1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Serial Attached SCSI (SAS) Expander discovery and configuration 4 * 5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 7 * 8 * This file is licensed under GPLv2. 9 */ 10 11 #include <linux/scatterlist.h> 12 #include <linux/blkdev.h> 13 #include <linux/slab.h> 14 #include <asm/unaligned.h> 15 16 #include "sas_internal.h" 17 18 #include <scsi/sas_ata.h> 19 #include <scsi/scsi_transport.h> 20 #include <scsi/scsi_transport_sas.h> 21 #include "../scsi_sas_internal.h" 22 23 static int sas_discover_expander(struct domain_device *dev); 24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 25 static int sas_configure_phy(struct domain_device *dev, int phy_id, 26 u8 *sas_addr, int include); 27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 28 29 /* ---------- SMP task management ---------- */ 30 31 static void smp_task_timedout(struct timer_list *t) 32 { 33 struct sas_task_slow *slow = from_timer(slow, t, timer); 34 struct sas_task *task = slow->task; 35 unsigned long flags; 36 37 spin_lock_irqsave(&task->task_state_lock, flags); 38 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 39 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 40 complete(&task->slow_task->completion); 41 } 42 spin_unlock_irqrestore(&task->task_state_lock, flags); 43 } 44 45 static void smp_task_done(struct sas_task *task) 46 { 47 del_timer(&task->slow_task->timer); 48 complete(&task->slow_task->completion); 49 } 50 51 /* Give it some long enough timeout. In seconds. */ 52 #define SMP_TIMEOUT 10 53 54 static int smp_execute_task_sg(struct domain_device *dev, 55 struct scatterlist *req, struct scatterlist *resp) 56 { 57 int res, retry; 58 struct sas_task *task = NULL; 59 struct sas_internal *i = 60 to_sas_internal(dev->port->ha->core.shost->transportt); 61 62 mutex_lock(&dev->ex_dev.cmd_mutex); 63 for (retry = 0; retry < 3; retry++) { 64 if (test_bit(SAS_DEV_GONE, &dev->state)) { 65 res = -ECOMM; 66 break; 67 } 68 69 task = sas_alloc_slow_task(GFP_KERNEL); 70 if (!task) { 71 res = -ENOMEM; 72 break; 73 } 74 task->dev = dev; 75 task->task_proto = dev->tproto; 76 task->smp_task.smp_req = *req; 77 task->smp_task.smp_resp = *resp; 78 79 task->task_done = smp_task_done; 80 81 task->slow_task->timer.function = smp_task_timedout; 82 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 83 add_timer(&task->slow_task->timer); 84 85 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 86 87 if (res) { 88 del_timer(&task->slow_task->timer); 89 pr_notice("executing SMP task failed:%d\n", res); 90 break; 91 } 92 93 wait_for_completion(&task->slow_task->completion); 94 res = -ECOMM; 95 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 96 pr_notice("smp task timed out or aborted\n"); 97 i->dft->lldd_abort_task(task); 98 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 99 pr_notice("SMP task aborted and not done\n"); 100 break; 101 } 102 } 103 if (task->task_status.resp == SAS_TASK_COMPLETE && 104 task->task_status.stat == SAM_STAT_GOOD) { 105 res = 0; 106 break; 107 } 108 if (task->task_status.resp == SAS_TASK_COMPLETE && 109 task->task_status.stat == SAS_DATA_UNDERRUN) { 110 /* no error, but return the number of bytes of 111 * underrun */ 112 res = task->task_status.residual; 113 break; 114 } 115 if (task->task_status.resp == SAS_TASK_COMPLETE && 116 task->task_status.stat == SAS_DATA_OVERRUN) { 117 res = -EMSGSIZE; 118 break; 119 } 120 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 121 task->task_status.stat == SAS_DEVICE_UNKNOWN) 122 break; 123 else { 124 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 125 __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 mutex_unlock(&dev->ex_dev.cmd_mutex); 134 135 BUG_ON(retry == 3 && task != NULL); 136 sas_free_task(task); 137 return res; 138 } 139 140 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 141 void *resp, int resp_size) 142 { 143 struct scatterlist req_sg; 144 struct scatterlist resp_sg; 145 146 sg_init_one(&req_sg, req, req_size); 147 sg_init_one(&resp_sg, resp, resp_size); 148 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 149 } 150 151 /* ---------- Allocations ---------- */ 152 153 static inline void *alloc_smp_req(int size) 154 { 155 u8 *p = kzalloc(size, GFP_KERNEL); 156 if (p) 157 p[0] = SMP_REQUEST; 158 return p; 159 } 160 161 static inline void *alloc_smp_resp(int size) 162 { 163 return kzalloc(size, GFP_KERNEL); 164 } 165 166 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 167 { 168 switch (phy->routing_attr) { 169 case TABLE_ROUTING: 170 if (dev->ex_dev.t2t_supp) 171 return 'U'; 172 else 173 return 'T'; 174 case DIRECT_ROUTING: 175 return 'D'; 176 case SUBTRACTIVE_ROUTING: 177 return 'S'; 178 default: 179 return '?'; 180 } 181 } 182 183 static enum sas_device_type to_dev_type(struct discover_resp *dr) 184 { 185 /* This is detecting a failure to transmit initial dev to host 186 * FIS as described in section J.5 of sas-2 r16 187 */ 188 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 189 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 190 return SAS_SATA_PENDING; 191 else 192 return dr->attached_dev_type; 193 } 194 195 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 196 { 197 enum sas_device_type dev_type; 198 enum sas_linkrate linkrate; 199 u8 sas_addr[SAS_ADDR_SIZE]; 200 struct smp_resp *resp = rsp; 201 struct discover_resp *dr = &resp->disc; 202 struct sas_ha_struct *ha = dev->port->ha; 203 struct expander_device *ex = &dev->ex_dev; 204 struct ex_phy *phy = &ex->ex_phy[phy_id]; 205 struct sas_rphy *rphy = dev->rphy; 206 bool new_phy = !phy->phy; 207 char *type; 208 209 if (new_phy) { 210 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 211 return; 212 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 213 214 /* FIXME: error_handling */ 215 BUG_ON(!phy->phy); 216 } 217 218 switch (resp->result) { 219 case SMP_RESP_PHY_VACANT: 220 phy->phy_state = PHY_VACANT; 221 break; 222 default: 223 phy->phy_state = PHY_NOT_PRESENT; 224 break; 225 case SMP_RESP_FUNC_ACC: 226 phy->phy_state = PHY_EMPTY; /* do not know yet */ 227 break; 228 } 229 230 /* check if anything important changed to squelch debug */ 231 dev_type = phy->attached_dev_type; 232 linkrate = phy->linkrate; 233 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 234 235 /* Handle vacant phy - rest of dr data is not valid so skip it */ 236 if (phy->phy_state == PHY_VACANT) { 237 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 238 phy->attached_dev_type = SAS_PHY_UNUSED; 239 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 240 phy->phy_id = phy_id; 241 goto skip; 242 } else 243 goto out; 244 } 245 246 phy->attached_dev_type = to_dev_type(dr); 247 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 248 goto out; 249 phy->phy_id = phy_id; 250 phy->linkrate = dr->linkrate; 251 phy->attached_sata_host = dr->attached_sata_host; 252 phy->attached_sata_dev = dr->attached_sata_dev; 253 phy->attached_sata_ps = dr->attached_sata_ps; 254 phy->attached_iproto = dr->iproto << 1; 255 phy->attached_tproto = dr->tproto << 1; 256 /* help some expanders that fail to zero sas_address in the 'no 257 * device' case 258 */ 259 if (phy->attached_dev_type == SAS_PHY_UNUSED || 260 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 261 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 262 else 263 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 264 phy->attached_phy_id = dr->attached_phy_id; 265 phy->phy_change_count = dr->change_count; 266 phy->routing_attr = dr->routing_attr; 267 phy->virtual = dr->virtual; 268 phy->last_da_index = -1; 269 270 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 271 phy->phy->identify.device_type = dr->attached_dev_type; 272 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 273 phy->phy->identify.target_port_protocols = phy->attached_tproto; 274 if (!phy->attached_tproto && dr->attached_sata_dev) 275 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 276 phy->phy->identify.phy_identifier = phy_id; 277 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 278 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 279 phy->phy->minimum_linkrate = dr->pmin_linkrate; 280 phy->phy->maximum_linkrate = dr->pmax_linkrate; 281 phy->phy->negotiated_linkrate = phy->linkrate; 282 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 283 284 skip: 285 if (new_phy) 286 if (sas_phy_add(phy->phy)) { 287 sas_phy_free(phy->phy); 288 return; 289 } 290 291 out: 292 switch (phy->attached_dev_type) { 293 case SAS_SATA_PENDING: 294 type = "stp pending"; 295 break; 296 case SAS_PHY_UNUSED: 297 type = "no device"; 298 break; 299 case SAS_END_DEVICE: 300 if (phy->attached_iproto) { 301 if (phy->attached_tproto) 302 type = "host+target"; 303 else 304 type = "host"; 305 } else { 306 if (dr->attached_sata_dev) 307 type = "stp"; 308 else 309 type = "ssp"; 310 } 311 break; 312 case SAS_EDGE_EXPANDER_DEVICE: 313 case SAS_FANOUT_EXPANDER_DEVICE: 314 type = "smp"; 315 break; 316 default: 317 type = "unknown"; 318 } 319 320 /* this routine is polled by libata error recovery so filter 321 * unimportant messages 322 */ 323 if (new_phy || phy->attached_dev_type != dev_type || 324 phy->linkrate != linkrate || 325 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 326 /* pass */; 327 else 328 return; 329 330 /* if the attached device type changed and ata_eh is active, 331 * make sure we run revalidation when eh completes (see: 332 * sas_enable_revalidation) 333 */ 334 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 335 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 336 337 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 338 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 339 SAS_ADDR(dev->sas_addr), phy->phy_id, 340 sas_route_char(dev, phy), phy->linkrate, 341 SAS_ADDR(phy->attached_sas_addr), type); 342 } 343 344 /* check if we have an existing attached ata device on this expander phy */ 345 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 346 { 347 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 348 struct domain_device *dev; 349 struct sas_rphy *rphy; 350 351 if (!ex_phy->port) 352 return NULL; 353 354 rphy = ex_phy->port->rphy; 355 if (!rphy) 356 return NULL; 357 358 dev = sas_find_dev_by_rphy(rphy); 359 360 if (dev && dev_is_sata(dev)) 361 return dev; 362 363 return NULL; 364 } 365 366 #define DISCOVER_REQ_SIZE 16 367 #define DISCOVER_RESP_SIZE 56 368 369 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 370 u8 *disc_resp, int single) 371 { 372 struct discover_resp *dr; 373 int res; 374 375 disc_req[9] = single; 376 377 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 378 disc_resp, DISCOVER_RESP_SIZE); 379 if (res) 380 return res; 381 dr = &((struct smp_resp *)disc_resp)->disc; 382 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 383 pr_notice("Found loopback topology, just ignore it!\n"); 384 return 0; 385 } 386 sas_set_ex_phy(dev, single, disc_resp); 387 return 0; 388 } 389 390 int sas_ex_phy_discover(struct domain_device *dev, int single) 391 { 392 struct expander_device *ex = &dev->ex_dev; 393 int res = 0; 394 u8 *disc_req; 395 u8 *disc_resp; 396 397 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 398 if (!disc_req) 399 return -ENOMEM; 400 401 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 402 if (!disc_resp) { 403 kfree(disc_req); 404 return -ENOMEM; 405 } 406 407 disc_req[1] = SMP_DISCOVER; 408 409 if (0 <= single && single < ex->num_phys) { 410 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 411 } else { 412 int i; 413 414 for (i = 0; i < ex->num_phys; i++) { 415 res = sas_ex_phy_discover_helper(dev, disc_req, 416 disc_resp, i); 417 if (res) 418 goto out_err; 419 } 420 } 421 out_err: 422 kfree(disc_resp); 423 kfree(disc_req); 424 return res; 425 } 426 427 static int sas_expander_discover(struct domain_device *dev) 428 { 429 struct expander_device *ex = &dev->ex_dev; 430 int res; 431 432 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 433 if (!ex->ex_phy) 434 return -ENOMEM; 435 436 res = sas_ex_phy_discover(dev, -1); 437 if (res) 438 goto out_err; 439 440 return 0; 441 out_err: 442 kfree(ex->ex_phy); 443 ex->ex_phy = NULL; 444 return res; 445 } 446 447 #define MAX_EXPANDER_PHYS 128 448 449 static void ex_assign_report_general(struct domain_device *dev, 450 struct smp_resp *resp) 451 { 452 struct report_general_resp *rg = &resp->rg; 453 454 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 455 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 456 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 457 dev->ex_dev.t2t_supp = rg->t2t_supp; 458 dev->ex_dev.conf_route_table = rg->conf_route_table; 459 dev->ex_dev.configuring = rg->configuring; 460 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 461 } 462 463 #define RG_REQ_SIZE 8 464 #define RG_RESP_SIZE 32 465 466 static int sas_ex_general(struct domain_device *dev) 467 { 468 u8 *rg_req; 469 struct smp_resp *rg_resp; 470 int res; 471 int i; 472 473 rg_req = alloc_smp_req(RG_REQ_SIZE); 474 if (!rg_req) 475 return -ENOMEM; 476 477 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 478 if (!rg_resp) { 479 kfree(rg_req); 480 return -ENOMEM; 481 } 482 483 rg_req[1] = SMP_REPORT_GENERAL; 484 485 for (i = 0; i < 5; i++) { 486 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 487 RG_RESP_SIZE); 488 489 if (res) { 490 pr_notice("RG to ex %016llx failed:0x%x\n", 491 SAS_ADDR(dev->sas_addr), res); 492 goto out; 493 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 494 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 495 SAS_ADDR(dev->sas_addr), rg_resp->result); 496 res = rg_resp->result; 497 goto out; 498 } 499 500 ex_assign_report_general(dev, rg_resp); 501 502 if (dev->ex_dev.configuring) { 503 pr_debug("RG: ex %016llx self-configuring...\n", 504 SAS_ADDR(dev->sas_addr)); 505 schedule_timeout_interruptible(5*HZ); 506 } else 507 break; 508 } 509 out: 510 kfree(rg_req); 511 kfree(rg_resp); 512 return res; 513 } 514 515 static void ex_assign_manuf_info(struct domain_device *dev, void 516 *_mi_resp) 517 { 518 u8 *mi_resp = _mi_resp; 519 struct sas_rphy *rphy = dev->rphy; 520 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 521 522 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 523 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 524 memcpy(edev->product_rev, mi_resp + 36, 525 SAS_EXPANDER_PRODUCT_REV_LEN); 526 527 if (mi_resp[8] & 1) { 528 memcpy(edev->component_vendor_id, mi_resp + 40, 529 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 530 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 531 edev->component_revision_id = mi_resp[50]; 532 } 533 } 534 535 #define MI_REQ_SIZE 8 536 #define MI_RESP_SIZE 64 537 538 static int sas_ex_manuf_info(struct domain_device *dev) 539 { 540 u8 *mi_req; 541 u8 *mi_resp; 542 int res; 543 544 mi_req = alloc_smp_req(MI_REQ_SIZE); 545 if (!mi_req) 546 return -ENOMEM; 547 548 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 549 if (!mi_resp) { 550 kfree(mi_req); 551 return -ENOMEM; 552 } 553 554 mi_req[1] = SMP_REPORT_MANUF_INFO; 555 556 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE); 557 if (res) { 558 pr_notice("MI: ex %016llx failed:0x%x\n", 559 SAS_ADDR(dev->sas_addr), res); 560 goto out; 561 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 562 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 563 SAS_ADDR(dev->sas_addr), mi_resp[2]); 564 goto out; 565 } 566 567 ex_assign_manuf_info(dev, mi_resp); 568 out: 569 kfree(mi_req); 570 kfree(mi_resp); 571 return res; 572 } 573 574 #define PC_REQ_SIZE 44 575 #define PC_RESP_SIZE 8 576 577 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 578 enum phy_func phy_func, 579 struct sas_phy_linkrates *rates) 580 { 581 u8 *pc_req; 582 u8 *pc_resp; 583 int res; 584 585 pc_req = alloc_smp_req(PC_REQ_SIZE); 586 if (!pc_req) 587 return -ENOMEM; 588 589 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 590 if (!pc_resp) { 591 kfree(pc_req); 592 return -ENOMEM; 593 } 594 595 pc_req[1] = SMP_PHY_CONTROL; 596 pc_req[9] = phy_id; 597 pc_req[10] = phy_func; 598 if (rates) { 599 pc_req[32] = rates->minimum_linkrate << 4; 600 pc_req[33] = rates->maximum_linkrate << 4; 601 } 602 603 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE); 604 if (res) { 605 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 606 SAS_ADDR(dev->sas_addr), phy_id, res); 607 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 608 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 609 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 610 res = pc_resp[2]; 611 } 612 kfree(pc_resp); 613 kfree(pc_req); 614 return res; 615 } 616 617 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 618 { 619 struct expander_device *ex = &dev->ex_dev; 620 struct ex_phy *phy = &ex->ex_phy[phy_id]; 621 622 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 623 phy->linkrate = SAS_PHY_DISABLED; 624 } 625 626 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 627 { 628 struct expander_device *ex = &dev->ex_dev; 629 int i; 630 631 for (i = 0; i < ex->num_phys; i++) { 632 struct ex_phy *phy = &ex->ex_phy[i]; 633 634 if (phy->phy_state == PHY_VACANT || 635 phy->phy_state == PHY_NOT_PRESENT) 636 continue; 637 638 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 639 sas_ex_disable_phy(dev, i); 640 } 641 } 642 643 static int sas_dev_present_in_domain(struct asd_sas_port *port, 644 u8 *sas_addr) 645 { 646 struct domain_device *dev; 647 648 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 649 return 1; 650 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 651 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 652 return 1; 653 } 654 return 0; 655 } 656 657 #define RPEL_REQ_SIZE 16 658 #define RPEL_RESP_SIZE 32 659 int sas_smp_get_phy_events(struct sas_phy *phy) 660 { 661 int res; 662 u8 *req; 663 u8 *resp; 664 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 665 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 666 667 req = alloc_smp_req(RPEL_REQ_SIZE); 668 if (!req) 669 return -ENOMEM; 670 671 resp = alloc_smp_resp(RPEL_RESP_SIZE); 672 if (!resp) { 673 kfree(req); 674 return -ENOMEM; 675 } 676 677 req[1] = SMP_REPORT_PHY_ERR_LOG; 678 req[9] = phy->number; 679 680 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 681 resp, RPEL_RESP_SIZE); 682 683 if (res) 684 goto out; 685 686 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 687 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 688 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 689 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 690 691 out: 692 kfree(req); 693 kfree(resp); 694 return res; 695 696 } 697 698 #ifdef CONFIG_SCSI_SAS_ATA 699 700 #define RPS_REQ_SIZE 16 701 #define RPS_RESP_SIZE 60 702 703 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 704 struct smp_resp *rps_resp) 705 { 706 int res; 707 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 708 u8 *resp = (u8 *)rps_resp; 709 710 if (!rps_req) 711 return -ENOMEM; 712 713 rps_req[1] = SMP_REPORT_PHY_SATA; 714 rps_req[9] = phy_id; 715 716 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 717 rps_resp, RPS_RESP_SIZE); 718 719 /* 0x34 is the FIS type for the D2H fis. There's a potential 720 * standards cockup here. sas-2 explicitly specifies the FIS 721 * should be encoded so that FIS type is in resp[24]. 722 * However, some expanders endian reverse this. Undo the 723 * reversal here */ 724 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 725 int i; 726 727 for (i = 0; i < 5; i++) { 728 int j = 24 + (i*4); 729 u8 a, b; 730 a = resp[j + 0]; 731 b = resp[j + 1]; 732 resp[j + 0] = resp[j + 3]; 733 resp[j + 1] = resp[j + 2]; 734 resp[j + 2] = b; 735 resp[j + 3] = a; 736 } 737 } 738 739 kfree(rps_req); 740 return res; 741 } 742 #endif 743 744 static void sas_ex_get_linkrate(struct domain_device *parent, 745 struct domain_device *child, 746 struct ex_phy *parent_phy) 747 { 748 struct expander_device *parent_ex = &parent->ex_dev; 749 struct sas_port *port; 750 int i; 751 752 child->pathways = 0; 753 754 port = parent_phy->port; 755 756 for (i = 0; i < parent_ex->num_phys; i++) { 757 struct ex_phy *phy = &parent_ex->ex_phy[i]; 758 759 if (phy->phy_state == PHY_VACANT || 760 phy->phy_state == PHY_NOT_PRESENT) 761 continue; 762 763 if (SAS_ADDR(phy->attached_sas_addr) == 764 SAS_ADDR(child->sas_addr)) { 765 766 child->min_linkrate = min(parent->min_linkrate, 767 phy->linkrate); 768 child->max_linkrate = max(parent->max_linkrate, 769 phy->linkrate); 770 child->pathways++; 771 sas_port_add_phy(port, phy->phy); 772 } 773 } 774 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 775 child->pathways = min(child->pathways, parent->pathways); 776 } 777 778 static struct domain_device *sas_ex_discover_end_dev( 779 struct domain_device *parent, int phy_id) 780 { 781 struct expander_device *parent_ex = &parent->ex_dev; 782 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 783 struct domain_device *child = NULL; 784 struct sas_rphy *rphy; 785 int res; 786 787 if (phy->attached_sata_host || phy->attached_sata_ps) 788 return NULL; 789 790 child = sas_alloc_device(); 791 if (!child) 792 return NULL; 793 794 kref_get(&parent->kref); 795 child->parent = parent; 796 child->port = parent->port; 797 child->iproto = phy->attached_iproto; 798 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 799 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 800 if (!phy->port) { 801 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 802 if (unlikely(!phy->port)) 803 goto out_err; 804 if (unlikely(sas_port_add(phy->port) != 0)) { 805 sas_port_free(phy->port); 806 goto out_err; 807 } 808 } 809 sas_ex_get_linkrate(parent, child, phy); 810 sas_device_set_phy(child, phy->port); 811 812 #ifdef CONFIG_SCSI_SAS_ATA 813 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 814 if (child->linkrate > parent->min_linkrate) { 815 struct sas_phy *cphy = child->phy; 816 enum sas_linkrate min_prate = cphy->minimum_linkrate, 817 parent_min_lrate = parent->min_linkrate, 818 min_linkrate = (min_prate > parent_min_lrate) ? 819 parent_min_lrate : 0; 820 struct sas_phy_linkrates rates = { 821 .maximum_linkrate = parent->min_linkrate, 822 .minimum_linkrate = min_linkrate, 823 }; 824 int ret; 825 826 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n", 827 SAS_ADDR(child->sas_addr), phy_id); 828 ret = sas_smp_phy_control(parent, phy_id, 829 PHY_FUNC_LINK_RESET, &rates); 830 if (ret) { 831 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n", 832 SAS_ADDR(child->sas_addr), phy_id, ret); 833 goto out_free; 834 } 835 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n", 836 SAS_ADDR(child->sas_addr), phy_id); 837 child->linkrate = child->min_linkrate; 838 } 839 res = sas_get_ata_info(child, phy); 840 if (res) 841 goto out_free; 842 843 sas_init_dev(child); 844 res = sas_ata_init(child); 845 if (res) 846 goto out_free; 847 rphy = sas_end_device_alloc(phy->port); 848 if (!rphy) 849 goto out_free; 850 rphy->identify.phy_identifier = phy_id; 851 852 child->rphy = rphy; 853 get_device(&rphy->dev); 854 855 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 856 857 res = sas_discover_sata(child); 858 if (res) { 859 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n", 860 SAS_ADDR(child->sas_addr), 861 SAS_ADDR(parent->sas_addr), phy_id, res); 862 goto out_list_del; 863 } 864 } else 865 #endif 866 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 867 child->dev_type = SAS_END_DEVICE; 868 rphy = sas_end_device_alloc(phy->port); 869 /* FIXME: error handling */ 870 if (unlikely(!rphy)) 871 goto out_free; 872 child->tproto = phy->attached_tproto; 873 sas_init_dev(child); 874 875 child->rphy = rphy; 876 get_device(&rphy->dev); 877 rphy->identify.phy_identifier = phy_id; 878 sas_fill_in_rphy(child, rphy); 879 880 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 881 882 res = sas_discover_end_dev(child); 883 if (res) { 884 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n", 885 SAS_ADDR(child->sas_addr), 886 SAS_ADDR(parent->sas_addr), phy_id, res); 887 goto out_list_del; 888 } 889 } else { 890 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 891 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 892 phy_id); 893 goto out_free; 894 } 895 896 list_add_tail(&child->siblings, &parent_ex->children); 897 return child; 898 899 out_list_del: 900 sas_rphy_free(child->rphy); 901 list_del(&child->disco_list_node); 902 spin_lock_irq(&parent->port->dev_list_lock); 903 list_del(&child->dev_list_node); 904 spin_unlock_irq(&parent->port->dev_list_lock); 905 out_free: 906 sas_port_delete(phy->port); 907 out_err: 908 phy->port = NULL; 909 sas_put_device(child); 910 return NULL; 911 } 912 913 /* See if this phy is part of a wide port */ 914 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 915 { 916 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 917 int i; 918 919 for (i = 0; i < parent->ex_dev.num_phys; i++) { 920 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 921 922 if (ephy == phy) 923 continue; 924 925 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 926 SAS_ADDR_SIZE) && ephy->port) { 927 sas_port_add_phy(ephy->port, phy->phy); 928 phy->port = ephy->port; 929 phy->phy_state = PHY_DEVICE_DISCOVERED; 930 return true; 931 } 932 } 933 934 return false; 935 } 936 937 static struct domain_device *sas_ex_discover_expander( 938 struct domain_device *parent, int phy_id) 939 { 940 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 941 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 942 struct domain_device *child = NULL; 943 struct sas_rphy *rphy; 944 struct sas_expander_device *edev; 945 struct asd_sas_port *port; 946 int res; 947 948 if (phy->routing_attr == DIRECT_ROUTING) { 949 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 950 SAS_ADDR(parent->sas_addr), phy_id, 951 SAS_ADDR(phy->attached_sas_addr), 952 phy->attached_phy_id); 953 return NULL; 954 } 955 child = sas_alloc_device(); 956 if (!child) 957 return NULL; 958 959 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 960 /* FIXME: better error handling */ 961 BUG_ON(sas_port_add(phy->port) != 0); 962 963 964 switch (phy->attached_dev_type) { 965 case SAS_EDGE_EXPANDER_DEVICE: 966 rphy = sas_expander_alloc(phy->port, 967 SAS_EDGE_EXPANDER_DEVICE); 968 break; 969 case SAS_FANOUT_EXPANDER_DEVICE: 970 rphy = sas_expander_alloc(phy->port, 971 SAS_FANOUT_EXPANDER_DEVICE); 972 break; 973 default: 974 rphy = NULL; /* shut gcc up */ 975 BUG(); 976 } 977 port = parent->port; 978 child->rphy = rphy; 979 get_device(&rphy->dev); 980 edev = rphy_to_expander_device(rphy); 981 child->dev_type = phy->attached_dev_type; 982 kref_get(&parent->kref); 983 child->parent = parent; 984 child->port = port; 985 child->iproto = phy->attached_iproto; 986 child->tproto = phy->attached_tproto; 987 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 988 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 989 sas_ex_get_linkrate(parent, child, phy); 990 edev->level = parent_ex->level + 1; 991 parent->port->disc.max_level = max(parent->port->disc.max_level, 992 edev->level); 993 sas_init_dev(child); 994 sas_fill_in_rphy(child, rphy); 995 sas_rphy_add(rphy); 996 997 spin_lock_irq(&parent->port->dev_list_lock); 998 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 999 spin_unlock_irq(&parent->port->dev_list_lock); 1000 1001 res = sas_discover_expander(child); 1002 if (res) { 1003 sas_rphy_delete(rphy); 1004 spin_lock_irq(&parent->port->dev_list_lock); 1005 list_del(&child->dev_list_node); 1006 spin_unlock_irq(&parent->port->dev_list_lock); 1007 sas_put_device(child); 1008 sas_port_delete(phy->port); 1009 phy->port = NULL; 1010 return NULL; 1011 } 1012 list_add_tail(&child->siblings, &parent->ex_dev.children); 1013 return child; 1014 } 1015 1016 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 1017 { 1018 struct expander_device *ex = &dev->ex_dev; 1019 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 1020 struct domain_device *child = NULL; 1021 int res = 0; 1022 1023 /* Phy state */ 1024 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1025 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1026 res = sas_ex_phy_discover(dev, phy_id); 1027 if (res) 1028 return res; 1029 } 1030 1031 /* Parent and domain coherency */ 1032 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1033 SAS_ADDR(dev->port->sas_addr))) { 1034 sas_add_parent_port(dev, phy_id); 1035 return 0; 1036 } 1037 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1038 SAS_ADDR(dev->parent->sas_addr))) { 1039 sas_add_parent_port(dev, phy_id); 1040 if (ex_phy->routing_attr == TABLE_ROUTING) 1041 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1042 return 0; 1043 } 1044 1045 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1046 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1047 1048 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1049 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1050 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1051 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1052 } 1053 return 0; 1054 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1055 return 0; 1056 1057 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1058 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1059 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1060 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1061 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 1062 ex_phy->attached_dev_type, 1063 SAS_ADDR(dev->sas_addr), 1064 phy_id); 1065 return 0; 1066 } 1067 1068 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1069 if (res) { 1070 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1071 SAS_ADDR(ex_phy->attached_sas_addr), res); 1072 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1073 return res; 1074 } 1075 1076 if (sas_ex_join_wide_port(dev, phy_id)) { 1077 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1078 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1079 return res; 1080 } 1081 1082 switch (ex_phy->attached_dev_type) { 1083 case SAS_END_DEVICE: 1084 case SAS_SATA_PENDING: 1085 child = sas_ex_discover_end_dev(dev, phy_id); 1086 break; 1087 case SAS_FANOUT_EXPANDER_DEVICE: 1088 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1089 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1090 SAS_ADDR(ex_phy->attached_sas_addr), 1091 ex_phy->attached_phy_id, 1092 SAS_ADDR(dev->sas_addr), 1093 phy_id); 1094 sas_ex_disable_phy(dev, phy_id); 1095 return res; 1096 } else 1097 memcpy(dev->port->disc.fanout_sas_addr, 1098 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1099 fallthrough; 1100 case SAS_EDGE_EXPANDER_DEVICE: 1101 child = sas_ex_discover_expander(dev, phy_id); 1102 break; 1103 default: 1104 break; 1105 } 1106 1107 if (!child) 1108 pr_notice("ex %016llx phy%02d failed to discover\n", 1109 SAS_ADDR(dev->sas_addr), phy_id); 1110 return res; 1111 } 1112 1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1114 { 1115 struct expander_device *ex = &dev->ex_dev; 1116 int i; 1117 1118 for (i = 0; i < ex->num_phys; i++) { 1119 struct ex_phy *phy = &ex->ex_phy[i]; 1120 1121 if (phy->phy_state == PHY_VACANT || 1122 phy->phy_state == PHY_NOT_PRESENT) 1123 continue; 1124 1125 if (dev_is_expander(phy->attached_dev_type) && 1126 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1127 1128 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1129 1130 return 1; 1131 } 1132 } 1133 return 0; 1134 } 1135 1136 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1137 { 1138 struct expander_device *ex = &dev->ex_dev; 1139 struct domain_device *child; 1140 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1141 1142 list_for_each_entry(child, &ex->children, siblings) { 1143 if (!dev_is_expander(child->dev_type)) 1144 continue; 1145 if (sub_addr[0] == 0) { 1146 sas_find_sub_addr(child, sub_addr); 1147 continue; 1148 } else { 1149 u8 s2[SAS_ADDR_SIZE]; 1150 1151 if (sas_find_sub_addr(child, s2) && 1152 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1153 1154 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1155 SAS_ADDR(dev->sas_addr), 1156 SAS_ADDR(child->sas_addr), 1157 SAS_ADDR(s2), 1158 SAS_ADDR(sub_addr)); 1159 1160 sas_ex_disable_port(child, s2); 1161 } 1162 } 1163 } 1164 return 0; 1165 } 1166 /** 1167 * sas_ex_discover_devices - discover devices attached to this expander 1168 * @dev: pointer to the expander domain device 1169 * @single: if you want to do a single phy, else set to -1; 1170 * 1171 * Configure this expander for use with its devices and register the 1172 * devices of this expander. 1173 */ 1174 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1175 { 1176 struct expander_device *ex = &dev->ex_dev; 1177 int i = 0, end = ex->num_phys; 1178 int res = 0; 1179 1180 if (0 <= single && single < end) { 1181 i = single; 1182 end = i+1; 1183 } 1184 1185 for ( ; i < end; i++) { 1186 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1187 1188 if (ex_phy->phy_state == PHY_VACANT || 1189 ex_phy->phy_state == PHY_NOT_PRESENT || 1190 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1191 continue; 1192 1193 switch (ex_phy->linkrate) { 1194 case SAS_PHY_DISABLED: 1195 case SAS_PHY_RESET_PROBLEM: 1196 case SAS_SATA_PORT_SELECTOR: 1197 continue; 1198 default: 1199 res = sas_ex_discover_dev(dev, i); 1200 if (res) 1201 break; 1202 continue; 1203 } 1204 } 1205 1206 if (!res) 1207 sas_check_level_subtractive_boundary(dev); 1208 1209 return res; 1210 } 1211 1212 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1213 { 1214 struct expander_device *ex = &dev->ex_dev; 1215 int i; 1216 u8 *sub_sas_addr = NULL; 1217 1218 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1219 return 0; 1220 1221 for (i = 0; i < ex->num_phys; i++) { 1222 struct ex_phy *phy = &ex->ex_phy[i]; 1223 1224 if (phy->phy_state == PHY_VACANT || 1225 phy->phy_state == PHY_NOT_PRESENT) 1226 continue; 1227 1228 if (dev_is_expander(phy->attached_dev_type) && 1229 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1230 1231 if (!sub_sas_addr) 1232 sub_sas_addr = &phy->attached_sas_addr[0]; 1233 else if (SAS_ADDR(sub_sas_addr) != 1234 SAS_ADDR(phy->attached_sas_addr)) { 1235 1236 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1237 SAS_ADDR(dev->sas_addr), i, 1238 SAS_ADDR(phy->attached_sas_addr), 1239 SAS_ADDR(sub_sas_addr)); 1240 sas_ex_disable_phy(dev, i); 1241 } 1242 } 1243 } 1244 return 0; 1245 } 1246 1247 static void sas_print_parent_topology_bug(struct domain_device *child, 1248 struct ex_phy *parent_phy, 1249 struct ex_phy *child_phy) 1250 { 1251 static const char *ex_type[] = { 1252 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1253 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1254 }; 1255 struct domain_device *parent = child->parent; 1256 1257 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1258 ex_type[parent->dev_type], 1259 SAS_ADDR(parent->sas_addr), 1260 parent_phy->phy_id, 1261 1262 ex_type[child->dev_type], 1263 SAS_ADDR(child->sas_addr), 1264 child_phy->phy_id, 1265 1266 sas_route_char(parent, parent_phy), 1267 sas_route_char(child, child_phy)); 1268 } 1269 1270 static int sas_check_eeds(struct domain_device *child, 1271 struct ex_phy *parent_phy, 1272 struct ex_phy *child_phy) 1273 { 1274 int res = 0; 1275 struct domain_device *parent = child->parent; 1276 1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1278 res = -ENODEV; 1279 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1280 SAS_ADDR(parent->sas_addr), 1281 parent_phy->phy_id, 1282 SAS_ADDR(child->sas_addr), 1283 child_phy->phy_id, 1284 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1285 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1286 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1287 SAS_ADDR_SIZE); 1288 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1289 SAS_ADDR_SIZE); 1290 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1291 SAS_ADDR(parent->sas_addr)) || 1292 (SAS_ADDR(parent->port->disc.eeds_a) == 1293 SAS_ADDR(child->sas_addr))) 1294 && 1295 ((SAS_ADDR(parent->port->disc.eeds_b) == 1296 SAS_ADDR(parent->sas_addr)) || 1297 (SAS_ADDR(parent->port->disc.eeds_b) == 1298 SAS_ADDR(child->sas_addr)))) 1299 ; 1300 else { 1301 res = -ENODEV; 1302 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1303 SAS_ADDR(parent->sas_addr), 1304 parent_phy->phy_id, 1305 SAS_ADDR(child->sas_addr), 1306 child_phy->phy_id); 1307 } 1308 1309 return res; 1310 } 1311 1312 /* Here we spill over 80 columns. It is intentional. 1313 */ 1314 static int sas_check_parent_topology(struct domain_device *child) 1315 { 1316 struct expander_device *child_ex = &child->ex_dev; 1317 struct expander_device *parent_ex; 1318 int i; 1319 int res = 0; 1320 1321 if (!child->parent) 1322 return 0; 1323 1324 if (!dev_is_expander(child->parent->dev_type)) 1325 return 0; 1326 1327 parent_ex = &child->parent->ex_dev; 1328 1329 for (i = 0; i < parent_ex->num_phys; i++) { 1330 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1331 struct ex_phy *child_phy; 1332 1333 if (parent_phy->phy_state == PHY_VACANT || 1334 parent_phy->phy_state == PHY_NOT_PRESENT) 1335 continue; 1336 1337 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1338 continue; 1339 1340 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1341 1342 switch (child->parent->dev_type) { 1343 case SAS_EDGE_EXPANDER_DEVICE: 1344 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1345 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1346 child_phy->routing_attr != TABLE_ROUTING) { 1347 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1348 res = -ENODEV; 1349 } 1350 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1351 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1352 res = sas_check_eeds(child, parent_phy, child_phy); 1353 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1354 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1355 res = -ENODEV; 1356 } 1357 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1358 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1359 (child_phy->routing_attr == TABLE_ROUTING && 1360 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1361 /* All good */; 1362 } else { 1363 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1364 res = -ENODEV; 1365 } 1366 } 1367 break; 1368 case SAS_FANOUT_EXPANDER_DEVICE: 1369 if (parent_phy->routing_attr != TABLE_ROUTING || 1370 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1371 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1372 res = -ENODEV; 1373 } 1374 break; 1375 default: 1376 break; 1377 } 1378 } 1379 1380 return res; 1381 } 1382 1383 #define RRI_REQ_SIZE 16 1384 #define RRI_RESP_SIZE 44 1385 1386 static int sas_configure_present(struct domain_device *dev, int phy_id, 1387 u8 *sas_addr, int *index, int *present) 1388 { 1389 int i, res = 0; 1390 struct expander_device *ex = &dev->ex_dev; 1391 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1392 u8 *rri_req; 1393 u8 *rri_resp; 1394 1395 *present = 0; 1396 *index = 0; 1397 1398 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1399 if (!rri_req) 1400 return -ENOMEM; 1401 1402 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1403 if (!rri_resp) { 1404 kfree(rri_req); 1405 return -ENOMEM; 1406 } 1407 1408 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1409 rri_req[9] = phy_id; 1410 1411 for (i = 0; i < ex->max_route_indexes ; i++) { 1412 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1413 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1414 RRI_RESP_SIZE); 1415 if (res) 1416 goto out; 1417 res = rri_resp[2]; 1418 if (res == SMP_RESP_NO_INDEX) { 1419 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1420 SAS_ADDR(dev->sas_addr), phy_id, i); 1421 goto out; 1422 } else if (res != SMP_RESP_FUNC_ACC) { 1423 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1424 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1425 i, res); 1426 goto out; 1427 } 1428 if (SAS_ADDR(sas_addr) != 0) { 1429 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1430 *index = i; 1431 if ((rri_resp[12] & 0x80) == 0x80) 1432 *present = 0; 1433 else 1434 *present = 1; 1435 goto out; 1436 } else if (SAS_ADDR(rri_resp+16) == 0) { 1437 *index = i; 1438 *present = 0; 1439 goto out; 1440 } 1441 } else if (SAS_ADDR(rri_resp+16) == 0 && 1442 phy->last_da_index < i) { 1443 phy->last_da_index = i; 1444 *index = i; 1445 *present = 0; 1446 goto out; 1447 } 1448 } 1449 res = -1; 1450 out: 1451 kfree(rri_req); 1452 kfree(rri_resp); 1453 return res; 1454 } 1455 1456 #define CRI_REQ_SIZE 44 1457 #define CRI_RESP_SIZE 8 1458 1459 static int sas_configure_set(struct domain_device *dev, int phy_id, 1460 u8 *sas_addr, int index, int include) 1461 { 1462 int res; 1463 u8 *cri_req; 1464 u8 *cri_resp; 1465 1466 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1467 if (!cri_req) 1468 return -ENOMEM; 1469 1470 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1471 if (!cri_resp) { 1472 kfree(cri_req); 1473 return -ENOMEM; 1474 } 1475 1476 cri_req[1] = SMP_CONF_ROUTE_INFO; 1477 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1478 cri_req[9] = phy_id; 1479 if (SAS_ADDR(sas_addr) == 0 || !include) 1480 cri_req[12] |= 0x80; 1481 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1482 1483 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1484 CRI_RESP_SIZE); 1485 if (res) 1486 goto out; 1487 res = cri_resp[2]; 1488 if (res == SMP_RESP_NO_INDEX) { 1489 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1490 SAS_ADDR(dev->sas_addr), phy_id, index); 1491 } 1492 out: 1493 kfree(cri_req); 1494 kfree(cri_resp); 1495 return res; 1496 } 1497 1498 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1499 u8 *sas_addr, int include) 1500 { 1501 int index; 1502 int present; 1503 int res; 1504 1505 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1506 if (res) 1507 return res; 1508 if (include ^ present) 1509 return sas_configure_set(dev, phy_id, sas_addr, index, 1510 include); 1511 1512 return res; 1513 } 1514 1515 /** 1516 * sas_configure_parent - configure routing table of parent 1517 * @parent: parent expander 1518 * @child: child expander 1519 * @sas_addr: SAS port identifier of device directly attached to child 1520 * @include: whether or not to include @child in the expander routing table 1521 */ 1522 static int sas_configure_parent(struct domain_device *parent, 1523 struct domain_device *child, 1524 u8 *sas_addr, int include) 1525 { 1526 struct expander_device *ex_parent = &parent->ex_dev; 1527 int res = 0; 1528 int i; 1529 1530 if (parent->parent) { 1531 res = sas_configure_parent(parent->parent, parent, sas_addr, 1532 include); 1533 if (res) 1534 return res; 1535 } 1536 1537 if (ex_parent->conf_route_table == 0) { 1538 pr_debug("ex %016llx has self-configuring routing table\n", 1539 SAS_ADDR(parent->sas_addr)); 1540 return 0; 1541 } 1542 1543 for (i = 0; i < ex_parent->num_phys; i++) { 1544 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1545 1546 if ((phy->routing_attr == TABLE_ROUTING) && 1547 (SAS_ADDR(phy->attached_sas_addr) == 1548 SAS_ADDR(child->sas_addr))) { 1549 res = sas_configure_phy(parent, i, sas_addr, include); 1550 if (res) 1551 return res; 1552 } 1553 } 1554 1555 return res; 1556 } 1557 1558 /** 1559 * sas_configure_routing - configure routing 1560 * @dev: expander device 1561 * @sas_addr: port identifier of device directly attached to the expander device 1562 */ 1563 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1564 { 1565 if (dev->parent) 1566 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1567 return 0; 1568 } 1569 1570 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1571 { 1572 if (dev->parent) 1573 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1574 return 0; 1575 } 1576 1577 /** 1578 * sas_discover_expander - expander discovery 1579 * @dev: pointer to expander domain device 1580 * 1581 * See comment in sas_discover_sata(). 1582 */ 1583 static int sas_discover_expander(struct domain_device *dev) 1584 { 1585 int res; 1586 1587 res = sas_notify_lldd_dev_found(dev); 1588 if (res) 1589 return res; 1590 1591 res = sas_ex_general(dev); 1592 if (res) 1593 goto out_err; 1594 res = sas_ex_manuf_info(dev); 1595 if (res) 1596 goto out_err; 1597 1598 res = sas_expander_discover(dev); 1599 if (res) { 1600 pr_warn("expander %016llx discovery failed(0x%x)\n", 1601 SAS_ADDR(dev->sas_addr), res); 1602 goto out_err; 1603 } 1604 1605 sas_check_ex_subtractive_boundary(dev); 1606 res = sas_check_parent_topology(dev); 1607 if (res) 1608 goto out_err; 1609 return 0; 1610 out_err: 1611 sas_notify_lldd_dev_gone(dev); 1612 return res; 1613 } 1614 1615 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1616 { 1617 int res = 0; 1618 struct domain_device *dev; 1619 1620 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1621 if (dev_is_expander(dev->dev_type)) { 1622 struct sas_expander_device *ex = 1623 rphy_to_expander_device(dev->rphy); 1624 1625 if (level == ex->level) 1626 res = sas_ex_discover_devices(dev, -1); 1627 else if (level > 0) 1628 res = sas_ex_discover_devices(port->port_dev, -1); 1629 1630 } 1631 } 1632 1633 return res; 1634 } 1635 1636 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1637 { 1638 int res; 1639 int level; 1640 1641 do { 1642 level = port->disc.max_level; 1643 res = sas_ex_level_discovery(port, level); 1644 mb(); 1645 } while (level < port->disc.max_level); 1646 1647 return res; 1648 } 1649 1650 int sas_discover_root_expander(struct domain_device *dev) 1651 { 1652 int res; 1653 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1654 1655 res = sas_rphy_add(dev->rphy); 1656 if (res) 1657 goto out_err; 1658 1659 ex->level = dev->port->disc.max_level; /* 0 */ 1660 res = sas_discover_expander(dev); 1661 if (res) 1662 goto out_err2; 1663 1664 sas_ex_bfs_disc(dev->port); 1665 1666 return res; 1667 1668 out_err2: 1669 sas_rphy_remove(dev->rphy); 1670 out_err: 1671 return res; 1672 } 1673 1674 /* ---------- Domain revalidation ---------- */ 1675 1676 static int sas_get_phy_discover(struct domain_device *dev, 1677 int phy_id, struct smp_resp *disc_resp) 1678 { 1679 int res; 1680 u8 *disc_req; 1681 1682 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1683 if (!disc_req) 1684 return -ENOMEM; 1685 1686 disc_req[1] = SMP_DISCOVER; 1687 disc_req[9] = phy_id; 1688 1689 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1690 disc_resp, DISCOVER_RESP_SIZE); 1691 if (res) 1692 goto out; 1693 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1694 res = disc_resp->result; 1695 goto out; 1696 } 1697 out: 1698 kfree(disc_req); 1699 return res; 1700 } 1701 1702 static int sas_get_phy_change_count(struct domain_device *dev, 1703 int phy_id, int *pcc) 1704 { 1705 int res; 1706 struct smp_resp *disc_resp; 1707 1708 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1709 if (!disc_resp) 1710 return -ENOMEM; 1711 1712 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1713 if (!res) 1714 *pcc = disc_resp->disc.change_count; 1715 1716 kfree(disc_resp); 1717 return res; 1718 } 1719 1720 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1721 u8 *sas_addr, enum sas_device_type *type) 1722 { 1723 int res; 1724 struct smp_resp *disc_resp; 1725 struct discover_resp *dr; 1726 1727 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1728 if (!disc_resp) 1729 return -ENOMEM; 1730 dr = &disc_resp->disc; 1731 1732 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1733 if (res == 0) { 1734 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 1735 SAS_ADDR_SIZE); 1736 *type = to_dev_type(dr); 1737 if (*type == 0) 1738 memset(sas_addr, 0, SAS_ADDR_SIZE); 1739 } 1740 kfree(disc_resp); 1741 return res; 1742 } 1743 1744 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1745 int from_phy, bool update) 1746 { 1747 struct expander_device *ex = &dev->ex_dev; 1748 int res = 0; 1749 int i; 1750 1751 for (i = from_phy; i < ex->num_phys; i++) { 1752 int phy_change_count = 0; 1753 1754 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1755 switch (res) { 1756 case SMP_RESP_PHY_VACANT: 1757 case SMP_RESP_NO_PHY: 1758 continue; 1759 case SMP_RESP_FUNC_ACC: 1760 break; 1761 default: 1762 return res; 1763 } 1764 1765 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1766 if (update) 1767 ex->ex_phy[i].phy_change_count = 1768 phy_change_count; 1769 *phy_id = i; 1770 return 0; 1771 } 1772 } 1773 return 0; 1774 } 1775 1776 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1777 { 1778 int res; 1779 u8 *rg_req; 1780 struct smp_resp *rg_resp; 1781 1782 rg_req = alloc_smp_req(RG_REQ_SIZE); 1783 if (!rg_req) 1784 return -ENOMEM; 1785 1786 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1787 if (!rg_resp) { 1788 kfree(rg_req); 1789 return -ENOMEM; 1790 } 1791 1792 rg_req[1] = SMP_REPORT_GENERAL; 1793 1794 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1795 RG_RESP_SIZE); 1796 if (res) 1797 goto out; 1798 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1799 res = rg_resp->result; 1800 goto out; 1801 } 1802 1803 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1804 out: 1805 kfree(rg_resp); 1806 kfree(rg_req); 1807 return res; 1808 } 1809 /** 1810 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1811 * @dev:domain device to be detect. 1812 * @src_dev: the device which originated BROADCAST(CHANGE). 1813 * 1814 * Add self-configuration expander support. Suppose two expander cascading, 1815 * when the first level expander is self-configuring, hotplug the disks in 1816 * second level expander, BROADCAST(CHANGE) will not only be originated 1817 * in the second level expander, but also be originated in the first level 1818 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1819 * expander changed count in two level expanders will all increment at least 1820 * once, but the phy which chang count has changed is the source device which 1821 * we concerned. 1822 */ 1823 1824 static int sas_find_bcast_dev(struct domain_device *dev, 1825 struct domain_device **src_dev) 1826 { 1827 struct expander_device *ex = &dev->ex_dev; 1828 int ex_change_count = -1; 1829 int phy_id = -1; 1830 int res; 1831 struct domain_device *ch; 1832 1833 res = sas_get_ex_change_count(dev, &ex_change_count); 1834 if (res) 1835 goto out; 1836 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1837 /* Just detect if this expander phys phy change count changed, 1838 * in order to determine if this expander originate BROADCAST, 1839 * and do not update phy change count field in our structure. 1840 */ 1841 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1842 if (phy_id != -1) { 1843 *src_dev = dev; 1844 ex->ex_change_count = ex_change_count; 1845 pr_info("ex %016llx phy%02d change count has changed\n", 1846 SAS_ADDR(dev->sas_addr), phy_id); 1847 return res; 1848 } else 1849 pr_info("ex %016llx phys DID NOT change\n", 1850 SAS_ADDR(dev->sas_addr)); 1851 } 1852 list_for_each_entry(ch, &ex->children, siblings) { 1853 if (dev_is_expander(ch->dev_type)) { 1854 res = sas_find_bcast_dev(ch, src_dev); 1855 if (*src_dev) 1856 return res; 1857 } 1858 } 1859 out: 1860 return res; 1861 } 1862 1863 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1864 { 1865 struct expander_device *ex = &dev->ex_dev; 1866 struct domain_device *child, *n; 1867 1868 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1869 set_bit(SAS_DEV_GONE, &child->state); 1870 if (dev_is_expander(child->dev_type)) 1871 sas_unregister_ex_tree(port, child); 1872 else 1873 sas_unregister_dev(port, child); 1874 } 1875 sas_unregister_dev(port, dev); 1876 } 1877 1878 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1879 int phy_id, bool last) 1880 { 1881 struct expander_device *ex_dev = &parent->ex_dev; 1882 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1883 struct domain_device *child, *n, *found = NULL; 1884 if (last) { 1885 list_for_each_entry_safe(child, n, 1886 &ex_dev->children, siblings) { 1887 if (SAS_ADDR(child->sas_addr) == 1888 SAS_ADDR(phy->attached_sas_addr)) { 1889 set_bit(SAS_DEV_GONE, &child->state); 1890 if (dev_is_expander(child->dev_type)) 1891 sas_unregister_ex_tree(parent->port, child); 1892 else 1893 sas_unregister_dev(parent->port, child); 1894 found = child; 1895 break; 1896 } 1897 } 1898 sas_disable_routing(parent, phy->attached_sas_addr); 1899 } 1900 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1901 if (phy->port) { 1902 sas_port_delete_phy(phy->port, phy->phy); 1903 sas_device_set_phy(found, phy->port); 1904 if (phy->port->num_phys == 0) 1905 list_add_tail(&phy->port->del_list, 1906 &parent->port->sas_port_del_list); 1907 phy->port = NULL; 1908 } 1909 } 1910 1911 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1912 const int level) 1913 { 1914 struct expander_device *ex_root = &root->ex_dev; 1915 struct domain_device *child; 1916 int res = 0; 1917 1918 list_for_each_entry(child, &ex_root->children, siblings) { 1919 if (dev_is_expander(child->dev_type)) { 1920 struct sas_expander_device *ex = 1921 rphy_to_expander_device(child->rphy); 1922 1923 if (level > ex->level) 1924 res = sas_discover_bfs_by_root_level(child, 1925 level); 1926 else if (level == ex->level) 1927 res = sas_ex_discover_devices(child, -1); 1928 } 1929 } 1930 return res; 1931 } 1932 1933 static int sas_discover_bfs_by_root(struct domain_device *dev) 1934 { 1935 int res; 1936 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1937 int level = ex->level+1; 1938 1939 res = sas_ex_discover_devices(dev, -1); 1940 if (res) 1941 goto out; 1942 do { 1943 res = sas_discover_bfs_by_root_level(dev, level); 1944 mb(); 1945 level += 1; 1946 } while (level <= dev->port->disc.max_level); 1947 out: 1948 return res; 1949 } 1950 1951 static int sas_discover_new(struct domain_device *dev, int phy_id) 1952 { 1953 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1954 struct domain_device *child; 1955 int res; 1956 1957 pr_debug("ex %016llx phy%02d new device attached\n", 1958 SAS_ADDR(dev->sas_addr), phy_id); 1959 res = sas_ex_phy_discover(dev, phy_id); 1960 if (res) 1961 return res; 1962 1963 if (sas_ex_join_wide_port(dev, phy_id)) 1964 return 0; 1965 1966 res = sas_ex_discover_devices(dev, phy_id); 1967 if (res) 1968 return res; 1969 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1970 if (SAS_ADDR(child->sas_addr) == 1971 SAS_ADDR(ex_phy->attached_sas_addr)) { 1972 if (dev_is_expander(child->dev_type)) 1973 res = sas_discover_bfs_by_root(child); 1974 break; 1975 } 1976 } 1977 return res; 1978 } 1979 1980 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1981 { 1982 if (old == new) 1983 return true; 1984 1985 /* treat device directed resets as flutter, if we went 1986 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1987 */ 1988 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1989 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1990 return true; 1991 1992 return false; 1993 } 1994 1995 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 1996 bool last, int sibling) 1997 { 1998 struct expander_device *ex = &dev->ex_dev; 1999 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2000 enum sas_device_type type = SAS_PHY_UNUSED; 2001 u8 sas_addr[SAS_ADDR_SIZE]; 2002 char msg[80] = ""; 2003 int res; 2004 2005 if (!last) 2006 sprintf(msg, ", part of a wide port with phy%02d", sibling); 2007 2008 pr_debug("ex %016llx rediscovering phy%02d%s\n", 2009 SAS_ADDR(dev->sas_addr), phy_id, msg); 2010 2011 memset(sas_addr, 0, SAS_ADDR_SIZE); 2012 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2013 switch (res) { 2014 case SMP_RESP_NO_PHY: 2015 phy->phy_state = PHY_NOT_PRESENT; 2016 sas_unregister_devs_sas_addr(dev, phy_id, last); 2017 return res; 2018 case SMP_RESP_PHY_VACANT: 2019 phy->phy_state = PHY_VACANT; 2020 sas_unregister_devs_sas_addr(dev, phy_id, last); 2021 return res; 2022 case SMP_RESP_FUNC_ACC: 2023 break; 2024 case -ECOMM: 2025 break; 2026 default: 2027 return res; 2028 } 2029 2030 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2031 phy->phy_state = PHY_EMPTY; 2032 sas_unregister_devs_sas_addr(dev, phy_id, last); 2033 /* 2034 * Even though the PHY is empty, for convenience we discover 2035 * the PHY to update the PHY info, like negotiated linkrate. 2036 */ 2037 sas_ex_phy_discover(dev, phy_id); 2038 return res; 2039 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2040 dev_type_flutter(type, phy->attached_dev_type)) { 2041 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2042 char *action = ""; 2043 2044 sas_ex_phy_discover(dev, phy_id); 2045 2046 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2047 action = ", needs recovery"; 2048 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2049 SAS_ADDR(dev->sas_addr), phy_id, action); 2050 return res; 2051 } 2052 2053 /* we always have to delete the old device when we went here */ 2054 pr_info("ex %016llx phy%02d replace %016llx\n", 2055 SAS_ADDR(dev->sas_addr), phy_id, 2056 SAS_ADDR(phy->attached_sas_addr)); 2057 sas_unregister_devs_sas_addr(dev, phy_id, last); 2058 2059 return sas_discover_new(dev, phy_id); 2060 } 2061 2062 /** 2063 * sas_rediscover - revalidate the domain. 2064 * @dev:domain device to be detect. 2065 * @phy_id: the phy id will be detected. 2066 * 2067 * NOTE: this process _must_ quit (return) as soon as any connection 2068 * errors are encountered. Connection recovery is done elsewhere. 2069 * Discover process only interrogates devices in order to discover the 2070 * domain.For plugging out, we un-register the device only when it is 2071 * the last phy in the port, for other phys in this port, we just delete it 2072 * from the port.For inserting, we do discovery when it is the 2073 * first phy,for other phys in this port, we add it to the port to 2074 * forming the wide-port. 2075 */ 2076 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2077 { 2078 struct expander_device *ex = &dev->ex_dev; 2079 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2080 int res = 0; 2081 int i; 2082 bool last = true; /* is this the last phy of the port */ 2083 2084 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2085 SAS_ADDR(dev->sas_addr), phy_id); 2086 2087 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2088 for (i = 0; i < ex->num_phys; i++) { 2089 struct ex_phy *phy = &ex->ex_phy[i]; 2090 2091 if (i == phy_id) 2092 continue; 2093 if (SAS_ADDR(phy->attached_sas_addr) == 2094 SAS_ADDR(changed_phy->attached_sas_addr)) { 2095 last = false; 2096 break; 2097 } 2098 } 2099 res = sas_rediscover_dev(dev, phy_id, last, i); 2100 } else 2101 res = sas_discover_new(dev, phy_id); 2102 return res; 2103 } 2104 2105 /** 2106 * sas_ex_revalidate_domain - revalidate the domain 2107 * @port_dev: port domain device. 2108 * 2109 * NOTE: this process _must_ quit (return) as soon as any connection 2110 * errors are encountered. Connection recovery is done elsewhere. 2111 * Discover process only interrogates devices in order to discover the 2112 * domain. 2113 */ 2114 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2115 { 2116 int res; 2117 struct domain_device *dev = NULL; 2118 2119 res = sas_find_bcast_dev(port_dev, &dev); 2120 if (res == 0 && dev) { 2121 struct expander_device *ex = &dev->ex_dev; 2122 int i = 0, phy_id; 2123 2124 do { 2125 phy_id = -1; 2126 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2127 if (phy_id == -1) 2128 break; 2129 res = sas_rediscover(dev, phy_id); 2130 i = phy_id + 1; 2131 } while (i < ex->num_phys); 2132 } 2133 return res; 2134 } 2135 2136 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2137 struct sas_rphy *rphy) 2138 { 2139 struct domain_device *dev; 2140 unsigned int rcvlen = 0; 2141 int ret = -EINVAL; 2142 2143 /* no rphy means no smp target support (ie aic94xx host) */ 2144 if (!rphy) 2145 return sas_smp_host_handler(job, shost); 2146 2147 switch (rphy->identify.device_type) { 2148 case SAS_EDGE_EXPANDER_DEVICE: 2149 case SAS_FANOUT_EXPANDER_DEVICE: 2150 break; 2151 default: 2152 pr_err("%s: can we send a smp request to a device?\n", 2153 __func__); 2154 goto out; 2155 } 2156 2157 dev = sas_find_dev_by_rphy(rphy); 2158 if (!dev) { 2159 pr_err("%s: fail to find a domain_device?\n", __func__); 2160 goto out; 2161 } 2162 2163 /* do we need to support multiple segments? */ 2164 if (job->request_payload.sg_cnt > 1 || 2165 job->reply_payload.sg_cnt > 1) { 2166 pr_info("%s: multiple segments req %u, rsp %u\n", 2167 __func__, job->request_payload.payload_len, 2168 job->reply_payload.payload_len); 2169 goto out; 2170 } 2171 2172 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2173 job->reply_payload.sg_list); 2174 if (ret >= 0) { 2175 /* bsg_job_done() requires the length received */ 2176 rcvlen = job->reply_payload.payload_len - ret; 2177 ret = 0; 2178 } 2179 2180 out: 2181 bsg_job_done(job, ret, rcvlen); 2182 } 2183