1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(struct timer_list *t) 45 { 46 struct sas_task_slow *slow = from_timer(slow, t, timer); 47 struct sas_task *task = slow->task; 48 unsigned long flags; 49 50 spin_lock_irqsave(&task->task_state_lock, flags); 51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 52 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 53 complete(&task->slow_task->completion); 54 } 55 spin_unlock_irqrestore(&task->task_state_lock, flags); 56 } 57 58 static void smp_task_done(struct sas_task *task) 59 { 60 del_timer(&task->slow_task->timer); 61 complete(&task->slow_task->completion); 62 } 63 64 /* Give it some long enough timeout. In seconds. */ 65 #define SMP_TIMEOUT 10 66 67 static int smp_execute_task_sg(struct domain_device *dev, 68 struct scatterlist *req, struct scatterlist *resp) 69 { 70 int res, retry; 71 struct sas_task *task = NULL; 72 struct sas_internal *i = 73 to_sas_internal(dev->port->ha->core.shost->transportt); 74 75 mutex_lock(&dev->ex_dev.cmd_mutex); 76 for (retry = 0; retry < 3; retry++) { 77 if (test_bit(SAS_DEV_GONE, &dev->state)) { 78 res = -ECOMM; 79 break; 80 } 81 82 task = sas_alloc_slow_task(GFP_KERNEL); 83 if (!task) { 84 res = -ENOMEM; 85 break; 86 } 87 task->dev = dev; 88 task->task_proto = dev->tproto; 89 task->smp_task.smp_req = *req; 90 task->smp_task.smp_resp = *resp; 91 92 task->task_done = smp_task_done; 93 94 task->slow_task->timer.function = smp_task_timedout; 95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 96 add_timer(&task->slow_task->timer); 97 98 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 99 100 if (res) { 101 del_timer(&task->slow_task->timer); 102 pr_notice("executing SMP task failed:%d\n", res); 103 break; 104 } 105 106 wait_for_completion(&task->slow_task->completion); 107 res = -ECOMM; 108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 109 pr_notice("smp task timed out or aborted\n"); 110 i->dft->lldd_abort_task(task); 111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 112 pr_notice("SMP task aborted and not done\n"); 113 break; 114 } 115 } 116 if (task->task_status.resp == SAS_TASK_COMPLETE && 117 task->task_status.stat == SAM_STAT_GOOD) { 118 res = 0; 119 break; 120 } 121 if (task->task_status.resp == SAS_TASK_COMPLETE && 122 task->task_status.stat == SAS_DATA_UNDERRUN) { 123 /* no error, but return the number of bytes of 124 * underrun */ 125 res = task->task_status.residual; 126 break; 127 } 128 if (task->task_status.resp == SAS_TASK_COMPLETE && 129 task->task_status.stat == SAS_DATA_OVERRUN) { 130 res = -EMSGSIZE; 131 break; 132 } 133 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 134 task->task_status.stat == SAS_DEVICE_UNKNOWN) 135 break; 136 else { 137 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 138 __func__, 139 SAS_ADDR(dev->sas_addr), 140 task->task_status.resp, 141 task->task_status.stat); 142 sas_free_task(task); 143 task = NULL; 144 } 145 } 146 mutex_unlock(&dev->ex_dev.cmd_mutex); 147 148 BUG_ON(retry == 3 && task != NULL); 149 sas_free_task(task); 150 return res; 151 } 152 153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 154 void *resp, int resp_size) 155 { 156 struct scatterlist req_sg; 157 struct scatterlist resp_sg; 158 159 sg_init_one(&req_sg, req, req_size); 160 sg_init_one(&resp_sg, resp, resp_size); 161 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 162 } 163 164 /* ---------- Allocations ---------- */ 165 166 static inline void *alloc_smp_req(int size) 167 { 168 u8 *p = kzalloc(size, GFP_KERNEL); 169 if (p) 170 p[0] = SMP_REQUEST; 171 return p; 172 } 173 174 static inline void *alloc_smp_resp(int size) 175 { 176 return kzalloc(size, GFP_KERNEL); 177 } 178 179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 180 { 181 switch (phy->routing_attr) { 182 case TABLE_ROUTING: 183 if (dev->ex_dev.t2t_supp) 184 return 'U'; 185 else 186 return 'T'; 187 case DIRECT_ROUTING: 188 return 'D'; 189 case SUBTRACTIVE_ROUTING: 190 return 'S'; 191 default: 192 return '?'; 193 } 194 } 195 196 static enum sas_device_type to_dev_type(struct discover_resp *dr) 197 { 198 /* This is detecting a failure to transmit initial dev to host 199 * FIS as described in section J.5 of sas-2 r16 200 */ 201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 203 return SAS_SATA_PENDING; 204 else 205 return dr->attached_dev_type; 206 } 207 208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 209 { 210 enum sas_device_type dev_type; 211 enum sas_linkrate linkrate; 212 u8 sas_addr[SAS_ADDR_SIZE]; 213 struct smp_resp *resp = rsp; 214 struct discover_resp *dr = &resp->disc; 215 struct sas_ha_struct *ha = dev->port->ha; 216 struct expander_device *ex = &dev->ex_dev; 217 struct ex_phy *phy = &ex->ex_phy[phy_id]; 218 struct sas_rphy *rphy = dev->rphy; 219 bool new_phy = !phy->phy; 220 char *type; 221 222 if (new_phy) { 223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 224 return; 225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 226 227 /* FIXME: error_handling */ 228 BUG_ON(!phy->phy); 229 } 230 231 switch (resp->result) { 232 case SMP_RESP_PHY_VACANT: 233 phy->phy_state = PHY_VACANT; 234 break; 235 default: 236 phy->phy_state = PHY_NOT_PRESENT; 237 break; 238 case SMP_RESP_FUNC_ACC: 239 phy->phy_state = PHY_EMPTY; /* do not know yet */ 240 break; 241 } 242 243 /* check if anything important changed to squelch debug */ 244 dev_type = phy->attached_dev_type; 245 linkrate = phy->linkrate; 246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 247 248 /* Handle vacant phy - rest of dr data is not valid so skip it */ 249 if (phy->phy_state == PHY_VACANT) { 250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 251 phy->attached_dev_type = SAS_PHY_UNUSED; 252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 253 phy->phy_id = phy_id; 254 goto skip; 255 } else 256 goto out; 257 } 258 259 phy->attached_dev_type = to_dev_type(dr); 260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 261 goto out; 262 phy->phy_id = phy_id; 263 phy->linkrate = dr->linkrate; 264 phy->attached_sata_host = dr->attached_sata_host; 265 phy->attached_sata_dev = dr->attached_sata_dev; 266 phy->attached_sata_ps = dr->attached_sata_ps; 267 phy->attached_iproto = dr->iproto << 1; 268 phy->attached_tproto = dr->tproto << 1; 269 /* help some expanders that fail to zero sas_address in the 'no 270 * device' case 271 */ 272 if (phy->attached_dev_type == SAS_PHY_UNUSED || 273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 275 else 276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 277 phy->attached_phy_id = dr->attached_phy_id; 278 phy->phy_change_count = dr->change_count; 279 phy->routing_attr = dr->routing_attr; 280 phy->virtual = dr->virtual; 281 phy->last_da_index = -1; 282 283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 284 phy->phy->identify.device_type = dr->attached_dev_type; 285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 286 phy->phy->identify.target_port_protocols = phy->attached_tproto; 287 if (!phy->attached_tproto && dr->attached_sata_dev) 288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 289 phy->phy->identify.phy_identifier = phy_id; 290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 292 phy->phy->minimum_linkrate = dr->pmin_linkrate; 293 phy->phy->maximum_linkrate = dr->pmax_linkrate; 294 phy->phy->negotiated_linkrate = phy->linkrate; 295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 296 297 skip: 298 if (new_phy) 299 if (sas_phy_add(phy->phy)) { 300 sas_phy_free(phy->phy); 301 return; 302 } 303 304 out: 305 switch (phy->attached_dev_type) { 306 case SAS_SATA_PENDING: 307 type = "stp pending"; 308 break; 309 case SAS_PHY_UNUSED: 310 type = "no device"; 311 break; 312 case SAS_END_DEVICE: 313 if (phy->attached_iproto) { 314 if (phy->attached_tproto) 315 type = "host+target"; 316 else 317 type = "host"; 318 } else { 319 if (dr->attached_sata_dev) 320 type = "stp"; 321 else 322 type = "ssp"; 323 } 324 break; 325 case SAS_EDGE_EXPANDER_DEVICE: 326 case SAS_FANOUT_EXPANDER_DEVICE: 327 type = "smp"; 328 break; 329 default: 330 type = "unknown"; 331 } 332 333 /* this routine is polled by libata error recovery so filter 334 * unimportant messages 335 */ 336 if (new_phy || phy->attached_dev_type != dev_type || 337 phy->linkrate != linkrate || 338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 339 /* pass */; 340 else 341 return; 342 343 /* if the attached device type changed and ata_eh is active, 344 * make sure we run revalidation when eh completes (see: 345 * sas_enable_revalidation) 346 */ 347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 349 350 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 352 SAS_ADDR(dev->sas_addr), phy->phy_id, 353 sas_route_char(dev, phy), phy->linkrate, 354 SAS_ADDR(phy->attached_sas_addr), type); 355 } 356 357 /* check if we have an existing attached ata device on this expander phy */ 358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 359 { 360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 361 struct domain_device *dev; 362 struct sas_rphy *rphy; 363 364 if (!ex_phy->port) 365 return NULL; 366 367 rphy = ex_phy->port->rphy; 368 if (!rphy) 369 return NULL; 370 371 dev = sas_find_dev_by_rphy(rphy); 372 373 if (dev && dev_is_sata(dev)) 374 return dev; 375 376 return NULL; 377 } 378 379 #define DISCOVER_REQ_SIZE 16 380 #define DISCOVER_RESP_SIZE 56 381 382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 383 u8 *disc_resp, int single) 384 { 385 struct discover_resp *dr; 386 int res; 387 388 disc_req[9] = single; 389 390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 391 disc_resp, DISCOVER_RESP_SIZE); 392 if (res) 393 return res; 394 dr = &((struct smp_resp *)disc_resp)->disc; 395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 396 pr_notice("Found loopback topology, just ignore it!\n"); 397 return 0; 398 } 399 sas_set_ex_phy(dev, single, disc_resp); 400 return 0; 401 } 402 403 int sas_ex_phy_discover(struct domain_device *dev, int single) 404 { 405 struct expander_device *ex = &dev->ex_dev; 406 int res = 0; 407 u8 *disc_req; 408 u8 *disc_resp; 409 410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 411 if (!disc_req) 412 return -ENOMEM; 413 414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 415 if (!disc_resp) { 416 kfree(disc_req); 417 return -ENOMEM; 418 } 419 420 disc_req[1] = SMP_DISCOVER; 421 422 if (0 <= single && single < ex->num_phys) { 423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 424 } else { 425 int i; 426 427 for (i = 0; i < ex->num_phys; i++) { 428 res = sas_ex_phy_discover_helper(dev, disc_req, 429 disc_resp, i); 430 if (res) 431 goto out_err; 432 } 433 } 434 out_err: 435 kfree(disc_resp); 436 kfree(disc_req); 437 return res; 438 } 439 440 static int sas_expander_discover(struct domain_device *dev) 441 { 442 struct expander_device *ex = &dev->ex_dev; 443 int res = -ENOMEM; 444 445 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 446 if (!ex->ex_phy) 447 return -ENOMEM; 448 449 res = sas_ex_phy_discover(dev, -1); 450 if (res) 451 goto out_err; 452 453 return 0; 454 out_err: 455 kfree(ex->ex_phy); 456 ex->ex_phy = NULL; 457 return res; 458 } 459 460 #define MAX_EXPANDER_PHYS 128 461 462 static void ex_assign_report_general(struct domain_device *dev, 463 struct smp_resp *resp) 464 { 465 struct report_general_resp *rg = &resp->rg; 466 467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 470 dev->ex_dev.t2t_supp = rg->t2t_supp; 471 dev->ex_dev.conf_route_table = rg->conf_route_table; 472 dev->ex_dev.configuring = rg->configuring; 473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 474 } 475 476 #define RG_REQ_SIZE 8 477 #define RG_RESP_SIZE 32 478 479 static int sas_ex_general(struct domain_device *dev) 480 { 481 u8 *rg_req; 482 struct smp_resp *rg_resp; 483 int res; 484 int i; 485 486 rg_req = alloc_smp_req(RG_REQ_SIZE); 487 if (!rg_req) 488 return -ENOMEM; 489 490 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 491 if (!rg_resp) { 492 kfree(rg_req); 493 return -ENOMEM; 494 } 495 496 rg_req[1] = SMP_REPORT_GENERAL; 497 498 for (i = 0; i < 5; i++) { 499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 500 RG_RESP_SIZE); 501 502 if (res) { 503 pr_notice("RG to ex %016llx failed:0x%x\n", 504 SAS_ADDR(dev->sas_addr), res); 505 goto out; 506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 507 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 508 SAS_ADDR(dev->sas_addr), rg_resp->result); 509 res = rg_resp->result; 510 goto out; 511 } 512 513 ex_assign_report_general(dev, rg_resp); 514 515 if (dev->ex_dev.configuring) { 516 pr_debug("RG: ex %llx self-configuring...\n", 517 SAS_ADDR(dev->sas_addr)); 518 schedule_timeout_interruptible(5*HZ); 519 } else 520 break; 521 } 522 out: 523 kfree(rg_req); 524 kfree(rg_resp); 525 return res; 526 } 527 528 static void ex_assign_manuf_info(struct domain_device *dev, void 529 *_mi_resp) 530 { 531 u8 *mi_resp = _mi_resp; 532 struct sas_rphy *rphy = dev->rphy; 533 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 534 535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 537 memcpy(edev->product_rev, mi_resp + 36, 538 SAS_EXPANDER_PRODUCT_REV_LEN); 539 540 if (mi_resp[8] & 1) { 541 memcpy(edev->component_vendor_id, mi_resp + 40, 542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 543 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 544 edev->component_revision_id = mi_resp[50]; 545 } 546 } 547 548 #define MI_REQ_SIZE 8 549 #define MI_RESP_SIZE 64 550 551 static int sas_ex_manuf_info(struct domain_device *dev) 552 { 553 u8 *mi_req; 554 u8 *mi_resp; 555 int res; 556 557 mi_req = alloc_smp_req(MI_REQ_SIZE); 558 if (!mi_req) 559 return -ENOMEM; 560 561 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 562 if (!mi_resp) { 563 kfree(mi_req); 564 return -ENOMEM; 565 } 566 567 mi_req[1] = SMP_REPORT_MANUF_INFO; 568 569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 570 if (res) { 571 pr_notice("MI: ex %016llx failed:0x%x\n", 572 SAS_ADDR(dev->sas_addr), res); 573 goto out; 574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 575 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 576 SAS_ADDR(dev->sas_addr), mi_resp[2]); 577 goto out; 578 } 579 580 ex_assign_manuf_info(dev, mi_resp); 581 out: 582 kfree(mi_req); 583 kfree(mi_resp); 584 return res; 585 } 586 587 #define PC_REQ_SIZE 44 588 #define PC_RESP_SIZE 8 589 590 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 591 enum phy_func phy_func, 592 struct sas_phy_linkrates *rates) 593 { 594 u8 *pc_req; 595 u8 *pc_resp; 596 int res; 597 598 pc_req = alloc_smp_req(PC_REQ_SIZE); 599 if (!pc_req) 600 return -ENOMEM; 601 602 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 603 if (!pc_resp) { 604 kfree(pc_req); 605 return -ENOMEM; 606 } 607 608 pc_req[1] = SMP_PHY_CONTROL; 609 pc_req[9] = phy_id; 610 pc_req[10]= phy_func; 611 if (rates) { 612 pc_req[32] = rates->minimum_linkrate << 4; 613 pc_req[33] = rates->maximum_linkrate << 4; 614 } 615 616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 617 618 kfree(pc_resp); 619 kfree(pc_req); 620 return res; 621 } 622 623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 624 { 625 struct expander_device *ex = &dev->ex_dev; 626 struct ex_phy *phy = &ex->ex_phy[phy_id]; 627 628 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 629 phy->linkrate = SAS_PHY_DISABLED; 630 } 631 632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 633 { 634 struct expander_device *ex = &dev->ex_dev; 635 int i; 636 637 for (i = 0; i < ex->num_phys; i++) { 638 struct ex_phy *phy = &ex->ex_phy[i]; 639 640 if (phy->phy_state == PHY_VACANT || 641 phy->phy_state == PHY_NOT_PRESENT) 642 continue; 643 644 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 645 sas_ex_disable_phy(dev, i); 646 } 647 } 648 649 static int sas_dev_present_in_domain(struct asd_sas_port *port, 650 u8 *sas_addr) 651 { 652 struct domain_device *dev; 653 654 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 655 return 1; 656 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 657 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 658 return 1; 659 } 660 return 0; 661 } 662 663 #define RPEL_REQ_SIZE 16 664 #define RPEL_RESP_SIZE 32 665 int sas_smp_get_phy_events(struct sas_phy *phy) 666 { 667 int res; 668 u8 *req; 669 u8 *resp; 670 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 671 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 672 673 req = alloc_smp_req(RPEL_REQ_SIZE); 674 if (!req) 675 return -ENOMEM; 676 677 resp = alloc_smp_resp(RPEL_RESP_SIZE); 678 if (!resp) { 679 kfree(req); 680 return -ENOMEM; 681 } 682 683 req[1] = SMP_REPORT_PHY_ERR_LOG; 684 req[9] = phy->number; 685 686 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 687 resp, RPEL_RESP_SIZE); 688 689 if (res) 690 goto out; 691 692 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 693 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 694 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 695 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 696 697 out: 698 kfree(req); 699 kfree(resp); 700 return res; 701 702 } 703 704 #ifdef CONFIG_SCSI_SAS_ATA 705 706 #define RPS_REQ_SIZE 16 707 #define RPS_RESP_SIZE 60 708 709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 710 struct smp_resp *rps_resp) 711 { 712 int res; 713 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 714 u8 *resp = (u8 *)rps_resp; 715 716 if (!rps_req) 717 return -ENOMEM; 718 719 rps_req[1] = SMP_REPORT_PHY_SATA; 720 rps_req[9] = phy_id; 721 722 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 723 rps_resp, RPS_RESP_SIZE); 724 725 /* 0x34 is the FIS type for the D2H fis. There's a potential 726 * standards cockup here. sas-2 explicitly specifies the FIS 727 * should be encoded so that FIS type is in resp[24]. 728 * However, some expanders endian reverse this. Undo the 729 * reversal here */ 730 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 731 int i; 732 733 for (i = 0; i < 5; i++) { 734 int j = 24 + (i*4); 735 u8 a, b; 736 a = resp[j + 0]; 737 b = resp[j + 1]; 738 resp[j + 0] = resp[j + 3]; 739 resp[j + 1] = resp[j + 2]; 740 resp[j + 2] = b; 741 resp[j + 3] = a; 742 } 743 } 744 745 kfree(rps_req); 746 return res; 747 } 748 #endif 749 750 static void sas_ex_get_linkrate(struct domain_device *parent, 751 struct domain_device *child, 752 struct ex_phy *parent_phy) 753 { 754 struct expander_device *parent_ex = &parent->ex_dev; 755 struct sas_port *port; 756 int i; 757 758 child->pathways = 0; 759 760 port = parent_phy->port; 761 762 for (i = 0; i < parent_ex->num_phys; i++) { 763 struct ex_phy *phy = &parent_ex->ex_phy[i]; 764 765 if (phy->phy_state == PHY_VACANT || 766 phy->phy_state == PHY_NOT_PRESENT) 767 continue; 768 769 if (SAS_ADDR(phy->attached_sas_addr) == 770 SAS_ADDR(child->sas_addr)) { 771 772 child->min_linkrate = min(parent->min_linkrate, 773 phy->linkrate); 774 child->max_linkrate = max(parent->max_linkrate, 775 phy->linkrate); 776 child->pathways++; 777 sas_port_add_phy(port, phy->phy); 778 } 779 } 780 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 781 child->pathways = min(child->pathways, parent->pathways); 782 } 783 784 static struct domain_device *sas_ex_discover_end_dev( 785 struct domain_device *parent, int phy_id) 786 { 787 struct expander_device *parent_ex = &parent->ex_dev; 788 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 789 struct domain_device *child = NULL; 790 struct sas_rphy *rphy; 791 int res; 792 793 if (phy->attached_sata_host || phy->attached_sata_ps) 794 return NULL; 795 796 child = sas_alloc_device(); 797 if (!child) 798 return NULL; 799 800 kref_get(&parent->kref); 801 child->parent = parent; 802 child->port = parent->port; 803 child->iproto = phy->attached_iproto; 804 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 805 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 806 if (!phy->port) { 807 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 808 if (unlikely(!phy->port)) 809 goto out_err; 810 if (unlikely(sas_port_add(phy->port) != 0)) { 811 sas_port_free(phy->port); 812 goto out_err; 813 } 814 } 815 sas_ex_get_linkrate(parent, child, phy); 816 sas_device_set_phy(child, phy->port); 817 818 #ifdef CONFIG_SCSI_SAS_ATA 819 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 820 res = sas_get_ata_info(child, phy); 821 if (res) 822 goto out_free; 823 824 sas_init_dev(child); 825 res = sas_ata_init(child); 826 if (res) 827 goto out_free; 828 rphy = sas_end_device_alloc(phy->port); 829 if (!rphy) 830 goto out_free; 831 rphy->identify.phy_identifier = phy_id; 832 833 child->rphy = rphy; 834 get_device(&rphy->dev); 835 836 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 837 838 res = sas_discover_sata(child); 839 if (res) { 840 pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n", 841 SAS_ADDR(child->sas_addr), 842 SAS_ADDR(parent->sas_addr), phy_id, res); 843 goto out_list_del; 844 } 845 } else 846 #endif 847 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 848 child->dev_type = SAS_END_DEVICE; 849 rphy = sas_end_device_alloc(phy->port); 850 /* FIXME: error handling */ 851 if (unlikely(!rphy)) 852 goto out_free; 853 child->tproto = phy->attached_tproto; 854 sas_init_dev(child); 855 856 child->rphy = rphy; 857 get_device(&rphy->dev); 858 rphy->identify.phy_identifier = phy_id; 859 sas_fill_in_rphy(child, rphy); 860 861 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 862 863 res = sas_discover_end_dev(child); 864 if (res) { 865 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n", 866 SAS_ADDR(child->sas_addr), 867 SAS_ADDR(parent->sas_addr), phy_id, res); 868 goto out_list_del; 869 } 870 } else { 871 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 872 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 873 phy_id); 874 goto out_free; 875 } 876 877 list_add_tail(&child->siblings, &parent_ex->children); 878 return child; 879 880 out_list_del: 881 sas_rphy_free(child->rphy); 882 list_del(&child->disco_list_node); 883 spin_lock_irq(&parent->port->dev_list_lock); 884 list_del(&child->dev_list_node); 885 spin_unlock_irq(&parent->port->dev_list_lock); 886 out_free: 887 sas_port_delete(phy->port); 888 out_err: 889 phy->port = NULL; 890 sas_put_device(child); 891 return NULL; 892 } 893 894 /* See if this phy is part of a wide port */ 895 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 896 { 897 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 898 int i; 899 900 for (i = 0; i < parent->ex_dev.num_phys; i++) { 901 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 902 903 if (ephy == phy) 904 continue; 905 906 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 907 SAS_ADDR_SIZE) && ephy->port) { 908 sas_port_add_phy(ephy->port, phy->phy); 909 phy->port = ephy->port; 910 phy->phy_state = PHY_DEVICE_DISCOVERED; 911 return true; 912 } 913 } 914 915 return false; 916 } 917 918 static struct domain_device *sas_ex_discover_expander( 919 struct domain_device *parent, int phy_id) 920 { 921 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 922 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 923 struct domain_device *child = NULL; 924 struct sas_rphy *rphy; 925 struct sas_expander_device *edev; 926 struct asd_sas_port *port; 927 int res; 928 929 if (phy->routing_attr == DIRECT_ROUTING) { 930 pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n", 931 SAS_ADDR(parent->sas_addr), phy_id, 932 SAS_ADDR(phy->attached_sas_addr), 933 phy->attached_phy_id); 934 return NULL; 935 } 936 child = sas_alloc_device(); 937 if (!child) 938 return NULL; 939 940 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 941 /* FIXME: better error handling */ 942 BUG_ON(sas_port_add(phy->port) != 0); 943 944 945 switch (phy->attached_dev_type) { 946 case SAS_EDGE_EXPANDER_DEVICE: 947 rphy = sas_expander_alloc(phy->port, 948 SAS_EDGE_EXPANDER_DEVICE); 949 break; 950 case SAS_FANOUT_EXPANDER_DEVICE: 951 rphy = sas_expander_alloc(phy->port, 952 SAS_FANOUT_EXPANDER_DEVICE); 953 break; 954 default: 955 rphy = NULL; /* shut gcc up */ 956 BUG(); 957 } 958 port = parent->port; 959 child->rphy = rphy; 960 get_device(&rphy->dev); 961 edev = rphy_to_expander_device(rphy); 962 child->dev_type = phy->attached_dev_type; 963 kref_get(&parent->kref); 964 child->parent = parent; 965 child->port = port; 966 child->iproto = phy->attached_iproto; 967 child->tproto = phy->attached_tproto; 968 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 969 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 970 sas_ex_get_linkrate(parent, child, phy); 971 edev->level = parent_ex->level + 1; 972 parent->port->disc.max_level = max(parent->port->disc.max_level, 973 edev->level); 974 sas_init_dev(child); 975 sas_fill_in_rphy(child, rphy); 976 sas_rphy_add(rphy); 977 978 spin_lock_irq(&parent->port->dev_list_lock); 979 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 980 spin_unlock_irq(&parent->port->dev_list_lock); 981 982 res = sas_discover_expander(child); 983 if (res) { 984 sas_rphy_delete(rphy); 985 spin_lock_irq(&parent->port->dev_list_lock); 986 list_del(&child->dev_list_node); 987 spin_unlock_irq(&parent->port->dev_list_lock); 988 sas_put_device(child); 989 return NULL; 990 } 991 list_add_tail(&child->siblings, &parent->ex_dev.children); 992 return child; 993 } 994 995 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 996 { 997 struct expander_device *ex = &dev->ex_dev; 998 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 999 struct domain_device *child = NULL; 1000 int res = 0; 1001 1002 /* Phy state */ 1003 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1004 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1005 res = sas_ex_phy_discover(dev, phy_id); 1006 if (res) 1007 return res; 1008 } 1009 1010 /* Parent and domain coherency */ 1011 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1012 SAS_ADDR(dev->port->sas_addr))) { 1013 sas_add_parent_port(dev, phy_id); 1014 return 0; 1015 } 1016 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1017 SAS_ADDR(dev->parent->sas_addr))) { 1018 sas_add_parent_port(dev, phy_id); 1019 if (ex_phy->routing_attr == TABLE_ROUTING) 1020 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1021 return 0; 1022 } 1023 1024 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1025 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1026 1027 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1028 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1029 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1030 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1031 } 1032 return 0; 1033 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1034 return 0; 1035 1036 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1037 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1038 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1039 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1040 pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n", 1041 ex_phy->attached_dev_type, 1042 SAS_ADDR(dev->sas_addr), 1043 phy_id); 1044 return 0; 1045 } 1046 1047 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1048 if (res) { 1049 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1050 SAS_ADDR(ex_phy->attached_sas_addr), res); 1051 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1052 return res; 1053 } 1054 1055 if (sas_ex_join_wide_port(dev, phy_id)) { 1056 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1057 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1058 return res; 1059 } 1060 1061 switch (ex_phy->attached_dev_type) { 1062 case SAS_END_DEVICE: 1063 case SAS_SATA_PENDING: 1064 child = sas_ex_discover_end_dev(dev, phy_id); 1065 break; 1066 case SAS_FANOUT_EXPANDER_DEVICE: 1067 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1068 pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n", 1069 SAS_ADDR(ex_phy->attached_sas_addr), 1070 ex_phy->attached_phy_id, 1071 SAS_ADDR(dev->sas_addr), 1072 phy_id); 1073 sas_ex_disable_phy(dev, phy_id); 1074 break; 1075 } else 1076 memcpy(dev->port->disc.fanout_sas_addr, 1077 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1078 /* fallthrough */ 1079 case SAS_EDGE_EXPANDER_DEVICE: 1080 child = sas_ex_discover_expander(dev, phy_id); 1081 break; 1082 default: 1083 break; 1084 } 1085 1086 if (child) { 1087 int i; 1088 1089 for (i = 0; i < ex->num_phys; i++) { 1090 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1091 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1092 continue; 1093 /* 1094 * Due to races, the phy might not get added to the 1095 * wide port, so we add the phy to the wide port here. 1096 */ 1097 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1098 SAS_ADDR(child->sas_addr)) { 1099 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1100 if (sas_ex_join_wide_port(dev, i)) 1101 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1102 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1103 } 1104 } 1105 } 1106 1107 return res; 1108 } 1109 1110 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1111 { 1112 struct expander_device *ex = &dev->ex_dev; 1113 int i; 1114 1115 for (i = 0; i < ex->num_phys; i++) { 1116 struct ex_phy *phy = &ex->ex_phy[i]; 1117 1118 if (phy->phy_state == PHY_VACANT || 1119 phy->phy_state == PHY_NOT_PRESENT) 1120 continue; 1121 1122 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1123 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1124 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1125 1126 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1127 1128 return 1; 1129 } 1130 } 1131 return 0; 1132 } 1133 1134 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1135 { 1136 struct expander_device *ex = &dev->ex_dev; 1137 struct domain_device *child; 1138 u8 sub_addr[8] = {0, }; 1139 1140 list_for_each_entry(child, &ex->children, siblings) { 1141 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1142 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1143 continue; 1144 if (sub_addr[0] == 0) { 1145 sas_find_sub_addr(child, sub_addr); 1146 continue; 1147 } else { 1148 u8 s2[8]; 1149 1150 if (sas_find_sub_addr(child, s2) && 1151 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1152 1153 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1154 SAS_ADDR(dev->sas_addr), 1155 SAS_ADDR(child->sas_addr), 1156 SAS_ADDR(s2), 1157 SAS_ADDR(sub_addr)); 1158 1159 sas_ex_disable_port(child, s2); 1160 } 1161 } 1162 } 1163 return 0; 1164 } 1165 /** 1166 * sas_ex_discover_devices - discover devices attached to this expander 1167 * @dev: pointer to the expander domain device 1168 * @single: if you want to do a single phy, else set to -1; 1169 * 1170 * Configure this expander for use with its devices and register the 1171 * devices of this expander. 1172 */ 1173 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1174 { 1175 struct expander_device *ex = &dev->ex_dev; 1176 int i = 0, end = ex->num_phys; 1177 int res = 0; 1178 1179 if (0 <= single && single < end) { 1180 i = single; 1181 end = i+1; 1182 } 1183 1184 for ( ; i < end; i++) { 1185 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1186 1187 if (ex_phy->phy_state == PHY_VACANT || 1188 ex_phy->phy_state == PHY_NOT_PRESENT || 1189 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1190 continue; 1191 1192 switch (ex_phy->linkrate) { 1193 case SAS_PHY_DISABLED: 1194 case SAS_PHY_RESET_PROBLEM: 1195 case SAS_SATA_PORT_SELECTOR: 1196 continue; 1197 default: 1198 res = sas_ex_discover_dev(dev, i); 1199 if (res) 1200 break; 1201 continue; 1202 } 1203 } 1204 1205 if (!res) 1206 sas_check_level_subtractive_boundary(dev); 1207 1208 return res; 1209 } 1210 1211 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1212 { 1213 struct expander_device *ex = &dev->ex_dev; 1214 int i; 1215 u8 *sub_sas_addr = NULL; 1216 1217 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1218 return 0; 1219 1220 for (i = 0; i < ex->num_phys; i++) { 1221 struct ex_phy *phy = &ex->ex_phy[i]; 1222 1223 if (phy->phy_state == PHY_VACANT || 1224 phy->phy_state == PHY_NOT_PRESENT) 1225 continue; 1226 1227 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1228 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1229 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1230 1231 if (!sub_sas_addr) 1232 sub_sas_addr = &phy->attached_sas_addr[0]; 1233 else if (SAS_ADDR(sub_sas_addr) != 1234 SAS_ADDR(phy->attached_sas_addr)) { 1235 1236 pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1237 SAS_ADDR(dev->sas_addr), i, 1238 SAS_ADDR(phy->attached_sas_addr), 1239 SAS_ADDR(sub_sas_addr)); 1240 sas_ex_disable_phy(dev, i); 1241 } 1242 } 1243 } 1244 return 0; 1245 } 1246 1247 static void sas_print_parent_topology_bug(struct domain_device *child, 1248 struct ex_phy *parent_phy, 1249 struct ex_phy *child_phy) 1250 { 1251 static const char *ex_type[] = { 1252 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1253 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1254 }; 1255 struct domain_device *parent = child->parent; 1256 1257 pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n", 1258 ex_type[parent->dev_type], 1259 SAS_ADDR(parent->sas_addr), 1260 parent_phy->phy_id, 1261 1262 ex_type[child->dev_type], 1263 SAS_ADDR(child->sas_addr), 1264 child_phy->phy_id, 1265 1266 sas_route_char(parent, parent_phy), 1267 sas_route_char(child, child_phy)); 1268 } 1269 1270 static int sas_check_eeds(struct domain_device *child, 1271 struct ex_phy *parent_phy, 1272 struct ex_phy *child_phy) 1273 { 1274 int res = 0; 1275 struct domain_device *parent = child->parent; 1276 1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1278 res = -ENODEV; 1279 pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n", 1280 SAS_ADDR(parent->sas_addr), 1281 parent_phy->phy_id, 1282 SAS_ADDR(child->sas_addr), 1283 child_phy->phy_id, 1284 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1285 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1286 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1287 SAS_ADDR_SIZE); 1288 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1289 SAS_ADDR_SIZE); 1290 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1291 SAS_ADDR(parent->sas_addr)) || 1292 (SAS_ADDR(parent->port->disc.eeds_a) == 1293 SAS_ADDR(child->sas_addr))) 1294 && 1295 ((SAS_ADDR(parent->port->disc.eeds_b) == 1296 SAS_ADDR(parent->sas_addr)) || 1297 (SAS_ADDR(parent->port->disc.eeds_b) == 1298 SAS_ADDR(child->sas_addr)))) 1299 ; 1300 else { 1301 res = -ENODEV; 1302 pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n", 1303 SAS_ADDR(parent->sas_addr), 1304 parent_phy->phy_id, 1305 SAS_ADDR(child->sas_addr), 1306 child_phy->phy_id); 1307 } 1308 1309 return res; 1310 } 1311 1312 /* Here we spill over 80 columns. It is intentional. 1313 */ 1314 static int sas_check_parent_topology(struct domain_device *child) 1315 { 1316 struct expander_device *child_ex = &child->ex_dev; 1317 struct expander_device *parent_ex; 1318 int i; 1319 int res = 0; 1320 1321 if (!child->parent) 1322 return 0; 1323 1324 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1325 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1326 return 0; 1327 1328 parent_ex = &child->parent->ex_dev; 1329 1330 for (i = 0; i < parent_ex->num_phys; i++) { 1331 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1332 struct ex_phy *child_phy; 1333 1334 if (parent_phy->phy_state == PHY_VACANT || 1335 parent_phy->phy_state == PHY_NOT_PRESENT) 1336 continue; 1337 1338 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1339 continue; 1340 1341 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1342 1343 switch (child->parent->dev_type) { 1344 case SAS_EDGE_EXPANDER_DEVICE: 1345 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1346 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1347 child_phy->routing_attr != TABLE_ROUTING) { 1348 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1349 res = -ENODEV; 1350 } 1351 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1352 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1353 res = sas_check_eeds(child, parent_phy, child_phy); 1354 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1355 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1356 res = -ENODEV; 1357 } 1358 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1359 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1360 (child_phy->routing_attr == TABLE_ROUTING && 1361 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1362 /* All good */; 1363 } else { 1364 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1365 res = -ENODEV; 1366 } 1367 } 1368 break; 1369 case SAS_FANOUT_EXPANDER_DEVICE: 1370 if (parent_phy->routing_attr != TABLE_ROUTING || 1371 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1372 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1373 res = -ENODEV; 1374 } 1375 break; 1376 default: 1377 break; 1378 } 1379 } 1380 1381 return res; 1382 } 1383 1384 #define RRI_REQ_SIZE 16 1385 #define RRI_RESP_SIZE 44 1386 1387 static int sas_configure_present(struct domain_device *dev, int phy_id, 1388 u8 *sas_addr, int *index, int *present) 1389 { 1390 int i, res = 0; 1391 struct expander_device *ex = &dev->ex_dev; 1392 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1393 u8 *rri_req; 1394 u8 *rri_resp; 1395 1396 *present = 0; 1397 *index = 0; 1398 1399 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1400 if (!rri_req) 1401 return -ENOMEM; 1402 1403 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1404 if (!rri_resp) { 1405 kfree(rri_req); 1406 return -ENOMEM; 1407 } 1408 1409 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1410 rri_req[9] = phy_id; 1411 1412 for (i = 0; i < ex->max_route_indexes ; i++) { 1413 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1414 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1415 RRI_RESP_SIZE); 1416 if (res) 1417 goto out; 1418 res = rri_resp[2]; 1419 if (res == SMP_RESP_NO_INDEX) { 1420 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1421 SAS_ADDR(dev->sas_addr), phy_id, i); 1422 goto out; 1423 } else if (res != SMP_RESP_FUNC_ACC) { 1424 pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n", 1425 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1426 i, res); 1427 goto out; 1428 } 1429 if (SAS_ADDR(sas_addr) != 0) { 1430 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1431 *index = i; 1432 if ((rri_resp[12] & 0x80) == 0x80) 1433 *present = 0; 1434 else 1435 *present = 1; 1436 goto out; 1437 } else if (SAS_ADDR(rri_resp+16) == 0) { 1438 *index = i; 1439 *present = 0; 1440 goto out; 1441 } 1442 } else if (SAS_ADDR(rri_resp+16) == 0 && 1443 phy->last_da_index < i) { 1444 phy->last_da_index = i; 1445 *index = i; 1446 *present = 0; 1447 goto out; 1448 } 1449 } 1450 res = -1; 1451 out: 1452 kfree(rri_req); 1453 kfree(rri_resp); 1454 return res; 1455 } 1456 1457 #define CRI_REQ_SIZE 44 1458 #define CRI_RESP_SIZE 8 1459 1460 static int sas_configure_set(struct domain_device *dev, int phy_id, 1461 u8 *sas_addr, int index, int include) 1462 { 1463 int res; 1464 u8 *cri_req; 1465 u8 *cri_resp; 1466 1467 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1468 if (!cri_req) 1469 return -ENOMEM; 1470 1471 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1472 if (!cri_resp) { 1473 kfree(cri_req); 1474 return -ENOMEM; 1475 } 1476 1477 cri_req[1] = SMP_CONF_ROUTE_INFO; 1478 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1479 cri_req[9] = phy_id; 1480 if (SAS_ADDR(sas_addr) == 0 || !include) 1481 cri_req[12] |= 0x80; 1482 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1483 1484 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1485 CRI_RESP_SIZE); 1486 if (res) 1487 goto out; 1488 res = cri_resp[2]; 1489 if (res == SMP_RESP_NO_INDEX) { 1490 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1491 SAS_ADDR(dev->sas_addr), phy_id, index); 1492 } 1493 out: 1494 kfree(cri_req); 1495 kfree(cri_resp); 1496 return res; 1497 } 1498 1499 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1500 u8 *sas_addr, int include) 1501 { 1502 int index; 1503 int present; 1504 int res; 1505 1506 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1507 if (res) 1508 return res; 1509 if (include ^ present) 1510 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1511 1512 return res; 1513 } 1514 1515 /** 1516 * sas_configure_parent - configure routing table of parent 1517 * @parent: parent expander 1518 * @child: child expander 1519 * @sas_addr: SAS port identifier of device directly attached to child 1520 * @include: whether or not to include @child in the expander routing table 1521 */ 1522 static int sas_configure_parent(struct domain_device *parent, 1523 struct domain_device *child, 1524 u8 *sas_addr, int include) 1525 { 1526 struct expander_device *ex_parent = &parent->ex_dev; 1527 int res = 0; 1528 int i; 1529 1530 if (parent->parent) { 1531 res = sas_configure_parent(parent->parent, parent, sas_addr, 1532 include); 1533 if (res) 1534 return res; 1535 } 1536 1537 if (ex_parent->conf_route_table == 0) { 1538 pr_debug("ex %016llx has self-configuring routing table\n", 1539 SAS_ADDR(parent->sas_addr)); 1540 return 0; 1541 } 1542 1543 for (i = 0; i < ex_parent->num_phys; i++) { 1544 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1545 1546 if ((phy->routing_attr == TABLE_ROUTING) && 1547 (SAS_ADDR(phy->attached_sas_addr) == 1548 SAS_ADDR(child->sas_addr))) { 1549 res = sas_configure_phy(parent, i, sas_addr, include); 1550 if (res) 1551 return res; 1552 } 1553 } 1554 1555 return res; 1556 } 1557 1558 /** 1559 * sas_configure_routing - configure routing 1560 * @dev: expander device 1561 * @sas_addr: port identifier of device directly attached to the expander device 1562 */ 1563 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1564 { 1565 if (dev->parent) 1566 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1567 return 0; 1568 } 1569 1570 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1571 { 1572 if (dev->parent) 1573 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1574 return 0; 1575 } 1576 1577 /** 1578 * sas_discover_expander - expander discovery 1579 * @dev: pointer to expander domain device 1580 * 1581 * See comment in sas_discover_sata(). 1582 */ 1583 static int sas_discover_expander(struct domain_device *dev) 1584 { 1585 int res; 1586 1587 res = sas_notify_lldd_dev_found(dev); 1588 if (res) 1589 return res; 1590 1591 res = sas_ex_general(dev); 1592 if (res) 1593 goto out_err; 1594 res = sas_ex_manuf_info(dev); 1595 if (res) 1596 goto out_err; 1597 1598 res = sas_expander_discover(dev); 1599 if (res) { 1600 pr_warn("expander %016llx discovery failed(0x%x)\n", 1601 SAS_ADDR(dev->sas_addr), res); 1602 goto out_err; 1603 } 1604 1605 sas_check_ex_subtractive_boundary(dev); 1606 res = sas_check_parent_topology(dev); 1607 if (res) 1608 goto out_err; 1609 return 0; 1610 out_err: 1611 sas_notify_lldd_dev_gone(dev); 1612 return res; 1613 } 1614 1615 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1616 { 1617 int res = 0; 1618 struct domain_device *dev; 1619 1620 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1621 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1622 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1623 struct sas_expander_device *ex = 1624 rphy_to_expander_device(dev->rphy); 1625 1626 if (level == ex->level) 1627 res = sas_ex_discover_devices(dev, -1); 1628 else if (level > 0) 1629 res = sas_ex_discover_devices(port->port_dev, -1); 1630 1631 } 1632 } 1633 1634 return res; 1635 } 1636 1637 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1638 { 1639 int res; 1640 int level; 1641 1642 do { 1643 level = port->disc.max_level; 1644 res = sas_ex_level_discovery(port, level); 1645 mb(); 1646 } while (level < port->disc.max_level); 1647 1648 return res; 1649 } 1650 1651 int sas_discover_root_expander(struct domain_device *dev) 1652 { 1653 int res; 1654 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1655 1656 res = sas_rphy_add(dev->rphy); 1657 if (res) 1658 goto out_err; 1659 1660 ex->level = dev->port->disc.max_level; /* 0 */ 1661 res = sas_discover_expander(dev); 1662 if (res) 1663 goto out_err2; 1664 1665 sas_ex_bfs_disc(dev->port); 1666 1667 return res; 1668 1669 out_err2: 1670 sas_rphy_remove(dev->rphy); 1671 out_err: 1672 return res; 1673 } 1674 1675 /* ---------- Domain revalidation ---------- */ 1676 1677 static int sas_get_phy_discover(struct domain_device *dev, 1678 int phy_id, struct smp_resp *disc_resp) 1679 { 1680 int res; 1681 u8 *disc_req; 1682 1683 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1684 if (!disc_req) 1685 return -ENOMEM; 1686 1687 disc_req[1] = SMP_DISCOVER; 1688 disc_req[9] = phy_id; 1689 1690 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1691 disc_resp, DISCOVER_RESP_SIZE); 1692 if (res) 1693 goto out; 1694 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1695 res = disc_resp->result; 1696 goto out; 1697 } 1698 out: 1699 kfree(disc_req); 1700 return res; 1701 } 1702 1703 static int sas_get_phy_change_count(struct domain_device *dev, 1704 int phy_id, int *pcc) 1705 { 1706 int res; 1707 struct smp_resp *disc_resp; 1708 1709 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1710 if (!disc_resp) 1711 return -ENOMEM; 1712 1713 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1714 if (!res) 1715 *pcc = disc_resp->disc.change_count; 1716 1717 kfree(disc_resp); 1718 return res; 1719 } 1720 1721 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1722 u8 *sas_addr, enum sas_device_type *type) 1723 { 1724 int res; 1725 struct smp_resp *disc_resp; 1726 struct discover_resp *dr; 1727 1728 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1729 if (!disc_resp) 1730 return -ENOMEM; 1731 dr = &disc_resp->disc; 1732 1733 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1734 if (res == 0) { 1735 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1736 *type = to_dev_type(dr); 1737 if (*type == 0) 1738 memset(sas_addr, 0, 8); 1739 } 1740 kfree(disc_resp); 1741 return res; 1742 } 1743 1744 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1745 int from_phy, bool update) 1746 { 1747 struct expander_device *ex = &dev->ex_dev; 1748 int res = 0; 1749 int i; 1750 1751 for (i = from_phy; i < ex->num_phys; i++) { 1752 int phy_change_count = 0; 1753 1754 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1755 switch (res) { 1756 case SMP_RESP_PHY_VACANT: 1757 case SMP_RESP_NO_PHY: 1758 continue; 1759 case SMP_RESP_FUNC_ACC: 1760 break; 1761 default: 1762 return res; 1763 } 1764 1765 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1766 if (update) 1767 ex->ex_phy[i].phy_change_count = 1768 phy_change_count; 1769 *phy_id = i; 1770 return 0; 1771 } 1772 } 1773 return 0; 1774 } 1775 1776 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1777 { 1778 int res; 1779 u8 *rg_req; 1780 struct smp_resp *rg_resp; 1781 1782 rg_req = alloc_smp_req(RG_REQ_SIZE); 1783 if (!rg_req) 1784 return -ENOMEM; 1785 1786 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1787 if (!rg_resp) { 1788 kfree(rg_req); 1789 return -ENOMEM; 1790 } 1791 1792 rg_req[1] = SMP_REPORT_GENERAL; 1793 1794 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1795 RG_RESP_SIZE); 1796 if (res) 1797 goto out; 1798 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1799 res = rg_resp->result; 1800 goto out; 1801 } 1802 1803 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1804 out: 1805 kfree(rg_resp); 1806 kfree(rg_req); 1807 return res; 1808 } 1809 /** 1810 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1811 * @dev:domain device to be detect. 1812 * @src_dev: the device which originated BROADCAST(CHANGE). 1813 * 1814 * Add self-configuration expander support. Suppose two expander cascading, 1815 * when the first level expander is self-configuring, hotplug the disks in 1816 * second level expander, BROADCAST(CHANGE) will not only be originated 1817 * in the second level expander, but also be originated in the first level 1818 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1819 * expander changed count in two level expanders will all increment at least 1820 * once, but the phy which chang count has changed is the source device which 1821 * we concerned. 1822 */ 1823 1824 static int sas_find_bcast_dev(struct domain_device *dev, 1825 struct domain_device **src_dev) 1826 { 1827 struct expander_device *ex = &dev->ex_dev; 1828 int ex_change_count = -1; 1829 int phy_id = -1; 1830 int res; 1831 struct domain_device *ch; 1832 1833 res = sas_get_ex_change_count(dev, &ex_change_count); 1834 if (res) 1835 goto out; 1836 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1837 /* Just detect if this expander phys phy change count changed, 1838 * in order to determine if this expander originate BROADCAST, 1839 * and do not update phy change count field in our structure. 1840 */ 1841 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1842 if (phy_id != -1) { 1843 *src_dev = dev; 1844 ex->ex_change_count = ex_change_count; 1845 pr_info("Expander phy change count has changed\n"); 1846 return res; 1847 } else 1848 pr_info("Expander phys DID NOT change\n"); 1849 } 1850 list_for_each_entry(ch, &ex->children, siblings) { 1851 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1852 res = sas_find_bcast_dev(ch, src_dev); 1853 if (*src_dev) 1854 return res; 1855 } 1856 } 1857 out: 1858 return res; 1859 } 1860 1861 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1862 { 1863 struct expander_device *ex = &dev->ex_dev; 1864 struct domain_device *child, *n; 1865 1866 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1867 set_bit(SAS_DEV_GONE, &child->state); 1868 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1869 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1870 sas_unregister_ex_tree(port, child); 1871 else 1872 sas_unregister_dev(port, child); 1873 } 1874 sas_unregister_dev(port, dev); 1875 } 1876 1877 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1878 int phy_id, bool last) 1879 { 1880 struct expander_device *ex_dev = &parent->ex_dev; 1881 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1882 struct domain_device *child, *n, *found = NULL; 1883 if (last) { 1884 list_for_each_entry_safe(child, n, 1885 &ex_dev->children, siblings) { 1886 if (SAS_ADDR(child->sas_addr) == 1887 SAS_ADDR(phy->attached_sas_addr)) { 1888 set_bit(SAS_DEV_GONE, &child->state); 1889 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1890 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1891 sas_unregister_ex_tree(parent->port, child); 1892 else 1893 sas_unregister_dev(parent->port, child); 1894 found = child; 1895 break; 1896 } 1897 } 1898 sas_disable_routing(parent, phy->attached_sas_addr); 1899 } 1900 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1901 if (phy->port) { 1902 sas_port_delete_phy(phy->port, phy->phy); 1903 sas_device_set_phy(found, phy->port); 1904 if (phy->port->num_phys == 0) 1905 list_add_tail(&phy->port->del_list, 1906 &parent->port->sas_port_del_list); 1907 phy->port = NULL; 1908 } 1909 } 1910 1911 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1912 const int level) 1913 { 1914 struct expander_device *ex_root = &root->ex_dev; 1915 struct domain_device *child; 1916 int res = 0; 1917 1918 list_for_each_entry(child, &ex_root->children, siblings) { 1919 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1920 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1921 struct sas_expander_device *ex = 1922 rphy_to_expander_device(child->rphy); 1923 1924 if (level > ex->level) 1925 res = sas_discover_bfs_by_root_level(child, 1926 level); 1927 else if (level == ex->level) 1928 res = sas_ex_discover_devices(child, -1); 1929 } 1930 } 1931 return res; 1932 } 1933 1934 static int sas_discover_bfs_by_root(struct domain_device *dev) 1935 { 1936 int res; 1937 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1938 int level = ex->level+1; 1939 1940 res = sas_ex_discover_devices(dev, -1); 1941 if (res) 1942 goto out; 1943 do { 1944 res = sas_discover_bfs_by_root_level(dev, level); 1945 mb(); 1946 level += 1; 1947 } while (level <= dev->port->disc.max_level); 1948 out: 1949 return res; 1950 } 1951 1952 static int sas_discover_new(struct domain_device *dev, int phy_id) 1953 { 1954 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1955 struct domain_device *child; 1956 int res; 1957 1958 pr_debug("ex %016llx phy%d new device attached\n", 1959 SAS_ADDR(dev->sas_addr), phy_id); 1960 res = sas_ex_phy_discover(dev, phy_id); 1961 if (res) 1962 return res; 1963 1964 if (sas_ex_join_wide_port(dev, phy_id)) 1965 return 0; 1966 1967 res = sas_ex_discover_devices(dev, phy_id); 1968 if (res) 1969 return res; 1970 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1971 if (SAS_ADDR(child->sas_addr) == 1972 SAS_ADDR(ex_phy->attached_sas_addr)) { 1973 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1974 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1975 res = sas_discover_bfs_by_root(child); 1976 break; 1977 } 1978 } 1979 return res; 1980 } 1981 1982 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1983 { 1984 if (old == new) 1985 return true; 1986 1987 /* treat device directed resets as flutter, if we went 1988 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1989 */ 1990 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1991 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1992 return true; 1993 1994 return false; 1995 } 1996 1997 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1998 { 1999 struct expander_device *ex = &dev->ex_dev; 2000 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2001 enum sas_device_type type = SAS_PHY_UNUSED; 2002 u8 sas_addr[8]; 2003 int res; 2004 2005 memset(sas_addr, 0, 8); 2006 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2007 switch (res) { 2008 case SMP_RESP_NO_PHY: 2009 phy->phy_state = PHY_NOT_PRESENT; 2010 sas_unregister_devs_sas_addr(dev, phy_id, last); 2011 return res; 2012 case SMP_RESP_PHY_VACANT: 2013 phy->phy_state = PHY_VACANT; 2014 sas_unregister_devs_sas_addr(dev, phy_id, last); 2015 return res; 2016 case SMP_RESP_FUNC_ACC: 2017 break; 2018 case -ECOMM: 2019 break; 2020 default: 2021 return res; 2022 } 2023 2024 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2025 phy->phy_state = PHY_EMPTY; 2026 sas_unregister_devs_sas_addr(dev, phy_id, last); 2027 return res; 2028 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2029 dev_type_flutter(type, phy->attached_dev_type)) { 2030 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2031 char *action = ""; 2032 2033 sas_ex_phy_discover(dev, phy_id); 2034 2035 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2036 action = ", needs recovery"; 2037 pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n", 2038 SAS_ADDR(dev->sas_addr), phy_id, action); 2039 return res; 2040 } 2041 2042 /* we always have to delete the old device when we went here */ 2043 pr_info("ex %016llx phy 0x%x replace %016llx\n", 2044 SAS_ADDR(dev->sas_addr), phy_id, 2045 SAS_ADDR(phy->attached_sas_addr)); 2046 sas_unregister_devs_sas_addr(dev, phy_id, last); 2047 2048 return sas_discover_new(dev, phy_id); 2049 } 2050 2051 /** 2052 * sas_rediscover - revalidate the domain. 2053 * @dev:domain device to be detect. 2054 * @phy_id: the phy id will be detected. 2055 * 2056 * NOTE: this process _must_ quit (return) as soon as any connection 2057 * errors are encountered. Connection recovery is done elsewhere. 2058 * Discover process only interrogates devices in order to discover the 2059 * domain.For plugging out, we un-register the device only when it is 2060 * the last phy in the port, for other phys in this port, we just delete it 2061 * from the port.For inserting, we do discovery when it is the 2062 * first phy,for other phys in this port, we add it to the port to 2063 * forming the wide-port. 2064 */ 2065 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2066 { 2067 struct expander_device *ex = &dev->ex_dev; 2068 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2069 int res = 0; 2070 int i; 2071 bool last = true; /* is this the last phy of the port */ 2072 2073 pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2074 SAS_ADDR(dev->sas_addr), phy_id); 2075 2076 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2077 for (i = 0; i < ex->num_phys; i++) { 2078 struct ex_phy *phy = &ex->ex_phy[i]; 2079 2080 if (i == phy_id) 2081 continue; 2082 if (SAS_ADDR(phy->attached_sas_addr) == 2083 SAS_ADDR(changed_phy->attached_sas_addr)) { 2084 pr_debug("phy%d part of wide port with phy%d\n", 2085 phy_id, i); 2086 last = false; 2087 break; 2088 } 2089 } 2090 res = sas_rediscover_dev(dev, phy_id, last); 2091 } else 2092 res = sas_discover_new(dev, phy_id); 2093 return res; 2094 } 2095 2096 /** 2097 * sas_ex_revalidate_domain - revalidate the domain 2098 * @port_dev: port domain device. 2099 * 2100 * NOTE: this process _must_ quit (return) as soon as any connection 2101 * errors are encountered. Connection recovery is done elsewhere. 2102 * Discover process only interrogates devices in order to discover the 2103 * domain. 2104 */ 2105 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2106 { 2107 int res; 2108 struct domain_device *dev = NULL; 2109 2110 res = sas_find_bcast_dev(port_dev, &dev); 2111 if (res == 0 && dev) { 2112 struct expander_device *ex = &dev->ex_dev; 2113 int i = 0, phy_id; 2114 2115 do { 2116 phy_id = -1; 2117 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2118 if (phy_id == -1) 2119 break; 2120 res = sas_rediscover(dev, phy_id); 2121 i = phy_id + 1; 2122 } while (i < ex->num_phys); 2123 } 2124 return res; 2125 } 2126 2127 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2128 struct sas_rphy *rphy) 2129 { 2130 struct domain_device *dev; 2131 unsigned int rcvlen = 0; 2132 int ret = -EINVAL; 2133 2134 /* no rphy means no smp target support (ie aic94xx host) */ 2135 if (!rphy) 2136 return sas_smp_host_handler(job, shost); 2137 2138 switch (rphy->identify.device_type) { 2139 case SAS_EDGE_EXPANDER_DEVICE: 2140 case SAS_FANOUT_EXPANDER_DEVICE: 2141 break; 2142 default: 2143 pr_err("%s: can we send a smp request to a device?\n", 2144 __func__); 2145 goto out; 2146 } 2147 2148 dev = sas_find_dev_by_rphy(rphy); 2149 if (!dev) { 2150 pr_err("%s: fail to find a domain_device?\n", __func__); 2151 goto out; 2152 } 2153 2154 /* do we need to support multiple segments? */ 2155 if (job->request_payload.sg_cnt > 1 || 2156 job->reply_payload.sg_cnt > 1) { 2157 pr_info("%s: multiple segments req %u, rsp %u\n", 2158 __func__, job->request_payload.payload_len, 2159 job->reply_payload.payload_len); 2160 goto out; 2161 } 2162 2163 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2164 job->reply_payload.sg_list); 2165 if (ret >= 0) { 2166 /* bsg_job_done() requires the length received */ 2167 rcvlen = job->reply_payload.payload_len - ret; 2168 ret = 0; 2169 } 2170 2171 out: 2172 bsg_job_done(job, ret, rcvlen); 2173 } 2174