1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/idr.h> 28 #include <linux/interrupt.h> 29 #include <linux/module.h> 30 #include <linux/kthread.h> 31 #include <linux/pci.h> 32 #include <linux/spinlock.h> 33 #include <linux/ctype.h> 34 #include <linux/aer.h> 35 #include <linux/slab.h> 36 #include <linux/firmware.h> 37 #include <linux/miscdevice.h> 38 #include <linux/percpu.h> 39 #include <linux/msi.h> 40 #include <linux/irq.h> 41 #include <linux/bitops.h> 42 #include <linux/crash_dump.h> 43 #include <linux/cpu.h> 44 #include <linux/cpuhotplug.h> 45 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 #include <scsi/scsi_transport_fc.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/fc/fc_fs.h> 52 53 #include "lpfc_hw4.h" 54 #include "lpfc_hw.h" 55 #include "lpfc_sli.h" 56 #include "lpfc_sli4.h" 57 #include "lpfc_nl.h" 58 #include "lpfc_disc.h" 59 #include "lpfc.h" 60 #include "lpfc_scsi.h" 61 #include "lpfc_nvme.h" 62 #include "lpfc_logmsg.h" 63 #include "lpfc_crtn.h" 64 #include "lpfc_vport.h" 65 #include "lpfc_version.h" 66 #include "lpfc_ids.h" 67 68 static enum cpuhp_state lpfc_cpuhp_state; 69 /* Used when mapping IRQ vectors in a driver centric manner */ 70 static uint32_t lpfc_present_cpu; 71 static bool lpfc_pldv_detect; 72 73 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); 74 static void lpfc_cpuhp_remove(struct lpfc_hba *phba); 75 static void lpfc_cpuhp_add(struct lpfc_hba *phba); 76 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); 77 static int lpfc_post_rcv_buf(struct lpfc_hba *); 78 static int lpfc_sli4_queue_verify(struct lpfc_hba *); 79 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); 80 static int lpfc_setup_endian_order(struct lpfc_hba *); 81 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); 82 static void lpfc_free_els_sgl_list(struct lpfc_hba *); 83 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); 84 static void lpfc_init_sgl_list(struct lpfc_hba *); 85 static int lpfc_init_active_sgl_array(struct lpfc_hba *); 86 static void lpfc_free_active_sgl(struct lpfc_hba *); 87 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); 88 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); 89 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); 90 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); 91 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); 92 static void lpfc_sli4_disable_intr(struct lpfc_hba *); 93 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); 94 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); 95 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); 96 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); 97 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); 98 static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); 99 100 static struct scsi_transport_template *lpfc_transport_template = NULL; 101 static struct scsi_transport_template *lpfc_vport_transport_template = NULL; 102 static DEFINE_IDR(lpfc_hba_index); 103 #define LPFC_NVMET_BUF_POST 254 104 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); 105 106 /** 107 * lpfc_config_port_prep - Perform lpfc initialization prior to config port 108 * @phba: pointer to lpfc hba data structure. 109 * 110 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT 111 * mailbox command. It retrieves the revision information from the HBA and 112 * collects the Vital Product Data (VPD) about the HBA for preparing the 113 * configuration of the HBA. 114 * 115 * Return codes: 116 * 0 - success. 117 * -ERESTART - requests the SLI layer to reset the HBA and try again. 118 * Any other value - indicates an error. 119 **/ 120 int 121 lpfc_config_port_prep(struct lpfc_hba *phba) 122 { 123 lpfc_vpd_t *vp = &phba->vpd; 124 int i = 0, rc; 125 LPFC_MBOXQ_t *pmb; 126 MAILBOX_t *mb; 127 char *lpfc_vpd_data = NULL; 128 uint16_t offset = 0; 129 static char licensed[56] = 130 "key unlock for use with gnu public licensed code only\0"; 131 static int init_key = 1; 132 133 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 134 if (!pmb) { 135 phba->link_state = LPFC_HBA_ERROR; 136 return -ENOMEM; 137 } 138 139 mb = &pmb->u.mb; 140 phba->link_state = LPFC_INIT_MBX_CMDS; 141 142 if (lpfc_is_LC_HBA(phba->pcidev->device)) { 143 if (init_key) { 144 uint32_t *ptext = (uint32_t *) licensed; 145 146 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) 147 *ptext = cpu_to_be32(*ptext); 148 init_key = 0; 149 } 150 151 lpfc_read_nv(phba, pmb); 152 memset((char*)mb->un.varRDnvp.rsvd3, 0, 153 sizeof (mb->un.varRDnvp.rsvd3)); 154 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, 155 sizeof (licensed)); 156 157 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 158 159 if (rc != MBX_SUCCESS) { 160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 161 "0324 Config Port initialization " 162 "error, mbxCmd x%x READ_NVPARM, " 163 "mbxStatus x%x\n", 164 mb->mbxCommand, mb->mbxStatus); 165 mempool_free(pmb, phba->mbox_mem_pool); 166 return -ERESTART; 167 } 168 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, 169 sizeof(phba->wwnn)); 170 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, 171 sizeof(phba->wwpn)); 172 } 173 174 /* 175 * Clear all option bits except LPFC_SLI3_BG_ENABLED, 176 * which was already set in lpfc_get_cfgparam() 177 */ 178 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; 179 180 /* Setup and issue mailbox READ REV command */ 181 lpfc_read_rev(phba, pmb); 182 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 183 if (rc != MBX_SUCCESS) { 184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 185 "0439 Adapter failed to init, mbxCmd x%x " 186 "READ_REV, mbxStatus x%x\n", 187 mb->mbxCommand, mb->mbxStatus); 188 mempool_free( pmb, phba->mbox_mem_pool); 189 return -ERESTART; 190 } 191 192 193 /* 194 * The value of rr must be 1 since the driver set the cv field to 1. 195 * This setting requires the FW to set all revision fields. 196 */ 197 if (mb->un.varRdRev.rr == 0) { 198 vp->rev.rBit = 0; 199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 200 "0440 Adapter failed to init, READ_REV has " 201 "missing revision information.\n"); 202 mempool_free(pmb, phba->mbox_mem_pool); 203 return -ERESTART; 204 } 205 206 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { 207 mempool_free(pmb, phba->mbox_mem_pool); 208 return -EINVAL; 209 } 210 211 /* Save information as VPD data */ 212 vp->rev.rBit = 1; 213 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); 214 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; 215 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); 216 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; 217 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); 218 vp->rev.biuRev = mb->un.varRdRev.biuRev; 219 vp->rev.smRev = mb->un.varRdRev.smRev; 220 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; 221 vp->rev.endecRev = mb->un.varRdRev.endecRev; 222 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; 223 vp->rev.fcphLow = mb->un.varRdRev.fcphLow; 224 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; 225 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; 226 vp->rev.postKernRev = mb->un.varRdRev.postKernRev; 227 vp->rev.opFwRev = mb->un.varRdRev.opFwRev; 228 229 /* If the sli feature level is less then 9, we must 230 * tear down all RPIs and VPIs on link down if NPIV 231 * is enabled. 232 */ 233 if (vp->rev.feaLevelHigh < 9) 234 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; 235 236 if (lpfc_is_LC_HBA(phba->pcidev->device)) 237 memcpy(phba->RandomData, (char *)&mb->un.varWords[24], 238 sizeof (phba->RandomData)); 239 240 /* Get adapter VPD information */ 241 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); 242 if (!lpfc_vpd_data) 243 goto out_free_mbox; 244 do { 245 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); 246 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 247 248 if (rc != MBX_SUCCESS) { 249 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 250 "0441 VPD not present on adapter, " 251 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", 252 mb->mbxCommand, mb->mbxStatus); 253 mb->un.varDmp.word_cnt = 0; 254 } 255 /* dump mem may return a zero when finished or we got a 256 * mailbox error, either way we are done. 257 */ 258 if (mb->un.varDmp.word_cnt == 0) 259 break; 260 261 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) 262 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; 263 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 264 lpfc_vpd_data + offset, 265 mb->un.varDmp.word_cnt); 266 offset += mb->un.varDmp.word_cnt; 267 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); 268 269 lpfc_parse_vpd(phba, lpfc_vpd_data, offset); 270 271 kfree(lpfc_vpd_data); 272 out_free_mbox: 273 mempool_free(pmb, phba->mbox_mem_pool); 274 return 0; 275 } 276 277 /** 278 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd 279 * @phba: pointer to lpfc hba data structure. 280 * @pmboxq: pointer to the driver internal queue element for mailbox command. 281 * 282 * This is the completion handler for driver's configuring asynchronous event 283 * mailbox command to the device. If the mailbox command returns successfully, 284 * it will set internal async event support flag to 1; otherwise, it will 285 * set internal async event support flag to 0. 286 **/ 287 static void 288 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 289 { 290 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) 291 phba->temp_sensor_support = 1; 292 else 293 phba->temp_sensor_support = 0; 294 mempool_free(pmboxq, phba->mbox_mem_pool); 295 return; 296 } 297 298 /** 299 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler 300 * @phba: pointer to lpfc hba data structure. 301 * @pmboxq: pointer to the driver internal queue element for mailbox command. 302 * 303 * This is the completion handler for dump mailbox command for getting 304 * wake up parameters. When this command complete, the response contain 305 * Option rom version of the HBA. This function translate the version number 306 * into a human readable string and store it in OptionROMVersion. 307 **/ 308 static void 309 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 310 { 311 struct prog_id *prg; 312 uint32_t prog_id_word; 313 char dist = ' '; 314 /* character array used for decoding dist type. */ 315 char dist_char[] = "nabx"; 316 317 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { 318 mempool_free(pmboxq, phba->mbox_mem_pool); 319 return; 320 } 321 322 prg = (struct prog_id *) &prog_id_word; 323 324 /* word 7 contain option rom version */ 325 prog_id_word = pmboxq->u.mb.un.varWords[7]; 326 327 /* Decode the Option rom version word to a readable string */ 328 if (prg->dist < 4) 329 dist = dist_char[prg->dist]; 330 331 if ((prg->dist == 3) && (prg->num == 0)) 332 snprintf(phba->OptionROMVersion, 32, "%d.%d%d", 333 prg->ver, prg->rev, prg->lev); 334 else 335 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", 336 prg->ver, prg->rev, prg->lev, 337 dist, prg->num); 338 mempool_free(pmboxq, phba->mbox_mem_pool); 339 return; 340 } 341 342 /** 343 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, 344 * @vport: pointer to lpfc vport data structure. 345 * 346 * 347 * Return codes 348 * None. 349 **/ 350 void 351 lpfc_update_vport_wwn(struct lpfc_vport *vport) 352 { 353 struct lpfc_hba *phba = vport->phba; 354 355 /* 356 * If the name is empty or there exists a soft name 357 * then copy the service params name, otherwise use the fc name 358 */ 359 if (vport->fc_nodename.u.wwn[0] == 0) 360 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, 361 sizeof(struct lpfc_name)); 362 else 363 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, 364 sizeof(struct lpfc_name)); 365 366 /* 367 * If the port name has changed, then set the Param changes flag 368 * to unreg the login 369 */ 370 if (vport->fc_portname.u.wwn[0] != 0 && 371 memcmp(&vport->fc_portname, &vport->fc_sparam.portName, 372 sizeof(struct lpfc_name))) { 373 vport->vport_flag |= FAWWPN_PARAM_CHG; 374 375 if (phba->sli_rev == LPFC_SLI_REV4 && 376 vport->port_type == LPFC_PHYSICAL_PORT && 377 phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { 378 lpfc_printf_log(phba, KERN_INFO, 379 LOG_SLI | LOG_DISCOVERY | LOG_ELS, 380 "2701 FA-PWWN change WWPN from %llx to " 381 "%llx: vflag x%x fawwpn_flag x%x\n", 382 wwn_to_u64(vport->fc_portname.u.wwn), 383 wwn_to_u64 384 (vport->fc_sparam.portName.u.wwn), 385 vport->vport_flag, 386 phba->sli4_hba.fawwpn_flag); 387 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 388 sizeof(struct lpfc_name)); 389 } 390 } 391 392 if (vport->fc_portname.u.wwn[0] == 0) 393 memcpy(&vport->fc_portname, &vport->fc_sparam.portName, 394 sizeof(struct lpfc_name)); 395 else 396 memcpy(&vport->fc_sparam.portName, &vport->fc_portname, 397 sizeof(struct lpfc_name)); 398 } 399 400 /** 401 * lpfc_config_port_post - Perform lpfc initialization after config port 402 * @phba: pointer to lpfc hba data structure. 403 * 404 * This routine will do LPFC initialization after the CONFIG_PORT mailbox 405 * command call. It performs all internal resource and state setups on the 406 * port: post IOCB buffers, enable appropriate host interrupt attentions, 407 * ELS ring timers, etc. 408 * 409 * Return codes 410 * 0 - success. 411 * Any other value - error. 412 **/ 413 int 414 lpfc_config_port_post(struct lpfc_hba *phba) 415 { 416 struct lpfc_vport *vport = phba->pport; 417 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 418 LPFC_MBOXQ_t *pmb; 419 MAILBOX_t *mb; 420 struct lpfc_dmabuf *mp; 421 struct lpfc_sli *psli = &phba->sli; 422 uint32_t status, timeout; 423 int i, j; 424 int rc; 425 426 spin_lock_irq(&phba->hbalock); 427 /* 428 * If the Config port completed correctly the HBA is not 429 * over heated any more. 430 */ 431 if (phba->over_temp_state == HBA_OVER_TEMP) 432 phba->over_temp_state = HBA_NORMAL_TEMP; 433 spin_unlock_irq(&phba->hbalock); 434 435 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 436 if (!pmb) { 437 phba->link_state = LPFC_HBA_ERROR; 438 return -ENOMEM; 439 } 440 mb = &pmb->u.mb; 441 442 /* Get login parameters for NID. */ 443 rc = lpfc_read_sparam(phba, pmb, 0); 444 if (rc) { 445 mempool_free(pmb, phba->mbox_mem_pool); 446 return -ENOMEM; 447 } 448 449 pmb->vport = vport; 450 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 452 "0448 Adapter failed init, mbxCmd x%x " 453 "READ_SPARM mbxStatus x%x\n", 454 mb->mbxCommand, mb->mbxStatus); 455 phba->link_state = LPFC_HBA_ERROR; 456 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 457 return -EIO; 458 } 459 460 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 461 462 /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no 463 * longer needed. Prevent unintended ctx_buf access as the mbox is 464 * reused. 465 */ 466 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); 467 lpfc_mbuf_free(phba, mp->virt, mp->phys); 468 kfree(mp); 469 pmb->ctx_buf = NULL; 470 lpfc_update_vport_wwn(vport); 471 472 /* Update the fc_host data structures with new wwn. */ 473 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 474 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 475 fc_host_max_npiv_vports(shost) = phba->max_vpi; 476 477 /* If no serial number in VPD data, use low 6 bytes of WWNN */ 478 /* This should be consolidated into parse_vpd ? - mr */ 479 if (phba->SerialNumber[0] == 0) { 480 uint8_t *outptr; 481 482 outptr = &vport->fc_nodename.u.s.IEEE[0]; 483 for (i = 0; i < 12; i++) { 484 status = *outptr++; 485 j = ((status & 0xf0) >> 4); 486 if (j <= 9) 487 phba->SerialNumber[i] = 488 (char)((uint8_t) 0x30 + (uint8_t) j); 489 else 490 phba->SerialNumber[i] = 491 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 492 i++; 493 j = (status & 0xf); 494 if (j <= 9) 495 phba->SerialNumber[i] = 496 (char)((uint8_t) 0x30 + (uint8_t) j); 497 else 498 phba->SerialNumber[i] = 499 (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); 500 } 501 } 502 503 lpfc_read_config(phba, pmb); 504 pmb->vport = vport; 505 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 507 "0453 Adapter failed to init, mbxCmd x%x " 508 "READ_CONFIG, mbxStatus x%x\n", 509 mb->mbxCommand, mb->mbxStatus); 510 phba->link_state = LPFC_HBA_ERROR; 511 mempool_free( pmb, phba->mbox_mem_pool); 512 return -EIO; 513 } 514 515 /* Check if the port is disabled */ 516 lpfc_sli_read_link_ste(phba); 517 518 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 519 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { 520 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 521 "3359 HBA queue depth changed from %d to %d\n", 522 phba->cfg_hba_queue_depth, 523 mb->un.varRdConfig.max_xri); 524 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; 525 } 526 527 phba->lmt = mb->un.varRdConfig.lmt; 528 529 /* Get the default values for Model Name and Description */ 530 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 531 532 phba->link_state = LPFC_LINK_DOWN; 533 534 /* Only process IOCBs on ELS ring till hba_state is READY */ 535 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) 536 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; 537 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) 538 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; 539 540 /* Post receive buffers for desired rings */ 541 if (phba->sli_rev != 3) 542 lpfc_post_rcv_buf(phba); 543 544 /* 545 * Configure HBA MSI-X attention conditions to messages if MSI-X mode 546 */ 547 if (phba->intr_type == MSIX) { 548 rc = lpfc_config_msi(phba, pmb); 549 if (rc) { 550 mempool_free(pmb, phba->mbox_mem_pool); 551 return -EIO; 552 } 553 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 554 if (rc != MBX_SUCCESS) { 555 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 556 "0352 Config MSI mailbox command " 557 "failed, mbxCmd x%x, mbxStatus x%x\n", 558 pmb->u.mb.mbxCommand, 559 pmb->u.mb.mbxStatus); 560 mempool_free(pmb, phba->mbox_mem_pool); 561 return -EIO; 562 } 563 } 564 565 spin_lock_irq(&phba->hbalock); 566 /* Initialize ERATT handling flag */ 567 phba->hba_flag &= ~HBA_ERATT_HANDLED; 568 569 /* Enable appropriate host interrupts */ 570 if (lpfc_readl(phba->HCregaddr, &status)) { 571 spin_unlock_irq(&phba->hbalock); 572 return -EIO; 573 } 574 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; 575 if (psli->num_rings > 0) 576 status |= HC_R0INT_ENA; 577 if (psli->num_rings > 1) 578 status |= HC_R1INT_ENA; 579 if (psli->num_rings > 2) 580 status |= HC_R2INT_ENA; 581 if (psli->num_rings > 3) 582 status |= HC_R3INT_ENA; 583 584 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && 585 (phba->cfg_poll & DISABLE_FCP_RING_INT)) 586 status &= ~(HC_R0INT_ENA); 587 588 writel(status, phba->HCregaddr); 589 readl(phba->HCregaddr); /* flush */ 590 spin_unlock_irq(&phba->hbalock); 591 592 /* Set up ring-0 (ELS) timer */ 593 timeout = phba->fc_ratov * 2; 594 mod_timer(&vport->els_tmofunc, 595 jiffies + msecs_to_jiffies(1000 * timeout)); 596 /* Set up heart beat (HB) timer */ 597 mod_timer(&phba->hb_tmofunc, 598 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 599 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 600 phba->last_completion_time = jiffies; 601 /* Set up error attention (ERATT) polling timer */ 602 mod_timer(&phba->eratt_poll, 603 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 604 605 if (phba->hba_flag & LINK_DISABLED) { 606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 607 "2598 Adapter Link is disabled.\n"); 608 lpfc_down_link(phba, pmb); 609 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 610 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 611 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 613 "2599 Adapter failed to issue DOWN_LINK" 614 " mbox command rc 0x%x\n", rc); 615 616 mempool_free(pmb, phba->mbox_mem_pool); 617 return -EIO; 618 } 619 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 620 mempool_free(pmb, phba->mbox_mem_pool); 621 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 622 if (rc) 623 return rc; 624 } 625 /* MBOX buffer will be freed in mbox compl */ 626 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 627 if (!pmb) { 628 phba->link_state = LPFC_HBA_ERROR; 629 return -ENOMEM; 630 } 631 632 lpfc_config_async(phba, pmb, LPFC_ELS_RING); 633 pmb->mbox_cmpl = lpfc_config_async_cmpl; 634 pmb->vport = phba->pport; 635 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 636 637 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 639 "0456 Adapter failed to issue " 640 "ASYNCEVT_ENABLE mbox status x%x\n", 641 rc); 642 mempool_free(pmb, phba->mbox_mem_pool); 643 } 644 645 /* Get Option rom version */ 646 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 647 if (!pmb) { 648 phba->link_state = LPFC_HBA_ERROR; 649 return -ENOMEM; 650 } 651 652 lpfc_dump_wakeup_param(phba, pmb); 653 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; 654 pmb->vport = phba->pport; 655 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 656 657 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 659 "0435 Adapter failed " 660 "to get Option ROM version status x%x\n", rc); 661 mempool_free(pmb, phba->mbox_mem_pool); 662 } 663 664 return 0; 665 } 666 667 /** 668 * lpfc_sli4_refresh_params - update driver copy of params. 669 * @phba: Pointer to HBA context object. 670 * 671 * This is called to refresh driver copy of dynamic fields from the 672 * common_get_sli4_parameters descriptor. 673 **/ 674 int 675 lpfc_sli4_refresh_params(struct lpfc_hba *phba) 676 { 677 LPFC_MBOXQ_t *mboxq; 678 struct lpfc_mqe *mqe; 679 struct lpfc_sli4_parameters *mbx_sli4_parameters; 680 int length, rc; 681 682 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 683 if (!mboxq) 684 return -ENOMEM; 685 686 mqe = &mboxq->u.mqe; 687 /* Read the port's SLI4 Config Parameters */ 688 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 689 sizeof(struct lpfc_sli4_cfg_mhdr)); 690 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 691 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 692 length, LPFC_SLI4_MBX_EMBED); 693 694 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 695 if (unlikely(rc)) { 696 mempool_free(mboxq, phba->mbox_mem_pool); 697 return rc; 698 } 699 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 700 701 /* Are we forcing MI off via module parameter? */ 702 if (phba->cfg_enable_mi) 703 phba->sli4_hba.pc_sli4_params.mi_ver = 704 bf_get(cfg_mi_ver, mbx_sli4_parameters); 705 else 706 phba->sli4_hba.pc_sli4_params.mi_ver = 0; 707 708 phba->sli4_hba.pc_sli4_params.cmf = 709 bf_get(cfg_cmf, mbx_sli4_parameters); 710 phba->sli4_hba.pc_sli4_params.pls = 711 bf_get(cfg_pvl, mbx_sli4_parameters); 712 713 mempool_free(mboxq, phba->mbox_mem_pool); 714 return rc; 715 } 716 717 /** 718 * lpfc_hba_init_link - Initialize the FC link 719 * @phba: pointer to lpfc hba data structure. 720 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 721 * 722 * This routine will issue the INIT_LINK mailbox command call. 723 * It is available to other drivers through the lpfc_hba data 724 * structure for use as a delayed link up mechanism with the 725 * module parameter lpfc_suppress_link_up. 726 * 727 * Return code 728 * 0 - success 729 * Any other value - error 730 **/ 731 static int 732 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) 733 { 734 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); 735 } 736 737 /** 738 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology 739 * @phba: pointer to lpfc hba data structure. 740 * @fc_topology: desired fc topology. 741 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 742 * 743 * This routine will issue the INIT_LINK mailbox command call. 744 * It is available to other drivers through the lpfc_hba data 745 * structure for use as a delayed link up mechanism with the 746 * module parameter lpfc_suppress_link_up. 747 * 748 * Return code 749 * 0 - success 750 * Any other value - error 751 **/ 752 int 753 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, 754 uint32_t flag) 755 { 756 struct lpfc_vport *vport = phba->pport; 757 LPFC_MBOXQ_t *pmb; 758 MAILBOX_t *mb; 759 int rc; 760 761 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 762 if (!pmb) { 763 phba->link_state = LPFC_HBA_ERROR; 764 return -ENOMEM; 765 } 766 mb = &pmb->u.mb; 767 pmb->vport = vport; 768 769 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || 770 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && 771 !(phba->lmt & LMT_1Gb)) || 772 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && 773 !(phba->lmt & LMT_2Gb)) || 774 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && 775 !(phba->lmt & LMT_4Gb)) || 776 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && 777 !(phba->lmt & LMT_8Gb)) || 778 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && 779 !(phba->lmt & LMT_10Gb)) || 780 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && 781 !(phba->lmt & LMT_16Gb)) || 782 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && 783 !(phba->lmt & LMT_32Gb)) || 784 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && 785 !(phba->lmt & LMT_64Gb))) { 786 /* Reset link speed to auto */ 787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 788 "1302 Invalid speed for this board:%d " 789 "Reset link speed to auto.\n", 790 phba->cfg_link_speed); 791 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; 792 } 793 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); 794 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 795 if (phba->sli_rev < LPFC_SLI_REV4) 796 lpfc_set_loopback_flag(phba); 797 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 798 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { 799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 800 "0498 Adapter failed to init, mbxCmd x%x " 801 "INIT_LINK, mbxStatus x%x\n", 802 mb->mbxCommand, mb->mbxStatus); 803 if (phba->sli_rev <= LPFC_SLI_REV3) { 804 /* Clear all interrupt enable conditions */ 805 writel(0, phba->HCregaddr); 806 readl(phba->HCregaddr); /* flush */ 807 /* Clear all pending interrupts */ 808 writel(0xffffffff, phba->HAregaddr); 809 readl(phba->HAregaddr); /* flush */ 810 } 811 phba->link_state = LPFC_HBA_ERROR; 812 if (rc != MBX_BUSY || flag == MBX_POLL) 813 mempool_free(pmb, phba->mbox_mem_pool); 814 return -EIO; 815 } 816 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; 817 if (flag == MBX_POLL) 818 mempool_free(pmb, phba->mbox_mem_pool); 819 820 return 0; 821 } 822 823 /** 824 * lpfc_hba_down_link - this routine downs the FC link 825 * @phba: pointer to lpfc hba data structure. 826 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT 827 * 828 * This routine will issue the DOWN_LINK mailbox command call. 829 * It is available to other drivers through the lpfc_hba data 830 * structure for use to stop the link. 831 * 832 * Return code 833 * 0 - success 834 * Any other value - error 835 **/ 836 static int 837 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) 838 { 839 LPFC_MBOXQ_t *pmb; 840 int rc; 841 842 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 843 if (!pmb) { 844 phba->link_state = LPFC_HBA_ERROR; 845 return -ENOMEM; 846 } 847 848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 849 "0491 Adapter Link is disabled.\n"); 850 lpfc_down_link(phba, pmb); 851 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 852 rc = lpfc_sli_issue_mbox(phba, pmb, flag); 853 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { 854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 855 "2522 Adapter failed to issue DOWN_LINK" 856 " mbox command rc 0x%x\n", rc); 857 858 mempool_free(pmb, phba->mbox_mem_pool); 859 return -EIO; 860 } 861 if (flag == MBX_POLL) 862 mempool_free(pmb, phba->mbox_mem_pool); 863 864 return 0; 865 } 866 867 /** 868 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset 869 * @phba: pointer to lpfc HBA data structure. 870 * 871 * This routine will do LPFC uninitialization before the HBA is reset when 872 * bringing down the SLI Layer. 873 * 874 * Return codes 875 * 0 - success. 876 * Any other value - error. 877 **/ 878 int 879 lpfc_hba_down_prep(struct lpfc_hba *phba) 880 { 881 struct lpfc_vport **vports; 882 int i; 883 884 if (phba->sli_rev <= LPFC_SLI_REV3) { 885 /* Disable interrupts */ 886 writel(0, phba->HCregaddr); 887 readl(phba->HCregaddr); /* flush */ 888 } 889 890 if (phba->pport->load_flag & FC_UNLOADING) 891 lpfc_cleanup_discovery_resources(phba->pport); 892 else { 893 vports = lpfc_create_vport_work_array(phba); 894 if (vports != NULL) 895 for (i = 0; i <= phba->max_vports && 896 vports[i] != NULL; i++) 897 lpfc_cleanup_discovery_resources(vports[i]); 898 lpfc_destroy_vport_work_array(phba, vports); 899 } 900 return 0; 901 } 902 903 /** 904 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free 905 * rspiocb which got deferred 906 * 907 * @phba: pointer to lpfc HBA data structure. 908 * 909 * This routine will cleanup completed slow path events after HBA is reset 910 * when bringing down the SLI Layer. 911 * 912 * 913 * Return codes 914 * void. 915 **/ 916 static void 917 lpfc_sli4_free_sp_events(struct lpfc_hba *phba) 918 { 919 struct lpfc_iocbq *rspiocbq; 920 struct hbq_dmabuf *dmabuf; 921 struct lpfc_cq_event *cq_event; 922 923 spin_lock_irq(&phba->hbalock); 924 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 925 spin_unlock_irq(&phba->hbalock); 926 927 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 928 /* Get the response iocb from the head of work queue */ 929 spin_lock_irq(&phba->hbalock); 930 list_remove_head(&phba->sli4_hba.sp_queue_event, 931 cq_event, struct lpfc_cq_event, list); 932 spin_unlock_irq(&phba->hbalock); 933 934 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 935 case CQE_CODE_COMPL_WQE: 936 rspiocbq = container_of(cq_event, struct lpfc_iocbq, 937 cq_event); 938 lpfc_sli_release_iocbq(phba, rspiocbq); 939 break; 940 case CQE_CODE_RECEIVE: 941 case CQE_CODE_RECEIVE_V1: 942 dmabuf = container_of(cq_event, struct hbq_dmabuf, 943 cq_event); 944 lpfc_in_buf_free(phba, &dmabuf->dbuf); 945 } 946 } 947 } 948 949 /** 950 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset 951 * @phba: pointer to lpfc HBA data structure. 952 * 953 * This routine will cleanup posted ELS buffers after the HBA is reset 954 * when bringing down the SLI Layer. 955 * 956 * 957 * Return codes 958 * void. 959 **/ 960 static void 961 lpfc_hba_free_post_buf(struct lpfc_hba *phba) 962 { 963 struct lpfc_sli *psli = &phba->sli; 964 struct lpfc_sli_ring *pring; 965 struct lpfc_dmabuf *mp, *next_mp; 966 LIST_HEAD(buflist); 967 int count; 968 969 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) 970 lpfc_sli_hbqbuf_free_all(phba); 971 else { 972 /* Cleanup preposted buffers on the ELS ring */ 973 pring = &psli->sli3_ring[LPFC_ELS_RING]; 974 spin_lock_irq(&phba->hbalock); 975 list_splice_init(&pring->postbufq, &buflist); 976 spin_unlock_irq(&phba->hbalock); 977 978 count = 0; 979 list_for_each_entry_safe(mp, next_mp, &buflist, list) { 980 list_del(&mp->list); 981 count++; 982 lpfc_mbuf_free(phba, mp->virt, mp->phys); 983 kfree(mp); 984 } 985 986 spin_lock_irq(&phba->hbalock); 987 pring->postbufq_cnt -= count; 988 spin_unlock_irq(&phba->hbalock); 989 } 990 } 991 992 /** 993 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset 994 * @phba: pointer to lpfc HBA data structure. 995 * 996 * This routine will cleanup the txcmplq after the HBA is reset when bringing 997 * down the SLI Layer. 998 * 999 * Return codes 1000 * void 1001 **/ 1002 static void 1003 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) 1004 { 1005 struct lpfc_sli *psli = &phba->sli; 1006 struct lpfc_queue *qp = NULL; 1007 struct lpfc_sli_ring *pring; 1008 LIST_HEAD(completions); 1009 int i; 1010 struct lpfc_iocbq *piocb, *next_iocb; 1011 1012 if (phba->sli_rev != LPFC_SLI_REV4) { 1013 for (i = 0; i < psli->num_rings; i++) { 1014 pring = &psli->sli3_ring[i]; 1015 spin_lock_irq(&phba->hbalock); 1016 /* At this point in time the HBA is either reset or DOA 1017 * Nothing should be on txcmplq as it will 1018 * NEVER complete. 1019 */ 1020 list_splice_init(&pring->txcmplq, &completions); 1021 pring->txcmplq_cnt = 0; 1022 spin_unlock_irq(&phba->hbalock); 1023 1024 lpfc_sli_abort_iocb_ring(phba, pring); 1025 } 1026 /* Cancel all the IOCBs from the completions list */ 1027 lpfc_sli_cancel_iocbs(phba, &completions, 1028 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1029 return; 1030 } 1031 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 1032 pring = qp->pring; 1033 if (!pring) 1034 continue; 1035 spin_lock_irq(&pring->ring_lock); 1036 list_for_each_entry_safe(piocb, next_iocb, 1037 &pring->txcmplq, list) 1038 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 1039 list_splice_init(&pring->txcmplq, &completions); 1040 pring->txcmplq_cnt = 0; 1041 spin_unlock_irq(&pring->ring_lock); 1042 lpfc_sli_abort_iocb_ring(phba, pring); 1043 } 1044 /* Cancel all the IOCBs from the completions list */ 1045 lpfc_sli_cancel_iocbs(phba, &completions, 1046 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 1047 } 1048 1049 /** 1050 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset 1051 * @phba: pointer to lpfc HBA data structure. 1052 * 1053 * This routine will do uninitialization after the HBA is reset when bring 1054 * down the SLI Layer. 1055 * 1056 * Return codes 1057 * 0 - success. 1058 * Any other value - error. 1059 **/ 1060 static int 1061 lpfc_hba_down_post_s3(struct lpfc_hba *phba) 1062 { 1063 lpfc_hba_free_post_buf(phba); 1064 lpfc_hba_clean_txcmplq(phba); 1065 return 0; 1066 } 1067 1068 /** 1069 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset 1070 * @phba: pointer to lpfc HBA data structure. 1071 * 1072 * This routine will do uninitialization after the HBA is reset when bring 1073 * down the SLI Layer. 1074 * 1075 * Return codes 1076 * 0 - success. 1077 * Any other value - error. 1078 **/ 1079 static int 1080 lpfc_hba_down_post_s4(struct lpfc_hba *phba) 1081 { 1082 struct lpfc_io_buf *psb, *psb_next; 1083 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; 1084 struct lpfc_sli4_hdw_queue *qp; 1085 LIST_HEAD(aborts); 1086 LIST_HEAD(nvme_aborts); 1087 LIST_HEAD(nvmet_aborts); 1088 struct lpfc_sglq *sglq_entry = NULL; 1089 int cnt, idx; 1090 1091 1092 lpfc_sli_hbqbuf_free_all(phba); 1093 lpfc_hba_clean_txcmplq(phba); 1094 1095 /* At this point in time the HBA is either reset or DOA. Either 1096 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be 1097 * on the lpfc_els_sgl_list so that it can either be freed if the 1098 * driver is unloading or reposted if the driver is restarting 1099 * the port. 1100 */ 1101 1102 /* sgl_list_lock required because worker thread uses this 1103 * list. 1104 */ 1105 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 1106 list_for_each_entry(sglq_entry, 1107 &phba->sli4_hba.lpfc_abts_els_sgl_list, list) 1108 sglq_entry->state = SGL_FREED; 1109 1110 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, 1111 &phba->sli4_hba.lpfc_els_sgl_list); 1112 1113 1114 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 1115 1116 /* abts_xxxx_buf_list_lock required because worker thread uses this 1117 * list. 1118 */ 1119 spin_lock_irq(&phba->hbalock); 1120 cnt = 0; 1121 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 1122 qp = &phba->sli4_hba.hdwq[idx]; 1123 1124 spin_lock(&qp->abts_io_buf_list_lock); 1125 list_splice_init(&qp->lpfc_abts_io_buf_list, 1126 &aborts); 1127 1128 list_for_each_entry_safe(psb, psb_next, &aborts, list) { 1129 psb->pCmd = NULL; 1130 psb->status = IOSTAT_SUCCESS; 1131 cnt++; 1132 } 1133 spin_lock(&qp->io_buf_list_put_lock); 1134 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); 1135 qp->put_io_bufs += qp->abts_scsi_io_bufs; 1136 qp->put_io_bufs += qp->abts_nvme_io_bufs; 1137 qp->abts_scsi_io_bufs = 0; 1138 qp->abts_nvme_io_bufs = 0; 1139 spin_unlock(&qp->io_buf_list_put_lock); 1140 spin_unlock(&qp->abts_io_buf_list_lock); 1141 } 1142 spin_unlock_irq(&phba->hbalock); 1143 1144 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 1145 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1146 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1147 &nvmet_aborts); 1148 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1149 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { 1150 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); 1151 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1152 } 1153 } 1154 1155 lpfc_sli4_free_sp_events(phba); 1156 return cnt; 1157 } 1158 1159 /** 1160 * lpfc_hba_down_post - Wrapper func for hba down post routine 1161 * @phba: pointer to lpfc HBA data structure. 1162 * 1163 * This routine wraps the actual SLI3 or SLI4 routine for performing 1164 * uninitialization after the HBA is reset when bring down the SLI Layer. 1165 * 1166 * Return codes 1167 * 0 - success. 1168 * Any other value - error. 1169 **/ 1170 int 1171 lpfc_hba_down_post(struct lpfc_hba *phba) 1172 { 1173 return (*phba->lpfc_hba_down_post)(phba); 1174 } 1175 1176 /** 1177 * lpfc_hb_timeout - The HBA-timer timeout handler 1178 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1179 * 1180 * This is the HBA-timer timeout handler registered to the lpfc driver. When 1181 * this timer fires, a HBA timeout event shall be posted to the lpfc driver 1182 * work-port-events bitmap and the worker thread is notified. This timeout 1183 * event will be used by the worker thread to invoke the actual timeout 1184 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will 1185 * be performed in the timeout handler and the HBA timeout event bit shall 1186 * be cleared by the worker thread after it has taken the event bitmap out. 1187 **/ 1188 static void 1189 lpfc_hb_timeout(struct timer_list *t) 1190 { 1191 struct lpfc_hba *phba; 1192 uint32_t tmo_posted; 1193 unsigned long iflag; 1194 1195 phba = from_timer(phba, t, hb_tmofunc); 1196 1197 /* Check for heart beat timeout conditions */ 1198 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1199 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; 1200 if (!tmo_posted) 1201 phba->pport->work_port_events |= WORKER_HB_TMO; 1202 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1203 1204 /* Tell the worker thread there is work to do */ 1205 if (!tmo_posted) 1206 lpfc_worker_wake_up(phba); 1207 return; 1208 } 1209 1210 /** 1211 * lpfc_rrq_timeout - The RRQ-timer timeout handler 1212 * @t: timer context used to obtain the pointer to lpfc hba data structure. 1213 * 1214 * This is the RRQ-timer timeout handler registered to the lpfc driver. When 1215 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver 1216 * work-port-events bitmap and the worker thread is notified. This timeout 1217 * event will be used by the worker thread to invoke the actual timeout 1218 * handler routine, lpfc_rrq_handler. Any periodical operations will 1219 * be performed in the timeout handler and the RRQ timeout event bit shall 1220 * be cleared by the worker thread after it has taken the event bitmap out. 1221 **/ 1222 static void 1223 lpfc_rrq_timeout(struct timer_list *t) 1224 { 1225 struct lpfc_hba *phba; 1226 unsigned long iflag; 1227 1228 phba = from_timer(phba, t, rrq_tmr); 1229 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 1230 if (!(phba->pport->load_flag & FC_UNLOADING)) 1231 phba->hba_flag |= HBA_RRQ_ACTIVE; 1232 else 1233 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1234 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 1235 1236 if (!(phba->pport->load_flag & FC_UNLOADING)) 1237 lpfc_worker_wake_up(phba); 1238 } 1239 1240 /** 1241 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function 1242 * @phba: pointer to lpfc hba data structure. 1243 * @pmboxq: pointer to the driver internal queue element for mailbox command. 1244 * 1245 * This is the callback function to the lpfc heart-beat mailbox command. 1246 * If configured, the lpfc driver issues the heart-beat mailbox command to 1247 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the 1248 * heart-beat mailbox command is issued, the driver shall set up heart-beat 1249 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks 1250 * heart-beat outstanding state. Once the mailbox command comes back and 1251 * no error conditions detected, the heart-beat mailbox command timer is 1252 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding 1253 * state is cleared for the next heart-beat. If the timer expired with the 1254 * heart-beat outstanding state set, the driver will put the HBA offline. 1255 **/ 1256 static void 1257 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) 1258 { 1259 unsigned long drvr_flag; 1260 1261 spin_lock_irqsave(&phba->hbalock, drvr_flag); 1262 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 1263 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 1264 1265 /* Check and reset heart-beat timer if necessary */ 1266 mempool_free(pmboxq, phba->mbox_mem_pool); 1267 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) && 1268 !(phba->link_state == LPFC_HBA_ERROR) && 1269 !(phba->pport->load_flag & FC_UNLOADING)) 1270 mod_timer(&phba->hb_tmofunc, 1271 jiffies + 1272 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 1273 return; 1274 } 1275 1276 /* 1277 * lpfc_idle_stat_delay_work - idle_stat tracking 1278 * 1279 * This routine tracks per-cq idle_stat and determines polling decisions. 1280 * 1281 * Return codes: 1282 * None 1283 **/ 1284 static void 1285 lpfc_idle_stat_delay_work(struct work_struct *work) 1286 { 1287 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1288 struct lpfc_hba, 1289 idle_stat_delay_work); 1290 struct lpfc_queue *cq; 1291 struct lpfc_sli4_hdw_queue *hdwq; 1292 struct lpfc_idle_stat *idle_stat; 1293 u32 i, idle_percent; 1294 u64 wall, wall_idle, diff_wall, diff_idle, busy_time; 1295 1296 if (phba->pport->load_flag & FC_UNLOADING) 1297 return; 1298 1299 if (phba->link_state == LPFC_HBA_ERROR || 1300 phba->pport->fc_flag & FC_OFFLINE_MODE || 1301 phba->cmf_active_mode != LPFC_CFG_OFF) 1302 goto requeue; 1303 1304 for_each_present_cpu(i) { 1305 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 1306 cq = hdwq->io_cq; 1307 1308 /* Skip if we've already handled this cq's primary CPU */ 1309 if (cq->chann != i) 1310 continue; 1311 1312 idle_stat = &phba->sli4_hba.idle_stat[i]; 1313 1314 /* get_cpu_idle_time returns values as running counters. Thus, 1315 * to know the amount for this period, the prior counter values 1316 * need to be subtracted from the current counter values. 1317 * From there, the idle time stat can be calculated as a 1318 * percentage of 100 - the sum of the other consumption times. 1319 */ 1320 wall_idle = get_cpu_idle_time(i, &wall, 1); 1321 diff_idle = wall_idle - idle_stat->prev_idle; 1322 diff_wall = wall - idle_stat->prev_wall; 1323 1324 if (diff_wall <= diff_idle) 1325 busy_time = 0; 1326 else 1327 busy_time = diff_wall - diff_idle; 1328 1329 idle_percent = div64_u64(100 * busy_time, diff_wall); 1330 idle_percent = 100 - idle_percent; 1331 1332 if (idle_percent < 15) 1333 cq->poll_mode = LPFC_QUEUE_WORK; 1334 else 1335 cq->poll_mode = LPFC_IRQ_POLL; 1336 1337 idle_stat->prev_idle = wall_idle; 1338 idle_stat->prev_wall = wall; 1339 } 1340 1341 requeue: 1342 schedule_delayed_work(&phba->idle_stat_delay_work, 1343 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 1344 } 1345 1346 static void 1347 lpfc_hb_eq_delay_work(struct work_struct *work) 1348 { 1349 struct lpfc_hba *phba = container_of(to_delayed_work(work), 1350 struct lpfc_hba, eq_delay_work); 1351 struct lpfc_eq_intr_info *eqi, *eqi_new; 1352 struct lpfc_queue *eq, *eq_next; 1353 unsigned char *ena_delay = NULL; 1354 uint32_t usdelay; 1355 int i; 1356 1357 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING) 1358 return; 1359 1360 if (phba->link_state == LPFC_HBA_ERROR || 1361 phba->pport->fc_flag & FC_OFFLINE_MODE) 1362 goto requeue; 1363 1364 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), 1365 GFP_KERNEL); 1366 if (!ena_delay) 1367 goto requeue; 1368 1369 for (i = 0; i < phba->cfg_irq_chann; i++) { 1370 /* Get the EQ corresponding to the IRQ vector */ 1371 eq = phba->sli4_hba.hba_eq_hdl[i].eq; 1372 if (!eq) 1373 continue; 1374 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { 1375 eq->q_flag &= ~HBA_EQ_DELAY_CHK; 1376 ena_delay[eq->last_cpu] = 1; 1377 } 1378 } 1379 1380 for_each_present_cpu(i) { 1381 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); 1382 if (ena_delay[i]) { 1383 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; 1384 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) 1385 usdelay = LPFC_MAX_AUTO_EQ_DELAY; 1386 } else { 1387 usdelay = 0; 1388 } 1389 1390 eqi->icnt = 0; 1391 1392 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { 1393 if (unlikely(eq->last_cpu != i)) { 1394 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, 1395 eq->last_cpu); 1396 list_move_tail(&eq->cpu_list, &eqi_new->list); 1397 continue; 1398 } 1399 if (usdelay != eq->q_mode) 1400 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, 1401 usdelay); 1402 } 1403 } 1404 1405 kfree(ena_delay); 1406 1407 requeue: 1408 queue_delayed_work(phba->wq, &phba->eq_delay_work, 1409 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 1410 } 1411 1412 /** 1413 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution 1414 * @phba: pointer to lpfc hba data structure. 1415 * 1416 * For each heartbeat, this routine does some heuristic methods to adjust 1417 * XRI distribution. The goal is to fully utilize free XRIs. 1418 **/ 1419 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) 1420 { 1421 u32 i; 1422 u32 hwq_count; 1423 1424 hwq_count = phba->cfg_hdw_queue; 1425 for (i = 0; i < hwq_count; i++) { 1426 /* Adjust XRIs in private pool */ 1427 lpfc_adjust_pvt_pool_count(phba, i); 1428 1429 /* Adjust high watermark */ 1430 lpfc_adjust_high_watermark(phba, i); 1431 1432 #ifdef LPFC_MXP_STAT 1433 /* Snapshot pbl, pvt and busy count */ 1434 lpfc_snapshot_mxp(phba, i); 1435 #endif 1436 } 1437 } 1438 1439 /** 1440 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command 1441 * @phba: pointer to lpfc hba data structure. 1442 * 1443 * If a HB mbox is not already in progrees, this routine will allocate 1444 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, 1445 * and issue it. The HBA_HBEAT_INP flag means the command is in progress. 1446 **/ 1447 int 1448 lpfc_issue_hb_mbox(struct lpfc_hba *phba) 1449 { 1450 LPFC_MBOXQ_t *pmboxq; 1451 int retval; 1452 1453 /* Is a Heartbeat mbox already in progress */ 1454 if (phba->hba_flag & HBA_HBEAT_INP) 1455 return 0; 1456 1457 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1458 if (!pmboxq) 1459 return -ENOMEM; 1460 1461 lpfc_heart_beat(phba, pmboxq); 1462 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; 1463 pmboxq->vport = phba->pport; 1464 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 1465 1466 if (retval != MBX_BUSY && retval != MBX_SUCCESS) { 1467 mempool_free(pmboxq, phba->mbox_mem_pool); 1468 return -ENXIO; 1469 } 1470 phba->hba_flag |= HBA_HBEAT_INP; 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command 1477 * @phba: pointer to lpfc hba data structure. 1478 * 1479 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO 1480 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless 1481 * of the value of lpfc_enable_hba_heartbeat. 1482 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always 1483 * try to issue a MBX_HEARTBEAT mbox command. 1484 **/ 1485 void 1486 lpfc_issue_hb_tmo(struct lpfc_hba *phba) 1487 { 1488 if (phba->cfg_enable_hba_heartbeat) 1489 return; 1490 phba->hba_flag |= HBA_HBEAT_TMO; 1491 } 1492 1493 /** 1494 * lpfc_hb_timeout_handler - The HBA-timer timeout handler 1495 * @phba: pointer to lpfc hba data structure. 1496 * 1497 * This is the actual HBA-timer timeout handler to be invoked by the worker 1498 * thread whenever the HBA timer fired and HBA-timeout event posted. This 1499 * handler performs any periodic operations needed for the device. If such 1500 * periodic event has already been attended to either in the interrupt handler 1501 * or by processing slow-ring or fast-ring events within the HBA-timer 1502 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets 1503 * the timer for the next timeout period. If lpfc heart-beat mailbox command 1504 * is configured and there is no heart-beat mailbox command outstanding, a 1505 * heart-beat mailbox is issued and timer set properly. Otherwise, if there 1506 * has been a heart-beat mailbox command outstanding, the HBA shall be put 1507 * to offline. 1508 **/ 1509 void 1510 lpfc_hb_timeout_handler(struct lpfc_hba *phba) 1511 { 1512 struct lpfc_vport **vports; 1513 struct lpfc_dmabuf *buf_ptr; 1514 int retval = 0; 1515 int i, tmo; 1516 struct lpfc_sli *psli = &phba->sli; 1517 LIST_HEAD(completions); 1518 1519 if (phba->cfg_xri_rebalancing) { 1520 /* Multi-XRI pools handler */ 1521 lpfc_hb_mxp_handler(phba); 1522 } 1523 1524 vports = lpfc_create_vport_work_array(phba); 1525 if (vports != NULL) 1526 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 1527 lpfc_rcv_seq_check_edtov(vports[i]); 1528 lpfc_fdmi_change_check(vports[i]); 1529 } 1530 lpfc_destroy_vport_work_array(phba, vports); 1531 1532 if ((phba->link_state == LPFC_HBA_ERROR) || 1533 (phba->pport->load_flag & FC_UNLOADING) || 1534 (phba->pport->fc_flag & FC_OFFLINE_MODE)) 1535 return; 1536 1537 if (phba->elsbuf_cnt && 1538 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { 1539 spin_lock_irq(&phba->hbalock); 1540 list_splice_init(&phba->elsbuf, &completions); 1541 phba->elsbuf_cnt = 0; 1542 phba->elsbuf_prev_cnt = 0; 1543 spin_unlock_irq(&phba->hbalock); 1544 1545 while (!list_empty(&completions)) { 1546 list_remove_head(&completions, buf_ptr, 1547 struct lpfc_dmabuf, list); 1548 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 1549 kfree(buf_ptr); 1550 } 1551 } 1552 phba->elsbuf_prev_cnt = phba->elsbuf_cnt; 1553 1554 /* If there is no heart beat outstanding, issue a heartbeat command */ 1555 if (phba->cfg_enable_hba_heartbeat) { 1556 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ 1557 spin_lock_irq(&phba->pport->work_port_lock); 1558 if (time_after(phba->last_completion_time + 1559 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), 1560 jiffies)) { 1561 spin_unlock_irq(&phba->pport->work_port_lock); 1562 if (phba->hba_flag & HBA_HBEAT_INP) 1563 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1564 else 1565 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1566 goto out; 1567 } 1568 spin_unlock_irq(&phba->pport->work_port_lock); 1569 1570 /* Check if a MBX_HEARTBEAT is already in progress */ 1571 if (phba->hba_flag & HBA_HBEAT_INP) { 1572 /* 1573 * If heart beat timeout called with HBA_HBEAT_INP set 1574 * we need to give the hb mailbox cmd a chance to 1575 * complete or TMO. 1576 */ 1577 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 1578 "0459 Adapter heartbeat still outstanding: " 1579 "last compl time was %d ms.\n", 1580 jiffies_to_msecs(jiffies 1581 - phba->last_completion_time)); 1582 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1583 } else { 1584 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && 1585 (list_empty(&psli->mboxq))) { 1586 1587 retval = lpfc_issue_hb_mbox(phba); 1588 if (retval) { 1589 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1590 goto out; 1591 } 1592 phba->skipped_hb = 0; 1593 } else if (time_before_eq(phba->last_completion_time, 1594 phba->skipped_hb)) { 1595 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 1596 "2857 Last completion time not " 1597 " updated in %d ms\n", 1598 jiffies_to_msecs(jiffies 1599 - phba->last_completion_time)); 1600 } else 1601 phba->skipped_hb = jiffies; 1602 1603 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1604 goto out; 1605 } 1606 } else { 1607 /* Check to see if we want to force a MBX_HEARTBEAT */ 1608 if (phba->hba_flag & HBA_HBEAT_TMO) { 1609 retval = lpfc_issue_hb_mbox(phba); 1610 if (retval) 1611 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1612 else 1613 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); 1614 goto out; 1615 } 1616 tmo = (1000 * LPFC_HB_MBOX_INTERVAL); 1617 } 1618 out: 1619 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); 1620 } 1621 1622 /** 1623 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention 1624 * @phba: pointer to lpfc hba data structure. 1625 * 1626 * This routine is called to bring the HBA offline when HBA hardware error 1627 * other than Port Error 6 has been detected. 1628 **/ 1629 static void 1630 lpfc_offline_eratt(struct lpfc_hba *phba) 1631 { 1632 struct lpfc_sli *psli = &phba->sli; 1633 1634 spin_lock_irq(&phba->hbalock); 1635 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1636 spin_unlock_irq(&phba->hbalock); 1637 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1638 1639 lpfc_offline(phba); 1640 lpfc_reset_barrier(phba); 1641 spin_lock_irq(&phba->hbalock); 1642 lpfc_sli_brdreset(phba); 1643 spin_unlock_irq(&phba->hbalock); 1644 lpfc_hba_down_post(phba); 1645 lpfc_sli_brdready(phba, HS_MBRDY); 1646 lpfc_unblock_mgmt_io(phba); 1647 phba->link_state = LPFC_HBA_ERROR; 1648 return; 1649 } 1650 1651 /** 1652 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention 1653 * @phba: pointer to lpfc hba data structure. 1654 * 1655 * This routine is called to bring a SLI4 HBA offline when HBA hardware error 1656 * other than Port Error 6 has been detected. 1657 **/ 1658 void 1659 lpfc_sli4_offline_eratt(struct lpfc_hba *phba) 1660 { 1661 spin_lock_irq(&phba->hbalock); 1662 if (phba->link_state == LPFC_HBA_ERROR && 1663 test_bit(HBA_PCI_ERR, &phba->bit_flags)) { 1664 spin_unlock_irq(&phba->hbalock); 1665 return; 1666 } 1667 phba->link_state = LPFC_HBA_ERROR; 1668 spin_unlock_irq(&phba->hbalock); 1669 1670 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1671 lpfc_sli_flush_io_rings(phba); 1672 lpfc_offline(phba); 1673 lpfc_hba_down_post(phba); 1674 lpfc_unblock_mgmt_io(phba); 1675 } 1676 1677 /** 1678 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler 1679 * @phba: pointer to lpfc hba data structure. 1680 * 1681 * This routine is invoked to handle the deferred HBA hardware error 1682 * conditions. This type of error is indicated by HBA by setting ER1 1683 * and another ER bit in the host status register. The driver will 1684 * wait until the ER1 bit clears before handling the error condition. 1685 **/ 1686 static void 1687 lpfc_handle_deferred_eratt(struct lpfc_hba *phba) 1688 { 1689 uint32_t old_host_status = phba->work_hs; 1690 struct lpfc_sli *psli = &phba->sli; 1691 1692 /* If the pci channel is offline, ignore possible errors, 1693 * since we cannot communicate with the pci card anyway. 1694 */ 1695 if (pci_channel_offline(phba->pcidev)) { 1696 spin_lock_irq(&phba->hbalock); 1697 phba->hba_flag &= ~DEFER_ERATT; 1698 spin_unlock_irq(&phba->hbalock); 1699 return; 1700 } 1701 1702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1703 "0479 Deferred Adapter Hardware Error " 1704 "Data: x%x x%x x%x\n", 1705 phba->work_hs, phba->work_status[0], 1706 phba->work_status[1]); 1707 1708 spin_lock_irq(&phba->hbalock); 1709 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1710 spin_unlock_irq(&phba->hbalock); 1711 1712 1713 /* 1714 * Firmware stops when it triggred erratt. That could cause the I/Os 1715 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the 1716 * SCSI layer retry it after re-establishing link. 1717 */ 1718 lpfc_sli_abort_fcp_rings(phba); 1719 1720 /* 1721 * There was a firmware error. Take the hba offline and then 1722 * attempt to restart it. 1723 */ 1724 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 1725 lpfc_offline(phba); 1726 1727 /* Wait for the ER1 bit to clear.*/ 1728 while (phba->work_hs & HS_FFER1) { 1729 msleep(100); 1730 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { 1731 phba->work_hs = UNPLUG_ERR ; 1732 break; 1733 } 1734 /* If driver is unloading let the worker thread continue */ 1735 if (phba->pport->load_flag & FC_UNLOADING) { 1736 phba->work_hs = 0; 1737 break; 1738 } 1739 } 1740 1741 /* 1742 * This is to ptrotect against a race condition in which 1743 * first write to the host attention register clear the 1744 * host status register. 1745 */ 1746 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING))) 1747 phba->work_hs = old_host_status & ~HS_FFER1; 1748 1749 spin_lock_irq(&phba->hbalock); 1750 phba->hba_flag &= ~DEFER_ERATT; 1751 spin_unlock_irq(&phba->hbalock); 1752 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); 1753 phba->work_status[1] = readl(phba->MBslimaddr + 0xac); 1754 } 1755 1756 static void 1757 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) 1758 { 1759 struct lpfc_board_event_header board_event; 1760 struct Scsi_Host *shost; 1761 1762 board_event.event_type = FC_REG_BOARD_EVENT; 1763 board_event.subcategory = LPFC_EVENT_PORTINTERR; 1764 shost = lpfc_shost_from_vport(phba->pport); 1765 fc_host_post_vendor_event(shost, fc_get_event_number(), 1766 sizeof(board_event), 1767 (char *) &board_event, 1768 LPFC_NL_VENDOR_ID); 1769 } 1770 1771 /** 1772 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler 1773 * @phba: pointer to lpfc hba data structure. 1774 * 1775 * This routine is invoked to handle the following HBA hardware error 1776 * conditions: 1777 * 1 - HBA error attention interrupt 1778 * 2 - DMA ring index out of range 1779 * 3 - Mailbox command came back as unknown 1780 **/ 1781 static void 1782 lpfc_handle_eratt_s3(struct lpfc_hba *phba) 1783 { 1784 struct lpfc_vport *vport = phba->pport; 1785 struct lpfc_sli *psli = &phba->sli; 1786 uint32_t event_data; 1787 unsigned long temperature; 1788 struct temp_event temp_event_data; 1789 struct Scsi_Host *shost; 1790 1791 /* If the pci channel is offline, ignore possible errors, 1792 * since we cannot communicate with the pci card anyway. 1793 */ 1794 if (pci_channel_offline(phba->pcidev)) { 1795 spin_lock_irq(&phba->hbalock); 1796 phba->hba_flag &= ~DEFER_ERATT; 1797 spin_unlock_irq(&phba->hbalock); 1798 return; 1799 } 1800 1801 /* If resets are disabled then leave the HBA alone and return */ 1802 if (!phba->cfg_enable_hba_reset) 1803 return; 1804 1805 /* Send an internal error event to mgmt application */ 1806 lpfc_board_errevt_to_mgmt(phba); 1807 1808 if (phba->hba_flag & DEFER_ERATT) 1809 lpfc_handle_deferred_eratt(phba); 1810 1811 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { 1812 if (phba->work_hs & HS_FFER6) 1813 /* Re-establishing Link */ 1814 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1815 "1301 Re-establishing Link " 1816 "Data: x%x x%x x%x\n", 1817 phba->work_hs, phba->work_status[0], 1818 phba->work_status[1]); 1819 if (phba->work_hs & HS_FFER8) 1820 /* Device Zeroization */ 1821 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, 1822 "2861 Host Authentication device " 1823 "zeroization Data:x%x x%x x%x\n", 1824 phba->work_hs, phba->work_status[0], 1825 phba->work_status[1]); 1826 1827 spin_lock_irq(&phba->hbalock); 1828 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 1829 spin_unlock_irq(&phba->hbalock); 1830 1831 /* 1832 * Firmware stops when it triggled erratt with HS_FFER6. 1833 * That could cause the I/Os dropped by the firmware. 1834 * Error iocb (I/O) on txcmplq and let the SCSI layer 1835 * retry it after re-establishing link. 1836 */ 1837 lpfc_sli_abort_fcp_rings(phba); 1838 1839 /* 1840 * There was a firmware error. Take the hba offline and then 1841 * attempt to restart it. 1842 */ 1843 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 1844 lpfc_offline(phba); 1845 lpfc_sli_brdrestart(phba); 1846 if (lpfc_online(phba) == 0) { /* Initialize the HBA */ 1847 lpfc_unblock_mgmt_io(phba); 1848 return; 1849 } 1850 lpfc_unblock_mgmt_io(phba); 1851 } else if (phba->work_hs & HS_CRIT_TEMP) { 1852 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); 1853 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 1854 temp_event_data.event_code = LPFC_CRIT_TEMP; 1855 temp_event_data.data = (uint32_t)temperature; 1856 1857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1858 "0406 Adapter maximum temperature exceeded " 1859 "(%ld), taking this port offline " 1860 "Data: x%x x%x x%x\n", 1861 temperature, phba->work_hs, 1862 phba->work_status[0], phba->work_status[1]); 1863 1864 shost = lpfc_shost_from_vport(phba->pport); 1865 fc_host_post_vendor_event(shost, fc_get_event_number(), 1866 sizeof(temp_event_data), 1867 (char *) &temp_event_data, 1868 SCSI_NL_VID_TYPE_PCI 1869 | PCI_VENDOR_ID_EMULEX); 1870 1871 spin_lock_irq(&phba->hbalock); 1872 phba->over_temp_state = HBA_OVER_TEMP; 1873 spin_unlock_irq(&phba->hbalock); 1874 lpfc_offline_eratt(phba); 1875 1876 } else { 1877 /* The if clause above forces this code path when the status 1878 * failure is a value other than FFER6. Do not call the offline 1879 * twice. This is the adapter hardware error path. 1880 */ 1881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1882 "0457 Adapter Hardware Error " 1883 "Data: x%x x%x x%x\n", 1884 phba->work_hs, 1885 phba->work_status[0], phba->work_status[1]); 1886 1887 event_data = FC_REG_DUMP_EVENT; 1888 shost = lpfc_shost_from_vport(vport); 1889 fc_host_post_vendor_event(shost, fc_get_event_number(), 1890 sizeof(event_data), (char *) &event_data, 1891 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 1892 1893 lpfc_offline_eratt(phba); 1894 } 1895 return; 1896 } 1897 1898 /** 1899 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg 1900 * @phba: pointer to lpfc hba data structure. 1901 * @mbx_action: flag for mailbox shutdown action. 1902 * @en_rn_msg: send reset/port recovery message. 1903 * This routine is invoked to perform an SLI4 port PCI function reset in 1904 * response to port status register polling attention. It waits for port 1905 * status register (ERR, RDY, RN) bits before proceeding with function reset. 1906 * During this process, interrupt vectors are freed and later requested 1907 * for handling possible port resource change. 1908 **/ 1909 static int 1910 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, 1911 bool en_rn_msg) 1912 { 1913 int rc; 1914 uint32_t intr_mode; 1915 LPFC_MBOXQ_t *mboxq; 1916 1917 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 1918 LPFC_SLI_INTF_IF_TYPE_2) { 1919 /* 1920 * On error status condition, driver need to wait for port 1921 * ready before performing reset. 1922 */ 1923 rc = lpfc_sli4_pdev_status_reg_wait(phba); 1924 if (rc) 1925 return rc; 1926 } 1927 1928 /* need reset: attempt for port recovery */ 1929 if (en_rn_msg) 1930 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1931 "2887 Reset Needed: Attempting Port " 1932 "Recovery...\n"); 1933 1934 /* If we are no wait, the HBA has been reset and is not 1935 * functional, thus we should clear 1936 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. 1937 */ 1938 if (mbx_action == LPFC_MBX_NO_WAIT) { 1939 spin_lock_irq(&phba->hbalock); 1940 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 1941 if (phba->sli.mbox_active) { 1942 mboxq = phba->sli.mbox_active; 1943 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 1944 __lpfc_mbox_cmpl_put(phba, mboxq); 1945 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 1946 phba->sli.mbox_active = NULL; 1947 } 1948 spin_unlock_irq(&phba->hbalock); 1949 } 1950 1951 lpfc_offline_prep(phba, mbx_action); 1952 lpfc_sli_flush_io_rings(phba); 1953 lpfc_offline(phba); 1954 /* release interrupt for possible resource change */ 1955 lpfc_sli4_disable_intr(phba); 1956 rc = lpfc_sli_brdrestart(phba); 1957 if (rc) { 1958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1959 "6309 Failed to restart board\n"); 1960 return rc; 1961 } 1962 /* request and enable interrupt */ 1963 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 1964 if (intr_mode == LPFC_INTR_ERROR) { 1965 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1966 "3175 Failed to enable interrupt\n"); 1967 return -EIO; 1968 } 1969 phba->intr_mode = intr_mode; 1970 rc = lpfc_online(phba); 1971 if (rc == 0) 1972 lpfc_unblock_mgmt_io(phba); 1973 1974 return rc; 1975 } 1976 1977 /** 1978 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler 1979 * @phba: pointer to lpfc hba data structure. 1980 * 1981 * This routine is invoked to handle the SLI4 HBA hardware error attention 1982 * conditions. 1983 **/ 1984 static void 1985 lpfc_handle_eratt_s4(struct lpfc_hba *phba) 1986 { 1987 struct lpfc_vport *vport = phba->pport; 1988 uint32_t event_data; 1989 struct Scsi_Host *shost; 1990 uint32_t if_type; 1991 struct lpfc_register portstat_reg = {0}; 1992 uint32_t reg_err1, reg_err2; 1993 uint32_t uerrlo_reg, uemasklo_reg; 1994 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; 1995 bool en_rn_msg = true; 1996 struct temp_event temp_event_data; 1997 struct lpfc_register portsmphr_reg; 1998 int rc, i; 1999 2000 /* If the pci channel is offline, ignore possible errors, since 2001 * we cannot communicate with the pci card anyway. 2002 */ 2003 if (pci_channel_offline(phba->pcidev)) { 2004 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2005 "3166 pci channel is offline\n"); 2006 lpfc_sli_flush_io_rings(phba); 2007 return; 2008 } 2009 2010 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 2011 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 2012 switch (if_type) { 2013 case LPFC_SLI_INTF_IF_TYPE_0: 2014 pci_rd_rc1 = lpfc_readl( 2015 phba->sli4_hba.u.if_type0.UERRLOregaddr, 2016 &uerrlo_reg); 2017 pci_rd_rc2 = lpfc_readl( 2018 phba->sli4_hba.u.if_type0.UEMASKLOregaddr, 2019 &uemasklo_reg); 2020 /* consider PCI bus read error as pci_channel_offline */ 2021 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) 2022 return; 2023 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) { 2024 lpfc_sli4_offline_eratt(phba); 2025 return; 2026 } 2027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2028 "7623 Checking UE recoverable"); 2029 2030 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { 2031 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2032 &portsmphr_reg.word0)) 2033 continue; 2034 2035 smphr_port_status = bf_get(lpfc_port_smphr_port_status, 2036 &portsmphr_reg); 2037 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2038 LPFC_PORT_SEM_UE_RECOVERABLE) 2039 break; 2040 /*Sleep for 1Sec, before checking SEMAPHORE */ 2041 msleep(1000); 2042 } 2043 2044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2045 "4827 smphr_port_status x%x : Waited %dSec", 2046 smphr_port_status, i); 2047 2048 /* Recoverable UE, reset the HBA device */ 2049 if ((smphr_port_status & LPFC_PORT_SEM_MASK) == 2050 LPFC_PORT_SEM_UE_RECOVERABLE) { 2051 for (i = 0; i < 20; i++) { 2052 msleep(1000); 2053 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 2054 &portsmphr_reg.word0) && 2055 (LPFC_POST_STAGE_PORT_READY == 2056 bf_get(lpfc_port_smphr_port_status, 2057 &portsmphr_reg))) { 2058 rc = lpfc_sli4_port_sta_fn_reset(phba, 2059 LPFC_MBX_NO_WAIT, en_rn_msg); 2060 if (rc == 0) 2061 return; 2062 lpfc_printf_log(phba, KERN_ERR, 2063 LOG_TRACE_EVENT, 2064 "4215 Failed to recover UE"); 2065 break; 2066 } 2067 } 2068 } 2069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2070 "7624 Firmware not ready: Failing UE recovery," 2071 " waited %dSec", i); 2072 phba->link_state = LPFC_HBA_ERROR; 2073 break; 2074 2075 case LPFC_SLI_INTF_IF_TYPE_2: 2076 case LPFC_SLI_INTF_IF_TYPE_6: 2077 pci_rd_rc1 = lpfc_readl( 2078 phba->sli4_hba.u.if_type2.STATUSregaddr, 2079 &portstat_reg.word0); 2080 /* consider PCI bus read error as pci_channel_offline */ 2081 if (pci_rd_rc1 == -EIO) { 2082 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2083 "3151 PCI bus read access failure: x%x\n", 2084 readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); 2085 lpfc_sli4_offline_eratt(phba); 2086 return; 2087 } 2088 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 2089 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 2090 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { 2091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2092 "2889 Port Overtemperature event, " 2093 "taking port offline Data: x%x x%x\n", 2094 reg_err1, reg_err2); 2095 2096 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 2097 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 2098 temp_event_data.event_code = LPFC_CRIT_TEMP; 2099 temp_event_data.data = 0xFFFFFFFF; 2100 2101 shost = lpfc_shost_from_vport(phba->pport); 2102 fc_host_post_vendor_event(shost, fc_get_event_number(), 2103 sizeof(temp_event_data), 2104 (char *)&temp_event_data, 2105 SCSI_NL_VID_TYPE_PCI 2106 | PCI_VENDOR_ID_EMULEX); 2107 2108 spin_lock_irq(&phba->hbalock); 2109 phba->over_temp_state = HBA_OVER_TEMP; 2110 spin_unlock_irq(&phba->hbalock); 2111 lpfc_sli4_offline_eratt(phba); 2112 return; 2113 } 2114 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2115 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { 2116 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2117 "3143 Port Down: Firmware Update " 2118 "Detected\n"); 2119 en_rn_msg = false; 2120 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2121 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2123 "3144 Port Down: Debug Dump\n"); 2124 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2125 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) 2126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2127 "3145 Port Down: Provisioning\n"); 2128 2129 /* If resets are disabled then leave the HBA alone and return */ 2130 if (!phba->cfg_enable_hba_reset) 2131 return; 2132 2133 /* Check port status register for function reset */ 2134 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, 2135 en_rn_msg); 2136 if (rc == 0) { 2137 /* don't report event on forced debug dump */ 2138 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && 2139 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) 2140 return; 2141 else 2142 break; 2143 } 2144 /* fall through for not able to recover */ 2145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2146 "3152 Unrecoverable error\n"); 2147 phba->link_state = LPFC_HBA_ERROR; 2148 break; 2149 case LPFC_SLI_INTF_IF_TYPE_1: 2150 default: 2151 break; 2152 } 2153 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 2154 "3123 Report dump event to upper layer\n"); 2155 /* Send an internal error event to mgmt application */ 2156 lpfc_board_errevt_to_mgmt(phba); 2157 2158 event_data = FC_REG_DUMP_EVENT; 2159 shost = lpfc_shost_from_vport(vport); 2160 fc_host_post_vendor_event(shost, fc_get_event_number(), 2161 sizeof(event_data), (char *) &event_data, 2162 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); 2163 } 2164 2165 /** 2166 * lpfc_handle_eratt - Wrapper func for handling hba error attention 2167 * @phba: pointer to lpfc HBA data structure. 2168 * 2169 * This routine wraps the actual SLI3 or SLI4 hba error attention handling 2170 * routine from the API jump table function pointer from the lpfc_hba struct. 2171 * 2172 * Return codes 2173 * 0 - success. 2174 * Any other value - error. 2175 **/ 2176 void 2177 lpfc_handle_eratt(struct lpfc_hba *phba) 2178 { 2179 (*phba->lpfc_handle_eratt)(phba); 2180 } 2181 2182 /** 2183 * lpfc_handle_latt - The HBA link event handler 2184 * @phba: pointer to lpfc hba data structure. 2185 * 2186 * This routine is invoked from the worker thread to handle a HBA host 2187 * attention link event. SLI3 only. 2188 **/ 2189 void 2190 lpfc_handle_latt(struct lpfc_hba *phba) 2191 { 2192 struct lpfc_vport *vport = phba->pport; 2193 struct lpfc_sli *psli = &phba->sli; 2194 LPFC_MBOXQ_t *pmb; 2195 volatile uint32_t control; 2196 int rc = 0; 2197 2198 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 2199 if (!pmb) { 2200 rc = 1; 2201 goto lpfc_handle_latt_err_exit; 2202 } 2203 2204 rc = lpfc_mbox_rsrc_prep(phba, pmb); 2205 if (rc) { 2206 rc = 2; 2207 mempool_free(pmb, phba->mbox_mem_pool); 2208 goto lpfc_handle_latt_err_exit; 2209 } 2210 2211 /* Cleanup any outstanding ELS commands */ 2212 lpfc_els_flush_all_cmd(phba); 2213 psli->slistat.link_event++; 2214 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 2215 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 2216 pmb->vport = vport; 2217 /* Block ELS IOCBs until we have processed this mbox command */ 2218 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; 2219 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); 2220 if (rc == MBX_NOT_FINISHED) { 2221 rc = 4; 2222 goto lpfc_handle_latt_free_mbuf; 2223 } 2224 2225 /* Clear Link Attention in HA REG */ 2226 spin_lock_irq(&phba->hbalock); 2227 writel(HA_LATT, phba->HAregaddr); 2228 readl(phba->HAregaddr); /* flush */ 2229 spin_unlock_irq(&phba->hbalock); 2230 2231 return; 2232 2233 lpfc_handle_latt_free_mbuf: 2234 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; 2235 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2236 lpfc_handle_latt_err_exit: 2237 /* Enable Link attention interrupts */ 2238 spin_lock_irq(&phba->hbalock); 2239 psli->sli_flag |= LPFC_PROCESS_LA; 2240 control = readl(phba->HCregaddr); 2241 control |= HC_LAINT_ENA; 2242 writel(control, phba->HCregaddr); 2243 readl(phba->HCregaddr); /* flush */ 2244 2245 /* Clear Link Attention in HA REG */ 2246 writel(HA_LATT, phba->HAregaddr); 2247 readl(phba->HAregaddr); /* flush */ 2248 spin_unlock_irq(&phba->hbalock); 2249 lpfc_linkdown(phba); 2250 phba->link_state = LPFC_HBA_ERROR; 2251 2252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2253 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); 2254 2255 return; 2256 } 2257 2258 /** 2259 * lpfc_parse_vpd - Parse VPD (Vital Product Data) 2260 * @phba: pointer to lpfc hba data structure. 2261 * @vpd: pointer to the vital product data. 2262 * @len: length of the vital product data in bytes. 2263 * 2264 * This routine parses the Vital Product Data (VPD). The VPD is treated as 2265 * an array of characters. In this routine, the ModelName, ProgramType, and 2266 * ModelDesc, etc. fields of the phba data structure will be populated. 2267 * 2268 * Return codes 2269 * 0 - pointer to the VPD passed in is NULL 2270 * 1 - success 2271 **/ 2272 int 2273 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) 2274 { 2275 uint8_t lenlo, lenhi; 2276 int Length; 2277 int i, j; 2278 int finished = 0; 2279 int index = 0; 2280 2281 if (!vpd) 2282 return 0; 2283 2284 /* Vital Product */ 2285 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 2286 "0455 Vital Product Data: x%x x%x x%x x%x\n", 2287 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], 2288 (uint32_t) vpd[3]); 2289 while (!finished && (index < (len - 4))) { 2290 switch (vpd[index]) { 2291 case 0x82: 2292 case 0x91: 2293 index += 1; 2294 lenlo = vpd[index]; 2295 index += 1; 2296 lenhi = vpd[index]; 2297 index += 1; 2298 i = ((((unsigned short)lenhi) << 8) + lenlo); 2299 index += i; 2300 break; 2301 case 0x90: 2302 index += 1; 2303 lenlo = vpd[index]; 2304 index += 1; 2305 lenhi = vpd[index]; 2306 index += 1; 2307 Length = ((((unsigned short)lenhi) << 8) + lenlo); 2308 if (Length > len - index) 2309 Length = len - index; 2310 while (Length > 0) { 2311 /* Look for Serial Number */ 2312 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) { 2313 index += 2; 2314 i = vpd[index]; 2315 index += 1; 2316 j = 0; 2317 Length -= (3+i); 2318 while(i--) { 2319 phba->SerialNumber[j++] = vpd[index++]; 2320 if (j == 31) 2321 break; 2322 } 2323 phba->SerialNumber[j] = 0; 2324 continue; 2325 } 2326 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) { 2327 phba->vpd_flag |= VPD_MODEL_DESC; 2328 index += 2; 2329 i = vpd[index]; 2330 index += 1; 2331 j = 0; 2332 Length -= (3+i); 2333 while(i--) { 2334 phba->ModelDesc[j++] = vpd[index++]; 2335 if (j == 255) 2336 break; 2337 } 2338 phba->ModelDesc[j] = 0; 2339 continue; 2340 } 2341 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) { 2342 phba->vpd_flag |= VPD_MODEL_NAME; 2343 index += 2; 2344 i = vpd[index]; 2345 index += 1; 2346 j = 0; 2347 Length -= (3+i); 2348 while(i--) { 2349 phba->ModelName[j++] = vpd[index++]; 2350 if (j == 79) 2351 break; 2352 } 2353 phba->ModelName[j] = 0; 2354 continue; 2355 } 2356 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) { 2357 phba->vpd_flag |= VPD_PROGRAM_TYPE; 2358 index += 2; 2359 i = vpd[index]; 2360 index += 1; 2361 j = 0; 2362 Length -= (3+i); 2363 while(i--) { 2364 phba->ProgramType[j++] = vpd[index++]; 2365 if (j == 255) 2366 break; 2367 } 2368 phba->ProgramType[j] = 0; 2369 continue; 2370 } 2371 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) { 2372 phba->vpd_flag |= VPD_PORT; 2373 index += 2; 2374 i = vpd[index]; 2375 index += 1; 2376 j = 0; 2377 Length -= (3+i); 2378 while(i--) { 2379 if ((phba->sli_rev == LPFC_SLI_REV4) && 2380 (phba->sli4_hba.pport_name_sta == 2381 LPFC_SLI4_PPNAME_GET)) { 2382 j++; 2383 index++; 2384 } else 2385 phba->Port[j++] = vpd[index++]; 2386 if (j == 19) 2387 break; 2388 } 2389 if ((phba->sli_rev != LPFC_SLI_REV4) || 2390 (phba->sli4_hba.pport_name_sta == 2391 LPFC_SLI4_PPNAME_NON)) 2392 phba->Port[j] = 0; 2393 continue; 2394 } 2395 else { 2396 index += 2; 2397 i = vpd[index]; 2398 index += 1; 2399 index += i; 2400 Length -= (3 + i); 2401 } 2402 } 2403 finished = 0; 2404 break; 2405 case 0x78: 2406 finished = 1; 2407 break; 2408 default: 2409 index ++; 2410 break; 2411 } 2412 } 2413 2414 return(1); 2415 } 2416 2417 /** 2418 * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description 2419 * @phba: pointer to lpfc hba data structure. 2420 * @mdp: pointer to the data structure to hold the derived model name. 2421 * @descp: pointer to the data structure to hold the derived description. 2422 * 2423 * This routine retrieves HBA's description based on its registered PCI device 2424 * ID. The @descp passed into this function points to an array of 256 chars. It 2425 * shall be returned with the model name, maximum speed, and the host bus type. 2426 * The @mdp passed into this function points to an array of 80 chars. When the 2427 * function returns, the @mdp will be filled with the model name. 2428 **/ 2429 static void 2430 lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2431 { 2432 uint16_t sub_dev_id = phba->pcidev->subsystem_device; 2433 char *model = "<Unknown>"; 2434 int tbolt = 0; 2435 2436 switch (sub_dev_id) { 2437 case PCI_DEVICE_ID_CLRY_161E: 2438 model = "161E"; 2439 break; 2440 case PCI_DEVICE_ID_CLRY_162E: 2441 model = "162E"; 2442 break; 2443 case PCI_DEVICE_ID_CLRY_164E: 2444 model = "164E"; 2445 break; 2446 case PCI_DEVICE_ID_CLRY_161P: 2447 model = "161P"; 2448 break; 2449 case PCI_DEVICE_ID_CLRY_162P: 2450 model = "162P"; 2451 break; 2452 case PCI_DEVICE_ID_CLRY_164P: 2453 model = "164P"; 2454 break; 2455 case PCI_DEVICE_ID_CLRY_321E: 2456 model = "321E"; 2457 break; 2458 case PCI_DEVICE_ID_CLRY_322E: 2459 model = "322E"; 2460 break; 2461 case PCI_DEVICE_ID_CLRY_324E: 2462 model = "324E"; 2463 break; 2464 case PCI_DEVICE_ID_CLRY_321P: 2465 model = "321P"; 2466 break; 2467 case PCI_DEVICE_ID_CLRY_322P: 2468 model = "322P"; 2469 break; 2470 case PCI_DEVICE_ID_CLRY_324P: 2471 model = "324P"; 2472 break; 2473 case PCI_DEVICE_ID_TLFC_2XX2: 2474 model = "2XX2"; 2475 tbolt = 1; 2476 break; 2477 case PCI_DEVICE_ID_TLFC_3162: 2478 model = "3162"; 2479 tbolt = 1; 2480 break; 2481 case PCI_DEVICE_ID_TLFC_3322: 2482 model = "3322"; 2483 tbolt = 1; 2484 break; 2485 default: 2486 model = "Unknown"; 2487 break; 2488 } 2489 2490 if (mdp && mdp[0] == '\0') 2491 snprintf(mdp, 79, "%s", model); 2492 2493 if (descp && descp[0] == '\0') 2494 snprintf(descp, 255, 2495 "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", 2496 (tbolt) ? "ThunderLink FC " : "Celerity FC-", 2497 model, 2498 phba->Port); 2499 } 2500 2501 /** 2502 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description 2503 * @phba: pointer to lpfc hba data structure. 2504 * @mdp: pointer to the data structure to hold the derived model name. 2505 * @descp: pointer to the data structure to hold the derived description. 2506 * 2507 * This routine retrieves HBA's description based on its registered PCI device 2508 * ID. The @descp passed into this function points to an array of 256 chars. It 2509 * shall be returned with the model name, maximum speed, and the host bus type. 2510 * The @mdp passed into this function points to an array of 80 chars. When the 2511 * function returns, the @mdp will be filled with the model name. 2512 **/ 2513 static void 2514 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) 2515 { 2516 lpfc_vpd_t *vp; 2517 uint16_t dev_id = phba->pcidev->device; 2518 int max_speed; 2519 int GE = 0; 2520 int oneConnect = 0; /* default is not a oneConnect */ 2521 struct { 2522 char *name; 2523 char *bus; 2524 char *function; 2525 } m = {"<Unknown>", "", ""}; 2526 2527 if (mdp && mdp[0] != '\0' 2528 && descp && descp[0] != '\0') 2529 return; 2530 2531 if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { 2532 lpfc_get_atto_model_desc(phba, mdp, descp); 2533 return; 2534 } 2535 2536 if (phba->lmt & LMT_64Gb) 2537 max_speed = 64; 2538 else if (phba->lmt & LMT_32Gb) 2539 max_speed = 32; 2540 else if (phba->lmt & LMT_16Gb) 2541 max_speed = 16; 2542 else if (phba->lmt & LMT_10Gb) 2543 max_speed = 10; 2544 else if (phba->lmt & LMT_8Gb) 2545 max_speed = 8; 2546 else if (phba->lmt & LMT_4Gb) 2547 max_speed = 4; 2548 else if (phba->lmt & LMT_2Gb) 2549 max_speed = 2; 2550 else if (phba->lmt & LMT_1Gb) 2551 max_speed = 1; 2552 else 2553 max_speed = 0; 2554 2555 vp = &phba->vpd; 2556 2557 switch (dev_id) { 2558 case PCI_DEVICE_ID_FIREFLY: 2559 m = (typeof(m)){"LP6000", "PCI", 2560 "Obsolete, Unsupported Fibre Channel Adapter"}; 2561 break; 2562 case PCI_DEVICE_ID_SUPERFLY: 2563 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) 2564 m = (typeof(m)){"LP7000", "PCI", ""}; 2565 else 2566 m = (typeof(m)){"LP7000E", "PCI", ""}; 2567 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2568 break; 2569 case PCI_DEVICE_ID_DRAGONFLY: 2570 m = (typeof(m)){"LP8000", "PCI", 2571 "Obsolete, Unsupported Fibre Channel Adapter"}; 2572 break; 2573 case PCI_DEVICE_ID_CENTAUR: 2574 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) 2575 m = (typeof(m)){"LP9002", "PCI", ""}; 2576 else 2577 m = (typeof(m)){"LP9000", "PCI", ""}; 2578 m.function = "Obsolete, Unsupported Fibre Channel Adapter"; 2579 break; 2580 case PCI_DEVICE_ID_RFLY: 2581 m = (typeof(m)){"LP952", "PCI", 2582 "Obsolete, Unsupported Fibre Channel Adapter"}; 2583 break; 2584 case PCI_DEVICE_ID_PEGASUS: 2585 m = (typeof(m)){"LP9802", "PCI-X", 2586 "Obsolete, Unsupported Fibre Channel Adapter"}; 2587 break; 2588 case PCI_DEVICE_ID_THOR: 2589 m = (typeof(m)){"LP10000", "PCI-X", 2590 "Obsolete, Unsupported Fibre Channel Adapter"}; 2591 break; 2592 case PCI_DEVICE_ID_VIPER: 2593 m = (typeof(m)){"LPX1000", "PCI-X", 2594 "Obsolete, Unsupported Fibre Channel Adapter"}; 2595 break; 2596 case PCI_DEVICE_ID_PFLY: 2597 m = (typeof(m)){"LP982", "PCI-X", 2598 "Obsolete, Unsupported Fibre Channel Adapter"}; 2599 break; 2600 case PCI_DEVICE_ID_TFLY: 2601 m = (typeof(m)){"LP1050", "PCI-X", 2602 "Obsolete, Unsupported Fibre Channel Adapter"}; 2603 break; 2604 case PCI_DEVICE_ID_HELIOS: 2605 m = (typeof(m)){"LP11000", "PCI-X2", 2606 "Obsolete, Unsupported Fibre Channel Adapter"}; 2607 break; 2608 case PCI_DEVICE_ID_HELIOS_SCSP: 2609 m = (typeof(m)){"LP11000-SP", "PCI-X2", 2610 "Obsolete, Unsupported Fibre Channel Adapter"}; 2611 break; 2612 case PCI_DEVICE_ID_HELIOS_DCSP: 2613 m = (typeof(m)){"LP11002-SP", "PCI-X2", 2614 "Obsolete, Unsupported Fibre Channel Adapter"}; 2615 break; 2616 case PCI_DEVICE_ID_NEPTUNE: 2617 m = (typeof(m)){"LPe1000", "PCIe", 2618 "Obsolete, Unsupported Fibre Channel Adapter"}; 2619 break; 2620 case PCI_DEVICE_ID_NEPTUNE_SCSP: 2621 m = (typeof(m)){"LPe1000-SP", "PCIe", 2622 "Obsolete, Unsupported Fibre Channel Adapter"}; 2623 break; 2624 case PCI_DEVICE_ID_NEPTUNE_DCSP: 2625 m = (typeof(m)){"LPe1002-SP", "PCIe", 2626 "Obsolete, Unsupported Fibre Channel Adapter"}; 2627 break; 2628 case PCI_DEVICE_ID_BMID: 2629 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; 2630 break; 2631 case PCI_DEVICE_ID_BSMB: 2632 m = (typeof(m)){"LP111", "PCI-X2", 2633 "Obsolete, Unsupported Fibre Channel Adapter"}; 2634 break; 2635 case PCI_DEVICE_ID_ZEPHYR: 2636 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2637 break; 2638 case PCI_DEVICE_ID_ZEPHYR_SCSP: 2639 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; 2640 break; 2641 case PCI_DEVICE_ID_ZEPHYR_DCSP: 2642 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; 2643 GE = 1; 2644 break; 2645 case PCI_DEVICE_ID_ZMID: 2646 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; 2647 break; 2648 case PCI_DEVICE_ID_ZSMB: 2649 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; 2650 break; 2651 case PCI_DEVICE_ID_LP101: 2652 m = (typeof(m)){"LP101", "PCI-X", 2653 "Obsolete, Unsupported Fibre Channel Adapter"}; 2654 break; 2655 case PCI_DEVICE_ID_LP10000S: 2656 m = (typeof(m)){"LP10000-S", "PCI", 2657 "Obsolete, Unsupported Fibre Channel Adapter"}; 2658 break; 2659 case PCI_DEVICE_ID_LP11000S: 2660 m = (typeof(m)){"LP11000-S", "PCI-X2", 2661 "Obsolete, Unsupported Fibre Channel Adapter"}; 2662 break; 2663 case PCI_DEVICE_ID_LPE11000S: 2664 m = (typeof(m)){"LPe11000-S", "PCIe", 2665 "Obsolete, Unsupported Fibre Channel Adapter"}; 2666 break; 2667 case PCI_DEVICE_ID_SAT: 2668 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; 2669 break; 2670 case PCI_DEVICE_ID_SAT_MID: 2671 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; 2672 break; 2673 case PCI_DEVICE_ID_SAT_SMB: 2674 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; 2675 break; 2676 case PCI_DEVICE_ID_SAT_DCSP: 2677 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; 2678 break; 2679 case PCI_DEVICE_ID_SAT_SCSP: 2680 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; 2681 break; 2682 case PCI_DEVICE_ID_SAT_S: 2683 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; 2684 break; 2685 case PCI_DEVICE_ID_HORNET: 2686 m = (typeof(m)){"LP21000", "PCIe", 2687 "Obsolete, Unsupported FCoE Adapter"}; 2688 GE = 1; 2689 break; 2690 case PCI_DEVICE_ID_PROTEUS_VF: 2691 m = (typeof(m)){"LPev12000", "PCIe IOV", 2692 "Obsolete, Unsupported Fibre Channel Adapter"}; 2693 break; 2694 case PCI_DEVICE_ID_PROTEUS_PF: 2695 m = (typeof(m)){"LPev12000", "PCIe IOV", 2696 "Obsolete, Unsupported Fibre Channel Adapter"}; 2697 break; 2698 case PCI_DEVICE_ID_PROTEUS_S: 2699 m = (typeof(m)){"LPemv12002-S", "PCIe IOV", 2700 "Obsolete, Unsupported Fibre Channel Adapter"}; 2701 break; 2702 case PCI_DEVICE_ID_TIGERSHARK: 2703 oneConnect = 1; 2704 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; 2705 break; 2706 case PCI_DEVICE_ID_TOMCAT: 2707 oneConnect = 1; 2708 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; 2709 break; 2710 case PCI_DEVICE_ID_FALCON: 2711 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", 2712 "EmulexSecure Fibre"}; 2713 break; 2714 case PCI_DEVICE_ID_BALIUS: 2715 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", 2716 "Obsolete, Unsupported Fibre Channel Adapter"}; 2717 break; 2718 case PCI_DEVICE_ID_LANCER_FC: 2719 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; 2720 break; 2721 case PCI_DEVICE_ID_LANCER_FC_VF: 2722 m = (typeof(m)){"LPe16000", "PCIe", 2723 "Obsolete, Unsupported Fibre Channel Adapter"}; 2724 break; 2725 case PCI_DEVICE_ID_LANCER_FCOE: 2726 oneConnect = 1; 2727 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; 2728 break; 2729 case PCI_DEVICE_ID_LANCER_FCOE_VF: 2730 oneConnect = 1; 2731 m = (typeof(m)){"OCe15100", "PCIe", 2732 "Obsolete, Unsupported FCoE"}; 2733 break; 2734 case PCI_DEVICE_ID_LANCER_G6_FC: 2735 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; 2736 break; 2737 case PCI_DEVICE_ID_LANCER_G7_FC: 2738 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; 2739 break; 2740 case PCI_DEVICE_ID_LANCER_G7P_FC: 2741 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; 2742 break; 2743 case PCI_DEVICE_ID_SKYHAWK: 2744 case PCI_DEVICE_ID_SKYHAWK_VF: 2745 oneConnect = 1; 2746 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; 2747 break; 2748 default: 2749 m = (typeof(m)){"Unknown", "", ""}; 2750 break; 2751 } 2752 2753 if (mdp && mdp[0] == '\0') 2754 snprintf(mdp, 79,"%s", m.name); 2755 /* 2756 * oneConnect hba requires special processing, they are all initiators 2757 * and we put the port number on the end 2758 */ 2759 if (descp && descp[0] == '\0') { 2760 if (oneConnect) 2761 snprintf(descp, 255, 2762 "Emulex OneConnect %s, %s Initiator %s", 2763 m.name, m.function, 2764 phba->Port); 2765 else if (max_speed == 0) 2766 snprintf(descp, 255, 2767 "Emulex %s %s %s", 2768 m.name, m.bus, m.function); 2769 else 2770 snprintf(descp, 255, 2771 "Emulex %s %d%s %s %s", 2772 m.name, max_speed, (GE) ? "GE" : "Gb", 2773 m.bus, m.function); 2774 } 2775 } 2776 2777 /** 2778 * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring 2779 * @phba: pointer to lpfc hba data structure. 2780 * @pring: pointer to a IOCB ring. 2781 * @cnt: the number of IOCBs to be posted to the IOCB ring. 2782 * 2783 * This routine posts a given number of IOCBs with the associated DMA buffer 2784 * descriptors specified by the cnt argument to the given IOCB ring. 2785 * 2786 * Return codes 2787 * The number of IOCBs NOT able to be posted to the IOCB ring. 2788 **/ 2789 int 2790 lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) 2791 { 2792 IOCB_t *icmd; 2793 struct lpfc_iocbq *iocb; 2794 struct lpfc_dmabuf *mp1, *mp2; 2795 2796 cnt += pring->missbufcnt; 2797 2798 /* While there are buffers to post */ 2799 while (cnt > 0) { 2800 /* Allocate buffer for command iocb */ 2801 iocb = lpfc_sli_get_iocbq(phba); 2802 if (iocb == NULL) { 2803 pring->missbufcnt = cnt; 2804 return cnt; 2805 } 2806 icmd = &iocb->iocb; 2807 2808 /* 2 buffers can be posted per command */ 2809 /* Allocate buffer to post */ 2810 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2811 if (mp1) 2812 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); 2813 if (!mp1 || !mp1->virt) { 2814 kfree(mp1); 2815 lpfc_sli_release_iocbq(phba, iocb); 2816 pring->missbufcnt = cnt; 2817 return cnt; 2818 } 2819 2820 INIT_LIST_HEAD(&mp1->list); 2821 /* Allocate buffer to post */ 2822 if (cnt > 1) { 2823 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); 2824 if (mp2) 2825 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, 2826 &mp2->phys); 2827 if (!mp2 || !mp2->virt) { 2828 kfree(mp2); 2829 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2830 kfree(mp1); 2831 lpfc_sli_release_iocbq(phba, iocb); 2832 pring->missbufcnt = cnt; 2833 return cnt; 2834 } 2835 2836 INIT_LIST_HEAD(&mp2->list); 2837 } else { 2838 mp2 = NULL; 2839 } 2840 2841 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); 2842 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); 2843 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; 2844 icmd->ulpBdeCount = 1; 2845 cnt--; 2846 if (mp2) { 2847 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); 2848 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); 2849 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; 2850 cnt--; 2851 icmd->ulpBdeCount = 2; 2852 } 2853 2854 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; 2855 icmd->ulpLe = 1; 2856 2857 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == 2858 IOCB_ERROR) { 2859 lpfc_mbuf_free(phba, mp1->virt, mp1->phys); 2860 kfree(mp1); 2861 cnt++; 2862 if (mp2) { 2863 lpfc_mbuf_free(phba, mp2->virt, mp2->phys); 2864 kfree(mp2); 2865 cnt++; 2866 } 2867 lpfc_sli_release_iocbq(phba, iocb); 2868 pring->missbufcnt = cnt; 2869 return cnt; 2870 } 2871 lpfc_sli_ringpostbuf_put(phba, pring, mp1); 2872 if (mp2) 2873 lpfc_sli_ringpostbuf_put(phba, pring, mp2); 2874 } 2875 pring->missbufcnt = 0; 2876 return 0; 2877 } 2878 2879 /** 2880 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring 2881 * @phba: pointer to lpfc hba data structure. 2882 * 2883 * This routine posts initial receive IOCB buffers to the ELS ring. The 2884 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is 2885 * set to 64 IOCBs. SLI3 only. 2886 * 2887 * Return codes 2888 * 0 - success (currently always success) 2889 **/ 2890 static int 2891 lpfc_post_rcv_buf(struct lpfc_hba *phba) 2892 { 2893 struct lpfc_sli *psli = &phba->sli; 2894 2895 /* Ring 0, ELS / CT buffers */ 2896 lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); 2897 /* Ring 2 - FCP no buffers needed */ 2898 2899 return 0; 2900 } 2901 2902 #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) 2903 2904 /** 2905 * lpfc_sha_init - Set up initial array of hash table entries 2906 * @HashResultPointer: pointer to an array as hash table. 2907 * 2908 * This routine sets up the initial values to the array of hash table entries 2909 * for the LC HBAs. 2910 **/ 2911 static void 2912 lpfc_sha_init(uint32_t * HashResultPointer) 2913 { 2914 HashResultPointer[0] = 0x67452301; 2915 HashResultPointer[1] = 0xEFCDAB89; 2916 HashResultPointer[2] = 0x98BADCFE; 2917 HashResultPointer[3] = 0x10325476; 2918 HashResultPointer[4] = 0xC3D2E1F0; 2919 } 2920 2921 /** 2922 * lpfc_sha_iterate - Iterate initial hash table with the working hash table 2923 * @HashResultPointer: pointer to an initial/result hash table. 2924 * @HashWorkingPointer: pointer to an working hash table. 2925 * 2926 * This routine iterates an initial hash table pointed by @HashResultPointer 2927 * with the values from the working hash table pointeed by @HashWorkingPointer. 2928 * The results are putting back to the initial hash table, returned through 2929 * the @HashResultPointer as the result hash table. 2930 **/ 2931 static void 2932 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) 2933 { 2934 int t; 2935 uint32_t TEMP; 2936 uint32_t A, B, C, D, E; 2937 t = 16; 2938 do { 2939 HashWorkingPointer[t] = 2940 S(1, 2941 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 2942 8] ^ 2943 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); 2944 } while (++t <= 79); 2945 t = 0; 2946 A = HashResultPointer[0]; 2947 B = HashResultPointer[1]; 2948 C = HashResultPointer[2]; 2949 D = HashResultPointer[3]; 2950 E = HashResultPointer[4]; 2951 2952 do { 2953 if (t < 20) { 2954 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; 2955 } else if (t < 40) { 2956 TEMP = (B ^ C ^ D) + 0x6ED9EBA1; 2957 } else if (t < 60) { 2958 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; 2959 } else { 2960 TEMP = (B ^ C ^ D) + 0xCA62C1D6; 2961 } 2962 TEMP += S(5, A) + E + HashWorkingPointer[t]; 2963 E = D; 2964 D = C; 2965 C = S(30, B); 2966 B = A; 2967 A = TEMP; 2968 } while (++t <= 79); 2969 2970 HashResultPointer[0] += A; 2971 HashResultPointer[1] += B; 2972 HashResultPointer[2] += C; 2973 HashResultPointer[3] += D; 2974 HashResultPointer[4] += E; 2975 2976 } 2977 2978 /** 2979 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA 2980 * @RandomChallenge: pointer to the entry of host challenge random number array. 2981 * @HashWorking: pointer to the entry of the working hash array. 2982 * 2983 * This routine calculates the working hash array referred by @HashWorking 2984 * from the challenge random numbers associated with the host, referred by 2985 * @RandomChallenge. The result is put into the entry of the working hash 2986 * array and returned by reference through @HashWorking. 2987 **/ 2988 static void 2989 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) 2990 { 2991 *HashWorking = (*RandomChallenge ^ *HashWorking); 2992 } 2993 2994 /** 2995 * lpfc_hba_init - Perform special handling for LC HBA initialization 2996 * @phba: pointer to lpfc hba data structure. 2997 * @hbainit: pointer to an array of unsigned 32-bit integers. 2998 * 2999 * This routine performs the special handling for LC HBA initialization. 3000 **/ 3001 void 3002 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) 3003 { 3004 int t; 3005 uint32_t *HashWorking; 3006 uint32_t *pwwnn = (uint32_t *) phba->wwnn; 3007 3008 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); 3009 if (!HashWorking) 3010 return; 3011 3012 HashWorking[0] = HashWorking[78] = *pwwnn++; 3013 HashWorking[1] = HashWorking[79] = *pwwnn; 3014 3015 for (t = 0; t < 7; t++) 3016 lpfc_challenge_key(phba->RandomData + t, HashWorking + t); 3017 3018 lpfc_sha_init(hbainit); 3019 lpfc_sha_iterate(hbainit, HashWorking); 3020 kfree(HashWorking); 3021 } 3022 3023 /** 3024 * lpfc_cleanup - Performs vport cleanups before deleting a vport 3025 * @vport: pointer to a virtual N_Port data structure. 3026 * 3027 * This routine performs the necessary cleanups before deleting the @vport. 3028 * It invokes the discovery state machine to perform necessary state 3029 * transitions and to release the ndlps associated with the @vport. Note, 3030 * the physical port is treated as @vport 0. 3031 **/ 3032 void 3033 lpfc_cleanup(struct lpfc_vport *vport) 3034 { 3035 struct lpfc_hba *phba = vport->phba; 3036 struct lpfc_nodelist *ndlp, *next_ndlp; 3037 int i = 0; 3038 3039 if (phba->link_state > LPFC_LINK_DOWN) 3040 lpfc_port_link_failure(vport); 3041 3042 /* Clean up VMID resources */ 3043 if (lpfc_is_vmid_enabled(phba)) 3044 lpfc_vmid_vport_cleanup(vport); 3045 3046 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { 3047 if (vport->port_type != LPFC_PHYSICAL_PORT && 3048 ndlp->nlp_DID == Fabric_DID) { 3049 /* Just free up ndlp with Fabric_DID for vports */ 3050 lpfc_nlp_put(ndlp); 3051 continue; 3052 } 3053 3054 if (ndlp->nlp_DID == Fabric_Cntl_DID && 3055 ndlp->nlp_state == NLP_STE_UNUSED_NODE) { 3056 lpfc_nlp_put(ndlp); 3057 continue; 3058 } 3059 3060 /* Fabric Ports not in UNMAPPED state are cleaned up in the 3061 * DEVICE_RM event. 3062 */ 3063 if (ndlp->nlp_type & NLP_FABRIC && 3064 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) 3065 lpfc_disc_state_machine(vport, ndlp, NULL, 3066 NLP_EVT_DEVICE_RECOVERY); 3067 3068 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) 3069 lpfc_disc_state_machine(vport, ndlp, NULL, 3070 NLP_EVT_DEVICE_RM); 3071 } 3072 3073 /* This is a special case flush to return all 3074 * IOs before entering this loop. There are 3075 * two points in the code where a flush is 3076 * avoided if the FC_UNLOADING flag is set. 3077 * one is in the multipool destroy, 3078 * (this prevents a crash) and the other is 3079 * in the nvme abort handler, ( also prevents 3080 * a crash). Both of these exceptions are 3081 * cases where the slot is still accessible. 3082 * The flush here is only when the pci slot 3083 * is offline. 3084 */ 3085 if (vport->load_flag & FC_UNLOADING && 3086 pci_channel_offline(phba->pcidev)) 3087 lpfc_sli_flush_io_rings(vport->phba); 3088 3089 /* At this point, ALL ndlp's should be gone 3090 * because of the previous NLP_EVT_DEVICE_RM. 3091 * Lets wait for this to happen, if needed. 3092 */ 3093 while (!list_empty(&vport->fc_nodes)) { 3094 if (i++ > 3000) { 3095 lpfc_printf_vlog(vport, KERN_ERR, 3096 LOG_TRACE_EVENT, 3097 "0233 Nodelist not empty\n"); 3098 list_for_each_entry_safe(ndlp, next_ndlp, 3099 &vport->fc_nodes, nlp_listp) { 3100 lpfc_printf_vlog(ndlp->vport, KERN_ERR, 3101 LOG_DISCOVERY, 3102 "0282 did:x%x ndlp:x%px " 3103 "refcnt:%d xflags x%x nflag x%x\n", 3104 ndlp->nlp_DID, (void *)ndlp, 3105 kref_read(&ndlp->kref), 3106 ndlp->fc4_xpt_flags, 3107 ndlp->nlp_flag); 3108 } 3109 break; 3110 } 3111 3112 /* Wait for any activity on ndlps to settle */ 3113 msleep(10); 3114 } 3115 lpfc_cleanup_vports_rrqs(vport, NULL); 3116 } 3117 3118 /** 3119 * lpfc_stop_vport_timers - Stop all the timers associated with a vport 3120 * @vport: pointer to a virtual N_Port data structure. 3121 * 3122 * This routine stops all the timers associated with a @vport. This function 3123 * is invoked before disabling or deleting a @vport. Note that the physical 3124 * port is treated as @vport 0. 3125 **/ 3126 void 3127 lpfc_stop_vport_timers(struct lpfc_vport *vport) 3128 { 3129 del_timer_sync(&vport->els_tmofunc); 3130 del_timer_sync(&vport->delayed_disc_tmo); 3131 lpfc_can_disctmo(vport); 3132 return; 3133 } 3134 3135 /** 3136 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3137 * @phba: pointer to lpfc hba data structure. 3138 * 3139 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The 3140 * caller of this routine should already hold the host lock. 3141 **/ 3142 void 3143 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3144 { 3145 /* Clear pending FCF rediscovery wait flag */ 3146 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 3147 3148 /* Now, try to stop the timer */ 3149 del_timer(&phba->fcf.redisc_wait); 3150 } 3151 3152 /** 3153 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer 3154 * @phba: pointer to lpfc hba data structure. 3155 * 3156 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It 3157 * checks whether the FCF rediscovery wait timer is pending with the host 3158 * lock held before proceeding with disabling the timer and clearing the 3159 * wait timer pendig flag. 3160 **/ 3161 void 3162 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) 3163 { 3164 spin_lock_irq(&phba->hbalock); 3165 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 3166 /* FCF rediscovery timer already fired or stopped */ 3167 spin_unlock_irq(&phba->hbalock); 3168 return; 3169 } 3170 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3171 /* Clear failover in progress flags */ 3172 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); 3173 spin_unlock_irq(&phba->hbalock); 3174 } 3175 3176 /** 3177 * lpfc_cmf_stop - Stop CMF processing 3178 * @phba: pointer to lpfc hba data structure. 3179 * 3180 * This is called when the link goes down or if CMF mode is turned OFF. 3181 * It is also called when going offline or unloaded just before the 3182 * congestion info buffer is unregistered. 3183 **/ 3184 void 3185 lpfc_cmf_stop(struct lpfc_hba *phba) 3186 { 3187 int cpu; 3188 struct lpfc_cgn_stat *cgs; 3189 3190 /* We only do something if CMF is enabled */ 3191 if (!phba->sli4_hba.pc_sli4_params.cmf) 3192 return; 3193 3194 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3195 "6221 Stop CMF / Cancel Timer\n"); 3196 3197 /* Cancel the CMF timer */ 3198 hrtimer_cancel(&phba->cmf_timer); 3199 3200 /* Zero CMF counters */ 3201 atomic_set(&phba->cmf_busy, 0); 3202 for_each_present_cpu(cpu) { 3203 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3204 atomic64_set(&cgs->total_bytes, 0); 3205 atomic64_set(&cgs->rcv_bytes, 0); 3206 atomic_set(&cgs->rx_io_cnt, 0); 3207 atomic64_set(&cgs->rx_latency, 0); 3208 } 3209 atomic_set(&phba->cmf_bw_wait, 0); 3210 3211 /* Resume any blocked IO - Queue unblock on workqueue */ 3212 queue_work(phba->wq, &phba->unblock_request_work); 3213 } 3214 3215 static inline uint64_t 3216 lpfc_get_max_line_rate(struct lpfc_hba *phba) 3217 { 3218 uint64_t rate = lpfc_sli_port_speed_get(phba); 3219 3220 return ((((unsigned long)rate) * 1024 * 1024) / 10); 3221 } 3222 3223 void 3224 lpfc_cmf_signal_init(struct lpfc_hba *phba) 3225 { 3226 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3227 "6223 Signal CMF init\n"); 3228 3229 /* Use the new fc_linkspeed to recalculate */ 3230 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 3231 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); 3232 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 3233 phba->cmf_interval_rate, 1000); 3234 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; 3235 3236 /* This is a signal to firmware to sync up CMF BW with link speed */ 3237 lpfc_issue_cmf_sync_wqe(phba, 0, 0); 3238 } 3239 3240 /** 3241 * lpfc_cmf_start - Start CMF processing 3242 * @phba: pointer to lpfc hba data structure. 3243 * 3244 * This is called when the link comes up or if CMF mode is turned OFF 3245 * to Monitor or Managed. 3246 **/ 3247 void 3248 lpfc_cmf_start(struct lpfc_hba *phba) 3249 { 3250 struct lpfc_cgn_stat *cgs; 3251 int cpu; 3252 3253 /* We only do something if CMF is enabled */ 3254 if (!phba->sli4_hba.pc_sli4_params.cmf || 3255 phba->cmf_active_mode == LPFC_CFG_OFF) 3256 return; 3257 3258 /* Reinitialize congestion buffer info */ 3259 lpfc_init_congestion_buf(phba); 3260 3261 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 3262 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 3263 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 3264 atomic_set(&phba->cgn_sync_warn_cnt, 0); 3265 3266 atomic_set(&phba->cmf_busy, 0); 3267 for_each_present_cpu(cpu) { 3268 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 3269 atomic64_set(&cgs->total_bytes, 0); 3270 atomic64_set(&cgs->rcv_bytes, 0); 3271 atomic_set(&cgs->rx_io_cnt, 0); 3272 atomic64_set(&cgs->rx_latency, 0); 3273 } 3274 phba->cmf_latency.tv_sec = 0; 3275 phba->cmf_latency.tv_nsec = 0; 3276 3277 lpfc_cmf_signal_init(phba); 3278 3279 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 3280 "6222 Start CMF / Timer\n"); 3281 3282 phba->cmf_timer_cnt = 0; 3283 hrtimer_start(&phba->cmf_timer, 3284 ktime_set(0, LPFC_CMF_INTERVAL * 1000000), 3285 HRTIMER_MODE_REL); 3286 /* Setup for latency check in IO cmpl routines */ 3287 ktime_get_real_ts64(&phba->cmf_latency); 3288 3289 atomic_set(&phba->cmf_bw_wait, 0); 3290 atomic_set(&phba->cmf_stop_io, 0); 3291 } 3292 3293 /** 3294 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA 3295 * @phba: pointer to lpfc hba data structure. 3296 * 3297 * This routine stops all the timers associated with a HBA. This function is 3298 * invoked before either putting a HBA offline or unloading the driver. 3299 **/ 3300 void 3301 lpfc_stop_hba_timers(struct lpfc_hba *phba) 3302 { 3303 if (phba->pport) 3304 lpfc_stop_vport_timers(phba->pport); 3305 cancel_delayed_work_sync(&phba->eq_delay_work); 3306 cancel_delayed_work_sync(&phba->idle_stat_delay_work); 3307 del_timer_sync(&phba->sli.mbox_tmo); 3308 del_timer_sync(&phba->fabric_block_timer); 3309 del_timer_sync(&phba->eratt_poll); 3310 del_timer_sync(&phba->hb_tmofunc); 3311 if (phba->sli_rev == LPFC_SLI_REV4) { 3312 del_timer_sync(&phba->rrq_tmr); 3313 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 3314 } 3315 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 3316 3317 switch (phba->pci_dev_grp) { 3318 case LPFC_PCI_DEV_LP: 3319 /* Stop any LightPulse device specific driver timers */ 3320 del_timer_sync(&phba->fcp_poll_timer); 3321 break; 3322 case LPFC_PCI_DEV_OC: 3323 /* Stop any OneConnect device specific driver timers */ 3324 lpfc_sli4_stop_fcf_redisc_wait_timer(phba); 3325 break; 3326 default: 3327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3328 "0297 Invalid device group (x%x)\n", 3329 phba->pci_dev_grp); 3330 break; 3331 } 3332 return; 3333 } 3334 3335 /** 3336 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked 3337 * @phba: pointer to lpfc hba data structure. 3338 * @mbx_action: flag for mailbox no wait action. 3339 * 3340 * This routine marks a HBA's management interface as blocked. Once the HBA's 3341 * management interface is marked as blocked, all the user space access to 3342 * the HBA, whether they are from sysfs interface or libdfc interface will 3343 * all be blocked. The HBA is set to block the management interface when the 3344 * driver prepares the HBA interface for online or offline. 3345 **/ 3346 static void 3347 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) 3348 { 3349 unsigned long iflag; 3350 uint8_t actcmd = MBX_HEARTBEAT; 3351 unsigned long timeout; 3352 3353 spin_lock_irqsave(&phba->hbalock, iflag); 3354 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; 3355 spin_unlock_irqrestore(&phba->hbalock, iflag); 3356 if (mbx_action == LPFC_MBX_NO_WAIT) 3357 return; 3358 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 3359 spin_lock_irqsave(&phba->hbalock, iflag); 3360 if (phba->sli.mbox_active) { 3361 actcmd = phba->sli.mbox_active->u.mb.mbxCommand; 3362 /* Determine how long we might wait for the active mailbox 3363 * command to be gracefully completed by firmware. 3364 */ 3365 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 3366 phba->sli.mbox_active) * 1000) + jiffies; 3367 } 3368 spin_unlock_irqrestore(&phba->hbalock, iflag); 3369 3370 /* Wait for the outstnading mailbox command to complete */ 3371 while (phba->sli.mbox_active) { 3372 /* Check active mailbox complete status every 2ms */ 3373 msleep(2); 3374 if (time_after(jiffies, timeout)) { 3375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3376 "2813 Mgmt IO is Blocked %x " 3377 "- mbox cmd %x still active\n", 3378 phba->sli.sli_flag, actcmd); 3379 break; 3380 } 3381 } 3382 } 3383 3384 /** 3385 * lpfc_sli4_node_prep - Assign RPIs for active nodes. 3386 * @phba: pointer to lpfc hba data structure. 3387 * 3388 * Allocate RPIs for all active remote nodes. This is needed whenever 3389 * an SLI4 adapter is reset and the driver is not unloading. Its purpose 3390 * is to fixup the temporary rpi assignments. 3391 **/ 3392 void 3393 lpfc_sli4_node_prep(struct lpfc_hba *phba) 3394 { 3395 struct lpfc_nodelist *ndlp, *next_ndlp; 3396 struct lpfc_vport **vports; 3397 int i, rpi; 3398 3399 if (phba->sli_rev != LPFC_SLI_REV4) 3400 return; 3401 3402 vports = lpfc_create_vport_work_array(phba); 3403 if (vports == NULL) 3404 return; 3405 3406 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3407 if (vports[i]->load_flag & FC_UNLOADING) 3408 continue; 3409 3410 list_for_each_entry_safe(ndlp, next_ndlp, 3411 &vports[i]->fc_nodes, 3412 nlp_listp) { 3413 rpi = lpfc_sli4_alloc_rpi(phba); 3414 if (rpi == LPFC_RPI_ALLOC_ERROR) { 3415 /* TODO print log? */ 3416 continue; 3417 } 3418 ndlp->nlp_rpi = rpi; 3419 lpfc_printf_vlog(ndlp->vport, KERN_INFO, 3420 LOG_NODE | LOG_DISCOVERY, 3421 "0009 Assign RPI x%x to ndlp x%px " 3422 "DID:x%06x flg:x%x\n", 3423 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, 3424 ndlp->nlp_flag); 3425 } 3426 } 3427 lpfc_destroy_vport_work_array(phba, vports); 3428 } 3429 3430 /** 3431 * lpfc_create_expedite_pool - create expedite pool 3432 * @phba: pointer to lpfc hba data structure. 3433 * 3434 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 3435 * to expedite pool. Mark them as expedite. 3436 **/ 3437 static void lpfc_create_expedite_pool(struct lpfc_hba *phba) 3438 { 3439 struct lpfc_sli4_hdw_queue *qp; 3440 struct lpfc_io_buf *lpfc_ncmd; 3441 struct lpfc_io_buf *lpfc_ncmd_next; 3442 struct lpfc_epd_pool *epd_pool; 3443 unsigned long iflag; 3444 3445 epd_pool = &phba->epd_pool; 3446 qp = &phba->sli4_hba.hdwq[0]; 3447 3448 spin_lock_init(&epd_pool->lock); 3449 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3450 spin_lock(&epd_pool->lock); 3451 INIT_LIST_HEAD(&epd_pool->list); 3452 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3453 &qp->lpfc_io_buf_list_put, list) { 3454 list_move_tail(&lpfc_ncmd->list, &epd_pool->list); 3455 lpfc_ncmd->expedite = true; 3456 qp->put_io_bufs--; 3457 epd_pool->count++; 3458 if (epd_pool->count >= XRI_BATCH) 3459 break; 3460 } 3461 spin_unlock(&epd_pool->lock); 3462 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3463 } 3464 3465 /** 3466 * lpfc_destroy_expedite_pool - destroy expedite pool 3467 * @phba: pointer to lpfc hba data structure. 3468 * 3469 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put 3470 * of HWQ 0. Clear the mark. 3471 **/ 3472 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) 3473 { 3474 struct lpfc_sli4_hdw_queue *qp; 3475 struct lpfc_io_buf *lpfc_ncmd; 3476 struct lpfc_io_buf *lpfc_ncmd_next; 3477 struct lpfc_epd_pool *epd_pool; 3478 unsigned long iflag; 3479 3480 epd_pool = &phba->epd_pool; 3481 qp = &phba->sli4_hba.hdwq[0]; 3482 3483 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3484 spin_lock(&epd_pool->lock); 3485 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3486 &epd_pool->list, list) { 3487 list_move_tail(&lpfc_ncmd->list, 3488 &qp->lpfc_io_buf_list_put); 3489 lpfc_ncmd->flags = false; 3490 qp->put_io_bufs++; 3491 epd_pool->count--; 3492 } 3493 spin_unlock(&epd_pool->lock); 3494 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3495 } 3496 3497 /** 3498 * lpfc_create_multixri_pools - create multi-XRI pools 3499 * @phba: pointer to lpfc hba data structure. 3500 * 3501 * This routine initialize public, private per HWQ. Then, move XRIs from 3502 * lpfc_io_buf_list_put to public pool. High and low watermark are also 3503 * Initialized. 3504 **/ 3505 void lpfc_create_multixri_pools(struct lpfc_hba *phba) 3506 { 3507 u32 i, j; 3508 u32 hwq_count; 3509 u32 count_per_hwq; 3510 struct lpfc_io_buf *lpfc_ncmd; 3511 struct lpfc_io_buf *lpfc_ncmd_next; 3512 unsigned long iflag; 3513 struct lpfc_sli4_hdw_queue *qp; 3514 struct lpfc_multixri_pool *multixri_pool; 3515 struct lpfc_pbl_pool *pbl_pool; 3516 struct lpfc_pvt_pool *pvt_pool; 3517 3518 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3519 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", 3520 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, 3521 phba->sli4_hba.io_xri_cnt); 3522 3523 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3524 lpfc_create_expedite_pool(phba); 3525 3526 hwq_count = phba->cfg_hdw_queue; 3527 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; 3528 3529 for (i = 0; i < hwq_count; i++) { 3530 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); 3531 3532 if (!multixri_pool) { 3533 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3534 "1238 Failed to allocate memory for " 3535 "multixri_pool\n"); 3536 3537 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3538 lpfc_destroy_expedite_pool(phba); 3539 3540 j = 0; 3541 while (j < i) { 3542 qp = &phba->sli4_hba.hdwq[j]; 3543 kfree(qp->p_multixri_pool); 3544 j++; 3545 } 3546 phba->cfg_xri_rebalancing = 0; 3547 return; 3548 } 3549 3550 qp = &phba->sli4_hba.hdwq[i]; 3551 qp->p_multixri_pool = multixri_pool; 3552 3553 multixri_pool->xri_limit = count_per_hwq; 3554 multixri_pool->rrb_next_hwqid = i; 3555 3556 /* Deal with public free xri pool */ 3557 pbl_pool = &multixri_pool->pbl_pool; 3558 spin_lock_init(&pbl_pool->lock); 3559 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3560 spin_lock(&pbl_pool->lock); 3561 INIT_LIST_HEAD(&pbl_pool->list); 3562 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3563 &qp->lpfc_io_buf_list_put, list) { 3564 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); 3565 qp->put_io_bufs--; 3566 pbl_pool->count++; 3567 } 3568 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3569 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", 3570 pbl_pool->count, i); 3571 spin_unlock(&pbl_pool->lock); 3572 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3573 3574 /* Deal with private free xri pool */ 3575 pvt_pool = &multixri_pool->pvt_pool; 3576 pvt_pool->high_watermark = multixri_pool->xri_limit / 2; 3577 pvt_pool->low_watermark = XRI_BATCH; 3578 spin_lock_init(&pvt_pool->lock); 3579 spin_lock_irqsave(&pvt_pool->lock, iflag); 3580 INIT_LIST_HEAD(&pvt_pool->list); 3581 pvt_pool->count = 0; 3582 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 3583 } 3584 } 3585 3586 /** 3587 * lpfc_destroy_multixri_pools - destroy multi-XRI pools 3588 * @phba: pointer to lpfc hba data structure. 3589 * 3590 * This routine returns XRIs from public/private to lpfc_io_buf_list_put. 3591 **/ 3592 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) 3593 { 3594 u32 i; 3595 u32 hwq_count; 3596 struct lpfc_io_buf *lpfc_ncmd; 3597 struct lpfc_io_buf *lpfc_ncmd_next; 3598 unsigned long iflag; 3599 struct lpfc_sli4_hdw_queue *qp; 3600 struct lpfc_multixri_pool *multixri_pool; 3601 struct lpfc_pbl_pool *pbl_pool; 3602 struct lpfc_pvt_pool *pvt_pool; 3603 3604 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 3605 lpfc_destroy_expedite_pool(phba); 3606 3607 if (!(phba->pport->load_flag & FC_UNLOADING)) 3608 lpfc_sli_flush_io_rings(phba); 3609 3610 hwq_count = phba->cfg_hdw_queue; 3611 3612 for (i = 0; i < hwq_count; i++) { 3613 qp = &phba->sli4_hba.hdwq[i]; 3614 multixri_pool = qp->p_multixri_pool; 3615 if (!multixri_pool) 3616 continue; 3617 3618 qp->p_multixri_pool = NULL; 3619 3620 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); 3621 3622 /* Deal with public free xri pool */ 3623 pbl_pool = &multixri_pool->pbl_pool; 3624 spin_lock(&pbl_pool->lock); 3625 3626 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3627 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", 3628 pbl_pool->count, i); 3629 3630 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3631 &pbl_pool->list, list) { 3632 list_move_tail(&lpfc_ncmd->list, 3633 &qp->lpfc_io_buf_list_put); 3634 qp->put_io_bufs++; 3635 pbl_pool->count--; 3636 } 3637 3638 INIT_LIST_HEAD(&pbl_pool->list); 3639 pbl_pool->count = 0; 3640 3641 spin_unlock(&pbl_pool->lock); 3642 3643 /* Deal with private free xri pool */ 3644 pvt_pool = &multixri_pool->pvt_pool; 3645 spin_lock(&pvt_pool->lock); 3646 3647 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3648 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", 3649 pvt_pool->count, i); 3650 3651 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 3652 &pvt_pool->list, list) { 3653 list_move_tail(&lpfc_ncmd->list, 3654 &qp->lpfc_io_buf_list_put); 3655 qp->put_io_bufs++; 3656 pvt_pool->count--; 3657 } 3658 3659 INIT_LIST_HEAD(&pvt_pool->list); 3660 pvt_pool->count = 0; 3661 3662 spin_unlock(&pvt_pool->lock); 3663 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); 3664 3665 kfree(multixri_pool); 3666 } 3667 } 3668 3669 /** 3670 * lpfc_online - Initialize and bring a HBA online 3671 * @phba: pointer to lpfc hba data structure. 3672 * 3673 * This routine initializes the HBA and brings a HBA online. During this 3674 * process, the management interface is blocked to prevent user space access 3675 * to the HBA interfering with the driver initialization. 3676 * 3677 * Return codes 3678 * 0 - successful 3679 * 1 - failed 3680 **/ 3681 int 3682 lpfc_online(struct lpfc_hba *phba) 3683 { 3684 struct lpfc_vport *vport; 3685 struct lpfc_vport **vports; 3686 int i, error = 0; 3687 bool vpis_cleared = false; 3688 3689 if (!phba) 3690 return 0; 3691 vport = phba->pport; 3692 3693 if (!(vport->fc_flag & FC_OFFLINE_MODE)) 3694 return 0; 3695 3696 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3697 "0458 Bring Adapter online\n"); 3698 3699 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 3700 3701 if (phba->sli_rev == LPFC_SLI_REV4) { 3702 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ 3703 lpfc_unblock_mgmt_io(phba); 3704 return 1; 3705 } 3706 spin_lock_irq(&phba->hbalock); 3707 if (!phba->sli4_hba.max_cfg_param.vpi_used) 3708 vpis_cleared = true; 3709 spin_unlock_irq(&phba->hbalock); 3710 3711 /* Reestablish the local initiator port. 3712 * The offline process destroyed the previous lport. 3713 */ 3714 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && 3715 !phba->nvmet_support) { 3716 error = lpfc_nvme_create_localport(phba->pport); 3717 if (error) 3718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3719 "6132 NVME restore reg failed " 3720 "on nvmei error x%x\n", error); 3721 } 3722 } else { 3723 lpfc_sli_queue_init(phba); 3724 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ 3725 lpfc_unblock_mgmt_io(phba); 3726 return 1; 3727 } 3728 } 3729 3730 vports = lpfc_create_vport_work_array(phba); 3731 if (vports != NULL) { 3732 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3733 struct Scsi_Host *shost; 3734 shost = lpfc_shost_from_vport(vports[i]); 3735 spin_lock_irq(shost->host_lock); 3736 vports[i]->fc_flag &= ~FC_OFFLINE_MODE; 3737 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) 3738 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3739 if (phba->sli_rev == LPFC_SLI_REV4) { 3740 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; 3741 if ((vpis_cleared) && 3742 (vports[i]->port_type != 3743 LPFC_PHYSICAL_PORT)) 3744 vports[i]->vpi = 0; 3745 } 3746 spin_unlock_irq(shost->host_lock); 3747 } 3748 } 3749 lpfc_destroy_vport_work_array(phba, vports); 3750 3751 if (phba->cfg_xri_rebalancing) 3752 lpfc_create_multixri_pools(phba); 3753 3754 lpfc_cpuhp_add(phba); 3755 3756 lpfc_unblock_mgmt_io(phba); 3757 return 0; 3758 } 3759 3760 /** 3761 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked 3762 * @phba: pointer to lpfc hba data structure. 3763 * 3764 * This routine marks a HBA's management interface as not blocked. Once the 3765 * HBA's management interface is marked as not blocked, all the user space 3766 * access to the HBA, whether they are from sysfs interface or libdfc 3767 * interface will be allowed. The HBA is set to block the management interface 3768 * when the driver prepares the HBA interface for online or offline and then 3769 * set to unblock the management interface afterwards. 3770 **/ 3771 void 3772 lpfc_unblock_mgmt_io(struct lpfc_hba * phba) 3773 { 3774 unsigned long iflag; 3775 3776 spin_lock_irqsave(&phba->hbalock, iflag); 3777 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; 3778 spin_unlock_irqrestore(&phba->hbalock, iflag); 3779 } 3780 3781 /** 3782 * lpfc_offline_prep - Prepare a HBA to be brought offline 3783 * @phba: pointer to lpfc hba data structure. 3784 * @mbx_action: flag for mailbox shutdown action. 3785 * 3786 * This routine is invoked to prepare a HBA to be brought offline. It performs 3787 * unregistration login to all the nodes on all vports and flushes the mailbox 3788 * queue to make it ready to be brought offline. 3789 **/ 3790 void 3791 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) 3792 { 3793 struct lpfc_vport *vport = phba->pport; 3794 struct lpfc_nodelist *ndlp, *next_ndlp; 3795 struct lpfc_vport **vports; 3796 struct Scsi_Host *shost; 3797 int i; 3798 int offline; 3799 bool hba_pci_err; 3800 3801 if (vport->fc_flag & FC_OFFLINE_MODE) 3802 return; 3803 3804 lpfc_block_mgmt_io(phba, mbx_action); 3805 3806 lpfc_linkdown(phba); 3807 3808 offline = pci_channel_offline(phba->pcidev); 3809 hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); 3810 3811 /* Issue an unreg_login to all nodes on all vports */ 3812 vports = lpfc_create_vport_work_array(phba); 3813 if (vports != NULL) { 3814 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3815 if (vports[i]->load_flag & FC_UNLOADING) 3816 continue; 3817 shost = lpfc_shost_from_vport(vports[i]); 3818 spin_lock_irq(shost->host_lock); 3819 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; 3820 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 3821 vports[i]->fc_flag &= ~FC_VFI_REGISTERED; 3822 spin_unlock_irq(shost->host_lock); 3823 3824 shost = lpfc_shost_from_vport(vports[i]); 3825 list_for_each_entry_safe(ndlp, next_ndlp, 3826 &vports[i]->fc_nodes, 3827 nlp_listp) { 3828 3829 spin_lock_irq(&ndlp->lock); 3830 ndlp->nlp_flag &= ~NLP_NPR_ADISC; 3831 spin_unlock_irq(&ndlp->lock); 3832 3833 if (offline || hba_pci_err) { 3834 spin_lock_irq(&ndlp->lock); 3835 ndlp->nlp_flag &= ~(NLP_UNREG_INP | 3836 NLP_RPI_REGISTERED); 3837 spin_unlock_irq(&ndlp->lock); 3838 if (phba->sli_rev == LPFC_SLI_REV4) 3839 lpfc_sli_rpi_release(vports[i], 3840 ndlp); 3841 } else { 3842 lpfc_unreg_rpi(vports[i], ndlp); 3843 } 3844 /* 3845 * Whenever an SLI4 port goes offline, free the 3846 * RPI. Get a new RPI when the adapter port 3847 * comes back online. 3848 */ 3849 if (phba->sli_rev == LPFC_SLI_REV4) { 3850 lpfc_printf_vlog(vports[i], KERN_INFO, 3851 LOG_NODE | LOG_DISCOVERY, 3852 "0011 Free RPI x%x on " 3853 "ndlp: x%px did x%x\n", 3854 ndlp->nlp_rpi, ndlp, 3855 ndlp->nlp_DID); 3856 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); 3857 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 3858 } 3859 3860 if (ndlp->nlp_type & NLP_FABRIC) { 3861 lpfc_disc_state_machine(vports[i], ndlp, 3862 NULL, NLP_EVT_DEVICE_RECOVERY); 3863 3864 /* Don't remove the node unless the node 3865 * has been unregistered with the 3866 * transport, and we're not in recovery 3867 * before dev_loss_tmo triggered. 3868 * Otherwise, let dev_loss take care of 3869 * the node. 3870 */ 3871 if (!(ndlp->save_flags & 3872 NLP_IN_RECOV_POST_DEV_LOSS) && 3873 !(ndlp->fc4_xpt_flags & 3874 (NVME_XPT_REGD | SCSI_XPT_REGD))) 3875 lpfc_disc_state_machine 3876 (vports[i], ndlp, 3877 NULL, 3878 NLP_EVT_DEVICE_RM); 3879 } 3880 } 3881 } 3882 } 3883 lpfc_destroy_vport_work_array(phba, vports); 3884 3885 lpfc_sli_mbox_sys_shutdown(phba, mbx_action); 3886 3887 if (phba->wq) 3888 flush_workqueue(phba->wq); 3889 } 3890 3891 /** 3892 * lpfc_offline - Bring a HBA offline 3893 * @phba: pointer to lpfc hba data structure. 3894 * 3895 * This routine actually brings a HBA offline. It stops all the timers 3896 * associated with the HBA, brings down the SLI layer, and eventually 3897 * marks the HBA as in offline state for the upper layer protocol. 3898 **/ 3899 void 3900 lpfc_offline(struct lpfc_hba *phba) 3901 { 3902 struct Scsi_Host *shost; 3903 struct lpfc_vport **vports; 3904 int i; 3905 3906 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3907 return; 3908 3909 /* stop port and all timers associated with this hba */ 3910 lpfc_stop_port(phba); 3911 3912 /* Tear down the local and target port registrations. The 3913 * nvme transports need to cleanup. 3914 */ 3915 lpfc_nvmet_destroy_targetport(phba); 3916 lpfc_nvme_destroy_localport(phba->pport); 3917 3918 vports = lpfc_create_vport_work_array(phba); 3919 if (vports != NULL) 3920 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 3921 lpfc_stop_vport_timers(vports[i]); 3922 lpfc_destroy_vport_work_array(phba, vports); 3923 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 3924 "0460 Bring Adapter offline\n"); 3925 /* Bring down the SLI Layer and cleanup. The HBA is offline 3926 now. */ 3927 lpfc_sli_hba_down(phba); 3928 spin_lock_irq(&phba->hbalock); 3929 phba->work_ha = 0; 3930 spin_unlock_irq(&phba->hbalock); 3931 vports = lpfc_create_vport_work_array(phba); 3932 if (vports != NULL) 3933 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 3934 shost = lpfc_shost_from_vport(vports[i]); 3935 spin_lock_irq(shost->host_lock); 3936 vports[i]->work_port_events = 0; 3937 vports[i]->fc_flag |= FC_OFFLINE_MODE; 3938 spin_unlock_irq(shost->host_lock); 3939 } 3940 lpfc_destroy_vport_work_array(phba, vports); 3941 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled 3942 * in hba_unset 3943 */ 3944 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 3945 __lpfc_cpuhp_remove(phba); 3946 3947 if (phba->cfg_xri_rebalancing) 3948 lpfc_destroy_multixri_pools(phba); 3949 } 3950 3951 /** 3952 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists 3953 * @phba: pointer to lpfc hba data structure. 3954 * 3955 * This routine is to free all the SCSI buffers and IOCBs from the driver 3956 * list back to kernel. It is called from lpfc_pci_remove_one to free 3957 * the internal resources before the device is removed from the system. 3958 **/ 3959 static void 3960 lpfc_scsi_free(struct lpfc_hba *phba) 3961 { 3962 struct lpfc_io_buf *sb, *sb_next; 3963 3964 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 3965 return; 3966 3967 spin_lock_irq(&phba->hbalock); 3968 3969 /* Release all the lpfc_scsi_bufs maintained by this host. */ 3970 3971 spin_lock(&phba->scsi_buf_list_put_lock); 3972 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, 3973 list) { 3974 list_del(&sb->list); 3975 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3976 sb->dma_handle); 3977 kfree(sb); 3978 phba->total_scsi_bufs--; 3979 } 3980 spin_unlock(&phba->scsi_buf_list_put_lock); 3981 3982 spin_lock(&phba->scsi_buf_list_get_lock); 3983 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, 3984 list) { 3985 list_del(&sb->list); 3986 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, 3987 sb->dma_handle); 3988 kfree(sb); 3989 phba->total_scsi_bufs--; 3990 } 3991 spin_unlock(&phba->scsi_buf_list_get_lock); 3992 spin_unlock_irq(&phba->hbalock); 3993 } 3994 3995 /** 3996 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists 3997 * @phba: pointer to lpfc hba data structure. 3998 * 3999 * This routine is to free all the IO buffers and IOCBs from the driver 4000 * list back to kernel. It is called from lpfc_pci_remove_one to free 4001 * the internal resources before the device is removed from the system. 4002 **/ 4003 void 4004 lpfc_io_free(struct lpfc_hba *phba) 4005 { 4006 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 4007 struct lpfc_sli4_hdw_queue *qp; 4008 int idx; 4009 4010 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4011 qp = &phba->sli4_hba.hdwq[idx]; 4012 /* Release all the lpfc_nvme_bufs maintained by this host. */ 4013 spin_lock(&qp->io_buf_list_put_lock); 4014 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4015 &qp->lpfc_io_buf_list_put, 4016 list) { 4017 list_del(&lpfc_ncmd->list); 4018 qp->put_io_bufs--; 4019 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4020 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4021 if (phba->cfg_xpsgl && !phba->nvmet_support) 4022 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4023 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4024 kfree(lpfc_ncmd); 4025 qp->total_io_bufs--; 4026 } 4027 spin_unlock(&qp->io_buf_list_put_lock); 4028 4029 spin_lock(&qp->io_buf_list_get_lock); 4030 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4031 &qp->lpfc_io_buf_list_get, 4032 list) { 4033 list_del(&lpfc_ncmd->list); 4034 qp->get_io_bufs--; 4035 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4036 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4037 if (phba->cfg_xpsgl && !phba->nvmet_support) 4038 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 4039 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 4040 kfree(lpfc_ncmd); 4041 qp->total_io_bufs--; 4042 } 4043 spin_unlock(&qp->io_buf_list_get_lock); 4044 } 4045 } 4046 4047 /** 4048 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping 4049 * @phba: pointer to lpfc hba data structure. 4050 * 4051 * This routine first calculates the sizes of the current els and allocated 4052 * scsi sgl lists, and then goes through all sgls to updates the physical 4053 * XRIs assigned due to port function reset. During port initialization, the 4054 * current els and allocated scsi sgl lists are 0s. 4055 * 4056 * Return codes 4057 * 0 - successful (for now, it always returns 0) 4058 **/ 4059 int 4060 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) 4061 { 4062 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4063 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4064 LIST_HEAD(els_sgl_list); 4065 int rc; 4066 4067 /* 4068 * update on pci function's els xri-sgl list 4069 */ 4070 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4071 4072 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { 4073 /* els xri-sgl expanded */ 4074 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; 4075 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4076 "3157 ELS xri-sgl count increased from " 4077 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4078 els_xri_cnt); 4079 /* allocate the additional els sgls */ 4080 for (i = 0; i < xri_cnt; i++) { 4081 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4082 GFP_KERNEL); 4083 if (sglq_entry == NULL) { 4084 lpfc_printf_log(phba, KERN_ERR, 4085 LOG_TRACE_EVENT, 4086 "2562 Failure to allocate an " 4087 "ELS sgl entry:%d\n", i); 4088 rc = -ENOMEM; 4089 goto out_free_mem; 4090 } 4091 sglq_entry->buff_type = GEN_BUFF_TYPE; 4092 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, 4093 &sglq_entry->phys); 4094 if (sglq_entry->virt == NULL) { 4095 kfree(sglq_entry); 4096 lpfc_printf_log(phba, KERN_ERR, 4097 LOG_TRACE_EVENT, 4098 "2563 Failure to allocate an " 4099 "ELS mbuf:%d\n", i); 4100 rc = -ENOMEM; 4101 goto out_free_mem; 4102 } 4103 sglq_entry->sgl = sglq_entry->virt; 4104 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); 4105 sglq_entry->state = SGL_FREED; 4106 list_add_tail(&sglq_entry->list, &els_sgl_list); 4107 } 4108 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4109 list_splice_init(&els_sgl_list, 4110 &phba->sli4_hba.lpfc_els_sgl_list); 4111 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4112 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { 4113 /* els xri-sgl shrinked */ 4114 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; 4115 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4116 "3158 ELS xri-sgl count decreased from " 4117 "%d to %d\n", phba->sli4_hba.els_xri_cnt, 4118 els_xri_cnt); 4119 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 4120 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, 4121 &els_sgl_list); 4122 /* release extra els sgls from list */ 4123 for (i = 0; i < xri_cnt; i++) { 4124 list_remove_head(&els_sgl_list, 4125 sglq_entry, struct lpfc_sglq, list); 4126 if (sglq_entry) { 4127 __lpfc_mbuf_free(phba, sglq_entry->virt, 4128 sglq_entry->phys); 4129 kfree(sglq_entry); 4130 } 4131 } 4132 list_splice_init(&els_sgl_list, 4133 &phba->sli4_hba.lpfc_els_sgl_list); 4134 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 4135 } else 4136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4137 "3163 ELS xri-sgl count unchanged: %d\n", 4138 els_xri_cnt); 4139 phba->sli4_hba.els_xri_cnt = els_xri_cnt; 4140 4141 /* update xris to els sgls on the list */ 4142 sglq_entry = NULL; 4143 sglq_entry_next = NULL; 4144 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4145 &phba->sli4_hba.lpfc_els_sgl_list, list) { 4146 lxri = lpfc_sli4_next_xritag(phba); 4147 if (lxri == NO_XRI) { 4148 lpfc_printf_log(phba, KERN_ERR, 4149 LOG_TRACE_EVENT, 4150 "2400 Failed to allocate xri for " 4151 "ELS sgl\n"); 4152 rc = -ENOMEM; 4153 goto out_free_mem; 4154 } 4155 sglq_entry->sli4_lxritag = lxri; 4156 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4157 } 4158 return 0; 4159 4160 out_free_mem: 4161 lpfc_free_els_sgl_list(phba); 4162 return rc; 4163 } 4164 4165 /** 4166 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping 4167 * @phba: pointer to lpfc hba data structure. 4168 * 4169 * This routine first calculates the sizes of the current els and allocated 4170 * scsi sgl lists, and then goes through all sgls to updates the physical 4171 * XRIs assigned due to port function reset. During port initialization, the 4172 * current els and allocated scsi sgl lists are 0s. 4173 * 4174 * Return codes 4175 * 0 - successful (for now, it always returns 0) 4176 **/ 4177 int 4178 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) 4179 { 4180 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; 4181 uint16_t i, lxri, xri_cnt, els_xri_cnt; 4182 uint16_t nvmet_xri_cnt; 4183 LIST_HEAD(nvmet_sgl_list); 4184 int rc; 4185 4186 /* 4187 * update on pci function's nvmet xri-sgl list 4188 */ 4189 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4190 4191 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ 4192 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4193 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { 4194 /* els xri-sgl expanded */ 4195 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; 4196 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4197 "6302 NVMET xri-sgl cnt grew from %d to %d\n", 4198 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); 4199 /* allocate the additional nvmet sgls */ 4200 for (i = 0; i < xri_cnt; i++) { 4201 sglq_entry = kzalloc(sizeof(struct lpfc_sglq), 4202 GFP_KERNEL); 4203 if (sglq_entry == NULL) { 4204 lpfc_printf_log(phba, KERN_ERR, 4205 LOG_TRACE_EVENT, 4206 "6303 Failure to allocate an " 4207 "NVMET sgl entry:%d\n", i); 4208 rc = -ENOMEM; 4209 goto out_free_mem; 4210 } 4211 sglq_entry->buff_type = NVMET_BUFF_TYPE; 4212 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, 4213 &sglq_entry->phys); 4214 if (sglq_entry->virt == NULL) { 4215 kfree(sglq_entry); 4216 lpfc_printf_log(phba, KERN_ERR, 4217 LOG_TRACE_EVENT, 4218 "6304 Failure to allocate an " 4219 "NVMET buf:%d\n", i); 4220 rc = -ENOMEM; 4221 goto out_free_mem; 4222 } 4223 sglq_entry->sgl = sglq_entry->virt; 4224 memset(sglq_entry->sgl, 0, 4225 phba->cfg_sg_dma_buf_size); 4226 sglq_entry->state = SGL_FREED; 4227 list_add_tail(&sglq_entry->list, &nvmet_sgl_list); 4228 } 4229 spin_lock_irq(&phba->hbalock); 4230 spin_lock(&phba->sli4_hba.sgl_list_lock); 4231 list_splice_init(&nvmet_sgl_list, 4232 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4233 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4234 spin_unlock_irq(&phba->hbalock); 4235 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { 4236 /* nvmet xri-sgl shrunk */ 4237 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; 4238 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4239 "6305 NVMET xri-sgl count decreased from " 4240 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, 4241 nvmet_xri_cnt); 4242 spin_lock_irq(&phba->hbalock); 4243 spin_lock(&phba->sli4_hba.sgl_list_lock); 4244 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, 4245 &nvmet_sgl_list); 4246 /* release extra nvmet sgls from list */ 4247 for (i = 0; i < xri_cnt; i++) { 4248 list_remove_head(&nvmet_sgl_list, 4249 sglq_entry, struct lpfc_sglq, list); 4250 if (sglq_entry) { 4251 lpfc_nvmet_buf_free(phba, sglq_entry->virt, 4252 sglq_entry->phys); 4253 kfree(sglq_entry); 4254 } 4255 } 4256 list_splice_init(&nvmet_sgl_list, 4257 &phba->sli4_hba.lpfc_nvmet_sgl_list); 4258 spin_unlock(&phba->sli4_hba.sgl_list_lock); 4259 spin_unlock_irq(&phba->hbalock); 4260 } else 4261 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4262 "6306 NVMET xri-sgl count unchanged: %d\n", 4263 nvmet_xri_cnt); 4264 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; 4265 4266 /* update xris to nvmet sgls on the list */ 4267 sglq_entry = NULL; 4268 sglq_entry_next = NULL; 4269 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 4270 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { 4271 lxri = lpfc_sli4_next_xritag(phba); 4272 if (lxri == NO_XRI) { 4273 lpfc_printf_log(phba, KERN_ERR, 4274 LOG_TRACE_EVENT, 4275 "6307 Failed to allocate xri for " 4276 "NVMET sgl\n"); 4277 rc = -ENOMEM; 4278 goto out_free_mem; 4279 } 4280 sglq_entry->sli4_lxritag = lxri; 4281 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4282 } 4283 return 0; 4284 4285 out_free_mem: 4286 lpfc_free_nvmet_sgl_list(phba); 4287 return rc; 4288 } 4289 4290 int 4291 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) 4292 { 4293 LIST_HEAD(blist); 4294 struct lpfc_sli4_hdw_queue *qp; 4295 struct lpfc_io_buf *lpfc_cmd; 4296 struct lpfc_io_buf *iobufp, *prev_iobufp; 4297 int idx, cnt, xri, inserted; 4298 4299 cnt = 0; 4300 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4301 qp = &phba->sli4_hba.hdwq[idx]; 4302 spin_lock_irq(&qp->io_buf_list_get_lock); 4303 spin_lock(&qp->io_buf_list_put_lock); 4304 4305 /* Take everything off the get and put lists */ 4306 list_splice_init(&qp->lpfc_io_buf_list_get, &blist); 4307 list_splice(&qp->lpfc_io_buf_list_put, &blist); 4308 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 4309 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 4310 cnt += qp->get_io_bufs + qp->put_io_bufs; 4311 qp->get_io_bufs = 0; 4312 qp->put_io_bufs = 0; 4313 qp->total_io_bufs = 0; 4314 spin_unlock(&qp->io_buf_list_put_lock); 4315 spin_unlock_irq(&qp->io_buf_list_get_lock); 4316 } 4317 4318 /* 4319 * Take IO buffers off blist and put on cbuf sorted by XRI. 4320 * This is because POST_SGL takes a sequential range of XRIs 4321 * to post to the firmware. 4322 */ 4323 for (idx = 0; idx < cnt; idx++) { 4324 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); 4325 if (!lpfc_cmd) 4326 return cnt; 4327 if (idx == 0) { 4328 list_add_tail(&lpfc_cmd->list, cbuf); 4329 continue; 4330 } 4331 xri = lpfc_cmd->cur_iocbq.sli4_xritag; 4332 inserted = 0; 4333 prev_iobufp = NULL; 4334 list_for_each_entry(iobufp, cbuf, list) { 4335 if (xri < iobufp->cur_iocbq.sli4_xritag) { 4336 if (prev_iobufp) 4337 list_add(&lpfc_cmd->list, 4338 &prev_iobufp->list); 4339 else 4340 list_add(&lpfc_cmd->list, cbuf); 4341 inserted = 1; 4342 break; 4343 } 4344 prev_iobufp = iobufp; 4345 } 4346 if (!inserted) 4347 list_add_tail(&lpfc_cmd->list, cbuf); 4348 } 4349 return cnt; 4350 } 4351 4352 int 4353 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) 4354 { 4355 struct lpfc_sli4_hdw_queue *qp; 4356 struct lpfc_io_buf *lpfc_cmd; 4357 int idx, cnt; 4358 4359 qp = phba->sli4_hba.hdwq; 4360 cnt = 0; 4361 while (!list_empty(cbuf)) { 4362 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 4363 list_remove_head(cbuf, lpfc_cmd, 4364 struct lpfc_io_buf, list); 4365 if (!lpfc_cmd) 4366 return cnt; 4367 cnt++; 4368 qp = &phba->sli4_hba.hdwq[idx]; 4369 lpfc_cmd->hdwq_no = idx; 4370 lpfc_cmd->hdwq = qp; 4371 lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; 4372 spin_lock(&qp->io_buf_list_put_lock); 4373 list_add_tail(&lpfc_cmd->list, 4374 &qp->lpfc_io_buf_list_put); 4375 qp->put_io_bufs++; 4376 qp->total_io_bufs++; 4377 spin_unlock(&qp->io_buf_list_put_lock); 4378 } 4379 } 4380 return cnt; 4381 } 4382 4383 /** 4384 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping 4385 * @phba: pointer to lpfc hba data structure. 4386 * 4387 * This routine first calculates the sizes of the current els and allocated 4388 * scsi sgl lists, and then goes through all sgls to updates the physical 4389 * XRIs assigned due to port function reset. During port initialization, the 4390 * current els and allocated scsi sgl lists are 0s. 4391 * 4392 * Return codes 4393 * 0 - successful (for now, it always returns 0) 4394 **/ 4395 int 4396 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) 4397 { 4398 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; 4399 uint16_t i, lxri, els_xri_cnt; 4400 uint16_t io_xri_cnt, io_xri_max; 4401 LIST_HEAD(io_sgl_list); 4402 int rc, cnt; 4403 4404 /* 4405 * update on pci function's allocated nvme xri-sgl list 4406 */ 4407 4408 /* maximum number of xris available for nvme buffers */ 4409 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); 4410 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; 4411 phba->sli4_hba.io_xri_max = io_xri_max; 4412 4413 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4414 "6074 Current allocated XRI sgl count:%d, " 4415 "maximum XRI count:%d els_xri_cnt:%d\n\n", 4416 phba->sli4_hba.io_xri_cnt, 4417 phba->sli4_hba.io_xri_max, 4418 els_xri_cnt); 4419 4420 cnt = lpfc_io_buf_flush(phba, &io_sgl_list); 4421 4422 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { 4423 /* max nvme xri shrunk below the allocated nvme buffers */ 4424 io_xri_cnt = phba->sli4_hba.io_xri_cnt - 4425 phba->sli4_hba.io_xri_max; 4426 /* release the extra allocated nvme buffers */ 4427 for (i = 0; i < io_xri_cnt; i++) { 4428 list_remove_head(&io_sgl_list, lpfc_ncmd, 4429 struct lpfc_io_buf, list); 4430 if (lpfc_ncmd) { 4431 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4432 lpfc_ncmd->data, 4433 lpfc_ncmd->dma_handle); 4434 kfree(lpfc_ncmd); 4435 } 4436 } 4437 phba->sli4_hba.io_xri_cnt -= io_xri_cnt; 4438 } 4439 4440 /* update xris associated to remaining allocated nvme buffers */ 4441 lpfc_ncmd = NULL; 4442 lpfc_ncmd_next = NULL; 4443 phba->sli4_hba.io_xri_cnt = cnt; 4444 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 4445 &io_sgl_list, list) { 4446 lxri = lpfc_sli4_next_xritag(phba); 4447 if (lxri == NO_XRI) { 4448 lpfc_printf_log(phba, KERN_ERR, 4449 LOG_TRACE_EVENT, 4450 "6075 Failed to allocate xri for " 4451 "nvme buffer\n"); 4452 rc = -ENOMEM; 4453 goto out_free_mem; 4454 } 4455 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; 4456 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4457 } 4458 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); 4459 return 0; 4460 4461 out_free_mem: 4462 lpfc_io_free(phba); 4463 return rc; 4464 } 4465 4466 /** 4467 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec 4468 * @phba: Pointer to lpfc hba data structure. 4469 * @num_to_alloc: The requested number of buffers to allocate. 4470 * 4471 * This routine allocates nvme buffers for device with SLI-4 interface spec, 4472 * the nvme buffer contains all the necessary information needed to initiate 4473 * an I/O. After allocating up to @num_to_allocate IO buffers and put 4474 * them on a list, it post them to the port by using SGL block post. 4475 * 4476 * Return codes: 4477 * int - number of IO buffers that were allocated and posted. 4478 * 0 = failure, less than num_to_alloc is a partial failure. 4479 **/ 4480 int 4481 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) 4482 { 4483 struct lpfc_io_buf *lpfc_ncmd; 4484 struct lpfc_iocbq *pwqeq; 4485 uint16_t iotag, lxri = 0; 4486 int bcnt, num_posted; 4487 LIST_HEAD(prep_nblist); 4488 LIST_HEAD(post_nblist); 4489 LIST_HEAD(nvme_nblist); 4490 4491 phba->sli4_hba.io_xri_cnt = 0; 4492 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { 4493 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); 4494 if (!lpfc_ncmd) 4495 break; 4496 /* 4497 * Get memory from the pci pool to map the virt space to 4498 * pci bus space for an I/O. The DMA buffer includes the 4499 * number of SGE's necessary to support the sg_tablesize. 4500 */ 4501 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, 4502 GFP_KERNEL, 4503 &lpfc_ncmd->dma_handle); 4504 if (!lpfc_ncmd->data) { 4505 kfree(lpfc_ncmd); 4506 break; 4507 } 4508 4509 if (phba->cfg_xpsgl && !phba->nvmet_support) { 4510 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); 4511 } else { 4512 /* 4513 * 4K Page alignment is CRITICAL to BlockGuard, double 4514 * check to be sure. 4515 */ 4516 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && 4517 (((unsigned long)(lpfc_ncmd->data) & 4518 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { 4519 lpfc_printf_log(phba, KERN_ERR, 4520 LOG_TRACE_EVENT, 4521 "3369 Memory alignment err: " 4522 "addr=%lx\n", 4523 (unsigned long)lpfc_ncmd->data); 4524 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4525 lpfc_ncmd->data, 4526 lpfc_ncmd->dma_handle); 4527 kfree(lpfc_ncmd); 4528 break; 4529 } 4530 } 4531 4532 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); 4533 4534 lxri = lpfc_sli4_next_xritag(phba); 4535 if (lxri == NO_XRI) { 4536 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4537 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4538 kfree(lpfc_ncmd); 4539 break; 4540 } 4541 pwqeq = &lpfc_ncmd->cur_iocbq; 4542 4543 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ 4544 iotag = lpfc_sli_next_iotag(phba, pwqeq); 4545 if (iotag == 0) { 4546 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 4547 lpfc_ncmd->data, lpfc_ncmd->dma_handle); 4548 kfree(lpfc_ncmd); 4549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4550 "6121 Failed to allocate IOTAG for" 4551 " XRI:0x%x\n", lxri); 4552 lpfc_sli4_free_xri(phba, lxri); 4553 break; 4554 } 4555 pwqeq->sli4_lxritag = lxri; 4556 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; 4557 4558 /* Initialize local short-hand pointers. */ 4559 lpfc_ncmd->dma_sgl = lpfc_ncmd->data; 4560 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; 4561 lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; 4562 spin_lock_init(&lpfc_ncmd->buf_lock); 4563 4564 /* add the nvme buffer to a post list */ 4565 list_add_tail(&lpfc_ncmd->list, &post_nblist); 4566 phba->sli4_hba.io_xri_cnt++; 4567 } 4568 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 4569 "6114 Allocate %d out of %d requested new NVME " 4570 "buffers of size x%zu bytes\n", bcnt, num_to_alloc, 4571 sizeof(*lpfc_ncmd)); 4572 4573 4574 /* post the list of nvme buffer sgls to port if available */ 4575 if (!list_empty(&post_nblist)) 4576 num_posted = lpfc_sli4_post_io_sgl_list( 4577 phba, &post_nblist, bcnt); 4578 else 4579 num_posted = 0; 4580 4581 return num_posted; 4582 } 4583 4584 static uint64_t 4585 lpfc_get_wwpn(struct lpfc_hba *phba) 4586 { 4587 uint64_t wwn; 4588 int rc; 4589 LPFC_MBOXQ_t *mboxq; 4590 MAILBOX_t *mb; 4591 4592 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 4593 GFP_KERNEL); 4594 if (!mboxq) 4595 return (uint64_t)-1; 4596 4597 /* First get WWN of HBA instance */ 4598 lpfc_read_nv(phba, mboxq); 4599 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4600 if (rc != MBX_SUCCESS) { 4601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4602 "6019 Mailbox failed , mbxCmd x%x " 4603 "READ_NV, mbxStatus x%x\n", 4604 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4605 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 4606 mempool_free(mboxq, phba->mbox_mem_pool); 4607 return (uint64_t) -1; 4608 } 4609 mb = &mboxq->u.mb; 4610 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); 4611 /* wwn is WWPN of HBA instance */ 4612 mempool_free(mboxq, phba->mbox_mem_pool); 4613 if (phba->sli_rev == LPFC_SLI_REV4) 4614 return be64_to_cpu(wwn); 4615 else 4616 return rol64(wwn, 32); 4617 } 4618 4619 /** 4620 * lpfc_vmid_res_alloc - Allocates resources for VMID 4621 * @phba: pointer to lpfc hba data structure. 4622 * @vport: pointer to vport data structure 4623 * 4624 * This routine allocated the resources needed for the VMID. 4625 * 4626 * Return codes 4627 * 0 on Success 4628 * Non-0 on Failure 4629 */ 4630 static int 4631 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) 4632 { 4633 /* VMID feature is supported only on SLI4 */ 4634 if (phba->sli_rev == LPFC_SLI_REV3) { 4635 phba->cfg_vmid_app_header = 0; 4636 phba->cfg_vmid_priority_tagging = 0; 4637 } 4638 4639 if (lpfc_is_vmid_enabled(phba)) { 4640 vport->vmid = 4641 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), 4642 GFP_KERNEL); 4643 if (!vport->vmid) 4644 return -ENOMEM; 4645 4646 rwlock_init(&vport->vmid_lock); 4647 4648 /* Set the VMID parameters for the vport */ 4649 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; 4650 vport->vmid_inactivity_timeout = 4651 phba->cfg_vmid_inactivity_timeout; 4652 vport->max_vmid = phba->cfg_max_vmid; 4653 vport->cur_vmid_cnt = 0; 4654 4655 vport->vmid_priority_range = bitmap_zalloc 4656 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); 4657 4658 if (!vport->vmid_priority_range) { 4659 kfree(vport->vmid); 4660 return -ENOMEM; 4661 } 4662 4663 hash_init(vport->hash_table); 4664 } 4665 return 0; 4666 } 4667 4668 /** 4669 * lpfc_create_port - Create an FC port 4670 * @phba: pointer to lpfc hba data structure. 4671 * @instance: a unique integer ID to this FC port. 4672 * @dev: pointer to the device data structure. 4673 * 4674 * This routine creates a FC port for the upper layer protocol. The FC port 4675 * can be created on top of either a physical port or a virtual port provided 4676 * by the HBA. This routine also allocates a SCSI host data structure (shost) 4677 * and associates the FC port created before adding the shost into the SCSI 4678 * layer. 4679 * 4680 * Return codes 4681 * @vport - pointer to the virtual N_Port data structure. 4682 * NULL - port create failed. 4683 **/ 4684 struct lpfc_vport * 4685 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) 4686 { 4687 struct lpfc_vport *vport; 4688 struct Scsi_Host *shost = NULL; 4689 struct scsi_host_template *template; 4690 int error = 0; 4691 int i; 4692 uint64_t wwn; 4693 bool use_no_reset_hba = false; 4694 int rc; 4695 4696 if (lpfc_no_hba_reset_cnt) { 4697 if (phba->sli_rev < LPFC_SLI_REV4 && 4698 dev == &phba->pcidev->dev) { 4699 /* Reset the port first */ 4700 lpfc_sli_brdrestart(phba); 4701 rc = lpfc_sli_chipset_init(phba); 4702 if (rc) 4703 return NULL; 4704 } 4705 wwn = lpfc_get_wwpn(phba); 4706 } 4707 4708 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { 4709 if (wwn == lpfc_no_hba_reset[i]) { 4710 lpfc_printf_log(phba, KERN_ERR, 4711 LOG_TRACE_EVENT, 4712 "6020 Setting use_no_reset port=%llx\n", 4713 wwn); 4714 use_no_reset_hba = true; 4715 break; 4716 } 4717 } 4718 4719 /* Seed template for SCSI host registration */ 4720 if (dev == &phba->pcidev->dev) { 4721 template = &phba->port_template; 4722 4723 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 4724 /* Seed physical port template */ 4725 memcpy(template, &lpfc_template, sizeof(*template)); 4726 4727 if (use_no_reset_hba) 4728 /* template is for a no reset SCSI Host */ 4729 template->eh_host_reset_handler = NULL; 4730 4731 /* Template for all vports this physical port creates */ 4732 memcpy(&phba->vport_template, &lpfc_template, 4733 sizeof(*template)); 4734 phba->vport_template.shost_groups = lpfc_vport_groups; 4735 phba->vport_template.eh_bus_reset_handler = NULL; 4736 phba->vport_template.eh_host_reset_handler = NULL; 4737 phba->vport_template.vendor_id = 0; 4738 4739 /* Initialize the host templates with updated value */ 4740 if (phba->sli_rev == LPFC_SLI_REV4) { 4741 template->sg_tablesize = phba->cfg_scsi_seg_cnt; 4742 phba->vport_template.sg_tablesize = 4743 phba->cfg_scsi_seg_cnt; 4744 } else { 4745 template->sg_tablesize = phba->cfg_sg_seg_cnt; 4746 phba->vport_template.sg_tablesize = 4747 phba->cfg_sg_seg_cnt; 4748 } 4749 4750 } else { 4751 /* NVMET is for physical port only */ 4752 memcpy(template, &lpfc_template_nvme, 4753 sizeof(*template)); 4754 } 4755 } else { 4756 template = &phba->vport_template; 4757 } 4758 4759 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); 4760 if (!shost) 4761 goto out; 4762 4763 vport = (struct lpfc_vport *) shost->hostdata; 4764 vport->phba = phba; 4765 vport->load_flag |= FC_LOADING; 4766 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; 4767 vport->fc_rscn_flush = 0; 4768 lpfc_get_vport_cfgparam(vport); 4769 4770 /* Adjust value in vport */ 4771 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; 4772 4773 shost->unique_id = instance; 4774 shost->max_id = LPFC_MAX_TARGET; 4775 shost->max_lun = vport->cfg_max_luns; 4776 shost->this_id = -1; 4777 shost->max_cmd_len = 16; 4778 4779 if (phba->sli_rev == LPFC_SLI_REV4) { 4780 if (!phba->cfg_fcp_mq_threshold || 4781 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) 4782 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; 4783 4784 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), 4785 phba->cfg_fcp_mq_threshold); 4786 4787 shost->dma_boundary = 4788 phba->sli4_hba.pc_sli4_params.sge_supp_len-1; 4789 4790 if (phba->cfg_xpsgl && !phba->nvmet_support) 4791 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE; 4792 else 4793 shost->sg_tablesize = phba->cfg_scsi_seg_cnt; 4794 } else 4795 /* SLI-3 has a limited number of hardware queues (3), 4796 * thus there is only one for FCP processing. 4797 */ 4798 shost->nr_hw_queues = 1; 4799 4800 /* 4801 * Set initial can_queue value since 0 is no longer supported and 4802 * scsi_add_host will fail. This will be adjusted later based on the 4803 * max xri value determined in hba setup. 4804 */ 4805 shost->can_queue = phba->cfg_hba_queue_depth - 10; 4806 if (dev != &phba->pcidev->dev) { 4807 shost->transportt = lpfc_vport_transport_template; 4808 vport->port_type = LPFC_NPIV_PORT; 4809 } else { 4810 shost->transportt = lpfc_transport_template; 4811 vport->port_type = LPFC_PHYSICAL_PORT; 4812 } 4813 4814 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 4815 "9081 CreatePort TMPLATE type %x TBLsize %d " 4816 "SEGcnt %d/%d\n", 4817 vport->port_type, shost->sg_tablesize, 4818 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); 4819 4820 /* Allocate the resources for VMID */ 4821 rc = lpfc_vmid_res_alloc(phba, vport); 4822 4823 if (rc) 4824 goto out; 4825 4826 /* Initialize all internally managed lists. */ 4827 INIT_LIST_HEAD(&vport->fc_nodes); 4828 INIT_LIST_HEAD(&vport->rcv_buffer_list); 4829 spin_lock_init(&vport->work_port_lock); 4830 4831 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); 4832 4833 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); 4834 4835 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); 4836 4837 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) 4838 lpfc_setup_bg(phba, shost); 4839 4840 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); 4841 if (error) 4842 goto out_put_shost; 4843 4844 spin_lock_irq(&phba->port_list_lock); 4845 list_add_tail(&vport->listentry, &phba->port_list); 4846 spin_unlock_irq(&phba->port_list_lock); 4847 return vport; 4848 4849 out_put_shost: 4850 kfree(vport->vmid); 4851 bitmap_free(vport->vmid_priority_range); 4852 scsi_host_put(shost); 4853 out: 4854 return NULL; 4855 } 4856 4857 /** 4858 * destroy_port - destroy an FC port 4859 * @vport: pointer to an lpfc virtual N_Port data structure. 4860 * 4861 * This routine destroys a FC port from the upper layer protocol. All the 4862 * resources associated with the port are released. 4863 **/ 4864 void 4865 destroy_port(struct lpfc_vport *vport) 4866 { 4867 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 4868 struct lpfc_hba *phba = vport->phba; 4869 4870 lpfc_debugfs_terminate(vport); 4871 fc_remove_host(shost); 4872 scsi_remove_host(shost); 4873 4874 spin_lock_irq(&phba->port_list_lock); 4875 list_del_init(&vport->listentry); 4876 spin_unlock_irq(&phba->port_list_lock); 4877 4878 lpfc_cleanup(vport); 4879 return; 4880 } 4881 4882 /** 4883 * lpfc_get_instance - Get a unique integer ID 4884 * 4885 * This routine allocates a unique integer ID from lpfc_hba_index pool. It 4886 * uses the kernel idr facility to perform the task. 4887 * 4888 * Return codes: 4889 * instance - a unique integer ID allocated as the new instance. 4890 * -1 - lpfc get instance failed. 4891 **/ 4892 int 4893 lpfc_get_instance(void) 4894 { 4895 int ret; 4896 4897 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); 4898 return ret < 0 ? -1 : ret; 4899 } 4900 4901 /** 4902 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done 4903 * @shost: pointer to SCSI host data structure. 4904 * @time: elapsed time of the scan in jiffies. 4905 * 4906 * This routine is called by the SCSI layer with a SCSI host to determine 4907 * whether the scan host is finished. 4908 * 4909 * Note: there is no scan_start function as adapter initialization will have 4910 * asynchronously kicked off the link initialization. 4911 * 4912 * Return codes 4913 * 0 - SCSI host scan is not over yet. 4914 * 1 - SCSI host scan is over. 4915 **/ 4916 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) 4917 { 4918 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 4919 struct lpfc_hba *phba = vport->phba; 4920 int stat = 0; 4921 4922 spin_lock_irq(shost->host_lock); 4923 4924 if (vport->load_flag & FC_UNLOADING) { 4925 stat = 1; 4926 goto finished; 4927 } 4928 if (time >= msecs_to_jiffies(30 * 1000)) { 4929 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4930 "0461 Scanning longer than 30 " 4931 "seconds. Continuing initialization\n"); 4932 stat = 1; 4933 goto finished; 4934 } 4935 if (time >= msecs_to_jiffies(15 * 1000) && 4936 phba->link_state <= LPFC_LINK_DOWN) { 4937 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4938 "0465 Link down longer than 15 " 4939 "seconds. Continuing initialization\n"); 4940 stat = 1; 4941 goto finished; 4942 } 4943 4944 if (vport->port_state != LPFC_VPORT_READY) 4945 goto finished; 4946 if (vport->num_disc_nodes || vport->fc_prli_sent) 4947 goto finished; 4948 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000)) 4949 goto finished; 4950 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) 4951 goto finished; 4952 4953 stat = 1; 4954 4955 finished: 4956 spin_unlock_irq(shost->host_lock); 4957 return stat; 4958 } 4959 4960 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) 4961 { 4962 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; 4963 struct lpfc_hba *phba = vport->phba; 4964 4965 fc_host_supported_speeds(shost) = 0; 4966 /* 4967 * Avoid reporting supported link speed for FCoE as it can't be 4968 * controlled via FCoE. 4969 */ 4970 if (phba->hba_flag & HBA_FCOE_MODE) 4971 return; 4972 4973 if (phba->lmt & LMT_256Gb) 4974 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; 4975 if (phba->lmt & LMT_128Gb) 4976 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; 4977 if (phba->lmt & LMT_64Gb) 4978 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; 4979 if (phba->lmt & LMT_32Gb) 4980 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; 4981 if (phba->lmt & LMT_16Gb) 4982 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; 4983 if (phba->lmt & LMT_10Gb) 4984 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; 4985 if (phba->lmt & LMT_8Gb) 4986 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; 4987 if (phba->lmt & LMT_4Gb) 4988 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; 4989 if (phba->lmt & LMT_2Gb) 4990 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; 4991 if (phba->lmt & LMT_1Gb) 4992 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; 4993 } 4994 4995 /** 4996 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port 4997 * @shost: pointer to SCSI host data structure. 4998 * 4999 * This routine initializes a given SCSI host attributes on a FC port. The 5000 * SCSI host can be either on top of a physical port or a virtual port. 5001 **/ 5002 void lpfc_host_attrib_init(struct Scsi_Host *shost) 5003 { 5004 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 5005 struct lpfc_hba *phba = vport->phba; 5006 /* 5007 * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). 5008 */ 5009 5010 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 5011 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 5012 fc_host_supported_classes(shost) = FC_COS_CLASS3; 5013 5014 memset(fc_host_supported_fc4s(shost), 0, 5015 sizeof(fc_host_supported_fc4s(shost))); 5016 fc_host_supported_fc4s(shost)[2] = 1; 5017 fc_host_supported_fc4s(shost)[7] = 1; 5018 5019 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), 5020 sizeof fc_host_symbolic_name(shost)); 5021 5022 lpfc_host_supported_speeds_set(shost); 5023 5024 fc_host_maxframe_size(shost) = 5025 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | 5026 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; 5027 5028 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; 5029 5030 /* This value is also unchanging */ 5031 memset(fc_host_active_fc4s(shost), 0, 5032 sizeof(fc_host_active_fc4s(shost))); 5033 fc_host_active_fc4s(shost)[2] = 1; 5034 fc_host_active_fc4s(shost)[7] = 1; 5035 5036 fc_host_max_npiv_vports(shost) = phba->max_vpi; 5037 spin_lock_irq(shost->host_lock); 5038 vport->load_flag &= ~FC_LOADING; 5039 spin_unlock_irq(shost->host_lock); 5040 } 5041 5042 /** 5043 * lpfc_stop_port_s3 - Stop SLI3 device port 5044 * @phba: pointer to lpfc hba data structure. 5045 * 5046 * This routine is invoked to stop an SLI3 device port, it stops the device 5047 * from generating interrupts and stops the device driver's timers for the 5048 * device. 5049 **/ 5050 static void 5051 lpfc_stop_port_s3(struct lpfc_hba *phba) 5052 { 5053 /* Clear all interrupt enable conditions */ 5054 writel(0, phba->HCregaddr); 5055 readl(phba->HCregaddr); /* flush */ 5056 /* Clear all pending interrupts */ 5057 writel(0xffffffff, phba->HAregaddr); 5058 readl(phba->HAregaddr); /* flush */ 5059 5060 /* Reset some HBA SLI setup states */ 5061 lpfc_stop_hba_timers(phba); 5062 phba->pport->work_port_events = 0; 5063 } 5064 5065 /** 5066 * lpfc_stop_port_s4 - Stop SLI4 device port 5067 * @phba: pointer to lpfc hba data structure. 5068 * 5069 * This routine is invoked to stop an SLI4 device port, it stops the device 5070 * from generating interrupts and stops the device driver's timers for the 5071 * device. 5072 **/ 5073 static void 5074 lpfc_stop_port_s4(struct lpfc_hba *phba) 5075 { 5076 /* Reset some HBA SLI4 setup states */ 5077 lpfc_stop_hba_timers(phba); 5078 if (phba->pport) 5079 phba->pport->work_port_events = 0; 5080 phba->sli4_hba.intr_enable = 0; 5081 } 5082 5083 /** 5084 * lpfc_stop_port - Wrapper function for stopping hba port 5085 * @phba: Pointer to HBA context object. 5086 * 5087 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from 5088 * the API jump table function pointer from the lpfc_hba struct. 5089 **/ 5090 void 5091 lpfc_stop_port(struct lpfc_hba *phba) 5092 { 5093 phba->lpfc_stop_port(phba); 5094 5095 if (phba->wq) 5096 flush_workqueue(phba->wq); 5097 } 5098 5099 /** 5100 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer 5101 * @phba: Pointer to hba for which this call is being executed. 5102 * 5103 * This routine starts the timer waiting for the FCF rediscovery to complete. 5104 **/ 5105 void 5106 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) 5107 { 5108 unsigned long fcf_redisc_wait_tmo = 5109 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); 5110 /* Start fcf rediscovery wait period timer */ 5111 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); 5112 spin_lock_irq(&phba->hbalock); 5113 /* Allow action to new fcf asynchronous event */ 5114 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); 5115 /* Mark the FCF rediscovery pending state */ 5116 phba->fcf.fcf_flag |= FCF_REDISC_PEND; 5117 spin_unlock_irq(&phba->hbalock); 5118 } 5119 5120 /** 5121 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout 5122 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5123 * 5124 * This routine is invoked when waiting for FCF table rediscover has been 5125 * timed out. If new FCF record(s) has (have) been discovered during the 5126 * wait period, a new FCF event shall be added to the FCOE async event 5127 * list, and then worker thread shall be waked up for processing from the 5128 * worker thread context. 5129 **/ 5130 static void 5131 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) 5132 { 5133 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); 5134 5135 /* Don't send FCF rediscovery event if timer cancelled */ 5136 spin_lock_irq(&phba->hbalock); 5137 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { 5138 spin_unlock_irq(&phba->hbalock); 5139 return; 5140 } 5141 /* Clear FCF rediscovery timer pending flag */ 5142 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; 5143 /* FCF rediscovery event to worker thread */ 5144 phba->fcf.fcf_flag |= FCF_REDISC_EVT; 5145 spin_unlock_irq(&phba->hbalock); 5146 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 5147 "2776 FCF rediscover quiescent timer expired\n"); 5148 /* wake up worker thread */ 5149 lpfc_worker_wake_up(phba); 5150 } 5151 5152 /** 5153 * lpfc_vmid_poll - VMID timeout detection 5154 * @t: Timer context used to obtain the pointer to lpfc hba data structure. 5155 * 5156 * This routine is invoked when there is no I/O on by a VM for the specified 5157 * amount of time. When this situation is detected, the VMID has to be 5158 * deregistered from the switch and all the local resources freed. The VMID 5159 * will be reassigned to the VM once the I/O begins. 5160 **/ 5161 static void 5162 lpfc_vmid_poll(struct timer_list *t) 5163 { 5164 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); 5165 u32 wake_up = 0; 5166 5167 /* check if there is a need to issue QFPA */ 5168 if (phba->pport->vmid_priority_tagging) { 5169 wake_up = 1; 5170 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; 5171 } 5172 5173 /* Is the vmid inactivity timer enabled */ 5174 if (phba->pport->vmid_inactivity_timeout || 5175 phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) { 5176 wake_up = 1; 5177 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; 5178 } 5179 5180 if (wake_up) 5181 lpfc_worker_wake_up(phba); 5182 5183 /* restart the timer for the next iteration */ 5184 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * 5185 LPFC_VMID_TIMER)); 5186 } 5187 5188 /** 5189 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code 5190 * @phba: pointer to lpfc hba data structure. 5191 * @acqe_link: pointer to the async link completion queue entry. 5192 * 5193 * This routine is to parse the SLI4 link-attention link fault code. 5194 **/ 5195 static void 5196 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, 5197 struct lpfc_acqe_link *acqe_link) 5198 { 5199 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { 5200 case LPFC_ASYNC_LINK_FAULT_NONE: 5201 case LPFC_ASYNC_LINK_FAULT_LOCAL: 5202 case LPFC_ASYNC_LINK_FAULT_REMOTE: 5203 case LPFC_ASYNC_LINK_FAULT_LR_LRR: 5204 break; 5205 default: 5206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5207 "0398 Unknown link fault code: x%x\n", 5208 bf_get(lpfc_acqe_link_fault, acqe_link)); 5209 break; 5210 } 5211 } 5212 5213 /** 5214 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type 5215 * @phba: pointer to lpfc hba data structure. 5216 * @acqe_link: pointer to the async link completion queue entry. 5217 * 5218 * This routine is to parse the SLI4 link attention type and translate it 5219 * into the base driver's link attention type coding. 5220 * 5221 * Return: Link attention type in terms of base driver's coding. 5222 **/ 5223 static uint8_t 5224 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, 5225 struct lpfc_acqe_link *acqe_link) 5226 { 5227 uint8_t att_type; 5228 5229 switch (bf_get(lpfc_acqe_link_status, acqe_link)) { 5230 case LPFC_ASYNC_LINK_STATUS_DOWN: 5231 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: 5232 att_type = LPFC_ATT_LINK_DOWN; 5233 break; 5234 case LPFC_ASYNC_LINK_STATUS_UP: 5235 /* Ignore physical link up events - wait for logical link up */ 5236 att_type = LPFC_ATT_RESERVED; 5237 break; 5238 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: 5239 att_type = LPFC_ATT_LINK_UP; 5240 break; 5241 default: 5242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5243 "0399 Invalid link attention type: x%x\n", 5244 bf_get(lpfc_acqe_link_status, acqe_link)); 5245 att_type = LPFC_ATT_RESERVED; 5246 break; 5247 } 5248 return att_type; 5249 } 5250 5251 /** 5252 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed 5253 * @phba: pointer to lpfc hba data structure. 5254 * 5255 * This routine is to get an SLI3 FC port's link speed in Mbps. 5256 * 5257 * Return: link speed in terms of Mbps. 5258 **/ 5259 uint32_t 5260 lpfc_sli_port_speed_get(struct lpfc_hba *phba) 5261 { 5262 uint32_t link_speed; 5263 5264 if (!lpfc_is_link_up(phba)) 5265 return 0; 5266 5267 if (phba->sli_rev <= LPFC_SLI_REV3) { 5268 switch (phba->fc_linkspeed) { 5269 case LPFC_LINK_SPEED_1GHZ: 5270 link_speed = 1000; 5271 break; 5272 case LPFC_LINK_SPEED_2GHZ: 5273 link_speed = 2000; 5274 break; 5275 case LPFC_LINK_SPEED_4GHZ: 5276 link_speed = 4000; 5277 break; 5278 case LPFC_LINK_SPEED_8GHZ: 5279 link_speed = 8000; 5280 break; 5281 case LPFC_LINK_SPEED_10GHZ: 5282 link_speed = 10000; 5283 break; 5284 case LPFC_LINK_SPEED_16GHZ: 5285 link_speed = 16000; 5286 break; 5287 default: 5288 link_speed = 0; 5289 } 5290 } else { 5291 if (phba->sli4_hba.link_state.logical_speed) 5292 link_speed = 5293 phba->sli4_hba.link_state.logical_speed; 5294 else 5295 link_speed = phba->sli4_hba.link_state.speed; 5296 } 5297 return link_speed; 5298 } 5299 5300 /** 5301 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed 5302 * @phba: pointer to lpfc hba data structure. 5303 * @evt_code: asynchronous event code. 5304 * @speed_code: asynchronous event link speed code. 5305 * 5306 * This routine is to parse the giving SLI4 async event link speed code into 5307 * value of Mbps for the link speed. 5308 * 5309 * Return: link speed in terms of Mbps. 5310 **/ 5311 static uint32_t 5312 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, 5313 uint8_t speed_code) 5314 { 5315 uint32_t port_speed; 5316 5317 switch (evt_code) { 5318 case LPFC_TRAILER_CODE_LINK: 5319 switch (speed_code) { 5320 case LPFC_ASYNC_LINK_SPEED_ZERO: 5321 port_speed = 0; 5322 break; 5323 case LPFC_ASYNC_LINK_SPEED_10MBPS: 5324 port_speed = 10; 5325 break; 5326 case LPFC_ASYNC_LINK_SPEED_100MBPS: 5327 port_speed = 100; 5328 break; 5329 case LPFC_ASYNC_LINK_SPEED_1GBPS: 5330 port_speed = 1000; 5331 break; 5332 case LPFC_ASYNC_LINK_SPEED_10GBPS: 5333 port_speed = 10000; 5334 break; 5335 case LPFC_ASYNC_LINK_SPEED_20GBPS: 5336 port_speed = 20000; 5337 break; 5338 case LPFC_ASYNC_LINK_SPEED_25GBPS: 5339 port_speed = 25000; 5340 break; 5341 case LPFC_ASYNC_LINK_SPEED_40GBPS: 5342 port_speed = 40000; 5343 break; 5344 case LPFC_ASYNC_LINK_SPEED_100GBPS: 5345 port_speed = 100000; 5346 break; 5347 default: 5348 port_speed = 0; 5349 } 5350 break; 5351 case LPFC_TRAILER_CODE_FC: 5352 switch (speed_code) { 5353 case LPFC_FC_LA_SPEED_UNKNOWN: 5354 port_speed = 0; 5355 break; 5356 case LPFC_FC_LA_SPEED_1G: 5357 port_speed = 1000; 5358 break; 5359 case LPFC_FC_LA_SPEED_2G: 5360 port_speed = 2000; 5361 break; 5362 case LPFC_FC_LA_SPEED_4G: 5363 port_speed = 4000; 5364 break; 5365 case LPFC_FC_LA_SPEED_8G: 5366 port_speed = 8000; 5367 break; 5368 case LPFC_FC_LA_SPEED_10G: 5369 port_speed = 10000; 5370 break; 5371 case LPFC_FC_LA_SPEED_16G: 5372 port_speed = 16000; 5373 break; 5374 case LPFC_FC_LA_SPEED_32G: 5375 port_speed = 32000; 5376 break; 5377 case LPFC_FC_LA_SPEED_64G: 5378 port_speed = 64000; 5379 break; 5380 case LPFC_FC_LA_SPEED_128G: 5381 port_speed = 128000; 5382 break; 5383 case LPFC_FC_LA_SPEED_256G: 5384 port_speed = 256000; 5385 break; 5386 default: 5387 port_speed = 0; 5388 } 5389 break; 5390 default: 5391 port_speed = 0; 5392 } 5393 return port_speed; 5394 } 5395 5396 /** 5397 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event 5398 * @phba: pointer to lpfc hba data structure. 5399 * @acqe_link: pointer to the async link completion queue entry. 5400 * 5401 * This routine is to handle the SLI4 asynchronous FCoE link event. 5402 **/ 5403 static void 5404 lpfc_sli4_async_link_evt(struct lpfc_hba *phba, 5405 struct lpfc_acqe_link *acqe_link) 5406 { 5407 LPFC_MBOXQ_t *pmb; 5408 MAILBOX_t *mb; 5409 struct lpfc_mbx_read_top *la; 5410 uint8_t att_type; 5411 int rc; 5412 5413 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); 5414 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) 5415 return; 5416 phba->fcoe_eventtag = acqe_link->event_tag; 5417 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5418 if (!pmb) { 5419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5420 "0395 The mboxq allocation failed\n"); 5421 return; 5422 } 5423 5424 rc = lpfc_mbox_rsrc_prep(phba, pmb); 5425 if (rc) { 5426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5427 "0396 mailbox allocation failed\n"); 5428 goto out_free_pmb; 5429 } 5430 5431 /* Cleanup any outstanding ELS commands */ 5432 lpfc_els_flush_all_cmd(phba); 5433 5434 /* Block ELS IOCBs until we have done process link event */ 5435 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 5436 5437 /* Update link event statistics */ 5438 phba->sli.slistat.link_event++; 5439 5440 /* Create lpfc_handle_latt mailbox command from link ACQE */ 5441 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 5442 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 5443 pmb->vport = phba->pport; 5444 5445 /* Keep the link status for extra SLI4 state machine reference */ 5446 phba->sli4_hba.link_state.speed = 5447 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, 5448 bf_get(lpfc_acqe_link_speed, acqe_link)); 5449 phba->sli4_hba.link_state.duplex = 5450 bf_get(lpfc_acqe_link_duplex, acqe_link); 5451 phba->sli4_hba.link_state.status = 5452 bf_get(lpfc_acqe_link_status, acqe_link); 5453 phba->sli4_hba.link_state.type = 5454 bf_get(lpfc_acqe_link_type, acqe_link); 5455 phba->sli4_hba.link_state.number = 5456 bf_get(lpfc_acqe_link_number, acqe_link); 5457 phba->sli4_hba.link_state.fault = 5458 bf_get(lpfc_acqe_link_fault, acqe_link); 5459 phba->sli4_hba.link_state.logical_speed = 5460 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; 5461 5462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5463 "2900 Async FC/FCoE Link event - Speed:%dGBit " 5464 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " 5465 "Logical speed:%dMbps Fault:%d\n", 5466 phba->sli4_hba.link_state.speed, 5467 phba->sli4_hba.link_state.topology, 5468 phba->sli4_hba.link_state.status, 5469 phba->sli4_hba.link_state.type, 5470 phba->sli4_hba.link_state.number, 5471 phba->sli4_hba.link_state.logical_speed, 5472 phba->sli4_hba.link_state.fault); 5473 /* 5474 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch 5475 * topology info. Note: Optional for non FC-AL ports. 5476 */ 5477 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 5478 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5479 if (rc == MBX_NOT_FINISHED) 5480 goto out_free_pmb; 5481 return; 5482 } 5483 /* 5484 * For FCoE Mode: fill in all the topology information we need and call 5485 * the READ_TOPOLOGY completion routine to continue without actually 5486 * sending the READ_TOPOLOGY mailbox command to the port. 5487 */ 5488 /* Initialize completion status */ 5489 mb = &pmb->u.mb; 5490 mb->mbxStatus = MBX_SUCCESS; 5491 5492 /* Parse port fault information field */ 5493 lpfc_sli4_parse_latt_fault(phba, acqe_link); 5494 5495 /* Parse and translate link attention fields */ 5496 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; 5497 la->eventTag = acqe_link->event_tag; 5498 bf_set(lpfc_mbx_read_top_att_type, la, att_type); 5499 bf_set(lpfc_mbx_read_top_link_spd, la, 5500 (bf_get(lpfc_acqe_link_speed, acqe_link))); 5501 5502 /* Fake the the following irrelvant fields */ 5503 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); 5504 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); 5505 bf_set(lpfc_mbx_read_top_il, la, 0); 5506 bf_set(lpfc_mbx_read_top_pb, la, 0); 5507 bf_set(lpfc_mbx_read_top_fa, la, 0); 5508 bf_set(lpfc_mbx_read_top_mm, la, 0); 5509 5510 /* Invoke the lpfc_handle_latt mailbox command callback function */ 5511 lpfc_mbx_cmpl_read_topology(phba, pmb); 5512 5513 return; 5514 5515 out_free_pmb: 5516 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 5517 } 5518 5519 /** 5520 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read 5521 * topology. 5522 * @phba: pointer to lpfc hba data structure. 5523 * @speed_code: asynchronous event link speed code. 5524 * 5525 * This routine is to parse the giving SLI4 async event link speed code into 5526 * value of Read topology link speed. 5527 * 5528 * Return: link speed in terms of Read topology. 5529 **/ 5530 static uint8_t 5531 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) 5532 { 5533 uint8_t port_speed; 5534 5535 switch (speed_code) { 5536 case LPFC_FC_LA_SPEED_1G: 5537 port_speed = LPFC_LINK_SPEED_1GHZ; 5538 break; 5539 case LPFC_FC_LA_SPEED_2G: 5540 port_speed = LPFC_LINK_SPEED_2GHZ; 5541 break; 5542 case LPFC_FC_LA_SPEED_4G: 5543 port_speed = LPFC_LINK_SPEED_4GHZ; 5544 break; 5545 case LPFC_FC_LA_SPEED_8G: 5546 port_speed = LPFC_LINK_SPEED_8GHZ; 5547 break; 5548 case LPFC_FC_LA_SPEED_16G: 5549 port_speed = LPFC_LINK_SPEED_16GHZ; 5550 break; 5551 case LPFC_FC_LA_SPEED_32G: 5552 port_speed = LPFC_LINK_SPEED_32GHZ; 5553 break; 5554 case LPFC_FC_LA_SPEED_64G: 5555 port_speed = LPFC_LINK_SPEED_64GHZ; 5556 break; 5557 case LPFC_FC_LA_SPEED_128G: 5558 port_speed = LPFC_LINK_SPEED_128GHZ; 5559 break; 5560 case LPFC_FC_LA_SPEED_256G: 5561 port_speed = LPFC_LINK_SPEED_256GHZ; 5562 break; 5563 default: 5564 port_speed = 0; 5565 break; 5566 } 5567 5568 return port_speed; 5569 } 5570 5571 void 5572 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) 5573 { 5574 struct rxtable_entry *entry; 5575 int cnt = 0, head, tail, last, start; 5576 5577 head = atomic_read(&phba->rxtable_idx_head); 5578 tail = atomic_read(&phba->rxtable_idx_tail); 5579 if (!phba->rxtable || head == tail) { 5580 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 5581 "4411 Rxtable is empty\n"); 5582 return; 5583 } 5584 last = tail; 5585 start = head; 5586 5587 /* Display the last LPFC_MAX_RXMONITOR_DUMP entries from the rxtable */ 5588 while (start != last) { 5589 if (start) 5590 start--; 5591 else 5592 start = LPFC_MAX_RXMONITOR_ENTRY - 1; 5593 entry = &phba->rxtable[start]; 5594 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5595 "4410 %02d: MBPI %lld Xmit %lld Cmpl %lld " 5596 "Lat %lld ASz %lld Info %02d BWUtil %d " 5597 "Int %d slot %d\n", 5598 cnt, entry->max_bytes_per_interval, 5599 entry->total_bytes, entry->rcv_bytes, 5600 entry->avg_io_latency, entry->avg_io_size, 5601 entry->cmf_info, entry->timer_utilization, 5602 entry->timer_interval, start); 5603 cnt++; 5604 if (cnt >= LPFC_MAX_RXMONITOR_DUMP) 5605 return; 5606 } 5607 } 5608 5609 /** 5610 * lpfc_cgn_update_stat - Save data into congestion stats buffer 5611 * @phba: pointer to lpfc hba data structure. 5612 * @dtag: FPIN descriptor received 5613 * 5614 * Increment the FPIN received counter/time when it happens. 5615 */ 5616 void 5617 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) 5618 { 5619 struct lpfc_cgn_info *cp; 5620 struct tm broken; 5621 struct timespec64 cur_time; 5622 u32 cnt; 5623 u32 value; 5624 5625 /* Make sure we have a congestion info buffer */ 5626 if (!phba->cgn_i) 5627 return; 5628 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5629 ktime_get_real_ts64(&cur_time); 5630 time64_to_tm(cur_time.tv_sec, 0, &broken); 5631 5632 /* Update congestion statistics */ 5633 switch (dtag) { 5634 case ELS_DTAG_LNK_INTEGRITY: 5635 cnt = le32_to_cpu(cp->link_integ_notification); 5636 cnt++; 5637 cp->link_integ_notification = cpu_to_le32(cnt); 5638 5639 cp->cgn_stat_lnk_month = broken.tm_mon + 1; 5640 cp->cgn_stat_lnk_day = broken.tm_mday; 5641 cp->cgn_stat_lnk_year = broken.tm_year - 100; 5642 cp->cgn_stat_lnk_hour = broken.tm_hour; 5643 cp->cgn_stat_lnk_min = broken.tm_min; 5644 cp->cgn_stat_lnk_sec = broken.tm_sec; 5645 break; 5646 case ELS_DTAG_DELIVERY: 5647 cnt = le32_to_cpu(cp->delivery_notification); 5648 cnt++; 5649 cp->delivery_notification = cpu_to_le32(cnt); 5650 5651 cp->cgn_stat_del_month = broken.tm_mon + 1; 5652 cp->cgn_stat_del_day = broken.tm_mday; 5653 cp->cgn_stat_del_year = broken.tm_year - 100; 5654 cp->cgn_stat_del_hour = broken.tm_hour; 5655 cp->cgn_stat_del_min = broken.tm_min; 5656 cp->cgn_stat_del_sec = broken.tm_sec; 5657 break; 5658 case ELS_DTAG_PEER_CONGEST: 5659 cnt = le32_to_cpu(cp->cgn_peer_notification); 5660 cnt++; 5661 cp->cgn_peer_notification = cpu_to_le32(cnt); 5662 5663 cp->cgn_stat_peer_month = broken.tm_mon + 1; 5664 cp->cgn_stat_peer_day = broken.tm_mday; 5665 cp->cgn_stat_peer_year = broken.tm_year - 100; 5666 cp->cgn_stat_peer_hour = broken.tm_hour; 5667 cp->cgn_stat_peer_min = broken.tm_min; 5668 cp->cgn_stat_peer_sec = broken.tm_sec; 5669 break; 5670 case ELS_DTAG_CONGESTION: 5671 cnt = le32_to_cpu(cp->cgn_notification); 5672 cnt++; 5673 cp->cgn_notification = cpu_to_le32(cnt); 5674 5675 cp->cgn_stat_cgn_month = broken.tm_mon + 1; 5676 cp->cgn_stat_cgn_day = broken.tm_mday; 5677 cp->cgn_stat_cgn_year = broken.tm_year - 100; 5678 cp->cgn_stat_cgn_hour = broken.tm_hour; 5679 cp->cgn_stat_cgn_min = broken.tm_min; 5680 cp->cgn_stat_cgn_sec = broken.tm_sec; 5681 } 5682 if (phba->cgn_fpin_frequency && 5683 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5684 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5685 cp->cgn_stat_npm = value; 5686 } 5687 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5688 LPFC_CGN_CRC32_SEED); 5689 cp->cgn_info_crc = cpu_to_le32(value); 5690 } 5691 5692 /** 5693 * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer 5694 * @phba: pointer to lpfc hba data structure. 5695 * 5696 * Save the congestion event data every minute. 5697 * On the hour collapse all the minute data into hour data. Every day 5698 * collapse all the hour data into daily data. Separate driver 5699 * and fabrc congestion event counters that will be saved out 5700 * to the registered congestion buffer every minute. 5701 */ 5702 static void 5703 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba) 5704 { 5705 struct lpfc_cgn_info *cp; 5706 struct tm broken; 5707 struct timespec64 cur_time; 5708 uint32_t i, index; 5709 uint16_t value, mvalue; 5710 uint64_t bps; 5711 uint32_t mbps; 5712 uint32_t dvalue, wvalue, lvalue, avalue; 5713 uint64_t latsum; 5714 __le16 *ptr; 5715 __le32 *lptr; 5716 __le16 *mptr; 5717 5718 /* Make sure we have a congestion info buffer */ 5719 if (!phba->cgn_i) 5720 return; 5721 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 5722 5723 if (time_before(jiffies, phba->cgn_evt_timestamp)) 5724 return; 5725 phba->cgn_evt_timestamp = jiffies + 5726 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 5727 phba->cgn_evt_minute++; 5728 5729 /* We should get to this point in the routine on 1 minute intervals */ 5730 5731 ktime_get_real_ts64(&cur_time); 5732 time64_to_tm(cur_time.tv_sec, 0, &broken); 5733 5734 if (phba->cgn_fpin_frequency && 5735 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { 5736 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; 5737 cp->cgn_stat_npm = value; 5738 } 5739 5740 /* Read and clear the latency counters for this minute */ 5741 lvalue = atomic_read(&phba->cgn_latency_evt_cnt); 5742 latsum = atomic64_read(&phba->cgn_latency_evt); 5743 atomic_set(&phba->cgn_latency_evt_cnt, 0); 5744 atomic64_set(&phba->cgn_latency_evt, 0); 5745 5746 /* We need to store MB/sec bandwidth in the congestion information. 5747 * block_cnt is count of 512 byte blocks for the entire minute, 5748 * bps will get bytes per sec before finally converting to MB/sec. 5749 */ 5750 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; 5751 phba->rx_block_cnt = 0; 5752 mvalue = bps / (1024 * 1024); /* convert to MB/sec */ 5753 5754 /* Every minute */ 5755 /* cgn parameters */ 5756 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 5757 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 5758 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 5759 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 5760 5761 /* Fill in default LUN qdepth */ 5762 value = (uint16_t)(phba->pport->cfg_lun_queue_depth); 5763 cp->cgn_lunq = cpu_to_le16(value); 5764 5765 /* Record congestion buffer info - every minute 5766 * cgn_driver_evt_cnt (Driver events) 5767 * cgn_fabric_warn_cnt (Congestion Warnings) 5768 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) 5769 * cgn_fabric_alarm_cnt (Congestion Alarms) 5770 */ 5771 index = ++cp->cgn_index_minute; 5772 if (cp->cgn_index_minute == LPFC_MIN_HOUR) { 5773 cp->cgn_index_minute = 0; 5774 index = 0; 5775 } 5776 5777 /* Get the number of driver events in this sample and reset counter */ 5778 dvalue = atomic_read(&phba->cgn_driver_evt_cnt); 5779 atomic_set(&phba->cgn_driver_evt_cnt, 0); 5780 5781 /* Get the number of warning events - FPIN and Signal for this minute */ 5782 wvalue = 0; 5783 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || 5784 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 5785 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5786 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); 5787 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 5788 5789 /* Get the number of alarm events - FPIN and Signal for this minute */ 5790 avalue = 0; 5791 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || 5792 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) 5793 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); 5794 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 5795 5796 /* Collect the driver, warning, alarm and latency counts for this 5797 * minute into the driver congestion buffer. 5798 */ 5799 ptr = &cp->cgn_drvr_min[index]; 5800 value = (uint16_t)dvalue; 5801 *ptr = cpu_to_le16(value); 5802 5803 ptr = &cp->cgn_warn_min[index]; 5804 value = (uint16_t)wvalue; 5805 *ptr = cpu_to_le16(value); 5806 5807 ptr = &cp->cgn_alarm_min[index]; 5808 value = (uint16_t)avalue; 5809 *ptr = cpu_to_le16(value); 5810 5811 lptr = &cp->cgn_latency_min[index]; 5812 if (lvalue) { 5813 lvalue = (uint32_t)div_u64(latsum, lvalue); 5814 *lptr = cpu_to_le32(lvalue); 5815 } else { 5816 *lptr = 0; 5817 } 5818 5819 /* Collect the bandwidth value into the driver's congesion buffer. */ 5820 mptr = &cp->cgn_bw_min[index]; 5821 *mptr = cpu_to_le16(mvalue); 5822 5823 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5824 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", 5825 index, dvalue, wvalue, *lptr, mvalue, avalue); 5826 5827 /* Every hour */ 5828 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { 5829 /* Record congestion buffer info - every hour 5830 * Collapse all minutes into an hour 5831 */ 5832 index = ++cp->cgn_index_hour; 5833 if (cp->cgn_index_hour == LPFC_HOUR_DAY) { 5834 cp->cgn_index_hour = 0; 5835 index = 0; 5836 } 5837 5838 dvalue = 0; 5839 wvalue = 0; 5840 lvalue = 0; 5841 avalue = 0; 5842 mvalue = 0; 5843 mbps = 0; 5844 for (i = 0; i < LPFC_MIN_HOUR; i++) { 5845 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); 5846 wvalue += le16_to_cpu(cp->cgn_warn_min[i]); 5847 lvalue += le32_to_cpu(cp->cgn_latency_min[i]); 5848 mbps += le16_to_cpu(cp->cgn_bw_min[i]); 5849 avalue += le16_to_cpu(cp->cgn_alarm_min[i]); 5850 } 5851 if (lvalue) /* Avg of latency averages */ 5852 lvalue /= LPFC_MIN_HOUR; 5853 if (mbps) /* Avg of Bandwidth averages */ 5854 mvalue = mbps / LPFC_MIN_HOUR; 5855 5856 lptr = &cp->cgn_drvr_hr[index]; 5857 *lptr = cpu_to_le32(dvalue); 5858 lptr = &cp->cgn_warn_hr[index]; 5859 *lptr = cpu_to_le32(wvalue); 5860 lptr = &cp->cgn_latency_hr[index]; 5861 *lptr = cpu_to_le32(lvalue); 5862 mptr = &cp->cgn_bw_hr[index]; 5863 *mptr = cpu_to_le16(mvalue); 5864 lptr = &cp->cgn_alarm_hr[index]; 5865 *lptr = cpu_to_le32(avalue); 5866 5867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5868 "2419 Congestion Info - hour " 5869 "(%d): %d %d %d %d %d\n", 5870 index, dvalue, wvalue, lvalue, mvalue, avalue); 5871 } 5872 5873 /* Every day */ 5874 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { 5875 /* Record congestion buffer info - every hour 5876 * Collapse all hours into a day. Rotate days 5877 * after LPFC_MAX_CGN_DAYS. 5878 */ 5879 index = ++cp->cgn_index_day; 5880 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { 5881 cp->cgn_index_day = 0; 5882 index = 0; 5883 } 5884 5885 /* Anytime we overwrite daily index 0, after we wrap, 5886 * we will be overwriting the oldest day, so we must 5887 * update the congestion data start time for that day. 5888 * That start time should have previously been saved after 5889 * we wrote the last days worth of data. 5890 */ 5891 if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) { 5892 time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken); 5893 5894 cp->cgn_info_month = broken.tm_mon + 1; 5895 cp->cgn_info_day = broken.tm_mday; 5896 cp->cgn_info_year = broken.tm_year - 100; 5897 cp->cgn_info_hour = broken.tm_hour; 5898 cp->cgn_info_minute = broken.tm_min; 5899 cp->cgn_info_second = broken.tm_sec; 5900 5901 lpfc_printf_log 5902 (phba, KERN_INFO, LOG_CGN_MGMT, 5903 "2646 CGNInfo idx0 Start Time: " 5904 "%d/%d/%d %d:%d:%d\n", 5905 cp->cgn_info_day, cp->cgn_info_month, 5906 cp->cgn_info_year, cp->cgn_info_hour, 5907 cp->cgn_info_minute, cp->cgn_info_second); 5908 } 5909 5910 dvalue = 0; 5911 wvalue = 0; 5912 lvalue = 0; 5913 mvalue = 0; 5914 mbps = 0; 5915 avalue = 0; 5916 for (i = 0; i < LPFC_HOUR_DAY; i++) { 5917 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); 5918 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); 5919 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); 5920 mbps += le16_to_cpu(cp->cgn_bw_hr[i]); 5921 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); 5922 } 5923 if (lvalue) /* Avg of latency averages */ 5924 lvalue /= LPFC_HOUR_DAY; 5925 if (mbps) /* Avg of Bandwidth averages */ 5926 mvalue = mbps / LPFC_HOUR_DAY; 5927 5928 lptr = &cp->cgn_drvr_day[index]; 5929 *lptr = cpu_to_le32(dvalue); 5930 lptr = &cp->cgn_warn_day[index]; 5931 *lptr = cpu_to_le32(wvalue); 5932 lptr = &cp->cgn_latency_day[index]; 5933 *lptr = cpu_to_le32(lvalue); 5934 mptr = &cp->cgn_bw_day[index]; 5935 *mptr = cpu_to_le16(mvalue); 5936 lptr = &cp->cgn_alarm_day[index]; 5937 *lptr = cpu_to_le32(avalue); 5938 5939 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 5940 "2420 Congestion Info - daily (%d): " 5941 "%d %d %d %d %d\n", 5942 index, dvalue, wvalue, lvalue, mvalue, avalue); 5943 5944 /* We just wrote LPFC_MAX_CGN_DAYS of data, 5945 * so we are wrapped on any data after this. 5946 * Save this as the start time for the next day. 5947 */ 5948 if (index == (LPFC_MAX_CGN_DAYS - 1)) { 5949 phba->hba_flag |= HBA_CGN_DAY_WRAP; 5950 ktime_get_real_ts64(&phba->cgn_daily_ts); 5951 } 5952 } 5953 5954 /* Use the frequency found in the last rcv'ed FPIN */ 5955 value = phba->cgn_fpin_frequency; 5956 cp->cgn_warn_freq = cpu_to_le16(value); 5957 cp->cgn_alarm_freq = cpu_to_le16(value); 5958 5959 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 5960 LPFC_CGN_CRC32_SEED); 5961 cp->cgn_info_crc = cpu_to_le32(lvalue); 5962 } 5963 5964 /** 5965 * lpfc_calc_cmf_latency - latency from start of rxate timer interval 5966 * @phba: The Hba for which this call is being executed. 5967 * 5968 * The routine calculates the latency from the beginning of the CMF timer 5969 * interval to the current point in time. It is called from IO completion 5970 * when we exceed our Bandwidth limitation for the time interval. 5971 */ 5972 uint32_t 5973 lpfc_calc_cmf_latency(struct lpfc_hba *phba) 5974 { 5975 struct timespec64 cmpl_time; 5976 uint32_t msec = 0; 5977 5978 ktime_get_real_ts64(&cmpl_time); 5979 5980 /* This routine works on a ms granularity so sec and usec are 5981 * converted accordingly. 5982 */ 5983 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { 5984 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / 5985 NSEC_PER_MSEC; 5986 } else { 5987 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { 5988 msec = (cmpl_time.tv_sec - 5989 phba->cmf_latency.tv_sec) * MSEC_PER_SEC; 5990 msec += ((cmpl_time.tv_nsec - 5991 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); 5992 } else { 5993 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 5994 1) * MSEC_PER_SEC; 5995 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + 5996 cmpl_time.tv_nsec) / NSEC_PER_MSEC); 5997 } 5998 } 5999 return msec; 6000 } 6001 6002 /** 6003 * lpfc_cmf_timer - This is the timer function for one congestion 6004 * rate interval. 6005 * @timer: Pointer to the high resolution timer that expired 6006 */ 6007 static enum hrtimer_restart 6008 lpfc_cmf_timer(struct hrtimer *timer) 6009 { 6010 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, 6011 cmf_timer); 6012 struct rxtable_entry *entry; 6013 uint32_t io_cnt; 6014 uint32_t head, tail; 6015 uint32_t busy, max_read; 6016 uint64_t total, rcv, lat, mbpi, extra, cnt; 6017 int timer_interval = LPFC_CMF_INTERVAL; 6018 uint32_t ms; 6019 struct lpfc_cgn_stat *cgs; 6020 int cpu; 6021 6022 /* Only restart the timer if congestion mgmt is on */ 6023 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6024 !phba->cmf_latency.tv_sec) { 6025 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 6026 "6224 CMF timer exit: %d %lld\n", 6027 phba->cmf_active_mode, 6028 (uint64_t)phba->cmf_latency.tv_sec); 6029 return HRTIMER_NORESTART; 6030 } 6031 6032 /* If pport is not ready yet, just exit and wait for 6033 * the next timer cycle to hit. 6034 */ 6035 if (!phba->pport) 6036 goto skip; 6037 6038 /* Do not block SCSI IO while in the timer routine since 6039 * total_bytes will be cleared 6040 */ 6041 atomic_set(&phba->cmf_stop_io, 1); 6042 6043 /* First we need to calculate the actual ms between 6044 * the last timer interrupt and this one. We ask for 6045 * LPFC_CMF_INTERVAL, however the actual time may 6046 * vary depending on system overhead. 6047 */ 6048 ms = lpfc_calc_cmf_latency(phba); 6049 6050 6051 /* Immediately after we calculate the time since the last 6052 * timer interrupt, set the start time for the next 6053 * interrupt 6054 */ 6055 ktime_get_real_ts64(&phba->cmf_latency); 6056 6057 phba->cmf_link_byte_count = 6058 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); 6059 6060 /* Collect all the stats from the prior timer interval */ 6061 total = 0; 6062 io_cnt = 0; 6063 lat = 0; 6064 rcv = 0; 6065 for_each_present_cpu(cpu) { 6066 cgs = per_cpu_ptr(phba->cmf_stat, cpu); 6067 total += atomic64_xchg(&cgs->total_bytes, 0); 6068 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); 6069 lat += atomic64_xchg(&cgs->rx_latency, 0); 6070 rcv += atomic64_xchg(&cgs->rcv_bytes, 0); 6071 } 6072 6073 /* Before we issue another CMF_SYNC_WQE, retrieve the BW 6074 * returned from the last CMF_SYNC_WQE issued, from 6075 * cmf_last_sync_bw. This will be the target BW for 6076 * this next timer interval. 6077 */ 6078 if (phba->cmf_active_mode == LPFC_CFG_MANAGED && 6079 phba->link_state != LPFC_LINK_DOWN && 6080 phba->hba_flag & HBA_SETUP) { 6081 mbpi = phba->cmf_last_sync_bw; 6082 phba->cmf_last_sync_bw = 0; 6083 extra = 0; 6084 6085 /* Calculate any extra bytes needed to account for the 6086 * timer accuracy. If we are less than LPFC_CMF_INTERVAL 6087 * calculate the adjustment needed for total to reflect 6088 * a full LPFC_CMF_INTERVAL. 6089 */ 6090 if (ms && ms < LPFC_CMF_INTERVAL) { 6091 cnt = div_u64(total, ms); /* bytes per ms */ 6092 cnt *= LPFC_CMF_INTERVAL; /* what total should be */ 6093 6094 /* If the timeout is scheduled to be shorter, 6095 * this value may skew the data, so cap it at mbpi. 6096 */ 6097 if ((phba->hba_flag & HBA_SHORT_CMF) && cnt > mbpi) 6098 cnt = mbpi; 6099 6100 extra = cnt - total; 6101 } 6102 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); 6103 } else { 6104 /* For Monitor mode or link down we want mbpi 6105 * to be the full link speed 6106 */ 6107 mbpi = phba->cmf_link_byte_count; 6108 extra = 0; 6109 } 6110 phba->cmf_timer_cnt++; 6111 6112 if (io_cnt) { 6113 /* Update congestion info buffer latency in us */ 6114 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); 6115 atomic64_add(lat, &phba->cgn_latency_evt); 6116 } 6117 busy = atomic_xchg(&phba->cmf_busy, 0); 6118 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); 6119 6120 /* Calculate MBPI for the next timer interval */ 6121 if (mbpi) { 6122 if (mbpi > phba->cmf_link_byte_count || 6123 phba->cmf_active_mode == LPFC_CFG_MONITOR) 6124 mbpi = phba->cmf_link_byte_count; 6125 6126 /* Change max_bytes_per_interval to what the prior 6127 * CMF_SYNC_WQE cmpl indicated. 6128 */ 6129 if (mbpi != phba->cmf_max_bytes_per_interval) 6130 phba->cmf_max_bytes_per_interval = mbpi; 6131 } 6132 6133 /* Save rxmonitor information for debug */ 6134 if (phba->rxtable) { 6135 head = atomic_xchg(&phba->rxtable_idx_head, 6136 LPFC_RXMONITOR_TABLE_IN_USE); 6137 entry = &phba->rxtable[head]; 6138 entry->total_bytes = total; 6139 entry->cmf_bytes = total + extra; 6140 entry->rcv_bytes = rcv; 6141 entry->cmf_busy = busy; 6142 entry->cmf_info = phba->cmf_active_info; 6143 if (io_cnt) { 6144 entry->avg_io_latency = div_u64(lat, io_cnt); 6145 entry->avg_io_size = div_u64(rcv, io_cnt); 6146 } else { 6147 entry->avg_io_latency = 0; 6148 entry->avg_io_size = 0; 6149 } 6150 entry->max_read_cnt = max_read; 6151 entry->io_cnt = io_cnt; 6152 entry->max_bytes_per_interval = mbpi; 6153 if (phba->cmf_active_mode == LPFC_CFG_MANAGED) 6154 entry->timer_utilization = phba->cmf_last_ts; 6155 else 6156 entry->timer_utilization = ms; 6157 entry->timer_interval = ms; 6158 phba->cmf_last_ts = 0; 6159 6160 /* Increment rxtable index */ 6161 head = (head + 1) % LPFC_MAX_RXMONITOR_ENTRY; 6162 tail = atomic_read(&phba->rxtable_idx_tail); 6163 if (head == tail) { 6164 tail = (tail + 1) % LPFC_MAX_RXMONITOR_ENTRY; 6165 atomic_set(&phba->rxtable_idx_tail, tail); 6166 } 6167 atomic_set(&phba->rxtable_idx_head, head); 6168 } 6169 6170 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { 6171 /* If Monitor mode, check if we are oversubscribed 6172 * against the full line rate. 6173 */ 6174 if (mbpi && total > mbpi) 6175 atomic_inc(&phba->cgn_driver_evt_cnt); 6176 } 6177 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ 6178 6179 /* Each minute save Fabric and Driver congestion information */ 6180 lpfc_cgn_save_evt_cnt(phba); 6181 6182 phba->hba_flag &= ~HBA_SHORT_CMF; 6183 6184 /* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the 6185 * minute, adjust our next timer interval, if needed, to ensure a 6186 * 1 minute granularity when we get the next timer interrupt. 6187 */ 6188 if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL), 6189 phba->cgn_evt_timestamp)) { 6190 timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp - 6191 jiffies); 6192 if (timer_interval <= 0) 6193 timer_interval = LPFC_CMF_INTERVAL; 6194 else 6195 phba->hba_flag |= HBA_SHORT_CMF; 6196 6197 /* If we adjust timer_interval, max_bytes_per_interval 6198 * needs to be adjusted as well. 6199 */ 6200 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * 6201 timer_interval, 1000); 6202 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) 6203 phba->cmf_max_bytes_per_interval = 6204 phba->cmf_link_byte_count; 6205 } 6206 6207 /* Since total_bytes has already been zero'ed, its okay to unblock 6208 * after max_bytes_per_interval is setup. 6209 */ 6210 if (atomic_xchg(&phba->cmf_bw_wait, 0)) 6211 queue_work(phba->wq, &phba->unblock_request_work); 6212 6213 /* SCSI IO is now unblocked */ 6214 atomic_set(&phba->cmf_stop_io, 0); 6215 6216 skip: 6217 hrtimer_forward_now(timer, 6218 ktime_set(0, timer_interval * NSEC_PER_MSEC)); 6219 return HRTIMER_RESTART; 6220 } 6221 6222 #define trunk_link_status(__idx)\ 6223 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6224 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ 6225 "Link up" : "Link down") : "NA" 6226 /* Did port __idx reported an error */ 6227 #define trunk_port_fault(__idx)\ 6228 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ 6229 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" 6230 6231 static void 6232 lpfc_update_trunk_link_status(struct lpfc_hba *phba, 6233 struct lpfc_acqe_fc_la *acqe_fc) 6234 { 6235 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); 6236 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); 6237 6238 phba->sli4_hba.link_state.speed = 6239 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6240 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6241 6242 phba->sli4_hba.link_state.logical_speed = 6243 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6244 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ 6245 phba->fc_linkspeed = 6246 lpfc_async_link_speed_to_read_top( 6247 phba, 6248 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6249 6250 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { 6251 phba->trunk_link.link0.state = 6252 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) 6253 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6254 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; 6255 } 6256 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { 6257 phba->trunk_link.link1.state = 6258 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) 6259 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6260 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; 6261 } 6262 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { 6263 phba->trunk_link.link2.state = 6264 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) 6265 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6266 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; 6267 } 6268 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { 6269 phba->trunk_link.link3.state = 6270 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) 6271 ? LPFC_LINK_UP : LPFC_LINK_DOWN; 6272 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; 6273 } 6274 6275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6276 "2910 Async FC Trunking Event - Speed:%d\n" 6277 "\tLogical speed:%d " 6278 "port0: %s port1: %s port2: %s port3: %s\n", 6279 phba->sli4_hba.link_state.speed, 6280 phba->sli4_hba.link_state.logical_speed, 6281 trunk_link_status(0), trunk_link_status(1), 6282 trunk_link_status(2), trunk_link_status(3)); 6283 6284 if (phba->cmf_active_mode != LPFC_CFG_OFF) 6285 lpfc_cmf_signal_init(phba); 6286 6287 if (port_fault) 6288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6289 "3202 trunk error:0x%x (%s) seen on port0:%s " 6290 /* 6291 * SLI-4: We have only 0xA error codes 6292 * defined as of now. print an appropriate 6293 * message in case driver needs to be updated. 6294 */ 6295 "port1:%s port2:%s port3:%s\n", err, err > 0xA ? 6296 "UNDEFINED. update driver." : trunk_errmsg[err], 6297 trunk_port_fault(0), trunk_port_fault(1), 6298 trunk_port_fault(2), trunk_port_fault(3)); 6299 } 6300 6301 6302 /** 6303 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event 6304 * @phba: pointer to lpfc hba data structure. 6305 * @acqe_fc: pointer to the async fc completion queue entry. 6306 * 6307 * This routine is to handle the SLI4 asynchronous FC event. It will simply log 6308 * that the event was received and then issue a read_topology mailbox command so 6309 * that the rest of the driver will treat it the same as SLI3. 6310 **/ 6311 static void 6312 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) 6313 { 6314 LPFC_MBOXQ_t *pmb; 6315 MAILBOX_t *mb; 6316 struct lpfc_mbx_read_top *la; 6317 int rc; 6318 6319 if (bf_get(lpfc_trailer_type, acqe_fc) != 6320 LPFC_FC_LA_EVENT_TYPE_FC_LINK) { 6321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6322 "2895 Non FC link Event detected.(%d)\n", 6323 bf_get(lpfc_trailer_type, acqe_fc)); 6324 return; 6325 } 6326 6327 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6328 LPFC_FC_LA_TYPE_TRUNKING_EVENT) { 6329 lpfc_update_trunk_link_status(phba, acqe_fc); 6330 return; 6331 } 6332 6333 /* Keep the link status for extra SLI4 state machine reference */ 6334 phba->sli4_hba.link_state.speed = 6335 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, 6336 bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); 6337 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; 6338 phba->sli4_hba.link_state.topology = 6339 bf_get(lpfc_acqe_fc_la_topology, acqe_fc); 6340 phba->sli4_hba.link_state.status = 6341 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); 6342 phba->sli4_hba.link_state.type = 6343 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); 6344 phba->sli4_hba.link_state.number = 6345 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); 6346 phba->sli4_hba.link_state.fault = 6347 bf_get(lpfc_acqe_link_fault, acqe_fc); 6348 6349 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == 6350 LPFC_FC_LA_TYPE_LINK_DOWN) 6351 phba->sli4_hba.link_state.logical_speed = 0; 6352 else if (!phba->sli4_hba.conf_trunk) 6353 phba->sli4_hba.link_state.logical_speed = 6354 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; 6355 6356 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6357 "2896 Async FC event - Speed:%dGBaud Topology:x%x " 6358 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" 6359 "%dMbps Fault:%d\n", 6360 phba->sli4_hba.link_state.speed, 6361 phba->sli4_hba.link_state.topology, 6362 phba->sli4_hba.link_state.status, 6363 phba->sli4_hba.link_state.type, 6364 phba->sli4_hba.link_state.number, 6365 phba->sli4_hba.link_state.logical_speed, 6366 phba->sli4_hba.link_state.fault); 6367 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6368 if (!pmb) { 6369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6370 "2897 The mboxq allocation failed\n"); 6371 return; 6372 } 6373 rc = lpfc_mbox_rsrc_prep(phba, pmb); 6374 if (rc) { 6375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6376 "2898 The mboxq prep failed\n"); 6377 goto out_free_pmb; 6378 } 6379 6380 /* Cleanup any outstanding ELS commands */ 6381 lpfc_els_flush_all_cmd(phba); 6382 6383 /* Block ELS IOCBs until we have done process link event */ 6384 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; 6385 6386 /* Update link event statistics */ 6387 phba->sli.slistat.link_event++; 6388 6389 /* Create lpfc_handle_latt mailbox command from link ACQE */ 6390 lpfc_read_topology(phba, pmb, (struct lpfc_dmabuf *)pmb->ctx_buf); 6391 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; 6392 pmb->vport = phba->pport; 6393 6394 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { 6395 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); 6396 6397 switch (phba->sli4_hba.link_state.status) { 6398 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: 6399 phba->link_flag |= LS_MDS_LINK_DOWN; 6400 break; 6401 case LPFC_FC_LA_TYPE_MDS_LOOPBACK: 6402 phba->link_flag |= LS_MDS_LOOPBACK; 6403 break; 6404 default: 6405 break; 6406 } 6407 6408 /* Initialize completion status */ 6409 mb = &pmb->u.mb; 6410 mb->mbxStatus = MBX_SUCCESS; 6411 6412 /* Parse port fault information field */ 6413 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); 6414 6415 /* Parse and translate link attention fields */ 6416 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; 6417 la->eventTag = acqe_fc->event_tag; 6418 6419 if (phba->sli4_hba.link_state.status == 6420 LPFC_FC_LA_TYPE_UNEXP_WWPN) { 6421 bf_set(lpfc_mbx_read_top_att_type, la, 6422 LPFC_FC_LA_TYPE_UNEXP_WWPN); 6423 } else { 6424 bf_set(lpfc_mbx_read_top_att_type, la, 6425 LPFC_FC_LA_TYPE_LINK_DOWN); 6426 } 6427 /* Invoke the mailbox command callback function */ 6428 lpfc_mbx_cmpl_read_topology(phba, pmb); 6429 6430 return; 6431 } 6432 6433 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 6434 if (rc == MBX_NOT_FINISHED) 6435 goto out_free_pmb; 6436 return; 6437 6438 out_free_pmb: 6439 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 6440 } 6441 6442 /** 6443 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event 6444 * @phba: pointer to lpfc hba data structure. 6445 * @acqe_sli: pointer to the async SLI completion queue entry. 6446 * 6447 * This routine is to handle the SLI4 asynchronous SLI events. 6448 **/ 6449 static void 6450 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) 6451 { 6452 char port_name; 6453 char message[128]; 6454 uint8_t status; 6455 uint8_t evt_type; 6456 uint8_t operational = 0; 6457 struct temp_event temp_event_data; 6458 struct lpfc_acqe_misconfigured_event *misconfigured; 6459 struct lpfc_acqe_cgn_signal *cgn_signal; 6460 struct Scsi_Host *shost; 6461 struct lpfc_vport **vports; 6462 int rc, i, cnt; 6463 6464 evt_type = bf_get(lpfc_trailer_type, acqe_sli); 6465 6466 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6467 "2901 Async SLI event - Type:%d, Event Data: x%08x " 6468 "x%08x x%08x x%08x\n", evt_type, 6469 acqe_sli->event_data1, acqe_sli->event_data2, 6470 acqe_sli->reserved, acqe_sli->trailer); 6471 6472 port_name = phba->Port[0]; 6473 if (port_name == 0x00) 6474 port_name = '?'; /* get port name is empty */ 6475 6476 switch (evt_type) { 6477 case LPFC_SLI_EVENT_TYPE_OVER_TEMP: 6478 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6479 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 6480 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6481 6482 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6483 "3190 Over Temperature:%d Celsius- Port Name %c\n", 6484 acqe_sli->event_data1, port_name); 6485 6486 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; 6487 shost = lpfc_shost_from_vport(phba->pport); 6488 fc_host_post_vendor_event(shost, fc_get_event_number(), 6489 sizeof(temp_event_data), 6490 (char *)&temp_event_data, 6491 SCSI_NL_VID_TYPE_PCI 6492 | PCI_VENDOR_ID_EMULEX); 6493 break; 6494 case LPFC_SLI_EVENT_TYPE_NORM_TEMP: 6495 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 6496 temp_event_data.event_code = LPFC_NORMAL_TEMP; 6497 temp_event_data.data = (uint32_t)acqe_sli->event_data1; 6498 6499 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6500 "3191 Normal Temperature:%d Celsius - Port Name %c\n", 6501 acqe_sli->event_data1, port_name); 6502 6503 shost = lpfc_shost_from_vport(phba->pport); 6504 fc_host_post_vendor_event(shost, fc_get_event_number(), 6505 sizeof(temp_event_data), 6506 (char *)&temp_event_data, 6507 SCSI_NL_VID_TYPE_PCI 6508 | PCI_VENDOR_ID_EMULEX); 6509 break; 6510 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: 6511 misconfigured = (struct lpfc_acqe_misconfigured_event *) 6512 &acqe_sli->event_data1; 6513 6514 /* fetch the status for this port */ 6515 switch (phba->sli4_hba.lnk_info.lnk_no) { 6516 case LPFC_LINK_NUMBER_0: 6517 status = bf_get(lpfc_sli_misconfigured_port0_state, 6518 &misconfigured->theEvent); 6519 operational = bf_get(lpfc_sli_misconfigured_port0_op, 6520 &misconfigured->theEvent); 6521 break; 6522 case LPFC_LINK_NUMBER_1: 6523 status = bf_get(lpfc_sli_misconfigured_port1_state, 6524 &misconfigured->theEvent); 6525 operational = bf_get(lpfc_sli_misconfigured_port1_op, 6526 &misconfigured->theEvent); 6527 break; 6528 case LPFC_LINK_NUMBER_2: 6529 status = bf_get(lpfc_sli_misconfigured_port2_state, 6530 &misconfigured->theEvent); 6531 operational = bf_get(lpfc_sli_misconfigured_port2_op, 6532 &misconfigured->theEvent); 6533 break; 6534 case LPFC_LINK_NUMBER_3: 6535 status = bf_get(lpfc_sli_misconfigured_port3_state, 6536 &misconfigured->theEvent); 6537 operational = bf_get(lpfc_sli_misconfigured_port3_op, 6538 &misconfigured->theEvent); 6539 break; 6540 default: 6541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6542 "3296 " 6543 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " 6544 "event: Invalid link %d", 6545 phba->sli4_hba.lnk_info.lnk_no); 6546 return; 6547 } 6548 6549 /* Skip if optic state unchanged */ 6550 if (phba->sli4_hba.lnk_info.optic_state == status) 6551 return; 6552 6553 switch (status) { 6554 case LPFC_SLI_EVENT_STATUS_VALID: 6555 sprintf(message, "Physical Link is functional"); 6556 break; 6557 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: 6558 sprintf(message, "Optics faulted/incorrectly " 6559 "installed/not installed - Reseat optics, " 6560 "if issue not resolved, replace."); 6561 break; 6562 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: 6563 sprintf(message, 6564 "Optics of two types installed - Remove one " 6565 "optic or install matching pair of optics."); 6566 break; 6567 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: 6568 sprintf(message, "Incompatible optics - Replace with " 6569 "compatible optics for card to function."); 6570 break; 6571 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: 6572 sprintf(message, "Unqualified optics - Replace with " 6573 "Avago optics for Warranty and Technical " 6574 "Support - Link is%s operational", 6575 (operational) ? " not" : ""); 6576 break; 6577 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: 6578 sprintf(message, "Uncertified optics - Replace with " 6579 "Avago-certified optics to enable link " 6580 "operation - Link is%s operational", 6581 (operational) ? " not" : ""); 6582 break; 6583 default: 6584 /* firmware is reporting a status we don't know about */ 6585 sprintf(message, "Unknown event status x%02x", status); 6586 break; 6587 } 6588 6589 /* Issue READ_CONFIG mbox command to refresh supported speeds */ 6590 rc = lpfc_sli4_read_config(phba); 6591 if (rc) { 6592 phba->lmt = 0; 6593 lpfc_printf_log(phba, KERN_ERR, 6594 LOG_TRACE_EVENT, 6595 "3194 Unable to retrieve supported " 6596 "speeds, rc = 0x%x\n", rc); 6597 } 6598 rc = lpfc_sli4_refresh_params(phba); 6599 if (rc) { 6600 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6601 "3174 Unable to update pls support, " 6602 "rc x%x\n", rc); 6603 } 6604 vports = lpfc_create_vport_work_array(phba); 6605 if (vports != NULL) { 6606 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6607 i++) { 6608 shost = lpfc_shost_from_vport(vports[i]); 6609 lpfc_host_supported_speeds_set(shost); 6610 } 6611 } 6612 lpfc_destroy_vport_work_array(phba, vports); 6613 6614 phba->sli4_hba.lnk_info.optic_state = status; 6615 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6616 "3176 Port Name %c %s\n", port_name, message); 6617 break; 6618 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: 6619 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6620 "3192 Remote DPort Test Initiated - " 6621 "Event Data1:x%08x Event Data2: x%08x\n", 6622 acqe_sli->event_data1, acqe_sli->event_data2); 6623 break; 6624 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: 6625 /* Call FW to obtain active parms */ 6626 lpfc_sli4_cgn_parm_chg_evt(phba); 6627 break; 6628 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: 6629 /* Misconfigured WWN. Reports that the SLI Port is configured 6630 * to use FA-WWN, but the attached device doesn’t support it. 6631 * Event Data1 - N.A, Event Data2 - N.A 6632 * This event only happens on the physical port. 6633 */ 6634 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, 6635 "2699 Misconfigured FA-PWWN - Attached device " 6636 "does not support FA-PWWN\n"); 6637 phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; 6638 memset(phba->pport->fc_portname.u.wwn, 0, 6639 sizeof(struct lpfc_name)); 6640 break; 6641 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: 6642 /* EEPROM failure. No driver action is required */ 6643 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6644 "2518 EEPROM failure - " 6645 "Event Data1: x%08x Event Data2: x%08x\n", 6646 acqe_sli->event_data1, acqe_sli->event_data2); 6647 break; 6648 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: 6649 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6650 break; 6651 cgn_signal = (struct lpfc_acqe_cgn_signal *) 6652 &acqe_sli->event_data1; 6653 phba->cgn_acqe_cnt++; 6654 6655 cnt = bf_get(lpfc_warn_acqe, cgn_signal); 6656 atomic64_add(cnt, &phba->cgn_acqe_stat.warn); 6657 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); 6658 6659 /* no threshold for CMF, even 1 signal will trigger an event */ 6660 6661 /* Alarm overrides warning, so check that first */ 6662 if (cgn_signal->alarm_cnt) { 6663 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6664 /* Keep track of alarm cnt for CMF_SYNC_WQE */ 6665 atomic_add(cgn_signal->alarm_cnt, 6666 &phba->cgn_sync_alarm_cnt); 6667 } 6668 } else if (cnt) { 6669 /* signal action needs to be taken */ 6670 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 6671 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6672 /* Keep track of warning cnt for CMF_SYNC_WQE */ 6673 atomic_add(cnt, &phba->cgn_sync_warn_cnt); 6674 } 6675 } 6676 break; 6677 default: 6678 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6679 "3193 Unrecognized SLI event, type: 0x%x", 6680 evt_type); 6681 break; 6682 } 6683 } 6684 6685 /** 6686 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport 6687 * @vport: pointer to vport data structure. 6688 * 6689 * This routine is to perform Clear Virtual Link (CVL) on a vport in 6690 * response to a CVL event. 6691 * 6692 * Return the pointer to the ndlp with the vport if successful, otherwise 6693 * return NULL. 6694 **/ 6695 static struct lpfc_nodelist * 6696 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) 6697 { 6698 struct lpfc_nodelist *ndlp; 6699 struct Scsi_Host *shost; 6700 struct lpfc_hba *phba; 6701 6702 if (!vport) 6703 return NULL; 6704 phba = vport->phba; 6705 if (!phba) 6706 return NULL; 6707 ndlp = lpfc_findnode_did(vport, Fabric_DID); 6708 if (!ndlp) { 6709 /* Cannot find existing Fabric ndlp, so allocate a new one */ 6710 ndlp = lpfc_nlp_init(vport, Fabric_DID); 6711 if (!ndlp) 6712 return NULL; 6713 /* Set the node type */ 6714 ndlp->nlp_type |= NLP_FABRIC; 6715 /* Put ndlp onto node list */ 6716 lpfc_enqueue_node(vport, ndlp); 6717 } 6718 if ((phba->pport->port_state < LPFC_FLOGI) && 6719 (phba->pport->port_state != LPFC_VPORT_FAILED)) 6720 return NULL; 6721 /* If virtual link is not yet instantiated ignore CVL */ 6722 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) 6723 && (vport->port_state != LPFC_VPORT_FAILED)) 6724 return NULL; 6725 shost = lpfc_shost_from_vport(vport); 6726 if (!shost) 6727 return NULL; 6728 lpfc_linkdown_port(vport); 6729 lpfc_cleanup_pending_mbox(vport); 6730 spin_lock_irq(shost->host_lock); 6731 vport->fc_flag |= FC_VPORT_CVL_RCVD; 6732 spin_unlock_irq(shost->host_lock); 6733 6734 return ndlp; 6735 } 6736 6737 /** 6738 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports 6739 * @phba: pointer to lpfc hba data structure. 6740 * 6741 * This routine is to perform Clear Virtual Link (CVL) on all vports in 6742 * response to a FCF dead event. 6743 **/ 6744 static void 6745 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) 6746 { 6747 struct lpfc_vport **vports; 6748 int i; 6749 6750 vports = lpfc_create_vport_work_array(phba); 6751 if (vports) 6752 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) 6753 lpfc_sli4_perform_vport_cvl(vports[i]); 6754 lpfc_destroy_vport_work_array(phba, vports); 6755 } 6756 6757 /** 6758 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event 6759 * @phba: pointer to lpfc hba data structure. 6760 * @acqe_fip: pointer to the async fcoe completion queue entry. 6761 * 6762 * This routine is to handle the SLI4 asynchronous fcoe event. 6763 **/ 6764 static void 6765 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, 6766 struct lpfc_acqe_fip *acqe_fip) 6767 { 6768 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); 6769 int rc; 6770 struct lpfc_vport *vport; 6771 struct lpfc_nodelist *ndlp; 6772 int active_vlink_present; 6773 struct lpfc_vport **vports; 6774 int i; 6775 6776 phba->fc_eventTag = acqe_fip->event_tag; 6777 phba->fcoe_eventtag = acqe_fip->event_tag; 6778 switch (event_type) { 6779 case LPFC_FIP_EVENT_TYPE_NEW_FCF: 6780 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: 6781 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) 6782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6783 "2546 New FCF event, evt_tag:x%x, " 6784 "index:x%x\n", 6785 acqe_fip->event_tag, 6786 acqe_fip->index); 6787 else 6788 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | 6789 LOG_DISCOVERY, 6790 "2788 FCF param modified event, " 6791 "evt_tag:x%x, index:x%x\n", 6792 acqe_fip->event_tag, 6793 acqe_fip->index); 6794 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6795 /* 6796 * During period of FCF discovery, read the FCF 6797 * table record indexed by the event to update 6798 * FCF roundrobin failover eligible FCF bmask. 6799 */ 6800 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6801 LOG_DISCOVERY, 6802 "2779 Read FCF (x%x) for updating " 6803 "roundrobin FCF failover bmask\n", 6804 acqe_fip->index); 6805 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); 6806 } 6807 6808 /* If the FCF discovery is in progress, do nothing. */ 6809 spin_lock_irq(&phba->hbalock); 6810 if (phba->hba_flag & FCF_TS_INPROG) { 6811 spin_unlock_irq(&phba->hbalock); 6812 break; 6813 } 6814 /* If fast FCF failover rescan event is pending, do nothing */ 6815 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { 6816 spin_unlock_irq(&phba->hbalock); 6817 break; 6818 } 6819 6820 /* If the FCF has been in discovered state, do nothing. */ 6821 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { 6822 spin_unlock_irq(&phba->hbalock); 6823 break; 6824 } 6825 spin_unlock_irq(&phba->hbalock); 6826 6827 /* Otherwise, scan the entire FCF table and re-discover SAN */ 6828 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6829 "2770 Start FCF table scan per async FCF " 6830 "event, evt_tag:x%x, index:x%x\n", 6831 acqe_fip->event_tag, acqe_fip->index); 6832 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, 6833 LPFC_FCOE_FCF_GET_FIRST); 6834 if (rc) 6835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6836 "2547 Issue FCF scan read FCF mailbox " 6837 "command failed (x%x)\n", rc); 6838 break; 6839 6840 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: 6841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6842 "2548 FCF Table full count 0x%x tag 0x%x\n", 6843 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), 6844 acqe_fip->event_tag); 6845 break; 6846 6847 case LPFC_FIP_EVENT_TYPE_FCF_DEAD: 6848 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6850 "2549 FCF (x%x) disconnected from network, " 6851 "tag:x%x\n", acqe_fip->index, 6852 acqe_fip->event_tag); 6853 /* 6854 * If we are in the middle of FCF failover process, clear 6855 * the corresponding FCF bit in the roundrobin bitmap. 6856 */ 6857 spin_lock_irq(&phba->hbalock); 6858 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && 6859 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { 6860 spin_unlock_irq(&phba->hbalock); 6861 /* Update FLOGI FCF failover eligible FCF bmask */ 6862 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); 6863 break; 6864 } 6865 spin_unlock_irq(&phba->hbalock); 6866 6867 /* If the event is not for currently used fcf do nothing */ 6868 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) 6869 break; 6870 6871 /* 6872 * Otherwise, request the port to rediscover the entire FCF 6873 * table for a fast recovery from case that the current FCF 6874 * is no longer valid as we are not in the middle of FCF 6875 * failover process already. 6876 */ 6877 spin_lock_irq(&phba->hbalock); 6878 /* Mark the fast failover process in progress */ 6879 phba->fcf.fcf_flag |= FCF_DEAD_DISC; 6880 spin_unlock_irq(&phba->hbalock); 6881 6882 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 6883 "2771 Start FCF fast failover process due to " 6884 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " 6885 "\n", acqe_fip->event_tag, acqe_fip->index); 6886 rc = lpfc_sli4_redisc_fcf_table(phba); 6887 if (rc) { 6888 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6889 LOG_TRACE_EVENT, 6890 "2772 Issue FCF rediscover mailbox " 6891 "command failed, fail through to FCF " 6892 "dead event\n"); 6893 spin_lock_irq(&phba->hbalock); 6894 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 6895 spin_unlock_irq(&phba->hbalock); 6896 /* 6897 * Last resort will fail over by treating this 6898 * as a link down to FCF registration. 6899 */ 6900 lpfc_sli4_fcf_dead_failthrough(phba); 6901 } else { 6902 /* Reset FCF roundrobin bmask for new discovery */ 6903 lpfc_sli4_clear_fcf_rr_bmask(phba); 6904 /* 6905 * Handling fast FCF failover to a DEAD FCF event is 6906 * considered equalivant to receiving CVL to all vports. 6907 */ 6908 lpfc_sli4_perform_all_vport_cvl(phba); 6909 } 6910 break; 6911 case LPFC_FIP_EVENT_TYPE_CVL: 6912 phba->fcoe_cvl_eventtag = acqe_fip->event_tag; 6913 lpfc_printf_log(phba, KERN_ERR, 6914 LOG_TRACE_EVENT, 6915 "2718 Clear Virtual Link Received for VPI 0x%x" 6916 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); 6917 6918 vport = lpfc_find_vport_by_vpid(phba, 6919 acqe_fip->index); 6920 ndlp = lpfc_sli4_perform_vport_cvl(vport); 6921 if (!ndlp) 6922 break; 6923 active_vlink_present = 0; 6924 6925 vports = lpfc_create_vport_work_array(phba); 6926 if (vports) { 6927 for (i = 0; i <= phba->max_vports && vports[i] != NULL; 6928 i++) { 6929 if ((!(vports[i]->fc_flag & 6930 FC_VPORT_CVL_RCVD)) && 6931 (vports[i]->port_state > LPFC_FDISC)) { 6932 active_vlink_present = 1; 6933 break; 6934 } 6935 } 6936 lpfc_destroy_vport_work_array(phba, vports); 6937 } 6938 6939 /* 6940 * Don't re-instantiate if vport is marked for deletion. 6941 * If we are here first then vport_delete is going to wait 6942 * for discovery to complete. 6943 */ 6944 if (!(vport->load_flag & FC_UNLOADING) && 6945 active_vlink_present) { 6946 /* 6947 * If there are other active VLinks present, 6948 * re-instantiate the Vlink using FDISC. 6949 */ 6950 mod_timer(&ndlp->nlp_delayfunc, 6951 jiffies + msecs_to_jiffies(1000)); 6952 spin_lock_irq(&ndlp->lock); 6953 ndlp->nlp_flag |= NLP_DELAY_TMO; 6954 spin_unlock_irq(&ndlp->lock); 6955 ndlp->nlp_last_elscmd = ELS_CMD_FDISC; 6956 vport->port_state = LPFC_FDISC; 6957 } else { 6958 /* 6959 * Otherwise, we request port to rediscover 6960 * the entire FCF table for a fast recovery 6961 * from possible case that the current FCF 6962 * is no longer valid if we are not already 6963 * in the FCF failover process. 6964 */ 6965 spin_lock_irq(&phba->hbalock); 6966 if (phba->fcf.fcf_flag & FCF_DISCOVERY) { 6967 spin_unlock_irq(&phba->hbalock); 6968 break; 6969 } 6970 /* Mark the fast failover process in progress */ 6971 phba->fcf.fcf_flag |= FCF_ACVL_DISC; 6972 spin_unlock_irq(&phba->hbalock); 6973 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | 6974 LOG_DISCOVERY, 6975 "2773 Start FCF failover per CVL, " 6976 "evt_tag:x%x\n", acqe_fip->event_tag); 6977 rc = lpfc_sli4_redisc_fcf_table(phba); 6978 if (rc) { 6979 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | 6980 LOG_TRACE_EVENT, 6981 "2774 Issue FCF rediscover " 6982 "mailbox command failed, " 6983 "through to CVL event\n"); 6984 spin_lock_irq(&phba->hbalock); 6985 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 6986 spin_unlock_irq(&phba->hbalock); 6987 /* 6988 * Last resort will be re-try on the 6989 * the current registered FCF entry. 6990 */ 6991 lpfc_retry_pport_discovery(phba); 6992 } else 6993 /* 6994 * Reset FCF roundrobin bmask for new 6995 * discovery. 6996 */ 6997 lpfc_sli4_clear_fcf_rr_bmask(phba); 6998 } 6999 break; 7000 default: 7001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7002 "0288 Unknown FCoE event type 0x%x event tag " 7003 "0x%x\n", event_type, acqe_fip->event_tag); 7004 break; 7005 } 7006 } 7007 7008 /** 7009 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event 7010 * @phba: pointer to lpfc hba data structure. 7011 * @acqe_dcbx: pointer to the async dcbx completion queue entry. 7012 * 7013 * This routine is to handle the SLI4 asynchronous dcbx event. 7014 **/ 7015 static void 7016 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, 7017 struct lpfc_acqe_dcbx *acqe_dcbx) 7018 { 7019 phba->fc_eventTag = acqe_dcbx->event_tag; 7020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7021 "0290 The SLI4 DCBX asynchronous event is not " 7022 "handled yet\n"); 7023 } 7024 7025 /** 7026 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event 7027 * @phba: pointer to lpfc hba data structure. 7028 * @acqe_grp5: pointer to the async grp5 completion queue entry. 7029 * 7030 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event 7031 * is an asynchronous notified of a logical link speed change. The Port 7032 * reports the logical link speed in units of 10Mbps. 7033 **/ 7034 static void 7035 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, 7036 struct lpfc_acqe_grp5 *acqe_grp5) 7037 { 7038 uint16_t prev_ll_spd; 7039 7040 phba->fc_eventTag = acqe_grp5->event_tag; 7041 phba->fcoe_eventtag = acqe_grp5->event_tag; 7042 prev_ll_spd = phba->sli4_hba.link_state.logical_speed; 7043 phba->sli4_hba.link_state.logical_speed = 7044 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; 7045 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 7046 "2789 GRP5 Async Event: Updating logical link speed " 7047 "from %dMbps to %dMbps\n", prev_ll_spd, 7048 phba->sli4_hba.link_state.logical_speed); 7049 } 7050 7051 /** 7052 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event 7053 * @phba: pointer to lpfc hba data structure. 7054 * 7055 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event 7056 * is an asynchronous notification of a request to reset CM stats. 7057 **/ 7058 static void 7059 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) 7060 { 7061 if (!phba->cgn_i) 7062 return; 7063 lpfc_init_congestion_stat(phba); 7064 } 7065 7066 /** 7067 * lpfc_cgn_params_val - Validate FW congestion parameters. 7068 * @phba: pointer to lpfc hba data structure. 7069 * @p_cfg_param: pointer to FW provided congestion parameters. 7070 * 7071 * This routine validates the congestion parameters passed 7072 * by the FW to the driver via an ACQE event. 7073 **/ 7074 static void 7075 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) 7076 { 7077 spin_lock_irq(&phba->hbalock); 7078 7079 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, 7080 LPFC_CFG_MONITOR)) { 7081 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 7082 "6225 CMF mode param out of range: %d\n", 7083 p_cfg_param->cgn_param_mode); 7084 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; 7085 } 7086 7087 spin_unlock_irq(&phba->hbalock); 7088 } 7089 7090 /** 7091 * lpfc_cgn_params_parse - Process a FW cong parm change event 7092 * @phba: pointer to lpfc hba data structure. 7093 * @p_cgn_param: pointer to a data buffer with the FW cong params. 7094 * @len: the size of pdata in bytes. 7095 * 7096 * This routine validates the congestion management buffer signature 7097 * from the FW, validates the contents and makes corrections for 7098 * valid, in-range values. If the signature magic is correct and 7099 * after parameter validation, the contents are copied to the driver's 7100 * @phba structure. If the magic is incorrect, an error message is 7101 * logged. 7102 **/ 7103 static void 7104 lpfc_cgn_params_parse(struct lpfc_hba *phba, 7105 struct lpfc_cgn_param *p_cgn_param, uint32_t len) 7106 { 7107 struct lpfc_cgn_info *cp; 7108 uint32_t crc, oldmode; 7109 7110 /* Make sure the FW has encoded the correct magic number to 7111 * validate the congestion parameter in FW memory. 7112 */ 7113 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { 7114 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7115 "4668 FW cgn parm buffer data: " 7116 "magic 0x%x version %d mode %d " 7117 "level0 %d level1 %d " 7118 "level2 %d byte13 %d " 7119 "byte14 %d byte15 %d " 7120 "byte11 %d byte12 %d activeMode %d\n", 7121 p_cgn_param->cgn_param_magic, 7122 p_cgn_param->cgn_param_version, 7123 p_cgn_param->cgn_param_mode, 7124 p_cgn_param->cgn_param_level0, 7125 p_cgn_param->cgn_param_level1, 7126 p_cgn_param->cgn_param_level2, 7127 p_cgn_param->byte13, 7128 p_cgn_param->byte14, 7129 p_cgn_param->byte15, 7130 p_cgn_param->byte11, 7131 p_cgn_param->byte12, 7132 phba->cmf_active_mode); 7133 7134 oldmode = phba->cmf_active_mode; 7135 7136 /* Any parameters out of range are corrected to defaults 7137 * by this routine. No need to fail. 7138 */ 7139 lpfc_cgn_params_val(phba, p_cgn_param); 7140 7141 /* Parameters are verified, move them into driver storage */ 7142 spin_lock_irq(&phba->hbalock); 7143 memcpy(&phba->cgn_p, p_cgn_param, 7144 sizeof(struct lpfc_cgn_param)); 7145 7146 /* Update parameters in congestion info buffer now */ 7147 if (phba->cgn_i) { 7148 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 7149 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 7150 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 7151 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 7152 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 7153 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, 7154 LPFC_CGN_CRC32_SEED); 7155 cp->cgn_info_crc = cpu_to_le32(crc); 7156 } 7157 spin_unlock_irq(&phba->hbalock); 7158 7159 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; 7160 7161 switch (oldmode) { 7162 case LPFC_CFG_OFF: 7163 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { 7164 /* Turning CMF on */ 7165 lpfc_cmf_start(phba); 7166 7167 if (phba->link_state >= LPFC_LINK_UP) { 7168 phba->cgn_reg_fpin = 7169 phba->cgn_init_reg_fpin; 7170 phba->cgn_reg_signal = 7171 phba->cgn_init_reg_signal; 7172 lpfc_issue_els_edc(phba->pport, 0); 7173 } 7174 } 7175 break; 7176 case LPFC_CFG_MANAGED: 7177 switch (phba->cgn_p.cgn_param_mode) { 7178 case LPFC_CFG_OFF: 7179 /* Turning CMF off */ 7180 lpfc_cmf_stop(phba); 7181 if (phba->link_state >= LPFC_LINK_UP) 7182 lpfc_issue_els_edc(phba->pport, 0); 7183 break; 7184 case LPFC_CFG_MONITOR: 7185 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7186 "4661 Switch from MANAGED to " 7187 "`MONITOR mode\n"); 7188 phba->cmf_max_bytes_per_interval = 7189 phba->cmf_link_byte_count; 7190 7191 /* Resume blocked IO - unblock on workqueue */ 7192 queue_work(phba->wq, 7193 &phba->unblock_request_work); 7194 break; 7195 } 7196 break; 7197 case LPFC_CFG_MONITOR: 7198 switch (phba->cgn_p.cgn_param_mode) { 7199 case LPFC_CFG_OFF: 7200 /* Turning CMF off */ 7201 lpfc_cmf_stop(phba); 7202 if (phba->link_state >= LPFC_LINK_UP) 7203 lpfc_issue_els_edc(phba->pport, 0); 7204 break; 7205 case LPFC_CFG_MANAGED: 7206 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7207 "4662 Switch from MONITOR to " 7208 "MANAGED mode\n"); 7209 lpfc_cmf_signal_init(phba); 7210 break; 7211 } 7212 break; 7213 } 7214 } else { 7215 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7216 "4669 FW cgn parm buf wrong magic 0x%x " 7217 "version %d\n", p_cgn_param->cgn_param_magic, 7218 p_cgn_param->cgn_param_version); 7219 } 7220 } 7221 7222 /** 7223 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. 7224 * @phba: pointer to lpfc hba data structure. 7225 * 7226 * This routine issues a read_object mailbox command to 7227 * get the congestion management parameters from the FW 7228 * parses it and updates the driver maintained values. 7229 * 7230 * Returns 7231 * 0 if the object was empty 7232 * -Eval if an error was encountered 7233 * Count if bytes were read from object 7234 **/ 7235 int 7236 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) 7237 { 7238 int ret = 0; 7239 struct lpfc_cgn_param *p_cgn_param = NULL; 7240 u32 *pdata = NULL; 7241 u32 len = 0; 7242 7243 /* Find out if the FW has a new set of congestion parameters. */ 7244 len = sizeof(struct lpfc_cgn_param); 7245 pdata = kzalloc(len, GFP_KERNEL); 7246 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, 7247 pdata, len); 7248 7249 /* 0 means no data. A negative means error. A positive means 7250 * bytes were copied. 7251 */ 7252 if (!ret) { 7253 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7254 "4670 CGN RD OBJ returns no data\n"); 7255 goto rd_obj_err; 7256 } else if (ret < 0) { 7257 /* Some error. Just exit and return it to the caller.*/ 7258 goto rd_obj_err; 7259 } 7260 7261 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 7262 "6234 READ CGN PARAMS Successful %d\n", len); 7263 7264 /* Parse data pointer over len and update the phba congestion 7265 * parameters with values passed back. The receive rate values 7266 * may have been altered in FW, but take no action here. 7267 */ 7268 p_cgn_param = (struct lpfc_cgn_param *)pdata; 7269 lpfc_cgn_params_parse(phba, p_cgn_param, len); 7270 7271 rd_obj_err: 7272 kfree(pdata); 7273 return ret; 7274 } 7275 7276 /** 7277 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event 7278 * @phba: pointer to lpfc hba data structure. 7279 * 7280 * The FW generated Async ACQE SLI event calls this routine when 7281 * the event type is an SLI Internal Port Event and the Event Code 7282 * indicates a change to the FW maintained congestion parameters. 7283 * 7284 * This routine executes a Read_Object mailbox call to obtain the 7285 * current congestion parameters maintained in FW and corrects 7286 * the driver's active congestion parameters. 7287 * 7288 * The acqe event is not passed because there is no further data 7289 * required. 7290 * 7291 * Returns nonzero error if event processing encountered an error. 7292 * Zero otherwise for success. 7293 **/ 7294 static int 7295 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) 7296 { 7297 int ret = 0; 7298 7299 if (!phba->sli4_hba.pc_sli4_params.cmf) { 7300 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7301 "4664 Cgn Evt when E2E off. Drop event\n"); 7302 return -EACCES; 7303 } 7304 7305 /* If the event is claiming an empty object, it's ok. A write 7306 * could have cleared it. Only error is a negative return 7307 * status. 7308 */ 7309 ret = lpfc_sli4_cgn_params_read(phba); 7310 if (ret < 0) { 7311 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7312 "4667 Error reading Cgn Params (%d)\n", 7313 ret); 7314 } else if (!ret) { 7315 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 7316 "4673 CGN Event empty object.\n"); 7317 } 7318 return ret; 7319 } 7320 7321 /** 7322 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event 7323 * @phba: pointer to lpfc hba data structure. 7324 * 7325 * This routine is invoked by the worker thread to process all the pending 7326 * SLI4 asynchronous events. 7327 **/ 7328 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) 7329 { 7330 struct lpfc_cq_event *cq_event; 7331 unsigned long iflags; 7332 7333 /* First, declare the async event has been handled */ 7334 spin_lock_irqsave(&phba->hbalock, iflags); 7335 phba->hba_flag &= ~ASYNC_EVENT; 7336 spin_unlock_irqrestore(&phba->hbalock, iflags); 7337 7338 /* Now, handle all the async events */ 7339 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7340 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { 7341 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, 7342 cq_event, struct lpfc_cq_event, list); 7343 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, 7344 iflags); 7345 7346 /* Process the asynchronous event */ 7347 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { 7348 case LPFC_TRAILER_CODE_LINK: 7349 lpfc_sli4_async_link_evt(phba, 7350 &cq_event->cqe.acqe_link); 7351 break; 7352 case LPFC_TRAILER_CODE_FCOE: 7353 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); 7354 break; 7355 case LPFC_TRAILER_CODE_DCBX: 7356 lpfc_sli4_async_dcbx_evt(phba, 7357 &cq_event->cqe.acqe_dcbx); 7358 break; 7359 case LPFC_TRAILER_CODE_GRP5: 7360 lpfc_sli4_async_grp5_evt(phba, 7361 &cq_event->cqe.acqe_grp5); 7362 break; 7363 case LPFC_TRAILER_CODE_FC: 7364 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); 7365 break; 7366 case LPFC_TRAILER_CODE_SLI: 7367 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); 7368 break; 7369 case LPFC_TRAILER_CODE_CMSTAT: 7370 lpfc_sli4_async_cmstat_evt(phba); 7371 break; 7372 default: 7373 lpfc_printf_log(phba, KERN_ERR, 7374 LOG_TRACE_EVENT, 7375 "1804 Invalid asynchronous event code: " 7376 "x%x\n", bf_get(lpfc_trailer_code, 7377 &cq_event->cqe.mcqe_cmpl)); 7378 break; 7379 } 7380 7381 /* Free the completion event processed to the free pool */ 7382 lpfc_sli4_cq_event_release(phba, cq_event); 7383 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 7384 } 7385 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 7386 } 7387 7388 /** 7389 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event 7390 * @phba: pointer to lpfc hba data structure. 7391 * 7392 * This routine is invoked by the worker thread to process FCF table 7393 * rediscovery pending completion event. 7394 **/ 7395 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) 7396 { 7397 int rc; 7398 7399 spin_lock_irq(&phba->hbalock); 7400 /* Clear FCF rediscovery timeout event */ 7401 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; 7402 /* Clear driver fast failover FCF record flag */ 7403 phba->fcf.failover_rec.flag = 0; 7404 /* Set state for FCF fast failover */ 7405 phba->fcf.fcf_flag |= FCF_REDISC_FOV; 7406 spin_unlock_irq(&phba->hbalock); 7407 7408 /* Scan FCF table from the first entry to re-discover SAN */ 7409 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, 7410 "2777 Start post-quiescent FCF table scan\n"); 7411 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); 7412 if (rc) 7413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7414 "2747 Issue FCF scan read FCF mailbox " 7415 "command failed 0x%x\n", rc); 7416 } 7417 7418 /** 7419 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table 7420 * @phba: pointer to lpfc hba data structure. 7421 * @dev_grp: The HBA PCI-Device group number. 7422 * 7423 * This routine is invoked to set up the per HBA PCI-Device group function 7424 * API jump table entries. 7425 * 7426 * Return: 0 if success, otherwise -ENODEV 7427 **/ 7428 int 7429 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7430 { 7431 int rc; 7432 7433 /* Set up lpfc PCI-device group */ 7434 phba->pci_dev_grp = dev_grp; 7435 7436 /* The LPFC_PCI_DEV_OC uses SLI4 */ 7437 if (dev_grp == LPFC_PCI_DEV_OC) 7438 phba->sli_rev = LPFC_SLI_REV4; 7439 7440 /* Set up device INIT API function jump table */ 7441 rc = lpfc_init_api_table_setup(phba, dev_grp); 7442 if (rc) 7443 return -ENODEV; 7444 /* Set up SCSI API function jump table */ 7445 rc = lpfc_scsi_api_table_setup(phba, dev_grp); 7446 if (rc) 7447 return -ENODEV; 7448 /* Set up SLI API function jump table */ 7449 rc = lpfc_sli_api_table_setup(phba, dev_grp); 7450 if (rc) 7451 return -ENODEV; 7452 /* Set up MBOX API function jump table */ 7453 rc = lpfc_mbox_api_table_setup(phba, dev_grp); 7454 if (rc) 7455 return -ENODEV; 7456 7457 return 0; 7458 } 7459 7460 /** 7461 * lpfc_log_intr_mode - Log the active interrupt mode 7462 * @phba: pointer to lpfc hba data structure. 7463 * @intr_mode: active interrupt mode adopted. 7464 * 7465 * This routine it invoked to log the currently used active interrupt mode 7466 * to the device. 7467 **/ 7468 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) 7469 { 7470 switch (intr_mode) { 7471 case 0: 7472 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7473 "0470 Enable INTx interrupt mode.\n"); 7474 break; 7475 case 1: 7476 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7477 "0481 Enabled MSI interrupt mode.\n"); 7478 break; 7479 case 2: 7480 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7481 "0480 Enabled MSI-X interrupt mode.\n"); 7482 break; 7483 default: 7484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7485 "0482 Illegal interrupt mode.\n"); 7486 break; 7487 } 7488 return; 7489 } 7490 7491 /** 7492 * lpfc_enable_pci_dev - Enable a generic PCI device. 7493 * @phba: pointer to lpfc hba data structure. 7494 * 7495 * This routine is invoked to enable the PCI device that is common to all 7496 * PCI devices. 7497 * 7498 * Return codes 7499 * 0 - successful 7500 * other values - error 7501 **/ 7502 static int 7503 lpfc_enable_pci_dev(struct lpfc_hba *phba) 7504 { 7505 struct pci_dev *pdev; 7506 7507 /* Obtain PCI device reference */ 7508 if (!phba->pcidev) 7509 goto out_error; 7510 else 7511 pdev = phba->pcidev; 7512 /* Enable PCI device */ 7513 if (pci_enable_device_mem(pdev)) 7514 goto out_error; 7515 /* Request PCI resource for the device */ 7516 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) 7517 goto out_disable_device; 7518 /* Set up device as PCI master and save state for EEH */ 7519 pci_set_master(pdev); 7520 pci_try_set_mwi(pdev); 7521 pci_save_state(pdev); 7522 7523 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7524 if (pci_is_pcie(pdev)) 7525 pdev->needs_freset = 1; 7526 7527 return 0; 7528 7529 out_disable_device: 7530 pci_disable_device(pdev); 7531 out_error: 7532 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7533 "1401 Failed to enable pci device\n"); 7534 return -ENODEV; 7535 } 7536 7537 /** 7538 * lpfc_disable_pci_dev - Disable a generic PCI device. 7539 * @phba: pointer to lpfc hba data structure. 7540 * 7541 * This routine is invoked to disable the PCI device that is common to all 7542 * PCI devices. 7543 **/ 7544 static void 7545 lpfc_disable_pci_dev(struct lpfc_hba *phba) 7546 { 7547 struct pci_dev *pdev; 7548 7549 /* Obtain PCI device reference */ 7550 if (!phba->pcidev) 7551 return; 7552 else 7553 pdev = phba->pcidev; 7554 /* Release PCI resource and disable PCI device */ 7555 pci_release_mem_regions(pdev); 7556 pci_disable_device(pdev); 7557 7558 return; 7559 } 7560 7561 /** 7562 * lpfc_reset_hba - Reset a hba 7563 * @phba: pointer to lpfc hba data structure. 7564 * 7565 * This routine is invoked to reset a hba device. It brings the HBA 7566 * offline, performs a board restart, and then brings the board back 7567 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up 7568 * on outstanding mailbox commands. 7569 **/ 7570 void 7571 lpfc_reset_hba(struct lpfc_hba *phba) 7572 { 7573 /* If resets are disabled then set error state and return. */ 7574 if (!phba->cfg_enable_hba_reset) { 7575 phba->link_state = LPFC_HBA_ERROR; 7576 return; 7577 } 7578 7579 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ 7580 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { 7581 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 7582 } else { 7583 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 7584 lpfc_sli_flush_io_rings(phba); 7585 } 7586 lpfc_offline(phba); 7587 lpfc_sli_brdrestart(phba); 7588 lpfc_online(phba); 7589 lpfc_unblock_mgmt_io(phba); 7590 } 7591 7592 /** 7593 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions 7594 * @phba: pointer to lpfc hba data structure. 7595 * 7596 * This function enables the PCI SR-IOV virtual functions to a physical 7597 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7598 * enable the number of virtual functions to the physical function. As 7599 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7600 * API call does not considered as an error condition for most of the device. 7601 **/ 7602 uint16_t 7603 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) 7604 { 7605 struct pci_dev *pdev = phba->pcidev; 7606 uint16_t nr_virtfn; 7607 int pos; 7608 7609 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 7610 if (pos == 0) 7611 return 0; 7612 7613 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); 7614 return nr_virtfn; 7615 } 7616 7617 /** 7618 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions 7619 * @phba: pointer to lpfc hba data structure. 7620 * @nr_vfn: number of virtual functions to be enabled. 7621 * 7622 * This function enables the PCI SR-IOV virtual functions to a physical 7623 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to 7624 * enable the number of virtual functions to the physical function. As 7625 * not all devices support SR-IOV, the return code from the pci_enable_sriov() 7626 * API call does not considered as an error condition for most of the device. 7627 **/ 7628 int 7629 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) 7630 { 7631 struct pci_dev *pdev = phba->pcidev; 7632 uint16_t max_nr_vfn; 7633 int rc; 7634 7635 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); 7636 if (nr_vfn > max_nr_vfn) { 7637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7638 "3057 Requested vfs (%d) greater than " 7639 "supported vfs (%d)", nr_vfn, max_nr_vfn); 7640 return -EINVAL; 7641 } 7642 7643 rc = pci_enable_sriov(pdev, nr_vfn); 7644 if (rc) { 7645 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7646 "2806 Failed to enable sriov on this device " 7647 "with vfn number nr_vf:%d, rc:%d\n", 7648 nr_vfn, rc); 7649 } else 7650 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7651 "2807 Successful enable sriov on this device " 7652 "with vfn number nr_vf:%d\n", nr_vfn); 7653 return rc; 7654 } 7655 7656 static void 7657 lpfc_unblock_requests_work(struct work_struct *work) 7658 { 7659 struct lpfc_hba *phba = container_of(work, struct lpfc_hba, 7660 unblock_request_work); 7661 7662 lpfc_unblock_requests(phba); 7663 } 7664 7665 /** 7666 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. 7667 * @phba: pointer to lpfc hba data structure. 7668 * 7669 * This routine is invoked to set up the driver internal resources before the 7670 * device specific resource setup to support the HBA device it attached to. 7671 * 7672 * Return codes 7673 * 0 - successful 7674 * other values - error 7675 **/ 7676 static int 7677 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) 7678 { 7679 struct lpfc_sli *psli = &phba->sli; 7680 7681 /* 7682 * Driver resources common to all SLI revisions 7683 */ 7684 atomic_set(&phba->fast_event_count, 0); 7685 atomic_set(&phba->dbg_log_idx, 0); 7686 atomic_set(&phba->dbg_log_cnt, 0); 7687 atomic_set(&phba->dbg_log_dmping, 0); 7688 spin_lock_init(&phba->hbalock); 7689 7690 /* Initialize port_list spinlock */ 7691 spin_lock_init(&phba->port_list_lock); 7692 INIT_LIST_HEAD(&phba->port_list); 7693 7694 INIT_LIST_HEAD(&phba->work_list); 7695 init_waitqueue_head(&phba->wait_4_mlo_m_q); 7696 7697 /* Initialize the wait queue head for the kernel thread */ 7698 init_waitqueue_head(&phba->work_waitq); 7699 7700 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7701 "1403 Protocols supported %s %s %s\n", 7702 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? 7703 "SCSI" : " "), 7704 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? 7705 "NVME" : " "), 7706 (phba->nvmet_support ? "NVMET" : " ")); 7707 7708 /* Initialize the IO buffer list used by driver for SLI3 SCSI */ 7709 spin_lock_init(&phba->scsi_buf_list_get_lock); 7710 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); 7711 spin_lock_init(&phba->scsi_buf_list_put_lock); 7712 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); 7713 7714 /* Initialize the fabric iocb list */ 7715 INIT_LIST_HEAD(&phba->fabric_iocb_list); 7716 7717 /* Initialize list to save ELS buffers */ 7718 INIT_LIST_HEAD(&phba->elsbuf); 7719 7720 /* Initialize FCF connection rec list */ 7721 INIT_LIST_HEAD(&phba->fcf_conn_rec_list); 7722 7723 /* Initialize OAS configuration list */ 7724 spin_lock_init(&phba->devicelock); 7725 INIT_LIST_HEAD(&phba->luns); 7726 7727 /* MBOX heartbeat timer */ 7728 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); 7729 /* Fabric block timer */ 7730 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); 7731 /* EA polling mode timer */ 7732 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); 7733 /* Heartbeat timer */ 7734 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); 7735 7736 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); 7737 7738 INIT_DELAYED_WORK(&phba->idle_stat_delay_work, 7739 lpfc_idle_stat_delay_work); 7740 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); 7741 return 0; 7742 } 7743 7744 /** 7745 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev 7746 * @phba: pointer to lpfc hba data structure. 7747 * 7748 * This routine is invoked to set up the driver internal resources specific to 7749 * support the SLI-3 HBA device it attached to. 7750 * 7751 * Return codes 7752 * 0 - successful 7753 * other values - error 7754 **/ 7755 static int 7756 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) 7757 { 7758 int rc, entry_sz; 7759 7760 /* 7761 * Initialize timers used by driver 7762 */ 7763 7764 /* FCP polling mode timer */ 7765 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); 7766 7767 /* Host attention work mask setup */ 7768 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); 7769 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); 7770 7771 /* Get all the module params for configuring this host */ 7772 lpfc_get_cfgparam(phba); 7773 /* Set up phase-1 common device driver resources */ 7774 7775 rc = lpfc_setup_driver_resource_phase1(phba); 7776 if (rc) 7777 return -ENODEV; 7778 7779 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) { 7780 phba->menlo_flag |= HBA_MENLO_SUPPORT; 7781 /* check for menlo minimum sg count */ 7782 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT) 7783 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT; 7784 } 7785 7786 if (!phba->sli.sli3_ring) 7787 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, 7788 sizeof(struct lpfc_sli_ring), 7789 GFP_KERNEL); 7790 if (!phba->sli.sli3_ring) 7791 return -ENOMEM; 7792 7793 /* 7794 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size 7795 * used to create the sg_dma_buf_pool must be dynamically calculated. 7796 */ 7797 7798 if (phba->sli_rev == LPFC_SLI_REV4) 7799 entry_sz = sizeof(struct sli4_sge); 7800 else 7801 entry_sz = sizeof(struct ulp_bde64); 7802 7803 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ 7804 if (phba->cfg_enable_bg) { 7805 /* 7806 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, 7807 * the FCP rsp, and a BDE for each. Sice we have no control 7808 * over how many protection data segments the SCSI Layer 7809 * will hand us (ie: there could be one for every block 7810 * in the IO), we just allocate enough BDEs to accomidate 7811 * our max amount and we need to limit lpfc_sg_seg_cnt to 7812 * minimize the risk of running out. 7813 */ 7814 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7815 sizeof(struct fcp_rsp) + 7816 (LPFC_MAX_SG_SEG_CNT * entry_sz); 7817 7818 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) 7819 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; 7820 7821 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ 7822 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; 7823 } else { 7824 /* 7825 * The scsi_buf for a regular I/O will hold the FCP cmnd, 7826 * the FCP rsp, a BDE for each, and a BDE for up to 7827 * cfg_sg_seg_cnt data segments. 7828 */ 7829 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 7830 sizeof(struct fcp_rsp) + 7831 ((phba->cfg_sg_seg_cnt + 2) * entry_sz); 7832 7833 /* Total BDEs in BPL for scsi_sg_list */ 7834 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; 7835 } 7836 7837 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 7838 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", 7839 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 7840 phba->cfg_total_seg_cnt); 7841 7842 phba->max_vpi = LPFC_MAX_VPI; 7843 /* This will be set to correct value after config_port mbox */ 7844 phba->max_vports = 0; 7845 7846 /* 7847 * Initialize the SLI Layer to run with lpfc HBAs. 7848 */ 7849 lpfc_sli_setup(phba); 7850 lpfc_sli_queue_init(phba); 7851 7852 /* Allocate device driver memory */ 7853 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) 7854 return -ENOMEM; 7855 7856 phba->lpfc_sg_dma_buf_pool = 7857 dma_pool_create("lpfc_sg_dma_buf_pool", 7858 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, 7859 BPL_ALIGN_SZ, 0); 7860 7861 if (!phba->lpfc_sg_dma_buf_pool) 7862 goto fail_free_mem; 7863 7864 phba->lpfc_cmd_rsp_buf_pool = 7865 dma_pool_create("lpfc_cmd_rsp_buf_pool", 7866 &phba->pcidev->dev, 7867 sizeof(struct fcp_cmnd) + 7868 sizeof(struct fcp_rsp), 7869 BPL_ALIGN_SZ, 0); 7870 7871 if (!phba->lpfc_cmd_rsp_buf_pool) 7872 goto fail_free_dma_buf_pool; 7873 7874 /* 7875 * Enable sr-iov virtual functions if supported and configured 7876 * through the module parameter. 7877 */ 7878 if (phba->cfg_sriov_nr_virtfn > 0) { 7879 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 7880 phba->cfg_sriov_nr_virtfn); 7881 if (rc) { 7882 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7883 "2808 Requested number of SR-IOV " 7884 "virtual functions (%d) is not " 7885 "supported\n", 7886 phba->cfg_sriov_nr_virtfn); 7887 phba->cfg_sriov_nr_virtfn = 0; 7888 } 7889 } 7890 7891 return 0; 7892 7893 fail_free_dma_buf_pool: 7894 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 7895 phba->lpfc_sg_dma_buf_pool = NULL; 7896 fail_free_mem: 7897 lpfc_mem_free(phba); 7898 return -ENOMEM; 7899 } 7900 7901 /** 7902 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev 7903 * @phba: pointer to lpfc hba data structure. 7904 * 7905 * This routine is invoked to unset the driver internal resources set up 7906 * specific for supporting the SLI-3 HBA device it attached to. 7907 **/ 7908 static void 7909 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) 7910 { 7911 /* Free device driver memory allocated */ 7912 lpfc_mem_free_all(phba); 7913 7914 return; 7915 } 7916 7917 /** 7918 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev 7919 * @phba: pointer to lpfc hba data structure. 7920 * 7921 * This routine is invoked to set up the driver internal resources specific to 7922 * support the SLI-4 HBA device it attached to. 7923 * 7924 * Return codes 7925 * 0 - successful 7926 * other values - error 7927 **/ 7928 static int 7929 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) 7930 { 7931 LPFC_MBOXQ_t *mboxq; 7932 MAILBOX_t *mb; 7933 int rc, i, max_buf_size; 7934 int longs; 7935 int extra; 7936 uint64_t wwn; 7937 u32 if_type; 7938 u32 if_fam; 7939 7940 phba->sli4_hba.num_present_cpu = lpfc_present_cpu; 7941 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; 7942 phba->sli4_hba.curr_disp_cpu = 0; 7943 7944 /* Get all the module params for configuring this host */ 7945 lpfc_get_cfgparam(phba); 7946 7947 /* Set up phase-1 common device driver resources */ 7948 rc = lpfc_setup_driver_resource_phase1(phba); 7949 if (rc) 7950 return -ENODEV; 7951 7952 /* Before proceed, wait for POST done and device ready */ 7953 rc = lpfc_sli4_post_status_check(phba); 7954 if (rc) 7955 return -ENODEV; 7956 7957 /* Allocate all driver workqueues here */ 7958 7959 /* The lpfc_wq workqueue for deferred irq use */ 7960 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); 7961 7962 /* 7963 * Initialize timers used by driver 7964 */ 7965 7966 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); 7967 7968 /* FCF rediscover timer */ 7969 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); 7970 7971 /* CMF congestion timer */ 7972 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7973 phba->cmf_timer.function = lpfc_cmf_timer; 7974 7975 /* 7976 * Control structure for handling external multi-buffer mailbox 7977 * command pass-through. 7978 */ 7979 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, 7980 sizeof(struct lpfc_mbox_ext_buf_ctx)); 7981 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); 7982 7983 phba->max_vpi = LPFC_MAX_VPI; 7984 7985 /* This will be set to correct value after the read_config mbox */ 7986 phba->max_vports = 0; 7987 7988 /* Program the default value of vlan_id and fc_map */ 7989 phba->valid_vlan = 0; 7990 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 7991 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 7992 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 7993 7994 /* 7995 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands 7996 * we will associate a new ring, for each EQ/CQ/WQ tuple. 7997 * The WQ create will allocate the ring. 7998 */ 7999 8000 /* Initialize buffer queue management fields */ 8001 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); 8002 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; 8003 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; 8004 8005 /* for VMID idle timeout if VMID is enabled */ 8006 if (lpfc_is_vmid_enabled(phba)) 8007 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); 8008 8009 /* 8010 * Initialize the SLI Layer to run with lpfc SLI4 HBAs. 8011 */ 8012 /* Initialize the Abort buffer list used by driver */ 8013 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); 8014 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); 8015 8016 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8017 /* Initialize the Abort nvme buffer list used by driver */ 8018 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); 8019 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8020 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); 8021 spin_lock_init(&phba->sli4_hba.t_active_list_lock); 8022 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); 8023 } 8024 8025 /* This abort list used by worker thread */ 8026 spin_lock_init(&phba->sli4_hba.sgl_list_lock); 8027 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); 8028 spin_lock_init(&phba->sli4_hba.asynce_list_lock); 8029 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); 8030 8031 /* 8032 * Initialize driver internal slow-path work queues 8033 */ 8034 8035 /* Driver internel slow-path CQ Event pool */ 8036 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); 8037 /* Response IOCB work queue list */ 8038 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); 8039 /* Asynchronous event CQ Event work queue list */ 8040 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); 8041 /* Slow-path XRI aborted CQ Event work queue list */ 8042 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); 8043 /* Receive queue CQ Event work queue list */ 8044 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); 8045 8046 /* Initialize extent block lists. */ 8047 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); 8048 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); 8049 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); 8050 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); 8051 8052 /* Initialize mboxq lists. If the early init routines fail 8053 * these lists need to be correctly initialized. 8054 */ 8055 INIT_LIST_HEAD(&phba->sli.mboxq); 8056 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); 8057 8058 /* initialize optic_state to 0xFF */ 8059 phba->sli4_hba.lnk_info.optic_state = 0xff; 8060 8061 /* Allocate device driver memory */ 8062 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); 8063 if (rc) 8064 return -ENOMEM; 8065 8066 /* IF Type 2 ports get initialized now. */ 8067 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 8068 LPFC_SLI_INTF_IF_TYPE_2) { 8069 rc = lpfc_pci_function_reset(phba); 8070 if (unlikely(rc)) { 8071 rc = -ENODEV; 8072 goto out_free_mem; 8073 } 8074 phba->temp_sensor_support = 1; 8075 } 8076 8077 /* Create the bootstrap mailbox command */ 8078 rc = lpfc_create_bootstrap_mbox(phba); 8079 if (unlikely(rc)) 8080 goto out_free_mem; 8081 8082 /* Set up the host's endian order with the device. */ 8083 rc = lpfc_setup_endian_order(phba); 8084 if (unlikely(rc)) 8085 goto out_free_bsmbx; 8086 8087 /* Set up the hba's configuration parameters. */ 8088 rc = lpfc_sli4_read_config(phba); 8089 if (unlikely(rc)) 8090 goto out_free_bsmbx; 8091 8092 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { 8093 /* Right now the link is down, if FA-PWWN is configured the 8094 * firmware will try FLOGI before the driver gets a link up. 8095 * If it fails, the driver should get a MISCONFIGURED async 8096 * event which will clear this flag. The only notification 8097 * the driver gets is if it fails, if it succeeds there is no 8098 * notification given. Assume success. 8099 */ 8100 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 8101 } 8102 8103 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); 8104 if (unlikely(rc)) 8105 goto out_free_bsmbx; 8106 8107 /* IF Type 0 ports get initialized now. */ 8108 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8109 LPFC_SLI_INTF_IF_TYPE_0) { 8110 rc = lpfc_pci_function_reset(phba); 8111 if (unlikely(rc)) 8112 goto out_free_bsmbx; 8113 } 8114 8115 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 8116 GFP_KERNEL); 8117 if (!mboxq) { 8118 rc = -ENOMEM; 8119 goto out_free_bsmbx; 8120 } 8121 8122 /* Check for NVMET being configured */ 8123 phba->nvmet_support = 0; 8124 if (lpfc_enable_nvmet_cnt) { 8125 8126 /* First get WWN of HBA instance */ 8127 lpfc_read_nv(phba, mboxq); 8128 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8129 if (rc != MBX_SUCCESS) { 8130 lpfc_printf_log(phba, KERN_ERR, 8131 LOG_TRACE_EVENT, 8132 "6016 Mailbox failed , mbxCmd x%x " 8133 "READ_NV, mbxStatus x%x\n", 8134 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8135 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 8136 mempool_free(mboxq, phba->mbox_mem_pool); 8137 rc = -EIO; 8138 goto out_free_bsmbx; 8139 } 8140 mb = &mboxq->u.mb; 8141 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, 8142 sizeof(uint64_t)); 8143 wwn = cpu_to_be64(wwn); 8144 phba->sli4_hba.wwnn.u.name = wwn; 8145 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, 8146 sizeof(uint64_t)); 8147 /* wwn is WWPN of HBA instance */ 8148 wwn = cpu_to_be64(wwn); 8149 phba->sli4_hba.wwpn.u.name = wwn; 8150 8151 /* Check to see if it matches any module parameter */ 8152 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { 8153 if (wwn == lpfc_enable_nvmet[i]) { 8154 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 8155 if (lpfc_nvmet_mem_alloc(phba)) 8156 break; 8157 8158 phba->nvmet_support = 1; /* a match */ 8159 8160 lpfc_printf_log(phba, KERN_ERR, 8161 LOG_TRACE_EVENT, 8162 "6017 NVME Target %016llx\n", 8163 wwn); 8164 #else 8165 lpfc_printf_log(phba, KERN_ERR, 8166 LOG_TRACE_EVENT, 8167 "6021 Can't enable NVME Target." 8168 " NVME_TARGET_FC infrastructure" 8169 " is not in kernel\n"); 8170 #endif 8171 /* Not supported for NVMET */ 8172 phba->cfg_xri_rebalancing = 0; 8173 if (phba->irq_chann_mode == NHT_MODE) { 8174 phba->cfg_irq_chann = 8175 phba->sli4_hba.num_present_cpu; 8176 phba->cfg_hdw_queue = 8177 phba->sli4_hba.num_present_cpu; 8178 phba->irq_chann_mode = NORMAL_MODE; 8179 } 8180 break; 8181 } 8182 } 8183 } 8184 8185 lpfc_nvme_mod_param_dep(phba); 8186 8187 /* 8188 * Get sli4 parameters that override parameters from Port capabilities. 8189 * If this call fails, it isn't critical unless the SLI4 parameters come 8190 * back in conflict. 8191 */ 8192 rc = lpfc_get_sli4_parameters(phba, mboxq); 8193 if (rc) { 8194 if_type = bf_get(lpfc_sli_intf_if_type, 8195 &phba->sli4_hba.sli_intf); 8196 if_fam = bf_get(lpfc_sli_intf_sli_family, 8197 &phba->sli4_hba.sli_intf); 8198 if (phba->sli4_hba.extents_in_use && 8199 phba->sli4_hba.rpi_hdrs_in_use) { 8200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8201 "2999 Unsupported SLI4 Parameters " 8202 "Extents and RPI headers enabled.\n"); 8203 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8204 if_fam == LPFC_SLI_INTF_FAMILY_BE2) { 8205 mempool_free(mboxq, phba->mbox_mem_pool); 8206 rc = -EIO; 8207 goto out_free_bsmbx; 8208 } 8209 } 8210 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && 8211 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { 8212 mempool_free(mboxq, phba->mbox_mem_pool); 8213 rc = -EIO; 8214 goto out_free_bsmbx; 8215 } 8216 } 8217 8218 /* 8219 * 1 for cmd, 1 for rsp, NVME adds an extra one 8220 * for boundary conditions in its max_sgl_segment template. 8221 */ 8222 extra = 2; 8223 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 8224 extra++; 8225 8226 /* 8227 * It doesn't matter what family our adapter is in, we are 8228 * limited to 2 Pages, 512 SGEs, for our SGL. 8229 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp 8230 */ 8231 max_buf_size = (2 * SLI4_PAGE_SIZE); 8232 8233 /* 8234 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size 8235 * used to create the sg_dma_buf_pool must be calculated. 8236 */ 8237 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8238 /* Both cfg_enable_bg and cfg_external_dif code paths */ 8239 8240 /* 8241 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, 8242 * the FCP rsp, and a SGE. Sice we have no control 8243 * over how many protection segments the SCSI Layer 8244 * will hand us (ie: there could be one for every block 8245 * in the IO), just allocate enough SGEs to accomidate 8246 * our max amount and we need to limit lpfc_sg_seg_cnt 8247 * to minimize the risk of running out. 8248 */ 8249 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8250 sizeof(struct fcp_rsp) + max_buf_size; 8251 8252 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ 8253 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; 8254 8255 /* 8256 * If supporting DIF, reduce the seg count for scsi to 8257 * allow room for the DIF sges. 8258 */ 8259 if (phba->cfg_enable_bg && 8260 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) 8261 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; 8262 else 8263 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8264 8265 } else { 8266 /* 8267 * The scsi_buf for a regular I/O holds the FCP cmnd, 8268 * the FCP rsp, a SGE for each, and a SGE for up to 8269 * cfg_sg_seg_cnt data segments. 8270 */ 8271 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + 8272 sizeof(struct fcp_rsp) + 8273 ((phba->cfg_sg_seg_cnt + extra) * 8274 sizeof(struct sli4_sge)); 8275 8276 /* Total SGEs for scsi_sg_list */ 8277 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; 8278 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; 8279 8280 /* 8281 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only 8282 * need to post 1 page for the SGL. 8283 */ 8284 } 8285 8286 if (phba->cfg_xpsgl && !phba->nvmet_support) 8287 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; 8288 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) 8289 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; 8290 else 8291 phba->cfg_sg_dma_buf_size = 8292 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); 8293 8294 phba->border_sge_num = phba->cfg_sg_dma_buf_size / 8295 sizeof(struct sli4_sge); 8296 8297 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ 8298 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 8299 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { 8300 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 8301 "6300 Reducing NVME sg segment " 8302 "cnt to %d\n", 8303 LPFC_MAX_NVME_SEG_CNT); 8304 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 8305 } else 8306 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; 8307 } 8308 8309 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, 8310 "9087 sg_seg_cnt:%d dmabuf_size:%d " 8311 "total:%d scsi:%d nvme:%d\n", 8312 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, 8313 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, 8314 phba->cfg_nvme_seg_cnt); 8315 8316 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) 8317 i = phba->cfg_sg_dma_buf_size; 8318 else 8319 i = SLI4_PAGE_SIZE; 8320 8321 phba->lpfc_sg_dma_buf_pool = 8322 dma_pool_create("lpfc_sg_dma_buf_pool", 8323 &phba->pcidev->dev, 8324 phba->cfg_sg_dma_buf_size, 8325 i, 0); 8326 if (!phba->lpfc_sg_dma_buf_pool) 8327 goto out_free_bsmbx; 8328 8329 phba->lpfc_cmd_rsp_buf_pool = 8330 dma_pool_create("lpfc_cmd_rsp_buf_pool", 8331 &phba->pcidev->dev, 8332 sizeof(struct fcp_cmnd) + 8333 sizeof(struct fcp_rsp), 8334 i, 0); 8335 if (!phba->lpfc_cmd_rsp_buf_pool) 8336 goto out_free_sg_dma_buf; 8337 8338 mempool_free(mboxq, phba->mbox_mem_pool); 8339 8340 /* Verify OAS is supported */ 8341 lpfc_sli4_oas_verify(phba); 8342 8343 /* Verify RAS support on adapter */ 8344 lpfc_sli4_ras_init(phba); 8345 8346 /* Verify all the SLI4 queues */ 8347 rc = lpfc_sli4_queue_verify(phba); 8348 if (rc) 8349 goto out_free_cmd_rsp_buf; 8350 8351 /* Create driver internal CQE event pool */ 8352 rc = lpfc_sli4_cq_event_pool_create(phba); 8353 if (rc) 8354 goto out_free_cmd_rsp_buf; 8355 8356 /* Initialize sgl lists per host */ 8357 lpfc_init_sgl_list(phba); 8358 8359 /* Allocate and initialize active sgl array */ 8360 rc = lpfc_init_active_sgl_array(phba); 8361 if (rc) { 8362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8363 "1430 Failed to initialize sgl list.\n"); 8364 goto out_destroy_cq_event_pool; 8365 } 8366 rc = lpfc_sli4_init_rpi_hdrs(phba); 8367 if (rc) { 8368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8369 "1432 Failed to initialize rpi headers.\n"); 8370 goto out_free_active_sgl; 8371 } 8372 8373 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ 8374 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; 8375 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), 8376 GFP_KERNEL); 8377 if (!phba->fcf.fcf_rr_bmask) { 8378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8379 "2759 Failed allocate memory for FCF round " 8380 "robin failover bmask\n"); 8381 rc = -ENOMEM; 8382 goto out_remove_rpi_hdrs; 8383 } 8384 8385 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, 8386 sizeof(struct lpfc_hba_eq_hdl), 8387 GFP_KERNEL); 8388 if (!phba->sli4_hba.hba_eq_hdl) { 8389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8390 "2572 Failed allocate memory for " 8391 "fast-path per-EQ handle array\n"); 8392 rc = -ENOMEM; 8393 goto out_free_fcf_rr_bmask; 8394 } 8395 8396 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, 8397 sizeof(struct lpfc_vector_map_info), 8398 GFP_KERNEL); 8399 if (!phba->sli4_hba.cpu_map) { 8400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8401 "3327 Failed allocate memory for msi-x " 8402 "interrupt vector mapping\n"); 8403 rc = -ENOMEM; 8404 goto out_free_hba_eq_hdl; 8405 } 8406 8407 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); 8408 if (!phba->sli4_hba.eq_info) { 8409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8410 "3321 Failed allocation for per_cpu stats\n"); 8411 rc = -ENOMEM; 8412 goto out_free_hba_cpu_map; 8413 } 8414 8415 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, 8416 sizeof(*phba->sli4_hba.idle_stat), 8417 GFP_KERNEL); 8418 if (!phba->sli4_hba.idle_stat) { 8419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8420 "3390 Failed allocation for idle_stat\n"); 8421 rc = -ENOMEM; 8422 goto out_free_hba_eq_info; 8423 } 8424 8425 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8426 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); 8427 if (!phba->sli4_hba.c_stat) { 8428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8429 "3332 Failed allocating per cpu hdwq stats\n"); 8430 rc = -ENOMEM; 8431 goto out_free_hba_idle_stat; 8432 } 8433 #endif 8434 8435 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); 8436 if (!phba->cmf_stat) { 8437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8438 "3331 Failed allocating per cpu cgn stats\n"); 8439 rc = -ENOMEM; 8440 goto out_free_hba_hdwq_info; 8441 } 8442 8443 /* 8444 * Enable sr-iov virtual functions if supported and configured 8445 * through the module parameter. 8446 */ 8447 if (phba->cfg_sriov_nr_virtfn > 0) { 8448 rc = lpfc_sli_probe_sriov_nr_virtfn(phba, 8449 phba->cfg_sriov_nr_virtfn); 8450 if (rc) { 8451 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 8452 "3020 Requested number of SR-IOV " 8453 "virtual functions (%d) is not " 8454 "supported\n", 8455 phba->cfg_sriov_nr_virtfn); 8456 phba->cfg_sriov_nr_virtfn = 0; 8457 } 8458 } 8459 8460 return 0; 8461 8462 out_free_hba_hdwq_info: 8463 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8464 free_percpu(phba->sli4_hba.c_stat); 8465 out_free_hba_idle_stat: 8466 #endif 8467 kfree(phba->sli4_hba.idle_stat); 8468 out_free_hba_eq_info: 8469 free_percpu(phba->sli4_hba.eq_info); 8470 out_free_hba_cpu_map: 8471 kfree(phba->sli4_hba.cpu_map); 8472 out_free_hba_eq_hdl: 8473 kfree(phba->sli4_hba.hba_eq_hdl); 8474 out_free_fcf_rr_bmask: 8475 kfree(phba->fcf.fcf_rr_bmask); 8476 out_remove_rpi_hdrs: 8477 lpfc_sli4_remove_rpi_hdrs(phba); 8478 out_free_active_sgl: 8479 lpfc_free_active_sgl(phba); 8480 out_destroy_cq_event_pool: 8481 lpfc_sli4_cq_event_pool_destroy(phba); 8482 out_free_cmd_rsp_buf: 8483 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); 8484 phba->lpfc_cmd_rsp_buf_pool = NULL; 8485 out_free_sg_dma_buf: 8486 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); 8487 phba->lpfc_sg_dma_buf_pool = NULL; 8488 out_free_bsmbx: 8489 lpfc_destroy_bootstrap_mbox(phba); 8490 out_free_mem: 8491 lpfc_mem_free(phba); 8492 return rc; 8493 } 8494 8495 /** 8496 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev 8497 * @phba: pointer to lpfc hba data structure. 8498 * 8499 * This routine is invoked to unset the driver internal resources set up 8500 * specific for supporting the SLI-4 HBA device it attached to. 8501 **/ 8502 static void 8503 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) 8504 { 8505 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; 8506 8507 free_percpu(phba->sli4_hba.eq_info); 8508 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 8509 free_percpu(phba->sli4_hba.c_stat); 8510 #endif 8511 free_percpu(phba->cmf_stat); 8512 kfree(phba->sli4_hba.idle_stat); 8513 8514 /* Free memory allocated for msi-x interrupt vector to CPU mapping */ 8515 kfree(phba->sli4_hba.cpu_map); 8516 phba->sli4_hba.num_possible_cpu = 0; 8517 phba->sli4_hba.num_present_cpu = 0; 8518 phba->sli4_hba.curr_disp_cpu = 0; 8519 cpumask_clear(&phba->sli4_hba.irq_aff_mask); 8520 8521 /* Free memory allocated for fast-path work queue handles */ 8522 kfree(phba->sli4_hba.hba_eq_hdl); 8523 8524 /* Free the allocated rpi headers. */ 8525 lpfc_sli4_remove_rpi_hdrs(phba); 8526 lpfc_sli4_remove_rpis(phba); 8527 8528 /* Free eligible FCF index bmask */ 8529 kfree(phba->fcf.fcf_rr_bmask); 8530 8531 /* Free the ELS sgl list */ 8532 lpfc_free_active_sgl(phba); 8533 lpfc_free_els_sgl_list(phba); 8534 lpfc_free_nvmet_sgl_list(phba); 8535 8536 /* Free the completion queue EQ event pool */ 8537 lpfc_sli4_cq_event_release_all(phba); 8538 lpfc_sli4_cq_event_pool_destroy(phba); 8539 8540 /* Release resource identifiers. */ 8541 lpfc_sli4_dealloc_resource_identifiers(phba); 8542 8543 /* Free the bsmbx region. */ 8544 lpfc_destroy_bootstrap_mbox(phba); 8545 8546 /* Free the SLI Layer memory with SLI4 HBAs */ 8547 lpfc_mem_free_all(phba); 8548 8549 /* Free the current connect table */ 8550 list_for_each_entry_safe(conn_entry, next_conn_entry, 8551 &phba->fcf_conn_rec_list, list) { 8552 list_del_init(&conn_entry->list); 8553 kfree(conn_entry); 8554 } 8555 8556 return; 8557 } 8558 8559 /** 8560 * lpfc_init_api_table_setup - Set up init api function jump table 8561 * @phba: The hba struct for which this call is being executed. 8562 * @dev_grp: The HBA PCI-Device group number. 8563 * 8564 * This routine sets up the device INIT interface API function jump table 8565 * in @phba struct. 8566 * 8567 * Returns: 0 - success, -ENODEV - failure. 8568 **/ 8569 int 8570 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8571 { 8572 phba->lpfc_hba_init_link = lpfc_hba_init_link; 8573 phba->lpfc_hba_down_link = lpfc_hba_down_link; 8574 phba->lpfc_selective_reset = lpfc_selective_reset; 8575 switch (dev_grp) { 8576 case LPFC_PCI_DEV_LP: 8577 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; 8578 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; 8579 phba->lpfc_stop_port = lpfc_stop_port_s3; 8580 break; 8581 case LPFC_PCI_DEV_OC: 8582 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; 8583 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; 8584 phba->lpfc_stop_port = lpfc_stop_port_s4; 8585 break; 8586 default: 8587 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8588 "1431 Invalid HBA PCI-device group: 0x%x\n", 8589 dev_grp); 8590 return -ENODEV; 8591 } 8592 return 0; 8593 } 8594 8595 /** 8596 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. 8597 * @phba: pointer to lpfc hba data structure. 8598 * 8599 * This routine is invoked to set up the driver internal resources after the 8600 * device specific resource setup to support the HBA device it attached to. 8601 * 8602 * Return codes 8603 * 0 - successful 8604 * other values - error 8605 **/ 8606 static int 8607 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) 8608 { 8609 int error; 8610 8611 /* Startup the kernel thread for this host adapter. */ 8612 phba->worker_thread = kthread_run(lpfc_do_work, phba, 8613 "lpfc_worker_%d", phba->brd_no); 8614 if (IS_ERR(phba->worker_thread)) { 8615 error = PTR_ERR(phba->worker_thread); 8616 return error; 8617 } 8618 8619 return 0; 8620 } 8621 8622 /** 8623 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. 8624 * @phba: pointer to lpfc hba data structure. 8625 * 8626 * This routine is invoked to unset the driver internal resources set up after 8627 * the device specific resource setup for supporting the HBA device it 8628 * attached to. 8629 **/ 8630 static void 8631 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) 8632 { 8633 if (phba->wq) { 8634 destroy_workqueue(phba->wq); 8635 phba->wq = NULL; 8636 } 8637 8638 /* Stop kernel worker thread */ 8639 if (phba->worker_thread) 8640 kthread_stop(phba->worker_thread); 8641 } 8642 8643 /** 8644 * lpfc_free_iocb_list - Free iocb list. 8645 * @phba: pointer to lpfc hba data structure. 8646 * 8647 * This routine is invoked to free the driver's IOCB list and memory. 8648 **/ 8649 void 8650 lpfc_free_iocb_list(struct lpfc_hba *phba) 8651 { 8652 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; 8653 8654 spin_lock_irq(&phba->hbalock); 8655 list_for_each_entry_safe(iocbq_entry, iocbq_next, 8656 &phba->lpfc_iocb_list, list) { 8657 list_del(&iocbq_entry->list); 8658 kfree(iocbq_entry); 8659 phba->total_iocbq_bufs--; 8660 } 8661 spin_unlock_irq(&phba->hbalock); 8662 8663 return; 8664 } 8665 8666 /** 8667 * lpfc_init_iocb_list - Allocate and initialize iocb list. 8668 * @phba: pointer to lpfc hba data structure. 8669 * @iocb_count: number of requested iocbs 8670 * 8671 * This routine is invoked to allocate and initizlize the driver's IOCB 8672 * list and set up the IOCB tag array accordingly. 8673 * 8674 * Return codes 8675 * 0 - successful 8676 * other values - error 8677 **/ 8678 int 8679 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) 8680 { 8681 struct lpfc_iocbq *iocbq_entry = NULL; 8682 uint16_t iotag; 8683 int i; 8684 8685 /* Initialize and populate the iocb list per host. */ 8686 INIT_LIST_HEAD(&phba->lpfc_iocb_list); 8687 for (i = 0; i < iocb_count; i++) { 8688 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); 8689 if (iocbq_entry == NULL) { 8690 printk(KERN_ERR "%s: only allocated %d iocbs of " 8691 "expected %d count. Unloading driver.\n", 8692 __func__, i, iocb_count); 8693 goto out_free_iocbq; 8694 } 8695 8696 iotag = lpfc_sli_next_iotag(phba, iocbq_entry); 8697 if (iotag == 0) { 8698 kfree(iocbq_entry); 8699 printk(KERN_ERR "%s: failed to allocate IOTAG. " 8700 "Unloading driver.\n", __func__); 8701 goto out_free_iocbq; 8702 } 8703 iocbq_entry->sli4_lxritag = NO_XRI; 8704 iocbq_entry->sli4_xritag = NO_XRI; 8705 8706 spin_lock_irq(&phba->hbalock); 8707 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); 8708 phba->total_iocbq_bufs++; 8709 spin_unlock_irq(&phba->hbalock); 8710 } 8711 8712 return 0; 8713 8714 out_free_iocbq: 8715 lpfc_free_iocb_list(phba); 8716 8717 return -ENOMEM; 8718 } 8719 8720 /** 8721 * lpfc_free_sgl_list - Free a given sgl list. 8722 * @phba: pointer to lpfc hba data structure. 8723 * @sglq_list: pointer to the head of sgl list. 8724 * 8725 * This routine is invoked to free a give sgl list and memory. 8726 **/ 8727 void 8728 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) 8729 { 8730 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8731 8732 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { 8733 list_del(&sglq_entry->list); 8734 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); 8735 kfree(sglq_entry); 8736 } 8737 } 8738 8739 /** 8740 * lpfc_free_els_sgl_list - Free els sgl list. 8741 * @phba: pointer to lpfc hba data structure. 8742 * 8743 * This routine is invoked to free the driver's els sgl list and memory. 8744 **/ 8745 static void 8746 lpfc_free_els_sgl_list(struct lpfc_hba *phba) 8747 { 8748 LIST_HEAD(sglq_list); 8749 8750 /* Retrieve all els sgls from driver list */ 8751 spin_lock_irq(&phba->sli4_hba.sgl_list_lock); 8752 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); 8753 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); 8754 8755 /* Now free the sgl list */ 8756 lpfc_free_sgl_list(phba, &sglq_list); 8757 } 8758 8759 /** 8760 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. 8761 * @phba: pointer to lpfc hba data structure. 8762 * 8763 * This routine is invoked to free the driver's nvmet sgl list and memory. 8764 **/ 8765 static void 8766 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) 8767 { 8768 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 8769 LIST_HEAD(sglq_list); 8770 8771 /* Retrieve all nvmet sgls from driver list */ 8772 spin_lock_irq(&phba->hbalock); 8773 spin_lock(&phba->sli4_hba.sgl_list_lock); 8774 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); 8775 spin_unlock(&phba->sli4_hba.sgl_list_lock); 8776 spin_unlock_irq(&phba->hbalock); 8777 8778 /* Now free the sgl list */ 8779 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { 8780 list_del(&sglq_entry->list); 8781 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); 8782 kfree(sglq_entry); 8783 } 8784 8785 /* Update the nvmet_xri_cnt to reflect no current sgls. 8786 * The next initialization cycle sets the count and allocates 8787 * the sgls over again. 8788 */ 8789 phba->sli4_hba.nvmet_xri_cnt = 0; 8790 } 8791 8792 /** 8793 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. 8794 * @phba: pointer to lpfc hba data structure. 8795 * 8796 * This routine is invoked to allocate the driver's active sgl memory. 8797 * This array will hold the sglq_entry's for active IOs. 8798 **/ 8799 static int 8800 lpfc_init_active_sgl_array(struct lpfc_hba *phba) 8801 { 8802 int size; 8803 size = sizeof(struct lpfc_sglq *); 8804 size *= phba->sli4_hba.max_cfg_param.max_xri; 8805 8806 phba->sli4_hba.lpfc_sglq_active_list = 8807 kzalloc(size, GFP_KERNEL); 8808 if (!phba->sli4_hba.lpfc_sglq_active_list) 8809 return -ENOMEM; 8810 return 0; 8811 } 8812 8813 /** 8814 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. 8815 * @phba: pointer to lpfc hba data structure. 8816 * 8817 * This routine is invoked to walk through the array of active sglq entries 8818 * and free all of the resources. 8819 * This is just a place holder for now. 8820 **/ 8821 static void 8822 lpfc_free_active_sgl(struct lpfc_hba *phba) 8823 { 8824 kfree(phba->sli4_hba.lpfc_sglq_active_list); 8825 } 8826 8827 /** 8828 * lpfc_init_sgl_list - Allocate and initialize sgl list. 8829 * @phba: pointer to lpfc hba data structure. 8830 * 8831 * This routine is invoked to allocate and initizlize the driver's sgl 8832 * list and set up the sgl xritag tag array accordingly. 8833 * 8834 **/ 8835 static void 8836 lpfc_init_sgl_list(struct lpfc_hba *phba) 8837 { 8838 /* Initialize and populate the sglq list per host/VF. */ 8839 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); 8840 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); 8841 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); 8842 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 8843 8844 /* els xri-sgl book keeping */ 8845 phba->sli4_hba.els_xri_cnt = 0; 8846 8847 /* nvme xri-buffer book keeping */ 8848 phba->sli4_hba.io_xri_cnt = 0; 8849 } 8850 8851 /** 8852 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port 8853 * @phba: pointer to lpfc hba data structure. 8854 * 8855 * This routine is invoked to post rpi header templates to the 8856 * port for those SLI4 ports that do not support extents. This routine 8857 * posts a PAGE_SIZE memory region to the port to hold up to 8858 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine 8859 * and should be called only when interrupts are disabled. 8860 * 8861 * Return codes 8862 * 0 - successful 8863 * -ERROR - otherwise. 8864 **/ 8865 int 8866 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) 8867 { 8868 int rc = 0; 8869 struct lpfc_rpi_hdr *rpi_hdr; 8870 8871 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); 8872 if (!phba->sli4_hba.rpi_hdrs_in_use) 8873 return rc; 8874 if (phba->sli4_hba.extents_in_use) 8875 return -EIO; 8876 8877 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 8878 if (!rpi_hdr) { 8879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8880 "0391 Error during rpi post operation\n"); 8881 lpfc_sli4_remove_rpis(phba); 8882 rc = -ENODEV; 8883 } 8884 8885 return rc; 8886 } 8887 8888 /** 8889 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region 8890 * @phba: pointer to lpfc hba data structure. 8891 * 8892 * This routine is invoked to allocate a single 4KB memory region to 8893 * support rpis and stores them in the phba. This single region 8894 * provides support for up to 64 rpis. The region is used globally 8895 * by the device. 8896 * 8897 * Returns: 8898 * A valid rpi hdr on success. 8899 * A NULL pointer on any failure. 8900 **/ 8901 struct lpfc_rpi_hdr * 8902 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) 8903 { 8904 uint16_t rpi_limit, curr_rpi_range; 8905 struct lpfc_dmabuf *dmabuf; 8906 struct lpfc_rpi_hdr *rpi_hdr; 8907 8908 /* 8909 * If the SLI4 port supports extents, posting the rpi header isn't 8910 * required. Set the expected maximum count and let the actual value 8911 * get set when extents are fully allocated. 8912 */ 8913 if (!phba->sli4_hba.rpi_hdrs_in_use) 8914 return NULL; 8915 if (phba->sli4_hba.extents_in_use) 8916 return NULL; 8917 8918 /* The limit on the logical index is just the max_rpi count. */ 8919 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; 8920 8921 spin_lock_irq(&phba->hbalock); 8922 /* 8923 * Establish the starting RPI in this header block. The starting 8924 * rpi is normalized to a zero base because the physical rpi is 8925 * port based. 8926 */ 8927 curr_rpi_range = phba->sli4_hba.next_rpi; 8928 spin_unlock_irq(&phba->hbalock); 8929 8930 /* Reached full RPI range */ 8931 if (curr_rpi_range == rpi_limit) 8932 return NULL; 8933 8934 /* 8935 * First allocate the protocol header region for the port. The 8936 * port expects a 4KB DMA-mapped memory region that is 4K aligned. 8937 */ 8938 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 8939 if (!dmabuf) 8940 return NULL; 8941 8942 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 8943 LPFC_HDR_TEMPLATE_SIZE, 8944 &dmabuf->phys, GFP_KERNEL); 8945 if (!dmabuf->virt) { 8946 rpi_hdr = NULL; 8947 goto err_free_dmabuf; 8948 } 8949 8950 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { 8951 rpi_hdr = NULL; 8952 goto err_free_coherent; 8953 } 8954 8955 /* Save the rpi header data for cleanup later. */ 8956 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); 8957 if (!rpi_hdr) 8958 goto err_free_coherent; 8959 8960 rpi_hdr->dmabuf = dmabuf; 8961 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; 8962 rpi_hdr->page_count = 1; 8963 spin_lock_irq(&phba->hbalock); 8964 8965 /* The rpi_hdr stores the logical index only. */ 8966 rpi_hdr->start_rpi = curr_rpi_range; 8967 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; 8968 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); 8969 8970 spin_unlock_irq(&phba->hbalock); 8971 return rpi_hdr; 8972 8973 err_free_coherent: 8974 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, 8975 dmabuf->virt, dmabuf->phys); 8976 err_free_dmabuf: 8977 kfree(dmabuf); 8978 return NULL; 8979 } 8980 8981 /** 8982 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions 8983 * @phba: pointer to lpfc hba data structure. 8984 * 8985 * This routine is invoked to remove all memory resources allocated 8986 * to support rpis for SLI4 ports not supporting extents. This routine 8987 * presumes the caller has released all rpis consumed by fabric or port 8988 * logins and is prepared to have the header pages removed. 8989 **/ 8990 void 8991 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) 8992 { 8993 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; 8994 8995 if (!phba->sli4_hba.rpi_hdrs_in_use) 8996 goto exit; 8997 8998 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, 8999 &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 9000 list_del(&rpi_hdr->list); 9001 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, 9002 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); 9003 kfree(rpi_hdr->dmabuf); 9004 kfree(rpi_hdr); 9005 } 9006 exit: 9007 /* There are no rpis available to the port now. */ 9008 phba->sli4_hba.next_rpi = 0; 9009 } 9010 9011 /** 9012 * lpfc_hba_alloc - Allocate driver hba data structure for a device. 9013 * @pdev: pointer to pci device data structure. 9014 * 9015 * This routine is invoked to allocate the driver hba data structure for an 9016 * HBA device. If the allocation is successful, the phba reference to the 9017 * PCI device data structure is set. 9018 * 9019 * Return codes 9020 * pointer to @phba - successful 9021 * NULL - error 9022 **/ 9023 static struct lpfc_hba * 9024 lpfc_hba_alloc(struct pci_dev *pdev) 9025 { 9026 struct lpfc_hba *phba; 9027 9028 /* Allocate memory for HBA structure */ 9029 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); 9030 if (!phba) { 9031 dev_err(&pdev->dev, "failed to allocate hba struct\n"); 9032 return NULL; 9033 } 9034 9035 /* Set reference to PCI device in HBA structure */ 9036 phba->pcidev = pdev; 9037 9038 /* Assign an unused board number */ 9039 phba->brd_no = lpfc_get_instance(); 9040 if (phba->brd_no < 0) { 9041 kfree(phba); 9042 return NULL; 9043 } 9044 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; 9045 9046 spin_lock_init(&phba->ct_ev_lock); 9047 INIT_LIST_HEAD(&phba->ct_ev_waiters); 9048 9049 return phba; 9050 } 9051 9052 /** 9053 * lpfc_hba_free - Free driver hba data structure with a device. 9054 * @phba: pointer to lpfc hba data structure. 9055 * 9056 * This routine is invoked to free the driver hba data structure with an 9057 * HBA device. 9058 **/ 9059 static void 9060 lpfc_hba_free(struct lpfc_hba *phba) 9061 { 9062 if (phba->sli_rev == LPFC_SLI_REV4) 9063 kfree(phba->sli4_hba.hdwq); 9064 9065 /* Release the driver assigned board number */ 9066 idr_remove(&lpfc_hba_index, phba->brd_no); 9067 9068 /* Free memory allocated with sli3 rings */ 9069 kfree(phba->sli.sli3_ring); 9070 phba->sli.sli3_ring = NULL; 9071 9072 kfree(phba); 9073 return; 9074 } 9075 9076 /** 9077 * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes 9078 * @vport: pointer to lpfc vport data structure. 9079 * 9080 * This routine is will setup initial FDMI attribute masks for 9081 * FDMI2 or SmartSAN depending on module parameters. The driver will attempt 9082 * to get these attributes first before falling back, the attribute 9083 * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 9084 **/ 9085 void 9086 lpfc_setup_fdmi_mask(struct lpfc_vport *vport) 9087 { 9088 struct lpfc_hba *phba = vport->phba; 9089 9090 vport->load_flag |= FC_ALLOW_FDMI; 9091 if (phba->cfg_enable_SmartSAN || 9092 phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { 9093 /* Setup appropriate attribute masks */ 9094 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; 9095 if (phba->cfg_enable_SmartSAN) 9096 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; 9097 else 9098 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; 9099 } 9100 9101 lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY, 9102 "6077 Setup FDMI mask: hba x%x port x%x\n", 9103 vport->fdmi_hba_mask, vport->fdmi_port_mask); 9104 } 9105 9106 /** 9107 * lpfc_create_shost - Create hba physical port with associated scsi host. 9108 * @phba: pointer to lpfc hba data structure. 9109 * 9110 * This routine is invoked to create HBA physical port and associate a SCSI 9111 * host with it. 9112 * 9113 * Return codes 9114 * 0 - successful 9115 * other values - error 9116 **/ 9117 static int 9118 lpfc_create_shost(struct lpfc_hba *phba) 9119 { 9120 struct lpfc_vport *vport; 9121 struct Scsi_Host *shost; 9122 9123 /* Initialize HBA FC structure */ 9124 phba->fc_edtov = FF_DEF_EDTOV; 9125 phba->fc_ratov = FF_DEF_RATOV; 9126 phba->fc_altov = FF_DEF_ALTOV; 9127 phba->fc_arbtov = FF_DEF_ARBTOV; 9128 9129 atomic_set(&phba->sdev_cnt, 0); 9130 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); 9131 if (!vport) 9132 return -ENODEV; 9133 9134 shost = lpfc_shost_from_vport(vport); 9135 phba->pport = vport; 9136 9137 if (phba->nvmet_support) { 9138 /* Only 1 vport (pport) will support NVME target */ 9139 phba->targetport = NULL; 9140 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; 9141 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, 9142 "6076 NVME Target Found\n"); 9143 } 9144 9145 lpfc_debugfs_initialize(vport); 9146 /* Put reference to SCSI host to driver's device private data */ 9147 pci_set_drvdata(phba->pcidev, shost); 9148 9149 lpfc_setup_fdmi_mask(vport); 9150 9151 /* 9152 * At this point we are fully registered with PSA. In addition, 9153 * any initial discovery should be completed. 9154 */ 9155 return 0; 9156 } 9157 9158 /** 9159 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. 9160 * @phba: pointer to lpfc hba data structure. 9161 * 9162 * This routine is invoked to destroy HBA physical port and the associated 9163 * SCSI host. 9164 **/ 9165 static void 9166 lpfc_destroy_shost(struct lpfc_hba *phba) 9167 { 9168 struct lpfc_vport *vport = phba->pport; 9169 9170 /* Destroy physical port that associated with the SCSI host */ 9171 destroy_port(vport); 9172 9173 return; 9174 } 9175 9176 /** 9177 * lpfc_setup_bg - Setup Block guard structures and debug areas. 9178 * @phba: pointer to lpfc hba data structure. 9179 * @shost: the shost to be used to detect Block guard settings. 9180 * 9181 * This routine sets up the local Block guard protocol settings for @shost. 9182 * This routine also allocates memory for debugging bg buffers. 9183 **/ 9184 static void 9185 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) 9186 { 9187 uint32_t old_mask; 9188 uint32_t old_guard; 9189 9190 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9191 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9192 "1478 Registering BlockGuard with the " 9193 "SCSI layer\n"); 9194 9195 old_mask = phba->cfg_prot_mask; 9196 old_guard = phba->cfg_prot_guard; 9197 9198 /* Only allow supported values */ 9199 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | 9200 SHOST_DIX_TYPE0_PROTECTION | 9201 SHOST_DIX_TYPE1_PROTECTION); 9202 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | 9203 SHOST_DIX_GUARD_CRC); 9204 9205 /* DIF Type 1 protection for profiles AST1/C1 is end to end */ 9206 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) 9207 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; 9208 9209 if (phba->cfg_prot_mask && phba->cfg_prot_guard) { 9210 if ((old_mask != phba->cfg_prot_mask) || 9211 (old_guard != phba->cfg_prot_guard)) 9212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9213 "1475 Registering BlockGuard with the " 9214 "SCSI layer: mask %d guard %d\n", 9215 phba->cfg_prot_mask, 9216 phba->cfg_prot_guard); 9217 9218 scsi_host_set_prot(shost, phba->cfg_prot_mask); 9219 scsi_host_set_guard(shost, phba->cfg_prot_guard); 9220 } else 9221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9222 "1479 Not Registering BlockGuard with the SCSI " 9223 "layer, Bad protection parameters: %d %d\n", 9224 old_mask, old_guard); 9225 } 9226 } 9227 9228 /** 9229 * lpfc_post_init_setup - Perform necessary device post initialization setup. 9230 * @phba: pointer to lpfc hba data structure. 9231 * 9232 * This routine is invoked to perform all the necessary post initialization 9233 * setup for the device. 9234 **/ 9235 static void 9236 lpfc_post_init_setup(struct lpfc_hba *phba) 9237 { 9238 struct Scsi_Host *shost; 9239 struct lpfc_adapter_event_header adapter_event; 9240 9241 /* Get the default values for Model Name and Description */ 9242 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 9243 9244 /* 9245 * hba setup may have changed the hba_queue_depth so we need to 9246 * adjust the value of can_queue. 9247 */ 9248 shost = pci_get_drvdata(phba->pcidev); 9249 shost->can_queue = phba->cfg_hba_queue_depth - 10; 9250 9251 lpfc_host_attrib_init(shost); 9252 9253 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 9254 spin_lock_irq(shost->host_lock); 9255 lpfc_poll_start_timer(phba); 9256 spin_unlock_irq(shost->host_lock); 9257 } 9258 9259 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9260 "0428 Perform SCSI scan\n"); 9261 /* Send board arrival event to upper layer */ 9262 adapter_event.event_type = FC_REG_ADAPTER_EVENT; 9263 adapter_event.subcategory = LPFC_EVENT_ARRIVAL; 9264 fc_host_post_vendor_event(shost, fc_get_event_number(), 9265 sizeof(adapter_event), 9266 (char *) &adapter_event, 9267 LPFC_NL_VENDOR_ID); 9268 return; 9269 } 9270 9271 /** 9272 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. 9273 * @phba: pointer to lpfc hba data structure. 9274 * 9275 * This routine is invoked to set up the PCI device memory space for device 9276 * with SLI-3 interface spec. 9277 * 9278 * Return codes 9279 * 0 - successful 9280 * other values - error 9281 **/ 9282 static int 9283 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) 9284 { 9285 struct pci_dev *pdev = phba->pcidev; 9286 unsigned long bar0map_len, bar2map_len; 9287 int i, hbq_count; 9288 void *ptr; 9289 int error; 9290 9291 if (!pdev) 9292 return -ENODEV; 9293 9294 /* Set the device DMA mask size */ 9295 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 9296 if (error) 9297 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 9298 if (error) 9299 return error; 9300 error = -ENODEV; 9301 9302 /* Get the bus address of Bar0 and Bar2 and the number of bytes 9303 * required by each mapping. 9304 */ 9305 phba->pci_bar0_map = pci_resource_start(pdev, 0); 9306 bar0map_len = pci_resource_len(pdev, 0); 9307 9308 phba->pci_bar2_map = pci_resource_start(pdev, 2); 9309 bar2map_len = pci_resource_len(pdev, 2); 9310 9311 /* Map HBA SLIM to a kernel virtual address. */ 9312 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); 9313 if (!phba->slim_memmap_p) { 9314 dev_printk(KERN_ERR, &pdev->dev, 9315 "ioremap failed for SLIM memory.\n"); 9316 goto out; 9317 } 9318 9319 /* Map HBA Control Registers to a kernel virtual address. */ 9320 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); 9321 if (!phba->ctrl_regs_memmap_p) { 9322 dev_printk(KERN_ERR, &pdev->dev, 9323 "ioremap failed for HBA control registers.\n"); 9324 goto out_iounmap_slim; 9325 } 9326 9327 /* Allocate memory for SLI-2 structures */ 9328 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9329 &phba->slim2p.phys, GFP_KERNEL); 9330 if (!phba->slim2p.virt) 9331 goto out_iounmap; 9332 9333 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); 9334 phba->mbox_ext = (phba->slim2p.virt + 9335 offsetof(struct lpfc_sli2_slim, mbx_ext_words)); 9336 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); 9337 phba->IOCBs = (phba->slim2p.virt + 9338 offsetof(struct lpfc_sli2_slim, IOCBs)); 9339 9340 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, 9341 lpfc_sli_hbq_size(), 9342 &phba->hbqslimp.phys, 9343 GFP_KERNEL); 9344 if (!phba->hbqslimp.virt) 9345 goto out_free_slim; 9346 9347 hbq_count = lpfc_sli_hbq_count(); 9348 ptr = phba->hbqslimp.virt; 9349 for (i = 0; i < hbq_count; ++i) { 9350 phba->hbqs[i].hbq_virt = ptr; 9351 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); 9352 ptr += (lpfc_hbq_defs[i]->entry_count * 9353 sizeof(struct lpfc_hbq_entry)); 9354 } 9355 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; 9356 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; 9357 9358 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); 9359 9360 phba->MBslimaddr = phba->slim_memmap_p; 9361 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; 9362 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; 9363 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; 9364 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; 9365 9366 return 0; 9367 9368 out_free_slim: 9369 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9370 phba->slim2p.virt, phba->slim2p.phys); 9371 out_iounmap: 9372 iounmap(phba->ctrl_regs_memmap_p); 9373 out_iounmap_slim: 9374 iounmap(phba->slim_memmap_p); 9375 out: 9376 return error; 9377 } 9378 9379 /** 9380 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. 9381 * @phba: pointer to lpfc hba data structure. 9382 * 9383 * This routine is invoked to unset the PCI device memory space for device 9384 * with SLI-3 interface spec. 9385 **/ 9386 static void 9387 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) 9388 { 9389 struct pci_dev *pdev; 9390 9391 /* Obtain PCI device reference */ 9392 if (!phba->pcidev) 9393 return; 9394 else 9395 pdev = phba->pcidev; 9396 9397 /* Free coherent DMA memory allocated */ 9398 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 9399 phba->hbqslimp.virt, phba->hbqslimp.phys); 9400 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 9401 phba->slim2p.virt, phba->slim2p.phys); 9402 9403 /* I/O memory unmap */ 9404 iounmap(phba->ctrl_regs_memmap_p); 9405 iounmap(phba->slim_memmap_p); 9406 9407 return; 9408 } 9409 9410 /** 9411 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status 9412 * @phba: pointer to lpfc hba data structure. 9413 * 9414 * This routine is invoked to wait for SLI4 device Power On Self Test (POST) 9415 * done and check status. 9416 * 9417 * Return 0 if successful, otherwise -ENODEV. 9418 **/ 9419 int 9420 lpfc_sli4_post_status_check(struct lpfc_hba *phba) 9421 { 9422 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; 9423 struct lpfc_register reg_data; 9424 int i, port_error = 0; 9425 uint32_t if_type; 9426 9427 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); 9428 memset(®_data, 0, sizeof(reg_data)); 9429 if (!phba->sli4_hba.PSMPHRregaddr) 9430 return -ENODEV; 9431 9432 /* Wait up to 30 seconds for the SLI Port POST done and ready */ 9433 for (i = 0; i < 3000; i++) { 9434 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 9435 &portsmphr_reg.word0) || 9436 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { 9437 /* Port has a fatal POST error, break out */ 9438 port_error = -ENODEV; 9439 break; 9440 } 9441 if (LPFC_POST_STAGE_PORT_READY == 9442 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) 9443 break; 9444 msleep(10); 9445 } 9446 9447 /* 9448 * If there was a port error during POST, then don't proceed with 9449 * other register reads as the data may not be valid. Just exit. 9450 */ 9451 if (port_error) { 9452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9453 "1408 Port Failed POST - portsmphr=0x%x, " 9454 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " 9455 "scr2=x%x, hscratch=x%x, pstatus=x%x\n", 9456 portsmphr_reg.word0, 9457 bf_get(lpfc_port_smphr_perr, &portsmphr_reg), 9458 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), 9459 bf_get(lpfc_port_smphr_nip, &portsmphr_reg), 9460 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), 9461 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), 9462 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), 9463 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), 9464 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); 9465 } else { 9466 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9467 "2534 Device Info: SLIFamily=0x%x, " 9468 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " 9469 "SLIHint_2=0x%x, FT=0x%x\n", 9470 bf_get(lpfc_sli_intf_sli_family, 9471 &phba->sli4_hba.sli_intf), 9472 bf_get(lpfc_sli_intf_slirev, 9473 &phba->sli4_hba.sli_intf), 9474 bf_get(lpfc_sli_intf_if_type, 9475 &phba->sli4_hba.sli_intf), 9476 bf_get(lpfc_sli_intf_sli_hint1, 9477 &phba->sli4_hba.sli_intf), 9478 bf_get(lpfc_sli_intf_sli_hint2, 9479 &phba->sli4_hba.sli_intf), 9480 bf_get(lpfc_sli_intf_func_type, 9481 &phba->sli4_hba.sli_intf)); 9482 /* 9483 * Check for other Port errors during the initialization 9484 * process. Fail the load if the port did not come up 9485 * correctly. 9486 */ 9487 if_type = bf_get(lpfc_sli_intf_if_type, 9488 &phba->sli4_hba.sli_intf); 9489 switch (if_type) { 9490 case LPFC_SLI_INTF_IF_TYPE_0: 9491 phba->sli4_hba.ue_mask_lo = 9492 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); 9493 phba->sli4_hba.ue_mask_hi = 9494 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); 9495 uerrlo_reg.word0 = 9496 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); 9497 uerrhi_reg.word0 = 9498 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); 9499 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || 9500 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { 9501 lpfc_printf_log(phba, KERN_ERR, 9502 LOG_TRACE_EVENT, 9503 "1422 Unrecoverable Error " 9504 "Detected during POST " 9505 "uerr_lo_reg=0x%x, " 9506 "uerr_hi_reg=0x%x, " 9507 "ue_mask_lo_reg=0x%x, " 9508 "ue_mask_hi_reg=0x%x\n", 9509 uerrlo_reg.word0, 9510 uerrhi_reg.word0, 9511 phba->sli4_hba.ue_mask_lo, 9512 phba->sli4_hba.ue_mask_hi); 9513 port_error = -ENODEV; 9514 } 9515 break; 9516 case LPFC_SLI_INTF_IF_TYPE_2: 9517 case LPFC_SLI_INTF_IF_TYPE_6: 9518 /* Final checks. The port status should be clean. */ 9519 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9520 ®_data.word0) || 9521 (bf_get(lpfc_sliport_status_err, ®_data) && 9522 !bf_get(lpfc_sliport_status_rn, ®_data))) { 9523 phba->work_status[0] = 9524 readl(phba->sli4_hba.u.if_type2. 9525 ERR1regaddr); 9526 phba->work_status[1] = 9527 readl(phba->sli4_hba.u.if_type2. 9528 ERR2regaddr); 9529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9530 "2888 Unrecoverable port error " 9531 "following POST: port status reg " 9532 "0x%x, port_smphr reg 0x%x, " 9533 "error 1=0x%x, error 2=0x%x\n", 9534 reg_data.word0, 9535 portsmphr_reg.word0, 9536 phba->work_status[0], 9537 phba->work_status[1]); 9538 port_error = -ENODEV; 9539 break; 9540 } 9541 9542 if (lpfc_pldv_detect && 9543 bf_get(lpfc_sli_intf_sli_family, 9544 &phba->sli4_hba.sli_intf) == 9545 LPFC_SLI_INTF_FAMILY_G6) 9546 pci_write_config_byte(phba->pcidev, 9547 LPFC_SLI_INTF, CFG_PLD); 9548 break; 9549 case LPFC_SLI_INTF_IF_TYPE_1: 9550 default: 9551 break; 9552 } 9553 } 9554 return port_error; 9555 } 9556 9557 /** 9558 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. 9559 * @phba: pointer to lpfc hba data structure. 9560 * @if_type: The SLI4 interface type getting configured. 9561 * 9562 * This routine is invoked to set up SLI4 BAR0 PCI config space register 9563 * memory map. 9564 **/ 9565 static void 9566 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9567 { 9568 switch (if_type) { 9569 case LPFC_SLI_INTF_IF_TYPE_0: 9570 phba->sli4_hba.u.if_type0.UERRLOregaddr = 9571 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; 9572 phba->sli4_hba.u.if_type0.UERRHIregaddr = 9573 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; 9574 phba->sli4_hba.u.if_type0.UEMASKLOregaddr = 9575 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; 9576 phba->sli4_hba.u.if_type0.UEMASKHIregaddr = 9577 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; 9578 phba->sli4_hba.SLIINTFregaddr = 9579 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9580 break; 9581 case LPFC_SLI_INTF_IF_TYPE_2: 9582 phba->sli4_hba.u.if_type2.EQDregaddr = 9583 phba->sli4_hba.conf_regs_memmap_p + 9584 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9585 phba->sli4_hba.u.if_type2.ERR1regaddr = 9586 phba->sli4_hba.conf_regs_memmap_p + 9587 LPFC_CTL_PORT_ER1_OFFSET; 9588 phba->sli4_hba.u.if_type2.ERR2regaddr = 9589 phba->sli4_hba.conf_regs_memmap_p + 9590 LPFC_CTL_PORT_ER2_OFFSET; 9591 phba->sli4_hba.u.if_type2.CTRLregaddr = 9592 phba->sli4_hba.conf_regs_memmap_p + 9593 LPFC_CTL_PORT_CTL_OFFSET; 9594 phba->sli4_hba.u.if_type2.STATUSregaddr = 9595 phba->sli4_hba.conf_regs_memmap_p + 9596 LPFC_CTL_PORT_STA_OFFSET; 9597 phba->sli4_hba.SLIINTFregaddr = 9598 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; 9599 phba->sli4_hba.PSMPHRregaddr = 9600 phba->sli4_hba.conf_regs_memmap_p + 9601 LPFC_CTL_PORT_SEM_OFFSET; 9602 phba->sli4_hba.RQDBregaddr = 9603 phba->sli4_hba.conf_regs_memmap_p + 9604 LPFC_ULP0_RQ_DOORBELL; 9605 phba->sli4_hba.WQDBregaddr = 9606 phba->sli4_hba.conf_regs_memmap_p + 9607 LPFC_ULP0_WQ_DOORBELL; 9608 phba->sli4_hba.CQDBregaddr = 9609 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; 9610 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9611 phba->sli4_hba.MQDBregaddr = 9612 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; 9613 phba->sli4_hba.BMBXregaddr = 9614 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9615 break; 9616 case LPFC_SLI_INTF_IF_TYPE_6: 9617 phba->sli4_hba.u.if_type2.EQDregaddr = 9618 phba->sli4_hba.conf_regs_memmap_p + 9619 LPFC_CTL_PORT_EQ_DELAY_OFFSET; 9620 phba->sli4_hba.u.if_type2.ERR1regaddr = 9621 phba->sli4_hba.conf_regs_memmap_p + 9622 LPFC_CTL_PORT_ER1_OFFSET; 9623 phba->sli4_hba.u.if_type2.ERR2regaddr = 9624 phba->sli4_hba.conf_regs_memmap_p + 9625 LPFC_CTL_PORT_ER2_OFFSET; 9626 phba->sli4_hba.u.if_type2.CTRLregaddr = 9627 phba->sli4_hba.conf_regs_memmap_p + 9628 LPFC_CTL_PORT_CTL_OFFSET; 9629 phba->sli4_hba.u.if_type2.STATUSregaddr = 9630 phba->sli4_hba.conf_regs_memmap_p + 9631 LPFC_CTL_PORT_STA_OFFSET; 9632 phba->sli4_hba.PSMPHRregaddr = 9633 phba->sli4_hba.conf_regs_memmap_p + 9634 LPFC_CTL_PORT_SEM_OFFSET; 9635 phba->sli4_hba.BMBXregaddr = 9636 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; 9637 break; 9638 case LPFC_SLI_INTF_IF_TYPE_1: 9639 default: 9640 dev_printk(KERN_ERR, &phba->pcidev->dev, 9641 "FATAL - unsupported SLI4 interface type - %d\n", 9642 if_type); 9643 break; 9644 } 9645 } 9646 9647 /** 9648 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. 9649 * @phba: pointer to lpfc hba data structure. 9650 * @if_type: sli if type to operate on. 9651 * 9652 * This routine is invoked to set up SLI4 BAR1 register memory map. 9653 **/ 9654 static void 9655 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) 9656 { 9657 switch (if_type) { 9658 case LPFC_SLI_INTF_IF_TYPE_0: 9659 phba->sli4_hba.PSMPHRregaddr = 9660 phba->sli4_hba.ctrl_regs_memmap_p + 9661 LPFC_SLIPORT_IF0_SMPHR; 9662 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9663 LPFC_HST_ISR0; 9664 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9665 LPFC_HST_IMR0; 9666 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + 9667 LPFC_HST_ISCR0; 9668 break; 9669 case LPFC_SLI_INTF_IF_TYPE_6: 9670 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9671 LPFC_IF6_RQ_DOORBELL; 9672 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9673 LPFC_IF6_WQ_DOORBELL; 9674 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9675 LPFC_IF6_CQ_DOORBELL; 9676 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9677 LPFC_IF6_EQ_DOORBELL; 9678 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + 9679 LPFC_IF6_MQ_DOORBELL; 9680 break; 9681 case LPFC_SLI_INTF_IF_TYPE_2: 9682 case LPFC_SLI_INTF_IF_TYPE_1: 9683 default: 9684 dev_err(&phba->pcidev->dev, 9685 "FATAL - unsupported SLI4 interface type - %d\n", 9686 if_type); 9687 break; 9688 } 9689 } 9690 9691 /** 9692 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. 9693 * @phba: pointer to lpfc hba data structure. 9694 * @vf: virtual function number 9695 * 9696 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map 9697 * based on the given viftual function number, @vf. 9698 * 9699 * Return 0 if successful, otherwise -ENODEV. 9700 **/ 9701 static int 9702 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) 9703 { 9704 if (vf > LPFC_VIR_FUNC_MAX) 9705 return -ENODEV; 9706 9707 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9708 vf * LPFC_VFR_PAGE_SIZE + 9709 LPFC_ULP0_RQ_DOORBELL); 9710 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9711 vf * LPFC_VFR_PAGE_SIZE + 9712 LPFC_ULP0_WQ_DOORBELL); 9713 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9714 vf * LPFC_VFR_PAGE_SIZE + 9715 LPFC_EQCQ_DOORBELL); 9716 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; 9717 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9718 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); 9719 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + 9720 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); 9721 return 0; 9722 } 9723 9724 /** 9725 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox 9726 * @phba: pointer to lpfc hba data structure. 9727 * 9728 * This routine is invoked to create the bootstrap mailbox 9729 * region consistent with the SLI-4 interface spec. This 9730 * routine allocates all memory necessary to communicate 9731 * mailbox commands to the port and sets up all alignment 9732 * needs. No locks are expected to be held when calling 9733 * this routine. 9734 * 9735 * Return codes 9736 * 0 - successful 9737 * -ENOMEM - could not allocated memory. 9738 **/ 9739 static int 9740 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) 9741 { 9742 uint32_t bmbx_size; 9743 struct lpfc_dmabuf *dmabuf; 9744 struct dma_address *dma_address; 9745 uint32_t pa_addr; 9746 uint64_t phys_addr; 9747 9748 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 9749 if (!dmabuf) 9750 return -ENOMEM; 9751 9752 /* 9753 * The bootstrap mailbox region is comprised of 2 parts 9754 * plus an alignment restriction of 16 bytes. 9755 */ 9756 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); 9757 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, 9758 &dmabuf->phys, GFP_KERNEL); 9759 if (!dmabuf->virt) { 9760 kfree(dmabuf); 9761 return -ENOMEM; 9762 } 9763 9764 /* 9765 * Initialize the bootstrap mailbox pointers now so that the register 9766 * operations are simple later. The mailbox dma address is required 9767 * to be 16-byte aligned. Also align the virtual memory as each 9768 * maibox is copied into the bmbx mailbox region before issuing the 9769 * command to the port. 9770 */ 9771 phba->sli4_hba.bmbx.dmabuf = dmabuf; 9772 phba->sli4_hba.bmbx.bmbx_size = bmbx_size; 9773 9774 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, 9775 LPFC_ALIGN_16_BYTE); 9776 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, 9777 LPFC_ALIGN_16_BYTE); 9778 9779 /* 9780 * Set the high and low physical addresses now. The SLI4 alignment 9781 * requirement is 16 bytes and the mailbox is posted to the port 9782 * as two 30-bit addresses. The other data is a bit marking whether 9783 * the 30-bit address is the high or low address. 9784 * Upcast bmbx aphys to 64bits so shift instruction compiles 9785 * clean on 32 bit machines. 9786 */ 9787 dma_address = &phba->sli4_hba.bmbx.dma_address; 9788 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; 9789 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); 9790 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | 9791 LPFC_BMBX_BIT1_ADDR_HI); 9792 9793 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); 9794 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | 9795 LPFC_BMBX_BIT1_ADDR_LO); 9796 return 0; 9797 } 9798 9799 /** 9800 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources 9801 * @phba: pointer to lpfc hba data structure. 9802 * 9803 * This routine is invoked to teardown the bootstrap mailbox 9804 * region and release all host resources. This routine requires 9805 * the caller to ensure all mailbox commands recovered, no 9806 * additional mailbox comands are sent, and interrupts are disabled 9807 * before calling this routine. 9808 * 9809 **/ 9810 static void 9811 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) 9812 { 9813 dma_free_coherent(&phba->pcidev->dev, 9814 phba->sli4_hba.bmbx.bmbx_size, 9815 phba->sli4_hba.bmbx.dmabuf->virt, 9816 phba->sli4_hba.bmbx.dmabuf->phys); 9817 9818 kfree(phba->sli4_hba.bmbx.dmabuf); 9819 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); 9820 } 9821 9822 static const char * const lpfc_topo_to_str[] = { 9823 "Loop then P2P", 9824 "Loopback", 9825 "P2P Only", 9826 "Unsupported", 9827 "Loop Only", 9828 "Unsupported", 9829 "P2P then Loop", 9830 }; 9831 9832 #define LINK_FLAGS_DEF 0x0 9833 #define LINK_FLAGS_P2P 0x1 9834 #define LINK_FLAGS_LOOP 0x2 9835 /** 9836 * lpfc_map_topology - Map the topology read from READ_CONFIG 9837 * @phba: pointer to lpfc hba data structure. 9838 * @rd_config: pointer to read config data 9839 * 9840 * This routine is invoked to map the topology values as read 9841 * from the read config mailbox command. If the persistent 9842 * topology feature is supported, the firmware will provide the 9843 * saved topology information to be used in INIT_LINK 9844 **/ 9845 static void 9846 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) 9847 { 9848 u8 ptv, tf, pt; 9849 9850 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); 9851 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); 9852 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); 9853 9854 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9855 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", 9856 ptv, tf, pt); 9857 if (!ptv) { 9858 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9859 "2019 FW does not support persistent topology " 9860 "Using driver parameter defined value [%s]", 9861 lpfc_topo_to_str[phba->cfg_topology]); 9862 return; 9863 } 9864 /* FW supports persistent topology - override module parameter value */ 9865 phba->hba_flag |= HBA_PERSISTENT_TOPO; 9866 9867 /* if ASIC_GEN_NUM >= 0xC) */ 9868 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 9869 LPFC_SLI_INTF_IF_TYPE_6) || 9870 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 9871 LPFC_SLI_INTF_FAMILY_G6)) { 9872 if (!tf) { 9873 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) 9874 ? FLAGS_TOPOLOGY_MODE_LOOP 9875 : FLAGS_TOPOLOGY_MODE_PT_PT); 9876 } else { 9877 phba->hba_flag &= ~HBA_PERSISTENT_TOPO; 9878 } 9879 } else { /* G5 */ 9880 if (tf) { 9881 /* If topology failover set - pt is '0' or '1' */ 9882 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : 9883 FLAGS_TOPOLOGY_MODE_LOOP_PT); 9884 } else { 9885 phba->cfg_topology = ((pt == LINK_FLAGS_P2P) 9886 ? FLAGS_TOPOLOGY_MODE_PT_PT 9887 : FLAGS_TOPOLOGY_MODE_LOOP); 9888 } 9889 } 9890 if (phba->hba_flag & HBA_PERSISTENT_TOPO) { 9891 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9892 "2020 Using persistent topology value [%s]", 9893 lpfc_topo_to_str[phba->cfg_topology]); 9894 } else { 9895 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9896 "2021 Invalid topology values from FW " 9897 "Using driver parameter defined value [%s]", 9898 lpfc_topo_to_str[phba->cfg_topology]); 9899 } 9900 } 9901 9902 /** 9903 * lpfc_sli4_read_config - Get the config parameters. 9904 * @phba: pointer to lpfc hba data structure. 9905 * 9906 * This routine is invoked to read the configuration parameters from the HBA. 9907 * The configuration parameters are used to set the base and maximum values 9908 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource 9909 * allocation for the port. 9910 * 9911 * Return codes 9912 * 0 - successful 9913 * -ENOMEM - No available memory 9914 * -EIO - The mailbox failed to complete successfully. 9915 **/ 9916 int 9917 lpfc_sli4_read_config(struct lpfc_hba *phba) 9918 { 9919 LPFC_MBOXQ_t *pmb; 9920 struct lpfc_mbx_read_config *rd_config; 9921 union lpfc_sli4_cfg_shdr *shdr; 9922 uint32_t shdr_status, shdr_add_status; 9923 struct lpfc_mbx_get_func_cfg *get_func_cfg; 9924 struct lpfc_rsrc_desc_fcfcoe *desc; 9925 char *pdesc_0; 9926 uint16_t forced_link_speed; 9927 uint32_t if_type, qmin, fawwpn; 9928 int length, i, rc = 0, rc2; 9929 9930 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 9931 if (!pmb) { 9932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9933 "2011 Unable to allocate memory for issuing " 9934 "SLI_CONFIG_SPECIAL mailbox command\n"); 9935 return -ENOMEM; 9936 } 9937 9938 lpfc_read_config(phba, pmb); 9939 9940 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 9941 if (rc != MBX_SUCCESS) { 9942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9943 "2012 Mailbox failed , mbxCmd x%x " 9944 "READ_CONFIG, mbxStatus x%x\n", 9945 bf_get(lpfc_mqe_command, &pmb->u.mqe), 9946 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 9947 rc = -EIO; 9948 } else { 9949 rd_config = &pmb->u.mqe.un.rd_config; 9950 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { 9951 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 9952 phba->sli4_hba.lnk_info.lnk_tp = 9953 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); 9954 phba->sli4_hba.lnk_info.lnk_no = 9955 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); 9956 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9957 "3081 lnk_type:%d, lnk_numb:%d\n", 9958 phba->sli4_hba.lnk_info.lnk_tp, 9959 phba->sli4_hba.lnk_info.lnk_no); 9960 } else 9961 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9962 "3082 Mailbox (x%x) returned ldv:x0\n", 9963 bf_get(lpfc_mqe_command, &pmb->u.mqe)); 9964 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { 9965 phba->bbcredit_support = 1; 9966 phba->sli4_hba.bbscn_params.word0 = rd_config->word8; 9967 } 9968 9969 fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); 9970 9971 if (fawwpn) { 9972 lpfc_printf_log(phba, KERN_INFO, 9973 LOG_INIT | LOG_DISCOVERY, 9974 "2702 READ_CONFIG: FA-PWWN is " 9975 "configured on\n"); 9976 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; 9977 } else { 9978 phba->sli4_hba.fawwpn_flag = 0; 9979 } 9980 9981 phba->sli4_hba.conf_trunk = 9982 bf_get(lpfc_mbx_rd_conf_trunk, rd_config); 9983 phba->sli4_hba.extents_in_use = 9984 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); 9985 9986 phba->sli4_hba.max_cfg_param.max_xri = 9987 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); 9988 /* Reduce resource usage in kdump environment */ 9989 if (is_kdump_kernel() && 9990 phba->sli4_hba.max_cfg_param.max_xri > 512) 9991 phba->sli4_hba.max_cfg_param.max_xri = 512; 9992 phba->sli4_hba.max_cfg_param.xri_base = 9993 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); 9994 phba->sli4_hba.max_cfg_param.max_vpi = 9995 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); 9996 /* Limit the max we support */ 9997 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) 9998 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; 9999 phba->sli4_hba.max_cfg_param.vpi_base = 10000 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); 10001 phba->sli4_hba.max_cfg_param.max_rpi = 10002 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); 10003 phba->sli4_hba.max_cfg_param.rpi_base = 10004 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); 10005 phba->sli4_hba.max_cfg_param.max_vfi = 10006 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); 10007 phba->sli4_hba.max_cfg_param.vfi_base = 10008 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); 10009 phba->sli4_hba.max_cfg_param.max_fcfi = 10010 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); 10011 phba->sli4_hba.max_cfg_param.max_eq = 10012 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); 10013 phba->sli4_hba.max_cfg_param.max_rq = 10014 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); 10015 phba->sli4_hba.max_cfg_param.max_wq = 10016 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); 10017 phba->sli4_hba.max_cfg_param.max_cq = 10018 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); 10019 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); 10020 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; 10021 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; 10022 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; 10023 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? 10024 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; 10025 phba->max_vports = phba->max_vpi; 10026 10027 /* Next decide on FPIN or Signal E2E CGN support 10028 * For congestion alarms and warnings valid combination are: 10029 * 1. FPIN alarms / FPIN warnings 10030 * 2. Signal alarms / Signal warnings 10031 * 3. FPIN alarms / Signal warnings 10032 * 4. Signal alarms / FPIN warnings 10033 * 10034 * Initialize the adapter frequency to 100 mSecs 10035 */ 10036 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10037 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 10038 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; 10039 10040 if (lpfc_use_cgn_signal) { 10041 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { 10042 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; 10043 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; 10044 } 10045 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { 10046 /* MUST support both alarm and warning 10047 * because EDC does not support alarm alone. 10048 */ 10049 if (phba->cgn_reg_signal != 10050 EDC_CG_SIG_WARN_ONLY) { 10051 /* Must support both or none */ 10052 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; 10053 phba->cgn_reg_signal = 10054 EDC_CG_SIG_NOTSUPPORTED; 10055 } else { 10056 phba->cgn_reg_signal = 10057 EDC_CG_SIG_WARN_ALARM; 10058 phba->cgn_reg_fpin = 10059 LPFC_CGN_FPIN_NONE; 10060 } 10061 } 10062 } 10063 10064 /* Set the congestion initial signal and fpin values. */ 10065 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; 10066 phba->cgn_init_reg_signal = phba->cgn_reg_signal; 10067 10068 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 10069 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", 10070 phba->cgn_reg_signal, phba->cgn_reg_fpin); 10071 10072 lpfc_map_topology(phba, rd_config); 10073 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10074 "2003 cfg params Extents? %d " 10075 "XRI(B:%d M:%d), " 10076 "VPI(B:%d M:%d) " 10077 "VFI(B:%d M:%d) " 10078 "RPI(B:%d M:%d) " 10079 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", 10080 phba->sli4_hba.extents_in_use, 10081 phba->sli4_hba.max_cfg_param.xri_base, 10082 phba->sli4_hba.max_cfg_param.max_xri, 10083 phba->sli4_hba.max_cfg_param.vpi_base, 10084 phba->sli4_hba.max_cfg_param.max_vpi, 10085 phba->sli4_hba.max_cfg_param.vfi_base, 10086 phba->sli4_hba.max_cfg_param.max_vfi, 10087 phba->sli4_hba.max_cfg_param.rpi_base, 10088 phba->sli4_hba.max_cfg_param.max_rpi, 10089 phba->sli4_hba.max_cfg_param.max_fcfi, 10090 phba->sli4_hba.max_cfg_param.max_eq, 10091 phba->sli4_hba.max_cfg_param.max_cq, 10092 phba->sli4_hba.max_cfg_param.max_wq, 10093 phba->sli4_hba.max_cfg_param.max_rq, 10094 phba->lmt); 10095 10096 /* 10097 * Calculate queue resources based on how 10098 * many WQ/CQ/EQs are available. 10099 */ 10100 qmin = phba->sli4_hba.max_cfg_param.max_wq; 10101 if (phba->sli4_hba.max_cfg_param.max_cq < qmin) 10102 qmin = phba->sli4_hba.max_cfg_param.max_cq; 10103 if (phba->sli4_hba.max_cfg_param.max_eq < qmin) 10104 qmin = phba->sli4_hba.max_cfg_param.max_eq; 10105 /* 10106 * Whats left after this can go toward NVME / FCP. 10107 * The minus 4 accounts for ELS, NVME LS, MBOX 10108 * plus one extra. When configured for 10109 * NVMET, FCP io channel WQs are not created. 10110 */ 10111 qmin -= 4; 10112 10113 /* Check to see if there is enough for NVME */ 10114 if ((phba->cfg_irq_chann > qmin) || 10115 (phba->cfg_hdw_queue > qmin)) { 10116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10117 "2005 Reducing Queues - " 10118 "FW resource limitation: " 10119 "WQ %d CQ %d EQ %d: min %d: " 10120 "IRQ %d HDWQ %d\n", 10121 phba->sli4_hba.max_cfg_param.max_wq, 10122 phba->sli4_hba.max_cfg_param.max_cq, 10123 phba->sli4_hba.max_cfg_param.max_eq, 10124 qmin, phba->cfg_irq_chann, 10125 phba->cfg_hdw_queue); 10126 10127 if (phba->cfg_irq_chann > qmin) 10128 phba->cfg_irq_chann = qmin; 10129 if (phba->cfg_hdw_queue > qmin) 10130 phba->cfg_hdw_queue = qmin; 10131 } 10132 } 10133 10134 if (rc) 10135 goto read_cfg_out; 10136 10137 /* Update link speed if forced link speed is supported */ 10138 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10139 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10140 forced_link_speed = 10141 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); 10142 if (forced_link_speed) { 10143 phba->hba_flag |= HBA_FORCED_LINK_SPEED; 10144 10145 switch (forced_link_speed) { 10146 case LINK_SPEED_1G: 10147 phba->cfg_link_speed = 10148 LPFC_USER_LINK_SPEED_1G; 10149 break; 10150 case LINK_SPEED_2G: 10151 phba->cfg_link_speed = 10152 LPFC_USER_LINK_SPEED_2G; 10153 break; 10154 case LINK_SPEED_4G: 10155 phba->cfg_link_speed = 10156 LPFC_USER_LINK_SPEED_4G; 10157 break; 10158 case LINK_SPEED_8G: 10159 phba->cfg_link_speed = 10160 LPFC_USER_LINK_SPEED_8G; 10161 break; 10162 case LINK_SPEED_10G: 10163 phba->cfg_link_speed = 10164 LPFC_USER_LINK_SPEED_10G; 10165 break; 10166 case LINK_SPEED_16G: 10167 phba->cfg_link_speed = 10168 LPFC_USER_LINK_SPEED_16G; 10169 break; 10170 case LINK_SPEED_32G: 10171 phba->cfg_link_speed = 10172 LPFC_USER_LINK_SPEED_32G; 10173 break; 10174 case LINK_SPEED_64G: 10175 phba->cfg_link_speed = 10176 LPFC_USER_LINK_SPEED_64G; 10177 break; 10178 case 0xffff: 10179 phba->cfg_link_speed = 10180 LPFC_USER_LINK_SPEED_AUTO; 10181 break; 10182 default: 10183 lpfc_printf_log(phba, KERN_ERR, 10184 LOG_TRACE_EVENT, 10185 "0047 Unrecognized link " 10186 "speed : %d\n", 10187 forced_link_speed); 10188 phba->cfg_link_speed = 10189 LPFC_USER_LINK_SPEED_AUTO; 10190 } 10191 } 10192 } 10193 10194 /* Reset the DFT_HBA_Q_DEPTH to the max xri */ 10195 length = phba->sli4_hba.max_cfg_param.max_xri - 10196 lpfc_sli4_get_els_iocb_cnt(phba); 10197 if (phba->cfg_hba_queue_depth > length) { 10198 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 10199 "3361 HBA queue depth changed from %d to %d\n", 10200 phba->cfg_hba_queue_depth, length); 10201 phba->cfg_hba_queue_depth = length; 10202 } 10203 10204 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 10205 LPFC_SLI_INTF_IF_TYPE_2) 10206 goto read_cfg_out; 10207 10208 /* get the pf# and vf# for SLI4 if_type 2 port */ 10209 length = (sizeof(struct lpfc_mbx_get_func_cfg) - 10210 sizeof(struct lpfc_sli4_cfg_mhdr)); 10211 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, 10212 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, 10213 length, LPFC_SLI4_MBX_EMBED); 10214 10215 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 10216 shdr = (union lpfc_sli4_cfg_shdr *) 10217 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 10218 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 10219 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 10220 if (rc2 || shdr_status || shdr_add_status) { 10221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10222 "3026 Mailbox failed , mbxCmd x%x " 10223 "GET_FUNCTION_CONFIG, mbxStatus x%x\n", 10224 bf_get(lpfc_mqe_command, &pmb->u.mqe), 10225 bf_get(lpfc_mqe_status, &pmb->u.mqe)); 10226 goto read_cfg_out; 10227 } 10228 10229 /* search for fc_fcoe resrouce descriptor */ 10230 get_func_cfg = &pmb->u.mqe.un.get_func_cfg; 10231 10232 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; 10233 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; 10234 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); 10235 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) 10236 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; 10237 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) 10238 goto read_cfg_out; 10239 10240 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { 10241 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); 10242 if (LPFC_RSRC_DESC_TYPE_FCFCOE == 10243 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { 10244 phba->sli4_hba.iov.pf_number = 10245 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); 10246 phba->sli4_hba.iov.vf_number = 10247 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); 10248 break; 10249 } 10250 } 10251 10252 if (i < LPFC_RSRC_DESC_MAX_NUM) 10253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10254 "3027 GET_FUNCTION_CONFIG: pf_number:%d, " 10255 "vf_number:%d\n", phba->sli4_hba.iov.pf_number, 10256 phba->sli4_hba.iov.vf_number); 10257 else 10258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10259 "3028 GET_FUNCTION_CONFIG: failed to find " 10260 "Resource Descriptor:x%x\n", 10261 LPFC_RSRC_DESC_TYPE_FCFCOE); 10262 10263 read_cfg_out: 10264 mempool_free(pmb, phba->mbox_mem_pool); 10265 return rc; 10266 } 10267 10268 /** 10269 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. 10270 * @phba: pointer to lpfc hba data structure. 10271 * 10272 * This routine is invoked to setup the port-side endian order when 10273 * the port if_type is 0. This routine has no function for other 10274 * if_types. 10275 * 10276 * Return codes 10277 * 0 - successful 10278 * -ENOMEM - No available memory 10279 * -EIO - The mailbox failed to complete successfully. 10280 **/ 10281 static int 10282 lpfc_setup_endian_order(struct lpfc_hba *phba) 10283 { 10284 LPFC_MBOXQ_t *mboxq; 10285 uint32_t if_type, rc = 0; 10286 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, 10287 HOST_ENDIAN_HIGH_WORD1}; 10288 10289 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10290 switch (if_type) { 10291 case LPFC_SLI_INTF_IF_TYPE_0: 10292 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 10293 GFP_KERNEL); 10294 if (!mboxq) { 10295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10296 "0492 Unable to allocate memory for " 10297 "issuing SLI_CONFIG_SPECIAL mailbox " 10298 "command\n"); 10299 return -ENOMEM; 10300 } 10301 10302 /* 10303 * The SLI4_CONFIG_SPECIAL mailbox command requires the first 10304 * two words to contain special data values and no other data. 10305 */ 10306 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); 10307 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); 10308 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 10309 if (rc != MBX_SUCCESS) { 10310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10311 "0493 SLI_CONFIG_SPECIAL mailbox " 10312 "failed with status x%x\n", 10313 rc); 10314 rc = -EIO; 10315 } 10316 mempool_free(mboxq, phba->mbox_mem_pool); 10317 break; 10318 case LPFC_SLI_INTF_IF_TYPE_6: 10319 case LPFC_SLI_INTF_IF_TYPE_2: 10320 case LPFC_SLI_INTF_IF_TYPE_1: 10321 default: 10322 break; 10323 } 10324 return rc; 10325 } 10326 10327 /** 10328 * lpfc_sli4_queue_verify - Verify and update EQ counts 10329 * @phba: pointer to lpfc hba data structure. 10330 * 10331 * This routine is invoked to check the user settable queue counts for EQs. 10332 * After this routine is called the counts will be set to valid values that 10333 * adhere to the constraints of the system's interrupt vectors and the port's 10334 * queue resources. 10335 * 10336 * Return codes 10337 * 0 - successful 10338 * -ENOMEM - No available memory 10339 **/ 10340 static int 10341 lpfc_sli4_queue_verify(struct lpfc_hba *phba) 10342 { 10343 /* 10344 * Sanity check for configured queue parameters against the run-time 10345 * device parameters 10346 */ 10347 10348 if (phba->nvmet_support) { 10349 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) 10350 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; 10351 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) 10352 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; 10353 } 10354 10355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10356 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", 10357 phba->cfg_hdw_queue, phba->cfg_irq_chann, 10358 phba->cfg_nvmet_mrq); 10359 10360 /* Get EQ depth from module parameter, fake the default for now */ 10361 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10362 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10363 10364 /* Get CQ depth from module parameter, fake the default for now */ 10365 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10366 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10367 return 0; 10368 } 10369 10370 static int 10371 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) 10372 { 10373 struct lpfc_queue *qdesc; 10374 u32 wqesize; 10375 int cpu; 10376 10377 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); 10378 /* Create Fast Path IO CQs */ 10379 if (phba->enab_exp_wqcq_pages) 10380 /* Increase the CQ size when WQEs contain an embedded cdb */ 10381 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10382 phba->sli4_hba.cq_esize, 10383 LPFC_CQE_EXP_COUNT, cpu); 10384 10385 else 10386 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10387 phba->sli4_hba.cq_esize, 10388 phba->sli4_hba.cq_ecount, cpu); 10389 if (!qdesc) { 10390 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10391 "0499 Failed allocate fast-path IO CQ (%d)\n", 10392 idx); 10393 return 1; 10394 } 10395 qdesc->qe_valid = 1; 10396 qdesc->hdwq = idx; 10397 qdesc->chann = cpu; 10398 phba->sli4_hba.hdwq[idx].io_cq = qdesc; 10399 10400 /* Create Fast Path IO WQs */ 10401 if (phba->enab_exp_wqcq_pages) { 10402 /* Increase the WQ size when WQEs contain an embedded cdb */ 10403 wqesize = (phba->fcp_embed_io) ? 10404 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; 10405 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, 10406 wqesize, 10407 LPFC_WQE_EXP_COUNT, cpu); 10408 } else 10409 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10410 phba->sli4_hba.wq_esize, 10411 phba->sli4_hba.wq_ecount, cpu); 10412 10413 if (!qdesc) { 10414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10415 "0503 Failed allocate fast-path IO WQ (%d)\n", 10416 idx); 10417 return 1; 10418 } 10419 qdesc->hdwq = idx; 10420 qdesc->chann = cpu; 10421 phba->sli4_hba.hdwq[idx].io_wq = qdesc; 10422 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10423 return 0; 10424 } 10425 10426 /** 10427 * lpfc_sli4_queue_create - Create all the SLI4 queues 10428 * @phba: pointer to lpfc hba data structure. 10429 * 10430 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA 10431 * operation. For each SLI4 queue type, the parameters such as queue entry 10432 * count (queue depth) shall be taken from the module parameter. For now, 10433 * we just use some constant number as place holder. 10434 * 10435 * Return codes 10436 * 0 - successful 10437 * -ENOMEM - No availble memory 10438 * -EIO - The mailbox failed to complete successfully. 10439 **/ 10440 int 10441 lpfc_sli4_queue_create(struct lpfc_hba *phba) 10442 { 10443 struct lpfc_queue *qdesc; 10444 int idx, cpu, eqcpu; 10445 struct lpfc_sli4_hdw_queue *qp; 10446 struct lpfc_vector_map_info *cpup; 10447 struct lpfc_vector_map_info *eqcpup; 10448 struct lpfc_eq_intr_info *eqi; 10449 10450 /* 10451 * Create HBA Record arrays. 10452 * Both NVME and FCP will share that same vectors / EQs 10453 */ 10454 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; 10455 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; 10456 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; 10457 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; 10458 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; 10459 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; 10460 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; 10461 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; 10462 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; 10463 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; 10464 10465 if (!phba->sli4_hba.hdwq) { 10466 phba->sli4_hba.hdwq = kcalloc( 10467 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), 10468 GFP_KERNEL); 10469 if (!phba->sli4_hba.hdwq) { 10470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10471 "6427 Failed allocate memory for " 10472 "fast-path Hardware Queue array\n"); 10473 goto out_error; 10474 } 10475 /* Prepare hardware queues to take IO buffers */ 10476 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10477 qp = &phba->sli4_hba.hdwq[idx]; 10478 spin_lock_init(&qp->io_buf_list_get_lock); 10479 spin_lock_init(&qp->io_buf_list_put_lock); 10480 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); 10481 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 10482 qp->get_io_bufs = 0; 10483 qp->put_io_bufs = 0; 10484 qp->total_io_bufs = 0; 10485 spin_lock_init(&qp->abts_io_buf_list_lock); 10486 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); 10487 qp->abts_scsi_io_bufs = 0; 10488 qp->abts_nvme_io_bufs = 0; 10489 INIT_LIST_HEAD(&qp->sgl_list); 10490 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); 10491 spin_lock_init(&qp->hdwq_lock); 10492 } 10493 } 10494 10495 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10496 if (phba->nvmet_support) { 10497 phba->sli4_hba.nvmet_cqset = kcalloc( 10498 phba->cfg_nvmet_mrq, 10499 sizeof(struct lpfc_queue *), 10500 GFP_KERNEL); 10501 if (!phba->sli4_hba.nvmet_cqset) { 10502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10503 "3121 Fail allocate memory for " 10504 "fast-path CQ set array\n"); 10505 goto out_error; 10506 } 10507 phba->sli4_hba.nvmet_mrq_hdr = kcalloc( 10508 phba->cfg_nvmet_mrq, 10509 sizeof(struct lpfc_queue *), 10510 GFP_KERNEL); 10511 if (!phba->sli4_hba.nvmet_mrq_hdr) { 10512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10513 "3122 Fail allocate memory for " 10514 "fast-path RQ set hdr array\n"); 10515 goto out_error; 10516 } 10517 phba->sli4_hba.nvmet_mrq_data = kcalloc( 10518 phba->cfg_nvmet_mrq, 10519 sizeof(struct lpfc_queue *), 10520 GFP_KERNEL); 10521 if (!phba->sli4_hba.nvmet_mrq_data) { 10522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10523 "3124 Fail allocate memory for " 10524 "fast-path RQ set data array\n"); 10525 goto out_error; 10526 } 10527 } 10528 } 10529 10530 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10531 10532 /* Create HBA Event Queues (EQs) */ 10533 for_each_present_cpu(cpu) { 10534 /* We only want to create 1 EQ per vector, even though 10535 * multiple CPUs might be using that vector. so only 10536 * selects the CPUs that are LPFC_CPU_FIRST_IRQ. 10537 */ 10538 cpup = &phba->sli4_hba.cpu_map[cpu]; 10539 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 10540 continue; 10541 10542 /* Get a ptr to the Hardware Queue associated with this CPU */ 10543 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10544 10545 /* Allocate an EQ */ 10546 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10547 phba->sli4_hba.eq_esize, 10548 phba->sli4_hba.eq_ecount, cpu); 10549 if (!qdesc) { 10550 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10551 "0497 Failed allocate EQ (%d)\n", 10552 cpup->hdwq); 10553 goto out_error; 10554 } 10555 qdesc->qe_valid = 1; 10556 qdesc->hdwq = cpup->hdwq; 10557 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ 10558 qdesc->last_cpu = qdesc->chann; 10559 10560 /* Save the allocated EQ in the Hardware Queue */ 10561 qp->hba_eq = qdesc; 10562 10563 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); 10564 list_add(&qdesc->cpu_list, &eqi->list); 10565 } 10566 10567 /* Now we need to populate the other Hardware Queues, that share 10568 * an IRQ vector, with the associated EQ ptr. 10569 */ 10570 for_each_present_cpu(cpu) { 10571 cpup = &phba->sli4_hba.cpu_map[cpu]; 10572 10573 /* Check for EQ already allocated in previous loop */ 10574 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 10575 continue; 10576 10577 /* Check for multiple CPUs per hdwq */ 10578 qp = &phba->sli4_hba.hdwq[cpup->hdwq]; 10579 if (qp->hba_eq) 10580 continue; 10581 10582 /* We need to share an EQ for this hdwq */ 10583 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); 10584 eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; 10585 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; 10586 } 10587 10588 /* Allocate IO Path SLI4 CQ/WQs */ 10589 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10590 if (lpfc_alloc_io_wq_cq(phba, idx)) 10591 goto out_error; 10592 } 10593 10594 if (phba->nvmet_support) { 10595 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10596 cpu = lpfc_find_cpu_handle(phba, idx, 10597 LPFC_FIND_BY_HDWQ); 10598 qdesc = lpfc_sli4_queue_alloc(phba, 10599 LPFC_DEFAULT_PAGE_SIZE, 10600 phba->sli4_hba.cq_esize, 10601 phba->sli4_hba.cq_ecount, 10602 cpu); 10603 if (!qdesc) { 10604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10605 "3142 Failed allocate NVME " 10606 "CQ Set (%d)\n", idx); 10607 goto out_error; 10608 } 10609 qdesc->qe_valid = 1; 10610 qdesc->hdwq = idx; 10611 qdesc->chann = cpu; 10612 phba->sli4_hba.nvmet_cqset[idx] = qdesc; 10613 } 10614 } 10615 10616 /* 10617 * Create Slow Path Completion Queues (CQs) 10618 */ 10619 10620 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); 10621 /* Create slow-path Mailbox Command Complete Queue */ 10622 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10623 phba->sli4_hba.cq_esize, 10624 phba->sli4_hba.cq_ecount, cpu); 10625 if (!qdesc) { 10626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10627 "0500 Failed allocate slow-path mailbox CQ\n"); 10628 goto out_error; 10629 } 10630 qdesc->qe_valid = 1; 10631 phba->sli4_hba.mbx_cq = qdesc; 10632 10633 /* Create slow-path ELS Complete Queue */ 10634 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10635 phba->sli4_hba.cq_esize, 10636 phba->sli4_hba.cq_ecount, cpu); 10637 if (!qdesc) { 10638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10639 "0501 Failed allocate slow-path ELS CQ\n"); 10640 goto out_error; 10641 } 10642 qdesc->qe_valid = 1; 10643 qdesc->chann = cpu; 10644 phba->sli4_hba.els_cq = qdesc; 10645 10646 10647 /* 10648 * Create Slow Path Work Queues (WQs) 10649 */ 10650 10651 /* Create Mailbox Command Queue */ 10652 10653 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10654 phba->sli4_hba.mq_esize, 10655 phba->sli4_hba.mq_ecount, cpu); 10656 if (!qdesc) { 10657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10658 "0505 Failed allocate slow-path MQ\n"); 10659 goto out_error; 10660 } 10661 qdesc->chann = cpu; 10662 phba->sli4_hba.mbx_wq = qdesc; 10663 10664 /* 10665 * Create ELS Work Queues 10666 */ 10667 10668 /* Create slow-path ELS Work Queue */ 10669 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10670 phba->sli4_hba.wq_esize, 10671 phba->sli4_hba.wq_ecount, cpu); 10672 if (!qdesc) { 10673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10674 "0504 Failed allocate slow-path ELS WQ\n"); 10675 goto out_error; 10676 } 10677 qdesc->chann = cpu; 10678 phba->sli4_hba.els_wq = qdesc; 10679 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10680 10681 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10682 /* Create NVME LS Complete Queue */ 10683 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10684 phba->sli4_hba.cq_esize, 10685 phba->sli4_hba.cq_ecount, cpu); 10686 if (!qdesc) { 10687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10688 "6079 Failed allocate NVME LS CQ\n"); 10689 goto out_error; 10690 } 10691 qdesc->chann = cpu; 10692 qdesc->qe_valid = 1; 10693 phba->sli4_hba.nvmels_cq = qdesc; 10694 10695 /* Create NVME LS Work Queue */ 10696 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10697 phba->sli4_hba.wq_esize, 10698 phba->sli4_hba.wq_ecount, cpu); 10699 if (!qdesc) { 10700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10701 "6080 Failed allocate NVME LS WQ\n"); 10702 goto out_error; 10703 } 10704 qdesc->chann = cpu; 10705 phba->sli4_hba.nvmels_wq = qdesc; 10706 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); 10707 } 10708 10709 /* 10710 * Create Receive Queue (RQ) 10711 */ 10712 10713 /* Create Receive Queue for header */ 10714 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10715 phba->sli4_hba.rq_esize, 10716 phba->sli4_hba.rq_ecount, cpu); 10717 if (!qdesc) { 10718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10719 "0506 Failed allocate receive HRQ\n"); 10720 goto out_error; 10721 } 10722 phba->sli4_hba.hdr_rq = qdesc; 10723 10724 /* Create Receive Queue for data */ 10725 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, 10726 phba->sli4_hba.rq_esize, 10727 phba->sli4_hba.rq_ecount, cpu); 10728 if (!qdesc) { 10729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10730 "0507 Failed allocate receive DRQ\n"); 10731 goto out_error; 10732 } 10733 phba->sli4_hba.dat_rq = qdesc; 10734 10735 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 10736 phba->nvmet_support) { 10737 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { 10738 cpu = lpfc_find_cpu_handle(phba, idx, 10739 LPFC_FIND_BY_HDWQ); 10740 /* Create NVMET Receive Queue for header */ 10741 qdesc = lpfc_sli4_queue_alloc(phba, 10742 LPFC_DEFAULT_PAGE_SIZE, 10743 phba->sli4_hba.rq_esize, 10744 LPFC_NVMET_RQE_DEF_COUNT, 10745 cpu); 10746 if (!qdesc) { 10747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10748 "3146 Failed allocate " 10749 "receive HRQ\n"); 10750 goto out_error; 10751 } 10752 qdesc->hdwq = idx; 10753 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; 10754 10755 /* Only needed for header of RQ pair */ 10756 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), 10757 GFP_KERNEL, 10758 cpu_to_node(cpu)); 10759 if (qdesc->rqbp == NULL) { 10760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10761 "6131 Failed allocate " 10762 "Header RQBP\n"); 10763 goto out_error; 10764 } 10765 10766 /* Put list in known state in case driver load fails. */ 10767 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); 10768 10769 /* Create NVMET Receive Queue for data */ 10770 qdesc = lpfc_sli4_queue_alloc(phba, 10771 LPFC_DEFAULT_PAGE_SIZE, 10772 phba->sli4_hba.rq_esize, 10773 LPFC_NVMET_RQE_DEF_COUNT, 10774 cpu); 10775 if (!qdesc) { 10776 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10777 "3156 Failed allocate " 10778 "receive DRQ\n"); 10779 goto out_error; 10780 } 10781 qdesc->hdwq = idx; 10782 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; 10783 } 10784 } 10785 10786 /* Clear NVME stats */ 10787 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10788 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10789 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, 10790 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); 10791 } 10792 } 10793 10794 /* Clear SCSI stats */ 10795 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 10796 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10797 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, 10798 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); 10799 } 10800 } 10801 10802 return 0; 10803 10804 out_error: 10805 lpfc_sli4_queue_destroy(phba); 10806 return -ENOMEM; 10807 } 10808 10809 static inline void 10810 __lpfc_sli4_release_queue(struct lpfc_queue **qp) 10811 { 10812 if (*qp != NULL) { 10813 lpfc_sli4_queue_free(*qp); 10814 *qp = NULL; 10815 } 10816 } 10817 10818 static inline void 10819 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) 10820 { 10821 int idx; 10822 10823 if (*qs == NULL) 10824 return; 10825 10826 for (idx = 0; idx < max; idx++) 10827 __lpfc_sli4_release_queue(&(*qs)[idx]); 10828 10829 kfree(*qs); 10830 *qs = NULL; 10831 } 10832 10833 static inline void 10834 lpfc_sli4_release_hdwq(struct lpfc_hba *phba) 10835 { 10836 struct lpfc_sli4_hdw_queue *hdwq; 10837 struct lpfc_queue *eq; 10838 uint32_t idx; 10839 10840 hdwq = phba->sli4_hba.hdwq; 10841 10842 /* Loop thru all Hardware Queues */ 10843 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 10844 /* Free the CQ/WQ corresponding to the Hardware Queue */ 10845 lpfc_sli4_queue_free(hdwq[idx].io_cq); 10846 lpfc_sli4_queue_free(hdwq[idx].io_wq); 10847 hdwq[idx].hba_eq = NULL; 10848 hdwq[idx].io_cq = NULL; 10849 hdwq[idx].io_wq = NULL; 10850 if (phba->cfg_xpsgl && !phba->nvmet_support) 10851 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); 10852 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); 10853 } 10854 /* Loop thru all IRQ vectors */ 10855 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 10856 /* Free the EQ corresponding to the IRQ vector */ 10857 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 10858 lpfc_sli4_queue_free(eq); 10859 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; 10860 } 10861 } 10862 10863 /** 10864 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues 10865 * @phba: pointer to lpfc hba data structure. 10866 * 10867 * This routine is invoked to release all the SLI4 queues with the FCoE HBA 10868 * operation. 10869 * 10870 * Return codes 10871 * 0 - successful 10872 * -ENOMEM - No available memory 10873 * -EIO - The mailbox failed to complete successfully. 10874 **/ 10875 void 10876 lpfc_sli4_queue_destroy(struct lpfc_hba *phba) 10877 { 10878 /* 10879 * Set FREE_INIT before beginning to free the queues. 10880 * Wait until the users of queues to acknowledge to 10881 * release queues by clearing FREE_WAIT. 10882 */ 10883 spin_lock_irq(&phba->hbalock); 10884 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; 10885 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { 10886 spin_unlock_irq(&phba->hbalock); 10887 msleep(20); 10888 spin_lock_irq(&phba->hbalock); 10889 } 10890 spin_unlock_irq(&phba->hbalock); 10891 10892 lpfc_sli4_cleanup_poll_list(phba); 10893 10894 /* Release HBA eqs */ 10895 if (phba->sli4_hba.hdwq) 10896 lpfc_sli4_release_hdwq(phba); 10897 10898 if (phba->nvmet_support) { 10899 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, 10900 phba->cfg_nvmet_mrq); 10901 10902 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, 10903 phba->cfg_nvmet_mrq); 10904 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, 10905 phba->cfg_nvmet_mrq); 10906 } 10907 10908 /* Release mailbox command work queue */ 10909 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); 10910 10911 /* Release ELS work queue */ 10912 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); 10913 10914 /* Release ELS work queue */ 10915 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); 10916 10917 /* Release unsolicited receive queue */ 10918 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); 10919 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); 10920 10921 /* Release ELS complete queue */ 10922 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); 10923 10924 /* Release NVME LS complete queue */ 10925 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); 10926 10927 /* Release mailbox command complete queue */ 10928 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); 10929 10930 /* Everything on this list has been freed */ 10931 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); 10932 10933 /* Done with freeing the queues */ 10934 spin_lock_irq(&phba->hbalock); 10935 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; 10936 spin_unlock_irq(&phba->hbalock); 10937 } 10938 10939 int 10940 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) 10941 { 10942 struct lpfc_rqb *rqbp; 10943 struct lpfc_dmabuf *h_buf; 10944 struct rqb_dmabuf *rqb_buffer; 10945 10946 rqbp = rq->rqbp; 10947 while (!list_empty(&rqbp->rqb_buffer_list)) { 10948 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 10949 struct lpfc_dmabuf, list); 10950 10951 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); 10952 (rqbp->rqb_free_buffer)(phba, rqb_buffer); 10953 rqbp->buffer_count--; 10954 } 10955 return 1; 10956 } 10957 10958 static int 10959 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, 10960 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, 10961 int qidx, uint32_t qtype) 10962 { 10963 struct lpfc_sli_ring *pring; 10964 int rc; 10965 10966 if (!eq || !cq || !wq) { 10967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10968 "6085 Fast-path %s (%d) not allocated\n", 10969 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); 10970 return -ENOMEM; 10971 } 10972 10973 /* create the Cq first */ 10974 rc = lpfc_cq_create(phba, cq, eq, 10975 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); 10976 if (rc) { 10977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10978 "6086 Failed setup of CQ (%d), rc = 0x%x\n", 10979 qidx, (uint32_t)rc); 10980 return rc; 10981 } 10982 10983 if (qtype != LPFC_MBOX) { 10984 /* Setup cq_map for fast lookup */ 10985 if (cq_map) 10986 *cq_map = cq->queue_id; 10987 10988 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 10989 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", 10990 qidx, cq->queue_id, qidx, eq->queue_id); 10991 10992 /* create the wq */ 10993 rc = lpfc_wq_create(phba, wq, cq, qtype); 10994 if (rc) { 10995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10996 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", 10997 qidx, (uint32_t)rc); 10998 /* no need to tear down cq - caller will do so */ 10999 return rc; 11000 } 11001 11002 /* Bind this CQ/WQ to the NVME ring */ 11003 pring = wq->pring; 11004 pring->sli.sli4.wqp = (void *)wq; 11005 cq->pring = pring; 11006 11007 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11008 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", 11009 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); 11010 } else { 11011 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); 11012 if (rc) { 11013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11014 "0539 Failed setup of slow-path MQ: " 11015 "rc = 0x%x\n", rc); 11016 /* no need to tear down cq - caller will do so */ 11017 return rc; 11018 } 11019 11020 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11021 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", 11022 phba->sli4_hba.mbx_wq->queue_id, 11023 phba->sli4_hba.mbx_cq->queue_id); 11024 } 11025 11026 return 0; 11027 } 11028 11029 /** 11030 * lpfc_setup_cq_lookup - Setup the CQ lookup table 11031 * @phba: pointer to lpfc hba data structure. 11032 * 11033 * This routine will populate the cq_lookup table by all 11034 * available CQ queue_id's. 11035 **/ 11036 static void 11037 lpfc_setup_cq_lookup(struct lpfc_hba *phba) 11038 { 11039 struct lpfc_queue *eq, *childq; 11040 int qidx; 11041 11042 memset(phba->sli4_hba.cq_lookup, 0, 11043 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); 11044 /* Loop thru all IRQ vectors */ 11045 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11046 /* Get the EQ corresponding to the IRQ vector */ 11047 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11048 if (!eq) 11049 continue; 11050 /* Loop through all CQs associated with that EQ */ 11051 list_for_each_entry(childq, &eq->child_list, list) { 11052 if (childq->queue_id > phba->sli4_hba.cq_max) 11053 continue; 11054 if (childq->subtype == LPFC_IO) 11055 phba->sli4_hba.cq_lookup[childq->queue_id] = 11056 childq; 11057 } 11058 } 11059 } 11060 11061 /** 11062 * lpfc_sli4_queue_setup - Set up all the SLI4 queues 11063 * @phba: pointer to lpfc hba data structure. 11064 * 11065 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA 11066 * operation. 11067 * 11068 * Return codes 11069 * 0 - successful 11070 * -ENOMEM - No available memory 11071 * -EIO - The mailbox failed to complete successfully. 11072 **/ 11073 int 11074 lpfc_sli4_queue_setup(struct lpfc_hba *phba) 11075 { 11076 uint32_t shdr_status, shdr_add_status; 11077 union lpfc_sli4_cfg_shdr *shdr; 11078 struct lpfc_vector_map_info *cpup; 11079 struct lpfc_sli4_hdw_queue *qp; 11080 LPFC_MBOXQ_t *mboxq; 11081 int qidx, cpu; 11082 uint32_t length, usdelay; 11083 int rc = -ENOMEM; 11084 11085 /* Check for dual-ULP support */ 11086 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 11087 if (!mboxq) { 11088 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11089 "3249 Unable to allocate memory for " 11090 "QUERY_FW_CFG mailbox command\n"); 11091 return -ENOMEM; 11092 } 11093 length = (sizeof(struct lpfc_mbx_query_fw_config) - 11094 sizeof(struct lpfc_sli4_cfg_mhdr)); 11095 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11096 LPFC_MBOX_OPCODE_QUERY_FW_CFG, 11097 length, LPFC_SLI4_MBX_EMBED); 11098 11099 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11100 11101 shdr = (union lpfc_sli4_cfg_shdr *) 11102 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11103 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11104 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 11105 if (shdr_status || shdr_add_status || rc) { 11106 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11107 "3250 QUERY_FW_CFG mailbox failed with status " 11108 "x%x add_status x%x, mbx status x%x\n", 11109 shdr_status, shdr_add_status, rc); 11110 mempool_free(mboxq, phba->mbox_mem_pool); 11111 rc = -ENXIO; 11112 goto out_error; 11113 } 11114 11115 phba->sli4_hba.fw_func_mode = 11116 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; 11117 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; 11118 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; 11119 phba->sli4_hba.physical_port = 11120 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; 11121 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11122 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " 11123 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, 11124 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); 11125 11126 mempool_free(mboxq, phba->mbox_mem_pool); 11127 11128 /* 11129 * Set up HBA Event Queues (EQs) 11130 */ 11131 qp = phba->sli4_hba.hdwq; 11132 11133 /* Set up HBA event queue */ 11134 if (!qp) { 11135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11136 "3147 Fast-path EQs not allocated\n"); 11137 rc = -ENOMEM; 11138 goto out_error; 11139 } 11140 11141 /* Loop thru all IRQ vectors */ 11142 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11143 /* Create HBA Event Queues (EQs) in order */ 11144 for_each_present_cpu(cpu) { 11145 cpup = &phba->sli4_hba.cpu_map[cpu]; 11146 11147 /* Look for the CPU thats using that vector with 11148 * LPFC_CPU_FIRST_IRQ set. 11149 */ 11150 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 11151 continue; 11152 if (qidx != cpup->eq) 11153 continue; 11154 11155 /* Create an EQ for that vector */ 11156 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, 11157 phba->cfg_fcp_imax); 11158 if (rc) { 11159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11160 "0523 Failed setup of fast-path" 11161 " EQ (%d), rc = 0x%x\n", 11162 cpup->eq, (uint32_t)rc); 11163 goto out_destroy; 11164 } 11165 11166 /* Save the EQ for that vector in the hba_eq_hdl */ 11167 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = 11168 qp[cpup->hdwq].hba_eq; 11169 11170 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11171 "2584 HBA EQ setup: queue[%d]-id=%d\n", 11172 cpup->eq, 11173 qp[cpup->hdwq].hba_eq->queue_id); 11174 } 11175 } 11176 11177 /* Loop thru all Hardware Queues */ 11178 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11179 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); 11180 cpup = &phba->sli4_hba.cpu_map[cpu]; 11181 11182 /* Create the CQ/WQ corresponding to the Hardware Queue */ 11183 rc = lpfc_create_wq_cq(phba, 11184 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, 11185 qp[qidx].io_cq, 11186 qp[qidx].io_wq, 11187 &phba->sli4_hba.hdwq[qidx].io_cq_map, 11188 qidx, 11189 LPFC_IO); 11190 if (rc) { 11191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11192 "0535 Failed to setup fastpath " 11193 "IO WQ/CQ (%d), rc = 0x%x\n", 11194 qidx, (uint32_t)rc); 11195 goto out_destroy; 11196 } 11197 } 11198 11199 /* 11200 * Set up Slow Path Complete Queues (CQs) 11201 */ 11202 11203 /* Set up slow-path MBOX CQ/MQ */ 11204 11205 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { 11206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11207 "0528 %s not allocated\n", 11208 phba->sli4_hba.mbx_cq ? 11209 "Mailbox WQ" : "Mailbox CQ"); 11210 rc = -ENOMEM; 11211 goto out_destroy; 11212 } 11213 11214 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11215 phba->sli4_hba.mbx_cq, 11216 phba->sli4_hba.mbx_wq, 11217 NULL, 0, LPFC_MBOX); 11218 if (rc) { 11219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11220 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", 11221 (uint32_t)rc); 11222 goto out_destroy; 11223 } 11224 if (phba->nvmet_support) { 11225 if (!phba->sli4_hba.nvmet_cqset) { 11226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11227 "3165 Fast-path NVME CQ Set " 11228 "array not allocated\n"); 11229 rc = -ENOMEM; 11230 goto out_destroy; 11231 } 11232 if (phba->cfg_nvmet_mrq > 1) { 11233 rc = lpfc_cq_create_set(phba, 11234 phba->sli4_hba.nvmet_cqset, 11235 qp, 11236 LPFC_WCQ, LPFC_NVMET); 11237 if (rc) { 11238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11239 "3164 Failed setup of NVME CQ " 11240 "Set, rc = 0x%x\n", 11241 (uint32_t)rc); 11242 goto out_destroy; 11243 } 11244 } else { 11245 /* Set up NVMET Receive Complete Queue */ 11246 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], 11247 qp[0].hba_eq, 11248 LPFC_WCQ, LPFC_NVMET); 11249 if (rc) { 11250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11251 "6089 Failed setup NVMET CQ: " 11252 "rc = 0x%x\n", (uint32_t)rc); 11253 goto out_destroy; 11254 } 11255 phba->sli4_hba.nvmet_cqset[0]->chann = 0; 11256 11257 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11258 "6090 NVMET CQ setup: cq-id=%d, " 11259 "parent eq-id=%d\n", 11260 phba->sli4_hba.nvmet_cqset[0]->queue_id, 11261 qp[0].hba_eq->queue_id); 11262 } 11263 } 11264 11265 /* Set up slow-path ELS WQ/CQ */ 11266 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { 11267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11268 "0530 ELS %s not allocated\n", 11269 phba->sli4_hba.els_cq ? "WQ" : "CQ"); 11270 rc = -ENOMEM; 11271 goto out_destroy; 11272 } 11273 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11274 phba->sli4_hba.els_cq, 11275 phba->sli4_hba.els_wq, 11276 NULL, 0, LPFC_ELS); 11277 if (rc) { 11278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11279 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", 11280 (uint32_t)rc); 11281 goto out_destroy; 11282 } 11283 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11284 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", 11285 phba->sli4_hba.els_wq->queue_id, 11286 phba->sli4_hba.els_cq->queue_id); 11287 11288 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11289 /* Set up NVME LS Complete Queue */ 11290 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { 11291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11292 "6091 LS %s not allocated\n", 11293 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); 11294 rc = -ENOMEM; 11295 goto out_destroy; 11296 } 11297 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, 11298 phba->sli4_hba.nvmels_cq, 11299 phba->sli4_hba.nvmels_wq, 11300 NULL, 0, LPFC_NVME_LS); 11301 if (rc) { 11302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11303 "0526 Failed setup of NVVME LS WQ/CQ: " 11304 "rc = 0x%x\n", (uint32_t)rc); 11305 goto out_destroy; 11306 } 11307 11308 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11309 "6096 ELS WQ setup: wq-id=%d, " 11310 "parent cq-id=%d\n", 11311 phba->sli4_hba.nvmels_wq->queue_id, 11312 phba->sli4_hba.nvmels_cq->queue_id); 11313 } 11314 11315 /* 11316 * Create NVMET Receive Queue (RQ) 11317 */ 11318 if (phba->nvmet_support) { 11319 if ((!phba->sli4_hba.nvmet_cqset) || 11320 (!phba->sli4_hba.nvmet_mrq_hdr) || 11321 (!phba->sli4_hba.nvmet_mrq_data)) { 11322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11323 "6130 MRQ CQ Queues not " 11324 "allocated\n"); 11325 rc = -ENOMEM; 11326 goto out_destroy; 11327 } 11328 if (phba->cfg_nvmet_mrq > 1) { 11329 rc = lpfc_mrq_create(phba, 11330 phba->sli4_hba.nvmet_mrq_hdr, 11331 phba->sli4_hba.nvmet_mrq_data, 11332 phba->sli4_hba.nvmet_cqset, 11333 LPFC_NVMET); 11334 if (rc) { 11335 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11336 "6098 Failed setup of NVMET " 11337 "MRQ: rc = 0x%x\n", 11338 (uint32_t)rc); 11339 goto out_destroy; 11340 } 11341 11342 } else { 11343 rc = lpfc_rq_create(phba, 11344 phba->sli4_hba.nvmet_mrq_hdr[0], 11345 phba->sli4_hba.nvmet_mrq_data[0], 11346 phba->sli4_hba.nvmet_cqset[0], 11347 LPFC_NVMET); 11348 if (rc) { 11349 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11350 "6057 Failed setup of NVMET " 11351 "Receive Queue: rc = 0x%x\n", 11352 (uint32_t)rc); 11353 goto out_destroy; 11354 } 11355 11356 lpfc_printf_log( 11357 phba, KERN_INFO, LOG_INIT, 11358 "6099 NVMET RQ setup: hdr-rq-id=%d, " 11359 "dat-rq-id=%d parent cq-id=%d\n", 11360 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, 11361 phba->sli4_hba.nvmet_mrq_data[0]->queue_id, 11362 phba->sli4_hba.nvmet_cqset[0]->queue_id); 11363 11364 } 11365 } 11366 11367 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { 11368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11369 "0540 Receive Queue not allocated\n"); 11370 rc = -ENOMEM; 11371 goto out_destroy; 11372 } 11373 11374 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 11375 phba->sli4_hba.els_cq, LPFC_USOL); 11376 if (rc) { 11377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11378 "0541 Failed setup of Receive Queue: " 11379 "rc = 0x%x\n", (uint32_t)rc); 11380 goto out_destroy; 11381 } 11382 11383 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 11384 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " 11385 "parent cq-id=%d\n", 11386 phba->sli4_hba.hdr_rq->queue_id, 11387 phba->sli4_hba.dat_rq->queue_id, 11388 phba->sli4_hba.els_cq->queue_id); 11389 11390 if (phba->cfg_fcp_imax) 11391 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; 11392 else 11393 usdelay = 0; 11394 11395 for (qidx = 0; qidx < phba->cfg_irq_chann; 11396 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) 11397 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, 11398 usdelay); 11399 11400 if (phba->sli4_hba.cq_max) { 11401 kfree(phba->sli4_hba.cq_lookup); 11402 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), 11403 sizeof(struct lpfc_queue *), GFP_KERNEL); 11404 if (!phba->sli4_hba.cq_lookup) { 11405 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11406 "0549 Failed setup of CQ Lookup table: " 11407 "size 0x%x\n", phba->sli4_hba.cq_max); 11408 rc = -ENOMEM; 11409 goto out_destroy; 11410 } 11411 lpfc_setup_cq_lookup(phba); 11412 } 11413 return 0; 11414 11415 out_destroy: 11416 lpfc_sli4_queue_unset(phba); 11417 out_error: 11418 return rc; 11419 } 11420 11421 /** 11422 * lpfc_sli4_queue_unset - Unset all the SLI4 queues 11423 * @phba: pointer to lpfc hba data structure. 11424 * 11425 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA 11426 * operation. 11427 * 11428 * Return codes 11429 * 0 - successful 11430 * -ENOMEM - No available memory 11431 * -EIO - The mailbox failed to complete successfully. 11432 **/ 11433 void 11434 lpfc_sli4_queue_unset(struct lpfc_hba *phba) 11435 { 11436 struct lpfc_sli4_hdw_queue *qp; 11437 struct lpfc_queue *eq; 11438 int qidx; 11439 11440 /* Unset mailbox command work queue */ 11441 if (phba->sli4_hba.mbx_wq) 11442 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); 11443 11444 /* Unset NVME LS work queue */ 11445 if (phba->sli4_hba.nvmels_wq) 11446 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); 11447 11448 /* Unset ELS work queue */ 11449 if (phba->sli4_hba.els_wq) 11450 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); 11451 11452 /* Unset unsolicited receive queue */ 11453 if (phba->sli4_hba.hdr_rq) 11454 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, 11455 phba->sli4_hba.dat_rq); 11456 11457 /* Unset mailbox command complete queue */ 11458 if (phba->sli4_hba.mbx_cq) 11459 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); 11460 11461 /* Unset ELS complete queue */ 11462 if (phba->sli4_hba.els_cq) 11463 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); 11464 11465 /* Unset NVME LS complete queue */ 11466 if (phba->sli4_hba.nvmels_cq) 11467 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); 11468 11469 if (phba->nvmet_support) { 11470 /* Unset NVMET MRQ queue */ 11471 if (phba->sli4_hba.nvmet_mrq_hdr) { 11472 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11473 lpfc_rq_destroy( 11474 phba, 11475 phba->sli4_hba.nvmet_mrq_hdr[qidx], 11476 phba->sli4_hba.nvmet_mrq_data[qidx]); 11477 } 11478 11479 /* Unset NVMET CQ Set complete queue */ 11480 if (phba->sli4_hba.nvmet_cqset) { 11481 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) 11482 lpfc_cq_destroy( 11483 phba, phba->sli4_hba.nvmet_cqset[qidx]); 11484 } 11485 } 11486 11487 /* Unset fast-path SLI4 queues */ 11488 if (phba->sli4_hba.hdwq) { 11489 /* Loop thru all Hardware Queues */ 11490 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 11491 /* Destroy the CQ/WQ corresponding to Hardware Queue */ 11492 qp = &phba->sli4_hba.hdwq[qidx]; 11493 lpfc_wq_destroy(phba, qp->io_wq); 11494 lpfc_cq_destroy(phba, qp->io_cq); 11495 } 11496 /* Loop thru all IRQ vectors */ 11497 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 11498 /* Destroy the EQ corresponding to the IRQ vector */ 11499 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 11500 lpfc_eq_destroy(phba, eq); 11501 } 11502 } 11503 11504 kfree(phba->sli4_hba.cq_lookup); 11505 phba->sli4_hba.cq_lookup = NULL; 11506 phba->sli4_hba.cq_max = 0; 11507 } 11508 11509 /** 11510 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool 11511 * @phba: pointer to lpfc hba data structure. 11512 * 11513 * This routine is invoked to allocate and set up a pool of completion queue 11514 * events. The body of the completion queue event is a completion queue entry 11515 * CQE. For now, this pool is used for the interrupt service routine to queue 11516 * the following HBA completion queue events for the worker thread to process: 11517 * - Mailbox asynchronous events 11518 * - Receive queue completion unsolicited events 11519 * Later, this can be used for all the slow-path events. 11520 * 11521 * Return codes 11522 * 0 - successful 11523 * -ENOMEM - No available memory 11524 **/ 11525 static int 11526 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) 11527 { 11528 struct lpfc_cq_event *cq_event; 11529 int i; 11530 11531 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { 11532 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); 11533 if (!cq_event) 11534 goto out_pool_create_fail; 11535 list_add_tail(&cq_event->list, 11536 &phba->sli4_hba.sp_cqe_event_pool); 11537 } 11538 return 0; 11539 11540 out_pool_create_fail: 11541 lpfc_sli4_cq_event_pool_destroy(phba); 11542 return -ENOMEM; 11543 } 11544 11545 /** 11546 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool 11547 * @phba: pointer to lpfc hba data structure. 11548 * 11549 * This routine is invoked to free the pool of completion queue events at 11550 * driver unload time. Note that, it is the responsibility of the driver 11551 * cleanup routine to free all the outstanding completion-queue events 11552 * allocated from this pool back into the pool before invoking this routine 11553 * to destroy the pool. 11554 **/ 11555 static void 11556 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) 11557 { 11558 struct lpfc_cq_event *cq_event, *next_cq_event; 11559 11560 list_for_each_entry_safe(cq_event, next_cq_event, 11561 &phba->sli4_hba.sp_cqe_event_pool, list) { 11562 list_del(&cq_event->list); 11563 kfree(cq_event); 11564 } 11565 } 11566 11567 /** 11568 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11569 * @phba: pointer to lpfc hba data structure. 11570 * 11571 * This routine is the lock free version of the API invoked to allocate a 11572 * completion-queue event from the free pool. 11573 * 11574 * Return: Pointer to the newly allocated completion-queue event if successful 11575 * NULL otherwise. 11576 **/ 11577 struct lpfc_cq_event * 11578 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11579 { 11580 struct lpfc_cq_event *cq_event = NULL; 11581 11582 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, 11583 struct lpfc_cq_event, list); 11584 return cq_event; 11585 } 11586 11587 /** 11588 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool 11589 * @phba: pointer to lpfc hba data structure. 11590 * 11591 * This routine is the lock version of the API invoked to allocate a 11592 * completion-queue event from the free pool. 11593 * 11594 * Return: Pointer to the newly allocated completion-queue event if successful 11595 * NULL otherwise. 11596 **/ 11597 struct lpfc_cq_event * 11598 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) 11599 { 11600 struct lpfc_cq_event *cq_event; 11601 unsigned long iflags; 11602 11603 spin_lock_irqsave(&phba->hbalock, iflags); 11604 cq_event = __lpfc_sli4_cq_event_alloc(phba); 11605 spin_unlock_irqrestore(&phba->hbalock, iflags); 11606 return cq_event; 11607 } 11608 11609 /** 11610 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11611 * @phba: pointer to lpfc hba data structure. 11612 * @cq_event: pointer to the completion queue event to be freed. 11613 * 11614 * This routine is the lock free version of the API invoked to release a 11615 * completion-queue event back into the free pool. 11616 **/ 11617 void 11618 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11619 struct lpfc_cq_event *cq_event) 11620 { 11621 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); 11622 } 11623 11624 /** 11625 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool 11626 * @phba: pointer to lpfc hba data structure. 11627 * @cq_event: pointer to the completion queue event to be freed. 11628 * 11629 * This routine is the lock version of the API invoked to release a 11630 * completion-queue event back into the free pool. 11631 **/ 11632 void 11633 lpfc_sli4_cq_event_release(struct lpfc_hba *phba, 11634 struct lpfc_cq_event *cq_event) 11635 { 11636 unsigned long iflags; 11637 spin_lock_irqsave(&phba->hbalock, iflags); 11638 __lpfc_sli4_cq_event_release(phba, cq_event); 11639 spin_unlock_irqrestore(&phba->hbalock, iflags); 11640 } 11641 11642 /** 11643 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool 11644 * @phba: pointer to lpfc hba data structure. 11645 * 11646 * This routine is to free all the pending completion-queue events to the 11647 * back into the free pool for device reset. 11648 **/ 11649 static void 11650 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) 11651 { 11652 LIST_HEAD(cq_event_list); 11653 struct lpfc_cq_event *cq_event; 11654 unsigned long iflags; 11655 11656 /* Retrieve all the pending WCQEs from pending WCQE lists */ 11657 11658 /* Pending ELS XRI abort events */ 11659 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11660 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11661 &cq_event_list); 11662 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 11663 11664 /* Pending asynnc events */ 11665 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 11666 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, 11667 &cq_event_list); 11668 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 11669 11670 while (!list_empty(&cq_event_list)) { 11671 list_remove_head(&cq_event_list, cq_event, 11672 struct lpfc_cq_event, list); 11673 lpfc_sli4_cq_event_release(phba, cq_event); 11674 } 11675 } 11676 11677 /** 11678 * lpfc_pci_function_reset - Reset pci function. 11679 * @phba: pointer to lpfc hba data structure. 11680 * 11681 * This routine is invoked to request a PCI function reset. It will destroys 11682 * all resources assigned to the PCI function which originates this request. 11683 * 11684 * Return codes 11685 * 0 - successful 11686 * -ENOMEM - No available memory 11687 * -EIO - The mailbox failed to complete successfully. 11688 **/ 11689 int 11690 lpfc_pci_function_reset(struct lpfc_hba *phba) 11691 { 11692 LPFC_MBOXQ_t *mboxq; 11693 uint32_t rc = 0, if_type; 11694 uint32_t shdr_status, shdr_add_status; 11695 uint32_t rdy_chk; 11696 uint32_t port_reset = 0; 11697 union lpfc_sli4_cfg_shdr *shdr; 11698 struct lpfc_register reg_data; 11699 uint16_t devid; 11700 11701 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11702 switch (if_type) { 11703 case LPFC_SLI_INTF_IF_TYPE_0: 11704 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, 11705 GFP_KERNEL); 11706 if (!mboxq) { 11707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11708 "0494 Unable to allocate memory for " 11709 "issuing SLI_FUNCTION_RESET mailbox " 11710 "command\n"); 11711 return -ENOMEM; 11712 } 11713 11714 /* Setup PCI function reset mailbox-ioctl command */ 11715 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 11716 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, 11717 LPFC_SLI4_MBX_EMBED); 11718 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 11719 shdr = (union lpfc_sli4_cfg_shdr *) 11720 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 11721 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 11722 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 11723 &shdr->response); 11724 mempool_free(mboxq, phba->mbox_mem_pool); 11725 if (shdr_status || shdr_add_status || rc) { 11726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11727 "0495 SLI_FUNCTION_RESET mailbox " 11728 "failed with status x%x add_status x%x," 11729 " mbx status x%x\n", 11730 shdr_status, shdr_add_status, rc); 11731 rc = -ENXIO; 11732 } 11733 break; 11734 case LPFC_SLI_INTF_IF_TYPE_2: 11735 case LPFC_SLI_INTF_IF_TYPE_6: 11736 wait: 11737 /* 11738 * Poll the Port Status Register and wait for RDY for 11739 * up to 30 seconds. If the port doesn't respond, treat 11740 * it as an error. 11741 */ 11742 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { 11743 if (lpfc_readl(phba->sli4_hba.u.if_type2. 11744 STATUSregaddr, ®_data.word0)) { 11745 rc = -ENODEV; 11746 goto out; 11747 } 11748 if (bf_get(lpfc_sliport_status_rdy, ®_data)) 11749 break; 11750 msleep(20); 11751 } 11752 11753 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { 11754 phba->work_status[0] = readl( 11755 phba->sli4_hba.u.if_type2.ERR1regaddr); 11756 phba->work_status[1] = readl( 11757 phba->sli4_hba.u.if_type2.ERR2regaddr); 11758 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11759 "2890 Port not ready, port status reg " 11760 "0x%x error 1=0x%x, error 2=0x%x\n", 11761 reg_data.word0, 11762 phba->work_status[0], 11763 phba->work_status[1]); 11764 rc = -ENODEV; 11765 goto out; 11766 } 11767 11768 if (bf_get(lpfc_sliport_status_pldv, ®_data)) 11769 lpfc_pldv_detect = true; 11770 11771 if (!port_reset) { 11772 /* 11773 * Reset the port now 11774 */ 11775 reg_data.word0 = 0; 11776 bf_set(lpfc_sliport_ctrl_end, ®_data, 11777 LPFC_SLIPORT_LITTLE_ENDIAN); 11778 bf_set(lpfc_sliport_ctrl_ip, ®_data, 11779 LPFC_SLIPORT_INIT_PORT); 11780 writel(reg_data.word0, phba->sli4_hba.u.if_type2. 11781 CTRLregaddr); 11782 /* flush */ 11783 pci_read_config_word(phba->pcidev, 11784 PCI_DEVICE_ID, &devid); 11785 11786 port_reset = 1; 11787 msleep(20); 11788 goto wait; 11789 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { 11790 rc = -ENODEV; 11791 goto out; 11792 } 11793 break; 11794 11795 case LPFC_SLI_INTF_IF_TYPE_1: 11796 default: 11797 break; 11798 } 11799 11800 out: 11801 /* Catch the not-ready port failure after a port reset. */ 11802 if (rc) { 11803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11804 "3317 HBA not functional: IP Reset Failed " 11805 "try: echo fw_reset > board_mode\n"); 11806 rc = -ENODEV; 11807 } 11808 11809 return rc; 11810 } 11811 11812 /** 11813 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. 11814 * @phba: pointer to lpfc hba data structure. 11815 * 11816 * This routine is invoked to set up the PCI device memory space for device 11817 * with SLI-4 interface spec. 11818 * 11819 * Return codes 11820 * 0 - successful 11821 * other values - error 11822 **/ 11823 static int 11824 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) 11825 { 11826 struct pci_dev *pdev = phba->pcidev; 11827 unsigned long bar0map_len, bar1map_len, bar2map_len; 11828 int error; 11829 uint32_t if_type; 11830 11831 if (!pdev) 11832 return -ENODEV; 11833 11834 /* Set the device DMA mask size */ 11835 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11836 if (error) 11837 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11838 if (error) 11839 return error; 11840 11841 /* 11842 * The BARs and register set definitions and offset locations are 11843 * dependent on the if_type. 11844 */ 11845 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, 11846 &phba->sli4_hba.sli_intf.word0)) { 11847 return -ENODEV; 11848 } 11849 11850 /* There is no SLI3 failback for SLI4 devices. */ 11851 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != 11852 LPFC_SLI_INTF_VALID) { 11853 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11854 "2894 SLI_INTF reg contents invalid " 11855 "sli_intf reg 0x%x\n", 11856 phba->sli4_hba.sli_intf.word0); 11857 return -ENODEV; 11858 } 11859 11860 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11861 /* 11862 * Get the bus address of SLI4 device Bar regions and the 11863 * number of bytes required by each mapping. The mapping of the 11864 * particular PCI BARs regions is dependent on the type of 11865 * SLI4 device. 11866 */ 11867 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { 11868 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 11869 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 11870 11871 /* 11872 * Map SLI4 PCI Config Space Register base to a kernel virtual 11873 * addr 11874 */ 11875 phba->sli4_hba.conf_regs_memmap_p = 11876 ioremap(phba->pci_bar0_map, bar0map_len); 11877 if (!phba->sli4_hba.conf_regs_memmap_p) { 11878 dev_printk(KERN_ERR, &pdev->dev, 11879 "ioremap failed for SLI4 PCI config " 11880 "registers.\n"); 11881 return -ENODEV; 11882 } 11883 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; 11884 /* Set up BAR0 PCI config space register memory map */ 11885 lpfc_sli4_bar0_register_memmap(phba, if_type); 11886 } else { 11887 phba->pci_bar0_map = pci_resource_start(pdev, 1); 11888 bar0map_len = pci_resource_len(pdev, 1); 11889 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 11890 dev_printk(KERN_ERR, &pdev->dev, 11891 "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); 11892 return -ENODEV; 11893 } 11894 phba->sli4_hba.conf_regs_memmap_p = 11895 ioremap(phba->pci_bar0_map, bar0map_len); 11896 if (!phba->sli4_hba.conf_regs_memmap_p) { 11897 dev_printk(KERN_ERR, &pdev->dev, 11898 "ioremap failed for SLI4 PCI config " 11899 "registers.\n"); 11900 return -ENODEV; 11901 } 11902 lpfc_sli4_bar0_register_memmap(phba, if_type); 11903 } 11904 11905 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11906 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { 11907 /* 11908 * Map SLI4 if type 0 HBA Control Register base to a 11909 * kernel virtual address and setup the registers. 11910 */ 11911 phba->pci_bar1_map = pci_resource_start(pdev, 11912 PCI_64BIT_BAR2); 11913 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11914 phba->sli4_hba.ctrl_regs_memmap_p = 11915 ioremap(phba->pci_bar1_map, 11916 bar1map_len); 11917 if (!phba->sli4_hba.ctrl_regs_memmap_p) { 11918 dev_err(&pdev->dev, 11919 "ioremap failed for SLI4 HBA " 11920 "control registers.\n"); 11921 error = -ENOMEM; 11922 goto out_iounmap_conf; 11923 } 11924 phba->pci_bar2_memmap_p = 11925 phba->sli4_hba.ctrl_regs_memmap_p; 11926 lpfc_sli4_bar1_register_memmap(phba, if_type); 11927 } else { 11928 error = -ENOMEM; 11929 goto out_iounmap_conf; 11930 } 11931 } 11932 11933 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && 11934 (pci_resource_start(pdev, PCI_64BIT_BAR2))) { 11935 /* 11936 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel 11937 * virtual address and setup the registers. 11938 */ 11939 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 11940 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 11941 phba->sli4_hba.drbl_regs_memmap_p = 11942 ioremap(phba->pci_bar1_map, bar1map_len); 11943 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11944 dev_err(&pdev->dev, 11945 "ioremap failed for SLI4 HBA doorbell registers.\n"); 11946 error = -ENOMEM; 11947 goto out_iounmap_conf; 11948 } 11949 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; 11950 lpfc_sli4_bar1_register_memmap(phba, if_type); 11951 } 11952 11953 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { 11954 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11955 /* 11956 * Map SLI4 if type 0 HBA Doorbell Register base to 11957 * a kernel virtual address and setup the registers. 11958 */ 11959 phba->pci_bar2_map = pci_resource_start(pdev, 11960 PCI_64BIT_BAR4); 11961 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11962 phba->sli4_hba.drbl_regs_memmap_p = 11963 ioremap(phba->pci_bar2_map, 11964 bar2map_len); 11965 if (!phba->sli4_hba.drbl_regs_memmap_p) { 11966 dev_err(&pdev->dev, 11967 "ioremap failed for SLI4 HBA" 11968 " doorbell registers.\n"); 11969 error = -ENOMEM; 11970 goto out_iounmap_ctrl; 11971 } 11972 phba->pci_bar4_memmap_p = 11973 phba->sli4_hba.drbl_regs_memmap_p; 11974 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); 11975 if (error) 11976 goto out_iounmap_all; 11977 } else { 11978 error = -ENOMEM; 11979 goto out_iounmap_all; 11980 } 11981 } 11982 11983 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && 11984 pci_resource_start(pdev, PCI_64BIT_BAR4)) { 11985 /* 11986 * Map SLI4 if type 6 HBA DPP Register base to a kernel 11987 * virtual address and setup the registers. 11988 */ 11989 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 11990 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 11991 phba->sli4_hba.dpp_regs_memmap_p = 11992 ioremap(phba->pci_bar2_map, bar2map_len); 11993 if (!phba->sli4_hba.dpp_regs_memmap_p) { 11994 dev_err(&pdev->dev, 11995 "ioremap failed for SLI4 HBA dpp registers.\n"); 11996 error = -ENOMEM; 11997 goto out_iounmap_ctrl; 11998 } 11999 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; 12000 } 12001 12002 /* Set up the EQ/CQ register handeling functions now */ 12003 switch (if_type) { 12004 case LPFC_SLI_INTF_IF_TYPE_0: 12005 case LPFC_SLI_INTF_IF_TYPE_2: 12006 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; 12007 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; 12008 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; 12009 break; 12010 case LPFC_SLI_INTF_IF_TYPE_6: 12011 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; 12012 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; 12013 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; 12014 break; 12015 default: 12016 break; 12017 } 12018 12019 return 0; 12020 12021 out_iounmap_all: 12022 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12023 out_iounmap_ctrl: 12024 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12025 out_iounmap_conf: 12026 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12027 12028 return error; 12029 } 12030 12031 /** 12032 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. 12033 * @phba: pointer to lpfc hba data structure. 12034 * 12035 * This routine is invoked to unset the PCI device memory space for device 12036 * with SLI-4 interface spec. 12037 **/ 12038 static void 12039 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) 12040 { 12041 uint32_t if_type; 12042 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12043 12044 switch (if_type) { 12045 case LPFC_SLI_INTF_IF_TYPE_0: 12046 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12047 iounmap(phba->sli4_hba.ctrl_regs_memmap_p); 12048 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12049 break; 12050 case LPFC_SLI_INTF_IF_TYPE_2: 12051 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12052 break; 12053 case LPFC_SLI_INTF_IF_TYPE_6: 12054 iounmap(phba->sli4_hba.drbl_regs_memmap_p); 12055 iounmap(phba->sli4_hba.conf_regs_memmap_p); 12056 if (phba->sli4_hba.dpp_regs_memmap_p) 12057 iounmap(phba->sli4_hba.dpp_regs_memmap_p); 12058 break; 12059 case LPFC_SLI_INTF_IF_TYPE_1: 12060 default: 12061 dev_printk(KERN_ERR, &phba->pcidev->dev, 12062 "FATAL - unsupported SLI4 interface type - %d\n", 12063 if_type); 12064 break; 12065 } 12066 } 12067 12068 /** 12069 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device 12070 * @phba: pointer to lpfc hba data structure. 12071 * 12072 * This routine is invoked to enable the MSI-X interrupt vectors to device 12073 * with SLI-3 interface specs. 12074 * 12075 * Return codes 12076 * 0 - successful 12077 * other values - error 12078 **/ 12079 static int 12080 lpfc_sli_enable_msix(struct lpfc_hba *phba) 12081 { 12082 int rc; 12083 LPFC_MBOXQ_t *pmb; 12084 12085 /* Set up MSI-X multi-message vectors */ 12086 rc = pci_alloc_irq_vectors(phba->pcidev, 12087 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); 12088 if (rc < 0) { 12089 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12090 "0420 PCI enable MSI-X failed (%d)\n", rc); 12091 goto vec_fail_out; 12092 } 12093 12094 /* 12095 * Assign MSI-X vectors to interrupt handlers 12096 */ 12097 12098 /* vector-0 is associated to slow-path handler */ 12099 rc = request_irq(pci_irq_vector(phba->pcidev, 0), 12100 &lpfc_sli_sp_intr_handler, 0, 12101 LPFC_SP_DRIVER_HANDLER_NAME, phba); 12102 if (rc) { 12103 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12104 "0421 MSI-X slow-path request_irq failed " 12105 "(%d)\n", rc); 12106 goto msi_fail_out; 12107 } 12108 12109 /* vector-1 is associated to fast-path handler */ 12110 rc = request_irq(pci_irq_vector(phba->pcidev, 1), 12111 &lpfc_sli_fp_intr_handler, 0, 12112 LPFC_FP_DRIVER_HANDLER_NAME, phba); 12113 12114 if (rc) { 12115 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12116 "0429 MSI-X fast-path request_irq failed " 12117 "(%d)\n", rc); 12118 goto irq_fail_out; 12119 } 12120 12121 /* 12122 * Configure HBA MSI-X attention conditions to messages 12123 */ 12124 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12125 12126 if (!pmb) { 12127 rc = -ENOMEM; 12128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12129 "0474 Unable to allocate memory for issuing " 12130 "MBOX_CONFIG_MSI command\n"); 12131 goto mem_fail_out; 12132 } 12133 rc = lpfc_config_msi(phba, pmb); 12134 if (rc) 12135 goto mbx_fail_out; 12136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 12137 if (rc != MBX_SUCCESS) { 12138 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, 12139 "0351 Config MSI mailbox command failed, " 12140 "mbxCmd x%x, mbxStatus x%x\n", 12141 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); 12142 goto mbx_fail_out; 12143 } 12144 12145 /* Free memory allocated for mailbox command */ 12146 mempool_free(pmb, phba->mbox_mem_pool); 12147 return rc; 12148 12149 mbx_fail_out: 12150 /* Free memory allocated for mailbox command */ 12151 mempool_free(pmb, phba->mbox_mem_pool); 12152 12153 mem_fail_out: 12154 /* free the irq already requested */ 12155 free_irq(pci_irq_vector(phba->pcidev, 1), phba); 12156 12157 irq_fail_out: 12158 /* free the irq already requested */ 12159 free_irq(pci_irq_vector(phba->pcidev, 0), phba); 12160 12161 msi_fail_out: 12162 /* Unconfigure MSI-X capability structure */ 12163 pci_free_irq_vectors(phba->pcidev); 12164 12165 vec_fail_out: 12166 return rc; 12167 } 12168 12169 /** 12170 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. 12171 * @phba: pointer to lpfc hba data structure. 12172 * 12173 * This routine is invoked to enable the MSI interrupt mode to device with 12174 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to 12175 * enable the MSI vector. The device driver is responsible for calling the 12176 * request_irq() to register MSI vector with a interrupt the handler, which 12177 * is done in this function. 12178 * 12179 * Return codes 12180 * 0 - successful 12181 * other values - error 12182 */ 12183 static int 12184 lpfc_sli_enable_msi(struct lpfc_hba *phba) 12185 { 12186 int rc; 12187 12188 rc = pci_enable_msi(phba->pcidev); 12189 if (!rc) 12190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12191 "0462 PCI enable MSI mode success.\n"); 12192 else { 12193 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12194 "0471 PCI enable MSI mode failed (%d)\n", rc); 12195 return rc; 12196 } 12197 12198 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12199 0, LPFC_DRIVER_NAME, phba); 12200 if (rc) { 12201 pci_disable_msi(phba->pcidev); 12202 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 12203 "0478 MSI request_irq failed (%d)\n", rc); 12204 } 12205 return rc; 12206 } 12207 12208 /** 12209 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. 12210 * @phba: pointer to lpfc hba data structure. 12211 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 12212 * 12213 * This routine is invoked to enable device interrupt and associate driver's 12214 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface 12215 * spec. Depends on the interrupt mode configured to the driver, the driver 12216 * will try to fallback from the configured interrupt mode to an interrupt 12217 * mode which is supported by the platform, kernel, and device in the order 12218 * of: 12219 * MSI-X -> MSI -> IRQ. 12220 * 12221 * Return codes 12222 * 0 - successful 12223 * other values - error 12224 **/ 12225 static uint32_t 12226 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 12227 { 12228 uint32_t intr_mode = LPFC_INTR_ERROR; 12229 int retval; 12230 12231 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ 12232 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 12233 if (retval) 12234 return intr_mode; 12235 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 12236 12237 if (cfg_mode == 2) { 12238 /* Now, try to enable MSI-X interrupt mode */ 12239 retval = lpfc_sli_enable_msix(phba); 12240 if (!retval) { 12241 /* Indicate initialization to MSI-X mode */ 12242 phba->intr_type = MSIX; 12243 intr_mode = 2; 12244 } 12245 } 12246 12247 /* Fallback to MSI if MSI-X initialization failed */ 12248 if (cfg_mode >= 1 && phba->intr_type == NONE) { 12249 retval = lpfc_sli_enable_msi(phba); 12250 if (!retval) { 12251 /* Indicate initialization to MSI mode */ 12252 phba->intr_type = MSI; 12253 intr_mode = 1; 12254 } 12255 } 12256 12257 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 12258 if (phba->intr_type == NONE) { 12259 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 12260 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 12261 if (!retval) { 12262 /* Indicate initialization to INTx mode */ 12263 phba->intr_type = INTx; 12264 intr_mode = 0; 12265 } 12266 } 12267 return intr_mode; 12268 } 12269 12270 /** 12271 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. 12272 * @phba: pointer to lpfc hba data structure. 12273 * 12274 * This routine is invoked to disable device interrupt and disassociate the 12275 * driver's interrupt handler(s) from interrupt vector(s) to device with 12276 * SLI-3 interface spec. Depending on the interrupt mode, the driver will 12277 * release the interrupt vector(s) for the message signaled interrupt. 12278 **/ 12279 static void 12280 lpfc_sli_disable_intr(struct lpfc_hba *phba) 12281 { 12282 int nr_irqs, i; 12283 12284 if (phba->intr_type == MSIX) 12285 nr_irqs = LPFC_MSIX_VECTORS; 12286 else 12287 nr_irqs = 1; 12288 12289 for (i = 0; i < nr_irqs; i++) 12290 free_irq(pci_irq_vector(phba->pcidev, i), phba); 12291 pci_free_irq_vectors(phba->pcidev); 12292 12293 /* Reset interrupt management states */ 12294 phba->intr_type = NONE; 12295 phba->sli.slistat.sli_intr = 0; 12296 } 12297 12298 /** 12299 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue 12300 * @phba: pointer to lpfc hba data structure. 12301 * @id: EQ vector index or Hardware Queue index 12302 * @match: LPFC_FIND_BY_EQ = match by EQ 12303 * LPFC_FIND_BY_HDWQ = match by Hardware Queue 12304 * Return the CPU that matches the selection criteria 12305 */ 12306 static uint16_t 12307 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) 12308 { 12309 struct lpfc_vector_map_info *cpup; 12310 int cpu; 12311 12312 /* Loop through all CPUs */ 12313 for_each_present_cpu(cpu) { 12314 cpup = &phba->sli4_hba.cpu_map[cpu]; 12315 12316 /* If we are matching by EQ, there may be multiple CPUs using 12317 * using the same vector, so select the one with 12318 * LPFC_CPU_FIRST_IRQ set. 12319 */ 12320 if ((match == LPFC_FIND_BY_EQ) && 12321 (cpup->flag & LPFC_CPU_FIRST_IRQ) && 12322 (cpup->eq == id)) 12323 return cpu; 12324 12325 /* If matching by HDWQ, select the first CPU that matches */ 12326 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) 12327 return cpu; 12328 } 12329 return 0; 12330 } 12331 12332 #ifdef CONFIG_X86 12333 /** 12334 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded 12335 * @phba: pointer to lpfc hba data structure. 12336 * @cpu: CPU map index 12337 * @phys_id: CPU package physical id 12338 * @core_id: CPU core id 12339 */ 12340 static int 12341 lpfc_find_hyper(struct lpfc_hba *phba, int cpu, 12342 uint16_t phys_id, uint16_t core_id) 12343 { 12344 struct lpfc_vector_map_info *cpup; 12345 int idx; 12346 12347 for_each_present_cpu(idx) { 12348 cpup = &phba->sli4_hba.cpu_map[idx]; 12349 /* Does the cpup match the one we are looking for */ 12350 if ((cpup->phys_id == phys_id) && 12351 (cpup->core_id == core_id) && 12352 (cpu != idx)) 12353 return 1; 12354 } 12355 return 0; 12356 } 12357 #endif 12358 12359 /* 12360 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure 12361 * @phba: pointer to lpfc hba data structure. 12362 * @eqidx: index for eq and irq vector 12363 * @flag: flags to set for vector_map structure 12364 * @cpu: cpu used to index vector_map structure 12365 * 12366 * The routine assigns eq info into vector_map structure 12367 */ 12368 static inline void 12369 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, 12370 unsigned int cpu) 12371 { 12372 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; 12373 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); 12374 12375 cpup->eq = eqidx; 12376 cpup->flag |= flag; 12377 12378 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12379 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", 12380 cpu, eqhdl->irq, cpup->eq, cpup->flag); 12381 } 12382 12383 /** 12384 * lpfc_cpu_map_array_init - Initialize cpu_map structure 12385 * @phba: pointer to lpfc hba data structure. 12386 * 12387 * The routine initializes the cpu_map array structure 12388 */ 12389 static void 12390 lpfc_cpu_map_array_init(struct lpfc_hba *phba) 12391 { 12392 struct lpfc_vector_map_info *cpup; 12393 struct lpfc_eq_intr_info *eqi; 12394 int cpu; 12395 12396 for_each_possible_cpu(cpu) { 12397 cpup = &phba->sli4_hba.cpu_map[cpu]; 12398 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; 12399 cpup->core_id = LPFC_VECTOR_MAP_EMPTY; 12400 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; 12401 cpup->eq = LPFC_VECTOR_MAP_EMPTY; 12402 cpup->flag = 0; 12403 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); 12404 INIT_LIST_HEAD(&eqi->list); 12405 eqi->icnt = 0; 12406 } 12407 } 12408 12409 /** 12410 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure 12411 * @phba: pointer to lpfc hba data structure. 12412 * 12413 * The routine initializes the hba_eq_hdl array structure 12414 */ 12415 static void 12416 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) 12417 { 12418 struct lpfc_hba_eq_hdl *eqhdl; 12419 int i; 12420 12421 for (i = 0; i < phba->cfg_irq_chann; i++) { 12422 eqhdl = lpfc_get_eq_hdl(i); 12423 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY; 12424 eqhdl->phba = phba; 12425 } 12426 } 12427 12428 /** 12429 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings 12430 * @phba: pointer to lpfc hba data structure. 12431 * @vectors: number of msix vectors allocated. 12432 * 12433 * The routine will figure out the CPU affinity assignment for every 12434 * MSI-X vector allocated for the HBA. 12435 * In addition, the CPU to IO channel mapping will be calculated 12436 * and the phba->sli4_hba.cpu_map array will reflect this. 12437 */ 12438 static void 12439 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) 12440 { 12441 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; 12442 int max_phys_id, min_phys_id; 12443 int max_core_id, min_core_id; 12444 struct lpfc_vector_map_info *cpup; 12445 struct lpfc_vector_map_info *new_cpup; 12446 #ifdef CONFIG_X86 12447 struct cpuinfo_x86 *cpuinfo; 12448 #endif 12449 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12450 struct lpfc_hdwq_stat *c_stat; 12451 #endif 12452 12453 max_phys_id = 0; 12454 min_phys_id = LPFC_VECTOR_MAP_EMPTY; 12455 max_core_id = 0; 12456 min_core_id = LPFC_VECTOR_MAP_EMPTY; 12457 12458 /* Update CPU map with physical id and core id of each CPU */ 12459 for_each_present_cpu(cpu) { 12460 cpup = &phba->sli4_hba.cpu_map[cpu]; 12461 #ifdef CONFIG_X86 12462 cpuinfo = &cpu_data(cpu); 12463 cpup->phys_id = cpuinfo->phys_proc_id; 12464 cpup->core_id = cpuinfo->cpu_core_id; 12465 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) 12466 cpup->flag |= LPFC_CPU_MAP_HYPER; 12467 #else 12468 /* No distinction between CPUs for other platforms */ 12469 cpup->phys_id = 0; 12470 cpup->core_id = cpu; 12471 #endif 12472 12473 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12474 "3328 CPU %d physid %d coreid %d flag x%x\n", 12475 cpu, cpup->phys_id, cpup->core_id, cpup->flag); 12476 12477 if (cpup->phys_id > max_phys_id) 12478 max_phys_id = cpup->phys_id; 12479 if (cpup->phys_id < min_phys_id) 12480 min_phys_id = cpup->phys_id; 12481 12482 if (cpup->core_id > max_core_id) 12483 max_core_id = cpup->core_id; 12484 if (cpup->core_id < min_core_id) 12485 min_core_id = cpup->core_id; 12486 } 12487 12488 /* After looking at each irq vector assigned to this pcidev, its 12489 * possible to see that not ALL CPUs have been accounted for. 12490 * Next we will set any unassigned (unaffinitized) cpu map 12491 * entries to a IRQ on the same phys_id. 12492 */ 12493 first_cpu = cpumask_first(cpu_present_mask); 12494 start_cpu = first_cpu; 12495 12496 for_each_present_cpu(cpu) { 12497 cpup = &phba->sli4_hba.cpu_map[cpu]; 12498 12499 /* Is this CPU entry unassigned */ 12500 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12501 /* Mark CPU as IRQ not assigned by the kernel */ 12502 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12503 12504 /* If so, find a new_cpup thats on the the SAME 12505 * phys_id as cpup. start_cpu will start where we 12506 * left off so all unassigned entries don't get assgined 12507 * the IRQ of the first entry. 12508 */ 12509 new_cpu = start_cpu; 12510 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12511 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12512 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12513 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && 12514 (new_cpup->phys_id == cpup->phys_id)) 12515 goto found_same; 12516 new_cpu = cpumask_next( 12517 new_cpu, cpu_present_mask); 12518 if (new_cpu == nr_cpumask_bits) 12519 new_cpu = first_cpu; 12520 } 12521 /* At this point, we leave the CPU as unassigned */ 12522 continue; 12523 found_same: 12524 /* We found a matching phys_id, so copy the IRQ info */ 12525 cpup->eq = new_cpup->eq; 12526 12527 /* Bump start_cpu to the next slot to minmize the 12528 * chance of having multiple unassigned CPU entries 12529 * selecting the same IRQ. 12530 */ 12531 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12532 if (start_cpu == nr_cpumask_bits) 12533 start_cpu = first_cpu; 12534 12535 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12536 "3337 Set Affinity: CPU %d " 12537 "eq %d from peer cpu %d same " 12538 "phys_id (%d)\n", 12539 cpu, cpup->eq, new_cpu, 12540 cpup->phys_id); 12541 } 12542 } 12543 12544 /* Set any unassigned cpu map entries to a IRQ on any phys_id */ 12545 start_cpu = first_cpu; 12546 12547 for_each_present_cpu(cpu) { 12548 cpup = &phba->sli4_hba.cpu_map[cpu]; 12549 12550 /* Is this entry unassigned */ 12551 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { 12552 /* Mark it as IRQ not assigned by the kernel */ 12553 cpup->flag |= LPFC_CPU_MAP_UNASSIGN; 12554 12555 /* If so, find a new_cpup thats on ANY phys_id 12556 * as the cpup. start_cpu will start where we 12557 * left off so all unassigned entries don't get 12558 * assigned the IRQ of the first entry. 12559 */ 12560 new_cpu = start_cpu; 12561 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12562 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12563 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && 12564 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) 12565 goto found_any; 12566 new_cpu = cpumask_next( 12567 new_cpu, cpu_present_mask); 12568 if (new_cpu == nr_cpumask_bits) 12569 new_cpu = first_cpu; 12570 } 12571 /* We should never leave an entry unassigned */ 12572 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12573 "3339 Set Affinity: CPU %d " 12574 "eq %d UNASSIGNED\n", 12575 cpup->hdwq, cpup->eq); 12576 continue; 12577 found_any: 12578 /* We found an available entry, copy the IRQ info */ 12579 cpup->eq = new_cpup->eq; 12580 12581 /* Bump start_cpu to the next slot to minmize the 12582 * chance of having multiple unassigned CPU entries 12583 * selecting the same IRQ. 12584 */ 12585 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12586 if (start_cpu == nr_cpumask_bits) 12587 start_cpu = first_cpu; 12588 12589 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12590 "3338 Set Affinity: CPU %d " 12591 "eq %d from peer cpu %d (%d/%d)\n", 12592 cpu, cpup->eq, new_cpu, 12593 new_cpup->phys_id, new_cpup->core_id); 12594 } 12595 } 12596 12597 /* Assign hdwq indices that are unique across all cpus in the map 12598 * that are also FIRST_CPUs. 12599 */ 12600 idx = 0; 12601 for_each_present_cpu(cpu) { 12602 cpup = &phba->sli4_hba.cpu_map[cpu]; 12603 12604 /* Only FIRST IRQs get a hdwq index assignment. */ 12605 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12606 continue; 12607 12608 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ 12609 cpup->hdwq = idx; 12610 idx++; 12611 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12612 "3333 Set Affinity: CPU %d (phys %d core %d): " 12613 "hdwq %d eq %d flg x%x\n", 12614 cpu, cpup->phys_id, cpup->core_id, 12615 cpup->hdwq, cpup->eq, cpup->flag); 12616 } 12617 /* Associate a hdwq with each cpu_map entry 12618 * This will be 1 to 1 - hdwq to cpu, unless there are less 12619 * hardware queues then CPUs. For that case we will just round-robin 12620 * the available hardware queues as they get assigned to CPUs. 12621 * The next_idx is the idx from the FIRST_CPU loop above to account 12622 * for irq_chann < hdwq. The idx is used for round-robin assignments 12623 * and needs to start at 0. 12624 */ 12625 next_idx = idx; 12626 start_cpu = 0; 12627 idx = 0; 12628 for_each_present_cpu(cpu) { 12629 cpup = &phba->sli4_hba.cpu_map[cpu]; 12630 12631 /* FIRST cpus are already mapped. */ 12632 if (cpup->flag & LPFC_CPU_FIRST_IRQ) 12633 continue; 12634 12635 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq 12636 * of the unassigned cpus to the next idx so that all 12637 * hdw queues are fully utilized. 12638 */ 12639 if (next_idx < phba->cfg_hdw_queue) { 12640 cpup->hdwq = next_idx; 12641 next_idx++; 12642 continue; 12643 } 12644 12645 /* Not a First CPU and all hdw_queues are used. Reuse a 12646 * Hardware Queue for another CPU, so be smart about it 12647 * and pick one that has its IRQ/EQ mapped to the same phys_id 12648 * (CPU package) and core_id. 12649 */ 12650 new_cpu = start_cpu; 12651 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12652 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12653 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12654 new_cpup->phys_id == cpup->phys_id && 12655 new_cpup->core_id == cpup->core_id) { 12656 goto found_hdwq; 12657 } 12658 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12659 if (new_cpu == nr_cpumask_bits) 12660 new_cpu = first_cpu; 12661 } 12662 12663 /* If we can't match both phys_id and core_id, 12664 * settle for just a phys_id match. 12665 */ 12666 new_cpu = start_cpu; 12667 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { 12668 new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; 12669 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && 12670 new_cpup->phys_id == cpup->phys_id) 12671 goto found_hdwq; 12672 12673 new_cpu = cpumask_next(new_cpu, cpu_present_mask); 12674 if (new_cpu == nr_cpumask_bits) 12675 new_cpu = first_cpu; 12676 } 12677 12678 /* Otherwise just round robin on cfg_hdw_queue */ 12679 cpup->hdwq = idx % phba->cfg_hdw_queue; 12680 idx++; 12681 goto logit; 12682 found_hdwq: 12683 /* We found an available entry, copy the IRQ info */ 12684 start_cpu = cpumask_next(new_cpu, cpu_present_mask); 12685 if (start_cpu == nr_cpumask_bits) 12686 start_cpu = first_cpu; 12687 cpup->hdwq = new_cpup->hdwq; 12688 logit: 12689 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12690 "3335 Set Affinity: CPU %d (phys %d core %d): " 12691 "hdwq %d eq %d flg x%x\n", 12692 cpu, cpup->phys_id, cpup->core_id, 12693 cpup->hdwq, cpup->eq, cpup->flag); 12694 } 12695 12696 /* 12697 * Initialize the cpu_map slots for not-present cpus in case 12698 * a cpu is hot-added. Perform a simple hdwq round robin assignment. 12699 */ 12700 idx = 0; 12701 for_each_possible_cpu(cpu) { 12702 cpup = &phba->sli4_hba.cpu_map[cpu]; 12703 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12704 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); 12705 c_stat->hdwq_no = cpup->hdwq; 12706 #endif 12707 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) 12708 continue; 12709 12710 cpup->hdwq = idx++ % phba->cfg_hdw_queue; 12711 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 12712 c_stat->hdwq_no = cpup->hdwq; 12713 #endif 12714 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12715 "3340 Set Affinity: not present " 12716 "CPU %d hdwq %d\n", 12717 cpu, cpup->hdwq); 12718 } 12719 12720 /* The cpu_map array will be used later during initialization 12721 * when EQ / CQ / WQs are allocated and configured. 12722 */ 12723 return; 12724 } 12725 12726 /** 12727 * lpfc_cpuhp_get_eq 12728 * 12729 * @phba: pointer to lpfc hba data structure. 12730 * @cpu: cpu going offline 12731 * @eqlist: eq list to append to 12732 */ 12733 static int 12734 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, 12735 struct list_head *eqlist) 12736 { 12737 const struct cpumask *maskp; 12738 struct lpfc_queue *eq; 12739 struct cpumask *tmp; 12740 u16 idx; 12741 12742 tmp = kzalloc(cpumask_size(), GFP_KERNEL); 12743 if (!tmp) 12744 return -ENOMEM; 12745 12746 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12747 maskp = pci_irq_get_affinity(phba->pcidev, idx); 12748 if (!maskp) 12749 continue; 12750 /* 12751 * if irq is not affinitized to the cpu going 12752 * then we don't need to poll the eq attached 12753 * to it. 12754 */ 12755 if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) 12756 continue; 12757 /* get the cpus that are online and are affini- 12758 * tized to this irq vector. If the count is 12759 * more than 1 then cpuhp is not going to shut- 12760 * down this vector. Since this cpu has not 12761 * gone offline yet, we need >1. 12762 */ 12763 cpumask_and(tmp, maskp, cpu_online_mask); 12764 if (cpumask_weight(tmp) > 1) 12765 continue; 12766 12767 /* Now that we have an irq to shutdown, get the eq 12768 * mapped to this irq. Note: multiple hdwq's in 12769 * the software can share an eq, but eventually 12770 * only eq will be mapped to this vector 12771 */ 12772 eq = phba->sli4_hba.hba_eq_hdl[idx].eq; 12773 list_add(&eq->_poll_list, eqlist); 12774 } 12775 kfree(tmp); 12776 return 0; 12777 } 12778 12779 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) 12780 { 12781 if (phba->sli_rev != LPFC_SLI_REV4) 12782 return; 12783 12784 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, 12785 &phba->cpuhp); 12786 /* 12787 * unregistering the instance doesn't stop the polling 12788 * timer. Wait for the poll timer to retire. 12789 */ 12790 synchronize_rcu(); 12791 del_timer_sync(&phba->cpuhp_poll_timer); 12792 } 12793 12794 static void lpfc_cpuhp_remove(struct lpfc_hba *phba) 12795 { 12796 if (phba->pport->fc_flag & FC_OFFLINE_MODE) 12797 return; 12798 12799 __lpfc_cpuhp_remove(phba); 12800 } 12801 12802 static void lpfc_cpuhp_add(struct lpfc_hba *phba) 12803 { 12804 if (phba->sli_rev != LPFC_SLI_REV4) 12805 return; 12806 12807 rcu_read_lock(); 12808 12809 if (!list_empty(&phba->poll_list)) 12810 mod_timer(&phba->cpuhp_poll_timer, 12811 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 12812 12813 rcu_read_unlock(); 12814 12815 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, 12816 &phba->cpuhp); 12817 } 12818 12819 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) 12820 { 12821 if (phba->pport->load_flag & FC_UNLOADING) { 12822 *retval = -EAGAIN; 12823 return true; 12824 } 12825 12826 if (phba->sli_rev != LPFC_SLI_REV4) { 12827 *retval = 0; 12828 return true; 12829 } 12830 12831 /* proceed with the hotplug */ 12832 return false; 12833 } 12834 12835 /** 12836 * lpfc_irq_set_aff - set IRQ affinity 12837 * @eqhdl: EQ handle 12838 * @cpu: cpu to set affinity 12839 * 12840 **/ 12841 static inline void 12842 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) 12843 { 12844 cpumask_clear(&eqhdl->aff_mask); 12845 cpumask_set_cpu(cpu, &eqhdl->aff_mask); 12846 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12847 irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); 12848 } 12849 12850 /** 12851 * lpfc_irq_clear_aff - clear IRQ affinity 12852 * @eqhdl: EQ handle 12853 * 12854 **/ 12855 static inline void 12856 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) 12857 { 12858 cpumask_clear(&eqhdl->aff_mask); 12859 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); 12860 } 12861 12862 /** 12863 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event 12864 * @phba: pointer to HBA context object. 12865 * @cpu: cpu going offline/online 12866 * @offline: true, cpu is going offline. false, cpu is coming online. 12867 * 12868 * If cpu is going offline, we'll try our best effort to find the next 12869 * online cpu on the phba's original_mask and migrate all offlining IRQ 12870 * affinities. 12871 * 12872 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. 12873 * 12874 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on 12875 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. 12876 * 12877 **/ 12878 static void 12879 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) 12880 { 12881 struct lpfc_vector_map_info *cpup; 12882 struct cpumask *aff_mask; 12883 unsigned int cpu_select, cpu_next, idx; 12884 const struct cpumask *orig_mask; 12885 12886 if (phba->irq_chann_mode == NORMAL_MODE) 12887 return; 12888 12889 orig_mask = &phba->sli4_hba.irq_aff_mask; 12890 12891 if (!cpumask_test_cpu(cpu, orig_mask)) 12892 return; 12893 12894 cpup = &phba->sli4_hba.cpu_map[cpu]; 12895 12896 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) 12897 return; 12898 12899 if (offline) { 12900 /* Find next online CPU on original mask */ 12901 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); 12902 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); 12903 12904 /* Found a valid CPU */ 12905 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { 12906 /* Go through each eqhdl and ensure offlining 12907 * cpu aff_mask is migrated 12908 */ 12909 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 12910 aff_mask = lpfc_get_aff_mask(idx); 12911 12912 /* Migrate affinity */ 12913 if (cpumask_test_cpu(cpu, aff_mask)) 12914 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), 12915 cpu_select); 12916 } 12917 } else { 12918 /* Rely on irqbalance if no online CPUs left on NUMA */ 12919 for (idx = 0; idx < phba->cfg_irq_chann; idx++) 12920 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); 12921 } 12922 } else { 12923 /* Migrate affinity back to this CPU */ 12924 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); 12925 } 12926 } 12927 12928 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) 12929 { 12930 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12931 struct lpfc_queue *eq, *next; 12932 LIST_HEAD(eqlist); 12933 int retval; 12934 12935 if (!phba) { 12936 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12937 return 0; 12938 } 12939 12940 if (__lpfc_cpuhp_checks(phba, &retval)) 12941 return retval; 12942 12943 lpfc_irq_rebalance(phba, cpu, true); 12944 12945 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); 12946 if (retval) 12947 return retval; 12948 12949 /* start polling on these eq's */ 12950 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { 12951 list_del_init(&eq->_poll_list); 12952 lpfc_sli4_start_polling(eq); 12953 } 12954 12955 return 0; 12956 } 12957 12958 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) 12959 { 12960 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); 12961 struct lpfc_queue *eq, *next; 12962 unsigned int n; 12963 int retval; 12964 12965 if (!phba) { 12966 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); 12967 return 0; 12968 } 12969 12970 if (__lpfc_cpuhp_checks(phba, &retval)) 12971 return retval; 12972 12973 lpfc_irq_rebalance(phba, cpu, false); 12974 12975 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { 12976 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); 12977 if (n == cpu) 12978 lpfc_sli4_stop_polling(eq); 12979 } 12980 12981 return 0; 12982 } 12983 12984 /** 12985 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device 12986 * @phba: pointer to lpfc hba data structure. 12987 * 12988 * This routine is invoked to enable the MSI-X interrupt vectors to device 12989 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them 12990 * to cpus on the system. 12991 * 12992 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for 12993 * the number of cpus on the same numa node as this adapter. The vectors are 12994 * allocated without requesting OS affinity mapping. A vector will be 12995 * allocated and assigned to each online and offline cpu. If the cpu is 12996 * online, then affinity will be set to that cpu. If the cpu is offline, then 12997 * affinity will be set to the nearest peer cpu within the numa node that is 12998 * online. If there are no online cpus within the numa node, affinity is not 12999 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping 13000 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is 13001 * configured. 13002 * 13003 * If numa mode is not enabled and there is more than 1 vector allocated, then 13004 * the driver relies on the managed irq interface where the OS assigns vector to 13005 * cpu affinity. The driver will then use that affinity mapping to setup its 13006 * cpu mapping table. 13007 * 13008 * Return codes 13009 * 0 - successful 13010 * other values - error 13011 **/ 13012 static int 13013 lpfc_sli4_enable_msix(struct lpfc_hba *phba) 13014 { 13015 int vectors, rc, index; 13016 char *name; 13017 const struct cpumask *aff_mask = NULL; 13018 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; 13019 struct lpfc_vector_map_info *cpup; 13020 struct lpfc_hba_eq_hdl *eqhdl; 13021 const struct cpumask *maskp; 13022 unsigned int flags = PCI_IRQ_MSIX; 13023 13024 /* Set up MSI-X multi-message vectors */ 13025 vectors = phba->cfg_irq_chann; 13026 13027 if (phba->irq_chann_mode != NORMAL_MODE) 13028 aff_mask = &phba->sli4_hba.irq_aff_mask; 13029 13030 if (aff_mask) { 13031 cpu_cnt = cpumask_weight(aff_mask); 13032 vectors = min(phba->cfg_irq_chann, cpu_cnt); 13033 13034 /* cpu: iterates over aff_mask including offline or online 13035 * cpu_select: iterates over online aff_mask to set affinity 13036 */ 13037 cpu = cpumask_first(aff_mask); 13038 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13039 } else { 13040 flags |= PCI_IRQ_AFFINITY; 13041 } 13042 13043 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); 13044 if (rc < 0) { 13045 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13046 "0484 PCI enable MSI-X failed (%d)\n", rc); 13047 goto vec_fail_out; 13048 } 13049 vectors = rc; 13050 13051 /* Assign MSI-X vectors to interrupt handlers */ 13052 for (index = 0; index < vectors; index++) { 13053 eqhdl = lpfc_get_eq_hdl(index); 13054 name = eqhdl->handler_name; 13055 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); 13056 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, 13057 LPFC_DRIVER_HANDLER_NAME"%d", index); 13058 13059 eqhdl->idx = index; 13060 rc = request_irq(pci_irq_vector(phba->pcidev, index), 13061 &lpfc_sli4_hba_intr_handler, 0, 13062 name, eqhdl); 13063 if (rc) { 13064 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13065 "0486 MSI-X fast-path (%d) " 13066 "request_irq failed (%d)\n", index, rc); 13067 goto cfg_fail_out; 13068 } 13069 13070 eqhdl->irq = pci_irq_vector(phba->pcidev, index); 13071 13072 if (aff_mask) { 13073 /* If found a neighboring online cpu, set affinity */ 13074 if (cpu_select < nr_cpu_ids) 13075 lpfc_irq_set_aff(eqhdl, cpu_select); 13076 13077 /* Assign EQ to cpu_map */ 13078 lpfc_assign_eq_map_info(phba, index, 13079 LPFC_CPU_FIRST_IRQ, 13080 cpu); 13081 13082 /* Iterate to next offline or online cpu in aff_mask */ 13083 cpu = cpumask_next(cpu, aff_mask); 13084 13085 /* Find next online cpu in aff_mask to set affinity */ 13086 cpu_select = lpfc_next_online_cpu(aff_mask, cpu); 13087 } else if (vectors == 1) { 13088 cpu = cpumask_first(cpu_present_mask); 13089 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, 13090 cpu); 13091 } else { 13092 maskp = pci_irq_get_affinity(phba->pcidev, index); 13093 13094 /* Loop through all CPUs associated with vector index */ 13095 for_each_cpu_and(cpu, maskp, cpu_present_mask) { 13096 cpup = &phba->sli4_hba.cpu_map[cpu]; 13097 13098 /* If this is the first CPU thats assigned to 13099 * this vector, set LPFC_CPU_FIRST_IRQ. 13100 * 13101 * With certain platforms its possible that irq 13102 * vectors are affinitized to all the cpu's. 13103 * This can result in each cpu_map.eq to be set 13104 * to the last vector, resulting in overwrite 13105 * of all the previous cpu_map.eq. Ensure that 13106 * each vector receives a place in cpu_map. 13107 * Later call to lpfc_cpu_affinity_check will 13108 * ensure we are nicely balanced out. 13109 */ 13110 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) 13111 continue; 13112 lpfc_assign_eq_map_info(phba, index, 13113 LPFC_CPU_FIRST_IRQ, 13114 cpu); 13115 break; 13116 } 13117 } 13118 } 13119 13120 if (vectors != phba->cfg_irq_chann) { 13121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13122 "3238 Reducing IO channels to match number of " 13123 "MSI-X vectors, requested %d got %d\n", 13124 phba->cfg_irq_chann, vectors); 13125 if (phba->cfg_irq_chann > vectors) 13126 phba->cfg_irq_chann = vectors; 13127 } 13128 13129 return rc; 13130 13131 cfg_fail_out: 13132 /* free the irq already requested */ 13133 for (--index; index >= 0; index--) { 13134 eqhdl = lpfc_get_eq_hdl(index); 13135 lpfc_irq_clear_aff(eqhdl); 13136 free_irq(eqhdl->irq, eqhdl); 13137 } 13138 13139 /* Unconfigure MSI-X capability structure */ 13140 pci_free_irq_vectors(phba->pcidev); 13141 13142 vec_fail_out: 13143 return rc; 13144 } 13145 13146 /** 13147 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device 13148 * @phba: pointer to lpfc hba data structure. 13149 * 13150 * This routine is invoked to enable the MSI interrupt mode to device with 13151 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is 13152 * called to enable the MSI vector. The device driver is responsible for 13153 * calling the request_irq() to register MSI vector with a interrupt the 13154 * handler, which is done in this function. 13155 * 13156 * Return codes 13157 * 0 - successful 13158 * other values - error 13159 **/ 13160 static int 13161 lpfc_sli4_enable_msi(struct lpfc_hba *phba) 13162 { 13163 int rc, index; 13164 unsigned int cpu; 13165 struct lpfc_hba_eq_hdl *eqhdl; 13166 13167 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, 13168 PCI_IRQ_MSI | PCI_IRQ_AFFINITY); 13169 if (rc > 0) 13170 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13171 "0487 PCI enable MSI mode success.\n"); 13172 else { 13173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13174 "0488 PCI enable MSI mode failed (%d)\n", rc); 13175 return rc ? rc : -1; 13176 } 13177 13178 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13179 0, LPFC_DRIVER_NAME, phba); 13180 if (rc) { 13181 pci_free_irq_vectors(phba->pcidev); 13182 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13183 "0490 MSI request_irq failed (%d)\n", rc); 13184 return rc; 13185 } 13186 13187 eqhdl = lpfc_get_eq_hdl(0); 13188 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 13189 13190 cpu = cpumask_first(cpu_present_mask); 13191 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); 13192 13193 for (index = 0; index < phba->cfg_irq_chann; index++) { 13194 eqhdl = lpfc_get_eq_hdl(index); 13195 eqhdl->idx = index; 13196 } 13197 13198 return 0; 13199 } 13200 13201 /** 13202 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device 13203 * @phba: pointer to lpfc hba data structure. 13204 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). 13205 * 13206 * This routine is invoked to enable device interrupt and associate driver's 13207 * interrupt handler(s) to interrupt vector(s) to device with SLI-4 13208 * interface spec. Depends on the interrupt mode configured to the driver, 13209 * the driver will try to fallback from the configured interrupt mode to an 13210 * interrupt mode which is supported by the platform, kernel, and device in 13211 * the order of: 13212 * MSI-X -> MSI -> IRQ. 13213 * 13214 * Return codes 13215 * 0 - successful 13216 * other values - error 13217 **/ 13218 static uint32_t 13219 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) 13220 { 13221 uint32_t intr_mode = LPFC_INTR_ERROR; 13222 int retval, idx; 13223 13224 if (cfg_mode == 2) { 13225 /* Preparation before conf_msi mbox cmd */ 13226 retval = 0; 13227 if (!retval) { 13228 /* Now, try to enable MSI-X interrupt mode */ 13229 retval = lpfc_sli4_enable_msix(phba); 13230 if (!retval) { 13231 /* Indicate initialization to MSI-X mode */ 13232 phba->intr_type = MSIX; 13233 intr_mode = 2; 13234 } 13235 } 13236 } 13237 13238 /* Fallback to MSI if MSI-X initialization failed */ 13239 if (cfg_mode >= 1 && phba->intr_type == NONE) { 13240 retval = lpfc_sli4_enable_msi(phba); 13241 if (!retval) { 13242 /* Indicate initialization to MSI mode */ 13243 phba->intr_type = MSI; 13244 intr_mode = 1; 13245 } 13246 } 13247 13248 /* Fallback to INTx if both MSI-X/MSI initalization failed */ 13249 if (phba->intr_type == NONE) { 13250 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 13251 IRQF_SHARED, LPFC_DRIVER_NAME, phba); 13252 if (!retval) { 13253 struct lpfc_hba_eq_hdl *eqhdl; 13254 unsigned int cpu; 13255 13256 /* Indicate initialization to INTx mode */ 13257 phba->intr_type = INTx; 13258 intr_mode = 0; 13259 13260 eqhdl = lpfc_get_eq_hdl(0); 13261 eqhdl->irq = pci_irq_vector(phba->pcidev, 0); 13262 13263 cpu = cpumask_first(cpu_present_mask); 13264 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, 13265 cpu); 13266 for (idx = 0; idx < phba->cfg_irq_chann; idx++) { 13267 eqhdl = lpfc_get_eq_hdl(idx); 13268 eqhdl->idx = idx; 13269 } 13270 } 13271 } 13272 return intr_mode; 13273 } 13274 13275 /** 13276 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device 13277 * @phba: pointer to lpfc hba data structure. 13278 * 13279 * This routine is invoked to disable device interrupt and disassociate 13280 * the driver's interrupt handler(s) from interrupt vector(s) to device 13281 * with SLI-4 interface spec. Depending on the interrupt mode, the driver 13282 * will release the interrupt vector(s) for the message signaled interrupt. 13283 **/ 13284 static void 13285 lpfc_sli4_disable_intr(struct lpfc_hba *phba) 13286 { 13287 /* Disable the currently initialized interrupt mode */ 13288 if (phba->intr_type == MSIX) { 13289 int index; 13290 struct lpfc_hba_eq_hdl *eqhdl; 13291 13292 /* Free up MSI-X multi-message vectors */ 13293 for (index = 0; index < phba->cfg_irq_chann; index++) { 13294 eqhdl = lpfc_get_eq_hdl(index); 13295 lpfc_irq_clear_aff(eqhdl); 13296 free_irq(eqhdl->irq, eqhdl); 13297 } 13298 } else { 13299 free_irq(phba->pcidev->irq, phba); 13300 } 13301 13302 pci_free_irq_vectors(phba->pcidev); 13303 13304 /* Reset interrupt management states */ 13305 phba->intr_type = NONE; 13306 phba->sli.slistat.sli_intr = 0; 13307 } 13308 13309 /** 13310 * lpfc_unset_hba - Unset SLI3 hba device initialization 13311 * @phba: pointer to lpfc hba data structure. 13312 * 13313 * This routine is invoked to unset the HBA device initialization steps to 13314 * a device with SLI-3 interface spec. 13315 **/ 13316 static void 13317 lpfc_unset_hba(struct lpfc_hba *phba) 13318 { 13319 struct lpfc_vport *vport = phba->pport; 13320 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 13321 13322 spin_lock_irq(shost->host_lock); 13323 vport->load_flag |= FC_UNLOADING; 13324 spin_unlock_irq(shost->host_lock); 13325 13326 kfree(phba->vpi_bmask); 13327 kfree(phba->vpi_ids); 13328 13329 lpfc_stop_hba_timers(phba); 13330 13331 phba->pport->work_port_events = 0; 13332 13333 lpfc_sli_hba_down(phba); 13334 13335 lpfc_sli_brdrestart(phba); 13336 13337 lpfc_sli_disable_intr(phba); 13338 13339 return; 13340 } 13341 13342 /** 13343 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy 13344 * @phba: Pointer to HBA context object. 13345 * 13346 * This function is called in the SLI4 code path to wait for completion 13347 * of device's XRIs exchange busy. It will check the XRI exchange busy 13348 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after 13349 * that, it will check the XRI exchange busy on outstanding FCP and ELS 13350 * I/Os every 30 seconds, log error message, and wait forever. Only when 13351 * all XRI exchange busy complete, the driver unload shall proceed with 13352 * invoking the function reset ioctl mailbox command to the CNA and the 13353 * the rest of the driver unload resource release. 13354 **/ 13355 static void 13356 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) 13357 { 13358 struct lpfc_sli4_hdw_queue *qp; 13359 int idx, ccnt; 13360 int wait_time = 0; 13361 int io_xri_cmpl = 1; 13362 int nvmet_xri_cmpl = 1; 13363 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13364 13365 /* Driver just aborted IOs during the hba_unset process. Pause 13366 * here to give the HBA time to complete the IO and get entries 13367 * into the abts lists. 13368 */ 13369 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); 13370 13371 /* Wait for NVME pending IO to flush back to transport. */ 13372 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13373 lpfc_nvme_wait_for_io_drain(phba); 13374 13375 ccnt = 0; 13376 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13377 qp = &phba->sli4_hba.hdwq[idx]; 13378 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); 13379 if (!io_xri_cmpl) /* if list is NOT empty */ 13380 ccnt++; 13381 } 13382 if (ccnt) 13383 io_xri_cmpl = 0; 13384 13385 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13386 nvmet_xri_cmpl = 13387 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13388 } 13389 13390 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { 13391 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { 13392 if (!nvmet_xri_cmpl) 13393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13394 "6424 NVMET XRI exchange busy " 13395 "wait time: %d seconds.\n", 13396 wait_time/1000); 13397 if (!io_xri_cmpl) 13398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13399 "6100 IO XRI exchange busy " 13400 "wait time: %d seconds.\n", 13401 wait_time/1000); 13402 if (!els_xri_cmpl) 13403 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13404 "2878 ELS XRI exchange busy " 13405 "wait time: %d seconds.\n", 13406 wait_time/1000); 13407 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); 13408 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; 13409 } else { 13410 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); 13411 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; 13412 } 13413 13414 ccnt = 0; 13415 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { 13416 qp = &phba->sli4_hba.hdwq[idx]; 13417 io_xri_cmpl = list_empty( 13418 &qp->lpfc_abts_io_buf_list); 13419 if (!io_xri_cmpl) /* if list is NOT empty */ 13420 ccnt++; 13421 } 13422 if (ccnt) 13423 io_xri_cmpl = 0; 13424 13425 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13426 nvmet_xri_cmpl = list_empty( 13427 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 13428 } 13429 els_xri_cmpl = 13430 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); 13431 13432 } 13433 } 13434 13435 /** 13436 * lpfc_sli4_hba_unset - Unset the fcoe hba 13437 * @phba: Pointer to HBA context object. 13438 * 13439 * This function is called in the SLI4 code path to reset the HBA's FCoE 13440 * function. The caller is not required to hold any lock. This routine 13441 * issues PCI function reset mailbox command to reset the FCoE function. 13442 * At the end of the function, it calls lpfc_hba_down_post function to 13443 * free any pending commands. 13444 **/ 13445 static void 13446 lpfc_sli4_hba_unset(struct lpfc_hba *phba) 13447 { 13448 int wait_cnt = 0; 13449 LPFC_MBOXQ_t *mboxq; 13450 struct pci_dev *pdev = phba->pcidev; 13451 13452 lpfc_stop_hba_timers(phba); 13453 hrtimer_cancel(&phba->cmf_timer); 13454 13455 if (phba->pport) 13456 phba->sli4_hba.intr_enable = 0; 13457 13458 /* 13459 * Gracefully wait out the potential current outstanding asynchronous 13460 * mailbox command. 13461 */ 13462 13463 /* First, block any pending async mailbox command from posted */ 13464 spin_lock_irq(&phba->hbalock); 13465 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13466 spin_unlock_irq(&phba->hbalock); 13467 /* Now, trying to wait it out if we can */ 13468 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13469 msleep(10); 13470 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) 13471 break; 13472 } 13473 /* Forcefully release the outstanding mailbox command if timed out */ 13474 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { 13475 spin_lock_irq(&phba->hbalock); 13476 mboxq = phba->sli.mbox_active; 13477 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 13478 __lpfc_mbox_cmpl_put(phba, mboxq); 13479 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13480 phba->sli.mbox_active = NULL; 13481 spin_unlock_irq(&phba->hbalock); 13482 } 13483 13484 /* Abort all iocbs associated with the hba */ 13485 lpfc_sli_hba_iocb_abort(phba); 13486 13487 if (!pci_channel_offline(phba->pcidev)) 13488 /* Wait for completion of device XRI exchange busy */ 13489 lpfc_sli4_xri_exchange_busy_wait(phba); 13490 13491 /* per-phba callback de-registration for hotplug event */ 13492 if (phba->pport) 13493 lpfc_cpuhp_remove(phba); 13494 13495 /* Disable PCI subsystem interrupt */ 13496 lpfc_sli4_disable_intr(phba); 13497 13498 /* Disable SR-IOV if enabled */ 13499 if (phba->cfg_sriov_nr_virtfn) 13500 pci_disable_sriov(pdev); 13501 13502 /* Stop kthread signal shall trigger work_done one more time */ 13503 kthread_stop(phba->worker_thread); 13504 13505 /* Disable FW logging to host memory */ 13506 lpfc_ras_stop_fwlog(phba); 13507 13508 /* Reset SLI4 HBA FCoE function */ 13509 lpfc_pci_function_reset(phba); 13510 13511 /* release all queue allocated resources. */ 13512 lpfc_sli4_queue_destroy(phba); 13513 13514 /* Free RAS DMA memory */ 13515 if (phba->ras_fwlog.ras_enabled) 13516 lpfc_sli4_ras_dma_free(phba); 13517 13518 /* Stop the SLI4 device port */ 13519 if (phba->pport) 13520 phba->pport->work_port_events = 0; 13521 } 13522 13523 static uint32_t 13524 lpfc_cgn_crc32(uint32_t crc, u8 byte) 13525 { 13526 uint32_t msb = 0; 13527 uint32_t bit; 13528 13529 for (bit = 0; bit < 8; bit++) { 13530 msb = (crc >> 31) & 1; 13531 crc <<= 1; 13532 13533 if (msb ^ (byte & 1)) { 13534 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; 13535 crc |= 1; 13536 } 13537 byte >>= 1; 13538 } 13539 return crc; 13540 } 13541 13542 static uint32_t 13543 lpfc_cgn_reverse_bits(uint32_t wd) 13544 { 13545 uint32_t result = 0; 13546 uint32_t i; 13547 13548 for (i = 0; i < 32; i++) { 13549 result <<= 1; 13550 result |= (1 & (wd >> i)); 13551 } 13552 return result; 13553 } 13554 13555 /* 13556 * The routine corresponds with the algorithm the HBA firmware 13557 * uses to validate the data integrity. 13558 */ 13559 uint32_t 13560 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) 13561 { 13562 uint32_t i; 13563 uint32_t result; 13564 uint8_t *data = (uint8_t *)ptr; 13565 13566 for (i = 0; i < byteLen; ++i) 13567 crc = lpfc_cgn_crc32(crc, data[i]); 13568 13569 result = ~lpfc_cgn_reverse_bits(crc); 13570 return result; 13571 } 13572 13573 void 13574 lpfc_init_congestion_buf(struct lpfc_hba *phba) 13575 { 13576 struct lpfc_cgn_info *cp; 13577 struct timespec64 cmpl_time; 13578 struct tm broken; 13579 uint16_t size; 13580 uint32_t crc; 13581 13582 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13583 "6235 INIT Congestion Buffer %p\n", phba->cgn_i); 13584 13585 if (!phba->cgn_i) 13586 return; 13587 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13588 13589 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 13590 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 13591 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 13592 atomic_set(&phba->cgn_sync_warn_cnt, 0); 13593 13594 atomic_set(&phba->cgn_driver_evt_cnt, 0); 13595 atomic_set(&phba->cgn_latency_evt_cnt, 0); 13596 atomic64_set(&phba->cgn_latency_evt, 0); 13597 phba->cgn_evt_minute = 0; 13598 phba->hba_flag &= ~HBA_CGN_DAY_WRAP; 13599 13600 memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); 13601 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); 13602 cp->cgn_info_version = LPFC_CGN_INFO_V3; 13603 13604 /* cgn parameters */ 13605 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; 13606 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; 13607 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; 13608 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; 13609 13610 ktime_get_real_ts64(&cmpl_time); 13611 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13612 13613 cp->cgn_info_month = broken.tm_mon + 1; 13614 cp->cgn_info_day = broken.tm_mday; 13615 cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */ 13616 cp->cgn_info_hour = broken.tm_hour; 13617 cp->cgn_info_minute = broken.tm_min; 13618 cp->cgn_info_second = broken.tm_sec; 13619 13620 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13621 "2643 CGNInfo Init: Start Time " 13622 "%d/%d/%d %d:%d:%d\n", 13623 cp->cgn_info_day, cp->cgn_info_month, 13624 cp->cgn_info_year, cp->cgn_info_hour, 13625 cp->cgn_info_minute, cp->cgn_info_second); 13626 13627 /* Fill in default LUN qdepth */ 13628 if (phba->pport) { 13629 size = (uint16_t)(phba->pport->cfg_lun_queue_depth); 13630 cp->cgn_lunq = cpu_to_le16(size); 13631 } 13632 13633 /* last used Index initialized to 0xff already */ 13634 13635 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13636 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); 13637 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13638 cp->cgn_info_crc = cpu_to_le32(crc); 13639 13640 phba->cgn_evt_timestamp = jiffies + 13641 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); 13642 } 13643 13644 void 13645 lpfc_init_congestion_stat(struct lpfc_hba *phba) 13646 { 13647 struct lpfc_cgn_info *cp; 13648 struct timespec64 cmpl_time; 13649 struct tm broken; 13650 uint32_t crc; 13651 13652 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 13653 "6236 INIT Congestion Stat %p\n", phba->cgn_i); 13654 13655 if (!phba->cgn_i) 13656 return; 13657 13658 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; 13659 memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); 13660 13661 ktime_get_real_ts64(&cmpl_time); 13662 time64_to_tm(cmpl_time.tv_sec, 0, &broken); 13663 13664 cp->cgn_stat_month = broken.tm_mon + 1; 13665 cp->cgn_stat_day = broken.tm_mday; 13666 cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */ 13667 cp->cgn_stat_hour = broken.tm_hour; 13668 cp->cgn_stat_minute = broken.tm_min; 13669 13670 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, 13671 "2647 CGNstat Init: Start Time " 13672 "%d/%d/%d %d:%d\n", 13673 cp->cgn_stat_day, cp->cgn_stat_month, 13674 cp->cgn_stat_year, cp->cgn_stat_hour, 13675 cp->cgn_stat_minute); 13676 13677 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); 13678 cp->cgn_info_crc = cpu_to_le32(crc); 13679 } 13680 13681 /** 13682 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA 13683 * @phba: Pointer to hba context object. 13684 * @reg: flag to determine register or unregister. 13685 */ 13686 static int 13687 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) 13688 { 13689 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; 13690 union lpfc_sli4_cfg_shdr *shdr; 13691 uint32_t shdr_status, shdr_add_status; 13692 LPFC_MBOXQ_t *mboxq; 13693 int length, rc; 13694 13695 if (!phba->cgn_i) 13696 return -ENXIO; 13697 13698 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13699 if (!mboxq) { 13700 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13701 "2641 REG_CONGESTION_BUF mbox allocation fail: " 13702 "HBA state x%x reg %d\n", 13703 phba->pport->port_state, reg); 13704 return -ENOMEM; 13705 } 13706 13707 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - 13708 sizeof(struct lpfc_sli4_cfg_mhdr)); 13709 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13710 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, 13711 LPFC_SLI4_MBX_EMBED); 13712 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; 13713 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); 13714 if (reg > 0) 13715 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); 13716 else 13717 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); 13718 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); 13719 reg_congestion_buf->addr_lo = 13720 putPaddrLow(phba->cgn_i->phys); 13721 reg_congestion_buf->addr_hi = 13722 putPaddrHigh(phba->cgn_i->phys); 13723 13724 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13725 shdr = (union lpfc_sli4_cfg_shdr *) 13726 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; 13727 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13728 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 13729 &shdr->response); 13730 mempool_free(mboxq, phba->mbox_mem_pool); 13731 if (shdr_status || shdr_add_status || rc) { 13732 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13733 "2642 REG_CONGESTION_BUF mailbox " 13734 "failed with status x%x add_status x%x," 13735 " mbx status x%x reg %d\n", 13736 shdr_status, shdr_add_status, rc, reg); 13737 return -ENXIO; 13738 } 13739 return 0; 13740 } 13741 13742 int 13743 lpfc_unreg_congestion_buf(struct lpfc_hba *phba) 13744 { 13745 lpfc_cmf_stop(phba); 13746 return __lpfc_reg_congestion_buf(phba, 0); 13747 } 13748 13749 int 13750 lpfc_reg_congestion_buf(struct lpfc_hba *phba) 13751 { 13752 return __lpfc_reg_congestion_buf(phba, 1); 13753 } 13754 13755 /** 13756 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. 13757 * @phba: Pointer to HBA context object. 13758 * @mboxq: Pointer to the mailboxq memory for the mailbox command response. 13759 * 13760 * This function is called in the SLI4 code path to read the port's 13761 * sli4 capabilities. 13762 * 13763 * This function may be be called from any context that can block-wait 13764 * for the completion. The expectation is that this routine is called 13765 * typically from probe_one or from the online routine. 13766 **/ 13767 int 13768 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 13769 { 13770 int rc; 13771 struct lpfc_mqe *mqe = &mboxq->u.mqe; 13772 struct lpfc_pc_sli4_params *sli4_params; 13773 uint32_t mbox_tmo; 13774 int length; 13775 bool exp_wqcq_pages = true; 13776 struct lpfc_sli4_parameters *mbx_sli4_parameters; 13777 13778 /* 13779 * By default, the driver assumes the SLI4 port requires RPI 13780 * header postings. The SLI4_PARAM response will correct this 13781 * assumption. 13782 */ 13783 phba->sli4_hba.rpi_hdrs_in_use = 1; 13784 13785 /* Read the port's SLI4 Config Parameters */ 13786 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 13787 sizeof(struct lpfc_sli4_cfg_mhdr)); 13788 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 13789 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 13790 length, LPFC_SLI4_MBX_EMBED); 13791 if (!phba->sli4_hba.intr_enable) 13792 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 13793 else { 13794 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 13795 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 13796 } 13797 if (unlikely(rc)) 13798 return rc; 13799 sli4_params = &phba->sli4_hba.pc_sli4_params; 13800 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 13801 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); 13802 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); 13803 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); 13804 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, 13805 mbx_sli4_parameters); 13806 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, 13807 mbx_sli4_parameters); 13808 if (bf_get(cfg_phwq, mbx_sli4_parameters)) 13809 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; 13810 else 13811 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; 13812 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; 13813 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, 13814 mbx_sli4_parameters); 13815 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); 13816 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); 13817 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); 13818 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); 13819 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); 13820 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); 13821 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); 13822 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); 13823 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); 13824 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); 13825 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, 13826 mbx_sli4_parameters); 13827 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); 13828 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, 13829 mbx_sli4_parameters); 13830 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); 13831 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); 13832 13833 /* Check for Extended Pre-Registered SGL support */ 13834 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); 13835 13836 /* Check for firmware nvme support */ 13837 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && 13838 bf_get(cfg_xib, mbx_sli4_parameters)); 13839 13840 if (rc) { 13841 /* Save this to indicate the Firmware supports NVME */ 13842 sli4_params->nvme = 1; 13843 13844 /* Firmware NVME support, check driver FC4 NVME support */ 13845 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { 13846 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13847 "6133 Disabling NVME support: " 13848 "FC4 type not supported: x%x\n", 13849 phba->cfg_enable_fc4_type); 13850 goto fcponly; 13851 } 13852 } else { 13853 /* No firmware NVME support, check driver FC4 NVME support */ 13854 sli4_params->nvme = 0; 13855 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13856 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, 13857 "6101 Disabling NVME support: Not " 13858 "supported by firmware (%d %d) x%x\n", 13859 bf_get(cfg_nvme, mbx_sli4_parameters), 13860 bf_get(cfg_xib, mbx_sli4_parameters), 13861 phba->cfg_enable_fc4_type); 13862 fcponly: 13863 phba->nvmet_support = 0; 13864 phba->cfg_nvmet_mrq = 0; 13865 phba->cfg_nvme_seg_cnt = 0; 13866 13867 /* If no FC4 type support, move to just SCSI support */ 13868 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) 13869 return -ENODEV; 13870 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; 13871 } 13872 } 13873 13874 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to 13875 * accommodate 512K and 1M IOs in a single nvme buf. 13876 */ 13877 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) 13878 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; 13879 13880 /* Enable embedded Payload BDE if support is indicated */ 13881 if (bf_get(cfg_pbde, mbx_sli4_parameters)) 13882 phba->cfg_enable_pbde = 1; 13883 else 13884 phba->cfg_enable_pbde = 0; 13885 13886 /* 13887 * To support Suppress Response feature we must satisfy 3 conditions. 13888 * lpfc_suppress_rsp module parameter must be set (default). 13889 * In SLI4-Parameters Descriptor: 13890 * Extended Inline Buffers (XIB) must be supported. 13891 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported 13892 * (double negative). 13893 */ 13894 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && 13895 !(bf_get(cfg_nosr, mbx_sli4_parameters))) 13896 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; 13897 else 13898 phba->cfg_suppress_rsp = 0; 13899 13900 if (bf_get(cfg_eqdr, mbx_sli4_parameters)) 13901 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; 13902 13903 /* Make sure that sge_supp_len can be handled by the driver */ 13904 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) 13905 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; 13906 13907 /* 13908 * Check whether the adapter supports an embedded copy of the 13909 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order 13910 * to use this option, 128-byte WQEs must be used. 13911 */ 13912 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) 13913 phba->fcp_embed_io = 1; 13914 else 13915 phba->fcp_embed_io = 0; 13916 13917 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, 13918 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", 13919 bf_get(cfg_xib, mbx_sli4_parameters), 13920 phba->cfg_enable_pbde, 13921 phba->fcp_embed_io, sli4_params->nvme, 13922 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); 13923 13924 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 13925 LPFC_SLI_INTF_IF_TYPE_2) && 13926 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 13927 LPFC_SLI_INTF_FAMILY_LNCR_A0)) 13928 exp_wqcq_pages = false; 13929 13930 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && 13931 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && 13932 exp_wqcq_pages && 13933 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) 13934 phba->enab_exp_wqcq_pages = 1; 13935 else 13936 phba->enab_exp_wqcq_pages = 0; 13937 /* 13938 * Check if the SLI port supports MDS Diagnostics 13939 */ 13940 if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) 13941 phba->mds_diags_support = 1; 13942 else 13943 phba->mds_diags_support = 0; 13944 13945 /* 13946 * Check if the SLI port supports NSLER 13947 */ 13948 if (bf_get(cfg_nsler, mbx_sli4_parameters)) 13949 phba->nsler = 1; 13950 else 13951 phba->nsler = 0; 13952 13953 return 0; 13954 } 13955 13956 /** 13957 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. 13958 * @pdev: pointer to PCI device 13959 * @pid: pointer to PCI device identifier 13960 * 13961 * This routine is to be called to attach a device with SLI-3 interface spec 13962 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 13963 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 13964 * information of the device and driver to see if the driver state that it can 13965 * support this kind of device. If the match is successful, the driver core 13966 * invokes this routine. If this routine determines it can claim the HBA, it 13967 * does all the initialization that it needs to do to handle the HBA properly. 13968 * 13969 * Return code 13970 * 0 - driver can claim the device 13971 * negative value - driver can not claim the device 13972 **/ 13973 static int 13974 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) 13975 { 13976 struct lpfc_hba *phba; 13977 struct lpfc_vport *vport = NULL; 13978 struct Scsi_Host *shost = NULL; 13979 int error; 13980 uint32_t cfg_mode, intr_mode; 13981 13982 /* Allocate memory for HBA structure */ 13983 phba = lpfc_hba_alloc(pdev); 13984 if (!phba) 13985 return -ENOMEM; 13986 13987 /* Perform generic PCI device enabling operation */ 13988 error = lpfc_enable_pci_dev(phba); 13989 if (error) 13990 goto out_free_phba; 13991 13992 /* Set up SLI API function jump table for PCI-device group-0 HBAs */ 13993 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); 13994 if (error) 13995 goto out_disable_pci_dev; 13996 13997 /* Set up SLI-3 specific device PCI memory space */ 13998 error = lpfc_sli_pci_mem_setup(phba); 13999 if (error) { 14000 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14001 "1402 Failed to set up pci memory space.\n"); 14002 goto out_disable_pci_dev; 14003 } 14004 14005 /* Set up SLI-3 specific device driver resources */ 14006 error = lpfc_sli_driver_resource_setup(phba); 14007 if (error) { 14008 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14009 "1404 Failed to set up driver resource.\n"); 14010 goto out_unset_pci_mem_s3; 14011 } 14012 14013 /* Initialize and populate the iocb list per host */ 14014 14015 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); 14016 if (error) { 14017 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14018 "1405 Failed to initialize iocb list.\n"); 14019 goto out_unset_driver_resource_s3; 14020 } 14021 14022 /* Set up common device driver resources */ 14023 error = lpfc_setup_driver_resource_phase2(phba); 14024 if (error) { 14025 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14026 "1406 Failed to set up driver resource.\n"); 14027 goto out_free_iocb_list; 14028 } 14029 14030 /* Get the default values for Model Name and Description */ 14031 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14032 14033 /* Create SCSI host to the physical port */ 14034 error = lpfc_create_shost(phba); 14035 if (error) { 14036 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14037 "1407 Failed to create scsi host.\n"); 14038 goto out_unset_driver_resource; 14039 } 14040 14041 /* Configure sysfs attributes */ 14042 vport = phba->pport; 14043 error = lpfc_alloc_sysfs_attr(vport); 14044 if (error) { 14045 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14046 "1476 Failed to allocate sysfs attr\n"); 14047 goto out_destroy_shost; 14048 } 14049 14050 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14051 /* Now, trying to enable interrupt and bring up the device */ 14052 cfg_mode = phba->cfg_use_msi; 14053 while (true) { 14054 /* Put device to a known state before enabling interrupt */ 14055 lpfc_stop_port(phba); 14056 /* Configure and enable interrupt */ 14057 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); 14058 if (intr_mode == LPFC_INTR_ERROR) { 14059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14060 "0431 Failed to enable interrupt.\n"); 14061 error = -ENODEV; 14062 goto out_free_sysfs_attr; 14063 } 14064 /* SLI-3 HBA setup */ 14065 if (lpfc_sli_hba_setup(phba)) { 14066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14067 "1477 Failed to set up hba\n"); 14068 error = -ENODEV; 14069 goto out_remove_device; 14070 } 14071 14072 /* Wait 50ms for the interrupts of previous mailbox commands */ 14073 msleep(50); 14074 /* Check active interrupts on message signaled interrupts */ 14075 if (intr_mode == 0 || 14076 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { 14077 /* Log the current active interrupt mode */ 14078 phba->intr_mode = intr_mode; 14079 lpfc_log_intr_mode(phba, intr_mode); 14080 break; 14081 } else { 14082 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14083 "0447 Configure interrupt mode (%d) " 14084 "failed active interrupt test.\n", 14085 intr_mode); 14086 /* Disable the current interrupt mode */ 14087 lpfc_sli_disable_intr(phba); 14088 /* Try next level of interrupt mode */ 14089 cfg_mode = --intr_mode; 14090 } 14091 } 14092 14093 /* Perform post initialization setup */ 14094 lpfc_post_init_setup(phba); 14095 14096 /* Check if there are static vports to be created. */ 14097 lpfc_create_static_vport(phba); 14098 14099 return 0; 14100 14101 out_remove_device: 14102 lpfc_unset_hba(phba); 14103 out_free_sysfs_attr: 14104 lpfc_free_sysfs_attr(vport); 14105 out_destroy_shost: 14106 lpfc_destroy_shost(phba); 14107 out_unset_driver_resource: 14108 lpfc_unset_driver_resource_phase2(phba); 14109 out_free_iocb_list: 14110 lpfc_free_iocb_list(phba); 14111 out_unset_driver_resource_s3: 14112 lpfc_sli_driver_resource_unset(phba); 14113 out_unset_pci_mem_s3: 14114 lpfc_sli_pci_mem_unset(phba); 14115 out_disable_pci_dev: 14116 lpfc_disable_pci_dev(phba); 14117 if (shost) 14118 scsi_host_put(shost); 14119 out_free_phba: 14120 lpfc_hba_free(phba); 14121 return error; 14122 } 14123 14124 /** 14125 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. 14126 * @pdev: pointer to PCI device 14127 * 14128 * This routine is to be called to disattach a device with SLI-3 interface 14129 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is 14130 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14131 * device to be removed from the PCI subsystem properly. 14132 **/ 14133 static void 14134 lpfc_pci_remove_one_s3(struct pci_dev *pdev) 14135 { 14136 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14137 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14138 struct lpfc_vport **vports; 14139 struct lpfc_hba *phba = vport->phba; 14140 int i; 14141 14142 spin_lock_irq(&phba->hbalock); 14143 vport->load_flag |= FC_UNLOADING; 14144 spin_unlock_irq(&phba->hbalock); 14145 14146 lpfc_free_sysfs_attr(vport); 14147 14148 /* Release all the vports against this physical port */ 14149 vports = lpfc_create_vport_work_array(phba); 14150 if (vports != NULL) 14151 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14152 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 14153 continue; 14154 fc_vport_terminate(vports[i]->fc_vport); 14155 } 14156 lpfc_destroy_vport_work_array(phba, vports); 14157 14158 /* Remove FC host with the physical port */ 14159 fc_remove_host(shost); 14160 scsi_remove_host(shost); 14161 14162 /* Clean up all nodes, mailboxes and IOs. */ 14163 lpfc_cleanup(vport); 14164 14165 /* 14166 * Bring down the SLI Layer. This step disable all interrupts, 14167 * clears the rings, discards all mailbox commands, and resets 14168 * the HBA. 14169 */ 14170 14171 /* HBA interrupt will be disabled after this call */ 14172 lpfc_sli_hba_down(phba); 14173 /* Stop kthread signal shall trigger work_done one more time */ 14174 kthread_stop(phba->worker_thread); 14175 /* Final cleanup of txcmplq and reset the HBA */ 14176 lpfc_sli_brdrestart(phba); 14177 14178 kfree(phba->vpi_bmask); 14179 kfree(phba->vpi_ids); 14180 14181 lpfc_stop_hba_timers(phba); 14182 spin_lock_irq(&phba->port_list_lock); 14183 list_del_init(&vport->listentry); 14184 spin_unlock_irq(&phba->port_list_lock); 14185 14186 lpfc_debugfs_terminate(vport); 14187 14188 /* Disable SR-IOV if enabled */ 14189 if (phba->cfg_sriov_nr_virtfn) 14190 pci_disable_sriov(pdev); 14191 14192 /* Disable interrupt */ 14193 lpfc_sli_disable_intr(phba); 14194 14195 scsi_host_put(shost); 14196 14197 /* 14198 * Call scsi_free before mem_free since scsi bufs are released to their 14199 * corresponding pools here. 14200 */ 14201 lpfc_scsi_free(phba); 14202 lpfc_free_iocb_list(phba); 14203 14204 lpfc_mem_free_all(phba); 14205 14206 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), 14207 phba->hbqslimp.virt, phba->hbqslimp.phys); 14208 14209 /* Free resources associated with SLI2 interface */ 14210 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, 14211 phba->slim2p.virt, phba->slim2p.phys); 14212 14213 /* unmap adapter SLIM and Control Registers */ 14214 iounmap(phba->ctrl_regs_memmap_p); 14215 iounmap(phba->slim_memmap_p); 14216 14217 lpfc_hba_free(phba); 14218 14219 pci_release_mem_regions(pdev); 14220 pci_disable_device(pdev); 14221 } 14222 14223 /** 14224 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt 14225 * @dev_d: pointer to device 14226 * 14227 * This routine is to be called from the kernel's PCI subsystem to support 14228 * system Power Management (PM) to device with SLI-3 interface spec. When 14229 * PM invokes this method, it quiesces the device by stopping the driver's 14230 * worker thread for the device, turning off device's interrupt and DMA, 14231 * and bring the device offline. Note that as the driver implements the 14232 * minimum PM requirements to a power-aware driver's PM support for the 14233 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 14234 * to the suspend() method call will be treated as SUSPEND and the driver will 14235 * fully reinitialize its device during resume() method call, the driver will 14236 * set device to PCI_D3hot state in PCI config space instead of setting it 14237 * according to the @msg provided by the PM. 14238 * 14239 * Return code 14240 * 0 - driver suspended the device 14241 * Error otherwise 14242 **/ 14243 static int __maybe_unused 14244 lpfc_pci_suspend_one_s3(struct device *dev_d) 14245 { 14246 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14247 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14248 14249 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14250 "0473 PCI device Power Management suspend.\n"); 14251 14252 /* Bring down the device */ 14253 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14254 lpfc_offline(phba); 14255 kthread_stop(phba->worker_thread); 14256 14257 /* Disable interrupt from device */ 14258 lpfc_sli_disable_intr(phba); 14259 14260 return 0; 14261 } 14262 14263 /** 14264 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt 14265 * @dev_d: pointer to device 14266 * 14267 * This routine is to be called from the kernel's PCI subsystem to support 14268 * system Power Management (PM) to device with SLI-3 interface spec. When PM 14269 * invokes this method, it restores the device's PCI config space state and 14270 * fully reinitializes the device and brings it online. Note that as the 14271 * driver implements the minimum PM requirements to a power-aware driver's 14272 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, 14273 * FREEZE) to the suspend() method call will be treated as SUSPEND and the 14274 * driver will fully reinitialize its device during resume() method call, 14275 * the device will be set to PCI_D0 directly in PCI config space before 14276 * restoring the state. 14277 * 14278 * Return code 14279 * 0 - driver suspended the device 14280 * Error otherwise 14281 **/ 14282 static int __maybe_unused 14283 lpfc_pci_resume_one_s3(struct device *dev_d) 14284 { 14285 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 14286 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14287 uint32_t intr_mode; 14288 int error; 14289 14290 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14291 "0452 PCI device Power Management resume.\n"); 14292 14293 /* Startup the kernel thread for this host adapter. */ 14294 phba->worker_thread = kthread_run(lpfc_do_work, phba, 14295 "lpfc_worker_%d", phba->brd_no); 14296 if (IS_ERR(phba->worker_thread)) { 14297 error = PTR_ERR(phba->worker_thread); 14298 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14299 "0434 PM resume failed to start worker " 14300 "thread: error=x%x.\n", error); 14301 return error; 14302 } 14303 14304 /* Init cpu_map array */ 14305 lpfc_cpu_map_array_init(phba); 14306 /* Init hba_eq_hdl array */ 14307 lpfc_hba_eq_hdl_array_init(phba); 14308 /* Configure and enable interrupt */ 14309 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14310 if (intr_mode == LPFC_INTR_ERROR) { 14311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14312 "0430 PM resume Failed to enable interrupt\n"); 14313 return -EIO; 14314 } else 14315 phba->intr_mode = intr_mode; 14316 14317 /* Restart HBA and bring it online */ 14318 lpfc_sli_brdrestart(phba); 14319 lpfc_online(phba); 14320 14321 /* Log the current active interrupt mode */ 14322 lpfc_log_intr_mode(phba, phba->intr_mode); 14323 14324 return 0; 14325 } 14326 14327 /** 14328 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover 14329 * @phba: pointer to lpfc hba data structure. 14330 * 14331 * This routine is called to prepare the SLI3 device for PCI slot recover. It 14332 * aborts all the outstanding SCSI I/Os to the pci device. 14333 **/ 14334 static void 14335 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) 14336 { 14337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14338 "2723 PCI channel I/O abort preparing for recovery\n"); 14339 14340 /* 14341 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 14342 * and let the SCSI mid-layer to retry them to recover. 14343 */ 14344 lpfc_sli_abort_fcp_rings(phba); 14345 } 14346 14347 /** 14348 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset 14349 * @phba: pointer to lpfc hba data structure. 14350 * 14351 * This routine is called to prepare the SLI3 device for PCI slot reset. It 14352 * disables the device interrupt and pci device, and aborts the internal FCP 14353 * pending I/Os. 14354 **/ 14355 static void 14356 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) 14357 { 14358 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14359 "2710 PCI channel disable preparing for reset\n"); 14360 14361 /* Block any management I/Os to the device */ 14362 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); 14363 14364 /* Block all SCSI devices' I/Os on the host */ 14365 lpfc_scsi_dev_block(phba); 14366 14367 /* Flush all driver's outstanding SCSI I/Os as we are to reset */ 14368 lpfc_sli_flush_io_rings(phba); 14369 14370 /* stop all timers */ 14371 lpfc_stop_hba_timers(phba); 14372 14373 /* Disable interrupt and pci device */ 14374 lpfc_sli_disable_intr(phba); 14375 pci_disable_device(phba->pcidev); 14376 } 14377 14378 /** 14379 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable 14380 * @phba: pointer to lpfc hba data structure. 14381 * 14382 * This routine is called to prepare the SLI3 device for PCI slot permanently 14383 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 14384 * pending I/Os. 14385 **/ 14386 static void 14387 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) 14388 { 14389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14390 "2711 PCI channel permanent disable for failure\n"); 14391 /* Block all SCSI devices' I/Os on the host */ 14392 lpfc_scsi_dev_block(phba); 14393 lpfc_sli4_prep_dev_for_reset(phba); 14394 14395 /* stop all timers */ 14396 lpfc_stop_hba_timers(phba); 14397 14398 /* Clean up all driver's outstanding SCSI I/Os */ 14399 lpfc_sli_flush_io_rings(phba); 14400 } 14401 14402 /** 14403 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error 14404 * @pdev: pointer to PCI device. 14405 * @state: the current PCI connection state. 14406 * 14407 * This routine is called from the PCI subsystem for I/O error handling to 14408 * device with SLI-3 interface spec. This function is called by the PCI 14409 * subsystem after a PCI bus error affecting this device has been detected. 14410 * When this function is invoked, it will need to stop all the I/Os and 14411 * interrupt(s) to the device. Once that is done, it will return 14412 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery 14413 * as desired. 14414 * 14415 * Return codes 14416 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link 14417 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 14418 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14419 **/ 14420 static pci_ers_result_t 14421 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) 14422 { 14423 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14424 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14425 14426 switch (state) { 14427 case pci_channel_io_normal: 14428 /* Non-fatal error, prepare for recovery */ 14429 lpfc_sli_prep_dev_for_recover(phba); 14430 return PCI_ERS_RESULT_CAN_RECOVER; 14431 case pci_channel_io_frozen: 14432 /* Fatal error, prepare for slot reset */ 14433 lpfc_sli_prep_dev_for_reset(phba); 14434 return PCI_ERS_RESULT_NEED_RESET; 14435 case pci_channel_io_perm_failure: 14436 /* Permanent failure, prepare for device down */ 14437 lpfc_sli_prep_dev_for_perm_failure(phba); 14438 return PCI_ERS_RESULT_DISCONNECT; 14439 default: 14440 /* Unknown state, prepare and request slot reset */ 14441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14442 "0472 Unknown PCI error state: x%x\n", state); 14443 lpfc_sli_prep_dev_for_reset(phba); 14444 return PCI_ERS_RESULT_NEED_RESET; 14445 } 14446 } 14447 14448 /** 14449 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. 14450 * @pdev: pointer to PCI device. 14451 * 14452 * This routine is called from the PCI subsystem for error handling to 14453 * device with SLI-3 interface spec. This is called after PCI bus has been 14454 * reset to restart the PCI card from scratch, as if from a cold-boot. 14455 * During the PCI subsystem error recovery, after driver returns 14456 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 14457 * recovery and then call this routine before calling the .resume method 14458 * to recover the device. This function will initialize the HBA device, 14459 * enable the interrupt, but it will just put the HBA to offline state 14460 * without passing any I/O traffic. 14461 * 14462 * Return codes 14463 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 14464 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 14465 */ 14466 static pci_ers_result_t 14467 lpfc_io_slot_reset_s3(struct pci_dev *pdev) 14468 { 14469 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14470 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14471 struct lpfc_sli *psli = &phba->sli; 14472 uint32_t intr_mode; 14473 14474 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 14475 if (pci_enable_device_mem(pdev)) { 14476 printk(KERN_ERR "lpfc: Cannot re-enable " 14477 "PCI device after reset.\n"); 14478 return PCI_ERS_RESULT_DISCONNECT; 14479 } 14480 14481 pci_restore_state(pdev); 14482 14483 /* 14484 * As the new kernel behavior of pci_restore_state() API call clears 14485 * device saved_state flag, need to save the restored state again. 14486 */ 14487 pci_save_state(pdev); 14488 14489 if (pdev->is_busmaster) 14490 pci_set_master(pdev); 14491 14492 spin_lock_irq(&phba->hbalock); 14493 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 14494 spin_unlock_irq(&phba->hbalock); 14495 14496 /* Configure and enable interrupt */ 14497 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); 14498 if (intr_mode == LPFC_INTR_ERROR) { 14499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14500 "0427 Cannot re-enable interrupt after " 14501 "slot reset.\n"); 14502 return PCI_ERS_RESULT_DISCONNECT; 14503 } else 14504 phba->intr_mode = intr_mode; 14505 14506 /* Take device offline, it will perform cleanup */ 14507 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 14508 lpfc_offline(phba); 14509 lpfc_sli_brdrestart(phba); 14510 14511 /* Log the current active interrupt mode */ 14512 lpfc_log_intr_mode(phba, phba->intr_mode); 14513 14514 return PCI_ERS_RESULT_RECOVERED; 14515 } 14516 14517 /** 14518 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. 14519 * @pdev: pointer to PCI device 14520 * 14521 * This routine is called from the PCI subsystem for error handling to device 14522 * with SLI-3 interface spec. It is called when kernel error recovery tells 14523 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 14524 * error recovery. After this call, traffic can start to flow from this device 14525 * again. 14526 */ 14527 static void 14528 lpfc_io_resume_s3(struct pci_dev *pdev) 14529 { 14530 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14531 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 14532 14533 /* Bring device online, it will be no-op for non-fatal error resume */ 14534 lpfc_online(phba); 14535 } 14536 14537 /** 14538 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve 14539 * @phba: pointer to lpfc hba data structure. 14540 * 14541 * returns the number of ELS/CT IOCBs to reserve 14542 **/ 14543 int 14544 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) 14545 { 14546 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; 14547 14548 if (phba->sli_rev == LPFC_SLI_REV4) { 14549 if (max_xri <= 100) 14550 return 10; 14551 else if (max_xri <= 256) 14552 return 25; 14553 else if (max_xri <= 512) 14554 return 50; 14555 else if (max_xri <= 1024) 14556 return 100; 14557 else if (max_xri <= 1536) 14558 return 150; 14559 else if (max_xri <= 2048) 14560 return 200; 14561 else 14562 return 250; 14563 } else 14564 return 0; 14565 } 14566 14567 /** 14568 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve 14569 * @phba: pointer to lpfc hba data structure. 14570 * 14571 * returns the number of ELS/CT + NVMET IOCBs to reserve 14572 **/ 14573 int 14574 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) 14575 { 14576 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); 14577 14578 if (phba->nvmet_support) 14579 max_xri += LPFC_NVMET_BUF_POST; 14580 return max_xri; 14581 } 14582 14583 14584 static int 14585 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, 14586 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, 14587 const struct firmware *fw) 14588 { 14589 int rc; 14590 u8 sli_family; 14591 14592 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); 14593 /* Three cases: (1) FW was not supported on the detected adapter. 14594 * (2) FW update has been locked out administratively. 14595 * (3) Some other error during FW update. 14596 * In each case, an unmaskable message is written to the console 14597 * for admin diagnosis. 14598 */ 14599 if (offset == ADD_STATUS_FW_NOT_SUPPORTED || 14600 (sli_family == LPFC_SLI_INTF_FAMILY_G6 && 14601 magic_number != MAGIC_NUMBER_G6) || 14602 (sli_family == LPFC_SLI_INTF_FAMILY_G7 && 14603 magic_number != MAGIC_NUMBER_G7) || 14604 (sli_family == LPFC_SLI_INTF_FAMILY_G7P && 14605 magic_number != MAGIC_NUMBER_G7P)) { 14606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14607 "3030 This firmware version is not supported on" 14608 " this HBA model. Device:%x Magic:%x Type:%x " 14609 "ID:%x Size %d %zd\n", 14610 phba->pcidev->device, magic_number, ftype, fid, 14611 fsize, fw->size); 14612 rc = -EINVAL; 14613 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { 14614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14615 "3021 Firmware downloads have been prohibited " 14616 "by a system configuration setting on " 14617 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14618 "%zd\n", 14619 phba->pcidev->device, magic_number, ftype, fid, 14620 fsize, fw->size); 14621 rc = -EACCES; 14622 } else { 14623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14624 "3022 FW Download failed. Add Status x%x " 14625 "Device:%x Magic:%x Type:%x ID:%x Size %d " 14626 "%zd\n", 14627 offset, phba->pcidev->device, magic_number, 14628 ftype, fid, fsize, fw->size); 14629 rc = -EIO; 14630 } 14631 return rc; 14632 } 14633 14634 /** 14635 * lpfc_write_firmware - attempt to write a firmware image to the port 14636 * @fw: pointer to firmware image returned from request_firmware. 14637 * @context: pointer to firmware image returned from request_firmware. 14638 * 14639 **/ 14640 static void 14641 lpfc_write_firmware(const struct firmware *fw, void *context) 14642 { 14643 struct lpfc_hba *phba = (struct lpfc_hba *)context; 14644 char fwrev[FW_REV_STR_SIZE]; 14645 struct lpfc_grp_hdr *image; 14646 struct list_head dma_buffer_list; 14647 int i, rc = 0; 14648 struct lpfc_dmabuf *dmabuf, *next; 14649 uint32_t offset = 0, temp_offset = 0; 14650 uint32_t magic_number, ftype, fid, fsize; 14651 14652 /* It can be null in no-wait mode, sanity check */ 14653 if (!fw) { 14654 rc = -ENXIO; 14655 goto out; 14656 } 14657 image = (struct lpfc_grp_hdr *)fw->data; 14658 14659 magic_number = be32_to_cpu(image->magic_number); 14660 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); 14661 fid = bf_get_be32(lpfc_grp_hdr_id, image); 14662 fsize = be32_to_cpu(image->size); 14663 14664 INIT_LIST_HEAD(&dma_buffer_list); 14665 lpfc_decode_firmware_rev(phba, fwrev, 1); 14666 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { 14667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14668 "3023 Updating Firmware, Current Version:%s " 14669 "New Version:%s\n", 14670 fwrev, image->revision); 14671 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { 14672 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 14673 GFP_KERNEL); 14674 if (!dmabuf) { 14675 rc = -ENOMEM; 14676 goto release_out; 14677 } 14678 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14679 SLI4_PAGE_SIZE, 14680 &dmabuf->phys, 14681 GFP_KERNEL); 14682 if (!dmabuf->virt) { 14683 kfree(dmabuf); 14684 rc = -ENOMEM; 14685 goto release_out; 14686 } 14687 list_add_tail(&dmabuf->list, &dma_buffer_list); 14688 } 14689 while (offset < fw->size) { 14690 temp_offset = offset; 14691 list_for_each_entry(dmabuf, &dma_buffer_list, list) { 14692 if (temp_offset + SLI4_PAGE_SIZE > fw->size) { 14693 memcpy(dmabuf->virt, 14694 fw->data + temp_offset, 14695 fw->size - temp_offset); 14696 temp_offset = fw->size; 14697 break; 14698 } 14699 memcpy(dmabuf->virt, fw->data + temp_offset, 14700 SLI4_PAGE_SIZE); 14701 temp_offset += SLI4_PAGE_SIZE; 14702 } 14703 rc = lpfc_wr_object(phba, &dma_buffer_list, 14704 (fw->size - offset), &offset); 14705 if (rc) { 14706 rc = lpfc_log_write_firmware_error(phba, offset, 14707 magic_number, 14708 ftype, 14709 fid, 14710 fsize, 14711 fw); 14712 goto release_out; 14713 } 14714 } 14715 rc = offset; 14716 } else 14717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14718 "3029 Skipped Firmware update, Current " 14719 "Version:%s New Version:%s\n", 14720 fwrev, image->revision); 14721 14722 release_out: 14723 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { 14724 list_del(&dmabuf->list); 14725 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, 14726 dmabuf->virt, dmabuf->phys); 14727 kfree(dmabuf); 14728 } 14729 release_firmware(fw); 14730 out: 14731 if (rc < 0) 14732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14733 "3062 Firmware update error, status %d.\n", rc); 14734 else 14735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14736 "3024 Firmware update success: size %d.\n", rc); 14737 } 14738 14739 /** 14740 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade 14741 * @phba: pointer to lpfc hba data structure. 14742 * @fw_upgrade: which firmware to update. 14743 * 14744 * This routine is called to perform Linux generic firmware upgrade on device 14745 * that supports such feature. 14746 **/ 14747 int 14748 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) 14749 { 14750 uint8_t file_name[ELX_MODEL_NAME_SIZE]; 14751 int ret; 14752 const struct firmware *fw; 14753 14754 /* Only supported on SLI4 interface type 2 for now */ 14755 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < 14756 LPFC_SLI_INTF_IF_TYPE_2) 14757 return -EPERM; 14758 14759 snprintf(file_name, ELX_MODEL_NAME_SIZE, "%s.grp", phba->ModelName); 14760 14761 if (fw_upgrade == INT_FW_UPGRADE) { 14762 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 14763 file_name, &phba->pcidev->dev, 14764 GFP_KERNEL, (void *)phba, 14765 lpfc_write_firmware); 14766 } else if (fw_upgrade == RUN_FW_UPGRADE) { 14767 ret = request_firmware(&fw, file_name, &phba->pcidev->dev); 14768 if (!ret) 14769 lpfc_write_firmware(fw, (void *)phba); 14770 } else { 14771 ret = -EINVAL; 14772 } 14773 14774 return ret; 14775 } 14776 14777 /** 14778 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys 14779 * @pdev: pointer to PCI device 14780 * @pid: pointer to PCI device identifier 14781 * 14782 * This routine is called from the kernel's PCI subsystem to device with 14783 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14784 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific 14785 * information of the device and driver to see if the driver state that it 14786 * can support this kind of device. If the match is successful, the driver 14787 * core invokes this routine. If this routine determines it can claim the HBA, 14788 * it does all the initialization that it needs to do to handle the HBA 14789 * properly. 14790 * 14791 * Return code 14792 * 0 - driver can claim the device 14793 * negative value - driver can not claim the device 14794 **/ 14795 static int 14796 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) 14797 { 14798 struct lpfc_hba *phba; 14799 struct lpfc_vport *vport = NULL; 14800 struct Scsi_Host *shost = NULL; 14801 int error; 14802 uint32_t cfg_mode, intr_mode; 14803 14804 /* Allocate memory for HBA structure */ 14805 phba = lpfc_hba_alloc(pdev); 14806 if (!phba) 14807 return -ENOMEM; 14808 14809 INIT_LIST_HEAD(&phba->poll_list); 14810 14811 /* Perform generic PCI device enabling operation */ 14812 error = lpfc_enable_pci_dev(phba); 14813 if (error) 14814 goto out_free_phba; 14815 14816 /* Set up SLI API function jump table for PCI-device group-1 HBAs */ 14817 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); 14818 if (error) 14819 goto out_disable_pci_dev; 14820 14821 /* Set up SLI-4 specific device PCI memory space */ 14822 error = lpfc_sli4_pci_mem_setup(phba); 14823 if (error) { 14824 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14825 "1410 Failed to set up pci memory space.\n"); 14826 goto out_disable_pci_dev; 14827 } 14828 14829 /* Set up SLI-4 Specific device driver resources */ 14830 error = lpfc_sli4_driver_resource_setup(phba); 14831 if (error) { 14832 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14833 "1412 Failed to set up driver resource.\n"); 14834 goto out_unset_pci_mem_s4; 14835 } 14836 14837 INIT_LIST_HEAD(&phba->active_rrq_list); 14838 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); 14839 14840 /* Set up common device driver resources */ 14841 error = lpfc_setup_driver_resource_phase2(phba); 14842 if (error) { 14843 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14844 "1414 Failed to set up driver resource.\n"); 14845 goto out_unset_driver_resource_s4; 14846 } 14847 14848 /* Get the default values for Model Name and Description */ 14849 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); 14850 14851 /* Now, trying to enable interrupt and bring up the device */ 14852 cfg_mode = phba->cfg_use_msi; 14853 14854 /* Put device to a known state before enabling interrupt */ 14855 phba->pport = NULL; 14856 lpfc_stop_port(phba); 14857 14858 /* Init cpu_map array */ 14859 lpfc_cpu_map_array_init(phba); 14860 14861 /* Init hba_eq_hdl array */ 14862 lpfc_hba_eq_hdl_array_init(phba); 14863 14864 /* Configure and enable interrupt */ 14865 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); 14866 if (intr_mode == LPFC_INTR_ERROR) { 14867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14868 "0426 Failed to enable interrupt.\n"); 14869 error = -ENODEV; 14870 goto out_unset_driver_resource; 14871 } 14872 /* Default to single EQ for non-MSI-X */ 14873 if (phba->intr_type != MSIX) { 14874 phba->cfg_irq_chann = 1; 14875 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14876 if (phba->nvmet_support) 14877 phba->cfg_nvmet_mrq = 1; 14878 } 14879 } 14880 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 14881 14882 /* Create SCSI host to the physical port */ 14883 error = lpfc_create_shost(phba); 14884 if (error) { 14885 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14886 "1415 Failed to create scsi host.\n"); 14887 goto out_disable_intr; 14888 } 14889 vport = phba->pport; 14890 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ 14891 14892 /* Configure sysfs attributes */ 14893 error = lpfc_alloc_sysfs_attr(vport); 14894 if (error) { 14895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14896 "1416 Failed to allocate sysfs attr\n"); 14897 goto out_destroy_shost; 14898 } 14899 14900 /* Set up SLI-4 HBA */ 14901 if (lpfc_sli4_hba_setup(phba)) { 14902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14903 "1421 Failed to set up hba\n"); 14904 error = -ENODEV; 14905 goto out_free_sysfs_attr; 14906 } 14907 14908 /* Log the current active interrupt mode */ 14909 phba->intr_mode = intr_mode; 14910 lpfc_log_intr_mode(phba, intr_mode); 14911 14912 /* Perform post initialization setup */ 14913 lpfc_post_init_setup(phba); 14914 14915 /* NVME support in FW earlier in the driver load corrects the 14916 * FC4 type making a check for nvme_support unnecessary. 14917 */ 14918 if (phba->nvmet_support == 0) { 14919 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14920 /* Create NVME binding with nvme_fc_transport. This 14921 * ensures the vport is initialized. If the localport 14922 * create fails, it should not unload the driver to 14923 * support field issues. 14924 */ 14925 error = lpfc_nvme_create_localport(vport); 14926 if (error) { 14927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14928 "6004 NVME registration " 14929 "failed, error x%x\n", 14930 error); 14931 } 14932 } 14933 } 14934 14935 /* check for firmware upgrade or downgrade */ 14936 if (phba->cfg_request_firmware_upgrade) 14937 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); 14938 14939 /* Check if there are static vports to be created. */ 14940 lpfc_create_static_vport(phba); 14941 14942 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14943 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); 14944 14945 return 0; 14946 14947 out_free_sysfs_attr: 14948 lpfc_free_sysfs_attr(vport); 14949 out_destroy_shost: 14950 lpfc_destroy_shost(phba); 14951 out_disable_intr: 14952 lpfc_sli4_disable_intr(phba); 14953 out_unset_driver_resource: 14954 lpfc_unset_driver_resource_phase2(phba); 14955 out_unset_driver_resource_s4: 14956 lpfc_sli4_driver_resource_unset(phba); 14957 out_unset_pci_mem_s4: 14958 lpfc_sli4_pci_mem_unset(phba); 14959 out_disable_pci_dev: 14960 lpfc_disable_pci_dev(phba); 14961 if (shost) 14962 scsi_host_put(shost); 14963 out_free_phba: 14964 lpfc_hba_free(phba); 14965 return error; 14966 } 14967 14968 /** 14969 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem 14970 * @pdev: pointer to PCI device 14971 * 14972 * This routine is called from the kernel's PCI subsystem to device with 14973 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is 14974 * removed from PCI bus, it performs all the necessary cleanup for the HBA 14975 * device to be removed from the PCI subsystem properly. 14976 **/ 14977 static void 14978 lpfc_pci_remove_one_s4(struct pci_dev *pdev) 14979 { 14980 struct Scsi_Host *shost = pci_get_drvdata(pdev); 14981 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; 14982 struct lpfc_vport **vports; 14983 struct lpfc_hba *phba = vport->phba; 14984 int i; 14985 14986 /* Mark the device unloading flag */ 14987 spin_lock_irq(&phba->hbalock); 14988 vport->load_flag |= FC_UNLOADING; 14989 spin_unlock_irq(&phba->hbalock); 14990 if (phba->cgn_i) 14991 lpfc_unreg_congestion_buf(phba); 14992 14993 lpfc_free_sysfs_attr(vport); 14994 14995 /* Release all the vports against this physical port */ 14996 vports = lpfc_create_vport_work_array(phba); 14997 if (vports != NULL) 14998 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { 14999 if (vports[i]->port_type == LPFC_PHYSICAL_PORT) 15000 continue; 15001 fc_vport_terminate(vports[i]->fc_vport); 15002 } 15003 lpfc_destroy_vport_work_array(phba, vports); 15004 15005 /* Remove FC host with the physical port */ 15006 fc_remove_host(shost); 15007 scsi_remove_host(shost); 15008 15009 /* Perform ndlp cleanup on the physical port. The nvme and nvmet 15010 * localports are destroyed after to cleanup all transport memory. 15011 */ 15012 lpfc_cleanup(vport); 15013 lpfc_nvmet_destroy_targetport(phba); 15014 lpfc_nvme_destroy_localport(vport); 15015 15016 /* De-allocate multi-XRI pools */ 15017 if (phba->cfg_xri_rebalancing) 15018 lpfc_destroy_multixri_pools(phba); 15019 15020 /* 15021 * Bring down the SLI Layer. This step disables all interrupts, 15022 * clears the rings, discards all mailbox commands, and resets 15023 * the HBA FCoE function. 15024 */ 15025 lpfc_debugfs_terminate(vport); 15026 15027 lpfc_stop_hba_timers(phba); 15028 spin_lock_irq(&phba->port_list_lock); 15029 list_del_init(&vport->listentry); 15030 spin_unlock_irq(&phba->port_list_lock); 15031 15032 /* Perform scsi free before driver resource_unset since scsi 15033 * buffers are released to their corresponding pools here. 15034 */ 15035 lpfc_io_free(phba); 15036 lpfc_free_iocb_list(phba); 15037 lpfc_sli4_hba_unset(phba); 15038 15039 lpfc_unset_driver_resource_phase2(phba); 15040 lpfc_sli4_driver_resource_unset(phba); 15041 15042 /* Unmap adapter Control and Doorbell registers */ 15043 lpfc_sli4_pci_mem_unset(phba); 15044 15045 /* Release PCI resources and disable device's PCI function */ 15046 scsi_host_put(shost); 15047 lpfc_disable_pci_dev(phba); 15048 15049 /* Finally, free the driver's device data structure */ 15050 lpfc_hba_free(phba); 15051 15052 return; 15053 } 15054 15055 /** 15056 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt 15057 * @dev_d: pointer to device 15058 * 15059 * This routine is called from the kernel's PCI subsystem to support system 15060 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes 15061 * this method, it quiesces the device by stopping the driver's worker 15062 * thread for the device, turning off device's interrupt and DMA, and bring 15063 * the device offline. Note that as the driver implements the minimum PM 15064 * requirements to a power-aware driver's PM support for suspend/resume -- all 15065 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() 15066 * method call will be treated as SUSPEND and the driver will fully 15067 * reinitialize its device during resume() method call, the driver will set 15068 * device to PCI_D3hot state in PCI config space instead of setting it 15069 * according to the @msg provided by the PM. 15070 * 15071 * Return code 15072 * 0 - driver suspended the device 15073 * Error otherwise 15074 **/ 15075 static int __maybe_unused 15076 lpfc_pci_suspend_one_s4(struct device *dev_d) 15077 { 15078 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15079 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15080 15081 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15082 "2843 PCI device Power Management suspend.\n"); 15083 15084 /* Bring down the device */ 15085 lpfc_offline_prep(phba, LPFC_MBX_WAIT); 15086 lpfc_offline(phba); 15087 kthread_stop(phba->worker_thread); 15088 15089 /* Disable interrupt from device */ 15090 lpfc_sli4_disable_intr(phba); 15091 lpfc_sli4_queue_destroy(phba); 15092 15093 return 0; 15094 } 15095 15096 /** 15097 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt 15098 * @dev_d: pointer to device 15099 * 15100 * This routine is called from the kernel's PCI subsystem to support system 15101 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes 15102 * this method, it restores the device's PCI config space state and fully 15103 * reinitializes the device and brings it online. Note that as the driver 15104 * implements the minimum PM requirements to a power-aware driver's PM for 15105 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) 15106 * to the suspend() method call will be treated as SUSPEND and the driver 15107 * will fully reinitialize its device during resume() method call, the device 15108 * will be set to PCI_D0 directly in PCI config space before restoring the 15109 * state. 15110 * 15111 * Return code 15112 * 0 - driver suspended the device 15113 * Error otherwise 15114 **/ 15115 static int __maybe_unused 15116 lpfc_pci_resume_one_s4(struct device *dev_d) 15117 { 15118 struct Scsi_Host *shost = dev_get_drvdata(dev_d); 15119 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15120 uint32_t intr_mode; 15121 int error; 15122 15123 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15124 "0292 PCI device Power Management resume.\n"); 15125 15126 /* Startup the kernel thread for this host adapter. */ 15127 phba->worker_thread = kthread_run(lpfc_do_work, phba, 15128 "lpfc_worker_%d", phba->brd_no); 15129 if (IS_ERR(phba->worker_thread)) { 15130 error = PTR_ERR(phba->worker_thread); 15131 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15132 "0293 PM resume failed to start worker " 15133 "thread: error=x%x.\n", error); 15134 return error; 15135 } 15136 15137 /* Configure and enable interrupt */ 15138 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15139 if (intr_mode == LPFC_INTR_ERROR) { 15140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15141 "0294 PM resume Failed to enable interrupt\n"); 15142 return -EIO; 15143 } else 15144 phba->intr_mode = intr_mode; 15145 15146 /* Restart HBA and bring it online */ 15147 lpfc_sli_brdrestart(phba); 15148 lpfc_online(phba); 15149 15150 /* Log the current active interrupt mode */ 15151 lpfc_log_intr_mode(phba, phba->intr_mode); 15152 15153 return 0; 15154 } 15155 15156 /** 15157 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover 15158 * @phba: pointer to lpfc hba data structure. 15159 * 15160 * This routine is called to prepare the SLI4 device for PCI slot recover. It 15161 * aborts all the outstanding SCSI I/Os to the pci device. 15162 **/ 15163 static void 15164 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) 15165 { 15166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15167 "2828 PCI channel I/O abort preparing for recovery\n"); 15168 /* 15169 * There may be errored I/Os through HBA, abort all I/Os on txcmplq 15170 * and let the SCSI mid-layer to retry them to recover. 15171 */ 15172 lpfc_sli_abort_fcp_rings(phba); 15173 } 15174 15175 /** 15176 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset 15177 * @phba: pointer to lpfc hba data structure. 15178 * 15179 * This routine is called to prepare the SLI4 device for PCI slot reset. It 15180 * disables the device interrupt and pci device, and aborts the internal FCP 15181 * pending I/Os. 15182 **/ 15183 static void 15184 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) 15185 { 15186 int offline = pci_channel_offline(phba->pcidev); 15187 15188 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15189 "2826 PCI channel disable preparing for reset offline" 15190 " %d\n", offline); 15191 15192 /* Block any management I/Os to the device */ 15193 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); 15194 15195 15196 /* HBA_PCI_ERR was set in io_error_detect */ 15197 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); 15198 /* Flush all driver's outstanding I/Os as we are to reset */ 15199 lpfc_sli_flush_io_rings(phba); 15200 lpfc_offline(phba); 15201 15202 /* stop all timers */ 15203 lpfc_stop_hba_timers(phba); 15204 15205 lpfc_sli4_queue_destroy(phba); 15206 /* Disable interrupt and pci device */ 15207 lpfc_sli4_disable_intr(phba); 15208 pci_disable_device(phba->pcidev); 15209 } 15210 15211 /** 15212 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable 15213 * @phba: pointer to lpfc hba data structure. 15214 * 15215 * This routine is called to prepare the SLI4 device for PCI slot permanently 15216 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP 15217 * pending I/Os. 15218 **/ 15219 static void 15220 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) 15221 { 15222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15223 "2827 PCI channel permanent disable for failure\n"); 15224 15225 /* Block all SCSI devices' I/Os on the host */ 15226 lpfc_scsi_dev_block(phba); 15227 15228 /* stop all timers */ 15229 lpfc_stop_hba_timers(phba); 15230 15231 /* Clean up all driver's outstanding I/Os */ 15232 lpfc_sli_flush_io_rings(phba); 15233 } 15234 15235 /** 15236 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device 15237 * @pdev: pointer to PCI device. 15238 * @state: the current PCI connection state. 15239 * 15240 * This routine is called from the PCI subsystem for error handling to device 15241 * with SLI-4 interface spec. This function is called by the PCI subsystem 15242 * after a PCI bus error affecting this device has been detected. When this 15243 * function is invoked, it will need to stop all the I/Os and interrupt(s) 15244 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET 15245 * for the PCI subsystem to perform proper recovery as desired. 15246 * 15247 * Return codes 15248 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15249 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15250 **/ 15251 static pci_ers_result_t 15252 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) 15253 { 15254 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15255 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15256 bool hba_pci_err; 15257 15258 switch (state) { 15259 case pci_channel_io_normal: 15260 /* Non-fatal error, prepare for recovery */ 15261 lpfc_sli4_prep_dev_for_recover(phba); 15262 return PCI_ERS_RESULT_CAN_RECOVER; 15263 case pci_channel_io_frozen: 15264 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15265 /* Fatal error, prepare for slot reset */ 15266 if (!hba_pci_err) 15267 lpfc_sli4_prep_dev_for_reset(phba); 15268 else 15269 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15270 "2832 Already handling PCI error " 15271 "state: x%x\n", state); 15272 return PCI_ERS_RESULT_NEED_RESET; 15273 case pci_channel_io_perm_failure: 15274 set_bit(HBA_PCI_ERR, &phba->bit_flags); 15275 /* Permanent failure, prepare for device down */ 15276 lpfc_sli4_prep_dev_for_perm_failure(phba); 15277 return PCI_ERS_RESULT_DISCONNECT; 15278 default: 15279 hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); 15280 if (!hba_pci_err) 15281 lpfc_sli4_prep_dev_for_reset(phba); 15282 /* Unknown state, prepare and request slot reset */ 15283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15284 "2825 Unknown PCI error state: x%x\n", state); 15285 lpfc_sli4_prep_dev_for_reset(phba); 15286 return PCI_ERS_RESULT_NEED_RESET; 15287 } 15288 } 15289 15290 /** 15291 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch 15292 * @pdev: pointer to PCI device. 15293 * 15294 * This routine is called from the PCI subsystem for error handling to device 15295 * with SLI-4 interface spec. It is called after PCI bus has been reset to 15296 * restart the PCI card from scratch, as if from a cold-boot. During the 15297 * PCI subsystem error recovery, after the driver returns 15298 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error 15299 * recovery and then call this routine before calling the .resume method to 15300 * recover the device. This function will initialize the HBA device, enable 15301 * the interrupt, but it will just put the HBA to offline state without 15302 * passing any I/O traffic. 15303 * 15304 * Return codes 15305 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15306 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15307 */ 15308 static pci_ers_result_t 15309 lpfc_io_slot_reset_s4(struct pci_dev *pdev) 15310 { 15311 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15312 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15313 struct lpfc_sli *psli = &phba->sli; 15314 uint32_t intr_mode; 15315 bool hba_pci_err; 15316 15317 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); 15318 if (pci_enable_device_mem(pdev)) { 15319 printk(KERN_ERR "lpfc: Cannot re-enable " 15320 "PCI device after reset.\n"); 15321 return PCI_ERS_RESULT_DISCONNECT; 15322 } 15323 15324 pci_restore_state(pdev); 15325 15326 hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); 15327 if (!hba_pci_err) 15328 dev_info(&pdev->dev, 15329 "hba_pci_err was not set, recovering slot reset.\n"); 15330 /* 15331 * As the new kernel behavior of pci_restore_state() API call clears 15332 * device saved_state flag, need to save the restored state again. 15333 */ 15334 pci_save_state(pdev); 15335 15336 if (pdev->is_busmaster) 15337 pci_set_master(pdev); 15338 15339 spin_lock_irq(&phba->hbalock); 15340 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 15341 spin_unlock_irq(&phba->hbalock); 15342 15343 /* Init cpu_map array */ 15344 lpfc_cpu_map_array_init(phba); 15345 /* Configure and enable interrupt */ 15346 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); 15347 if (intr_mode == LPFC_INTR_ERROR) { 15348 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15349 "2824 Cannot re-enable interrupt after " 15350 "slot reset.\n"); 15351 return PCI_ERS_RESULT_DISCONNECT; 15352 } else 15353 phba->intr_mode = intr_mode; 15354 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); 15355 15356 /* Log the current active interrupt mode */ 15357 lpfc_log_intr_mode(phba, phba->intr_mode); 15358 15359 return PCI_ERS_RESULT_RECOVERED; 15360 } 15361 15362 /** 15363 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device 15364 * @pdev: pointer to PCI device 15365 * 15366 * This routine is called from the PCI subsystem for error handling to device 15367 * with SLI-4 interface spec. It is called when kernel error recovery tells 15368 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus 15369 * error recovery. After this call, traffic can start to flow from this device 15370 * again. 15371 **/ 15372 static void 15373 lpfc_io_resume_s4(struct pci_dev *pdev) 15374 { 15375 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15376 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15377 15378 /* 15379 * In case of slot reset, as function reset is performed through 15380 * mailbox command which needs DMA to be enabled, this operation 15381 * has to be moved to the io resume phase. Taking device offline 15382 * will perform the necessary cleanup. 15383 */ 15384 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { 15385 /* Perform device reset */ 15386 lpfc_sli_brdrestart(phba); 15387 /* Bring the device back online */ 15388 lpfc_online(phba); 15389 } 15390 } 15391 15392 /** 15393 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem 15394 * @pdev: pointer to PCI device 15395 * @pid: pointer to PCI device identifier 15396 * 15397 * This routine is to be registered to the kernel's PCI subsystem. When an 15398 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks 15399 * at PCI device-specific information of the device and driver to see if the 15400 * driver state that it can support this kind of device. If the match is 15401 * successful, the driver core invokes this routine. This routine dispatches 15402 * the action to the proper SLI-3 or SLI-4 device probing routine, which will 15403 * do all the initialization that it needs to do to handle the HBA device 15404 * properly. 15405 * 15406 * Return code 15407 * 0 - driver can claim the device 15408 * negative value - driver can not claim the device 15409 **/ 15410 static int 15411 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) 15412 { 15413 int rc; 15414 struct lpfc_sli_intf intf; 15415 15416 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) 15417 return -ENODEV; 15418 15419 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && 15420 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) 15421 rc = lpfc_pci_probe_one_s4(pdev, pid); 15422 else 15423 rc = lpfc_pci_probe_one_s3(pdev, pid); 15424 15425 return rc; 15426 } 15427 15428 /** 15429 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem 15430 * @pdev: pointer to PCI device 15431 * 15432 * This routine is to be registered to the kernel's PCI subsystem. When an 15433 * Emulex HBA is removed from PCI bus, the driver core invokes this routine. 15434 * This routine dispatches the action to the proper SLI-3 or SLI-4 device 15435 * remove routine, which will perform all the necessary cleanup for the 15436 * device to be removed from the PCI subsystem properly. 15437 **/ 15438 static void 15439 lpfc_pci_remove_one(struct pci_dev *pdev) 15440 { 15441 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15442 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15443 15444 switch (phba->pci_dev_grp) { 15445 case LPFC_PCI_DEV_LP: 15446 lpfc_pci_remove_one_s3(pdev); 15447 break; 15448 case LPFC_PCI_DEV_OC: 15449 lpfc_pci_remove_one_s4(pdev); 15450 break; 15451 default: 15452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15453 "1424 Invalid PCI device group: 0x%x\n", 15454 phba->pci_dev_grp); 15455 break; 15456 } 15457 return; 15458 } 15459 15460 /** 15461 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management 15462 * @dev: pointer to device 15463 * 15464 * This routine is to be registered to the kernel's PCI subsystem to support 15465 * system Power Management (PM). When PM invokes this method, it dispatches 15466 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will 15467 * suspend the device. 15468 * 15469 * Return code 15470 * 0 - driver suspended the device 15471 * Error otherwise 15472 **/ 15473 static int __maybe_unused 15474 lpfc_pci_suspend_one(struct device *dev) 15475 { 15476 struct Scsi_Host *shost = dev_get_drvdata(dev); 15477 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15478 int rc = -ENODEV; 15479 15480 switch (phba->pci_dev_grp) { 15481 case LPFC_PCI_DEV_LP: 15482 rc = lpfc_pci_suspend_one_s3(dev); 15483 break; 15484 case LPFC_PCI_DEV_OC: 15485 rc = lpfc_pci_suspend_one_s4(dev); 15486 break; 15487 default: 15488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15489 "1425 Invalid PCI device group: 0x%x\n", 15490 phba->pci_dev_grp); 15491 break; 15492 } 15493 return rc; 15494 } 15495 15496 /** 15497 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management 15498 * @dev: pointer to device 15499 * 15500 * This routine is to be registered to the kernel's PCI subsystem to support 15501 * system Power Management (PM). When PM invokes this method, it dispatches 15502 * the action to the proper SLI-3 or SLI-4 device resume routine, which will 15503 * resume the device. 15504 * 15505 * Return code 15506 * 0 - driver suspended the device 15507 * Error otherwise 15508 **/ 15509 static int __maybe_unused 15510 lpfc_pci_resume_one(struct device *dev) 15511 { 15512 struct Scsi_Host *shost = dev_get_drvdata(dev); 15513 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15514 int rc = -ENODEV; 15515 15516 switch (phba->pci_dev_grp) { 15517 case LPFC_PCI_DEV_LP: 15518 rc = lpfc_pci_resume_one_s3(dev); 15519 break; 15520 case LPFC_PCI_DEV_OC: 15521 rc = lpfc_pci_resume_one_s4(dev); 15522 break; 15523 default: 15524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15525 "1426 Invalid PCI device group: 0x%x\n", 15526 phba->pci_dev_grp); 15527 break; 15528 } 15529 return rc; 15530 } 15531 15532 /** 15533 * lpfc_io_error_detected - lpfc method for handling PCI I/O error 15534 * @pdev: pointer to PCI device. 15535 * @state: the current PCI connection state. 15536 * 15537 * This routine is registered to the PCI subsystem for error handling. This 15538 * function is called by the PCI subsystem after a PCI bus error affecting 15539 * this device has been detected. When this routine is invoked, it dispatches 15540 * the action to the proper SLI-3 or SLI-4 device error detected handling 15541 * routine, which will perform the proper error detected operation. 15542 * 15543 * Return codes 15544 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery 15545 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15546 **/ 15547 static pci_ers_result_t 15548 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 15549 { 15550 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15551 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15552 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15553 15554 if (phba->link_state == LPFC_HBA_ERROR && 15555 phba->hba_flag & HBA_IOQ_FLUSH) 15556 return PCI_ERS_RESULT_NEED_RESET; 15557 15558 switch (phba->pci_dev_grp) { 15559 case LPFC_PCI_DEV_LP: 15560 rc = lpfc_io_error_detected_s3(pdev, state); 15561 break; 15562 case LPFC_PCI_DEV_OC: 15563 rc = lpfc_io_error_detected_s4(pdev, state); 15564 break; 15565 default: 15566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15567 "1427 Invalid PCI device group: 0x%x\n", 15568 phba->pci_dev_grp); 15569 break; 15570 } 15571 return rc; 15572 } 15573 15574 /** 15575 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch 15576 * @pdev: pointer to PCI device. 15577 * 15578 * This routine is registered to the PCI subsystem for error handling. This 15579 * function is called after PCI bus has been reset to restart the PCI card 15580 * from scratch, as if from a cold-boot. When this routine is invoked, it 15581 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling 15582 * routine, which will perform the proper device reset. 15583 * 15584 * Return codes 15585 * PCI_ERS_RESULT_RECOVERED - the device has been recovered 15586 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered 15587 **/ 15588 static pci_ers_result_t 15589 lpfc_io_slot_reset(struct pci_dev *pdev) 15590 { 15591 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15592 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15593 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 15594 15595 switch (phba->pci_dev_grp) { 15596 case LPFC_PCI_DEV_LP: 15597 rc = lpfc_io_slot_reset_s3(pdev); 15598 break; 15599 case LPFC_PCI_DEV_OC: 15600 rc = lpfc_io_slot_reset_s4(pdev); 15601 break; 15602 default: 15603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15604 "1428 Invalid PCI device group: 0x%x\n", 15605 phba->pci_dev_grp); 15606 break; 15607 } 15608 return rc; 15609 } 15610 15611 /** 15612 * lpfc_io_resume - lpfc method for resuming PCI I/O operation 15613 * @pdev: pointer to PCI device 15614 * 15615 * This routine is registered to the PCI subsystem for error handling. It 15616 * is called when kernel error recovery tells the lpfc driver that it is 15617 * OK to resume normal PCI operation after PCI bus error recovery. When 15618 * this routine is invoked, it dispatches the action to the proper SLI-3 15619 * or SLI-4 device io_resume routine, which will resume the device operation. 15620 **/ 15621 static void 15622 lpfc_io_resume(struct pci_dev *pdev) 15623 { 15624 struct Scsi_Host *shost = pci_get_drvdata(pdev); 15625 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; 15626 15627 switch (phba->pci_dev_grp) { 15628 case LPFC_PCI_DEV_LP: 15629 lpfc_io_resume_s3(pdev); 15630 break; 15631 case LPFC_PCI_DEV_OC: 15632 lpfc_io_resume_s4(pdev); 15633 break; 15634 default: 15635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15636 "1429 Invalid PCI device group: 0x%x\n", 15637 phba->pci_dev_grp); 15638 break; 15639 } 15640 return; 15641 } 15642 15643 /** 15644 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter 15645 * @phba: pointer to lpfc hba data structure. 15646 * 15647 * This routine checks to see if OAS is supported for this adapter. If 15648 * supported, the configure Flash Optimized Fabric flag is set. Otherwise, 15649 * the enable oas flag is cleared and the pool created for OAS device data 15650 * is destroyed. 15651 * 15652 **/ 15653 static void 15654 lpfc_sli4_oas_verify(struct lpfc_hba *phba) 15655 { 15656 15657 if (!phba->cfg_EnableXLane) 15658 return; 15659 15660 if (phba->sli4_hba.pc_sli4_params.oas_supported) { 15661 phba->cfg_fof = 1; 15662 } else { 15663 phba->cfg_fof = 0; 15664 mempool_destroy(phba->device_data_mem_pool); 15665 phba->device_data_mem_pool = NULL; 15666 } 15667 15668 return; 15669 } 15670 15671 /** 15672 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter 15673 * @phba: pointer to lpfc hba data structure. 15674 * 15675 * This routine checks to see if RAS is supported by the adapter. Check the 15676 * function through which RAS support enablement is to be done. 15677 **/ 15678 void 15679 lpfc_sli4_ras_init(struct lpfc_hba *phba) 15680 { 15681 /* if ASIC_GEN_NUM >= 0xC) */ 15682 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 15683 LPFC_SLI_INTF_IF_TYPE_6) || 15684 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == 15685 LPFC_SLI_INTF_FAMILY_G6)) { 15686 phba->ras_fwlog.ras_hwsupport = true; 15687 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && 15688 phba->cfg_ras_fwlog_buffsize) 15689 phba->ras_fwlog.ras_enabled = true; 15690 else 15691 phba->ras_fwlog.ras_enabled = false; 15692 } else { 15693 phba->ras_fwlog.ras_hwsupport = false; 15694 } 15695 } 15696 15697 15698 MODULE_DEVICE_TABLE(pci, lpfc_id_table); 15699 15700 static const struct pci_error_handlers lpfc_err_handler = { 15701 .error_detected = lpfc_io_error_detected, 15702 .slot_reset = lpfc_io_slot_reset, 15703 .resume = lpfc_io_resume, 15704 }; 15705 15706 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, 15707 lpfc_pci_suspend_one, 15708 lpfc_pci_resume_one); 15709 15710 static struct pci_driver lpfc_driver = { 15711 .name = LPFC_DRIVER_NAME, 15712 .id_table = lpfc_id_table, 15713 .probe = lpfc_pci_probe_one, 15714 .remove = lpfc_pci_remove_one, 15715 .shutdown = lpfc_pci_remove_one, 15716 .driver.pm = &lpfc_pci_pm_ops_one, 15717 .err_handler = &lpfc_err_handler, 15718 }; 15719 15720 static const struct file_operations lpfc_mgmt_fop = { 15721 .owner = THIS_MODULE, 15722 }; 15723 15724 static struct miscdevice lpfc_mgmt_dev = { 15725 .minor = MISC_DYNAMIC_MINOR, 15726 .name = "lpfcmgmt", 15727 .fops = &lpfc_mgmt_fop, 15728 }; 15729 15730 /** 15731 * lpfc_init - lpfc module initialization routine 15732 * 15733 * This routine is to be invoked when the lpfc module is loaded into the 15734 * kernel. The special kernel macro module_init() is used to indicate the 15735 * role of this routine to the kernel as lpfc module entry point. 15736 * 15737 * Return codes 15738 * 0 - successful 15739 * -ENOMEM - FC attach transport failed 15740 * all others - failed 15741 */ 15742 static int __init 15743 lpfc_init(void) 15744 { 15745 int error = 0; 15746 15747 pr_info(LPFC_MODULE_DESC "\n"); 15748 pr_info(LPFC_COPYRIGHT "\n"); 15749 15750 error = misc_register(&lpfc_mgmt_dev); 15751 if (error) 15752 printk(KERN_ERR "Could not register lpfcmgmt device, " 15753 "misc_register returned with status %d", error); 15754 15755 error = -ENOMEM; 15756 lpfc_transport_functions.vport_create = lpfc_vport_create; 15757 lpfc_transport_functions.vport_delete = lpfc_vport_delete; 15758 lpfc_transport_template = 15759 fc_attach_transport(&lpfc_transport_functions); 15760 if (lpfc_transport_template == NULL) 15761 goto unregister; 15762 lpfc_vport_transport_template = 15763 fc_attach_transport(&lpfc_vport_transport_functions); 15764 if (lpfc_vport_transport_template == NULL) { 15765 fc_release_transport(lpfc_transport_template); 15766 goto unregister; 15767 } 15768 lpfc_wqe_cmd_template(); 15769 lpfc_nvmet_cmd_template(); 15770 15771 /* Initialize in case vector mapping is needed */ 15772 lpfc_present_cpu = num_present_cpus(); 15773 15774 lpfc_pldv_detect = false; 15775 15776 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 15777 "lpfc/sli4:online", 15778 lpfc_cpu_online, lpfc_cpu_offline); 15779 if (error < 0) 15780 goto cpuhp_failure; 15781 lpfc_cpuhp_state = error; 15782 15783 error = pci_register_driver(&lpfc_driver); 15784 if (error) 15785 goto unwind; 15786 15787 return error; 15788 15789 unwind: 15790 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15791 cpuhp_failure: 15792 fc_release_transport(lpfc_transport_template); 15793 fc_release_transport(lpfc_vport_transport_template); 15794 unregister: 15795 misc_deregister(&lpfc_mgmt_dev); 15796 15797 return error; 15798 } 15799 15800 void lpfc_dmp_dbg(struct lpfc_hba *phba) 15801 { 15802 unsigned int start_idx; 15803 unsigned int dbg_cnt; 15804 unsigned int temp_idx; 15805 int i; 15806 int j = 0; 15807 unsigned long rem_nsec; 15808 15809 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) 15810 return; 15811 15812 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; 15813 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); 15814 if (!dbg_cnt) 15815 goto out; 15816 temp_idx = start_idx; 15817 if (dbg_cnt >= DBG_LOG_SZ) { 15818 dbg_cnt = DBG_LOG_SZ; 15819 temp_idx -= 1; 15820 } else { 15821 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { 15822 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; 15823 } else { 15824 if (start_idx < dbg_cnt) 15825 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); 15826 else 15827 start_idx -= dbg_cnt; 15828 } 15829 } 15830 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", 15831 start_idx, temp_idx, dbg_cnt); 15832 15833 for (i = 0; i < dbg_cnt; i++) { 15834 if ((start_idx + i) < DBG_LOG_SZ) 15835 temp_idx = (start_idx + i) % DBG_LOG_SZ; 15836 else 15837 temp_idx = j++; 15838 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); 15839 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", 15840 temp_idx, 15841 (unsigned long)phba->dbg_log[temp_idx].t_ns, 15842 rem_nsec / 1000, 15843 phba->dbg_log[temp_idx].log); 15844 } 15845 out: 15846 atomic_set(&phba->dbg_log_cnt, 0); 15847 atomic_set(&phba->dbg_log_dmping, 0); 15848 } 15849 15850 __printf(2, 3) 15851 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) 15852 { 15853 unsigned int idx; 15854 va_list args; 15855 int dbg_dmping = atomic_read(&phba->dbg_log_dmping); 15856 struct va_format vaf; 15857 15858 15859 va_start(args, fmt); 15860 if (unlikely(dbg_dmping)) { 15861 vaf.fmt = fmt; 15862 vaf.va = &args; 15863 dev_info(&phba->pcidev->dev, "%pV", &vaf); 15864 va_end(args); 15865 return; 15866 } 15867 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % 15868 DBG_LOG_SZ; 15869 15870 atomic_inc(&phba->dbg_log_cnt); 15871 15872 vscnprintf(phba->dbg_log[idx].log, 15873 sizeof(phba->dbg_log[idx].log), fmt, args); 15874 va_end(args); 15875 15876 phba->dbg_log[idx].t_ns = local_clock(); 15877 } 15878 15879 /** 15880 * lpfc_exit - lpfc module removal routine 15881 * 15882 * This routine is invoked when the lpfc module is removed from the kernel. 15883 * The special kernel macro module_exit() is used to indicate the role of 15884 * this routine to the kernel as lpfc module exit point. 15885 */ 15886 static void __exit 15887 lpfc_exit(void) 15888 { 15889 misc_deregister(&lpfc_mgmt_dev); 15890 pci_unregister_driver(&lpfc_driver); 15891 cpuhp_remove_multi_state(lpfc_cpuhp_state); 15892 fc_release_transport(lpfc_transport_template); 15893 fc_release_transport(lpfc_vport_transport_template); 15894 idr_destroy(&lpfc_hba_index); 15895 } 15896 15897 module_init(lpfc_init); 15898 module_exit(lpfc_exit); 15899 MODULE_LICENSE("GPL"); 15900 MODULE_DESCRIPTION(LPFC_MODULE_DESC); 15901 MODULE_AUTHOR("Broadcom"); 15902 MODULE_VERSION("0:" LPFC_DRIVER_VERSION); 15903