1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Serial Attached SCSI (SAS) Expander discovery and configuration 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 * 8 * This file is licensed under GPLv2. 9 */ 10 11 #include <linux/scatterlist.h> 12 #include <linux/blkdev.h> 13 #include <linux/slab.h> 14 #include <asm/unaligned.h> 15 16 #include "sas_internal.h" 17 18 #include <scsi/sas_ata.h> 19 #include <scsi/scsi_transport.h> 20 #include <scsi/scsi_transport_sas.h> 21 #include "scsi_sas_internal.h" 22 23 static int sas_discover_expander(struct domain_device *dev); 24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 25 static int sas_configure_phy(struct domain_device *dev, int phy_id, 26 u8 *sas_addr, int include); 27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 28 29 /* ---------- SMP task management ---------- */ 30 31 /* Give it some long enough timeout. In seconds. */ 32 #define SMP_TIMEOUT 10 33 34 static int smp_execute_task_sg(struct domain_device *dev, 35 struct scatterlist *req, struct scatterlist *resp) 36 { 37 int res, retry; 38 struct sas_task *task = NULL; 39 struct sas_internal *i = 40 to_sas_internal(dev->port->ha->core.shost->transportt); 41 struct sas_ha_struct *ha = dev->port->ha; 42 43 pm_runtime_get_sync(ha->dev); 44 mutex_lock(&dev->ex_dev.cmd_mutex); 45 for (retry = 0; retry < 3; retry++) { 46 if (test_bit(SAS_DEV_GONE, &dev->state)) { 47 res = -ECOMM; 48 break; 49 } 50 51 task = sas_alloc_slow_task(GFP_KERNEL); 52 if (!task) { 53 res = -ENOMEM; 54 break; 55 } 56 task->dev = dev; 57 task->task_proto = dev->tproto; 58 task->smp_task.smp_req = *req; 59 task->smp_task.smp_resp = *resp; 60 61 task->task_done = sas_task_internal_done; 62 63 task->slow_task->timer.function = sas_task_internal_timedout; 64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 65 add_timer(&task->slow_task->timer); 66 67 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 68 69 if (res) { 70 del_timer_sync(&task->slow_task->timer); 71 pr_notice("executing SMP task failed:%d\n", res); 72 break; 73 } 74 75 wait_for_completion(&task->slow_task->completion); 76 res = -ECOMM; 77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 78 pr_notice("smp task timed out or aborted\n"); 79 i->dft->lldd_abort_task(task); 80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 81 pr_notice("SMP task aborted and not done\n"); 82 break; 83 } 84 } 85 if (task->task_status.resp == SAS_TASK_COMPLETE && 86 task->task_status.stat == SAS_SAM_STAT_GOOD) { 87 res = 0; 88 break; 89 } 90 if (task->task_status.resp == SAS_TASK_COMPLETE && 91 task->task_status.stat == SAS_DATA_UNDERRUN) { 92 /* no error, but return the number of bytes of 93 * underrun */ 94 res = task->task_status.residual; 95 break; 96 } 97 if (task->task_status.resp == SAS_TASK_COMPLETE && 98 task->task_status.stat == SAS_DATA_OVERRUN) { 99 res = -EMSGSIZE; 100 break; 101 } 102 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 103 task->task_status.stat == SAS_DEVICE_UNKNOWN) 104 break; 105 else { 106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 107 __func__, 108 SAS_ADDR(dev->sas_addr), 109 task->task_status.resp, 110 task->task_status.stat); 111 sas_free_task(task); 112 task = NULL; 113 } 114 } 115 mutex_unlock(&dev->ex_dev.cmd_mutex); 116 pm_runtime_put_sync(ha->dev); 117 118 BUG_ON(retry == 3 && task != NULL); 119 sas_free_task(task); 120 return res; 121 } 122 123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 124 void *resp, int resp_size) 125 { 126 struct scatterlist req_sg; 127 struct scatterlist resp_sg; 128 129 sg_init_one(&req_sg, req, req_size); 130 sg_init_one(&resp_sg, resp, resp_size); 131 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 132 } 133 134 /* ---------- Allocations ---------- */ 135 136 static inline void *alloc_smp_req(int size) 137 { 138 u8 *p = kzalloc(size, GFP_KERNEL); 139 if (p) 140 p[0] = SMP_REQUEST; 141 return p; 142 } 143 144 static inline void *alloc_smp_resp(int size) 145 { 146 return kzalloc(size, GFP_KERNEL); 147 } 148 149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 150 { 151 switch (phy->routing_attr) { 152 case TABLE_ROUTING: 153 if (dev->ex_dev.t2t_supp) 154 return 'U'; 155 else 156 return 'T'; 157 case DIRECT_ROUTING: 158 return 'D'; 159 case SUBTRACTIVE_ROUTING: 160 return 'S'; 161 default: 162 return '?'; 163 } 164 } 165 166 static enum sas_device_type to_dev_type(struct discover_resp *dr) 167 { 168 /* This is detecting a failure to transmit initial dev to host 169 * FIS as described in section J.5 of sas-2 r16 170 */ 171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 173 return SAS_SATA_PENDING; 174 else 175 return dr->attached_dev_type; 176 } 177 178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 179 struct smp_disc_resp *disc_resp) 180 { 181 enum sas_device_type dev_type; 182 enum sas_linkrate linkrate; 183 u8 sas_addr[SAS_ADDR_SIZE]; 184 struct discover_resp *dr = &disc_resp->disc; 185 struct sas_ha_struct *ha = dev->port->ha; 186 struct expander_device *ex = &dev->ex_dev; 187 struct ex_phy *phy = &ex->ex_phy[phy_id]; 188 struct sas_rphy *rphy = dev->rphy; 189 bool new_phy = !phy->phy; 190 char *type; 191 192 if (new_phy) { 193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 194 return; 195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 196 197 /* FIXME: error_handling */ 198 BUG_ON(!phy->phy); 199 } 200 201 switch (disc_resp->result) { 202 case SMP_RESP_PHY_VACANT: 203 phy->phy_state = PHY_VACANT; 204 break; 205 default: 206 phy->phy_state = PHY_NOT_PRESENT; 207 break; 208 case SMP_RESP_FUNC_ACC: 209 phy->phy_state = PHY_EMPTY; /* do not know yet */ 210 break; 211 } 212 213 /* check if anything important changed to squelch debug */ 214 dev_type = phy->attached_dev_type; 215 linkrate = phy->linkrate; 216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 217 218 /* Handle vacant phy - rest of dr data is not valid so skip it */ 219 if (phy->phy_state == PHY_VACANT) { 220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 221 phy->attached_dev_type = SAS_PHY_UNUSED; 222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 223 phy->phy_id = phy_id; 224 goto skip; 225 } else 226 goto out; 227 } 228 229 phy->attached_dev_type = to_dev_type(dr); 230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 231 goto out; 232 phy->phy_id = phy_id; 233 phy->linkrate = dr->linkrate; 234 phy->attached_sata_host = dr->attached_sata_host; 235 phy->attached_sata_dev = dr->attached_sata_dev; 236 phy->attached_sata_ps = dr->attached_sata_ps; 237 phy->attached_iproto = dr->iproto << 1; 238 phy->attached_tproto = dr->tproto << 1; 239 /* help some expanders that fail to zero sas_address in the 'no 240 * device' case 241 */ 242 if (phy->attached_dev_type == SAS_PHY_UNUSED || 243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 245 else 246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 247 phy->attached_phy_id = dr->attached_phy_id; 248 phy->phy_change_count = dr->change_count; 249 phy->routing_attr = dr->routing_attr; 250 phy->virtual = dr->virtual; 251 phy->last_da_index = -1; 252 253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 254 phy->phy->identify.device_type = dr->attached_dev_type; 255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 256 phy->phy->identify.target_port_protocols = phy->attached_tproto; 257 if (!phy->attached_tproto && dr->attached_sata_dev) 258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 259 phy->phy->identify.phy_identifier = phy_id; 260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 262 phy->phy->minimum_linkrate = dr->pmin_linkrate; 263 phy->phy->maximum_linkrate = dr->pmax_linkrate; 264 phy->phy->negotiated_linkrate = phy->linkrate; 265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 266 267 skip: 268 if (new_phy) 269 if (sas_phy_add(phy->phy)) { 270 sas_phy_free(phy->phy); 271 return; 272 } 273 274 out: 275 switch (phy->attached_dev_type) { 276 case SAS_SATA_PENDING: 277 type = "stp pending"; 278 break; 279 case SAS_PHY_UNUSED: 280 type = "no device"; 281 break; 282 case SAS_END_DEVICE: 283 if (phy->attached_iproto) { 284 if (phy->attached_tproto) 285 type = "host+target"; 286 else 287 type = "host"; 288 } else { 289 if (dr->attached_sata_dev) 290 type = "stp"; 291 else 292 type = "ssp"; 293 } 294 break; 295 case SAS_EDGE_EXPANDER_DEVICE: 296 case SAS_FANOUT_EXPANDER_DEVICE: 297 type = "smp"; 298 break; 299 default: 300 type = "unknown"; 301 } 302 303 /* this routine is polled by libata error recovery so filter 304 * unimportant messages 305 */ 306 if (new_phy || phy->attached_dev_type != dev_type || 307 phy->linkrate != linkrate || 308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 309 /* pass */; 310 else 311 return; 312 313 /* if the attached device type changed and ata_eh is active, 314 * make sure we run revalidation when eh completes (see: 315 * sas_enable_revalidation) 316 */ 317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 319 320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 322 SAS_ADDR(dev->sas_addr), phy->phy_id, 323 sas_route_char(dev, phy), phy->linkrate, 324 SAS_ADDR(phy->attached_sas_addr), type); 325 } 326 327 /* check if we have an existing attached ata device on this expander phy */ 328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 329 { 330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 331 struct domain_device *dev; 332 struct sas_rphy *rphy; 333 334 if (!ex_phy->port) 335 return NULL; 336 337 rphy = ex_phy->port->rphy; 338 if (!rphy) 339 return NULL; 340 341 dev = sas_find_dev_by_rphy(rphy); 342 343 if (dev && dev_is_sata(dev)) 344 return dev; 345 346 return NULL; 347 } 348 349 #define DISCOVER_REQ_SIZE 16 350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp) 351 352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 353 struct smp_disc_resp *disc_resp, 354 int single) 355 { 356 struct discover_resp *dr = &disc_resp->disc; 357 int res; 358 359 disc_req[9] = single; 360 361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 362 disc_resp, DISCOVER_RESP_SIZE); 363 if (res) 364 return res; 365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 366 pr_notice("Found loopback topology, just ignore it!\n"); 367 return 0; 368 } 369 sas_set_ex_phy(dev, single, disc_resp); 370 return 0; 371 } 372 373 int sas_ex_phy_discover(struct domain_device *dev, int single) 374 { 375 struct expander_device *ex = &dev->ex_dev; 376 int res = 0; 377 u8 *disc_req; 378 struct smp_disc_resp *disc_resp; 379 380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 381 if (!disc_req) 382 return -ENOMEM; 383 384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 385 if (!disc_resp) { 386 kfree(disc_req); 387 return -ENOMEM; 388 } 389 390 disc_req[1] = SMP_DISCOVER; 391 392 if (0 <= single && single < ex->num_phys) { 393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 394 } else { 395 int i; 396 397 for (i = 0; i < ex->num_phys; i++) { 398 res = sas_ex_phy_discover_helper(dev, disc_req, 399 disc_resp, i); 400 if (res) 401 goto out_err; 402 } 403 } 404 out_err: 405 kfree(disc_resp); 406 kfree(disc_req); 407 return res; 408 } 409 410 static int sas_expander_discover(struct domain_device *dev) 411 { 412 struct expander_device *ex = &dev->ex_dev; 413 int res; 414 415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 416 if (!ex->ex_phy) 417 return -ENOMEM; 418 419 res = sas_ex_phy_discover(dev, -1); 420 if (res) 421 goto out_err; 422 423 return 0; 424 out_err: 425 kfree(ex->ex_phy); 426 ex->ex_phy = NULL; 427 return res; 428 } 429 430 #define MAX_EXPANDER_PHYS 128 431 432 #define RG_REQ_SIZE 8 433 #define RG_RESP_SIZE sizeof(struct smp_rg_resp) 434 435 static int sas_ex_general(struct domain_device *dev) 436 { 437 u8 *rg_req; 438 struct smp_rg_resp *rg_resp; 439 struct report_general_resp *rg; 440 int res; 441 int i; 442 443 rg_req = alloc_smp_req(RG_REQ_SIZE); 444 if (!rg_req) 445 return -ENOMEM; 446 447 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 448 if (!rg_resp) { 449 kfree(rg_req); 450 return -ENOMEM; 451 } 452 453 rg_req[1] = SMP_REPORT_GENERAL; 454 455 for (i = 0; i < 5; i++) { 456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 457 RG_RESP_SIZE); 458 459 if (res) { 460 pr_notice("RG to ex %016llx failed:0x%x\n", 461 SAS_ADDR(dev->sas_addr), res); 462 goto out; 463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 465 SAS_ADDR(dev->sas_addr), rg_resp->result); 466 res = rg_resp->result; 467 goto out; 468 } 469 470 rg = &rg_resp->rg; 471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 474 dev->ex_dev.t2t_supp = rg->t2t_supp; 475 dev->ex_dev.conf_route_table = rg->conf_route_table; 476 dev->ex_dev.configuring = rg->configuring; 477 memcpy(dev->ex_dev.enclosure_logical_id, 478 rg->enclosure_logical_id, 8); 479 480 if (dev->ex_dev.configuring) { 481 pr_debug("RG: ex %016llx self-configuring...\n", 482 SAS_ADDR(dev->sas_addr)); 483 schedule_timeout_interruptible(5*HZ); 484 } else 485 break; 486 } 487 out: 488 kfree(rg_req); 489 kfree(rg_resp); 490 return res; 491 } 492 493 static void ex_assign_manuf_info(struct domain_device *dev, void 494 *_mi_resp) 495 { 496 u8 *mi_resp = _mi_resp; 497 struct sas_rphy *rphy = dev->rphy; 498 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 499 500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 502 memcpy(edev->product_rev, mi_resp + 36, 503 SAS_EXPANDER_PRODUCT_REV_LEN); 504 505 if (mi_resp[8] & 1) { 506 memcpy(edev->component_vendor_id, mi_resp + 40, 507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 508 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 509 edev->component_revision_id = mi_resp[50]; 510 } 511 } 512 513 #define MI_REQ_SIZE 8 514 #define MI_RESP_SIZE 64 515 516 static int sas_ex_manuf_info(struct domain_device *dev) 517 { 518 u8 *mi_req; 519 u8 *mi_resp; 520 int res; 521 522 mi_req = alloc_smp_req(MI_REQ_SIZE); 523 if (!mi_req) 524 return -ENOMEM; 525 526 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 527 if (!mi_resp) { 528 kfree(mi_req); 529 return -ENOMEM; 530 } 531 532 mi_req[1] = SMP_REPORT_MANUF_INFO; 533 534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE); 535 if (res) { 536 pr_notice("MI: ex %016llx failed:0x%x\n", 537 SAS_ADDR(dev->sas_addr), res); 538 goto out; 539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 540 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 541 SAS_ADDR(dev->sas_addr), mi_resp[2]); 542 goto out; 543 } 544 545 ex_assign_manuf_info(dev, mi_resp); 546 out: 547 kfree(mi_req); 548 kfree(mi_resp); 549 return res; 550 } 551 552 #define PC_REQ_SIZE 44 553 #define PC_RESP_SIZE 8 554 555 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 556 enum phy_func phy_func, 557 struct sas_phy_linkrates *rates) 558 { 559 u8 *pc_req; 560 u8 *pc_resp; 561 int res; 562 563 pc_req = alloc_smp_req(PC_REQ_SIZE); 564 if (!pc_req) 565 return -ENOMEM; 566 567 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 568 if (!pc_resp) { 569 kfree(pc_req); 570 return -ENOMEM; 571 } 572 573 pc_req[1] = SMP_PHY_CONTROL; 574 pc_req[9] = phy_id; 575 pc_req[10] = phy_func; 576 if (rates) { 577 pc_req[32] = rates->minimum_linkrate << 4; 578 pc_req[33] = rates->maximum_linkrate << 4; 579 } 580 581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE); 582 if (res) { 583 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 584 SAS_ADDR(dev->sas_addr), phy_id, res); 585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 588 res = pc_resp[2]; 589 } 590 kfree(pc_resp); 591 kfree(pc_req); 592 return res; 593 } 594 595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 596 { 597 struct expander_device *ex = &dev->ex_dev; 598 struct ex_phy *phy = &ex->ex_phy[phy_id]; 599 600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 601 phy->linkrate = SAS_PHY_DISABLED; 602 } 603 604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 605 { 606 struct expander_device *ex = &dev->ex_dev; 607 int i; 608 609 for (i = 0; i < ex->num_phys; i++) { 610 struct ex_phy *phy = &ex->ex_phy[i]; 611 612 if (phy->phy_state == PHY_VACANT || 613 phy->phy_state == PHY_NOT_PRESENT) 614 continue; 615 616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 617 sas_ex_disable_phy(dev, i); 618 } 619 } 620 621 static int sas_dev_present_in_domain(struct asd_sas_port *port, 622 u8 *sas_addr) 623 { 624 struct domain_device *dev; 625 626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 627 return 1; 628 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 630 return 1; 631 } 632 return 0; 633 } 634 635 #define RPEL_REQ_SIZE 16 636 #define RPEL_RESP_SIZE 32 637 int sas_smp_get_phy_events(struct sas_phy *phy) 638 { 639 int res; 640 u8 *req; 641 u8 *resp; 642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 643 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 644 645 req = alloc_smp_req(RPEL_REQ_SIZE); 646 if (!req) 647 return -ENOMEM; 648 649 resp = alloc_smp_resp(RPEL_RESP_SIZE); 650 if (!resp) { 651 kfree(req); 652 return -ENOMEM; 653 } 654 655 req[1] = SMP_REPORT_PHY_ERR_LOG; 656 req[9] = phy->number; 657 658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 659 resp, RPEL_RESP_SIZE); 660 661 if (res) 662 goto out; 663 664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 668 669 out: 670 kfree(req); 671 kfree(resp); 672 return res; 673 674 } 675 676 #ifdef CONFIG_SCSI_SAS_ATA 677 678 #define RPS_REQ_SIZE 16 679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp) 680 681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 682 struct smp_rps_resp *rps_resp) 683 { 684 int res; 685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 686 u8 *resp = (u8 *)rps_resp; 687 688 if (!rps_req) 689 return -ENOMEM; 690 691 rps_req[1] = SMP_REPORT_PHY_SATA; 692 rps_req[9] = phy_id; 693 694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 695 rps_resp, RPS_RESP_SIZE); 696 697 /* 0x34 is the FIS type for the D2H fis. There's a potential 698 * standards cockup here. sas-2 explicitly specifies the FIS 699 * should be encoded so that FIS type is in resp[24]. 700 * However, some expanders endian reverse this. Undo the 701 * reversal here */ 702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 703 int i; 704 705 for (i = 0; i < 5; i++) { 706 int j = 24 + (i*4); 707 u8 a, b; 708 a = resp[j + 0]; 709 b = resp[j + 1]; 710 resp[j + 0] = resp[j + 3]; 711 resp[j + 1] = resp[j + 2]; 712 resp[j + 2] = b; 713 resp[j + 3] = a; 714 } 715 } 716 717 kfree(rps_req); 718 return res; 719 } 720 #endif 721 722 static void sas_ex_get_linkrate(struct domain_device *parent, 723 struct domain_device *child, 724 struct ex_phy *parent_phy) 725 { 726 struct expander_device *parent_ex = &parent->ex_dev; 727 struct sas_port *port; 728 int i; 729 730 child->pathways = 0; 731 732 port = parent_phy->port; 733 734 for (i = 0; i < parent_ex->num_phys; i++) { 735 struct ex_phy *phy = &parent_ex->ex_phy[i]; 736 737 if (phy->phy_state == PHY_VACANT || 738 phy->phy_state == PHY_NOT_PRESENT) 739 continue; 740 741 if (sas_phy_match_dev_addr(child, phy)) { 742 child->min_linkrate = min(parent->min_linkrate, 743 phy->linkrate); 744 child->max_linkrate = max(parent->max_linkrate, 745 phy->linkrate); 746 child->pathways++; 747 sas_port_add_phy(port, phy->phy); 748 } 749 } 750 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 751 child->pathways = min(child->pathways, parent->pathways); 752 } 753 754 static struct domain_device *sas_ex_discover_end_dev( 755 struct domain_device *parent, int phy_id) 756 { 757 struct expander_device *parent_ex = &parent->ex_dev; 758 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 759 struct domain_device *child = NULL; 760 struct sas_rphy *rphy; 761 int res; 762 763 if (phy->attached_sata_host || phy->attached_sata_ps) 764 return NULL; 765 766 child = sas_alloc_device(); 767 if (!child) 768 return NULL; 769 770 kref_get(&parent->kref); 771 child->parent = parent; 772 child->port = parent->port; 773 child->iproto = phy->attached_iproto; 774 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 775 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 776 if (!phy->port) { 777 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 778 if (unlikely(!phy->port)) 779 goto out_err; 780 if (unlikely(sas_port_add(phy->port) != 0)) { 781 sas_port_free(phy->port); 782 goto out_err; 783 } 784 } 785 sas_ex_get_linkrate(parent, child, phy); 786 sas_device_set_phy(child, phy->port); 787 788 #ifdef CONFIG_SCSI_SAS_ATA 789 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 790 if (child->linkrate > parent->min_linkrate) { 791 struct sas_phy *cphy = child->phy; 792 enum sas_linkrate min_prate = cphy->minimum_linkrate, 793 parent_min_lrate = parent->min_linkrate, 794 min_linkrate = (min_prate > parent_min_lrate) ? 795 parent_min_lrate : 0; 796 struct sas_phy_linkrates rates = { 797 .maximum_linkrate = parent->min_linkrate, 798 .minimum_linkrate = min_linkrate, 799 }; 800 int ret; 801 802 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n", 803 SAS_ADDR(child->sas_addr), phy_id); 804 ret = sas_smp_phy_control(parent, phy_id, 805 PHY_FUNC_LINK_RESET, &rates); 806 if (ret) { 807 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n", 808 SAS_ADDR(child->sas_addr), phy_id, ret); 809 goto out_free; 810 } 811 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n", 812 SAS_ADDR(child->sas_addr), phy_id); 813 child->linkrate = child->min_linkrate; 814 } 815 res = sas_get_ata_info(child, phy); 816 if (res) 817 goto out_free; 818 819 sas_init_dev(child); 820 res = sas_ata_init(child); 821 if (res) 822 goto out_free; 823 rphy = sas_end_device_alloc(phy->port); 824 if (!rphy) 825 goto out_free; 826 rphy->identify.phy_identifier = phy_id; 827 828 child->rphy = rphy; 829 get_device(&rphy->dev); 830 831 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 832 833 res = sas_discover_sata(child); 834 if (res) { 835 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n", 836 SAS_ADDR(child->sas_addr), 837 SAS_ADDR(parent->sas_addr), phy_id, res); 838 goto out_list_del; 839 } 840 } else 841 #endif 842 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 843 child->dev_type = SAS_END_DEVICE; 844 rphy = sas_end_device_alloc(phy->port); 845 /* FIXME: error handling */ 846 if (unlikely(!rphy)) 847 goto out_free; 848 child->tproto = phy->attached_tproto; 849 sas_init_dev(child); 850 851 child->rphy = rphy; 852 get_device(&rphy->dev); 853 rphy->identify.phy_identifier = phy_id; 854 sas_fill_in_rphy(child, rphy); 855 856 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 857 858 res = sas_discover_end_dev(child); 859 if (res) { 860 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n", 861 SAS_ADDR(child->sas_addr), 862 SAS_ADDR(parent->sas_addr), phy_id, res); 863 goto out_list_del; 864 } 865 } else { 866 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 867 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 868 phy_id); 869 goto out_free; 870 } 871 872 list_add_tail(&child->siblings, &parent_ex->children); 873 return child; 874 875 out_list_del: 876 sas_rphy_free(child->rphy); 877 list_del(&child->disco_list_node); 878 spin_lock_irq(&parent->port->dev_list_lock); 879 list_del(&child->dev_list_node); 880 spin_unlock_irq(&parent->port->dev_list_lock); 881 out_free: 882 sas_port_delete(phy->port); 883 out_err: 884 phy->port = NULL; 885 sas_put_device(child); 886 return NULL; 887 } 888 889 /* See if this phy is part of a wide port */ 890 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 891 { 892 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 893 int i; 894 895 for (i = 0; i < parent->ex_dev.num_phys; i++) { 896 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 897 898 if (ephy == phy) 899 continue; 900 901 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 902 SAS_ADDR_SIZE) && ephy->port) { 903 sas_port_add_phy(ephy->port, phy->phy); 904 phy->port = ephy->port; 905 phy->phy_state = PHY_DEVICE_DISCOVERED; 906 return true; 907 } 908 } 909 910 return false; 911 } 912 913 static struct domain_device *sas_ex_discover_expander( 914 struct domain_device *parent, int phy_id) 915 { 916 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 917 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 918 struct domain_device *child = NULL; 919 struct sas_rphy *rphy; 920 struct sas_expander_device *edev; 921 struct asd_sas_port *port; 922 int res; 923 924 if (phy->routing_attr == DIRECT_ROUTING) { 925 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 926 SAS_ADDR(parent->sas_addr), phy_id, 927 SAS_ADDR(phy->attached_sas_addr), 928 phy->attached_phy_id); 929 return NULL; 930 } 931 child = sas_alloc_device(); 932 if (!child) 933 return NULL; 934 935 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 936 /* FIXME: better error handling */ 937 BUG_ON(sas_port_add(phy->port) != 0); 938 939 940 switch (phy->attached_dev_type) { 941 case SAS_EDGE_EXPANDER_DEVICE: 942 rphy = sas_expander_alloc(phy->port, 943 SAS_EDGE_EXPANDER_DEVICE); 944 break; 945 case SAS_FANOUT_EXPANDER_DEVICE: 946 rphy = sas_expander_alloc(phy->port, 947 SAS_FANOUT_EXPANDER_DEVICE); 948 break; 949 default: 950 rphy = NULL; /* shut gcc up */ 951 BUG(); 952 } 953 port = parent->port; 954 child->rphy = rphy; 955 get_device(&rphy->dev); 956 edev = rphy_to_expander_device(rphy); 957 child->dev_type = phy->attached_dev_type; 958 kref_get(&parent->kref); 959 child->parent = parent; 960 child->port = port; 961 child->iproto = phy->attached_iproto; 962 child->tproto = phy->attached_tproto; 963 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 964 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 965 sas_ex_get_linkrate(parent, child, phy); 966 edev->level = parent_ex->level + 1; 967 parent->port->disc.max_level = max(parent->port->disc.max_level, 968 edev->level); 969 sas_init_dev(child); 970 sas_fill_in_rphy(child, rphy); 971 sas_rphy_add(rphy); 972 973 spin_lock_irq(&parent->port->dev_list_lock); 974 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 975 spin_unlock_irq(&parent->port->dev_list_lock); 976 977 res = sas_discover_expander(child); 978 if (res) { 979 sas_rphy_delete(rphy); 980 spin_lock_irq(&parent->port->dev_list_lock); 981 list_del(&child->dev_list_node); 982 spin_unlock_irq(&parent->port->dev_list_lock); 983 sas_put_device(child); 984 sas_port_delete(phy->port); 985 phy->port = NULL; 986 return NULL; 987 } 988 list_add_tail(&child->siblings, &parent->ex_dev.children); 989 return child; 990 } 991 992 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 993 { 994 struct expander_device *ex = &dev->ex_dev; 995 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 996 struct domain_device *child = NULL; 997 int res = 0; 998 999 /* Phy state */ 1000 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1001 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1002 res = sas_ex_phy_discover(dev, phy_id); 1003 if (res) 1004 return res; 1005 } 1006 1007 /* Parent and domain coherency */ 1008 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) { 1009 sas_add_parent_port(dev, phy_id); 1010 return 0; 1011 } 1012 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) { 1013 sas_add_parent_port(dev, phy_id); 1014 if (ex_phy->routing_attr == TABLE_ROUTING) 1015 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1016 return 0; 1017 } 1018 1019 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1020 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1021 1022 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1023 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1024 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1025 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1026 } 1027 return 0; 1028 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1029 return 0; 1030 1031 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1032 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1033 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1034 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1035 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 1036 ex_phy->attached_dev_type, 1037 SAS_ADDR(dev->sas_addr), 1038 phy_id); 1039 return 0; 1040 } 1041 1042 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1043 if (res) { 1044 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1045 SAS_ADDR(ex_phy->attached_sas_addr), res); 1046 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1047 return res; 1048 } 1049 1050 if (sas_ex_join_wide_port(dev, phy_id)) { 1051 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1052 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1053 return res; 1054 } 1055 1056 switch (ex_phy->attached_dev_type) { 1057 case SAS_END_DEVICE: 1058 case SAS_SATA_PENDING: 1059 child = sas_ex_discover_end_dev(dev, phy_id); 1060 break; 1061 case SAS_FANOUT_EXPANDER_DEVICE: 1062 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1063 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1064 SAS_ADDR(ex_phy->attached_sas_addr), 1065 ex_phy->attached_phy_id, 1066 SAS_ADDR(dev->sas_addr), 1067 phy_id); 1068 sas_ex_disable_phy(dev, phy_id); 1069 return res; 1070 } else 1071 memcpy(dev->port->disc.fanout_sas_addr, 1072 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1073 fallthrough; 1074 case SAS_EDGE_EXPANDER_DEVICE: 1075 child = sas_ex_discover_expander(dev, phy_id); 1076 break; 1077 default: 1078 break; 1079 } 1080 1081 if (!child) 1082 pr_notice("ex %016llx phy%02d failed to discover\n", 1083 SAS_ADDR(dev->sas_addr), phy_id); 1084 return res; 1085 } 1086 1087 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1088 { 1089 struct expander_device *ex = &dev->ex_dev; 1090 int i; 1091 1092 for (i = 0; i < ex->num_phys; i++) { 1093 struct ex_phy *phy = &ex->ex_phy[i]; 1094 1095 if (phy->phy_state == PHY_VACANT || 1096 phy->phy_state == PHY_NOT_PRESENT) 1097 continue; 1098 1099 if (dev_is_expander(phy->attached_dev_type) && 1100 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1101 1102 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1103 1104 return 1; 1105 } 1106 } 1107 return 0; 1108 } 1109 1110 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1111 { 1112 struct expander_device *ex = &dev->ex_dev; 1113 struct domain_device *child; 1114 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1115 1116 list_for_each_entry(child, &ex->children, siblings) { 1117 if (!dev_is_expander(child->dev_type)) 1118 continue; 1119 if (sub_addr[0] == 0) { 1120 sas_find_sub_addr(child, sub_addr); 1121 continue; 1122 } else { 1123 u8 s2[SAS_ADDR_SIZE]; 1124 1125 if (sas_find_sub_addr(child, s2) && 1126 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1127 1128 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1129 SAS_ADDR(dev->sas_addr), 1130 SAS_ADDR(child->sas_addr), 1131 SAS_ADDR(s2), 1132 SAS_ADDR(sub_addr)); 1133 1134 sas_ex_disable_port(child, s2); 1135 } 1136 } 1137 } 1138 return 0; 1139 } 1140 /** 1141 * sas_ex_discover_devices - discover devices attached to this expander 1142 * @dev: pointer to the expander domain device 1143 * @single: if you want to do a single phy, else set to -1; 1144 * 1145 * Configure this expander for use with its devices and register the 1146 * devices of this expander. 1147 */ 1148 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1149 { 1150 struct expander_device *ex = &dev->ex_dev; 1151 int i = 0, end = ex->num_phys; 1152 int res = 0; 1153 1154 if (0 <= single && single < end) { 1155 i = single; 1156 end = i+1; 1157 } 1158 1159 for ( ; i < end; i++) { 1160 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1161 1162 if (ex_phy->phy_state == PHY_VACANT || 1163 ex_phy->phy_state == PHY_NOT_PRESENT || 1164 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1165 continue; 1166 1167 switch (ex_phy->linkrate) { 1168 case SAS_PHY_DISABLED: 1169 case SAS_PHY_RESET_PROBLEM: 1170 case SAS_SATA_PORT_SELECTOR: 1171 continue; 1172 default: 1173 res = sas_ex_discover_dev(dev, i); 1174 if (res) 1175 break; 1176 continue; 1177 } 1178 } 1179 1180 if (!res) 1181 sas_check_level_subtractive_boundary(dev); 1182 1183 return res; 1184 } 1185 1186 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1187 { 1188 struct expander_device *ex = &dev->ex_dev; 1189 int i; 1190 u8 *sub_sas_addr = NULL; 1191 1192 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1193 return 0; 1194 1195 for (i = 0; i < ex->num_phys; i++) { 1196 struct ex_phy *phy = &ex->ex_phy[i]; 1197 1198 if (phy->phy_state == PHY_VACANT || 1199 phy->phy_state == PHY_NOT_PRESENT) 1200 continue; 1201 1202 if (dev_is_expander(phy->attached_dev_type) && 1203 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1204 1205 if (!sub_sas_addr) 1206 sub_sas_addr = &phy->attached_sas_addr[0]; 1207 else if (SAS_ADDR(sub_sas_addr) != 1208 SAS_ADDR(phy->attached_sas_addr)) { 1209 1210 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1211 SAS_ADDR(dev->sas_addr), i, 1212 SAS_ADDR(phy->attached_sas_addr), 1213 SAS_ADDR(sub_sas_addr)); 1214 sas_ex_disable_phy(dev, i); 1215 } 1216 } 1217 } 1218 return 0; 1219 } 1220 1221 static void sas_print_parent_topology_bug(struct domain_device *child, 1222 struct ex_phy *parent_phy, 1223 struct ex_phy *child_phy) 1224 { 1225 static const char *ex_type[] = { 1226 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1227 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1228 }; 1229 struct domain_device *parent = child->parent; 1230 1231 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1232 ex_type[parent->dev_type], 1233 SAS_ADDR(parent->sas_addr), 1234 parent_phy->phy_id, 1235 1236 ex_type[child->dev_type], 1237 SAS_ADDR(child->sas_addr), 1238 child_phy->phy_id, 1239 1240 sas_route_char(parent, parent_phy), 1241 sas_route_char(child, child_phy)); 1242 } 1243 1244 static int sas_check_eeds(struct domain_device *child, 1245 struct ex_phy *parent_phy, 1246 struct ex_phy *child_phy) 1247 { 1248 int res = 0; 1249 struct domain_device *parent = child->parent; 1250 1251 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1252 res = -ENODEV; 1253 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1254 SAS_ADDR(parent->sas_addr), 1255 parent_phy->phy_id, 1256 SAS_ADDR(child->sas_addr), 1257 child_phy->phy_id, 1258 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1259 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1260 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1261 SAS_ADDR_SIZE); 1262 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1263 SAS_ADDR_SIZE); 1264 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1265 SAS_ADDR(parent->sas_addr)) || 1266 (SAS_ADDR(parent->port->disc.eeds_a) == 1267 SAS_ADDR(child->sas_addr))) 1268 && 1269 ((SAS_ADDR(parent->port->disc.eeds_b) == 1270 SAS_ADDR(parent->sas_addr)) || 1271 (SAS_ADDR(parent->port->disc.eeds_b) == 1272 SAS_ADDR(child->sas_addr)))) 1273 ; 1274 else { 1275 res = -ENODEV; 1276 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1277 SAS_ADDR(parent->sas_addr), 1278 parent_phy->phy_id, 1279 SAS_ADDR(child->sas_addr), 1280 child_phy->phy_id); 1281 } 1282 1283 return res; 1284 } 1285 1286 /* Here we spill over 80 columns. It is intentional. 1287 */ 1288 static int sas_check_parent_topology(struct domain_device *child) 1289 { 1290 struct expander_device *child_ex = &child->ex_dev; 1291 struct expander_device *parent_ex; 1292 int i; 1293 int res = 0; 1294 1295 if (!child->parent) 1296 return 0; 1297 1298 if (!dev_is_expander(child->parent->dev_type)) 1299 return 0; 1300 1301 parent_ex = &child->parent->ex_dev; 1302 1303 for (i = 0; i < parent_ex->num_phys; i++) { 1304 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1305 struct ex_phy *child_phy; 1306 1307 if (parent_phy->phy_state == PHY_VACANT || 1308 parent_phy->phy_state == PHY_NOT_PRESENT) 1309 continue; 1310 1311 if (!sas_phy_match_dev_addr(child, parent_phy)) 1312 continue; 1313 1314 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1315 1316 switch (child->parent->dev_type) { 1317 case SAS_EDGE_EXPANDER_DEVICE: 1318 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1319 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1320 child_phy->routing_attr != TABLE_ROUTING) { 1321 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1322 res = -ENODEV; 1323 } 1324 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1325 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1326 res = sas_check_eeds(child, parent_phy, child_phy); 1327 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1328 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1329 res = -ENODEV; 1330 } 1331 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1332 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1333 (child_phy->routing_attr == TABLE_ROUTING && 1334 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1335 /* All good */; 1336 } else { 1337 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1338 res = -ENODEV; 1339 } 1340 } 1341 break; 1342 case SAS_FANOUT_EXPANDER_DEVICE: 1343 if (parent_phy->routing_attr != TABLE_ROUTING || 1344 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1345 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1346 res = -ENODEV; 1347 } 1348 break; 1349 default: 1350 break; 1351 } 1352 } 1353 1354 return res; 1355 } 1356 1357 #define RRI_REQ_SIZE 16 1358 #define RRI_RESP_SIZE 44 1359 1360 static int sas_configure_present(struct domain_device *dev, int phy_id, 1361 u8 *sas_addr, int *index, int *present) 1362 { 1363 int i, res = 0; 1364 struct expander_device *ex = &dev->ex_dev; 1365 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1366 u8 *rri_req; 1367 u8 *rri_resp; 1368 1369 *present = 0; 1370 *index = 0; 1371 1372 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1373 if (!rri_req) 1374 return -ENOMEM; 1375 1376 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1377 if (!rri_resp) { 1378 kfree(rri_req); 1379 return -ENOMEM; 1380 } 1381 1382 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1383 rri_req[9] = phy_id; 1384 1385 for (i = 0; i < ex->max_route_indexes ; i++) { 1386 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1387 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1388 RRI_RESP_SIZE); 1389 if (res) 1390 goto out; 1391 res = rri_resp[2]; 1392 if (res == SMP_RESP_NO_INDEX) { 1393 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1394 SAS_ADDR(dev->sas_addr), phy_id, i); 1395 goto out; 1396 } else if (res != SMP_RESP_FUNC_ACC) { 1397 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1398 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1399 i, res); 1400 goto out; 1401 } 1402 if (SAS_ADDR(sas_addr) != 0) { 1403 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1404 *index = i; 1405 if ((rri_resp[12] & 0x80) == 0x80) 1406 *present = 0; 1407 else 1408 *present = 1; 1409 goto out; 1410 } else if (SAS_ADDR(rri_resp+16) == 0) { 1411 *index = i; 1412 *present = 0; 1413 goto out; 1414 } 1415 } else if (SAS_ADDR(rri_resp+16) == 0 && 1416 phy->last_da_index < i) { 1417 phy->last_da_index = i; 1418 *index = i; 1419 *present = 0; 1420 goto out; 1421 } 1422 } 1423 res = -1; 1424 out: 1425 kfree(rri_req); 1426 kfree(rri_resp); 1427 return res; 1428 } 1429 1430 #define CRI_REQ_SIZE 44 1431 #define CRI_RESP_SIZE 8 1432 1433 static int sas_configure_set(struct domain_device *dev, int phy_id, 1434 u8 *sas_addr, int index, int include) 1435 { 1436 int res; 1437 u8 *cri_req; 1438 u8 *cri_resp; 1439 1440 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1441 if (!cri_req) 1442 return -ENOMEM; 1443 1444 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1445 if (!cri_resp) { 1446 kfree(cri_req); 1447 return -ENOMEM; 1448 } 1449 1450 cri_req[1] = SMP_CONF_ROUTE_INFO; 1451 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1452 cri_req[9] = phy_id; 1453 if (SAS_ADDR(sas_addr) == 0 || !include) 1454 cri_req[12] |= 0x80; 1455 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1456 1457 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1458 CRI_RESP_SIZE); 1459 if (res) 1460 goto out; 1461 res = cri_resp[2]; 1462 if (res == SMP_RESP_NO_INDEX) { 1463 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1464 SAS_ADDR(dev->sas_addr), phy_id, index); 1465 } 1466 out: 1467 kfree(cri_req); 1468 kfree(cri_resp); 1469 return res; 1470 } 1471 1472 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1473 u8 *sas_addr, int include) 1474 { 1475 int index; 1476 int present; 1477 int res; 1478 1479 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1480 if (res) 1481 return res; 1482 if (include ^ present) 1483 return sas_configure_set(dev, phy_id, sas_addr, index, 1484 include); 1485 1486 return res; 1487 } 1488 1489 /** 1490 * sas_configure_parent - configure routing table of parent 1491 * @parent: parent expander 1492 * @child: child expander 1493 * @sas_addr: SAS port identifier of device directly attached to child 1494 * @include: whether or not to include @child in the expander routing table 1495 */ 1496 static int sas_configure_parent(struct domain_device *parent, 1497 struct domain_device *child, 1498 u8 *sas_addr, int include) 1499 { 1500 struct expander_device *ex_parent = &parent->ex_dev; 1501 int res = 0; 1502 int i; 1503 1504 if (parent->parent) { 1505 res = sas_configure_parent(parent->parent, parent, sas_addr, 1506 include); 1507 if (res) 1508 return res; 1509 } 1510 1511 if (ex_parent->conf_route_table == 0) { 1512 pr_debug("ex %016llx has self-configuring routing table\n", 1513 SAS_ADDR(parent->sas_addr)); 1514 return 0; 1515 } 1516 1517 for (i = 0; i < ex_parent->num_phys; i++) { 1518 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1519 1520 if ((phy->routing_attr == TABLE_ROUTING) && 1521 sas_phy_match_dev_addr(child, phy)) { 1522 res = sas_configure_phy(parent, i, sas_addr, include); 1523 if (res) 1524 return res; 1525 } 1526 } 1527 1528 return res; 1529 } 1530 1531 /** 1532 * sas_configure_routing - configure routing 1533 * @dev: expander device 1534 * @sas_addr: port identifier of device directly attached to the expander device 1535 */ 1536 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1537 { 1538 if (dev->parent) 1539 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1540 return 0; 1541 } 1542 1543 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1544 { 1545 if (dev->parent) 1546 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1547 return 0; 1548 } 1549 1550 /** 1551 * sas_discover_expander - expander discovery 1552 * @dev: pointer to expander domain device 1553 * 1554 * See comment in sas_discover_sata(). 1555 */ 1556 static int sas_discover_expander(struct domain_device *dev) 1557 { 1558 int res; 1559 1560 res = sas_notify_lldd_dev_found(dev); 1561 if (res) 1562 return res; 1563 1564 res = sas_ex_general(dev); 1565 if (res) 1566 goto out_err; 1567 res = sas_ex_manuf_info(dev); 1568 if (res) 1569 goto out_err; 1570 1571 res = sas_expander_discover(dev); 1572 if (res) { 1573 pr_warn("expander %016llx discovery failed(0x%x)\n", 1574 SAS_ADDR(dev->sas_addr), res); 1575 goto out_err; 1576 } 1577 1578 sas_check_ex_subtractive_boundary(dev); 1579 res = sas_check_parent_topology(dev); 1580 if (res) 1581 goto out_err; 1582 return 0; 1583 out_err: 1584 sas_notify_lldd_dev_gone(dev); 1585 return res; 1586 } 1587 1588 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1589 { 1590 int res = 0; 1591 struct domain_device *dev; 1592 1593 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1594 if (dev_is_expander(dev->dev_type)) { 1595 struct sas_expander_device *ex = 1596 rphy_to_expander_device(dev->rphy); 1597 1598 if (level == ex->level) 1599 res = sas_ex_discover_devices(dev, -1); 1600 else if (level > 0) 1601 res = sas_ex_discover_devices(port->port_dev, -1); 1602 1603 } 1604 } 1605 1606 return res; 1607 } 1608 1609 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1610 { 1611 int res; 1612 int level; 1613 1614 do { 1615 level = port->disc.max_level; 1616 res = sas_ex_level_discovery(port, level); 1617 mb(); 1618 } while (level < port->disc.max_level); 1619 1620 return res; 1621 } 1622 1623 int sas_discover_root_expander(struct domain_device *dev) 1624 { 1625 int res; 1626 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1627 1628 res = sas_rphy_add(dev->rphy); 1629 if (res) 1630 goto out_err; 1631 1632 ex->level = dev->port->disc.max_level; /* 0 */ 1633 res = sas_discover_expander(dev); 1634 if (res) 1635 goto out_err2; 1636 1637 sas_ex_bfs_disc(dev->port); 1638 1639 return res; 1640 1641 out_err2: 1642 sas_rphy_remove(dev->rphy); 1643 out_err: 1644 return res; 1645 } 1646 1647 /* ---------- Domain revalidation ---------- */ 1648 1649 static int sas_get_phy_discover(struct domain_device *dev, 1650 int phy_id, struct smp_disc_resp *disc_resp) 1651 { 1652 int res; 1653 u8 *disc_req; 1654 1655 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1656 if (!disc_req) 1657 return -ENOMEM; 1658 1659 disc_req[1] = SMP_DISCOVER; 1660 disc_req[9] = phy_id; 1661 1662 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1663 disc_resp, DISCOVER_RESP_SIZE); 1664 if (res) 1665 goto out; 1666 if (disc_resp->result != SMP_RESP_FUNC_ACC) 1667 res = disc_resp->result; 1668 out: 1669 kfree(disc_req); 1670 return res; 1671 } 1672 1673 static int sas_get_phy_change_count(struct domain_device *dev, 1674 int phy_id, int *pcc) 1675 { 1676 int res; 1677 struct smp_disc_resp *disc_resp; 1678 1679 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1680 if (!disc_resp) 1681 return -ENOMEM; 1682 1683 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1684 if (!res) 1685 *pcc = disc_resp->disc.change_count; 1686 1687 kfree(disc_resp); 1688 return res; 1689 } 1690 1691 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1692 u8 *sas_addr, enum sas_device_type *type) 1693 { 1694 int res; 1695 struct smp_disc_resp *disc_resp; 1696 1697 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1698 if (!disc_resp) 1699 return -ENOMEM; 1700 1701 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1702 if (res == 0) { 1703 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 1704 SAS_ADDR_SIZE); 1705 *type = to_dev_type(&disc_resp->disc); 1706 if (*type == 0) 1707 memset(sas_addr, 0, SAS_ADDR_SIZE); 1708 } 1709 kfree(disc_resp); 1710 return res; 1711 } 1712 1713 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1714 int from_phy, bool update) 1715 { 1716 struct expander_device *ex = &dev->ex_dev; 1717 int res = 0; 1718 int i; 1719 1720 for (i = from_phy; i < ex->num_phys; i++) { 1721 int phy_change_count = 0; 1722 1723 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1724 switch (res) { 1725 case SMP_RESP_PHY_VACANT: 1726 case SMP_RESP_NO_PHY: 1727 continue; 1728 case SMP_RESP_FUNC_ACC: 1729 break; 1730 default: 1731 return res; 1732 } 1733 1734 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1735 if (update) 1736 ex->ex_phy[i].phy_change_count = 1737 phy_change_count; 1738 *phy_id = i; 1739 return 0; 1740 } 1741 } 1742 return 0; 1743 } 1744 1745 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1746 { 1747 int res; 1748 u8 *rg_req; 1749 struct smp_rg_resp *rg_resp; 1750 1751 rg_req = alloc_smp_req(RG_REQ_SIZE); 1752 if (!rg_req) 1753 return -ENOMEM; 1754 1755 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1756 if (!rg_resp) { 1757 kfree(rg_req); 1758 return -ENOMEM; 1759 } 1760 1761 rg_req[1] = SMP_REPORT_GENERAL; 1762 1763 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1764 RG_RESP_SIZE); 1765 if (res) 1766 goto out; 1767 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1768 res = rg_resp->result; 1769 goto out; 1770 } 1771 1772 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1773 out: 1774 kfree(rg_resp); 1775 kfree(rg_req); 1776 return res; 1777 } 1778 /** 1779 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1780 * @dev:domain device to be detect. 1781 * @src_dev: the device which originated BROADCAST(CHANGE). 1782 * 1783 * Add self-configuration expander support. Suppose two expander cascading, 1784 * when the first level expander is self-configuring, hotplug the disks in 1785 * second level expander, BROADCAST(CHANGE) will not only be originated 1786 * in the second level expander, but also be originated in the first level 1787 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1788 * expander changed count in two level expanders will all increment at least 1789 * once, but the phy which chang count has changed is the source device which 1790 * we concerned. 1791 */ 1792 1793 static int sas_find_bcast_dev(struct domain_device *dev, 1794 struct domain_device **src_dev) 1795 { 1796 struct expander_device *ex = &dev->ex_dev; 1797 int ex_change_count = -1; 1798 int phy_id = -1; 1799 int res; 1800 struct domain_device *ch; 1801 1802 res = sas_get_ex_change_count(dev, &ex_change_count); 1803 if (res) 1804 goto out; 1805 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1806 /* Just detect if this expander phys phy change count changed, 1807 * in order to determine if this expander originate BROADCAST, 1808 * and do not update phy change count field in our structure. 1809 */ 1810 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1811 if (phy_id != -1) { 1812 *src_dev = dev; 1813 ex->ex_change_count = ex_change_count; 1814 pr_info("ex %016llx phy%02d change count has changed\n", 1815 SAS_ADDR(dev->sas_addr), phy_id); 1816 return res; 1817 } else 1818 pr_info("ex %016llx phys DID NOT change\n", 1819 SAS_ADDR(dev->sas_addr)); 1820 } 1821 list_for_each_entry(ch, &ex->children, siblings) { 1822 if (dev_is_expander(ch->dev_type)) { 1823 res = sas_find_bcast_dev(ch, src_dev); 1824 if (*src_dev) 1825 return res; 1826 } 1827 } 1828 out: 1829 return res; 1830 } 1831 1832 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1833 { 1834 struct expander_device *ex = &dev->ex_dev; 1835 struct domain_device *child, *n; 1836 1837 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1838 set_bit(SAS_DEV_GONE, &child->state); 1839 if (dev_is_expander(child->dev_type)) 1840 sas_unregister_ex_tree(port, child); 1841 else 1842 sas_unregister_dev(port, child); 1843 } 1844 sas_unregister_dev(port, dev); 1845 } 1846 1847 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1848 int phy_id, bool last) 1849 { 1850 struct expander_device *ex_dev = &parent->ex_dev; 1851 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1852 struct domain_device *child, *n, *found = NULL; 1853 if (last) { 1854 list_for_each_entry_safe(child, n, 1855 &ex_dev->children, siblings) { 1856 if (sas_phy_match_dev_addr(child, phy)) { 1857 set_bit(SAS_DEV_GONE, &child->state); 1858 if (dev_is_expander(child->dev_type)) 1859 sas_unregister_ex_tree(parent->port, child); 1860 else 1861 sas_unregister_dev(parent->port, child); 1862 found = child; 1863 break; 1864 } 1865 } 1866 sas_disable_routing(parent, phy->attached_sas_addr); 1867 } 1868 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1869 if (phy->port) { 1870 sas_port_delete_phy(phy->port, phy->phy); 1871 sas_device_set_phy(found, phy->port); 1872 if (phy->port->num_phys == 0) 1873 list_add_tail(&phy->port->del_list, 1874 &parent->port->sas_port_del_list); 1875 phy->port = NULL; 1876 } 1877 } 1878 1879 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1880 const int level) 1881 { 1882 struct expander_device *ex_root = &root->ex_dev; 1883 struct domain_device *child; 1884 int res = 0; 1885 1886 list_for_each_entry(child, &ex_root->children, siblings) { 1887 if (dev_is_expander(child->dev_type)) { 1888 struct sas_expander_device *ex = 1889 rphy_to_expander_device(child->rphy); 1890 1891 if (level > ex->level) 1892 res = sas_discover_bfs_by_root_level(child, 1893 level); 1894 else if (level == ex->level) 1895 res = sas_ex_discover_devices(child, -1); 1896 } 1897 } 1898 return res; 1899 } 1900 1901 static int sas_discover_bfs_by_root(struct domain_device *dev) 1902 { 1903 int res; 1904 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1905 int level = ex->level+1; 1906 1907 res = sas_ex_discover_devices(dev, -1); 1908 if (res) 1909 goto out; 1910 do { 1911 res = sas_discover_bfs_by_root_level(dev, level); 1912 mb(); 1913 level += 1; 1914 } while (level <= dev->port->disc.max_level); 1915 out: 1916 return res; 1917 } 1918 1919 static int sas_discover_new(struct domain_device *dev, int phy_id) 1920 { 1921 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1922 struct domain_device *child; 1923 int res; 1924 1925 pr_debug("ex %016llx phy%02d new device attached\n", 1926 SAS_ADDR(dev->sas_addr), phy_id); 1927 res = sas_ex_phy_discover(dev, phy_id); 1928 if (res) 1929 return res; 1930 1931 if (sas_ex_join_wide_port(dev, phy_id)) 1932 return 0; 1933 1934 res = sas_ex_discover_devices(dev, phy_id); 1935 if (res) 1936 return res; 1937 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1938 if (sas_phy_match_dev_addr(child, ex_phy)) { 1939 if (dev_is_expander(child->dev_type)) 1940 res = sas_discover_bfs_by_root(child); 1941 break; 1942 } 1943 } 1944 return res; 1945 } 1946 1947 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1948 { 1949 if (old == new) 1950 return true; 1951 1952 /* treat device directed resets as flutter, if we went 1953 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1954 */ 1955 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1956 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1957 return true; 1958 1959 return false; 1960 } 1961 1962 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 1963 bool last, int sibling) 1964 { 1965 struct expander_device *ex = &dev->ex_dev; 1966 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1967 enum sas_device_type type = SAS_PHY_UNUSED; 1968 u8 sas_addr[SAS_ADDR_SIZE]; 1969 char msg[80] = ""; 1970 int res; 1971 1972 if (!last) 1973 sprintf(msg, ", part of a wide port with phy%02d", sibling); 1974 1975 pr_debug("ex %016llx rediscovering phy%02d%s\n", 1976 SAS_ADDR(dev->sas_addr), phy_id, msg); 1977 1978 memset(sas_addr, 0, SAS_ADDR_SIZE); 1979 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 1980 switch (res) { 1981 case SMP_RESP_NO_PHY: 1982 phy->phy_state = PHY_NOT_PRESENT; 1983 sas_unregister_devs_sas_addr(dev, phy_id, last); 1984 return res; 1985 case SMP_RESP_PHY_VACANT: 1986 phy->phy_state = PHY_VACANT; 1987 sas_unregister_devs_sas_addr(dev, phy_id, last); 1988 return res; 1989 case SMP_RESP_FUNC_ACC: 1990 break; 1991 case -ECOMM: 1992 break; 1993 default: 1994 return res; 1995 } 1996 1997 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 1998 phy->phy_state = PHY_EMPTY; 1999 sas_unregister_devs_sas_addr(dev, phy_id, last); 2000 /* 2001 * Even though the PHY is empty, for convenience we discover 2002 * the PHY to update the PHY info, like negotiated linkrate. 2003 */ 2004 sas_ex_phy_discover(dev, phy_id); 2005 return res; 2006 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2007 dev_type_flutter(type, phy->attached_dev_type)) { 2008 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2009 char *action = ""; 2010 2011 sas_ex_phy_discover(dev, phy_id); 2012 2013 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2014 action = ", needs recovery"; 2015 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2016 SAS_ADDR(dev->sas_addr), phy_id, action); 2017 return res; 2018 } 2019 2020 /* we always have to delete the old device when we went here */ 2021 pr_info("ex %016llx phy%02d replace %016llx\n", 2022 SAS_ADDR(dev->sas_addr), phy_id, 2023 SAS_ADDR(phy->attached_sas_addr)); 2024 sas_unregister_devs_sas_addr(dev, phy_id, last); 2025 2026 return sas_discover_new(dev, phy_id); 2027 } 2028 2029 /** 2030 * sas_rediscover - revalidate the domain. 2031 * @dev:domain device to be detect. 2032 * @phy_id: the phy id will be detected. 2033 * 2034 * NOTE: this process _must_ quit (return) as soon as any connection 2035 * errors are encountered. Connection recovery is done elsewhere. 2036 * Discover process only interrogates devices in order to discover the 2037 * domain.For plugging out, we un-register the device only when it is 2038 * the last phy in the port, for other phys in this port, we just delete it 2039 * from the port.For inserting, we do discovery when it is the 2040 * first phy,for other phys in this port, we add it to the port to 2041 * forming the wide-port. 2042 */ 2043 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2044 { 2045 struct expander_device *ex = &dev->ex_dev; 2046 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2047 int res = 0; 2048 int i; 2049 bool last = true; /* is this the last phy of the port */ 2050 2051 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2052 SAS_ADDR(dev->sas_addr), phy_id); 2053 2054 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2055 for (i = 0; i < ex->num_phys; i++) { 2056 struct ex_phy *phy = &ex->ex_phy[i]; 2057 2058 if (i == phy_id) 2059 continue; 2060 if (sas_phy_addr_match(phy, changed_phy)) { 2061 last = false; 2062 break; 2063 } 2064 } 2065 res = sas_rediscover_dev(dev, phy_id, last, i); 2066 } else 2067 res = sas_discover_new(dev, phy_id); 2068 return res; 2069 } 2070 2071 /** 2072 * sas_ex_revalidate_domain - revalidate the domain 2073 * @port_dev: port domain device. 2074 * 2075 * NOTE: this process _must_ quit (return) as soon as any connection 2076 * errors are encountered. Connection recovery is done elsewhere. 2077 * Discover process only interrogates devices in order to discover the 2078 * domain. 2079 */ 2080 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2081 { 2082 int res; 2083 struct domain_device *dev = NULL; 2084 2085 res = sas_find_bcast_dev(port_dev, &dev); 2086 if (res == 0 && dev) { 2087 struct expander_device *ex = &dev->ex_dev; 2088 int i = 0, phy_id; 2089 2090 do { 2091 phy_id = -1; 2092 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2093 if (phy_id == -1) 2094 break; 2095 res = sas_rediscover(dev, phy_id); 2096 i = phy_id + 1; 2097 } while (i < ex->num_phys); 2098 } 2099 return res; 2100 } 2101 2102 int sas_find_attached_phy_id(struct expander_device *ex_dev, 2103 struct domain_device *dev) 2104 { 2105 struct ex_phy *phy; 2106 int phy_id; 2107 2108 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) { 2109 phy = &ex_dev->ex_phy[phy_id]; 2110 if (sas_phy_match_dev_addr(dev, phy)) 2111 return phy_id; 2112 } 2113 2114 return -ENODEV; 2115 } 2116 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id); 2117 2118 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2119 struct sas_rphy *rphy) 2120 { 2121 struct domain_device *dev; 2122 unsigned int rcvlen = 0; 2123 int ret = -EINVAL; 2124 2125 /* no rphy means no smp target support (ie aic94xx host) */ 2126 if (!rphy) 2127 return sas_smp_host_handler(job, shost); 2128 2129 switch (rphy->identify.device_type) { 2130 case SAS_EDGE_EXPANDER_DEVICE: 2131 case SAS_FANOUT_EXPANDER_DEVICE: 2132 break; 2133 default: 2134 pr_err("%s: can we send a smp request to a device?\n", 2135 __func__); 2136 goto out; 2137 } 2138 2139 dev = sas_find_dev_by_rphy(rphy); 2140 if (!dev) { 2141 pr_err("%s: fail to find a domain_device?\n", __func__); 2142 goto out; 2143 } 2144 2145 /* do we need to support multiple segments? */ 2146 if (job->request_payload.sg_cnt > 1 || 2147 job->reply_payload.sg_cnt > 1) { 2148 pr_info("%s: multiple segments req %u, rsp %u\n", 2149 __func__, job->request_payload.payload_len, 2150 job->reply_payload.payload_len); 2151 goto out; 2152 } 2153 2154 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2155 job->reply_payload.sg_list); 2156 if (ret >= 0) { 2157 /* bsg_job_done() requires the length received */ 2158 rcvlen = job->reply_payload.payload_len - ret; 2159 ret = 0; 2160 } 2161 2162 out: 2163 bsg_job_done(job, ret, rcvlen); 2164 } 2165