1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/sched/clock.h> 34 #include <linux/ctype.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/irq.h> 40 #include <linux/bitops.h> 41 #include <linux/crash_dump.h> 42 #include <linux/cpu.h> 43 #include <linux/cpuhotplug.h> 44 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_transport_fc.h> 49 #include <scsi/scsi_tcq.h> 50 #include <scsi/fc/fc_fs.h> 51 52 #include "lpfc_hw4.h" 53 #include "lpfc_hw.h" 54 #include "lpfc_sli.h" 55 #include "lpfc_sli4.h" 56 #include "lpfc_nl.h" 57 #include "lpfc_disc.h" 58 #include "lpfc.h" 59 #include "lpfc_scsi.h" 60 #include "lpfc_nvme.h" 61 #include "lpfc_logmsg.h" 62 #include "lpfc_crtn.h" 63 #include "lpfc_vport.h" 64 #include "lpfc_version.h" 65 #include "lpfc_ids.h" 66 67 static enum cpuhp_state lpfc_cpuhp_state; 68 /* Used when mapping IRQ vectors in a driver centric manner */ 69 static uint32_t lpfc_present_cpu; 70 static bool lpfc_pldv_detect; 71 72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 76 static int lpfc_post_rcv_buf(struct lpfc_hba *); 77 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 79 static int lpfc_setup_endian_order(struct lpfc_hba *); 80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 81 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 83 static void lpfc_init_sgl_list(struct lpfc_hba *); 84 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 85 static void lpfc_free_active_sgl(struct lpfc_hba *); 86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 91 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 97 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 98 99 static struct scsi_transport_template *lpfc_transport_template = NULL; 100 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 101 static DEFINE_IDR(lpfc_hba_index); 102 #define LPFC_NVMET_BUF_POST 254 103 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 104 static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts); 105 106 /** 107 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 108 * @phba: pointer to lpfc hba data structure. 109 * 110 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 111 * mailbox command. It retrieves the revision information from the HBA and 112 * collects the Vital Product Data (VPD) about the HBA for preparing the 113 * configuration of the HBA. 114 * 115 * Return codes: 116 * 0 - success. 117 * -ERESTART - requests the SLI layer to reset the HBA and try again. 118 * Any other value - indicates an error. 119 **/ 120 int 121 lpfc_config_port_prep(struct lpfc_hba *phba) 122 { 123 lpfc_vpd_t *vp = &phba->vpd; 124 int i = 0, rc; 125 LPFC_MBOXQ_t *pmb; 126 MAILBOX_t *mb; 127 char *lpfc_vpd_data = NULL; 128 uint16_t offset = 0; 129 static char licensed[56] = 130 "key unlock for use with gnu public licensed code only\0"; 131 static int init_key = 1; 132 133 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 134 if (!pmb) { 135 phba->link_state = LPFC_HBA_ERROR; 136 return -ENOMEM; 137 } 138 139 mb = &pmb->u.mb; 140 phba->link_state = LPFC_INIT_MBX_CMDS; 141 142 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 143 if (init_key) { 144 uint32_t *ptext = (uint32_t *) licensed; 145 146 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 147 *ptext = cpu_to_be32(*ptext); 148 init_key = 0; 149 } 150 151 lpfc_read_nv(phba, pmb); 152 memset((char*)mb->un.varRDnvp.rsvd3, 0, 153 sizeof (mb->un.varRDnvp.rsvd3)); 154 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 155 sizeof (licensed)); 156 157 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 158 159 if (rc != MBX_SUCCESS) { 160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 161 "0324 Config Port initialization " 162 "error, mbxCmd x%x READ_NVPARM, " 163 "mbxStatus x%x\n", 164 mb->mbxCommand, mb->mbxStatus); 165 mempool_free(pmb, phba->mbox_mem_pool); 166 return -ERESTART; 167 } 168 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 169 sizeof(phba->wwnn)); 170 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 171 sizeof(phba->wwpn)); 172 } 173 174 /* 175 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 176 * which was already set in lpfc_get_cfgparam() 177 */ 178 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 179 180 /* Setup and issue mailbox READ REV command */ 181 lpfc_read_rev(phba, pmb); 182 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 183 if (rc != MBX_SUCCESS) { 184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 185 "0439 Adapter failed to init, mbxCmd x%x " 186 "READ_REV, mbxStatus x%x\n", 187 mb->mbxCommand, mb->mbxStatus); 188 mempool_free( pmb, phba->mbox_mem_pool); 189 return -ERESTART; 190 } 191 192 193 /* 194 * The value of rr must be 1 since the driver set the cv field to 1. 195 * This setting requires the FW to set all revision fields. 196 */ 197 if (mb->un.varRdRev.rr == 0) { 198 vp->rev.rBit = 0; 199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 200 "0440 Adapter failed to init, READ_REV has " 201 "missing revision information.\n"); 202 mempool_free(pmb, phba->mbox_mem_pool); 203 return -ERESTART; 204 } 205 206 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 207 mempool_free(pmb, phba->mbox_mem_pool); 208 return -EINVAL; 209 } 210 211 /* Save information as VPD data */ 212 vp->rev.rBit = 1; 213 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 214 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 215 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 216 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 217 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 218 vp->rev.biuRev = mb->un.varRdRev.biuRev; 219 vp->rev.smRev = mb->un.varRdRev.smRev; 220 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 221 vp->rev.endecRev = mb->un.varRdRev.endecRev; 222 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 223 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 224 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 225 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 226 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 227 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 228 229 /* If the sli feature level is less then 9, we must 230 * tear down all RPIs and VPIs on link down if NPIV 231 * is enabled. 232 */ 233 if (vp->rev.feaLevelHigh < 9) 234 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 235 236 if (lpfc_is_LC_HBA(phba->pcidev->device)) 237 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 238 sizeof (phba->RandomData)); 239 240 /* Get adapter VPD information */ 241 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 242 if (!lpfc_vpd_data) 243 goto out_free_mbox; 244 do { 245 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 246 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 247 248 if (rc != MBX_SUCCESS) { 249 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 250 "0441 VPD not present on adapter, " 251 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 252 mb->mbxCommand, mb->mbxStatus); 253 mb->un.varDmp.word_cnt = 0; 254 } 255 /* dump mem may return a zero when finished or we got a 256 * mailbox error, either way we are done. 257 */ 258 if (mb->un.varDmp.word_cnt == 0) 259 break; 260 261 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 262 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 263 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 264 lpfc_vpd_data + offset, 265 mb->un.varDmp.word_cnt); 266 offset += mb->un.varDmp.word_cnt; 267 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 268 269 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 270 271 kfree(lpfc_vpd_data); 272 out_free_mbox: 273 mempool_free(pmb, phba->mbox_mem_pool); 274 return 0; 275 } 276 277 /** 278 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 279 * @phba: pointer to lpfc hba data structure. 280 * @pmboxq: pointer to the driver internal queue element for mailbox command. 281 * 282 * This is the completion handler for driver's configuring asynchronous event 283 * mailbox command to the device. If the mailbox command returns successfully, 284 * it will set internal async event support flag to 1; otherwise, it will 285 * set internal async event support flag to 0. 286 **/ 287 static void 288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 289 { 290 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 291 phba->temp_sensor_support = 1; 292 else 293 phba->temp_sensor_support = 0; 294 mempool_free(pmboxq, phba->mbox_mem_pool); 295 return; 296 } 297 298 /** 299 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 300 * @phba: pointer to lpfc hba data structure. 301 * @pmboxq: pointer to the driver internal queue element for mailbox command. 302 * 303 * This is the completion handler for dump mailbox command for getting 304 * wake up parameters. When this command complete, the response contain 305 * Option rom version of the HBA. This function translate the version number 306 * into a human readable string and store it in OptionROMVersion. 307 **/ 308 static void 309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 310 { 311 struct prog_id *prg; 312 uint32_t prog_id_word; 313 char dist = ' '; 314 /* character array used for decoding dist type. */ 315 char dist_char[] = "nabx"; 316 317 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 318 mempool_free(pmboxq, phba->mbox_mem_pool); 319 return; 320 } 321 322 prg = (struct prog_id *) &prog_id_word; 323 324 /* word 7 contain option rom version */ 325 prog_id_word = pmboxq->u.mb.un.varWords[7]; 326 327 /* Decode the Option rom version word to a readable string */ 328 dist = dist_char[prg->dist]; 329 330 if ((prg->dist == 3) && (prg->num == 0)) 331 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 332 prg->ver, prg->rev, prg->lev); 333 else 334 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 335 prg->ver, prg->rev, prg->lev, 336 dist, prg->num); 337 mempool_free(pmboxq, phba->mbox_mem_pool); 338 return; 339 } 340 341 /** 342 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 343 * @vport: pointer to lpfc vport data structure. 344 * 345 * 346 * Return codes 347 * None. 348 **/ 349 void 350 lpfc_update_vport_wwn(struct lpfc_vport *vport) 351 { 352 struct lpfc_hba *phba = vport->phba; 353 354 /* 355 * If the name is empty or there exists a soft name 356 * then copy the service params name, otherwise use the fc name 357 */ 358 if (vport->fc_nodename.u.wwn[0] == 0) 359 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 360 sizeof(struct lpfc_name)); 361 else 362 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 363 sizeof(struct lpfc_name)); 364 365 /* 366 * If the port name has changed, then set the Param changes flag 367 * to unreg the login 368 */ 369 if (vport->fc_portname.u.wwn[0] != 0 && 370 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 371 sizeof(struct lpfc_name))) { 372 vport->vport_flag |= FAWWPN_PARAM_CHG; 373 374 if (phba->sli_rev == LPFC_SLI_REV4 && 375 vport->port_type == LPFC_PHYSICAL_PORT && 376 phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { 377 if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)) 378 phba->sli4_hba.fawwpn_flag &= 379 ~LPFC_FAWWPN_FABRIC; 380 lpfc_printf_log(phba, KERN_INFO, 381 LOG_SLI | LOG_DISCOVERY | LOG_ELS, 382 "2701 FA-PWWN change WWPN from %llx to " 383 "%llx: vflag x%x fawwpn_flag x%x\n", 384 wwn_to_u64(vport->fc_portname.u.wwn), 385 wwn_to_u64 386 (vport->fc_sparam.portName.u.wwn), 387 vport->vport_flag, 388 phba->sli4_hba.fawwpn_flag); 389 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 390 sizeof(struct lpfc_name)); 391 } 392 } 393 394 if (vport->fc_portname.u.wwn[0] == 0) 395 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 396 sizeof(struct lpfc_name)); 397 else 398 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 399 sizeof(struct lpfc_name)); 400 } 401 402 /** 403 * lpfc_config_port_post - Perform lpfc initialization after config port 404 * @phba: pointer to lpfc hba data structure. 405 * 406 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 407 * command call. It performs all internal resource and state setups on the 408 * port: post IOCB buffers, enable appropriate host interrupt attentions, 409 * ELS ring timers, etc. 410 * 411 * Return codes 412 * 0 - success. 413 * Any other value - error. 414 **/ 415 int 416 lpfc_config_port_post(struct lpfc_hba *phba) 417 { 418 struct lpfc_vport *vport = phba->pport; 419 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 420 LPFC_MBOXQ_t *pmb; 421 MAILBOX_t *mb; 422 struct lpfc_dmabuf *mp; 423 struct lpfc_sli *psli = &phba->sli; 424 uint32_t status, timeout; 425 int i, j; 426 int rc; 427 428 spin_lock_irq(&phba->hbalock); 429 /* 430 * If the Config port completed correctly the HBA is not 431 * over heated any more. 432 */ 433 if (phba->over_temp_state == HBA_OVER_TEMP) 434 phba->over_temp_state = HBA_NORMAL_TEMP; 435 spin_unlock_irq(&phba->hbalock); 436 437 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 438 if (!pmb) { 439 phba->link_state = LPFC_HBA_ERROR; 440 return -ENOMEM; 441 } 442 mb = &pmb->u.mb; 443 444 /* Get login parameters for NID. */ 445 rc = lpfc_read_sparam(phba, pmb, 0); 446 if (rc) { 447 mempool_free(pmb, phba->mbox_mem_pool); 448 return -ENOMEM; 449 } 450 451 pmb->vport = vport; 452 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 454 "0448 Adapter failed init, mbxCmd x%x " 455 "READ_SPARM mbxStatus x%x\n", 456 mb->mbxCommand, mb->mbxStatus); 457 phba->link_state = LPFC_HBA_ERROR; 458 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 459 return -EIO; 460 } 461 462 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 463 464 /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no 465 * longer needed. Prevent unintended ctx_buf access as the mbox is 466 * reused. 467 */ 468 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 469 lpfc_mbuf_free(phba, mp->virt, mp->phys); 470 kfree(mp); 471 pmb->ctx_buf = NULL; 472 lpfc_update_vport_wwn(vport); 473 474 /* Update the fc_host data structures with new wwn. */ 475 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 476 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 477 fc_host_max_npiv_vports(shost) = phba->max_vpi; 478 479 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 480 /* This should be consolidated into parse_vpd ? - mr */ 481 if (phba->SerialNumber[0] == 0) { 482 uint8_t *outptr; 483 484 outptr = &vport->fc_nodename.u.s.IEEE[0]; 485 for (i = 0; i < 12; i++) { 486 status = *outptr++; 487 j = ((status & 0xf0) >> 4); 488 if (j <= 9) 489 phba->SerialNumber[i] = 490 (char)((uint8_t) 0x30 + (uint8_t) j); 491 else 492 phba->SerialNumber[i] = 493 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 494 i++; 495 j = (status & 0xf); 496 if (j <= 9) 497 phba->SerialNumber[i] = 498 (char)((uint8_t) 0x30 + (uint8_t) j); 499 else 500 phba->SerialNumber[i] = 501 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 502 } 503 } 504 505 lpfc_read_config(phba, pmb); 506 pmb->vport = vport; 507 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 509 "0453 Adapter failed to init, mbxCmd x%x " 510 "READ_CONFIG, mbxStatus x%x\n", 511 mb->mbxCommand, mb->mbxStatus); 512 phba->link_state = LPFC_HBA_ERROR; 513 mempool_free( pmb, phba->mbox_mem_pool); 514 return -EIO; 515 } 516 517 /* Check if the port is disabled */ 518 lpfc_sli_read_link_ste(phba); 519 520 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 521 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 522 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 523 "3359 HBA queue depth changed from %d to %d\n", 524 phba->cfg_hba_queue_depth, 525 mb->un.varRdConfig.max_xri); 526 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 527 } 528 529 phba->lmt = mb->un.varRdConfig.lmt; 530 531 /* Get the default values for Model Name and Description */ 532 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 533 534 phba->link_state = LPFC_LINK_DOWN; 535 536 /* Only process IOCBs on ELS ring till hba_state is READY */ 537 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 538 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 539 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 540 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 541 542 /* Post receive buffers for desired rings */ 543 if (phba->sli_rev != 3) 544 lpfc_post_rcv_buf(phba); 545 546 /* 547 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 548 */ 549 if (phba->intr_type == MSIX) { 550 rc = lpfc_config_msi(phba, pmb); 551 if (rc) { 552 mempool_free(pmb, phba->mbox_mem_pool); 553 return -EIO; 554 } 555 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 556 if (rc != MBX_SUCCESS) { 557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 558 "0352 Config MSI mailbox command " 559 "failed, mbxCmd x%x, mbxStatus x%x\n", 560 pmb->u.mb.mbxCommand, 561 pmb->u.mb.mbxStatus); 562 mempool_free(pmb, phba->mbox_mem_pool); 563 return -EIO; 564 } 565 } 566 567 spin_lock_irq(&phba->hbalock); 568 /* Initialize ERATT handling flag */ 569 phba->hba_flag &= ~HBA_ERATT_HANDLED; 570 571 /* Enable appropriate host interrupts */ 572 if (lpfc_readl(phba->HCregaddr, &status)) { 573 spin_unlock_irq(&phba->hbalock); 574 return -EIO; 575 } 576 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 577 if (psli->num_rings > 0) 578 status |= HC_R0INT_ENA; 579 if (psli->num_rings > 1) 580 status |= HC_R1INT_ENA; 581 if (psli->num_rings > 2) 582 status |= HC_R2INT_ENA; 583 if (psli->num_rings > 3) 584 status |= HC_R3INT_ENA; 585 586 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 587 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 588 status &= ~(HC_R0INT_ENA); 589 590 writel(status, phba->HCregaddr); 591 readl(phba->HCregaddr); /* flush */ 592 spin_unlock_irq(&phba->hbalock); 593 594 /* Set up ring-0 (ELS) timer */ 595 timeout = phba->fc_ratov * 2; 596 mod_timer(&vport->els_tmofunc, 597 jiffies + msecs_to_jiffies(1000 * timeout)); 598 /* Set up heart beat (HB) timer */ 599 mod_timer(&phba->hb_tmofunc, 600 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 601 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 602 phba->last_completion_time = jiffies; 603 /* Set up error attention (ERATT) polling timer */ 604 mod_timer(&phba->eratt_poll, 605 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 606 607 if (phba->hba_flag & LINK_DISABLED) { 608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 609 "2598 Adapter Link is disabled.\n"); 610 lpfc_down_link(phba, pmb); 611 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 612 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 613 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 615 "2599 Adapter failed to issue DOWN_LINK" 616 " mbox command rc 0x%x\n", rc); 617 618 mempool_free(pmb, phba->mbox_mem_pool); 619 return -EIO; 620 } 621 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 622 mempool_free(pmb, phba->mbox_mem_pool); 623 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 624 if (rc) 625 return rc; 626 } 627 /* MBOX buffer will be freed in mbox compl */ 628 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 629 if (!pmb) { 630 phba->link_state = LPFC_HBA_ERROR; 631 return -ENOMEM; 632 } 633 634 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 635 pmb->mbox_cmpl = lpfc_config_async_cmpl; 636 pmb->vport = phba->pport; 637 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 638 639 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 640 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 641 "0456 Adapter failed to issue " 642 "ASYNCEVT_ENABLE mbox status x%x\n", 643 rc); 644 mempool_free(pmb, phba->mbox_mem_pool); 645 } 646 647 /* Get Option rom version */ 648 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 649 if (!pmb) { 650 phba->link_state = LPFC_HBA_ERROR; 651 return -ENOMEM; 652 } 653 654 lpfc_dump_wakeup_param(phba, pmb); 655 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 656 pmb->vport = phba->pport; 657 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 658 659 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 660 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 661 "0435 Adapter failed " 662 "to get Option ROM version status x%x\n", rc); 663 mempool_free(pmb, phba->mbox_mem_pool); 664 } 665 666 return 0; 667 } 668 669 /** 670 * lpfc_sli4_refresh_params - update driver copy of params. 671 * @phba: Pointer to HBA context object. 672 * 673 * This is called to refresh driver copy of dynamic fields from the 674 * common_get_sli4_parameters descriptor. 675 **/ 676 int 677 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 678 { 679 LPFC_MBOXQ_t *mboxq; 680 struct lpfc_mqe *mqe; 681 struct lpfc_sli4_parameters *mbx_sli4_parameters; 682 int length, rc; 683 684 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 685 if (!mboxq) 686 return -ENOMEM; 687 688 mqe = &mboxq->u.mqe; 689 /* Read the port's SLI4 Config Parameters */ 690 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 691 sizeof(struct lpfc_sli4_cfg_mhdr)); 692 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 693 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 694 length, LPFC_SLI4_MBX_EMBED); 695 696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 697 if (unlikely(rc)) { 698 mempool_free(mboxq, phba->mbox_mem_pool); 699 return rc; 700 } 701 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 702 phba->sli4_hba.pc_sli4_params.mi_cap = 703 bf_get(cfg_mi_ver, mbx_sli4_parameters); 704 705 /* Are we forcing MI off via module parameter? */ 706 if (phba->cfg_enable_mi) 707 phba->sli4_hba.pc_sli4_params.mi_ver = 708 bf_get(cfg_mi_ver, mbx_sli4_parameters); 709 else 710 phba->sli4_hba.pc_sli4_params.mi_ver = 0; 711 712 phba->sli4_hba.pc_sli4_params.cmf = 713 bf_get(cfg_cmf, mbx_sli4_parameters); 714 phba->sli4_hba.pc_sli4_params.pls = 715 bf_get(cfg_pvl, mbx_sli4_parameters); 716 717 mempool_free(mboxq, phba->mbox_mem_pool); 718 return rc; 719 } 720 721 /** 722 * lpfc_hba_init_link - Initialize the FC link 723 * @phba: pointer to lpfc hba data structure. 724 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 725 * 726 * This routine will issue the INIT_LINK mailbox command call. 727 * It is available to other drivers through the lpfc_hba data 728 * structure for use as a delayed link up mechanism with the 729 * module parameter lpfc_suppress_link_up. 730 * 731 * Return code 732 * 0 - success 733 * Any other value - error 734 **/ 735 static int 736 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 737 { 738 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 739 } 740 741 /** 742 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 743 * @phba: pointer to lpfc hba data structure. 744 * @fc_topology: desired fc topology. 745 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 746 * 747 * This routine will issue the INIT_LINK mailbox command call. 748 * It is available to other drivers through the lpfc_hba data 749 * structure for use as a delayed link up mechanism with the 750 * module parameter lpfc_suppress_link_up. 751 * 752 * Return code 753 * 0 - success 754 * Any other value - error 755 **/ 756 int 757 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 758 uint32_t flag) 759 { 760 struct lpfc_vport *vport = phba->pport; 761 LPFC_MBOXQ_t *pmb; 762 MAILBOX_t *mb; 763 int rc; 764 765 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 766 if (!pmb) { 767 phba->link_state = LPFC_HBA_ERROR; 768 return -ENOMEM; 769 } 770 mb = &pmb->u.mb; 771 pmb->vport = vport; 772 773 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 774 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 775 !(phba->lmt & LMT_1Gb)) || 776 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 777 !(phba->lmt & LMT_2Gb)) || 778 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 779 !(phba->lmt & LMT_4Gb)) || 780 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 781 !(phba->lmt & LMT_8Gb)) || 782 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 783 !(phba->lmt & LMT_10Gb)) || 784 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 785 !(phba->lmt & LMT_16Gb)) || 786 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 787 !(phba->lmt & LMT_32Gb)) || 788 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 789 !(phba->lmt & LMT_64Gb))) { 790 /* Reset link speed to auto */ 791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 792 "1302 Invalid speed for this board:%d " 793 "Reset link speed to auto.\n", 794 phba->cfg_link_speed); 795 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 796 } 797 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 798 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 799 if (phba->sli_rev < LPFC_SLI_REV4) 800 lpfc_set_loopback_flag(phba); 801 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 802 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 804 "0498 Adapter failed to init, mbxCmd x%x " 805 "INIT_LINK, mbxStatus x%x\n", 806 mb->mbxCommand, mb->mbxStatus); 807 if (phba->sli_rev <= LPFC_SLI_REV3) { 808 /* Clear all interrupt enable conditions */ 809 writel(0, phba->HCregaddr); 810 readl(phba->HCregaddr); /* flush */ 811 /* Clear all pending interrupts */ 812 writel(0xffffffff, phba->HAregaddr); 813 readl(phba->HAregaddr); /* flush */ 814 } 815 phba->link_state = LPFC_HBA_ERROR; 816 if (rc != MBX_BUSY || flag == MBX_POLL) 817 mempool_free(pmb, phba->mbox_mem_pool); 818 return -EIO; 819 } 820 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 821 if (flag == MBX_POLL) 822 mempool_free(pmb, phba->mbox_mem_pool); 823 824 return 0; 825 } 826 827 /** 828 * lpfc_hba_down_link - this routine downs the FC link 829 * @phba: pointer to lpfc hba data structure. 830 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 831 * 832 * This routine will issue the DOWN_LINK mailbox command call. 833 * It is available to other drivers through the lpfc_hba data 834 * structure for use to stop the link. 835 * 836 * Return code 837 * 0 - success 838 * Any other value - error 839 **/ 840 static int 841 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 842 { 843 LPFC_MBOXQ_t *pmb; 844 int rc; 845 846 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 847 if (!pmb) { 848 phba->link_state = LPFC_HBA_ERROR; 849 return -ENOMEM; 850 } 851 852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 853 "0491 Adapter Link is disabled.\n"); 854 lpfc_down_link(phba, pmb); 855 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 856 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 857 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 859 "2522 Adapter failed to issue DOWN_LINK" 860 " mbox command rc 0x%x\n", rc); 861 862 mempool_free(pmb, phba->mbox_mem_pool); 863 return -EIO; 864 } 865 if (flag == MBX_POLL) 866 mempool_free(pmb, phba->mbox_mem_pool); 867 868 return 0; 869 } 870 871 /** 872 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 873 * @phba: pointer to lpfc HBA data structure. 874 * 875 * This routine will do LPFC uninitialization before the HBA is reset when 876 * bringing down the SLI Layer. 877 * 878 * Return codes 879 * 0 - success. 880 * Any other value - error. 881 **/ 882 int 883 lpfc_hba_down_prep(struct lpfc_hba *phba) 884 { 885 struct lpfc_vport **vports; 886 int i; 887 888 if (phba->sli_rev <= LPFC_SLI_REV3) { 889 /* Disable interrupts */ 890 writel(0, phba->HCregaddr); 891 readl(phba->HCregaddr); /* flush */ 892 } 893 894 if (phba->pport->load_flag & FC_UNLOADING) 895 lpfc_cleanup_discovery_resources(phba->pport); 896 else { 897 vports = lpfc_create_vport_work_array(phba); 898 if (vports != NULL) 899 for (i = 0; i <= phba->max_vports && 900 vports[i] != NULL; i++) 901 lpfc_cleanup_discovery_resources(vports[i]); 902 lpfc_destroy_vport_work_array(phba, vports); 903 } 904 return 0; 905 } 906 907 /** 908 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 909 * rspiocb which got deferred 910 * 911 * @phba: pointer to lpfc HBA data structure. 912 * 913 * This routine will cleanup completed slow path events after HBA is reset 914 * when bringing down the SLI Layer. 915 * 916 * 917 * Return codes 918 * void. 919 **/ 920 static void 921 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 922 { 923 struct lpfc_iocbq *rspiocbq; 924 struct hbq_dmabuf *dmabuf; 925 struct lpfc_cq_event *cq_event; 926 927 spin_lock_irq(&phba->hbalock); 928 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 929 spin_unlock_irq(&phba->hbalock); 930 931 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 932 /* Get the response iocb from the head of work queue */ 933 spin_lock_irq(&phba->hbalock); 934 list_remove_head(&phba->sli4_hba.sp_queue_event, 935 cq_event, struct lpfc_cq_event, list); 936 spin_unlock_irq(&phba->hbalock); 937 938 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 939 case CQE_CODE_COMPL_WQE: 940 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 941 cq_event); 942 lpfc_sli_release_iocbq(phba, rspiocbq); 943 break; 944 case CQE_CODE_RECEIVE: 945 case CQE_CODE_RECEIVE_V1: 946 dmabuf = container_of(cq_event, struct hbq_dmabuf, 947 cq_event); 948 lpfc_in_buf_free(phba, &dmabuf->dbuf); 949 } 950 } 951 } 952 953 /** 954 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 955 * @phba: pointer to lpfc HBA data structure. 956 * 957 * This routine will cleanup posted ELS buffers after the HBA is reset 958 * when bringing down the SLI Layer. 959 * 960 * 961 * Return codes 962 * void. 963 **/ 964 static void 965 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 966 { 967 struct lpfc_sli *psli = &phba->sli; 968 struct lpfc_sli_ring *pring; 969 struct lpfc_dmabuf *mp, *next_mp; 970 LIST_HEAD(buflist); 971 int count; 972 973 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 974 lpfc_sli_hbqbuf_free_all(phba); 975 else { 976 /* Cleanup preposted buffers on the ELS ring */ 977 pring = &psli->sli3_ring[LPFC_ELS_RING]; 978 spin_lock_irq(&phba->hbalock); 979 list_splice_init(&pring->postbufq, &buflist); 980 spin_unlock_irq(&phba->hbalock); 981 982 count = 0; 983 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 984 list_del(&mp->list); 985 count++; 986 lpfc_mbuf_free(phba, mp->virt, mp->phys); 987 kfree(mp); 988 } 989 990 spin_lock_irq(&phba->hbalock); 991 pring->postbufq_cnt -= count; 992 spin_unlock_irq(&phba->hbalock); 993 } 994 } 995 996 /** 997 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 998 * @phba: pointer to lpfc HBA data structure. 999 * 1000 * This routine will cleanup the txcmplq after the HBA is reset when bringing 1001 * down the SLI Layer. 1002 * 1003 * Return codes 1004 * void 1005 **/ 1006 static void 1007 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 1008 { 1009 struct lpfc_sli *psli = &phba->sli; 1010 struct lpfc_queue *qp = NULL; 1011 struct lpfc_sli_ring *pring; 1012 LIST_HEAD(completions); 1013 int i; 1014 struct lpfc_iocbq *piocb, *next_iocb; 1015 1016 if (phba->sli_rev != LPFC_SLI_REV4) { 1017 for (i = 0; i < psli->num_rings; i++) { 1018 pring = &psli->sli3_ring[i]; 1019 spin_lock_irq(&phba->hbalock); 1020 /* At this point in time the HBA is either reset or DOA 1021 * Nothing should be on txcmplq as it will 1022 * NEVER complete. 1023 */ 1024 list_splice_init(&pring->txcmplq, &completions); 1025 pring->txcmplq_cnt = 0; 1026 spin_unlock_irq(&phba->hbalock); 1027 1028 lpfc_sli_abort_iocb_ring(phba, pring); 1029 } 1030 /* Cancel all the IOCBs from the completions list */ 1031 lpfc_sli_cancel_iocbs(phba, &completions, 1032 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1033 return; 1034 } 1035 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1036 pring = qp->pring; 1037 if (!pring) 1038 continue; 1039 spin_lock_irq(&pring->ring_lock); 1040 list_for_each_entry_safe(piocb, next_iocb, 1041 &pring->txcmplq, list) 1042 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1043 list_splice_init(&pring->txcmplq, &completions); 1044 pring->txcmplq_cnt = 0; 1045 spin_unlock_irq(&pring->ring_lock); 1046 lpfc_sli_abort_iocb_ring(phba, pring); 1047 } 1048 /* Cancel all the IOCBs from the completions list */ 1049 lpfc_sli_cancel_iocbs(phba, &completions, 1050 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1051 } 1052 1053 /** 1054 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1055 * @phba: pointer to lpfc HBA data structure. 1056 * 1057 * This routine will do uninitialization after the HBA is reset when bring 1058 * down the SLI Layer. 1059 * 1060 * Return codes 1061 * 0 - success. 1062 * Any other value - error. 1063 **/ 1064 static int 1065 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1066 { 1067 lpfc_hba_free_post_buf(phba); 1068 lpfc_hba_clean_txcmplq(phba); 1069 return 0; 1070 } 1071 1072 /** 1073 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1074 * @phba: pointer to lpfc HBA data structure. 1075 * 1076 * This routine will do uninitialization after the HBA is reset when bring 1077 * down the SLI Layer. 1078 * 1079 * Return codes 1080 * 0 - success. 1081 * Any other value - error. 1082 **/ 1083 static int 1084 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1085 { 1086 struct lpfc_io_buf *psb, *psb_next; 1087 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1088 struct lpfc_sli4_hdw_queue *qp; 1089 LIST_HEAD(aborts); 1090 LIST_HEAD(nvme_aborts); 1091 LIST_HEAD(nvmet_aborts); 1092 struct lpfc_sglq *sglq_entry = NULL; 1093 int cnt, idx; 1094 1095 1096 lpfc_sli_hbqbuf_free_all(phba); 1097 lpfc_hba_clean_txcmplq(phba); 1098 1099 /* At this point in time the HBA is either reset or DOA. Either 1100 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1101 * on the lpfc_els_sgl_list so that it can either be freed if the 1102 * driver is unloading or reposted if the driver is restarting 1103 * the port. 1104 */ 1105 1106 /* sgl_list_lock required because worker thread uses this 1107 * list. 1108 */ 1109 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1110 list_for_each_entry(sglq_entry, 1111 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1112 sglq_entry->state = SGL_FREED; 1113 1114 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1115 &phba->sli4_hba.lpfc_els_sgl_list); 1116 1117 1118 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1119 1120 /* abts_xxxx_buf_list_lock required because worker thread uses this 1121 * list. 1122 */ 1123 spin_lock_irq(&phba->hbalock); 1124 cnt = 0; 1125 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1126 qp = &phba->sli4_hba.hdwq[idx]; 1127 1128 spin_lock(&qp->abts_io_buf_list_lock); 1129 list_splice_init(&qp->lpfc_abts_io_buf_list, 1130 &aborts); 1131 1132 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1133 psb->pCmd = NULL; 1134 psb->status = IOSTAT_SUCCESS; 1135 cnt++; 1136 } 1137 spin_lock(&qp->io_buf_list_put_lock); 1138 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1139 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1140 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1141 qp->abts_scsi_io_bufs = 0; 1142 qp->abts_nvme_io_bufs = 0; 1143 spin_unlock(&qp->io_buf_list_put_lock); 1144 spin_unlock(&qp->abts_io_buf_list_lock); 1145 } 1146 spin_unlock_irq(&phba->hbalock); 1147 1148 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1149 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1150 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1151 &nvmet_aborts); 1152 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1153 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1154 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1155 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1156 } 1157 } 1158 1159 lpfc_sli4_free_sp_events(phba); 1160 return cnt; 1161 } 1162 1163 /** 1164 * lpfc_hba_down_post - Wrapper func for hba down post routine 1165 * @phba: pointer to lpfc HBA data structure. 1166 * 1167 * This routine wraps the actual SLI3 or SLI4 routine for performing 1168 * uninitialization after the HBA is reset when bring down the SLI Layer. 1169 * 1170 * Return codes 1171 * 0 - success. 1172 * Any other value - error. 1173 **/ 1174 int 1175 lpfc_hba_down_post(struct lpfc_hba *phba) 1176 { 1177 return (*phba->lpfc_hba_down_post)(phba); 1178 } 1179 1180 /** 1181 * lpfc_hb_timeout - The HBA-timer timeout handler 1182 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1183 * 1184 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1185 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1186 * work-port-events bitmap and the worker thread is notified. This timeout 1187 * event will be used by the worker thread to invoke the actual timeout 1188 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1189 * be performed in the timeout handler and the HBA timeout event bit shall 1190 * be cleared by the worker thread after it has taken the event bitmap out. 1191 **/ 1192 static void 1193 lpfc_hb_timeout(struct timer_list *t) 1194 { 1195 struct lpfc_hba *phba; 1196 uint32_t tmo_posted; 1197 unsigned long iflag; 1198 1199 phba = from_timer(phba, t, hb_tmofunc); 1200 1201 /* Check for heart beat timeout conditions */ 1202 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1203 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1204 if (!tmo_posted) 1205 phba->pport->work_port_events |= WORKER_HB_TMO; 1206 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1207 1208 /* Tell the worker thread there is work to do */ 1209 if (!tmo_posted) 1210 lpfc_worker_wake_up(phba); 1211 return; 1212 } 1213 1214 /** 1215 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1216 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1217 * 1218 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1219 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1220 * work-port-events bitmap and the worker thread is notified. This timeout 1221 * event will be used by the worker thread to invoke the actual timeout 1222 * handler routine, lpfc_rrq_handler. Any periodical operations will 1223 * be performed in the timeout handler and the RRQ timeout event bit shall 1224 * be cleared by the worker thread after it has taken the event bitmap out. 1225 **/ 1226 static void 1227 lpfc_rrq_timeout(struct timer_list *t) 1228 { 1229 struct lpfc_hba *phba; 1230 unsigned long iflag; 1231 1232 phba = from_timer(phba, t, rrq_tmr); 1233 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1234 if (!(phba->pport->load_flag & FC_UNLOADING)) 1235 phba->hba_flag |= HBA_RRQ_ACTIVE; 1236 else 1237 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1238 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1239 1240 if (!(phba->pport->load_flag & FC_UNLOADING)) 1241 lpfc_worker_wake_up(phba); 1242 } 1243 1244 /** 1245 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1246 * @phba: pointer to lpfc hba data structure. 1247 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1248 * 1249 * This is the callback function to the lpfc heart-beat mailbox command. 1250 * If configured, the lpfc driver issues the heart-beat mailbox command to 1251 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1252 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1253 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1254 * heart-beat outstanding state. Once the mailbox command comes back and 1255 * no error conditions detected, the heart-beat mailbox command timer is 1256 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1257 * state is cleared for the next heart-beat. If the timer expired with the 1258 * heart-beat outstanding state set, the driver will put the HBA offline. 1259 **/ 1260 static void 1261 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1262 { 1263 unsigned long drvr_flag; 1264 1265 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1266 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 1267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1268 1269 /* Check and reset heart-beat timer if necessary */ 1270 mempool_free(pmboxq, phba->mbox_mem_pool); 1271 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1272 !(phba->link_state == LPFC_HBA_ERROR) && 1273 !(phba->pport->load_flag & FC_UNLOADING)) 1274 mod_timer(&phba->hb_tmofunc, 1275 jiffies + 1276 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1277 return; 1278 } 1279 1280 /* 1281 * lpfc_idle_stat_delay_work - idle_stat tracking 1282 * 1283 * This routine tracks per-eq idle_stat and determines polling decisions. 1284 * 1285 * Return codes: 1286 * None 1287 **/ 1288 static void 1289 lpfc_idle_stat_delay_work(struct work_struct *work) 1290 { 1291 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1292 struct lpfc_hba, 1293 idle_stat_delay_work); 1294 struct lpfc_queue *eq; 1295 struct lpfc_sli4_hdw_queue *hdwq; 1296 struct lpfc_idle_stat *idle_stat; 1297 u32 i, idle_percent; 1298 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1299 1300 if (phba->pport->load_flag & FC_UNLOADING) 1301 return; 1302 1303 if (phba->link_state == LPFC_HBA_ERROR || 1304 phba->pport->fc_flag & FC_OFFLINE_MODE || 1305 phba->cmf_active_mode != LPFC_CFG_OFF) 1306 goto requeue; 1307 1308 for_each_present_cpu(i) { 1309 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1310 eq = hdwq->hba_eq; 1311 1312 /* Skip if we've already handled this eq's primary CPU */ 1313 if (eq->chann != i) 1314 continue; 1315 1316 idle_stat = &phba->sli4_hba.idle_stat[i]; 1317 1318 /* get_cpu_idle_time returns values as running counters. Thus, 1319 * to know the amount for this period, the prior counter values 1320 * need to be subtracted from the current counter values. 1321 * From there, the idle time stat can be calculated as a 1322 * percentage of 100 - the sum of the other consumption times. 1323 */ 1324 wall_idle = get_cpu_idle_time(i, &wall, 1); 1325 diff_idle = wall_idle - idle_stat->prev_idle; 1326 diff_wall = wall - idle_stat->prev_wall; 1327 1328 if (diff_wall <= diff_idle) 1329 busy_time = 0; 1330 else 1331 busy_time = diff_wall - diff_idle; 1332 1333 idle_percent = div64_u64(100 * busy_time, diff_wall); 1334 idle_percent = 100 - idle_percent; 1335 1336 if (idle_percent < 15) 1337 eq->poll_mode = LPFC_QUEUE_WORK; 1338 else 1339 eq->poll_mode = LPFC_THREADED_IRQ; 1340 1341 idle_stat->prev_idle = wall_idle; 1342 idle_stat->prev_wall = wall; 1343 } 1344 1345 requeue: 1346 schedule_delayed_work(&phba->idle_stat_delay_work, 1347 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1348 } 1349 1350 static void 1351 lpfc_hb_eq_delay_work(struct work_struct *work) 1352 { 1353 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1354 struct lpfc_hba, eq_delay_work); 1355 struct lpfc_eq_intr_info *eqi, *eqi_new; 1356 struct lpfc_queue *eq, *eq_next; 1357 unsigned char *ena_delay = NULL; 1358 uint32_t usdelay; 1359 int i; 1360 1361 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1362 return; 1363 1364 if (phba->link_state == LPFC_HBA_ERROR || 1365 phba->pport->fc_flag & FC_OFFLINE_MODE) 1366 goto requeue; 1367 1368 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1369 GFP_KERNEL); 1370 if (!ena_delay) 1371 goto requeue; 1372 1373 for (i = 0; i < phba->cfg_irq_chann; i++) { 1374 /* Get the EQ corresponding to the IRQ vector */ 1375 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1376 if (!eq) 1377 continue; 1378 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1379 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1380 ena_delay[eq->last_cpu] = 1; 1381 } 1382 } 1383 1384 for_each_present_cpu(i) { 1385 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1386 if (ena_delay[i]) { 1387 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1388 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1389 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1390 } else { 1391 usdelay = 0; 1392 } 1393 1394 eqi->icnt = 0; 1395 1396 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1397 if (unlikely(eq->last_cpu != i)) { 1398 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1399 eq->last_cpu); 1400 list_move_tail(&eq->cpu_list, &eqi_new->list); 1401 continue; 1402 } 1403 if (usdelay != eq->q_mode) 1404 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1405 usdelay); 1406 } 1407 } 1408 1409 kfree(ena_delay); 1410 1411 requeue: 1412 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1413 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1414 } 1415 1416 /** 1417 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1418 * @phba: pointer to lpfc hba data structure. 1419 * 1420 * For each heartbeat, this routine does some heuristic methods to adjust 1421 * XRI distribution. The goal is to fully utilize free XRIs. 1422 **/ 1423 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1424 { 1425 u32 i; 1426 u32 hwq_count; 1427 1428 hwq_count = phba->cfg_hdw_queue; 1429 for (i = 0; i < hwq_count; i++) { 1430 /* Adjust XRIs in private pool */ 1431 lpfc_adjust_pvt_pool_count(phba, i); 1432 1433 /* Adjust high watermark */ 1434 lpfc_adjust_high_watermark(phba, i); 1435 1436 #ifdef LPFC_MXP_STAT 1437 /* Snapshot pbl, pvt and busy count */ 1438 lpfc_snapshot_mxp(phba, i); 1439 #endif 1440 } 1441 } 1442 1443 /** 1444 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1445 * @phba: pointer to lpfc hba data structure. 1446 * 1447 * If a HB mbox is not already in progrees, this routine will allocate 1448 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1449 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1450 **/ 1451 int 1452 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1453 { 1454 LPFC_MBOXQ_t *pmboxq; 1455 int retval; 1456 1457 /* Is a Heartbeat mbox already in progress */ 1458 if (phba->hba_flag & HBA_HBEAT_INP) 1459 return 0; 1460 1461 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1462 if (!pmboxq) 1463 return -ENOMEM; 1464 1465 lpfc_heart_beat(phba, pmboxq); 1466 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1467 pmboxq->vport = phba->pport; 1468 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1469 1470 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1471 mempool_free(pmboxq, phba->mbox_mem_pool); 1472 return -ENXIO; 1473 } 1474 phba->hba_flag |= HBA_HBEAT_INP; 1475 1476 return 0; 1477 } 1478 1479 /** 1480 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1481 * @phba: pointer to lpfc hba data structure. 1482 * 1483 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1484 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1485 * of the value of lpfc_enable_hba_heartbeat. 1486 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1487 * try to issue a MBX_HEARTBEAT mbox command. 1488 **/ 1489 void 1490 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1491 { 1492 if (phba->cfg_enable_hba_heartbeat) 1493 return; 1494 phba->hba_flag |= HBA_HBEAT_TMO; 1495 } 1496 1497 /** 1498 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1499 * @phba: pointer to lpfc hba data structure. 1500 * 1501 * This is the actual HBA-timer timeout handler to be invoked by the worker 1502 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1503 * handler performs any periodic operations needed for the device. If such 1504 * periodic event has already been attended to either in the interrupt handler 1505 * or by processing slow-ring or fast-ring events within the HBA-timer 1506 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1507 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1508 * is configured and there is no heart-beat mailbox command outstanding, a 1509 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1510 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1511 * to offline. 1512 **/ 1513 void 1514 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1515 { 1516 struct lpfc_vport **vports; 1517 struct lpfc_dmabuf *buf_ptr; 1518 int retval = 0; 1519 int i, tmo; 1520 struct lpfc_sli *psli = &phba->sli; 1521 LIST_HEAD(completions); 1522 1523 if (phba->cfg_xri_rebalancing) { 1524 /* Multi-XRI pools handler */ 1525 lpfc_hb_mxp_handler(phba); 1526 } 1527 1528 vports = lpfc_create_vport_work_array(phba); 1529 if (vports != NULL) 1530 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1531 lpfc_rcv_seq_check_edtov(vports[i]); 1532 lpfc_fdmi_change_check(vports[i]); 1533 } 1534 lpfc_destroy_vport_work_array(phba, vports); 1535 1536 if ((phba->link_state == LPFC_HBA_ERROR) || 1537 (phba->pport->load_flag & FC_UNLOADING) || 1538 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1539 return; 1540 1541 if (phba->elsbuf_cnt && 1542 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1543 spin_lock_irq(&phba->hbalock); 1544 list_splice_init(&phba->elsbuf, &completions); 1545 phba->elsbuf_cnt = 0; 1546 phba->elsbuf_prev_cnt = 0; 1547 spin_unlock_irq(&phba->hbalock); 1548 1549 while (!list_empty(&completions)) { 1550 list_remove_head(&completions, buf_ptr, 1551 struct lpfc_dmabuf, list); 1552 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1553 kfree(buf_ptr); 1554 } 1555 } 1556 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1557 1558 /* If there is no heart beat outstanding, issue a heartbeat command */ 1559 if (phba->cfg_enable_hba_heartbeat) { 1560 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1561 spin_lock_irq(&phba->pport->work_port_lock); 1562 if (time_after(phba->last_completion_time + 1563 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1564 jiffies)) { 1565 spin_unlock_irq(&phba->pport->work_port_lock); 1566 if (phba->hba_flag & HBA_HBEAT_INP) 1567 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1568 else 1569 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1570 goto out; 1571 } 1572 spin_unlock_irq(&phba->pport->work_port_lock); 1573 1574 /* Check if a MBX_HEARTBEAT is already in progress */ 1575 if (phba->hba_flag & HBA_HBEAT_INP) { 1576 /* 1577 * If heart beat timeout called with HBA_HBEAT_INP set 1578 * we need to give the hb mailbox cmd a chance to 1579 * complete or TMO. 1580 */ 1581 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1582 "0459 Adapter heartbeat still outstanding: " 1583 "last compl time was %d ms.\n", 1584 jiffies_to_msecs(jiffies 1585 - phba->last_completion_time)); 1586 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1587 } else { 1588 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1589 (list_empty(&psli->mboxq))) { 1590 1591 retval = lpfc_issue_hb_mbox(phba); 1592 if (retval) { 1593 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1594 goto out; 1595 } 1596 phba->skipped_hb = 0; 1597 } else if (time_before_eq(phba->last_completion_time, 1598 phba->skipped_hb)) { 1599 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1600 "2857 Last completion time not " 1601 " updated in %d ms\n", 1602 jiffies_to_msecs(jiffies 1603 - phba->last_completion_time)); 1604 } else 1605 phba->skipped_hb = jiffies; 1606 1607 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1608 goto out; 1609 } 1610 } else { 1611 /* Check to see if we want to force a MBX_HEARTBEAT */ 1612 if (phba->hba_flag & HBA_HBEAT_TMO) { 1613 retval = lpfc_issue_hb_mbox(phba); 1614 if (retval) 1615 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1616 else 1617 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1618 goto out; 1619 } 1620 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1621 } 1622 out: 1623 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1624 } 1625 1626 /** 1627 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1628 * @phba: pointer to lpfc hba data structure. 1629 * 1630 * This routine is called to bring the HBA offline when HBA hardware error 1631 * other than Port Error 6 has been detected. 1632 **/ 1633 static void 1634 lpfc_offline_eratt(struct lpfc_hba *phba) 1635 { 1636 struct lpfc_sli *psli = &phba->sli; 1637 1638 spin_lock_irq(&phba->hbalock); 1639 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1640 spin_unlock_irq(&phba->hbalock); 1641 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1642 1643 lpfc_offline(phba); 1644 lpfc_reset_barrier(phba); 1645 spin_lock_irq(&phba->hbalock); 1646 lpfc_sli_brdreset(phba); 1647 spin_unlock_irq(&phba->hbalock); 1648 lpfc_hba_down_post(phba); 1649 lpfc_sli_brdready(phba, HS_MBRDY); 1650 lpfc_unblock_mgmt_io(phba); 1651 phba->link_state = LPFC_HBA_ERROR; 1652 return; 1653 } 1654 1655 /** 1656 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1657 * @phba: pointer to lpfc hba data structure. 1658 * 1659 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1660 * other than Port Error 6 has been detected. 1661 **/ 1662 void 1663 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1664 { 1665 spin_lock_irq(&phba->hbalock); 1666 if (phba->link_state == LPFC_HBA_ERROR && 1667 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1668 spin_unlock_irq(&phba->hbalock); 1669 return; 1670 } 1671 phba->link_state = LPFC_HBA_ERROR; 1672 spin_unlock_irq(&phba->hbalock); 1673 1674 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1675 lpfc_sli_flush_io_rings(phba); 1676 lpfc_offline(phba); 1677 lpfc_hba_down_post(phba); 1678 lpfc_unblock_mgmt_io(phba); 1679 } 1680 1681 /** 1682 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1683 * @phba: pointer to lpfc hba data structure. 1684 * 1685 * This routine is invoked to handle the deferred HBA hardware error 1686 * conditions. This type of error is indicated by HBA by setting ER1 1687 * and another ER bit in the host status register. The driver will 1688 * wait until the ER1 bit clears before handling the error condition. 1689 **/ 1690 static void 1691 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1692 { 1693 uint32_t old_host_status = phba->work_hs; 1694 struct lpfc_sli *psli = &phba->sli; 1695 1696 /* If the pci channel is offline, ignore possible errors, 1697 * since we cannot communicate with the pci card anyway. 1698 */ 1699 if (pci_channel_offline(phba->pcidev)) { 1700 spin_lock_irq(&phba->hbalock); 1701 phba->hba_flag &= ~DEFER_ERATT; 1702 spin_unlock_irq(&phba->hbalock); 1703 return; 1704 } 1705 1706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1707 "0479 Deferred Adapter Hardware Error " 1708 "Data: x%x x%x x%x\n", 1709 phba->work_hs, phba->work_status[0], 1710 phba->work_status[1]); 1711 1712 spin_lock_irq(&phba->hbalock); 1713 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1714 spin_unlock_irq(&phba->hbalock); 1715 1716 1717 /* 1718 * Firmware stops when it triggred erratt. That could cause the I/Os 1719 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1720 * SCSI layer retry it after re-establishing link. 1721 */ 1722 lpfc_sli_abort_fcp_rings(phba); 1723 1724 /* 1725 * There was a firmware error. Take the hba offline and then 1726 * attempt to restart it. 1727 */ 1728 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1729 lpfc_offline(phba); 1730 1731 /* Wait for the ER1 bit to clear.*/ 1732 while (phba->work_hs & HS_FFER1) { 1733 msleep(100); 1734 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1735 phba->work_hs = UNPLUG_ERR ; 1736 break; 1737 } 1738 /* If driver is unloading let the worker thread continue */ 1739 if (phba->pport->load_flag & FC_UNLOADING) { 1740 phba->work_hs = 0; 1741 break; 1742 } 1743 } 1744 1745 /* 1746 * This is to ptrotect against a race condition in which 1747 * first write to the host attention register clear the 1748 * host status register. 1749 */ 1750 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1751 phba->work_hs = old_host_status & ~HS_FFER1; 1752 1753 spin_lock_irq(&phba->hbalock); 1754 phba->hba_flag &= ~DEFER_ERATT; 1755 spin_unlock_irq(&phba->hbalock); 1756 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1757 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1758 } 1759 1760 static void 1761 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1762 { 1763 struct lpfc_board_event_header board_event; 1764 struct Scsi_Host *shost; 1765 1766 board_event.event_type = FC_REG_BOARD_EVENT; 1767 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1768 shost = lpfc_shost_from_vport(phba->pport); 1769 fc_host_post_vendor_event(shost, fc_get_event_number(), 1770 sizeof(board_event), 1771 (char *) &board_event, 1772 LPFC_NL_VENDOR_ID); 1773 } 1774 1775 /** 1776 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1777 * @phba: pointer to lpfc hba data structure. 1778 * 1779 * This routine is invoked to handle the following HBA hardware error 1780 * conditions: 1781 * 1 - HBA error attention interrupt 1782 * 2 - DMA ring index out of range 1783 * 3 - Mailbox command came back as unknown 1784 **/ 1785 static void 1786 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1787 { 1788 struct lpfc_vport *vport = phba->pport; 1789 struct lpfc_sli *psli = &phba->sli; 1790 uint32_t event_data; 1791 unsigned long temperature; 1792 struct temp_event temp_event_data; 1793 struct Scsi_Host *shost; 1794 1795 /* If the pci channel is offline, ignore possible errors, 1796 * since we cannot communicate with the pci card anyway. 1797 */ 1798 if (pci_channel_offline(phba->pcidev)) { 1799 spin_lock_irq(&phba->hbalock); 1800 phba->hba_flag &= ~DEFER_ERATT; 1801 spin_unlock_irq(&phba->hbalock); 1802 return; 1803 } 1804 1805 /* If resets are disabled then leave the HBA alone and return */ 1806 if (!phba->cfg_enable_hba_reset) 1807 return; 1808 1809 /* Send an internal error event to mgmt application */ 1810 lpfc_board_errevt_to_mgmt(phba); 1811 1812 if (phba->hba_flag & DEFER_ERATT) 1813 lpfc_handle_deferred_eratt(phba); 1814 1815 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1816 if (phba->work_hs & HS_FFER6) 1817 /* Re-establishing Link */ 1818 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1819 "1301 Re-establishing Link " 1820 "Data: x%x x%x x%x\n", 1821 phba->work_hs, phba->work_status[0], 1822 phba->work_status[1]); 1823 if (phba->work_hs & HS_FFER8) 1824 /* Device Zeroization */ 1825 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1826 "2861 Host Authentication device " 1827 "zeroization Data:x%x x%x x%x\n", 1828 phba->work_hs, phba->work_status[0], 1829 phba->work_status[1]); 1830 1831 spin_lock_irq(&phba->hbalock); 1832 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1833 spin_unlock_irq(&phba->hbalock); 1834 1835 /* 1836 * Firmware stops when it triggled erratt with HS_FFER6. 1837 * That could cause the I/Os dropped by the firmware. 1838 * Error iocb (I/O) on txcmplq and let the SCSI layer 1839 * retry it after re-establishing link. 1840 */ 1841 lpfc_sli_abort_fcp_rings(phba); 1842 1843 /* 1844 * There was a firmware error. Take the hba offline and then 1845 * attempt to restart it. 1846 */ 1847 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1848 lpfc_offline(phba); 1849 lpfc_sli_brdrestart(phba); 1850 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1851 lpfc_unblock_mgmt_io(phba); 1852 return; 1853 } 1854 lpfc_unblock_mgmt_io(phba); 1855 } else if (phba->work_hs & HS_CRIT_TEMP) { 1856 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1857 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1858 temp_event_data.event_code = LPFC_CRIT_TEMP; 1859 temp_event_data.data = (uint32_t)temperature; 1860 1861 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1862 "0406 Adapter maximum temperature exceeded " 1863 "(%ld), taking this port offline " 1864 "Data: x%x x%x x%x\n", 1865 temperature, phba->work_hs, 1866 phba->work_status[0], phba->work_status[1]); 1867 1868 shost = lpfc_shost_from_vport(phba->pport); 1869 fc_host_post_vendor_event(shost, fc_get_event_number(), 1870 sizeof(temp_event_data), 1871 (char *) &temp_event_data, 1872 SCSI_NL_VID_TYPE_PCI 1873 | PCI_VENDOR_ID_EMULEX); 1874 1875 spin_lock_irq(&phba->hbalock); 1876 phba->over_temp_state = HBA_OVER_TEMP; 1877 spin_unlock_irq(&phba->hbalock); 1878 lpfc_offline_eratt(phba); 1879 1880 } else { 1881 /* The if clause above forces this code path when the status 1882 * failure is a value other than FFER6. Do not call the offline 1883 * twice. This is the adapter hardware error path. 1884 */ 1885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1886 "0457 Adapter Hardware Error " 1887 "Data: x%x x%x x%x\n", 1888 phba->work_hs, 1889 phba->work_status[0], phba->work_status[1]); 1890 1891 event_data = FC_REG_DUMP_EVENT; 1892 shost = lpfc_shost_from_vport(vport); 1893 fc_host_post_vendor_event(shost, fc_get_event_number(), 1894 sizeof(event_data), (char *) &event_data, 1895 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1896 1897 lpfc_offline_eratt(phba); 1898 } 1899 return; 1900 } 1901 1902 /** 1903 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1904 * @phba: pointer to lpfc hba data structure. 1905 * @mbx_action: flag for mailbox shutdown action. 1906 * @en_rn_msg: send reset/port recovery message. 1907 * This routine is invoked to perform an SLI4 port PCI function reset in 1908 * response to port status register polling attention. It waits for port 1909 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1910 * During this process, interrupt vectors are freed and later requested 1911 * for handling possible port resource change. 1912 **/ 1913 static int 1914 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1915 bool en_rn_msg) 1916 { 1917 int rc; 1918 uint32_t intr_mode; 1919 LPFC_MBOXQ_t *mboxq; 1920 1921 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1922 LPFC_SLI_INTF_IF_TYPE_2) { 1923 /* 1924 * On error status condition, driver need to wait for port 1925 * ready before performing reset. 1926 */ 1927 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1928 if (rc) 1929 return rc; 1930 } 1931 1932 /* need reset: attempt for port recovery */ 1933 if (en_rn_msg) 1934 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1935 "2887 Reset Needed: Attempting Port " 1936 "Recovery...\n"); 1937 1938 /* If we are no wait, the HBA has been reset and is not 1939 * functional, thus we should clear 1940 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1941 */ 1942 if (mbx_action == LPFC_MBX_NO_WAIT) { 1943 spin_lock_irq(&phba->hbalock); 1944 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1945 if (phba->sli.mbox_active) { 1946 mboxq = phba->sli.mbox_active; 1947 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1948 __lpfc_mbox_cmpl_put(phba, mboxq); 1949 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1950 phba->sli.mbox_active = NULL; 1951 } 1952 spin_unlock_irq(&phba->hbalock); 1953 } 1954 1955 lpfc_offline_prep(phba, mbx_action); 1956 lpfc_sli_flush_io_rings(phba); 1957 lpfc_offline(phba); 1958 /* release interrupt for possible resource change */ 1959 lpfc_sli4_disable_intr(phba); 1960 rc = lpfc_sli_brdrestart(phba); 1961 if (rc) { 1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1963 "6309 Failed to restart board\n"); 1964 return rc; 1965 } 1966 /* request and enable interrupt */ 1967 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1968 if (intr_mode == LPFC_INTR_ERROR) { 1969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1970 "3175 Failed to enable interrupt\n"); 1971 return -EIO; 1972 } 1973 phba->intr_mode = intr_mode; 1974 rc = lpfc_online(phba); 1975 if (rc == 0) 1976 lpfc_unblock_mgmt_io(phba); 1977 1978 return rc; 1979 } 1980 1981 /** 1982 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1983 * @phba: pointer to lpfc hba data structure. 1984 * 1985 * This routine is invoked to handle the SLI4 HBA hardware error attention 1986 * conditions. 1987 **/ 1988 static void 1989 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1990 { 1991 struct lpfc_vport *vport = phba->pport; 1992 uint32_t event_data; 1993 struct Scsi_Host *shost; 1994 uint32_t if_type; 1995 struct lpfc_register portstat_reg = {0}; 1996 uint32_t reg_err1, reg_err2; 1997 uint32_t uerrlo_reg, uemasklo_reg; 1998 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1999 bool en_rn_msg = true; 2000 struct temp_event temp_event_data; 2001 struct lpfc_register portsmphr_reg; 2002 int rc, i; 2003 2004 /* If the pci channel is offline, ignore possible errors, since 2005 * we cannot communicate with the pci card anyway. 2006 */ 2007 if (pci_channel_offline(phba->pcidev)) { 2008 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2009 "3166 pci channel is offline\n"); 2010 lpfc_sli_flush_io_rings(phba); 2011 return; 2012 } 2013 2014 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 2015 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 2016 switch (if_type) { 2017 case LPFC_SLI_INTF_IF_TYPE_0: 2018 pci_rd_rc1 = lpfc_readl( 2019 phba->sli4_hba.u.if_type0.UERRLOregaddr, 2020 &uerrlo_reg); 2021 pci_rd_rc2 = lpfc_readl( 2022 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2023 &uemasklo_reg); 2024 /* consider PCI bus read error as pci_channel_offline */ 2025 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2026 return; 2027 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 2028 lpfc_sli4_offline_eratt(phba); 2029 return; 2030 } 2031 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2032 "7623 Checking UE recoverable"); 2033 2034 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2035 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2036 &portsmphr_reg.word0)) 2037 continue; 2038 2039 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2040 &portsmphr_reg); 2041 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2042 LPFC_PORT_SEM_UE_RECOVERABLE) 2043 break; 2044 /*Sleep for 1Sec, before checking SEMAPHORE */ 2045 msleep(1000); 2046 } 2047 2048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2049 "4827 smphr_port_status x%x : Waited %dSec", 2050 smphr_port_status, i); 2051 2052 /* Recoverable UE, reset the HBA device */ 2053 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2054 LPFC_PORT_SEM_UE_RECOVERABLE) { 2055 for (i = 0; i < 20; i++) { 2056 msleep(1000); 2057 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2058 &portsmphr_reg.word0) && 2059 (LPFC_POST_STAGE_PORT_READY == 2060 bf_get(lpfc_port_smphr_port_status, 2061 &portsmphr_reg))) { 2062 rc = lpfc_sli4_port_sta_fn_reset(phba, 2063 LPFC_MBX_NO_WAIT, en_rn_msg); 2064 if (rc == 0) 2065 return; 2066 lpfc_printf_log(phba, KERN_ERR, 2067 LOG_TRACE_EVENT, 2068 "4215 Failed to recover UE"); 2069 break; 2070 } 2071 } 2072 } 2073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2074 "7624 Firmware not ready: Failing UE recovery," 2075 " waited %dSec", i); 2076 phba->link_state = LPFC_HBA_ERROR; 2077 break; 2078 2079 case LPFC_SLI_INTF_IF_TYPE_2: 2080 case LPFC_SLI_INTF_IF_TYPE_6: 2081 pci_rd_rc1 = lpfc_readl( 2082 phba->sli4_hba.u.if_type2.STATUSregaddr, 2083 &portstat_reg.word0); 2084 /* consider PCI bus read error as pci_channel_offline */ 2085 if (pci_rd_rc1 == -EIO) { 2086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2087 "3151 PCI bus read access failure: x%x\n", 2088 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2089 lpfc_sli4_offline_eratt(phba); 2090 return; 2091 } 2092 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2093 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2094 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2096 "2889 Port Overtemperature event, " 2097 "taking port offline Data: x%x x%x\n", 2098 reg_err1, reg_err2); 2099 2100 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2101 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2102 temp_event_data.event_code = LPFC_CRIT_TEMP; 2103 temp_event_data.data = 0xFFFFFFFF; 2104 2105 shost = lpfc_shost_from_vport(phba->pport); 2106 fc_host_post_vendor_event(shost, fc_get_event_number(), 2107 sizeof(temp_event_data), 2108 (char *)&temp_event_data, 2109 SCSI_NL_VID_TYPE_PCI 2110 | PCI_VENDOR_ID_EMULEX); 2111 2112 spin_lock_irq(&phba->hbalock); 2113 phba->over_temp_state = HBA_OVER_TEMP; 2114 spin_unlock_irq(&phba->hbalock); 2115 lpfc_sli4_offline_eratt(phba); 2116 return; 2117 } 2118 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2119 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2120 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2121 "3143 Port Down: Firmware Update " 2122 "Detected\n"); 2123 en_rn_msg = false; 2124 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2125 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2127 "3144 Port Down: Debug Dump\n"); 2128 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2129 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2131 "3145 Port Down: Provisioning\n"); 2132 2133 /* If resets are disabled then leave the HBA alone and return */ 2134 if (!phba->cfg_enable_hba_reset) 2135 return; 2136 2137 /* Check port status register for function reset */ 2138 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2139 en_rn_msg); 2140 if (rc == 0) { 2141 /* don't report event on forced debug dump */ 2142 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2143 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2144 return; 2145 else 2146 break; 2147 } 2148 /* fall through for not able to recover */ 2149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2150 "3152 Unrecoverable error\n"); 2151 lpfc_sli4_offline_eratt(phba); 2152 break; 2153 case LPFC_SLI_INTF_IF_TYPE_1: 2154 default: 2155 break; 2156 } 2157 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2158 "3123 Report dump event to upper layer\n"); 2159 /* Send an internal error event to mgmt application */ 2160 lpfc_board_errevt_to_mgmt(phba); 2161 2162 event_data = FC_REG_DUMP_EVENT; 2163 shost = lpfc_shost_from_vport(vport); 2164 fc_host_post_vendor_event(shost, fc_get_event_number(), 2165 sizeof(event_data), (char *) &event_data, 2166 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2167 } 2168 2169 /** 2170 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2171 * @phba: pointer to lpfc HBA data structure. 2172 * 2173 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2174 * routine from the API jump table function pointer from the lpfc_hba struct. 2175 * 2176 * Return codes 2177 * 0 - success. 2178 * Any other value - error. 2179 **/ 2180 void 2181 lpfc_handle_eratt(struct lpfc_hba *phba) 2182 { 2183 (*phba->lpfc_handle_eratt)(phba); 2184 } 2185 2186 /** 2187 * lpfc_handle_latt - The HBA link event handler 2188 * @phba: pointer to lpfc hba data structure. 2189 * 2190 * This routine is invoked from the worker thread to handle a HBA host 2191 * attention link event. SLI3 only. 2192 **/ 2193 void 2194 lpfc_handle_latt(struct lpfc_hba *phba) 2195 { 2196 struct lpfc_vport *vport = phba->pport; 2197 struct lpfc_sli *psli = &phba->sli; 2198 LPFC_MBOXQ_t *pmb; 2199 volatile uint32_t control; 2200 int rc = 0; 2201 2202 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2203 if (!pmb) { 2204 rc = 1; 2205 goto lpfc_handle_latt_err_exit; 2206 } 2207 2208 rc = lpfc_mbox_rsrc_prep(phba, pmb); 2209 if (rc) { 2210 rc = 2; 2211 mempool_free(pmb, phba->mbox_mem_pool); 2212 goto lpfc_handle_latt_err_exit; 2213 } 2214 2215 /* Cleanup any outstanding ELS commands */ 2216 lpfc_els_flush_all_cmd(phba); 2217 psli->slistat.link_event++; 2218 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 2219 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2220 pmb->vport = vport; 2221 /* Block ELS IOCBs until we have processed this mbox command */ 2222 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2223 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2224 if (rc == MBX_NOT_FINISHED) { 2225 rc = 4; 2226 goto lpfc_handle_latt_free_mbuf; 2227 } 2228 2229 /* Clear Link Attention in HA REG */ 2230 spin_lock_irq(&phba->hbalock); 2231 writel(HA_LATT, phba->HAregaddr); 2232 readl(phba->HAregaddr); /* flush */ 2233 spin_unlock_irq(&phba->hbalock); 2234 2235 return; 2236 2237 lpfc_handle_latt_free_mbuf: 2238 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2239 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2240 lpfc_handle_latt_err_exit: 2241 /* Enable Link attention interrupts */ 2242 spin_lock_irq(&phba->hbalock); 2243 psli->sli_flag |= LPFC_PROCESS_LA; 2244 control = readl(phba->HCregaddr); 2245 control |= HC_LAINT_ENA; 2246 writel(control, phba->HCregaddr); 2247 readl(phba->HCregaddr); /* flush */ 2248 2249 /* Clear Link Attention in HA REG */ 2250 writel(HA_LATT, phba->HAregaddr); 2251 readl(phba->HAregaddr); /* flush */ 2252 spin_unlock_irq(&phba->hbalock); 2253 lpfc_linkdown(phba); 2254 phba->link_state = LPFC_HBA_ERROR; 2255 2256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2257 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2258 2259 return; 2260 } 2261 2262 static void 2263 lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex) 2264 { 2265 int i, j; 2266 2267 while (length > 0) { 2268 /* Look for Serial Number */ 2269 if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) { 2270 *pindex += 2; 2271 i = vpd[*pindex]; 2272 *pindex += 1; 2273 j = 0; 2274 length -= (3+i); 2275 while (i--) { 2276 phba->SerialNumber[j++] = vpd[(*pindex)++]; 2277 if (j == 31) 2278 break; 2279 } 2280 phba->SerialNumber[j] = 0; 2281 continue; 2282 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) { 2283 phba->vpd_flag |= VPD_MODEL_DESC; 2284 *pindex += 2; 2285 i = vpd[*pindex]; 2286 *pindex += 1; 2287 j = 0; 2288 length -= (3+i); 2289 while (i--) { 2290 phba->ModelDesc[j++] = vpd[(*pindex)++]; 2291 if (j == 255) 2292 break; 2293 } 2294 phba->ModelDesc[j] = 0; 2295 continue; 2296 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) { 2297 phba->vpd_flag |= VPD_MODEL_NAME; 2298 *pindex += 2; 2299 i = vpd[*pindex]; 2300 *pindex += 1; 2301 j = 0; 2302 length -= (3+i); 2303 while (i--) { 2304 phba->ModelName[j++] = vpd[(*pindex)++]; 2305 if (j == 79) 2306 break; 2307 } 2308 phba->ModelName[j] = 0; 2309 continue; 2310 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) { 2311 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2312 *pindex += 2; 2313 i = vpd[*pindex]; 2314 *pindex += 1; 2315 j = 0; 2316 length -= (3+i); 2317 while (i--) { 2318 phba->ProgramType[j++] = vpd[(*pindex)++]; 2319 if (j == 255) 2320 break; 2321 } 2322 phba->ProgramType[j] = 0; 2323 continue; 2324 } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) { 2325 phba->vpd_flag |= VPD_PORT; 2326 *pindex += 2; 2327 i = vpd[*pindex]; 2328 *pindex += 1; 2329 j = 0; 2330 length -= (3 + i); 2331 while (i--) { 2332 if ((phba->sli_rev == LPFC_SLI_REV4) && 2333 (phba->sli4_hba.pport_name_sta == 2334 LPFC_SLI4_PPNAME_GET)) { 2335 j++; 2336 (*pindex)++; 2337 } else 2338 phba->Port[j++] = vpd[(*pindex)++]; 2339 if (j == 19) 2340 break; 2341 } 2342 if ((phba->sli_rev != LPFC_SLI_REV4) || 2343 (phba->sli4_hba.pport_name_sta == 2344 LPFC_SLI4_PPNAME_NON)) 2345 phba->Port[j] = 0; 2346 continue; 2347 } else { 2348 *pindex += 2; 2349 i = vpd[*pindex]; 2350 *pindex += 1; 2351 *pindex += i; 2352 length -= (3 + i); 2353 } 2354 } 2355 } 2356 2357 /** 2358 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2359 * @phba: pointer to lpfc hba data structure. 2360 * @vpd: pointer to the vital product data. 2361 * @len: length of the vital product data in bytes. 2362 * 2363 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2364 * an array of characters. In this routine, the ModelName, ProgramType, and 2365 * ModelDesc, etc. fields of the phba data structure will be populated. 2366 * 2367 * Return codes 2368 * 0 - pointer to the VPD passed in is NULL 2369 * 1 - success 2370 **/ 2371 int 2372 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2373 { 2374 uint8_t lenlo, lenhi; 2375 int Length; 2376 int i; 2377 int finished = 0; 2378 int index = 0; 2379 2380 if (!vpd) 2381 return 0; 2382 2383 /* Vital Product */ 2384 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2385 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2386 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2387 (uint32_t) vpd[3]); 2388 while (!finished && (index < (len - 4))) { 2389 switch (vpd[index]) { 2390 case 0x82: 2391 case 0x91: 2392 index += 1; 2393 lenlo = vpd[index]; 2394 index += 1; 2395 lenhi = vpd[index]; 2396 index += 1; 2397 i = ((((unsigned short)lenhi) << 8) + lenlo); 2398 index += i; 2399 break; 2400 case 0x90: 2401 index += 1; 2402 lenlo = vpd[index]; 2403 index += 1; 2404 lenhi = vpd[index]; 2405 index += 1; 2406 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2407 if (Length > len - index) 2408 Length = len - index; 2409 2410 lpfc_fill_vpd(phba, vpd, Length, &index); 2411 finished = 0; 2412 break; 2413 case 0x78: 2414 finished = 1; 2415 break; 2416 default: 2417 index ++; 2418 break; 2419 } 2420 } 2421 2422 return(1); 2423 } 2424 2425 /** 2426 * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description 2427 * @phba: pointer to lpfc hba data structure. 2428 * @mdp: pointer to the data structure to hold the derived model name. 2429 * @descp: pointer to the data structure to hold the derived description. 2430 * 2431 * This routine retrieves HBA's description based on its registered PCI device 2432 * ID. The @descp passed into this function points to an array of 256 chars. It 2433 * shall be returned with the model name, maximum speed, and the host bus type. 2434 * The @mdp passed into this function points to an array of 80 chars. When the 2435 * function returns, the @mdp will be filled with the model name. 2436 **/ 2437 static void 2438 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2439 { 2440 uint16_t sub_dev_id = phba->pcidev->subsystem_device; 2441 char *model = "<Unknown>"; 2442 int tbolt = 0; 2443 2444 switch (sub_dev_id) { 2445 case PCI_DEVICE_ID_CLRY_161E: 2446 model = "161E"; 2447 break; 2448 case PCI_DEVICE_ID_CLRY_162E: 2449 model = "162E"; 2450 break; 2451 case PCI_DEVICE_ID_CLRY_164E: 2452 model = "164E"; 2453 break; 2454 case PCI_DEVICE_ID_CLRY_161P: 2455 model = "161P"; 2456 break; 2457 case PCI_DEVICE_ID_CLRY_162P: 2458 model = "162P"; 2459 break; 2460 case PCI_DEVICE_ID_CLRY_164P: 2461 model = "164P"; 2462 break; 2463 case PCI_DEVICE_ID_CLRY_321E: 2464 model = "321E"; 2465 break; 2466 case PCI_DEVICE_ID_CLRY_322E: 2467 model = "322E"; 2468 break; 2469 case PCI_DEVICE_ID_CLRY_324E: 2470 model = "324E"; 2471 break; 2472 case PCI_DEVICE_ID_CLRY_321P: 2473 model = "321P"; 2474 break; 2475 case PCI_DEVICE_ID_CLRY_322P: 2476 model = "322P"; 2477 break; 2478 case PCI_DEVICE_ID_CLRY_324P: 2479 model = "324P"; 2480 break; 2481 case PCI_DEVICE_ID_TLFC_2XX2: 2482 model = "2XX2"; 2483 tbolt = 1; 2484 break; 2485 case PCI_DEVICE_ID_TLFC_3162: 2486 model = "3162"; 2487 tbolt = 1; 2488 break; 2489 case PCI_DEVICE_ID_TLFC_3322: 2490 model = "3322"; 2491 tbolt = 1; 2492 break; 2493 default: 2494 model = "Unknown"; 2495 break; 2496 } 2497 2498 if (mdp && mdp[0] == '\0') 2499 snprintf(mdp, 79, "%s", model); 2500 2501 if (descp && descp[0] == '\0') 2502 snprintf(descp, 255, 2503 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", 2504 (tbolt) ? "ThunderLink FC " : "Celerity FC-", 2505 model, 2506 phba->Port); 2507 } 2508 2509 /** 2510 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2511 * @phba: pointer to lpfc hba data structure. 2512 * @mdp: pointer to the data structure to hold the derived model name. 2513 * @descp: pointer to the data structure to hold the derived description. 2514 * 2515 * This routine retrieves HBA's description based on its registered PCI device 2516 * ID. The @descp passed into this function points to an array of 256 chars. It 2517 * shall be returned with the model name, maximum speed, and the host bus type. 2518 * The @mdp passed into this function points to an array of 80 chars. When the 2519 * function returns, the @mdp will be filled with the model name. 2520 **/ 2521 static void 2522 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2523 { 2524 lpfc_vpd_t *vp; 2525 uint16_t dev_id = phba->pcidev->device; 2526 int max_speed; 2527 int GE = 0; 2528 int oneConnect = 0; /* default is not a oneConnect */ 2529 struct { 2530 char *name; 2531 char *bus; 2532 char *function; 2533 } m = {"<Unknown>", "", ""}; 2534 2535 if (mdp && mdp[0] != '\0' 2536 && descp && descp[0] != '\0') 2537 return; 2538 2539 if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { 2540 lpfc_get_atto_model_desc(phba, mdp, descp); 2541 return; 2542 } 2543 2544 if (phba->lmt & LMT_64Gb) 2545 max_speed = 64; 2546 else if (phba->lmt & LMT_32Gb) 2547 max_speed = 32; 2548 else if (phba->lmt & LMT_16Gb) 2549 max_speed = 16; 2550 else if (phba->lmt & LMT_10Gb) 2551 max_speed = 10; 2552 else if (phba->lmt & LMT_8Gb) 2553 max_speed = 8; 2554 else if (phba->lmt & LMT_4Gb) 2555 max_speed = 4; 2556 else if (phba->lmt & LMT_2Gb) 2557 max_speed = 2; 2558 else if (phba->lmt & LMT_1Gb) 2559 max_speed = 1; 2560 else 2561 max_speed = 0; 2562 2563 vp = &phba->vpd; 2564 2565 switch (dev_id) { 2566 case PCI_DEVICE_ID_FIREFLY: 2567 m = (typeof(m)){"LP6000", "PCI", 2568 "Obsolete, Unsupported Fibre Channel Adapter"}; 2569 break; 2570 case PCI_DEVICE_ID_SUPERFLY: 2571 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2572 m = (typeof(m)){"LP7000", "PCI", ""}; 2573 else 2574 m = (typeof(m)){"LP7000E", "PCI", ""}; 2575 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2576 break; 2577 case PCI_DEVICE_ID_DRAGONFLY: 2578 m = (typeof(m)){"LP8000", "PCI", 2579 "Obsolete, Unsupported Fibre Channel Adapter"}; 2580 break; 2581 case PCI_DEVICE_ID_CENTAUR: 2582 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2583 m = (typeof(m)){"LP9002", "PCI", ""}; 2584 else 2585 m = (typeof(m)){"LP9000", "PCI", ""}; 2586 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2587 break; 2588 case PCI_DEVICE_ID_RFLY: 2589 m = (typeof(m)){"LP952", "PCI", 2590 "Obsolete, Unsupported Fibre Channel Adapter"}; 2591 break; 2592 case PCI_DEVICE_ID_PEGASUS: 2593 m = (typeof(m)){"LP9802", "PCI-X", 2594 "Obsolete, Unsupported Fibre Channel Adapter"}; 2595 break; 2596 case PCI_DEVICE_ID_THOR: 2597 m = (typeof(m)){"LP10000", "PCI-X", 2598 "Obsolete, Unsupported Fibre Channel Adapter"}; 2599 break; 2600 case PCI_DEVICE_ID_VIPER: 2601 m = (typeof(m)){"LPX1000", "PCI-X", 2602 "Obsolete, Unsupported Fibre Channel Adapter"}; 2603 break; 2604 case PCI_DEVICE_ID_PFLY: 2605 m = (typeof(m)){"LP982", "PCI-X", 2606 "Obsolete, Unsupported Fibre Channel Adapter"}; 2607 break; 2608 case PCI_DEVICE_ID_TFLY: 2609 m = (typeof(m)){"LP1050", "PCI-X", 2610 "Obsolete, Unsupported Fibre Channel Adapter"}; 2611 break; 2612 case PCI_DEVICE_ID_HELIOS: 2613 m = (typeof(m)){"LP11000", "PCI-X2", 2614 "Obsolete, Unsupported Fibre Channel Adapter"}; 2615 break; 2616 case PCI_DEVICE_ID_HELIOS_SCSP: 2617 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2618 "Obsolete, Unsupported Fibre Channel Adapter"}; 2619 break; 2620 case PCI_DEVICE_ID_HELIOS_DCSP: 2621 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2622 "Obsolete, Unsupported Fibre Channel Adapter"}; 2623 break; 2624 case PCI_DEVICE_ID_NEPTUNE: 2625 m = (typeof(m)){"LPe1000", "PCIe", 2626 "Obsolete, Unsupported Fibre Channel Adapter"}; 2627 break; 2628 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2629 m = (typeof(m)){"LPe1000-SP", "PCIe", 2630 "Obsolete, Unsupported Fibre Channel Adapter"}; 2631 break; 2632 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2633 m = (typeof(m)){"LPe1002-SP", "PCIe", 2634 "Obsolete, Unsupported Fibre Channel Adapter"}; 2635 break; 2636 case PCI_DEVICE_ID_BMID: 2637 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2638 break; 2639 case PCI_DEVICE_ID_BSMB: 2640 m = (typeof(m)){"LP111", "PCI-X2", 2641 "Obsolete, Unsupported Fibre Channel Adapter"}; 2642 break; 2643 case PCI_DEVICE_ID_ZEPHYR: 2644 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2645 break; 2646 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2647 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2648 break; 2649 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2650 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2651 GE = 1; 2652 break; 2653 case PCI_DEVICE_ID_ZMID: 2654 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2655 break; 2656 case PCI_DEVICE_ID_ZSMB: 2657 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2658 break; 2659 case PCI_DEVICE_ID_LP101: 2660 m = (typeof(m)){"LP101", "PCI-X", 2661 "Obsolete, Unsupported Fibre Channel Adapter"}; 2662 break; 2663 case PCI_DEVICE_ID_LP10000S: 2664 m = (typeof(m)){"LP10000-S", "PCI", 2665 "Obsolete, Unsupported Fibre Channel Adapter"}; 2666 break; 2667 case PCI_DEVICE_ID_LP11000S: 2668 m = (typeof(m)){"LP11000-S", "PCI-X2", 2669 "Obsolete, Unsupported Fibre Channel Adapter"}; 2670 break; 2671 case PCI_DEVICE_ID_LPE11000S: 2672 m = (typeof(m)){"LPe11000-S", "PCIe", 2673 "Obsolete, Unsupported Fibre Channel Adapter"}; 2674 break; 2675 case PCI_DEVICE_ID_SAT: 2676 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2677 break; 2678 case PCI_DEVICE_ID_SAT_MID: 2679 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2680 break; 2681 case PCI_DEVICE_ID_SAT_SMB: 2682 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2683 break; 2684 case PCI_DEVICE_ID_SAT_DCSP: 2685 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2686 break; 2687 case PCI_DEVICE_ID_SAT_SCSP: 2688 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2689 break; 2690 case PCI_DEVICE_ID_SAT_S: 2691 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2692 break; 2693 case PCI_DEVICE_ID_PROTEUS_VF: 2694 m = (typeof(m)){"LPev12000", "PCIe IOV", 2695 "Obsolete, Unsupported Fibre Channel Adapter"}; 2696 break; 2697 case PCI_DEVICE_ID_PROTEUS_PF: 2698 m = (typeof(m)){"LPev12000", "PCIe IOV", 2699 "Obsolete, Unsupported Fibre Channel Adapter"}; 2700 break; 2701 case PCI_DEVICE_ID_PROTEUS_S: 2702 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2703 "Obsolete, Unsupported Fibre Channel Adapter"}; 2704 break; 2705 case PCI_DEVICE_ID_TIGERSHARK: 2706 oneConnect = 1; 2707 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2708 break; 2709 case PCI_DEVICE_ID_TOMCAT: 2710 oneConnect = 1; 2711 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2712 break; 2713 case PCI_DEVICE_ID_FALCON: 2714 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2715 "EmulexSecure Fibre"}; 2716 break; 2717 case PCI_DEVICE_ID_BALIUS: 2718 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2719 "Obsolete, Unsupported Fibre Channel Adapter"}; 2720 break; 2721 case PCI_DEVICE_ID_LANCER_FC: 2722 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2723 break; 2724 case PCI_DEVICE_ID_LANCER_FC_VF: 2725 m = (typeof(m)){"LPe16000", "PCIe", 2726 "Obsolete, Unsupported Fibre Channel Adapter"}; 2727 break; 2728 case PCI_DEVICE_ID_LANCER_FCOE: 2729 oneConnect = 1; 2730 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2731 break; 2732 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2733 oneConnect = 1; 2734 m = (typeof(m)){"OCe15100", "PCIe", 2735 "Obsolete, Unsupported FCoE"}; 2736 break; 2737 case PCI_DEVICE_ID_LANCER_G6_FC: 2738 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2739 break; 2740 case PCI_DEVICE_ID_LANCER_G7_FC: 2741 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2742 break; 2743 case PCI_DEVICE_ID_LANCER_G7P_FC: 2744 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2745 break; 2746 case PCI_DEVICE_ID_SKYHAWK: 2747 case PCI_DEVICE_ID_SKYHAWK_VF: 2748 oneConnect = 1; 2749 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2750 break; 2751 default: 2752 m = (typeof(m)){"Unknown", "", ""}; 2753 break; 2754 } 2755 2756 if (mdp && mdp[0] == '\0') 2757 snprintf(mdp, 79,"%s", m.name); 2758 /* 2759 * oneConnect hba requires special processing, they are all initiators 2760 * and we put the port number on the end 2761 */ 2762 if (descp && descp[0] == '\0') { 2763 if (oneConnect) 2764 snprintf(descp, 255, 2765 "Emulex OneConnect %s, %s Initiator %s", 2766 m.name, m.function, 2767 phba->Port); 2768 else if (max_speed == 0) 2769 snprintf(descp, 255, 2770 "Emulex %s %s %s", 2771 m.name, m.bus, m.function); 2772 else 2773 snprintf(descp, 255, 2774 "Emulex %s %d%s %s %s", 2775 m.name, max_speed, (GE) ? "GE" : "Gb", 2776 m.bus, m.function); 2777 } 2778 } 2779 2780 /** 2781 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2782 * @phba: pointer to lpfc hba data structure. 2783 * @pring: pointer to a IOCB ring. 2784 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2785 * 2786 * This routine posts a given number of IOCBs with the associated DMA buffer 2787 * descriptors specified by the cnt argument to the given IOCB ring. 2788 * 2789 * Return codes 2790 * The number of IOCBs NOT able to be posted to the IOCB ring. 2791 **/ 2792 int 2793 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2794 { 2795 IOCB_t *icmd; 2796 struct lpfc_iocbq *iocb; 2797 struct lpfc_dmabuf *mp1, *mp2; 2798 2799 cnt += pring->missbufcnt; 2800 2801 /* While there are buffers to post */ 2802 while (cnt > 0) { 2803 /* Allocate buffer for command iocb */ 2804 iocb = lpfc_sli_get_iocbq(phba); 2805 if (iocb == NULL) { 2806 pring->missbufcnt = cnt; 2807 return cnt; 2808 } 2809 icmd = &iocb->iocb; 2810 2811 /* 2 buffers can be posted per command */ 2812 /* Allocate buffer to post */ 2813 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2814 if (mp1) 2815 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2816 if (!mp1 || !mp1->virt) { 2817 kfree(mp1); 2818 lpfc_sli_release_iocbq(phba, iocb); 2819 pring->missbufcnt = cnt; 2820 return cnt; 2821 } 2822 2823 INIT_LIST_HEAD(&mp1->list); 2824 /* Allocate buffer to post */ 2825 if (cnt > 1) { 2826 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2827 if (mp2) 2828 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2829 &mp2->phys); 2830 if (!mp2 || !mp2->virt) { 2831 kfree(mp2); 2832 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2833 kfree(mp1); 2834 lpfc_sli_release_iocbq(phba, iocb); 2835 pring->missbufcnt = cnt; 2836 return cnt; 2837 } 2838 2839 INIT_LIST_HEAD(&mp2->list); 2840 } else { 2841 mp2 = NULL; 2842 } 2843 2844 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2845 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2846 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2847 icmd->ulpBdeCount = 1; 2848 cnt--; 2849 if (mp2) { 2850 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2851 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2852 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2853 cnt--; 2854 icmd->ulpBdeCount = 2; 2855 } 2856 2857 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2858 icmd->ulpLe = 1; 2859 2860 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2861 IOCB_ERROR) { 2862 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2863 kfree(mp1); 2864 cnt++; 2865 if (mp2) { 2866 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2867 kfree(mp2); 2868 cnt++; 2869 } 2870 lpfc_sli_release_iocbq(phba, iocb); 2871 pring->missbufcnt = cnt; 2872 return cnt; 2873 } 2874 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2875 if (mp2) 2876 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2877 } 2878 pring->missbufcnt = 0; 2879 return 0; 2880 } 2881 2882 /** 2883 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2884 * @phba: pointer to lpfc hba data structure. 2885 * 2886 * This routine posts initial receive IOCB buffers to the ELS ring. The 2887 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2888 * set to 64 IOCBs. SLI3 only. 2889 * 2890 * Return codes 2891 * 0 - success (currently always success) 2892 **/ 2893 static int 2894 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2895 { 2896 struct lpfc_sli *psli = &phba->sli; 2897 2898 /* Ring 0, ELS / CT buffers */ 2899 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2900 /* Ring 2 - FCP no buffers needed */ 2901 2902 return 0; 2903 } 2904 2905 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2906 2907 /** 2908 * lpfc_sha_init - Set up initial array of hash table entries 2909 * @HashResultPointer: pointer to an array as hash table. 2910 * 2911 * This routine sets up the initial values to the array of hash table entries 2912 * for the LC HBAs. 2913 **/ 2914 static void 2915 lpfc_sha_init(uint32_t * HashResultPointer) 2916 { 2917 HashResultPointer[0] = 0x67452301; 2918 HashResultPointer[1] = 0xEFCDAB89; 2919 HashResultPointer[2] = 0x98BADCFE; 2920 HashResultPointer[3] = 0x10325476; 2921 HashResultPointer[4] = 0xC3D2E1F0; 2922 } 2923 2924 /** 2925 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2926 * @HashResultPointer: pointer to an initial/result hash table. 2927 * @HashWorkingPointer: pointer to an working hash table. 2928 * 2929 * This routine iterates an initial hash table pointed by @HashResultPointer 2930 * with the values from the working hash table pointeed by @HashWorkingPointer. 2931 * The results are putting back to the initial hash table, returned through 2932 * the @HashResultPointer as the result hash table. 2933 **/ 2934 static void 2935 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2936 { 2937 int t; 2938 uint32_t TEMP; 2939 uint32_t A, B, C, D, E; 2940 t = 16; 2941 do { 2942 HashWorkingPointer[t] = 2943 S(1, 2944 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2945 8] ^ 2946 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2947 } while (++t <= 79); 2948 t = 0; 2949 A = HashResultPointer[0]; 2950 B = HashResultPointer[1]; 2951 C = HashResultPointer[2]; 2952 D = HashResultPointer[3]; 2953 E = HashResultPointer[4]; 2954 2955 do { 2956 if (t < 20) { 2957 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2958 } else if (t < 40) { 2959 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2960 } else if (t < 60) { 2961 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2962 } else { 2963 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2964 } 2965 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2966 E = D; 2967 D = C; 2968 C = S(30, B); 2969 B = A; 2970 A = TEMP; 2971 } while (++t <= 79); 2972 2973 HashResultPointer[0] += A; 2974 HashResultPointer[1] += B; 2975 HashResultPointer[2] += C; 2976 HashResultPointer[3] += D; 2977 HashResultPointer[4] += E; 2978 2979 } 2980 2981 /** 2982 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2983 * @RandomChallenge: pointer to the entry of host challenge random number array. 2984 * @HashWorking: pointer to the entry of the working hash array. 2985 * 2986 * This routine calculates the working hash array referred by @HashWorking 2987 * from the challenge random numbers associated with the host, referred by 2988 * @RandomChallenge. The result is put into the entry of the working hash 2989 * array and returned by reference through @HashWorking. 2990 **/ 2991 static void 2992 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2993 { 2994 *HashWorking = (*RandomChallenge ^ *HashWorking); 2995 } 2996 2997 /** 2998 * lpfc_hba_init - Perform special handling for LC HBA initialization 2999 * @phba: pointer to lpfc hba data structure. 3000 * @hbainit: pointer to an array of unsigned 32-bit integers. 3001 * 3002 * This routine performs the special handling for LC HBA initialization. 3003 **/ 3004 void 3005 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 3006 { 3007 int t; 3008 uint32_t *HashWorking; 3009 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 3010 3011 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 3012 if (!HashWorking) 3013 return; 3014 3015 HashWorking[0] = HashWorking[78] = *pwwnn++; 3016 HashWorking[1] = HashWorking[79] = *pwwnn; 3017 3018 for (t = 0; t < 7; t++) 3019 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 3020 3021 lpfc_sha_init(hbainit); 3022 lpfc_sha_iterate(hbainit, HashWorking); 3023 kfree(HashWorking); 3024 } 3025 3026 /** 3027 * lpfc_cleanup - Performs vport cleanups before deleting a vport 3028 * @vport: pointer to a virtual N_Port data structure. 3029 * 3030 * This routine performs the necessary cleanups before deleting the @vport. 3031 * It invokes the discovery state machine to perform necessary state 3032 * transitions and to release the ndlps associated with the @vport. Note, 3033 * the physical port is treated as @vport 0. 3034 **/ 3035 void 3036 lpfc_cleanup(struct lpfc_vport *vport) 3037 { 3038 struct lpfc_hba *phba = vport->phba; 3039 struct lpfc_nodelist *ndlp, *next_ndlp; 3040 int i = 0; 3041 3042 if (phba->link_state > LPFC_LINK_DOWN) 3043 lpfc_port_link_failure(vport); 3044 3045 /* Clean up VMID resources */ 3046 if (lpfc_is_vmid_enabled(phba)) 3047 lpfc_vmid_vport_cleanup(vport); 3048 3049 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 3050 if (vport->port_type != LPFC_PHYSICAL_PORT && 3051 ndlp->nlp_DID == Fabric_DID) { 3052 /* Just free up ndlp with Fabric_DID for vports */ 3053 lpfc_nlp_put(ndlp); 3054 continue; 3055 } 3056 3057 if (ndlp->nlp_DID == Fabric_Cntl_DID && 3058 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3059 lpfc_nlp_put(ndlp); 3060 continue; 3061 } 3062 3063 /* Fabric Ports not in UNMAPPED state are cleaned up in the 3064 * DEVICE_RM event. 3065 */ 3066 if (ndlp->nlp_type & NLP_FABRIC && 3067 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 3068 lpfc_disc_state_machine(vport, ndlp, NULL, 3069 NLP_EVT_DEVICE_RECOVERY); 3070 3071 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 3072 lpfc_disc_state_machine(vport, ndlp, NULL, 3073 NLP_EVT_DEVICE_RM); 3074 } 3075 3076 /* This is a special case flush to return all 3077 * IOs before entering this loop. There are 3078 * two points in the code where a flush is 3079 * avoided if the FC_UNLOADING flag is set. 3080 * one is in the multipool destroy, 3081 * (this prevents a crash) and the other is 3082 * in the nvme abort handler, ( also prevents 3083 * a crash). Both of these exceptions are 3084 * cases where the slot is still accessible. 3085 * The flush here is only when the pci slot 3086 * is offline. 3087 */ 3088 if (vport->load_flag & FC_UNLOADING && 3089 pci_channel_offline(phba->pcidev)) 3090 lpfc_sli_flush_io_rings(vport->phba); 3091 3092 /* At this point, ALL ndlp's should be gone 3093 * because of the previous NLP_EVT_DEVICE_RM. 3094 * Lets wait for this to happen, if needed. 3095 */ 3096 while (!list_empty(&vport->fc_nodes)) { 3097 if (i++ > 3000) { 3098 lpfc_printf_vlog(vport, KERN_ERR, 3099 LOG_TRACE_EVENT, 3100 "0233 Nodelist not empty\n"); 3101 list_for_each_entry_safe(ndlp, next_ndlp, 3102 &vport->fc_nodes, nlp_listp) { 3103 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3104 LOG_DISCOVERY, 3105 "0282 did:x%x ndlp:x%px " 3106 "refcnt:%d xflags x%x nflag x%x\n", 3107 ndlp->nlp_DID, (void *)ndlp, 3108 kref_read(&ndlp->kref), 3109 ndlp->fc4_xpt_flags, 3110 ndlp->nlp_flag); 3111 } 3112 break; 3113 } 3114 3115 /* Wait for any activity on ndlps to settle */ 3116 msleep(10); 3117 } 3118 lpfc_cleanup_vports_rrqs(vport, NULL); 3119 } 3120 3121 /** 3122 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3123 * @vport: pointer to a virtual N_Port data structure. 3124 * 3125 * This routine stops all the timers associated with a @vport. This function 3126 * is invoked before disabling or deleting a @vport. Note that the physical 3127 * port is treated as @vport 0. 3128 **/ 3129 void 3130 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3131 { 3132 del_timer_sync(&vport->els_tmofunc); 3133 del_timer_sync(&vport->delayed_disc_tmo); 3134 lpfc_can_disctmo(vport); 3135 return; 3136 } 3137 3138 /** 3139 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3140 * @phba: pointer to lpfc hba data structure. 3141 * 3142 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3143 * caller of this routine should already hold the host lock. 3144 **/ 3145 void 3146 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3147 { 3148 /* Clear pending FCF rediscovery wait flag */ 3149 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3150 3151 /* Now, try to stop the timer */ 3152 del_timer(&phba->fcf.redisc_wait); 3153 } 3154 3155 /** 3156 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3157 * @phba: pointer to lpfc hba data structure. 3158 * 3159 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3160 * checks whether the FCF rediscovery wait timer is pending with the host 3161 * lock held before proceeding with disabling the timer and clearing the 3162 * wait timer pendig flag. 3163 **/ 3164 void 3165 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3166 { 3167 spin_lock_irq(&phba->hbalock); 3168 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3169 /* FCF rediscovery timer already fired or stopped */ 3170 spin_unlock_irq(&phba->hbalock); 3171 return; 3172 } 3173 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3174 /* Clear failover in progress flags */ 3175 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3176 spin_unlock_irq(&phba->hbalock); 3177 } 3178 3179 /** 3180 * lpfc_cmf_stop - Stop CMF processing 3181 * @phba: pointer to lpfc hba data structure. 3182 * 3183 * This is called when the link goes down or if CMF mode is turned OFF. 3184 * It is also called when going offline or unloaded just before the 3185 * congestion info buffer is unregistered. 3186 **/ 3187 void 3188 lpfc_cmf_stop(struct lpfc_hba *phba) 3189 { 3190 int cpu; 3191 struct lpfc_cgn_stat *cgs; 3192 3193 /* We only do something if CMF is enabled */ 3194 if (!phba->sli4_hba.pc_sli4_params.cmf) 3195 return; 3196 3197 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3198 "6221 Stop CMF / Cancel Timer\n"); 3199 3200 /* Cancel the CMF timer */ 3201 hrtimer_cancel(&phba->cmf_stats_timer); 3202 hrtimer_cancel(&phba->cmf_timer); 3203 3204 /* Zero CMF counters */ 3205 atomic_set(&phba->cmf_busy, 0); 3206 for_each_present_cpu(cpu) { 3207 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3208 atomic64_set(&cgs->total_bytes, 0); 3209 atomic64_set(&cgs->rcv_bytes, 0); 3210 atomic_set(&cgs->rx_io_cnt, 0); 3211 atomic64_set(&cgs->rx_latency, 0); 3212 } 3213 atomic_set(&phba->cmf_bw_wait, 0); 3214 3215 /* Resume any blocked IO - Queue unblock on workqueue */ 3216 queue_work(phba->wq, &phba->unblock_request_work); 3217 } 3218 3219 static inline uint64_t 3220 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3221 { 3222 uint64_t rate = lpfc_sli_port_speed_get(phba); 3223 3224 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3225 } 3226 3227 void 3228 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3229 { 3230 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3231 "6223 Signal CMF init\n"); 3232 3233 /* Use the new fc_linkspeed to recalculate */ 3234 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3235 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3236 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3237 phba->cmf_interval_rate, 1000); 3238 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3239 3240 /* This is a signal to firmware to sync up CMF BW with link speed */ 3241 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3242 } 3243 3244 /** 3245 * lpfc_cmf_start - Start CMF processing 3246 * @phba: pointer to lpfc hba data structure. 3247 * 3248 * This is called when the link comes up or if CMF mode is turned OFF 3249 * to Monitor or Managed. 3250 **/ 3251 void 3252 lpfc_cmf_start(struct lpfc_hba *phba) 3253 { 3254 struct lpfc_cgn_stat *cgs; 3255 int cpu; 3256 3257 /* We only do something if CMF is enabled */ 3258 if (!phba->sli4_hba.pc_sli4_params.cmf || 3259 phba->cmf_active_mode == LPFC_CFG_OFF) 3260 return; 3261 3262 /* Reinitialize congestion buffer info */ 3263 lpfc_init_congestion_buf(phba); 3264 3265 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3266 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3267 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3268 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3269 3270 atomic_set(&phba->cmf_busy, 0); 3271 for_each_present_cpu(cpu) { 3272 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3273 atomic64_set(&cgs->total_bytes, 0); 3274 atomic64_set(&cgs->rcv_bytes, 0); 3275 atomic_set(&cgs->rx_io_cnt, 0); 3276 atomic64_set(&cgs->rx_latency, 0); 3277 } 3278 phba->cmf_latency.tv_sec = 0; 3279 phba->cmf_latency.tv_nsec = 0; 3280 3281 lpfc_cmf_signal_init(phba); 3282 3283 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3284 "6222 Start CMF / Timer\n"); 3285 3286 phba->cmf_timer_cnt = 0; 3287 hrtimer_start(&phba->cmf_timer, 3288 ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC), 3289 HRTIMER_MODE_REL); 3290 hrtimer_start(&phba->cmf_stats_timer, 3291 ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC), 3292 HRTIMER_MODE_REL); 3293 /* Setup for latency check in IO cmpl routines */ 3294 ktime_get_real_ts64(&phba->cmf_latency); 3295 3296 atomic_set(&phba->cmf_bw_wait, 0); 3297 atomic_set(&phba->cmf_stop_io, 0); 3298 } 3299 3300 /** 3301 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3302 * @phba: pointer to lpfc hba data structure. 3303 * 3304 * This routine stops all the timers associated with a HBA. This function is 3305 * invoked before either putting a HBA offline or unloading the driver. 3306 **/ 3307 void 3308 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3309 { 3310 if (phba->pport) 3311 lpfc_stop_vport_timers(phba->pport); 3312 cancel_delayed_work_sync(&phba->eq_delay_work); 3313 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3314 del_timer_sync(&phba->sli.mbox_tmo); 3315 del_timer_sync(&phba->fabric_block_timer); 3316 del_timer_sync(&phba->eratt_poll); 3317 del_timer_sync(&phba->hb_tmofunc); 3318 if (phba->sli_rev == LPFC_SLI_REV4) { 3319 del_timer_sync(&phba->rrq_tmr); 3320 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 3321 } 3322 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 3323 3324 switch (phba->pci_dev_grp) { 3325 case LPFC_PCI_DEV_LP: 3326 /* Stop any LightPulse device specific driver timers */ 3327 del_timer_sync(&phba->fcp_poll_timer); 3328 break; 3329 case LPFC_PCI_DEV_OC: 3330 /* Stop any OneConnect device specific driver timers */ 3331 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3332 break; 3333 default: 3334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3335 "0297 Invalid device group (x%x)\n", 3336 phba->pci_dev_grp); 3337 break; 3338 } 3339 return; 3340 } 3341 3342 /** 3343 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3344 * @phba: pointer to lpfc hba data structure. 3345 * @mbx_action: flag for mailbox no wait action. 3346 * 3347 * This routine marks a HBA's management interface as blocked. Once the HBA's 3348 * management interface is marked as blocked, all the user space access to 3349 * the HBA, whether they are from sysfs interface or libdfc interface will 3350 * all be blocked. The HBA is set to block the management interface when the 3351 * driver prepares the HBA interface for online or offline. 3352 **/ 3353 static void 3354 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3355 { 3356 unsigned long iflag; 3357 uint8_t actcmd = MBX_HEARTBEAT; 3358 unsigned long timeout; 3359 3360 spin_lock_irqsave(&phba->hbalock, iflag); 3361 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3362 spin_unlock_irqrestore(&phba->hbalock, iflag); 3363 if (mbx_action == LPFC_MBX_NO_WAIT) 3364 return; 3365 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3366 spin_lock_irqsave(&phba->hbalock, iflag); 3367 if (phba->sli.mbox_active) { 3368 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3369 /* Determine how long we might wait for the active mailbox 3370 * command to be gracefully completed by firmware. 3371 */ 3372 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3373 phba->sli.mbox_active) * 1000) + jiffies; 3374 } 3375 spin_unlock_irqrestore(&phba->hbalock, iflag); 3376 3377 /* Wait for the outstnading mailbox command to complete */ 3378 while (phba->sli.mbox_active) { 3379 /* Check active mailbox complete status every 2ms */ 3380 msleep(2); 3381 if (time_after(jiffies, timeout)) { 3382 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3383 "2813 Mgmt IO is Blocked %x " 3384 "- mbox cmd %x still active\n", 3385 phba->sli.sli_flag, actcmd); 3386 break; 3387 } 3388 } 3389 } 3390 3391 /** 3392 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3393 * @phba: pointer to lpfc hba data structure. 3394 * 3395 * Allocate RPIs for all active remote nodes. This is needed whenever 3396 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3397 * is to fixup the temporary rpi assignments. 3398 **/ 3399 void 3400 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3401 { 3402 struct lpfc_nodelist *ndlp, *next_ndlp; 3403 struct lpfc_vport **vports; 3404 int i, rpi; 3405 3406 if (phba->sli_rev != LPFC_SLI_REV4) 3407 return; 3408 3409 vports = lpfc_create_vport_work_array(phba); 3410 if (vports == NULL) 3411 return; 3412 3413 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3414 if (vports[i]->load_flag & FC_UNLOADING) 3415 continue; 3416 3417 list_for_each_entry_safe(ndlp, next_ndlp, 3418 &vports[i]->fc_nodes, 3419 nlp_listp) { 3420 rpi = lpfc_sli4_alloc_rpi(phba); 3421 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3422 /* TODO print log? */ 3423 continue; 3424 } 3425 ndlp->nlp_rpi = rpi; 3426 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3427 LOG_NODE | LOG_DISCOVERY, 3428 "0009 Assign RPI x%x to ndlp x%px " 3429 "DID:x%06x flg:x%x\n", 3430 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3431 ndlp->nlp_flag); 3432 } 3433 } 3434 lpfc_destroy_vport_work_array(phba, vports); 3435 } 3436 3437 /** 3438 * lpfc_create_expedite_pool - create expedite pool 3439 * @phba: pointer to lpfc hba data structure. 3440 * 3441 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3442 * to expedite pool. Mark them as expedite. 3443 **/ 3444 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3445 { 3446 struct lpfc_sli4_hdw_queue *qp; 3447 struct lpfc_io_buf *lpfc_ncmd; 3448 struct lpfc_io_buf *lpfc_ncmd_next; 3449 struct lpfc_epd_pool *epd_pool; 3450 unsigned long iflag; 3451 3452 epd_pool = &phba->epd_pool; 3453 qp = &phba->sli4_hba.hdwq[0]; 3454 3455 spin_lock_init(&epd_pool->lock); 3456 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3457 spin_lock(&epd_pool->lock); 3458 INIT_LIST_HEAD(&epd_pool->list); 3459 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3460 &qp->lpfc_io_buf_list_put, list) { 3461 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3462 lpfc_ncmd->expedite = true; 3463 qp->put_io_bufs--; 3464 epd_pool->count++; 3465 if (epd_pool->count >= XRI_BATCH) 3466 break; 3467 } 3468 spin_unlock(&epd_pool->lock); 3469 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3470 } 3471 3472 /** 3473 * lpfc_destroy_expedite_pool - destroy expedite pool 3474 * @phba: pointer to lpfc hba data structure. 3475 * 3476 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3477 * of HWQ 0. Clear the mark. 3478 **/ 3479 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3480 { 3481 struct lpfc_sli4_hdw_queue *qp; 3482 struct lpfc_io_buf *lpfc_ncmd; 3483 struct lpfc_io_buf *lpfc_ncmd_next; 3484 struct lpfc_epd_pool *epd_pool; 3485 unsigned long iflag; 3486 3487 epd_pool = &phba->epd_pool; 3488 qp = &phba->sli4_hba.hdwq[0]; 3489 3490 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3491 spin_lock(&epd_pool->lock); 3492 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3493 &epd_pool->list, list) { 3494 list_move_tail(&lpfc_ncmd->list, 3495 &qp->lpfc_io_buf_list_put); 3496 lpfc_ncmd->flags = false; 3497 qp->put_io_bufs++; 3498 epd_pool->count--; 3499 } 3500 spin_unlock(&epd_pool->lock); 3501 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3502 } 3503 3504 /** 3505 * lpfc_create_multixri_pools - create multi-XRI pools 3506 * @phba: pointer to lpfc hba data structure. 3507 * 3508 * This routine initialize public, private per HWQ. Then, move XRIs from 3509 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3510 * Initialized. 3511 **/ 3512 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3513 { 3514 u32 i, j; 3515 u32 hwq_count; 3516 u32 count_per_hwq; 3517 struct lpfc_io_buf *lpfc_ncmd; 3518 struct lpfc_io_buf *lpfc_ncmd_next; 3519 unsigned long iflag; 3520 struct lpfc_sli4_hdw_queue *qp; 3521 struct lpfc_multixri_pool *multixri_pool; 3522 struct lpfc_pbl_pool *pbl_pool; 3523 struct lpfc_pvt_pool *pvt_pool; 3524 3525 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3526 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3527 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3528 phba->sli4_hba.io_xri_cnt); 3529 3530 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3531 lpfc_create_expedite_pool(phba); 3532 3533 hwq_count = phba->cfg_hdw_queue; 3534 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3535 3536 for (i = 0; i < hwq_count; i++) { 3537 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3538 3539 if (!multixri_pool) { 3540 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3541 "1238 Failed to allocate memory for " 3542 "multixri_pool\n"); 3543 3544 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3545 lpfc_destroy_expedite_pool(phba); 3546 3547 j = 0; 3548 while (j < i) { 3549 qp = &phba->sli4_hba.hdwq[j]; 3550 kfree(qp->p_multixri_pool); 3551 j++; 3552 } 3553 phba->cfg_xri_rebalancing = 0; 3554 return; 3555 } 3556 3557 qp = &phba->sli4_hba.hdwq[i]; 3558 qp->p_multixri_pool = multixri_pool; 3559 3560 multixri_pool->xri_limit = count_per_hwq; 3561 multixri_pool->rrb_next_hwqid = i; 3562 3563 /* Deal with public free xri pool */ 3564 pbl_pool = &multixri_pool->pbl_pool; 3565 spin_lock_init(&pbl_pool->lock); 3566 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3567 spin_lock(&pbl_pool->lock); 3568 INIT_LIST_HEAD(&pbl_pool->list); 3569 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3570 &qp->lpfc_io_buf_list_put, list) { 3571 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3572 qp->put_io_bufs--; 3573 pbl_pool->count++; 3574 } 3575 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3576 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3577 pbl_pool->count, i); 3578 spin_unlock(&pbl_pool->lock); 3579 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3580 3581 /* Deal with private free xri pool */ 3582 pvt_pool = &multixri_pool->pvt_pool; 3583 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3584 pvt_pool->low_watermark = XRI_BATCH; 3585 spin_lock_init(&pvt_pool->lock); 3586 spin_lock_irqsave(&pvt_pool->lock, iflag); 3587 INIT_LIST_HEAD(&pvt_pool->list); 3588 pvt_pool->count = 0; 3589 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3590 } 3591 } 3592 3593 /** 3594 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3595 * @phba: pointer to lpfc hba data structure. 3596 * 3597 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3598 **/ 3599 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3600 { 3601 u32 i; 3602 u32 hwq_count; 3603 struct lpfc_io_buf *lpfc_ncmd; 3604 struct lpfc_io_buf *lpfc_ncmd_next; 3605 unsigned long iflag; 3606 struct lpfc_sli4_hdw_queue *qp; 3607 struct lpfc_multixri_pool *multixri_pool; 3608 struct lpfc_pbl_pool *pbl_pool; 3609 struct lpfc_pvt_pool *pvt_pool; 3610 3611 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3612 lpfc_destroy_expedite_pool(phba); 3613 3614 if (!(phba->pport->load_flag & FC_UNLOADING)) 3615 lpfc_sli_flush_io_rings(phba); 3616 3617 hwq_count = phba->cfg_hdw_queue; 3618 3619 for (i = 0; i < hwq_count; i++) { 3620 qp = &phba->sli4_hba.hdwq[i]; 3621 multixri_pool = qp->p_multixri_pool; 3622 if (!multixri_pool) 3623 continue; 3624 3625 qp->p_multixri_pool = NULL; 3626 3627 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3628 3629 /* Deal with public free xri pool */ 3630 pbl_pool = &multixri_pool->pbl_pool; 3631 spin_lock(&pbl_pool->lock); 3632 3633 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3634 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3635 pbl_pool->count, i); 3636 3637 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3638 &pbl_pool->list, list) { 3639 list_move_tail(&lpfc_ncmd->list, 3640 &qp->lpfc_io_buf_list_put); 3641 qp->put_io_bufs++; 3642 pbl_pool->count--; 3643 } 3644 3645 INIT_LIST_HEAD(&pbl_pool->list); 3646 pbl_pool->count = 0; 3647 3648 spin_unlock(&pbl_pool->lock); 3649 3650 /* Deal with private free xri pool */ 3651 pvt_pool = &multixri_pool->pvt_pool; 3652 spin_lock(&pvt_pool->lock); 3653 3654 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3655 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3656 pvt_pool->count, i); 3657 3658 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3659 &pvt_pool->list, list) { 3660 list_move_tail(&lpfc_ncmd->list, 3661 &qp->lpfc_io_buf_list_put); 3662 qp->put_io_bufs++; 3663 pvt_pool->count--; 3664 } 3665 3666 INIT_LIST_HEAD(&pvt_pool->list); 3667 pvt_pool->count = 0; 3668 3669 spin_unlock(&pvt_pool->lock); 3670 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3671 3672 kfree(multixri_pool); 3673 } 3674 } 3675 3676 /** 3677 * lpfc_online - Initialize and bring a HBA online 3678 * @phba: pointer to lpfc hba data structure. 3679 * 3680 * This routine initializes the HBA and brings a HBA online. During this 3681 * process, the management interface is blocked to prevent user space access 3682 * to the HBA interfering with the driver initialization. 3683 * 3684 * Return codes 3685 * 0 - successful 3686 * 1 - failed 3687 **/ 3688 int 3689 lpfc_online(struct lpfc_hba *phba) 3690 { 3691 struct lpfc_vport *vport; 3692 struct lpfc_vport **vports; 3693 int i, error = 0; 3694 bool vpis_cleared = false; 3695 3696 if (!phba) 3697 return 0; 3698 vport = phba->pport; 3699 3700 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3701 return 0; 3702 3703 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3704 "0458 Bring Adapter online\n"); 3705 3706 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3707 3708 if (phba->sli_rev == LPFC_SLI_REV4) { 3709 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3710 lpfc_unblock_mgmt_io(phba); 3711 return 1; 3712 } 3713 spin_lock_irq(&phba->hbalock); 3714 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3715 vpis_cleared = true; 3716 spin_unlock_irq(&phba->hbalock); 3717 3718 /* Reestablish the local initiator port. 3719 * The offline process destroyed the previous lport. 3720 */ 3721 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3722 !phba->nvmet_support) { 3723 error = lpfc_nvme_create_localport(phba->pport); 3724 if (error) 3725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3726 "6132 NVME restore reg failed " 3727 "on nvmei error x%x\n", error); 3728 } 3729 } else { 3730 lpfc_sli_queue_init(phba); 3731 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3732 lpfc_unblock_mgmt_io(phba); 3733 return 1; 3734 } 3735 } 3736 3737 vports = lpfc_create_vport_work_array(phba); 3738 if (vports != NULL) { 3739 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3740 struct Scsi_Host *shost; 3741 shost = lpfc_shost_from_vport(vports[i]); 3742 spin_lock_irq(shost->host_lock); 3743 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3744 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3745 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3746 if (phba->sli_rev == LPFC_SLI_REV4) { 3747 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3748 if ((vpis_cleared) && 3749 (vports[i]->port_type != 3750 LPFC_PHYSICAL_PORT)) 3751 vports[i]->vpi = 0; 3752 } 3753 spin_unlock_irq(shost->host_lock); 3754 } 3755 } 3756 lpfc_destroy_vport_work_array(phba, vports); 3757 3758 if (phba->cfg_xri_rebalancing) 3759 lpfc_create_multixri_pools(phba); 3760 3761 lpfc_cpuhp_add(phba); 3762 3763 lpfc_unblock_mgmt_io(phba); 3764 return 0; 3765 } 3766 3767 /** 3768 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3769 * @phba: pointer to lpfc hba data structure. 3770 * 3771 * This routine marks a HBA's management interface as not blocked. Once the 3772 * HBA's management interface is marked as not blocked, all the user space 3773 * access to the HBA, whether they are from sysfs interface or libdfc 3774 * interface will be allowed. The HBA is set to block the management interface 3775 * when the driver prepares the HBA interface for online or offline and then 3776 * set to unblock the management interface afterwards. 3777 **/ 3778 void 3779 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3780 { 3781 unsigned long iflag; 3782 3783 spin_lock_irqsave(&phba->hbalock, iflag); 3784 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3785 spin_unlock_irqrestore(&phba->hbalock, iflag); 3786 } 3787 3788 /** 3789 * lpfc_offline_prep - Prepare a HBA to be brought offline 3790 * @phba: pointer to lpfc hba data structure. 3791 * @mbx_action: flag for mailbox shutdown action. 3792 * 3793 * This routine is invoked to prepare a HBA to be brought offline. It performs 3794 * unregistration login to all the nodes on all vports and flushes the mailbox 3795 * queue to make it ready to be brought offline. 3796 **/ 3797 void 3798 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3799 { 3800 struct lpfc_vport *vport = phba->pport; 3801 struct lpfc_nodelist *ndlp, *next_ndlp; 3802 struct lpfc_vport **vports; 3803 struct Scsi_Host *shost; 3804 int i; 3805 int offline; 3806 bool hba_pci_err; 3807 3808 if (vport->fc_flag & FC_OFFLINE_MODE) 3809 return; 3810 3811 lpfc_block_mgmt_io(phba, mbx_action); 3812 3813 lpfc_linkdown(phba); 3814 3815 offline = pci_channel_offline(phba->pcidev); 3816 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3817 3818 /* Issue an unreg_login to all nodes on all vports */ 3819 vports = lpfc_create_vport_work_array(phba); 3820 if (vports != NULL) { 3821 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3822 if (vports[i]->load_flag & FC_UNLOADING) 3823 continue; 3824 shost = lpfc_shost_from_vport(vports[i]); 3825 spin_lock_irq(shost->host_lock); 3826 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3827 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3828 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3829 spin_unlock_irq(shost->host_lock); 3830 3831 shost = lpfc_shost_from_vport(vports[i]); 3832 list_for_each_entry_safe(ndlp, next_ndlp, 3833 &vports[i]->fc_nodes, 3834 nlp_listp) { 3835 3836 spin_lock_irq(&ndlp->lock); 3837 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3838 spin_unlock_irq(&ndlp->lock); 3839 3840 if (offline || hba_pci_err) { 3841 spin_lock_irq(&ndlp->lock); 3842 ndlp->nlp_flag &= ~(NLP_UNREG_INP | 3843 NLP_RPI_REGISTERED); 3844 spin_unlock_irq(&ndlp->lock); 3845 if (phba->sli_rev == LPFC_SLI_REV4) 3846 lpfc_sli_rpi_release(vports[i], 3847 ndlp); 3848 } else { 3849 lpfc_unreg_rpi(vports[i], ndlp); 3850 } 3851 /* 3852 * Whenever an SLI4 port goes offline, free the 3853 * RPI. Get a new RPI when the adapter port 3854 * comes back online. 3855 */ 3856 if (phba->sli_rev == LPFC_SLI_REV4) { 3857 lpfc_printf_vlog(vports[i], KERN_INFO, 3858 LOG_NODE | LOG_DISCOVERY, 3859 "0011 Free RPI x%x on " 3860 "ndlp: x%px did x%x\n", 3861 ndlp->nlp_rpi, ndlp, 3862 ndlp->nlp_DID); 3863 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3864 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3865 } 3866 3867 if (ndlp->nlp_type & NLP_FABRIC) { 3868 lpfc_disc_state_machine(vports[i], ndlp, 3869 NULL, NLP_EVT_DEVICE_RECOVERY); 3870 3871 /* Don't remove the node unless the node 3872 * has been unregistered with the 3873 * transport, and we're not in recovery 3874 * before dev_loss_tmo triggered. 3875 * Otherwise, let dev_loss take care of 3876 * the node. 3877 */ 3878 if (!(ndlp->save_flags & 3879 NLP_IN_RECOV_POST_DEV_LOSS) && 3880 !(ndlp->fc4_xpt_flags & 3881 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3882 lpfc_disc_state_machine 3883 (vports[i], ndlp, 3884 NULL, 3885 NLP_EVT_DEVICE_RM); 3886 } 3887 } 3888 } 3889 } 3890 lpfc_destroy_vport_work_array(phba, vports); 3891 3892 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3893 3894 if (phba->wq) 3895 flush_workqueue(phba->wq); 3896 } 3897 3898 /** 3899 * lpfc_offline - Bring a HBA offline 3900 * @phba: pointer to lpfc hba data structure. 3901 * 3902 * This routine actually brings a HBA offline. It stops all the timers 3903 * associated with the HBA, brings down the SLI layer, and eventually 3904 * marks the HBA as in offline state for the upper layer protocol. 3905 **/ 3906 void 3907 lpfc_offline(struct lpfc_hba *phba) 3908 { 3909 struct Scsi_Host *shost; 3910 struct lpfc_vport **vports; 3911 int i; 3912 3913 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3914 return; 3915 3916 /* stop port and all timers associated with this hba */ 3917 lpfc_stop_port(phba); 3918 3919 /* Tear down the local and target port registrations. The 3920 * nvme transports need to cleanup. 3921 */ 3922 lpfc_nvmet_destroy_targetport(phba); 3923 lpfc_nvme_destroy_localport(phba->pport); 3924 3925 vports = lpfc_create_vport_work_array(phba); 3926 if (vports != NULL) 3927 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3928 lpfc_stop_vport_timers(vports[i]); 3929 lpfc_destroy_vport_work_array(phba, vports); 3930 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3931 "0460 Bring Adapter offline\n"); 3932 /* Bring down the SLI Layer and cleanup. The HBA is offline 3933 now. */ 3934 lpfc_sli_hba_down(phba); 3935 spin_lock_irq(&phba->hbalock); 3936 phba->work_ha = 0; 3937 spin_unlock_irq(&phba->hbalock); 3938 vports = lpfc_create_vport_work_array(phba); 3939 if (vports != NULL) 3940 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3941 shost = lpfc_shost_from_vport(vports[i]); 3942 spin_lock_irq(shost->host_lock); 3943 vports[i]->work_port_events = 0; 3944 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3945 spin_unlock_irq(shost->host_lock); 3946 } 3947 lpfc_destroy_vport_work_array(phba, vports); 3948 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3949 * in hba_unset 3950 */ 3951 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3952 __lpfc_cpuhp_remove(phba); 3953 3954 if (phba->cfg_xri_rebalancing) 3955 lpfc_destroy_multixri_pools(phba); 3956 } 3957 3958 /** 3959 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3960 * @phba: pointer to lpfc hba data structure. 3961 * 3962 * This routine is to free all the SCSI buffers and IOCBs from the driver 3963 * list back to kernel. It is called from lpfc_pci_remove_one to free 3964 * the internal resources before the device is removed from the system. 3965 **/ 3966 static void 3967 lpfc_scsi_free(struct lpfc_hba *phba) 3968 { 3969 struct lpfc_io_buf *sb, *sb_next; 3970 3971 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3972 return; 3973 3974 spin_lock_irq(&phba->hbalock); 3975 3976 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3977 3978 spin_lock(&phba->scsi_buf_list_put_lock); 3979 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3980 list) { 3981 list_del(&sb->list); 3982 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3983 sb->dma_handle); 3984 kfree(sb); 3985 phba->total_scsi_bufs--; 3986 } 3987 spin_unlock(&phba->scsi_buf_list_put_lock); 3988 3989 spin_lock(&phba->scsi_buf_list_get_lock); 3990 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3991 list) { 3992 list_del(&sb->list); 3993 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3994 sb->dma_handle); 3995 kfree(sb); 3996 phba->total_scsi_bufs--; 3997 } 3998 spin_unlock(&phba->scsi_buf_list_get_lock); 3999 spin_unlock_irq(&phba->hbalock); 4000 } 4001 4002 /** 4003 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 4004 * @phba: pointer to lpfc hba data structure. 4005 * 4006 * This routine is to free all the IO buffers and IOCBs from the driver 4007 * list back to kernel. It is called from lpfc_pci_remove_one to free 4008 * the internal resources before the device is removed from the system. 4009 **/ 4010 void 4011 lpfc_io_free(struct lpfc_hba *phba) 4012 { 4013 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 4014 struct lpfc_sli4_hdw_queue *qp; 4015 int idx; 4016 4017 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4018 qp = &phba->sli4_hba.hdwq[idx]; 4019 /* Release all the lpfc_nvme_bufs maintained by this host. */ 4020 spin_lock(&qp->io_buf_list_put_lock); 4021 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4022 &qp->lpfc_io_buf_list_put, 4023 list) { 4024 list_del(&lpfc_ncmd->list); 4025 qp->put_io_bufs--; 4026 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4027 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4028 if (phba->cfg_xpsgl && !phba->nvmet_support) 4029 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4030 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4031 kfree(lpfc_ncmd); 4032 qp->total_io_bufs--; 4033 } 4034 spin_unlock(&qp->io_buf_list_put_lock); 4035 4036 spin_lock(&qp->io_buf_list_get_lock); 4037 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4038 &qp->lpfc_io_buf_list_get, 4039 list) { 4040 list_del(&lpfc_ncmd->list); 4041 qp->get_io_bufs--; 4042 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4043 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4044 if (phba->cfg_xpsgl && !phba->nvmet_support) 4045 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4046 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4047 kfree(lpfc_ncmd); 4048 qp->total_io_bufs--; 4049 } 4050 spin_unlock(&qp->io_buf_list_get_lock); 4051 } 4052 } 4053 4054 /** 4055 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 4056 * @phba: pointer to lpfc hba data structure. 4057 * 4058 * This routine first calculates the sizes of the current els and allocated 4059 * scsi sgl lists, and then goes through all sgls to updates the physical 4060 * XRIs assigned due to port function reset. During port initialization, the 4061 * current els and allocated scsi sgl lists are 0s. 4062 * 4063 * Return codes 4064 * 0 - successful (for now, it always returns 0) 4065 **/ 4066 int 4067 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 4068 { 4069 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4070 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4071 LIST_HEAD(els_sgl_list); 4072 int rc; 4073 4074 /* 4075 * update on pci function's els xri-sgl list 4076 */ 4077 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4078 4079 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 4080 /* els xri-sgl expanded */ 4081 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 4082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4083 "3157 ELS xri-sgl count increased from " 4084 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4085 els_xri_cnt); 4086 /* allocate the additional els sgls */ 4087 for (i = 0; i < xri_cnt; i++) { 4088 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4089 GFP_KERNEL); 4090 if (sglq_entry == NULL) { 4091 lpfc_printf_log(phba, KERN_ERR, 4092 LOG_TRACE_EVENT, 4093 "2562 Failure to allocate an " 4094 "ELS sgl entry:%d\n", i); 4095 rc = -ENOMEM; 4096 goto out_free_mem; 4097 } 4098 sglq_entry->buff_type = GEN_BUFF_TYPE; 4099 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 4100 &sglq_entry->phys); 4101 if (sglq_entry->virt == NULL) { 4102 kfree(sglq_entry); 4103 lpfc_printf_log(phba, KERN_ERR, 4104 LOG_TRACE_EVENT, 4105 "2563 Failure to allocate an " 4106 "ELS mbuf:%d\n", i); 4107 rc = -ENOMEM; 4108 goto out_free_mem; 4109 } 4110 sglq_entry->sgl = sglq_entry->virt; 4111 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4112 sglq_entry->state = SGL_FREED; 4113 list_add_tail(&sglq_entry->list, &els_sgl_list); 4114 } 4115 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4116 list_splice_init(&els_sgl_list, 4117 &phba->sli4_hba.lpfc_els_sgl_list); 4118 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4119 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4120 /* els xri-sgl shrinked */ 4121 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4123 "3158 ELS xri-sgl count decreased from " 4124 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4125 els_xri_cnt); 4126 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4127 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4128 &els_sgl_list); 4129 /* release extra els sgls from list */ 4130 for (i = 0; i < xri_cnt; i++) { 4131 list_remove_head(&els_sgl_list, 4132 sglq_entry, struct lpfc_sglq, list); 4133 if (sglq_entry) { 4134 __lpfc_mbuf_free(phba, sglq_entry->virt, 4135 sglq_entry->phys); 4136 kfree(sglq_entry); 4137 } 4138 } 4139 list_splice_init(&els_sgl_list, 4140 &phba->sli4_hba.lpfc_els_sgl_list); 4141 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4142 } else 4143 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4144 "3163 ELS xri-sgl count unchanged: %d\n", 4145 els_xri_cnt); 4146 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4147 4148 /* update xris to els sgls on the list */ 4149 sglq_entry = NULL; 4150 sglq_entry_next = NULL; 4151 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4152 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4153 lxri = lpfc_sli4_next_xritag(phba); 4154 if (lxri == NO_XRI) { 4155 lpfc_printf_log(phba, KERN_ERR, 4156 LOG_TRACE_EVENT, 4157 "2400 Failed to allocate xri for " 4158 "ELS sgl\n"); 4159 rc = -ENOMEM; 4160 goto out_free_mem; 4161 } 4162 sglq_entry->sli4_lxritag = lxri; 4163 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4164 } 4165 return 0; 4166 4167 out_free_mem: 4168 lpfc_free_els_sgl_list(phba); 4169 return rc; 4170 } 4171 4172 /** 4173 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4174 * @phba: pointer to lpfc hba data structure. 4175 * 4176 * This routine first calculates the sizes of the current els and allocated 4177 * scsi sgl lists, and then goes through all sgls to updates the physical 4178 * XRIs assigned due to port function reset. During port initialization, the 4179 * current els and allocated scsi sgl lists are 0s. 4180 * 4181 * Return codes 4182 * 0 - successful (for now, it always returns 0) 4183 **/ 4184 int 4185 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4186 { 4187 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4188 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4189 uint16_t nvmet_xri_cnt; 4190 LIST_HEAD(nvmet_sgl_list); 4191 int rc; 4192 4193 /* 4194 * update on pci function's nvmet xri-sgl list 4195 */ 4196 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4197 4198 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4199 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4200 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4201 /* els xri-sgl expanded */ 4202 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4203 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4204 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4205 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4206 /* allocate the additional nvmet sgls */ 4207 for (i = 0; i < xri_cnt; i++) { 4208 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4209 GFP_KERNEL); 4210 if (sglq_entry == NULL) { 4211 lpfc_printf_log(phba, KERN_ERR, 4212 LOG_TRACE_EVENT, 4213 "6303 Failure to allocate an " 4214 "NVMET sgl entry:%d\n", i); 4215 rc = -ENOMEM; 4216 goto out_free_mem; 4217 } 4218 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4219 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4220 &sglq_entry->phys); 4221 if (sglq_entry->virt == NULL) { 4222 kfree(sglq_entry); 4223 lpfc_printf_log(phba, KERN_ERR, 4224 LOG_TRACE_EVENT, 4225 "6304 Failure to allocate an " 4226 "NVMET buf:%d\n", i); 4227 rc = -ENOMEM; 4228 goto out_free_mem; 4229 } 4230 sglq_entry->sgl = sglq_entry->virt; 4231 memset(sglq_entry->sgl, 0, 4232 phba->cfg_sg_dma_buf_size); 4233 sglq_entry->state = SGL_FREED; 4234 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4235 } 4236 spin_lock_irq(&phba->hbalock); 4237 spin_lock(&phba->sli4_hba.sgl_list_lock); 4238 list_splice_init(&nvmet_sgl_list, 4239 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4240 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4241 spin_unlock_irq(&phba->hbalock); 4242 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4243 /* nvmet xri-sgl shrunk */ 4244 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4245 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4246 "6305 NVMET xri-sgl count decreased from " 4247 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4248 nvmet_xri_cnt); 4249 spin_lock_irq(&phba->hbalock); 4250 spin_lock(&phba->sli4_hba.sgl_list_lock); 4251 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4252 &nvmet_sgl_list); 4253 /* release extra nvmet sgls from list */ 4254 for (i = 0; i < xri_cnt; i++) { 4255 list_remove_head(&nvmet_sgl_list, 4256 sglq_entry, struct lpfc_sglq, list); 4257 if (sglq_entry) { 4258 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4259 sglq_entry->phys); 4260 kfree(sglq_entry); 4261 } 4262 } 4263 list_splice_init(&nvmet_sgl_list, 4264 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4265 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4266 spin_unlock_irq(&phba->hbalock); 4267 } else 4268 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4269 "6306 NVMET xri-sgl count unchanged: %d\n", 4270 nvmet_xri_cnt); 4271 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4272 4273 /* update xris to nvmet sgls on the list */ 4274 sglq_entry = NULL; 4275 sglq_entry_next = NULL; 4276 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4277 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4278 lxri = lpfc_sli4_next_xritag(phba); 4279 if (lxri == NO_XRI) { 4280 lpfc_printf_log(phba, KERN_ERR, 4281 LOG_TRACE_EVENT, 4282 "6307 Failed to allocate xri for " 4283 "NVMET sgl\n"); 4284 rc = -ENOMEM; 4285 goto out_free_mem; 4286 } 4287 sglq_entry->sli4_lxritag = lxri; 4288 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4289 } 4290 return 0; 4291 4292 out_free_mem: 4293 lpfc_free_nvmet_sgl_list(phba); 4294 return rc; 4295 } 4296 4297 int 4298 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4299 { 4300 LIST_HEAD(blist); 4301 struct lpfc_sli4_hdw_queue *qp; 4302 struct lpfc_io_buf *lpfc_cmd; 4303 struct lpfc_io_buf *iobufp, *prev_iobufp; 4304 int idx, cnt, xri, inserted; 4305 4306 cnt = 0; 4307 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4308 qp = &phba->sli4_hba.hdwq[idx]; 4309 spin_lock_irq(&qp->io_buf_list_get_lock); 4310 spin_lock(&qp->io_buf_list_put_lock); 4311 4312 /* Take everything off the get and put lists */ 4313 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4314 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4315 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4316 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4317 cnt += qp->get_io_bufs + qp->put_io_bufs; 4318 qp->get_io_bufs = 0; 4319 qp->put_io_bufs = 0; 4320 qp->total_io_bufs = 0; 4321 spin_unlock(&qp->io_buf_list_put_lock); 4322 spin_unlock_irq(&qp->io_buf_list_get_lock); 4323 } 4324 4325 /* 4326 * Take IO buffers off blist and put on cbuf sorted by XRI. 4327 * This is because POST_SGL takes a sequential range of XRIs 4328 * to post to the firmware. 4329 */ 4330 for (idx = 0; idx < cnt; idx++) { 4331 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4332 if (!lpfc_cmd) 4333 return cnt; 4334 if (idx == 0) { 4335 list_add_tail(&lpfc_cmd->list, cbuf); 4336 continue; 4337 } 4338 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4339 inserted = 0; 4340 prev_iobufp = NULL; 4341 list_for_each_entry(iobufp, cbuf, list) { 4342 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4343 if (prev_iobufp) 4344 list_add(&lpfc_cmd->list, 4345 &prev_iobufp->list); 4346 else 4347 list_add(&lpfc_cmd->list, cbuf); 4348 inserted = 1; 4349 break; 4350 } 4351 prev_iobufp = iobufp; 4352 } 4353 if (!inserted) 4354 list_add_tail(&lpfc_cmd->list, cbuf); 4355 } 4356 return cnt; 4357 } 4358 4359 int 4360 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4361 { 4362 struct lpfc_sli4_hdw_queue *qp; 4363 struct lpfc_io_buf *lpfc_cmd; 4364 int idx, cnt; 4365 unsigned long iflags; 4366 4367 qp = phba->sli4_hba.hdwq; 4368 cnt = 0; 4369 while (!list_empty(cbuf)) { 4370 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4371 list_remove_head(cbuf, lpfc_cmd, 4372 struct lpfc_io_buf, list); 4373 if (!lpfc_cmd) 4374 return cnt; 4375 cnt++; 4376 qp = &phba->sli4_hba.hdwq[idx]; 4377 lpfc_cmd->hdwq_no = idx; 4378 lpfc_cmd->hdwq = qp; 4379 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4380 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags); 4381 list_add_tail(&lpfc_cmd->list, 4382 &qp->lpfc_io_buf_list_put); 4383 qp->put_io_bufs++; 4384 qp->total_io_bufs++; 4385 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 4386 iflags); 4387 } 4388 } 4389 return cnt; 4390 } 4391 4392 /** 4393 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4394 * @phba: pointer to lpfc hba data structure. 4395 * 4396 * This routine first calculates the sizes of the current els and allocated 4397 * scsi sgl lists, and then goes through all sgls to updates the physical 4398 * XRIs assigned due to port function reset. During port initialization, the 4399 * current els and allocated scsi sgl lists are 0s. 4400 * 4401 * Return codes 4402 * 0 - successful (for now, it always returns 0) 4403 **/ 4404 int 4405 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4406 { 4407 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4408 uint16_t i, lxri, els_xri_cnt; 4409 uint16_t io_xri_cnt, io_xri_max; 4410 LIST_HEAD(io_sgl_list); 4411 int rc, cnt; 4412 4413 /* 4414 * update on pci function's allocated nvme xri-sgl list 4415 */ 4416 4417 /* maximum number of xris available for nvme buffers */ 4418 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4419 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4420 phba->sli4_hba.io_xri_max = io_xri_max; 4421 4422 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4423 "6074 Current allocated XRI sgl count:%d, " 4424 "maximum XRI count:%d els_xri_cnt:%d\n\n", 4425 phba->sli4_hba.io_xri_cnt, 4426 phba->sli4_hba.io_xri_max, 4427 els_xri_cnt); 4428 4429 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4430 4431 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4432 /* max nvme xri shrunk below the allocated nvme buffers */ 4433 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4434 phba->sli4_hba.io_xri_max; 4435 /* release the extra allocated nvme buffers */ 4436 for (i = 0; i < io_xri_cnt; i++) { 4437 list_remove_head(&io_sgl_list, lpfc_ncmd, 4438 struct lpfc_io_buf, list); 4439 if (lpfc_ncmd) { 4440 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4441 lpfc_ncmd->data, 4442 lpfc_ncmd->dma_handle); 4443 kfree(lpfc_ncmd); 4444 } 4445 } 4446 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4447 } 4448 4449 /* update xris associated to remaining allocated nvme buffers */ 4450 lpfc_ncmd = NULL; 4451 lpfc_ncmd_next = NULL; 4452 phba->sli4_hba.io_xri_cnt = cnt; 4453 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4454 &io_sgl_list, list) { 4455 lxri = lpfc_sli4_next_xritag(phba); 4456 if (lxri == NO_XRI) { 4457 lpfc_printf_log(phba, KERN_ERR, 4458 LOG_TRACE_EVENT, 4459 "6075 Failed to allocate xri for " 4460 "nvme buffer\n"); 4461 rc = -ENOMEM; 4462 goto out_free_mem; 4463 } 4464 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4465 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4466 } 4467 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4468 return 0; 4469 4470 out_free_mem: 4471 lpfc_io_free(phba); 4472 return rc; 4473 } 4474 4475 /** 4476 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4477 * @phba: Pointer to lpfc hba data structure. 4478 * @num_to_alloc: The requested number of buffers to allocate. 4479 * 4480 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4481 * the nvme buffer contains all the necessary information needed to initiate 4482 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4483 * them on a list, it post them to the port by using SGL block post. 4484 * 4485 * Return codes: 4486 * int - number of IO buffers that were allocated and posted. 4487 * 0 = failure, less than num_to_alloc is a partial failure. 4488 **/ 4489 int 4490 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4491 { 4492 struct lpfc_io_buf *lpfc_ncmd; 4493 struct lpfc_iocbq *pwqeq; 4494 uint16_t iotag, lxri = 0; 4495 int bcnt, num_posted; 4496 LIST_HEAD(prep_nblist); 4497 LIST_HEAD(post_nblist); 4498 LIST_HEAD(nvme_nblist); 4499 4500 phba->sli4_hba.io_xri_cnt = 0; 4501 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4502 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4503 if (!lpfc_ncmd) 4504 break; 4505 /* 4506 * Get memory from the pci pool to map the virt space to 4507 * pci bus space for an I/O. The DMA buffer includes the 4508 * number of SGE's necessary to support the sg_tablesize. 4509 */ 4510 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4511 GFP_KERNEL, 4512 &lpfc_ncmd->dma_handle); 4513 if (!lpfc_ncmd->data) { 4514 kfree(lpfc_ncmd); 4515 break; 4516 } 4517 4518 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4519 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4520 } else { 4521 /* 4522 * 4K Page alignment is CRITICAL to BlockGuard, double 4523 * check to be sure. 4524 */ 4525 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4526 (((unsigned long)(lpfc_ncmd->data) & 4527 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4528 lpfc_printf_log(phba, KERN_ERR, 4529 LOG_TRACE_EVENT, 4530 "3369 Memory alignment err: " 4531 "addr=%lx\n", 4532 (unsigned long)lpfc_ncmd->data); 4533 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4534 lpfc_ncmd->data, 4535 lpfc_ncmd->dma_handle); 4536 kfree(lpfc_ncmd); 4537 break; 4538 } 4539 } 4540 4541 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4542 4543 lxri = lpfc_sli4_next_xritag(phba); 4544 if (lxri == NO_XRI) { 4545 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4546 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4547 kfree(lpfc_ncmd); 4548 break; 4549 } 4550 pwqeq = &lpfc_ncmd->cur_iocbq; 4551 4552 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4553 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4554 if (iotag == 0) { 4555 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4556 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4557 kfree(lpfc_ncmd); 4558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4559 "6121 Failed to allocate IOTAG for" 4560 " XRI:0x%x\n", lxri); 4561 lpfc_sli4_free_xri(phba, lxri); 4562 break; 4563 } 4564 pwqeq->sli4_lxritag = lxri; 4565 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4566 4567 /* Initialize local short-hand pointers. */ 4568 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4569 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4570 lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; 4571 spin_lock_init(&lpfc_ncmd->buf_lock); 4572 4573 /* add the nvme buffer to a post list */ 4574 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4575 phba->sli4_hba.io_xri_cnt++; 4576 } 4577 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4578 "6114 Allocate %d out of %d requested new NVME " 4579 "buffers of size x%zu bytes\n", bcnt, num_to_alloc, 4580 sizeof(*lpfc_ncmd)); 4581 4582 4583 /* post the list of nvme buffer sgls to port if available */ 4584 if (!list_empty(&post_nblist)) 4585 num_posted = lpfc_sli4_post_io_sgl_list( 4586 phba, &post_nblist, bcnt); 4587 else 4588 num_posted = 0; 4589 4590 return num_posted; 4591 } 4592 4593 static uint64_t 4594 lpfc_get_wwpn(struct lpfc_hba *phba) 4595 { 4596 uint64_t wwn; 4597 int rc; 4598 LPFC_MBOXQ_t *mboxq; 4599 MAILBOX_t *mb; 4600 4601 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4602 GFP_KERNEL); 4603 if (!mboxq) 4604 return (uint64_t)-1; 4605 4606 /* First get WWN of HBA instance */ 4607 lpfc_read_nv(phba, mboxq); 4608 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4609 if (rc != MBX_SUCCESS) { 4610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4611 "6019 Mailbox failed , mbxCmd x%x " 4612 "READ_NV, mbxStatus x%x\n", 4613 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4614 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4615 mempool_free(mboxq, phba->mbox_mem_pool); 4616 return (uint64_t) -1; 4617 } 4618 mb = &mboxq->u.mb; 4619 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4620 /* wwn is WWPN of HBA instance */ 4621 mempool_free(mboxq, phba->mbox_mem_pool); 4622 if (phba->sli_rev == LPFC_SLI_REV4) 4623 return be64_to_cpu(wwn); 4624 else 4625 return rol64(wwn, 32); 4626 } 4627 4628 static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba) 4629 { 4630 if (phba->sli_rev == LPFC_SLI_REV4) 4631 if (phba->cfg_xpsgl && !phba->nvmet_support) 4632 return LPFC_MAX_SG_TABLESIZE; 4633 else 4634 return phba->cfg_scsi_seg_cnt; 4635 else 4636 return phba->cfg_sg_seg_cnt; 4637 } 4638 4639 /** 4640 * lpfc_vmid_res_alloc - Allocates resources for VMID 4641 * @phba: pointer to lpfc hba data structure. 4642 * @vport: pointer to vport data structure 4643 * 4644 * This routine allocated the resources needed for the VMID. 4645 * 4646 * Return codes 4647 * 0 on Success 4648 * Non-0 on Failure 4649 */ 4650 static int 4651 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4652 { 4653 /* VMID feature is supported only on SLI4 */ 4654 if (phba->sli_rev == LPFC_SLI_REV3) { 4655 phba->cfg_vmid_app_header = 0; 4656 phba->cfg_vmid_priority_tagging = 0; 4657 } 4658 4659 if (lpfc_is_vmid_enabled(phba)) { 4660 vport->vmid = 4661 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4662 GFP_KERNEL); 4663 if (!vport->vmid) 4664 return -ENOMEM; 4665 4666 rwlock_init(&vport->vmid_lock); 4667 4668 /* Set the VMID parameters for the vport */ 4669 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4670 vport->vmid_inactivity_timeout = 4671 phba->cfg_vmid_inactivity_timeout; 4672 vport->max_vmid = phba->cfg_max_vmid; 4673 vport->cur_vmid_cnt = 0; 4674 4675 vport->vmid_priority_range = bitmap_zalloc 4676 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4677 4678 if (!vport->vmid_priority_range) { 4679 kfree(vport->vmid); 4680 return -ENOMEM; 4681 } 4682 4683 hash_init(vport->hash_table); 4684 } 4685 return 0; 4686 } 4687 4688 /** 4689 * lpfc_create_port - Create an FC port 4690 * @phba: pointer to lpfc hba data structure. 4691 * @instance: a unique integer ID to this FC port. 4692 * @dev: pointer to the device data structure. 4693 * 4694 * This routine creates a FC port for the upper layer protocol. The FC port 4695 * can be created on top of either a physical port or a virtual port provided 4696 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4697 * and associates the FC port created before adding the shost into the SCSI 4698 * layer. 4699 * 4700 * Return codes 4701 * @vport - pointer to the virtual N_Port data structure. 4702 * NULL - port create failed. 4703 **/ 4704 struct lpfc_vport * 4705 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4706 { 4707 struct lpfc_vport *vport; 4708 struct Scsi_Host *shost = NULL; 4709 struct scsi_host_template *template; 4710 int error = 0; 4711 int i; 4712 uint64_t wwn; 4713 bool use_no_reset_hba = false; 4714 int rc; 4715 4716 if (lpfc_no_hba_reset_cnt) { 4717 if (phba->sli_rev < LPFC_SLI_REV4 && 4718 dev == &phba->pcidev->dev) { 4719 /* Reset the port first */ 4720 lpfc_sli_brdrestart(phba); 4721 rc = lpfc_sli_chipset_init(phba); 4722 if (rc) 4723 return NULL; 4724 } 4725 wwn = lpfc_get_wwpn(phba); 4726 } 4727 4728 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4729 if (wwn == lpfc_no_hba_reset[i]) { 4730 lpfc_printf_log(phba, KERN_ERR, 4731 LOG_TRACE_EVENT, 4732 "6020 Setting use_no_reset port=%llx\n", 4733 wwn); 4734 use_no_reset_hba = true; 4735 break; 4736 } 4737 } 4738 4739 /* Seed template for SCSI host registration */ 4740 if (dev == &phba->pcidev->dev) { 4741 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4742 /* Seed physical port template */ 4743 template = &lpfc_template; 4744 4745 if (use_no_reset_hba) 4746 /* template is for a no reset SCSI Host */ 4747 template->eh_host_reset_handler = NULL; 4748 4749 /* Seed updated value of sg_tablesize */ 4750 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4751 } else { 4752 /* NVMET is for physical port only */ 4753 template = &lpfc_template_nvme; 4754 } 4755 } else { 4756 /* Seed vport template */ 4757 template = &lpfc_vport_template; 4758 4759 /* Seed updated value of sg_tablesize */ 4760 template->sg_tablesize = lpfc_get_sg_tablesize(phba); 4761 } 4762 4763 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4764 if (!shost) 4765 goto out; 4766 4767 vport = (struct lpfc_vport *) shost->hostdata; 4768 vport->phba = phba; 4769 vport->load_flag |= FC_LOADING; 4770 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4771 vport->fc_rscn_flush = 0; 4772 lpfc_get_vport_cfgparam(vport); 4773 4774 /* Adjust value in vport */ 4775 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4776 4777 shost->unique_id = instance; 4778 shost->max_id = LPFC_MAX_TARGET; 4779 shost->max_lun = vport->cfg_max_luns; 4780 shost->this_id = -1; 4781 shost->max_cmd_len = 16; 4782 4783 if (phba->sli_rev == LPFC_SLI_REV4) { 4784 if (!phba->cfg_fcp_mq_threshold || 4785 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4786 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4787 4788 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4789 phba->cfg_fcp_mq_threshold); 4790 4791 shost->dma_boundary = 4792 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4793 } else 4794 /* SLI-3 has a limited number of hardware queues (3), 4795 * thus there is only one for FCP processing. 4796 */ 4797 shost->nr_hw_queues = 1; 4798 4799 /* 4800 * Set initial can_queue value since 0 is no longer supported and 4801 * scsi_add_host will fail. This will be adjusted later based on the 4802 * max xri value determined in hba setup. 4803 */ 4804 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4805 if (dev != &phba->pcidev->dev) { 4806 shost->transportt = lpfc_vport_transport_template; 4807 vport->port_type = LPFC_NPIV_PORT; 4808 } else { 4809 shost->transportt = lpfc_transport_template; 4810 vport->port_type = LPFC_PHYSICAL_PORT; 4811 } 4812 4813 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4814 "9081 CreatePort TMPLATE type %x TBLsize %d " 4815 "SEGcnt %d/%d\n", 4816 vport->port_type, shost->sg_tablesize, 4817 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4818 4819 /* Allocate the resources for VMID */ 4820 rc = lpfc_vmid_res_alloc(phba, vport); 4821 4822 if (rc) 4823 goto out_put_shost; 4824 4825 /* Initialize all internally managed lists. */ 4826 INIT_LIST_HEAD(&vport->fc_nodes); 4827 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4828 spin_lock_init(&vport->work_port_lock); 4829 4830 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4831 4832 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4833 4834 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4835 4836 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4837 lpfc_setup_bg(phba, shost); 4838 4839 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4840 if (error) 4841 goto out_free_vmid; 4842 4843 spin_lock_irq(&phba->port_list_lock); 4844 list_add_tail(&vport->listentry, &phba->port_list); 4845 spin_unlock_irq(&phba->port_list_lock); 4846 return vport; 4847 4848 out_free_vmid: 4849 kfree(vport->vmid); 4850 bitmap_free(vport->vmid_priority_range); 4851 out_put_shost: 4852 scsi_host_put(shost); 4853 out: 4854 return NULL; 4855 } 4856 4857 /** 4858 * destroy_port - destroy an FC port 4859 * @vport: pointer to an lpfc virtual N_Port data structure. 4860 * 4861 * This routine destroys a FC port from the upper layer protocol. All the 4862 * resources associated with the port are released. 4863 **/ 4864 void 4865 destroy_port(struct lpfc_vport *vport) 4866 { 4867 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4868 struct lpfc_hba *phba = vport->phba; 4869 4870 lpfc_debugfs_terminate(vport); 4871 fc_remove_host(shost); 4872 scsi_remove_host(shost); 4873 4874 spin_lock_irq(&phba->port_list_lock); 4875 list_del_init(&vport->listentry); 4876 spin_unlock_irq(&phba->port_list_lock); 4877 4878 lpfc_cleanup(vport); 4879 return; 4880 } 4881 4882 /** 4883 * lpfc_get_instance - Get a unique integer ID 4884 * 4885 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4886 * uses the kernel idr facility to perform the task. 4887 * 4888 * Return codes: 4889 * instance - a unique integer ID allocated as the new instance. 4890 * -1 - lpfc get instance failed. 4891 **/ 4892 int 4893 lpfc_get_instance(void) 4894 { 4895 int ret; 4896 4897 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4898 return ret < 0 ? -1 : ret; 4899 } 4900 4901 /** 4902 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4903 * @shost: pointer to SCSI host data structure. 4904 * @time: elapsed time of the scan in jiffies. 4905 * 4906 * This routine is called by the SCSI layer with a SCSI host to determine 4907 * whether the scan host is finished. 4908 * 4909 * Note: there is no scan_start function as adapter initialization will have 4910 * asynchronously kicked off the link initialization. 4911 * 4912 * Return codes 4913 * 0 - SCSI host scan is not over yet. 4914 * 1 - SCSI host scan is over. 4915 **/ 4916 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4917 { 4918 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4919 struct lpfc_hba *phba = vport->phba; 4920 int stat = 0; 4921 4922 spin_lock_irq(shost->host_lock); 4923 4924 if (vport->load_flag & FC_UNLOADING) { 4925 stat = 1; 4926 goto finished; 4927 } 4928 if (time >= msecs_to_jiffies(30 * 1000)) { 4929 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4930 "0461 Scanning longer than 30 " 4931 "seconds. Continuing initialization\n"); 4932 stat = 1; 4933 goto finished; 4934 } 4935 if (time >= msecs_to_jiffies(15 * 1000) && 4936 phba->link_state <= LPFC_LINK_DOWN) { 4937 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4938 "0465 Link down longer than 15 " 4939 "seconds. Continuing initialization\n"); 4940 stat = 1; 4941 goto finished; 4942 } 4943 4944 if (vport->port_state != LPFC_VPORT_READY) 4945 goto finished; 4946 if (vport->num_disc_nodes || vport->fc_prli_sent) 4947 goto finished; 4948 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4949 goto finished; 4950 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4951 goto finished; 4952 4953 stat = 1; 4954 4955 finished: 4956 spin_unlock_irq(shost->host_lock); 4957 return stat; 4958 } 4959 4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4961 { 4962 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4963 struct lpfc_hba *phba = vport->phba; 4964 4965 fc_host_supported_speeds(shost) = 0; 4966 /* 4967 * Avoid reporting supported link speed for FCoE as it can't be 4968 * controlled via FCoE. 4969 */ 4970 if (phba->hba_flag & HBA_FCOE_MODE) 4971 return; 4972 4973 if (phba->lmt & LMT_256Gb) 4974 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4975 if (phba->lmt & LMT_128Gb) 4976 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4977 if (phba->lmt & LMT_64Gb) 4978 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4979 if (phba->lmt & LMT_32Gb) 4980 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4981 if (phba->lmt & LMT_16Gb) 4982 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4983 if (phba->lmt & LMT_10Gb) 4984 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4985 if (phba->lmt & LMT_8Gb) 4986 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4987 if (phba->lmt & LMT_4Gb) 4988 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4989 if (phba->lmt & LMT_2Gb) 4990 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4991 if (phba->lmt & LMT_1Gb) 4992 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4993 } 4994 4995 /** 4996 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4997 * @shost: pointer to SCSI host data structure. 4998 * 4999 * This routine initializes a given SCSI host attributes on a FC port. The 5000 * SCSI host can be either on top of a physical port or a virtual port. 5001 **/ 5002 void lpfc_host_attrib_init(struct Scsi_Host *shost) 5003 { 5004 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 5005 struct lpfc_hba *phba = vport->phba; 5006 /* 5007 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 5008 */ 5009 5010 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 5011 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 5012 fc_host_supported_classes(shost) = FC_COS_CLASS3; 5013 5014 memset(fc_host_supported_fc4s(shost), 0, 5015 sizeof(fc_host_supported_fc4s(shost))); 5016 fc_host_supported_fc4s(shost)[2] = 1; 5017 fc_host_supported_fc4s(shost)[7] = 1; 5018 5019 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 5020 sizeof fc_host_symbolic_name(shost)); 5021 5022 lpfc_host_supported_speeds_set(shost); 5023 5024 fc_host_maxframe_size(shost) = 5025 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 5026 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 5027 5028 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 5029 5030 /* This value is also unchanging */ 5031 memset(fc_host_active_fc4s(shost), 0, 5032 sizeof(fc_host_active_fc4s(shost))); 5033 fc_host_active_fc4s(shost)[2] = 1; 5034 fc_host_active_fc4s(shost)[7] = 1; 5035 5036 fc_host_max_npiv_vports(shost) = phba->max_vpi; 5037 spin_lock_irq(shost->host_lock); 5038 vport->load_flag &= ~FC_LOADING; 5039 spin_unlock_irq(shost->host_lock); 5040 } 5041 5042 /** 5043 * lpfc_stop_port_s3 - Stop SLI3 device port 5044 * @phba: pointer to lpfc hba data structure. 5045 * 5046 * This routine is invoked to stop an SLI3 device port, it stops the device 5047 * from generating interrupts and stops the device driver's timers for the 5048 * device. 5049 **/ 5050 static void 5051 lpfc_stop_port_s3(struct lpfc_hba *phba) 5052 { 5053 /* Clear all interrupt enable conditions */ 5054 writel(0, phba->HCregaddr); 5055 readl(phba->HCregaddr); /* flush */ 5056 /* Clear all pending interrupts */ 5057 writel(0xffffffff, phba->HAregaddr); 5058 readl(phba->HAregaddr); /* flush */ 5059 5060 /* Reset some HBA SLI setup states */ 5061 lpfc_stop_hba_timers(phba); 5062 phba->pport->work_port_events = 0; 5063 } 5064 5065 /** 5066 * lpfc_stop_port_s4 - Stop SLI4 device port 5067 * @phba: pointer to lpfc hba data structure. 5068 * 5069 * This routine is invoked to stop an SLI4 device port, it stops the device 5070 * from generating interrupts and stops the device driver's timers for the 5071 * device. 5072 **/ 5073 static void 5074 lpfc_stop_port_s4(struct lpfc_hba *phba) 5075 { 5076 /* Reset some HBA SLI4 setup states */ 5077 lpfc_stop_hba_timers(phba); 5078 if (phba->pport) 5079 phba->pport->work_port_events = 0; 5080 phba->sli4_hba.intr_enable = 0; 5081 } 5082 5083 /** 5084 * lpfc_stop_port - Wrapper function for stopping hba port 5085 * @phba: Pointer to HBA context object. 5086 * 5087 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 5088 * the API jump table function pointer from the lpfc_hba struct. 5089 **/ 5090 void 5091 lpfc_stop_port(struct lpfc_hba *phba) 5092 { 5093 phba->lpfc_stop_port(phba); 5094 5095 if (phba->wq) 5096 flush_workqueue(phba->wq); 5097 } 5098 5099 /** 5100 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5101 * @phba: Pointer to hba for which this call is being executed. 5102 * 5103 * This routine starts the timer waiting for the FCF rediscovery to complete. 5104 **/ 5105 void 5106 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5107 { 5108 unsigned long fcf_redisc_wait_tmo = 5109 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5110 /* Start fcf rediscovery wait period timer */ 5111 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5112 spin_lock_irq(&phba->hbalock); 5113 /* Allow action to new fcf asynchronous event */ 5114 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5115 /* Mark the FCF rediscovery pending state */ 5116 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5117 spin_unlock_irq(&phba->hbalock); 5118 } 5119 5120 /** 5121 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5122 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5123 * 5124 * This routine is invoked when waiting for FCF table rediscover has been 5125 * timed out. If new FCF record(s) has (have) been discovered during the 5126 * wait period, a new FCF event shall be added to the FCOE async event 5127 * list, and then worker thread shall be waked up for processing from the 5128 * worker thread context. 5129 **/ 5130 static void 5131 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5132 { 5133 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 5134 5135 /* Don't send FCF rediscovery event if timer cancelled */ 5136 spin_lock_irq(&phba->hbalock); 5137 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5138 spin_unlock_irq(&phba->hbalock); 5139 return; 5140 } 5141 /* Clear FCF rediscovery timer pending flag */ 5142 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5143 /* FCF rediscovery event to worker thread */ 5144 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5145 spin_unlock_irq(&phba->hbalock); 5146 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5147 "2776 FCF rediscover quiescent timer expired\n"); 5148 /* wake up worker thread */ 5149 lpfc_worker_wake_up(phba); 5150 } 5151 5152 /** 5153 * lpfc_vmid_poll - VMID timeout detection 5154 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5155 * 5156 * This routine is invoked when there is no I/O on by a VM for the specified 5157 * amount of time. When this situation is detected, the VMID has to be 5158 * deregistered from the switch and all the local resources freed. The VMID 5159 * will be reassigned to the VM once the I/O begins. 5160 **/ 5161 static void 5162 lpfc_vmid_poll(struct timer_list *t) 5163 { 5164 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 5165 u32 wake_up = 0; 5166 5167 /* check if there is a need to issue QFPA */ 5168 if (phba->pport->vmid_priority_tagging) { 5169 wake_up = 1; 5170 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5171 } 5172 5173 /* Is the vmid inactivity timer enabled */ 5174 if (phba->pport->vmid_inactivity_timeout || 5175 phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) { 5176 wake_up = 1; 5177 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5178 } 5179 5180 if (wake_up) 5181 lpfc_worker_wake_up(phba); 5182 5183 /* restart the timer for the next iteration */ 5184 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * 5185 LPFC_VMID_TIMER)); 5186 } 5187 5188 /** 5189 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5190 * @phba: pointer to lpfc hba data structure. 5191 * @acqe_link: pointer to the async link completion queue entry. 5192 * 5193 * This routine is to parse the SLI4 link-attention link fault code. 5194 **/ 5195 static void 5196 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5197 struct lpfc_acqe_link *acqe_link) 5198 { 5199 switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) { 5200 case LPFC_FC_LA_TYPE_LINK_DOWN: 5201 case LPFC_FC_LA_TYPE_TRUNKING_EVENT: 5202 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 5203 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 5204 break; 5205 default: 5206 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5207 case LPFC_ASYNC_LINK_FAULT_NONE: 5208 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5209 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5210 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5211 break; 5212 default: 5213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5214 "0398 Unknown link fault code: x%x\n", 5215 bf_get(lpfc_acqe_link_fault, acqe_link)); 5216 break; 5217 } 5218 break; 5219 } 5220 } 5221 5222 /** 5223 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5224 * @phba: pointer to lpfc hba data structure. 5225 * @acqe_link: pointer to the async link completion queue entry. 5226 * 5227 * This routine is to parse the SLI4 link attention type and translate it 5228 * into the base driver's link attention type coding. 5229 * 5230 * Return: Link attention type in terms of base driver's coding. 5231 **/ 5232 static uint8_t 5233 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5234 struct lpfc_acqe_link *acqe_link) 5235 { 5236 uint8_t att_type; 5237 5238 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5239 case LPFC_ASYNC_LINK_STATUS_DOWN: 5240 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5241 att_type = LPFC_ATT_LINK_DOWN; 5242 break; 5243 case LPFC_ASYNC_LINK_STATUS_UP: 5244 /* Ignore physical link up events - wait for logical link up */ 5245 att_type = LPFC_ATT_RESERVED; 5246 break; 5247 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5248 att_type = LPFC_ATT_LINK_UP; 5249 break; 5250 default: 5251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5252 "0399 Invalid link attention type: x%x\n", 5253 bf_get(lpfc_acqe_link_status, acqe_link)); 5254 att_type = LPFC_ATT_RESERVED; 5255 break; 5256 } 5257 return att_type; 5258 } 5259 5260 /** 5261 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5262 * @phba: pointer to lpfc hba data structure. 5263 * 5264 * This routine is to get an SLI3 FC port's link speed in Mbps. 5265 * 5266 * Return: link speed in terms of Mbps. 5267 **/ 5268 uint32_t 5269 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5270 { 5271 uint32_t link_speed; 5272 5273 if (!lpfc_is_link_up(phba)) 5274 return 0; 5275 5276 if (phba->sli_rev <= LPFC_SLI_REV3) { 5277 switch (phba->fc_linkspeed) { 5278 case LPFC_LINK_SPEED_1GHZ: 5279 link_speed = 1000; 5280 break; 5281 case LPFC_LINK_SPEED_2GHZ: 5282 link_speed = 2000; 5283 break; 5284 case LPFC_LINK_SPEED_4GHZ: 5285 link_speed = 4000; 5286 break; 5287 case LPFC_LINK_SPEED_8GHZ: 5288 link_speed = 8000; 5289 break; 5290 case LPFC_LINK_SPEED_10GHZ: 5291 link_speed = 10000; 5292 break; 5293 case LPFC_LINK_SPEED_16GHZ: 5294 link_speed = 16000; 5295 break; 5296 default: 5297 link_speed = 0; 5298 } 5299 } else { 5300 if (phba->sli4_hba.link_state.logical_speed) 5301 link_speed = 5302 phba->sli4_hba.link_state.logical_speed; 5303 else 5304 link_speed = phba->sli4_hba.link_state.speed; 5305 } 5306 return link_speed; 5307 } 5308 5309 /** 5310 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5311 * @phba: pointer to lpfc hba data structure. 5312 * @evt_code: asynchronous event code. 5313 * @speed_code: asynchronous event link speed code. 5314 * 5315 * This routine is to parse the giving SLI4 async event link speed code into 5316 * value of Mbps for the link speed. 5317 * 5318 * Return: link speed in terms of Mbps. 5319 **/ 5320 static uint32_t 5321 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5322 uint8_t speed_code) 5323 { 5324 uint32_t port_speed; 5325 5326 switch (evt_code) { 5327 case LPFC_TRAILER_CODE_LINK: 5328 switch (speed_code) { 5329 case LPFC_ASYNC_LINK_SPEED_ZERO: 5330 port_speed = 0; 5331 break; 5332 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5333 port_speed = 10; 5334 break; 5335 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5336 port_speed = 100; 5337 break; 5338 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5339 port_speed = 1000; 5340 break; 5341 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5342 port_speed = 10000; 5343 break; 5344 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5345 port_speed = 20000; 5346 break; 5347 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5348 port_speed = 25000; 5349 break; 5350 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5351 port_speed = 40000; 5352 break; 5353 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5354 port_speed = 100000; 5355 break; 5356 default: 5357 port_speed = 0; 5358 } 5359 break; 5360 case LPFC_TRAILER_CODE_FC: 5361 switch (speed_code) { 5362 case LPFC_FC_LA_SPEED_UNKNOWN: 5363 port_speed = 0; 5364 break; 5365 case LPFC_FC_LA_SPEED_1G: 5366 port_speed = 1000; 5367 break; 5368 case LPFC_FC_LA_SPEED_2G: 5369 port_speed = 2000; 5370 break; 5371 case LPFC_FC_LA_SPEED_4G: 5372 port_speed = 4000; 5373 break; 5374 case LPFC_FC_LA_SPEED_8G: 5375 port_speed = 8000; 5376 break; 5377 case LPFC_FC_LA_SPEED_10G: 5378 port_speed = 10000; 5379 break; 5380 case LPFC_FC_LA_SPEED_16G: 5381 port_speed = 16000; 5382 break; 5383 case LPFC_FC_LA_SPEED_32G: 5384 port_speed = 32000; 5385 break; 5386 case LPFC_FC_LA_SPEED_64G: 5387 port_speed = 64000; 5388 break; 5389 case LPFC_FC_LA_SPEED_128G: 5390 port_speed = 128000; 5391 break; 5392 case LPFC_FC_LA_SPEED_256G: 5393 port_speed = 256000; 5394 break; 5395 default: 5396 port_speed = 0; 5397 } 5398 break; 5399 default: 5400 port_speed = 0; 5401 } 5402 return port_speed; 5403 } 5404 5405 /** 5406 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5407 * @phba: pointer to lpfc hba data structure. 5408 * @acqe_link: pointer to the async link completion queue entry. 5409 * 5410 * This routine is to handle the SLI4 asynchronous FCoE link event. 5411 **/ 5412 static void 5413 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5414 struct lpfc_acqe_link *acqe_link) 5415 { 5416 LPFC_MBOXQ_t *pmb; 5417 MAILBOX_t *mb; 5418 struct lpfc_mbx_read_top *la; 5419 uint8_t att_type; 5420 int rc; 5421 5422 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5423 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5424 return; 5425 phba->fcoe_eventtag = acqe_link->event_tag; 5426 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5427 if (!pmb) { 5428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5429 "0395 The mboxq allocation failed\n"); 5430 return; 5431 } 5432 5433 rc = lpfc_mbox_rsrc_prep(phba, pmb); 5434 if (rc) { 5435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5436 "0396 mailbox allocation failed\n"); 5437 goto out_free_pmb; 5438 } 5439 5440 /* Cleanup any outstanding ELS commands */ 5441 lpfc_els_flush_all_cmd(phba); 5442 5443 /* Block ELS IOCBs until we have done process link event */ 5444 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5445 5446 /* Update link event statistics */ 5447 phba->sli.slistat.link_event++; 5448 5449 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5450 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 5451 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5452 pmb->vport = phba->pport; 5453 5454 /* Keep the link status for extra SLI4 state machine reference */ 5455 phba->sli4_hba.link_state.speed = 5456 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5457 bf_get(lpfc_acqe_link_speed, acqe_link)); 5458 phba->sli4_hba.link_state.duplex = 5459 bf_get(lpfc_acqe_link_duplex, acqe_link); 5460 phba->sli4_hba.link_state.status = 5461 bf_get(lpfc_acqe_link_status, acqe_link); 5462 phba->sli4_hba.link_state.type = 5463 bf_get(lpfc_acqe_link_type, acqe_link); 5464 phba->sli4_hba.link_state.number = 5465 bf_get(lpfc_acqe_link_number, acqe_link); 5466 phba->sli4_hba.link_state.fault = 5467 bf_get(lpfc_acqe_link_fault, acqe_link); 5468 phba->sli4_hba.link_state.logical_speed = 5469 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5470 5471 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5472 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5473 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5474 "Logical speed:%dMbps Fault:%d\n", 5475 phba->sli4_hba.link_state.speed, 5476 phba->sli4_hba.link_state.topology, 5477 phba->sli4_hba.link_state.status, 5478 phba->sli4_hba.link_state.type, 5479 phba->sli4_hba.link_state.number, 5480 phba->sli4_hba.link_state.logical_speed, 5481 phba->sli4_hba.link_state.fault); 5482 /* 5483 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5484 * topology info. Note: Optional for non FC-AL ports. 5485 */ 5486 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5487 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5488 if (rc == MBX_NOT_FINISHED) 5489 goto out_free_pmb; 5490 return; 5491 } 5492 /* 5493 * For FCoE Mode: fill in all the topology information we need and call 5494 * the READ_TOPOLOGY completion routine to continue without actually 5495 * sending the READ_TOPOLOGY mailbox command to the port. 5496 */ 5497 /* Initialize completion status */ 5498 mb = &pmb->u.mb; 5499 mb->mbxStatus = MBX_SUCCESS; 5500 5501 /* Parse port fault information field */ 5502 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5503 5504 /* Parse and translate link attention fields */ 5505 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5506 la->eventTag = acqe_link->event_tag; 5507 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5508 bf_set(lpfc_mbx_read_top_link_spd, la, 5509 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5510 5511 /* Fake the following irrelevant fields */ 5512 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5513 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5514 bf_set(lpfc_mbx_read_top_il, la, 0); 5515 bf_set(lpfc_mbx_read_top_pb, la, 0); 5516 bf_set(lpfc_mbx_read_top_fa, la, 0); 5517 bf_set(lpfc_mbx_read_top_mm, la, 0); 5518 5519 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5520 lpfc_mbx_cmpl_read_topology(phba, pmb); 5521 5522 return; 5523 5524 out_free_pmb: 5525 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 5526 } 5527 5528 /** 5529 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5530 * topology. 5531 * @phba: pointer to lpfc hba data structure. 5532 * @speed_code: asynchronous event link speed code. 5533 * 5534 * This routine is to parse the giving SLI4 async event link speed code into 5535 * value of Read topology link speed. 5536 * 5537 * Return: link speed in terms of Read topology. 5538 **/ 5539 static uint8_t 5540 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5541 { 5542 uint8_t port_speed; 5543 5544 switch (speed_code) { 5545 case LPFC_FC_LA_SPEED_1G: 5546 port_speed = LPFC_LINK_SPEED_1GHZ; 5547 break; 5548 case LPFC_FC_LA_SPEED_2G: 5549 port_speed = LPFC_LINK_SPEED_2GHZ; 5550 break; 5551 case LPFC_FC_LA_SPEED_4G: 5552 port_speed = LPFC_LINK_SPEED_4GHZ; 5553 break; 5554 case LPFC_FC_LA_SPEED_8G: 5555 port_speed = LPFC_LINK_SPEED_8GHZ; 5556 break; 5557 case LPFC_FC_LA_SPEED_16G: 5558 port_speed = LPFC_LINK_SPEED_16GHZ; 5559 break; 5560 case LPFC_FC_LA_SPEED_32G: 5561 port_speed = LPFC_LINK_SPEED_32GHZ; 5562 break; 5563 case LPFC_FC_LA_SPEED_64G: 5564 port_speed = LPFC_LINK_SPEED_64GHZ; 5565 break; 5566 case LPFC_FC_LA_SPEED_128G: 5567 port_speed = LPFC_LINK_SPEED_128GHZ; 5568 break; 5569 case LPFC_FC_LA_SPEED_256G: 5570 port_speed = LPFC_LINK_SPEED_256GHZ; 5571 break; 5572 default: 5573 port_speed = 0; 5574 break; 5575 } 5576 5577 return port_speed; 5578 } 5579 5580 void 5581 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5582 { 5583 if (!phba->rx_monitor) { 5584 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5585 "4411 Rx Monitor Info is empty.\n"); 5586 } else { 5587 lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0, 5588 LPFC_MAX_RXMONITOR_DUMP); 5589 } 5590 } 5591 5592 /** 5593 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5594 * @phba: pointer to lpfc hba data structure. 5595 * @dtag: FPIN descriptor received 5596 * 5597 * Increment the FPIN received counter/time when it happens. 5598 */ 5599 void 5600 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5601 { 5602 struct lpfc_cgn_info *cp; 5603 u32 value; 5604 5605 /* Make sure we have a congestion info buffer */ 5606 if (!phba->cgn_i) 5607 return; 5608 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5609 5610 /* Update congestion statistics */ 5611 switch (dtag) { 5612 case ELS_DTAG_LNK_INTEGRITY: 5613 le32_add_cpu(&cp->link_integ_notification, 1); 5614 lpfc_cgn_update_tstamp(phba, &cp->stat_lnk); 5615 break; 5616 case ELS_DTAG_DELIVERY: 5617 le32_add_cpu(&cp->delivery_notification, 1); 5618 lpfc_cgn_update_tstamp(phba, &cp->stat_delivery); 5619 break; 5620 case ELS_DTAG_PEER_CONGEST: 5621 le32_add_cpu(&cp->cgn_peer_notification, 1); 5622 lpfc_cgn_update_tstamp(phba, &cp->stat_peer); 5623 break; 5624 case ELS_DTAG_CONGESTION: 5625 le32_add_cpu(&cp->cgn_notification, 1); 5626 lpfc_cgn_update_tstamp(phba, &cp->stat_fpin); 5627 } 5628 if (phba->cgn_fpin_frequency && 5629 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5630 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5631 cp->cgn_stat_npm = value; 5632 } 5633 5634 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5635 LPFC_CGN_CRC32_SEED); 5636 cp->cgn_info_crc = cpu_to_le32(value); 5637 } 5638 5639 /** 5640 * lpfc_cgn_update_tstamp - Update cmf timestamp 5641 * @phba: pointer to lpfc hba data structure. 5642 * @ts: structure to write the timestamp to. 5643 */ 5644 void 5645 lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts) 5646 { 5647 struct timespec64 cur_time; 5648 struct tm tm_val; 5649 5650 ktime_get_real_ts64(&cur_time); 5651 time64_to_tm(cur_time.tv_sec, 0, &tm_val); 5652 5653 ts->month = tm_val.tm_mon + 1; 5654 ts->day = tm_val.tm_mday; 5655 ts->year = tm_val.tm_year - 100; 5656 ts->hour = tm_val.tm_hour; 5657 ts->minute = tm_val.tm_min; 5658 ts->second = tm_val.tm_sec; 5659 5660 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5661 "2646 Updated CMF timestamp : " 5662 "%u/%u/%u %u:%u:%u\n", 5663 ts->day, ts->month, 5664 ts->year, ts->hour, 5665 ts->minute, ts->second); 5666 } 5667 5668 /** 5669 * lpfc_cmf_stats_timer - Save data into registered congestion buffer 5670 * @timer: Timer cookie to access lpfc private data 5671 * 5672 * Save the congestion event data every minute. 5673 * On the hour collapse all the minute data into hour data. Every day 5674 * collapse all the hour data into daily data. Separate driver 5675 * and fabrc congestion event counters that will be saved out 5676 * to the registered congestion buffer every minute. 5677 */ 5678 static enum hrtimer_restart 5679 lpfc_cmf_stats_timer(struct hrtimer *timer) 5680 { 5681 struct lpfc_hba *phba; 5682 struct lpfc_cgn_info *cp; 5683 uint32_t i, index; 5684 uint16_t value, mvalue; 5685 uint64_t bps; 5686 uint32_t mbps; 5687 uint32_t dvalue, wvalue, lvalue, avalue; 5688 uint64_t latsum; 5689 __le16 *ptr; 5690 __le32 *lptr; 5691 __le16 *mptr; 5692 5693 phba = container_of(timer, struct lpfc_hba, cmf_stats_timer); 5694 /* Make sure we have a congestion info buffer */ 5695 if (!phba->cgn_i) 5696 return HRTIMER_NORESTART; 5697 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5698 5699 phba->cgn_evt_timestamp = jiffies + 5700 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5701 phba->cgn_evt_minute++; 5702 5703 /* We should get to this point in the routine on 1 minute intervals */ 5704 lpfc_cgn_update_tstamp(phba, &cp->base_time); 5705 5706 if (phba->cgn_fpin_frequency && 5707 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5708 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5709 cp->cgn_stat_npm = value; 5710 } 5711 5712 /* Read and clear the latency counters for this minute */ 5713 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5714 latsum = atomic64_read(&phba->cgn_latency_evt); 5715 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5716 atomic64_set(&phba->cgn_latency_evt, 0); 5717 5718 /* We need to store MB/sec bandwidth in the congestion information. 5719 * block_cnt is count of 512 byte blocks for the entire minute, 5720 * bps will get bytes per sec before finally converting to MB/sec. 5721 */ 5722 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5723 phba->rx_block_cnt = 0; 5724 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5725 5726 /* Every minute */ 5727 /* cgn parameters */ 5728 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5729 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5730 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5731 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5732 5733 /* Fill in default LUN qdepth */ 5734 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5735 cp->cgn_lunq = cpu_to_le16(value); 5736 5737 /* Record congestion buffer info - every minute 5738 * cgn_driver_evt_cnt (Driver events) 5739 * cgn_fabric_warn_cnt (Congestion Warnings) 5740 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5741 * cgn_fabric_alarm_cnt (Congestion Alarms) 5742 */ 5743 index = ++cp->cgn_index_minute; 5744 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5745 cp->cgn_index_minute = 0; 5746 index = 0; 5747 } 5748 5749 /* Get the number of driver events in this sample and reset counter */ 5750 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5751 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5752 5753 /* Get the number of warning events - FPIN and Signal for this minute */ 5754 wvalue = 0; 5755 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5756 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5757 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5758 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5759 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5760 5761 /* Get the number of alarm events - FPIN and Signal for this minute */ 5762 avalue = 0; 5763 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5764 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5765 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5766 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5767 5768 /* Collect the driver, warning, alarm and latency counts for this 5769 * minute into the driver congestion buffer. 5770 */ 5771 ptr = &cp->cgn_drvr_min[index]; 5772 value = (uint16_t)dvalue; 5773 *ptr = cpu_to_le16(value); 5774 5775 ptr = &cp->cgn_warn_min[index]; 5776 value = (uint16_t)wvalue; 5777 *ptr = cpu_to_le16(value); 5778 5779 ptr = &cp->cgn_alarm_min[index]; 5780 value = (uint16_t)avalue; 5781 *ptr = cpu_to_le16(value); 5782 5783 lptr = &cp->cgn_latency_min[index]; 5784 if (lvalue) { 5785 lvalue = (uint32_t)div_u64(latsum, lvalue); 5786 *lptr = cpu_to_le32(lvalue); 5787 } else { 5788 *lptr = 0; 5789 } 5790 5791 /* Collect the bandwidth value into the driver's congesion buffer. */ 5792 mptr = &cp->cgn_bw_min[index]; 5793 *mptr = cpu_to_le16(mvalue); 5794 5795 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5796 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5797 index, dvalue, wvalue, *lptr, mvalue, avalue); 5798 5799 /* Every hour */ 5800 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5801 /* Record congestion buffer info - every hour 5802 * Collapse all minutes into an hour 5803 */ 5804 index = ++cp->cgn_index_hour; 5805 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5806 cp->cgn_index_hour = 0; 5807 index = 0; 5808 } 5809 5810 dvalue = 0; 5811 wvalue = 0; 5812 lvalue = 0; 5813 avalue = 0; 5814 mvalue = 0; 5815 mbps = 0; 5816 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5817 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5818 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5819 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5820 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5821 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5822 } 5823 if (lvalue) /* Avg of latency averages */ 5824 lvalue /= LPFC_MIN_HOUR; 5825 if (mbps) /* Avg of Bandwidth averages */ 5826 mvalue = mbps / LPFC_MIN_HOUR; 5827 5828 lptr = &cp->cgn_drvr_hr[index]; 5829 *lptr = cpu_to_le32(dvalue); 5830 lptr = &cp->cgn_warn_hr[index]; 5831 *lptr = cpu_to_le32(wvalue); 5832 lptr = &cp->cgn_latency_hr[index]; 5833 *lptr = cpu_to_le32(lvalue); 5834 mptr = &cp->cgn_bw_hr[index]; 5835 *mptr = cpu_to_le16(mvalue); 5836 lptr = &cp->cgn_alarm_hr[index]; 5837 *lptr = cpu_to_le32(avalue); 5838 5839 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5840 "2419 Congestion Info - hour " 5841 "(%d): %d %d %d %d %d\n", 5842 index, dvalue, wvalue, lvalue, mvalue, avalue); 5843 } 5844 5845 /* Every day */ 5846 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5847 /* Record congestion buffer info - every hour 5848 * Collapse all hours into a day. Rotate days 5849 * after LPFC_MAX_CGN_DAYS. 5850 */ 5851 index = ++cp->cgn_index_day; 5852 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5853 cp->cgn_index_day = 0; 5854 index = 0; 5855 } 5856 5857 dvalue = 0; 5858 wvalue = 0; 5859 lvalue = 0; 5860 mvalue = 0; 5861 mbps = 0; 5862 avalue = 0; 5863 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5864 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5865 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5866 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5867 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5868 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5869 } 5870 if (lvalue) /* Avg of latency averages */ 5871 lvalue /= LPFC_HOUR_DAY; 5872 if (mbps) /* Avg of Bandwidth averages */ 5873 mvalue = mbps / LPFC_HOUR_DAY; 5874 5875 lptr = &cp->cgn_drvr_day[index]; 5876 *lptr = cpu_to_le32(dvalue); 5877 lptr = &cp->cgn_warn_day[index]; 5878 *lptr = cpu_to_le32(wvalue); 5879 lptr = &cp->cgn_latency_day[index]; 5880 *lptr = cpu_to_le32(lvalue); 5881 mptr = &cp->cgn_bw_day[index]; 5882 *mptr = cpu_to_le16(mvalue); 5883 lptr = &cp->cgn_alarm_day[index]; 5884 *lptr = cpu_to_le32(avalue); 5885 5886 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5887 "2420 Congestion Info - daily (%d): " 5888 "%d %d %d %d %d\n", 5889 index, dvalue, wvalue, lvalue, mvalue, avalue); 5890 } 5891 5892 /* Use the frequency found in the last rcv'ed FPIN */ 5893 value = phba->cgn_fpin_frequency; 5894 cp->cgn_warn_freq = cpu_to_le16(value); 5895 cp->cgn_alarm_freq = cpu_to_le16(value); 5896 5897 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5898 LPFC_CGN_CRC32_SEED); 5899 cp->cgn_info_crc = cpu_to_le32(lvalue); 5900 5901 hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC)); 5902 5903 return HRTIMER_RESTART; 5904 } 5905 5906 /** 5907 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5908 * @phba: The Hba for which this call is being executed. 5909 * 5910 * The routine calculates the latency from the beginning of the CMF timer 5911 * interval to the current point in time. It is called from IO completion 5912 * when we exceed our Bandwidth limitation for the time interval. 5913 */ 5914 uint32_t 5915 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5916 { 5917 struct timespec64 cmpl_time; 5918 uint32_t msec = 0; 5919 5920 ktime_get_real_ts64(&cmpl_time); 5921 5922 /* This routine works on a ms granularity so sec and usec are 5923 * converted accordingly. 5924 */ 5925 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5926 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5927 NSEC_PER_MSEC; 5928 } else { 5929 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5930 msec = (cmpl_time.tv_sec - 5931 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5932 msec += ((cmpl_time.tv_nsec - 5933 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5934 } else { 5935 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5936 1) * MSEC_PER_SEC; 5937 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5938 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5939 } 5940 } 5941 return msec; 5942 } 5943 5944 /** 5945 * lpfc_cmf_timer - This is the timer function for one congestion 5946 * rate interval. 5947 * @timer: Pointer to the high resolution timer that expired 5948 */ 5949 static enum hrtimer_restart 5950 lpfc_cmf_timer(struct hrtimer *timer) 5951 { 5952 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 5953 cmf_timer); 5954 struct rx_info_entry entry; 5955 uint32_t io_cnt; 5956 uint32_t busy, max_read; 5957 uint64_t total, rcv, lat, mbpi, extra, cnt; 5958 int timer_interval = LPFC_CMF_INTERVAL; 5959 uint32_t ms; 5960 struct lpfc_cgn_stat *cgs; 5961 int cpu; 5962 5963 /* Only restart the timer if congestion mgmt is on */ 5964 if (phba->cmf_active_mode == LPFC_CFG_OFF || 5965 !phba->cmf_latency.tv_sec) { 5966 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5967 "6224 CMF timer exit: %d %lld\n", 5968 phba->cmf_active_mode, 5969 (uint64_t)phba->cmf_latency.tv_sec); 5970 return HRTIMER_NORESTART; 5971 } 5972 5973 /* If pport is not ready yet, just exit and wait for 5974 * the next timer cycle to hit. 5975 */ 5976 if (!phba->pport) 5977 goto skip; 5978 5979 /* Do not block SCSI IO while in the timer routine since 5980 * total_bytes will be cleared 5981 */ 5982 atomic_set(&phba->cmf_stop_io, 1); 5983 5984 /* First we need to calculate the actual ms between 5985 * the last timer interrupt and this one. We ask for 5986 * LPFC_CMF_INTERVAL, however the actual time may 5987 * vary depending on system overhead. 5988 */ 5989 ms = lpfc_calc_cmf_latency(phba); 5990 5991 5992 /* Immediately after we calculate the time since the last 5993 * timer interrupt, set the start time for the next 5994 * interrupt 5995 */ 5996 ktime_get_real_ts64(&phba->cmf_latency); 5997 5998 phba->cmf_link_byte_count = 5999 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 6000 6001 /* Collect all the stats from the prior timer interval */ 6002 total = 0; 6003 io_cnt = 0; 6004 lat = 0; 6005 rcv = 0; 6006 for_each_present_cpu(cpu) { 6007 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 6008 total += atomic64_xchg(&cgs->total_bytes, 0); 6009 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 6010 lat += atomic64_xchg(&cgs->rx_latency, 0); 6011 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 6012 } 6013 6014 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6015 * returned from the last CMF_SYNC_WQE issued, from 6016 * cmf_last_sync_bw. This will be the target BW for 6017 * this next timer interval. 6018 */ 6019 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6020 phba->link_state != LPFC_LINK_DOWN && 6021 phba->hba_flag & HBA_SETUP) { 6022 mbpi = phba->cmf_last_sync_bw; 6023 phba->cmf_last_sync_bw = 0; 6024 extra = 0; 6025 6026 /* Calculate any extra bytes needed to account for the 6027 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6028 * calculate the adjustment needed for total to reflect 6029 * a full LPFC_CMF_INTERVAL. 6030 */ 6031 if (ms && ms < LPFC_CMF_INTERVAL) { 6032 cnt = div_u64(total, ms); /* bytes per ms */ 6033 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6034 extra = cnt - total; 6035 } 6036 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6037 } else { 6038 /* For Monitor mode or link down we want mbpi 6039 * to be the full link speed 6040 */ 6041 mbpi = phba->cmf_link_byte_count; 6042 extra = 0; 6043 } 6044 phba->cmf_timer_cnt++; 6045 6046 if (io_cnt) { 6047 /* Update congestion info buffer latency in us */ 6048 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6049 atomic64_add(lat, &phba->cgn_latency_evt); 6050 } 6051 busy = atomic_xchg(&phba->cmf_busy, 0); 6052 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6053 6054 /* Calculate MBPI for the next timer interval */ 6055 if (mbpi) { 6056 if (mbpi > phba->cmf_link_byte_count || 6057 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6058 mbpi = phba->cmf_link_byte_count; 6059 6060 /* Change max_bytes_per_interval to what the prior 6061 * CMF_SYNC_WQE cmpl indicated. 6062 */ 6063 if (mbpi != phba->cmf_max_bytes_per_interval) 6064 phba->cmf_max_bytes_per_interval = mbpi; 6065 } 6066 6067 /* Save rxmonitor information for debug */ 6068 if (phba->rx_monitor) { 6069 entry.total_bytes = total; 6070 entry.cmf_bytes = total + extra; 6071 entry.rcv_bytes = rcv; 6072 entry.cmf_busy = busy; 6073 entry.cmf_info = phba->cmf_active_info; 6074 if (io_cnt) { 6075 entry.avg_io_latency = div_u64(lat, io_cnt); 6076 entry.avg_io_size = div_u64(rcv, io_cnt); 6077 } else { 6078 entry.avg_io_latency = 0; 6079 entry.avg_io_size = 0; 6080 } 6081 entry.max_read_cnt = max_read; 6082 entry.io_cnt = io_cnt; 6083 entry.max_bytes_per_interval = mbpi; 6084 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6085 entry.timer_utilization = phba->cmf_last_ts; 6086 else 6087 entry.timer_utilization = ms; 6088 entry.timer_interval = ms; 6089 phba->cmf_last_ts = 0; 6090 6091 lpfc_rx_monitor_record(phba->rx_monitor, &entry); 6092 } 6093 6094 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6095 /* If Monitor mode, check if we are oversubscribed 6096 * against the full line rate. 6097 */ 6098 if (mbpi && total > mbpi) 6099 atomic_inc(&phba->cgn_driver_evt_cnt); 6100 } 6101 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6102 6103 /* Since total_bytes has already been zero'ed, its okay to unblock 6104 * after max_bytes_per_interval is setup. 6105 */ 6106 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6107 queue_work(phba->wq, &phba->unblock_request_work); 6108 6109 /* SCSI IO is now unblocked */ 6110 atomic_set(&phba->cmf_stop_io, 0); 6111 6112 skip: 6113 hrtimer_forward_now(timer, 6114 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6115 return HRTIMER_RESTART; 6116 } 6117 6118 #define trunk_link_status(__idx)\ 6119 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6120 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6121 "Link up" : "Link down") : "NA" 6122 /* Did port __idx reported an error */ 6123 #define trunk_port_fault(__idx)\ 6124 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6125 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6126 6127 static void 6128 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6129 struct lpfc_acqe_fc_la *acqe_fc) 6130 { 6131 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6132 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6133 u8 cnt = 0; 6134 6135 phba->sli4_hba.link_state.speed = 6136 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6137 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6138 6139 phba->sli4_hba.link_state.logical_speed = 6140 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6141 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6142 phba->fc_linkspeed = 6143 lpfc_async_link_speed_to_read_top( 6144 phba, 6145 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6146 6147 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6148 phba->trunk_link.link0.state = 6149 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6150 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6151 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6152 cnt++; 6153 } 6154 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6155 phba->trunk_link.link1.state = 6156 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6157 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6158 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6159 cnt++; 6160 } 6161 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6162 phba->trunk_link.link2.state = 6163 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6164 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6165 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6166 cnt++; 6167 } 6168 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6169 phba->trunk_link.link3.state = 6170 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6171 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6172 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6173 cnt++; 6174 } 6175 6176 if (cnt) 6177 phba->trunk_link.phy_lnk_speed = 6178 phba->sli4_hba.link_state.logical_speed / (cnt * 1000); 6179 else 6180 phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN; 6181 6182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6183 "2910 Async FC Trunking Event - Speed:%d\n" 6184 "\tLogical speed:%d " 6185 "port0: %s port1: %s port2: %s port3: %s\n", 6186 phba->sli4_hba.link_state.speed, 6187 phba->sli4_hba.link_state.logical_speed, 6188 trunk_link_status(0), trunk_link_status(1), 6189 trunk_link_status(2), trunk_link_status(3)); 6190 6191 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6192 lpfc_cmf_signal_init(phba); 6193 6194 if (port_fault) 6195 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6196 "3202 trunk error:0x%x (%s) seen on port0:%s " 6197 /* 6198 * SLI-4: We have only 0xA error codes 6199 * defined as of now. print an appropriate 6200 * message in case driver needs to be updated. 6201 */ 6202 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6203 "UNDEFINED. update driver." : trunk_errmsg[err], 6204 trunk_port_fault(0), trunk_port_fault(1), 6205 trunk_port_fault(2), trunk_port_fault(3)); 6206 } 6207 6208 6209 /** 6210 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6211 * @phba: pointer to lpfc hba data structure. 6212 * @acqe_fc: pointer to the async fc completion queue entry. 6213 * 6214 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6215 * that the event was received and then issue a read_topology mailbox command so 6216 * that the rest of the driver will treat it the same as SLI3. 6217 **/ 6218 static void 6219 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6220 { 6221 LPFC_MBOXQ_t *pmb; 6222 MAILBOX_t *mb; 6223 struct lpfc_mbx_read_top *la; 6224 char *log_level; 6225 int rc; 6226 6227 if (bf_get(lpfc_trailer_type, acqe_fc) != 6228 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6230 "2895 Non FC link Event detected.(%d)\n", 6231 bf_get(lpfc_trailer_type, acqe_fc)); 6232 return; 6233 } 6234 6235 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6236 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6237 lpfc_update_trunk_link_status(phba, acqe_fc); 6238 return; 6239 } 6240 6241 /* Keep the link status for extra SLI4 state machine reference */ 6242 phba->sli4_hba.link_state.speed = 6243 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6244 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6245 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6246 phba->sli4_hba.link_state.topology = 6247 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6248 phba->sli4_hba.link_state.status = 6249 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6250 phba->sli4_hba.link_state.type = 6251 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6252 phba->sli4_hba.link_state.number = 6253 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6254 phba->sli4_hba.link_state.fault = 6255 bf_get(lpfc_acqe_link_fault, acqe_fc); 6256 phba->sli4_hba.link_state.link_status = 6257 bf_get(lpfc_acqe_fc_la_link_status, acqe_fc); 6258 6259 /* 6260 * Only select attention types need logical speed modification to what 6261 * was previously set. 6262 */ 6263 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP && 6264 phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6265 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6266 LPFC_FC_LA_TYPE_LINK_DOWN) 6267 phba->sli4_hba.link_state.logical_speed = 0; 6268 else if (!phba->sli4_hba.conf_trunk) 6269 phba->sli4_hba.link_state.logical_speed = 6270 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6271 } 6272 6273 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6274 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6275 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6276 "%dMbps Fault:x%x Link Status:x%x\n", 6277 phba->sli4_hba.link_state.speed, 6278 phba->sli4_hba.link_state.topology, 6279 phba->sli4_hba.link_state.status, 6280 phba->sli4_hba.link_state.type, 6281 phba->sli4_hba.link_state.number, 6282 phba->sli4_hba.link_state.logical_speed, 6283 phba->sli4_hba.link_state.fault, 6284 phba->sli4_hba.link_state.link_status); 6285 6286 /* 6287 * The following attention types are informational only, providing 6288 * further details about link status. Overwrite the value of 6289 * link_state.status appropriately. No further action is required. 6290 */ 6291 if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { 6292 switch (phba->sli4_hba.link_state.status) { 6293 case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: 6294 log_level = KERN_WARNING; 6295 phba->sli4_hba.link_state.status = 6296 LPFC_FC_LA_TYPE_LINK_DOWN; 6297 break; 6298 case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: 6299 /* 6300 * During bb credit recovery establishment, receiving 6301 * this attention type is normal. Link Up attention 6302 * type is expected to occur before this informational 6303 * attention type so keep the Link Up status. 6304 */ 6305 log_level = KERN_INFO; 6306 phba->sli4_hba.link_state.status = 6307 LPFC_FC_LA_TYPE_LINK_UP; 6308 break; 6309 default: 6310 log_level = KERN_INFO; 6311 break; 6312 } 6313 lpfc_log_msg(phba, log_level, LOG_SLI, 6314 "2992 Async FC event - Informational Link " 6315 "Attention Type x%x\n", 6316 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc)); 6317 return; 6318 } 6319 6320 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6321 if (!pmb) { 6322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6323 "2897 The mboxq allocation failed\n"); 6324 return; 6325 } 6326 rc = lpfc_mbox_rsrc_prep(phba, pmb); 6327 if (rc) { 6328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6329 "2898 The mboxq prep failed\n"); 6330 goto out_free_pmb; 6331 } 6332 6333 /* Cleanup any outstanding ELS commands */ 6334 lpfc_els_flush_all_cmd(phba); 6335 6336 /* Block ELS IOCBs until we have done process link event */ 6337 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6338 6339 /* Update link event statistics */ 6340 phba->sli.slistat.link_event++; 6341 6342 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6343 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 6344 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6345 pmb->vport = phba->pport; 6346 6347 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6348 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6349 6350 switch (phba->sli4_hba.link_state.status) { 6351 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6352 phba->link_flag |= LS_MDS_LINK_DOWN; 6353 break; 6354 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6355 phba->link_flag |= LS_MDS_LOOPBACK; 6356 break; 6357 default: 6358 break; 6359 } 6360 6361 /* Initialize completion status */ 6362 mb = &pmb->u.mb; 6363 mb->mbxStatus = MBX_SUCCESS; 6364 6365 /* Parse port fault information field */ 6366 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6367 6368 /* Parse and translate link attention fields */ 6369 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6370 la->eventTag = acqe_fc->event_tag; 6371 6372 if (phba->sli4_hba.link_state.status == 6373 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6374 bf_set(lpfc_mbx_read_top_att_type, la, 6375 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6376 } else { 6377 bf_set(lpfc_mbx_read_top_att_type, la, 6378 LPFC_FC_LA_TYPE_LINK_DOWN); 6379 } 6380 /* Invoke the mailbox command callback function */ 6381 lpfc_mbx_cmpl_read_topology(phba, pmb); 6382 6383 return; 6384 } 6385 6386 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6387 if (rc == MBX_NOT_FINISHED) 6388 goto out_free_pmb; 6389 return; 6390 6391 out_free_pmb: 6392 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 6393 } 6394 6395 /** 6396 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6397 * @phba: pointer to lpfc hba data structure. 6398 * @acqe_sli: pointer to the async SLI completion queue entry. 6399 * 6400 * This routine is to handle the SLI4 asynchronous SLI events. 6401 **/ 6402 static void 6403 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6404 { 6405 char port_name; 6406 char message[128]; 6407 uint8_t status; 6408 uint8_t evt_type; 6409 uint8_t operational = 0; 6410 struct temp_event temp_event_data; 6411 struct lpfc_acqe_misconfigured_event *misconfigured; 6412 struct lpfc_acqe_cgn_signal *cgn_signal; 6413 struct Scsi_Host *shost; 6414 struct lpfc_vport **vports; 6415 int rc, i, cnt; 6416 6417 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6418 6419 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6420 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6421 "x%08x x%08x x%08x\n", evt_type, 6422 acqe_sli->event_data1, acqe_sli->event_data2, 6423 acqe_sli->event_data3, acqe_sli->trailer); 6424 6425 port_name = phba->Port[0]; 6426 if (port_name == 0x00) 6427 port_name = '?'; /* get port name is empty */ 6428 6429 switch (evt_type) { 6430 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6431 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6432 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6433 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6434 6435 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6436 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6437 acqe_sli->event_data1, port_name); 6438 6439 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6440 shost = lpfc_shost_from_vport(phba->pport); 6441 fc_host_post_vendor_event(shost, fc_get_event_number(), 6442 sizeof(temp_event_data), 6443 (char *)&temp_event_data, 6444 SCSI_NL_VID_TYPE_PCI 6445 | PCI_VENDOR_ID_EMULEX); 6446 break; 6447 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6448 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6449 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6450 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6451 6452 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT, 6453 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6454 acqe_sli->event_data1, port_name); 6455 6456 shost = lpfc_shost_from_vport(phba->pport); 6457 fc_host_post_vendor_event(shost, fc_get_event_number(), 6458 sizeof(temp_event_data), 6459 (char *)&temp_event_data, 6460 SCSI_NL_VID_TYPE_PCI 6461 | PCI_VENDOR_ID_EMULEX); 6462 break; 6463 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6464 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6465 &acqe_sli->event_data1; 6466 6467 /* fetch the status for this port */ 6468 switch (phba->sli4_hba.lnk_info.lnk_no) { 6469 case LPFC_LINK_NUMBER_0: 6470 status = bf_get(lpfc_sli_misconfigured_port0_state, 6471 &misconfigured->theEvent); 6472 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6473 &misconfigured->theEvent); 6474 break; 6475 case LPFC_LINK_NUMBER_1: 6476 status = bf_get(lpfc_sli_misconfigured_port1_state, 6477 &misconfigured->theEvent); 6478 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6479 &misconfigured->theEvent); 6480 break; 6481 case LPFC_LINK_NUMBER_2: 6482 status = bf_get(lpfc_sli_misconfigured_port2_state, 6483 &misconfigured->theEvent); 6484 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6485 &misconfigured->theEvent); 6486 break; 6487 case LPFC_LINK_NUMBER_3: 6488 status = bf_get(lpfc_sli_misconfigured_port3_state, 6489 &misconfigured->theEvent); 6490 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6491 &misconfigured->theEvent); 6492 break; 6493 default: 6494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6495 "3296 " 6496 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6497 "event: Invalid link %d", 6498 phba->sli4_hba.lnk_info.lnk_no); 6499 return; 6500 } 6501 6502 /* Skip if optic state unchanged */ 6503 if (phba->sli4_hba.lnk_info.optic_state == status) 6504 return; 6505 6506 switch (status) { 6507 case LPFC_SLI_EVENT_STATUS_VALID: 6508 sprintf(message, "Physical Link is functional"); 6509 break; 6510 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6511 sprintf(message, "Optics faulted/incorrectly " 6512 "installed/not installed - Reseat optics, " 6513 "if issue not resolved, replace."); 6514 break; 6515 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6516 sprintf(message, 6517 "Optics of two types installed - Remove one " 6518 "optic or install matching pair of optics."); 6519 break; 6520 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6521 sprintf(message, "Incompatible optics - Replace with " 6522 "compatible optics for card to function."); 6523 break; 6524 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6525 sprintf(message, "Unqualified optics - Replace with " 6526 "Avago optics for Warranty and Technical " 6527 "Support - Link is%s operational", 6528 (operational) ? " not" : ""); 6529 break; 6530 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6531 sprintf(message, "Uncertified optics - Replace with " 6532 "Avago-certified optics to enable link " 6533 "operation - Link is%s operational", 6534 (operational) ? " not" : ""); 6535 break; 6536 default: 6537 /* firmware is reporting a status we don't know about */ 6538 sprintf(message, "Unknown event status x%02x", status); 6539 break; 6540 } 6541 6542 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6543 rc = lpfc_sli4_read_config(phba); 6544 if (rc) { 6545 phba->lmt = 0; 6546 lpfc_printf_log(phba, KERN_ERR, 6547 LOG_TRACE_EVENT, 6548 "3194 Unable to retrieve supported " 6549 "speeds, rc = 0x%x\n", rc); 6550 } 6551 rc = lpfc_sli4_refresh_params(phba); 6552 if (rc) { 6553 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6554 "3174 Unable to update pls support, " 6555 "rc x%x\n", rc); 6556 } 6557 vports = lpfc_create_vport_work_array(phba); 6558 if (vports != NULL) { 6559 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6560 i++) { 6561 shost = lpfc_shost_from_vport(vports[i]); 6562 lpfc_host_supported_speeds_set(shost); 6563 } 6564 } 6565 lpfc_destroy_vport_work_array(phba, vports); 6566 6567 phba->sli4_hba.lnk_info.optic_state = status; 6568 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6569 "3176 Port Name %c %s\n", port_name, message); 6570 break; 6571 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6572 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6573 "3192 Remote DPort Test Initiated - " 6574 "Event Data1:x%08x Event Data2: x%08x\n", 6575 acqe_sli->event_data1, acqe_sli->event_data2); 6576 break; 6577 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6578 /* Call FW to obtain active parms */ 6579 lpfc_sli4_cgn_parm_chg_evt(phba); 6580 break; 6581 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6582 /* Misconfigured WWN. Reports that the SLI Port is configured 6583 * to use FA-WWN, but the attached device doesn’t support it. 6584 * Event Data1 - N.A, Event Data2 - N.A 6585 * This event only happens on the physical port. 6586 */ 6587 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, 6588 "2699 Misconfigured FA-PWWN - Attached device " 6589 "does not support FA-PWWN\n"); 6590 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; 6591 memset(phba->pport->fc_portname.u.wwn, 0, 6592 sizeof(struct lpfc_name)); 6593 break; 6594 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6595 /* EEPROM failure. No driver action is required */ 6596 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6597 "2518 EEPROM failure - " 6598 "Event Data1: x%08x Event Data2: x%08x\n", 6599 acqe_sli->event_data1, acqe_sli->event_data2); 6600 break; 6601 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6602 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6603 break; 6604 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6605 &acqe_sli->event_data1; 6606 phba->cgn_acqe_cnt++; 6607 6608 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6609 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6610 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6611 6612 /* no threshold for CMF, even 1 signal will trigger an event */ 6613 6614 /* Alarm overrides warning, so check that first */ 6615 if (cgn_signal->alarm_cnt) { 6616 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6617 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6618 atomic_add(cgn_signal->alarm_cnt, 6619 &phba->cgn_sync_alarm_cnt); 6620 } 6621 } else if (cnt) { 6622 /* signal action needs to be taken */ 6623 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6624 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6625 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6626 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6627 } 6628 } 6629 break; 6630 case LPFC_SLI_EVENT_TYPE_RD_SIGNAL: 6631 /* May be accompanied by a temperature event */ 6632 lpfc_printf_log(phba, KERN_INFO, 6633 LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT, 6634 "2902 Remote Degrade Signaling: x%08x x%08x " 6635 "x%08x\n", 6636 acqe_sli->event_data1, acqe_sli->event_data2, 6637 acqe_sli->event_data3); 6638 break; 6639 default: 6640 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6641 "3193 Unrecognized SLI event, type: 0x%x", 6642 evt_type); 6643 break; 6644 } 6645 } 6646 6647 /** 6648 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6649 * @vport: pointer to vport data structure. 6650 * 6651 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6652 * response to a CVL event. 6653 * 6654 * Return the pointer to the ndlp with the vport if successful, otherwise 6655 * return NULL. 6656 **/ 6657 static struct lpfc_nodelist * 6658 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6659 { 6660 struct lpfc_nodelist *ndlp; 6661 struct Scsi_Host *shost; 6662 struct lpfc_hba *phba; 6663 6664 if (!vport) 6665 return NULL; 6666 phba = vport->phba; 6667 if (!phba) 6668 return NULL; 6669 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6670 if (!ndlp) { 6671 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6672 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6673 if (!ndlp) 6674 return NULL; 6675 /* Set the node type */ 6676 ndlp->nlp_type |= NLP_FABRIC; 6677 /* Put ndlp onto node list */ 6678 lpfc_enqueue_node(vport, ndlp); 6679 } 6680 if ((phba->pport->port_state < LPFC_FLOGI) && 6681 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6682 return NULL; 6683 /* If virtual link is not yet instantiated ignore CVL */ 6684 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6685 && (vport->port_state != LPFC_VPORT_FAILED)) 6686 return NULL; 6687 shost = lpfc_shost_from_vport(vport); 6688 if (!shost) 6689 return NULL; 6690 lpfc_linkdown_port(vport); 6691 lpfc_cleanup_pending_mbox(vport); 6692 spin_lock_irq(shost->host_lock); 6693 vport->fc_flag |= FC_VPORT_CVL_RCVD; 6694 spin_unlock_irq(shost->host_lock); 6695 6696 return ndlp; 6697 } 6698 6699 /** 6700 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6701 * @phba: pointer to lpfc hba data structure. 6702 * 6703 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6704 * response to a FCF dead event. 6705 **/ 6706 static void 6707 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6708 { 6709 struct lpfc_vport **vports; 6710 int i; 6711 6712 vports = lpfc_create_vport_work_array(phba); 6713 if (vports) 6714 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6715 lpfc_sli4_perform_vport_cvl(vports[i]); 6716 lpfc_destroy_vport_work_array(phba, vports); 6717 } 6718 6719 /** 6720 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6721 * @phba: pointer to lpfc hba data structure. 6722 * @acqe_fip: pointer to the async fcoe completion queue entry. 6723 * 6724 * This routine is to handle the SLI4 asynchronous fcoe event. 6725 **/ 6726 static void 6727 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6728 struct lpfc_acqe_fip *acqe_fip) 6729 { 6730 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6731 int rc; 6732 struct lpfc_vport *vport; 6733 struct lpfc_nodelist *ndlp; 6734 int active_vlink_present; 6735 struct lpfc_vport **vports; 6736 int i; 6737 6738 phba->fc_eventTag = acqe_fip->event_tag; 6739 phba->fcoe_eventtag = acqe_fip->event_tag; 6740 switch (event_type) { 6741 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6742 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6743 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6745 "2546 New FCF event, evt_tag:x%x, " 6746 "index:x%x\n", 6747 acqe_fip->event_tag, 6748 acqe_fip->index); 6749 else 6750 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6751 LOG_DISCOVERY, 6752 "2788 FCF param modified event, " 6753 "evt_tag:x%x, index:x%x\n", 6754 acqe_fip->event_tag, 6755 acqe_fip->index); 6756 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6757 /* 6758 * During period of FCF discovery, read the FCF 6759 * table record indexed by the event to update 6760 * FCF roundrobin failover eligible FCF bmask. 6761 */ 6762 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6763 LOG_DISCOVERY, 6764 "2779 Read FCF (x%x) for updating " 6765 "roundrobin FCF failover bmask\n", 6766 acqe_fip->index); 6767 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6768 } 6769 6770 /* If the FCF discovery is in progress, do nothing. */ 6771 spin_lock_irq(&phba->hbalock); 6772 if (phba->hba_flag & FCF_TS_INPROG) { 6773 spin_unlock_irq(&phba->hbalock); 6774 break; 6775 } 6776 /* If fast FCF failover rescan event is pending, do nothing */ 6777 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6778 spin_unlock_irq(&phba->hbalock); 6779 break; 6780 } 6781 6782 /* If the FCF has been in discovered state, do nothing. */ 6783 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6784 spin_unlock_irq(&phba->hbalock); 6785 break; 6786 } 6787 spin_unlock_irq(&phba->hbalock); 6788 6789 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6790 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6791 "2770 Start FCF table scan per async FCF " 6792 "event, evt_tag:x%x, index:x%x\n", 6793 acqe_fip->event_tag, acqe_fip->index); 6794 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6795 LPFC_FCOE_FCF_GET_FIRST); 6796 if (rc) 6797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6798 "2547 Issue FCF scan read FCF mailbox " 6799 "command failed (x%x)\n", rc); 6800 break; 6801 6802 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6804 "2548 FCF Table full count 0x%x tag 0x%x\n", 6805 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6806 acqe_fip->event_tag); 6807 break; 6808 6809 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6810 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6812 "2549 FCF (x%x) disconnected from network, " 6813 "tag:x%x\n", acqe_fip->index, 6814 acqe_fip->event_tag); 6815 /* 6816 * If we are in the middle of FCF failover process, clear 6817 * the corresponding FCF bit in the roundrobin bitmap. 6818 */ 6819 spin_lock_irq(&phba->hbalock); 6820 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6821 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6822 spin_unlock_irq(&phba->hbalock); 6823 /* Update FLOGI FCF failover eligible FCF bmask */ 6824 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6825 break; 6826 } 6827 spin_unlock_irq(&phba->hbalock); 6828 6829 /* If the event is not for currently used fcf do nothing */ 6830 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6831 break; 6832 6833 /* 6834 * Otherwise, request the port to rediscover the entire FCF 6835 * table for a fast recovery from case that the current FCF 6836 * is no longer valid as we are not in the middle of FCF 6837 * failover process already. 6838 */ 6839 spin_lock_irq(&phba->hbalock); 6840 /* Mark the fast failover process in progress */ 6841 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6842 spin_unlock_irq(&phba->hbalock); 6843 6844 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6845 "2771 Start FCF fast failover process due to " 6846 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6847 "\n", acqe_fip->event_tag, acqe_fip->index); 6848 rc = lpfc_sli4_redisc_fcf_table(phba); 6849 if (rc) { 6850 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6851 LOG_TRACE_EVENT, 6852 "2772 Issue FCF rediscover mailbox " 6853 "command failed, fail through to FCF " 6854 "dead event\n"); 6855 spin_lock_irq(&phba->hbalock); 6856 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6857 spin_unlock_irq(&phba->hbalock); 6858 /* 6859 * Last resort will fail over by treating this 6860 * as a link down to FCF registration. 6861 */ 6862 lpfc_sli4_fcf_dead_failthrough(phba); 6863 } else { 6864 /* Reset FCF roundrobin bmask for new discovery */ 6865 lpfc_sli4_clear_fcf_rr_bmask(phba); 6866 /* 6867 * Handling fast FCF failover to a DEAD FCF event is 6868 * considered equalivant to receiving CVL to all vports. 6869 */ 6870 lpfc_sli4_perform_all_vport_cvl(phba); 6871 } 6872 break; 6873 case LPFC_FIP_EVENT_TYPE_CVL: 6874 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6875 lpfc_printf_log(phba, KERN_ERR, 6876 LOG_TRACE_EVENT, 6877 "2718 Clear Virtual Link Received for VPI 0x%x" 6878 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6879 6880 vport = lpfc_find_vport_by_vpid(phba, 6881 acqe_fip->index); 6882 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6883 if (!ndlp) 6884 break; 6885 active_vlink_present = 0; 6886 6887 vports = lpfc_create_vport_work_array(phba); 6888 if (vports) { 6889 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6890 i++) { 6891 if ((!(vports[i]->fc_flag & 6892 FC_VPORT_CVL_RCVD)) && 6893 (vports[i]->port_state > LPFC_FDISC)) { 6894 active_vlink_present = 1; 6895 break; 6896 } 6897 } 6898 lpfc_destroy_vport_work_array(phba, vports); 6899 } 6900 6901 /* 6902 * Don't re-instantiate if vport is marked for deletion. 6903 * If we are here first then vport_delete is going to wait 6904 * for discovery to complete. 6905 */ 6906 if (!(vport->load_flag & FC_UNLOADING) && 6907 active_vlink_present) { 6908 /* 6909 * If there are other active VLinks present, 6910 * re-instantiate the Vlink using FDISC. 6911 */ 6912 mod_timer(&ndlp->nlp_delayfunc, 6913 jiffies + msecs_to_jiffies(1000)); 6914 spin_lock_irq(&ndlp->lock); 6915 ndlp->nlp_flag |= NLP_DELAY_TMO; 6916 spin_unlock_irq(&ndlp->lock); 6917 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6918 vport->port_state = LPFC_FDISC; 6919 } else { 6920 /* 6921 * Otherwise, we request port to rediscover 6922 * the entire FCF table for a fast recovery 6923 * from possible case that the current FCF 6924 * is no longer valid if we are not already 6925 * in the FCF failover process. 6926 */ 6927 spin_lock_irq(&phba->hbalock); 6928 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6929 spin_unlock_irq(&phba->hbalock); 6930 break; 6931 } 6932 /* Mark the fast failover process in progress */ 6933 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6934 spin_unlock_irq(&phba->hbalock); 6935 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6936 LOG_DISCOVERY, 6937 "2773 Start FCF failover per CVL, " 6938 "evt_tag:x%x\n", acqe_fip->event_tag); 6939 rc = lpfc_sli4_redisc_fcf_table(phba); 6940 if (rc) { 6941 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6942 LOG_TRACE_EVENT, 6943 "2774 Issue FCF rediscover " 6944 "mailbox command failed, " 6945 "through to CVL event\n"); 6946 spin_lock_irq(&phba->hbalock); 6947 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6948 spin_unlock_irq(&phba->hbalock); 6949 /* 6950 * Last resort will be re-try on the 6951 * the current registered FCF entry. 6952 */ 6953 lpfc_retry_pport_discovery(phba); 6954 } else 6955 /* 6956 * Reset FCF roundrobin bmask for new 6957 * discovery. 6958 */ 6959 lpfc_sli4_clear_fcf_rr_bmask(phba); 6960 } 6961 break; 6962 default: 6963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6964 "0288 Unknown FCoE event type 0x%x event tag " 6965 "0x%x\n", event_type, acqe_fip->event_tag); 6966 break; 6967 } 6968 } 6969 6970 /** 6971 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 6972 * @phba: pointer to lpfc hba data structure. 6973 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 6974 * 6975 * This routine is to handle the SLI4 asynchronous dcbx event. 6976 **/ 6977 static void 6978 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 6979 struct lpfc_acqe_dcbx *acqe_dcbx) 6980 { 6981 phba->fc_eventTag = acqe_dcbx->event_tag; 6982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6983 "0290 The SLI4 DCBX asynchronous event is not " 6984 "handled yet\n"); 6985 } 6986 6987 /** 6988 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 6989 * @phba: pointer to lpfc hba data structure. 6990 * @acqe_grp5: pointer to the async grp5 completion queue entry. 6991 * 6992 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 6993 * is an asynchronous notified of a logical link speed change. The Port 6994 * reports the logical link speed in units of 10Mbps. 6995 **/ 6996 static void 6997 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 6998 struct lpfc_acqe_grp5 *acqe_grp5) 6999 { 7000 uint16_t prev_ll_spd; 7001 7002 phba->fc_eventTag = acqe_grp5->event_tag; 7003 phba->fcoe_eventtag = acqe_grp5->event_tag; 7004 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 7005 phba->sli4_hba.link_state.logical_speed = 7006 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 7007 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 7008 "2789 GRP5 Async Event: Updating logical link speed " 7009 "from %dMbps to %dMbps\n", prev_ll_spd, 7010 phba->sli4_hba.link_state.logical_speed); 7011 } 7012 7013 /** 7014 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 7015 * @phba: pointer to lpfc hba data structure. 7016 * 7017 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 7018 * is an asynchronous notification of a request to reset CM stats. 7019 **/ 7020 static void 7021 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 7022 { 7023 if (!phba->cgn_i) 7024 return; 7025 lpfc_init_congestion_stat(phba); 7026 } 7027 7028 /** 7029 * lpfc_cgn_params_val - Validate FW congestion parameters. 7030 * @phba: pointer to lpfc hba data structure. 7031 * @p_cfg_param: pointer to FW provided congestion parameters. 7032 * 7033 * This routine validates the congestion parameters passed 7034 * by the FW to the driver via an ACQE event. 7035 **/ 7036 static void 7037 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7038 { 7039 spin_lock_irq(&phba->hbalock); 7040 7041 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7042 LPFC_CFG_MONITOR)) { 7043 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7044 "6225 CMF mode param out of range: %d\n", 7045 p_cfg_param->cgn_param_mode); 7046 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7047 } 7048 7049 spin_unlock_irq(&phba->hbalock); 7050 } 7051 7052 static const char * const lpfc_cmf_mode_to_str[] = { 7053 "OFF", 7054 "MANAGED", 7055 "MONITOR", 7056 }; 7057 7058 /** 7059 * lpfc_cgn_params_parse - Process a FW cong parm change event 7060 * @phba: pointer to lpfc hba data structure. 7061 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7062 * @len: the size of pdata in bytes. 7063 * 7064 * This routine validates the congestion management buffer signature 7065 * from the FW, validates the contents and makes corrections for 7066 * valid, in-range values. If the signature magic is correct and 7067 * after parameter validation, the contents are copied to the driver's 7068 * @phba structure. If the magic is incorrect, an error message is 7069 * logged. 7070 **/ 7071 static void 7072 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7073 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7074 { 7075 struct lpfc_cgn_info *cp; 7076 uint32_t crc, oldmode; 7077 char acr_string[4] = {0}; 7078 7079 /* Make sure the FW has encoded the correct magic number to 7080 * validate the congestion parameter in FW memory. 7081 */ 7082 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7083 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7084 "4668 FW cgn parm buffer data: " 7085 "magic 0x%x version %d mode %d " 7086 "level0 %d level1 %d " 7087 "level2 %d byte13 %d " 7088 "byte14 %d byte15 %d " 7089 "byte11 %d byte12 %d activeMode %d\n", 7090 p_cgn_param->cgn_param_magic, 7091 p_cgn_param->cgn_param_version, 7092 p_cgn_param->cgn_param_mode, 7093 p_cgn_param->cgn_param_level0, 7094 p_cgn_param->cgn_param_level1, 7095 p_cgn_param->cgn_param_level2, 7096 p_cgn_param->byte13, 7097 p_cgn_param->byte14, 7098 p_cgn_param->byte15, 7099 p_cgn_param->byte11, 7100 p_cgn_param->byte12, 7101 phba->cmf_active_mode); 7102 7103 oldmode = phba->cmf_active_mode; 7104 7105 /* Any parameters out of range are corrected to defaults 7106 * by this routine. No need to fail. 7107 */ 7108 lpfc_cgn_params_val(phba, p_cgn_param); 7109 7110 /* Parameters are verified, move them into driver storage */ 7111 spin_lock_irq(&phba->hbalock); 7112 memcpy(&phba->cgn_p, p_cgn_param, 7113 sizeof(struct lpfc_cgn_param)); 7114 7115 /* Update parameters in congestion info buffer now */ 7116 if (phba->cgn_i) { 7117 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7118 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7119 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7120 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7121 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7122 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7123 LPFC_CGN_CRC32_SEED); 7124 cp->cgn_info_crc = cpu_to_le32(crc); 7125 } 7126 spin_unlock_irq(&phba->hbalock); 7127 7128 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7129 7130 switch (oldmode) { 7131 case LPFC_CFG_OFF: 7132 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7133 /* Turning CMF on */ 7134 lpfc_cmf_start(phba); 7135 7136 if (phba->link_state >= LPFC_LINK_UP) { 7137 phba->cgn_reg_fpin = 7138 phba->cgn_init_reg_fpin; 7139 phba->cgn_reg_signal = 7140 phba->cgn_init_reg_signal; 7141 lpfc_issue_els_edc(phba->pport, 0); 7142 } 7143 } 7144 break; 7145 case LPFC_CFG_MANAGED: 7146 switch (phba->cgn_p.cgn_param_mode) { 7147 case LPFC_CFG_OFF: 7148 /* Turning CMF off */ 7149 lpfc_cmf_stop(phba); 7150 if (phba->link_state >= LPFC_LINK_UP) 7151 lpfc_issue_els_edc(phba->pport, 0); 7152 break; 7153 case LPFC_CFG_MONITOR: 7154 phba->cmf_max_bytes_per_interval = 7155 phba->cmf_link_byte_count; 7156 7157 /* Resume blocked IO - unblock on workqueue */ 7158 queue_work(phba->wq, 7159 &phba->unblock_request_work); 7160 break; 7161 } 7162 break; 7163 case LPFC_CFG_MONITOR: 7164 switch (phba->cgn_p.cgn_param_mode) { 7165 case LPFC_CFG_OFF: 7166 /* Turning CMF off */ 7167 lpfc_cmf_stop(phba); 7168 if (phba->link_state >= LPFC_LINK_UP) 7169 lpfc_issue_els_edc(phba->pport, 0); 7170 break; 7171 case LPFC_CFG_MANAGED: 7172 lpfc_cmf_signal_init(phba); 7173 break; 7174 } 7175 break; 7176 } 7177 if (oldmode != LPFC_CFG_OFF || 7178 oldmode != phba->cgn_p.cgn_param_mode) { 7179 if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED) 7180 scnprintf(acr_string, sizeof(acr_string), "%u", 7181 phba->cgn_p.cgn_param_level0); 7182 else 7183 scnprintf(acr_string, sizeof(acr_string), "NA"); 7184 7185 dev_info(&phba->pcidev->dev, "%d: " 7186 "4663 CMF: Mode %s acr %s\n", 7187 phba->brd_no, 7188 lpfc_cmf_mode_to_str 7189 [phba->cgn_p.cgn_param_mode], 7190 acr_string); 7191 } 7192 } else { 7193 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7194 "4669 FW cgn parm buf wrong magic 0x%x " 7195 "version %d\n", p_cgn_param->cgn_param_magic, 7196 p_cgn_param->cgn_param_version); 7197 } 7198 } 7199 7200 /** 7201 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7202 * @phba: pointer to lpfc hba data structure. 7203 * 7204 * This routine issues a read_object mailbox command to 7205 * get the congestion management parameters from the FW 7206 * parses it and updates the driver maintained values. 7207 * 7208 * Returns 7209 * 0 if the object was empty 7210 * -Eval if an error was encountered 7211 * Count if bytes were read from object 7212 **/ 7213 int 7214 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7215 { 7216 int ret = 0; 7217 struct lpfc_cgn_param *p_cgn_param = NULL; 7218 u32 *pdata = NULL; 7219 u32 len = 0; 7220 7221 /* Find out if the FW has a new set of congestion parameters. */ 7222 len = sizeof(struct lpfc_cgn_param); 7223 pdata = kzalloc(len, GFP_KERNEL); 7224 if (!pdata) 7225 return -ENOMEM; 7226 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7227 pdata, len); 7228 7229 /* 0 means no data. A negative means error. A positive means 7230 * bytes were copied. 7231 */ 7232 if (!ret) { 7233 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7234 "4670 CGN RD OBJ returns no data\n"); 7235 goto rd_obj_err; 7236 } else if (ret < 0) { 7237 /* Some error. Just exit and return it to the caller.*/ 7238 goto rd_obj_err; 7239 } 7240 7241 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7242 "6234 READ CGN PARAMS Successful %d\n", len); 7243 7244 /* Parse data pointer over len and update the phba congestion 7245 * parameters with values passed back. The receive rate values 7246 * may have been altered in FW, but take no action here. 7247 */ 7248 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7249 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7250 7251 rd_obj_err: 7252 kfree(pdata); 7253 return ret; 7254 } 7255 7256 /** 7257 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7258 * @phba: pointer to lpfc hba data structure. 7259 * 7260 * The FW generated Async ACQE SLI event calls this routine when 7261 * the event type is an SLI Internal Port Event and the Event Code 7262 * indicates a change to the FW maintained congestion parameters. 7263 * 7264 * This routine executes a Read_Object mailbox call to obtain the 7265 * current congestion parameters maintained in FW and corrects 7266 * the driver's active congestion parameters. 7267 * 7268 * The acqe event is not passed because there is no further data 7269 * required. 7270 * 7271 * Returns nonzero error if event processing encountered an error. 7272 * Zero otherwise for success. 7273 **/ 7274 static int 7275 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7276 { 7277 int ret = 0; 7278 7279 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7280 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7281 "4664 Cgn Evt when E2E off. Drop event\n"); 7282 return -EACCES; 7283 } 7284 7285 /* If the event is claiming an empty object, it's ok. A write 7286 * could have cleared it. Only error is a negative return 7287 * status. 7288 */ 7289 ret = lpfc_sli4_cgn_params_read(phba); 7290 if (ret < 0) { 7291 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7292 "4667 Error reading Cgn Params (%d)\n", 7293 ret); 7294 } else if (!ret) { 7295 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7296 "4673 CGN Event empty object.\n"); 7297 } 7298 return ret; 7299 } 7300 7301 /** 7302 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7303 * @phba: pointer to lpfc hba data structure. 7304 * 7305 * This routine is invoked by the worker thread to process all the pending 7306 * SLI4 asynchronous events. 7307 **/ 7308 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7309 { 7310 struct lpfc_cq_event *cq_event; 7311 unsigned long iflags; 7312 7313 /* First, declare the async event has been handled */ 7314 spin_lock_irqsave(&phba->hbalock, iflags); 7315 phba->hba_flag &= ~ASYNC_EVENT; 7316 spin_unlock_irqrestore(&phba->hbalock, iflags); 7317 7318 /* Now, handle all the async events */ 7319 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7320 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7321 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7322 cq_event, struct lpfc_cq_event, list); 7323 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7324 iflags); 7325 7326 /* Process the asynchronous event */ 7327 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7328 case LPFC_TRAILER_CODE_LINK: 7329 lpfc_sli4_async_link_evt(phba, 7330 &cq_event->cqe.acqe_link); 7331 break; 7332 case LPFC_TRAILER_CODE_FCOE: 7333 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7334 break; 7335 case LPFC_TRAILER_CODE_DCBX: 7336 lpfc_sli4_async_dcbx_evt(phba, 7337 &cq_event->cqe.acqe_dcbx); 7338 break; 7339 case LPFC_TRAILER_CODE_GRP5: 7340 lpfc_sli4_async_grp5_evt(phba, 7341 &cq_event->cqe.acqe_grp5); 7342 break; 7343 case LPFC_TRAILER_CODE_FC: 7344 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7345 break; 7346 case LPFC_TRAILER_CODE_SLI: 7347 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7348 break; 7349 case LPFC_TRAILER_CODE_CMSTAT: 7350 lpfc_sli4_async_cmstat_evt(phba); 7351 break; 7352 default: 7353 lpfc_printf_log(phba, KERN_ERR, 7354 LOG_TRACE_EVENT, 7355 "1804 Invalid asynchronous event code: " 7356 "x%x\n", bf_get(lpfc_trailer_code, 7357 &cq_event->cqe.mcqe_cmpl)); 7358 break; 7359 } 7360 7361 /* Free the completion event processed to the free pool */ 7362 lpfc_sli4_cq_event_release(phba, cq_event); 7363 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7364 } 7365 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7366 } 7367 7368 /** 7369 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7370 * @phba: pointer to lpfc hba data structure. 7371 * 7372 * This routine is invoked by the worker thread to process FCF table 7373 * rediscovery pending completion event. 7374 **/ 7375 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7376 { 7377 int rc; 7378 7379 spin_lock_irq(&phba->hbalock); 7380 /* Clear FCF rediscovery timeout event */ 7381 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7382 /* Clear driver fast failover FCF record flag */ 7383 phba->fcf.failover_rec.flag = 0; 7384 /* Set state for FCF fast failover */ 7385 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7386 spin_unlock_irq(&phba->hbalock); 7387 7388 /* Scan FCF table from the first entry to re-discover SAN */ 7389 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7390 "2777 Start post-quiescent FCF table scan\n"); 7391 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7392 if (rc) 7393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7394 "2747 Issue FCF scan read FCF mailbox " 7395 "command failed 0x%x\n", rc); 7396 } 7397 7398 /** 7399 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7400 * @phba: pointer to lpfc hba data structure. 7401 * @dev_grp: The HBA PCI-Device group number. 7402 * 7403 * This routine is invoked to set up the per HBA PCI-Device group function 7404 * API jump table entries. 7405 * 7406 * Return: 0 if success, otherwise -ENODEV 7407 **/ 7408 int 7409 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7410 { 7411 int rc; 7412 7413 /* Set up lpfc PCI-device group */ 7414 phba->pci_dev_grp = dev_grp; 7415 7416 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7417 if (dev_grp == LPFC_PCI_DEV_OC) 7418 phba->sli_rev = LPFC_SLI_REV4; 7419 7420 /* Set up device INIT API function jump table */ 7421 rc = lpfc_init_api_table_setup(phba, dev_grp); 7422 if (rc) 7423 return -ENODEV; 7424 /* Set up SCSI API function jump table */ 7425 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7426 if (rc) 7427 return -ENODEV; 7428 /* Set up SLI API function jump table */ 7429 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7430 if (rc) 7431 return -ENODEV; 7432 /* Set up MBOX API function jump table */ 7433 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7434 if (rc) 7435 return -ENODEV; 7436 7437 return 0; 7438 } 7439 7440 /** 7441 * lpfc_log_intr_mode - Log the active interrupt mode 7442 * @phba: pointer to lpfc hba data structure. 7443 * @intr_mode: active interrupt mode adopted. 7444 * 7445 * This routine it invoked to log the currently used active interrupt mode 7446 * to the device. 7447 **/ 7448 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7449 { 7450 switch (intr_mode) { 7451 case 0: 7452 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7453 "0470 Enable INTx interrupt mode.\n"); 7454 break; 7455 case 1: 7456 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7457 "0481 Enabled MSI interrupt mode.\n"); 7458 break; 7459 case 2: 7460 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7461 "0480 Enabled MSI-X interrupt mode.\n"); 7462 break; 7463 default: 7464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7465 "0482 Illegal interrupt mode.\n"); 7466 break; 7467 } 7468 return; 7469 } 7470 7471 /** 7472 * lpfc_enable_pci_dev - Enable a generic PCI device. 7473 * @phba: pointer to lpfc hba data structure. 7474 * 7475 * This routine is invoked to enable the PCI device that is common to all 7476 * PCI devices. 7477 * 7478 * Return codes 7479 * 0 - successful 7480 * other values - error 7481 **/ 7482 static int 7483 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7484 { 7485 struct pci_dev *pdev; 7486 7487 /* Obtain PCI device reference */ 7488 if (!phba->pcidev) 7489 goto out_error; 7490 else 7491 pdev = phba->pcidev; 7492 /* Enable PCI device */ 7493 if (pci_enable_device_mem(pdev)) 7494 goto out_error; 7495 /* Request PCI resource for the device */ 7496 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7497 goto out_disable_device; 7498 /* Set up device as PCI master and save state for EEH */ 7499 pci_set_master(pdev); 7500 pci_try_set_mwi(pdev); 7501 pci_save_state(pdev); 7502 7503 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7504 if (pci_is_pcie(pdev)) 7505 pdev->needs_freset = 1; 7506 7507 return 0; 7508 7509 out_disable_device: 7510 pci_disable_device(pdev); 7511 out_error: 7512 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7513 "1401 Failed to enable pci device\n"); 7514 return -ENODEV; 7515 } 7516 7517 /** 7518 * lpfc_disable_pci_dev - Disable a generic PCI device. 7519 * @phba: pointer to lpfc hba data structure. 7520 * 7521 * This routine is invoked to disable the PCI device that is common to all 7522 * PCI devices. 7523 **/ 7524 static void 7525 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7526 { 7527 struct pci_dev *pdev; 7528 7529 /* Obtain PCI device reference */ 7530 if (!phba->pcidev) 7531 return; 7532 else 7533 pdev = phba->pcidev; 7534 /* Release PCI resource and disable PCI device */ 7535 pci_release_mem_regions(pdev); 7536 pci_disable_device(pdev); 7537 7538 return; 7539 } 7540 7541 /** 7542 * lpfc_reset_hba - Reset a hba 7543 * @phba: pointer to lpfc hba data structure. 7544 * 7545 * This routine is invoked to reset a hba device. It brings the HBA 7546 * offline, performs a board restart, and then brings the board back 7547 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7548 * on outstanding mailbox commands. 7549 **/ 7550 void 7551 lpfc_reset_hba(struct lpfc_hba *phba) 7552 { 7553 int rc = 0; 7554 7555 /* If resets are disabled then set error state and return. */ 7556 if (!phba->cfg_enable_hba_reset) { 7557 phba->link_state = LPFC_HBA_ERROR; 7558 return; 7559 } 7560 7561 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7562 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7563 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7564 } else { 7565 if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) { 7566 /* Perform a PCI function reset to start from clean */ 7567 rc = lpfc_pci_function_reset(phba); 7568 lpfc_els_flush_all_cmd(phba); 7569 } 7570 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7571 lpfc_sli_flush_io_rings(phba); 7572 } 7573 lpfc_offline(phba); 7574 clear_bit(MBX_TMO_ERR, &phba->bit_flags); 7575 if (unlikely(rc)) { 7576 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7577 "8888 PCI function reset failed rc %x\n", 7578 rc); 7579 } else { 7580 lpfc_sli_brdrestart(phba); 7581 lpfc_online(phba); 7582 lpfc_unblock_mgmt_io(phba); 7583 } 7584 } 7585 7586 /** 7587 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7588 * @phba: pointer to lpfc hba data structure. 7589 * 7590 * This function enables the PCI SR-IOV virtual functions to a physical 7591 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7592 * enable the number of virtual functions to the physical function. As 7593 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7594 * API call does not considered as an error condition for most of the device. 7595 **/ 7596 uint16_t 7597 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7598 { 7599 struct pci_dev *pdev = phba->pcidev; 7600 uint16_t nr_virtfn; 7601 int pos; 7602 7603 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7604 if (pos == 0) 7605 return 0; 7606 7607 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7608 return nr_virtfn; 7609 } 7610 7611 /** 7612 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7613 * @phba: pointer to lpfc hba data structure. 7614 * @nr_vfn: number of virtual functions to be enabled. 7615 * 7616 * This function enables the PCI SR-IOV virtual functions to a physical 7617 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7618 * enable the number of virtual functions to the physical function. As 7619 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7620 * API call does not considered as an error condition for most of the device. 7621 **/ 7622 int 7623 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7624 { 7625 struct pci_dev *pdev = phba->pcidev; 7626 uint16_t max_nr_vfn; 7627 int rc; 7628 7629 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7630 if (nr_vfn > max_nr_vfn) { 7631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7632 "3057 Requested vfs (%d) greater than " 7633 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7634 return -EINVAL; 7635 } 7636 7637 rc = pci_enable_sriov(pdev, nr_vfn); 7638 if (rc) { 7639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7640 "2806 Failed to enable sriov on this device " 7641 "with vfn number nr_vf:%d, rc:%d\n", 7642 nr_vfn, rc); 7643 } else 7644 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7645 "2807 Successful enable sriov on this device " 7646 "with vfn number nr_vf:%d\n", nr_vfn); 7647 return rc; 7648 } 7649 7650 static void 7651 lpfc_unblock_requests_work(struct work_struct *work) 7652 { 7653 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7654 unblock_request_work); 7655 7656 lpfc_unblock_requests(phba); 7657 } 7658 7659 /** 7660 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7661 * @phba: pointer to lpfc hba data structure. 7662 * 7663 * This routine is invoked to set up the driver internal resources before the 7664 * device specific resource setup to support the HBA device it attached to. 7665 * 7666 * Return codes 7667 * 0 - successful 7668 * other values - error 7669 **/ 7670 static int 7671 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7672 { 7673 struct lpfc_sli *psli = &phba->sli; 7674 7675 /* 7676 * Driver resources common to all SLI revisions 7677 */ 7678 atomic_set(&phba->fast_event_count, 0); 7679 atomic_set(&phba->dbg_log_idx, 0); 7680 atomic_set(&phba->dbg_log_cnt, 0); 7681 atomic_set(&phba->dbg_log_dmping, 0); 7682 spin_lock_init(&phba->hbalock); 7683 7684 /* Initialize port_list spinlock */ 7685 spin_lock_init(&phba->port_list_lock); 7686 INIT_LIST_HEAD(&phba->port_list); 7687 7688 INIT_LIST_HEAD(&phba->work_list); 7689 7690 /* Initialize the wait queue head for the kernel thread */ 7691 init_waitqueue_head(&phba->work_waitq); 7692 7693 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7694 "1403 Protocols supported %s %s %s\n", 7695 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7696 "SCSI" : " "), 7697 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7698 "NVME" : " "), 7699 (phba->nvmet_support ? "NVMET" : " ")); 7700 7701 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7702 spin_lock_init(&phba->scsi_buf_list_get_lock); 7703 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7704 spin_lock_init(&phba->scsi_buf_list_put_lock); 7705 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7706 7707 /* Initialize the fabric iocb list */ 7708 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7709 7710 /* Initialize list to save ELS buffers */ 7711 INIT_LIST_HEAD(&phba->elsbuf); 7712 7713 /* Initialize FCF connection rec list */ 7714 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7715 7716 /* Initialize OAS configuration list */ 7717 spin_lock_init(&phba->devicelock); 7718 INIT_LIST_HEAD(&phba->luns); 7719 7720 /* MBOX heartbeat timer */ 7721 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7722 /* Fabric block timer */ 7723 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7724 /* EA polling mode timer */ 7725 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7726 /* Heartbeat timer */ 7727 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7728 7729 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7730 7731 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7732 lpfc_idle_stat_delay_work); 7733 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7734 return 0; 7735 } 7736 7737 /** 7738 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7739 * @phba: pointer to lpfc hba data structure. 7740 * 7741 * This routine is invoked to set up the driver internal resources specific to 7742 * support the SLI-3 HBA device it attached to. 7743 * 7744 * Return codes 7745 * 0 - successful 7746 * other values - error 7747 **/ 7748 static int 7749 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7750 { 7751 int rc, entry_sz; 7752 7753 /* 7754 * Initialize timers used by driver 7755 */ 7756 7757 /* FCP polling mode timer */ 7758 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7759 7760 /* Host attention work mask setup */ 7761 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7762 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7763 7764 /* Get all the module params for configuring this host */ 7765 lpfc_get_cfgparam(phba); 7766 /* Set up phase-1 common device driver resources */ 7767 7768 rc = lpfc_setup_driver_resource_phase1(phba); 7769 if (rc) 7770 return -ENODEV; 7771 7772 if (!phba->sli.sli3_ring) 7773 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7774 sizeof(struct lpfc_sli_ring), 7775 GFP_KERNEL); 7776 if (!phba->sli.sli3_ring) 7777 return -ENOMEM; 7778 7779 /* 7780 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7781 * used to create the sg_dma_buf_pool must be dynamically calculated. 7782 */ 7783 7784 if (phba->sli_rev == LPFC_SLI_REV4) 7785 entry_sz = sizeof(struct sli4_sge); 7786 else 7787 entry_sz = sizeof(struct ulp_bde64); 7788 7789 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7790 if (phba->cfg_enable_bg) { 7791 /* 7792 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7793 * the FCP rsp, and a BDE for each. Sice we have no control 7794 * over how many protection data segments the SCSI Layer 7795 * will hand us (ie: there could be one for every block 7796 * in the IO), we just allocate enough BDEs to accomidate 7797 * our max amount and we need to limit lpfc_sg_seg_cnt to 7798 * minimize the risk of running out. 7799 */ 7800 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7801 sizeof(struct fcp_rsp) + 7802 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7803 7804 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7805 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7806 7807 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7808 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7809 } else { 7810 /* 7811 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7812 * the FCP rsp, a BDE for each, and a BDE for up to 7813 * cfg_sg_seg_cnt data segments. 7814 */ 7815 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7816 sizeof(struct fcp_rsp) + 7817 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7818 7819 /* Total BDEs in BPL for scsi_sg_list */ 7820 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7821 } 7822 7823 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7824 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7825 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7826 phba->cfg_total_seg_cnt); 7827 7828 phba->max_vpi = LPFC_MAX_VPI; 7829 /* This will be set to correct value after config_port mbox */ 7830 phba->max_vports = 0; 7831 7832 /* 7833 * Initialize the SLI Layer to run with lpfc HBAs. 7834 */ 7835 lpfc_sli_setup(phba); 7836 lpfc_sli_queue_init(phba); 7837 7838 /* Allocate device driver memory */ 7839 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7840 return -ENOMEM; 7841 7842 phba->lpfc_sg_dma_buf_pool = 7843 dma_pool_create("lpfc_sg_dma_buf_pool", 7844 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7845 BPL_ALIGN_SZ, 0); 7846 7847 if (!phba->lpfc_sg_dma_buf_pool) 7848 goto fail_free_mem; 7849 7850 phba->lpfc_cmd_rsp_buf_pool = 7851 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7852 &phba->pcidev->dev, 7853 sizeof(struct fcp_cmnd) + 7854 sizeof(struct fcp_rsp), 7855 BPL_ALIGN_SZ, 0); 7856 7857 if (!phba->lpfc_cmd_rsp_buf_pool) 7858 goto fail_free_dma_buf_pool; 7859 7860 /* 7861 * Enable sr-iov virtual functions if supported and configured 7862 * through the module parameter. 7863 */ 7864 if (phba->cfg_sriov_nr_virtfn > 0) { 7865 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7866 phba->cfg_sriov_nr_virtfn); 7867 if (rc) { 7868 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7869 "2808 Requested number of SR-IOV " 7870 "virtual functions (%d) is not " 7871 "supported\n", 7872 phba->cfg_sriov_nr_virtfn); 7873 phba->cfg_sriov_nr_virtfn = 0; 7874 } 7875 } 7876 7877 return 0; 7878 7879 fail_free_dma_buf_pool: 7880 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7881 phba->lpfc_sg_dma_buf_pool = NULL; 7882 fail_free_mem: 7883 lpfc_mem_free(phba); 7884 return -ENOMEM; 7885 } 7886 7887 /** 7888 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7889 * @phba: pointer to lpfc hba data structure. 7890 * 7891 * This routine is invoked to unset the driver internal resources set up 7892 * specific for supporting the SLI-3 HBA device it attached to. 7893 **/ 7894 static void 7895 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7896 { 7897 /* Free device driver memory allocated */ 7898 lpfc_mem_free_all(phba); 7899 7900 return; 7901 } 7902 7903 /** 7904 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7905 * @phba: pointer to lpfc hba data structure. 7906 * 7907 * This routine is invoked to set up the driver internal resources specific to 7908 * support the SLI-4 HBA device it attached to. 7909 * 7910 * Return codes 7911 * 0 - successful 7912 * other values - error 7913 **/ 7914 static int 7915 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7916 { 7917 LPFC_MBOXQ_t *mboxq; 7918 MAILBOX_t *mb; 7919 int rc, i, max_buf_size; 7920 int longs; 7921 int extra; 7922 uint64_t wwn; 7923 u32 if_type; 7924 u32 if_fam; 7925 7926 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7927 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7928 phba->sli4_hba.curr_disp_cpu = 0; 7929 7930 /* Get all the module params for configuring this host */ 7931 lpfc_get_cfgparam(phba); 7932 7933 /* Set up phase-1 common device driver resources */ 7934 rc = lpfc_setup_driver_resource_phase1(phba); 7935 if (rc) 7936 return -ENODEV; 7937 7938 /* Before proceed, wait for POST done and device ready */ 7939 rc = lpfc_sli4_post_status_check(phba); 7940 if (rc) 7941 return -ENODEV; 7942 7943 /* Allocate all driver workqueues here */ 7944 7945 /* The lpfc_wq workqueue for deferred irq use */ 7946 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7947 if (!phba->wq) 7948 return -ENOMEM; 7949 7950 /* 7951 * Initialize timers used by driver 7952 */ 7953 7954 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7955 7956 /* FCF rediscover timer */ 7957 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7958 7959 /* CMF congestion timer */ 7960 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7961 phba->cmf_timer.function = lpfc_cmf_timer; 7962 /* CMF 1 minute stats collection timer */ 7963 hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7964 phba->cmf_stats_timer.function = lpfc_cmf_stats_timer; 7965 7966 /* 7967 * Control structure for handling external multi-buffer mailbox 7968 * command pass-through. 7969 */ 7970 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7971 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7972 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7973 7974 phba->max_vpi = LPFC_MAX_VPI; 7975 7976 /* This will be set to correct value after the read_config mbox */ 7977 phba->max_vports = 0; 7978 7979 /* Program the default value of vlan_id and fc_map */ 7980 phba->valid_vlan = 0; 7981 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7982 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7983 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7984 7985 /* 7986 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7987 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7988 * The WQ create will allocate the ring. 7989 */ 7990 7991 /* Initialize buffer queue management fields */ 7992 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 7993 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 7994 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 7995 7996 /* for VMID idle timeout if VMID is enabled */ 7997 if (lpfc_is_vmid_enabled(phba)) 7998 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 7999 8000 /* 8001 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 8002 */ 8003 /* Initialize the Abort buffer list used by driver */ 8004 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 8005 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 8006 8007 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8008 /* Initialize the Abort nvme buffer list used by driver */ 8009 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 8010 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8011 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 8012 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 8013 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 8014 } 8015 8016 /* This abort list used by worker thread */ 8017 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 8018 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 8019 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 8020 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 8021 8022 /* 8023 * Initialize driver internal slow-path work queues 8024 */ 8025 8026 /* Driver internel slow-path CQ Event pool */ 8027 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 8028 /* Response IOCB work queue list */ 8029 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 8030 /* Asynchronous event CQ Event work queue list */ 8031 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 8032 /* Slow-path XRI aborted CQ Event work queue list */ 8033 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 8034 /* Receive queue CQ Event work queue list */ 8035 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 8036 8037 /* Initialize extent block lists. */ 8038 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 8039 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 8040 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 8041 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 8042 8043 /* Initialize mboxq lists. If the early init routines fail 8044 * these lists need to be correctly initialized. 8045 */ 8046 INIT_LIST_HEAD(&phba->sli.mboxq); 8047 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 8048 8049 /* initialize optic_state to 0xFF */ 8050 phba->sli4_hba.lnk_info.optic_state = 0xff; 8051 8052 /* Allocate device driver memory */ 8053 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8054 if (rc) 8055 goto out_destroy_workqueue; 8056 8057 /* IF Type 2 ports get initialized now. */ 8058 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8059 LPFC_SLI_INTF_IF_TYPE_2) { 8060 rc = lpfc_pci_function_reset(phba); 8061 if (unlikely(rc)) { 8062 rc = -ENODEV; 8063 goto out_free_mem; 8064 } 8065 phba->temp_sensor_support = 1; 8066 } 8067 8068 /* Create the bootstrap mailbox command */ 8069 rc = lpfc_create_bootstrap_mbox(phba); 8070 if (unlikely(rc)) 8071 goto out_free_mem; 8072 8073 /* Set up the host's endian order with the device. */ 8074 rc = lpfc_setup_endian_order(phba); 8075 if (unlikely(rc)) 8076 goto out_free_bsmbx; 8077 8078 /* Set up the hba's configuration parameters. */ 8079 rc = lpfc_sli4_read_config(phba); 8080 if (unlikely(rc)) 8081 goto out_free_bsmbx; 8082 8083 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { 8084 /* Right now the link is down, if FA-PWWN is configured the 8085 * firmware will try FLOGI before the driver gets a link up. 8086 * If it fails, the driver should get a MISCONFIGURED async 8087 * event which will clear this flag. The only notification 8088 * the driver gets is if it fails, if it succeeds there is no 8089 * notification given. Assume success. 8090 */ 8091 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 8092 } 8093 8094 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8095 if (unlikely(rc)) 8096 goto out_free_bsmbx; 8097 8098 /* IF Type 0 ports get initialized now. */ 8099 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8100 LPFC_SLI_INTF_IF_TYPE_0) { 8101 rc = lpfc_pci_function_reset(phba); 8102 if (unlikely(rc)) 8103 goto out_free_bsmbx; 8104 } 8105 8106 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8107 GFP_KERNEL); 8108 if (!mboxq) { 8109 rc = -ENOMEM; 8110 goto out_free_bsmbx; 8111 } 8112 8113 /* Check for NVMET being configured */ 8114 phba->nvmet_support = 0; 8115 if (lpfc_enable_nvmet_cnt) { 8116 8117 /* First get WWN of HBA instance */ 8118 lpfc_read_nv(phba, mboxq); 8119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8120 if (rc != MBX_SUCCESS) { 8121 lpfc_printf_log(phba, KERN_ERR, 8122 LOG_TRACE_EVENT, 8123 "6016 Mailbox failed , mbxCmd x%x " 8124 "READ_NV, mbxStatus x%x\n", 8125 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8126 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8127 mempool_free(mboxq, phba->mbox_mem_pool); 8128 rc = -EIO; 8129 goto out_free_bsmbx; 8130 } 8131 mb = &mboxq->u.mb; 8132 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8133 sizeof(uint64_t)); 8134 wwn = cpu_to_be64(wwn); 8135 phba->sli4_hba.wwnn.u.name = wwn; 8136 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8137 sizeof(uint64_t)); 8138 /* wwn is WWPN of HBA instance */ 8139 wwn = cpu_to_be64(wwn); 8140 phba->sli4_hba.wwpn.u.name = wwn; 8141 8142 /* Check to see if it matches any module parameter */ 8143 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8144 if (wwn == lpfc_enable_nvmet[i]) { 8145 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8146 if (lpfc_nvmet_mem_alloc(phba)) 8147 break; 8148 8149 phba->nvmet_support = 1; /* a match */ 8150 8151 lpfc_printf_log(phba, KERN_ERR, 8152 LOG_TRACE_EVENT, 8153 "6017 NVME Target %016llx\n", 8154 wwn); 8155 #else 8156 lpfc_printf_log(phba, KERN_ERR, 8157 LOG_TRACE_EVENT, 8158 "6021 Can't enable NVME Target." 8159 " NVME_TARGET_FC infrastructure" 8160 " is not in kernel\n"); 8161 #endif 8162 /* Not supported for NVMET */ 8163 phba->cfg_xri_rebalancing = 0; 8164 if (phba->irq_chann_mode == NHT_MODE) { 8165 phba->cfg_irq_chann = 8166 phba->sli4_hba.num_present_cpu; 8167 phba->cfg_hdw_queue = 8168 phba->sli4_hba.num_present_cpu; 8169 phba->irq_chann_mode = NORMAL_MODE; 8170 } 8171 break; 8172 } 8173 } 8174 } 8175 8176 lpfc_nvme_mod_param_dep(phba); 8177 8178 /* 8179 * Get sli4 parameters that override parameters from Port capabilities. 8180 * If this call fails, it isn't critical unless the SLI4 parameters come 8181 * back in conflict. 8182 */ 8183 rc = lpfc_get_sli4_parameters(phba, mboxq); 8184 if (rc) { 8185 if_type = bf_get(lpfc_sli_intf_if_type, 8186 &phba->sli4_hba.sli_intf); 8187 if_fam = bf_get(lpfc_sli_intf_sli_family, 8188 &phba->sli4_hba.sli_intf); 8189 if (phba->sli4_hba.extents_in_use && 8190 phba->sli4_hba.rpi_hdrs_in_use) { 8191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8192 "2999 Unsupported SLI4 Parameters " 8193 "Extents and RPI headers enabled.\n"); 8194 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8195 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8196 mempool_free(mboxq, phba->mbox_mem_pool); 8197 rc = -EIO; 8198 goto out_free_bsmbx; 8199 } 8200 } 8201 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8202 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8203 mempool_free(mboxq, phba->mbox_mem_pool); 8204 rc = -EIO; 8205 goto out_free_bsmbx; 8206 } 8207 } 8208 8209 /* 8210 * 1 for cmd, 1 for rsp, NVME adds an extra one 8211 * for boundary conditions in its max_sgl_segment template. 8212 */ 8213 extra = 2; 8214 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8215 extra++; 8216 8217 /* 8218 * It doesn't matter what family our adapter is in, we are 8219 * limited to 2 Pages, 512 SGEs, for our SGL. 8220 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8221 */ 8222 max_buf_size = (2 * SLI4_PAGE_SIZE); 8223 8224 /* 8225 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8226 * used to create the sg_dma_buf_pool must be calculated. 8227 */ 8228 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8229 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8230 8231 /* 8232 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8233 * the FCP rsp, and a SGE. Sice we have no control 8234 * over how many protection segments the SCSI Layer 8235 * will hand us (ie: there could be one for every block 8236 * in the IO), just allocate enough SGEs to accomidate 8237 * our max amount and we need to limit lpfc_sg_seg_cnt 8238 * to minimize the risk of running out. 8239 */ 8240 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8241 sizeof(struct fcp_rsp) + max_buf_size; 8242 8243 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8244 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8245 8246 /* 8247 * If supporting DIF, reduce the seg count for scsi to 8248 * allow room for the DIF sges. 8249 */ 8250 if (phba->cfg_enable_bg && 8251 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8252 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8253 else 8254 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8255 8256 } else { 8257 /* 8258 * The scsi_buf for a regular I/O holds the FCP cmnd, 8259 * the FCP rsp, a SGE for each, and a SGE for up to 8260 * cfg_sg_seg_cnt data segments. 8261 */ 8262 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8263 sizeof(struct fcp_rsp) + 8264 ((phba->cfg_sg_seg_cnt + extra) * 8265 sizeof(struct sli4_sge)); 8266 8267 /* Total SGEs for scsi_sg_list */ 8268 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8269 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8270 8271 /* 8272 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8273 * need to post 1 page for the SGL. 8274 */ 8275 } 8276 8277 if (phba->cfg_xpsgl && !phba->nvmet_support) 8278 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8279 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8280 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8281 else 8282 phba->cfg_sg_dma_buf_size = 8283 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8284 8285 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8286 sizeof(struct sli4_sge); 8287 8288 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8289 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8290 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8291 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8292 "6300 Reducing NVME sg segment " 8293 "cnt to %d\n", 8294 LPFC_MAX_NVME_SEG_CNT); 8295 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8296 } else 8297 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8298 } 8299 8300 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8301 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8302 "total:%d scsi:%d nvme:%d\n", 8303 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8304 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8305 phba->cfg_nvme_seg_cnt); 8306 8307 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8308 i = phba->cfg_sg_dma_buf_size; 8309 else 8310 i = SLI4_PAGE_SIZE; 8311 8312 phba->lpfc_sg_dma_buf_pool = 8313 dma_pool_create("lpfc_sg_dma_buf_pool", 8314 &phba->pcidev->dev, 8315 phba->cfg_sg_dma_buf_size, 8316 i, 0); 8317 if (!phba->lpfc_sg_dma_buf_pool) { 8318 rc = -ENOMEM; 8319 goto out_free_bsmbx; 8320 } 8321 8322 phba->lpfc_cmd_rsp_buf_pool = 8323 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8324 &phba->pcidev->dev, 8325 sizeof(struct fcp_cmnd) + 8326 sizeof(struct fcp_rsp), 8327 i, 0); 8328 if (!phba->lpfc_cmd_rsp_buf_pool) { 8329 rc = -ENOMEM; 8330 goto out_free_sg_dma_buf; 8331 } 8332 8333 mempool_free(mboxq, phba->mbox_mem_pool); 8334 8335 /* Verify OAS is supported */ 8336 lpfc_sli4_oas_verify(phba); 8337 8338 /* Verify RAS support on adapter */ 8339 lpfc_sli4_ras_init(phba); 8340 8341 /* Verify all the SLI4 queues */ 8342 rc = lpfc_sli4_queue_verify(phba); 8343 if (rc) 8344 goto out_free_cmd_rsp_buf; 8345 8346 /* Create driver internal CQE event pool */ 8347 rc = lpfc_sli4_cq_event_pool_create(phba); 8348 if (rc) 8349 goto out_free_cmd_rsp_buf; 8350 8351 /* Initialize sgl lists per host */ 8352 lpfc_init_sgl_list(phba); 8353 8354 /* Allocate and initialize active sgl array */ 8355 rc = lpfc_init_active_sgl_array(phba); 8356 if (rc) { 8357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8358 "1430 Failed to initialize sgl list.\n"); 8359 goto out_destroy_cq_event_pool; 8360 } 8361 rc = lpfc_sli4_init_rpi_hdrs(phba); 8362 if (rc) { 8363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8364 "1432 Failed to initialize rpi headers.\n"); 8365 goto out_free_active_sgl; 8366 } 8367 8368 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8369 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8370 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8371 GFP_KERNEL); 8372 if (!phba->fcf.fcf_rr_bmask) { 8373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8374 "2759 Failed allocate memory for FCF round " 8375 "robin failover bmask\n"); 8376 rc = -ENOMEM; 8377 goto out_remove_rpi_hdrs; 8378 } 8379 8380 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8381 sizeof(struct lpfc_hba_eq_hdl), 8382 GFP_KERNEL); 8383 if (!phba->sli4_hba.hba_eq_hdl) { 8384 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8385 "2572 Failed allocate memory for " 8386 "fast-path per-EQ handle array\n"); 8387 rc = -ENOMEM; 8388 goto out_free_fcf_rr_bmask; 8389 } 8390 8391 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8392 sizeof(struct lpfc_vector_map_info), 8393 GFP_KERNEL); 8394 if (!phba->sli4_hba.cpu_map) { 8395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8396 "3327 Failed allocate memory for msi-x " 8397 "interrupt vector mapping\n"); 8398 rc = -ENOMEM; 8399 goto out_free_hba_eq_hdl; 8400 } 8401 8402 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8403 if (!phba->sli4_hba.eq_info) { 8404 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8405 "3321 Failed allocation for per_cpu stats\n"); 8406 rc = -ENOMEM; 8407 goto out_free_hba_cpu_map; 8408 } 8409 8410 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8411 sizeof(*phba->sli4_hba.idle_stat), 8412 GFP_KERNEL); 8413 if (!phba->sli4_hba.idle_stat) { 8414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8415 "3390 Failed allocation for idle_stat\n"); 8416 rc = -ENOMEM; 8417 goto out_free_hba_eq_info; 8418 } 8419 8420 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8421 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8422 if (!phba->sli4_hba.c_stat) { 8423 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8424 "3332 Failed allocating per cpu hdwq stats\n"); 8425 rc = -ENOMEM; 8426 goto out_free_hba_idle_stat; 8427 } 8428 #endif 8429 8430 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8431 if (!phba->cmf_stat) { 8432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8433 "3331 Failed allocating per cpu cgn stats\n"); 8434 rc = -ENOMEM; 8435 goto out_free_hba_hdwq_info; 8436 } 8437 8438 /* 8439 * Enable sr-iov virtual functions if supported and configured 8440 * through the module parameter. 8441 */ 8442 if (phba->cfg_sriov_nr_virtfn > 0) { 8443 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8444 phba->cfg_sriov_nr_virtfn); 8445 if (rc) { 8446 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8447 "3020 Requested number of SR-IOV " 8448 "virtual functions (%d) is not " 8449 "supported\n", 8450 phba->cfg_sriov_nr_virtfn); 8451 phba->cfg_sriov_nr_virtfn = 0; 8452 } 8453 } 8454 8455 return 0; 8456 8457 out_free_hba_hdwq_info: 8458 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8459 free_percpu(phba->sli4_hba.c_stat); 8460 out_free_hba_idle_stat: 8461 #endif 8462 kfree(phba->sli4_hba.idle_stat); 8463 out_free_hba_eq_info: 8464 free_percpu(phba->sli4_hba.eq_info); 8465 out_free_hba_cpu_map: 8466 kfree(phba->sli4_hba.cpu_map); 8467 out_free_hba_eq_hdl: 8468 kfree(phba->sli4_hba.hba_eq_hdl); 8469 out_free_fcf_rr_bmask: 8470 kfree(phba->fcf.fcf_rr_bmask); 8471 out_remove_rpi_hdrs: 8472 lpfc_sli4_remove_rpi_hdrs(phba); 8473 out_free_active_sgl: 8474 lpfc_free_active_sgl(phba); 8475 out_destroy_cq_event_pool: 8476 lpfc_sli4_cq_event_pool_destroy(phba); 8477 out_free_cmd_rsp_buf: 8478 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8479 phba->lpfc_cmd_rsp_buf_pool = NULL; 8480 out_free_sg_dma_buf: 8481 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8482 phba->lpfc_sg_dma_buf_pool = NULL; 8483 out_free_bsmbx: 8484 lpfc_destroy_bootstrap_mbox(phba); 8485 out_free_mem: 8486 lpfc_mem_free(phba); 8487 out_destroy_workqueue: 8488 destroy_workqueue(phba->wq); 8489 phba->wq = NULL; 8490 return rc; 8491 } 8492 8493 /** 8494 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8495 * @phba: pointer to lpfc hba data structure. 8496 * 8497 * This routine is invoked to unset the driver internal resources set up 8498 * specific for supporting the SLI-4 HBA device it attached to. 8499 **/ 8500 static void 8501 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8502 { 8503 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8504 8505 free_percpu(phba->sli4_hba.eq_info); 8506 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8507 free_percpu(phba->sli4_hba.c_stat); 8508 #endif 8509 free_percpu(phba->cmf_stat); 8510 kfree(phba->sli4_hba.idle_stat); 8511 8512 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8513 kfree(phba->sli4_hba.cpu_map); 8514 phba->sli4_hba.num_possible_cpu = 0; 8515 phba->sli4_hba.num_present_cpu = 0; 8516 phba->sli4_hba.curr_disp_cpu = 0; 8517 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8518 8519 /* Free memory allocated for fast-path work queue handles */ 8520 kfree(phba->sli4_hba.hba_eq_hdl); 8521 8522 /* Free the allocated rpi headers. */ 8523 lpfc_sli4_remove_rpi_hdrs(phba); 8524 lpfc_sli4_remove_rpis(phba); 8525 8526 /* Free eligible FCF index bmask */ 8527 kfree(phba->fcf.fcf_rr_bmask); 8528 8529 /* Free the ELS sgl list */ 8530 lpfc_free_active_sgl(phba); 8531 lpfc_free_els_sgl_list(phba); 8532 lpfc_free_nvmet_sgl_list(phba); 8533 8534 /* Free the completion queue EQ event pool */ 8535 lpfc_sli4_cq_event_release_all(phba); 8536 lpfc_sli4_cq_event_pool_destroy(phba); 8537 8538 /* Release resource identifiers. */ 8539 lpfc_sli4_dealloc_resource_identifiers(phba); 8540 8541 /* Free the bsmbx region. */ 8542 lpfc_destroy_bootstrap_mbox(phba); 8543 8544 /* Free the SLI Layer memory with SLI4 HBAs */ 8545 lpfc_mem_free_all(phba); 8546 8547 /* Free the current connect table */ 8548 list_for_each_entry_safe(conn_entry, next_conn_entry, 8549 &phba->fcf_conn_rec_list, list) { 8550 list_del_init(&conn_entry->list); 8551 kfree(conn_entry); 8552 } 8553 8554 return; 8555 } 8556 8557 /** 8558 * lpfc_init_api_table_setup - Set up init api function jump table 8559 * @phba: The hba struct for which this call is being executed. 8560 * @dev_grp: The HBA PCI-Device group number. 8561 * 8562 * This routine sets up the device INIT interface API function jump table 8563 * in @phba struct. 8564 * 8565 * Returns: 0 - success, -ENODEV - failure. 8566 **/ 8567 int 8568 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8569 { 8570 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8571 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8572 phba->lpfc_selective_reset = lpfc_selective_reset; 8573 switch (dev_grp) { 8574 case LPFC_PCI_DEV_LP: 8575 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8576 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8577 phba->lpfc_stop_port = lpfc_stop_port_s3; 8578 break; 8579 case LPFC_PCI_DEV_OC: 8580 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8581 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8582 phba->lpfc_stop_port = lpfc_stop_port_s4; 8583 break; 8584 default: 8585 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8586 "1431 Invalid HBA PCI-device group: 0x%x\n", 8587 dev_grp); 8588 return -ENODEV; 8589 } 8590 return 0; 8591 } 8592 8593 /** 8594 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8595 * @phba: pointer to lpfc hba data structure. 8596 * 8597 * This routine is invoked to set up the driver internal resources after the 8598 * device specific resource setup to support the HBA device it attached to. 8599 * 8600 * Return codes 8601 * 0 - successful 8602 * other values - error 8603 **/ 8604 static int 8605 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8606 { 8607 int error; 8608 8609 /* Startup the kernel thread for this host adapter. */ 8610 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8611 "lpfc_worker_%d", phba->brd_no); 8612 if (IS_ERR(phba->worker_thread)) { 8613 error = PTR_ERR(phba->worker_thread); 8614 return error; 8615 } 8616 8617 return 0; 8618 } 8619 8620 /** 8621 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8622 * @phba: pointer to lpfc hba data structure. 8623 * 8624 * This routine is invoked to unset the driver internal resources set up after 8625 * the device specific resource setup for supporting the HBA device it 8626 * attached to. 8627 **/ 8628 static void 8629 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8630 { 8631 if (phba->wq) { 8632 destroy_workqueue(phba->wq); 8633 phba->wq = NULL; 8634 } 8635 8636 /* Stop kernel worker thread */ 8637 if (phba->worker_thread) 8638 kthread_stop(phba->worker_thread); 8639 } 8640 8641 /** 8642 * lpfc_free_iocb_list - Free iocb list. 8643 * @phba: pointer to lpfc hba data structure. 8644 * 8645 * This routine is invoked to free the driver's IOCB list and memory. 8646 **/ 8647 void 8648 lpfc_free_iocb_list(struct lpfc_hba *phba) 8649 { 8650 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8651 8652 spin_lock_irq(&phba->hbalock); 8653 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8654 &phba->lpfc_iocb_list, list) { 8655 list_del(&iocbq_entry->list); 8656 kfree(iocbq_entry); 8657 phba->total_iocbq_bufs--; 8658 } 8659 spin_unlock_irq(&phba->hbalock); 8660 8661 return; 8662 } 8663 8664 /** 8665 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8666 * @phba: pointer to lpfc hba data structure. 8667 * @iocb_count: number of requested iocbs 8668 * 8669 * This routine is invoked to allocate and initizlize the driver's IOCB 8670 * list and set up the IOCB tag array accordingly. 8671 * 8672 * Return codes 8673 * 0 - successful 8674 * other values - error 8675 **/ 8676 int 8677 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8678 { 8679 struct lpfc_iocbq *iocbq_entry = NULL; 8680 uint16_t iotag; 8681 int i; 8682 8683 /* Initialize and populate the iocb list per host. */ 8684 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8685 for (i = 0; i < iocb_count; i++) { 8686 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8687 if (iocbq_entry == NULL) { 8688 printk(KERN_ERR "%s: only allocated %d iocbs of " 8689 "expected %d count. Unloading driver.\n", 8690 __func__, i, iocb_count); 8691 goto out_free_iocbq; 8692 } 8693 8694 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8695 if (iotag == 0) { 8696 kfree(iocbq_entry); 8697 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8698 "Unloading driver.\n", __func__); 8699 goto out_free_iocbq; 8700 } 8701 iocbq_entry->sli4_lxritag = NO_XRI; 8702 iocbq_entry->sli4_xritag = NO_XRI; 8703 8704 spin_lock_irq(&phba->hbalock); 8705 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8706 phba->total_iocbq_bufs++; 8707 spin_unlock_irq(&phba->hbalock); 8708 } 8709 8710 return 0; 8711 8712 out_free_iocbq: 8713 lpfc_free_iocb_list(phba); 8714 8715 return -ENOMEM; 8716 } 8717 8718 /** 8719 * lpfc_free_sgl_list - Free a given sgl list. 8720 * @phba: pointer to lpfc hba data structure. 8721 * @sglq_list: pointer to the head of sgl list. 8722 * 8723 * This routine is invoked to free a give sgl list and memory. 8724 **/ 8725 void 8726 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8727 { 8728 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8729 8730 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8731 list_del(&sglq_entry->list); 8732 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8733 kfree(sglq_entry); 8734 } 8735 } 8736 8737 /** 8738 * lpfc_free_els_sgl_list - Free els sgl list. 8739 * @phba: pointer to lpfc hba data structure. 8740 * 8741 * This routine is invoked to free the driver's els sgl list and memory. 8742 **/ 8743 static void 8744 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8745 { 8746 LIST_HEAD(sglq_list); 8747 8748 /* Retrieve all els sgls from driver list */ 8749 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8750 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8751 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8752 8753 /* Now free the sgl list */ 8754 lpfc_free_sgl_list(phba, &sglq_list); 8755 } 8756 8757 /** 8758 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8759 * @phba: pointer to lpfc hba data structure. 8760 * 8761 * This routine is invoked to free the driver's nvmet sgl list and memory. 8762 **/ 8763 static void 8764 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8765 { 8766 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8767 LIST_HEAD(sglq_list); 8768 8769 /* Retrieve all nvmet sgls from driver list */ 8770 spin_lock_irq(&phba->hbalock); 8771 spin_lock(&phba->sli4_hba.sgl_list_lock); 8772 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8773 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8774 spin_unlock_irq(&phba->hbalock); 8775 8776 /* Now free the sgl list */ 8777 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8778 list_del(&sglq_entry->list); 8779 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8780 kfree(sglq_entry); 8781 } 8782 8783 /* Update the nvmet_xri_cnt to reflect no current sgls. 8784 * The next initialization cycle sets the count and allocates 8785 * the sgls over again. 8786 */ 8787 phba->sli4_hba.nvmet_xri_cnt = 0; 8788 } 8789 8790 /** 8791 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8792 * @phba: pointer to lpfc hba data structure. 8793 * 8794 * This routine is invoked to allocate the driver's active sgl memory. 8795 * This array will hold the sglq_entry's for active IOs. 8796 **/ 8797 static int 8798 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8799 { 8800 int size; 8801 size = sizeof(struct lpfc_sglq *); 8802 size *= phba->sli4_hba.max_cfg_param.max_xri; 8803 8804 phba->sli4_hba.lpfc_sglq_active_list = 8805 kzalloc(size, GFP_KERNEL); 8806 if (!phba->sli4_hba.lpfc_sglq_active_list) 8807 return -ENOMEM; 8808 return 0; 8809 } 8810 8811 /** 8812 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8813 * @phba: pointer to lpfc hba data structure. 8814 * 8815 * This routine is invoked to walk through the array of active sglq entries 8816 * and free all of the resources. 8817 * This is just a place holder for now. 8818 **/ 8819 static void 8820 lpfc_free_active_sgl(struct lpfc_hba *phba) 8821 { 8822 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8823 } 8824 8825 /** 8826 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8827 * @phba: pointer to lpfc hba data structure. 8828 * 8829 * This routine is invoked to allocate and initizlize the driver's sgl 8830 * list and set up the sgl xritag tag array accordingly. 8831 * 8832 **/ 8833 static void 8834 lpfc_init_sgl_list(struct lpfc_hba *phba) 8835 { 8836 /* Initialize and populate the sglq list per host/VF. */ 8837 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8838 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8839 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8840 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8841 8842 /* els xri-sgl book keeping */ 8843 phba->sli4_hba.els_xri_cnt = 0; 8844 8845 /* nvme xri-buffer book keeping */ 8846 phba->sli4_hba.io_xri_cnt = 0; 8847 } 8848 8849 /** 8850 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8851 * @phba: pointer to lpfc hba data structure. 8852 * 8853 * This routine is invoked to post rpi header templates to the 8854 * port for those SLI4 ports that do not support extents. This routine 8855 * posts a PAGE_SIZE memory region to the port to hold up to 8856 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8857 * and should be called only when interrupts are disabled. 8858 * 8859 * Return codes 8860 * 0 - successful 8861 * -ERROR - otherwise. 8862 **/ 8863 int 8864 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8865 { 8866 int rc = 0; 8867 struct lpfc_rpi_hdr *rpi_hdr; 8868 8869 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8870 if (!phba->sli4_hba.rpi_hdrs_in_use) 8871 return rc; 8872 if (phba->sli4_hba.extents_in_use) 8873 return -EIO; 8874 8875 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8876 if (!rpi_hdr) { 8877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8878 "0391 Error during rpi post operation\n"); 8879 lpfc_sli4_remove_rpis(phba); 8880 rc = -ENODEV; 8881 } 8882 8883 return rc; 8884 } 8885 8886 /** 8887 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8888 * @phba: pointer to lpfc hba data structure. 8889 * 8890 * This routine is invoked to allocate a single 4KB memory region to 8891 * support rpis and stores them in the phba. This single region 8892 * provides support for up to 64 rpis. The region is used globally 8893 * by the device. 8894 * 8895 * Returns: 8896 * A valid rpi hdr on success. 8897 * A NULL pointer on any failure. 8898 **/ 8899 struct lpfc_rpi_hdr * 8900 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8901 { 8902 uint16_t rpi_limit, curr_rpi_range; 8903 struct lpfc_dmabuf *dmabuf; 8904 struct lpfc_rpi_hdr *rpi_hdr; 8905 8906 /* 8907 * If the SLI4 port supports extents, posting the rpi header isn't 8908 * required. Set the expected maximum count and let the actual value 8909 * get set when extents are fully allocated. 8910 */ 8911 if (!phba->sli4_hba.rpi_hdrs_in_use) 8912 return NULL; 8913 if (phba->sli4_hba.extents_in_use) 8914 return NULL; 8915 8916 /* The limit on the logical index is just the max_rpi count. */ 8917 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8918 8919 spin_lock_irq(&phba->hbalock); 8920 /* 8921 * Establish the starting RPI in this header block. The starting 8922 * rpi is normalized to a zero base because the physical rpi is 8923 * port based. 8924 */ 8925 curr_rpi_range = phba->sli4_hba.next_rpi; 8926 spin_unlock_irq(&phba->hbalock); 8927 8928 /* Reached full RPI range */ 8929 if (curr_rpi_range == rpi_limit) 8930 return NULL; 8931 8932 /* 8933 * First allocate the protocol header region for the port. The 8934 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8935 */ 8936 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8937 if (!dmabuf) 8938 return NULL; 8939 8940 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8941 LPFC_HDR_TEMPLATE_SIZE, 8942 &dmabuf->phys, GFP_KERNEL); 8943 if (!dmabuf->virt) { 8944 rpi_hdr = NULL; 8945 goto err_free_dmabuf; 8946 } 8947 8948 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8949 rpi_hdr = NULL; 8950 goto err_free_coherent; 8951 } 8952 8953 /* Save the rpi header data for cleanup later. */ 8954 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8955 if (!rpi_hdr) 8956 goto err_free_coherent; 8957 8958 rpi_hdr->dmabuf = dmabuf; 8959 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8960 rpi_hdr->page_count = 1; 8961 spin_lock_irq(&phba->hbalock); 8962 8963 /* The rpi_hdr stores the logical index only. */ 8964 rpi_hdr->start_rpi = curr_rpi_range; 8965 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8966 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8967 8968 spin_unlock_irq(&phba->hbalock); 8969 return rpi_hdr; 8970 8971 err_free_coherent: 8972 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8973 dmabuf->virt, dmabuf->phys); 8974 err_free_dmabuf: 8975 kfree(dmabuf); 8976 return NULL; 8977 } 8978 8979 /** 8980 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8981 * @phba: pointer to lpfc hba data structure. 8982 * 8983 * This routine is invoked to remove all memory resources allocated 8984 * to support rpis for SLI4 ports not supporting extents. This routine 8985 * presumes the caller has released all rpis consumed by fabric or port 8986 * logins and is prepared to have the header pages removed. 8987 **/ 8988 void 8989 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8990 { 8991 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8992 8993 if (!phba->sli4_hba.rpi_hdrs_in_use) 8994 goto exit; 8995 8996 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8997 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 8998 list_del(&rpi_hdr->list); 8999 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 9000 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 9001 kfree(rpi_hdr->dmabuf); 9002 kfree(rpi_hdr); 9003 } 9004 exit: 9005 /* There are no rpis available to the port now. */ 9006 phba->sli4_hba.next_rpi = 0; 9007 } 9008 9009 /** 9010 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 9011 * @pdev: pointer to pci device data structure. 9012 * 9013 * This routine is invoked to allocate the driver hba data structure for an 9014 * HBA device. If the allocation is successful, the phba reference to the 9015 * PCI device data structure is set. 9016 * 9017 * Return codes 9018 * pointer to @phba - successful 9019 * NULL - error 9020 **/ 9021 static struct lpfc_hba * 9022 lpfc_hba_alloc(struct pci_dev *pdev) 9023 { 9024 struct lpfc_hba *phba; 9025 9026 /* Allocate memory for HBA structure */ 9027 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 9028 if (!phba) { 9029 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 9030 return NULL; 9031 } 9032 9033 /* Set reference to PCI device in HBA structure */ 9034 phba->pcidev = pdev; 9035 9036 /* Assign an unused board number */ 9037 phba->brd_no = lpfc_get_instance(); 9038 if (phba->brd_no < 0) { 9039 kfree(phba); 9040 return NULL; 9041 } 9042 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 9043 9044 spin_lock_init(&phba->ct_ev_lock); 9045 INIT_LIST_HEAD(&phba->ct_ev_waiters); 9046 9047 return phba; 9048 } 9049 9050 /** 9051 * lpfc_hba_free - Free driver hba data structure with a device. 9052 * @phba: pointer to lpfc hba data structure. 9053 * 9054 * This routine is invoked to free the driver hba data structure with an 9055 * HBA device. 9056 **/ 9057 static void 9058 lpfc_hba_free(struct lpfc_hba *phba) 9059 { 9060 if (phba->sli_rev == LPFC_SLI_REV4) 9061 kfree(phba->sli4_hba.hdwq); 9062 9063 /* Release the driver assigned board number */ 9064 idr_remove(&lpfc_hba_index, phba->brd_no); 9065 9066 /* Free memory allocated with sli3 rings */ 9067 kfree(phba->sli.sli3_ring); 9068 phba->sli.sli3_ring = NULL; 9069 9070 kfree(phba); 9071 return; 9072 } 9073 9074 /** 9075 * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes 9076 * @vport: pointer to lpfc vport data structure. 9077 * 9078 * This routine is will setup initial FDMI attribute masks for 9079 * FDMI2 or SmartSAN depending on module parameters. The driver will attempt 9080 * to get these attributes first before falling back, the attribute 9081 * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 9082 **/ 9083 void 9084 lpfc_setup_fdmi_mask(struct lpfc_vport *vport) 9085 { 9086 struct lpfc_hba *phba = vport->phba; 9087 9088 vport->load_flag |= FC_ALLOW_FDMI; 9089 if (phba->cfg_enable_SmartSAN || 9090 phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { 9091 /* Setup appropriate attribute masks */ 9092 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9093 if (phba->cfg_enable_SmartSAN) 9094 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9095 else 9096 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9097 } 9098 9099 lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY, 9100 "6077 Setup FDMI mask: hba x%x port x%x\n", 9101 vport->fdmi_hba_mask, vport->fdmi_port_mask); 9102 } 9103 9104 /** 9105 * lpfc_create_shost - Create hba physical port with associated scsi host. 9106 * @phba: pointer to lpfc hba data structure. 9107 * 9108 * This routine is invoked to create HBA physical port and associate a SCSI 9109 * host with it. 9110 * 9111 * Return codes 9112 * 0 - successful 9113 * other values - error 9114 **/ 9115 static int 9116 lpfc_create_shost(struct lpfc_hba *phba) 9117 { 9118 struct lpfc_vport *vport; 9119 struct Scsi_Host *shost; 9120 9121 /* Initialize HBA FC structure */ 9122 phba->fc_edtov = FF_DEF_EDTOV; 9123 phba->fc_ratov = FF_DEF_RATOV; 9124 phba->fc_altov = FF_DEF_ALTOV; 9125 phba->fc_arbtov = FF_DEF_ARBTOV; 9126 9127 atomic_set(&phba->sdev_cnt, 0); 9128 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9129 if (!vport) 9130 return -ENODEV; 9131 9132 shost = lpfc_shost_from_vport(vport); 9133 phba->pport = vport; 9134 9135 if (phba->nvmet_support) { 9136 /* Only 1 vport (pport) will support NVME target */ 9137 phba->targetport = NULL; 9138 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9139 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9140 "6076 NVME Target Found\n"); 9141 } 9142 9143 lpfc_debugfs_initialize(vport); 9144 /* Put reference to SCSI host to driver's device private data */ 9145 pci_set_drvdata(phba->pcidev, shost); 9146 9147 lpfc_setup_fdmi_mask(vport); 9148 9149 /* 9150 * At this point we are fully registered with PSA. In addition, 9151 * any initial discovery should be completed. 9152 */ 9153 return 0; 9154 } 9155 9156 /** 9157 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9158 * @phba: pointer to lpfc hba data structure. 9159 * 9160 * This routine is invoked to destroy HBA physical port and the associated 9161 * SCSI host. 9162 **/ 9163 static void 9164 lpfc_destroy_shost(struct lpfc_hba *phba) 9165 { 9166 struct lpfc_vport *vport = phba->pport; 9167 9168 /* Destroy physical port that associated with the SCSI host */ 9169 destroy_port(vport); 9170 9171 return; 9172 } 9173 9174 /** 9175 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9176 * @phba: pointer to lpfc hba data structure. 9177 * @shost: the shost to be used to detect Block guard settings. 9178 * 9179 * This routine sets up the local Block guard protocol settings for @shost. 9180 * This routine also allocates memory for debugging bg buffers. 9181 **/ 9182 static void 9183 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9184 { 9185 uint32_t old_mask; 9186 uint32_t old_guard; 9187 9188 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9189 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9190 "1478 Registering BlockGuard with the " 9191 "SCSI layer\n"); 9192 9193 old_mask = phba->cfg_prot_mask; 9194 old_guard = phba->cfg_prot_guard; 9195 9196 /* Only allow supported values */ 9197 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9198 SHOST_DIX_TYPE0_PROTECTION | 9199 SHOST_DIX_TYPE1_PROTECTION); 9200 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9201 SHOST_DIX_GUARD_CRC); 9202 9203 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9204 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9205 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9206 9207 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9208 if ((old_mask != phba->cfg_prot_mask) || 9209 (old_guard != phba->cfg_prot_guard)) 9210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9211 "1475 Registering BlockGuard with the " 9212 "SCSI layer: mask %d guard %d\n", 9213 phba->cfg_prot_mask, 9214 phba->cfg_prot_guard); 9215 9216 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9217 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9218 } else 9219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9220 "1479 Not Registering BlockGuard with the SCSI " 9221 "layer, Bad protection parameters: %d %d\n", 9222 old_mask, old_guard); 9223 } 9224 } 9225 9226 /** 9227 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9228 * @phba: pointer to lpfc hba data structure. 9229 * 9230 * This routine is invoked to perform all the necessary post initialization 9231 * setup for the device. 9232 **/ 9233 static void 9234 lpfc_post_init_setup(struct lpfc_hba *phba) 9235 { 9236 struct Scsi_Host *shost; 9237 struct lpfc_adapter_event_header adapter_event; 9238 9239 /* Get the default values for Model Name and Description */ 9240 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9241 9242 /* 9243 * hba setup may have changed the hba_queue_depth so we need to 9244 * adjust the value of can_queue. 9245 */ 9246 shost = pci_get_drvdata(phba->pcidev); 9247 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9248 9249 lpfc_host_attrib_init(shost); 9250 9251 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9252 spin_lock_irq(shost->host_lock); 9253 lpfc_poll_start_timer(phba); 9254 spin_unlock_irq(shost->host_lock); 9255 } 9256 9257 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9258 "0428 Perform SCSI scan\n"); 9259 /* Send board arrival event to upper layer */ 9260 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9261 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9262 fc_host_post_vendor_event(shost, fc_get_event_number(), 9263 sizeof(adapter_event), 9264 (char *) &adapter_event, 9265 LPFC_NL_VENDOR_ID); 9266 return; 9267 } 9268 9269 /** 9270 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9271 * @phba: pointer to lpfc hba data structure. 9272 * 9273 * This routine is invoked to set up the PCI device memory space for device 9274 * with SLI-3 interface spec. 9275 * 9276 * Return codes 9277 * 0 - successful 9278 * other values - error 9279 **/ 9280 static int 9281 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9282 { 9283 struct pci_dev *pdev = phba->pcidev; 9284 unsigned long bar0map_len, bar2map_len; 9285 int i, hbq_count; 9286 void *ptr; 9287 int error; 9288 9289 if (!pdev) 9290 return -ENODEV; 9291 9292 /* Set the device DMA mask size */ 9293 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9294 if (error) 9295 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9296 if (error) 9297 return error; 9298 error = -ENODEV; 9299 9300 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9301 * required by each mapping. 9302 */ 9303 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9304 bar0map_len = pci_resource_len(pdev, 0); 9305 9306 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9307 bar2map_len = pci_resource_len(pdev, 2); 9308 9309 /* Map HBA SLIM to a kernel virtual address. */ 9310 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9311 if (!phba->slim_memmap_p) { 9312 dev_printk(KERN_ERR, &pdev->dev, 9313 "ioremap failed for SLIM memory.\n"); 9314 goto out; 9315 } 9316 9317 /* Map HBA Control Registers to a kernel virtual address. */ 9318 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9319 if (!phba->ctrl_regs_memmap_p) { 9320 dev_printk(KERN_ERR, &pdev->dev, 9321 "ioremap failed for HBA control registers.\n"); 9322 goto out_iounmap_slim; 9323 } 9324 9325 /* Allocate memory for SLI-2 structures */ 9326 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9327 &phba->slim2p.phys, GFP_KERNEL); 9328 if (!phba->slim2p.virt) 9329 goto out_iounmap; 9330 9331 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9332 phba->mbox_ext = (phba->slim2p.virt + 9333 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9334 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9335 phba->IOCBs = (phba->slim2p.virt + 9336 offsetof(struct lpfc_sli2_slim, IOCBs)); 9337 9338 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9339 lpfc_sli_hbq_size(), 9340 &phba->hbqslimp.phys, 9341 GFP_KERNEL); 9342 if (!phba->hbqslimp.virt) 9343 goto out_free_slim; 9344 9345 hbq_count = lpfc_sli_hbq_count(); 9346 ptr = phba->hbqslimp.virt; 9347 for (i = 0; i < hbq_count; ++i) { 9348 phba->hbqs[i].hbq_virt = ptr; 9349 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9350 ptr += (lpfc_hbq_defs[i]->entry_count * 9351 sizeof(struct lpfc_hbq_entry)); 9352 } 9353 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9354 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9355 9356 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9357 9358 phba->MBslimaddr = phba->slim_memmap_p; 9359 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9360 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9361 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9362 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9363 9364 return 0; 9365 9366 out_free_slim: 9367 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9368 phba->slim2p.virt, phba->slim2p.phys); 9369 out_iounmap: 9370 iounmap(phba->ctrl_regs_memmap_p); 9371 out_iounmap_slim: 9372 iounmap(phba->slim_memmap_p); 9373 out: 9374 return error; 9375 } 9376 9377 /** 9378 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9379 * @phba: pointer to lpfc hba data structure. 9380 * 9381 * This routine is invoked to unset the PCI device memory space for device 9382 * with SLI-3 interface spec. 9383 **/ 9384 static void 9385 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9386 { 9387 struct pci_dev *pdev; 9388 9389 /* Obtain PCI device reference */ 9390 if (!phba->pcidev) 9391 return; 9392 else 9393 pdev = phba->pcidev; 9394 9395 /* Free coherent DMA memory allocated */ 9396 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9397 phba->hbqslimp.virt, phba->hbqslimp.phys); 9398 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9399 phba->slim2p.virt, phba->slim2p.phys); 9400 9401 /* I/O memory unmap */ 9402 iounmap(phba->ctrl_regs_memmap_p); 9403 iounmap(phba->slim_memmap_p); 9404 9405 return; 9406 } 9407 9408 /** 9409 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9410 * @phba: pointer to lpfc hba data structure. 9411 * 9412 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9413 * done and check status. 9414 * 9415 * Return 0 if successful, otherwise -ENODEV. 9416 **/ 9417 int 9418 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9419 { 9420 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9421 struct lpfc_register reg_data; 9422 int i, port_error = 0; 9423 uint32_t if_type; 9424 9425 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9426 memset(®_data, 0, sizeof(reg_data)); 9427 if (!phba->sli4_hba.PSMPHRregaddr) 9428 return -ENODEV; 9429 9430 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9431 for (i = 0; i < 3000; i++) { 9432 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9433 &portsmphr_reg.word0) || 9434 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9435 /* Port has a fatal POST error, break out */ 9436 port_error = -ENODEV; 9437 break; 9438 } 9439 if (LPFC_POST_STAGE_PORT_READY == 9440 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9441 break; 9442 msleep(10); 9443 } 9444 9445 /* 9446 * If there was a port error during POST, then don't proceed with 9447 * other register reads as the data may not be valid. Just exit. 9448 */ 9449 if (port_error) { 9450 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9451 "1408 Port Failed POST - portsmphr=0x%x, " 9452 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9453 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9454 portsmphr_reg.word0, 9455 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9456 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9457 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9458 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9459 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9460 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9461 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9462 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9463 } else { 9464 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9465 "2534 Device Info: SLIFamily=0x%x, " 9466 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9467 "SLIHint_2=0x%x, FT=0x%x\n", 9468 bf_get(lpfc_sli_intf_sli_family, 9469 &phba->sli4_hba.sli_intf), 9470 bf_get(lpfc_sli_intf_slirev, 9471 &phba->sli4_hba.sli_intf), 9472 bf_get(lpfc_sli_intf_if_type, 9473 &phba->sli4_hba.sli_intf), 9474 bf_get(lpfc_sli_intf_sli_hint1, 9475 &phba->sli4_hba.sli_intf), 9476 bf_get(lpfc_sli_intf_sli_hint2, 9477 &phba->sli4_hba.sli_intf), 9478 bf_get(lpfc_sli_intf_func_type, 9479 &phba->sli4_hba.sli_intf)); 9480 /* 9481 * Check for other Port errors during the initialization 9482 * process. Fail the load if the port did not come up 9483 * correctly. 9484 */ 9485 if_type = bf_get(lpfc_sli_intf_if_type, 9486 &phba->sli4_hba.sli_intf); 9487 switch (if_type) { 9488 case LPFC_SLI_INTF_IF_TYPE_0: 9489 phba->sli4_hba.ue_mask_lo = 9490 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9491 phba->sli4_hba.ue_mask_hi = 9492 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9493 uerrlo_reg.word0 = 9494 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9495 uerrhi_reg.word0 = 9496 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9497 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9498 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9499 lpfc_printf_log(phba, KERN_ERR, 9500 LOG_TRACE_EVENT, 9501 "1422 Unrecoverable Error " 9502 "Detected during POST " 9503 "uerr_lo_reg=0x%x, " 9504 "uerr_hi_reg=0x%x, " 9505 "ue_mask_lo_reg=0x%x, " 9506 "ue_mask_hi_reg=0x%x\n", 9507 uerrlo_reg.word0, 9508 uerrhi_reg.word0, 9509 phba->sli4_hba.ue_mask_lo, 9510 phba->sli4_hba.ue_mask_hi); 9511 port_error = -ENODEV; 9512 } 9513 break; 9514 case LPFC_SLI_INTF_IF_TYPE_2: 9515 case LPFC_SLI_INTF_IF_TYPE_6: 9516 /* Final checks. The port status should be clean. */ 9517 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9518 ®_data.word0) || 9519 lpfc_sli4_unrecoverable_port(®_data)) { 9520 phba->work_status[0] = 9521 readl(phba->sli4_hba.u.if_type2. 9522 ERR1regaddr); 9523 phba->work_status[1] = 9524 readl(phba->sli4_hba.u.if_type2. 9525 ERR2regaddr); 9526 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9527 "2888 Unrecoverable port error " 9528 "following POST: port status reg " 9529 "0x%x, port_smphr reg 0x%x, " 9530 "error 1=0x%x, error 2=0x%x\n", 9531 reg_data.word0, 9532 portsmphr_reg.word0, 9533 phba->work_status[0], 9534 phba->work_status[1]); 9535 port_error = -ENODEV; 9536 break; 9537 } 9538 9539 if (lpfc_pldv_detect && 9540 bf_get(lpfc_sli_intf_sli_family, 9541 &phba->sli4_hba.sli_intf) == 9542 LPFC_SLI_INTF_FAMILY_G6) 9543 pci_write_config_byte(phba->pcidev, 9544 LPFC_SLI_INTF, CFG_PLD); 9545 break; 9546 case LPFC_SLI_INTF_IF_TYPE_1: 9547 default: 9548 break; 9549 } 9550 } 9551 return port_error; 9552 } 9553 9554 /** 9555 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9556 * @phba: pointer to lpfc hba data structure. 9557 * @if_type: The SLI4 interface type getting configured. 9558 * 9559 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9560 * memory map. 9561 **/ 9562 static void 9563 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9564 { 9565 switch (if_type) { 9566 case LPFC_SLI_INTF_IF_TYPE_0: 9567 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9568 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9569 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9570 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9571 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9572 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9573 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9574 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9575 phba->sli4_hba.SLIINTFregaddr = 9576 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9577 break; 9578 case LPFC_SLI_INTF_IF_TYPE_2: 9579 phba->sli4_hba.u.if_type2.EQDregaddr = 9580 phba->sli4_hba.conf_regs_memmap_p + 9581 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9582 phba->sli4_hba.u.if_type2.ERR1regaddr = 9583 phba->sli4_hba.conf_regs_memmap_p + 9584 LPFC_CTL_PORT_ER1_OFFSET; 9585 phba->sli4_hba.u.if_type2.ERR2regaddr = 9586 phba->sli4_hba.conf_regs_memmap_p + 9587 LPFC_CTL_PORT_ER2_OFFSET; 9588 phba->sli4_hba.u.if_type2.CTRLregaddr = 9589 phba->sli4_hba.conf_regs_memmap_p + 9590 LPFC_CTL_PORT_CTL_OFFSET; 9591 phba->sli4_hba.u.if_type2.STATUSregaddr = 9592 phba->sli4_hba.conf_regs_memmap_p + 9593 LPFC_CTL_PORT_STA_OFFSET; 9594 phba->sli4_hba.SLIINTFregaddr = 9595 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9596 phba->sli4_hba.PSMPHRregaddr = 9597 phba->sli4_hba.conf_regs_memmap_p + 9598 LPFC_CTL_PORT_SEM_OFFSET; 9599 phba->sli4_hba.RQDBregaddr = 9600 phba->sli4_hba.conf_regs_memmap_p + 9601 LPFC_ULP0_RQ_DOORBELL; 9602 phba->sli4_hba.WQDBregaddr = 9603 phba->sli4_hba.conf_regs_memmap_p + 9604 LPFC_ULP0_WQ_DOORBELL; 9605 phba->sli4_hba.CQDBregaddr = 9606 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9607 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9608 phba->sli4_hba.MQDBregaddr = 9609 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9610 phba->sli4_hba.BMBXregaddr = 9611 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9612 break; 9613 case LPFC_SLI_INTF_IF_TYPE_6: 9614 phba->sli4_hba.u.if_type2.EQDregaddr = 9615 phba->sli4_hba.conf_regs_memmap_p + 9616 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9617 phba->sli4_hba.u.if_type2.ERR1regaddr = 9618 phba->sli4_hba.conf_regs_memmap_p + 9619 LPFC_CTL_PORT_ER1_OFFSET; 9620 phba->sli4_hba.u.if_type2.ERR2regaddr = 9621 phba->sli4_hba.conf_regs_memmap_p + 9622 LPFC_CTL_PORT_ER2_OFFSET; 9623 phba->sli4_hba.u.if_type2.CTRLregaddr = 9624 phba->sli4_hba.conf_regs_memmap_p + 9625 LPFC_CTL_PORT_CTL_OFFSET; 9626 phba->sli4_hba.u.if_type2.STATUSregaddr = 9627 phba->sli4_hba.conf_regs_memmap_p + 9628 LPFC_CTL_PORT_STA_OFFSET; 9629 phba->sli4_hba.PSMPHRregaddr = 9630 phba->sli4_hba.conf_regs_memmap_p + 9631 LPFC_CTL_PORT_SEM_OFFSET; 9632 phba->sli4_hba.BMBXregaddr = 9633 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9634 break; 9635 case LPFC_SLI_INTF_IF_TYPE_1: 9636 default: 9637 dev_printk(KERN_ERR, &phba->pcidev->dev, 9638 "FATAL - unsupported SLI4 interface type - %d\n", 9639 if_type); 9640 break; 9641 } 9642 } 9643 9644 /** 9645 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9646 * @phba: pointer to lpfc hba data structure. 9647 * @if_type: sli if type to operate on. 9648 * 9649 * This routine is invoked to set up SLI4 BAR1 register memory map. 9650 **/ 9651 static void 9652 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9653 { 9654 switch (if_type) { 9655 case LPFC_SLI_INTF_IF_TYPE_0: 9656 phba->sli4_hba.PSMPHRregaddr = 9657 phba->sli4_hba.ctrl_regs_memmap_p + 9658 LPFC_SLIPORT_IF0_SMPHR; 9659 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9660 LPFC_HST_ISR0; 9661 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9662 LPFC_HST_IMR0; 9663 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9664 LPFC_HST_ISCR0; 9665 break; 9666 case LPFC_SLI_INTF_IF_TYPE_6: 9667 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9668 LPFC_IF6_RQ_DOORBELL; 9669 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9670 LPFC_IF6_WQ_DOORBELL; 9671 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9672 LPFC_IF6_CQ_DOORBELL; 9673 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9674 LPFC_IF6_EQ_DOORBELL; 9675 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9676 LPFC_IF6_MQ_DOORBELL; 9677 break; 9678 case LPFC_SLI_INTF_IF_TYPE_2: 9679 case LPFC_SLI_INTF_IF_TYPE_1: 9680 default: 9681 dev_err(&phba->pcidev->dev, 9682 "FATAL - unsupported SLI4 interface type - %d\n", 9683 if_type); 9684 break; 9685 } 9686 } 9687 9688 /** 9689 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9690 * @phba: pointer to lpfc hba data structure. 9691 * @vf: virtual function number 9692 * 9693 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9694 * based on the given viftual function number, @vf. 9695 * 9696 * Return 0 if successful, otherwise -ENODEV. 9697 **/ 9698 static int 9699 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9700 { 9701 if (vf > LPFC_VIR_FUNC_MAX) 9702 return -ENODEV; 9703 9704 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9705 vf * LPFC_VFR_PAGE_SIZE + 9706 LPFC_ULP0_RQ_DOORBELL); 9707 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9708 vf * LPFC_VFR_PAGE_SIZE + 9709 LPFC_ULP0_WQ_DOORBELL); 9710 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9711 vf * LPFC_VFR_PAGE_SIZE + 9712 LPFC_EQCQ_DOORBELL); 9713 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9714 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9715 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9716 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9717 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9718 return 0; 9719 } 9720 9721 /** 9722 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9723 * @phba: pointer to lpfc hba data structure. 9724 * 9725 * This routine is invoked to create the bootstrap mailbox 9726 * region consistent with the SLI-4 interface spec. This 9727 * routine allocates all memory necessary to communicate 9728 * mailbox commands to the port and sets up all alignment 9729 * needs. No locks are expected to be held when calling 9730 * this routine. 9731 * 9732 * Return codes 9733 * 0 - successful 9734 * -ENOMEM - could not allocated memory. 9735 **/ 9736 static int 9737 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9738 { 9739 uint32_t bmbx_size; 9740 struct lpfc_dmabuf *dmabuf; 9741 struct dma_address *dma_address; 9742 uint32_t pa_addr; 9743 uint64_t phys_addr; 9744 9745 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9746 if (!dmabuf) 9747 return -ENOMEM; 9748 9749 /* 9750 * The bootstrap mailbox region is comprised of 2 parts 9751 * plus an alignment restriction of 16 bytes. 9752 */ 9753 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9754 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9755 &dmabuf->phys, GFP_KERNEL); 9756 if (!dmabuf->virt) { 9757 kfree(dmabuf); 9758 return -ENOMEM; 9759 } 9760 9761 /* 9762 * Initialize the bootstrap mailbox pointers now so that the register 9763 * operations are simple later. The mailbox dma address is required 9764 * to be 16-byte aligned. Also align the virtual memory as each 9765 * maibox is copied into the bmbx mailbox region before issuing the 9766 * command to the port. 9767 */ 9768 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9769 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9770 9771 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9772 LPFC_ALIGN_16_BYTE); 9773 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9774 LPFC_ALIGN_16_BYTE); 9775 9776 /* 9777 * Set the high and low physical addresses now. The SLI4 alignment 9778 * requirement is 16 bytes and the mailbox is posted to the port 9779 * as two 30-bit addresses. The other data is a bit marking whether 9780 * the 30-bit address is the high or low address. 9781 * Upcast bmbx aphys to 64bits so shift instruction compiles 9782 * clean on 32 bit machines. 9783 */ 9784 dma_address = &phba->sli4_hba.bmbx.dma_address; 9785 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9786 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9787 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9788 LPFC_BMBX_BIT1_ADDR_HI); 9789 9790 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9791 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9792 LPFC_BMBX_BIT1_ADDR_LO); 9793 return 0; 9794 } 9795 9796 /** 9797 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9798 * @phba: pointer to lpfc hba data structure. 9799 * 9800 * This routine is invoked to teardown the bootstrap mailbox 9801 * region and release all host resources. This routine requires 9802 * the caller to ensure all mailbox commands recovered, no 9803 * additional mailbox comands are sent, and interrupts are disabled 9804 * before calling this routine. 9805 * 9806 **/ 9807 static void 9808 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9809 { 9810 dma_free_coherent(&phba->pcidev->dev, 9811 phba->sli4_hba.bmbx.bmbx_size, 9812 phba->sli4_hba.bmbx.dmabuf->virt, 9813 phba->sli4_hba.bmbx.dmabuf->phys); 9814 9815 kfree(phba->sli4_hba.bmbx.dmabuf); 9816 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9817 } 9818 9819 static const char * const lpfc_topo_to_str[] = { 9820 "Loop then P2P", 9821 "Loopback", 9822 "P2P Only", 9823 "Unsupported", 9824 "Loop Only", 9825 "Unsupported", 9826 "P2P then Loop", 9827 }; 9828 9829 #define LINK_FLAGS_DEF 0x0 9830 #define LINK_FLAGS_P2P 0x1 9831 #define LINK_FLAGS_LOOP 0x2 9832 /** 9833 * lpfc_map_topology - Map the topology read from READ_CONFIG 9834 * @phba: pointer to lpfc hba data structure. 9835 * @rd_config: pointer to read config data 9836 * 9837 * This routine is invoked to map the topology values as read 9838 * from the read config mailbox command. If the persistent 9839 * topology feature is supported, the firmware will provide the 9840 * saved topology information to be used in INIT_LINK 9841 **/ 9842 static void 9843 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9844 { 9845 u8 ptv, tf, pt; 9846 9847 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9848 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9849 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9850 9851 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9852 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9853 ptv, tf, pt); 9854 if (!ptv) { 9855 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9856 "2019 FW does not support persistent topology " 9857 "Using driver parameter defined value [%s]", 9858 lpfc_topo_to_str[phba->cfg_topology]); 9859 return; 9860 } 9861 /* FW supports persistent topology - override module parameter value */ 9862 phba->hba_flag |= HBA_PERSISTENT_TOPO; 9863 9864 /* if ASIC_GEN_NUM >= 0xC) */ 9865 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9866 LPFC_SLI_INTF_IF_TYPE_6) || 9867 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9868 LPFC_SLI_INTF_FAMILY_G6)) { 9869 if (!tf) { 9870 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9871 ? FLAGS_TOPOLOGY_MODE_LOOP 9872 : FLAGS_TOPOLOGY_MODE_PT_PT); 9873 } else { 9874 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 9875 } 9876 } else { /* G5 */ 9877 if (tf) { 9878 /* If topology failover set - pt is '0' or '1' */ 9879 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9880 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9881 } else { 9882 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9883 ? FLAGS_TOPOLOGY_MODE_PT_PT 9884 : FLAGS_TOPOLOGY_MODE_LOOP); 9885 } 9886 } 9887 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 9888 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9889 "2020 Using persistent topology value [%s]", 9890 lpfc_topo_to_str[phba->cfg_topology]); 9891 } else { 9892 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9893 "2021 Invalid topology values from FW " 9894 "Using driver parameter defined value [%s]", 9895 lpfc_topo_to_str[phba->cfg_topology]); 9896 } 9897 } 9898 9899 /** 9900 * lpfc_sli4_read_config - Get the config parameters. 9901 * @phba: pointer to lpfc hba data structure. 9902 * 9903 * This routine is invoked to read the configuration parameters from the HBA. 9904 * The configuration parameters are used to set the base and maximum values 9905 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9906 * allocation for the port. 9907 * 9908 * Return codes 9909 * 0 - successful 9910 * -ENOMEM - No available memory 9911 * -EIO - The mailbox failed to complete successfully. 9912 **/ 9913 int 9914 lpfc_sli4_read_config(struct lpfc_hba *phba) 9915 { 9916 LPFC_MBOXQ_t *pmb; 9917 struct lpfc_mbx_read_config *rd_config; 9918 union lpfc_sli4_cfg_shdr *shdr; 9919 uint32_t shdr_status, shdr_add_status; 9920 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9921 struct lpfc_rsrc_desc_fcfcoe *desc; 9922 char *pdesc_0; 9923 uint16_t forced_link_speed; 9924 uint32_t if_type, qmin, fawwpn; 9925 int length, i, rc = 0, rc2; 9926 9927 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9928 if (!pmb) { 9929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9930 "2011 Unable to allocate memory for issuing " 9931 "SLI_CONFIG_SPECIAL mailbox command\n"); 9932 return -ENOMEM; 9933 } 9934 9935 lpfc_read_config(phba, pmb); 9936 9937 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9938 if (rc != MBX_SUCCESS) { 9939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9940 "2012 Mailbox failed , mbxCmd x%x " 9941 "READ_CONFIG, mbxStatus x%x\n", 9942 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9943 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9944 rc = -EIO; 9945 } else { 9946 rd_config = &pmb->u.mqe.un.rd_config; 9947 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9948 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9949 phba->sli4_hba.lnk_info.lnk_tp = 9950 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9951 phba->sli4_hba.lnk_info.lnk_no = 9952 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9953 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9954 "3081 lnk_type:%d, lnk_numb:%d\n", 9955 phba->sli4_hba.lnk_info.lnk_tp, 9956 phba->sli4_hba.lnk_info.lnk_no); 9957 } else 9958 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9959 "3082 Mailbox (x%x) returned ldv:x0\n", 9960 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9961 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9962 phba->bbcredit_support = 1; 9963 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9964 } 9965 9966 fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); 9967 9968 if (fawwpn) { 9969 lpfc_printf_log(phba, KERN_INFO, 9970 LOG_INIT | LOG_DISCOVERY, 9971 "2702 READ_CONFIG: FA-PWWN is " 9972 "configured on\n"); 9973 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; 9974 } else { 9975 /* Clear FW configured flag, preserve driver flag */ 9976 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG; 9977 } 9978 9979 phba->sli4_hba.conf_trunk = 9980 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9981 phba->sli4_hba.extents_in_use = 9982 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9983 9984 phba->sli4_hba.max_cfg_param.max_xri = 9985 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9986 /* Reduce resource usage in kdump environment */ 9987 if (is_kdump_kernel() && 9988 phba->sli4_hba.max_cfg_param.max_xri > 512) 9989 phba->sli4_hba.max_cfg_param.max_xri = 512; 9990 phba->sli4_hba.max_cfg_param.xri_base = 9991 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9992 phba->sli4_hba.max_cfg_param.max_vpi = 9993 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9994 /* Limit the max we support */ 9995 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9996 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9997 phba->sli4_hba.max_cfg_param.vpi_base = 9998 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 9999 phba->sli4_hba.max_cfg_param.max_rpi = 10000 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 10001 phba->sli4_hba.max_cfg_param.rpi_base = 10002 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 10003 phba->sli4_hba.max_cfg_param.max_vfi = 10004 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 10005 phba->sli4_hba.max_cfg_param.vfi_base = 10006 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 10007 phba->sli4_hba.max_cfg_param.max_fcfi = 10008 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 10009 phba->sli4_hba.max_cfg_param.max_eq = 10010 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 10011 phba->sli4_hba.max_cfg_param.max_rq = 10012 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 10013 phba->sli4_hba.max_cfg_param.max_wq = 10014 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 10015 phba->sli4_hba.max_cfg_param.max_cq = 10016 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 10017 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 10018 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 10019 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 10020 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 10021 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 10022 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 10023 phba->max_vports = phba->max_vpi; 10024 10025 /* Next decide on FPIN or Signal E2E CGN support 10026 * For congestion alarms and warnings valid combination are: 10027 * 1. FPIN alarms / FPIN warnings 10028 * 2. Signal alarms / Signal warnings 10029 * 3. FPIN alarms / Signal warnings 10030 * 4. Signal alarms / FPIN warnings 10031 * 10032 * Initialize the adapter frequency to 100 mSecs 10033 */ 10034 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10035 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 10036 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 10037 10038 if (lpfc_use_cgn_signal) { 10039 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 10040 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 10041 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 10042 } 10043 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 10044 /* MUST support both alarm and warning 10045 * because EDC does not support alarm alone. 10046 */ 10047 if (phba->cgn_reg_signal != 10048 EDC_CG_SIG_WARN_ONLY) { 10049 /* Must support both or none */ 10050 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10051 phba->cgn_reg_signal = 10052 EDC_CG_SIG_NOTSUPPORTED; 10053 } else { 10054 phba->cgn_reg_signal = 10055 EDC_CG_SIG_WARN_ALARM; 10056 phba->cgn_reg_fpin = 10057 LPFC_CGN_FPIN_NONE; 10058 } 10059 } 10060 } 10061 10062 /* Set the congestion initial signal and fpin values. */ 10063 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 10064 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 10065 10066 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 10067 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 10068 phba->cgn_reg_signal, phba->cgn_reg_fpin); 10069 10070 lpfc_map_topology(phba, rd_config); 10071 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10072 "2003 cfg params Extents? %d " 10073 "XRI(B:%d M:%d), " 10074 "VPI(B:%d M:%d) " 10075 "VFI(B:%d M:%d) " 10076 "RPI(B:%d M:%d) " 10077 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 10078 phba->sli4_hba.extents_in_use, 10079 phba->sli4_hba.max_cfg_param.xri_base, 10080 phba->sli4_hba.max_cfg_param.max_xri, 10081 phba->sli4_hba.max_cfg_param.vpi_base, 10082 phba->sli4_hba.max_cfg_param.max_vpi, 10083 phba->sli4_hba.max_cfg_param.vfi_base, 10084 phba->sli4_hba.max_cfg_param.max_vfi, 10085 phba->sli4_hba.max_cfg_param.rpi_base, 10086 phba->sli4_hba.max_cfg_param.max_rpi, 10087 phba->sli4_hba.max_cfg_param.max_fcfi, 10088 phba->sli4_hba.max_cfg_param.max_eq, 10089 phba->sli4_hba.max_cfg_param.max_cq, 10090 phba->sli4_hba.max_cfg_param.max_wq, 10091 phba->sli4_hba.max_cfg_param.max_rq, 10092 phba->lmt); 10093 10094 /* 10095 * Calculate queue resources based on how 10096 * many WQ/CQ/EQs are available. 10097 */ 10098 qmin = phba->sli4_hba.max_cfg_param.max_wq; 10099 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 10100 qmin = phba->sli4_hba.max_cfg_param.max_cq; 10101 /* 10102 * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and 10103 * the remainder can be used for NVME / FCP. 10104 */ 10105 qmin -= 4; 10106 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 10107 qmin = phba->sli4_hba.max_cfg_param.max_eq; 10108 10109 /* Check to see if there is enough for default cfg */ 10110 if ((phba->cfg_irq_chann > qmin) || 10111 (phba->cfg_hdw_queue > qmin)) { 10112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10113 "2005 Reducing Queues - " 10114 "FW resource limitation: " 10115 "WQ %d CQ %d EQ %d: min %d: " 10116 "IRQ %d HDWQ %d\n", 10117 phba->sli4_hba.max_cfg_param.max_wq, 10118 phba->sli4_hba.max_cfg_param.max_cq, 10119 phba->sli4_hba.max_cfg_param.max_eq, 10120 qmin, phba->cfg_irq_chann, 10121 phba->cfg_hdw_queue); 10122 10123 if (phba->cfg_irq_chann > qmin) 10124 phba->cfg_irq_chann = qmin; 10125 if (phba->cfg_hdw_queue > qmin) 10126 phba->cfg_hdw_queue = qmin; 10127 } 10128 } 10129 10130 if (rc) 10131 goto read_cfg_out; 10132 10133 /* Update link speed if forced link speed is supported */ 10134 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10135 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10136 forced_link_speed = 10137 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10138 if (forced_link_speed) { 10139 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 10140 10141 switch (forced_link_speed) { 10142 case LINK_SPEED_1G: 10143 phba->cfg_link_speed = 10144 LPFC_USER_LINK_SPEED_1G; 10145 break; 10146 case LINK_SPEED_2G: 10147 phba->cfg_link_speed = 10148 LPFC_USER_LINK_SPEED_2G; 10149 break; 10150 case LINK_SPEED_4G: 10151 phba->cfg_link_speed = 10152 LPFC_USER_LINK_SPEED_4G; 10153 break; 10154 case LINK_SPEED_8G: 10155 phba->cfg_link_speed = 10156 LPFC_USER_LINK_SPEED_8G; 10157 break; 10158 case LINK_SPEED_10G: 10159 phba->cfg_link_speed = 10160 LPFC_USER_LINK_SPEED_10G; 10161 break; 10162 case LINK_SPEED_16G: 10163 phba->cfg_link_speed = 10164 LPFC_USER_LINK_SPEED_16G; 10165 break; 10166 case LINK_SPEED_32G: 10167 phba->cfg_link_speed = 10168 LPFC_USER_LINK_SPEED_32G; 10169 break; 10170 case LINK_SPEED_64G: 10171 phba->cfg_link_speed = 10172 LPFC_USER_LINK_SPEED_64G; 10173 break; 10174 case 0xffff: 10175 phba->cfg_link_speed = 10176 LPFC_USER_LINK_SPEED_AUTO; 10177 break; 10178 default: 10179 lpfc_printf_log(phba, KERN_ERR, 10180 LOG_TRACE_EVENT, 10181 "0047 Unrecognized link " 10182 "speed : %d\n", 10183 forced_link_speed); 10184 phba->cfg_link_speed = 10185 LPFC_USER_LINK_SPEED_AUTO; 10186 } 10187 } 10188 } 10189 10190 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10191 length = phba->sli4_hba.max_cfg_param.max_xri - 10192 lpfc_sli4_get_els_iocb_cnt(phba); 10193 if (phba->cfg_hba_queue_depth > length) { 10194 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10195 "3361 HBA queue depth changed from %d to %d\n", 10196 phba->cfg_hba_queue_depth, length); 10197 phba->cfg_hba_queue_depth = length; 10198 } 10199 10200 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10201 LPFC_SLI_INTF_IF_TYPE_2) 10202 goto read_cfg_out; 10203 10204 /* get the pf# and vf# for SLI4 if_type 2 port */ 10205 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10206 sizeof(struct lpfc_sli4_cfg_mhdr)); 10207 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10208 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10209 length, LPFC_SLI4_MBX_EMBED); 10210 10211 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10212 shdr = (union lpfc_sli4_cfg_shdr *) 10213 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10214 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10215 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10216 if (rc2 || shdr_status || shdr_add_status) { 10217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10218 "3026 Mailbox failed , mbxCmd x%x " 10219 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10220 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10221 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10222 goto read_cfg_out; 10223 } 10224 10225 /* search for fc_fcoe resrouce descriptor */ 10226 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10227 10228 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10229 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10230 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10231 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10232 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10233 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10234 goto read_cfg_out; 10235 10236 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10237 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10238 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10239 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10240 phba->sli4_hba.iov.pf_number = 10241 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10242 phba->sli4_hba.iov.vf_number = 10243 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10244 break; 10245 } 10246 } 10247 10248 if (i < LPFC_RSRC_DESC_MAX_NUM) 10249 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10250 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10251 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10252 phba->sli4_hba.iov.vf_number); 10253 else 10254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10255 "3028 GET_FUNCTION_CONFIG: failed to find " 10256 "Resource Descriptor:x%x\n", 10257 LPFC_RSRC_DESC_TYPE_FCFCOE); 10258 10259 read_cfg_out: 10260 mempool_free(pmb, phba->mbox_mem_pool); 10261 return rc; 10262 } 10263 10264 /** 10265 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10266 * @phba: pointer to lpfc hba data structure. 10267 * 10268 * This routine is invoked to setup the port-side endian order when 10269 * the port if_type is 0. This routine has no function for other 10270 * if_types. 10271 * 10272 * Return codes 10273 * 0 - successful 10274 * -ENOMEM - No available memory 10275 * -EIO - The mailbox failed to complete successfully. 10276 **/ 10277 static int 10278 lpfc_setup_endian_order(struct lpfc_hba *phba) 10279 { 10280 LPFC_MBOXQ_t *mboxq; 10281 uint32_t if_type, rc = 0; 10282 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10283 HOST_ENDIAN_HIGH_WORD1}; 10284 10285 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10286 switch (if_type) { 10287 case LPFC_SLI_INTF_IF_TYPE_0: 10288 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10289 GFP_KERNEL); 10290 if (!mboxq) { 10291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10292 "0492 Unable to allocate memory for " 10293 "issuing SLI_CONFIG_SPECIAL mailbox " 10294 "command\n"); 10295 return -ENOMEM; 10296 } 10297 10298 /* 10299 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10300 * two words to contain special data values and no other data. 10301 */ 10302 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10303 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10304 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10305 if (rc != MBX_SUCCESS) { 10306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10307 "0493 SLI_CONFIG_SPECIAL mailbox " 10308 "failed with status x%x\n", 10309 rc); 10310 rc = -EIO; 10311 } 10312 mempool_free(mboxq, phba->mbox_mem_pool); 10313 break; 10314 case LPFC_SLI_INTF_IF_TYPE_6: 10315 case LPFC_SLI_INTF_IF_TYPE_2: 10316 case LPFC_SLI_INTF_IF_TYPE_1: 10317 default: 10318 break; 10319 } 10320 return rc; 10321 } 10322 10323 /** 10324 * lpfc_sli4_queue_verify - Verify and update EQ counts 10325 * @phba: pointer to lpfc hba data structure. 10326 * 10327 * This routine is invoked to check the user settable queue counts for EQs. 10328 * After this routine is called the counts will be set to valid values that 10329 * adhere to the constraints of the system's interrupt vectors and the port's 10330 * queue resources. 10331 * 10332 * Return codes 10333 * 0 - successful 10334 * -ENOMEM - No available memory 10335 **/ 10336 static int 10337 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10338 { 10339 /* 10340 * Sanity check for configured queue parameters against the run-time 10341 * device parameters 10342 */ 10343 10344 if (phba->nvmet_support) { 10345 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10346 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10347 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10348 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10349 } 10350 10351 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10352 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10353 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10354 phba->cfg_nvmet_mrq); 10355 10356 /* Get EQ depth from module parameter, fake the default for now */ 10357 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10358 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10359 10360 /* Get CQ depth from module parameter, fake the default for now */ 10361 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10362 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10363 return 0; 10364 } 10365 10366 static int 10367 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10368 { 10369 struct lpfc_queue *qdesc; 10370 u32 wqesize; 10371 int cpu; 10372 10373 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10374 /* Create Fast Path IO CQs */ 10375 if (phba->enab_exp_wqcq_pages) 10376 /* Increase the CQ size when WQEs contain an embedded cdb */ 10377 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10378 phba->sli4_hba.cq_esize, 10379 LPFC_CQE_EXP_COUNT, cpu); 10380 10381 else 10382 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10383 phba->sli4_hba.cq_esize, 10384 phba->sli4_hba.cq_ecount, cpu); 10385 if (!qdesc) { 10386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10387 "0499 Failed allocate fast-path IO CQ (%d)\n", 10388 idx); 10389 return 1; 10390 } 10391 qdesc->qe_valid = 1; 10392 qdesc->hdwq = idx; 10393 qdesc->chann = cpu; 10394 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10395 10396 /* Create Fast Path IO WQs */ 10397 if (phba->enab_exp_wqcq_pages) { 10398 /* Increase the WQ size when WQEs contain an embedded cdb */ 10399 wqesize = (phba->fcp_embed_io) ? 10400 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10401 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10402 wqesize, 10403 LPFC_WQE_EXP_COUNT, cpu); 10404 } else 10405 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10406 phba->sli4_hba.wq_esize, 10407 phba->sli4_hba.wq_ecount, cpu); 10408 10409 if (!qdesc) { 10410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10411 "0503 Failed allocate fast-path IO WQ (%d)\n", 10412 idx); 10413 return 1; 10414 } 10415 qdesc->hdwq = idx; 10416 qdesc->chann = cpu; 10417 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10418 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10419 return 0; 10420 } 10421 10422 /** 10423 * lpfc_sli4_queue_create - Create all the SLI4 queues 10424 * @phba: pointer to lpfc hba data structure. 10425 * 10426 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10427 * operation. For each SLI4 queue type, the parameters such as queue entry 10428 * count (queue depth) shall be taken from the module parameter. For now, 10429 * we just use some constant number as place holder. 10430 * 10431 * Return codes 10432 * 0 - successful 10433 * -ENOMEM - No availble memory 10434 * -EIO - The mailbox failed to complete successfully. 10435 **/ 10436 int 10437 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10438 { 10439 struct lpfc_queue *qdesc; 10440 int idx, cpu, eqcpu; 10441 struct lpfc_sli4_hdw_queue *qp; 10442 struct lpfc_vector_map_info *cpup; 10443 struct lpfc_vector_map_info *eqcpup; 10444 struct lpfc_eq_intr_info *eqi; 10445 10446 /* 10447 * Create HBA Record arrays. 10448 * Both NVME and FCP will share that same vectors / EQs 10449 */ 10450 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10451 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10452 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10453 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10454 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10455 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10456 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10457 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10458 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10459 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10460 10461 if (!phba->sli4_hba.hdwq) { 10462 phba->sli4_hba.hdwq = kcalloc( 10463 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10464 GFP_KERNEL); 10465 if (!phba->sli4_hba.hdwq) { 10466 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10467 "6427 Failed allocate memory for " 10468 "fast-path Hardware Queue array\n"); 10469 goto out_error; 10470 } 10471 /* Prepare hardware queues to take IO buffers */ 10472 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10473 qp = &phba->sli4_hba.hdwq[idx]; 10474 spin_lock_init(&qp->io_buf_list_get_lock); 10475 spin_lock_init(&qp->io_buf_list_put_lock); 10476 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10477 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10478 qp->get_io_bufs = 0; 10479 qp->put_io_bufs = 0; 10480 qp->total_io_bufs = 0; 10481 spin_lock_init(&qp->abts_io_buf_list_lock); 10482 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10483 qp->abts_scsi_io_bufs = 0; 10484 qp->abts_nvme_io_bufs = 0; 10485 INIT_LIST_HEAD(&qp->sgl_list); 10486 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10487 spin_lock_init(&qp->hdwq_lock); 10488 } 10489 } 10490 10491 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10492 if (phba->nvmet_support) { 10493 phba->sli4_hba.nvmet_cqset = kcalloc( 10494 phba->cfg_nvmet_mrq, 10495 sizeof(struct lpfc_queue *), 10496 GFP_KERNEL); 10497 if (!phba->sli4_hba.nvmet_cqset) { 10498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10499 "3121 Fail allocate memory for " 10500 "fast-path CQ set array\n"); 10501 goto out_error; 10502 } 10503 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10504 phba->cfg_nvmet_mrq, 10505 sizeof(struct lpfc_queue *), 10506 GFP_KERNEL); 10507 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10509 "3122 Fail allocate memory for " 10510 "fast-path RQ set hdr array\n"); 10511 goto out_error; 10512 } 10513 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10514 phba->cfg_nvmet_mrq, 10515 sizeof(struct lpfc_queue *), 10516 GFP_KERNEL); 10517 if (!phba->sli4_hba.nvmet_mrq_data) { 10518 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10519 "3124 Fail allocate memory for " 10520 "fast-path RQ set data array\n"); 10521 goto out_error; 10522 } 10523 } 10524 } 10525 10526 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10527 10528 /* Create HBA Event Queues (EQs) */ 10529 for_each_present_cpu(cpu) { 10530 /* We only want to create 1 EQ per vector, even though 10531 * multiple CPUs might be using that vector. so only 10532 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10533 */ 10534 cpup = &phba->sli4_hba.cpu_map[cpu]; 10535 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10536 continue; 10537 10538 /* Get a ptr to the Hardware Queue associated with this CPU */ 10539 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10540 10541 /* Allocate an EQ */ 10542 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10543 phba->sli4_hba.eq_esize, 10544 phba->sli4_hba.eq_ecount, cpu); 10545 if (!qdesc) { 10546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10547 "0497 Failed allocate EQ (%d)\n", 10548 cpup->hdwq); 10549 goto out_error; 10550 } 10551 qdesc->qe_valid = 1; 10552 qdesc->hdwq = cpup->hdwq; 10553 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10554 qdesc->last_cpu = qdesc->chann; 10555 10556 /* Save the allocated EQ in the Hardware Queue */ 10557 qp->hba_eq = qdesc; 10558 10559 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10560 list_add(&qdesc->cpu_list, &eqi->list); 10561 } 10562 10563 /* Now we need to populate the other Hardware Queues, that share 10564 * an IRQ vector, with the associated EQ ptr. 10565 */ 10566 for_each_present_cpu(cpu) { 10567 cpup = &phba->sli4_hba.cpu_map[cpu]; 10568 10569 /* Check for EQ already allocated in previous loop */ 10570 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10571 continue; 10572 10573 /* Check for multiple CPUs per hdwq */ 10574 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10575 if (qp->hba_eq) 10576 continue; 10577 10578 /* We need to share an EQ for this hdwq */ 10579 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10580 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10581 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10582 } 10583 10584 /* Allocate IO Path SLI4 CQ/WQs */ 10585 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10586 if (lpfc_alloc_io_wq_cq(phba, idx)) 10587 goto out_error; 10588 } 10589 10590 if (phba->nvmet_support) { 10591 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10592 cpu = lpfc_find_cpu_handle(phba, idx, 10593 LPFC_FIND_BY_HDWQ); 10594 qdesc = lpfc_sli4_queue_alloc(phba, 10595 LPFC_DEFAULT_PAGE_SIZE, 10596 phba->sli4_hba.cq_esize, 10597 phba->sli4_hba.cq_ecount, 10598 cpu); 10599 if (!qdesc) { 10600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10601 "3142 Failed allocate NVME " 10602 "CQ Set (%d)\n", idx); 10603 goto out_error; 10604 } 10605 qdesc->qe_valid = 1; 10606 qdesc->hdwq = idx; 10607 qdesc->chann = cpu; 10608 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10609 } 10610 } 10611 10612 /* 10613 * Create Slow Path Completion Queues (CQs) 10614 */ 10615 10616 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10617 /* Create slow-path Mailbox Command Complete Queue */ 10618 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10619 phba->sli4_hba.cq_esize, 10620 phba->sli4_hba.cq_ecount, cpu); 10621 if (!qdesc) { 10622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10623 "0500 Failed allocate slow-path mailbox CQ\n"); 10624 goto out_error; 10625 } 10626 qdesc->qe_valid = 1; 10627 phba->sli4_hba.mbx_cq = qdesc; 10628 10629 /* Create slow-path ELS Complete Queue */ 10630 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10631 phba->sli4_hba.cq_esize, 10632 phba->sli4_hba.cq_ecount, cpu); 10633 if (!qdesc) { 10634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10635 "0501 Failed allocate slow-path ELS CQ\n"); 10636 goto out_error; 10637 } 10638 qdesc->qe_valid = 1; 10639 qdesc->chann = cpu; 10640 phba->sli4_hba.els_cq = qdesc; 10641 10642 10643 /* 10644 * Create Slow Path Work Queues (WQs) 10645 */ 10646 10647 /* Create Mailbox Command Queue */ 10648 10649 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10650 phba->sli4_hba.mq_esize, 10651 phba->sli4_hba.mq_ecount, cpu); 10652 if (!qdesc) { 10653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10654 "0505 Failed allocate slow-path MQ\n"); 10655 goto out_error; 10656 } 10657 qdesc->chann = cpu; 10658 phba->sli4_hba.mbx_wq = qdesc; 10659 10660 /* 10661 * Create ELS Work Queues 10662 */ 10663 10664 /* Create slow-path ELS Work Queue */ 10665 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10666 phba->sli4_hba.wq_esize, 10667 phba->sli4_hba.wq_ecount, cpu); 10668 if (!qdesc) { 10669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10670 "0504 Failed allocate slow-path ELS WQ\n"); 10671 goto out_error; 10672 } 10673 qdesc->chann = cpu; 10674 phba->sli4_hba.els_wq = qdesc; 10675 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10676 10677 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10678 /* Create NVME LS Complete Queue */ 10679 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10680 phba->sli4_hba.cq_esize, 10681 phba->sli4_hba.cq_ecount, cpu); 10682 if (!qdesc) { 10683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10684 "6079 Failed allocate NVME LS CQ\n"); 10685 goto out_error; 10686 } 10687 qdesc->chann = cpu; 10688 qdesc->qe_valid = 1; 10689 phba->sli4_hba.nvmels_cq = qdesc; 10690 10691 /* Create NVME LS Work Queue */ 10692 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10693 phba->sli4_hba.wq_esize, 10694 phba->sli4_hba.wq_ecount, cpu); 10695 if (!qdesc) { 10696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10697 "6080 Failed allocate NVME LS WQ\n"); 10698 goto out_error; 10699 } 10700 qdesc->chann = cpu; 10701 phba->sli4_hba.nvmels_wq = qdesc; 10702 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10703 } 10704 10705 /* 10706 * Create Receive Queue (RQ) 10707 */ 10708 10709 /* Create Receive Queue for header */ 10710 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10711 phba->sli4_hba.rq_esize, 10712 phba->sli4_hba.rq_ecount, cpu); 10713 if (!qdesc) { 10714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10715 "0506 Failed allocate receive HRQ\n"); 10716 goto out_error; 10717 } 10718 phba->sli4_hba.hdr_rq = qdesc; 10719 10720 /* Create Receive Queue for data */ 10721 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10722 phba->sli4_hba.rq_esize, 10723 phba->sli4_hba.rq_ecount, cpu); 10724 if (!qdesc) { 10725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10726 "0507 Failed allocate receive DRQ\n"); 10727 goto out_error; 10728 } 10729 phba->sli4_hba.dat_rq = qdesc; 10730 10731 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10732 phba->nvmet_support) { 10733 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10734 cpu = lpfc_find_cpu_handle(phba, idx, 10735 LPFC_FIND_BY_HDWQ); 10736 /* Create NVMET Receive Queue for header */ 10737 qdesc = lpfc_sli4_queue_alloc(phba, 10738 LPFC_DEFAULT_PAGE_SIZE, 10739 phba->sli4_hba.rq_esize, 10740 LPFC_NVMET_RQE_DEF_COUNT, 10741 cpu); 10742 if (!qdesc) { 10743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10744 "3146 Failed allocate " 10745 "receive HRQ\n"); 10746 goto out_error; 10747 } 10748 qdesc->hdwq = idx; 10749 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10750 10751 /* Only needed for header of RQ pair */ 10752 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10753 GFP_KERNEL, 10754 cpu_to_node(cpu)); 10755 if (qdesc->rqbp == NULL) { 10756 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10757 "6131 Failed allocate " 10758 "Header RQBP\n"); 10759 goto out_error; 10760 } 10761 10762 /* Put list in known state in case driver load fails. */ 10763 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10764 10765 /* Create NVMET Receive Queue for data */ 10766 qdesc = lpfc_sli4_queue_alloc(phba, 10767 LPFC_DEFAULT_PAGE_SIZE, 10768 phba->sli4_hba.rq_esize, 10769 LPFC_NVMET_RQE_DEF_COUNT, 10770 cpu); 10771 if (!qdesc) { 10772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10773 "3156 Failed allocate " 10774 "receive DRQ\n"); 10775 goto out_error; 10776 } 10777 qdesc->hdwq = idx; 10778 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10779 } 10780 } 10781 10782 /* Clear NVME stats */ 10783 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10784 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10785 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10786 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10787 } 10788 } 10789 10790 /* Clear SCSI stats */ 10791 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10792 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10793 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10794 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10795 } 10796 } 10797 10798 return 0; 10799 10800 out_error: 10801 lpfc_sli4_queue_destroy(phba); 10802 return -ENOMEM; 10803 } 10804 10805 static inline void 10806 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10807 { 10808 if (*qp != NULL) { 10809 lpfc_sli4_queue_free(*qp); 10810 *qp = NULL; 10811 } 10812 } 10813 10814 static inline void 10815 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10816 { 10817 int idx; 10818 10819 if (*qs == NULL) 10820 return; 10821 10822 for (idx = 0; idx < max; idx++) 10823 __lpfc_sli4_release_queue(&(*qs)[idx]); 10824 10825 kfree(*qs); 10826 *qs = NULL; 10827 } 10828 10829 static inline void 10830 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10831 { 10832 struct lpfc_sli4_hdw_queue *hdwq; 10833 struct lpfc_queue *eq; 10834 uint32_t idx; 10835 10836 hdwq = phba->sli4_hba.hdwq; 10837 10838 /* Loop thru all Hardware Queues */ 10839 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10840 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10841 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10842 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10843 hdwq[idx].hba_eq = NULL; 10844 hdwq[idx].io_cq = NULL; 10845 hdwq[idx].io_wq = NULL; 10846 if (phba->cfg_xpsgl && !phba->nvmet_support) 10847 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10848 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10849 } 10850 /* Loop thru all IRQ vectors */ 10851 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10852 /* Free the EQ corresponding to the IRQ vector */ 10853 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10854 lpfc_sli4_queue_free(eq); 10855 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10856 } 10857 } 10858 10859 /** 10860 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10861 * @phba: pointer to lpfc hba data structure. 10862 * 10863 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10864 * operation. 10865 * 10866 * Return codes 10867 * 0 - successful 10868 * -ENOMEM - No available memory 10869 * -EIO - The mailbox failed to complete successfully. 10870 **/ 10871 void 10872 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10873 { 10874 /* 10875 * Set FREE_INIT before beginning to free the queues. 10876 * Wait until the users of queues to acknowledge to 10877 * release queues by clearing FREE_WAIT. 10878 */ 10879 spin_lock_irq(&phba->hbalock); 10880 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10881 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10882 spin_unlock_irq(&phba->hbalock); 10883 msleep(20); 10884 spin_lock_irq(&phba->hbalock); 10885 } 10886 spin_unlock_irq(&phba->hbalock); 10887 10888 lpfc_sli4_cleanup_poll_list(phba); 10889 10890 /* Release HBA eqs */ 10891 if (phba->sli4_hba.hdwq) 10892 lpfc_sli4_release_hdwq(phba); 10893 10894 if (phba->nvmet_support) { 10895 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10896 phba->cfg_nvmet_mrq); 10897 10898 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10899 phba->cfg_nvmet_mrq); 10900 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10901 phba->cfg_nvmet_mrq); 10902 } 10903 10904 /* Release mailbox command work queue */ 10905 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10906 10907 /* Release ELS work queue */ 10908 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10909 10910 /* Release ELS work queue */ 10911 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10912 10913 /* Release unsolicited receive queue */ 10914 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10915 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10916 10917 /* Release ELS complete queue */ 10918 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10919 10920 /* Release NVME LS complete queue */ 10921 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10922 10923 /* Release mailbox command complete queue */ 10924 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10925 10926 /* Everything on this list has been freed */ 10927 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10928 10929 /* Done with freeing the queues */ 10930 spin_lock_irq(&phba->hbalock); 10931 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10932 spin_unlock_irq(&phba->hbalock); 10933 } 10934 10935 int 10936 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10937 { 10938 struct lpfc_rqb *rqbp; 10939 struct lpfc_dmabuf *h_buf; 10940 struct rqb_dmabuf *rqb_buffer; 10941 10942 rqbp = rq->rqbp; 10943 while (!list_empty(&rqbp->rqb_buffer_list)) { 10944 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10945 struct lpfc_dmabuf, list); 10946 10947 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10948 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10949 rqbp->buffer_count--; 10950 } 10951 return 1; 10952 } 10953 10954 static int 10955 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10956 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10957 int qidx, uint32_t qtype) 10958 { 10959 struct lpfc_sli_ring *pring; 10960 int rc; 10961 10962 if (!eq || !cq || !wq) { 10963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10964 "6085 Fast-path %s (%d) not allocated\n", 10965 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10966 return -ENOMEM; 10967 } 10968 10969 /* create the Cq first */ 10970 rc = lpfc_cq_create(phba, cq, eq, 10971 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10972 if (rc) { 10973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10974 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10975 qidx, (uint32_t)rc); 10976 return rc; 10977 } 10978 10979 if (qtype != LPFC_MBOX) { 10980 /* Setup cq_map for fast lookup */ 10981 if (cq_map) 10982 *cq_map = cq->queue_id; 10983 10984 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10985 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10986 qidx, cq->queue_id, qidx, eq->queue_id); 10987 10988 /* create the wq */ 10989 rc = lpfc_wq_create(phba, wq, cq, qtype); 10990 if (rc) { 10991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10992 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10993 qidx, (uint32_t)rc); 10994 /* no need to tear down cq - caller will do so */ 10995 return rc; 10996 } 10997 10998 /* Bind this CQ/WQ to the NVME ring */ 10999 pring = wq->pring; 11000 pring->sli.sli4.wqp = (void *)wq; 11001 cq->pring = pring; 11002 11003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11004 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 11005 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 11006 } else { 11007 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 11008 if (rc) { 11009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11010 "0539 Failed setup of slow-path MQ: " 11011 "rc = 0x%x\n", rc); 11012 /* no need to tear down cq - caller will do so */ 11013 return rc; 11014 } 11015 11016 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11017 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 11018 phba->sli4_hba.mbx_wq->queue_id, 11019 phba->sli4_hba.mbx_cq->queue_id); 11020 } 11021 11022 return 0; 11023 } 11024 11025 /** 11026 * lpfc_setup_cq_lookup - Setup the CQ lookup table 11027 * @phba: pointer to lpfc hba data structure. 11028 * 11029 * This routine will populate the cq_lookup table by all 11030 * available CQ queue_id's. 11031 **/ 11032 static void 11033 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 11034 { 11035 struct lpfc_queue *eq, *childq; 11036 int qidx; 11037 11038 memset(phba->sli4_hba.cq_lookup, 0, 11039 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 11040 /* Loop thru all IRQ vectors */ 11041 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11042 /* Get the EQ corresponding to the IRQ vector */ 11043 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11044 if (!eq) 11045 continue; 11046 /* Loop through all CQs associated with that EQ */ 11047 list_for_each_entry(childq, &eq->child_list, list) { 11048 if (childq->queue_id > phba->sli4_hba.cq_max) 11049 continue; 11050 if (childq->subtype == LPFC_IO) 11051 phba->sli4_hba.cq_lookup[childq->queue_id] = 11052 childq; 11053 } 11054 } 11055 } 11056 11057 /** 11058 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 11059 * @phba: pointer to lpfc hba data structure. 11060 * 11061 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 11062 * operation. 11063 * 11064 * Return codes 11065 * 0 - successful 11066 * -ENOMEM - No available memory 11067 * -EIO - The mailbox failed to complete successfully. 11068 **/ 11069 int 11070 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 11071 { 11072 uint32_t shdr_status, shdr_add_status; 11073 union lpfc_sli4_cfg_shdr *shdr; 11074 struct lpfc_vector_map_info *cpup; 11075 struct lpfc_sli4_hdw_queue *qp; 11076 LPFC_MBOXQ_t *mboxq; 11077 int qidx, cpu; 11078 uint32_t length, usdelay; 11079 int rc = -ENOMEM; 11080 11081 /* Check for dual-ULP support */ 11082 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11083 if (!mboxq) { 11084 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11085 "3249 Unable to allocate memory for " 11086 "QUERY_FW_CFG mailbox command\n"); 11087 return -ENOMEM; 11088 } 11089 length = (sizeof(struct lpfc_mbx_query_fw_config) - 11090 sizeof(struct lpfc_sli4_cfg_mhdr)); 11091 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11092 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 11093 length, LPFC_SLI4_MBX_EMBED); 11094 11095 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11096 11097 shdr = (union lpfc_sli4_cfg_shdr *) 11098 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11099 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11100 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 11101 if (shdr_status || shdr_add_status || rc) { 11102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11103 "3250 QUERY_FW_CFG mailbox failed with status " 11104 "x%x add_status x%x, mbx status x%x\n", 11105 shdr_status, shdr_add_status, rc); 11106 mempool_free(mboxq, phba->mbox_mem_pool); 11107 rc = -ENXIO; 11108 goto out_error; 11109 } 11110 11111 phba->sli4_hba.fw_func_mode = 11112 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11113 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 11114 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 11115 phba->sli4_hba.physical_port = 11116 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11117 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11118 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 11119 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 11120 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 11121 11122 mempool_free(mboxq, phba->mbox_mem_pool); 11123 11124 /* 11125 * Set up HBA Event Queues (EQs) 11126 */ 11127 qp = phba->sli4_hba.hdwq; 11128 11129 /* Set up HBA event queue */ 11130 if (!qp) { 11131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11132 "3147 Fast-path EQs not allocated\n"); 11133 rc = -ENOMEM; 11134 goto out_error; 11135 } 11136 11137 /* Loop thru all IRQ vectors */ 11138 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11139 /* Create HBA Event Queues (EQs) in order */ 11140 for_each_present_cpu(cpu) { 11141 cpup = &phba->sli4_hba.cpu_map[cpu]; 11142 11143 /* Look for the CPU thats using that vector with 11144 * LPFC_CPU_FIRST_IRQ set. 11145 */ 11146 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11147 continue; 11148 if (qidx != cpup->eq) 11149 continue; 11150 11151 /* Create an EQ for that vector */ 11152 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11153 phba->cfg_fcp_imax); 11154 if (rc) { 11155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11156 "0523 Failed setup of fast-path" 11157 " EQ (%d), rc = 0x%x\n", 11158 cpup->eq, (uint32_t)rc); 11159 goto out_destroy; 11160 } 11161 11162 /* Save the EQ for that vector in the hba_eq_hdl */ 11163 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11164 qp[cpup->hdwq].hba_eq; 11165 11166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11167 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11168 cpup->eq, 11169 qp[cpup->hdwq].hba_eq->queue_id); 11170 } 11171 } 11172 11173 /* Loop thru all Hardware Queues */ 11174 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11175 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11176 cpup = &phba->sli4_hba.cpu_map[cpu]; 11177 11178 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11179 rc = lpfc_create_wq_cq(phba, 11180 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11181 qp[qidx].io_cq, 11182 qp[qidx].io_wq, 11183 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11184 qidx, 11185 LPFC_IO); 11186 if (rc) { 11187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11188 "0535 Failed to setup fastpath " 11189 "IO WQ/CQ (%d), rc = 0x%x\n", 11190 qidx, (uint32_t)rc); 11191 goto out_destroy; 11192 } 11193 } 11194 11195 /* 11196 * Set up Slow Path Complete Queues (CQs) 11197 */ 11198 11199 /* Set up slow-path MBOX CQ/MQ */ 11200 11201 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11203 "0528 %s not allocated\n", 11204 phba->sli4_hba.mbx_cq ? 11205 "Mailbox WQ" : "Mailbox CQ"); 11206 rc = -ENOMEM; 11207 goto out_destroy; 11208 } 11209 11210 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11211 phba->sli4_hba.mbx_cq, 11212 phba->sli4_hba.mbx_wq, 11213 NULL, 0, LPFC_MBOX); 11214 if (rc) { 11215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11216 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11217 (uint32_t)rc); 11218 goto out_destroy; 11219 } 11220 if (phba->nvmet_support) { 11221 if (!phba->sli4_hba.nvmet_cqset) { 11222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11223 "3165 Fast-path NVME CQ Set " 11224 "array not allocated\n"); 11225 rc = -ENOMEM; 11226 goto out_destroy; 11227 } 11228 if (phba->cfg_nvmet_mrq > 1) { 11229 rc = lpfc_cq_create_set(phba, 11230 phba->sli4_hba.nvmet_cqset, 11231 qp, 11232 LPFC_WCQ, LPFC_NVMET); 11233 if (rc) { 11234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11235 "3164 Failed setup of NVME CQ " 11236 "Set, rc = 0x%x\n", 11237 (uint32_t)rc); 11238 goto out_destroy; 11239 } 11240 } else { 11241 /* Set up NVMET Receive Complete Queue */ 11242 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11243 qp[0].hba_eq, 11244 LPFC_WCQ, LPFC_NVMET); 11245 if (rc) { 11246 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11247 "6089 Failed setup NVMET CQ: " 11248 "rc = 0x%x\n", (uint32_t)rc); 11249 goto out_destroy; 11250 } 11251 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11252 11253 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11254 "6090 NVMET CQ setup: cq-id=%d, " 11255 "parent eq-id=%d\n", 11256 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11257 qp[0].hba_eq->queue_id); 11258 } 11259 } 11260 11261 /* Set up slow-path ELS WQ/CQ */ 11262 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11264 "0530 ELS %s not allocated\n", 11265 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11266 rc = -ENOMEM; 11267 goto out_destroy; 11268 } 11269 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11270 phba->sli4_hba.els_cq, 11271 phba->sli4_hba.els_wq, 11272 NULL, 0, LPFC_ELS); 11273 if (rc) { 11274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11275 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11276 (uint32_t)rc); 11277 goto out_destroy; 11278 } 11279 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11280 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11281 phba->sli4_hba.els_wq->queue_id, 11282 phba->sli4_hba.els_cq->queue_id); 11283 11284 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11285 /* Set up NVME LS Complete Queue */ 11286 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11288 "6091 LS %s not allocated\n", 11289 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11290 rc = -ENOMEM; 11291 goto out_destroy; 11292 } 11293 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11294 phba->sli4_hba.nvmels_cq, 11295 phba->sli4_hba.nvmels_wq, 11296 NULL, 0, LPFC_NVME_LS); 11297 if (rc) { 11298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11299 "0526 Failed setup of NVVME LS WQ/CQ: " 11300 "rc = 0x%x\n", (uint32_t)rc); 11301 goto out_destroy; 11302 } 11303 11304 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11305 "6096 ELS WQ setup: wq-id=%d, " 11306 "parent cq-id=%d\n", 11307 phba->sli4_hba.nvmels_wq->queue_id, 11308 phba->sli4_hba.nvmels_cq->queue_id); 11309 } 11310 11311 /* 11312 * Create NVMET Receive Queue (RQ) 11313 */ 11314 if (phba->nvmet_support) { 11315 if ((!phba->sli4_hba.nvmet_cqset) || 11316 (!phba->sli4_hba.nvmet_mrq_hdr) || 11317 (!phba->sli4_hba.nvmet_mrq_data)) { 11318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11319 "6130 MRQ CQ Queues not " 11320 "allocated\n"); 11321 rc = -ENOMEM; 11322 goto out_destroy; 11323 } 11324 if (phba->cfg_nvmet_mrq > 1) { 11325 rc = lpfc_mrq_create(phba, 11326 phba->sli4_hba.nvmet_mrq_hdr, 11327 phba->sli4_hba.nvmet_mrq_data, 11328 phba->sli4_hba.nvmet_cqset, 11329 LPFC_NVMET); 11330 if (rc) { 11331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11332 "6098 Failed setup of NVMET " 11333 "MRQ: rc = 0x%x\n", 11334 (uint32_t)rc); 11335 goto out_destroy; 11336 } 11337 11338 } else { 11339 rc = lpfc_rq_create(phba, 11340 phba->sli4_hba.nvmet_mrq_hdr[0], 11341 phba->sli4_hba.nvmet_mrq_data[0], 11342 phba->sli4_hba.nvmet_cqset[0], 11343 LPFC_NVMET); 11344 if (rc) { 11345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11346 "6057 Failed setup of NVMET " 11347 "Receive Queue: rc = 0x%x\n", 11348 (uint32_t)rc); 11349 goto out_destroy; 11350 } 11351 11352 lpfc_printf_log( 11353 phba, KERN_INFO, LOG_INIT, 11354 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11355 "dat-rq-id=%d parent cq-id=%d\n", 11356 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11357 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11358 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11359 11360 } 11361 } 11362 11363 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11365 "0540 Receive Queue not allocated\n"); 11366 rc = -ENOMEM; 11367 goto out_destroy; 11368 } 11369 11370 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11371 phba->sli4_hba.els_cq, LPFC_USOL); 11372 if (rc) { 11373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11374 "0541 Failed setup of Receive Queue: " 11375 "rc = 0x%x\n", (uint32_t)rc); 11376 goto out_destroy; 11377 } 11378 11379 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11380 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11381 "parent cq-id=%d\n", 11382 phba->sli4_hba.hdr_rq->queue_id, 11383 phba->sli4_hba.dat_rq->queue_id, 11384 phba->sli4_hba.els_cq->queue_id); 11385 11386 if (phba->cfg_fcp_imax) 11387 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11388 else 11389 usdelay = 0; 11390 11391 for (qidx = 0; qidx < phba->cfg_irq_chann; 11392 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11393 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11394 usdelay); 11395 11396 if (phba->sli4_hba.cq_max) { 11397 kfree(phba->sli4_hba.cq_lookup); 11398 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11399 sizeof(struct lpfc_queue *), GFP_KERNEL); 11400 if (!phba->sli4_hba.cq_lookup) { 11401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11402 "0549 Failed setup of CQ Lookup table: " 11403 "size 0x%x\n", phba->sli4_hba.cq_max); 11404 rc = -ENOMEM; 11405 goto out_destroy; 11406 } 11407 lpfc_setup_cq_lookup(phba); 11408 } 11409 return 0; 11410 11411 out_destroy: 11412 lpfc_sli4_queue_unset(phba); 11413 out_error: 11414 return rc; 11415 } 11416 11417 /** 11418 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11419 * @phba: pointer to lpfc hba data structure. 11420 * 11421 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11422 * operation. 11423 * 11424 * Return codes 11425 * 0 - successful 11426 * -ENOMEM - No available memory 11427 * -EIO - The mailbox failed to complete successfully. 11428 **/ 11429 void 11430 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11431 { 11432 struct lpfc_sli4_hdw_queue *qp; 11433 struct lpfc_queue *eq; 11434 int qidx; 11435 11436 /* Unset mailbox command work queue */ 11437 if (phba->sli4_hba.mbx_wq) 11438 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11439 11440 /* Unset NVME LS work queue */ 11441 if (phba->sli4_hba.nvmels_wq) 11442 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11443 11444 /* Unset ELS work queue */ 11445 if (phba->sli4_hba.els_wq) 11446 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11447 11448 /* Unset unsolicited receive queue */ 11449 if (phba->sli4_hba.hdr_rq) 11450 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11451 phba->sli4_hba.dat_rq); 11452 11453 /* Unset mailbox command complete queue */ 11454 if (phba->sli4_hba.mbx_cq) 11455 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11456 11457 /* Unset ELS complete queue */ 11458 if (phba->sli4_hba.els_cq) 11459 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11460 11461 /* Unset NVME LS complete queue */ 11462 if (phba->sli4_hba.nvmels_cq) 11463 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11464 11465 if (phba->nvmet_support) { 11466 /* Unset NVMET MRQ queue */ 11467 if (phba->sli4_hba.nvmet_mrq_hdr) { 11468 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11469 lpfc_rq_destroy( 11470 phba, 11471 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11472 phba->sli4_hba.nvmet_mrq_data[qidx]); 11473 } 11474 11475 /* Unset NVMET CQ Set complete queue */ 11476 if (phba->sli4_hba.nvmet_cqset) { 11477 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11478 lpfc_cq_destroy( 11479 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11480 } 11481 } 11482 11483 /* Unset fast-path SLI4 queues */ 11484 if (phba->sli4_hba.hdwq) { 11485 /* Loop thru all Hardware Queues */ 11486 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11487 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11488 qp = &phba->sli4_hba.hdwq[qidx]; 11489 lpfc_wq_destroy(phba, qp->io_wq); 11490 lpfc_cq_destroy(phba, qp->io_cq); 11491 } 11492 /* Loop thru all IRQ vectors */ 11493 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11494 /* Destroy the EQ corresponding to the IRQ vector */ 11495 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11496 lpfc_eq_destroy(phba, eq); 11497 } 11498 } 11499 11500 kfree(phba->sli4_hba.cq_lookup); 11501 phba->sli4_hba.cq_lookup = NULL; 11502 phba->sli4_hba.cq_max = 0; 11503 } 11504 11505 /** 11506 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11507 * @phba: pointer to lpfc hba data structure. 11508 * 11509 * This routine is invoked to allocate and set up a pool of completion queue 11510 * events. The body of the completion queue event is a completion queue entry 11511 * CQE. For now, this pool is used for the interrupt service routine to queue 11512 * the following HBA completion queue events for the worker thread to process: 11513 * - Mailbox asynchronous events 11514 * - Receive queue completion unsolicited events 11515 * Later, this can be used for all the slow-path events. 11516 * 11517 * Return codes 11518 * 0 - successful 11519 * -ENOMEM - No available memory 11520 **/ 11521 static int 11522 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11523 { 11524 struct lpfc_cq_event *cq_event; 11525 int i; 11526 11527 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11528 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11529 if (!cq_event) 11530 goto out_pool_create_fail; 11531 list_add_tail(&cq_event->list, 11532 &phba->sli4_hba.sp_cqe_event_pool); 11533 } 11534 return 0; 11535 11536 out_pool_create_fail: 11537 lpfc_sli4_cq_event_pool_destroy(phba); 11538 return -ENOMEM; 11539 } 11540 11541 /** 11542 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11543 * @phba: pointer to lpfc hba data structure. 11544 * 11545 * This routine is invoked to free the pool of completion queue events at 11546 * driver unload time. Note that, it is the responsibility of the driver 11547 * cleanup routine to free all the outstanding completion-queue events 11548 * allocated from this pool back into the pool before invoking this routine 11549 * to destroy the pool. 11550 **/ 11551 static void 11552 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11553 { 11554 struct lpfc_cq_event *cq_event, *next_cq_event; 11555 11556 list_for_each_entry_safe(cq_event, next_cq_event, 11557 &phba->sli4_hba.sp_cqe_event_pool, list) { 11558 list_del(&cq_event->list); 11559 kfree(cq_event); 11560 } 11561 } 11562 11563 /** 11564 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11565 * @phba: pointer to lpfc hba data structure. 11566 * 11567 * This routine is the lock free version of the API invoked to allocate a 11568 * completion-queue event from the free pool. 11569 * 11570 * Return: Pointer to the newly allocated completion-queue event if successful 11571 * NULL otherwise. 11572 **/ 11573 struct lpfc_cq_event * 11574 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11575 { 11576 struct lpfc_cq_event *cq_event = NULL; 11577 11578 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11579 struct lpfc_cq_event, list); 11580 return cq_event; 11581 } 11582 11583 /** 11584 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11585 * @phba: pointer to lpfc hba data structure. 11586 * 11587 * This routine is the lock version of the API invoked to allocate a 11588 * completion-queue event from the free pool. 11589 * 11590 * Return: Pointer to the newly allocated completion-queue event if successful 11591 * NULL otherwise. 11592 **/ 11593 struct lpfc_cq_event * 11594 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11595 { 11596 struct lpfc_cq_event *cq_event; 11597 unsigned long iflags; 11598 11599 spin_lock_irqsave(&phba->hbalock, iflags); 11600 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11601 spin_unlock_irqrestore(&phba->hbalock, iflags); 11602 return cq_event; 11603 } 11604 11605 /** 11606 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11607 * @phba: pointer to lpfc hba data structure. 11608 * @cq_event: pointer to the completion queue event to be freed. 11609 * 11610 * This routine is the lock free version of the API invoked to release a 11611 * completion-queue event back into the free pool. 11612 **/ 11613 void 11614 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11615 struct lpfc_cq_event *cq_event) 11616 { 11617 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11618 } 11619 11620 /** 11621 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11622 * @phba: pointer to lpfc hba data structure. 11623 * @cq_event: pointer to the completion queue event to be freed. 11624 * 11625 * This routine is the lock version of the API invoked to release a 11626 * completion-queue event back into the free pool. 11627 **/ 11628 void 11629 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11630 struct lpfc_cq_event *cq_event) 11631 { 11632 unsigned long iflags; 11633 spin_lock_irqsave(&phba->hbalock, iflags); 11634 __lpfc_sli4_cq_event_release(phba, cq_event); 11635 spin_unlock_irqrestore(&phba->hbalock, iflags); 11636 } 11637 11638 /** 11639 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11640 * @phba: pointer to lpfc hba data structure. 11641 * 11642 * This routine is to free all the pending completion-queue events to the 11643 * back into the free pool for device reset. 11644 **/ 11645 static void 11646 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11647 { 11648 LIST_HEAD(cq_event_list); 11649 struct lpfc_cq_event *cq_event; 11650 unsigned long iflags; 11651 11652 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11653 11654 /* Pending ELS XRI abort events */ 11655 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11656 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11657 &cq_event_list); 11658 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11659 11660 /* Pending asynnc events */ 11661 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11662 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11663 &cq_event_list); 11664 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11665 11666 while (!list_empty(&cq_event_list)) { 11667 list_remove_head(&cq_event_list, cq_event, 11668 struct lpfc_cq_event, list); 11669 lpfc_sli4_cq_event_release(phba, cq_event); 11670 } 11671 } 11672 11673 /** 11674 * lpfc_pci_function_reset - Reset pci function. 11675 * @phba: pointer to lpfc hba data structure. 11676 * 11677 * This routine is invoked to request a PCI function reset. It will destroys 11678 * all resources assigned to the PCI function which originates this request. 11679 * 11680 * Return codes 11681 * 0 - successful 11682 * -ENOMEM - No available memory 11683 * -EIO - The mailbox failed to complete successfully. 11684 **/ 11685 int 11686 lpfc_pci_function_reset(struct lpfc_hba *phba) 11687 { 11688 LPFC_MBOXQ_t *mboxq; 11689 uint32_t rc = 0, if_type; 11690 uint32_t shdr_status, shdr_add_status; 11691 uint32_t rdy_chk; 11692 uint32_t port_reset = 0; 11693 union lpfc_sli4_cfg_shdr *shdr; 11694 struct lpfc_register reg_data; 11695 uint16_t devid; 11696 11697 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11698 switch (if_type) { 11699 case LPFC_SLI_INTF_IF_TYPE_0: 11700 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11701 GFP_KERNEL); 11702 if (!mboxq) { 11703 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11704 "0494 Unable to allocate memory for " 11705 "issuing SLI_FUNCTION_RESET mailbox " 11706 "command\n"); 11707 return -ENOMEM; 11708 } 11709 11710 /* Setup PCI function reset mailbox-ioctl command */ 11711 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11712 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11713 LPFC_SLI4_MBX_EMBED); 11714 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11715 shdr = (union lpfc_sli4_cfg_shdr *) 11716 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11717 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11718 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11719 &shdr->response); 11720 mempool_free(mboxq, phba->mbox_mem_pool); 11721 if (shdr_status || shdr_add_status || rc) { 11722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11723 "0495 SLI_FUNCTION_RESET mailbox " 11724 "failed with status x%x add_status x%x," 11725 " mbx status x%x\n", 11726 shdr_status, shdr_add_status, rc); 11727 rc = -ENXIO; 11728 } 11729 break; 11730 case LPFC_SLI_INTF_IF_TYPE_2: 11731 case LPFC_SLI_INTF_IF_TYPE_6: 11732 wait: 11733 /* 11734 * Poll the Port Status Register and wait for RDY for 11735 * up to 30 seconds. If the port doesn't respond, treat 11736 * it as an error. 11737 */ 11738 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11739 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11740 STATUSregaddr, ®_data.word0)) { 11741 rc = -ENODEV; 11742 goto out; 11743 } 11744 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11745 break; 11746 msleep(20); 11747 } 11748 11749 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11750 phba->work_status[0] = readl( 11751 phba->sli4_hba.u.if_type2.ERR1regaddr); 11752 phba->work_status[1] = readl( 11753 phba->sli4_hba.u.if_type2.ERR2regaddr); 11754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11755 "2890 Port not ready, port status reg " 11756 "0x%x error 1=0x%x, error 2=0x%x\n", 11757 reg_data.word0, 11758 phba->work_status[0], 11759 phba->work_status[1]); 11760 rc = -ENODEV; 11761 goto out; 11762 } 11763 11764 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11765 lpfc_pldv_detect = true; 11766 11767 if (!port_reset) { 11768 /* 11769 * Reset the port now 11770 */ 11771 reg_data.word0 = 0; 11772 bf_set(lpfc_sliport_ctrl_end, ®_data, 11773 LPFC_SLIPORT_LITTLE_ENDIAN); 11774 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11775 LPFC_SLIPORT_INIT_PORT); 11776 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11777 CTRLregaddr); 11778 /* flush */ 11779 pci_read_config_word(phba->pcidev, 11780 PCI_DEVICE_ID, &devid); 11781 11782 port_reset = 1; 11783 msleep(20); 11784 goto wait; 11785 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11786 rc = -ENODEV; 11787 goto out; 11788 } 11789 break; 11790 11791 case LPFC_SLI_INTF_IF_TYPE_1: 11792 default: 11793 break; 11794 } 11795 11796 out: 11797 /* Catch the not-ready port failure after a port reset. */ 11798 if (rc) { 11799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11800 "3317 HBA not functional: IP Reset Failed " 11801 "try: echo fw_reset > board_mode\n"); 11802 rc = -ENODEV; 11803 } 11804 11805 return rc; 11806 } 11807 11808 /** 11809 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11810 * @phba: pointer to lpfc hba data structure. 11811 * 11812 * This routine is invoked to set up the PCI device memory space for device 11813 * with SLI-4 interface spec. 11814 * 11815 * Return codes 11816 * 0 - successful 11817 * other values - error 11818 **/ 11819 static int 11820 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11821 { 11822 struct pci_dev *pdev = phba->pcidev; 11823 unsigned long bar0map_len, bar1map_len, bar2map_len; 11824 int error; 11825 uint32_t if_type; 11826 11827 if (!pdev) 11828 return -ENODEV; 11829 11830 /* Set the device DMA mask size */ 11831 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11832 if (error) 11833 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11834 if (error) 11835 return error; 11836 11837 /* 11838 * The BARs and register set definitions and offset locations are 11839 * dependent on the if_type. 11840 */ 11841 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11842 &phba->sli4_hba.sli_intf.word0)) { 11843 return -ENODEV; 11844 } 11845 11846 /* There is no SLI3 failback for SLI4 devices. */ 11847 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11848 LPFC_SLI_INTF_VALID) { 11849 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11850 "2894 SLI_INTF reg contents invalid " 11851 "sli_intf reg 0x%x\n", 11852 phba->sli4_hba.sli_intf.word0); 11853 return -ENODEV; 11854 } 11855 11856 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11857 /* 11858 * Get the bus address of SLI4 device Bar regions and the 11859 * number of bytes required by each mapping. The mapping of the 11860 * particular PCI BARs regions is dependent on the type of 11861 * SLI4 device. 11862 */ 11863 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11864 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11865 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11866 11867 /* 11868 * Map SLI4 PCI Config Space Register base to a kernel virtual 11869 * addr 11870 */ 11871 phba->sli4_hba.conf_regs_memmap_p = 11872 ioremap(phba->pci_bar0_map, bar0map_len); 11873 if (!phba->sli4_hba.conf_regs_memmap_p) { 11874 dev_printk(KERN_ERR, &pdev->dev, 11875 "ioremap failed for SLI4 PCI config " 11876 "registers.\n"); 11877 return -ENODEV; 11878 } 11879 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11880 /* Set up BAR0 PCI config space register memory map */ 11881 lpfc_sli4_bar0_register_memmap(phba, if_type); 11882 } else { 11883 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11884 bar0map_len = pci_resource_len(pdev, 1); 11885 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11886 dev_printk(KERN_ERR, &pdev->dev, 11887 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11888 return -ENODEV; 11889 } 11890 phba->sli4_hba.conf_regs_memmap_p = 11891 ioremap(phba->pci_bar0_map, bar0map_len); 11892 if (!phba->sli4_hba.conf_regs_memmap_p) { 11893 dev_printk(KERN_ERR, &pdev->dev, 11894 "ioremap failed for SLI4 PCI config " 11895 "registers.\n"); 11896 return -ENODEV; 11897 } 11898 lpfc_sli4_bar0_register_memmap(phba, if_type); 11899 } 11900 11901 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11902 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11903 /* 11904 * Map SLI4 if type 0 HBA Control Register base to a 11905 * kernel virtual address and setup the registers. 11906 */ 11907 phba->pci_bar1_map = pci_resource_start(pdev, 11908 PCI_64BIT_BAR2); 11909 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11910 phba->sli4_hba.ctrl_regs_memmap_p = 11911 ioremap(phba->pci_bar1_map, 11912 bar1map_len); 11913 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11914 dev_err(&pdev->dev, 11915 "ioremap failed for SLI4 HBA " 11916 "control registers.\n"); 11917 error = -ENOMEM; 11918 goto out_iounmap_conf; 11919 } 11920 phba->pci_bar2_memmap_p = 11921 phba->sli4_hba.ctrl_regs_memmap_p; 11922 lpfc_sli4_bar1_register_memmap(phba, if_type); 11923 } else { 11924 error = -ENOMEM; 11925 goto out_iounmap_conf; 11926 } 11927 } 11928 11929 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11930 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11931 /* 11932 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11933 * virtual address and setup the registers. 11934 */ 11935 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11936 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11937 phba->sli4_hba.drbl_regs_memmap_p = 11938 ioremap(phba->pci_bar1_map, bar1map_len); 11939 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11940 dev_err(&pdev->dev, 11941 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11942 error = -ENOMEM; 11943 goto out_iounmap_conf; 11944 } 11945 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11946 lpfc_sli4_bar1_register_memmap(phba, if_type); 11947 } 11948 11949 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11950 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11951 /* 11952 * Map SLI4 if type 0 HBA Doorbell Register base to 11953 * a kernel virtual address and setup the registers. 11954 */ 11955 phba->pci_bar2_map = pci_resource_start(pdev, 11956 PCI_64BIT_BAR4); 11957 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11958 phba->sli4_hba.drbl_regs_memmap_p = 11959 ioremap(phba->pci_bar2_map, 11960 bar2map_len); 11961 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11962 dev_err(&pdev->dev, 11963 "ioremap failed for SLI4 HBA" 11964 " doorbell registers.\n"); 11965 error = -ENOMEM; 11966 goto out_iounmap_ctrl; 11967 } 11968 phba->pci_bar4_memmap_p = 11969 phba->sli4_hba.drbl_regs_memmap_p; 11970 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11971 if (error) 11972 goto out_iounmap_all; 11973 } else { 11974 error = -ENOMEM; 11975 goto out_iounmap_ctrl; 11976 } 11977 } 11978 11979 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11980 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11981 /* 11982 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11983 * virtual address and setup the registers. 11984 */ 11985 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11986 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11987 phba->sli4_hba.dpp_regs_memmap_p = 11988 ioremap(phba->pci_bar2_map, bar2map_len); 11989 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11990 dev_err(&pdev->dev, 11991 "ioremap failed for SLI4 HBA dpp registers.\n"); 11992 error = -ENOMEM; 11993 goto out_iounmap_all; 11994 } 11995 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 11996 } 11997 11998 /* Set up the EQ/CQ register handeling functions now */ 11999 switch (if_type) { 12000 case LPFC_SLI_INTF_IF_TYPE_0: 12001 case LPFC_SLI_INTF_IF_TYPE_2: 12002 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 12003 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 12004 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 12005 break; 12006 case LPFC_SLI_INTF_IF_TYPE_6: 12007 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 12008 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 12009 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 12010 break; 12011 default: 12012 break; 12013 } 12014 12015 return 0; 12016 12017 out_iounmap_all: 12018 if (phba->sli4_hba.drbl_regs_memmap_p) 12019 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12020 out_iounmap_ctrl: 12021 if (phba->sli4_hba.ctrl_regs_memmap_p) 12022 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12023 out_iounmap_conf: 12024 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12025 12026 return error; 12027 } 12028 12029 /** 12030 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 12031 * @phba: pointer to lpfc hba data structure. 12032 * 12033 * This routine is invoked to unset the PCI device memory space for device 12034 * with SLI-4 interface spec. 12035 **/ 12036 static void 12037 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 12038 { 12039 uint32_t if_type; 12040 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12041 12042 switch (if_type) { 12043 case LPFC_SLI_INTF_IF_TYPE_0: 12044 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12045 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12046 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12047 break; 12048 case LPFC_SLI_INTF_IF_TYPE_2: 12049 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12050 break; 12051 case LPFC_SLI_INTF_IF_TYPE_6: 12052 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12053 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12054 if (phba->sli4_hba.dpp_regs_memmap_p) 12055 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 12056 break; 12057 case LPFC_SLI_INTF_IF_TYPE_1: 12058 break; 12059 default: 12060 dev_printk(KERN_ERR, &phba->pcidev->dev, 12061 "FATAL - unsupported SLI4 interface type - %d\n", 12062 if_type); 12063 break; 12064 } 12065 } 12066 12067 /** 12068 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 12069 * @phba: pointer to lpfc hba data structure. 12070 * 12071 * This routine is invoked to enable the MSI-X interrupt vectors to device 12072 * with SLI-3 interface specs. 12073 * 12074 * Return codes 12075 * 0 - successful 12076 * other values - error 12077 **/ 12078 static int 12079 lpfc_sli_enable_msix(struct lpfc_hba *phba) 12080 { 12081 int rc; 12082 LPFC_MBOXQ_t *pmb; 12083 12084 /* Set up MSI-X multi-message vectors */ 12085 rc = pci_alloc_irq_vectors(phba->pcidev, 12086 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 12087 if (rc < 0) { 12088 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12089 "0420 PCI enable MSI-X failed (%d)\n", rc); 12090 goto vec_fail_out; 12091 } 12092 12093 /* 12094 * Assign MSI-X vectors to interrupt handlers 12095 */ 12096 12097 /* vector-0 is associated to slow-path handler */ 12098 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 12099 &lpfc_sli_sp_intr_handler, 0, 12100 LPFC_SP_DRIVER_HANDLER_NAME, phba); 12101 if (rc) { 12102 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12103 "0421 MSI-X slow-path request_irq failed " 12104 "(%d)\n", rc); 12105 goto msi_fail_out; 12106 } 12107 12108 /* vector-1 is associated to fast-path handler */ 12109 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12110 &lpfc_sli_fp_intr_handler, 0, 12111 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12112 12113 if (rc) { 12114 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12115 "0429 MSI-X fast-path request_irq failed " 12116 "(%d)\n", rc); 12117 goto irq_fail_out; 12118 } 12119 12120 /* 12121 * Configure HBA MSI-X attention conditions to messages 12122 */ 12123 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12124 12125 if (!pmb) { 12126 rc = -ENOMEM; 12127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12128 "0474 Unable to allocate memory for issuing " 12129 "MBOX_CONFIG_MSI command\n"); 12130 goto mem_fail_out; 12131 } 12132 rc = lpfc_config_msi(phba, pmb); 12133 if (rc) 12134 goto mbx_fail_out; 12135 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12136 if (rc != MBX_SUCCESS) { 12137 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12138 "0351 Config MSI mailbox command failed, " 12139 "mbxCmd x%x, mbxStatus x%x\n", 12140 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12141 goto mbx_fail_out; 12142 } 12143 12144 /* Free memory allocated for mailbox command */ 12145 mempool_free(pmb, phba->mbox_mem_pool); 12146 return rc; 12147 12148 mbx_fail_out: 12149 /* Free memory allocated for mailbox command */ 12150 mempool_free(pmb, phba->mbox_mem_pool); 12151 12152 mem_fail_out: 12153 /* free the irq already requested */ 12154 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12155 12156 irq_fail_out: 12157 /* free the irq already requested */ 12158 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12159 12160 msi_fail_out: 12161 /* Unconfigure MSI-X capability structure */ 12162 pci_free_irq_vectors(phba->pcidev); 12163 12164 vec_fail_out: 12165 return rc; 12166 } 12167 12168 /** 12169 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12170 * @phba: pointer to lpfc hba data structure. 12171 * 12172 * This routine is invoked to enable the MSI interrupt mode to device with 12173 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12174 * enable the MSI vector. The device driver is responsible for calling the 12175 * request_irq() to register MSI vector with a interrupt the handler, which 12176 * is done in this function. 12177 * 12178 * Return codes 12179 * 0 - successful 12180 * other values - error 12181 */ 12182 static int 12183 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12184 { 12185 int rc; 12186 12187 rc = pci_enable_msi(phba->pcidev); 12188 if (!rc) 12189 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12190 "0012 PCI enable MSI mode success.\n"); 12191 else { 12192 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12193 "0471 PCI enable MSI mode failed (%d)\n", rc); 12194 return rc; 12195 } 12196 12197 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12198 0, LPFC_DRIVER_NAME, phba); 12199 if (rc) { 12200 pci_disable_msi(phba->pcidev); 12201 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12202 "0478 MSI request_irq failed (%d)\n", rc); 12203 } 12204 return rc; 12205 } 12206 12207 /** 12208 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12209 * @phba: pointer to lpfc hba data structure. 12210 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12211 * 12212 * This routine is invoked to enable device interrupt and associate driver's 12213 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12214 * spec. Depends on the interrupt mode configured to the driver, the driver 12215 * will try to fallback from the configured interrupt mode to an interrupt 12216 * mode which is supported by the platform, kernel, and device in the order 12217 * of: 12218 * MSI-X -> MSI -> IRQ. 12219 * 12220 * Return codes 12221 * 0 - successful 12222 * other values - error 12223 **/ 12224 static uint32_t 12225 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12226 { 12227 uint32_t intr_mode = LPFC_INTR_ERROR; 12228 int retval; 12229 12230 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12231 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12232 if (retval) 12233 return intr_mode; 12234 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 12235 12236 if (cfg_mode == 2) { 12237 /* Now, try to enable MSI-X interrupt mode */ 12238 retval = lpfc_sli_enable_msix(phba); 12239 if (!retval) { 12240 /* Indicate initialization to MSI-X mode */ 12241 phba->intr_type = MSIX; 12242 intr_mode = 2; 12243 } 12244 } 12245 12246 /* Fallback to MSI if MSI-X initialization failed */ 12247 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12248 retval = lpfc_sli_enable_msi(phba); 12249 if (!retval) { 12250 /* Indicate initialization to MSI mode */ 12251 phba->intr_type = MSI; 12252 intr_mode = 1; 12253 } 12254 } 12255 12256 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12257 if (phba->intr_type == NONE) { 12258 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12259 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12260 if (!retval) { 12261 /* Indicate initialization to INTx mode */ 12262 phba->intr_type = INTx; 12263 intr_mode = 0; 12264 } 12265 } 12266 return intr_mode; 12267 } 12268 12269 /** 12270 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12271 * @phba: pointer to lpfc hba data structure. 12272 * 12273 * This routine is invoked to disable device interrupt and disassociate the 12274 * driver's interrupt handler(s) from interrupt vector(s) to device with 12275 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12276 * release the interrupt vector(s) for the message signaled interrupt. 12277 **/ 12278 static void 12279 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12280 { 12281 int nr_irqs, i; 12282 12283 if (phba->intr_type == MSIX) 12284 nr_irqs = LPFC_MSIX_VECTORS; 12285 else 12286 nr_irqs = 1; 12287 12288 for (i = 0; i < nr_irqs; i++) 12289 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12290 pci_free_irq_vectors(phba->pcidev); 12291 12292 /* Reset interrupt management states */ 12293 phba->intr_type = NONE; 12294 phba->sli.slistat.sli_intr = 0; 12295 } 12296 12297 /** 12298 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12299 * @phba: pointer to lpfc hba data structure. 12300 * @id: EQ vector index or Hardware Queue index 12301 * @match: LPFC_FIND_BY_EQ = match by EQ 12302 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12303 * Return the CPU that matches the selection criteria 12304 */ 12305 static uint16_t 12306 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12307 { 12308 struct lpfc_vector_map_info *cpup; 12309 int cpu; 12310 12311 /* Loop through all CPUs */ 12312 for_each_present_cpu(cpu) { 12313 cpup = &phba->sli4_hba.cpu_map[cpu]; 12314 12315 /* If we are matching by EQ, there may be multiple CPUs using 12316 * using the same vector, so select the one with 12317 * LPFC_CPU_FIRST_IRQ set. 12318 */ 12319 if ((match == LPFC_FIND_BY_EQ) && 12320 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12321 (cpup->eq == id)) 12322 return cpu; 12323 12324 /* If matching by HDWQ, select the first CPU that matches */ 12325 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12326 return cpu; 12327 } 12328 return 0; 12329 } 12330 12331 #ifdef CONFIG_X86 12332 /** 12333 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12334 * @phba: pointer to lpfc hba data structure. 12335 * @cpu: CPU map index 12336 * @phys_id: CPU package physical id 12337 * @core_id: CPU core id 12338 */ 12339 static int 12340 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12341 uint16_t phys_id, uint16_t core_id) 12342 { 12343 struct lpfc_vector_map_info *cpup; 12344 int idx; 12345 12346 for_each_present_cpu(idx) { 12347 cpup = &phba->sli4_hba.cpu_map[idx]; 12348 /* Does the cpup match the one we are looking for */ 12349 if ((cpup->phys_id == phys_id) && 12350 (cpup->core_id == core_id) && 12351 (cpu != idx)) 12352 return 1; 12353 } 12354 return 0; 12355 } 12356 #endif 12357 12358 /* 12359 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12360 * @phba: pointer to lpfc hba data structure. 12361 * @eqidx: index for eq and irq vector 12362 * @flag: flags to set for vector_map structure 12363 * @cpu: cpu used to index vector_map structure 12364 * 12365 * The routine assigns eq info into vector_map structure 12366 */ 12367 static inline void 12368 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12369 unsigned int cpu) 12370 { 12371 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12372 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12373 12374 cpup->eq = eqidx; 12375 cpup->flag |= flag; 12376 12377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12378 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12379 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12380 } 12381 12382 /** 12383 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12384 * @phba: pointer to lpfc hba data structure. 12385 * 12386 * The routine initializes the cpu_map array structure 12387 */ 12388 static void 12389 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12390 { 12391 struct lpfc_vector_map_info *cpup; 12392 struct lpfc_eq_intr_info *eqi; 12393 int cpu; 12394 12395 for_each_possible_cpu(cpu) { 12396 cpup = &phba->sli4_hba.cpu_map[cpu]; 12397 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12398 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12399 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12400 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12401 cpup->flag = 0; 12402 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12403 INIT_LIST_HEAD(&eqi->list); 12404 eqi->icnt = 0; 12405 } 12406 } 12407 12408 /** 12409 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12410 * @phba: pointer to lpfc hba data structure. 12411 * 12412 * The routine initializes the hba_eq_hdl array structure 12413 */ 12414 static void 12415 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12416 { 12417 struct lpfc_hba_eq_hdl *eqhdl; 12418 int i; 12419 12420 for (i = 0; i < phba->cfg_irq_chann; i++) { 12421 eqhdl = lpfc_get_eq_hdl(i); 12422 eqhdl->irq = LPFC_IRQ_EMPTY; 12423 eqhdl->phba = phba; 12424 } 12425 } 12426 12427 /** 12428 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12429 * @phba: pointer to lpfc hba data structure. 12430 * @vectors: number of msix vectors allocated. 12431 * 12432 * The routine will figure out the CPU affinity assignment for every 12433 * MSI-X vector allocated for the HBA. 12434 * In addition, the CPU to IO channel mapping will be calculated 12435 * and the phba->sli4_hba.cpu_map array will reflect this. 12436 */ 12437 static void 12438 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12439 { 12440 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12441 int max_phys_id, min_phys_id; 12442 int max_core_id, min_core_id; 12443 struct lpfc_vector_map_info *cpup; 12444 struct lpfc_vector_map_info *new_cpup; 12445 #ifdef CONFIG_X86 12446 struct cpuinfo_x86 *cpuinfo; 12447 #endif 12448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12449 struct lpfc_hdwq_stat *c_stat; 12450 #endif 12451 12452 max_phys_id = 0; 12453 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12454 max_core_id = 0; 12455 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12456 12457 /* Update CPU map with physical id and core id of each CPU */ 12458 for_each_present_cpu(cpu) { 12459 cpup = &phba->sli4_hba.cpu_map[cpu]; 12460 #ifdef CONFIG_X86 12461 cpuinfo = &cpu_data(cpu); 12462 cpup->phys_id = cpuinfo->phys_proc_id; 12463 cpup->core_id = cpuinfo->cpu_core_id; 12464 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12465 cpup->flag |= LPFC_CPU_MAP_HYPER; 12466 #else 12467 /* No distinction between CPUs for other platforms */ 12468 cpup->phys_id = 0; 12469 cpup->core_id = cpu; 12470 #endif 12471 12472 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12473 "3328 CPU %d physid %d coreid %d flag x%x\n", 12474 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12475 12476 if (cpup->phys_id > max_phys_id) 12477 max_phys_id = cpup->phys_id; 12478 if (cpup->phys_id < min_phys_id) 12479 min_phys_id = cpup->phys_id; 12480 12481 if (cpup->core_id > max_core_id) 12482 max_core_id = cpup->core_id; 12483 if (cpup->core_id < min_core_id) 12484 min_core_id = cpup->core_id; 12485 } 12486 12487 /* After looking at each irq vector assigned to this pcidev, its 12488 * possible to see that not ALL CPUs have been accounted for. 12489 * Next we will set any unassigned (unaffinitized) cpu map 12490 * entries to a IRQ on the same phys_id. 12491 */ 12492 first_cpu = cpumask_first(cpu_present_mask); 12493 start_cpu = first_cpu; 12494 12495 for_each_present_cpu(cpu) { 12496 cpup = &phba->sli4_hba.cpu_map[cpu]; 12497 12498 /* Is this CPU entry unassigned */ 12499 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12500 /* Mark CPU as IRQ not assigned by the kernel */ 12501 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12502 12503 /* If so, find a new_cpup that is on the SAME 12504 * phys_id as cpup. start_cpu will start where we 12505 * left off so all unassigned entries don't get assgined 12506 * the IRQ of the first entry. 12507 */ 12508 new_cpu = start_cpu; 12509 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12510 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12511 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12512 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12513 (new_cpup->phys_id == cpup->phys_id)) 12514 goto found_same; 12515 new_cpu = lpfc_next_present_cpu(new_cpu); 12516 } 12517 /* At this point, we leave the CPU as unassigned */ 12518 continue; 12519 found_same: 12520 /* We found a matching phys_id, so copy the IRQ info */ 12521 cpup->eq = new_cpup->eq; 12522 12523 /* Bump start_cpu to the next slot to minmize the 12524 * chance of having multiple unassigned CPU entries 12525 * selecting the same IRQ. 12526 */ 12527 start_cpu = lpfc_next_present_cpu(new_cpu); 12528 12529 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12530 "3337 Set Affinity: CPU %d " 12531 "eq %d from peer cpu %d same " 12532 "phys_id (%d)\n", 12533 cpu, cpup->eq, new_cpu, 12534 cpup->phys_id); 12535 } 12536 } 12537 12538 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12539 start_cpu = first_cpu; 12540 12541 for_each_present_cpu(cpu) { 12542 cpup = &phba->sli4_hba.cpu_map[cpu]; 12543 12544 /* Is this entry unassigned */ 12545 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12546 /* Mark it as IRQ not assigned by the kernel */ 12547 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12548 12549 /* If so, find a new_cpup thats on ANY phys_id 12550 * as the cpup. start_cpu will start where we 12551 * left off so all unassigned entries don't get 12552 * assigned the IRQ of the first entry. 12553 */ 12554 new_cpu = start_cpu; 12555 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12556 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12557 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12558 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12559 goto found_any; 12560 new_cpu = lpfc_next_present_cpu(new_cpu); 12561 } 12562 /* We should never leave an entry unassigned */ 12563 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12564 "3339 Set Affinity: CPU %d " 12565 "eq %d UNASSIGNED\n", 12566 cpup->hdwq, cpup->eq); 12567 continue; 12568 found_any: 12569 /* We found an available entry, copy the IRQ info */ 12570 cpup->eq = new_cpup->eq; 12571 12572 /* Bump start_cpu to the next slot to minmize the 12573 * chance of having multiple unassigned CPU entries 12574 * selecting the same IRQ. 12575 */ 12576 start_cpu = lpfc_next_present_cpu(new_cpu); 12577 12578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12579 "3338 Set Affinity: CPU %d " 12580 "eq %d from peer cpu %d (%d/%d)\n", 12581 cpu, cpup->eq, new_cpu, 12582 new_cpup->phys_id, new_cpup->core_id); 12583 } 12584 } 12585 12586 /* Assign hdwq indices that are unique across all cpus in the map 12587 * that are also FIRST_CPUs. 12588 */ 12589 idx = 0; 12590 for_each_present_cpu(cpu) { 12591 cpup = &phba->sli4_hba.cpu_map[cpu]; 12592 12593 /* Only FIRST IRQs get a hdwq index assignment. */ 12594 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12595 continue; 12596 12597 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12598 cpup->hdwq = idx; 12599 idx++; 12600 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12601 "3333 Set Affinity: CPU %d (phys %d core %d): " 12602 "hdwq %d eq %d flg x%x\n", 12603 cpu, cpup->phys_id, cpup->core_id, 12604 cpup->hdwq, cpup->eq, cpup->flag); 12605 } 12606 /* Associate a hdwq with each cpu_map entry 12607 * This will be 1 to 1 - hdwq to cpu, unless there are less 12608 * hardware queues then CPUs. For that case we will just round-robin 12609 * the available hardware queues as they get assigned to CPUs. 12610 * The next_idx is the idx from the FIRST_CPU loop above to account 12611 * for irq_chann < hdwq. The idx is used for round-robin assignments 12612 * and needs to start at 0. 12613 */ 12614 next_idx = idx; 12615 start_cpu = 0; 12616 idx = 0; 12617 for_each_present_cpu(cpu) { 12618 cpup = &phba->sli4_hba.cpu_map[cpu]; 12619 12620 /* FIRST cpus are already mapped. */ 12621 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12622 continue; 12623 12624 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12625 * of the unassigned cpus to the next idx so that all 12626 * hdw queues are fully utilized. 12627 */ 12628 if (next_idx < phba->cfg_hdw_queue) { 12629 cpup->hdwq = next_idx; 12630 next_idx++; 12631 continue; 12632 } 12633 12634 /* Not a First CPU and all hdw_queues are used. Reuse a 12635 * Hardware Queue for another CPU, so be smart about it 12636 * and pick one that has its IRQ/EQ mapped to the same phys_id 12637 * (CPU package) and core_id. 12638 */ 12639 new_cpu = start_cpu; 12640 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12641 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12642 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12643 new_cpup->phys_id == cpup->phys_id && 12644 new_cpup->core_id == cpup->core_id) { 12645 goto found_hdwq; 12646 } 12647 new_cpu = lpfc_next_present_cpu(new_cpu); 12648 } 12649 12650 /* If we can't match both phys_id and core_id, 12651 * settle for just a phys_id match. 12652 */ 12653 new_cpu = start_cpu; 12654 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12655 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12656 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12657 new_cpup->phys_id == cpup->phys_id) 12658 goto found_hdwq; 12659 new_cpu = lpfc_next_present_cpu(new_cpu); 12660 } 12661 12662 /* Otherwise just round robin on cfg_hdw_queue */ 12663 cpup->hdwq = idx % phba->cfg_hdw_queue; 12664 idx++; 12665 goto logit; 12666 found_hdwq: 12667 /* We found an available entry, copy the IRQ info */ 12668 start_cpu = lpfc_next_present_cpu(new_cpu); 12669 cpup->hdwq = new_cpup->hdwq; 12670 logit: 12671 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12672 "3335 Set Affinity: CPU %d (phys %d core %d): " 12673 "hdwq %d eq %d flg x%x\n", 12674 cpu, cpup->phys_id, cpup->core_id, 12675 cpup->hdwq, cpup->eq, cpup->flag); 12676 } 12677 12678 /* 12679 * Initialize the cpu_map slots for not-present cpus in case 12680 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12681 */ 12682 idx = 0; 12683 for_each_possible_cpu(cpu) { 12684 cpup = &phba->sli4_hba.cpu_map[cpu]; 12685 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12686 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12687 c_stat->hdwq_no = cpup->hdwq; 12688 #endif 12689 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12690 continue; 12691 12692 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12693 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12694 c_stat->hdwq_no = cpup->hdwq; 12695 #endif 12696 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12697 "3340 Set Affinity: not present " 12698 "CPU %d hdwq %d\n", 12699 cpu, cpup->hdwq); 12700 } 12701 12702 /* The cpu_map array will be used later during initialization 12703 * when EQ / CQ / WQs are allocated and configured. 12704 */ 12705 return; 12706 } 12707 12708 /** 12709 * lpfc_cpuhp_get_eq 12710 * 12711 * @phba: pointer to lpfc hba data structure. 12712 * @cpu: cpu going offline 12713 * @eqlist: eq list to append to 12714 */ 12715 static int 12716 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12717 struct list_head *eqlist) 12718 { 12719 const struct cpumask *maskp; 12720 struct lpfc_queue *eq; 12721 struct cpumask *tmp; 12722 u16 idx; 12723 12724 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12725 if (!tmp) 12726 return -ENOMEM; 12727 12728 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12729 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12730 if (!maskp) 12731 continue; 12732 /* 12733 * if irq is not affinitized to the cpu going 12734 * then we don't need to poll the eq attached 12735 * to it. 12736 */ 12737 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12738 continue; 12739 /* get the cpus that are online and are affini- 12740 * tized to this irq vector. If the count is 12741 * more than 1 then cpuhp is not going to shut- 12742 * down this vector. Since this cpu has not 12743 * gone offline yet, we need >1. 12744 */ 12745 cpumask_and(tmp, maskp, cpu_online_mask); 12746 if (cpumask_weight(tmp) > 1) 12747 continue; 12748 12749 /* Now that we have an irq to shutdown, get the eq 12750 * mapped to this irq. Note: multiple hdwq's in 12751 * the software can share an eq, but eventually 12752 * only eq will be mapped to this vector 12753 */ 12754 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12755 list_add(&eq->_poll_list, eqlist); 12756 } 12757 kfree(tmp); 12758 return 0; 12759 } 12760 12761 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12762 { 12763 if (phba->sli_rev != LPFC_SLI_REV4) 12764 return; 12765 12766 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12767 &phba->cpuhp); 12768 /* 12769 * unregistering the instance doesn't stop the polling 12770 * timer. Wait for the poll timer to retire. 12771 */ 12772 synchronize_rcu(); 12773 del_timer_sync(&phba->cpuhp_poll_timer); 12774 } 12775 12776 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12777 { 12778 if (phba->pport && (phba->pport->fc_flag & FC_OFFLINE_MODE)) 12779 return; 12780 12781 __lpfc_cpuhp_remove(phba); 12782 } 12783 12784 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12785 { 12786 if (phba->sli_rev != LPFC_SLI_REV4) 12787 return; 12788 12789 rcu_read_lock(); 12790 12791 if (!list_empty(&phba->poll_list)) 12792 mod_timer(&phba->cpuhp_poll_timer, 12793 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12794 12795 rcu_read_unlock(); 12796 12797 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12798 &phba->cpuhp); 12799 } 12800 12801 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12802 { 12803 if (phba->pport->load_flag & FC_UNLOADING) { 12804 *retval = -EAGAIN; 12805 return true; 12806 } 12807 12808 if (phba->sli_rev != LPFC_SLI_REV4) { 12809 *retval = 0; 12810 return true; 12811 } 12812 12813 /* proceed with the hotplug */ 12814 return false; 12815 } 12816 12817 /** 12818 * lpfc_irq_set_aff - set IRQ affinity 12819 * @eqhdl: EQ handle 12820 * @cpu: cpu to set affinity 12821 * 12822 **/ 12823 static inline void 12824 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12825 { 12826 cpumask_clear(&eqhdl->aff_mask); 12827 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12828 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12829 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12830 } 12831 12832 /** 12833 * lpfc_irq_clear_aff - clear IRQ affinity 12834 * @eqhdl: EQ handle 12835 * 12836 **/ 12837 static inline void 12838 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12839 { 12840 cpumask_clear(&eqhdl->aff_mask); 12841 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12842 } 12843 12844 /** 12845 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12846 * @phba: pointer to HBA context object. 12847 * @cpu: cpu going offline/online 12848 * @offline: true, cpu is going offline. false, cpu is coming online. 12849 * 12850 * If cpu is going offline, we'll try our best effort to find the next 12851 * online cpu on the phba's original_mask and migrate all offlining IRQ 12852 * affinities. 12853 * 12854 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12855 * 12856 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12857 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12858 * 12859 **/ 12860 static void 12861 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12862 { 12863 struct lpfc_vector_map_info *cpup; 12864 struct cpumask *aff_mask; 12865 unsigned int cpu_select, cpu_next, idx; 12866 const struct cpumask *orig_mask; 12867 12868 if (phba->irq_chann_mode == NORMAL_MODE) 12869 return; 12870 12871 orig_mask = &phba->sli4_hba.irq_aff_mask; 12872 12873 if (!cpumask_test_cpu(cpu, orig_mask)) 12874 return; 12875 12876 cpup = &phba->sli4_hba.cpu_map[cpu]; 12877 12878 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12879 return; 12880 12881 if (offline) { 12882 /* Find next online CPU on original mask */ 12883 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 12884 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12885 12886 /* Found a valid CPU */ 12887 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12888 /* Go through each eqhdl and ensure offlining 12889 * cpu aff_mask is migrated 12890 */ 12891 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12892 aff_mask = lpfc_get_aff_mask(idx); 12893 12894 /* Migrate affinity */ 12895 if (cpumask_test_cpu(cpu, aff_mask)) 12896 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12897 cpu_select); 12898 } 12899 } else { 12900 /* Rely on irqbalance if no online CPUs left on NUMA */ 12901 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12902 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12903 } 12904 } else { 12905 /* Migrate affinity back to this CPU */ 12906 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12907 } 12908 } 12909 12910 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12911 { 12912 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12913 struct lpfc_queue *eq, *next; 12914 LIST_HEAD(eqlist); 12915 int retval; 12916 12917 if (!phba) { 12918 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12919 return 0; 12920 } 12921 12922 if (__lpfc_cpuhp_checks(phba, &retval)) 12923 return retval; 12924 12925 lpfc_irq_rebalance(phba, cpu, true); 12926 12927 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12928 if (retval) 12929 return retval; 12930 12931 /* start polling on these eq's */ 12932 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12933 list_del_init(&eq->_poll_list); 12934 lpfc_sli4_start_polling(eq); 12935 } 12936 12937 return 0; 12938 } 12939 12940 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12941 { 12942 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12943 struct lpfc_queue *eq, *next; 12944 unsigned int n; 12945 int retval; 12946 12947 if (!phba) { 12948 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12949 return 0; 12950 } 12951 12952 if (__lpfc_cpuhp_checks(phba, &retval)) 12953 return retval; 12954 12955 lpfc_irq_rebalance(phba, cpu, false); 12956 12957 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12958 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12959 if (n == cpu) 12960 lpfc_sli4_stop_polling(eq); 12961 } 12962 12963 return 0; 12964 } 12965 12966 /** 12967 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12968 * @phba: pointer to lpfc hba data structure. 12969 * 12970 * This routine is invoked to enable the MSI-X interrupt vectors to device 12971 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12972 * to cpus on the system. 12973 * 12974 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12975 * the number of cpus on the same numa node as this adapter. The vectors are 12976 * allocated without requesting OS affinity mapping. A vector will be 12977 * allocated and assigned to each online and offline cpu. If the cpu is 12978 * online, then affinity will be set to that cpu. If the cpu is offline, then 12979 * affinity will be set to the nearest peer cpu within the numa node that is 12980 * online. If there are no online cpus within the numa node, affinity is not 12981 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 12982 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 12983 * configured. 12984 * 12985 * If numa mode is not enabled and there is more than 1 vector allocated, then 12986 * the driver relies on the managed irq interface where the OS assigns vector to 12987 * cpu affinity. The driver will then use that affinity mapping to setup its 12988 * cpu mapping table. 12989 * 12990 * Return codes 12991 * 0 - successful 12992 * other values - error 12993 **/ 12994 static int 12995 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 12996 { 12997 int vectors, rc, index; 12998 char *name; 12999 const struct cpumask *aff_mask = NULL; 13000 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 13001 struct lpfc_vector_map_info *cpup; 13002 struct lpfc_hba_eq_hdl *eqhdl; 13003 const struct cpumask *maskp; 13004 unsigned int flags = PCI_IRQ_MSIX; 13005 13006 /* Set up MSI-X multi-message vectors */ 13007 vectors = phba->cfg_irq_chann; 13008 13009 if (phba->irq_chann_mode != NORMAL_MODE) 13010 aff_mask = &phba->sli4_hba.irq_aff_mask; 13011 13012 if (aff_mask) { 13013 cpu_cnt = cpumask_weight(aff_mask); 13014 vectors = min(phba->cfg_irq_chann, cpu_cnt); 13015 13016 /* cpu: iterates over aff_mask including offline or online 13017 * cpu_select: iterates over online aff_mask to set affinity 13018 */ 13019 cpu = cpumask_first(aff_mask); 13020 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13021 } else { 13022 flags |= PCI_IRQ_AFFINITY; 13023 } 13024 13025 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 13026 if (rc < 0) { 13027 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13028 "0484 PCI enable MSI-X failed (%d)\n", rc); 13029 goto vec_fail_out; 13030 } 13031 vectors = rc; 13032 13033 /* Assign MSI-X vectors to interrupt handlers */ 13034 for (index = 0; index < vectors; index++) { 13035 eqhdl = lpfc_get_eq_hdl(index); 13036 name = eqhdl->handler_name; 13037 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 13038 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 13039 LPFC_DRIVER_HANDLER_NAME"%d", index); 13040 13041 eqhdl->idx = index; 13042 rc = pci_irq_vector(phba->pcidev, index); 13043 if (rc < 0) { 13044 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13045 "0489 MSI-X fast-path (%d) " 13046 "pci_irq_vec failed (%d)\n", index, rc); 13047 goto cfg_fail_out; 13048 } 13049 eqhdl->irq = rc; 13050 13051 rc = request_threaded_irq(eqhdl->irq, 13052 &lpfc_sli4_hba_intr_handler, 13053 &lpfc_sli4_hba_intr_handler_th, 13054 IRQF_ONESHOT, name, eqhdl); 13055 if (rc) { 13056 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13057 "0486 MSI-X fast-path (%d) " 13058 "request_irq failed (%d)\n", index, rc); 13059 goto cfg_fail_out; 13060 } 13061 13062 if (aff_mask) { 13063 /* If found a neighboring online cpu, set affinity */ 13064 if (cpu_select < nr_cpu_ids) 13065 lpfc_irq_set_aff(eqhdl, cpu_select); 13066 13067 /* Assign EQ to cpu_map */ 13068 lpfc_assign_eq_map_info(phba, index, 13069 LPFC_CPU_FIRST_IRQ, 13070 cpu); 13071 13072 /* Iterate to next offline or online cpu in aff_mask */ 13073 cpu = cpumask_next(cpu, aff_mask); 13074 13075 /* Find next online cpu in aff_mask to set affinity */ 13076 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13077 } else if (vectors == 1) { 13078 cpu = cpumask_first(cpu_present_mask); 13079 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 13080 cpu); 13081 } else { 13082 maskp = pci_irq_get_affinity(phba->pcidev, index); 13083 13084 /* Loop through all CPUs associated with vector index */ 13085 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 13086 cpup = &phba->sli4_hba.cpu_map[cpu]; 13087 13088 /* If this is the first CPU thats assigned to 13089 * this vector, set LPFC_CPU_FIRST_IRQ. 13090 * 13091 * With certain platforms its possible that irq 13092 * vectors are affinitized to all the cpu's. 13093 * This can result in each cpu_map.eq to be set 13094 * to the last vector, resulting in overwrite 13095 * of all the previous cpu_map.eq. Ensure that 13096 * each vector receives a place in cpu_map. 13097 * Later call to lpfc_cpu_affinity_check will 13098 * ensure we are nicely balanced out. 13099 */ 13100 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13101 continue; 13102 lpfc_assign_eq_map_info(phba, index, 13103 LPFC_CPU_FIRST_IRQ, 13104 cpu); 13105 break; 13106 } 13107 } 13108 } 13109 13110 if (vectors != phba->cfg_irq_chann) { 13111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13112 "3238 Reducing IO channels to match number of " 13113 "MSI-X vectors, requested %d got %d\n", 13114 phba->cfg_irq_chann, vectors); 13115 if (phba->cfg_irq_chann > vectors) 13116 phba->cfg_irq_chann = vectors; 13117 } 13118 13119 return rc; 13120 13121 cfg_fail_out: 13122 /* free the irq already requested */ 13123 for (--index; index >= 0; index--) { 13124 eqhdl = lpfc_get_eq_hdl(index); 13125 lpfc_irq_clear_aff(eqhdl); 13126 free_irq(eqhdl->irq, eqhdl); 13127 } 13128 13129 /* Unconfigure MSI-X capability structure */ 13130 pci_free_irq_vectors(phba->pcidev); 13131 13132 vec_fail_out: 13133 return rc; 13134 } 13135 13136 /** 13137 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13138 * @phba: pointer to lpfc hba data structure. 13139 * 13140 * This routine is invoked to enable the MSI interrupt mode to device with 13141 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13142 * called to enable the MSI vector. The device driver is responsible for 13143 * calling the request_irq() to register MSI vector with a interrupt the 13144 * handler, which is done in this function. 13145 * 13146 * Return codes 13147 * 0 - successful 13148 * other values - error 13149 **/ 13150 static int 13151 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13152 { 13153 int rc, index; 13154 unsigned int cpu; 13155 struct lpfc_hba_eq_hdl *eqhdl; 13156 13157 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13158 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13159 if (rc > 0) 13160 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13161 "0487 PCI enable MSI mode success.\n"); 13162 else { 13163 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13164 "0488 PCI enable MSI mode failed (%d)\n", rc); 13165 return rc ? rc : -1; 13166 } 13167 13168 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13169 0, LPFC_DRIVER_NAME, phba); 13170 if (rc) { 13171 pci_free_irq_vectors(phba->pcidev); 13172 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13173 "0490 MSI request_irq failed (%d)\n", rc); 13174 return rc; 13175 } 13176 13177 eqhdl = lpfc_get_eq_hdl(0); 13178 rc = pci_irq_vector(phba->pcidev, 0); 13179 if (rc < 0) { 13180 pci_free_irq_vectors(phba->pcidev); 13181 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13182 "0496 MSI pci_irq_vec failed (%d)\n", rc); 13183 return rc; 13184 } 13185 eqhdl->irq = rc; 13186 13187 cpu = cpumask_first(cpu_present_mask); 13188 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13189 13190 for (index = 0; index < phba->cfg_irq_chann; index++) { 13191 eqhdl = lpfc_get_eq_hdl(index); 13192 eqhdl->idx = index; 13193 } 13194 13195 return 0; 13196 } 13197 13198 /** 13199 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13200 * @phba: pointer to lpfc hba data structure. 13201 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13202 * 13203 * This routine is invoked to enable device interrupt and associate driver's 13204 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13205 * interface spec. Depends on the interrupt mode configured to the driver, 13206 * the driver will try to fallback from the configured interrupt mode to an 13207 * interrupt mode which is supported by the platform, kernel, and device in 13208 * the order of: 13209 * MSI-X -> MSI -> IRQ. 13210 * 13211 * Return codes 13212 * Interrupt mode (2, 1, 0) - successful 13213 * LPFC_INTR_ERROR - error 13214 **/ 13215 static uint32_t 13216 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13217 { 13218 uint32_t intr_mode = LPFC_INTR_ERROR; 13219 int retval, idx; 13220 13221 if (cfg_mode == 2) { 13222 /* Preparation before conf_msi mbox cmd */ 13223 retval = 0; 13224 if (!retval) { 13225 /* Now, try to enable MSI-X interrupt mode */ 13226 retval = lpfc_sli4_enable_msix(phba); 13227 if (!retval) { 13228 /* Indicate initialization to MSI-X mode */ 13229 phba->intr_type = MSIX; 13230 intr_mode = 2; 13231 } 13232 } 13233 } 13234 13235 /* Fallback to MSI if MSI-X initialization failed */ 13236 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13237 retval = lpfc_sli4_enable_msi(phba); 13238 if (!retval) { 13239 /* Indicate initialization to MSI mode */ 13240 phba->intr_type = MSI; 13241 intr_mode = 1; 13242 } 13243 } 13244 13245 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13246 if (phba->intr_type == NONE) { 13247 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13248 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13249 if (!retval) { 13250 struct lpfc_hba_eq_hdl *eqhdl; 13251 unsigned int cpu; 13252 13253 /* Indicate initialization to INTx mode */ 13254 phba->intr_type = INTx; 13255 intr_mode = 0; 13256 13257 eqhdl = lpfc_get_eq_hdl(0); 13258 retval = pci_irq_vector(phba->pcidev, 0); 13259 if (retval < 0) { 13260 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13261 "0502 INTR pci_irq_vec failed (%d)\n", 13262 retval); 13263 return LPFC_INTR_ERROR; 13264 } 13265 eqhdl->irq = retval; 13266 13267 cpu = cpumask_first(cpu_present_mask); 13268 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13269 cpu); 13270 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13271 eqhdl = lpfc_get_eq_hdl(idx); 13272 eqhdl->idx = idx; 13273 } 13274 } 13275 } 13276 return intr_mode; 13277 } 13278 13279 /** 13280 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13281 * @phba: pointer to lpfc hba data structure. 13282 * 13283 * This routine is invoked to disable device interrupt and disassociate 13284 * the driver's interrupt handler(s) from interrupt vector(s) to device 13285 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13286 * will release the interrupt vector(s) for the message signaled interrupt. 13287 **/ 13288 static void 13289 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13290 { 13291 /* Disable the currently initialized interrupt mode */ 13292 if (phba->intr_type == MSIX) { 13293 int index; 13294 struct lpfc_hba_eq_hdl *eqhdl; 13295 13296 /* Free up MSI-X multi-message vectors */ 13297 for (index = 0; index < phba->cfg_irq_chann; index++) { 13298 eqhdl = lpfc_get_eq_hdl(index); 13299 lpfc_irq_clear_aff(eqhdl); 13300 free_irq(eqhdl->irq, eqhdl); 13301 } 13302 } else { 13303 free_irq(phba->pcidev->irq, phba); 13304 } 13305 13306 pci_free_irq_vectors(phba->pcidev); 13307 13308 /* Reset interrupt management states */ 13309 phba->intr_type = NONE; 13310 phba->sli.slistat.sli_intr = 0; 13311 } 13312 13313 /** 13314 * lpfc_unset_hba - Unset SLI3 hba device initialization 13315 * @phba: pointer to lpfc hba data structure. 13316 * 13317 * This routine is invoked to unset the HBA device initialization steps to 13318 * a device with SLI-3 interface spec. 13319 **/ 13320 static void 13321 lpfc_unset_hba(struct lpfc_hba *phba) 13322 { 13323 struct lpfc_vport *vport = phba->pport; 13324 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 13325 13326 spin_lock_irq(shost->host_lock); 13327 vport->load_flag |= FC_UNLOADING; 13328 spin_unlock_irq(shost->host_lock); 13329 13330 kfree(phba->vpi_bmask); 13331 kfree(phba->vpi_ids); 13332 13333 lpfc_stop_hba_timers(phba); 13334 13335 phba->pport->work_port_events = 0; 13336 13337 lpfc_sli_hba_down(phba); 13338 13339 lpfc_sli_brdrestart(phba); 13340 13341 lpfc_sli_disable_intr(phba); 13342 13343 return; 13344 } 13345 13346 /** 13347 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13348 * @phba: Pointer to HBA context object. 13349 * 13350 * This function is called in the SLI4 code path to wait for completion 13351 * of device's XRIs exchange busy. It will check the XRI exchange busy 13352 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13353 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13354 * I/Os every 30 seconds, log error message, and wait forever. Only when 13355 * all XRI exchange busy complete, the driver unload shall proceed with 13356 * invoking the function reset ioctl mailbox command to the CNA and the 13357 * the rest of the driver unload resource release. 13358 **/ 13359 static void 13360 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13361 { 13362 struct lpfc_sli4_hdw_queue *qp; 13363 int idx, ccnt; 13364 int wait_time = 0; 13365 int io_xri_cmpl = 1; 13366 int nvmet_xri_cmpl = 1; 13367 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13368 13369 /* Driver just aborted IOs during the hba_unset process. Pause 13370 * here to give the HBA time to complete the IO and get entries 13371 * into the abts lists. 13372 */ 13373 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13374 13375 /* Wait for NVME pending IO to flush back to transport. */ 13376 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13377 lpfc_nvme_wait_for_io_drain(phba); 13378 13379 ccnt = 0; 13380 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13381 qp = &phba->sli4_hba.hdwq[idx]; 13382 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13383 if (!io_xri_cmpl) /* if list is NOT empty */ 13384 ccnt++; 13385 } 13386 if (ccnt) 13387 io_xri_cmpl = 0; 13388 13389 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13390 nvmet_xri_cmpl = 13391 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13392 } 13393 13394 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13395 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13396 if (!nvmet_xri_cmpl) 13397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13398 "6424 NVMET XRI exchange busy " 13399 "wait time: %d seconds.\n", 13400 wait_time/1000); 13401 if (!io_xri_cmpl) 13402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13403 "6100 IO XRI exchange busy " 13404 "wait time: %d seconds.\n", 13405 wait_time/1000); 13406 if (!els_xri_cmpl) 13407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13408 "2878 ELS XRI exchange busy " 13409 "wait time: %d seconds.\n", 13410 wait_time/1000); 13411 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13412 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13413 } else { 13414 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13415 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13416 } 13417 13418 ccnt = 0; 13419 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13420 qp = &phba->sli4_hba.hdwq[idx]; 13421 io_xri_cmpl = list_empty( 13422 &qp->lpfc_abts_io_buf_list); 13423 if (!io_xri_cmpl) /* if list is NOT empty */ 13424 ccnt++; 13425 } 13426 if (ccnt) 13427 io_xri_cmpl = 0; 13428 13429 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13430 nvmet_xri_cmpl = list_empty( 13431 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13432 } 13433 els_xri_cmpl = 13434 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13435 13436 } 13437 } 13438 13439 /** 13440 * lpfc_sli4_hba_unset - Unset the fcoe hba 13441 * @phba: Pointer to HBA context object. 13442 * 13443 * This function is called in the SLI4 code path to reset the HBA's FCoE 13444 * function. The caller is not required to hold any lock. This routine 13445 * issues PCI function reset mailbox command to reset the FCoE function. 13446 * At the end of the function, it calls lpfc_hba_down_post function to 13447 * free any pending commands. 13448 **/ 13449 static void 13450 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13451 { 13452 int wait_cnt = 0; 13453 LPFC_MBOXQ_t *mboxq; 13454 struct pci_dev *pdev = phba->pcidev; 13455 13456 lpfc_stop_hba_timers(phba); 13457 hrtimer_cancel(&phba->cmf_stats_timer); 13458 hrtimer_cancel(&phba->cmf_timer); 13459 13460 if (phba->pport) 13461 phba->sli4_hba.intr_enable = 0; 13462 13463 /* 13464 * Gracefully wait out the potential current outstanding asynchronous 13465 * mailbox command. 13466 */ 13467 13468 /* First, block any pending async mailbox command from posted */ 13469 spin_lock_irq(&phba->hbalock); 13470 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13471 spin_unlock_irq(&phba->hbalock); 13472 /* Now, trying to wait it out if we can */ 13473 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13474 msleep(10); 13475 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13476 break; 13477 } 13478 /* Forcefully release the outstanding mailbox command if timed out */ 13479 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13480 spin_lock_irq(&phba->hbalock); 13481 mboxq = phba->sli.mbox_active; 13482 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13483 __lpfc_mbox_cmpl_put(phba, mboxq); 13484 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13485 phba->sli.mbox_active = NULL; 13486 spin_unlock_irq(&phba->hbalock); 13487 } 13488 13489 /* Abort all iocbs associated with the hba */ 13490 lpfc_sli_hba_iocb_abort(phba); 13491 13492 if (!pci_channel_offline(phba->pcidev)) 13493 /* Wait for completion of device XRI exchange busy */ 13494 lpfc_sli4_xri_exchange_busy_wait(phba); 13495 13496 /* per-phba callback de-registration for hotplug event */ 13497 if (phba->pport) 13498 lpfc_cpuhp_remove(phba); 13499 13500 /* Disable PCI subsystem interrupt */ 13501 lpfc_sli4_disable_intr(phba); 13502 13503 /* Disable SR-IOV if enabled */ 13504 if (phba->cfg_sriov_nr_virtfn) 13505 pci_disable_sriov(pdev); 13506 13507 /* Stop kthread signal shall trigger work_done one more time */ 13508 kthread_stop(phba->worker_thread); 13509 13510 /* Disable FW logging to host memory */ 13511 lpfc_ras_stop_fwlog(phba); 13512 13513 /* Reset SLI4 HBA FCoE function */ 13514 lpfc_pci_function_reset(phba); 13515 13516 /* release all queue allocated resources. */ 13517 lpfc_sli4_queue_destroy(phba); 13518 13519 /* Free RAS DMA memory */ 13520 if (phba->ras_fwlog.ras_enabled) 13521 lpfc_sli4_ras_dma_free(phba); 13522 13523 /* Stop the SLI4 device port */ 13524 if (phba->pport) 13525 phba->pport->work_port_events = 0; 13526 } 13527 13528 static uint32_t 13529 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13530 { 13531 uint32_t msb = 0; 13532 uint32_t bit; 13533 13534 for (bit = 0; bit < 8; bit++) { 13535 msb = (crc >> 31) & 1; 13536 crc <<= 1; 13537 13538 if (msb ^ (byte & 1)) { 13539 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13540 crc |= 1; 13541 } 13542 byte >>= 1; 13543 } 13544 return crc; 13545 } 13546 13547 static uint32_t 13548 lpfc_cgn_reverse_bits(uint32_t wd) 13549 { 13550 uint32_t result = 0; 13551 uint32_t i; 13552 13553 for (i = 0; i < 32; i++) { 13554 result <<= 1; 13555 result |= (1 & (wd >> i)); 13556 } 13557 return result; 13558 } 13559 13560 /* 13561 * The routine corresponds with the algorithm the HBA firmware 13562 * uses to validate the data integrity. 13563 */ 13564 uint32_t 13565 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13566 { 13567 uint32_t i; 13568 uint32_t result; 13569 uint8_t *data = (uint8_t *)ptr; 13570 13571 for (i = 0; i < byteLen; ++i) 13572 crc = lpfc_cgn_crc32(crc, data[i]); 13573 13574 result = ~lpfc_cgn_reverse_bits(crc); 13575 return result; 13576 } 13577 13578 void 13579 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13580 { 13581 struct lpfc_cgn_info *cp; 13582 uint16_t size; 13583 uint32_t crc; 13584 13585 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13586 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13587 13588 if (!phba->cgn_i) 13589 return; 13590 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13591 13592 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13593 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13594 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13595 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13596 13597 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13598 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13599 atomic64_set(&phba->cgn_latency_evt, 0); 13600 phba->cgn_evt_minute = 0; 13601 13602 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13603 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13604 cp->cgn_info_version = LPFC_CGN_INFO_V4; 13605 13606 /* cgn parameters */ 13607 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13608 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13609 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13610 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13611 13612 lpfc_cgn_update_tstamp(phba, &cp->base_time); 13613 13614 /* Fill in default LUN qdepth */ 13615 if (phba->pport) { 13616 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13617 cp->cgn_lunq = cpu_to_le16(size); 13618 } 13619 13620 /* last used Index initialized to 0xff already */ 13621 13622 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13623 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13624 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13625 cp->cgn_info_crc = cpu_to_le32(crc); 13626 13627 phba->cgn_evt_timestamp = jiffies + 13628 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13629 } 13630 13631 void 13632 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13633 { 13634 struct lpfc_cgn_info *cp; 13635 uint32_t crc; 13636 13637 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13638 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13639 13640 if (!phba->cgn_i) 13641 return; 13642 13643 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13644 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13645 13646 lpfc_cgn_update_tstamp(phba, &cp->stat_start); 13647 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13648 cp->cgn_info_crc = cpu_to_le32(crc); 13649 } 13650 13651 /** 13652 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13653 * @phba: Pointer to hba context object. 13654 * @reg: flag to determine register or unregister. 13655 */ 13656 static int 13657 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13658 { 13659 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13660 union lpfc_sli4_cfg_shdr *shdr; 13661 uint32_t shdr_status, shdr_add_status; 13662 LPFC_MBOXQ_t *mboxq; 13663 int length, rc; 13664 13665 if (!phba->cgn_i) 13666 return -ENXIO; 13667 13668 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13669 if (!mboxq) { 13670 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13671 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13672 "HBA state x%x reg %d\n", 13673 phba->pport->port_state, reg); 13674 return -ENOMEM; 13675 } 13676 13677 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13678 sizeof(struct lpfc_sli4_cfg_mhdr)); 13679 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13680 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13681 LPFC_SLI4_MBX_EMBED); 13682 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13683 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13684 if (reg > 0) 13685 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13686 else 13687 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13688 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13689 reg_congestion_buf->addr_lo = 13690 putPaddrLow(phba->cgn_i->phys); 13691 reg_congestion_buf->addr_hi = 13692 putPaddrHigh(phba->cgn_i->phys); 13693 13694 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13695 shdr = (union lpfc_sli4_cfg_shdr *) 13696 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13697 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13698 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13699 &shdr->response); 13700 mempool_free(mboxq, phba->mbox_mem_pool); 13701 if (shdr_status || shdr_add_status || rc) { 13702 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13703 "2642 REG_CONGESTION_BUF mailbox " 13704 "failed with status x%x add_status x%x," 13705 " mbx status x%x reg %d\n", 13706 shdr_status, shdr_add_status, rc, reg); 13707 return -ENXIO; 13708 } 13709 return 0; 13710 } 13711 13712 int 13713 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13714 { 13715 lpfc_cmf_stop(phba); 13716 return __lpfc_reg_congestion_buf(phba, 0); 13717 } 13718 13719 int 13720 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13721 { 13722 return __lpfc_reg_congestion_buf(phba, 1); 13723 } 13724 13725 /** 13726 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13727 * @phba: Pointer to HBA context object. 13728 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13729 * 13730 * This function is called in the SLI4 code path to read the port's 13731 * sli4 capabilities. 13732 * 13733 * This function may be be called from any context that can block-wait 13734 * for the completion. The expectation is that this routine is called 13735 * typically from probe_one or from the online routine. 13736 **/ 13737 int 13738 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13739 { 13740 int rc; 13741 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13742 struct lpfc_pc_sli4_params *sli4_params; 13743 uint32_t mbox_tmo; 13744 int length; 13745 bool exp_wqcq_pages = true; 13746 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13747 13748 /* 13749 * By default, the driver assumes the SLI4 port requires RPI 13750 * header postings. The SLI4_PARAM response will correct this 13751 * assumption. 13752 */ 13753 phba->sli4_hba.rpi_hdrs_in_use = 1; 13754 13755 /* Read the port's SLI4 Config Parameters */ 13756 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13757 sizeof(struct lpfc_sli4_cfg_mhdr)); 13758 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13759 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13760 length, LPFC_SLI4_MBX_EMBED); 13761 if (!phba->sli4_hba.intr_enable) 13762 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13763 else { 13764 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13765 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13766 } 13767 if (unlikely(rc)) 13768 return rc; 13769 sli4_params = &phba->sli4_hba.pc_sli4_params; 13770 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13771 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13772 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13773 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13774 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13775 mbx_sli4_parameters); 13776 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13777 mbx_sli4_parameters); 13778 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13779 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13780 else 13781 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13782 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13783 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13784 mbx_sli4_parameters); 13785 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13786 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13787 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13788 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13789 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13790 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13791 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13792 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13793 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13794 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13795 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13796 mbx_sli4_parameters); 13797 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13798 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13799 mbx_sli4_parameters); 13800 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13801 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13802 sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); 13803 13804 /* Check for Extended Pre-Registered SGL support */ 13805 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13806 13807 /* Check for firmware nvme support */ 13808 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13809 bf_get(cfg_xib, mbx_sli4_parameters)); 13810 13811 if (rc) { 13812 /* Save this to indicate the Firmware supports NVME */ 13813 sli4_params->nvme = 1; 13814 13815 /* Firmware NVME support, check driver FC4 NVME support */ 13816 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13817 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13818 "6133 Disabling NVME support: " 13819 "FC4 type not supported: x%x\n", 13820 phba->cfg_enable_fc4_type); 13821 goto fcponly; 13822 } 13823 } else { 13824 /* No firmware NVME support, check driver FC4 NVME support */ 13825 sli4_params->nvme = 0; 13826 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13827 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13828 "6101 Disabling NVME support: Not " 13829 "supported by firmware (%d %d) x%x\n", 13830 bf_get(cfg_nvme, mbx_sli4_parameters), 13831 bf_get(cfg_xib, mbx_sli4_parameters), 13832 phba->cfg_enable_fc4_type); 13833 fcponly: 13834 phba->nvmet_support = 0; 13835 phba->cfg_nvmet_mrq = 0; 13836 phba->cfg_nvme_seg_cnt = 0; 13837 13838 /* If no FC4 type support, move to just SCSI support */ 13839 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13840 return -ENODEV; 13841 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13842 } 13843 } 13844 13845 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13846 * accommodate 512K and 1M IOs in a single nvme buf. 13847 */ 13848 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13849 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13850 13851 /* Enable embedded Payload BDE if support is indicated */ 13852 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13853 phba->cfg_enable_pbde = 1; 13854 else 13855 phba->cfg_enable_pbde = 0; 13856 13857 /* 13858 * To support Suppress Response feature we must satisfy 3 conditions. 13859 * lpfc_suppress_rsp module parameter must be set (default). 13860 * In SLI4-Parameters Descriptor: 13861 * Extended Inline Buffers (XIB) must be supported. 13862 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13863 * (double negative). 13864 */ 13865 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13866 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13867 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13868 else 13869 phba->cfg_suppress_rsp = 0; 13870 13871 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13872 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13873 13874 /* Make sure that sge_supp_len can be handled by the driver */ 13875 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13876 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13877 13878 rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len); 13879 if (unlikely(rc)) { 13880 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13881 "6400 Can't set dma maximum segment size\n"); 13882 return rc; 13883 } 13884 13885 /* 13886 * Check whether the adapter supports an embedded copy of the 13887 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13888 * to use this option, 128-byte WQEs must be used. 13889 */ 13890 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13891 phba->fcp_embed_io = 1; 13892 else 13893 phba->fcp_embed_io = 0; 13894 13895 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13896 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13897 bf_get(cfg_xib, mbx_sli4_parameters), 13898 phba->cfg_enable_pbde, 13899 phba->fcp_embed_io, sli4_params->nvme, 13900 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13901 13902 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13903 LPFC_SLI_INTF_IF_TYPE_2) && 13904 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13905 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13906 exp_wqcq_pages = false; 13907 13908 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13909 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13910 exp_wqcq_pages && 13911 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13912 phba->enab_exp_wqcq_pages = 1; 13913 else 13914 phba->enab_exp_wqcq_pages = 0; 13915 /* 13916 * Check if the SLI port supports MDS Diagnostics 13917 */ 13918 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13919 phba->mds_diags_support = 1; 13920 else 13921 phba->mds_diags_support = 0; 13922 13923 /* 13924 * Check if the SLI port supports NSLER 13925 */ 13926 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13927 phba->nsler = 1; 13928 else 13929 phba->nsler = 0; 13930 13931 return 0; 13932 } 13933 13934 /** 13935 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13936 * @pdev: pointer to PCI device 13937 * @pid: pointer to PCI device identifier 13938 * 13939 * This routine is to be called to attach a device with SLI-3 interface spec 13940 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13941 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13942 * information of the device and driver to see if the driver state that it can 13943 * support this kind of device. If the match is successful, the driver core 13944 * invokes this routine. If this routine determines it can claim the HBA, it 13945 * does all the initialization that it needs to do to handle the HBA properly. 13946 * 13947 * Return code 13948 * 0 - driver can claim the device 13949 * negative value - driver can not claim the device 13950 **/ 13951 static int 13952 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13953 { 13954 struct lpfc_hba *phba; 13955 struct lpfc_vport *vport = NULL; 13956 struct Scsi_Host *shost = NULL; 13957 int error; 13958 uint32_t cfg_mode, intr_mode; 13959 13960 /* Allocate memory for HBA structure */ 13961 phba = lpfc_hba_alloc(pdev); 13962 if (!phba) 13963 return -ENOMEM; 13964 13965 /* Perform generic PCI device enabling operation */ 13966 error = lpfc_enable_pci_dev(phba); 13967 if (error) 13968 goto out_free_phba; 13969 13970 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13971 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13972 if (error) 13973 goto out_disable_pci_dev; 13974 13975 /* Set up SLI-3 specific device PCI memory space */ 13976 error = lpfc_sli_pci_mem_setup(phba); 13977 if (error) { 13978 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13979 "1402 Failed to set up pci memory space.\n"); 13980 goto out_disable_pci_dev; 13981 } 13982 13983 /* Set up SLI-3 specific device driver resources */ 13984 error = lpfc_sli_driver_resource_setup(phba); 13985 if (error) { 13986 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13987 "1404 Failed to set up driver resource.\n"); 13988 goto out_unset_pci_mem_s3; 13989 } 13990 13991 /* Initialize and populate the iocb list per host */ 13992 13993 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 13994 if (error) { 13995 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13996 "1405 Failed to initialize iocb list.\n"); 13997 goto out_unset_driver_resource_s3; 13998 } 13999 14000 /* Set up common device driver resources */ 14001 error = lpfc_setup_driver_resource_phase2(phba); 14002 if (error) { 14003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14004 "1406 Failed to set up driver resource.\n"); 14005 goto out_free_iocb_list; 14006 } 14007 14008 /* Get the default values for Model Name and Description */ 14009 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14010 14011 /* Create SCSI host to the physical port */ 14012 error = lpfc_create_shost(phba); 14013 if (error) { 14014 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14015 "1407 Failed to create scsi host.\n"); 14016 goto out_unset_driver_resource; 14017 } 14018 14019 /* Configure sysfs attributes */ 14020 vport = phba->pport; 14021 error = lpfc_alloc_sysfs_attr(vport); 14022 if (error) { 14023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14024 "1476 Failed to allocate sysfs attr\n"); 14025 goto out_destroy_shost; 14026 } 14027 14028 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14029 /* Now, trying to enable interrupt and bring up the device */ 14030 cfg_mode = phba->cfg_use_msi; 14031 while (true) { 14032 /* Put device to a known state before enabling interrupt */ 14033 lpfc_stop_port(phba); 14034 /* Configure and enable interrupt */ 14035 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 14036 if (intr_mode == LPFC_INTR_ERROR) { 14037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14038 "0431 Failed to enable interrupt.\n"); 14039 error = -ENODEV; 14040 goto out_free_sysfs_attr; 14041 } 14042 /* SLI-3 HBA setup */ 14043 if (lpfc_sli_hba_setup(phba)) { 14044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14045 "1477 Failed to set up hba\n"); 14046 error = -ENODEV; 14047 goto out_remove_device; 14048 } 14049 14050 /* Wait 50ms for the interrupts of previous mailbox commands */ 14051 msleep(50); 14052 /* Check active interrupts on message signaled interrupts */ 14053 if (intr_mode == 0 || 14054 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 14055 /* Log the current active interrupt mode */ 14056 phba->intr_mode = intr_mode; 14057 lpfc_log_intr_mode(phba, intr_mode); 14058 break; 14059 } else { 14060 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14061 "0447 Configure interrupt mode (%d) " 14062 "failed active interrupt test.\n", 14063 intr_mode); 14064 /* Disable the current interrupt mode */ 14065 lpfc_sli_disable_intr(phba); 14066 /* Try next level of interrupt mode */ 14067 cfg_mode = --intr_mode; 14068 } 14069 } 14070 14071 /* Perform post initialization setup */ 14072 lpfc_post_init_setup(phba); 14073 14074 /* Check if there are static vports to be created. */ 14075 lpfc_create_static_vport(phba); 14076 14077 return 0; 14078 14079 out_remove_device: 14080 lpfc_unset_hba(phba); 14081 out_free_sysfs_attr: 14082 lpfc_free_sysfs_attr(vport); 14083 out_destroy_shost: 14084 lpfc_destroy_shost(phba); 14085 out_unset_driver_resource: 14086 lpfc_unset_driver_resource_phase2(phba); 14087 out_free_iocb_list: 14088 lpfc_free_iocb_list(phba); 14089 out_unset_driver_resource_s3: 14090 lpfc_sli_driver_resource_unset(phba); 14091 out_unset_pci_mem_s3: 14092 lpfc_sli_pci_mem_unset(phba); 14093 out_disable_pci_dev: 14094 lpfc_disable_pci_dev(phba); 14095 if (shost) 14096 scsi_host_put(shost); 14097 out_free_phba: 14098 lpfc_hba_free(phba); 14099 return error; 14100 } 14101 14102 /** 14103 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14104 * @pdev: pointer to PCI device 14105 * 14106 * This routine is to be called to disattach a device with SLI-3 interface 14107 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14108 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14109 * device to be removed from the PCI subsystem properly. 14110 **/ 14111 static void 14112 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14113 { 14114 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14115 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14116 struct lpfc_vport **vports; 14117 struct lpfc_hba *phba = vport->phba; 14118 int i; 14119 14120 spin_lock_irq(&phba->hbalock); 14121 vport->load_flag |= FC_UNLOADING; 14122 spin_unlock_irq(&phba->hbalock); 14123 14124 lpfc_free_sysfs_attr(vport); 14125 14126 /* Release all the vports against this physical port */ 14127 vports = lpfc_create_vport_work_array(phba); 14128 if (vports != NULL) 14129 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14130 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14131 continue; 14132 fc_vport_terminate(vports[i]->fc_vport); 14133 } 14134 lpfc_destroy_vport_work_array(phba, vports); 14135 14136 /* Remove FC host with the physical port */ 14137 fc_remove_host(shost); 14138 scsi_remove_host(shost); 14139 14140 /* Clean up all nodes, mailboxes and IOs. */ 14141 lpfc_cleanup(vport); 14142 14143 /* 14144 * Bring down the SLI Layer. This step disable all interrupts, 14145 * clears the rings, discards all mailbox commands, and resets 14146 * the HBA. 14147 */ 14148 14149 /* HBA interrupt will be disabled after this call */ 14150 lpfc_sli_hba_down(phba); 14151 /* Stop kthread signal shall trigger work_done one more time */ 14152 kthread_stop(phba->worker_thread); 14153 /* Final cleanup of txcmplq and reset the HBA */ 14154 lpfc_sli_brdrestart(phba); 14155 14156 kfree(phba->vpi_bmask); 14157 kfree(phba->vpi_ids); 14158 14159 lpfc_stop_hba_timers(phba); 14160 spin_lock_irq(&phba->port_list_lock); 14161 list_del_init(&vport->listentry); 14162 spin_unlock_irq(&phba->port_list_lock); 14163 14164 lpfc_debugfs_terminate(vport); 14165 14166 /* Disable SR-IOV if enabled */ 14167 if (phba->cfg_sriov_nr_virtfn) 14168 pci_disable_sriov(pdev); 14169 14170 /* Disable interrupt */ 14171 lpfc_sli_disable_intr(phba); 14172 14173 scsi_host_put(shost); 14174 14175 /* 14176 * Call scsi_free before mem_free since scsi bufs are released to their 14177 * corresponding pools here. 14178 */ 14179 lpfc_scsi_free(phba); 14180 lpfc_free_iocb_list(phba); 14181 14182 lpfc_mem_free_all(phba); 14183 14184 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14185 phba->hbqslimp.virt, phba->hbqslimp.phys); 14186 14187 /* Free resources associated with SLI2 interface */ 14188 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14189 phba->slim2p.virt, phba->slim2p.phys); 14190 14191 /* unmap adapter SLIM and Control Registers */ 14192 iounmap(phba->ctrl_regs_memmap_p); 14193 iounmap(phba->slim_memmap_p); 14194 14195 lpfc_hba_free(phba); 14196 14197 pci_release_mem_regions(pdev); 14198 pci_disable_device(pdev); 14199 } 14200 14201 /** 14202 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14203 * @dev_d: pointer to device 14204 * 14205 * This routine is to be called from the kernel's PCI subsystem to support 14206 * system Power Management (PM) to device with SLI-3 interface spec. When 14207 * PM invokes this method, it quiesces the device by stopping the driver's 14208 * worker thread for the device, turning off device's interrupt and DMA, 14209 * and bring the device offline. Note that as the driver implements the 14210 * minimum PM requirements to a power-aware driver's PM support for the 14211 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14212 * to the suspend() method call will be treated as SUSPEND and the driver will 14213 * fully reinitialize its device during resume() method call, the driver will 14214 * set device to PCI_D3hot state in PCI config space instead of setting it 14215 * according to the @msg provided by the PM. 14216 * 14217 * Return code 14218 * 0 - driver suspended the device 14219 * Error otherwise 14220 **/ 14221 static int __maybe_unused 14222 lpfc_pci_suspend_one_s3(struct device *dev_d) 14223 { 14224 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14225 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14226 14227 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14228 "0473 PCI device Power Management suspend.\n"); 14229 14230 /* Bring down the device */ 14231 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14232 lpfc_offline(phba); 14233 kthread_stop(phba->worker_thread); 14234 14235 /* Disable interrupt from device */ 14236 lpfc_sli_disable_intr(phba); 14237 14238 return 0; 14239 } 14240 14241 /** 14242 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14243 * @dev_d: pointer to device 14244 * 14245 * This routine is to be called from the kernel's PCI subsystem to support 14246 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14247 * invokes this method, it restores the device's PCI config space state and 14248 * fully reinitializes the device and brings it online. Note that as the 14249 * driver implements the minimum PM requirements to a power-aware driver's 14250 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14251 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14252 * driver will fully reinitialize its device during resume() method call, 14253 * the device will be set to PCI_D0 directly in PCI config space before 14254 * restoring the state. 14255 * 14256 * Return code 14257 * 0 - driver suspended the device 14258 * Error otherwise 14259 **/ 14260 static int __maybe_unused 14261 lpfc_pci_resume_one_s3(struct device *dev_d) 14262 { 14263 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14264 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14265 uint32_t intr_mode; 14266 int error; 14267 14268 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14269 "0452 PCI device Power Management resume.\n"); 14270 14271 /* Startup the kernel thread for this host adapter. */ 14272 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14273 "lpfc_worker_%d", phba->brd_no); 14274 if (IS_ERR(phba->worker_thread)) { 14275 error = PTR_ERR(phba->worker_thread); 14276 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14277 "0434 PM resume failed to start worker " 14278 "thread: error=x%x.\n", error); 14279 return error; 14280 } 14281 14282 /* Init cpu_map array */ 14283 lpfc_cpu_map_array_init(phba); 14284 /* Init hba_eq_hdl array */ 14285 lpfc_hba_eq_hdl_array_init(phba); 14286 /* Configure and enable interrupt */ 14287 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14288 if (intr_mode == LPFC_INTR_ERROR) { 14289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14290 "0430 PM resume Failed to enable interrupt\n"); 14291 return -EIO; 14292 } else 14293 phba->intr_mode = intr_mode; 14294 14295 /* Restart HBA and bring it online */ 14296 lpfc_sli_brdrestart(phba); 14297 lpfc_online(phba); 14298 14299 /* Log the current active interrupt mode */ 14300 lpfc_log_intr_mode(phba, phba->intr_mode); 14301 14302 return 0; 14303 } 14304 14305 /** 14306 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14307 * @phba: pointer to lpfc hba data structure. 14308 * 14309 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14310 * aborts all the outstanding SCSI I/Os to the pci device. 14311 **/ 14312 static void 14313 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14314 { 14315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14316 "2723 PCI channel I/O abort preparing for recovery\n"); 14317 14318 /* 14319 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14320 * and let the SCSI mid-layer to retry them to recover. 14321 */ 14322 lpfc_sli_abort_fcp_rings(phba); 14323 } 14324 14325 /** 14326 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14327 * @phba: pointer to lpfc hba data structure. 14328 * 14329 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14330 * disables the device interrupt and pci device, and aborts the internal FCP 14331 * pending I/Os. 14332 **/ 14333 static void 14334 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14335 { 14336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14337 "2710 PCI channel disable preparing for reset\n"); 14338 14339 /* Block any management I/Os to the device */ 14340 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14341 14342 /* Block all SCSI devices' I/Os on the host */ 14343 lpfc_scsi_dev_block(phba); 14344 14345 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14346 lpfc_sli_flush_io_rings(phba); 14347 14348 /* stop all timers */ 14349 lpfc_stop_hba_timers(phba); 14350 14351 /* Disable interrupt and pci device */ 14352 lpfc_sli_disable_intr(phba); 14353 pci_disable_device(phba->pcidev); 14354 } 14355 14356 /** 14357 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14358 * @phba: pointer to lpfc hba data structure. 14359 * 14360 * This routine is called to prepare the SLI3 device for PCI slot permanently 14361 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14362 * pending I/Os. 14363 **/ 14364 static void 14365 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14366 { 14367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14368 "2711 PCI channel permanent disable for failure\n"); 14369 /* Block all SCSI devices' I/Os on the host */ 14370 lpfc_scsi_dev_block(phba); 14371 lpfc_sli4_prep_dev_for_reset(phba); 14372 14373 /* stop all timers */ 14374 lpfc_stop_hba_timers(phba); 14375 14376 /* Clean up all driver's outstanding SCSI I/Os */ 14377 lpfc_sli_flush_io_rings(phba); 14378 } 14379 14380 /** 14381 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14382 * @pdev: pointer to PCI device. 14383 * @state: the current PCI connection state. 14384 * 14385 * This routine is called from the PCI subsystem for I/O error handling to 14386 * device with SLI-3 interface spec. This function is called by the PCI 14387 * subsystem after a PCI bus error affecting this device has been detected. 14388 * When this function is invoked, it will need to stop all the I/Os and 14389 * interrupt(s) to the device. Once that is done, it will return 14390 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14391 * as desired. 14392 * 14393 * Return codes 14394 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14395 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14396 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14397 **/ 14398 static pci_ers_result_t 14399 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14400 { 14401 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14402 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14403 14404 switch (state) { 14405 case pci_channel_io_normal: 14406 /* Non-fatal error, prepare for recovery */ 14407 lpfc_sli_prep_dev_for_recover(phba); 14408 return PCI_ERS_RESULT_CAN_RECOVER; 14409 case pci_channel_io_frozen: 14410 /* Fatal error, prepare for slot reset */ 14411 lpfc_sli_prep_dev_for_reset(phba); 14412 return PCI_ERS_RESULT_NEED_RESET; 14413 case pci_channel_io_perm_failure: 14414 /* Permanent failure, prepare for device down */ 14415 lpfc_sli_prep_dev_for_perm_failure(phba); 14416 return PCI_ERS_RESULT_DISCONNECT; 14417 default: 14418 /* Unknown state, prepare and request slot reset */ 14419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14420 "0472 Unknown PCI error state: x%x\n", state); 14421 lpfc_sli_prep_dev_for_reset(phba); 14422 return PCI_ERS_RESULT_NEED_RESET; 14423 } 14424 } 14425 14426 /** 14427 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14428 * @pdev: pointer to PCI device. 14429 * 14430 * This routine is called from the PCI subsystem for error handling to 14431 * device with SLI-3 interface spec. This is called after PCI bus has been 14432 * reset to restart the PCI card from scratch, as if from a cold-boot. 14433 * During the PCI subsystem error recovery, after driver returns 14434 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14435 * recovery and then call this routine before calling the .resume method 14436 * to recover the device. This function will initialize the HBA device, 14437 * enable the interrupt, but it will just put the HBA to offline state 14438 * without passing any I/O traffic. 14439 * 14440 * Return codes 14441 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14442 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14443 */ 14444 static pci_ers_result_t 14445 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14446 { 14447 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14448 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14449 struct lpfc_sli *psli = &phba->sli; 14450 uint32_t intr_mode; 14451 14452 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14453 if (pci_enable_device_mem(pdev)) { 14454 printk(KERN_ERR "lpfc: Cannot re-enable " 14455 "PCI device after reset.\n"); 14456 return PCI_ERS_RESULT_DISCONNECT; 14457 } 14458 14459 pci_restore_state(pdev); 14460 14461 /* 14462 * As the new kernel behavior of pci_restore_state() API call clears 14463 * device saved_state flag, need to save the restored state again. 14464 */ 14465 pci_save_state(pdev); 14466 14467 if (pdev->is_busmaster) 14468 pci_set_master(pdev); 14469 14470 spin_lock_irq(&phba->hbalock); 14471 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14472 spin_unlock_irq(&phba->hbalock); 14473 14474 /* Configure and enable interrupt */ 14475 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14476 if (intr_mode == LPFC_INTR_ERROR) { 14477 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14478 "0427 Cannot re-enable interrupt after " 14479 "slot reset.\n"); 14480 return PCI_ERS_RESULT_DISCONNECT; 14481 } else 14482 phba->intr_mode = intr_mode; 14483 14484 /* Take device offline, it will perform cleanup */ 14485 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14486 lpfc_offline(phba); 14487 lpfc_sli_brdrestart(phba); 14488 14489 /* Log the current active interrupt mode */ 14490 lpfc_log_intr_mode(phba, phba->intr_mode); 14491 14492 return PCI_ERS_RESULT_RECOVERED; 14493 } 14494 14495 /** 14496 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14497 * @pdev: pointer to PCI device 14498 * 14499 * This routine is called from the PCI subsystem for error handling to device 14500 * with SLI-3 interface spec. It is called when kernel error recovery tells 14501 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14502 * error recovery. After this call, traffic can start to flow from this device 14503 * again. 14504 */ 14505 static void 14506 lpfc_io_resume_s3(struct pci_dev *pdev) 14507 { 14508 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14509 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14510 14511 /* Bring device online, it will be no-op for non-fatal error resume */ 14512 lpfc_online(phba); 14513 } 14514 14515 /** 14516 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14517 * @phba: pointer to lpfc hba data structure. 14518 * 14519 * returns the number of ELS/CT IOCBs to reserve 14520 **/ 14521 int 14522 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14523 { 14524 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14525 14526 if (phba->sli_rev == LPFC_SLI_REV4) { 14527 if (max_xri <= 100) 14528 return 10; 14529 else if (max_xri <= 256) 14530 return 25; 14531 else if (max_xri <= 512) 14532 return 50; 14533 else if (max_xri <= 1024) 14534 return 100; 14535 else if (max_xri <= 1536) 14536 return 150; 14537 else if (max_xri <= 2048) 14538 return 200; 14539 else 14540 return 250; 14541 } else 14542 return 0; 14543 } 14544 14545 /** 14546 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14547 * @phba: pointer to lpfc hba data structure. 14548 * 14549 * returns the number of ELS/CT + NVMET IOCBs to reserve 14550 **/ 14551 int 14552 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14553 { 14554 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14555 14556 if (phba->nvmet_support) 14557 max_xri += LPFC_NVMET_BUF_POST; 14558 return max_xri; 14559 } 14560 14561 14562 static int 14563 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14564 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14565 const struct firmware *fw) 14566 { 14567 int rc; 14568 u8 sli_family; 14569 14570 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14571 /* Three cases: (1) FW was not supported on the detected adapter. 14572 * (2) FW update has been locked out administratively. 14573 * (3) Some other error during FW update. 14574 * In each case, an unmaskable message is written to the console 14575 * for admin diagnosis. 14576 */ 14577 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14578 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14579 magic_number != MAGIC_NUMBER_G6) || 14580 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14581 magic_number != MAGIC_NUMBER_G7) || 14582 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14583 magic_number != MAGIC_NUMBER_G7P)) { 14584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14585 "3030 This firmware version is not supported on" 14586 " this HBA model. Device:%x Magic:%x Type:%x " 14587 "ID:%x Size %d %zd\n", 14588 phba->pcidev->device, magic_number, ftype, fid, 14589 fsize, fw->size); 14590 rc = -EINVAL; 14591 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14593 "3021 Firmware downloads have been prohibited " 14594 "by a system configuration setting on " 14595 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14596 "%zd\n", 14597 phba->pcidev->device, magic_number, ftype, fid, 14598 fsize, fw->size); 14599 rc = -EACCES; 14600 } else { 14601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14602 "3022 FW Download failed. Add Status x%x " 14603 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14604 "%zd\n", 14605 offset, phba->pcidev->device, magic_number, 14606 ftype, fid, fsize, fw->size); 14607 rc = -EIO; 14608 } 14609 return rc; 14610 } 14611 14612 /** 14613 * lpfc_write_firmware - attempt to write a firmware image to the port 14614 * @fw: pointer to firmware image returned from request_firmware. 14615 * @context: pointer to firmware image returned from request_firmware. 14616 * 14617 **/ 14618 static void 14619 lpfc_write_firmware(const struct firmware *fw, void *context) 14620 { 14621 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14622 char fwrev[FW_REV_STR_SIZE]; 14623 struct lpfc_grp_hdr *image; 14624 struct list_head dma_buffer_list; 14625 int i, rc = 0; 14626 struct lpfc_dmabuf *dmabuf, *next; 14627 uint32_t offset = 0, temp_offset = 0; 14628 uint32_t magic_number, ftype, fid, fsize; 14629 14630 /* It can be null in no-wait mode, sanity check */ 14631 if (!fw) { 14632 rc = -ENXIO; 14633 goto out; 14634 } 14635 image = (struct lpfc_grp_hdr *)fw->data; 14636 14637 magic_number = be32_to_cpu(image->magic_number); 14638 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14639 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14640 fsize = be32_to_cpu(image->size); 14641 14642 INIT_LIST_HEAD(&dma_buffer_list); 14643 lpfc_decode_firmware_rev(phba, fwrev, 1); 14644 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14645 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14646 "3023 Updating Firmware, Current Version:%s " 14647 "New Version:%s\n", 14648 fwrev, image->revision); 14649 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14650 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14651 GFP_KERNEL); 14652 if (!dmabuf) { 14653 rc = -ENOMEM; 14654 goto release_out; 14655 } 14656 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14657 SLI4_PAGE_SIZE, 14658 &dmabuf->phys, 14659 GFP_KERNEL); 14660 if (!dmabuf->virt) { 14661 kfree(dmabuf); 14662 rc = -ENOMEM; 14663 goto release_out; 14664 } 14665 list_add_tail(&dmabuf->list, &dma_buffer_list); 14666 } 14667 while (offset < fw->size) { 14668 temp_offset = offset; 14669 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14670 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14671 memcpy(dmabuf->virt, 14672 fw->data + temp_offset, 14673 fw->size - temp_offset); 14674 temp_offset = fw->size; 14675 break; 14676 } 14677 memcpy(dmabuf->virt, fw->data + temp_offset, 14678 SLI4_PAGE_SIZE); 14679 temp_offset += SLI4_PAGE_SIZE; 14680 } 14681 rc = lpfc_wr_object(phba, &dma_buffer_list, 14682 (fw->size - offset), &offset); 14683 if (rc) { 14684 rc = lpfc_log_write_firmware_error(phba, offset, 14685 magic_number, 14686 ftype, 14687 fid, 14688 fsize, 14689 fw); 14690 goto release_out; 14691 } 14692 } 14693 rc = offset; 14694 } else 14695 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14696 "3029 Skipped Firmware update, Current " 14697 "Version:%s New Version:%s\n", 14698 fwrev, image->revision); 14699 14700 release_out: 14701 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14702 list_del(&dmabuf->list); 14703 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14704 dmabuf->virt, dmabuf->phys); 14705 kfree(dmabuf); 14706 } 14707 release_firmware(fw); 14708 out: 14709 if (rc < 0) 14710 lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI, 14711 "3062 Firmware update error, status %d.\n", rc); 14712 else 14713 lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, 14714 "3024 Firmware update success: size %d.\n", rc); 14715 } 14716 14717 /** 14718 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14719 * @phba: pointer to lpfc hba data structure. 14720 * @fw_upgrade: which firmware to update. 14721 * 14722 * This routine is called to perform Linux generic firmware upgrade on device 14723 * that supports such feature. 14724 **/ 14725 int 14726 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14727 { 14728 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 14729 int ret; 14730 const struct firmware *fw; 14731 14732 /* Only supported on SLI4 interface type 2 for now */ 14733 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14734 LPFC_SLI_INTF_IF_TYPE_2) 14735 return -EPERM; 14736 14737 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 14738 14739 if (fw_upgrade == INT_FW_UPGRADE) { 14740 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14741 file_name, &phba->pcidev->dev, 14742 GFP_KERNEL, (void *)phba, 14743 lpfc_write_firmware); 14744 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14745 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14746 if (!ret) 14747 lpfc_write_firmware(fw, (void *)phba); 14748 } else { 14749 ret = -EINVAL; 14750 } 14751 14752 return ret; 14753 } 14754 14755 /** 14756 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14757 * @pdev: pointer to PCI device 14758 * @pid: pointer to PCI device identifier 14759 * 14760 * This routine is called from the kernel's PCI subsystem to device with 14761 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14762 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14763 * information of the device and driver to see if the driver state that it 14764 * can support this kind of device. If the match is successful, the driver 14765 * core invokes this routine. If this routine determines it can claim the HBA, 14766 * it does all the initialization that it needs to do to handle the HBA 14767 * properly. 14768 * 14769 * Return code 14770 * 0 - driver can claim the device 14771 * negative value - driver can not claim the device 14772 **/ 14773 static int 14774 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14775 { 14776 struct lpfc_hba *phba; 14777 struct lpfc_vport *vport = NULL; 14778 struct Scsi_Host *shost = NULL; 14779 int error; 14780 uint32_t cfg_mode, intr_mode; 14781 14782 /* Allocate memory for HBA structure */ 14783 phba = lpfc_hba_alloc(pdev); 14784 if (!phba) 14785 return -ENOMEM; 14786 14787 INIT_LIST_HEAD(&phba->poll_list); 14788 14789 /* Perform generic PCI device enabling operation */ 14790 error = lpfc_enable_pci_dev(phba); 14791 if (error) 14792 goto out_free_phba; 14793 14794 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14795 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14796 if (error) 14797 goto out_disable_pci_dev; 14798 14799 /* Set up SLI-4 specific device PCI memory space */ 14800 error = lpfc_sli4_pci_mem_setup(phba); 14801 if (error) { 14802 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14803 "1410 Failed to set up pci memory space.\n"); 14804 goto out_disable_pci_dev; 14805 } 14806 14807 /* Set up SLI-4 Specific device driver resources */ 14808 error = lpfc_sli4_driver_resource_setup(phba); 14809 if (error) { 14810 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14811 "1412 Failed to set up driver resource.\n"); 14812 goto out_unset_pci_mem_s4; 14813 } 14814 14815 INIT_LIST_HEAD(&phba->active_rrq_list); 14816 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14817 14818 /* Set up common device driver resources */ 14819 error = lpfc_setup_driver_resource_phase2(phba); 14820 if (error) { 14821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14822 "1414 Failed to set up driver resource.\n"); 14823 goto out_unset_driver_resource_s4; 14824 } 14825 14826 /* Get the default values for Model Name and Description */ 14827 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14828 14829 /* Now, trying to enable interrupt and bring up the device */ 14830 cfg_mode = phba->cfg_use_msi; 14831 14832 /* Put device to a known state before enabling interrupt */ 14833 phba->pport = NULL; 14834 lpfc_stop_port(phba); 14835 14836 /* Init cpu_map array */ 14837 lpfc_cpu_map_array_init(phba); 14838 14839 /* Init hba_eq_hdl array */ 14840 lpfc_hba_eq_hdl_array_init(phba); 14841 14842 /* Configure and enable interrupt */ 14843 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14844 if (intr_mode == LPFC_INTR_ERROR) { 14845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14846 "0426 Failed to enable interrupt.\n"); 14847 error = -ENODEV; 14848 goto out_unset_driver_resource; 14849 } 14850 /* Default to single EQ for non-MSI-X */ 14851 if (phba->intr_type != MSIX) { 14852 phba->cfg_irq_chann = 1; 14853 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14854 if (phba->nvmet_support) 14855 phba->cfg_nvmet_mrq = 1; 14856 } 14857 } 14858 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14859 14860 /* Create SCSI host to the physical port */ 14861 error = lpfc_create_shost(phba); 14862 if (error) { 14863 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14864 "1415 Failed to create scsi host.\n"); 14865 goto out_disable_intr; 14866 } 14867 vport = phba->pport; 14868 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14869 14870 /* Configure sysfs attributes */ 14871 error = lpfc_alloc_sysfs_attr(vport); 14872 if (error) { 14873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14874 "1416 Failed to allocate sysfs attr\n"); 14875 goto out_destroy_shost; 14876 } 14877 14878 /* Set up SLI-4 HBA */ 14879 if (lpfc_sli4_hba_setup(phba)) { 14880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14881 "1421 Failed to set up hba\n"); 14882 error = -ENODEV; 14883 goto out_free_sysfs_attr; 14884 } 14885 14886 /* Log the current active interrupt mode */ 14887 phba->intr_mode = intr_mode; 14888 lpfc_log_intr_mode(phba, intr_mode); 14889 14890 /* Perform post initialization setup */ 14891 lpfc_post_init_setup(phba); 14892 14893 /* NVME support in FW earlier in the driver load corrects the 14894 * FC4 type making a check for nvme_support unnecessary. 14895 */ 14896 if (phba->nvmet_support == 0) { 14897 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14898 /* Create NVME binding with nvme_fc_transport. This 14899 * ensures the vport is initialized. If the localport 14900 * create fails, it should not unload the driver to 14901 * support field issues. 14902 */ 14903 error = lpfc_nvme_create_localport(vport); 14904 if (error) { 14905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14906 "6004 NVME registration " 14907 "failed, error x%x\n", 14908 error); 14909 } 14910 } 14911 } 14912 14913 /* check for firmware upgrade or downgrade */ 14914 if (phba->cfg_request_firmware_upgrade) 14915 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14916 14917 /* Check if there are static vports to be created. */ 14918 lpfc_create_static_vport(phba); 14919 14920 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14921 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14922 14923 return 0; 14924 14925 out_free_sysfs_attr: 14926 lpfc_free_sysfs_attr(vport); 14927 out_destroy_shost: 14928 lpfc_destroy_shost(phba); 14929 out_disable_intr: 14930 lpfc_sli4_disable_intr(phba); 14931 out_unset_driver_resource: 14932 lpfc_unset_driver_resource_phase2(phba); 14933 out_unset_driver_resource_s4: 14934 lpfc_sli4_driver_resource_unset(phba); 14935 out_unset_pci_mem_s4: 14936 lpfc_sli4_pci_mem_unset(phba); 14937 out_disable_pci_dev: 14938 lpfc_disable_pci_dev(phba); 14939 if (shost) 14940 scsi_host_put(shost); 14941 out_free_phba: 14942 lpfc_hba_free(phba); 14943 return error; 14944 } 14945 14946 /** 14947 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14948 * @pdev: pointer to PCI device 14949 * 14950 * This routine is called from the kernel's PCI subsystem to device with 14951 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14952 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14953 * device to be removed from the PCI subsystem properly. 14954 **/ 14955 static void 14956 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14957 { 14958 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14959 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14960 struct lpfc_vport **vports; 14961 struct lpfc_hba *phba = vport->phba; 14962 int i; 14963 14964 /* Mark the device unloading flag */ 14965 spin_lock_irq(&phba->hbalock); 14966 vport->load_flag |= FC_UNLOADING; 14967 spin_unlock_irq(&phba->hbalock); 14968 if (phba->cgn_i) 14969 lpfc_unreg_congestion_buf(phba); 14970 14971 lpfc_free_sysfs_attr(vport); 14972 14973 /* Release all the vports against this physical port */ 14974 vports = lpfc_create_vport_work_array(phba); 14975 if (vports != NULL) 14976 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14977 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14978 continue; 14979 fc_vport_terminate(vports[i]->fc_vport); 14980 } 14981 lpfc_destroy_vport_work_array(phba, vports); 14982 14983 /* Remove FC host with the physical port */ 14984 fc_remove_host(shost); 14985 scsi_remove_host(shost); 14986 14987 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 14988 * localports are destroyed after to cleanup all transport memory. 14989 */ 14990 lpfc_cleanup(vport); 14991 lpfc_nvmet_destroy_targetport(phba); 14992 lpfc_nvme_destroy_localport(vport); 14993 14994 /* De-allocate multi-XRI pools */ 14995 if (phba->cfg_xri_rebalancing) 14996 lpfc_destroy_multixri_pools(phba); 14997 14998 /* 14999 * Bring down the SLI Layer. This step disables all interrupts, 15000 * clears the rings, discards all mailbox commands, and resets 15001 * the HBA FCoE function. 15002 */ 15003 lpfc_debugfs_terminate(vport); 15004 15005 lpfc_stop_hba_timers(phba); 15006 spin_lock_irq(&phba->port_list_lock); 15007 list_del_init(&vport->listentry); 15008 spin_unlock_irq(&phba->port_list_lock); 15009 15010 /* Perform scsi free before driver resource_unset since scsi 15011 * buffers are released to their corresponding pools here. 15012 */ 15013 lpfc_io_free(phba); 15014 lpfc_free_iocb_list(phba); 15015 lpfc_sli4_hba_unset(phba); 15016 15017 lpfc_unset_driver_resource_phase2(phba); 15018 lpfc_sli4_driver_resource_unset(phba); 15019 15020 /* Unmap adapter Control and Doorbell registers */ 15021 lpfc_sli4_pci_mem_unset(phba); 15022 15023 /* Release PCI resources and disable device's PCI function */ 15024 scsi_host_put(shost); 15025 lpfc_disable_pci_dev(phba); 15026 15027 /* Finally, free the driver's device data structure */ 15028 lpfc_hba_free(phba); 15029 15030 return; 15031 } 15032 15033 /** 15034 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 15035 * @dev_d: pointer to device 15036 * 15037 * This routine is called from the kernel's PCI subsystem to support system 15038 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 15039 * this method, it quiesces the device by stopping the driver's worker 15040 * thread for the device, turning off device's interrupt and DMA, and bring 15041 * the device offline. Note that as the driver implements the minimum PM 15042 * requirements to a power-aware driver's PM support for suspend/resume -- all 15043 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 15044 * method call will be treated as SUSPEND and the driver will fully 15045 * reinitialize its device during resume() method call, the driver will set 15046 * device to PCI_D3hot state in PCI config space instead of setting it 15047 * according to the @msg provided by the PM. 15048 * 15049 * Return code 15050 * 0 - driver suspended the device 15051 * Error otherwise 15052 **/ 15053 static int __maybe_unused 15054 lpfc_pci_suspend_one_s4(struct device *dev_d) 15055 { 15056 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15057 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15058 15059 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15060 "2843 PCI device Power Management suspend.\n"); 15061 15062 /* Bring down the device */ 15063 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15064 lpfc_offline(phba); 15065 kthread_stop(phba->worker_thread); 15066 15067 /* Disable interrupt from device */ 15068 lpfc_sli4_disable_intr(phba); 15069 lpfc_sli4_queue_destroy(phba); 15070 15071 return 0; 15072 } 15073 15074 /** 15075 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 15076 * @dev_d: pointer to device 15077 * 15078 * This routine is called from the kernel's PCI subsystem to support system 15079 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 15080 * this method, it restores the device's PCI config space state and fully 15081 * reinitializes the device and brings it online. Note that as the driver 15082 * implements the minimum PM requirements to a power-aware driver's PM for 15083 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15084 * to the suspend() method call will be treated as SUSPEND and the driver 15085 * will fully reinitialize its device during resume() method call, the device 15086 * will be set to PCI_D0 directly in PCI config space before restoring the 15087 * state. 15088 * 15089 * Return code 15090 * 0 - driver suspended the device 15091 * Error otherwise 15092 **/ 15093 static int __maybe_unused 15094 lpfc_pci_resume_one_s4(struct device *dev_d) 15095 { 15096 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15097 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15098 uint32_t intr_mode; 15099 int error; 15100 15101 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15102 "0292 PCI device Power Management resume.\n"); 15103 15104 /* Startup the kernel thread for this host adapter. */ 15105 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15106 "lpfc_worker_%d", phba->brd_no); 15107 if (IS_ERR(phba->worker_thread)) { 15108 error = PTR_ERR(phba->worker_thread); 15109 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15110 "0293 PM resume failed to start worker " 15111 "thread: error=x%x.\n", error); 15112 return error; 15113 } 15114 15115 /* Configure and enable interrupt */ 15116 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15117 if (intr_mode == LPFC_INTR_ERROR) { 15118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15119 "0294 PM resume Failed to enable interrupt\n"); 15120 return -EIO; 15121 } else 15122 phba->intr_mode = intr_mode; 15123 15124 /* Restart HBA and bring it online */ 15125 lpfc_sli_brdrestart(phba); 15126 lpfc_online(phba); 15127 15128 /* Log the current active interrupt mode */ 15129 lpfc_log_intr_mode(phba, phba->intr_mode); 15130 15131 return 0; 15132 } 15133 15134 /** 15135 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15136 * @phba: pointer to lpfc hba data structure. 15137 * 15138 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15139 * aborts all the outstanding SCSI I/Os to the pci device. 15140 **/ 15141 static void 15142 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15143 { 15144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15145 "2828 PCI channel I/O abort preparing for recovery\n"); 15146 /* 15147 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15148 * and let the SCSI mid-layer to retry them to recover. 15149 */ 15150 lpfc_sli_abort_fcp_rings(phba); 15151 } 15152 15153 /** 15154 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15155 * @phba: pointer to lpfc hba data structure. 15156 * 15157 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15158 * disables the device interrupt and pci device, and aborts the internal FCP 15159 * pending I/Os. 15160 **/ 15161 static void 15162 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15163 { 15164 int offline = pci_channel_offline(phba->pcidev); 15165 15166 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15167 "2826 PCI channel disable preparing for reset offline" 15168 " %d\n", offline); 15169 15170 /* Block any management I/Os to the device */ 15171 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15172 15173 15174 /* HBA_PCI_ERR was set in io_error_detect */ 15175 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15176 /* Flush all driver's outstanding I/Os as we are to reset */ 15177 lpfc_sli_flush_io_rings(phba); 15178 lpfc_offline(phba); 15179 15180 /* stop all timers */ 15181 lpfc_stop_hba_timers(phba); 15182 15183 lpfc_sli4_queue_destroy(phba); 15184 /* Disable interrupt and pci device */ 15185 lpfc_sli4_disable_intr(phba); 15186 pci_disable_device(phba->pcidev); 15187 } 15188 15189 /** 15190 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15191 * @phba: pointer to lpfc hba data structure. 15192 * 15193 * This routine is called to prepare the SLI4 device for PCI slot permanently 15194 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15195 * pending I/Os. 15196 **/ 15197 static void 15198 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15199 { 15200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15201 "2827 PCI channel permanent disable for failure\n"); 15202 15203 /* Block all SCSI devices' I/Os on the host */ 15204 lpfc_scsi_dev_block(phba); 15205 15206 /* stop all timers */ 15207 lpfc_stop_hba_timers(phba); 15208 15209 /* Clean up all driver's outstanding I/Os */ 15210 lpfc_sli_flush_io_rings(phba); 15211 } 15212 15213 /** 15214 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15215 * @pdev: pointer to PCI device. 15216 * @state: the current PCI connection state. 15217 * 15218 * This routine is called from the PCI subsystem for error handling to device 15219 * with SLI-4 interface spec. This function is called by the PCI subsystem 15220 * after a PCI bus error affecting this device has been detected. When this 15221 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15222 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15223 * for the PCI subsystem to perform proper recovery as desired. 15224 * 15225 * Return codes 15226 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15227 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15228 **/ 15229 static pci_ers_result_t 15230 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15231 { 15232 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15233 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15234 bool hba_pci_err; 15235 15236 switch (state) { 15237 case pci_channel_io_normal: 15238 /* Non-fatal error, prepare for recovery */ 15239 lpfc_sli4_prep_dev_for_recover(phba); 15240 return PCI_ERS_RESULT_CAN_RECOVER; 15241 case pci_channel_io_frozen: 15242 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15243 /* Fatal error, prepare for slot reset */ 15244 if (!hba_pci_err) 15245 lpfc_sli4_prep_dev_for_reset(phba); 15246 else 15247 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15248 "2832 Already handling PCI error " 15249 "state: x%x\n", state); 15250 return PCI_ERS_RESULT_NEED_RESET; 15251 case pci_channel_io_perm_failure: 15252 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15253 /* Permanent failure, prepare for device down */ 15254 lpfc_sli4_prep_dev_for_perm_failure(phba); 15255 return PCI_ERS_RESULT_DISCONNECT; 15256 default: 15257 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15258 if (!hba_pci_err) 15259 lpfc_sli4_prep_dev_for_reset(phba); 15260 /* Unknown state, prepare and request slot reset */ 15261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15262 "2825 Unknown PCI error state: x%x\n", state); 15263 lpfc_sli4_prep_dev_for_reset(phba); 15264 return PCI_ERS_RESULT_NEED_RESET; 15265 } 15266 } 15267 15268 /** 15269 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15270 * @pdev: pointer to PCI device. 15271 * 15272 * This routine is called from the PCI subsystem for error handling to device 15273 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15274 * restart the PCI card from scratch, as if from a cold-boot. During the 15275 * PCI subsystem error recovery, after the driver returns 15276 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15277 * recovery and then call this routine before calling the .resume method to 15278 * recover the device. This function will initialize the HBA device, enable 15279 * the interrupt, but it will just put the HBA to offline state without 15280 * passing any I/O traffic. 15281 * 15282 * Return codes 15283 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15284 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15285 */ 15286 static pci_ers_result_t 15287 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15288 { 15289 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15290 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15291 struct lpfc_sli *psli = &phba->sli; 15292 uint32_t intr_mode; 15293 bool hba_pci_err; 15294 15295 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15296 if (pci_enable_device_mem(pdev)) { 15297 printk(KERN_ERR "lpfc: Cannot re-enable " 15298 "PCI device after reset.\n"); 15299 return PCI_ERS_RESULT_DISCONNECT; 15300 } 15301 15302 pci_restore_state(pdev); 15303 15304 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15305 if (!hba_pci_err) 15306 dev_info(&pdev->dev, 15307 "hba_pci_err was not set, recovering slot reset.\n"); 15308 /* 15309 * As the new kernel behavior of pci_restore_state() API call clears 15310 * device saved_state flag, need to save the restored state again. 15311 */ 15312 pci_save_state(pdev); 15313 15314 if (pdev->is_busmaster) 15315 pci_set_master(pdev); 15316 15317 spin_lock_irq(&phba->hbalock); 15318 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15319 spin_unlock_irq(&phba->hbalock); 15320 15321 /* Init cpu_map array */ 15322 lpfc_cpu_map_array_init(phba); 15323 /* Configure and enable interrupt */ 15324 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15325 if (intr_mode == LPFC_INTR_ERROR) { 15326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15327 "2824 Cannot re-enable interrupt after " 15328 "slot reset.\n"); 15329 return PCI_ERS_RESULT_DISCONNECT; 15330 } else 15331 phba->intr_mode = intr_mode; 15332 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15333 15334 /* Log the current active interrupt mode */ 15335 lpfc_log_intr_mode(phba, phba->intr_mode); 15336 15337 return PCI_ERS_RESULT_RECOVERED; 15338 } 15339 15340 /** 15341 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15342 * @pdev: pointer to PCI device 15343 * 15344 * This routine is called from the PCI subsystem for error handling to device 15345 * with SLI-4 interface spec. It is called when kernel error recovery tells 15346 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15347 * error recovery. After this call, traffic can start to flow from this device 15348 * again. 15349 **/ 15350 static void 15351 lpfc_io_resume_s4(struct pci_dev *pdev) 15352 { 15353 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15354 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15355 15356 /* 15357 * In case of slot reset, as function reset is performed through 15358 * mailbox command which needs DMA to be enabled, this operation 15359 * has to be moved to the io resume phase. Taking device offline 15360 * will perform the necessary cleanup. 15361 */ 15362 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15363 /* Perform device reset */ 15364 lpfc_sli_brdrestart(phba); 15365 /* Bring the device back online */ 15366 lpfc_online(phba); 15367 } 15368 } 15369 15370 /** 15371 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15372 * @pdev: pointer to PCI device 15373 * @pid: pointer to PCI device identifier 15374 * 15375 * This routine is to be registered to the kernel's PCI subsystem. When an 15376 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15377 * at PCI device-specific information of the device and driver to see if the 15378 * driver state that it can support this kind of device. If the match is 15379 * successful, the driver core invokes this routine. This routine dispatches 15380 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15381 * do all the initialization that it needs to do to handle the HBA device 15382 * properly. 15383 * 15384 * Return code 15385 * 0 - driver can claim the device 15386 * negative value - driver can not claim the device 15387 **/ 15388 static int 15389 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15390 { 15391 int rc; 15392 struct lpfc_sli_intf intf; 15393 15394 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15395 return -ENODEV; 15396 15397 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15398 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15399 rc = lpfc_pci_probe_one_s4(pdev, pid); 15400 else 15401 rc = lpfc_pci_probe_one_s3(pdev, pid); 15402 15403 return rc; 15404 } 15405 15406 /** 15407 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15408 * @pdev: pointer to PCI device 15409 * 15410 * This routine is to be registered to the kernel's PCI subsystem. When an 15411 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15412 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15413 * remove routine, which will perform all the necessary cleanup for the 15414 * device to be removed from the PCI subsystem properly. 15415 **/ 15416 static void 15417 lpfc_pci_remove_one(struct pci_dev *pdev) 15418 { 15419 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15420 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15421 15422 switch (phba->pci_dev_grp) { 15423 case LPFC_PCI_DEV_LP: 15424 lpfc_pci_remove_one_s3(pdev); 15425 break; 15426 case LPFC_PCI_DEV_OC: 15427 lpfc_pci_remove_one_s4(pdev); 15428 break; 15429 default: 15430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15431 "1424 Invalid PCI device group: 0x%x\n", 15432 phba->pci_dev_grp); 15433 break; 15434 } 15435 return; 15436 } 15437 15438 /** 15439 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15440 * @dev: pointer to device 15441 * 15442 * This routine is to be registered to the kernel's PCI subsystem to support 15443 * system Power Management (PM). When PM invokes this method, it dispatches 15444 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15445 * suspend the device. 15446 * 15447 * Return code 15448 * 0 - driver suspended the device 15449 * Error otherwise 15450 **/ 15451 static int __maybe_unused 15452 lpfc_pci_suspend_one(struct device *dev) 15453 { 15454 struct Scsi_Host *shost = dev_get_drvdata(dev); 15455 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15456 int rc = -ENODEV; 15457 15458 switch (phba->pci_dev_grp) { 15459 case LPFC_PCI_DEV_LP: 15460 rc = lpfc_pci_suspend_one_s3(dev); 15461 break; 15462 case LPFC_PCI_DEV_OC: 15463 rc = lpfc_pci_suspend_one_s4(dev); 15464 break; 15465 default: 15466 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15467 "1425 Invalid PCI device group: 0x%x\n", 15468 phba->pci_dev_grp); 15469 break; 15470 } 15471 return rc; 15472 } 15473 15474 /** 15475 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15476 * @dev: pointer to device 15477 * 15478 * This routine is to be registered to the kernel's PCI subsystem to support 15479 * system Power Management (PM). When PM invokes this method, it dispatches 15480 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15481 * resume the device. 15482 * 15483 * Return code 15484 * 0 - driver suspended the device 15485 * Error otherwise 15486 **/ 15487 static int __maybe_unused 15488 lpfc_pci_resume_one(struct device *dev) 15489 { 15490 struct Scsi_Host *shost = dev_get_drvdata(dev); 15491 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15492 int rc = -ENODEV; 15493 15494 switch (phba->pci_dev_grp) { 15495 case LPFC_PCI_DEV_LP: 15496 rc = lpfc_pci_resume_one_s3(dev); 15497 break; 15498 case LPFC_PCI_DEV_OC: 15499 rc = lpfc_pci_resume_one_s4(dev); 15500 break; 15501 default: 15502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15503 "1426 Invalid PCI device group: 0x%x\n", 15504 phba->pci_dev_grp); 15505 break; 15506 } 15507 return rc; 15508 } 15509 15510 /** 15511 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15512 * @pdev: pointer to PCI device. 15513 * @state: the current PCI connection state. 15514 * 15515 * This routine is registered to the PCI subsystem for error handling. This 15516 * function is called by the PCI subsystem after a PCI bus error affecting 15517 * this device has been detected. When this routine is invoked, it dispatches 15518 * the action to the proper SLI-3 or SLI-4 device error detected handling 15519 * routine, which will perform the proper error detected operation. 15520 * 15521 * Return codes 15522 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15523 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15524 **/ 15525 static pci_ers_result_t 15526 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15527 { 15528 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15529 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15530 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15531 15532 if (phba->link_state == LPFC_HBA_ERROR && 15533 phba->hba_flag & HBA_IOQ_FLUSH) 15534 return PCI_ERS_RESULT_NEED_RESET; 15535 15536 switch (phba->pci_dev_grp) { 15537 case LPFC_PCI_DEV_LP: 15538 rc = lpfc_io_error_detected_s3(pdev, state); 15539 break; 15540 case LPFC_PCI_DEV_OC: 15541 rc = lpfc_io_error_detected_s4(pdev, state); 15542 break; 15543 default: 15544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15545 "1427 Invalid PCI device group: 0x%x\n", 15546 phba->pci_dev_grp); 15547 break; 15548 } 15549 return rc; 15550 } 15551 15552 /** 15553 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15554 * @pdev: pointer to PCI device. 15555 * 15556 * This routine is registered to the PCI subsystem for error handling. This 15557 * function is called after PCI bus has been reset to restart the PCI card 15558 * from scratch, as if from a cold-boot. When this routine is invoked, it 15559 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15560 * routine, which will perform the proper device reset. 15561 * 15562 * Return codes 15563 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15564 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15565 **/ 15566 static pci_ers_result_t 15567 lpfc_io_slot_reset(struct pci_dev *pdev) 15568 { 15569 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15570 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15571 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15572 15573 switch (phba->pci_dev_grp) { 15574 case LPFC_PCI_DEV_LP: 15575 rc = lpfc_io_slot_reset_s3(pdev); 15576 break; 15577 case LPFC_PCI_DEV_OC: 15578 rc = lpfc_io_slot_reset_s4(pdev); 15579 break; 15580 default: 15581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15582 "1428 Invalid PCI device group: 0x%x\n", 15583 phba->pci_dev_grp); 15584 break; 15585 } 15586 return rc; 15587 } 15588 15589 /** 15590 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15591 * @pdev: pointer to PCI device 15592 * 15593 * This routine is registered to the PCI subsystem for error handling. It 15594 * is called when kernel error recovery tells the lpfc driver that it is 15595 * OK to resume normal PCI operation after PCI bus error recovery. When 15596 * this routine is invoked, it dispatches the action to the proper SLI-3 15597 * or SLI-4 device io_resume routine, which will resume the device operation. 15598 **/ 15599 static void 15600 lpfc_io_resume(struct pci_dev *pdev) 15601 { 15602 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15603 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15604 15605 switch (phba->pci_dev_grp) { 15606 case LPFC_PCI_DEV_LP: 15607 lpfc_io_resume_s3(pdev); 15608 break; 15609 case LPFC_PCI_DEV_OC: 15610 lpfc_io_resume_s4(pdev); 15611 break; 15612 default: 15613 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15614 "1429 Invalid PCI device group: 0x%x\n", 15615 phba->pci_dev_grp); 15616 break; 15617 } 15618 return; 15619 } 15620 15621 /** 15622 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15623 * @phba: pointer to lpfc hba data structure. 15624 * 15625 * This routine checks to see if OAS is supported for this adapter. If 15626 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15627 * the enable oas flag is cleared and the pool created for OAS device data 15628 * is destroyed. 15629 * 15630 **/ 15631 static void 15632 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15633 { 15634 15635 if (!phba->cfg_EnableXLane) 15636 return; 15637 15638 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15639 phba->cfg_fof = 1; 15640 } else { 15641 phba->cfg_fof = 0; 15642 mempool_destroy(phba->device_data_mem_pool); 15643 phba->device_data_mem_pool = NULL; 15644 } 15645 15646 return; 15647 } 15648 15649 /** 15650 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15651 * @phba: pointer to lpfc hba data structure. 15652 * 15653 * This routine checks to see if RAS is supported by the adapter. Check the 15654 * function through which RAS support enablement is to be done. 15655 **/ 15656 void 15657 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15658 { 15659 /* if ASIC_GEN_NUM >= 0xC) */ 15660 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15661 LPFC_SLI_INTF_IF_TYPE_6) || 15662 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15663 LPFC_SLI_INTF_FAMILY_G6)) { 15664 phba->ras_fwlog.ras_hwsupport = true; 15665 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15666 phba->cfg_ras_fwlog_buffsize) 15667 phba->ras_fwlog.ras_enabled = true; 15668 else 15669 phba->ras_fwlog.ras_enabled = false; 15670 } else { 15671 phba->ras_fwlog.ras_hwsupport = false; 15672 } 15673 } 15674 15675 15676 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15677 15678 static const struct pci_error_handlers lpfc_err_handler = { 15679 .error_detected = lpfc_io_error_detected, 15680 .slot_reset = lpfc_io_slot_reset, 15681 .resume = lpfc_io_resume, 15682 }; 15683 15684 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15685 lpfc_pci_suspend_one, 15686 lpfc_pci_resume_one); 15687 15688 static struct pci_driver lpfc_driver = { 15689 .name = LPFC_DRIVER_NAME, 15690 .id_table = lpfc_id_table, 15691 .probe = lpfc_pci_probe_one, 15692 .remove = lpfc_pci_remove_one, 15693 .shutdown = lpfc_pci_remove_one, 15694 .driver.pm = &lpfc_pci_pm_ops_one, 15695 .err_handler = &lpfc_err_handler, 15696 }; 15697 15698 static const struct file_operations lpfc_mgmt_fop = { 15699 .owner = THIS_MODULE, 15700 }; 15701 15702 static struct miscdevice lpfc_mgmt_dev = { 15703 .minor = MISC_DYNAMIC_MINOR, 15704 .name = "lpfcmgmt", 15705 .fops = &lpfc_mgmt_fop, 15706 }; 15707 15708 /** 15709 * lpfc_init - lpfc module initialization routine 15710 * 15711 * This routine is to be invoked when the lpfc module is loaded into the 15712 * kernel. The special kernel macro module_init() is used to indicate the 15713 * role of this routine to the kernel as lpfc module entry point. 15714 * 15715 * Return codes 15716 * 0 - successful 15717 * -ENOMEM - FC attach transport failed 15718 * all others - failed 15719 */ 15720 static int __init 15721 lpfc_init(void) 15722 { 15723 int error = 0; 15724 15725 pr_info(LPFC_MODULE_DESC "\n"); 15726 pr_info(LPFC_COPYRIGHT "\n"); 15727 15728 error = misc_register(&lpfc_mgmt_dev); 15729 if (error) 15730 printk(KERN_ERR "Could not register lpfcmgmt device, " 15731 "misc_register returned with status %d", error); 15732 15733 error = -ENOMEM; 15734 lpfc_transport_functions.vport_create = lpfc_vport_create; 15735 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15736 lpfc_transport_template = 15737 fc_attach_transport(&lpfc_transport_functions); 15738 if (lpfc_transport_template == NULL) 15739 goto unregister; 15740 lpfc_vport_transport_template = 15741 fc_attach_transport(&lpfc_vport_transport_functions); 15742 if (lpfc_vport_transport_template == NULL) { 15743 fc_release_transport(lpfc_transport_template); 15744 goto unregister; 15745 } 15746 lpfc_wqe_cmd_template(); 15747 lpfc_nvmet_cmd_template(); 15748 15749 /* Initialize in case vector mapping is needed */ 15750 lpfc_present_cpu = num_present_cpus(); 15751 15752 lpfc_pldv_detect = false; 15753 15754 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15755 "lpfc/sli4:online", 15756 lpfc_cpu_online, lpfc_cpu_offline); 15757 if (error < 0) 15758 goto cpuhp_failure; 15759 lpfc_cpuhp_state = error; 15760 15761 error = pci_register_driver(&lpfc_driver); 15762 if (error) 15763 goto unwind; 15764 15765 return error; 15766 15767 unwind: 15768 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15769 cpuhp_failure: 15770 fc_release_transport(lpfc_transport_template); 15771 fc_release_transport(lpfc_vport_transport_template); 15772 unregister: 15773 misc_deregister(&lpfc_mgmt_dev); 15774 15775 return error; 15776 } 15777 15778 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15779 { 15780 unsigned int start_idx; 15781 unsigned int dbg_cnt; 15782 unsigned int temp_idx; 15783 int i; 15784 int j = 0; 15785 unsigned long rem_nsec; 15786 15787 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15788 return; 15789 15790 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15791 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15792 if (!dbg_cnt) 15793 goto out; 15794 temp_idx = start_idx; 15795 if (dbg_cnt >= DBG_LOG_SZ) { 15796 dbg_cnt = DBG_LOG_SZ; 15797 temp_idx -= 1; 15798 } else { 15799 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15800 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15801 } else { 15802 if (start_idx < dbg_cnt) 15803 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15804 else 15805 start_idx -= dbg_cnt; 15806 } 15807 } 15808 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15809 start_idx, temp_idx, dbg_cnt); 15810 15811 for (i = 0; i < dbg_cnt; i++) { 15812 if ((start_idx + i) < DBG_LOG_SZ) 15813 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15814 else 15815 temp_idx = j++; 15816 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15817 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15818 temp_idx, 15819 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15820 rem_nsec / 1000, 15821 phba->dbg_log[temp_idx].log); 15822 } 15823 out: 15824 atomic_set(&phba->dbg_log_cnt, 0); 15825 atomic_set(&phba->dbg_log_dmping, 0); 15826 } 15827 15828 __printf(2, 3) 15829 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15830 { 15831 unsigned int idx; 15832 va_list args; 15833 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15834 struct va_format vaf; 15835 15836 15837 va_start(args, fmt); 15838 if (unlikely(dbg_dmping)) { 15839 vaf.fmt = fmt; 15840 vaf.va = &args; 15841 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15842 va_end(args); 15843 return; 15844 } 15845 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15846 DBG_LOG_SZ; 15847 15848 atomic_inc(&phba->dbg_log_cnt); 15849 15850 vscnprintf(phba->dbg_log[idx].log, 15851 sizeof(phba->dbg_log[idx].log), fmt, args); 15852 va_end(args); 15853 15854 phba->dbg_log[idx].t_ns = local_clock(); 15855 } 15856 15857 /** 15858 * lpfc_exit - lpfc module removal routine 15859 * 15860 * This routine is invoked when the lpfc module is removed from the kernel. 15861 * The special kernel macro module_exit() is used to indicate the role of 15862 * this routine to the kernel as lpfc module exit point. 15863 */ 15864 static void __exit 15865 lpfc_exit(void) 15866 { 15867 misc_deregister(&lpfc_mgmt_dev); 15868 pci_unregister_driver(&lpfc_driver); 15869 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15870 fc_release_transport(lpfc_transport_template); 15871 fc_release_transport(lpfc_vport_transport_template); 15872 idr_destroy(&lpfc_hba_index); 15873 } 15874 15875 module_init(lpfc_init); 15876 module_exit(lpfc_exit); 15877 MODULE_LICENSE("GPL"); 15878 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15879 MODULE_AUTHOR("Broadcom"); 15880 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15881