1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Serial Attached SCSI (SAS) Expander discovery and configuration 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 * 8 * This file is licensed under GPLv2. 9 */ 10 11 #include <linux/scatterlist.h> 12 #include <linux/blkdev.h> 13 #include <linux/slab.h> 14 #include <asm/unaligned.h> 15 16 #include "sas_internal.h" 17 18 #include <scsi/sas_ata.h> 19 #include <scsi/scsi_transport.h> 20 #include <scsi/scsi_transport_sas.h> 21 #include "scsi_sas_internal.h" 22 23 static int sas_discover_expander(struct domain_device *dev); 24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 25 static int sas_configure_phy(struct domain_device *dev, int phy_id, 26 u8 *sas_addr, int include); 27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 28 29 /* ---------- SMP task management ---------- */ 30 31 /* Give it some long enough timeout. In seconds. */ 32 #define SMP_TIMEOUT 10 33 34 static int smp_execute_task_sg(struct domain_device *dev, 35 struct scatterlist *req, struct scatterlist *resp) 36 { 37 int res, retry; 38 struct sas_task *task = NULL; 39 struct sas_internal *i = 40 to_sas_internal(dev->port->ha->core.shost->transportt); 41 struct sas_ha_struct *ha = dev->port->ha; 42 43 pm_runtime_get_sync(ha->dev); 44 mutex_lock(&dev->ex_dev.cmd_mutex); 45 for (retry = 0; retry < 3; retry++) { 46 if (test_bit(SAS_DEV_GONE, &dev->state)) { 47 res = -ECOMM; 48 break; 49 } 50 51 task = sas_alloc_slow_task(GFP_KERNEL); 52 if (!task) { 53 res = -ENOMEM; 54 break; 55 } 56 task->dev = dev; 57 task->task_proto = dev->tproto; 58 task->smp_task.smp_req = *req; 59 task->smp_task.smp_resp = *resp; 60 61 task->task_done = sas_task_internal_done; 62 63 task->slow_task->timer.function = sas_task_internal_timedout; 64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 65 add_timer(&task->slow_task->timer); 66 67 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 68 69 if (res) { 70 del_timer(&task->slow_task->timer); 71 pr_notice("executing SMP task failed:%d\n", res); 72 break; 73 } 74 75 wait_for_completion(&task->slow_task->completion); 76 res = -ECOMM; 77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 78 pr_notice("smp task timed out or aborted\n"); 79 i->dft->lldd_abort_task(task); 80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 81 pr_notice("SMP task aborted and not done\n"); 82 break; 83 } 84 } 85 if (task->task_status.resp == SAS_TASK_COMPLETE && 86 task->task_status.stat == SAS_SAM_STAT_GOOD) { 87 res = 0; 88 break; 89 } 90 if (task->task_status.resp == SAS_TASK_COMPLETE && 91 task->task_status.stat == SAS_DATA_UNDERRUN) { 92 /* no error, but return the number of bytes of 93 * underrun */ 94 res = task->task_status.residual; 95 break; 96 } 97 if (task->task_status.resp == SAS_TASK_COMPLETE && 98 task->task_status.stat == SAS_DATA_OVERRUN) { 99 res = -EMSGSIZE; 100 break; 101 } 102 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 103 task->task_status.stat == SAS_DEVICE_UNKNOWN) 104 break; 105 else { 106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 107 __func__, 108 SAS_ADDR(dev->sas_addr), 109 task->task_status.resp, 110 task->task_status.stat); 111 sas_free_task(task); 112 task = NULL; 113 } 114 } 115 mutex_unlock(&dev->ex_dev.cmd_mutex); 116 pm_runtime_put_sync(ha->dev); 117 118 BUG_ON(retry == 3 && task != NULL); 119 sas_free_task(task); 120 return res; 121 } 122 123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 124 void *resp, int resp_size) 125 { 126 struct scatterlist req_sg; 127 struct scatterlist resp_sg; 128 129 sg_init_one(&req_sg, req, req_size); 130 sg_init_one(&resp_sg, resp, resp_size); 131 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 132 } 133 134 /* ---------- Allocations ---------- */ 135 136 static inline void *alloc_smp_req(int size) 137 { 138 u8 *p = kzalloc(size, GFP_KERNEL); 139 if (p) 140 p[0] = SMP_REQUEST; 141 return p; 142 } 143 144 static inline void *alloc_smp_resp(int size) 145 { 146 return kzalloc(size, GFP_KERNEL); 147 } 148 149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 150 { 151 switch (phy->routing_attr) { 152 case TABLE_ROUTING: 153 if (dev->ex_dev.t2t_supp) 154 return 'U'; 155 else 156 return 'T'; 157 case DIRECT_ROUTING: 158 return 'D'; 159 case SUBTRACTIVE_ROUTING: 160 return 'S'; 161 default: 162 return '?'; 163 } 164 } 165 166 static enum sas_device_type to_dev_type(struct discover_resp *dr) 167 { 168 /* This is detecting a failure to transmit initial dev to host 169 * FIS as described in section J.5 of sas-2 r16 170 */ 171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 173 return SAS_SATA_PENDING; 174 else 175 return dr->attached_dev_type; 176 } 177 178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 179 struct smp_disc_resp *disc_resp) 180 { 181 enum sas_device_type dev_type; 182 enum sas_linkrate linkrate; 183 u8 sas_addr[SAS_ADDR_SIZE]; 184 struct discover_resp *dr = &disc_resp->disc; 185 struct sas_ha_struct *ha = dev->port->ha; 186 struct expander_device *ex = &dev->ex_dev; 187 struct ex_phy *phy = &ex->ex_phy[phy_id]; 188 struct sas_rphy *rphy = dev->rphy; 189 bool new_phy = !phy->phy; 190 char *type; 191 192 if (new_phy) { 193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 194 return; 195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 196 197 /* FIXME: error_handling */ 198 BUG_ON(!phy->phy); 199 } 200 201 switch (disc_resp->result) { 202 case SMP_RESP_PHY_VACANT: 203 phy->phy_state = PHY_VACANT; 204 break; 205 default: 206 phy->phy_state = PHY_NOT_PRESENT; 207 break; 208 case SMP_RESP_FUNC_ACC: 209 phy->phy_state = PHY_EMPTY; /* do not know yet */ 210 break; 211 } 212 213 /* check if anything important changed to squelch debug */ 214 dev_type = phy->attached_dev_type; 215 linkrate = phy->linkrate; 216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 217 218 /* Handle vacant phy - rest of dr data is not valid so skip it */ 219 if (phy->phy_state == PHY_VACANT) { 220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 221 phy->attached_dev_type = SAS_PHY_UNUSED; 222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 223 phy->phy_id = phy_id; 224 goto skip; 225 } else 226 goto out; 227 } 228 229 phy->attached_dev_type = to_dev_type(dr); 230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 231 goto out; 232 phy->phy_id = phy_id; 233 phy->linkrate = dr->linkrate; 234 phy->attached_sata_host = dr->attached_sata_host; 235 phy->attached_sata_dev = dr->attached_sata_dev; 236 phy->attached_sata_ps = dr->attached_sata_ps; 237 phy->attached_iproto = dr->iproto << 1; 238 phy->attached_tproto = dr->tproto << 1; 239 /* help some expanders that fail to zero sas_address in the 'no 240 * device' case 241 */ 242 if (phy->attached_dev_type == SAS_PHY_UNUSED || 243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 245 else 246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 247 phy->attached_phy_id = dr->attached_phy_id; 248 phy->phy_change_count = dr->change_count; 249 phy->routing_attr = dr->routing_attr; 250 phy->virtual = dr->virtual; 251 phy->last_da_index = -1; 252 253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 254 phy->phy->identify.device_type = dr->attached_dev_type; 255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 256 phy->phy->identify.target_port_protocols = phy->attached_tproto; 257 if (!phy->attached_tproto && dr->attached_sata_dev) 258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 259 phy->phy->identify.phy_identifier = phy_id; 260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 262 phy->phy->minimum_linkrate = dr->pmin_linkrate; 263 phy->phy->maximum_linkrate = dr->pmax_linkrate; 264 phy->phy->negotiated_linkrate = phy->linkrate; 265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 266 267 skip: 268 if (new_phy) 269 if (sas_phy_add(phy->phy)) { 270 sas_phy_free(phy->phy); 271 return; 272 } 273 274 out: 275 switch (phy->attached_dev_type) { 276 case SAS_SATA_PENDING: 277 type = "stp pending"; 278 break; 279 case SAS_PHY_UNUSED: 280 type = "no device"; 281 break; 282 case SAS_END_DEVICE: 283 if (phy->attached_iproto) { 284 if (phy->attached_tproto) 285 type = "host+target"; 286 else 287 type = "host"; 288 } else { 289 if (dr->attached_sata_dev) 290 type = "stp"; 291 else 292 type = "ssp"; 293 } 294 break; 295 case SAS_EDGE_EXPANDER_DEVICE: 296 case SAS_FANOUT_EXPANDER_DEVICE: 297 type = "smp"; 298 break; 299 default: 300 type = "unknown"; 301 } 302 303 /* this routine is polled by libata error recovery so filter 304 * unimportant messages 305 */ 306 if (new_phy || phy->attached_dev_type != dev_type || 307 phy->linkrate != linkrate || 308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 309 /* pass */; 310 else 311 return; 312 313 /* if the attached device type changed and ata_eh is active, 314 * make sure we run revalidation when eh completes (see: 315 * sas_enable_revalidation) 316 */ 317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 319 320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 322 SAS_ADDR(dev->sas_addr), phy->phy_id, 323 sas_route_char(dev, phy), phy->linkrate, 324 SAS_ADDR(phy->attached_sas_addr), type); 325 } 326 327 /* check if we have an existing attached ata device on this expander phy */ 328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 329 { 330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 331 struct domain_device *dev; 332 struct sas_rphy *rphy; 333 334 if (!ex_phy->port) 335 return NULL; 336 337 rphy = ex_phy->port->rphy; 338 if (!rphy) 339 return NULL; 340 341 dev = sas_find_dev_by_rphy(rphy); 342 343 if (dev && dev_is_sata(dev)) 344 return dev; 345 346 return NULL; 347 } 348 349 #define DISCOVER_REQ_SIZE 16 350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp) 351 352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 353 struct smp_disc_resp *disc_resp, 354 int single) 355 { 356 struct discover_resp *dr = &disc_resp->disc; 357 int res; 358 359 disc_req[9] = single; 360 361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 362 disc_resp, DISCOVER_RESP_SIZE); 363 if (res) 364 return res; 365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 366 pr_notice("Found loopback topology, just ignore it!\n"); 367 return 0; 368 } 369 sas_set_ex_phy(dev, single, disc_resp); 370 return 0; 371 } 372 373 int sas_ex_phy_discover(struct domain_device *dev, int single) 374 { 375 struct expander_device *ex = &dev->ex_dev; 376 int res = 0; 377 u8 *disc_req; 378 struct smp_disc_resp *disc_resp; 379 380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 381 if (!disc_req) 382 return -ENOMEM; 383 384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 385 if (!disc_resp) { 386 kfree(disc_req); 387 return -ENOMEM; 388 } 389 390 disc_req[1] = SMP_DISCOVER; 391 392 if (0 <= single && single < ex->num_phys) { 393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 394 } else { 395 int i; 396 397 for (i = 0; i < ex->num_phys; i++) { 398 res = sas_ex_phy_discover_helper(dev, disc_req, 399 disc_resp, i); 400 if (res) 401 goto out_err; 402 } 403 } 404 out_err: 405 kfree(disc_resp); 406 kfree(disc_req); 407 return res; 408 } 409 410 static int sas_expander_discover(struct domain_device *dev) 411 { 412 struct expander_device *ex = &dev->ex_dev; 413 int res; 414 415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 416 if (!ex->ex_phy) 417 return -ENOMEM; 418 419 res = sas_ex_phy_discover(dev, -1); 420 if (res) 421 goto out_err; 422 423 return 0; 424 out_err: 425 kfree(ex->ex_phy); 426 ex->ex_phy = NULL; 427 return res; 428 } 429 430 #define MAX_EXPANDER_PHYS 128 431 432 #define RG_REQ_SIZE 8 433 #define RG_RESP_SIZE sizeof(struct smp_rg_resp) 434 435 static int sas_ex_general(struct domain_device *dev) 436 { 437 u8 *rg_req; 438 struct smp_rg_resp *rg_resp; 439 struct report_general_resp *rg; 440 int res; 441 int i; 442 443 rg_req = alloc_smp_req(RG_REQ_SIZE); 444 if (!rg_req) 445 return -ENOMEM; 446 447 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 448 if (!rg_resp) { 449 kfree(rg_req); 450 return -ENOMEM; 451 } 452 453 rg_req[1] = SMP_REPORT_GENERAL; 454 455 for (i = 0; i < 5; i++) { 456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 457 RG_RESP_SIZE); 458 459 if (res) { 460 pr_notice("RG to ex %016llx failed:0x%x\n", 461 SAS_ADDR(dev->sas_addr), res); 462 goto out; 463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 465 SAS_ADDR(dev->sas_addr), rg_resp->result); 466 res = rg_resp->result; 467 goto out; 468 } 469 470 rg = &rg_resp->rg; 471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 474 dev->ex_dev.t2t_supp = rg->t2t_supp; 475 dev->ex_dev.conf_route_table = rg->conf_route_table; 476 dev->ex_dev.configuring = rg->configuring; 477 memcpy(dev->ex_dev.enclosure_logical_id, 478 rg->enclosure_logical_id, 8); 479 480 if (dev->ex_dev.configuring) { 481 pr_debug("RG: ex %016llx self-configuring...\n", 482 SAS_ADDR(dev->sas_addr)); 483 schedule_timeout_interruptible(5*HZ); 484 } else 485 break; 486 } 487 out: 488 kfree(rg_req); 489 kfree(rg_resp); 490 return res; 491 } 492 493 static void ex_assign_manuf_info(struct domain_device *dev, void 494 *_mi_resp) 495 { 496 u8 *mi_resp = _mi_resp; 497 struct sas_rphy *rphy = dev->rphy; 498 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 499 500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 502 memcpy(edev->product_rev, mi_resp + 36, 503 SAS_EXPANDER_PRODUCT_REV_LEN); 504 505 if (mi_resp[8] & 1) { 506 memcpy(edev->component_vendor_id, mi_resp + 40, 507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 508 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 509 edev->component_revision_id = mi_resp[50]; 510 } 511 } 512 513 #define MI_REQ_SIZE 8 514 #define MI_RESP_SIZE 64 515 516 static int sas_ex_manuf_info(struct domain_device *dev) 517 { 518 u8 *mi_req; 519 u8 *mi_resp; 520 int res; 521 522 mi_req = alloc_smp_req(MI_REQ_SIZE); 523 if (!mi_req) 524 return -ENOMEM; 525 526 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 527 if (!mi_resp) { 528 kfree(mi_req); 529 return -ENOMEM; 530 } 531 532 mi_req[1] = SMP_REPORT_MANUF_INFO; 533 534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE); 535 if (res) { 536 pr_notice("MI: ex %016llx failed:0x%x\n", 537 SAS_ADDR(dev->sas_addr), res); 538 goto out; 539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 540 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 541 SAS_ADDR(dev->sas_addr), mi_resp[2]); 542 goto out; 543 } 544 545 ex_assign_manuf_info(dev, mi_resp); 546 out: 547 kfree(mi_req); 548 kfree(mi_resp); 549 return res; 550 } 551 552 #define PC_REQ_SIZE 44 553 #define PC_RESP_SIZE 8 554 555 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 556 enum phy_func phy_func, 557 struct sas_phy_linkrates *rates) 558 { 559 u8 *pc_req; 560 u8 *pc_resp; 561 int res; 562 563 pc_req = alloc_smp_req(PC_REQ_SIZE); 564 if (!pc_req) 565 return -ENOMEM; 566 567 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 568 if (!pc_resp) { 569 kfree(pc_req); 570 return -ENOMEM; 571 } 572 573 pc_req[1] = SMP_PHY_CONTROL; 574 pc_req[9] = phy_id; 575 pc_req[10] = phy_func; 576 if (rates) { 577 pc_req[32] = rates->minimum_linkrate << 4; 578 pc_req[33] = rates->maximum_linkrate << 4; 579 } 580 581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE); 582 if (res) { 583 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 584 SAS_ADDR(dev->sas_addr), phy_id, res); 585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 588 res = pc_resp[2]; 589 } 590 kfree(pc_resp); 591 kfree(pc_req); 592 return res; 593 } 594 595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 596 { 597 struct expander_device *ex = &dev->ex_dev; 598 struct ex_phy *phy = &ex->ex_phy[phy_id]; 599 600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 601 phy->linkrate = SAS_PHY_DISABLED; 602 } 603 604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 605 { 606 struct expander_device *ex = &dev->ex_dev; 607 int i; 608 609 for (i = 0; i < ex->num_phys; i++) { 610 struct ex_phy *phy = &ex->ex_phy[i]; 611 612 if (phy->phy_state == PHY_VACANT || 613 phy->phy_state == PHY_NOT_PRESENT) 614 continue; 615 616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 617 sas_ex_disable_phy(dev, i); 618 } 619 } 620 621 static int sas_dev_present_in_domain(struct asd_sas_port *port, 622 u8 *sas_addr) 623 { 624 struct domain_device *dev; 625 626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 627 return 1; 628 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 630 return 1; 631 } 632 return 0; 633 } 634 635 #define RPEL_REQ_SIZE 16 636 #define RPEL_RESP_SIZE 32 637 int sas_smp_get_phy_events(struct sas_phy *phy) 638 { 639 int res; 640 u8 *req; 641 u8 *resp; 642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 643 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 644 645 req = alloc_smp_req(RPEL_REQ_SIZE); 646 if (!req) 647 return -ENOMEM; 648 649 resp = alloc_smp_resp(RPEL_RESP_SIZE); 650 if (!resp) { 651 kfree(req); 652 return -ENOMEM; 653 } 654 655 req[1] = SMP_REPORT_PHY_ERR_LOG; 656 req[9] = phy->number; 657 658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 659 resp, RPEL_RESP_SIZE); 660 661 if (res) 662 goto out; 663 664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 668 669 out: 670 kfree(req); 671 kfree(resp); 672 return res; 673 674 } 675 676 #ifdef CONFIG_SCSI_SAS_ATA 677 678 #define RPS_REQ_SIZE 16 679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp) 680 681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 682 struct smp_rps_resp *rps_resp) 683 { 684 int res; 685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 686 u8 *resp = (u8 *)rps_resp; 687 688 if (!rps_req) 689 return -ENOMEM; 690 691 rps_req[1] = SMP_REPORT_PHY_SATA; 692 rps_req[9] = phy_id; 693 694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 695 rps_resp, RPS_RESP_SIZE); 696 697 /* 0x34 is the FIS type for the D2H fis. There's a potential 698 * standards cockup here. sas-2 explicitly specifies the FIS 699 * should be encoded so that FIS type is in resp[24]. 700 * However, some expanders endian reverse this. Undo the 701 * reversal here */ 702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 703 int i; 704 705 for (i = 0; i < 5; i++) { 706 int j = 24 + (i*4); 707 u8 a, b; 708 a = resp[j + 0]; 709 b = resp[j + 1]; 710 resp[j + 0] = resp[j + 3]; 711 resp[j + 1] = resp[j + 2]; 712 resp[j + 2] = b; 713 resp[j + 3] = a; 714 } 715 } 716 717 kfree(rps_req); 718 return res; 719 } 720 #endif 721 722 static void sas_ex_get_linkrate(struct domain_device *parent, 723 struct domain_device *child, 724 struct ex_phy *parent_phy) 725 { 726 struct expander_device *parent_ex = &parent->ex_dev; 727 struct sas_port *port; 728 int i; 729 730 child->pathways = 0; 731 732 port = parent_phy->port; 733 734 for (i = 0; i < parent_ex->num_phys; i++) { 735 struct ex_phy *phy = &parent_ex->ex_phy[i]; 736 737 if (phy->phy_state == PHY_VACANT || 738 phy->phy_state == PHY_NOT_PRESENT) 739 continue; 740 741 if (SAS_ADDR(phy->attached_sas_addr) == 742 SAS_ADDR(child->sas_addr)) { 743 744 child->min_linkrate = min(parent->min_linkrate, 745 phy->linkrate); 746 child->max_linkrate = max(parent->max_linkrate, 747 phy->linkrate); 748 child->pathways++; 749 sas_port_add_phy(port, phy->phy); 750 } 751 } 752 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 753 child->pathways = min(child->pathways, parent->pathways); 754 } 755 756 static struct domain_device *sas_ex_discover_end_dev( 757 struct domain_device *parent, int phy_id) 758 { 759 struct expander_device *parent_ex = &parent->ex_dev; 760 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 761 struct domain_device *child = NULL; 762 struct sas_rphy *rphy; 763 int res; 764 765 if (phy->attached_sata_host || phy->attached_sata_ps) 766 return NULL; 767 768 child = sas_alloc_device(); 769 if (!child) 770 return NULL; 771 772 kref_get(&parent->kref); 773 child->parent = parent; 774 child->port = parent->port; 775 child->iproto = phy->attached_iproto; 776 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 777 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 778 if (!phy->port) { 779 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 780 if (unlikely(!phy->port)) 781 goto out_err; 782 if (unlikely(sas_port_add(phy->port) != 0)) { 783 sas_port_free(phy->port); 784 goto out_err; 785 } 786 } 787 sas_ex_get_linkrate(parent, child, phy); 788 sas_device_set_phy(child, phy->port); 789 790 #ifdef CONFIG_SCSI_SAS_ATA 791 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 792 if (child->linkrate > parent->min_linkrate) { 793 struct sas_phy *cphy = child->phy; 794 enum sas_linkrate min_prate = cphy->minimum_linkrate, 795 parent_min_lrate = parent->min_linkrate, 796 min_linkrate = (min_prate > parent_min_lrate) ? 797 parent_min_lrate : 0; 798 struct sas_phy_linkrates rates = { 799 .maximum_linkrate = parent->min_linkrate, 800 .minimum_linkrate = min_linkrate, 801 }; 802 int ret; 803 804 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n", 805 SAS_ADDR(child->sas_addr), phy_id); 806 ret = sas_smp_phy_control(parent, phy_id, 807 PHY_FUNC_LINK_RESET, &rates); 808 if (ret) { 809 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n", 810 SAS_ADDR(child->sas_addr), phy_id, ret); 811 goto out_free; 812 } 813 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n", 814 SAS_ADDR(child->sas_addr), phy_id); 815 child->linkrate = child->min_linkrate; 816 } 817 res = sas_get_ata_info(child, phy); 818 if (res) 819 goto out_free; 820 821 sas_init_dev(child); 822 res = sas_ata_init(child); 823 if (res) 824 goto out_free; 825 rphy = sas_end_device_alloc(phy->port); 826 if (!rphy) 827 goto out_free; 828 rphy->identify.phy_identifier = phy_id; 829 830 child->rphy = rphy; 831 get_device(&rphy->dev); 832 833 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 834 835 res = sas_discover_sata(child); 836 if (res) { 837 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n", 838 SAS_ADDR(child->sas_addr), 839 SAS_ADDR(parent->sas_addr), phy_id, res); 840 goto out_list_del; 841 } 842 } else 843 #endif 844 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 845 child->dev_type = SAS_END_DEVICE; 846 rphy = sas_end_device_alloc(phy->port); 847 /* FIXME: error handling */ 848 if (unlikely(!rphy)) 849 goto out_free; 850 child->tproto = phy->attached_tproto; 851 sas_init_dev(child); 852 853 child->rphy = rphy; 854 get_device(&rphy->dev); 855 rphy->identify.phy_identifier = phy_id; 856 sas_fill_in_rphy(child, rphy); 857 858 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 859 860 res = sas_discover_end_dev(child); 861 if (res) { 862 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n", 863 SAS_ADDR(child->sas_addr), 864 SAS_ADDR(parent->sas_addr), phy_id, res); 865 goto out_list_del; 866 } 867 } else { 868 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 869 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 870 phy_id); 871 goto out_free; 872 } 873 874 list_add_tail(&child->siblings, &parent_ex->children); 875 return child; 876 877 out_list_del: 878 sas_rphy_free(child->rphy); 879 list_del(&child->disco_list_node); 880 spin_lock_irq(&parent->port->dev_list_lock); 881 list_del(&child->dev_list_node); 882 spin_unlock_irq(&parent->port->dev_list_lock); 883 out_free: 884 sas_port_delete(phy->port); 885 out_err: 886 phy->port = NULL; 887 sas_put_device(child); 888 return NULL; 889 } 890 891 /* See if this phy is part of a wide port */ 892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 893 { 894 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 895 int i; 896 897 for (i = 0; i < parent->ex_dev.num_phys; i++) { 898 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 899 900 if (ephy == phy) 901 continue; 902 903 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 904 SAS_ADDR_SIZE) && ephy->port) { 905 sas_port_add_phy(ephy->port, phy->phy); 906 phy->port = ephy->port; 907 phy->phy_state = PHY_DEVICE_DISCOVERED; 908 return true; 909 } 910 } 911 912 return false; 913 } 914 915 static struct domain_device *sas_ex_discover_expander( 916 struct domain_device *parent, int phy_id) 917 { 918 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 919 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 920 struct domain_device *child = NULL; 921 struct sas_rphy *rphy; 922 struct sas_expander_device *edev; 923 struct asd_sas_port *port; 924 int res; 925 926 if (phy->routing_attr == DIRECT_ROUTING) { 927 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 928 SAS_ADDR(parent->sas_addr), phy_id, 929 SAS_ADDR(phy->attached_sas_addr), 930 phy->attached_phy_id); 931 return NULL; 932 } 933 child = sas_alloc_device(); 934 if (!child) 935 return NULL; 936 937 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 938 /* FIXME: better error handling */ 939 BUG_ON(sas_port_add(phy->port) != 0); 940 941 942 switch (phy->attached_dev_type) { 943 case SAS_EDGE_EXPANDER_DEVICE: 944 rphy = sas_expander_alloc(phy->port, 945 SAS_EDGE_EXPANDER_DEVICE); 946 break; 947 case SAS_FANOUT_EXPANDER_DEVICE: 948 rphy = sas_expander_alloc(phy->port, 949 SAS_FANOUT_EXPANDER_DEVICE); 950 break; 951 default: 952 rphy = NULL; /* shut gcc up */ 953 BUG(); 954 } 955 port = parent->port; 956 child->rphy = rphy; 957 get_device(&rphy->dev); 958 edev = rphy_to_expander_device(rphy); 959 child->dev_type = phy->attached_dev_type; 960 kref_get(&parent->kref); 961 child->parent = parent; 962 child->port = port; 963 child->iproto = phy->attached_iproto; 964 child->tproto = phy->attached_tproto; 965 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 966 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 967 sas_ex_get_linkrate(parent, child, phy); 968 edev->level = parent_ex->level + 1; 969 parent->port->disc.max_level = max(parent->port->disc.max_level, 970 edev->level); 971 sas_init_dev(child); 972 sas_fill_in_rphy(child, rphy); 973 sas_rphy_add(rphy); 974 975 spin_lock_irq(&parent->port->dev_list_lock); 976 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 977 spin_unlock_irq(&parent->port->dev_list_lock); 978 979 res = sas_discover_expander(child); 980 if (res) { 981 sas_rphy_delete(rphy); 982 spin_lock_irq(&parent->port->dev_list_lock); 983 list_del(&child->dev_list_node); 984 spin_unlock_irq(&parent->port->dev_list_lock); 985 sas_put_device(child); 986 sas_port_delete(phy->port); 987 phy->port = NULL; 988 return NULL; 989 } 990 list_add_tail(&child->siblings, &parent->ex_dev.children); 991 return child; 992 } 993 994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 995 { 996 struct expander_device *ex = &dev->ex_dev; 997 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 998 struct domain_device *child = NULL; 999 int res = 0; 1000 1001 /* Phy state */ 1002 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1003 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1004 res = sas_ex_phy_discover(dev, phy_id); 1005 if (res) 1006 return res; 1007 } 1008 1009 /* Parent and domain coherency */ 1010 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1011 SAS_ADDR(dev->port->sas_addr))) { 1012 sas_add_parent_port(dev, phy_id); 1013 return 0; 1014 } 1015 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1016 SAS_ADDR(dev->parent->sas_addr))) { 1017 sas_add_parent_port(dev, phy_id); 1018 if (ex_phy->routing_attr == TABLE_ROUTING) 1019 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1020 return 0; 1021 } 1022 1023 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1024 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1025 1026 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1027 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1028 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1029 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1030 } 1031 return 0; 1032 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1033 return 0; 1034 1035 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1036 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1037 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1038 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1039 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 1040 ex_phy->attached_dev_type, 1041 SAS_ADDR(dev->sas_addr), 1042 phy_id); 1043 return 0; 1044 } 1045 1046 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1047 if (res) { 1048 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1049 SAS_ADDR(ex_phy->attached_sas_addr), res); 1050 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1051 return res; 1052 } 1053 1054 if (sas_ex_join_wide_port(dev, phy_id)) { 1055 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1056 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1057 return res; 1058 } 1059 1060 switch (ex_phy->attached_dev_type) { 1061 case SAS_END_DEVICE: 1062 case SAS_SATA_PENDING: 1063 child = sas_ex_discover_end_dev(dev, phy_id); 1064 break; 1065 case SAS_FANOUT_EXPANDER_DEVICE: 1066 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1067 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1068 SAS_ADDR(ex_phy->attached_sas_addr), 1069 ex_phy->attached_phy_id, 1070 SAS_ADDR(dev->sas_addr), 1071 phy_id); 1072 sas_ex_disable_phy(dev, phy_id); 1073 return res; 1074 } else 1075 memcpy(dev->port->disc.fanout_sas_addr, 1076 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1077 fallthrough; 1078 case SAS_EDGE_EXPANDER_DEVICE: 1079 child = sas_ex_discover_expander(dev, phy_id); 1080 break; 1081 default: 1082 break; 1083 } 1084 1085 if (!child) 1086 pr_notice("ex %016llx phy%02d failed to discover\n", 1087 SAS_ADDR(dev->sas_addr), phy_id); 1088 return res; 1089 } 1090 1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1092 { 1093 struct expander_device *ex = &dev->ex_dev; 1094 int i; 1095 1096 for (i = 0; i < ex->num_phys; i++) { 1097 struct ex_phy *phy = &ex->ex_phy[i]; 1098 1099 if (phy->phy_state == PHY_VACANT || 1100 phy->phy_state == PHY_NOT_PRESENT) 1101 continue; 1102 1103 if (dev_is_expander(phy->attached_dev_type) && 1104 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1105 1106 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1107 1108 return 1; 1109 } 1110 } 1111 return 0; 1112 } 1113 1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1115 { 1116 struct expander_device *ex = &dev->ex_dev; 1117 struct domain_device *child; 1118 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1119 1120 list_for_each_entry(child, &ex->children, siblings) { 1121 if (!dev_is_expander(child->dev_type)) 1122 continue; 1123 if (sub_addr[0] == 0) { 1124 sas_find_sub_addr(child, sub_addr); 1125 continue; 1126 } else { 1127 u8 s2[SAS_ADDR_SIZE]; 1128 1129 if (sas_find_sub_addr(child, s2) && 1130 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1131 1132 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1133 SAS_ADDR(dev->sas_addr), 1134 SAS_ADDR(child->sas_addr), 1135 SAS_ADDR(s2), 1136 SAS_ADDR(sub_addr)); 1137 1138 sas_ex_disable_port(child, s2); 1139 } 1140 } 1141 } 1142 return 0; 1143 } 1144 /** 1145 * sas_ex_discover_devices - discover devices attached to this expander 1146 * @dev: pointer to the expander domain device 1147 * @single: if you want to do a single phy, else set to -1; 1148 * 1149 * Configure this expander for use with its devices and register the 1150 * devices of this expander. 1151 */ 1152 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1153 { 1154 struct expander_device *ex = &dev->ex_dev; 1155 int i = 0, end = ex->num_phys; 1156 int res = 0; 1157 1158 if (0 <= single && single < end) { 1159 i = single; 1160 end = i+1; 1161 } 1162 1163 for ( ; i < end; i++) { 1164 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1165 1166 if (ex_phy->phy_state == PHY_VACANT || 1167 ex_phy->phy_state == PHY_NOT_PRESENT || 1168 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1169 continue; 1170 1171 switch (ex_phy->linkrate) { 1172 case SAS_PHY_DISABLED: 1173 case SAS_PHY_RESET_PROBLEM: 1174 case SAS_SATA_PORT_SELECTOR: 1175 continue; 1176 default: 1177 res = sas_ex_discover_dev(dev, i); 1178 if (res) 1179 break; 1180 continue; 1181 } 1182 } 1183 1184 if (!res) 1185 sas_check_level_subtractive_boundary(dev); 1186 1187 return res; 1188 } 1189 1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1191 { 1192 struct expander_device *ex = &dev->ex_dev; 1193 int i; 1194 u8 *sub_sas_addr = NULL; 1195 1196 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1197 return 0; 1198 1199 for (i = 0; i < ex->num_phys; i++) { 1200 struct ex_phy *phy = &ex->ex_phy[i]; 1201 1202 if (phy->phy_state == PHY_VACANT || 1203 phy->phy_state == PHY_NOT_PRESENT) 1204 continue; 1205 1206 if (dev_is_expander(phy->attached_dev_type) && 1207 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1208 1209 if (!sub_sas_addr) 1210 sub_sas_addr = &phy->attached_sas_addr[0]; 1211 else if (SAS_ADDR(sub_sas_addr) != 1212 SAS_ADDR(phy->attached_sas_addr)) { 1213 1214 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1215 SAS_ADDR(dev->sas_addr), i, 1216 SAS_ADDR(phy->attached_sas_addr), 1217 SAS_ADDR(sub_sas_addr)); 1218 sas_ex_disable_phy(dev, i); 1219 } 1220 } 1221 } 1222 return 0; 1223 } 1224 1225 static void sas_print_parent_topology_bug(struct domain_device *child, 1226 struct ex_phy *parent_phy, 1227 struct ex_phy *child_phy) 1228 { 1229 static const char *ex_type[] = { 1230 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1231 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1232 }; 1233 struct domain_device *parent = child->parent; 1234 1235 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1236 ex_type[parent->dev_type], 1237 SAS_ADDR(parent->sas_addr), 1238 parent_phy->phy_id, 1239 1240 ex_type[child->dev_type], 1241 SAS_ADDR(child->sas_addr), 1242 child_phy->phy_id, 1243 1244 sas_route_char(parent, parent_phy), 1245 sas_route_char(child, child_phy)); 1246 } 1247 1248 static int sas_check_eeds(struct domain_device *child, 1249 struct ex_phy *parent_phy, 1250 struct ex_phy *child_phy) 1251 { 1252 int res = 0; 1253 struct domain_device *parent = child->parent; 1254 1255 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1256 res = -ENODEV; 1257 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1258 SAS_ADDR(parent->sas_addr), 1259 parent_phy->phy_id, 1260 SAS_ADDR(child->sas_addr), 1261 child_phy->phy_id, 1262 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1263 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1264 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1265 SAS_ADDR_SIZE); 1266 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1267 SAS_ADDR_SIZE); 1268 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1269 SAS_ADDR(parent->sas_addr)) || 1270 (SAS_ADDR(parent->port->disc.eeds_a) == 1271 SAS_ADDR(child->sas_addr))) 1272 && 1273 ((SAS_ADDR(parent->port->disc.eeds_b) == 1274 SAS_ADDR(parent->sas_addr)) || 1275 (SAS_ADDR(parent->port->disc.eeds_b) == 1276 SAS_ADDR(child->sas_addr)))) 1277 ; 1278 else { 1279 res = -ENODEV; 1280 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1281 SAS_ADDR(parent->sas_addr), 1282 parent_phy->phy_id, 1283 SAS_ADDR(child->sas_addr), 1284 child_phy->phy_id); 1285 } 1286 1287 return res; 1288 } 1289 1290 /* Here we spill over 80 columns. It is intentional. 1291 */ 1292 static int sas_check_parent_topology(struct domain_device *child) 1293 { 1294 struct expander_device *child_ex = &child->ex_dev; 1295 struct expander_device *parent_ex; 1296 int i; 1297 int res = 0; 1298 1299 if (!child->parent) 1300 return 0; 1301 1302 if (!dev_is_expander(child->parent->dev_type)) 1303 return 0; 1304 1305 parent_ex = &child->parent->ex_dev; 1306 1307 for (i = 0; i < parent_ex->num_phys; i++) { 1308 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1309 struct ex_phy *child_phy; 1310 1311 if (parent_phy->phy_state == PHY_VACANT || 1312 parent_phy->phy_state == PHY_NOT_PRESENT) 1313 continue; 1314 1315 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1316 continue; 1317 1318 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1319 1320 switch (child->parent->dev_type) { 1321 case SAS_EDGE_EXPANDER_DEVICE: 1322 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1323 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1324 child_phy->routing_attr != TABLE_ROUTING) { 1325 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1326 res = -ENODEV; 1327 } 1328 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1329 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1330 res = sas_check_eeds(child, parent_phy, child_phy); 1331 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1332 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1333 res = -ENODEV; 1334 } 1335 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1336 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1337 (child_phy->routing_attr == TABLE_ROUTING && 1338 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1339 /* All good */; 1340 } else { 1341 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1342 res = -ENODEV; 1343 } 1344 } 1345 break; 1346 case SAS_FANOUT_EXPANDER_DEVICE: 1347 if (parent_phy->routing_attr != TABLE_ROUTING || 1348 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1349 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1350 res = -ENODEV; 1351 } 1352 break; 1353 default: 1354 break; 1355 } 1356 } 1357 1358 return res; 1359 } 1360 1361 #define RRI_REQ_SIZE 16 1362 #define RRI_RESP_SIZE 44 1363 1364 static int sas_configure_present(struct domain_device *dev, int phy_id, 1365 u8 *sas_addr, int *index, int *present) 1366 { 1367 int i, res = 0; 1368 struct expander_device *ex = &dev->ex_dev; 1369 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1370 u8 *rri_req; 1371 u8 *rri_resp; 1372 1373 *present = 0; 1374 *index = 0; 1375 1376 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1377 if (!rri_req) 1378 return -ENOMEM; 1379 1380 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1381 if (!rri_resp) { 1382 kfree(rri_req); 1383 return -ENOMEM; 1384 } 1385 1386 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1387 rri_req[9] = phy_id; 1388 1389 for (i = 0; i < ex->max_route_indexes ; i++) { 1390 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1391 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1392 RRI_RESP_SIZE); 1393 if (res) 1394 goto out; 1395 res = rri_resp[2]; 1396 if (res == SMP_RESP_NO_INDEX) { 1397 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1398 SAS_ADDR(dev->sas_addr), phy_id, i); 1399 goto out; 1400 } else if (res != SMP_RESP_FUNC_ACC) { 1401 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1402 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1403 i, res); 1404 goto out; 1405 } 1406 if (SAS_ADDR(sas_addr) != 0) { 1407 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1408 *index = i; 1409 if ((rri_resp[12] & 0x80) == 0x80) 1410 *present = 0; 1411 else 1412 *present = 1; 1413 goto out; 1414 } else if (SAS_ADDR(rri_resp+16) == 0) { 1415 *index = i; 1416 *present = 0; 1417 goto out; 1418 } 1419 } else if (SAS_ADDR(rri_resp+16) == 0 && 1420 phy->last_da_index < i) { 1421 phy->last_da_index = i; 1422 *index = i; 1423 *present = 0; 1424 goto out; 1425 } 1426 } 1427 res = -1; 1428 out: 1429 kfree(rri_req); 1430 kfree(rri_resp); 1431 return res; 1432 } 1433 1434 #define CRI_REQ_SIZE 44 1435 #define CRI_RESP_SIZE 8 1436 1437 static int sas_configure_set(struct domain_device *dev, int phy_id, 1438 u8 *sas_addr, int index, int include) 1439 { 1440 int res; 1441 u8 *cri_req; 1442 u8 *cri_resp; 1443 1444 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1445 if (!cri_req) 1446 return -ENOMEM; 1447 1448 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1449 if (!cri_resp) { 1450 kfree(cri_req); 1451 return -ENOMEM; 1452 } 1453 1454 cri_req[1] = SMP_CONF_ROUTE_INFO; 1455 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1456 cri_req[9] = phy_id; 1457 if (SAS_ADDR(sas_addr) == 0 || !include) 1458 cri_req[12] |= 0x80; 1459 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1460 1461 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1462 CRI_RESP_SIZE); 1463 if (res) 1464 goto out; 1465 res = cri_resp[2]; 1466 if (res == SMP_RESP_NO_INDEX) { 1467 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1468 SAS_ADDR(dev->sas_addr), phy_id, index); 1469 } 1470 out: 1471 kfree(cri_req); 1472 kfree(cri_resp); 1473 return res; 1474 } 1475 1476 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1477 u8 *sas_addr, int include) 1478 { 1479 int index; 1480 int present; 1481 int res; 1482 1483 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1484 if (res) 1485 return res; 1486 if (include ^ present) 1487 return sas_configure_set(dev, phy_id, sas_addr, index, 1488 include); 1489 1490 return res; 1491 } 1492 1493 /** 1494 * sas_configure_parent - configure routing table of parent 1495 * @parent: parent expander 1496 * @child: child expander 1497 * @sas_addr: SAS port identifier of device directly attached to child 1498 * @include: whether or not to include @child in the expander routing table 1499 */ 1500 static int sas_configure_parent(struct domain_device *parent, 1501 struct domain_device *child, 1502 u8 *sas_addr, int include) 1503 { 1504 struct expander_device *ex_parent = &parent->ex_dev; 1505 int res = 0; 1506 int i; 1507 1508 if (parent->parent) { 1509 res = sas_configure_parent(parent->parent, parent, sas_addr, 1510 include); 1511 if (res) 1512 return res; 1513 } 1514 1515 if (ex_parent->conf_route_table == 0) { 1516 pr_debug("ex %016llx has self-configuring routing table\n", 1517 SAS_ADDR(parent->sas_addr)); 1518 return 0; 1519 } 1520 1521 for (i = 0; i < ex_parent->num_phys; i++) { 1522 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1523 1524 if ((phy->routing_attr == TABLE_ROUTING) && 1525 (SAS_ADDR(phy->attached_sas_addr) == 1526 SAS_ADDR(child->sas_addr))) { 1527 res = sas_configure_phy(parent, i, sas_addr, include); 1528 if (res) 1529 return res; 1530 } 1531 } 1532 1533 return res; 1534 } 1535 1536 /** 1537 * sas_configure_routing - configure routing 1538 * @dev: expander device 1539 * @sas_addr: port identifier of device directly attached to the expander device 1540 */ 1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1542 { 1543 if (dev->parent) 1544 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1545 return 0; 1546 } 1547 1548 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1549 { 1550 if (dev->parent) 1551 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1552 return 0; 1553 } 1554 1555 /** 1556 * sas_discover_expander - expander discovery 1557 * @dev: pointer to expander domain device 1558 * 1559 * See comment in sas_discover_sata(). 1560 */ 1561 static int sas_discover_expander(struct domain_device *dev) 1562 { 1563 int res; 1564 1565 res = sas_notify_lldd_dev_found(dev); 1566 if (res) 1567 return res; 1568 1569 res = sas_ex_general(dev); 1570 if (res) 1571 goto out_err; 1572 res = sas_ex_manuf_info(dev); 1573 if (res) 1574 goto out_err; 1575 1576 res = sas_expander_discover(dev); 1577 if (res) { 1578 pr_warn("expander %016llx discovery failed(0x%x)\n", 1579 SAS_ADDR(dev->sas_addr), res); 1580 goto out_err; 1581 } 1582 1583 sas_check_ex_subtractive_boundary(dev); 1584 res = sas_check_parent_topology(dev); 1585 if (res) 1586 goto out_err; 1587 return 0; 1588 out_err: 1589 sas_notify_lldd_dev_gone(dev); 1590 return res; 1591 } 1592 1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1594 { 1595 int res = 0; 1596 struct domain_device *dev; 1597 1598 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1599 if (dev_is_expander(dev->dev_type)) { 1600 struct sas_expander_device *ex = 1601 rphy_to_expander_device(dev->rphy); 1602 1603 if (level == ex->level) 1604 res = sas_ex_discover_devices(dev, -1); 1605 else if (level > 0) 1606 res = sas_ex_discover_devices(port->port_dev, -1); 1607 1608 } 1609 } 1610 1611 return res; 1612 } 1613 1614 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1615 { 1616 int res; 1617 int level; 1618 1619 do { 1620 level = port->disc.max_level; 1621 res = sas_ex_level_discovery(port, level); 1622 mb(); 1623 } while (level < port->disc.max_level); 1624 1625 return res; 1626 } 1627 1628 int sas_discover_root_expander(struct domain_device *dev) 1629 { 1630 int res; 1631 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1632 1633 res = sas_rphy_add(dev->rphy); 1634 if (res) 1635 goto out_err; 1636 1637 ex->level = dev->port->disc.max_level; /* 0 */ 1638 res = sas_discover_expander(dev); 1639 if (res) 1640 goto out_err2; 1641 1642 sas_ex_bfs_disc(dev->port); 1643 1644 return res; 1645 1646 out_err2: 1647 sas_rphy_remove(dev->rphy); 1648 out_err: 1649 return res; 1650 } 1651 1652 /* ---------- Domain revalidation ---------- */ 1653 1654 static int sas_get_phy_discover(struct domain_device *dev, 1655 int phy_id, struct smp_disc_resp *disc_resp) 1656 { 1657 int res; 1658 u8 *disc_req; 1659 1660 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1661 if (!disc_req) 1662 return -ENOMEM; 1663 1664 disc_req[1] = SMP_DISCOVER; 1665 disc_req[9] = phy_id; 1666 1667 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1668 disc_resp, DISCOVER_RESP_SIZE); 1669 if (res) 1670 goto out; 1671 if (disc_resp->result != SMP_RESP_FUNC_ACC) 1672 res = disc_resp->result; 1673 out: 1674 kfree(disc_req); 1675 return res; 1676 } 1677 1678 static int sas_get_phy_change_count(struct domain_device *dev, 1679 int phy_id, int *pcc) 1680 { 1681 int res; 1682 struct smp_disc_resp *disc_resp; 1683 1684 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1685 if (!disc_resp) 1686 return -ENOMEM; 1687 1688 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1689 if (!res) 1690 *pcc = disc_resp->disc.change_count; 1691 1692 kfree(disc_resp); 1693 return res; 1694 } 1695 1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1697 u8 *sas_addr, enum sas_device_type *type) 1698 { 1699 int res; 1700 struct smp_disc_resp *disc_resp; 1701 1702 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1703 if (!disc_resp) 1704 return -ENOMEM; 1705 1706 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1707 if (res == 0) { 1708 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 1709 SAS_ADDR_SIZE); 1710 *type = to_dev_type(&disc_resp->disc); 1711 if (*type == 0) 1712 memset(sas_addr, 0, SAS_ADDR_SIZE); 1713 } 1714 kfree(disc_resp); 1715 return res; 1716 } 1717 1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1719 int from_phy, bool update) 1720 { 1721 struct expander_device *ex = &dev->ex_dev; 1722 int res = 0; 1723 int i; 1724 1725 for (i = from_phy; i < ex->num_phys; i++) { 1726 int phy_change_count = 0; 1727 1728 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1729 switch (res) { 1730 case SMP_RESP_PHY_VACANT: 1731 case SMP_RESP_NO_PHY: 1732 continue; 1733 case SMP_RESP_FUNC_ACC: 1734 break; 1735 default: 1736 return res; 1737 } 1738 1739 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1740 if (update) 1741 ex->ex_phy[i].phy_change_count = 1742 phy_change_count; 1743 *phy_id = i; 1744 return 0; 1745 } 1746 } 1747 return 0; 1748 } 1749 1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1751 { 1752 int res; 1753 u8 *rg_req; 1754 struct smp_rg_resp *rg_resp; 1755 1756 rg_req = alloc_smp_req(RG_REQ_SIZE); 1757 if (!rg_req) 1758 return -ENOMEM; 1759 1760 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1761 if (!rg_resp) { 1762 kfree(rg_req); 1763 return -ENOMEM; 1764 } 1765 1766 rg_req[1] = SMP_REPORT_GENERAL; 1767 1768 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1769 RG_RESP_SIZE); 1770 if (res) 1771 goto out; 1772 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1773 res = rg_resp->result; 1774 goto out; 1775 } 1776 1777 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1778 out: 1779 kfree(rg_resp); 1780 kfree(rg_req); 1781 return res; 1782 } 1783 /** 1784 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1785 * @dev:domain device to be detect. 1786 * @src_dev: the device which originated BROADCAST(CHANGE). 1787 * 1788 * Add self-configuration expander support. Suppose two expander cascading, 1789 * when the first level expander is self-configuring, hotplug the disks in 1790 * second level expander, BROADCAST(CHANGE) will not only be originated 1791 * in the second level expander, but also be originated in the first level 1792 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1793 * expander changed count in two level expanders will all increment at least 1794 * once, but the phy which chang count has changed is the source device which 1795 * we concerned. 1796 */ 1797 1798 static int sas_find_bcast_dev(struct domain_device *dev, 1799 struct domain_device **src_dev) 1800 { 1801 struct expander_device *ex = &dev->ex_dev; 1802 int ex_change_count = -1; 1803 int phy_id = -1; 1804 int res; 1805 struct domain_device *ch; 1806 1807 res = sas_get_ex_change_count(dev, &ex_change_count); 1808 if (res) 1809 goto out; 1810 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1811 /* Just detect if this expander phys phy change count changed, 1812 * in order to determine if this expander originate BROADCAST, 1813 * and do not update phy change count field in our structure. 1814 */ 1815 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1816 if (phy_id != -1) { 1817 *src_dev = dev; 1818 ex->ex_change_count = ex_change_count; 1819 pr_info("ex %016llx phy%02d change count has changed\n", 1820 SAS_ADDR(dev->sas_addr), phy_id); 1821 return res; 1822 } else 1823 pr_info("ex %016llx phys DID NOT change\n", 1824 SAS_ADDR(dev->sas_addr)); 1825 } 1826 list_for_each_entry(ch, &ex->children, siblings) { 1827 if (dev_is_expander(ch->dev_type)) { 1828 res = sas_find_bcast_dev(ch, src_dev); 1829 if (*src_dev) 1830 return res; 1831 } 1832 } 1833 out: 1834 return res; 1835 } 1836 1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1838 { 1839 struct expander_device *ex = &dev->ex_dev; 1840 struct domain_device *child, *n; 1841 1842 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1843 set_bit(SAS_DEV_GONE, &child->state); 1844 if (dev_is_expander(child->dev_type)) 1845 sas_unregister_ex_tree(port, child); 1846 else 1847 sas_unregister_dev(port, child); 1848 } 1849 sas_unregister_dev(port, dev); 1850 } 1851 1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1853 int phy_id, bool last) 1854 { 1855 struct expander_device *ex_dev = &parent->ex_dev; 1856 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1857 struct domain_device *child, *n, *found = NULL; 1858 if (last) { 1859 list_for_each_entry_safe(child, n, 1860 &ex_dev->children, siblings) { 1861 if (SAS_ADDR(child->sas_addr) == 1862 SAS_ADDR(phy->attached_sas_addr)) { 1863 set_bit(SAS_DEV_GONE, &child->state); 1864 if (dev_is_expander(child->dev_type)) 1865 sas_unregister_ex_tree(parent->port, child); 1866 else 1867 sas_unregister_dev(parent->port, child); 1868 found = child; 1869 break; 1870 } 1871 } 1872 sas_disable_routing(parent, phy->attached_sas_addr); 1873 } 1874 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1875 if (phy->port) { 1876 sas_port_delete_phy(phy->port, phy->phy); 1877 sas_device_set_phy(found, phy->port); 1878 if (phy->port->num_phys == 0) 1879 list_add_tail(&phy->port->del_list, 1880 &parent->port->sas_port_del_list); 1881 phy->port = NULL; 1882 } 1883 } 1884 1885 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1886 const int level) 1887 { 1888 struct expander_device *ex_root = &root->ex_dev; 1889 struct domain_device *child; 1890 int res = 0; 1891 1892 list_for_each_entry(child, &ex_root->children, siblings) { 1893 if (dev_is_expander(child->dev_type)) { 1894 struct sas_expander_device *ex = 1895 rphy_to_expander_device(child->rphy); 1896 1897 if (level > ex->level) 1898 res = sas_discover_bfs_by_root_level(child, 1899 level); 1900 else if (level == ex->level) 1901 res = sas_ex_discover_devices(child, -1); 1902 } 1903 } 1904 return res; 1905 } 1906 1907 static int sas_discover_bfs_by_root(struct domain_device *dev) 1908 { 1909 int res; 1910 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1911 int level = ex->level+1; 1912 1913 res = sas_ex_discover_devices(dev, -1); 1914 if (res) 1915 goto out; 1916 do { 1917 res = sas_discover_bfs_by_root_level(dev, level); 1918 mb(); 1919 level += 1; 1920 } while (level <= dev->port->disc.max_level); 1921 out: 1922 return res; 1923 } 1924 1925 static int sas_discover_new(struct domain_device *dev, int phy_id) 1926 { 1927 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1928 struct domain_device *child; 1929 int res; 1930 1931 pr_debug("ex %016llx phy%02d new device attached\n", 1932 SAS_ADDR(dev->sas_addr), phy_id); 1933 res = sas_ex_phy_discover(dev, phy_id); 1934 if (res) 1935 return res; 1936 1937 if (sas_ex_join_wide_port(dev, phy_id)) 1938 return 0; 1939 1940 res = sas_ex_discover_devices(dev, phy_id); 1941 if (res) 1942 return res; 1943 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1944 if (SAS_ADDR(child->sas_addr) == 1945 SAS_ADDR(ex_phy->attached_sas_addr)) { 1946 if (dev_is_expander(child->dev_type)) 1947 res = sas_discover_bfs_by_root(child); 1948 break; 1949 } 1950 } 1951 return res; 1952 } 1953 1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1955 { 1956 if (old == new) 1957 return true; 1958 1959 /* treat device directed resets as flutter, if we went 1960 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1961 */ 1962 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1963 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1964 return true; 1965 1966 return false; 1967 } 1968 1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 1970 bool last, int sibling) 1971 { 1972 struct expander_device *ex = &dev->ex_dev; 1973 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1974 enum sas_device_type type = SAS_PHY_UNUSED; 1975 u8 sas_addr[SAS_ADDR_SIZE]; 1976 char msg[80] = ""; 1977 int res; 1978 1979 if (!last) 1980 sprintf(msg, ", part of a wide port with phy%02d", sibling); 1981 1982 pr_debug("ex %016llx rediscovering phy%02d%s\n", 1983 SAS_ADDR(dev->sas_addr), phy_id, msg); 1984 1985 memset(sas_addr, 0, SAS_ADDR_SIZE); 1986 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 1987 switch (res) { 1988 case SMP_RESP_NO_PHY: 1989 phy->phy_state = PHY_NOT_PRESENT; 1990 sas_unregister_devs_sas_addr(dev, phy_id, last); 1991 return res; 1992 case SMP_RESP_PHY_VACANT: 1993 phy->phy_state = PHY_VACANT; 1994 sas_unregister_devs_sas_addr(dev, phy_id, last); 1995 return res; 1996 case SMP_RESP_FUNC_ACC: 1997 break; 1998 case -ECOMM: 1999 break; 2000 default: 2001 return res; 2002 } 2003 2004 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2005 phy->phy_state = PHY_EMPTY; 2006 sas_unregister_devs_sas_addr(dev, phy_id, last); 2007 /* 2008 * Even though the PHY is empty, for convenience we discover 2009 * the PHY to update the PHY info, like negotiated linkrate. 2010 */ 2011 sas_ex_phy_discover(dev, phy_id); 2012 return res; 2013 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2014 dev_type_flutter(type, phy->attached_dev_type)) { 2015 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2016 char *action = ""; 2017 2018 sas_ex_phy_discover(dev, phy_id); 2019 2020 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2021 action = ", needs recovery"; 2022 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2023 SAS_ADDR(dev->sas_addr), phy_id, action); 2024 return res; 2025 } 2026 2027 /* we always have to delete the old device when we went here */ 2028 pr_info("ex %016llx phy%02d replace %016llx\n", 2029 SAS_ADDR(dev->sas_addr), phy_id, 2030 SAS_ADDR(phy->attached_sas_addr)); 2031 sas_unregister_devs_sas_addr(dev, phy_id, last); 2032 2033 return sas_discover_new(dev, phy_id); 2034 } 2035 2036 /** 2037 * sas_rediscover - revalidate the domain. 2038 * @dev:domain device to be detect. 2039 * @phy_id: the phy id will be detected. 2040 * 2041 * NOTE: this process _must_ quit (return) as soon as any connection 2042 * errors are encountered. Connection recovery is done elsewhere. 2043 * Discover process only interrogates devices in order to discover the 2044 * domain.For plugging out, we un-register the device only when it is 2045 * the last phy in the port, for other phys in this port, we just delete it 2046 * from the port.For inserting, we do discovery when it is the 2047 * first phy,for other phys in this port, we add it to the port to 2048 * forming the wide-port. 2049 */ 2050 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2051 { 2052 struct expander_device *ex = &dev->ex_dev; 2053 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2054 int res = 0; 2055 int i; 2056 bool last = true; /* is this the last phy of the port */ 2057 2058 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2059 SAS_ADDR(dev->sas_addr), phy_id); 2060 2061 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2062 for (i = 0; i < ex->num_phys; i++) { 2063 struct ex_phy *phy = &ex->ex_phy[i]; 2064 2065 if (i == phy_id) 2066 continue; 2067 if (SAS_ADDR(phy->attached_sas_addr) == 2068 SAS_ADDR(changed_phy->attached_sas_addr)) { 2069 last = false; 2070 break; 2071 } 2072 } 2073 res = sas_rediscover_dev(dev, phy_id, last, i); 2074 } else 2075 res = sas_discover_new(dev, phy_id); 2076 return res; 2077 } 2078 2079 /** 2080 * sas_ex_revalidate_domain - revalidate the domain 2081 * @port_dev: port domain device. 2082 * 2083 * NOTE: this process _must_ quit (return) as soon as any connection 2084 * errors are encountered. Connection recovery is done elsewhere. 2085 * Discover process only interrogates devices in order to discover the 2086 * domain. 2087 */ 2088 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2089 { 2090 int res; 2091 struct domain_device *dev = NULL; 2092 2093 res = sas_find_bcast_dev(port_dev, &dev); 2094 if (res == 0 && dev) { 2095 struct expander_device *ex = &dev->ex_dev; 2096 int i = 0, phy_id; 2097 2098 do { 2099 phy_id = -1; 2100 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2101 if (phy_id == -1) 2102 break; 2103 res = sas_rediscover(dev, phy_id); 2104 i = phy_id + 1; 2105 } while (i < ex->num_phys); 2106 } 2107 return res; 2108 } 2109 2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2111 struct sas_rphy *rphy) 2112 { 2113 struct domain_device *dev; 2114 unsigned int rcvlen = 0; 2115 int ret = -EINVAL; 2116 2117 /* no rphy means no smp target support (ie aic94xx host) */ 2118 if (!rphy) 2119 return sas_smp_host_handler(job, shost); 2120 2121 switch (rphy->identify.device_type) { 2122 case SAS_EDGE_EXPANDER_DEVICE: 2123 case SAS_FANOUT_EXPANDER_DEVICE: 2124 break; 2125 default: 2126 pr_err("%s: can we send a smp request to a device?\n", 2127 __func__); 2128 goto out; 2129 } 2130 2131 dev = sas_find_dev_by_rphy(rphy); 2132 if (!dev) { 2133 pr_err("%s: fail to find a domain_device?\n", __func__); 2134 goto out; 2135 } 2136 2137 /* do we need to support multiple segments? */ 2138 if (job->request_payload.sg_cnt > 1 || 2139 job->reply_payload.sg_cnt > 1) { 2140 pr_info("%s: multiple segments req %u, rsp %u\n", 2141 __func__, job->request_payload.payload_len, 2142 job->reply_payload.payload_len); 2143 goto out; 2144 } 2145 2146 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2147 job->reply_payload.sg_list); 2148 if (ret >= 0) { 2149 /* bsg_job_done() requires the length received */ 2150 rcvlen = job->reply_payload.payload_len - ret; 2151 ret = 0; 2152 } 2153 2154 out: 2155 bsg_job_done(job, ret, rcvlen); 2156 } 2157