xref: /openbmc/linux/drivers/scsi/libsas/sas_init.c (revision d4fd6347)
1 /*
2  * Serial Attached SCSI (SAS) Transport Layer initialization
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22  * USA
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/device.h>
30 #include <linux/spinlock.h>
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_sas.h>
36 
37 #include "sas_internal.h"
38 
39 #include "../scsi_sas_internal.h"
40 
41 static struct kmem_cache *sas_task_cache;
42 static struct kmem_cache *sas_event_cache;
43 
44 struct sas_task *sas_alloc_task(gfp_t flags)
45 {
46 	struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
47 
48 	if (task) {
49 		spin_lock_init(&task->task_state_lock);
50 		task->task_state_flags = SAS_TASK_STATE_PENDING;
51 	}
52 
53 	return task;
54 }
55 EXPORT_SYMBOL_GPL(sas_alloc_task);
56 
57 struct sas_task *sas_alloc_slow_task(gfp_t flags)
58 {
59 	struct sas_task *task = sas_alloc_task(flags);
60 	struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
61 
62 	if (!task || !slow) {
63 		if (task)
64 			kmem_cache_free(sas_task_cache, task);
65 		kfree(slow);
66 		return NULL;
67 	}
68 
69 	task->slow_task = slow;
70 	slow->task = task;
71 	timer_setup(&slow->timer, NULL, 0);
72 	init_completion(&slow->completion);
73 
74 	return task;
75 }
76 EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
77 
78 void sas_free_task(struct sas_task *task)
79 {
80 	if (task) {
81 		kfree(task->slow_task);
82 		kmem_cache_free(sas_task_cache, task);
83 	}
84 }
85 EXPORT_SYMBOL_GPL(sas_free_task);
86 
87 /*------------ SAS addr hash -----------*/
88 void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
89 {
90 	const u32 poly = 0x00DB2777;
91 	u32 r = 0;
92 	int i;
93 
94 	for (i = 0; i < SAS_ADDR_SIZE; i++) {
95 		int b;
96 
97 		for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
98 			r <<= 1;
99 			if ((1 << b) & sas_addr[i]) {
100 				if (!(r & 0x01000000))
101 					r ^= poly;
102 			} else if (r & 0x01000000) {
103 				r ^= poly;
104 			}
105 		}
106 	}
107 
108 	hashed[0] = (r >> 16) & 0xFF;
109 	hashed[1] = (r >> 8) & 0xFF;
110 	hashed[2] = r & 0xFF;
111 }
112 
113 int sas_register_ha(struct sas_ha_struct *sas_ha)
114 {
115 	char name[64];
116 	int error = 0;
117 
118 	mutex_init(&sas_ha->disco_mutex);
119 	spin_lock_init(&sas_ha->phy_port_lock);
120 	sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
121 
122 	set_bit(SAS_HA_REGISTERED, &sas_ha->state);
123 	spin_lock_init(&sas_ha->lock);
124 	mutex_init(&sas_ha->drain_mutex);
125 	init_waitqueue_head(&sas_ha->eh_wait_q);
126 	INIT_LIST_HEAD(&sas_ha->defer_q);
127 	INIT_LIST_HEAD(&sas_ha->eh_dev_q);
128 
129 	sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
130 
131 	error = sas_register_phys(sas_ha);
132 	if (error) {
133 		pr_notice("couldn't register sas phys:%d\n", error);
134 		return error;
135 	}
136 
137 	error = sas_register_ports(sas_ha);
138 	if (error) {
139 		pr_notice("couldn't register sas ports:%d\n", error);
140 		goto Undo_phys;
141 	}
142 
143 	error = sas_init_events(sas_ha);
144 	if (error) {
145 		pr_notice("couldn't start event thread:%d\n", error);
146 		goto Undo_ports;
147 	}
148 
149 	error = -ENOMEM;
150 	snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
151 	sas_ha->event_q = create_singlethread_workqueue(name);
152 	if (!sas_ha->event_q)
153 		goto Undo_ports;
154 
155 	snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
156 	sas_ha->disco_q = create_singlethread_workqueue(name);
157 	if (!sas_ha->disco_q)
158 		goto Undo_event_q;
159 
160 	INIT_LIST_HEAD(&sas_ha->eh_done_q);
161 	INIT_LIST_HEAD(&sas_ha->eh_ata_q);
162 
163 	return 0;
164 
165 Undo_event_q:
166 	destroy_workqueue(sas_ha->event_q);
167 Undo_ports:
168 	sas_unregister_ports(sas_ha);
169 Undo_phys:
170 
171 	return error;
172 }
173 
174 static void sas_disable_events(struct sas_ha_struct *sas_ha)
175 {
176 	/* Set the state to unregistered to avoid further unchained
177 	 * events to be queued, and flush any in-progress drainers
178 	 */
179 	mutex_lock(&sas_ha->drain_mutex);
180 	spin_lock_irq(&sas_ha->lock);
181 	clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
182 	spin_unlock_irq(&sas_ha->lock);
183 	__sas_drain_work(sas_ha);
184 	mutex_unlock(&sas_ha->drain_mutex);
185 }
186 
187 int sas_unregister_ha(struct sas_ha_struct *sas_ha)
188 {
189 	sas_disable_events(sas_ha);
190 	sas_unregister_ports(sas_ha);
191 
192 	/* flush unregistration work */
193 	mutex_lock(&sas_ha->drain_mutex);
194 	__sas_drain_work(sas_ha);
195 	mutex_unlock(&sas_ha->drain_mutex);
196 
197 	destroy_workqueue(sas_ha->disco_q);
198 	destroy_workqueue(sas_ha->event_q);
199 
200 	return 0;
201 }
202 
203 static int sas_get_linkerrors(struct sas_phy *phy)
204 {
205 	if (scsi_is_sas_phy_local(phy)) {
206 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
207 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
208 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
209 		struct sas_internal *i =
210 			to_sas_internal(sas_ha->core.shost->transportt);
211 
212 		return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
213 	}
214 
215 	return sas_smp_get_phy_events(phy);
216 }
217 
218 int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
219 {
220 	struct domain_device *dev = NULL;
221 
222 	/* try to route user requested link resets through libata */
223 	if (asd_phy->port)
224 		dev = asd_phy->port->port_dev;
225 
226 	/* validate that dev has been probed */
227 	if (dev)
228 		dev = sas_find_dev_by_rphy(dev->rphy);
229 
230 	if (dev && dev_is_sata(dev)) {
231 		sas_ata_schedule_reset(dev);
232 		sas_ata_wait_eh(dev);
233 		return 0;
234 	}
235 
236 	return -ENODEV;
237 }
238 
239 /*
240  * transport_sas_phy_reset - reset a phy and permit libata to manage the link
241  *
242  * phy reset request via sysfs in host workqueue context so we know we
243  * can block on eh and safely traverse the domain_device topology
244  */
245 static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
246 {
247 	enum phy_func reset_type;
248 
249 	if (hard_reset)
250 		reset_type = PHY_FUNC_HARD_RESET;
251 	else
252 		reset_type = PHY_FUNC_LINK_RESET;
253 
254 	if (scsi_is_sas_phy_local(phy)) {
255 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
256 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
257 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
258 		struct sas_internal *i =
259 			to_sas_internal(sas_ha->core.shost->transportt);
260 
261 		if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
262 			return 0;
263 		return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
264 	} else {
265 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
266 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
267 		struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
268 
269 		if (ata_dev && !hard_reset) {
270 			sas_ata_schedule_reset(ata_dev);
271 			sas_ata_wait_eh(ata_dev);
272 			return 0;
273 		} else
274 			return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
275 	}
276 }
277 
278 static int sas_phy_enable(struct sas_phy *phy, int enable)
279 {
280 	int ret;
281 	enum phy_func cmd;
282 
283 	if (enable)
284 		cmd = PHY_FUNC_LINK_RESET;
285 	else
286 		cmd = PHY_FUNC_DISABLE;
287 
288 	if (scsi_is_sas_phy_local(phy)) {
289 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
290 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
291 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
292 		struct sas_internal *i =
293 			to_sas_internal(sas_ha->core.shost->transportt);
294 
295 		if (enable)
296 			ret = transport_sas_phy_reset(phy, 0);
297 		else
298 			ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
299 	} else {
300 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
301 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
302 
303 		if (enable)
304 			ret = transport_sas_phy_reset(phy, 0);
305 		else
306 			ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
307 	}
308 	return ret;
309 }
310 
311 int sas_phy_reset(struct sas_phy *phy, int hard_reset)
312 {
313 	int ret;
314 	enum phy_func reset_type;
315 
316 	if (!phy->enabled)
317 		return -ENODEV;
318 
319 	if (hard_reset)
320 		reset_type = PHY_FUNC_HARD_RESET;
321 	else
322 		reset_type = PHY_FUNC_LINK_RESET;
323 
324 	if (scsi_is_sas_phy_local(phy)) {
325 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
326 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
327 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
328 		struct sas_internal *i =
329 			to_sas_internal(sas_ha->core.shost->transportt);
330 
331 		ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
332 	} else {
333 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
334 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
335 		ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
336 	}
337 	return ret;
338 }
339 
340 int sas_set_phy_speed(struct sas_phy *phy,
341 		      struct sas_phy_linkrates *rates)
342 {
343 	int ret;
344 
345 	if ((rates->minimum_linkrate &&
346 	     rates->minimum_linkrate > phy->maximum_linkrate) ||
347 	    (rates->maximum_linkrate &&
348 	     rates->maximum_linkrate < phy->minimum_linkrate))
349 		return -EINVAL;
350 
351 	if (rates->minimum_linkrate &&
352 	    rates->minimum_linkrate < phy->minimum_linkrate_hw)
353 		rates->minimum_linkrate = phy->minimum_linkrate_hw;
354 
355 	if (rates->maximum_linkrate &&
356 	    rates->maximum_linkrate > phy->maximum_linkrate_hw)
357 		rates->maximum_linkrate = phy->maximum_linkrate_hw;
358 
359 	if (scsi_is_sas_phy_local(phy)) {
360 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
361 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
362 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
363 		struct sas_internal *i =
364 			to_sas_internal(sas_ha->core.shost->transportt);
365 
366 		ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
367 					       rates);
368 	} else {
369 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
370 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
371 		ret = sas_smp_phy_control(ddev, phy->number,
372 					  PHY_FUNC_LINK_RESET, rates);
373 
374 	}
375 
376 	return ret;
377 }
378 
379 void sas_prep_resume_ha(struct sas_ha_struct *ha)
380 {
381 	int i;
382 
383 	set_bit(SAS_HA_REGISTERED, &ha->state);
384 
385 	/* clear out any stale link events/data from the suspension path */
386 	for (i = 0; i < ha->num_phys; i++) {
387 		struct asd_sas_phy *phy = ha->sas_phy[i];
388 
389 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
390 		phy->frame_rcvd_size = 0;
391 	}
392 }
393 EXPORT_SYMBOL(sas_prep_resume_ha);
394 
395 static int phys_suspended(struct sas_ha_struct *ha)
396 {
397 	int i, rc = 0;
398 
399 	for (i = 0; i < ha->num_phys; i++) {
400 		struct asd_sas_phy *phy = ha->sas_phy[i];
401 
402 		if (phy->suspended)
403 			rc++;
404 	}
405 
406 	return rc;
407 }
408 
409 void sas_resume_ha(struct sas_ha_struct *ha)
410 {
411 	const unsigned long tmo = msecs_to_jiffies(25000);
412 	int i;
413 
414 	/* deform ports on phys that did not resume
415 	 * at this point we may be racing the phy coming back (as posted
416 	 * by the lldd).  So we post the event and once we are in the
417 	 * libsas context check that the phy remains suspended before
418 	 * tearing it down.
419 	 */
420 	i = phys_suspended(ha);
421 	if (i)
422 		dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
423 			 i, i > 1 ? "s" : "");
424 	wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
425 	for (i = 0; i < ha->num_phys; i++) {
426 		struct asd_sas_phy *phy = ha->sas_phy[i];
427 
428 		if (phy->suspended) {
429 			dev_warn(&phy->phy->dev, "resume timeout\n");
430 			sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
431 		}
432 	}
433 
434 	/* all phys are back up or timed out, turn on i/o so we can
435 	 * flush out disks that did not return
436 	 */
437 	scsi_unblock_requests(ha->core.shost);
438 	sas_drain_work(ha);
439 }
440 EXPORT_SYMBOL(sas_resume_ha);
441 
442 void sas_suspend_ha(struct sas_ha_struct *ha)
443 {
444 	int i;
445 
446 	sas_disable_events(ha);
447 	scsi_block_requests(ha->core.shost);
448 	for (i = 0; i < ha->num_phys; i++) {
449 		struct asd_sas_port *port = ha->sas_port[i];
450 
451 		sas_discover_event(port, DISCE_SUSPEND);
452 	}
453 
454 	/* flush suspend events while unregistered */
455 	mutex_lock(&ha->drain_mutex);
456 	__sas_drain_work(ha);
457 	mutex_unlock(&ha->drain_mutex);
458 }
459 EXPORT_SYMBOL(sas_suspend_ha);
460 
461 static void sas_phy_release(struct sas_phy *phy)
462 {
463 	kfree(phy->hostdata);
464 	phy->hostdata = NULL;
465 }
466 
467 static void phy_reset_work(struct work_struct *work)
468 {
469 	struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
470 
471 	d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
472 }
473 
474 static void phy_enable_work(struct work_struct *work)
475 {
476 	struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
477 
478 	d->enable_result = sas_phy_enable(d->phy, d->enable);
479 }
480 
481 static int sas_phy_setup(struct sas_phy *phy)
482 {
483 	struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
484 
485 	if (!d)
486 		return -ENOMEM;
487 
488 	mutex_init(&d->event_lock);
489 	INIT_SAS_WORK(&d->reset_work, phy_reset_work);
490 	INIT_SAS_WORK(&d->enable_work, phy_enable_work);
491 	d->phy = phy;
492 	phy->hostdata = d;
493 
494 	return 0;
495 }
496 
497 static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
498 {
499 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
500 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
501 	struct sas_phy_data *d = phy->hostdata;
502 	int rc;
503 
504 	if (!d)
505 		return -ENOMEM;
506 
507 	/* libsas workqueue coordinates ata-eh reset with discovery */
508 	mutex_lock(&d->event_lock);
509 	d->reset_result = 0;
510 	d->hard_reset = hard_reset;
511 
512 	spin_lock_irq(&ha->lock);
513 	sas_queue_work(ha, &d->reset_work);
514 	spin_unlock_irq(&ha->lock);
515 
516 	rc = sas_drain_work(ha);
517 	if (rc == 0)
518 		rc = d->reset_result;
519 	mutex_unlock(&d->event_lock);
520 
521 	return rc;
522 }
523 
524 static int queue_phy_enable(struct sas_phy *phy, int enable)
525 {
526 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
527 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
528 	struct sas_phy_data *d = phy->hostdata;
529 	int rc;
530 
531 	if (!d)
532 		return -ENOMEM;
533 
534 	/* libsas workqueue coordinates ata-eh reset with discovery */
535 	mutex_lock(&d->event_lock);
536 	d->enable_result = 0;
537 	d->enable = enable;
538 
539 	spin_lock_irq(&ha->lock);
540 	sas_queue_work(ha, &d->enable_work);
541 	spin_unlock_irq(&ha->lock);
542 
543 	rc = sas_drain_work(ha);
544 	if (rc == 0)
545 		rc = d->enable_result;
546 	mutex_unlock(&d->event_lock);
547 
548 	return rc;
549 }
550 
551 static struct sas_function_template sft = {
552 	.phy_enable = queue_phy_enable,
553 	.phy_reset = queue_phy_reset,
554 	.phy_setup = sas_phy_setup,
555 	.phy_release = sas_phy_release,
556 	.set_phy_speed = sas_set_phy_speed,
557 	.get_linkerrors = sas_get_linkerrors,
558 	.smp_handler = sas_smp_handler,
559 };
560 
561 static inline ssize_t phy_event_threshold_show(struct device *dev,
562 			struct device_attribute *attr, char *buf)
563 {
564 	struct Scsi_Host *shost = class_to_shost(dev);
565 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
566 
567 	return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
568 }
569 
570 static inline ssize_t phy_event_threshold_store(struct device *dev,
571 			struct device_attribute *attr,
572 			const char *buf, size_t count)
573 {
574 	struct Scsi_Host *shost = class_to_shost(dev);
575 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
576 
577 	sha->event_thres = simple_strtol(buf, NULL, 10);
578 
579 	/* threshold cannot be set too small */
580 	if (sha->event_thres < 32)
581 		sha->event_thres = 32;
582 
583 	return count;
584 }
585 
586 DEVICE_ATTR(phy_event_threshold,
587 	S_IRUGO|S_IWUSR,
588 	phy_event_threshold_show,
589 	phy_event_threshold_store);
590 EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
591 
592 struct scsi_transport_template *
593 sas_domain_attach_transport(struct sas_domain_function_template *dft)
594 {
595 	struct scsi_transport_template *stt = sas_attach_transport(&sft);
596 	struct sas_internal *i;
597 
598 	if (!stt)
599 		return stt;
600 
601 	i = to_sas_internal(stt);
602 	i->dft = dft;
603 	stt->create_work_queue = 1;
604 	stt->eh_strategy_handler = sas_scsi_recover_host;
605 
606 	return stt;
607 }
608 EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
609 
610 
611 struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
612 {
613 	struct asd_sas_event *event;
614 	gfp_t flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
615 	struct sas_ha_struct *sas_ha = phy->ha;
616 	struct sas_internal *i =
617 		to_sas_internal(sas_ha->core.shost->transportt);
618 
619 	event = kmem_cache_zalloc(sas_event_cache, flags);
620 	if (!event)
621 		return NULL;
622 
623 	atomic_inc(&phy->event_nr);
624 
625 	if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
626 		if (i->dft->lldd_control_phy) {
627 			if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
628 				pr_notice("The phy%d bursting events, shut it down.\n",
629 					  phy->id);
630 				sas_notify_phy_event(phy, PHYE_SHUTDOWN);
631 			}
632 		} else {
633 			/* Do not support PHY control, stop allocating events */
634 			WARN_ONCE(1, "PHY control not supported.\n");
635 			kmem_cache_free(sas_event_cache, event);
636 			atomic_dec(&phy->event_nr);
637 			event = NULL;
638 		}
639 	}
640 
641 	return event;
642 }
643 
644 void sas_free_event(struct asd_sas_event *event)
645 {
646 	struct asd_sas_phy *phy = event->phy;
647 
648 	kmem_cache_free(sas_event_cache, event);
649 	atomic_dec(&phy->event_nr);
650 }
651 
652 /* ---------- SAS Class register/unregister ---------- */
653 
654 static int __init sas_class_init(void)
655 {
656 	sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
657 	if (!sas_task_cache)
658 		goto out;
659 
660 	sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
661 	if (!sas_event_cache)
662 		goto free_task_kmem;
663 
664 	return 0;
665 free_task_kmem:
666 	kmem_cache_destroy(sas_task_cache);
667 out:
668 	return -ENOMEM;
669 }
670 
671 static void __exit sas_class_exit(void)
672 {
673 	kmem_cache_destroy(sas_task_cache);
674 	kmem_cache_destroy(sas_event_cache);
675 }
676 
677 MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
678 MODULE_DESCRIPTION("SAS Transport Layer");
679 MODULE_LICENSE("GPL v2");
680 
681 module_init(sas_class_init);
682 module_exit(sas_class_exit);
683 
684 EXPORT_SYMBOL_GPL(sas_register_ha);
685 EXPORT_SYMBOL_GPL(sas_unregister_ha);
686