1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10 
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15 
16 #include "sas_internal.h"
17 
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22 
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 			     u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28 
29 /* ---------- SMP task management ---------- */
30 
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33 
34 static int smp_execute_task_sg(struct domain_device *dev,
35 		struct scatterlist *req, struct scatterlist *resp)
36 {
37 	int res, retry;
38 	struct sas_task *task = NULL;
39 	struct sas_internal *i =
40 		to_sas_internal(dev->port->ha->core.shost->transportt);
41 	struct sas_ha_struct *ha = dev->port->ha;
42 
43 	pm_runtime_get_sync(ha->dev);
44 	mutex_lock(&dev->ex_dev.cmd_mutex);
45 	for (retry = 0; retry < 3; retry++) {
46 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 			res = -ECOMM;
48 			break;
49 		}
50 
51 		task = sas_alloc_slow_task(GFP_KERNEL);
52 		if (!task) {
53 			res = -ENOMEM;
54 			break;
55 		}
56 		task->dev = dev;
57 		task->task_proto = dev->tproto;
58 		task->smp_task.smp_req = *req;
59 		task->smp_task.smp_resp = *resp;
60 
61 		task->task_done = sas_task_internal_done;
62 
63 		task->slow_task->timer.function = sas_task_internal_timedout;
64 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 		add_timer(&task->slow_task->timer);
66 
67 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68 
69 		if (res) {
70 			del_timer_sync(&task->slow_task->timer);
71 			pr_notice("executing SMP task failed:%d\n", res);
72 			break;
73 		}
74 
75 		wait_for_completion(&task->slow_task->completion);
76 		res = -ECOMM;
77 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 			pr_notice("smp task timed out or aborted\n");
79 			i->dft->lldd_abort_task(task);
80 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 				pr_notice("SMP task aborted and not done\n");
82 				break;
83 			}
84 		}
85 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 			res = 0;
88 			break;
89 		}
90 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
92 			/* no error, but return the number of bytes of
93 			 * underrun */
94 			res = task->task_status.residual;
95 			break;
96 		}
97 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 		    task->task_status.stat == SAS_DATA_OVERRUN) {
99 			res = -EMSGSIZE;
100 			break;
101 		}
102 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 			break;
105 		else {
106 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 				  __func__,
108 				  SAS_ADDR(dev->sas_addr),
109 				  task->task_status.resp,
110 				  task->task_status.stat);
111 			sas_free_task(task);
112 			task = NULL;
113 		}
114 	}
115 	mutex_unlock(&dev->ex_dev.cmd_mutex);
116 	pm_runtime_put_sync(ha->dev);
117 
118 	BUG_ON(retry == 3 && task != NULL);
119 	sas_free_task(task);
120 	return res;
121 }
122 
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 			    void *resp, int resp_size)
125 {
126 	struct scatterlist req_sg;
127 	struct scatterlist resp_sg;
128 
129 	sg_init_one(&req_sg, req, req_size);
130 	sg_init_one(&resp_sg, resp, resp_size);
131 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133 
134 /* ---------- Allocations ---------- */
135 
136 static inline void *alloc_smp_req(int size)
137 {
138 	u8 *p = kzalloc(size, GFP_KERNEL);
139 	if (p)
140 		p[0] = SMP_REQUEST;
141 	return p;
142 }
143 
144 static inline void *alloc_smp_resp(int size)
145 {
146 	return kzalloc(size, GFP_KERNEL);
147 }
148 
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 	switch (phy->routing_attr) {
152 	case TABLE_ROUTING:
153 		if (dev->ex_dev.t2t_supp)
154 			return 'U';
155 		else
156 			return 'T';
157 	case DIRECT_ROUTING:
158 		return 'D';
159 	case SUBTRACTIVE_ROUTING:
160 		return 'S';
161 	default:
162 		return '?';
163 	}
164 }
165 
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 	/* This is detecting a failure to transmit initial dev to host
169 	 * FIS as described in section J.5 of sas-2 r16
170 	 */
171 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 		return SAS_SATA_PENDING;
174 	else
175 		return dr->attached_dev_type;
176 }
177 
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 			   struct smp_disc_resp *disc_resp)
180 {
181 	enum sas_device_type dev_type;
182 	enum sas_linkrate linkrate;
183 	u8 sas_addr[SAS_ADDR_SIZE];
184 	struct discover_resp *dr = &disc_resp->disc;
185 	struct sas_ha_struct *ha = dev->port->ha;
186 	struct expander_device *ex = &dev->ex_dev;
187 	struct ex_phy *phy = &ex->ex_phy[phy_id];
188 	struct sas_rphy *rphy = dev->rphy;
189 	bool new_phy = !phy->phy;
190 	char *type;
191 
192 	if (new_phy) {
193 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 			return;
195 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196 
197 		/* FIXME: error_handling */
198 		BUG_ON(!phy->phy);
199 	}
200 
201 	switch (disc_resp->result) {
202 	case SMP_RESP_PHY_VACANT:
203 		phy->phy_state = PHY_VACANT;
204 		break;
205 	default:
206 		phy->phy_state = PHY_NOT_PRESENT;
207 		break;
208 	case SMP_RESP_FUNC_ACC:
209 		phy->phy_state = PHY_EMPTY; /* do not know yet */
210 		break;
211 	}
212 
213 	/* check if anything important changed to squelch debug */
214 	dev_type = phy->attached_dev_type;
215 	linkrate  = phy->linkrate;
216 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217 
218 	/* Handle vacant phy - rest of dr data is not valid so skip it */
219 	if (phy->phy_state == PHY_VACANT) {
220 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 		phy->attached_dev_type = SAS_PHY_UNUSED;
222 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 			phy->phy_id = phy_id;
224 			goto skip;
225 		} else
226 			goto out;
227 	}
228 
229 	phy->attached_dev_type = to_dev_type(dr);
230 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 		goto out;
232 	phy->phy_id = phy_id;
233 	phy->linkrate = dr->linkrate;
234 	phy->attached_sata_host = dr->attached_sata_host;
235 	phy->attached_sata_dev  = dr->attached_sata_dev;
236 	phy->attached_sata_ps   = dr->attached_sata_ps;
237 	phy->attached_iproto = dr->iproto << 1;
238 	phy->attached_tproto = dr->tproto << 1;
239 	/* help some expanders that fail to zero sas_address in the 'no
240 	 * device' case
241 	 */
242 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 	else
246 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 	phy->attached_phy_id = dr->attached_phy_id;
248 	phy->phy_change_count = dr->change_count;
249 	phy->routing_attr = dr->routing_attr;
250 	phy->virtual = dr->virtual;
251 	phy->last_da_index = -1;
252 
253 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 	phy->phy->identify.device_type = dr->attached_dev_type;
255 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 	if (!phy->attached_tproto && dr->attached_sata_dev)
258 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 	phy->phy->identify.phy_identifier = phy_id;
260 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 	phy->phy->negotiated_linkrate = phy->linkrate;
265 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266 
267  skip:
268 	if (new_phy)
269 		if (sas_phy_add(phy->phy)) {
270 			sas_phy_free(phy->phy);
271 			return;
272 		}
273 
274  out:
275 	switch (phy->attached_dev_type) {
276 	case SAS_SATA_PENDING:
277 		type = "stp pending";
278 		break;
279 	case SAS_PHY_UNUSED:
280 		type = "no device";
281 		break;
282 	case SAS_END_DEVICE:
283 		if (phy->attached_iproto) {
284 			if (phy->attached_tproto)
285 				type = "host+target";
286 			else
287 				type = "host";
288 		} else {
289 			if (dr->attached_sata_dev)
290 				type = "stp";
291 			else
292 				type = "ssp";
293 		}
294 		break;
295 	case SAS_EDGE_EXPANDER_DEVICE:
296 	case SAS_FANOUT_EXPANDER_DEVICE:
297 		type = "smp";
298 		break;
299 	default:
300 		type = "unknown";
301 	}
302 
303 	/* this routine is polled by libata error recovery so filter
304 	 * unimportant messages
305 	 */
306 	if (new_phy || phy->attached_dev_type != dev_type ||
307 	    phy->linkrate != linkrate ||
308 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 		/* pass */;
310 	else
311 		return;
312 
313 	/* if the attached device type changed and ata_eh is active,
314 	 * make sure we run revalidation when eh completes (see:
315 	 * sas_enable_revalidation)
316 	 */
317 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319 
320 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 		 sas_route_char(dev, phy), phy->linkrate,
324 		 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326 
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 	struct domain_device *dev;
332 	struct sas_rphy *rphy;
333 
334 	if (!ex_phy->port)
335 		return NULL;
336 
337 	rphy = ex_phy->port->rphy;
338 	if (!rphy)
339 		return NULL;
340 
341 	dev = sas_find_dev_by_rphy(rphy);
342 
343 	if (dev && dev_is_sata(dev))
344 		return dev;
345 
346 	return NULL;
347 }
348 
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351 
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 				      struct smp_disc_resp *disc_resp,
354 				      int single)
355 {
356 	struct discover_resp *dr = &disc_resp->disc;
357 	int res;
358 
359 	disc_req[9] = single;
360 
361 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 			       disc_resp, DISCOVER_RESP_SIZE);
363 	if (res)
364 		return res;
365 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 		pr_notice("Found loopback topology, just ignore it!\n");
367 		return 0;
368 	}
369 	sas_set_ex_phy(dev, single, disc_resp);
370 	return 0;
371 }
372 
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 	struct expander_device *ex = &dev->ex_dev;
376 	int  res = 0;
377 	u8   *disc_req;
378 	struct smp_disc_resp *disc_resp;
379 
380 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 	if (!disc_req)
382 		return -ENOMEM;
383 
384 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 	if (!disc_resp) {
386 		kfree(disc_req);
387 		return -ENOMEM;
388 	}
389 
390 	disc_req[1] = SMP_DISCOVER;
391 
392 	if (0 <= single && single < ex->num_phys) {
393 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 	} else {
395 		int i;
396 
397 		for (i = 0; i < ex->num_phys; i++) {
398 			res = sas_ex_phy_discover_helper(dev, disc_req,
399 							 disc_resp, i);
400 			if (res)
401 				goto out_err;
402 		}
403 	}
404 out_err:
405 	kfree(disc_resp);
406 	kfree(disc_req);
407 	return res;
408 }
409 
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 	struct expander_device *ex = &dev->ex_dev;
413 	int res;
414 
415 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 	if (!ex->ex_phy)
417 		return -ENOMEM;
418 
419 	res = sas_ex_phy_discover(dev, -1);
420 	if (res)
421 		goto out_err;
422 
423 	return 0;
424  out_err:
425 	kfree(ex->ex_phy);
426 	ex->ex_phy = NULL;
427 	return res;
428 }
429 
430 #define MAX_EXPANDER_PHYS 128
431 
432 #define RG_REQ_SIZE   8
433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
434 
435 static int sas_ex_general(struct domain_device *dev)
436 {
437 	u8 *rg_req;
438 	struct smp_rg_resp *rg_resp;
439 	struct report_general_resp *rg;
440 	int res;
441 	int i;
442 
443 	rg_req = alloc_smp_req(RG_REQ_SIZE);
444 	if (!rg_req)
445 		return -ENOMEM;
446 
447 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448 	if (!rg_resp) {
449 		kfree(rg_req);
450 		return -ENOMEM;
451 	}
452 
453 	rg_req[1] = SMP_REPORT_GENERAL;
454 
455 	for (i = 0; i < 5; i++) {
456 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457 				       RG_RESP_SIZE);
458 
459 		if (res) {
460 			pr_notice("RG to ex %016llx failed:0x%x\n",
461 				  SAS_ADDR(dev->sas_addr), res);
462 			goto out;
463 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 			res = rg_resp->result;
467 			goto out;
468 		}
469 
470 		rg = &rg_resp->rg;
471 		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 		dev->ex_dev.t2t_supp = rg->t2t_supp;
475 		dev->ex_dev.conf_route_table = rg->conf_route_table;
476 		dev->ex_dev.configuring = rg->configuring;
477 		memcpy(dev->ex_dev.enclosure_logical_id,
478 		       rg->enclosure_logical_id, 8);
479 
480 		if (dev->ex_dev.configuring) {
481 			pr_debug("RG: ex %016llx self-configuring...\n",
482 				 SAS_ADDR(dev->sas_addr));
483 			schedule_timeout_interruptible(5*HZ);
484 		} else
485 			break;
486 	}
487 out:
488 	kfree(rg_req);
489 	kfree(rg_resp);
490 	return res;
491 }
492 
493 static void ex_assign_manuf_info(struct domain_device *dev, void
494 					*_mi_resp)
495 {
496 	u8 *mi_resp = _mi_resp;
497 	struct sas_rphy *rphy = dev->rphy;
498 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499 
500 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 	memcpy(edev->product_rev, mi_resp + 36,
503 	       SAS_EXPANDER_PRODUCT_REV_LEN);
504 
505 	if (mi_resp[8] & 1) {
506 		memcpy(edev->component_vendor_id, mi_resp + 40,
507 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 		edev->component_revision_id = mi_resp[50];
510 	}
511 }
512 
513 #define MI_REQ_SIZE   8
514 #define MI_RESP_SIZE 64
515 
516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518 	u8 *mi_req;
519 	u8 *mi_resp;
520 	int res;
521 
522 	mi_req = alloc_smp_req(MI_REQ_SIZE);
523 	if (!mi_req)
524 		return -ENOMEM;
525 
526 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527 	if (!mi_resp) {
528 		kfree(mi_req);
529 		return -ENOMEM;
530 	}
531 
532 	mi_req[1] = SMP_REPORT_MANUF_INFO;
533 
534 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535 	if (res) {
536 		pr_notice("MI: ex %016llx failed:0x%x\n",
537 			  SAS_ADDR(dev->sas_addr), res);
538 		goto out;
539 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
542 		goto out;
543 	}
544 
545 	ex_assign_manuf_info(dev, mi_resp);
546 out:
547 	kfree(mi_req);
548 	kfree(mi_resp);
549 	return res;
550 }
551 
552 #define PC_REQ_SIZE  44
553 #define PC_RESP_SIZE 8
554 
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 			enum phy_func phy_func,
557 			struct sas_phy_linkrates *rates)
558 {
559 	u8 *pc_req;
560 	u8 *pc_resp;
561 	int res;
562 
563 	pc_req = alloc_smp_req(PC_REQ_SIZE);
564 	if (!pc_req)
565 		return -ENOMEM;
566 
567 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568 	if (!pc_resp) {
569 		kfree(pc_req);
570 		return -ENOMEM;
571 	}
572 
573 	pc_req[1] = SMP_PHY_CONTROL;
574 	pc_req[9] = phy_id;
575 	pc_req[10] = phy_func;
576 	if (rates) {
577 		pc_req[32] = rates->minimum_linkrate << 4;
578 		pc_req[33] = rates->maximum_linkrate << 4;
579 	}
580 
581 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582 	if (res) {
583 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 		       SAS_ADDR(dev->sas_addr), phy_id, res);
585 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588 		res = pc_resp[2];
589 	}
590 	kfree(pc_resp);
591 	kfree(pc_req);
592 	return res;
593 }
594 
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597 	struct expander_device *ex = &dev->ex_dev;
598 	struct ex_phy *phy = &ex->ex_phy[phy_id];
599 
600 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 	phy->linkrate = SAS_PHY_DISABLED;
602 }
603 
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606 	struct expander_device *ex = &dev->ex_dev;
607 	int i;
608 
609 	for (i = 0; i < ex->num_phys; i++) {
610 		struct ex_phy *phy = &ex->ex_phy[i];
611 
612 		if (phy->phy_state == PHY_VACANT ||
613 		    phy->phy_state == PHY_NOT_PRESENT)
614 			continue;
615 
616 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 			sas_ex_disable_phy(dev, i);
618 	}
619 }
620 
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622 					    u8 *sas_addr)
623 {
624 	struct domain_device *dev;
625 
626 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627 		return 1;
628 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630 			return 1;
631 	}
632 	return 0;
633 }
634 
635 #define RPEL_REQ_SIZE	16
636 #define RPEL_RESP_SIZE	32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639 	int res;
640 	u8 *req;
641 	u8 *resp;
642 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644 
645 	req = alloc_smp_req(RPEL_REQ_SIZE);
646 	if (!req)
647 		return -ENOMEM;
648 
649 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
650 	if (!resp) {
651 		kfree(req);
652 		return -ENOMEM;
653 	}
654 
655 	req[1] = SMP_REPORT_PHY_ERR_LOG;
656 	req[9] = phy->number;
657 
658 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 			       resp, RPEL_RESP_SIZE);
660 
661 	if (res)
662 		goto out;
663 
664 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668 
669  out:
670 	kfree(req);
671 	kfree(resp);
672 	return res;
673 
674 }
675 
676 #ifdef CONFIG_SCSI_SAS_ATA
677 
678 #define RPS_REQ_SIZE  16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680 
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 			    struct smp_rps_resp *rps_resp)
683 {
684 	int res;
685 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 	u8 *resp = (u8 *)rps_resp;
687 
688 	if (!rps_req)
689 		return -ENOMEM;
690 
691 	rps_req[1] = SMP_REPORT_PHY_SATA;
692 	rps_req[9] = phy_id;
693 
694 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 			       rps_resp, RPS_RESP_SIZE);
696 
697 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
698 	 * standards cockup here.  sas-2 explicitly specifies the FIS
699 	 * should be encoded so that FIS type is in resp[24].
700 	 * However, some expanders endian reverse this.  Undo the
701 	 * reversal here */
702 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703 		int i;
704 
705 		for (i = 0; i < 5; i++) {
706 			int j = 24 + (i*4);
707 			u8 a, b;
708 			a = resp[j + 0];
709 			b = resp[j + 1];
710 			resp[j + 0] = resp[j + 3];
711 			resp[j + 1] = resp[j + 2];
712 			resp[j + 2] = b;
713 			resp[j + 3] = a;
714 		}
715 	}
716 
717 	kfree(rps_req);
718 	return res;
719 }
720 #endif
721 
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723 				       struct domain_device *child,
724 				       struct ex_phy *parent_phy)
725 {
726 	struct expander_device *parent_ex = &parent->ex_dev;
727 	struct sas_port *port;
728 	int i;
729 
730 	child->pathways = 0;
731 
732 	port = parent_phy->port;
733 
734 	for (i = 0; i < parent_ex->num_phys; i++) {
735 		struct ex_phy *phy = &parent_ex->ex_phy[i];
736 
737 		if (phy->phy_state == PHY_VACANT ||
738 		    phy->phy_state == PHY_NOT_PRESENT)
739 			continue;
740 
741 		if (sas_phy_match_dev_addr(child, phy)) {
742 			child->min_linkrate = min(parent->min_linkrate,
743 						  phy->linkrate);
744 			child->max_linkrate = max(parent->max_linkrate,
745 						  phy->linkrate);
746 			child->pathways++;
747 			sas_port_add_phy(port, phy->phy);
748 		}
749 	}
750 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751 	child->pathways = min(child->pathways, parent->pathways);
752 }
753 
754 static struct domain_device *sas_ex_discover_end_dev(
755 	struct domain_device *parent, int phy_id)
756 {
757 	struct expander_device *parent_ex = &parent->ex_dev;
758 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
759 	struct domain_device *child = NULL;
760 	struct sas_rphy *rphy;
761 	int res;
762 
763 	if (phy->attached_sata_host || phy->attached_sata_ps)
764 		return NULL;
765 
766 	child = sas_alloc_device();
767 	if (!child)
768 		return NULL;
769 
770 	kref_get(&parent->kref);
771 	child->parent = parent;
772 	child->port   = parent->port;
773 	child->iproto = phy->attached_iproto;
774 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
775 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
776 	if (!phy->port) {
777 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
778 		if (unlikely(!phy->port))
779 			goto out_err;
780 		if (unlikely(sas_port_add(phy->port) != 0)) {
781 			sas_port_free(phy->port);
782 			goto out_err;
783 		}
784 	}
785 	sas_ex_get_linkrate(parent, child, phy);
786 	sas_device_set_phy(child, phy->port);
787 
788 #ifdef CONFIG_SCSI_SAS_ATA
789 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
790 		if (child->linkrate > parent->min_linkrate) {
791 			struct sas_phy *cphy = child->phy;
792 			enum sas_linkrate min_prate = cphy->minimum_linkrate,
793 				parent_min_lrate = parent->min_linkrate,
794 				min_linkrate = (min_prate > parent_min_lrate) ?
795 					       parent_min_lrate : 0;
796 			struct sas_phy_linkrates rates = {
797 				.maximum_linkrate = parent->min_linkrate,
798 				.minimum_linkrate = min_linkrate,
799 			};
800 			int ret;
801 
802 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
803 				   SAS_ADDR(child->sas_addr), phy_id);
804 			ret = sas_smp_phy_control(parent, phy_id,
805 						  PHY_FUNC_LINK_RESET, &rates);
806 			if (ret) {
807 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
808 				       SAS_ADDR(child->sas_addr), phy_id, ret);
809 				goto out_free;
810 			}
811 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
812 				  SAS_ADDR(child->sas_addr), phy_id);
813 			child->linkrate = child->min_linkrate;
814 		}
815 		res = sas_get_ata_info(child, phy);
816 		if (res)
817 			goto out_free;
818 
819 		sas_init_dev(child);
820 		res = sas_ata_init(child);
821 		if (res)
822 			goto out_free;
823 		rphy = sas_end_device_alloc(phy->port);
824 		if (!rphy)
825 			goto out_free;
826 		rphy->identify.phy_identifier = phy_id;
827 
828 		child->rphy = rphy;
829 		get_device(&rphy->dev);
830 
831 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
832 
833 		res = sas_discover_sata(child);
834 		if (res) {
835 			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
836 				  SAS_ADDR(child->sas_addr),
837 				  SAS_ADDR(parent->sas_addr), phy_id, res);
838 			goto out_list_del;
839 		}
840 	} else
841 #endif
842 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
843 		child->dev_type = SAS_END_DEVICE;
844 		rphy = sas_end_device_alloc(phy->port);
845 		/* FIXME: error handling */
846 		if (unlikely(!rphy))
847 			goto out_free;
848 		child->tproto = phy->attached_tproto;
849 		sas_init_dev(child);
850 
851 		child->rphy = rphy;
852 		get_device(&rphy->dev);
853 		rphy->identify.phy_identifier = phy_id;
854 		sas_fill_in_rphy(child, rphy);
855 
856 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
857 
858 		res = sas_discover_end_dev(child);
859 		if (res) {
860 			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
861 				  SAS_ADDR(child->sas_addr),
862 				  SAS_ADDR(parent->sas_addr), phy_id, res);
863 			goto out_list_del;
864 		}
865 	} else {
866 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
867 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
868 			  phy_id);
869 		goto out_free;
870 	}
871 
872 	list_add_tail(&child->siblings, &parent_ex->children);
873 	return child;
874 
875  out_list_del:
876 	sas_rphy_free(child->rphy);
877 	list_del(&child->disco_list_node);
878 	spin_lock_irq(&parent->port->dev_list_lock);
879 	list_del(&child->dev_list_node);
880 	spin_unlock_irq(&parent->port->dev_list_lock);
881  out_free:
882 	sas_port_delete(phy->port);
883  out_err:
884 	phy->port = NULL;
885 	sas_put_device(child);
886 	return NULL;
887 }
888 
889 /* See if this phy is part of a wide port */
890 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
891 {
892 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
893 	int i;
894 
895 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
896 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
897 
898 		if (ephy == phy)
899 			continue;
900 
901 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
902 			    SAS_ADDR_SIZE) && ephy->port) {
903 			sas_port_add_phy(ephy->port, phy->phy);
904 			phy->port = ephy->port;
905 			phy->phy_state = PHY_DEVICE_DISCOVERED;
906 			return true;
907 		}
908 	}
909 
910 	return false;
911 }
912 
913 static struct domain_device *sas_ex_discover_expander(
914 	struct domain_device *parent, int phy_id)
915 {
916 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
917 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
918 	struct domain_device *child = NULL;
919 	struct sas_rphy *rphy;
920 	struct sas_expander_device *edev;
921 	struct asd_sas_port *port;
922 	int res;
923 
924 	if (phy->routing_attr == DIRECT_ROUTING) {
925 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
926 			SAS_ADDR(parent->sas_addr), phy_id,
927 			SAS_ADDR(phy->attached_sas_addr),
928 			phy->attached_phy_id);
929 		return NULL;
930 	}
931 	child = sas_alloc_device();
932 	if (!child)
933 		return NULL;
934 
935 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
936 	/* FIXME: better error handling */
937 	BUG_ON(sas_port_add(phy->port) != 0);
938 
939 
940 	switch (phy->attached_dev_type) {
941 	case SAS_EDGE_EXPANDER_DEVICE:
942 		rphy = sas_expander_alloc(phy->port,
943 					  SAS_EDGE_EXPANDER_DEVICE);
944 		break;
945 	case SAS_FANOUT_EXPANDER_DEVICE:
946 		rphy = sas_expander_alloc(phy->port,
947 					  SAS_FANOUT_EXPANDER_DEVICE);
948 		break;
949 	default:
950 		rphy = NULL;	/* shut gcc up */
951 		BUG();
952 	}
953 	port = parent->port;
954 	child->rphy = rphy;
955 	get_device(&rphy->dev);
956 	edev = rphy_to_expander_device(rphy);
957 	child->dev_type = phy->attached_dev_type;
958 	kref_get(&parent->kref);
959 	child->parent = parent;
960 	child->port = port;
961 	child->iproto = phy->attached_iproto;
962 	child->tproto = phy->attached_tproto;
963 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
964 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
965 	sas_ex_get_linkrate(parent, child, phy);
966 	edev->level = parent_ex->level + 1;
967 	parent->port->disc.max_level = max(parent->port->disc.max_level,
968 					   edev->level);
969 	sas_init_dev(child);
970 	sas_fill_in_rphy(child, rphy);
971 	sas_rphy_add(rphy);
972 
973 	spin_lock_irq(&parent->port->dev_list_lock);
974 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
975 	spin_unlock_irq(&parent->port->dev_list_lock);
976 
977 	res = sas_discover_expander(child);
978 	if (res) {
979 		sas_rphy_delete(rphy);
980 		spin_lock_irq(&parent->port->dev_list_lock);
981 		list_del(&child->dev_list_node);
982 		spin_unlock_irq(&parent->port->dev_list_lock);
983 		sas_put_device(child);
984 		sas_port_delete(phy->port);
985 		phy->port = NULL;
986 		return NULL;
987 	}
988 	list_add_tail(&child->siblings, &parent->ex_dev.children);
989 	return child;
990 }
991 
992 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
993 {
994 	struct expander_device *ex = &dev->ex_dev;
995 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
996 	struct domain_device *child = NULL;
997 	int res = 0;
998 
999 	/* Phy state */
1000 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1001 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1002 			res = sas_ex_phy_discover(dev, phy_id);
1003 		if (res)
1004 			return res;
1005 	}
1006 
1007 	/* Parent and domain coherency */
1008 	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
1009 		sas_add_parent_port(dev, phy_id);
1010 		return 0;
1011 	}
1012 	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
1013 		sas_add_parent_port(dev, phy_id);
1014 		if (ex_phy->routing_attr == TABLE_ROUTING)
1015 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1016 		return 0;
1017 	}
1018 
1019 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1020 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1021 
1022 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1023 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1024 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1025 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1026 		}
1027 		return 0;
1028 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1029 		return 0;
1030 
1031 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1032 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1033 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1034 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1035 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1036 			ex_phy->attached_dev_type,
1037 			SAS_ADDR(dev->sas_addr),
1038 			phy_id);
1039 		return 0;
1040 	}
1041 
1042 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1043 	if (res) {
1044 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1045 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1046 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1047 		return res;
1048 	}
1049 
1050 	if (sas_ex_join_wide_port(dev, phy_id)) {
1051 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1052 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1053 		return res;
1054 	}
1055 
1056 	switch (ex_phy->attached_dev_type) {
1057 	case SAS_END_DEVICE:
1058 	case SAS_SATA_PENDING:
1059 		child = sas_ex_discover_end_dev(dev, phy_id);
1060 		break;
1061 	case SAS_FANOUT_EXPANDER_DEVICE:
1062 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1063 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1064 				 SAS_ADDR(ex_phy->attached_sas_addr),
1065 				 ex_phy->attached_phy_id,
1066 				 SAS_ADDR(dev->sas_addr),
1067 				 phy_id);
1068 			sas_ex_disable_phy(dev, phy_id);
1069 			return res;
1070 		} else
1071 			memcpy(dev->port->disc.fanout_sas_addr,
1072 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1073 		fallthrough;
1074 	case SAS_EDGE_EXPANDER_DEVICE:
1075 		child = sas_ex_discover_expander(dev, phy_id);
1076 		break;
1077 	default:
1078 		break;
1079 	}
1080 
1081 	if (!child)
1082 		pr_notice("ex %016llx phy%02d failed to discover\n",
1083 			  SAS_ADDR(dev->sas_addr), phy_id);
1084 	return res;
1085 }
1086 
1087 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1088 {
1089 	struct expander_device *ex = &dev->ex_dev;
1090 	int i;
1091 
1092 	for (i = 0; i < ex->num_phys; i++) {
1093 		struct ex_phy *phy = &ex->ex_phy[i];
1094 
1095 		if (phy->phy_state == PHY_VACANT ||
1096 		    phy->phy_state == PHY_NOT_PRESENT)
1097 			continue;
1098 
1099 		if (dev_is_expander(phy->attached_dev_type) &&
1100 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1101 
1102 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1103 
1104 			return 1;
1105 		}
1106 	}
1107 	return 0;
1108 }
1109 
1110 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1111 {
1112 	struct expander_device *ex = &dev->ex_dev;
1113 	struct domain_device *child;
1114 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1115 
1116 	list_for_each_entry(child, &ex->children, siblings) {
1117 		if (!dev_is_expander(child->dev_type))
1118 			continue;
1119 		if (sub_addr[0] == 0) {
1120 			sas_find_sub_addr(child, sub_addr);
1121 			continue;
1122 		} else {
1123 			u8 s2[SAS_ADDR_SIZE];
1124 
1125 			if (sas_find_sub_addr(child, s2) &&
1126 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1127 
1128 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1129 					  SAS_ADDR(dev->sas_addr),
1130 					  SAS_ADDR(child->sas_addr),
1131 					  SAS_ADDR(s2),
1132 					  SAS_ADDR(sub_addr));
1133 
1134 				sas_ex_disable_port(child, s2);
1135 			}
1136 		}
1137 	}
1138 	return 0;
1139 }
1140 /**
1141  * sas_ex_discover_devices - discover devices attached to this expander
1142  * @dev: pointer to the expander domain device
1143  * @single: if you want to do a single phy, else set to -1;
1144  *
1145  * Configure this expander for use with its devices and register the
1146  * devices of this expander.
1147  */
1148 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1149 {
1150 	struct expander_device *ex = &dev->ex_dev;
1151 	int i = 0, end = ex->num_phys;
1152 	int res = 0;
1153 
1154 	if (0 <= single && single < end) {
1155 		i = single;
1156 		end = i+1;
1157 	}
1158 
1159 	for ( ; i < end; i++) {
1160 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1161 
1162 		if (ex_phy->phy_state == PHY_VACANT ||
1163 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1164 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1165 			continue;
1166 
1167 		switch (ex_phy->linkrate) {
1168 		case SAS_PHY_DISABLED:
1169 		case SAS_PHY_RESET_PROBLEM:
1170 		case SAS_SATA_PORT_SELECTOR:
1171 			continue;
1172 		default:
1173 			res = sas_ex_discover_dev(dev, i);
1174 			if (res)
1175 				break;
1176 			continue;
1177 		}
1178 	}
1179 
1180 	if (!res)
1181 		sas_check_level_subtractive_boundary(dev);
1182 
1183 	return res;
1184 }
1185 
1186 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1187 {
1188 	struct expander_device *ex = &dev->ex_dev;
1189 	int i;
1190 	u8  *sub_sas_addr = NULL;
1191 
1192 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1193 		return 0;
1194 
1195 	for (i = 0; i < ex->num_phys; i++) {
1196 		struct ex_phy *phy = &ex->ex_phy[i];
1197 
1198 		if (phy->phy_state == PHY_VACANT ||
1199 		    phy->phy_state == PHY_NOT_PRESENT)
1200 			continue;
1201 
1202 		if (dev_is_expander(phy->attached_dev_type) &&
1203 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1204 
1205 			if (!sub_sas_addr)
1206 				sub_sas_addr = &phy->attached_sas_addr[0];
1207 			else if (SAS_ADDR(sub_sas_addr) !=
1208 				 SAS_ADDR(phy->attached_sas_addr)) {
1209 
1210 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1211 					  SAS_ADDR(dev->sas_addr), i,
1212 					  SAS_ADDR(phy->attached_sas_addr),
1213 					  SAS_ADDR(sub_sas_addr));
1214 				sas_ex_disable_phy(dev, i);
1215 			}
1216 		}
1217 	}
1218 	return 0;
1219 }
1220 
1221 static void sas_print_parent_topology_bug(struct domain_device *child,
1222 						 struct ex_phy *parent_phy,
1223 						 struct ex_phy *child_phy)
1224 {
1225 	static const char *ex_type[] = {
1226 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1227 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1228 	};
1229 	struct domain_device *parent = child->parent;
1230 
1231 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1232 		  ex_type[parent->dev_type],
1233 		  SAS_ADDR(parent->sas_addr),
1234 		  parent_phy->phy_id,
1235 
1236 		  ex_type[child->dev_type],
1237 		  SAS_ADDR(child->sas_addr),
1238 		  child_phy->phy_id,
1239 
1240 		  sas_route_char(parent, parent_phy),
1241 		  sas_route_char(child, child_phy));
1242 }
1243 
1244 static int sas_check_eeds(struct domain_device *child,
1245 				 struct ex_phy *parent_phy,
1246 				 struct ex_phy *child_phy)
1247 {
1248 	int res = 0;
1249 	struct domain_device *parent = child->parent;
1250 
1251 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1252 		res = -ENODEV;
1253 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1254 			SAS_ADDR(parent->sas_addr),
1255 			parent_phy->phy_id,
1256 			SAS_ADDR(child->sas_addr),
1257 			child_phy->phy_id,
1258 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1259 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1260 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1261 		       SAS_ADDR_SIZE);
1262 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1263 		       SAS_ADDR_SIZE);
1264 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1265 		    SAS_ADDR(parent->sas_addr)) ||
1266 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1267 		    SAS_ADDR(child->sas_addr)))
1268 		   &&
1269 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1270 		     SAS_ADDR(parent->sas_addr)) ||
1271 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1272 		     SAS_ADDR(child->sas_addr))))
1273 		;
1274 	else {
1275 		res = -ENODEV;
1276 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1277 			SAS_ADDR(parent->sas_addr),
1278 			parent_phy->phy_id,
1279 			SAS_ADDR(child->sas_addr),
1280 			child_phy->phy_id);
1281 	}
1282 
1283 	return res;
1284 }
1285 
1286 /* Here we spill over 80 columns.  It is intentional.
1287  */
1288 static int sas_check_parent_topology(struct domain_device *child)
1289 {
1290 	struct expander_device *child_ex = &child->ex_dev;
1291 	struct expander_device *parent_ex;
1292 	int i;
1293 	int res = 0;
1294 
1295 	if (!child->parent)
1296 		return 0;
1297 
1298 	if (!dev_is_expander(child->parent->dev_type))
1299 		return 0;
1300 
1301 	parent_ex = &child->parent->ex_dev;
1302 
1303 	for (i = 0; i < parent_ex->num_phys; i++) {
1304 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1305 		struct ex_phy *child_phy;
1306 
1307 		if (parent_phy->phy_state == PHY_VACANT ||
1308 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1309 			continue;
1310 
1311 		if (!sas_phy_match_dev_addr(child, parent_phy))
1312 			continue;
1313 
1314 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1315 
1316 		switch (child->parent->dev_type) {
1317 		case SAS_EDGE_EXPANDER_DEVICE:
1318 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1319 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1320 				    child_phy->routing_attr != TABLE_ROUTING) {
1321 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1322 					res = -ENODEV;
1323 				}
1324 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1325 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1326 					res = sas_check_eeds(child, parent_phy, child_phy);
1327 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1328 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1329 					res = -ENODEV;
1330 				}
1331 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1332 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1333 				    (child_phy->routing_attr == TABLE_ROUTING &&
1334 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1335 					/* All good */;
1336 				} else {
1337 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338 					res = -ENODEV;
1339 				}
1340 			}
1341 			break;
1342 		case SAS_FANOUT_EXPANDER_DEVICE:
1343 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1344 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1345 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346 				res = -ENODEV;
1347 			}
1348 			break;
1349 		default:
1350 			break;
1351 		}
1352 	}
1353 
1354 	return res;
1355 }
1356 
1357 #define RRI_REQ_SIZE  16
1358 #define RRI_RESP_SIZE 44
1359 
1360 static int sas_configure_present(struct domain_device *dev, int phy_id,
1361 				 u8 *sas_addr, int *index, int *present)
1362 {
1363 	int i, res = 0;
1364 	struct expander_device *ex = &dev->ex_dev;
1365 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1366 	u8 *rri_req;
1367 	u8 *rri_resp;
1368 
1369 	*present = 0;
1370 	*index = 0;
1371 
1372 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1373 	if (!rri_req)
1374 		return -ENOMEM;
1375 
1376 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1377 	if (!rri_resp) {
1378 		kfree(rri_req);
1379 		return -ENOMEM;
1380 	}
1381 
1382 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1383 	rri_req[9] = phy_id;
1384 
1385 	for (i = 0; i < ex->max_route_indexes ; i++) {
1386 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1387 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1388 				       RRI_RESP_SIZE);
1389 		if (res)
1390 			goto out;
1391 		res = rri_resp[2];
1392 		if (res == SMP_RESP_NO_INDEX) {
1393 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1394 				SAS_ADDR(dev->sas_addr), phy_id, i);
1395 			goto out;
1396 		} else if (res != SMP_RESP_FUNC_ACC) {
1397 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1398 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1399 				  i, res);
1400 			goto out;
1401 		}
1402 		if (SAS_ADDR(sas_addr) != 0) {
1403 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1404 				*index = i;
1405 				if ((rri_resp[12] & 0x80) == 0x80)
1406 					*present = 0;
1407 				else
1408 					*present = 1;
1409 				goto out;
1410 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1411 				*index = i;
1412 				*present = 0;
1413 				goto out;
1414 			}
1415 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1416 			   phy->last_da_index < i) {
1417 			phy->last_da_index = i;
1418 			*index = i;
1419 			*present = 0;
1420 			goto out;
1421 		}
1422 	}
1423 	res = -1;
1424 out:
1425 	kfree(rri_req);
1426 	kfree(rri_resp);
1427 	return res;
1428 }
1429 
1430 #define CRI_REQ_SIZE  44
1431 #define CRI_RESP_SIZE  8
1432 
1433 static int sas_configure_set(struct domain_device *dev, int phy_id,
1434 			     u8 *sas_addr, int index, int include)
1435 {
1436 	int res;
1437 	u8 *cri_req;
1438 	u8 *cri_resp;
1439 
1440 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1441 	if (!cri_req)
1442 		return -ENOMEM;
1443 
1444 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1445 	if (!cri_resp) {
1446 		kfree(cri_req);
1447 		return -ENOMEM;
1448 	}
1449 
1450 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1451 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1452 	cri_req[9] = phy_id;
1453 	if (SAS_ADDR(sas_addr) == 0 || !include)
1454 		cri_req[12] |= 0x80;
1455 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1456 
1457 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1458 			       CRI_RESP_SIZE);
1459 	if (res)
1460 		goto out;
1461 	res = cri_resp[2];
1462 	if (res == SMP_RESP_NO_INDEX) {
1463 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1464 			SAS_ADDR(dev->sas_addr), phy_id, index);
1465 	}
1466 out:
1467 	kfree(cri_req);
1468 	kfree(cri_resp);
1469 	return res;
1470 }
1471 
1472 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1473 				    u8 *sas_addr, int include)
1474 {
1475 	int index;
1476 	int present;
1477 	int res;
1478 
1479 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1480 	if (res)
1481 		return res;
1482 	if (include ^ present)
1483 		return sas_configure_set(dev, phy_id, sas_addr, index,
1484 					 include);
1485 
1486 	return res;
1487 }
1488 
1489 /**
1490  * sas_configure_parent - configure routing table of parent
1491  * @parent: parent expander
1492  * @child: child expander
1493  * @sas_addr: SAS port identifier of device directly attached to child
1494  * @include: whether or not to include @child in the expander routing table
1495  */
1496 static int sas_configure_parent(struct domain_device *parent,
1497 				struct domain_device *child,
1498 				u8 *sas_addr, int include)
1499 {
1500 	struct expander_device *ex_parent = &parent->ex_dev;
1501 	int res = 0;
1502 	int i;
1503 
1504 	if (parent->parent) {
1505 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1506 					   include);
1507 		if (res)
1508 			return res;
1509 	}
1510 
1511 	if (ex_parent->conf_route_table == 0) {
1512 		pr_debug("ex %016llx has self-configuring routing table\n",
1513 			 SAS_ADDR(parent->sas_addr));
1514 		return 0;
1515 	}
1516 
1517 	for (i = 0; i < ex_parent->num_phys; i++) {
1518 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1519 
1520 		if ((phy->routing_attr == TABLE_ROUTING) &&
1521 		    sas_phy_match_dev_addr(child, phy)) {
1522 			res = sas_configure_phy(parent, i, sas_addr, include);
1523 			if (res)
1524 				return res;
1525 		}
1526 	}
1527 
1528 	return res;
1529 }
1530 
1531 /**
1532  * sas_configure_routing - configure routing
1533  * @dev: expander device
1534  * @sas_addr: port identifier of device directly attached to the expander device
1535  */
1536 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1537 {
1538 	if (dev->parent)
1539 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1540 	return 0;
1541 }
1542 
1543 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1544 {
1545 	if (dev->parent)
1546 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1547 	return 0;
1548 }
1549 
1550 /**
1551  * sas_discover_expander - expander discovery
1552  * @dev: pointer to expander domain device
1553  *
1554  * See comment in sas_discover_sata().
1555  */
1556 static int sas_discover_expander(struct domain_device *dev)
1557 {
1558 	int res;
1559 
1560 	res = sas_notify_lldd_dev_found(dev);
1561 	if (res)
1562 		return res;
1563 
1564 	res = sas_ex_general(dev);
1565 	if (res)
1566 		goto out_err;
1567 	res = sas_ex_manuf_info(dev);
1568 	if (res)
1569 		goto out_err;
1570 
1571 	res = sas_expander_discover(dev);
1572 	if (res) {
1573 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1574 			SAS_ADDR(dev->sas_addr), res);
1575 		goto out_err;
1576 	}
1577 
1578 	sas_check_ex_subtractive_boundary(dev);
1579 	res = sas_check_parent_topology(dev);
1580 	if (res)
1581 		goto out_err;
1582 	return 0;
1583 out_err:
1584 	sas_notify_lldd_dev_gone(dev);
1585 	return res;
1586 }
1587 
1588 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1589 {
1590 	int res = 0;
1591 	struct domain_device *dev;
1592 
1593 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1594 		if (dev_is_expander(dev->dev_type)) {
1595 			struct sas_expander_device *ex =
1596 				rphy_to_expander_device(dev->rphy);
1597 
1598 			if (level == ex->level)
1599 				res = sas_ex_discover_devices(dev, -1);
1600 			else if (level > 0)
1601 				res = sas_ex_discover_devices(port->port_dev, -1);
1602 
1603 		}
1604 	}
1605 
1606 	return res;
1607 }
1608 
1609 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1610 {
1611 	int res;
1612 	int level;
1613 
1614 	do {
1615 		level = port->disc.max_level;
1616 		res = sas_ex_level_discovery(port, level);
1617 		mb();
1618 	} while (level < port->disc.max_level);
1619 
1620 	return res;
1621 }
1622 
1623 int sas_discover_root_expander(struct domain_device *dev)
1624 {
1625 	int res;
1626 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1627 
1628 	res = sas_rphy_add(dev->rphy);
1629 	if (res)
1630 		goto out_err;
1631 
1632 	ex->level = dev->port->disc.max_level; /* 0 */
1633 	res = sas_discover_expander(dev);
1634 	if (res)
1635 		goto out_err2;
1636 
1637 	sas_ex_bfs_disc(dev->port);
1638 
1639 	return res;
1640 
1641 out_err2:
1642 	sas_rphy_remove(dev->rphy);
1643 out_err:
1644 	return res;
1645 }
1646 
1647 /* ---------- Domain revalidation ---------- */
1648 
1649 static int sas_get_phy_discover(struct domain_device *dev,
1650 				int phy_id, struct smp_disc_resp *disc_resp)
1651 {
1652 	int res;
1653 	u8 *disc_req;
1654 
1655 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1656 	if (!disc_req)
1657 		return -ENOMEM;
1658 
1659 	disc_req[1] = SMP_DISCOVER;
1660 	disc_req[9] = phy_id;
1661 
1662 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1663 			       disc_resp, DISCOVER_RESP_SIZE);
1664 	if (res)
1665 		goto out;
1666 	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1667 		res = disc_resp->result;
1668 out:
1669 	kfree(disc_req);
1670 	return res;
1671 }
1672 
1673 static int sas_get_phy_change_count(struct domain_device *dev,
1674 				    int phy_id, int *pcc)
1675 {
1676 	int res;
1677 	struct smp_disc_resp *disc_resp;
1678 
1679 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1680 	if (!disc_resp)
1681 		return -ENOMEM;
1682 
1683 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1684 	if (!res)
1685 		*pcc = disc_resp->disc.change_count;
1686 
1687 	kfree(disc_resp);
1688 	return res;
1689 }
1690 
1691 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1692 			     u8 *sas_addr, enum sas_device_type *type)
1693 {
1694 	int res;
1695 	struct smp_disc_resp *disc_resp;
1696 
1697 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1698 	if (!disc_resp)
1699 		return -ENOMEM;
1700 
1701 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1702 	if (res == 0) {
1703 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1704 		       SAS_ADDR_SIZE);
1705 		*type = to_dev_type(&disc_resp->disc);
1706 		if (*type == 0)
1707 			memset(sas_addr, 0, SAS_ADDR_SIZE);
1708 	}
1709 	kfree(disc_resp);
1710 	return res;
1711 }
1712 
1713 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1714 			      int from_phy, bool update)
1715 {
1716 	struct expander_device *ex = &dev->ex_dev;
1717 	int res = 0;
1718 	int i;
1719 
1720 	for (i = from_phy; i < ex->num_phys; i++) {
1721 		int phy_change_count = 0;
1722 
1723 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1724 		switch (res) {
1725 		case SMP_RESP_PHY_VACANT:
1726 		case SMP_RESP_NO_PHY:
1727 			continue;
1728 		case SMP_RESP_FUNC_ACC:
1729 			break;
1730 		default:
1731 			return res;
1732 		}
1733 
1734 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1735 			if (update)
1736 				ex->ex_phy[i].phy_change_count =
1737 					phy_change_count;
1738 			*phy_id = i;
1739 			return 0;
1740 		}
1741 	}
1742 	return 0;
1743 }
1744 
1745 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1746 {
1747 	int res;
1748 	u8  *rg_req;
1749 	struct smp_rg_resp  *rg_resp;
1750 
1751 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1752 	if (!rg_req)
1753 		return -ENOMEM;
1754 
1755 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1756 	if (!rg_resp) {
1757 		kfree(rg_req);
1758 		return -ENOMEM;
1759 	}
1760 
1761 	rg_req[1] = SMP_REPORT_GENERAL;
1762 
1763 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1764 			       RG_RESP_SIZE);
1765 	if (res)
1766 		goto out;
1767 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1768 		res = rg_resp->result;
1769 		goto out;
1770 	}
1771 
1772 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1773 out:
1774 	kfree(rg_resp);
1775 	kfree(rg_req);
1776 	return res;
1777 }
1778 /**
1779  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1780  * @dev:domain device to be detect.
1781  * @src_dev: the device which originated BROADCAST(CHANGE).
1782  *
1783  * Add self-configuration expander support. Suppose two expander cascading,
1784  * when the first level expander is self-configuring, hotplug the disks in
1785  * second level expander, BROADCAST(CHANGE) will not only be originated
1786  * in the second level expander, but also be originated in the first level
1787  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1788  * expander changed count in two level expanders will all increment at least
1789  * once, but the phy which chang count has changed is the source device which
1790  * we concerned.
1791  */
1792 
1793 static int sas_find_bcast_dev(struct domain_device *dev,
1794 			      struct domain_device **src_dev)
1795 {
1796 	struct expander_device *ex = &dev->ex_dev;
1797 	int ex_change_count = -1;
1798 	int phy_id = -1;
1799 	int res;
1800 	struct domain_device *ch;
1801 
1802 	res = sas_get_ex_change_count(dev, &ex_change_count);
1803 	if (res)
1804 		goto out;
1805 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1806 		/* Just detect if this expander phys phy change count changed,
1807 		* in order to determine if this expander originate BROADCAST,
1808 		* and do not update phy change count field in our structure.
1809 		*/
1810 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1811 		if (phy_id != -1) {
1812 			*src_dev = dev;
1813 			ex->ex_change_count = ex_change_count;
1814 			pr_info("ex %016llx phy%02d change count has changed\n",
1815 				SAS_ADDR(dev->sas_addr), phy_id);
1816 			return res;
1817 		} else
1818 			pr_info("ex %016llx phys DID NOT change\n",
1819 				SAS_ADDR(dev->sas_addr));
1820 	}
1821 	list_for_each_entry(ch, &ex->children, siblings) {
1822 		if (dev_is_expander(ch->dev_type)) {
1823 			res = sas_find_bcast_dev(ch, src_dev);
1824 			if (*src_dev)
1825 				return res;
1826 		}
1827 	}
1828 out:
1829 	return res;
1830 }
1831 
1832 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1833 {
1834 	struct expander_device *ex = &dev->ex_dev;
1835 	struct domain_device *child, *n;
1836 
1837 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1838 		set_bit(SAS_DEV_GONE, &child->state);
1839 		if (dev_is_expander(child->dev_type))
1840 			sas_unregister_ex_tree(port, child);
1841 		else
1842 			sas_unregister_dev(port, child);
1843 	}
1844 	sas_unregister_dev(port, dev);
1845 }
1846 
1847 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1848 					 int phy_id, bool last)
1849 {
1850 	struct expander_device *ex_dev = &parent->ex_dev;
1851 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1852 	struct domain_device *child, *n, *found = NULL;
1853 	if (last) {
1854 		list_for_each_entry_safe(child, n,
1855 			&ex_dev->children, siblings) {
1856 			if (sas_phy_match_dev_addr(child, phy)) {
1857 				set_bit(SAS_DEV_GONE, &child->state);
1858 				if (dev_is_expander(child->dev_type))
1859 					sas_unregister_ex_tree(parent->port, child);
1860 				else
1861 					sas_unregister_dev(parent->port, child);
1862 				found = child;
1863 				break;
1864 			}
1865 		}
1866 		sas_disable_routing(parent, phy->attached_sas_addr);
1867 	}
1868 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1869 	if (phy->port) {
1870 		sas_port_delete_phy(phy->port, phy->phy);
1871 		sas_device_set_phy(found, phy->port);
1872 		if (phy->port->num_phys == 0)
1873 			list_add_tail(&phy->port->del_list,
1874 				&parent->port->sas_port_del_list);
1875 		phy->port = NULL;
1876 	}
1877 }
1878 
1879 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1880 					  const int level)
1881 {
1882 	struct expander_device *ex_root = &root->ex_dev;
1883 	struct domain_device *child;
1884 	int res = 0;
1885 
1886 	list_for_each_entry(child, &ex_root->children, siblings) {
1887 		if (dev_is_expander(child->dev_type)) {
1888 			struct sas_expander_device *ex =
1889 				rphy_to_expander_device(child->rphy);
1890 
1891 			if (level > ex->level)
1892 				res = sas_discover_bfs_by_root_level(child,
1893 								     level);
1894 			else if (level == ex->level)
1895 				res = sas_ex_discover_devices(child, -1);
1896 		}
1897 	}
1898 	return res;
1899 }
1900 
1901 static int sas_discover_bfs_by_root(struct domain_device *dev)
1902 {
1903 	int res;
1904 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1905 	int level = ex->level+1;
1906 
1907 	res = sas_ex_discover_devices(dev, -1);
1908 	if (res)
1909 		goto out;
1910 	do {
1911 		res = sas_discover_bfs_by_root_level(dev, level);
1912 		mb();
1913 		level += 1;
1914 	} while (level <= dev->port->disc.max_level);
1915 out:
1916 	return res;
1917 }
1918 
1919 static int sas_discover_new(struct domain_device *dev, int phy_id)
1920 {
1921 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1922 	struct domain_device *child;
1923 	int res;
1924 
1925 	pr_debug("ex %016llx phy%02d new device attached\n",
1926 		 SAS_ADDR(dev->sas_addr), phy_id);
1927 	res = sas_ex_phy_discover(dev, phy_id);
1928 	if (res)
1929 		return res;
1930 
1931 	if (sas_ex_join_wide_port(dev, phy_id))
1932 		return 0;
1933 
1934 	res = sas_ex_discover_devices(dev, phy_id);
1935 	if (res)
1936 		return res;
1937 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1938 		if (sas_phy_match_dev_addr(child, ex_phy)) {
1939 			if (dev_is_expander(child->dev_type))
1940 				res = sas_discover_bfs_by_root(child);
1941 			break;
1942 		}
1943 	}
1944 	return res;
1945 }
1946 
1947 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1948 {
1949 	if (old == new)
1950 		return true;
1951 
1952 	/* treat device directed resets as flutter, if we went
1953 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1954 	 */
1955 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1956 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1957 		return true;
1958 
1959 	return false;
1960 }
1961 
1962 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1963 			      bool last, int sibling)
1964 {
1965 	struct expander_device *ex = &dev->ex_dev;
1966 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1967 	enum sas_device_type type = SAS_PHY_UNUSED;
1968 	u8 sas_addr[SAS_ADDR_SIZE];
1969 	char msg[80] = "";
1970 	int res;
1971 
1972 	if (!last)
1973 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1974 
1975 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1976 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1977 
1978 	memset(sas_addr, 0, SAS_ADDR_SIZE);
1979 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1980 	switch (res) {
1981 	case SMP_RESP_NO_PHY:
1982 		phy->phy_state = PHY_NOT_PRESENT;
1983 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1984 		return res;
1985 	case SMP_RESP_PHY_VACANT:
1986 		phy->phy_state = PHY_VACANT;
1987 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1988 		return res;
1989 	case SMP_RESP_FUNC_ACC:
1990 		break;
1991 	case -ECOMM:
1992 		break;
1993 	default:
1994 		return res;
1995 	}
1996 
1997 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1998 		phy->phy_state = PHY_EMPTY;
1999 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2000 		/*
2001 		 * Even though the PHY is empty, for convenience we discover
2002 		 * the PHY to update the PHY info, like negotiated linkrate.
2003 		 */
2004 		sas_ex_phy_discover(dev, phy_id);
2005 		return res;
2006 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2007 		   dev_type_flutter(type, phy->attached_dev_type)) {
2008 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2009 		char *action = "";
2010 
2011 		sas_ex_phy_discover(dev, phy_id);
2012 
2013 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2014 			action = ", needs recovery";
2015 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2016 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2017 		return res;
2018 	}
2019 
2020 	/* we always have to delete the old device when we went here */
2021 	pr_info("ex %016llx phy%02d replace %016llx\n",
2022 		SAS_ADDR(dev->sas_addr), phy_id,
2023 		SAS_ADDR(phy->attached_sas_addr));
2024 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 
2026 	return sas_discover_new(dev, phy_id);
2027 }
2028 
2029 /**
2030  * sas_rediscover - revalidate the domain.
2031  * @dev:domain device to be detect.
2032  * @phy_id: the phy id will be detected.
2033  *
2034  * NOTE: this process _must_ quit (return) as soon as any connection
2035  * errors are encountered.  Connection recovery is done elsewhere.
2036  * Discover process only interrogates devices in order to discover the
2037  * domain.For plugging out, we un-register the device only when it is
2038  * the last phy in the port, for other phys in this port, we just delete it
2039  * from the port.For inserting, we do discovery when it is the
2040  * first phy,for other phys in this port, we add it to the port to
2041  * forming the wide-port.
2042  */
2043 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2044 {
2045 	struct expander_device *ex = &dev->ex_dev;
2046 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2047 	int res = 0;
2048 	int i;
2049 	bool last = true;	/* is this the last phy of the port */
2050 
2051 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2052 		 SAS_ADDR(dev->sas_addr), phy_id);
2053 
2054 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2055 		for (i = 0; i < ex->num_phys; i++) {
2056 			struct ex_phy *phy = &ex->ex_phy[i];
2057 
2058 			if (i == phy_id)
2059 				continue;
2060 			if (sas_phy_addr_match(phy, changed_phy)) {
2061 				last = false;
2062 				break;
2063 			}
2064 		}
2065 		res = sas_rediscover_dev(dev, phy_id, last, i);
2066 	} else
2067 		res = sas_discover_new(dev, phy_id);
2068 	return res;
2069 }
2070 
2071 /**
2072  * sas_ex_revalidate_domain - revalidate the domain
2073  * @port_dev: port domain device.
2074  *
2075  * NOTE: this process _must_ quit (return) as soon as any connection
2076  * errors are encountered.  Connection recovery is done elsewhere.
2077  * Discover process only interrogates devices in order to discover the
2078  * domain.
2079  */
2080 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2081 {
2082 	int res;
2083 	struct domain_device *dev = NULL;
2084 
2085 	res = sas_find_bcast_dev(port_dev, &dev);
2086 	if (res == 0 && dev) {
2087 		struct expander_device *ex = &dev->ex_dev;
2088 		int i = 0, phy_id;
2089 
2090 		do {
2091 			phy_id = -1;
2092 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2093 			if (phy_id == -1)
2094 				break;
2095 			res = sas_rediscover(dev, phy_id);
2096 			i = phy_id + 1;
2097 		} while (i < ex->num_phys);
2098 	}
2099 	return res;
2100 }
2101 
2102 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2103 			     struct domain_device *dev)
2104 {
2105 	struct ex_phy *phy;
2106 	int phy_id;
2107 
2108 	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2109 		phy = &ex_dev->ex_phy[phy_id];
2110 		if (sas_phy_match_dev_addr(dev, phy))
2111 			return phy_id;
2112 	}
2113 
2114 	return -ENODEV;
2115 }
2116 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2117 
2118 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2119 		struct sas_rphy *rphy)
2120 {
2121 	struct domain_device *dev;
2122 	unsigned int rcvlen = 0;
2123 	int ret = -EINVAL;
2124 
2125 	/* no rphy means no smp target support (ie aic94xx host) */
2126 	if (!rphy)
2127 		return sas_smp_host_handler(job, shost);
2128 
2129 	switch (rphy->identify.device_type) {
2130 	case SAS_EDGE_EXPANDER_DEVICE:
2131 	case SAS_FANOUT_EXPANDER_DEVICE:
2132 		break;
2133 	default:
2134 		pr_err("%s: can we send a smp request to a device?\n",
2135 		       __func__);
2136 		goto out;
2137 	}
2138 
2139 	dev = sas_find_dev_by_rphy(rphy);
2140 	if (!dev) {
2141 		pr_err("%s: fail to find a domain_device?\n", __func__);
2142 		goto out;
2143 	}
2144 
2145 	/* do we need to support multiple segments? */
2146 	if (job->request_payload.sg_cnt > 1 ||
2147 	    job->reply_payload.sg_cnt > 1) {
2148 		pr_info("%s: multiple segments req %u, rsp %u\n",
2149 			__func__, job->request_payload.payload_len,
2150 			job->reply_payload.payload_len);
2151 		goto out;
2152 	}
2153 
2154 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2155 			job->reply_payload.sg_list);
2156 	if (ret >= 0) {
2157 		/* bsg_job_done() requires the length received  */
2158 		rcvlen = job->reply_payload.payload_len - ret;
2159 		ret = 0;
2160 	}
2161 
2162 out:
2163 	bsg_job_done(job, ret, rcvlen);
2164 }
2165