1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Serial Attached SCSI (SAS) Expander discovery and configuration 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 * 8 * This file is licensed under GPLv2. 9 */ 10 11 #include <linux/scatterlist.h> 12 #include <linux/blkdev.h> 13 #include <linux/slab.h> 14 #include <asm/unaligned.h> 15 16 #include "sas_internal.h" 17 18 #include <scsi/sas_ata.h> 19 #include <scsi/scsi_transport.h> 20 #include <scsi/scsi_transport_sas.h> 21 #include "scsi_sas_internal.h" 22 23 static int sas_discover_expander(struct domain_device *dev); 24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 25 static int sas_configure_phy(struct domain_device *dev, int phy_id, 26 u8 *sas_addr, int include); 27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 28 29 /* ---------- SMP task management ---------- */ 30 31 /* Give it some long enough timeout. In seconds. */ 32 #define SMP_TIMEOUT 10 33 34 static int smp_execute_task_sg(struct domain_device *dev, 35 struct scatterlist *req, struct scatterlist *resp) 36 { 37 int res, retry; 38 struct sas_task *task = NULL; 39 struct sas_internal *i = 40 to_sas_internal(dev->port->ha->shost->transportt); 41 struct sas_ha_struct *ha = dev->port->ha; 42 43 pm_runtime_get_sync(ha->dev); 44 mutex_lock(&dev->ex_dev.cmd_mutex); 45 for (retry = 0; retry < 3; retry++) { 46 if (test_bit(SAS_DEV_GONE, &dev->state)) { 47 res = -ECOMM; 48 break; 49 } 50 51 task = sas_alloc_slow_task(GFP_KERNEL); 52 if (!task) { 53 res = -ENOMEM; 54 break; 55 } 56 task->dev = dev; 57 task->task_proto = dev->tproto; 58 task->smp_task.smp_req = *req; 59 task->smp_task.smp_resp = *resp; 60 61 task->task_done = sas_task_internal_done; 62 63 task->slow_task->timer.function = sas_task_internal_timedout; 64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 65 add_timer(&task->slow_task->timer); 66 67 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 68 69 if (res) { 70 del_timer_sync(&task->slow_task->timer); 71 pr_notice("executing SMP task failed:%d\n", res); 72 break; 73 } 74 75 wait_for_completion(&task->slow_task->completion); 76 res = -ECOMM; 77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 78 pr_notice("smp task timed out or aborted\n"); 79 i->dft->lldd_abort_task(task); 80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 81 pr_notice("SMP task aborted and not done\n"); 82 break; 83 } 84 } 85 if (task->task_status.resp == SAS_TASK_COMPLETE && 86 task->task_status.stat == SAS_SAM_STAT_GOOD) { 87 res = 0; 88 break; 89 } 90 if (task->task_status.resp == SAS_TASK_COMPLETE && 91 task->task_status.stat == SAS_DATA_UNDERRUN) { 92 /* no error, but return the number of bytes of 93 * underrun */ 94 res = task->task_status.residual; 95 break; 96 } 97 if (task->task_status.resp == SAS_TASK_COMPLETE && 98 task->task_status.stat == SAS_DATA_OVERRUN) { 99 res = -EMSGSIZE; 100 break; 101 } 102 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 103 task->task_status.stat == SAS_DEVICE_UNKNOWN) 104 break; 105 else { 106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 107 __func__, 108 SAS_ADDR(dev->sas_addr), 109 task->task_status.resp, 110 task->task_status.stat); 111 sas_free_task(task); 112 task = NULL; 113 } 114 } 115 mutex_unlock(&dev->ex_dev.cmd_mutex); 116 pm_runtime_put_sync(ha->dev); 117 118 BUG_ON(retry == 3 && task != NULL); 119 sas_free_task(task); 120 return res; 121 } 122 123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 124 void *resp, int resp_size) 125 { 126 struct scatterlist req_sg; 127 struct scatterlist resp_sg; 128 129 sg_init_one(&req_sg, req, req_size); 130 sg_init_one(&resp_sg, resp, resp_size); 131 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 132 } 133 134 /* ---------- Allocations ---------- */ 135 136 static inline void *alloc_smp_req(int size) 137 { 138 u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL); 139 if (p) 140 p[0] = SMP_REQUEST; 141 return p; 142 } 143 144 static inline void *alloc_smp_resp(int size) 145 { 146 return kzalloc(size, GFP_KERNEL); 147 } 148 149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 150 { 151 switch (phy->routing_attr) { 152 case TABLE_ROUTING: 153 if (dev->ex_dev.t2t_supp) 154 return 'U'; 155 else 156 return 'T'; 157 case DIRECT_ROUTING: 158 return 'D'; 159 case SUBTRACTIVE_ROUTING: 160 return 'S'; 161 default: 162 return '?'; 163 } 164 } 165 166 static enum sas_device_type to_dev_type(struct discover_resp *dr) 167 { 168 /* This is detecting a failure to transmit initial dev to host 169 * FIS as described in section J.5 of sas-2 r16 170 */ 171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 173 return SAS_SATA_PENDING; 174 else 175 return dr->attached_dev_type; 176 } 177 178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 179 struct smp_disc_resp *disc_resp) 180 { 181 enum sas_device_type dev_type; 182 enum sas_linkrate linkrate; 183 u8 sas_addr[SAS_ADDR_SIZE]; 184 struct discover_resp *dr = &disc_resp->disc; 185 struct sas_ha_struct *ha = dev->port->ha; 186 struct expander_device *ex = &dev->ex_dev; 187 struct ex_phy *phy = &ex->ex_phy[phy_id]; 188 struct sas_rphy *rphy = dev->rphy; 189 bool new_phy = !phy->phy; 190 char *type; 191 192 if (new_phy) { 193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 194 return; 195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 196 197 /* FIXME: error_handling */ 198 BUG_ON(!phy->phy); 199 } 200 201 switch (disc_resp->result) { 202 case SMP_RESP_PHY_VACANT: 203 phy->phy_state = PHY_VACANT; 204 break; 205 default: 206 phy->phy_state = PHY_NOT_PRESENT; 207 break; 208 case SMP_RESP_FUNC_ACC: 209 phy->phy_state = PHY_EMPTY; /* do not know yet */ 210 break; 211 } 212 213 /* check if anything important changed to squelch debug */ 214 dev_type = phy->attached_dev_type; 215 linkrate = phy->linkrate; 216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 217 218 /* Handle vacant phy - rest of dr data is not valid so skip it */ 219 if (phy->phy_state == PHY_VACANT) { 220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 221 phy->attached_dev_type = SAS_PHY_UNUSED; 222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 223 phy->phy_id = phy_id; 224 goto skip; 225 } else 226 goto out; 227 } 228 229 phy->attached_dev_type = to_dev_type(dr); 230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 231 goto out; 232 phy->phy_id = phy_id; 233 phy->linkrate = dr->linkrate; 234 phy->attached_sata_host = dr->attached_sata_host; 235 phy->attached_sata_dev = dr->attached_sata_dev; 236 phy->attached_sata_ps = dr->attached_sata_ps; 237 phy->attached_iproto = dr->iproto << 1; 238 phy->attached_tproto = dr->tproto << 1; 239 /* help some expanders that fail to zero sas_address in the 'no 240 * device' case 241 */ 242 if (phy->attached_dev_type == SAS_PHY_UNUSED) 243 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 244 else 245 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 246 phy->attached_phy_id = dr->attached_phy_id; 247 phy->phy_change_count = dr->change_count; 248 phy->routing_attr = dr->routing_attr; 249 phy->virtual = dr->virtual; 250 phy->last_da_index = -1; 251 252 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 253 phy->phy->identify.device_type = dr->attached_dev_type; 254 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 255 phy->phy->identify.target_port_protocols = phy->attached_tproto; 256 if (!phy->attached_tproto && dr->attached_sata_dev) 257 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 258 phy->phy->identify.phy_identifier = phy_id; 259 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 260 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 261 phy->phy->minimum_linkrate = dr->pmin_linkrate; 262 phy->phy->maximum_linkrate = dr->pmax_linkrate; 263 phy->phy->negotiated_linkrate = phy->linkrate; 264 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 265 266 skip: 267 if (new_phy) 268 if (sas_phy_add(phy->phy)) { 269 sas_phy_free(phy->phy); 270 return; 271 } 272 273 out: 274 switch (phy->attached_dev_type) { 275 case SAS_SATA_PENDING: 276 type = "stp pending"; 277 break; 278 case SAS_PHY_UNUSED: 279 type = "no device"; 280 break; 281 case SAS_END_DEVICE: 282 if (phy->attached_iproto) { 283 if (phy->attached_tproto) 284 type = "host+target"; 285 else 286 type = "host"; 287 } else { 288 if (dr->attached_sata_dev) 289 type = "stp"; 290 else 291 type = "ssp"; 292 } 293 break; 294 case SAS_EDGE_EXPANDER_DEVICE: 295 case SAS_FANOUT_EXPANDER_DEVICE: 296 type = "smp"; 297 break; 298 default: 299 type = "unknown"; 300 } 301 302 /* this routine is polled by libata error recovery so filter 303 * unimportant messages 304 */ 305 if (new_phy || phy->attached_dev_type != dev_type || 306 phy->linkrate != linkrate || 307 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 308 /* pass */; 309 else 310 return; 311 312 /* if the attached device type changed and ata_eh is active, 313 * make sure we run revalidation when eh completes (see: 314 * sas_enable_revalidation) 315 */ 316 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 317 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 318 319 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 320 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 321 SAS_ADDR(dev->sas_addr), phy->phy_id, 322 sas_route_char(dev, phy), phy->linkrate, 323 SAS_ADDR(phy->attached_sas_addr), type); 324 } 325 326 /* check if we have an existing attached ata device on this expander phy */ 327 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 328 { 329 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 330 struct domain_device *dev; 331 struct sas_rphy *rphy; 332 333 if (!ex_phy->port) 334 return NULL; 335 336 rphy = ex_phy->port->rphy; 337 if (!rphy) 338 return NULL; 339 340 dev = sas_find_dev_by_rphy(rphy); 341 342 if (dev && dev_is_sata(dev)) 343 return dev; 344 345 return NULL; 346 } 347 348 #define DISCOVER_REQ_SIZE 16 349 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp) 350 351 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 352 struct smp_disc_resp *disc_resp, 353 int single) 354 { 355 struct discover_resp *dr = &disc_resp->disc; 356 int res; 357 358 disc_req[9] = single; 359 360 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 361 disc_resp, DISCOVER_RESP_SIZE); 362 if (res) 363 return res; 364 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 365 pr_notice("Found loopback topology, just ignore it!\n"); 366 return 0; 367 } 368 sas_set_ex_phy(dev, single, disc_resp); 369 return 0; 370 } 371 372 int sas_ex_phy_discover(struct domain_device *dev, int single) 373 { 374 struct expander_device *ex = &dev->ex_dev; 375 int res = 0; 376 u8 *disc_req; 377 struct smp_disc_resp *disc_resp; 378 379 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 380 if (!disc_req) 381 return -ENOMEM; 382 383 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 384 if (!disc_resp) { 385 kfree(disc_req); 386 return -ENOMEM; 387 } 388 389 disc_req[1] = SMP_DISCOVER; 390 391 if (0 <= single && single < ex->num_phys) { 392 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 393 } else { 394 int i; 395 396 for (i = 0; i < ex->num_phys; i++) { 397 res = sas_ex_phy_discover_helper(dev, disc_req, 398 disc_resp, i); 399 if (res) 400 goto out_err; 401 } 402 } 403 out_err: 404 kfree(disc_resp); 405 kfree(disc_req); 406 return res; 407 } 408 409 static int sas_expander_discover(struct domain_device *dev) 410 { 411 struct expander_device *ex = &dev->ex_dev; 412 int res; 413 414 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 415 if (!ex->ex_phy) 416 return -ENOMEM; 417 418 res = sas_ex_phy_discover(dev, -1); 419 if (res) 420 goto out_err; 421 422 return 0; 423 out_err: 424 kfree(ex->ex_phy); 425 ex->ex_phy = NULL; 426 return res; 427 } 428 429 #define MAX_EXPANDER_PHYS 128 430 431 #define RG_REQ_SIZE 8 432 #define RG_RESP_SIZE sizeof(struct smp_rg_resp) 433 434 static int sas_ex_general(struct domain_device *dev) 435 { 436 u8 *rg_req; 437 struct smp_rg_resp *rg_resp; 438 struct report_general_resp *rg; 439 int res; 440 int i; 441 442 rg_req = alloc_smp_req(RG_REQ_SIZE); 443 if (!rg_req) 444 return -ENOMEM; 445 446 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 447 if (!rg_resp) { 448 kfree(rg_req); 449 return -ENOMEM; 450 } 451 452 rg_req[1] = SMP_REPORT_GENERAL; 453 454 for (i = 0; i < 5; i++) { 455 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 456 RG_RESP_SIZE); 457 458 if (res) { 459 pr_notice("RG to ex %016llx failed:0x%x\n", 460 SAS_ADDR(dev->sas_addr), res); 461 goto out; 462 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 463 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 464 SAS_ADDR(dev->sas_addr), rg_resp->result); 465 res = rg_resp->result; 466 goto out; 467 } 468 469 rg = &rg_resp->rg; 470 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 471 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 472 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 473 dev->ex_dev.t2t_supp = rg->t2t_supp; 474 dev->ex_dev.conf_route_table = rg->conf_route_table; 475 dev->ex_dev.configuring = rg->configuring; 476 memcpy(dev->ex_dev.enclosure_logical_id, 477 rg->enclosure_logical_id, 8); 478 479 if (dev->ex_dev.configuring) { 480 pr_debug("RG: ex %016llx self-configuring...\n", 481 SAS_ADDR(dev->sas_addr)); 482 schedule_timeout_interruptible(5*HZ); 483 } else 484 break; 485 } 486 out: 487 kfree(rg_req); 488 kfree(rg_resp); 489 return res; 490 } 491 492 static void ex_assign_manuf_info(struct domain_device *dev, void 493 *_mi_resp) 494 { 495 u8 *mi_resp = _mi_resp; 496 struct sas_rphy *rphy = dev->rphy; 497 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 498 499 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 500 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 501 memcpy(edev->product_rev, mi_resp + 36, 502 SAS_EXPANDER_PRODUCT_REV_LEN); 503 504 if (mi_resp[8] & 1) { 505 memcpy(edev->component_vendor_id, mi_resp + 40, 506 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 507 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 508 edev->component_revision_id = mi_resp[50]; 509 } 510 } 511 512 #define MI_REQ_SIZE 8 513 #define MI_RESP_SIZE 64 514 515 static int sas_ex_manuf_info(struct domain_device *dev) 516 { 517 u8 *mi_req; 518 u8 *mi_resp; 519 int res; 520 521 mi_req = alloc_smp_req(MI_REQ_SIZE); 522 if (!mi_req) 523 return -ENOMEM; 524 525 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 526 if (!mi_resp) { 527 kfree(mi_req); 528 return -ENOMEM; 529 } 530 531 mi_req[1] = SMP_REPORT_MANUF_INFO; 532 533 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE); 534 if (res) { 535 pr_notice("MI: ex %016llx failed:0x%x\n", 536 SAS_ADDR(dev->sas_addr), res); 537 goto out; 538 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 539 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 540 SAS_ADDR(dev->sas_addr), mi_resp[2]); 541 goto out; 542 } 543 544 ex_assign_manuf_info(dev, mi_resp); 545 out: 546 kfree(mi_req); 547 kfree(mi_resp); 548 return res; 549 } 550 551 #define PC_REQ_SIZE 44 552 #define PC_RESP_SIZE 8 553 554 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 555 enum phy_func phy_func, 556 struct sas_phy_linkrates *rates) 557 { 558 u8 *pc_req; 559 u8 *pc_resp; 560 int res; 561 562 pc_req = alloc_smp_req(PC_REQ_SIZE); 563 if (!pc_req) 564 return -ENOMEM; 565 566 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 567 if (!pc_resp) { 568 kfree(pc_req); 569 return -ENOMEM; 570 } 571 572 pc_req[1] = SMP_PHY_CONTROL; 573 pc_req[9] = phy_id; 574 pc_req[10] = phy_func; 575 if (rates) { 576 pc_req[32] = rates->minimum_linkrate << 4; 577 pc_req[33] = rates->maximum_linkrate << 4; 578 } 579 580 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE); 581 if (res) { 582 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 583 SAS_ADDR(dev->sas_addr), phy_id, res); 584 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 585 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 586 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 587 res = pc_resp[2]; 588 } 589 kfree(pc_resp); 590 kfree(pc_req); 591 return res; 592 } 593 594 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 595 { 596 struct expander_device *ex = &dev->ex_dev; 597 struct ex_phy *phy = &ex->ex_phy[phy_id]; 598 599 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 600 phy->linkrate = SAS_PHY_DISABLED; 601 } 602 603 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 604 { 605 struct expander_device *ex = &dev->ex_dev; 606 int i; 607 608 for (i = 0; i < ex->num_phys; i++) { 609 struct ex_phy *phy = &ex->ex_phy[i]; 610 611 if (phy->phy_state == PHY_VACANT || 612 phy->phy_state == PHY_NOT_PRESENT) 613 continue; 614 615 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 616 sas_ex_disable_phy(dev, i); 617 } 618 } 619 620 static int sas_dev_present_in_domain(struct asd_sas_port *port, 621 u8 *sas_addr) 622 { 623 struct domain_device *dev; 624 625 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 626 return 1; 627 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 628 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 629 return 1; 630 } 631 return 0; 632 } 633 634 #define RPEL_REQ_SIZE 16 635 #define RPEL_RESP_SIZE 32 636 int sas_smp_get_phy_events(struct sas_phy *phy) 637 { 638 int res; 639 u8 *req; 640 u8 *resp; 641 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 642 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 643 644 req = alloc_smp_req(RPEL_REQ_SIZE); 645 if (!req) 646 return -ENOMEM; 647 648 resp = alloc_smp_resp(RPEL_RESP_SIZE); 649 if (!resp) { 650 kfree(req); 651 return -ENOMEM; 652 } 653 654 req[1] = SMP_REPORT_PHY_ERR_LOG; 655 req[9] = phy->number; 656 657 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 658 resp, RPEL_RESP_SIZE); 659 660 if (res) 661 goto out; 662 663 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 664 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 665 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 666 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 667 668 out: 669 kfree(req); 670 kfree(resp); 671 return res; 672 673 } 674 675 #ifdef CONFIG_SCSI_SAS_ATA 676 677 #define RPS_REQ_SIZE 16 678 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp) 679 680 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 681 struct smp_rps_resp *rps_resp) 682 { 683 int res; 684 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 685 u8 *resp = (u8 *)rps_resp; 686 687 if (!rps_req) 688 return -ENOMEM; 689 690 rps_req[1] = SMP_REPORT_PHY_SATA; 691 rps_req[9] = phy_id; 692 693 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 694 rps_resp, RPS_RESP_SIZE); 695 696 /* 0x34 is the FIS type for the D2H fis. There's a potential 697 * standards cockup here. sas-2 explicitly specifies the FIS 698 * should be encoded so that FIS type is in resp[24]. 699 * However, some expanders endian reverse this. Undo the 700 * reversal here */ 701 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 702 int i; 703 704 for (i = 0; i < 5; i++) { 705 int j = 24 + (i*4); 706 u8 a, b; 707 a = resp[j + 0]; 708 b = resp[j + 1]; 709 resp[j + 0] = resp[j + 3]; 710 resp[j + 1] = resp[j + 2]; 711 resp[j + 2] = b; 712 resp[j + 3] = a; 713 } 714 } 715 716 kfree(rps_req); 717 return res; 718 } 719 #endif 720 721 static void sas_ex_get_linkrate(struct domain_device *parent, 722 struct domain_device *child, 723 struct ex_phy *parent_phy) 724 { 725 struct expander_device *parent_ex = &parent->ex_dev; 726 struct sas_port *port; 727 int i; 728 729 child->pathways = 0; 730 731 port = parent_phy->port; 732 733 for (i = 0; i < parent_ex->num_phys; i++) { 734 struct ex_phy *phy = &parent_ex->ex_phy[i]; 735 736 if (phy->phy_state == PHY_VACANT || 737 phy->phy_state == PHY_NOT_PRESENT) 738 continue; 739 740 if (sas_phy_match_dev_addr(child, phy)) { 741 child->min_linkrate = min(parent->min_linkrate, 742 phy->linkrate); 743 child->max_linkrate = max(parent->max_linkrate, 744 phy->linkrate); 745 child->pathways++; 746 sas_port_add_phy(port, phy->phy); 747 } 748 } 749 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 750 child->pathways = min(child->pathways, parent->pathways); 751 } 752 753 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy, 754 struct domain_device *child, int phy_id) 755 { 756 struct sas_rphy *rphy; 757 int res; 758 759 child->dev_type = SAS_END_DEVICE; 760 rphy = sas_end_device_alloc(phy->port); 761 if (!rphy) 762 return -ENOMEM; 763 764 child->tproto = phy->attached_tproto; 765 sas_init_dev(child); 766 767 child->rphy = rphy; 768 get_device(&rphy->dev); 769 rphy->identify.phy_identifier = phy_id; 770 sas_fill_in_rphy(child, rphy); 771 772 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 773 774 res = sas_notify_lldd_dev_found(child); 775 if (res) { 776 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n", 777 SAS_ADDR(child->sas_addr), 778 SAS_ADDR(parent->sas_addr), phy_id, res); 779 sas_rphy_free(child->rphy); 780 list_del(&child->disco_list_node); 781 return res; 782 } 783 784 return 0; 785 } 786 787 static struct domain_device *sas_ex_discover_end_dev( 788 struct domain_device *parent, int phy_id) 789 { 790 struct expander_device *parent_ex = &parent->ex_dev; 791 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 792 struct domain_device *child = NULL; 793 int res; 794 795 if (phy->attached_sata_host || phy->attached_sata_ps) 796 return NULL; 797 798 child = sas_alloc_device(); 799 if (!child) 800 return NULL; 801 802 kref_get(&parent->kref); 803 child->parent = parent; 804 child->port = parent->port; 805 child->iproto = phy->attached_iproto; 806 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 807 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 808 if (!phy->port) { 809 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 810 if (unlikely(!phy->port)) 811 goto out_err; 812 if (unlikely(sas_port_add(phy->port) != 0)) { 813 sas_port_free(phy->port); 814 goto out_err; 815 } 816 } 817 sas_ex_get_linkrate(parent, child, phy); 818 sas_device_set_phy(child, phy->port); 819 820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 821 res = sas_ata_add_dev(parent, phy, child, phy_id); 822 } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 823 res = sas_ex_add_dev(parent, phy, child, phy_id); 824 } else { 825 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 826 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 827 phy_id); 828 res = -ENODEV; 829 } 830 831 if (res) 832 goto out_free; 833 834 list_add_tail(&child->siblings, &parent_ex->children); 835 return child; 836 837 out_free: 838 sas_port_delete(phy->port); 839 out_err: 840 phy->port = NULL; 841 sas_put_device(child); 842 return NULL; 843 } 844 845 /* See if this phy is part of a wide port */ 846 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 847 { 848 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 849 int i; 850 851 for (i = 0; i < parent->ex_dev.num_phys; i++) { 852 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 853 854 if (ephy == phy) 855 continue; 856 857 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 858 SAS_ADDR_SIZE) && ephy->port) { 859 sas_port_add_phy(ephy->port, phy->phy); 860 phy->port = ephy->port; 861 phy->phy_state = PHY_DEVICE_DISCOVERED; 862 return true; 863 } 864 } 865 866 return false; 867 } 868 869 static struct domain_device *sas_ex_discover_expander( 870 struct domain_device *parent, int phy_id) 871 { 872 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 874 struct domain_device *child = NULL; 875 struct sas_rphy *rphy; 876 struct sas_expander_device *edev; 877 struct asd_sas_port *port; 878 int res; 879 880 if (phy->routing_attr == DIRECT_ROUTING) { 881 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 882 SAS_ADDR(parent->sas_addr), phy_id, 883 SAS_ADDR(phy->attached_sas_addr), 884 phy->attached_phy_id); 885 return NULL; 886 } 887 child = sas_alloc_device(); 888 if (!child) 889 return NULL; 890 891 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 892 /* FIXME: better error handling */ 893 BUG_ON(sas_port_add(phy->port) != 0); 894 895 896 switch (phy->attached_dev_type) { 897 case SAS_EDGE_EXPANDER_DEVICE: 898 rphy = sas_expander_alloc(phy->port, 899 SAS_EDGE_EXPANDER_DEVICE); 900 break; 901 case SAS_FANOUT_EXPANDER_DEVICE: 902 rphy = sas_expander_alloc(phy->port, 903 SAS_FANOUT_EXPANDER_DEVICE); 904 break; 905 default: 906 rphy = NULL; /* shut gcc up */ 907 BUG(); 908 } 909 port = parent->port; 910 child->rphy = rphy; 911 get_device(&rphy->dev); 912 edev = rphy_to_expander_device(rphy); 913 child->dev_type = phy->attached_dev_type; 914 kref_get(&parent->kref); 915 child->parent = parent; 916 child->port = port; 917 child->iproto = phy->attached_iproto; 918 child->tproto = phy->attached_tproto; 919 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 920 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 921 sas_ex_get_linkrate(parent, child, phy); 922 edev->level = parent_ex->level + 1; 923 parent->port->disc.max_level = max(parent->port->disc.max_level, 924 edev->level); 925 sas_init_dev(child); 926 sas_fill_in_rphy(child, rphy); 927 sas_rphy_add(rphy); 928 929 spin_lock_irq(&parent->port->dev_list_lock); 930 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 931 spin_unlock_irq(&parent->port->dev_list_lock); 932 933 res = sas_discover_expander(child); 934 if (res) { 935 sas_rphy_delete(rphy); 936 spin_lock_irq(&parent->port->dev_list_lock); 937 list_del(&child->dev_list_node); 938 spin_unlock_irq(&parent->port->dev_list_lock); 939 sas_put_device(child); 940 sas_port_delete(phy->port); 941 phy->port = NULL; 942 return NULL; 943 } 944 list_add_tail(&child->siblings, &parent->ex_dev.children); 945 return child; 946 } 947 948 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 949 { 950 struct expander_device *ex = &dev->ex_dev; 951 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 952 struct domain_device *child = NULL; 953 int res = 0; 954 955 /* Phy state */ 956 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 957 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 958 res = sas_ex_phy_discover(dev, phy_id); 959 if (res) 960 return res; 961 } 962 963 /* Parent and domain coherency */ 964 if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) { 965 sas_add_parent_port(dev, phy_id); 966 return 0; 967 } 968 if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) { 969 sas_add_parent_port(dev, phy_id); 970 if (ex_phy->routing_attr == TABLE_ROUTING) 971 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 972 return 0; 973 } 974 975 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 976 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 977 978 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 979 if (ex_phy->routing_attr == DIRECT_ROUTING) { 980 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 981 sas_configure_routing(dev, ex_phy->attached_sas_addr); 982 } 983 return 0; 984 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 985 return 0; 986 987 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 988 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 989 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 990 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 991 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 992 ex_phy->attached_dev_type, 993 SAS_ADDR(dev->sas_addr), 994 phy_id); 995 return 0; 996 } 997 998 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 999 if (res) { 1000 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1001 SAS_ADDR(ex_phy->attached_sas_addr), res); 1002 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1003 return res; 1004 } 1005 1006 if (sas_ex_join_wide_port(dev, phy_id)) { 1007 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1008 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1009 return res; 1010 } 1011 1012 switch (ex_phy->attached_dev_type) { 1013 case SAS_END_DEVICE: 1014 case SAS_SATA_PENDING: 1015 child = sas_ex_discover_end_dev(dev, phy_id); 1016 break; 1017 case SAS_FANOUT_EXPANDER_DEVICE: 1018 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1019 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1020 SAS_ADDR(ex_phy->attached_sas_addr), 1021 ex_phy->attached_phy_id, 1022 SAS_ADDR(dev->sas_addr), 1023 phy_id); 1024 sas_ex_disable_phy(dev, phy_id); 1025 return res; 1026 } else 1027 memcpy(dev->port->disc.fanout_sas_addr, 1028 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1029 fallthrough; 1030 case SAS_EDGE_EXPANDER_DEVICE: 1031 child = sas_ex_discover_expander(dev, phy_id); 1032 break; 1033 default: 1034 break; 1035 } 1036 1037 if (!child) 1038 pr_notice("ex %016llx phy%02d failed to discover\n", 1039 SAS_ADDR(dev->sas_addr), phy_id); 1040 return res; 1041 } 1042 1043 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1044 { 1045 struct expander_device *ex = &dev->ex_dev; 1046 int i; 1047 1048 for (i = 0; i < ex->num_phys; i++) { 1049 struct ex_phy *phy = &ex->ex_phy[i]; 1050 1051 if (phy->phy_state == PHY_VACANT || 1052 phy->phy_state == PHY_NOT_PRESENT) 1053 continue; 1054 1055 if (dev_is_expander(phy->attached_dev_type) && 1056 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1057 1058 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1059 1060 return 1; 1061 } 1062 } 1063 return 0; 1064 } 1065 1066 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1067 { 1068 struct expander_device *ex = &dev->ex_dev; 1069 struct domain_device *child; 1070 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1071 1072 list_for_each_entry(child, &ex->children, siblings) { 1073 if (!dev_is_expander(child->dev_type)) 1074 continue; 1075 if (sub_addr[0] == 0) { 1076 sas_find_sub_addr(child, sub_addr); 1077 continue; 1078 } else { 1079 u8 s2[SAS_ADDR_SIZE]; 1080 1081 if (sas_find_sub_addr(child, s2) && 1082 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1083 1084 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1085 SAS_ADDR(dev->sas_addr), 1086 SAS_ADDR(child->sas_addr), 1087 SAS_ADDR(s2), 1088 SAS_ADDR(sub_addr)); 1089 1090 sas_ex_disable_port(child, s2); 1091 } 1092 } 1093 } 1094 return 0; 1095 } 1096 /** 1097 * sas_ex_discover_devices - discover devices attached to this expander 1098 * @dev: pointer to the expander domain device 1099 * @single: if you want to do a single phy, else set to -1; 1100 * 1101 * Configure this expander for use with its devices and register the 1102 * devices of this expander. 1103 */ 1104 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1105 { 1106 struct expander_device *ex = &dev->ex_dev; 1107 int i = 0, end = ex->num_phys; 1108 int res = 0; 1109 1110 if (0 <= single && single < end) { 1111 i = single; 1112 end = i+1; 1113 } 1114 1115 for ( ; i < end; i++) { 1116 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1117 1118 if (ex_phy->phy_state == PHY_VACANT || 1119 ex_phy->phy_state == PHY_NOT_PRESENT || 1120 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1121 continue; 1122 1123 switch (ex_phy->linkrate) { 1124 case SAS_PHY_DISABLED: 1125 case SAS_PHY_RESET_PROBLEM: 1126 case SAS_SATA_PORT_SELECTOR: 1127 continue; 1128 default: 1129 res = sas_ex_discover_dev(dev, i); 1130 if (res) 1131 break; 1132 continue; 1133 } 1134 } 1135 1136 if (!res) 1137 sas_check_level_subtractive_boundary(dev); 1138 1139 return res; 1140 } 1141 1142 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1143 { 1144 struct expander_device *ex = &dev->ex_dev; 1145 int i; 1146 u8 *sub_sas_addr = NULL; 1147 1148 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1149 return 0; 1150 1151 for (i = 0; i < ex->num_phys; i++) { 1152 struct ex_phy *phy = &ex->ex_phy[i]; 1153 1154 if (phy->phy_state == PHY_VACANT || 1155 phy->phy_state == PHY_NOT_PRESENT) 1156 continue; 1157 1158 if (dev_is_expander(phy->attached_dev_type) && 1159 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1160 1161 if (!sub_sas_addr) 1162 sub_sas_addr = &phy->attached_sas_addr[0]; 1163 else if (SAS_ADDR(sub_sas_addr) != 1164 SAS_ADDR(phy->attached_sas_addr)) { 1165 1166 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1167 SAS_ADDR(dev->sas_addr), i, 1168 SAS_ADDR(phy->attached_sas_addr), 1169 SAS_ADDR(sub_sas_addr)); 1170 sas_ex_disable_phy(dev, i); 1171 } 1172 } 1173 } 1174 return 0; 1175 } 1176 1177 static void sas_print_parent_topology_bug(struct domain_device *child, 1178 struct ex_phy *parent_phy, 1179 struct ex_phy *child_phy) 1180 { 1181 static const char *ex_type[] = { 1182 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1183 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1184 }; 1185 struct domain_device *parent = child->parent; 1186 1187 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1188 ex_type[parent->dev_type], 1189 SAS_ADDR(parent->sas_addr), 1190 parent_phy->phy_id, 1191 1192 ex_type[child->dev_type], 1193 SAS_ADDR(child->sas_addr), 1194 child_phy->phy_id, 1195 1196 sas_route_char(parent, parent_phy), 1197 sas_route_char(child, child_phy)); 1198 } 1199 1200 static bool sas_eeds_valid(struct domain_device *parent, 1201 struct domain_device *child) 1202 { 1203 struct sas_discovery *disc = &parent->port->disc; 1204 1205 return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) || 1206 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) && 1207 (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) || 1208 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr)); 1209 } 1210 1211 static int sas_check_eeds(struct domain_device *child, 1212 struct ex_phy *parent_phy, 1213 struct ex_phy *child_phy) 1214 { 1215 int res = 0; 1216 struct domain_device *parent = child->parent; 1217 struct sas_discovery *disc = &parent->port->disc; 1218 1219 if (SAS_ADDR(disc->fanout_sas_addr) != 0) { 1220 res = -ENODEV; 1221 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1222 SAS_ADDR(parent->sas_addr), 1223 parent_phy->phy_id, 1224 SAS_ADDR(child->sas_addr), 1225 child_phy->phy_id, 1226 SAS_ADDR(disc->fanout_sas_addr)); 1227 } else if (SAS_ADDR(disc->eeds_a) == 0) { 1228 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE); 1229 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE); 1230 } else if (!sas_eeds_valid(parent, child)) { 1231 res = -ENODEV; 1232 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1233 SAS_ADDR(parent->sas_addr), 1234 parent_phy->phy_id, 1235 SAS_ADDR(child->sas_addr), 1236 child_phy->phy_id); 1237 } 1238 1239 return res; 1240 } 1241 1242 static int sas_check_edge_expander_topo(struct domain_device *child, 1243 struct ex_phy *parent_phy) 1244 { 1245 struct expander_device *child_ex = &child->ex_dev; 1246 struct expander_device *parent_ex = &child->parent->ex_dev; 1247 struct ex_phy *child_phy; 1248 1249 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1250 1251 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1252 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1253 child_phy->routing_attr != TABLE_ROUTING) 1254 goto error; 1255 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1256 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) 1257 return sas_check_eeds(child, parent_phy, child_phy); 1258 else if (child_phy->routing_attr != TABLE_ROUTING) 1259 goto error; 1260 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1261 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING && 1262 (child_phy->routing_attr != TABLE_ROUTING || 1263 !child_ex->t2t_supp || !parent_ex->t2t_supp)) 1264 goto error; 1265 } 1266 1267 return 0; 1268 error: 1269 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1270 return -ENODEV; 1271 } 1272 1273 static int sas_check_fanout_expander_topo(struct domain_device *child, 1274 struct ex_phy *parent_phy) 1275 { 1276 struct expander_device *child_ex = &child->ex_dev; 1277 struct ex_phy *child_phy; 1278 1279 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1280 1281 if (parent_phy->routing_attr == TABLE_ROUTING && 1282 child_phy->routing_attr == SUBTRACTIVE_ROUTING) 1283 return 0; 1284 1285 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1286 1287 return -ENODEV; 1288 } 1289 1290 static int sas_check_parent_topology(struct domain_device *child) 1291 { 1292 struct expander_device *parent_ex; 1293 int i; 1294 int res = 0; 1295 1296 if (!child->parent) 1297 return 0; 1298 1299 if (!dev_is_expander(child->parent->dev_type)) 1300 return 0; 1301 1302 parent_ex = &child->parent->ex_dev; 1303 1304 for (i = 0; i < parent_ex->num_phys; i++) { 1305 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1306 1307 if (parent_phy->phy_state == PHY_VACANT || 1308 parent_phy->phy_state == PHY_NOT_PRESENT) 1309 continue; 1310 1311 if (!sas_phy_match_dev_addr(child, parent_phy)) 1312 continue; 1313 1314 switch (child->parent->dev_type) { 1315 case SAS_EDGE_EXPANDER_DEVICE: 1316 if (sas_check_edge_expander_topo(child, parent_phy)) 1317 res = -ENODEV; 1318 break; 1319 case SAS_FANOUT_EXPANDER_DEVICE: 1320 if (sas_check_fanout_expander_topo(child, parent_phy)) 1321 res = -ENODEV; 1322 break; 1323 default: 1324 break; 1325 } 1326 } 1327 1328 return res; 1329 } 1330 1331 #define RRI_REQ_SIZE 16 1332 #define RRI_RESP_SIZE 44 1333 1334 static int sas_configure_present(struct domain_device *dev, int phy_id, 1335 u8 *sas_addr, int *index, int *present) 1336 { 1337 int i, res = 0; 1338 struct expander_device *ex = &dev->ex_dev; 1339 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1340 u8 *rri_req; 1341 u8 *rri_resp; 1342 1343 *present = 0; 1344 *index = 0; 1345 1346 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1347 if (!rri_req) 1348 return -ENOMEM; 1349 1350 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1351 if (!rri_resp) { 1352 kfree(rri_req); 1353 return -ENOMEM; 1354 } 1355 1356 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1357 rri_req[9] = phy_id; 1358 1359 for (i = 0; i < ex->max_route_indexes ; i++) { 1360 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1361 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1362 RRI_RESP_SIZE); 1363 if (res) 1364 goto out; 1365 res = rri_resp[2]; 1366 if (res == SMP_RESP_NO_INDEX) { 1367 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1368 SAS_ADDR(dev->sas_addr), phy_id, i); 1369 goto out; 1370 } else if (res != SMP_RESP_FUNC_ACC) { 1371 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1372 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1373 i, res); 1374 goto out; 1375 } 1376 if (SAS_ADDR(sas_addr) != 0) { 1377 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1378 *index = i; 1379 if ((rri_resp[12] & 0x80) == 0x80) 1380 *present = 0; 1381 else 1382 *present = 1; 1383 goto out; 1384 } else if (SAS_ADDR(rri_resp+16) == 0) { 1385 *index = i; 1386 *present = 0; 1387 goto out; 1388 } 1389 } else if (SAS_ADDR(rri_resp+16) == 0 && 1390 phy->last_da_index < i) { 1391 phy->last_da_index = i; 1392 *index = i; 1393 *present = 0; 1394 goto out; 1395 } 1396 } 1397 res = -1; 1398 out: 1399 kfree(rri_req); 1400 kfree(rri_resp); 1401 return res; 1402 } 1403 1404 #define CRI_REQ_SIZE 44 1405 #define CRI_RESP_SIZE 8 1406 1407 static int sas_configure_set(struct domain_device *dev, int phy_id, 1408 u8 *sas_addr, int index, int include) 1409 { 1410 int res; 1411 u8 *cri_req; 1412 u8 *cri_resp; 1413 1414 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1415 if (!cri_req) 1416 return -ENOMEM; 1417 1418 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1419 if (!cri_resp) { 1420 kfree(cri_req); 1421 return -ENOMEM; 1422 } 1423 1424 cri_req[1] = SMP_CONF_ROUTE_INFO; 1425 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1426 cri_req[9] = phy_id; 1427 if (SAS_ADDR(sas_addr) == 0 || !include) 1428 cri_req[12] |= 0x80; 1429 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1430 1431 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1432 CRI_RESP_SIZE); 1433 if (res) 1434 goto out; 1435 res = cri_resp[2]; 1436 if (res == SMP_RESP_NO_INDEX) { 1437 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1438 SAS_ADDR(dev->sas_addr), phy_id, index); 1439 } 1440 out: 1441 kfree(cri_req); 1442 kfree(cri_resp); 1443 return res; 1444 } 1445 1446 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1447 u8 *sas_addr, int include) 1448 { 1449 int index; 1450 int present; 1451 int res; 1452 1453 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1454 if (res) 1455 return res; 1456 if (include ^ present) 1457 return sas_configure_set(dev, phy_id, sas_addr, index, 1458 include); 1459 1460 return res; 1461 } 1462 1463 /** 1464 * sas_configure_parent - configure routing table of parent 1465 * @parent: parent expander 1466 * @child: child expander 1467 * @sas_addr: SAS port identifier of device directly attached to child 1468 * @include: whether or not to include @child in the expander routing table 1469 */ 1470 static int sas_configure_parent(struct domain_device *parent, 1471 struct domain_device *child, 1472 u8 *sas_addr, int include) 1473 { 1474 struct expander_device *ex_parent = &parent->ex_dev; 1475 int res = 0; 1476 int i; 1477 1478 if (parent->parent) { 1479 res = sas_configure_parent(parent->parent, parent, sas_addr, 1480 include); 1481 if (res) 1482 return res; 1483 } 1484 1485 if (ex_parent->conf_route_table == 0) { 1486 pr_debug("ex %016llx has self-configuring routing table\n", 1487 SAS_ADDR(parent->sas_addr)); 1488 return 0; 1489 } 1490 1491 for (i = 0; i < ex_parent->num_phys; i++) { 1492 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1493 1494 if ((phy->routing_attr == TABLE_ROUTING) && 1495 sas_phy_match_dev_addr(child, phy)) { 1496 res = sas_configure_phy(parent, i, sas_addr, include); 1497 if (res) 1498 return res; 1499 } 1500 } 1501 1502 return res; 1503 } 1504 1505 /** 1506 * sas_configure_routing - configure routing 1507 * @dev: expander device 1508 * @sas_addr: port identifier of device directly attached to the expander device 1509 */ 1510 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1511 { 1512 if (dev->parent) 1513 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1514 return 0; 1515 } 1516 1517 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1518 { 1519 if (dev->parent) 1520 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1521 return 0; 1522 } 1523 1524 /** 1525 * sas_discover_expander - expander discovery 1526 * @dev: pointer to expander domain device 1527 * 1528 * See comment in sas_discover_sata(). 1529 */ 1530 static int sas_discover_expander(struct domain_device *dev) 1531 { 1532 int res; 1533 1534 res = sas_notify_lldd_dev_found(dev); 1535 if (res) 1536 return res; 1537 1538 res = sas_ex_general(dev); 1539 if (res) 1540 goto out_err; 1541 res = sas_ex_manuf_info(dev); 1542 if (res) 1543 goto out_err; 1544 1545 res = sas_expander_discover(dev); 1546 if (res) { 1547 pr_warn("expander %016llx discovery failed(0x%x)\n", 1548 SAS_ADDR(dev->sas_addr), res); 1549 goto out_err; 1550 } 1551 1552 sas_check_ex_subtractive_boundary(dev); 1553 res = sas_check_parent_topology(dev); 1554 if (res) 1555 goto out_err; 1556 return 0; 1557 out_err: 1558 sas_notify_lldd_dev_gone(dev); 1559 return res; 1560 } 1561 1562 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1563 { 1564 int res = 0; 1565 struct domain_device *dev; 1566 1567 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1568 if (dev_is_expander(dev->dev_type)) { 1569 struct sas_expander_device *ex = 1570 rphy_to_expander_device(dev->rphy); 1571 1572 if (level == ex->level) 1573 res = sas_ex_discover_devices(dev, -1); 1574 else if (level > 0) 1575 res = sas_ex_discover_devices(port->port_dev, -1); 1576 1577 } 1578 } 1579 1580 return res; 1581 } 1582 1583 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1584 { 1585 int res; 1586 int level; 1587 1588 do { 1589 level = port->disc.max_level; 1590 res = sas_ex_level_discovery(port, level); 1591 mb(); 1592 } while (level < port->disc.max_level); 1593 1594 return res; 1595 } 1596 1597 int sas_discover_root_expander(struct domain_device *dev) 1598 { 1599 int res; 1600 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1601 1602 res = sas_rphy_add(dev->rphy); 1603 if (res) 1604 goto out_err; 1605 1606 ex->level = dev->port->disc.max_level; /* 0 */ 1607 res = sas_discover_expander(dev); 1608 if (res) 1609 goto out_err2; 1610 1611 sas_ex_bfs_disc(dev->port); 1612 1613 return res; 1614 1615 out_err2: 1616 sas_rphy_remove(dev->rphy); 1617 out_err: 1618 return res; 1619 } 1620 1621 /* ---------- Domain revalidation ---------- */ 1622 1623 static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp, 1624 u8 *sas_addr, 1625 enum sas_device_type *type) 1626 { 1627 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE); 1628 *type = to_dev_type(&disc_resp->disc); 1629 if (*type == SAS_PHY_UNUSED) 1630 memset(sas_addr, 0, SAS_ADDR_SIZE); 1631 } 1632 1633 static int sas_get_phy_discover(struct domain_device *dev, 1634 int phy_id, struct smp_disc_resp *disc_resp) 1635 { 1636 int res; 1637 u8 *disc_req; 1638 1639 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1640 if (!disc_req) 1641 return -ENOMEM; 1642 1643 disc_req[1] = SMP_DISCOVER; 1644 disc_req[9] = phy_id; 1645 1646 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1647 disc_resp, DISCOVER_RESP_SIZE); 1648 if (res) 1649 goto out; 1650 if (disc_resp->result != SMP_RESP_FUNC_ACC) 1651 res = disc_resp->result; 1652 out: 1653 kfree(disc_req); 1654 return res; 1655 } 1656 1657 static int sas_get_phy_change_count(struct domain_device *dev, 1658 int phy_id, int *pcc) 1659 { 1660 int res; 1661 struct smp_disc_resp *disc_resp; 1662 1663 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1664 if (!disc_resp) 1665 return -ENOMEM; 1666 1667 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1668 if (!res) 1669 *pcc = disc_resp->disc.change_count; 1670 1671 kfree(disc_resp); 1672 return res; 1673 } 1674 1675 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1676 u8 *sas_addr, enum sas_device_type *type) 1677 { 1678 int res; 1679 struct smp_disc_resp *disc_resp; 1680 1681 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1682 if (!disc_resp) 1683 return -ENOMEM; 1684 1685 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1686 if (res == 0) 1687 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type); 1688 kfree(disc_resp); 1689 return res; 1690 } 1691 1692 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1693 int from_phy, bool update) 1694 { 1695 struct expander_device *ex = &dev->ex_dev; 1696 int res = 0; 1697 int i; 1698 1699 for (i = from_phy; i < ex->num_phys; i++) { 1700 int phy_change_count = 0; 1701 1702 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1703 switch (res) { 1704 case SMP_RESP_PHY_VACANT: 1705 case SMP_RESP_NO_PHY: 1706 continue; 1707 case SMP_RESP_FUNC_ACC: 1708 break; 1709 default: 1710 return res; 1711 } 1712 1713 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1714 if (update) 1715 ex->ex_phy[i].phy_change_count = 1716 phy_change_count; 1717 *phy_id = i; 1718 return 0; 1719 } 1720 } 1721 return 0; 1722 } 1723 1724 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1725 { 1726 int res; 1727 u8 *rg_req; 1728 struct smp_rg_resp *rg_resp; 1729 1730 rg_req = alloc_smp_req(RG_REQ_SIZE); 1731 if (!rg_req) 1732 return -ENOMEM; 1733 1734 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1735 if (!rg_resp) { 1736 kfree(rg_req); 1737 return -ENOMEM; 1738 } 1739 1740 rg_req[1] = SMP_REPORT_GENERAL; 1741 1742 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1743 RG_RESP_SIZE); 1744 if (res) 1745 goto out; 1746 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1747 res = rg_resp->result; 1748 goto out; 1749 } 1750 1751 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1752 out: 1753 kfree(rg_resp); 1754 kfree(rg_req); 1755 return res; 1756 } 1757 /** 1758 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1759 * @dev:domain device to be detect. 1760 * @src_dev: the device which originated BROADCAST(CHANGE). 1761 * 1762 * Add self-configuration expander support. Suppose two expander cascading, 1763 * when the first level expander is self-configuring, hotplug the disks in 1764 * second level expander, BROADCAST(CHANGE) will not only be originated 1765 * in the second level expander, but also be originated in the first level 1766 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1767 * expander changed count in two level expanders will all increment at least 1768 * once, but the phy which chang count has changed is the source device which 1769 * we concerned. 1770 */ 1771 1772 static int sas_find_bcast_dev(struct domain_device *dev, 1773 struct domain_device **src_dev) 1774 { 1775 struct expander_device *ex = &dev->ex_dev; 1776 int ex_change_count = -1; 1777 int phy_id = -1; 1778 int res; 1779 struct domain_device *ch; 1780 1781 res = sas_get_ex_change_count(dev, &ex_change_count); 1782 if (res) 1783 goto out; 1784 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1785 /* Just detect if this expander phys phy change count changed, 1786 * in order to determine if this expander originate BROADCAST, 1787 * and do not update phy change count field in our structure. 1788 */ 1789 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1790 if (phy_id != -1) { 1791 *src_dev = dev; 1792 ex->ex_change_count = ex_change_count; 1793 pr_info("ex %016llx phy%02d change count has changed\n", 1794 SAS_ADDR(dev->sas_addr), phy_id); 1795 return res; 1796 } else 1797 pr_info("ex %016llx phys DID NOT change\n", 1798 SAS_ADDR(dev->sas_addr)); 1799 } 1800 list_for_each_entry(ch, &ex->children, siblings) { 1801 if (dev_is_expander(ch->dev_type)) { 1802 res = sas_find_bcast_dev(ch, src_dev); 1803 if (*src_dev) 1804 return res; 1805 } 1806 } 1807 out: 1808 return res; 1809 } 1810 1811 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1812 { 1813 struct expander_device *ex = &dev->ex_dev; 1814 struct domain_device *child, *n; 1815 1816 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1817 set_bit(SAS_DEV_GONE, &child->state); 1818 if (dev_is_expander(child->dev_type)) 1819 sas_unregister_ex_tree(port, child); 1820 else 1821 sas_unregister_dev(port, child); 1822 } 1823 sas_unregister_dev(port, dev); 1824 } 1825 1826 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1827 int phy_id, bool last) 1828 { 1829 struct expander_device *ex_dev = &parent->ex_dev; 1830 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1831 struct domain_device *child, *n, *found = NULL; 1832 if (last) { 1833 list_for_each_entry_safe(child, n, 1834 &ex_dev->children, siblings) { 1835 if (sas_phy_match_dev_addr(child, phy)) { 1836 set_bit(SAS_DEV_GONE, &child->state); 1837 if (dev_is_expander(child->dev_type)) 1838 sas_unregister_ex_tree(parent->port, child); 1839 else 1840 sas_unregister_dev(parent->port, child); 1841 found = child; 1842 break; 1843 } 1844 } 1845 sas_disable_routing(parent, phy->attached_sas_addr); 1846 } 1847 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1848 if (phy->port) { 1849 sas_port_delete_phy(phy->port, phy->phy); 1850 sas_device_set_phy(found, phy->port); 1851 if (phy->port->num_phys == 0) 1852 list_add_tail(&phy->port->del_list, 1853 &parent->port->sas_port_del_list); 1854 phy->port = NULL; 1855 } 1856 } 1857 1858 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1859 const int level) 1860 { 1861 struct expander_device *ex_root = &root->ex_dev; 1862 struct domain_device *child; 1863 int res = 0; 1864 1865 list_for_each_entry(child, &ex_root->children, siblings) { 1866 if (dev_is_expander(child->dev_type)) { 1867 struct sas_expander_device *ex = 1868 rphy_to_expander_device(child->rphy); 1869 1870 if (level > ex->level) 1871 res = sas_discover_bfs_by_root_level(child, 1872 level); 1873 else if (level == ex->level) 1874 res = sas_ex_discover_devices(child, -1); 1875 } 1876 } 1877 return res; 1878 } 1879 1880 static int sas_discover_bfs_by_root(struct domain_device *dev) 1881 { 1882 int res; 1883 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1884 int level = ex->level+1; 1885 1886 res = sas_ex_discover_devices(dev, -1); 1887 if (res) 1888 goto out; 1889 do { 1890 res = sas_discover_bfs_by_root_level(dev, level); 1891 mb(); 1892 level += 1; 1893 } while (level <= dev->port->disc.max_level); 1894 out: 1895 return res; 1896 } 1897 1898 static int sas_discover_new(struct domain_device *dev, int phy_id) 1899 { 1900 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1901 struct domain_device *child; 1902 int res; 1903 1904 pr_debug("ex %016llx phy%02d new device attached\n", 1905 SAS_ADDR(dev->sas_addr), phy_id); 1906 res = sas_ex_phy_discover(dev, phy_id); 1907 if (res) 1908 return res; 1909 1910 if (sas_ex_join_wide_port(dev, phy_id)) 1911 return 0; 1912 1913 res = sas_ex_discover_devices(dev, phy_id); 1914 if (res) 1915 return res; 1916 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1917 if (sas_phy_match_dev_addr(child, ex_phy)) { 1918 if (dev_is_expander(child->dev_type)) 1919 res = sas_discover_bfs_by_root(child); 1920 break; 1921 } 1922 } 1923 return res; 1924 } 1925 1926 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1927 { 1928 if (old == new) 1929 return true; 1930 1931 /* treat device directed resets as flutter, if we went 1932 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1933 */ 1934 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1935 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1936 return true; 1937 1938 return false; 1939 } 1940 1941 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 1942 bool last, int sibling) 1943 { 1944 struct expander_device *ex = &dev->ex_dev; 1945 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1946 enum sas_device_type type = SAS_PHY_UNUSED; 1947 struct smp_disc_resp *disc_resp; 1948 u8 sas_addr[SAS_ADDR_SIZE]; 1949 char msg[80] = ""; 1950 int res; 1951 1952 if (!last) 1953 sprintf(msg, ", part of a wide port with phy%02d", sibling); 1954 1955 pr_debug("ex %016llx rediscovering phy%02d%s\n", 1956 SAS_ADDR(dev->sas_addr), phy_id, msg); 1957 1958 memset(sas_addr, 0, SAS_ADDR_SIZE); 1959 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1960 if (!disc_resp) 1961 return -ENOMEM; 1962 1963 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1964 switch (res) { 1965 case SMP_RESP_NO_PHY: 1966 phy->phy_state = PHY_NOT_PRESENT; 1967 sas_unregister_devs_sas_addr(dev, phy_id, last); 1968 goto out_free_resp; 1969 case SMP_RESP_PHY_VACANT: 1970 phy->phy_state = PHY_VACANT; 1971 sas_unregister_devs_sas_addr(dev, phy_id, last); 1972 goto out_free_resp; 1973 case SMP_RESP_FUNC_ACC: 1974 break; 1975 case -ECOMM: 1976 break; 1977 default: 1978 goto out_free_resp; 1979 } 1980 1981 if (res == 0) 1982 sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type); 1983 1984 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 1985 phy->phy_state = PHY_EMPTY; 1986 sas_unregister_devs_sas_addr(dev, phy_id, last); 1987 /* 1988 * Even though the PHY is empty, for convenience we update 1989 * the PHY info, like negotiated linkrate. 1990 */ 1991 if (res == 0) 1992 sas_set_ex_phy(dev, phy_id, disc_resp); 1993 goto out_free_resp; 1994 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 1995 dev_type_flutter(type, phy->attached_dev_type)) { 1996 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 1997 char *action = ""; 1998 1999 sas_ex_phy_discover(dev, phy_id); 2000 2001 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2002 action = ", needs recovery"; 2003 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2004 SAS_ADDR(dev->sas_addr), phy_id, action); 2005 goto out_free_resp; 2006 } 2007 2008 /* we always have to delete the old device when we went here */ 2009 pr_info("ex %016llx phy%02d replace %016llx\n", 2010 SAS_ADDR(dev->sas_addr), phy_id, 2011 SAS_ADDR(phy->attached_sas_addr)); 2012 sas_unregister_devs_sas_addr(dev, phy_id, last); 2013 2014 res = sas_discover_new(dev, phy_id); 2015 out_free_resp: 2016 kfree(disc_resp); 2017 return res; 2018 } 2019 2020 /** 2021 * sas_rediscover - revalidate the domain. 2022 * @dev:domain device to be detect. 2023 * @phy_id: the phy id will be detected. 2024 * 2025 * NOTE: this process _must_ quit (return) as soon as any connection 2026 * errors are encountered. Connection recovery is done elsewhere. 2027 * Discover process only interrogates devices in order to discover the 2028 * domain.For plugging out, we un-register the device only when it is 2029 * the last phy in the port, for other phys in this port, we just delete it 2030 * from the port.For inserting, we do discovery when it is the 2031 * first phy,for other phys in this port, we add it to the port to 2032 * forming the wide-port. 2033 */ 2034 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2035 { 2036 struct expander_device *ex = &dev->ex_dev; 2037 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2038 int res = 0; 2039 int i; 2040 bool last = true; /* is this the last phy of the port */ 2041 2042 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2043 SAS_ADDR(dev->sas_addr), phy_id); 2044 2045 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2046 for (i = 0; i < ex->num_phys; i++) { 2047 struct ex_phy *phy = &ex->ex_phy[i]; 2048 2049 if (i == phy_id) 2050 continue; 2051 if (sas_phy_addr_match(phy, changed_phy)) { 2052 last = false; 2053 break; 2054 } 2055 } 2056 res = sas_rediscover_dev(dev, phy_id, last, i); 2057 } else 2058 res = sas_discover_new(dev, phy_id); 2059 return res; 2060 } 2061 2062 /** 2063 * sas_ex_revalidate_domain - revalidate the domain 2064 * @port_dev: port domain device. 2065 * 2066 * NOTE: this process _must_ quit (return) as soon as any connection 2067 * errors are encountered. Connection recovery is done elsewhere. 2068 * Discover process only interrogates devices in order to discover the 2069 * domain. 2070 */ 2071 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2072 { 2073 int res; 2074 struct domain_device *dev = NULL; 2075 2076 res = sas_find_bcast_dev(port_dev, &dev); 2077 if (res == 0 && dev) { 2078 struct expander_device *ex = &dev->ex_dev; 2079 int i = 0, phy_id; 2080 2081 do { 2082 phy_id = -1; 2083 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2084 if (phy_id == -1) 2085 break; 2086 res = sas_rediscover(dev, phy_id); 2087 i = phy_id + 1; 2088 } while (i < ex->num_phys); 2089 } 2090 return res; 2091 } 2092 2093 int sas_find_attached_phy_id(struct expander_device *ex_dev, 2094 struct domain_device *dev) 2095 { 2096 struct ex_phy *phy; 2097 int phy_id; 2098 2099 for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) { 2100 phy = &ex_dev->ex_phy[phy_id]; 2101 if (sas_phy_match_dev_addr(dev, phy)) 2102 return phy_id; 2103 } 2104 2105 return -ENODEV; 2106 } 2107 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id); 2108 2109 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2110 struct sas_rphy *rphy) 2111 { 2112 struct domain_device *dev; 2113 unsigned int rcvlen = 0; 2114 int ret = -EINVAL; 2115 2116 /* no rphy means no smp target support (ie aic94xx host) */ 2117 if (!rphy) 2118 return sas_smp_host_handler(job, shost); 2119 2120 switch (rphy->identify.device_type) { 2121 case SAS_EDGE_EXPANDER_DEVICE: 2122 case SAS_FANOUT_EXPANDER_DEVICE: 2123 break; 2124 default: 2125 pr_err("%s: can we send a smp request to a device?\n", 2126 __func__); 2127 goto out; 2128 } 2129 2130 dev = sas_find_dev_by_rphy(rphy); 2131 if (!dev) { 2132 pr_err("%s: fail to find a domain_device?\n", __func__); 2133 goto out; 2134 } 2135 2136 /* do we need to support multiple segments? */ 2137 if (job->request_payload.sg_cnt > 1 || 2138 job->reply_payload.sg_cnt > 1) { 2139 pr_info("%s: multiple segments req %u, rsp %u\n", 2140 __func__, job->request_payload.payload_len, 2141 job->reply_payload.payload_len); 2142 goto out; 2143 } 2144 2145 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2146 job->reply_payload.sg_list); 2147 if (ret >= 0) { 2148 /* bsg_job_done() requires the length received */ 2149 rcvlen = job->reply_payload.payload_len - ret; 2150 ret = 0; 2151 } 2152 2153 out: 2154 bsg_job_done(job, ret, rcvlen); 2155 } 2156