xref: /openbmc/linux/drivers/scsi/libsas/sas_init.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /*
2  * Serial Attached SCSI (SAS) Transport Layer initialization
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22  * USA
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/device.h>
30 #include <linux/spinlock.h>
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_sas.h>
36 
37 #include "sas_internal.h"
38 
39 #include "../scsi_sas_internal.h"
40 
41 static struct kmem_cache *sas_task_cache;
42 static struct kmem_cache *sas_event_cache;
43 
44 struct sas_task *sas_alloc_task(gfp_t flags)
45 {
46 	struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
47 
48 	if (task) {
49 		spin_lock_init(&task->task_state_lock);
50 		task->task_state_flags = SAS_TASK_STATE_PENDING;
51 	}
52 
53 	return task;
54 }
55 EXPORT_SYMBOL_GPL(sas_alloc_task);
56 
57 struct sas_task *sas_alloc_slow_task(gfp_t flags)
58 {
59 	struct sas_task *task = sas_alloc_task(flags);
60 	struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
61 
62 	if (!task || !slow) {
63 		if (task)
64 			kmem_cache_free(sas_task_cache, task);
65 		kfree(slow);
66 		return NULL;
67 	}
68 
69 	task->slow_task = slow;
70 	slow->task = task;
71 	timer_setup(&slow->timer, NULL, 0);
72 	init_completion(&slow->completion);
73 
74 	return task;
75 }
76 EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
77 
78 void sas_free_task(struct sas_task *task)
79 {
80 	if (task) {
81 		kfree(task->slow_task);
82 		kmem_cache_free(sas_task_cache, task);
83 	}
84 }
85 EXPORT_SYMBOL_GPL(sas_free_task);
86 
87 /*------------ SAS addr hash -----------*/
88 void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
89 {
90         const u32 poly = 0x00DB2777;
91         u32     r = 0;
92         int     i;
93 
94         for (i = 0; i < 8; i++) {
95                 int b;
96                 for (b = 7; b >= 0; b--) {
97                         r <<= 1;
98                         if ((1 << b) & sas_addr[i]) {
99                                 if (!(r & 0x01000000))
100                                         r ^= poly;
101                         } else if (r & 0x01000000)
102                                 r ^= poly;
103                 }
104         }
105 
106         hashed[0] = (r >> 16) & 0xFF;
107         hashed[1] = (r >> 8) & 0xFF ;
108         hashed[2] = r & 0xFF;
109 }
110 
111 int sas_register_ha(struct sas_ha_struct *sas_ha)
112 {
113 	char name[64];
114 	int error = 0;
115 
116 	mutex_init(&sas_ha->disco_mutex);
117 	spin_lock_init(&sas_ha->phy_port_lock);
118 	sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
119 
120 	set_bit(SAS_HA_REGISTERED, &sas_ha->state);
121 	spin_lock_init(&sas_ha->lock);
122 	mutex_init(&sas_ha->drain_mutex);
123 	init_waitqueue_head(&sas_ha->eh_wait_q);
124 	INIT_LIST_HEAD(&sas_ha->defer_q);
125 	INIT_LIST_HEAD(&sas_ha->eh_dev_q);
126 
127 	sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
128 
129 	error = sas_register_phys(sas_ha);
130 	if (error) {
131 		printk(KERN_NOTICE "couldn't register sas phys:%d\n", error);
132 		return error;
133 	}
134 
135 	error = sas_register_ports(sas_ha);
136 	if (error) {
137 		printk(KERN_NOTICE "couldn't register sas ports:%d\n", error);
138 		goto Undo_phys;
139 	}
140 
141 	error = sas_init_events(sas_ha);
142 	if (error) {
143 		printk(KERN_NOTICE "couldn't start event thread:%d\n", error);
144 		goto Undo_ports;
145 	}
146 
147 	error = -ENOMEM;
148 	snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
149 	sas_ha->event_q = create_singlethread_workqueue(name);
150 	if (!sas_ha->event_q)
151 		goto Undo_ports;
152 
153 	snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
154 	sas_ha->disco_q = create_singlethread_workqueue(name);
155 	if (!sas_ha->disco_q)
156 		goto Undo_event_q;
157 
158 	INIT_LIST_HEAD(&sas_ha->eh_done_q);
159 	INIT_LIST_HEAD(&sas_ha->eh_ata_q);
160 
161 	return 0;
162 
163 Undo_event_q:
164 	destroy_workqueue(sas_ha->event_q);
165 Undo_ports:
166 	sas_unregister_ports(sas_ha);
167 Undo_phys:
168 
169 	return error;
170 }
171 
172 static void sas_disable_events(struct sas_ha_struct *sas_ha)
173 {
174 	/* Set the state to unregistered to avoid further unchained
175 	 * events to be queued, and flush any in-progress drainers
176 	 */
177 	mutex_lock(&sas_ha->drain_mutex);
178 	spin_lock_irq(&sas_ha->lock);
179 	clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
180 	spin_unlock_irq(&sas_ha->lock);
181 	__sas_drain_work(sas_ha);
182 	mutex_unlock(&sas_ha->drain_mutex);
183 }
184 
185 int sas_unregister_ha(struct sas_ha_struct *sas_ha)
186 {
187 	sas_disable_events(sas_ha);
188 	sas_unregister_ports(sas_ha);
189 
190 	/* flush unregistration work */
191 	mutex_lock(&sas_ha->drain_mutex);
192 	__sas_drain_work(sas_ha);
193 	mutex_unlock(&sas_ha->drain_mutex);
194 
195 	destroy_workqueue(sas_ha->disco_q);
196 	destroy_workqueue(sas_ha->event_q);
197 
198 	return 0;
199 }
200 
201 static int sas_get_linkerrors(struct sas_phy *phy)
202 {
203 	if (scsi_is_sas_phy_local(phy)) {
204 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
205 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
206 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
207 		struct sas_internal *i =
208 			to_sas_internal(sas_ha->core.shost->transportt);
209 
210 		return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
211 	}
212 
213 	return sas_smp_get_phy_events(phy);
214 }
215 
216 int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
217 {
218 	struct domain_device *dev = NULL;
219 
220 	/* try to route user requested link resets through libata */
221 	if (asd_phy->port)
222 		dev = asd_phy->port->port_dev;
223 
224 	/* validate that dev has been probed */
225 	if (dev)
226 		dev = sas_find_dev_by_rphy(dev->rphy);
227 
228 	if (dev && dev_is_sata(dev)) {
229 		sas_ata_schedule_reset(dev);
230 		sas_ata_wait_eh(dev);
231 		return 0;
232 	}
233 
234 	return -ENODEV;
235 }
236 
237 /*
238  * transport_sas_phy_reset - reset a phy and permit libata to manage the link
239  *
240  * phy reset request via sysfs in host workqueue context so we know we
241  * can block on eh and safely traverse the domain_device topology
242  */
243 static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
244 {
245 	enum phy_func reset_type;
246 
247 	if (hard_reset)
248 		reset_type = PHY_FUNC_HARD_RESET;
249 	else
250 		reset_type = PHY_FUNC_LINK_RESET;
251 
252 	if (scsi_is_sas_phy_local(phy)) {
253 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
254 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
255 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
256 		struct sas_internal *i =
257 			to_sas_internal(sas_ha->core.shost->transportt);
258 
259 		if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
260 			return 0;
261 		return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
262 	} else {
263 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
264 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
265 		struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
266 
267 		if (ata_dev && !hard_reset) {
268 			sas_ata_schedule_reset(ata_dev);
269 			sas_ata_wait_eh(ata_dev);
270 			return 0;
271 		} else
272 			return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
273 	}
274 }
275 
276 static int sas_phy_enable(struct sas_phy *phy, int enable)
277 {
278 	int ret;
279 	enum phy_func cmd;
280 
281 	if (enable)
282 		cmd = PHY_FUNC_LINK_RESET;
283 	else
284 		cmd = PHY_FUNC_DISABLE;
285 
286 	if (scsi_is_sas_phy_local(phy)) {
287 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
288 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
289 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
290 		struct sas_internal *i =
291 			to_sas_internal(sas_ha->core.shost->transportt);
292 
293 		if (enable)
294 			ret = transport_sas_phy_reset(phy, 0);
295 		else
296 			ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
297 	} else {
298 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
299 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
300 
301 		if (enable)
302 			ret = transport_sas_phy_reset(phy, 0);
303 		else
304 			ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
305 	}
306 	return ret;
307 }
308 
309 int sas_phy_reset(struct sas_phy *phy, int hard_reset)
310 {
311 	int ret;
312 	enum phy_func reset_type;
313 
314 	if (!phy->enabled)
315 		return -ENODEV;
316 
317 	if (hard_reset)
318 		reset_type = PHY_FUNC_HARD_RESET;
319 	else
320 		reset_type = PHY_FUNC_LINK_RESET;
321 
322 	if (scsi_is_sas_phy_local(phy)) {
323 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
324 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
325 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
326 		struct sas_internal *i =
327 			to_sas_internal(sas_ha->core.shost->transportt);
328 
329 		ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
330 	} else {
331 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
332 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
333 		ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
334 	}
335 	return ret;
336 }
337 
338 int sas_set_phy_speed(struct sas_phy *phy,
339 		      struct sas_phy_linkrates *rates)
340 {
341 	int ret;
342 
343 	if ((rates->minimum_linkrate &&
344 	     rates->minimum_linkrate > phy->maximum_linkrate) ||
345 	    (rates->maximum_linkrate &&
346 	     rates->maximum_linkrate < phy->minimum_linkrate))
347 		return -EINVAL;
348 
349 	if (rates->minimum_linkrate &&
350 	    rates->minimum_linkrate < phy->minimum_linkrate_hw)
351 		rates->minimum_linkrate = phy->minimum_linkrate_hw;
352 
353 	if (rates->maximum_linkrate &&
354 	    rates->maximum_linkrate > phy->maximum_linkrate_hw)
355 		rates->maximum_linkrate = phy->maximum_linkrate_hw;
356 
357 	if (scsi_is_sas_phy_local(phy)) {
358 		struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
359 		struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
360 		struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
361 		struct sas_internal *i =
362 			to_sas_internal(sas_ha->core.shost->transportt);
363 
364 		ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
365 					       rates);
366 	} else {
367 		struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
368 		struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
369 		ret = sas_smp_phy_control(ddev, phy->number,
370 					  PHY_FUNC_LINK_RESET, rates);
371 
372 	}
373 
374 	return ret;
375 }
376 
377 void sas_prep_resume_ha(struct sas_ha_struct *ha)
378 {
379 	int i;
380 
381 	set_bit(SAS_HA_REGISTERED, &ha->state);
382 
383 	/* clear out any stale link events/data from the suspension path */
384 	for (i = 0; i < ha->num_phys; i++) {
385 		struct asd_sas_phy *phy = ha->sas_phy[i];
386 
387 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
388 		phy->frame_rcvd_size = 0;
389 	}
390 }
391 EXPORT_SYMBOL(sas_prep_resume_ha);
392 
393 static int phys_suspended(struct sas_ha_struct *ha)
394 {
395 	int i, rc = 0;
396 
397 	for (i = 0; i < ha->num_phys; i++) {
398 		struct asd_sas_phy *phy = ha->sas_phy[i];
399 
400 		if (phy->suspended)
401 			rc++;
402 	}
403 
404 	return rc;
405 }
406 
407 void sas_resume_ha(struct sas_ha_struct *ha)
408 {
409 	const unsigned long tmo = msecs_to_jiffies(25000);
410 	int i;
411 
412 	/* deform ports on phys that did not resume
413 	 * at this point we may be racing the phy coming back (as posted
414 	 * by the lldd).  So we post the event and once we are in the
415 	 * libsas context check that the phy remains suspended before
416 	 * tearing it down.
417 	 */
418 	i = phys_suspended(ha);
419 	if (i)
420 		dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
421 			 i, i > 1 ? "s" : "");
422 	wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
423 	for (i = 0; i < ha->num_phys; i++) {
424 		struct asd_sas_phy *phy = ha->sas_phy[i];
425 
426 		if (phy->suspended) {
427 			dev_warn(&phy->phy->dev, "resume timeout\n");
428 			sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
429 		}
430 	}
431 
432 	/* all phys are back up or timed out, turn on i/o so we can
433 	 * flush out disks that did not return
434 	 */
435 	scsi_unblock_requests(ha->core.shost);
436 	sas_drain_work(ha);
437 }
438 EXPORT_SYMBOL(sas_resume_ha);
439 
440 void sas_suspend_ha(struct sas_ha_struct *ha)
441 {
442 	int i;
443 
444 	sas_disable_events(ha);
445 	scsi_block_requests(ha->core.shost);
446 	for (i = 0; i < ha->num_phys; i++) {
447 		struct asd_sas_port *port = ha->sas_port[i];
448 
449 		sas_discover_event(port, DISCE_SUSPEND);
450 	}
451 
452 	/* flush suspend events while unregistered */
453 	mutex_lock(&ha->drain_mutex);
454 	__sas_drain_work(ha);
455 	mutex_unlock(&ha->drain_mutex);
456 }
457 EXPORT_SYMBOL(sas_suspend_ha);
458 
459 static void sas_phy_release(struct sas_phy *phy)
460 {
461 	kfree(phy->hostdata);
462 	phy->hostdata = NULL;
463 }
464 
465 static void phy_reset_work(struct work_struct *work)
466 {
467 	struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
468 
469 	d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
470 }
471 
472 static void phy_enable_work(struct work_struct *work)
473 {
474 	struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
475 
476 	d->enable_result = sas_phy_enable(d->phy, d->enable);
477 }
478 
479 static int sas_phy_setup(struct sas_phy *phy)
480 {
481 	struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
482 
483 	if (!d)
484 		return -ENOMEM;
485 
486 	mutex_init(&d->event_lock);
487 	INIT_SAS_WORK(&d->reset_work, phy_reset_work);
488 	INIT_SAS_WORK(&d->enable_work, phy_enable_work);
489 	d->phy = phy;
490 	phy->hostdata = d;
491 
492 	return 0;
493 }
494 
495 static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
496 {
497 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
498 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
499 	struct sas_phy_data *d = phy->hostdata;
500 	int rc;
501 
502 	if (!d)
503 		return -ENOMEM;
504 
505 	/* libsas workqueue coordinates ata-eh reset with discovery */
506 	mutex_lock(&d->event_lock);
507 	d->reset_result = 0;
508 	d->hard_reset = hard_reset;
509 
510 	spin_lock_irq(&ha->lock);
511 	sas_queue_work(ha, &d->reset_work);
512 	spin_unlock_irq(&ha->lock);
513 
514 	rc = sas_drain_work(ha);
515 	if (rc == 0)
516 		rc = d->reset_result;
517 	mutex_unlock(&d->event_lock);
518 
519 	return rc;
520 }
521 
522 static int queue_phy_enable(struct sas_phy *phy, int enable)
523 {
524 	struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
525 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
526 	struct sas_phy_data *d = phy->hostdata;
527 	int rc;
528 
529 	if (!d)
530 		return -ENOMEM;
531 
532 	/* libsas workqueue coordinates ata-eh reset with discovery */
533 	mutex_lock(&d->event_lock);
534 	d->enable_result = 0;
535 	d->enable = enable;
536 
537 	spin_lock_irq(&ha->lock);
538 	sas_queue_work(ha, &d->enable_work);
539 	spin_unlock_irq(&ha->lock);
540 
541 	rc = sas_drain_work(ha);
542 	if (rc == 0)
543 		rc = d->enable_result;
544 	mutex_unlock(&d->event_lock);
545 
546 	return rc;
547 }
548 
549 static struct sas_function_template sft = {
550 	.phy_enable = queue_phy_enable,
551 	.phy_reset = queue_phy_reset,
552 	.phy_setup = sas_phy_setup,
553 	.phy_release = sas_phy_release,
554 	.set_phy_speed = sas_set_phy_speed,
555 	.get_linkerrors = sas_get_linkerrors,
556 	.smp_handler = sas_smp_handler,
557 };
558 
559 static inline ssize_t phy_event_threshold_show(struct device *dev,
560 			struct device_attribute *attr, char *buf)
561 {
562 	struct Scsi_Host *shost = class_to_shost(dev);
563 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
564 
565 	return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
566 }
567 
568 static inline ssize_t phy_event_threshold_store(struct device *dev,
569 			struct device_attribute *attr,
570 			const char *buf, size_t count)
571 {
572 	struct Scsi_Host *shost = class_to_shost(dev);
573 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
574 
575 	sha->event_thres = simple_strtol(buf, NULL, 10);
576 
577 	/* threshold cannot be set too small */
578 	if (sha->event_thres < 32)
579 		sha->event_thres = 32;
580 
581 	return count;
582 }
583 
584 DEVICE_ATTR(phy_event_threshold,
585 	S_IRUGO|S_IWUSR,
586 	phy_event_threshold_show,
587 	phy_event_threshold_store);
588 EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
589 
590 struct scsi_transport_template *
591 sas_domain_attach_transport(struct sas_domain_function_template *dft)
592 {
593 	struct scsi_transport_template *stt = sas_attach_transport(&sft);
594 	struct sas_internal *i;
595 
596 	if (!stt)
597 		return stt;
598 
599 	i = to_sas_internal(stt);
600 	i->dft = dft;
601 	stt->create_work_queue = 1;
602 	stt->eh_strategy_handler = sas_scsi_recover_host;
603 
604 	return stt;
605 }
606 EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
607 
608 
609 struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
610 {
611 	struct asd_sas_event *event;
612 	gfp_t flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
613 	struct sas_ha_struct *sas_ha = phy->ha;
614 	struct sas_internal *i =
615 		to_sas_internal(sas_ha->core.shost->transportt);
616 
617 	event = kmem_cache_zalloc(sas_event_cache, flags);
618 	if (!event)
619 		return NULL;
620 
621 	atomic_inc(&phy->event_nr);
622 
623 	if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
624 		if (i->dft->lldd_control_phy) {
625 			if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
626 				sas_printk("The phy%02d bursting events, shut it down.\n",
627 					phy->id);
628 				sas_notify_phy_event(phy, PHYE_SHUTDOWN);
629 			}
630 		} else {
631 			/* Do not support PHY control, stop allocating events */
632 			WARN_ONCE(1, "PHY control not supported.\n");
633 			kmem_cache_free(sas_event_cache, event);
634 			atomic_dec(&phy->event_nr);
635 			event = NULL;
636 		}
637 	}
638 
639 	return event;
640 }
641 
642 void sas_free_event(struct asd_sas_event *event)
643 {
644 	struct asd_sas_phy *phy = event->phy;
645 
646 	kmem_cache_free(sas_event_cache, event);
647 	atomic_dec(&phy->event_nr);
648 }
649 
650 /* ---------- SAS Class register/unregister ---------- */
651 
652 static int __init sas_class_init(void)
653 {
654 	sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
655 	if (!sas_task_cache)
656 		goto out;
657 
658 	sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
659 	if (!sas_event_cache)
660 		goto free_task_kmem;
661 
662 	return 0;
663 free_task_kmem:
664 	kmem_cache_destroy(sas_task_cache);
665 out:
666 	return -ENOMEM;
667 }
668 
669 static void __exit sas_class_exit(void)
670 {
671 	kmem_cache_destroy(sas_task_cache);
672 	kmem_cache_destroy(sas_event_cache);
673 }
674 
675 MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
676 MODULE_DESCRIPTION("SAS Transport Layer");
677 MODULE_LICENSE("GPL v2");
678 
679 module_init(sas_class_init);
680 module_exit(sas_class_exit);
681 
682 EXPORT_SYMBOL_GPL(sas_register_ha);
683 EXPORT_SYMBOL_GPL(sas_unregister_ha);
684