1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10 
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15 
16 #include "sas_internal.h"
17 
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22 
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 			     u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28 
29 /* ---------- SMP task management ---------- */
30 
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33 
34 static int smp_execute_task_sg(struct domain_device *dev,
35 		struct scatterlist *req, struct scatterlist *resp)
36 {
37 	int res, retry;
38 	struct sas_task *task = NULL;
39 	struct sas_internal *i =
40 		to_sas_internal(dev->port->ha->core.shost->transportt);
41 	struct sas_ha_struct *ha = dev->port->ha;
42 
43 	pm_runtime_get_sync(ha->dev);
44 	mutex_lock(&dev->ex_dev.cmd_mutex);
45 	for (retry = 0; retry < 3; retry++) {
46 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
47 			res = -ECOMM;
48 			break;
49 		}
50 
51 		task = sas_alloc_slow_task(GFP_KERNEL);
52 		if (!task) {
53 			res = -ENOMEM;
54 			break;
55 		}
56 		task->dev = dev;
57 		task->task_proto = dev->tproto;
58 		task->smp_task.smp_req = *req;
59 		task->smp_task.smp_resp = *resp;
60 
61 		task->task_done = sas_task_internal_done;
62 
63 		task->slow_task->timer.function = sas_task_internal_timedout;
64 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 		add_timer(&task->slow_task->timer);
66 
67 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68 
69 		if (res) {
70 			del_timer(&task->slow_task->timer);
71 			pr_notice("executing SMP task failed:%d\n", res);
72 			break;
73 		}
74 
75 		wait_for_completion(&task->slow_task->completion);
76 		res = -ECOMM;
77 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 			pr_notice("smp task timed out or aborted\n");
79 			i->dft->lldd_abort_task(task);
80 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 				pr_notice("SMP task aborted and not done\n");
82 				break;
83 			}
84 		}
85 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
87 			res = 0;
88 			break;
89 		}
90 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
92 			/* no error, but return the number of bytes of
93 			 * underrun */
94 			res = task->task_status.residual;
95 			break;
96 		}
97 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 		    task->task_status.stat == SAS_DATA_OVERRUN) {
99 			res = -EMSGSIZE;
100 			break;
101 		}
102 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
104 			break;
105 		else {
106 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107 				  __func__,
108 				  SAS_ADDR(dev->sas_addr),
109 				  task->task_status.resp,
110 				  task->task_status.stat);
111 			sas_free_task(task);
112 			task = NULL;
113 		}
114 	}
115 	mutex_unlock(&dev->ex_dev.cmd_mutex);
116 	pm_runtime_put_sync(ha->dev);
117 
118 	BUG_ON(retry == 3 && task != NULL);
119 	sas_free_task(task);
120 	return res;
121 }
122 
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 			    void *resp, int resp_size)
125 {
126 	struct scatterlist req_sg;
127 	struct scatterlist resp_sg;
128 
129 	sg_init_one(&req_sg, req, req_size);
130 	sg_init_one(&resp_sg, resp, resp_size);
131 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133 
134 /* ---------- Allocations ---------- */
135 
136 static inline void *alloc_smp_req(int size)
137 {
138 	u8 *p = kzalloc(size, GFP_KERNEL);
139 	if (p)
140 		p[0] = SMP_REQUEST;
141 	return p;
142 }
143 
144 static inline void *alloc_smp_resp(int size)
145 {
146 	return kzalloc(size, GFP_KERNEL);
147 }
148 
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151 	switch (phy->routing_attr) {
152 	case TABLE_ROUTING:
153 		if (dev->ex_dev.t2t_supp)
154 			return 'U';
155 		else
156 			return 'T';
157 	case DIRECT_ROUTING:
158 		return 'D';
159 	case SUBTRACTIVE_ROUTING:
160 		return 'S';
161 	default:
162 		return '?';
163 	}
164 }
165 
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168 	/* This is detecting a failure to transmit initial dev to host
169 	 * FIS as described in section J.5 of sas-2 r16
170 	 */
171 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 		return SAS_SATA_PENDING;
174 	else
175 		return dr->attached_dev_type;
176 }
177 
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
179 {
180 	enum sas_device_type dev_type;
181 	enum sas_linkrate linkrate;
182 	u8 sas_addr[SAS_ADDR_SIZE];
183 	struct smp_resp *resp = rsp;
184 	struct discover_resp *dr = &resp->disc;
185 	struct sas_ha_struct *ha = dev->port->ha;
186 	struct expander_device *ex = &dev->ex_dev;
187 	struct ex_phy *phy = &ex->ex_phy[phy_id];
188 	struct sas_rphy *rphy = dev->rphy;
189 	bool new_phy = !phy->phy;
190 	char *type;
191 
192 	if (new_phy) {
193 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194 			return;
195 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196 
197 		/* FIXME: error_handling */
198 		BUG_ON(!phy->phy);
199 	}
200 
201 	switch (resp->result) {
202 	case SMP_RESP_PHY_VACANT:
203 		phy->phy_state = PHY_VACANT;
204 		break;
205 	default:
206 		phy->phy_state = PHY_NOT_PRESENT;
207 		break;
208 	case SMP_RESP_FUNC_ACC:
209 		phy->phy_state = PHY_EMPTY; /* do not know yet */
210 		break;
211 	}
212 
213 	/* check if anything important changed to squelch debug */
214 	dev_type = phy->attached_dev_type;
215 	linkrate  = phy->linkrate;
216 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217 
218 	/* Handle vacant phy - rest of dr data is not valid so skip it */
219 	if (phy->phy_state == PHY_VACANT) {
220 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 		phy->attached_dev_type = SAS_PHY_UNUSED;
222 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 			phy->phy_id = phy_id;
224 			goto skip;
225 		} else
226 			goto out;
227 	}
228 
229 	phy->attached_dev_type = to_dev_type(dr);
230 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231 		goto out;
232 	phy->phy_id = phy_id;
233 	phy->linkrate = dr->linkrate;
234 	phy->attached_sata_host = dr->attached_sata_host;
235 	phy->attached_sata_dev  = dr->attached_sata_dev;
236 	phy->attached_sata_ps   = dr->attached_sata_ps;
237 	phy->attached_iproto = dr->iproto << 1;
238 	phy->attached_tproto = dr->tproto << 1;
239 	/* help some expanders that fail to zero sas_address in the 'no
240 	 * device' case
241 	 */
242 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245 	else
246 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 	phy->attached_phy_id = dr->attached_phy_id;
248 	phy->phy_change_count = dr->change_count;
249 	phy->routing_attr = dr->routing_attr;
250 	phy->virtual = dr->virtual;
251 	phy->last_da_index = -1;
252 
253 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 	phy->phy->identify.device_type = dr->attached_dev_type;
255 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 	if (!phy->attached_tproto && dr->attached_sata_dev)
258 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 	phy->phy->identify.phy_identifier = phy_id;
260 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 	phy->phy->negotiated_linkrate = phy->linkrate;
265 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266 
267  skip:
268 	if (new_phy)
269 		if (sas_phy_add(phy->phy)) {
270 			sas_phy_free(phy->phy);
271 			return;
272 		}
273 
274  out:
275 	switch (phy->attached_dev_type) {
276 	case SAS_SATA_PENDING:
277 		type = "stp pending";
278 		break;
279 	case SAS_PHY_UNUSED:
280 		type = "no device";
281 		break;
282 	case SAS_END_DEVICE:
283 		if (phy->attached_iproto) {
284 			if (phy->attached_tproto)
285 				type = "host+target";
286 			else
287 				type = "host";
288 		} else {
289 			if (dr->attached_sata_dev)
290 				type = "stp";
291 			else
292 				type = "ssp";
293 		}
294 		break;
295 	case SAS_EDGE_EXPANDER_DEVICE:
296 	case SAS_FANOUT_EXPANDER_DEVICE:
297 		type = "smp";
298 		break;
299 	default:
300 		type = "unknown";
301 	}
302 
303 	/* this routine is polled by libata error recovery so filter
304 	 * unimportant messages
305 	 */
306 	if (new_phy || phy->attached_dev_type != dev_type ||
307 	    phy->linkrate != linkrate ||
308 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309 		/* pass */;
310 	else
311 		return;
312 
313 	/* if the attached device type changed and ata_eh is active,
314 	 * make sure we run revalidation when eh completes (see:
315 	 * sas_enable_revalidation)
316 	 */
317 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319 
320 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 		 sas_route_char(dev, phy), phy->linkrate,
324 		 SAS_ADDR(phy->attached_sas_addr), type);
325 }
326 
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 	struct domain_device *dev;
332 	struct sas_rphy *rphy;
333 
334 	if (!ex_phy->port)
335 		return NULL;
336 
337 	rphy = ex_phy->port->rphy;
338 	if (!rphy)
339 		return NULL;
340 
341 	dev = sas_find_dev_by_rphy(rphy);
342 
343 	if (dev && dev_is_sata(dev))
344 		return dev;
345 
346 	return NULL;
347 }
348 
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE 56
351 
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 				      u8 *disc_resp, int single)
354 {
355 	struct discover_resp *dr;
356 	int res;
357 
358 	disc_req[9] = single;
359 
360 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
361 			       disc_resp, DISCOVER_RESP_SIZE);
362 	if (res)
363 		return res;
364 	dr = &((struct smp_resp *)disc_resp)->disc;
365 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 		pr_notice("Found loopback topology, just ignore it!\n");
367 		return 0;
368 	}
369 	sas_set_ex_phy(dev, single, disc_resp);
370 	return 0;
371 }
372 
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375 	struct expander_device *ex = &dev->ex_dev;
376 	int  res = 0;
377 	u8   *disc_req;
378 	u8   *disc_resp;
379 
380 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381 	if (!disc_req)
382 		return -ENOMEM;
383 
384 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385 	if (!disc_resp) {
386 		kfree(disc_req);
387 		return -ENOMEM;
388 	}
389 
390 	disc_req[1] = SMP_DISCOVER;
391 
392 	if (0 <= single && single < ex->num_phys) {
393 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394 	} else {
395 		int i;
396 
397 		for (i = 0; i < ex->num_phys; i++) {
398 			res = sas_ex_phy_discover_helper(dev, disc_req,
399 							 disc_resp, i);
400 			if (res)
401 				goto out_err;
402 		}
403 	}
404 out_err:
405 	kfree(disc_resp);
406 	kfree(disc_req);
407 	return res;
408 }
409 
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412 	struct expander_device *ex = &dev->ex_dev;
413 	int res;
414 
415 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416 	if (!ex->ex_phy)
417 		return -ENOMEM;
418 
419 	res = sas_ex_phy_discover(dev, -1);
420 	if (res)
421 		goto out_err;
422 
423 	return 0;
424  out_err:
425 	kfree(ex->ex_phy);
426 	ex->ex_phy = NULL;
427 	return res;
428 }
429 
430 #define MAX_EXPANDER_PHYS 128
431 
432 static void ex_assign_report_general(struct domain_device *dev,
433 					    struct smp_resp *resp)
434 {
435 	struct report_general_resp *rg = &resp->rg;
436 
437 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
438 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
439 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
440 	dev->ex_dev.t2t_supp = rg->t2t_supp;
441 	dev->ex_dev.conf_route_table = rg->conf_route_table;
442 	dev->ex_dev.configuring = rg->configuring;
443 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
444 }
445 
446 #define RG_REQ_SIZE   8
447 #define RG_RESP_SIZE 32
448 
449 static int sas_ex_general(struct domain_device *dev)
450 {
451 	u8 *rg_req;
452 	struct smp_resp *rg_resp;
453 	int res;
454 	int i;
455 
456 	rg_req = alloc_smp_req(RG_REQ_SIZE);
457 	if (!rg_req)
458 		return -ENOMEM;
459 
460 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
461 	if (!rg_resp) {
462 		kfree(rg_req);
463 		return -ENOMEM;
464 	}
465 
466 	rg_req[1] = SMP_REPORT_GENERAL;
467 
468 	for (i = 0; i < 5; i++) {
469 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
470 				       RG_RESP_SIZE);
471 
472 		if (res) {
473 			pr_notice("RG to ex %016llx failed:0x%x\n",
474 				  SAS_ADDR(dev->sas_addr), res);
475 			goto out;
476 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
477 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
478 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
479 			res = rg_resp->result;
480 			goto out;
481 		}
482 
483 		ex_assign_report_general(dev, rg_resp);
484 
485 		if (dev->ex_dev.configuring) {
486 			pr_debug("RG: ex %016llx self-configuring...\n",
487 				 SAS_ADDR(dev->sas_addr));
488 			schedule_timeout_interruptible(5*HZ);
489 		} else
490 			break;
491 	}
492 out:
493 	kfree(rg_req);
494 	kfree(rg_resp);
495 	return res;
496 }
497 
498 static void ex_assign_manuf_info(struct domain_device *dev, void
499 					*_mi_resp)
500 {
501 	u8 *mi_resp = _mi_resp;
502 	struct sas_rphy *rphy = dev->rphy;
503 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
504 
505 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
506 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
507 	memcpy(edev->product_rev, mi_resp + 36,
508 	       SAS_EXPANDER_PRODUCT_REV_LEN);
509 
510 	if (mi_resp[8] & 1) {
511 		memcpy(edev->component_vendor_id, mi_resp + 40,
512 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
513 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
514 		edev->component_revision_id = mi_resp[50];
515 	}
516 }
517 
518 #define MI_REQ_SIZE   8
519 #define MI_RESP_SIZE 64
520 
521 static int sas_ex_manuf_info(struct domain_device *dev)
522 {
523 	u8 *mi_req;
524 	u8 *mi_resp;
525 	int res;
526 
527 	mi_req = alloc_smp_req(MI_REQ_SIZE);
528 	if (!mi_req)
529 		return -ENOMEM;
530 
531 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
532 	if (!mi_resp) {
533 		kfree(mi_req);
534 		return -ENOMEM;
535 	}
536 
537 	mi_req[1] = SMP_REPORT_MANUF_INFO;
538 
539 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
540 	if (res) {
541 		pr_notice("MI: ex %016llx failed:0x%x\n",
542 			  SAS_ADDR(dev->sas_addr), res);
543 		goto out;
544 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
545 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
546 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
547 		goto out;
548 	}
549 
550 	ex_assign_manuf_info(dev, mi_resp);
551 out:
552 	kfree(mi_req);
553 	kfree(mi_resp);
554 	return res;
555 }
556 
557 #define PC_REQ_SIZE  44
558 #define PC_RESP_SIZE 8
559 
560 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
561 			enum phy_func phy_func,
562 			struct sas_phy_linkrates *rates)
563 {
564 	u8 *pc_req;
565 	u8 *pc_resp;
566 	int res;
567 
568 	pc_req = alloc_smp_req(PC_REQ_SIZE);
569 	if (!pc_req)
570 		return -ENOMEM;
571 
572 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
573 	if (!pc_resp) {
574 		kfree(pc_req);
575 		return -ENOMEM;
576 	}
577 
578 	pc_req[1] = SMP_PHY_CONTROL;
579 	pc_req[9] = phy_id;
580 	pc_req[10] = phy_func;
581 	if (rates) {
582 		pc_req[32] = rates->minimum_linkrate << 4;
583 		pc_req[33] = rates->maximum_linkrate << 4;
584 	}
585 
586 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
587 	if (res) {
588 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
589 		       SAS_ADDR(dev->sas_addr), phy_id, res);
590 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
591 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
592 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
593 		res = pc_resp[2];
594 	}
595 	kfree(pc_resp);
596 	kfree(pc_req);
597 	return res;
598 }
599 
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602 	struct expander_device *ex = &dev->ex_dev;
603 	struct ex_phy *phy = &ex->ex_phy[phy_id];
604 
605 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 	phy->linkrate = SAS_PHY_DISABLED;
607 }
608 
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611 	struct expander_device *ex = &dev->ex_dev;
612 	int i;
613 
614 	for (i = 0; i < ex->num_phys; i++) {
615 		struct ex_phy *phy = &ex->ex_phy[i];
616 
617 		if (phy->phy_state == PHY_VACANT ||
618 		    phy->phy_state == PHY_NOT_PRESENT)
619 			continue;
620 
621 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 			sas_ex_disable_phy(dev, i);
623 	}
624 }
625 
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 					    u8 *sas_addr)
628 {
629 	struct domain_device *dev;
630 
631 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 		return 1;
633 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 			return 1;
636 	}
637 	return 0;
638 }
639 
640 #define RPEL_REQ_SIZE	16
641 #define RPEL_RESP_SIZE	32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644 	int res;
645 	u8 *req;
646 	u8 *resp;
647 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649 
650 	req = alloc_smp_req(RPEL_REQ_SIZE);
651 	if (!req)
652 		return -ENOMEM;
653 
654 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 	if (!resp) {
656 		kfree(req);
657 		return -ENOMEM;
658 	}
659 
660 	req[1] = SMP_REPORT_PHY_ERR_LOG;
661 	req[9] = phy->number;
662 
663 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 			       resp, RPEL_RESP_SIZE);
665 
666 	if (res)
667 		goto out;
668 
669 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
670 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
671 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
672 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
673 
674  out:
675 	kfree(req);
676 	kfree(resp);
677 	return res;
678 
679 }
680 
681 #ifdef CONFIG_SCSI_SAS_ATA
682 
683 #define RPS_REQ_SIZE  16
684 #define RPS_RESP_SIZE 60
685 
686 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
687 			    struct smp_resp *rps_resp)
688 {
689 	int res;
690 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
691 	u8 *resp = (u8 *)rps_resp;
692 
693 	if (!rps_req)
694 		return -ENOMEM;
695 
696 	rps_req[1] = SMP_REPORT_PHY_SATA;
697 	rps_req[9] = phy_id;
698 
699 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
700 			       rps_resp, RPS_RESP_SIZE);
701 
702 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
703 	 * standards cockup here.  sas-2 explicitly specifies the FIS
704 	 * should be encoded so that FIS type is in resp[24].
705 	 * However, some expanders endian reverse this.  Undo the
706 	 * reversal here */
707 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
708 		int i;
709 
710 		for (i = 0; i < 5; i++) {
711 			int j = 24 + (i*4);
712 			u8 a, b;
713 			a = resp[j + 0];
714 			b = resp[j + 1];
715 			resp[j + 0] = resp[j + 3];
716 			resp[j + 1] = resp[j + 2];
717 			resp[j + 2] = b;
718 			resp[j + 3] = a;
719 		}
720 	}
721 
722 	kfree(rps_req);
723 	return res;
724 }
725 #endif
726 
727 static void sas_ex_get_linkrate(struct domain_device *parent,
728 				       struct domain_device *child,
729 				       struct ex_phy *parent_phy)
730 {
731 	struct expander_device *parent_ex = &parent->ex_dev;
732 	struct sas_port *port;
733 	int i;
734 
735 	child->pathways = 0;
736 
737 	port = parent_phy->port;
738 
739 	for (i = 0; i < parent_ex->num_phys; i++) {
740 		struct ex_phy *phy = &parent_ex->ex_phy[i];
741 
742 		if (phy->phy_state == PHY_VACANT ||
743 		    phy->phy_state == PHY_NOT_PRESENT)
744 			continue;
745 
746 		if (SAS_ADDR(phy->attached_sas_addr) ==
747 		    SAS_ADDR(child->sas_addr)) {
748 
749 			child->min_linkrate = min(parent->min_linkrate,
750 						  phy->linkrate);
751 			child->max_linkrate = max(parent->max_linkrate,
752 						  phy->linkrate);
753 			child->pathways++;
754 			sas_port_add_phy(port, phy->phy);
755 		}
756 	}
757 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
758 	child->pathways = min(child->pathways, parent->pathways);
759 }
760 
761 static struct domain_device *sas_ex_discover_end_dev(
762 	struct domain_device *parent, int phy_id)
763 {
764 	struct expander_device *parent_ex = &parent->ex_dev;
765 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
766 	struct domain_device *child = NULL;
767 	struct sas_rphy *rphy;
768 	int res;
769 
770 	if (phy->attached_sata_host || phy->attached_sata_ps)
771 		return NULL;
772 
773 	child = sas_alloc_device();
774 	if (!child)
775 		return NULL;
776 
777 	kref_get(&parent->kref);
778 	child->parent = parent;
779 	child->port   = parent->port;
780 	child->iproto = phy->attached_iproto;
781 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
782 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
783 	if (!phy->port) {
784 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
785 		if (unlikely(!phy->port))
786 			goto out_err;
787 		if (unlikely(sas_port_add(phy->port) != 0)) {
788 			sas_port_free(phy->port);
789 			goto out_err;
790 		}
791 	}
792 	sas_ex_get_linkrate(parent, child, phy);
793 	sas_device_set_phy(child, phy->port);
794 
795 #ifdef CONFIG_SCSI_SAS_ATA
796 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
797 		if (child->linkrate > parent->min_linkrate) {
798 			struct sas_phy *cphy = child->phy;
799 			enum sas_linkrate min_prate = cphy->minimum_linkrate,
800 				parent_min_lrate = parent->min_linkrate,
801 				min_linkrate = (min_prate > parent_min_lrate) ?
802 					       parent_min_lrate : 0;
803 			struct sas_phy_linkrates rates = {
804 				.maximum_linkrate = parent->min_linkrate,
805 				.minimum_linkrate = min_linkrate,
806 			};
807 			int ret;
808 
809 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
810 				   SAS_ADDR(child->sas_addr), phy_id);
811 			ret = sas_smp_phy_control(parent, phy_id,
812 						  PHY_FUNC_LINK_RESET, &rates);
813 			if (ret) {
814 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
815 				       SAS_ADDR(child->sas_addr), phy_id, ret);
816 				goto out_free;
817 			}
818 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
819 				  SAS_ADDR(child->sas_addr), phy_id);
820 			child->linkrate = child->min_linkrate;
821 		}
822 		res = sas_get_ata_info(child, phy);
823 		if (res)
824 			goto out_free;
825 
826 		sas_init_dev(child);
827 		res = sas_ata_init(child);
828 		if (res)
829 			goto out_free;
830 		rphy = sas_end_device_alloc(phy->port);
831 		if (!rphy)
832 			goto out_free;
833 		rphy->identify.phy_identifier = phy_id;
834 
835 		child->rphy = rphy;
836 		get_device(&rphy->dev);
837 
838 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
839 
840 		res = sas_discover_sata(child);
841 		if (res) {
842 			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
843 				  SAS_ADDR(child->sas_addr),
844 				  SAS_ADDR(parent->sas_addr), phy_id, res);
845 			goto out_list_del;
846 		}
847 	} else
848 #endif
849 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
850 		child->dev_type = SAS_END_DEVICE;
851 		rphy = sas_end_device_alloc(phy->port);
852 		/* FIXME: error handling */
853 		if (unlikely(!rphy))
854 			goto out_free;
855 		child->tproto = phy->attached_tproto;
856 		sas_init_dev(child);
857 
858 		child->rphy = rphy;
859 		get_device(&rphy->dev);
860 		rphy->identify.phy_identifier = phy_id;
861 		sas_fill_in_rphy(child, rphy);
862 
863 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864 
865 		res = sas_discover_end_dev(child);
866 		if (res) {
867 			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
868 				  SAS_ADDR(child->sas_addr),
869 				  SAS_ADDR(parent->sas_addr), phy_id, res);
870 			goto out_list_del;
871 		}
872 	} else {
873 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
874 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
875 			  phy_id);
876 		goto out_free;
877 	}
878 
879 	list_add_tail(&child->siblings, &parent_ex->children);
880 	return child;
881 
882  out_list_del:
883 	sas_rphy_free(child->rphy);
884 	list_del(&child->disco_list_node);
885 	spin_lock_irq(&parent->port->dev_list_lock);
886 	list_del(&child->dev_list_node);
887 	spin_unlock_irq(&parent->port->dev_list_lock);
888  out_free:
889 	sas_port_delete(phy->port);
890  out_err:
891 	phy->port = NULL;
892 	sas_put_device(child);
893 	return NULL;
894 }
895 
896 /* See if this phy is part of a wide port */
897 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
898 {
899 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
900 	int i;
901 
902 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
903 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
904 
905 		if (ephy == phy)
906 			continue;
907 
908 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
909 			    SAS_ADDR_SIZE) && ephy->port) {
910 			sas_port_add_phy(ephy->port, phy->phy);
911 			phy->port = ephy->port;
912 			phy->phy_state = PHY_DEVICE_DISCOVERED;
913 			return true;
914 		}
915 	}
916 
917 	return false;
918 }
919 
920 static struct domain_device *sas_ex_discover_expander(
921 	struct domain_device *parent, int phy_id)
922 {
923 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
924 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
925 	struct domain_device *child = NULL;
926 	struct sas_rphy *rphy;
927 	struct sas_expander_device *edev;
928 	struct asd_sas_port *port;
929 	int res;
930 
931 	if (phy->routing_attr == DIRECT_ROUTING) {
932 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
933 			SAS_ADDR(parent->sas_addr), phy_id,
934 			SAS_ADDR(phy->attached_sas_addr),
935 			phy->attached_phy_id);
936 		return NULL;
937 	}
938 	child = sas_alloc_device();
939 	if (!child)
940 		return NULL;
941 
942 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 	/* FIXME: better error handling */
944 	BUG_ON(sas_port_add(phy->port) != 0);
945 
946 
947 	switch (phy->attached_dev_type) {
948 	case SAS_EDGE_EXPANDER_DEVICE:
949 		rphy = sas_expander_alloc(phy->port,
950 					  SAS_EDGE_EXPANDER_DEVICE);
951 		break;
952 	case SAS_FANOUT_EXPANDER_DEVICE:
953 		rphy = sas_expander_alloc(phy->port,
954 					  SAS_FANOUT_EXPANDER_DEVICE);
955 		break;
956 	default:
957 		rphy = NULL;	/* shut gcc up */
958 		BUG();
959 	}
960 	port = parent->port;
961 	child->rphy = rphy;
962 	get_device(&rphy->dev);
963 	edev = rphy_to_expander_device(rphy);
964 	child->dev_type = phy->attached_dev_type;
965 	kref_get(&parent->kref);
966 	child->parent = parent;
967 	child->port = port;
968 	child->iproto = phy->attached_iproto;
969 	child->tproto = phy->attached_tproto;
970 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 	sas_ex_get_linkrate(parent, child, phy);
973 	edev->level = parent_ex->level + 1;
974 	parent->port->disc.max_level = max(parent->port->disc.max_level,
975 					   edev->level);
976 	sas_init_dev(child);
977 	sas_fill_in_rphy(child, rphy);
978 	sas_rphy_add(rphy);
979 
980 	spin_lock_irq(&parent->port->dev_list_lock);
981 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 	spin_unlock_irq(&parent->port->dev_list_lock);
983 
984 	res = sas_discover_expander(child);
985 	if (res) {
986 		sas_rphy_delete(rphy);
987 		spin_lock_irq(&parent->port->dev_list_lock);
988 		list_del(&child->dev_list_node);
989 		spin_unlock_irq(&parent->port->dev_list_lock);
990 		sas_put_device(child);
991 		sas_port_delete(phy->port);
992 		phy->port = NULL;
993 		return NULL;
994 	}
995 	list_add_tail(&child->siblings, &parent->ex_dev.children);
996 	return child;
997 }
998 
999 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1000 {
1001 	struct expander_device *ex = &dev->ex_dev;
1002 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1003 	struct domain_device *child = NULL;
1004 	int res = 0;
1005 
1006 	/* Phy state */
1007 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1008 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1009 			res = sas_ex_phy_discover(dev, phy_id);
1010 		if (res)
1011 			return res;
1012 	}
1013 
1014 	/* Parent and domain coherency */
1015 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016 			     SAS_ADDR(dev->port->sas_addr))) {
1017 		sas_add_parent_port(dev, phy_id);
1018 		return 0;
1019 	}
1020 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1021 			    SAS_ADDR(dev->parent->sas_addr))) {
1022 		sas_add_parent_port(dev, phy_id);
1023 		if (ex_phy->routing_attr == TABLE_ROUTING)
1024 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1025 		return 0;
1026 	}
1027 
1028 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1029 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1030 
1031 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1032 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1033 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1034 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1035 		}
1036 		return 0;
1037 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1038 		return 0;
1039 
1040 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1041 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1042 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1043 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1044 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1045 			ex_phy->attached_dev_type,
1046 			SAS_ADDR(dev->sas_addr),
1047 			phy_id);
1048 		return 0;
1049 	}
1050 
1051 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052 	if (res) {
1053 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1054 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1055 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1056 		return res;
1057 	}
1058 
1059 	if (sas_ex_join_wide_port(dev, phy_id)) {
1060 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1061 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1062 		return res;
1063 	}
1064 
1065 	switch (ex_phy->attached_dev_type) {
1066 	case SAS_END_DEVICE:
1067 	case SAS_SATA_PENDING:
1068 		child = sas_ex_discover_end_dev(dev, phy_id);
1069 		break;
1070 	case SAS_FANOUT_EXPANDER_DEVICE:
1071 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1072 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1073 				 SAS_ADDR(ex_phy->attached_sas_addr),
1074 				 ex_phy->attached_phy_id,
1075 				 SAS_ADDR(dev->sas_addr),
1076 				 phy_id);
1077 			sas_ex_disable_phy(dev, phy_id);
1078 			return res;
1079 		} else
1080 			memcpy(dev->port->disc.fanout_sas_addr,
1081 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 		fallthrough;
1083 	case SAS_EDGE_EXPANDER_DEVICE:
1084 		child = sas_ex_discover_expander(dev, phy_id);
1085 		break;
1086 	default:
1087 		break;
1088 	}
1089 
1090 	if (!child)
1091 		pr_notice("ex %016llx phy%02d failed to discover\n",
1092 			  SAS_ADDR(dev->sas_addr), phy_id);
1093 	return res;
1094 }
1095 
1096 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1097 {
1098 	struct expander_device *ex = &dev->ex_dev;
1099 	int i;
1100 
1101 	for (i = 0; i < ex->num_phys; i++) {
1102 		struct ex_phy *phy = &ex->ex_phy[i];
1103 
1104 		if (phy->phy_state == PHY_VACANT ||
1105 		    phy->phy_state == PHY_NOT_PRESENT)
1106 			continue;
1107 
1108 		if (dev_is_expander(phy->attached_dev_type) &&
1109 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110 
1111 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1112 
1113 			return 1;
1114 		}
1115 	}
1116 	return 0;
1117 }
1118 
1119 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1120 {
1121 	struct expander_device *ex = &dev->ex_dev;
1122 	struct domain_device *child;
1123 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1124 
1125 	list_for_each_entry(child, &ex->children, siblings) {
1126 		if (!dev_is_expander(child->dev_type))
1127 			continue;
1128 		if (sub_addr[0] == 0) {
1129 			sas_find_sub_addr(child, sub_addr);
1130 			continue;
1131 		} else {
1132 			u8 s2[SAS_ADDR_SIZE];
1133 
1134 			if (sas_find_sub_addr(child, s2) &&
1135 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1136 
1137 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1138 					  SAS_ADDR(dev->sas_addr),
1139 					  SAS_ADDR(child->sas_addr),
1140 					  SAS_ADDR(s2),
1141 					  SAS_ADDR(sub_addr));
1142 
1143 				sas_ex_disable_port(child, s2);
1144 			}
1145 		}
1146 	}
1147 	return 0;
1148 }
1149 /**
1150  * sas_ex_discover_devices - discover devices attached to this expander
1151  * @dev: pointer to the expander domain device
1152  * @single: if you want to do a single phy, else set to -1;
1153  *
1154  * Configure this expander for use with its devices and register the
1155  * devices of this expander.
1156  */
1157 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1158 {
1159 	struct expander_device *ex = &dev->ex_dev;
1160 	int i = 0, end = ex->num_phys;
1161 	int res = 0;
1162 
1163 	if (0 <= single && single < end) {
1164 		i = single;
1165 		end = i+1;
1166 	}
1167 
1168 	for ( ; i < end; i++) {
1169 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1170 
1171 		if (ex_phy->phy_state == PHY_VACANT ||
1172 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1173 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1174 			continue;
1175 
1176 		switch (ex_phy->linkrate) {
1177 		case SAS_PHY_DISABLED:
1178 		case SAS_PHY_RESET_PROBLEM:
1179 		case SAS_SATA_PORT_SELECTOR:
1180 			continue;
1181 		default:
1182 			res = sas_ex_discover_dev(dev, i);
1183 			if (res)
1184 				break;
1185 			continue;
1186 		}
1187 	}
1188 
1189 	if (!res)
1190 		sas_check_level_subtractive_boundary(dev);
1191 
1192 	return res;
1193 }
1194 
1195 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1196 {
1197 	struct expander_device *ex = &dev->ex_dev;
1198 	int i;
1199 	u8  *sub_sas_addr = NULL;
1200 
1201 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1202 		return 0;
1203 
1204 	for (i = 0; i < ex->num_phys; i++) {
1205 		struct ex_phy *phy = &ex->ex_phy[i];
1206 
1207 		if (phy->phy_state == PHY_VACANT ||
1208 		    phy->phy_state == PHY_NOT_PRESENT)
1209 			continue;
1210 
1211 		if (dev_is_expander(phy->attached_dev_type) &&
1212 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1213 
1214 			if (!sub_sas_addr)
1215 				sub_sas_addr = &phy->attached_sas_addr[0];
1216 			else if (SAS_ADDR(sub_sas_addr) !=
1217 				 SAS_ADDR(phy->attached_sas_addr)) {
1218 
1219 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1220 					  SAS_ADDR(dev->sas_addr), i,
1221 					  SAS_ADDR(phy->attached_sas_addr),
1222 					  SAS_ADDR(sub_sas_addr));
1223 				sas_ex_disable_phy(dev, i);
1224 			}
1225 		}
1226 	}
1227 	return 0;
1228 }
1229 
1230 static void sas_print_parent_topology_bug(struct domain_device *child,
1231 						 struct ex_phy *parent_phy,
1232 						 struct ex_phy *child_phy)
1233 {
1234 	static const char *ex_type[] = {
1235 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1236 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1237 	};
1238 	struct domain_device *parent = child->parent;
1239 
1240 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1241 		  ex_type[parent->dev_type],
1242 		  SAS_ADDR(parent->sas_addr),
1243 		  parent_phy->phy_id,
1244 
1245 		  ex_type[child->dev_type],
1246 		  SAS_ADDR(child->sas_addr),
1247 		  child_phy->phy_id,
1248 
1249 		  sas_route_char(parent, parent_phy),
1250 		  sas_route_char(child, child_phy));
1251 }
1252 
1253 static int sas_check_eeds(struct domain_device *child,
1254 				 struct ex_phy *parent_phy,
1255 				 struct ex_phy *child_phy)
1256 {
1257 	int res = 0;
1258 	struct domain_device *parent = child->parent;
1259 
1260 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1261 		res = -ENODEV;
1262 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1263 			SAS_ADDR(parent->sas_addr),
1264 			parent_phy->phy_id,
1265 			SAS_ADDR(child->sas_addr),
1266 			child_phy->phy_id,
1267 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1268 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1269 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1270 		       SAS_ADDR_SIZE);
1271 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1272 		       SAS_ADDR_SIZE);
1273 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1274 		    SAS_ADDR(parent->sas_addr)) ||
1275 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1276 		    SAS_ADDR(child->sas_addr)))
1277 		   &&
1278 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1279 		     SAS_ADDR(parent->sas_addr)) ||
1280 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1281 		     SAS_ADDR(child->sas_addr))))
1282 		;
1283 	else {
1284 		res = -ENODEV;
1285 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1286 			SAS_ADDR(parent->sas_addr),
1287 			parent_phy->phy_id,
1288 			SAS_ADDR(child->sas_addr),
1289 			child_phy->phy_id);
1290 	}
1291 
1292 	return res;
1293 }
1294 
1295 /* Here we spill over 80 columns.  It is intentional.
1296  */
1297 static int sas_check_parent_topology(struct domain_device *child)
1298 {
1299 	struct expander_device *child_ex = &child->ex_dev;
1300 	struct expander_device *parent_ex;
1301 	int i;
1302 	int res = 0;
1303 
1304 	if (!child->parent)
1305 		return 0;
1306 
1307 	if (!dev_is_expander(child->parent->dev_type))
1308 		return 0;
1309 
1310 	parent_ex = &child->parent->ex_dev;
1311 
1312 	for (i = 0; i < parent_ex->num_phys; i++) {
1313 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1314 		struct ex_phy *child_phy;
1315 
1316 		if (parent_phy->phy_state == PHY_VACANT ||
1317 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1318 			continue;
1319 
1320 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1321 			continue;
1322 
1323 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1324 
1325 		switch (child->parent->dev_type) {
1326 		case SAS_EDGE_EXPANDER_DEVICE:
1327 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1328 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1329 				    child_phy->routing_attr != TABLE_ROUTING) {
1330 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1331 					res = -ENODEV;
1332 				}
1333 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1334 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1335 					res = sas_check_eeds(child, parent_phy, child_phy);
1336 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1337 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338 					res = -ENODEV;
1339 				}
1340 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1341 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1342 				    (child_phy->routing_attr == TABLE_ROUTING &&
1343 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1344 					/* All good */;
1345 				} else {
1346 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1347 					res = -ENODEV;
1348 				}
1349 			}
1350 			break;
1351 		case SAS_FANOUT_EXPANDER_DEVICE:
1352 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1353 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1354 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 				res = -ENODEV;
1356 			}
1357 			break;
1358 		default:
1359 			break;
1360 		}
1361 	}
1362 
1363 	return res;
1364 }
1365 
1366 #define RRI_REQ_SIZE  16
1367 #define RRI_RESP_SIZE 44
1368 
1369 static int sas_configure_present(struct domain_device *dev, int phy_id,
1370 				 u8 *sas_addr, int *index, int *present)
1371 {
1372 	int i, res = 0;
1373 	struct expander_device *ex = &dev->ex_dev;
1374 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1375 	u8 *rri_req;
1376 	u8 *rri_resp;
1377 
1378 	*present = 0;
1379 	*index = 0;
1380 
1381 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1382 	if (!rri_req)
1383 		return -ENOMEM;
1384 
1385 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1386 	if (!rri_resp) {
1387 		kfree(rri_req);
1388 		return -ENOMEM;
1389 	}
1390 
1391 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1392 	rri_req[9] = phy_id;
1393 
1394 	for (i = 0; i < ex->max_route_indexes ; i++) {
1395 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1396 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1397 				       RRI_RESP_SIZE);
1398 		if (res)
1399 			goto out;
1400 		res = rri_resp[2];
1401 		if (res == SMP_RESP_NO_INDEX) {
1402 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1403 				SAS_ADDR(dev->sas_addr), phy_id, i);
1404 			goto out;
1405 		} else if (res != SMP_RESP_FUNC_ACC) {
1406 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1407 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1408 				  i, res);
1409 			goto out;
1410 		}
1411 		if (SAS_ADDR(sas_addr) != 0) {
1412 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1413 				*index = i;
1414 				if ((rri_resp[12] & 0x80) == 0x80)
1415 					*present = 0;
1416 				else
1417 					*present = 1;
1418 				goto out;
1419 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1420 				*index = i;
1421 				*present = 0;
1422 				goto out;
1423 			}
1424 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1425 			   phy->last_da_index < i) {
1426 			phy->last_da_index = i;
1427 			*index = i;
1428 			*present = 0;
1429 			goto out;
1430 		}
1431 	}
1432 	res = -1;
1433 out:
1434 	kfree(rri_req);
1435 	kfree(rri_resp);
1436 	return res;
1437 }
1438 
1439 #define CRI_REQ_SIZE  44
1440 #define CRI_RESP_SIZE  8
1441 
1442 static int sas_configure_set(struct domain_device *dev, int phy_id,
1443 			     u8 *sas_addr, int index, int include)
1444 {
1445 	int res;
1446 	u8 *cri_req;
1447 	u8 *cri_resp;
1448 
1449 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1450 	if (!cri_req)
1451 		return -ENOMEM;
1452 
1453 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1454 	if (!cri_resp) {
1455 		kfree(cri_req);
1456 		return -ENOMEM;
1457 	}
1458 
1459 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1460 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1461 	cri_req[9] = phy_id;
1462 	if (SAS_ADDR(sas_addr) == 0 || !include)
1463 		cri_req[12] |= 0x80;
1464 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1465 
1466 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1467 			       CRI_RESP_SIZE);
1468 	if (res)
1469 		goto out;
1470 	res = cri_resp[2];
1471 	if (res == SMP_RESP_NO_INDEX) {
1472 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1473 			SAS_ADDR(dev->sas_addr), phy_id, index);
1474 	}
1475 out:
1476 	kfree(cri_req);
1477 	kfree(cri_resp);
1478 	return res;
1479 }
1480 
1481 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1482 				    u8 *sas_addr, int include)
1483 {
1484 	int index;
1485 	int present;
1486 	int res;
1487 
1488 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1489 	if (res)
1490 		return res;
1491 	if (include ^ present)
1492 		return sas_configure_set(dev, phy_id, sas_addr, index,
1493 					 include);
1494 
1495 	return res;
1496 }
1497 
1498 /**
1499  * sas_configure_parent - configure routing table of parent
1500  * @parent: parent expander
1501  * @child: child expander
1502  * @sas_addr: SAS port identifier of device directly attached to child
1503  * @include: whether or not to include @child in the expander routing table
1504  */
1505 static int sas_configure_parent(struct domain_device *parent,
1506 				struct domain_device *child,
1507 				u8 *sas_addr, int include)
1508 {
1509 	struct expander_device *ex_parent = &parent->ex_dev;
1510 	int res = 0;
1511 	int i;
1512 
1513 	if (parent->parent) {
1514 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1515 					   include);
1516 		if (res)
1517 			return res;
1518 	}
1519 
1520 	if (ex_parent->conf_route_table == 0) {
1521 		pr_debug("ex %016llx has self-configuring routing table\n",
1522 			 SAS_ADDR(parent->sas_addr));
1523 		return 0;
1524 	}
1525 
1526 	for (i = 0; i < ex_parent->num_phys; i++) {
1527 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1528 
1529 		if ((phy->routing_attr == TABLE_ROUTING) &&
1530 		    (SAS_ADDR(phy->attached_sas_addr) ==
1531 		     SAS_ADDR(child->sas_addr))) {
1532 			res = sas_configure_phy(parent, i, sas_addr, include);
1533 			if (res)
1534 				return res;
1535 		}
1536 	}
1537 
1538 	return res;
1539 }
1540 
1541 /**
1542  * sas_configure_routing - configure routing
1543  * @dev: expander device
1544  * @sas_addr: port identifier of device directly attached to the expander device
1545  */
1546 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1547 {
1548 	if (dev->parent)
1549 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1550 	return 0;
1551 }
1552 
1553 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1554 {
1555 	if (dev->parent)
1556 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1557 	return 0;
1558 }
1559 
1560 /**
1561  * sas_discover_expander - expander discovery
1562  * @dev: pointer to expander domain device
1563  *
1564  * See comment in sas_discover_sata().
1565  */
1566 static int sas_discover_expander(struct domain_device *dev)
1567 {
1568 	int res;
1569 
1570 	res = sas_notify_lldd_dev_found(dev);
1571 	if (res)
1572 		return res;
1573 
1574 	res = sas_ex_general(dev);
1575 	if (res)
1576 		goto out_err;
1577 	res = sas_ex_manuf_info(dev);
1578 	if (res)
1579 		goto out_err;
1580 
1581 	res = sas_expander_discover(dev);
1582 	if (res) {
1583 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1584 			SAS_ADDR(dev->sas_addr), res);
1585 		goto out_err;
1586 	}
1587 
1588 	sas_check_ex_subtractive_boundary(dev);
1589 	res = sas_check_parent_topology(dev);
1590 	if (res)
1591 		goto out_err;
1592 	return 0;
1593 out_err:
1594 	sas_notify_lldd_dev_gone(dev);
1595 	return res;
1596 }
1597 
1598 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1599 {
1600 	int res = 0;
1601 	struct domain_device *dev;
1602 
1603 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1604 		if (dev_is_expander(dev->dev_type)) {
1605 			struct sas_expander_device *ex =
1606 				rphy_to_expander_device(dev->rphy);
1607 
1608 			if (level == ex->level)
1609 				res = sas_ex_discover_devices(dev, -1);
1610 			else if (level > 0)
1611 				res = sas_ex_discover_devices(port->port_dev, -1);
1612 
1613 		}
1614 	}
1615 
1616 	return res;
1617 }
1618 
1619 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1620 {
1621 	int res;
1622 	int level;
1623 
1624 	do {
1625 		level = port->disc.max_level;
1626 		res = sas_ex_level_discovery(port, level);
1627 		mb();
1628 	} while (level < port->disc.max_level);
1629 
1630 	return res;
1631 }
1632 
1633 int sas_discover_root_expander(struct domain_device *dev)
1634 {
1635 	int res;
1636 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1637 
1638 	res = sas_rphy_add(dev->rphy);
1639 	if (res)
1640 		goto out_err;
1641 
1642 	ex->level = dev->port->disc.max_level; /* 0 */
1643 	res = sas_discover_expander(dev);
1644 	if (res)
1645 		goto out_err2;
1646 
1647 	sas_ex_bfs_disc(dev->port);
1648 
1649 	return res;
1650 
1651 out_err2:
1652 	sas_rphy_remove(dev->rphy);
1653 out_err:
1654 	return res;
1655 }
1656 
1657 /* ---------- Domain revalidation ---------- */
1658 
1659 static int sas_get_phy_discover(struct domain_device *dev,
1660 				int phy_id, struct smp_resp *disc_resp)
1661 {
1662 	int res;
1663 	u8 *disc_req;
1664 
1665 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1666 	if (!disc_req)
1667 		return -ENOMEM;
1668 
1669 	disc_req[1] = SMP_DISCOVER;
1670 	disc_req[9] = phy_id;
1671 
1672 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1673 			       disc_resp, DISCOVER_RESP_SIZE);
1674 	if (res)
1675 		goto out;
1676 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1677 		res = disc_resp->result;
1678 		goto out;
1679 	}
1680 out:
1681 	kfree(disc_req);
1682 	return res;
1683 }
1684 
1685 static int sas_get_phy_change_count(struct domain_device *dev,
1686 				    int phy_id, int *pcc)
1687 {
1688 	int res;
1689 	struct smp_resp *disc_resp;
1690 
1691 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1692 	if (!disc_resp)
1693 		return -ENOMEM;
1694 
1695 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1696 	if (!res)
1697 		*pcc = disc_resp->disc.change_count;
1698 
1699 	kfree(disc_resp);
1700 	return res;
1701 }
1702 
1703 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1704 				    u8 *sas_addr, enum sas_device_type *type)
1705 {
1706 	int res;
1707 	struct smp_resp *disc_resp;
1708 	struct discover_resp *dr;
1709 
1710 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711 	if (!disc_resp)
1712 		return -ENOMEM;
1713 	dr = &disc_resp->disc;
1714 
1715 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1716 	if (res == 0) {
1717 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1718 		       SAS_ADDR_SIZE);
1719 		*type = to_dev_type(dr);
1720 		if (*type == 0)
1721 			memset(sas_addr, 0, SAS_ADDR_SIZE);
1722 	}
1723 	kfree(disc_resp);
1724 	return res;
1725 }
1726 
1727 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1728 			      int from_phy, bool update)
1729 {
1730 	struct expander_device *ex = &dev->ex_dev;
1731 	int res = 0;
1732 	int i;
1733 
1734 	for (i = from_phy; i < ex->num_phys; i++) {
1735 		int phy_change_count = 0;
1736 
1737 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1738 		switch (res) {
1739 		case SMP_RESP_PHY_VACANT:
1740 		case SMP_RESP_NO_PHY:
1741 			continue;
1742 		case SMP_RESP_FUNC_ACC:
1743 			break;
1744 		default:
1745 			return res;
1746 		}
1747 
1748 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1749 			if (update)
1750 				ex->ex_phy[i].phy_change_count =
1751 					phy_change_count;
1752 			*phy_id = i;
1753 			return 0;
1754 		}
1755 	}
1756 	return 0;
1757 }
1758 
1759 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1760 {
1761 	int res;
1762 	u8  *rg_req;
1763 	struct smp_resp  *rg_resp;
1764 
1765 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1766 	if (!rg_req)
1767 		return -ENOMEM;
1768 
1769 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1770 	if (!rg_resp) {
1771 		kfree(rg_req);
1772 		return -ENOMEM;
1773 	}
1774 
1775 	rg_req[1] = SMP_REPORT_GENERAL;
1776 
1777 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1778 			       RG_RESP_SIZE);
1779 	if (res)
1780 		goto out;
1781 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1782 		res = rg_resp->result;
1783 		goto out;
1784 	}
1785 
1786 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1787 out:
1788 	kfree(rg_resp);
1789 	kfree(rg_req);
1790 	return res;
1791 }
1792 /**
1793  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1794  * @dev:domain device to be detect.
1795  * @src_dev: the device which originated BROADCAST(CHANGE).
1796  *
1797  * Add self-configuration expander support. Suppose two expander cascading,
1798  * when the first level expander is self-configuring, hotplug the disks in
1799  * second level expander, BROADCAST(CHANGE) will not only be originated
1800  * in the second level expander, but also be originated in the first level
1801  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1802  * expander changed count in two level expanders will all increment at least
1803  * once, but the phy which chang count has changed is the source device which
1804  * we concerned.
1805  */
1806 
1807 static int sas_find_bcast_dev(struct domain_device *dev,
1808 			      struct domain_device **src_dev)
1809 {
1810 	struct expander_device *ex = &dev->ex_dev;
1811 	int ex_change_count = -1;
1812 	int phy_id = -1;
1813 	int res;
1814 	struct domain_device *ch;
1815 
1816 	res = sas_get_ex_change_count(dev, &ex_change_count);
1817 	if (res)
1818 		goto out;
1819 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1820 		/* Just detect if this expander phys phy change count changed,
1821 		* in order to determine if this expander originate BROADCAST,
1822 		* and do not update phy change count field in our structure.
1823 		*/
1824 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1825 		if (phy_id != -1) {
1826 			*src_dev = dev;
1827 			ex->ex_change_count = ex_change_count;
1828 			pr_info("ex %016llx phy%02d change count has changed\n",
1829 				SAS_ADDR(dev->sas_addr), phy_id);
1830 			return res;
1831 		} else
1832 			pr_info("ex %016llx phys DID NOT change\n",
1833 				SAS_ADDR(dev->sas_addr));
1834 	}
1835 	list_for_each_entry(ch, &ex->children, siblings) {
1836 		if (dev_is_expander(ch->dev_type)) {
1837 			res = sas_find_bcast_dev(ch, src_dev);
1838 			if (*src_dev)
1839 				return res;
1840 		}
1841 	}
1842 out:
1843 	return res;
1844 }
1845 
1846 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1847 {
1848 	struct expander_device *ex = &dev->ex_dev;
1849 	struct domain_device *child, *n;
1850 
1851 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1852 		set_bit(SAS_DEV_GONE, &child->state);
1853 		if (dev_is_expander(child->dev_type))
1854 			sas_unregister_ex_tree(port, child);
1855 		else
1856 			sas_unregister_dev(port, child);
1857 	}
1858 	sas_unregister_dev(port, dev);
1859 }
1860 
1861 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1862 					 int phy_id, bool last)
1863 {
1864 	struct expander_device *ex_dev = &parent->ex_dev;
1865 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1866 	struct domain_device *child, *n, *found = NULL;
1867 	if (last) {
1868 		list_for_each_entry_safe(child, n,
1869 			&ex_dev->children, siblings) {
1870 			if (SAS_ADDR(child->sas_addr) ==
1871 			    SAS_ADDR(phy->attached_sas_addr)) {
1872 				set_bit(SAS_DEV_GONE, &child->state);
1873 				if (dev_is_expander(child->dev_type))
1874 					sas_unregister_ex_tree(parent->port, child);
1875 				else
1876 					sas_unregister_dev(parent->port, child);
1877 				found = child;
1878 				break;
1879 			}
1880 		}
1881 		sas_disable_routing(parent, phy->attached_sas_addr);
1882 	}
1883 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1884 	if (phy->port) {
1885 		sas_port_delete_phy(phy->port, phy->phy);
1886 		sas_device_set_phy(found, phy->port);
1887 		if (phy->port->num_phys == 0)
1888 			list_add_tail(&phy->port->del_list,
1889 				&parent->port->sas_port_del_list);
1890 		phy->port = NULL;
1891 	}
1892 }
1893 
1894 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1895 					  const int level)
1896 {
1897 	struct expander_device *ex_root = &root->ex_dev;
1898 	struct domain_device *child;
1899 	int res = 0;
1900 
1901 	list_for_each_entry(child, &ex_root->children, siblings) {
1902 		if (dev_is_expander(child->dev_type)) {
1903 			struct sas_expander_device *ex =
1904 				rphy_to_expander_device(child->rphy);
1905 
1906 			if (level > ex->level)
1907 				res = sas_discover_bfs_by_root_level(child,
1908 								     level);
1909 			else if (level == ex->level)
1910 				res = sas_ex_discover_devices(child, -1);
1911 		}
1912 	}
1913 	return res;
1914 }
1915 
1916 static int sas_discover_bfs_by_root(struct domain_device *dev)
1917 {
1918 	int res;
1919 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1920 	int level = ex->level+1;
1921 
1922 	res = sas_ex_discover_devices(dev, -1);
1923 	if (res)
1924 		goto out;
1925 	do {
1926 		res = sas_discover_bfs_by_root_level(dev, level);
1927 		mb();
1928 		level += 1;
1929 	} while (level <= dev->port->disc.max_level);
1930 out:
1931 	return res;
1932 }
1933 
1934 static int sas_discover_new(struct domain_device *dev, int phy_id)
1935 {
1936 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1937 	struct domain_device *child;
1938 	int res;
1939 
1940 	pr_debug("ex %016llx phy%02d new device attached\n",
1941 		 SAS_ADDR(dev->sas_addr), phy_id);
1942 	res = sas_ex_phy_discover(dev, phy_id);
1943 	if (res)
1944 		return res;
1945 
1946 	if (sas_ex_join_wide_port(dev, phy_id))
1947 		return 0;
1948 
1949 	res = sas_ex_discover_devices(dev, phy_id);
1950 	if (res)
1951 		return res;
1952 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1953 		if (SAS_ADDR(child->sas_addr) ==
1954 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1955 			if (dev_is_expander(child->dev_type))
1956 				res = sas_discover_bfs_by_root(child);
1957 			break;
1958 		}
1959 	}
1960 	return res;
1961 }
1962 
1963 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1964 {
1965 	if (old == new)
1966 		return true;
1967 
1968 	/* treat device directed resets as flutter, if we went
1969 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1970 	 */
1971 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1972 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1973 		return true;
1974 
1975 	return false;
1976 }
1977 
1978 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1979 			      bool last, int sibling)
1980 {
1981 	struct expander_device *ex = &dev->ex_dev;
1982 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1983 	enum sas_device_type type = SAS_PHY_UNUSED;
1984 	u8 sas_addr[SAS_ADDR_SIZE];
1985 	char msg[80] = "";
1986 	int res;
1987 
1988 	if (!last)
1989 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1990 
1991 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1992 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1993 
1994 	memset(sas_addr, 0, SAS_ADDR_SIZE);
1995 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1996 	switch (res) {
1997 	case SMP_RESP_NO_PHY:
1998 		phy->phy_state = PHY_NOT_PRESENT;
1999 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2000 		return res;
2001 	case SMP_RESP_PHY_VACANT:
2002 		phy->phy_state = PHY_VACANT;
2003 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2004 		return res;
2005 	case SMP_RESP_FUNC_ACC:
2006 		break;
2007 	case -ECOMM:
2008 		break;
2009 	default:
2010 		return res;
2011 	}
2012 
2013 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2014 		phy->phy_state = PHY_EMPTY;
2015 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2016 		/*
2017 		 * Even though the PHY is empty, for convenience we discover
2018 		 * the PHY to update the PHY info, like negotiated linkrate.
2019 		 */
2020 		sas_ex_phy_discover(dev, phy_id);
2021 		return res;
2022 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2023 		   dev_type_flutter(type, phy->attached_dev_type)) {
2024 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2025 		char *action = "";
2026 
2027 		sas_ex_phy_discover(dev, phy_id);
2028 
2029 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2030 			action = ", needs recovery";
2031 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2032 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2033 		return res;
2034 	}
2035 
2036 	/* we always have to delete the old device when we went here */
2037 	pr_info("ex %016llx phy%02d replace %016llx\n",
2038 		SAS_ADDR(dev->sas_addr), phy_id,
2039 		SAS_ADDR(phy->attached_sas_addr));
2040 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2041 
2042 	return sas_discover_new(dev, phy_id);
2043 }
2044 
2045 /**
2046  * sas_rediscover - revalidate the domain.
2047  * @dev:domain device to be detect.
2048  * @phy_id: the phy id will be detected.
2049  *
2050  * NOTE: this process _must_ quit (return) as soon as any connection
2051  * errors are encountered.  Connection recovery is done elsewhere.
2052  * Discover process only interrogates devices in order to discover the
2053  * domain.For plugging out, we un-register the device only when it is
2054  * the last phy in the port, for other phys in this port, we just delete it
2055  * from the port.For inserting, we do discovery when it is the
2056  * first phy,for other phys in this port, we add it to the port to
2057  * forming the wide-port.
2058  */
2059 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2060 {
2061 	struct expander_device *ex = &dev->ex_dev;
2062 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2063 	int res = 0;
2064 	int i;
2065 	bool last = true;	/* is this the last phy of the port */
2066 
2067 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2068 		 SAS_ADDR(dev->sas_addr), phy_id);
2069 
2070 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2071 		for (i = 0; i < ex->num_phys; i++) {
2072 			struct ex_phy *phy = &ex->ex_phy[i];
2073 
2074 			if (i == phy_id)
2075 				continue;
2076 			if (SAS_ADDR(phy->attached_sas_addr) ==
2077 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2078 				last = false;
2079 				break;
2080 			}
2081 		}
2082 		res = sas_rediscover_dev(dev, phy_id, last, i);
2083 	} else
2084 		res = sas_discover_new(dev, phy_id);
2085 	return res;
2086 }
2087 
2088 /**
2089  * sas_ex_revalidate_domain - revalidate the domain
2090  * @port_dev: port domain device.
2091  *
2092  * NOTE: this process _must_ quit (return) as soon as any connection
2093  * errors are encountered.  Connection recovery is done elsewhere.
2094  * Discover process only interrogates devices in order to discover the
2095  * domain.
2096  */
2097 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2098 {
2099 	int res;
2100 	struct domain_device *dev = NULL;
2101 
2102 	res = sas_find_bcast_dev(port_dev, &dev);
2103 	if (res == 0 && dev) {
2104 		struct expander_device *ex = &dev->ex_dev;
2105 		int i = 0, phy_id;
2106 
2107 		do {
2108 			phy_id = -1;
2109 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2110 			if (phy_id == -1)
2111 				break;
2112 			res = sas_rediscover(dev, phy_id);
2113 			i = phy_id + 1;
2114 		} while (i < ex->num_phys);
2115 	}
2116 	return res;
2117 }
2118 
2119 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2120 		struct sas_rphy *rphy)
2121 {
2122 	struct domain_device *dev;
2123 	unsigned int rcvlen = 0;
2124 	int ret = -EINVAL;
2125 
2126 	/* no rphy means no smp target support (ie aic94xx host) */
2127 	if (!rphy)
2128 		return sas_smp_host_handler(job, shost);
2129 
2130 	switch (rphy->identify.device_type) {
2131 	case SAS_EDGE_EXPANDER_DEVICE:
2132 	case SAS_FANOUT_EXPANDER_DEVICE:
2133 		break;
2134 	default:
2135 		pr_err("%s: can we send a smp request to a device?\n",
2136 		       __func__);
2137 		goto out;
2138 	}
2139 
2140 	dev = sas_find_dev_by_rphy(rphy);
2141 	if (!dev) {
2142 		pr_err("%s: fail to find a domain_device?\n", __func__);
2143 		goto out;
2144 	}
2145 
2146 	/* do we need to support multiple segments? */
2147 	if (job->request_payload.sg_cnt > 1 ||
2148 	    job->reply_payload.sg_cnt > 1) {
2149 		pr_info("%s: multiple segments req %u, rsp %u\n",
2150 			__func__, job->request_payload.payload_len,
2151 			job->reply_payload.payload_len);
2152 		goto out;
2153 	}
2154 
2155 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2156 			job->reply_payload.sg_list);
2157 	if (ret >= 0) {
2158 		/* bsg_job_done() requires the length received  */
2159 		rcvlen = job->reply_payload.payload_len - ret;
2160 		ret = 0;
2161 	}
2162 
2163 out:
2164 	bsg_job_done(job, ret, rcvlen);
2165 }
2166