526 	if (phba->sli_rev == LPFC_SLI_REV4) {
14527 		if (max_xri <= 100)
14528 			return 10;
14529 		else if (max_xri <= 256)
14530 			return 25;
14531 		else if (max_xri <= 512)
14532 			return 50;
14533 		else if (max_xri <= 1024)
14534 			return 100;
14535 		else if (max_xri <= 1536)
14536 			return 150;
14537 		else if (max_xri <= 2048)
14538 			return 200;
14539 		else
14540 			return 250;
14541 	} else
14542 		return 0;
14543 }
14544 
14545 /**
14546  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14547  * @phba: pointer to lpfc hba data structure.
14548  *
14549  * returns the number of ELS/CT + NVMET IOCBs to reserve
14550  **/
14551 int
14552 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14553 {
14554 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14555 
14556 	if (phba->nvmet_support)
14557 		max_xri += LPFC_NVMET_BUF_POST;
14558 	return max_xri;
14559 }
14560 
14561 
14562 static int
14563 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14564 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14565 	const struct firmware *fw)
14566 {
14567 	int rc;
14568 	u8 sli_family;
14569 
14570 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14571 	/* Three cases:  (1) FW was not supported on the detected adapter.
14572 	 * (2) FW update has been locked out administratively.
14573 	 * (3) Some other error during FW update.
14574 	 * In each case, an unmaskable message is written to the console
14575 	 * for admin diagnosis.
14576 	 */
14577 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14578 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14579 	     magic_number != MAGIC_NUMBER_G6) ||
14580 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14581 	     magic_number != MAGIC_NUMBER_G7) ||
14582 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14583 	     magic_number != MAGIC_NUMBER_G7P)) {
14584 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14585 				"3030 This firmware version is not supported on"
14586 				" this HBA model. Device:%x Magic:%x Type:%x "
14587 				"ID:%x Size %d %zd\n",
14588 				phba->pcidev->device, magic_number, ftype, fid,
14589 				fsize, fw->size);
14590 		rc = -EINVAL;
14591 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14592 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14593 				"3021 Firmware downloads have been prohibited "
14594 				"by a system configuration setting on "
14595 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14596 				"%zd\n",
14597 				phba->pcidev->device, magic_number, ftype, fid,
14598 				fsize, fw->size);
14599 		rc = -EACCES;
14600 	} else {
14601 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14602 				"3022 FW Download failed. Add Status x%x "
14603 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14604 				"%zd\n",
14605 				offset, phba->pcidev->device, magic_number,
14606 				ftype, fid, fsize, fw->size);
14607 		rc = -EIO;
14608 	}
14609 	return rc;
14610 }
14611 
14612 /**
14613  * lpfc_write_firmware - attempt to write a firmware image to the port
14614  * @fw: pointer to firmware image returned from request_firmware.
14615  * @context: pointer to firmware image returned from request_firmware.
14616  *
14617  **/
14618 static void
14619 lpfc_write_firmware(const struct firmware *fw, void *context)
14620 {
14621 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14622 	char fwrev[FW_REV_STR_SIZE];
14623 	struct lpfc_grp_hdr *image;
14624 	struct list_head dma_buffer_list;
14625 	int i, rc = 0;
14626 	struct lpfc_dmabuf *dmabuf, *next;
14627 	uint32_t offset = 0, temp_offset = 0;
14628 	uint32_t magic_number, ftype, fid, fsize;
14629 
14630 	/* It can be null in no-wait mode, sanity check */
14631 	if (!fw) {
14632 		rc = -ENXIO;
14633 		goto out;
14634 	}
14635 	image = (struct lpfc_grp_hdr *)fw->data;
14636 
14637 	magic_number = be32_to_cpu(image->magic_number);
14638 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14639 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14640 	fsize = be32_to_cpu(image->size);
14641 
14642 	INIT_LIST_HEAD(&dma_buffer_list);
14643 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14644 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14645 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14646 			     "3023 Updating Firmware, Current Version:%s "
14647 			     "New Version:%s\n",
14648 			     fwrev, image->revision);
14649 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14650 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14651 					 GFP_KERNEL);
14652 			if (!dmabuf) {
14653 				rc = -ENOMEM;
14654 				goto release_out;
14655 			}
14656 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14657 							  SLI4_PAGE_SIZE,
14658 							  &dmabuf->phys,
14659 							  GFP_KERNEL);
14660 			if (!dmabuf->virt) {
14661 				kfree(dmabuf);
14662 				rc = -ENOMEM;
14663 				goto release_out;
14664 			}
14665 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14666 		}
14667 		while (offset < fw->size) {
14668 			temp_offset = offset;
14669 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14670 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14671 					memcpy(dmabuf->virt,
14672 					       fw->data + temp_offset,
14673 					       fw->size - temp_offset);
14674 					temp_offset = fw->size;
14675 					break;
14676 				}
14677 				memcpy(dmabuf->virt, fw->data + temp_offset,
14678 				       SLI4_PAGE_SIZE);
14679 				temp_offset += SLI4_PAGE_SIZE;
14680 			}
14681 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14682 				    (fw->size - offset), &offset);
14683 			if (rc) {
14684 				rc = lpfc_log_write_firmware_error(phba, offset,
14685 								   magic_number,
14686 								   ftype,
14687 								   fid,
14688 								   fsize,
14689 								   fw);
14690 				goto release_out;
14691 			}
14692 		}
14693 		rc = offset;
14694 	} else
14695 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14696 			     "3029 Skipped Firmware update, Current "
14697 			     "Version:%s New Version:%s\n",
14698 			     fwrev, image->revision);
14699 
14700 release_out:
14701 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14702 		list_del(&dmabuf->list);
14703 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14704 				  dmabuf->virt, dmabuf->phys);
14705 		kfree(dmabuf);
14706 	}
14707 	release_firmware(fw);
14708 out:
14709 	if (rc < 0)
14710 		lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI,
14711 			     "3062 Firmware update error, status %d.\n", rc);
14712 	else
14713 		lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI,
14714 			     "3024 Firmware update success: size %d.\n", rc);
14715 }
14716 
14717 /**
14718  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14719  * @phba: pointer to lpfc hba data structure.
14720  * @fw_upgrade: which firmware to update.
14721  *
14722  * This routine is called to perform Linux generic firmware upgrade on device
14723  * that supports such feature.
14724  **/
14725 int
14726 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14727 {
14728 	char file_name[ELX_FW_NAME_SIZE] = {0};
14729 	int ret;
14730 	const struct firmware *fw;
14731 
14732 	/* Only supported on SLI4 interface type 2 for now */
14733 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14734 	    LPFC_SLI_INTF_IF_TYPE_2)
14735 		return -EPERM;
14736 
14737 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14738 
14739 	if (fw_upgrade == INT_FW_UPGRADE) {
14740 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14741 					file_name, &phba->pcidev->dev,
14742 					GFP_KERNEL, (void *)phba,
14743 					lpfc_write_firmware);
14744 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14745 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14746 		if (!ret)
14747 			lpfc_write_firmware(fw, (void *)phba);
14748 	} else {
14749 		ret = -EINVAL;
14750 	}
14751 
14752 	return ret;
14753 }
14754 
14755 /**
14756  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14757  * @pdev: pointer to PCI device
14758  * @pid: pointer to PCI device identifier
14759  *
14760  * This routine is called from the kernel's PCI subsystem to device with
14761  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14762  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14763  * information of the device and driver to see if the driver state that it
14764  * can support this kind of device. If the match is successful, the driver
14765  * core invokes this routine. If this routine determines it can claim the HBA,
14766  * it does all the initialization that it needs to do to handle the HBA
14767  * properly.
14768  *
14769  * Return code
14770  * 	0 - driver can claim the device
14771  * 	negative value - driver can not claim the device
14772  **/
14773 static int
14774 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14775 {
14776 	struct lpfc_hba   *phba;
14777 	struct lpfc_vport *vport = NULL;
14778 	struct Scsi_Host  *shost = NULL;
14779 	int error;
14780 	uint32_t cfg_mode, intr_mode;
14781 
14782 	/* Allocate memory for HBA structure */
14783 	phba = lpfc_hba_alloc(pdev);
14784 	if (!phba)
14785 		return -ENOMEM;
14786 
14787 	INIT_LIST_HEAD(&phba->poll_list);
14788 
14789 	/* Perform generic PCI device enabling operation */
14790 	error = lpfc_enable_pci_dev(phba);
14791 	if (error)
14792 		goto out_free_phba;
14793 
14794 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14795 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14796 	if (error)
14797 		goto out_disable_pci_dev;
14798 
14799 	/* Set up SLI-4 specific device PCI memory space */
14800 	error = lpfc_sli4_pci_mem_setup(phba);
14801 	if (error) {
14802 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14803 				"1410 Failed to set up pci memory space.\n");
14804 		goto out_disable_pci_dev;
14805 	}
14806 
14807 	/* Set up SLI-4 Specific device driver resources */
14808 	error = lpfc_sli4_driver_resource_setup(phba);
14809 	if (error) {
14810 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14811 				"1412 Failed to set up driver resource.\n");
14812 		goto out_unset_pci_mem_s4;
14813 	}
14814 
14815 	INIT_LIST_HEAD(&phba->active_rrq_list);
14816 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14817 
14818 	/* Set up common device driver resources */
14819 	error = lpfc_setup_driver_resource_phase2(phba);
14820 	if (error) {
14821 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14822 				"1414 Failed to set up driver resource.\n");
14823 		goto out_unset_driver_resource_s4;
14824 	}
14825 
14826 	/* Get the default values for Model Name and Description */
14827 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14828 
14829 	/* Now, trying to enable interrupt and bring up the device */
14830 	cfg_mode = phba->cfg_use_msi;
14831 
14832 	/* Put device to a known state before enabling interrupt */
14833 	phba->pport = NULL;
14834 	lpfc_stop_port(phba);
14835 
14836 	/* Init cpu_map array */
14837 	lpfc_cpu_map_array_init(phba);
14838 
14839 	/* Init hba_eq_hdl array */
14840 	lpfc_hba_eq_hdl_array_init(phba);
14841 
14842 	/* Configure and enable interrupt */
14843 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14844 	if (intr_mode == LPFC_INTR_ERROR) {
14845 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14846 				"0426 Failed to enable interrupt.\n");
14847 		error = -ENODEV;
14848 		goto out_unset_driver_resource;
14849 	}
14850 	/* Default to single EQ for non-MSI-X */
14851 	if (phba->intr_type != MSIX) {
14852 		phba->cfg_irq_chann = 1;
14853 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14854 			if (phba->nvmet_support)
14855 				phba->cfg_nvmet_mrq = 1;
14856 		}
14857 	}
14858 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14859 
14860 	/* Create SCSI host to the physical port */
14861 	error = lpfc_create_shost(phba);
14862 	if (error) {
14863 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14864 				"1415 Failed to create scsi host.\n");
14865 		goto out_disable_intr;
14866 	}
14867 	vport = phba->pport;
14868 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14869 
14870 	/* Configure sysfs attributes */
14871 	error = lpfc_alloc_sysfs_attr(vport);
14872 	if (error) {
14873 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14874 				"1416 Failed to allocate sysfs attr\n");
14875 		goto out_destroy_shost;
14876 	}
14877 
14878 	/* Set up SLI-4 HBA */
14879 	if (lpfc_sli4_hba_setup(phba)) {
14880 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14881 				"1421 Failed to set up hba\n");
14882 		error = -ENODEV;
14883 		goto out_free_sysfs_attr;
14884 	}
14885 
14886 	/* Log the current active interrupt mode */
14887 	phba->intr_mode = intr_mode;
14888 	lpfc_log_intr_mode(phba, intr_mode);
14889 
14890 	/* Perform post initialization setup */
14891 	lpfc_post_init_setup(phba);
14892 
14893 	/* NVME support in FW earlier in the driver load corrects the
14894 	 * FC4 type making a check for nvme_support unnecessary.
14895 	 */
14896 	if (phba->nvmet_support == 0) {
14897 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14898 			/* Create NVME binding with nvme_fc_transport. This
14899 			 * ensures the vport is initialized.  If the localport
14900 			 * create fails, it should not unload the driver to
14901 			 * support field issues.
14902 			 */
14903 			error = lpfc_nvme_create_localport(vport);
14904 			if (error) {
14905 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14906 						"6004 NVME registration "
14907 						"failed, error x%x\n",
14908 						error);
14909 			}
14910 		}
14911 	}
14912 
14913 	/* check for firmware upgrade or downgrade */
14914 	if (phba->cfg_request_firmware_upgrade)
14915 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14916 
14917 	/* Check if there are static vports to be created. */
14918 	lpfc_create_static_vport(phba);
14919 
14920 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14921 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14922 
14923 	return 0;
14924 
14925 out_free_sysfs_attr:
14926 	lpfc_free_sysfs_attr(vport);
14927 out_destroy_shost:
14928 	lpfc_destroy_shost(phba);
14929 out_disable_intr:
14930 	lpfc_sli4_disable_intr(phba);
14931 out_unset_driver_resource:
14932 	lpfc_unset_driver_resource_phase2(phba);
14933 out_unset_driver_resource_s4:
14934 	lpfc_sli4_driver_resource_unset(phba);
14935 out_unset_pci_mem_s4:
14936 	lpfc_sli4_pci_mem_unset(phba);
14937 out_disable_pci_dev:
14938 	lpfc_disable_pci_dev(phba);
14939 	if (shost)
14940 		scsi_host_put(shost);
14941 out_free_phba:
14942 	lpfc_hba_free(phba);
14943 	return error;
14944 }
14945 
14946 /**
14947  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14948  * @pdev: pointer to PCI device
14949  *
14950  * This routine is called from the kernel's PCI subsystem to device with
14951  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14952  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14953  * device to be removed from the PCI subsystem properly.
14954  **/
14955 static void
14956 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14957 {
14958 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14959 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14960 	struct lpfc_vport **vports;
14961 	struct lpfc_hba *phba = vport->phba;
14962 	int i;
14963 
14964 	/* Mark the device unloading flag */
14965 	spin_lock_irq(&phba->hbalock);
14966 	vport->load_flag |= FC_UNLOADING;
14967 	spin_unlock_irq(&phba->hbalock);
14968 	if (phba->cgn_i)
14969 		lpfc_unreg_congestion_buf(phba);
14970 
14971 	lpfc_free_sysfs_attr(vport);
14972 
14973 	/* Release all the vports against this physical port */
14974 	vports = lpfc_create_vport_work_array(phba);
14975 	if (vports != NULL)
14976 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14977 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14978 				continue;
14979 			fc_vport_terminate(vports[i]->fc_vport);
14980 		}
14981 	lpfc_destroy_vport_work_array(phba, vports);
14982 
14983 	/* Remove FC host with the physical port */
14984 	fc_remove_host(shost);
14985 	scsi_remove_host(shost);
14986 
14987 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14988 	 * localports are destroyed after to cleanup all transport memory.
14989 	 */
14990 	lpfc_cleanup(vport);
14991 	lpfc_nvmet_destroy_targetport(phba);
14992 	lpfc_nvme_destroy_localport(vport);
14993 
14994 	/* De-allocate multi-XRI pools */
14995 	if (phba->cfg_xri_rebalancing)
14996 		lpfc_destroy_multixri_pools(phba);
14997 
14998 	/*
14999 	 * Bring down the SLI Layer. This step disables all interrupts,
15000 	 * clears the rings, discards all mailbox commands, and resets
15001 	 * the HBA FCoE function.
15002 	 */
15003 	lpfc_debugfs_terminate(vport);
15004 
15005 	lpfc_stop_hba_timers(phba);
15006 	spin_lock_irq(&phba->port_list_lock);
15007 	list_del_init(&vport->listentry);
15008 	spin_unlock_irq(&phba->port_list_lock);
15009 
15010 	/* Perform scsi free before driver resource_unset since scsi
15011 	 * buffers are released to their corresponding pools here.
15012 	 */
15013 	lpfc_io_free(phba);
15014 	lpfc_free_iocb_list(phba);
15015 	lpfc_sli4_hba_unset(phba);
15016 
15017 	lpfc_unset_driver_resource_phase2(phba);
15018 	lpfc_sli4_driver_resource_unset(phba);
15019 
15020 	/* Unmap adapter Control and Doorbell registers */
15021 	lpfc_sli4_pci_mem_unset(phba);
15022 
15023 	/* Release PCI resources and disable device's PCI function */
15024 	scsi_host_put(shost);
15025 	lpfc_disable_pci_dev(phba);
15026 
15027 	/* Finally, free the driver's device data structure */
15028 	lpfc_hba_free(phba);
15029 
15030 	return;
15031 }
15032 
15033 /**
15034  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
15035  * @dev_d: pointer to device
15036  *
15037  * This routine is called from the kernel's PCI subsystem to support system
15038  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
15039  * this method, it quiesces the device by stopping the driver's worker
15040  * thread for the device, turning off device's interrupt and DMA, and bring
15041  * the device offline. Note that as the driver implements the minimum PM
15042  * requirements to a power-aware driver's PM support for suspend/resume -- all
15043  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
15044  * method call will be treated as SUSPEND and the driver will fully
15045  * reinitialize its device during resume() method call, the driver will set
15046  * device to PCI_D3hot state in PCI config space instead of setting it
15047  * according to the @msg provided by the PM.
15048  *
15049  * Return code
15050  * 	0 - driver suspended the device
15051  * 	Error otherwise
15052  **/
15053 static int __maybe_unused
15054 lpfc_pci_suspend_one_s4(struct device *dev_d)
15055 {
15056 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15057 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15058 
15059 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15060 			"2843 PCI device Power Management suspend.\n");
15061 
15062 	/* Bring down the device */
15063 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15064 	lpfc_offline(phba);
15065 	kthread_stop(phba->worker_thread);
15066 
15067 	/* Disable interrupt from device */
15068 	lpfc_sli4_disable_intr(phba);
15069 	lpfc_sli4_queue_destroy(phba);
15070 
15071 	return 0;
15072 }
15073 
15074 /**
15075  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
15076  * @dev_d: pointer to device
15077  *
15078  * This routine is called from the kernel's PCI subsystem to support system
15079  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
15080  * this method, it restores the device's PCI config space state and fully
15081  * reinitializes the device and brings it online. Note that as the driver
15082  * implements the minimum PM requirements to a power-aware driver's PM for
15083  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
15084  * to the suspend() method call will be treated as SUSPEND and the driver
15085  * will fully reinitialize its device during resume() method call, the device
15086  * will be set to PCI_D0 directly in PCI config space before restoring the
15087  * state.
15088  *
15089  * Return code
15090  * 	0 - driver suspended the device
15091  * 	Error otherwise
15092  **/
15093 static int __maybe_unused
15094 lpfc_pci_resume_one_s4(struct device *dev_d)
15095 {
15096 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
15097 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15098 	uint32_t intr_mode;
15099 	int error;
15100 
15101 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15102 			"0292 PCI device Power Management resume.\n");
15103 
15104 	 /* Startup the kernel thread for this host adapter. */
15105 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
15106 					"lpfc_worker_%d", phba->brd_no);
15107 	if (IS_ERR(phba->worker_thread)) {
15108 		error = PTR_ERR(phba->worker_thread);
15109 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15110 				"0293 PM resume failed to start worker "
15111 				"thread: error=x%x.\n", error);
15112 		return error;
15113 	}
15114 
15115 	/* Configure and enable interrupt */
15116 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15117 	if (intr_mode == LPFC_INTR_ERROR) {
15118 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15119 				"0294 PM resume Failed to enable interrupt\n");
15120 		return -EIO;
15121 	} else
15122 		phba->intr_mode = intr_mode;
15123 
15124 	/* Restart HBA and bring it online */
15125 	lpfc_sli_brdrestart(phba);
15126 	lpfc_online(phba);
15127 
15128 	/* Log the current active interrupt mode */
15129 	lpfc_log_intr_mode(phba, phba->intr_mode);
15130 
15131 	return 0;
15132 }
15133 
15134 /**
15135  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
15136  * @phba: pointer to lpfc hba data structure.
15137  *
15138  * This routine is called to prepare the SLI4 device for PCI slot recover. It
15139  * aborts all the outstanding SCSI I/Os to the pci device.
15140  **/
15141 static void
15142 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
15143 {
15144 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15145 			"2828 PCI channel I/O abort preparing for recovery\n");
15146 	/*
15147 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
15148 	 * and let the SCSI mid-layer to retry them to recover.
15149 	 */
15150 	lpfc_sli_abort_fcp_rings(phba);
15151 }
15152 
15153 /**
15154  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
15155  * @phba: pointer to lpfc hba data structure.
15156  *
15157  * This routine is called to prepare the SLI4 device for PCI slot reset. It
15158  * disables the device interrupt and pci device, and aborts the internal FCP
15159  * pending I/Os.
15160  **/
15161 static void
15162 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
15163 {
15164 	int offline =  pci_channel_offline(phba->pcidev);
15165 
15166 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15167 			"2826 PCI channel disable preparing for reset offline"
15168 			" %d\n", offline);
15169 
15170 	/* Block any management I/Os to the device */
15171 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
15172 
15173 
15174 	/* HBA_PCI_ERR was set in io_error_detect */
15175 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
15176 	/* Flush all driver's outstanding I/Os as we are to reset */
15177 	lpfc_sli_flush_io_rings(phba);
15178 	lpfc_offline(phba);
15179 
15180 	/* stop all timers */
15181 	lpfc_stop_hba_timers(phba);
15182 
15183 	lpfc_sli4_queue_destroy(phba);
15184 	/* Disable interrupt and pci device */
15185 	lpfc_sli4_disable_intr(phba);
15186 	pci_disable_device(phba->pcidev);
15187 }
15188 
15189 /**
15190  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
15191  * @phba: pointer to lpfc hba data structure.
15192  *
15193  * This routine is called to prepare the SLI4 device for PCI slot permanently
15194  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
15195  * pending I/Os.
15196  **/
15197 static void
15198 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
15199 {
15200 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15201 			"2827 PCI channel permanent disable for failure\n");
15202 
15203 	/* Block all SCSI devices' I/Os on the host */
15204 	lpfc_scsi_dev_block(phba);
15205 
15206 	/* stop all timers */
15207 	lpfc_stop_hba_timers(phba);
15208 
15209 	/* Clean up all driver's outstanding I/Os */
15210 	lpfc_sli_flush_io_rings(phba);
15211 }
15212 
15213 /**
15214  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15215  * @pdev: pointer to PCI device.
15216  * @state: the current PCI connection state.
15217  *
15218  * This routine is called from the PCI subsystem for error handling to device
15219  * with SLI-4 interface spec. This function is called by the PCI subsystem
15220  * after a PCI bus error affecting this device has been detected. When this
15221  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15222  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15223  * for the PCI subsystem to perform proper recovery as desired.
15224  *
15225  * Return codes
15226  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15227  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15228  **/
15229 static pci_ers_result_t
15230 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15231 {
15232 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15233 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15234 	bool hba_pci_err;
15235 
15236 	switch (state) {
15237 	case pci_channel_io_normal:
15238 		/* Non-fatal error, prepare for recovery */
15239 		lpfc_sli4_prep_dev_for_recover(phba);
15240 		return PCI_ERS_RESULT_CAN_RECOVER;
15241 	case pci_channel_io_frozen:
15242 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15243 		/* Fatal error, prepare for slot reset */
15244 		if (!hba_pci_err)
15245 			lpfc_sli4_prep_dev_for_reset(phba);
15246 		else
15247 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15248 					"2832  Already handling PCI error "
15249 					"state: x%x\n", state);
15250 		return PCI_ERS_RESULT_NEED_RESET;
15251 	case pci_channel_io_perm_failure:
15252 		set_bit(HBA_PCI_ERR, &phba->bit_flags);
15253 		/* Permanent failure, prepare for device down */
15254 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15255 		return PCI_ERS_RESULT_DISCONNECT;
15256 	default:
15257 		hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags);
15258 		if (!hba_pci_err)
15259 			lpfc_sli4_prep_dev_for_reset(phba);
15260 		/* Unknown state, prepare and request slot reset */
15261 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15262 				"2825 Unknown PCI error state: x%x\n", state);
15263 		lpfc_sli4_prep_dev_for_reset(phba);
15264 		return PCI_ERS_RESULT_NEED_RESET;
15265 	}
15266 }
15267 
15268 /**
15269  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15270  * @pdev: pointer to PCI device.
15271  *
15272  * This routine is called from the PCI subsystem for error handling to device
15273  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15274  * restart the PCI card from scratch, as if from a cold-boot. During the
15275  * PCI subsystem error recovery, after the driver returns
15276  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15277  * recovery and then call this routine before calling the .resume method to
15278  * recover the device. This function will initialize the HBA device, enable
15279  * the interrupt, but it will just put the HBA to offline state without
15280  * passing any I/O traffic.
15281  *
15282  * Return codes
15283  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15284  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15285  */
15286 static pci_ers_result_t
15287 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15288 {
15289 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15290 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15291 	struct lpfc_sli *psli = &phba->sli;
15292 	uint32_t intr_mode;
15293 	bool hba_pci_err;
15294 
15295 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15296 	if (pci_enable_device_mem(pdev)) {
15297 		printk(KERN_ERR "lpfc: Cannot re-enable "
15298 		       "PCI device after reset.\n");
15299 		return PCI_ERS_RESULT_DISCONNECT;
15300 	}
15301 
15302 	pci_restore_state(pdev);
15303 
15304 	hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags);
15305 	if (!hba_pci_err)
15306 		dev_info(&pdev->dev,
15307 			 "hba_pci_err was not set, recovering slot reset.\n");
15308 	/*
15309 	 * As the new kernel behavior of pci_restore_state() API call clears
15310 	 * device saved_state flag, need to save the restored state again.
15311 	 */
15312 	pci_save_state(pdev);
15313 
15314 	if (pdev->is_busmaster)
15315 		pci_set_master(pdev);
15316 
15317 	spin_lock_irq(&phba->hbalock);
15318 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15319 	spin_unlock_irq(&phba->hbalock);
15320 
15321 	/* Init cpu_map array */
15322 	lpfc_cpu_map_array_init(phba);
15323 	/* Configure and enable interrupt */
15324 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15325 	if (intr_mode == LPFC_INTR_ERROR) {
15326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15327 				"2824 Cannot re-enable interrupt after "
15328 				"slot reset.\n");
15329 		return PCI_ERS_RESULT_DISCONNECT;
15330 	} else
15331 		phba->intr_mode = intr_mode;
15332 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15333 
15334 	/* Log the current active interrupt mode */
15335 	lpfc_log_intr_mode(phba, phba->intr_mode);
15336 
15337 	return PCI_ERS_RESULT_RECOVERED;
15338 }
15339 
15340 /**
15341  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15342  * @pdev: pointer to PCI device
15343  *
15344  * This routine is called from the PCI subsystem for error handling to device
15345  * with SLI-4 interface spec. It is called when kernel error recovery tells
15346  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15347  * error recovery. After this call, traffic can start to flow from this device
15348  * again.
15349  **/
15350 static void
15351 lpfc_io_resume_s4(struct pci_dev *pdev)
15352 {
15353 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15354 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15355 
15356 	/*
15357 	 * In case of slot reset, as function reset is performed through
15358 	 * mailbox command which needs DMA to be enabled, this operation
15359 	 * has to be moved to the io resume phase. Taking device offline
15360 	 * will perform the necessary cleanup.
15361 	 */
15362 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15363 		/* Perform device reset */
15364 		lpfc_sli_brdrestart(phba);
15365 		/* Bring the device back online */
15366 		lpfc_online(phba);
15367 	}
15368 }
15369 
15370 /**
15371  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15372  * @pdev: pointer to PCI device
15373  * @pid: pointer to PCI device identifier
15374  *
15375  * This routine is to be registered to the kernel's PCI subsystem. When an
15376  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15377  * at PCI device-specific information of the device and driver to see if the
15378  * driver state that it can support this kind of device. If the match is
15379  * successful, the driver core invokes this routine. This routine dispatches
15380  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15381  * do all the initialization that it needs to do to handle the HBA device
15382  * properly.
15383  *
15384  * Return code
15385  * 	0 - driver can claim the device
15386  * 	negative value - driver can not claim the device
15387  **/
15388 static int
15389 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15390 {
15391 	int rc;
15392 	struct lpfc_sli_intf intf;
15393 
15394 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15395 		return -ENODEV;
15396 
15397 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15398 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15399 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15400 	else
15401 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15402 
15403 	return rc;
15404 }
15405 
15406 /**
15407  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15408  * @pdev: pointer to PCI device
15409  *
15410  * This routine is to be registered to the kernel's PCI subsystem. When an
15411  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15412  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15413  * remove routine, which will perform all the necessary cleanup for the
15414  * device to be removed from the PCI subsystem properly.
15415  **/
15416 static void
15417 lpfc_pci_remove_one(struct pci_dev *pdev)
15418 {
15419 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15420 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15421 
15422 	switch (phba->pci_dev_grp) {
15423 	case LPFC_PCI_DEV_LP:
15424 		lpfc_pci_remove_one_s3(pdev);
15425 		break;
15426 	case LPFC_PCI_DEV_OC:
15427 		lpfc_pci_remove_one_s4(pdev);
15428 		break;
15429 	default:
15430 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15431 				"1424 Invalid PCI device group: 0x%x\n",
15432 				phba->pci_dev_grp);
15433 		break;
15434 	}
15435 	return;
15436 }
15437 
15438 /**
15439  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15440  * @dev: pointer to device
15441  *
15442  * This routine is to be registered to the kernel's PCI subsystem to support
15443  * system Power Management (PM). When PM invokes this method, it dispatches
15444  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15445  * suspend the device.
15446  *
15447  * Return code
15448  * 	0 - driver suspended the device
15449  * 	Error otherwise
15450  **/
15451 static int __maybe_unused
15452 lpfc_pci_suspend_one(struct device *dev)
15453 {
15454 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15455 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15456 	int rc = -ENODEV;
15457 
15458 	switch (phba->pci_dev_grp) {
15459 	case LPFC_PCI_DEV_LP:
15460 		rc = lpfc_pci_suspend_one_s3(dev);
15461 		break;
15462 	case LPFC_PCI_DEV_OC:
15463 		rc = lpfc_pci_suspend_one_s4(dev);
15464 		break;
15465 	default:
15466 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15467 				"1425 Invalid PCI device group: 0x%x\n",
15468 				phba->pci_dev_grp);
15469 		break;
15470 	}
15471 	return rc;
15472 }
15473 
15474 /**
15475  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15476  * @dev: pointer to device
15477  *
15478  * This routine is to be registered to the kernel's PCI subsystem to support
15479  * system Power Management (PM). When PM invokes this method, it dispatches
15480  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15481  * resume the device.
15482  *
15483  * Return code
15484  * 	0 - driver suspended the device
15485  * 	Error otherwise
15486  **/
15487 static int __maybe_unused
15488 lpfc_pci_resume_one(struct device *dev)
15489 {
15490 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15491 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15492 	int rc = -ENODEV;
15493 
15494 	switch (phba->pci_dev_grp) {
15495 	case LPFC_PCI_DEV_LP:
15496 		rc = lpfc_pci_resume_one_s3(dev);
15497 		break;
15498 	case LPFC_PCI_DEV_OC:
15499 		rc = lpfc_pci_resume_one_s4(dev);
15500 		break;
15501 	default:
15502 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15503 				"1426 Invalid PCI device group: 0x%x\n",
15504 				phba->pci_dev_grp);
15505 		break;
15506 	}
15507 	return rc;
15508 }
15509 
15510 /**
15511  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15512  * @pdev: pointer to PCI device.
15513  * @state: the current PCI connection state.
15514  *
15515  * This routine is registered to the PCI subsystem for error handling. This
15516  * function is called by the PCI subsystem after a PCI bus error affecting
15517  * this device has been detected. When this routine is invoked, it dispatches
15518  * the action to the proper SLI-3 or SLI-4 device error detected handling
15519  * routine, which will perform the proper error detected operation.
15520  *
15521  * Return codes
15522  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15523  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15524  **/
15525 static pci_ers_result_t
15526 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15527 {
15528 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15529 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15530 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15531 
15532 	if (phba->link_state == LPFC_HBA_ERROR &&
15533 	    phba->hba_flag & HBA_IOQ_FLUSH)
15534 		return PCI_ERS_RESULT_NEED_RESET;
15535 
15536 	switch (phba->pci_dev_grp) {
15537 	case LPFC_PCI_DEV_LP:
15538 		rc = lpfc_io_error_detected_s3(pdev, state);
15539 		break;
15540 	case LPFC_PCI_DEV_OC:
15541 		rc = lpfc_io_error_detected_s4(pdev, state);
15542 		break;
15543 	default:
15544 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15545 				"1427 Invalid PCI device group: 0x%x\n",
15546 				phba->pci_dev_grp);
15547 		break;
15548 	}
15549 	return rc;
15550 }
15551 
15552 /**
15553  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15554  * @pdev: pointer to PCI device.
15555  *
15556  * This routine is registered to the PCI subsystem for error handling. This
15557  * function is called after PCI bus has been reset to restart the PCI card
15558  * from scratch, as if from a cold-boot. When this routine is invoked, it
15559  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15560  * routine, which will perform the proper device reset.
15561  *
15562  * Return codes
15563  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15564  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15565  **/
15566 static pci_ers_result_t
15567 lpfc_io_slot_reset(struct pci_dev *pdev)
15568 {
15569 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15570 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15571 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15572 
15573 	switch (phba->pci_dev_grp) {
15574 	case LPFC_PCI_DEV_LP:
15575 		rc = lpfc_io_slot_reset_s3(pdev);
15576 		break;
15577 	case LPFC_PCI_DEV_OC:
15578 		rc = lpfc_io_slot_reset_s4(pdev);
15579 		break;
15580 	default:
15581 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15582 				"1428 Invalid PCI device group: 0x%x\n",
15583 				phba->pci_dev_grp);
15584 		break;
15585 	}
15586 	return rc;
15587 }
15588 
15589 /**
15590  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15591  * @pdev: pointer to PCI device
15592  *
15593  * This routine is registered to the PCI subsystem for error handling. It
15594  * is called when kernel error recovery tells the lpfc driver that it is
15595  * OK to resume normal PCI operation after PCI bus error recovery. When
15596  * this routine is invoked, it dispatches the action to the proper SLI-3
15597  * or SLI-4 device io_resume routine, which will resume the device operation.
15598  **/
15599 static void
15600 lpfc_io_resume(struct pci_dev *pdev)
15601 {
15602 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15603 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15604 
15605 	switch (phba->pci_dev_grp) {
15606 	case LPFC_PCI_DEV_LP:
15607 		lpfc_io_resume_s3(pdev);
15608 		break;
15609 	case LPFC_PCI_DEV_OC:
15610 		lpfc_io_resume_s4(pdev);
15611 		break;
15612 	default:
15613 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15614 				"1429 Invalid PCI device group: 0x%x\n",
15615 				phba->pci_dev_grp);
15616 		break;
15617 	}
15618 	return;
15619 }
15620 
15621 /**
15622  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15623  * @phba: pointer to lpfc hba data structure.
15624  *
15625  * This routine checks to see if OAS is supported for this adapter. If
15626  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15627  * the enable oas flag is cleared and the pool created for OAS device data
15628  * is destroyed.
15629  *
15630  **/
15631 static void
15632 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15633 {
15634 
15635 	if (!phba->cfg_EnableXLane)
15636 		return;
15637 
15638 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15639 		phba->cfg_fof = 1;
15640 	} else {
15641 		phba->cfg_fof = 0;
15642 		mempool_destroy(phba->device_data_mem_pool);
15643 		phba->device_data_mem_pool = NULL;
15644 	}
15645 
15646 	return;
15647 }
15648 
15649 /**
15650  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15651  * @phba: pointer to lpfc hba data structure.
15652  *
15653  * This routine checks to see if RAS is supported by the adapter. Check the
15654  * function through which RAS support enablement is to be done.
15655  **/
15656 void
15657 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15658 {
15659 	/* if ASIC_GEN_NUM >= 0xC) */
15660 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15661 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15662 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15663 		    LPFC_SLI_INTF_FAMILY_G6)) {
15664 		phba->ras_fwlog.ras_hwsupport = true;
15665 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15666 		    phba->cfg_ras_fwlog_buffsize)
15667 			phba->ras_fwlog.ras_enabled = true;
15668 		else
15669 			phba->ras_fwlog.ras_enabled = false;
15670 	} else {
15671 		phba->ras_fwlog.ras_hwsupport = false;
15672 	}
15673 }
15674 
15675 
15676 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15677 
15678 static const struct pci_error_handlers lpfc_err_handler = {
15679 	.error_detected = lpfc_io_error_detected,
15680 	.slot_reset = lpfc_io_slot_reset,
15681 	.resume = lpfc_io_resume,
15682 };
15683 
15684 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15685 			 lpfc_pci_suspend_one,
15686 			 lpfc_pci_resume_one);
15687 
15688 static struct pci_driver lpfc_driver = {
15689 	.name		= LPFC_DRIVER_NAME,
15690 	.id_table	= lpfc_id_table,
15691 	.probe		= lpfc_pci_probe_one,
15692 	.remove		= lpfc_pci_remove_one,
15693 	.shutdown	= lpfc_pci_remove_one,
15694 	.driver.pm	= &lpfc_pci_pm_ops_one,
15695 	.err_handler    = &lpfc_err_handler,
15696 };
15697 
15698 static const struct file_operations lpfc_mgmt_fop = {
15699 	.owner = THIS_MODULE,
15700 };
15701 
15702 static struct miscdevice lpfc_mgmt_dev = {
15703 	.minor = MISC_DYNAMIC_MINOR,
15704 	.name = "lpfcmgmt",
15705 	.fops = &lpfc_mgmt_fop,
15706 };
15707 
15708 /**
15709  * lpfc_init - lpfc module initialization routine
15710  *
15711  * This routine is to be invoked when the lpfc module is loaded into the
15712  * kernel. The special kernel macro module_init() is used to indicate the
15713  * role of this routine to the kernel as lpfc module entry point.
15714  *
15715  * Return codes
15716  *   0 - successful
15717  *   -ENOMEM - FC attach transport failed
15718  *   all others - failed
15719  */
15720 static int __init
15721 lpfc_init(void)
15722 {
15723 	int error = 0;
15724 
15725 	pr_info(LPFC_MODULE_DESC "\n");
15726 	pr_info(LPFC_COPYRIGHT "\n");
15727 
15728 	error = misc_register(&lpfc_mgmt_dev);
15729 	if (error)
15730 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15731 			"misc_register returned with status %d", error);
15732 
15733 	error = -ENOMEM;
15734 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15735 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15736 	lpfc_transport_template =
15737 				fc_attach_transport(&lpfc_transport_functions);
15738 	if (lpfc_transport_template == NULL)
15739 		goto unregister;
15740 	lpfc_vport_transport_template =
15741 		fc_attach_transport(&lpfc_vport_transport_functions);
15742 	if (lpfc_vport_transport_template == NULL) {
15743 		fc_release_transport(lpfc_transport_template);
15744 		goto unregister;
15745 	}
15746 	lpfc_wqe_cmd_template();
15747 	lpfc_nvmet_cmd_template();
15748 
15749 	/* Initialize in case vector mapping is needed */
15750 	lpfc_present_cpu = num_present_cpus();
15751 
15752 	lpfc_pldv_detect = false;
15753 
15754 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15755 					"lpfc/sli4:online",
15756 					lpfc_cpu_online, lpfc_cpu_offline);
15757 	if (error < 0)
15758 		goto cpuhp_failure;
15759 	lpfc_cpuhp_state = error;
15760 
15761 	error = pci_register_driver(&lpfc_driver);
15762 	if (error)
15763 		goto unwind;
15764 
15765 	return error;
15766 
15767 unwind:
15768 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15769 cpuhp_failure:
15770 	fc_release_transport(lpfc_transport_template);
15771 	fc_release_transport(lpfc_vport_transport_template);
15772 unregister:
15773 	misc_deregister(&lpfc_mgmt_dev);
15774 
15775 	return error;
15776 }
15777 
15778 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15779 {
15780 	unsigned int start_idx;
15781 	unsigned int dbg_cnt;
15782 	unsigned int temp_idx;
15783 	int i;
15784 	int j = 0;
15785 	unsigned long rem_nsec;
15786 
15787 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15788 		return;
15789 
15790 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15791 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15792 	if (!dbg_cnt)
15793 		goto out;
15794 	temp_idx = start_idx;
15795 	if (dbg_cnt >= DBG_LOG_SZ) {
15796 		dbg_cnt = DBG_LOG_SZ;
15797 		temp_idx -= 1;
15798 	} else {
15799 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15800 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15801 		} else {
15802 			if (start_idx < dbg_cnt)
15803 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15804 			else
15805 				start_idx -= dbg_cnt;
15806 		}
15807 	}
15808 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15809 		 start_idx, temp_idx, dbg_cnt);
15810 
15811 	for (i = 0; i < dbg_cnt; i++) {
15812 		if ((start_idx + i) < DBG_LOG_SZ)
15813 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15814 		else
15815 			temp_idx = j++;
15816 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15817 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15818 			 temp_idx,
15819 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15820 			 rem_nsec / 1000,
15821 			 phba->dbg_log[temp_idx].log);
15822 	}
15823 out:
15824 	atomic_set(&phba->dbg_log_cnt, 0);
15825 	atomic_set(&phba->dbg_log_dmping, 0);
15826 }
15827 
15828 __printf(2, 3)
15829 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15830 {
15831 	unsigned int idx;
15832 	va_list args;
15833 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15834 	struct va_format vaf;
15835 
15836 
15837 	va_start(args, fmt);
15838 	if (unlikely(dbg_dmping)) {
15839 		vaf.fmt = fmt;
15840 		vaf.va = &args;
15841 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15842 		va_end(args);
15843 		return;
15844 	}
15845 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15846 		DBG_LOG_SZ;
15847 
15848 	atomic_inc(&phba->dbg_log_cnt);
15849 
15850 	vscnprintf(phba->dbg_log[idx].log,
15851 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15852 	va_end(args);
15853 
15854 	phba->dbg_log[idx].t_ns = local_clock();
15855 }
15856 
15857 /**
15858  * lpfc_exit - lpfc module removal routine
15859  *
15860  * This routine is invoked when the lpfc module is removed from the kernel.
15861  * The special kernel macro module_exit() is used to indicate the role of
15862  * this routine to the kernel as lpfc module exit point.
15863  */
15864 static void __exit
15865 lpfc_exit(void)
15866 {
15867 	misc_deregister(&lpfc_mgmt_dev);
15868 	pci_unregister_driver(&lpfc_driver);
15869 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15870 	fc_release_transport(lpfc_transport_template);
15871 	fc_release_transport(lpfc_vport_transport_template);
15872 	idr_destroy(&lpfc_hba_index);
15873 }
15874 
15875 module_init(lpfc_init);
15876 module_exit(lpfc_exit);
15877 MODULE_LICENSE("GPL");
15878 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15879 MODULE_AUTHOR("Broadcom");
15880 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15881