1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(struct timer_list *t) 45 { 46 struct sas_task_slow *slow = from_timer(slow, t, timer); 47 struct sas_task *task = slow->task; 48 unsigned long flags; 49 50 spin_lock_irqsave(&task->task_state_lock, flags); 51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 52 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 53 spin_unlock_irqrestore(&task->task_state_lock, flags); 54 55 complete(&task->slow_task->completion); 56 } 57 58 static void smp_task_done(struct sas_task *task) 59 { 60 if (!del_timer(&task->slow_task->timer)) 61 return; 62 complete(&task->slow_task->completion); 63 } 64 65 /* Give it some long enough timeout. In seconds. */ 66 #define SMP_TIMEOUT 10 67 68 static int smp_execute_task_sg(struct domain_device *dev, 69 struct scatterlist *req, struct scatterlist *resp) 70 { 71 int res, retry; 72 struct sas_task *task = NULL; 73 struct sas_internal *i = 74 to_sas_internal(dev->port->ha->core.shost->transportt); 75 76 mutex_lock(&dev->ex_dev.cmd_mutex); 77 for (retry = 0; retry < 3; retry++) { 78 if (test_bit(SAS_DEV_GONE, &dev->state)) { 79 res = -ECOMM; 80 break; 81 } 82 83 task = sas_alloc_slow_task(GFP_KERNEL); 84 if (!task) { 85 res = -ENOMEM; 86 break; 87 } 88 task->dev = dev; 89 task->task_proto = dev->tproto; 90 task->smp_task.smp_req = *req; 91 task->smp_task.smp_resp = *resp; 92 93 task->task_done = smp_task_done; 94 95 task->slow_task->timer.function = smp_task_timedout; 96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 97 add_timer(&task->slow_task->timer); 98 99 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 100 101 if (res) { 102 del_timer(&task->slow_task->timer); 103 SAS_DPRINTK("executing SMP task failed:%d\n", res); 104 break; 105 } 106 107 wait_for_completion(&task->slow_task->completion); 108 res = -ECOMM; 109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 110 SAS_DPRINTK("smp task timed out or aborted\n"); 111 i->dft->lldd_abort_task(task); 112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 113 SAS_DPRINTK("SMP task aborted and not done\n"); 114 break; 115 } 116 } 117 if (task->task_status.resp == SAS_TASK_COMPLETE && 118 task->task_status.stat == SAM_STAT_GOOD) { 119 res = 0; 120 break; 121 } 122 if (task->task_status.resp == SAS_TASK_COMPLETE && 123 task->task_status.stat == SAS_DATA_UNDERRUN) { 124 /* no error, but return the number of bytes of 125 * underrun */ 126 res = task->task_status.residual; 127 break; 128 } 129 if (task->task_status.resp == SAS_TASK_COMPLETE && 130 task->task_status.stat == SAS_DATA_OVERRUN) { 131 res = -EMSGSIZE; 132 break; 133 } 134 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 135 task->task_status.stat == SAS_DEVICE_UNKNOWN) 136 break; 137 else { 138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 139 "status 0x%x\n", __func__, 140 SAS_ADDR(dev->sas_addr), 141 task->task_status.resp, 142 task->task_status.stat); 143 sas_free_task(task); 144 task = NULL; 145 } 146 } 147 mutex_unlock(&dev->ex_dev.cmd_mutex); 148 149 BUG_ON(retry == 3 && task != NULL); 150 sas_free_task(task); 151 return res; 152 } 153 154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 155 void *resp, int resp_size) 156 { 157 struct scatterlist req_sg; 158 struct scatterlist resp_sg; 159 160 sg_init_one(&req_sg, req, req_size); 161 sg_init_one(&resp_sg, resp, resp_size); 162 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 163 } 164 165 /* ---------- Allocations ---------- */ 166 167 static inline void *alloc_smp_req(int size) 168 { 169 u8 *p = kzalloc(size, GFP_KERNEL); 170 if (p) 171 p[0] = SMP_REQUEST; 172 return p; 173 } 174 175 static inline void *alloc_smp_resp(int size) 176 { 177 return kzalloc(size, GFP_KERNEL); 178 } 179 180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 181 { 182 switch (phy->routing_attr) { 183 case TABLE_ROUTING: 184 if (dev->ex_dev.t2t_supp) 185 return 'U'; 186 else 187 return 'T'; 188 case DIRECT_ROUTING: 189 return 'D'; 190 case SUBTRACTIVE_ROUTING: 191 return 'S'; 192 default: 193 return '?'; 194 } 195 } 196 197 static enum sas_device_type to_dev_type(struct discover_resp *dr) 198 { 199 /* This is detecting a failure to transmit initial dev to host 200 * FIS as described in section J.5 of sas-2 r16 201 */ 202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 204 return SAS_SATA_PENDING; 205 else 206 return dr->attached_dev_type; 207 } 208 209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 210 { 211 enum sas_device_type dev_type; 212 enum sas_linkrate linkrate; 213 u8 sas_addr[SAS_ADDR_SIZE]; 214 struct smp_resp *resp = rsp; 215 struct discover_resp *dr = &resp->disc; 216 struct sas_ha_struct *ha = dev->port->ha; 217 struct expander_device *ex = &dev->ex_dev; 218 struct ex_phy *phy = &ex->ex_phy[phy_id]; 219 struct sas_rphy *rphy = dev->rphy; 220 bool new_phy = !phy->phy; 221 char *type; 222 223 if (new_phy) { 224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 225 return; 226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 227 228 /* FIXME: error_handling */ 229 BUG_ON(!phy->phy); 230 } 231 232 switch (resp->result) { 233 case SMP_RESP_PHY_VACANT: 234 phy->phy_state = PHY_VACANT; 235 break; 236 default: 237 phy->phy_state = PHY_NOT_PRESENT; 238 break; 239 case SMP_RESP_FUNC_ACC: 240 phy->phy_state = PHY_EMPTY; /* do not know yet */ 241 break; 242 } 243 244 /* check if anything important changed to squelch debug */ 245 dev_type = phy->attached_dev_type; 246 linkrate = phy->linkrate; 247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 248 249 /* Handle vacant phy - rest of dr data is not valid so skip it */ 250 if (phy->phy_state == PHY_VACANT) { 251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 252 phy->attached_dev_type = SAS_PHY_UNUSED; 253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 254 phy->phy_id = phy_id; 255 goto skip; 256 } else 257 goto out; 258 } 259 260 phy->attached_dev_type = to_dev_type(dr); 261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 262 goto out; 263 phy->phy_id = phy_id; 264 phy->linkrate = dr->linkrate; 265 phy->attached_sata_host = dr->attached_sata_host; 266 phy->attached_sata_dev = dr->attached_sata_dev; 267 phy->attached_sata_ps = dr->attached_sata_ps; 268 phy->attached_iproto = dr->iproto << 1; 269 phy->attached_tproto = dr->tproto << 1; 270 /* help some expanders that fail to zero sas_address in the 'no 271 * device' case 272 */ 273 if (phy->attached_dev_type == SAS_PHY_UNUSED || 274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 276 else 277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 278 phy->attached_phy_id = dr->attached_phy_id; 279 phy->phy_change_count = dr->change_count; 280 phy->routing_attr = dr->routing_attr; 281 phy->virtual = dr->virtual; 282 phy->last_da_index = -1; 283 284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 285 phy->phy->identify.device_type = dr->attached_dev_type; 286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 287 phy->phy->identify.target_port_protocols = phy->attached_tproto; 288 if (!phy->attached_tproto && dr->attached_sata_dev) 289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 290 phy->phy->identify.phy_identifier = phy_id; 291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 293 phy->phy->minimum_linkrate = dr->pmin_linkrate; 294 phy->phy->maximum_linkrate = dr->pmax_linkrate; 295 phy->phy->negotiated_linkrate = phy->linkrate; 296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 297 298 skip: 299 if (new_phy) 300 if (sas_phy_add(phy->phy)) { 301 sas_phy_free(phy->phy); 302 return; 303 } 304 305 out: 306 switch (phy->attached_dev_type) { 307 case SAS_SATA_PENDING: 308 type = "stp pending"; 309 break; 310 case SAS_PHY_UNUSED: 311 type = "no device"; 312 break; 313 case SAS_END_DEVICE: 314 if (phy->attached_iproto) { 315 if (phy->attached_tproto) 316 type = "host+target"; 317 else 318 type = "host"; 319 } else { 320 if (dr->attached_sata_dev) 321 type = "stp"; 322 else 323 type = "ssp"; 324 } 325 break; 326 case SAS_EDGE_EXPANDER_DEVICE: 327 case SAS_FANOUT_EXPANDER_DEVICE: 328 type = "smp"; 329 break; 330 default: 331 type = "unknown"; 332 } 333 334 /* this routine is polled by libata error recovery so filter 335 * unimportant messages 336 */ 337 if (new_phy || phy->attached_dev_type != dev_type || 338 phy->linkrate != linkrate || 339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 340 /* pass */; 341 else 342 return; 343 344 /* if the attached device type changed and ata_eh is active, 345 * make sure we run revalidation when eh completes (see: 346 * sas_enable_revalidation) 347 */ 348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 350 351 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 353 SAS_ADDR(dev->sas_addr), phy->phy_id, 354 sas_route_char(dev, phy), phy->linkrate, 355 SAS_ADDR(phy->attached_sas_addr), type); 356 } 357 358 /* check if we have an existing attached ata device on this expander phy */ 359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 360 { 361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 362 struct domain_device *dev; 363 struct sas_rphy *rphy; 364 365 if (!ex_phy->port) 366 return NULL; 367 368 rphy = ex_phy->port->rphy; 369 if (!rphy) 370 return NULL; 371 372 dev = sas_find_dev_by_rphy(rphy); 373 374 if (dev && dev_is_sata(dev)) 375 return dev; 376 377 return NULL; 378 } 379 380 #define DISCOVER_REQ_SIZE 16 381 #define DISCOVER_RESP_SIZE 56 382 383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 384 u8 *disc_resp, int single) 385 { 386 struct discover_resp *dr; 387 int res; 388 389 disc_req[9] = single; 390 391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 392 disc_resp, DISCOVER_RESP_SIZE); 393 if (res) 394 return res; 395 dr = &((struct smp_resp *)disc_resp)->disc; 396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 397 sas_printk("Found loopback topology, just ignore it!\n"); 398 return 0; 399 } 400 sas_set_ex_phy(dev, single, disc_resp); 401 return 0; 402 } 403 404 int sas_ex_phy_discover(struct domain_device *dev, int single) 405 { 406 struct expander_device *ex = &dev->ex_dev; 407 int res = 0; 408 u8 *disc_req; 409 u8 *disc_resp; 410 411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 412 if (!disc_req) 413 return -ENOMEM; 414 415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 416 if (!disc_resp) { 417 kfree(disc_req); 418 return -ENOMEM; 419 } 420 421 disc_req[1] = SMP_DISCOVER; 422 423 if (0 <= single && single < ex->num_phys) { 424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 425 } else { 426 int i; 427 428 for (i = 0; i < ex->num_phys; i++) { 429 res = sas_ex_phy_discover_helper(dev, disc_req, 430 disc_resp, i); 431 if (res) 432 goto out_err; 433 } 434 } 435 out_err: 436 kfree(disc_resp); 437 kfree(disc_req); 438 return res; 439 } 440 441 static int sas_expander_discover(struct domain_device *dev) 442 { 443 struct expander_device *ex = &dev->ex_dev; 444 int res = -ENOMEM; 445 446 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 447 if (!ex->ex_phy) 448 return -ENOMEM; 449 450 res = sas_ex_phy_discover(dev, -1); 451 if (res) 452 goto out_err; 453 454 return 0; 455 out_err: 456 kfree(ex->ex_phy); 457 ex->ex_phy = NULL; 458 return res; 459 } 460 461 #define MAX_EXPANDER_PHYS 128 462 463 static void ex_assign_report_general(struct domain_device *dev, 464 struct smp_resp *resp) 465 { 466 struct report_general_resp *rg = &resp->rg; 467 468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 471 dev->ex_dev.t2t_supp = rg->t2t_supp; 472 dev->ex_dev.conf_route_table = rg->conf_route_table; 473 dev->ex_dev.configuring = rg->configuring; 474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 475 } 476 477 #define RG_REQ_SIZE 8 478 #define RG_RESP_SIZE 32 479 480 static int sas_ex_general(struct domain_device *dev) 481 { 482 u8 *rg_req; 483 struct smp_resp *rg_resp; 484 int res; 485 int i; 486 487 rg_req = alloc_smp_req(RG_REQ_SIZE); 488 if (!rg_req) 489 return -ENOMEM; 490 491 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 492 if (!rg_resp) { 493 kfree(rg_req); 494 return -ENOMEM; 495 } 496 497 rg_req[1] = SMP_REPORT_GENERAL; 498 499 for (i = 0; i < 5; i++) { 500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 501 RG_RESP_SIZE); 502 503 if (res) { 504 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 505 SAS_ADDR(dev->sas_addr), res); 506 goto out; 507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 508 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 509 SAS_ADDR(dev->sas_addr), rg_resp->result); 510 res = rg_resp->result; 511 goto out; 512 } 513 514 ex_assign_report_general(dev, rg_resp); 515 516 if (dev->ex_dev.configuring) { 517 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 518 SAS_ADDR(dev->sas_addr)); 519 schedule_timeout_interruptible(5*HZ); 520 } else 521 break; 522 } 523 out: 524 kfree(rg_req); 525 kfree(rg_resp); 526 return res; 527 } 528 529 static void ex_assign_manuf_info(struct domain_device *dev, void 530 *_mi_resp) 531 { 532 u8 *mi_resp = _mi_resp; 533 struct sas_rphy *rphy = dev->rphy; 534 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 535 536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 538 memcpy(edev->product_rev, mi_resp + 36, 539 SAS_EXPANDER_PRODUCT_REV_LEN); 540 541 if (mi_resp[8] & 1) { 542 memcpy(edev->component_vendor_id, mi_resp + 40, 543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 544 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 545 edev->component_revision_id = mi_resp[50]; 546 } 547 } 548 549 #define MI_REQ_SIZE 8 550 #define MI_RESP_SIZE 64 551 552 static int sas_ex_manuf_info(struct domain_device *dev) 553 { 554 u8 *mi_req; 555 u8 *mi_resp; 556 int res; 557 558 mi_req = alloc_smp_req(MI_REQ_SIZE); 559 if (!mi_req) 560 return -ENOMEM; 561 562 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 563 if (!mi_resp) { 564 kfree(mi_req); 565 return -ENOMEM; 566 } 567 568 mi_req[1] = SMP_REPORT_MANUF_INFO; 569 570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 571 if (res) { 572 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 573 SAS_ADDR(dev->sas_addr), res); 574 goto out; 575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 576 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 577 SAS_ADDR(dev->sas_addr), mi_resp[2]); 578 goto out; 579 } 580 581 ex_assign_manuf_info(dev, mi_resp); 582 out: 583 kfree(mi_req); 584 kfree(mi_resp); 585 return res; 586 } 587 588 #define PC_REQ_SIZE 44 589 #define PC_RESP_SIZE 8 590 591 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 592 enum phy_func phy_func, 593 struct sas_phy_linkrates *rates) 594 { 595 u8 *pc_req; 596 u8 *pc_resp; 597 int res; 598 599 pc_req = alloc_smp_req(PC_REQ_SIZE); 600 if (!pc_req) 601 return -ENOMEM; 602 603 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 604 if (!pc_resp) { 605 kfree(pc_req); 606 return -ENOMEM; 607 } 608 609 pc_req[1] = SMP_PHY_CONTROL; 610 pc_req[9] = phy_id; 611 pc_req[10]= phy_func; 612 if (rates) { 613 pc_req[32] = rates->minimum_linkrate << 4; 614 pc_req[33] = rates->maximum_linkrate << 4; 615 } 616 617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 618 619 kfree(pc_resp); 620 kfree(pc_req); 621 return res; 622 } 623 624 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 625 { 626 struct expander_device *ex = &dev->ex_dev; 627 struct ex_phy *phy = &ex->ex_phy[phy_id]; 628 629 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 630 phy->linkrate = SAS_PHY_DISABLED; 631 } 632 633 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 634 { 635 struct expander_device *ex = &dev->ex_dev; 636 int i; 637 638 for (i = 0; i < ex->num_phys; i++) { 639 struct ex_phy *phy = &ex->ex_phy[i]; 640 641 if (phy->phy_state == PHY_VACANT || 642 phy->phy_state == PHY_NOT_PRESENT) 643 continue; 644 645 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 646 sas_ex_disable_phy(dev, i); 647 } 648 } 649 650 static int sas_dev_present_in_domain(struct asd_sas_port *port, 651 u8 *sas_addr) 652 { 653 struct domain_device *dev; 654 655 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 656 return 1; 657 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 658 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 659 return 1; 660 } 661 return 0; 662 } 663 664 #define RPEL_REQ_SIZE 16 665 #define RPEL_RESP_SIZE 32 666 int sas_smp_get_phy_events(struct sas_phy *phy) 667 { 668 int res; 669 u8 *req; 670 u8 *resp; 671 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 672 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 673 674 req = alloc_smp_req(RPEL_REQ_SIZE); 675 if (!req) 676 return -ENOMEM; 677 678 resp = alloc_smp_resp(RPEL_RESP_SIZE); 679 if (!resp) { 680 kfree(req); 681 return -ENOMEM; 682 } 683 684 req[1] = SMP_REPORT_PHY_ERR_LOG; 685 req[9] = phy->number; 686 687 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 688 resp, RPEL_RESP_SIZE); 689 690 if (res) 691 goto out; 692 693 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 694 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 695 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 696 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 697 698 out: 699 kfree(req); 700 kfree(resp); 701 return res; 702 703 } 704 705 #ifdef CONFIG_SCSI_SAS_ATA 706 707 #define RPS_REQ_SIZE 16 708 #define RPS_RESP_SIZE 60 709 710 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 711 struct smp_resp *rps_resp) 712 { 713 int res; 714 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 715 u8 *resp = (u8 *)rps_resp; 716 717 if (!rps_req) 718 return -ENOMEM; 719 720 rps_req[1] = SMP_REPORT_PHY_SATA; 721 rps_req[9] = phy_id; 722 723 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 724 rps_resp, RPS_RESP_SIZE); 725 726 /* 0x34 is the FIS type for the D2H fis. There's a potential 727 * standards cockup here. sas-2 explicitly specifies the FIS 728 * should be encoded so that FIS type is in resp[24]. 729 * However, some expanders endian reverse this. Undo the 730 * reversal here */ 731 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 732 int i; 733 734 for (i = 0; i < 5; i++) { 735 int j = 24 + (i*4); 736 u8 a, b; 737 a = resp[j + 0]; 738 b = resp[j + 1]; 739 resp[j + 0] = resp[j + 3]; 740 resp[j + 1] = resp[j + 2]; 741 resp[j + 2] = b; 742 resp[j + 3] = a; 743 } 744 } 745 746 kfree(rps_req); 747 return res; 748 } 749 #endif 750 751 static void sas_ex_get_linkrate(struct domain_device *parent, 752 struct domain_device *child, 753 struct ex_phy *parent_phy) 754 { 755 struct expander_device *parent_ex = &parent->ex_dev; 756 struct sas_port *port; 757 int i; 758 759 child->pathways = 0; 760 761 port = parent_phy->port; 762 763 for (i = 0; i < parent_ex->num_phys; i++) { 764 struct ex_phy *phy = &parent_ex->ex_phy[i]; 765 766 if (phy->phy_state == PHY_VACANT || 767 phy->phy_state == PHY_NOT_PRESENT) 768 continue; 769 770 if (SAS_ADDR(phy->attached_sas_addr) == 771 SAS_ADDR(child->sas_addr)) { 772 773 child->min_linkrate = min(parent->min_linkrate, 774 phy->linkrate); 775 child->max_linkrate = max(parent->max_linkrate, 776 phy->linkrate); 777 child->pathways++; 778 sas_port_add_phy(port, phy->phy); 779 } 780 } 781 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 782 child->pathways = min(child->pathways, parent->pathways); 783 } 784 785 static struct domain_device *sas_ex_discover_end_dev( 786 struct domain_device *parent, int phy_id) 787 { 788 struct expander_device *parent_ex = &parent->ex_dev; 789 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 790 struct domain_device *child = NULL; 791 struct sas_rphy *rphy; 792 int res; 793 794 if (phy->attached_sata_host || phy->attached_sata_ps) 795 return NULL; 796 797 child = sas_alloc_device(); 798 if (!child) 799 return NULL; 800 801 kref_get(&parent->kref); 802 child->parent = parent; 803 child->port = parent->port; 804 child->iproto = phy->attached_iproto; 805 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 806 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 807 if (!phy->port) { 808 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 809 if (unlikely(!phy->port)) 810 goto out_err; 811 if (unlikely(sas_port_add(phy->port) != 0)) { 812 sas_port_free(phy->port); 813 goto out_err; 814 } 815 } 816 sas_ex_get_linkrate(parent, child, phy); 817 sas_device_set_phy(child, phy->port); 818 819 #ifdef CONFIG_SCSI_SAS_ATA 820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 821 res = sas_get_ata_info(child, phy); 822 if (res) 823 goto out_free; 824 825 sas_init_dev(child); 826 res = sas_ata_init(child); 827 if (res) 828 goto out_free; 829 rphy = sas_end_device_alloc(phy->port); 830 if (!rphy) 831 goto out_free; 832 833 child->rphy = rphy; 834 get_device(&rphy->dev); 835 836 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 837 838 res = sas_discover_sata(child); 839 if (res) { 840 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 841 "%016llx:0x%x returned 0x%x\n", 842 SAS_ADDR(child->sas_addr), 843 SAS_ADDR(parent->sas_addr), phy_id, res); 844 goto out_list_del; 845 } 846 } else 847 #endif 848 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 849 child->dev_type = SAS_END_DEVICE; 850 rphy = sas_end_device_alloc(phy->port); 851 /* FIXME: error handling */ 852 if (unlikely(!rphy)) 853 goto out_free; 854 child->tproto = phy->attached_tproto; 855 sas_init_dev(child); 856 857 child->rphy = rphy; 858 get_device(&rphy->dev); 859 sas_fill_in_rphy(child, rphy); 860 861 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 862 863 res = sas_discover_end_dev(child); 864 if (res) { 865 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 866 "at %016llx:0x%x returned 0x%x\n", 867 SAS_ADDR(child->sas_addr), 868 SAS_ADDR(parent->sas_addr), phy_id, res); 869 goto out_list_del; 870 } 871 } else { 872 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 873 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 874 phy_id); 875 goto out_free; 876 } 877 878 list_add_tail(&child->siblings, &parent_ex->children); 879 return child; 880 881 out_list_del: 882 sas_rphy_free(child->rphy); 883 list_del(&child->disco_list_node); 884 spin_lock_irq(&parent->port->dev_list_lock); 885 list_del(&child->dev_list_node); 886 spin_unlock_irq(&parent->port->dev_list_lock); 887 out_free: 888 sas_port_delete(phy->port); 889 out_err: 890 phy->port = NULL; 891 sas_put_device(child); 892 return NULL; 893 } 894 895 /* See if this phy is part of a wide port */ 896 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 897 { 898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 899 int i; 900 901 for (i = 0; i < parent->ex_dev.num_phys; i++) { 902 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 903 904 if (ephy == phy) 905 continue; 906 907 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 908 SAS_ADDR_SIZE) && ephy->port) { 909 sas_port_add_phy(ephy->port, phy->phy); 910 phy->port = ephy->port; 911 phy->phy_state = PHY_DEVICE_DISCOVERED; 912 return true; 913 } 914 } 915 916 return false; 917 } 918 919 static struct domain_device *sas_ex_discover_expander( 920 struct domain_device *parent, int phy_id) 921 { 922 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 923 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 924 struct domain_device *child = NULL; 925 struct sas_rphy *rphy; 926 struct sas_expander_device *edev; 927 struct asd_sas_port *port; 928 int res; 929 930 if (phy->routing_attr == DIRECT_ROUTING) { 931 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 932 "allowed\n", 933 SAS_ADDR(parent->sas_addr), phy_id, 934 SAS_ADDR(phy->attached_sas_addr), 935 phy->attached_phy_id); 936 return NULL; 937 } 938 child = sas_alloc_device(); 939 if (!child) 940 return NULL; 941 942 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 943 /* FIXME: better error handling */ 944 BUG_ON(sas_port_add(phy->port) != 0); 945 946 947 switch (phy->attached_dev_type) { 948 case SAS_EDGE_EXPANDER_DEVICE: 949 rphy = sas_expander_alloc(phy->port, 950 SAS_EDGE_EXPANDER_DEVICE); 951 break; 952 case SAS_FANOUT_EXPANDER_DEVICE: 953 rphy = sas_expander_alloc(phy->port, 954 SAS_FANOUT_EXPANDER_DEVICE); 955 break; 956 default: 957 rphy = NULL; /* shut gcc up */ 958 BUG(); 959 } 960 port = parent->port; 961 child->rphy = rphy; 962 get_device(&rphy->dev); 963 edev = rphy_to_expander_device(rphy); 964 child->dev_type = phy->attached_dev_type; 965 kref_get(&parent->kref); 966 child->parent = parent; 967 child->port = port; 968 child->iproto = phy->attached_iproto; 969 child->tproto = phy->attached_tproto; 970 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 971 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 972 sas_ex_get_linkrate(parent, child, phy); 973 edev->level = parent_ex->level + 1; 974 parent->port->disc.max_level = max(parent->port->disc.max_level, 975 edev->level); 976 sas_init_dev(child); 977 sas_fill_in_rphy(child, rphy); 978 sas_rphy_add(rphy); 979 980 spin_lock_irq(&parent->port->dev_list_lock); 981 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 982 spin_unlock_irq(&parent->port->dev_list_lock); 983 984 res = sas_discover_expander(child); 985 if (res) { 986 sas_rphy_delete(rphy); 987 spin_lock_irq(&parent->port->dev_list_lock); 988 list_del(&child->dev_list_node); 989 spin_unlock_irq(&parent->port->dev_list_lock); 990 sas_put_device(child); 991 return NULL; 992 } 993 list_add_tail(&child->siblings, &parent->ex_dev.children); 994 return child; 995 } 996 997 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 998 { 999 struct expander_device *ex = &dev->ex_dev; 1000 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 1001 struct domain_device *child = NULL; 1002 int res = 0; 1003 1004 /* Phy state */ 1005 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1006 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1007 res = sas_ex_phy_discover(dev, phy_id); 1008 if (res) 1009 return res; 1010 } 1011 1012 /* Parent and domain coherency */ 1013 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1014 SAS_ADDR(dev->port->sas_addr))) { 1015 sas_add_parent_port(dev, phy_id); 1016 return 0; 1017 } 1018 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1019 SAS_ADDR(dev->parent->sas_addr))) { 1020 sas_add_parent_port(dev, phy_id); 1021 if (ex_phy->routing_attr == TABLE_ROUTING) 1022 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1023 return 0; 1024 } 1025 1026 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1027 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1028 1029 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1030 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1031 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1032 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1033 } 1034 return 0; 1035 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1036 return 0; 1037 1038 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1039 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1040 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1041 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1042 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 1043 "phy 0x%x\n", ex_phy->attached_dev_type, 1044 SAS_ADDR(dev->sas_addr), 1045 phy_id); 1046 return 0; 1047 } 1048 1049 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1050 if (res) { 1051 SAS_DPRINTK("configure routing for dev %016llx " 1052 "reported 0x%x. Forgotten\n", 1053 SAS_ADDR(ex_phy->attached_sas_addr), res); 1054 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1055 return res; 1056 } 1057 1058 if (sas_ex_join_wide_port(dev, phy_id)) { 1059 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1060 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1061 return res; 1062 } 1063 1064 switch (ex_phy->attached_dev_type) { 1065 case SAS_END_DEVICE: 1066 case SAS_SATA_PENDING: 1067 child = sas_ex_discover_end_dev(dev, phy_id); 1068 break; 1069 case SAS_FANOUT_EXPANDER_DEVICE: 1070 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1071 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 1072 "attached to ex %016llx phy 0x%x\n", 1073 SAS_ADDR(ex_phy->attached_sas_addr), 1074 ex_phy->attached_phy_id, 1075 SAS_ADDR(dev->sas_addr), 1076 phy_id); 1077 sas_ex_disable_phy(dev, phy_id); 1078 break; 1079 } else 1080 memcpy(dev->port->disc.fanout_sas_addr, 1081 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1082 /* fallthrough */ 1083 case SAS_EDGE_EXPANDER_DEVICE: 1084 child = sas_ex_discover_expander(dev, phy_id); 1085 break; 1086 default: 1087 break; 1088 } 1089 1090 if (child) { 1091 int i; 1092 1093 for (i = 0; i < ex->num_phys; i++) { 1094 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1095 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1096 continue; 1097 /* 1098 * Due to races, the phy might not get added to the 1099 * wide port, so we add the phy to the wide port here. 1100 */ 1101 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1102 SAS_ADDR(child->sas_addr)) { 1103 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1104 if (sas_ex_join_wide_port(dev, i)) 1105 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1106 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1107 1108 } 1109 } 1110 } 1111 1112 return res; 1113 } 1114 1115 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1116 { 1117 struct expander_device *ex = &dev->ex_dev; 1118 int i; 1119 1120 for (i = 0; i < ex->num_phys; i++) { 1121 struct ex_phy *phy = &ex->ex_phy[i]; 1122 1123 if (phy->phy_state == PHY_VACANT || 1124 phy->phy_state == PHY_NOT_PRESENT) 1125 continue; 1126 1127 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1128 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1129 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1130 1131 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1132 1133 return 1; 1134 } 1135 } 1136 return 0; 1137 } 1138 1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1140 { 1141 struct expander_device *ex = &dev->ex_dev; 1142 struct domain_device *child; 1143 u8 sub_addr[8] = {0, }; 1144 1145 list_for_each_entry(child, &ex->children, siblings) { 1146 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1147 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1148 continue; 1149 if (sub_addr[0] == 0) { 1150 sas_find_sub_addr(child, sub_addr); 1151 continue; 1152 } else { 1153 u8 s2[8]; 1154 1155 if (sas_find_sub_addr(child, s2) && 1156 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1157 1158 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1159 "diverges from subtractive " 1160 "boundary %016llx\n", 1161 SAS_ADDR(dev->sas_addr), 1162 SAS_ADDR(child->sas_addr), 1163 SAS_ADDR(s2), 1164 SAS_ADDR(sub_addr)); 1165 1166 sas_ex_disable_port(child, s2); 1167 } 1168 } 1169 } 1170 return 0; 1171 } 1172 /** 1173 * sas_ex_discover_devices -- discover devices attached to this expander 1174 * dev: pointer to the expander domain device 1175 * single: if you want to do a single phy, else set to -1; 1176 * 1177 * Configure this expander for use with its devices and register the 1178 * devices of this expander. 1179 */ 1180 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1181 { 1182 struct expander_device *ex = &dev->ex_dev; 1183 int i = 0, end = ex->num_phys; 1184 int res = 0; 1185 1186 if (0 <= single && single < end) { 1187 i = single; 1188 end = i+1; 1189 } 1190 1191 for ( ; i < end; i++) { 1192 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1193 1194 if (ex_phy->phy_state == PHY_VACANT || 1195 ex_phy->phy_state == PHY_NOT_PRESENT || 1196 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1197 continue; 1198 1199 switch (ex_phy->linkrate) { 1200 case SAS_PHY_DISABLED: 1201 case SAS_PHY_RESET_PROBLEM: 1202 case SAS_SATA_PORT_SELECTOR: 1203 continue; 1204 default: 1205 res = sas_ex_discover_dev(dev, i); 1206 if (res) 1207 break; 1208 continue; 1209 } 1210 } 1211 1212 if (!res) 1213 sas_check_level_subtractive_boundary(dev); 1214 1215 return res; 1216 } 1217 1218 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1219 { 1220 struct expander_device *ex = &dev->ex_dev; 1221 int i; 1222 u8 *sub_sas_addr = NULL; 1223 1224 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1225 return 0; 1226 1227 for (i = 0; i < ex->num_phys; i++) { 1228 struct ex_phy *phy = &ex->ex_phy[i]; 1229 1230 if (phy->phy_state == PHY_VACANT || 1231 phy->phy_state == PHY_NOT_PRESENT) 1232 continue; 1233 1234 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1235 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1236 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1237 1238 if (!sub_sas_addr) 1239 sub_sas_addr = &phy->attached_sas_addr[0]; 1240 else if (SAS_ADDR(sub_sas_addr) != 1241 SAS_ADDR(phy->attached_sas_addr)) { 1242 1243 SAS_DPRINTK("ex %016llx phy 0x%x " 1244 "diverges(%016llx) on subtractive " 1245 "boundary(%016llx). Disabled\n", 1246 SAS_ADDR(dev->sas_addr), i, 1247 SAS_ADDR(phy->attached_sas_addr), 1248 SAS_ADDR(sub_sas_addr)); 1249 sas_ex_disable_phy(dev, i); 1250 } 1251 } 1252 } 1253 return 0; 1254 } 1255 1256 static void sas_print_parent_topology_bug(struct domain_device *child, 1257 struct ex_phy *parent_phy, 1258 struct ex_phy *child_phy) 1259 { 1260 static const char *ex_type[] = { 1261 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1262 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1263 }; 1264 struct domain_device *parent = child->parent; 1265 1266 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " 1267 "phy 0x%x has %c:%c routing link!\n", 1268 1269 ex_type[parent->dev_type], 1270 SAS_ADDR(parent->sas_addr), 1271 parent_phy->phy_id, 1272 1273 ex_type[child->dev_type], 1274 SAS_ADDR(child->sas_addr), 1275 child_phy->phy_id, 1276 1277 sas_route_char(parent, parent_phy), 1278 sas_route_char(child, child_phy)); 1279 } 1280 1281 static int sas_check_eeds(struct domain_device *child, 1282 struct ex_phy *parent_phy, 1283 struct ex_phy *child_phy) 1284 { 1285 int res = 0; 1286 struct domain_device *parent = child->parent; 1287 1288 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1289 res = -ENODEV; 1290 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1291 "phy S:0x%x, while there is a fanout ex %016llx\n", 1292 SAS_ADDR(parent->sas_addr), 1293 parent_phy->phy_id, 1294 SAS_ADDR(child->sas_addr), 1295 child_phy->phy_id, 1296 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1297 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1298 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1299 SAS_ADDR_SIZE); 1300 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1301 SAS_ADDR_SIZE); 1302 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1303 SAS_ADDR(parent->sas_addr)) || 1304 (SAS_ADDR(parent->port->disc.eeds_a) == 1305 SAS_ADDR(child->sas_addr))) 1306 && 1307 ((SAS_ADDR(parent->port->disc.eeds_b) == 1308 SAS_ADDR(parent->sas_addr)) || 1309 (SAS_ADDR(parent->port->disc.eeds_b) == 1310 SAS_ADDR(child->sas_addr)))) 1311 ; 1312 else { 1313 res = -ENODEV; 1314 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1315 "phy 0x%x link forms a third EEDS!\n", 1316 SAS_ADDR(parent->sas_addr), 1317 parent_phy->phy_id, 1318 SAS_ADDR(child->sas_addr), 1319 child_phy->phy_id); 1320 } 1321 1322 return res; 1323 } 1324 1325 /* Here we spill over 80 columns. It is intentional. 1326 */ 1327 static int sas_check_parent_topology(struct domain_device *child) 1328 { 1329 struct expander_device *child_ex = &child->ex_dev; 1330 struct expander_device *parent_ex; 1331 int i; 1332 int res = 0; 1333 1334 if (!child->parent) 1335 return 0; 1336 1337 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1338 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1339 return 0; 1340 1341 parent_ex = &child->parent->ex_dev; 1342 1343 for (i = 0; i < parent_ex->num_phys; i++) { 1344 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1345 struct ex_phy *child_phy; 1346 1347 if (parent_phy->phy_state == PHY_VACANT || 1348 parent_phy->phy_state == PHY_NOT_PRESENT) 1349 continue; 1350 1351 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1352 continue; 1353 1354 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1355 1356 switch (child->parent->dev_type) { 1357 case SAS_EDGE_EXPANDER_DEVICE: 1358 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1359 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1360 child_phy->routing_attr != TABLE_ROUTING) { 1361 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1362 res = -ENODEV; 1363 } 1364 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1365 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1366 res = sas_check_eeds(child, parent_phy, child_phy); 1367 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1368 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1369 res = -ENODEV; 1370 } 1371 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1372 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1373 (child_phy->routing_attr == TABLE_ROUTING && 1374 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1375 /* All good */; 1376 } else { 1377 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1378 res = -ENODEV; 1379 } 1380 } 1381 break; 1382 case SAS_FANOUT_EXPANDER_DEVICE: 1383 if (parent_phy->routing_attr != TABLE_ROUTING || 1384 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1385 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1386 res = -ENODEV; 1387 } 1388 break; 1389 default: 1390 break; 1391 } 1392 } 1393 1394 return res; 1395 } 1396 1397 #define RRI_REQ_SIZE 16 1398 #define RRI_RESP_SIZE 44 1399 1400 static int sas_configure_present(struct domain_device *dev, int phy_id, 1401 u8 *sas_addr, int *index, int *present) 1402 { 1403 int i, res = 0; 1404 struct expander_device *ex = &dev->ex_dev; 1405 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1406 u8 *rri_req; 1407 u8 *rri_resp; 1408 1409 *present = 0; 1410 *index = 0; 1411 1412 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1413 if (!rri_req) 1414 return -ENOMEM; 1415 1416 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1417 if (!rri_resp) { 1418 kfree(rri_req); 1419 return -ENOMEM; 1420 } 1421 1422 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1423 rri_req[9] = phy_id; 1424 1425 for (i = 0; i < ex->max_route_indexes ; i++) { 1426 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1427 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1428 RRI_RESP_SIZE); 1429 if (res) 1430 goto out; 1431 res = rri_resp[2]; 1432 if (res == SMP_RESP_NO_INDEX) { 1433 SAS_DPRINTK("overflow of indexes: dev %016llx " 1434 "phy 0x%x index 0x%x\n", 1435 SAS_ADDR(dev->sas_addr), phy_id, i); 1436 goto out; 1437 } else if (res != SMP_RESP_FUNC_ACC) { 1438 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1439 "result 0x%x\n", __func__, 1440 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1441 goto out; 1442 } 1443 if (SAS_ADDR(sas_addr) != 0) { 1444 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1445 *index = i; 1446 if ((rri_resp[12] & 0x80) == 0x80) 1447 *present = 0; 1448 else 1449 *present = 1; 1450 goto out; 1451 } else if (SAS_ADDR(rri_resp+16) == 0) { 1452 *index = i; 1453 *present = 0; 1454 goto out; 1455 } 1456 } else if (SAS_ADDR(rri_resp+16) == 0 && 1457 phy->last_da_index < i) { 1458 phy->last_da_index = i; 1459 *index = i; 1460 *present = 0; 1461 goto out; 1462 } 1463 } 1464 res = -1; 1465 out: 1466 kfree(rri_req); 1467 kfree(rri_resp); 1468 return res; 1469 } 1470 1471 #define CRI_REQ_SIZE 44 1472 #define CRI_RESP_SIZE 8 1473 1474 static int sas_configure_set(struct domain_device *dev, int phy_id, 1475 u8 *sas_addr, int index, int include) 1476 { 1477 int res; 1478 u8 *cri_req; 1479 u8 *cri_resp; 1480 1481 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1482 if (!cri_req) 1483 return -ENOMEM; 1484 1485 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1486 if (!cri_resp) { 1487 kfree(cri_req); 1488 return -ENOMEM; 1489 } 1490 1491 cri_req[1] = SMP_CONF_ROUTE_INFO; 1492 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1493 cri_req[9] = phy_id; 1494 if (SAS_ADDR(sas_addr) == 0 || !include) 1495 cri_req[12] |= 0x80; 1496 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1497 1498 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1499 CRI_RESP_SIZE); 1500 if (res) 1501 goto out; 1502 res = cri_resp[2]; 1503 if (res == SMP_RESP_NO_INDEX) { 1504 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1505 "index 0x%x\n", 1506 SAS_ADDR(dev->sas_addr), phy_id, index); 1507 } 1508 out: 1509 kfree(cri_req); 1510 kfree(cri_resp); 1511 return res; 1512 } 1513 1514 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1515 u8 *sas_addr, int include) 1516 { 1517 int index; 1518 int present; 1519 int res; 1520 1521 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1522 if (res) 1523 return res; 1524 if (include ^ present) 1525 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1526 1527 return res; 1528 } 1529 1530 /** 1531 * sas_configure_parent -- configure routing table of parent 1532 * parent: parent expander 1533 * child: child expander 1534 * sas_addr: SAS port identifier of device directly attached to child 1535 */ 1536 static int sas_configure_parent(struct domain_device *parent, 1537 struct domain_device *child, 1538 u8 *sas_addr, int include) 1539 { 1540 struct expander_device *ex_parent = &parent->ex_dev; 1541 int res = 0; 1542 int i; 1543 1544 if (parent->parent) { 1545 res = sas_configure_parent(parent->parent, parent, sas_addr, 1546 include); 1547 if (res) 1548 return res; 1549 } 1550 1551 if (ex_parent->conf_route_table == 0) { 1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1553 SAS_ADDR(parent->sas_addr)); 1554 return 0; 1555 } 1556 1557 for (i = 0; i < ex_parent->num_phys; i++) { 1558 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1559 1560 if ((phy->routing_attr == TABLE_ROUTING) && 1561 (SAS_ADDR(phy->attached_sas_addr) == 1562 SAS_ADDR(child->sas_addr))) { 1563 res = sas_configure_phy(parent, i, sas_addr, include); 1564 if (res) 1565 return res; 1566 } 1567 } 1568 1569 return res; 1570 } 1571 1572 /** 1573 * sas_configure_routing -- configure routing 1574 * dev: expander device 1575 * sas_addr: port identifier of device directly attached to the expander device 1576 */ 1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1578 { 1579 if (dev->parent) 1580 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1581 return 0; 1582 } 1583 1584 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1585 { 1586 if (dev->parent) 1587 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1588 return 0; 1589 } 1590 1591 /** 1592 * sas_discover_expander -- expander discovery 1593 * @ex: pointer to expander domain device 1594 * 1595 * See comment in sas_discover_sata(). 1596 */ 1597 static int sas_discover_expander(struct domain_device *dev) 1598 { 1599 int res; 1600 1601 res = sas_notify_lldd_dev_found(dev); 1602 if (res) 1603 return res; 1604 1605 res = sas_ex_general(dev); 1606 if (res) 1607 goto out_err; 1608 res = sas_ex_manuf_info(dev); 1609 if (res) 1610 goto out_err; 1611 1612 res = sas_expander_discover(dev); 1613 if (res) { 1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1615 SAS_ADDR(dev->sas_addr), res); 1616 goto out_err; 1617 } 1618 1619 sas_check_ex_subtractive_boundary(dev); 1620 res = sas_check_parent_topology(dev); 1621 if (res) 1622 goto out_err; 1623 return 0; 1624 out_err: 1625 sas_notify_lldd_dev_gone(dev); 1626 return res; 1627 } 1628 1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1630 { 1631 int res = 0; 1632 struct domain_device *dev; 1633 1634 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1635 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1636 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1637 struct sas_expander_device *ex = 1638 rphy_to_expander_device(dev->rphy); 1639 1640 if (level == ex->level) 1641 res = sas_ex_discover_devices(dev, -1); 1642 else if (level > 0) 1643 res = sas_ex_discover_devices(port->port_dev, -1); 1644 1645 } 1646 } 1647 1648 return res; 1649 } 1650 1651 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1652 { 1653 int res; 1654 int level; 1655 1656 do { 1657 level = port->disc.max_level; 1658 res = sas_ex_level_discovery(port, level); 1659 mb(); 1660 } while (level < port->disc.max_level); 1661 1662 return res; 1663 } 1664 1665 int sas_discover_root_expander(struct domain_device *dev) 1666 { 1667 int res; 1668 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1669 1670 res = sas_rphy_add(dev->rphy); 1671 if (res) 1672 goto out_err; 1673 1674 ex->level = dev->port->disc.max_level; /* 0 */ 1675 res = sas_discover_expander(dev); 1676 if (res) 1677 goto out_err2; 1678 1679 sas_ex_bfs_disc(dev->port); 1680 1681 return res; 1682 1683 out_err2: 1684 sas_rphy_remove(dev->rphy); 1685 out_err: 1686 return res; 1687 } 1688 1689 /* ---------- Domain revalidation ---------- */ 1690 1691 static int sas_get_phy_discover(struct domain_device *dev, 1692 int phy_id, struct smp_resp *disc_resp) 1693 { 1694 int res; 1695 u8 *disc_req; 1696 1697 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1698 if (!disc_req) 1699 return -ENOMEM; 1700 1701 disc_req[1] = SMP_DISCOVER; 1702 disc_req[9] = phy_id; 1703 1704 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1705 disc_resp, DISCOVER_RESP_SIZE); 1706 if (res) 1707 goto out; 1708 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1709 res = disc_resp->result; 1710 goto out; 1711 } 1712 out: 1713 kfree(disc_req); 1714 return res; 1715 } 1716 1717 static int sas_get_phy_change_count(struct domain_device *dev, 1718 int phy_id, int *pcc) 1719 { 1720 int res; 1721 struct smp_resp *disc_resp; 1722 1723 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1724 if (!disc_resp) 1725 return -ENOMEM; 1726 1727 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1728 if (!res) 1729 *pcc = disc_resp->disc.change_count; 1730 1731 kfree(disc_resp); 1732 return res; 1733 } 1734 1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1736 u8 *sas_addr, enum sas_device_type *type) 1737 { 1738 int res; 1739 struct smp_resp *disc_resp; 1740 struct discover_resp *dr; 1741 1742 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1743 if (!disc_resp) 1744 return -ENOMEM; 1745 dr = &disc_resp->disc; 1746 1747 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1748 if (res == 0) { 1749 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1750 *type = to_dev_type(dr); 1751 if (*type == 0) 1752 memset(sas_addr, 0, 8); 1753 } 1754 kfree(disc_resp); 1755 return res; 1756 } 1757 1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1759 int from_phy, bool update) 1760 { 1761 struct expander_device *ex = &dev->ex_dev; 1762 int res = 0; 1763 int i; 1764 1765 for (i = from_phy; i < ex->num_phys; i++) { 1766 int phy_change_count = 0; 1767 1768 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1769 switch (res) { 1770 case SMP_RESP_PHY_VACANT: 1771 case SMP_RESP_NO_PHY: 1772 continue; 1773 case SMP_RESP_FUNC_ACC: 1774 break; 1775 default: 1776 return res; 1777 } 1778 1779 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1780 if (update) 1781 ex->ex_phy[i].phy_change_count = 1782 phy_change_count; 1783 *phy_id = i; 1784 return 0; 1785 } 1786 } 1787 return 0; 1788 } 1789 1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1791 { 1792 int res; 1793 u8 *rg_req; 1794 struct smp_resp *rg_resp; 1795 1796 rg_req = alloc_smp_req(RG_REQ_SIZE); 1797 if (!rg_req) 1798 return -ENOMEM; 1799 1800 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1801 if (!rg_resp) { 1802 kfree(rg_req); 1803 return -ENOMEM; 1804 } 1805 1806 rg_req[1] = SMP_REPORT_GENERAL; 1807 1808 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1809 RG_RESP_SIZE); 1810 if (res) 1811 goto out; 1812 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1813 res = rg_resp->result; 1814 goto out; 1815 } 1816 1817 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1818 out: 1819 kfree(rg_resp); 1820 kfree(rg_req); 1821 return res; 1822 } 1823 /** 1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1825 * @dev:domain device to be detect. 1826 * @src_dev: the device which originated BROADCAST(CHANGE). 1827 * 1828 * Add self-configuration expander support. Suppose two expander cascading, 1829 * when the first level expander is self-configuring, hotplug the disks in 1830 * second level expander, BROADCAST(CHANGE) will not only be originated 1831 * in the second level expander, but also be originated in the first level 1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1833 * expander changed count in two level expanders will all increment at least 1834 * once, but the phy which chang count has changed is the source device which 1835 * we concerned. 1836 */ 1837 1838 static int sas_find_bcast_dev(struct domain_device *dev, 1839 struct domain_device **src_dev) 1840 { 1841 struct expander_device *ex = &dev->ex_dev; 1842 int ex_change_count = -1; 1843 int phy_id = -1; 1844 int res; 1845 struct domain_device *ch; 1846 1847 res = sas_get_ex_change_count(dev, &ex_change_count); 1848 if (res) 1849 goto out; 1850 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1851 /* Just detect if this expander phys phy change count changed, 1852 * in order to determine if this expander originate BROADCAST, 1853 * and do not update phy change count field in our structure. 1854 */ 1855 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1856 if (phy_id != -1) { 1857 *src_dev = dev; 1858 ex->ex_change_count = ex_change_count; 1859 SAS_DPRINTK("Expander phy change count has changed\n"); 1860 return res; 1861 } else 1862 SAS_DPRINTK("Expander phys DID NOT change\n"); 1863 } 1864 list_for_each_entry(ch, &ex->children, siblings) { 1865 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1866 res = sas_find_bcast_dev(ch, src_dev); 1867 if (*src_dev) 1868 return res; 1869 } 1870 } 1871 out: 1872 return res; 1873 } 1874 1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1876 { 1877 struct expander_device *ex = &dev->ex_dev; 1878 struct domain_device *child, *n; 1879 1880 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1881 set_bit(SAS_DEV_GONE, &child->state); 1882 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1883 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1884 sas_unregister_ex_tree(port, child); 1885 else 1886 sas_unregister_dev(port, child); 1887 } 1888 sas_unregister_dev(port, dev); 1889 } 1890 1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1892 int phy_id, bool last) 1893 { 1894 struct expander_device *ex_dev = &parent->ex_dev; 1895 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1896 struct domain_device *child, *n, *found = NULL; 1897 if (last) { 1898 list_for_each_entry_safe(child, n, 1899 &ex_dev->children, siblings) { 1900 if (SAS_ADDR(child->sas_addr) == 1901 SAS_ADDR(phy->attached_sas_addr)) { 1902 set_bit(SAS_DEV_GONE, &child->state); 1903 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1904 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1905 sas_unregister_ex_tree(parent->port, child); 1906 else 1907 sas_unregister_dev(parent->port, child); 1908 found = child; 1909 break; 1910 } 1911 } 1912 sas_disable_routing(parent, phy->attached_sas_addr); 1913 } 1914 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1915 if (phy->port) { 1916 sas_port_delete_phy(phy->port, phy->phy); 1917 sas_device_set_phy(found, phy->port); 1918 if (phy->port->num_phys == 0) 1919 list_add_tail(&phy->port->del_list, 1920 &parent->port->sas_port_del_list); 1921 phy->port = NULL; 1922 } 1923 } 1924 1925 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1926 const int level) 1927 { 1928 struct expander_device *ex_root = &root->ex_dev; 1929 struct domain_device *child; 1930 int res = 0; 1931 1932 list_for_each_entry(child, &ex_root->children, siblings) { 1933 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1934 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1935 struct sas_expander_device *ex = 1936 rphy_to_expander_device(child->rphy); 1937 1938 if (level > ex->level) 1939 res = sas_discover_bfs_by_root_level(child, 1940 level); 1941 else if (level == ex->level) 1942 res = sas_ex_discover_devices(child, -1); 1943 } 1944 } 1945 return res; 1946 } 1947 1948 static int sas_discover_bfs_by_root(struct domain_device *dev) 1949 { 1950 int res; 1951 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1952 int level = ex->level+1; 1953 1954 res = sas_ex_discover_devices(dev, -1); 1955 if (res) 1956 goto out; 1957 do { 1958 res = sas_discover_bfs_by_root_level(dev, level); 1959 mb(); 1960 level += 1; 1961 } while (level <= dev->port->disc.max_level); 1962 out: 1963 return res; 1964 } 1965 1966 static int sas_discover_new(struct domain_device *dev, int phy_id) 1967 { 1968 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1969 struct domain_device *child; 1970 int res; 1971 1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1973 SAS_ADDR(dev->sas_addr), phy_id); 1974 res = sas_ex_phy_discover(dev, phy_id); 1975 if (res) 1976 return res; 1977 1978 if (sas_ex_join_wide_port(dev, phy_id)) 1979 return 0; 1980 1981 res = sas_ex_discover_devices(dev, phy_id); 1982 if (res) 1983 return res; 1984 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1985 if (SAS_ADDR(child->sas_addr) == 1986 SAS_ADDR(ex_phy->attached_sas_addr)) { 1987 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1988 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1989 res = sas_discover_bfs_by_root(child); 1990 break; 1991 } 1992 } 1993 return res; 1994 } 1995 1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1997 { 1998 if (old == new) 1999 return true; 2000 2001 /* treat device directed resets as flutter, if we went 2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 2003 */ 2004 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 2005 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 2006 return true; 2007 2008 return false; 2009 } 2010 2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 2012 { 2013 struct expander_device *ex = &dev->ex_dev; 2014 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2015 enum sas_device_type type = SAS_PHY_UNUSED; 2016 u8 sas_addr[8]; 2017 int res; 2018 2019 memset(sas_addr, 0, 8); 2020 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2021 switch (res) { 2022 case SMP_RESP_NO_PHY: 2023 phy->phy_state = PHY_NOT_PRESENT; 2024 sas_unregister_devs_sas_addr(dev, phy_id, last); 2025 return res; 2026 case SMP_RESP_PHY_VACANT: 2027 phy->phy_state = PHY_VACANT; 2028 sas_unregister_devs_sas_addr(dev, phy_id, last); 2029 return res; 2030 case SMP_RESP_FUNC_ACC: 2031 break; 2032 case -ECOMM: 2033 break; 2034 default: 2035 return res; 2036 } 2037 2038 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2039 phy->phy_state = PHY_EMPTY; 2040 sas_unregister_devs_sas_addr(dev, phy_id, last); 2041 return res; 2042 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2043 dev_type_flutter(type, phy->attached_dev_type)) { 2044 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2045 char *action = ""; 2046 2047 sas_ex_phy_discover(dev, phy_id); 2048 2049 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2050 action = ", needs recovery"; 2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", 2052 SAS_ADDR(dev->sas_addr), phy_id, action); 2053 return res; 2054 } 2055 2056 /* delete the old link */ 2057 if (SAS_ADDR(phy->attached_sas_addr) && 2058 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { 2059 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", 2060 SAS_ADDR(dev->sas_addr), phy_id, 2061 SAS_ADDR(phy->attached_sas_addr)); 2062 sas_unregister_devs_sas_addr(dev, phy_id, last); 2063 } 2064 2065 return sas_discover_new(dev, phy_id); 2066 } 2067 2068 /** 2069 * sas_rediscover - revalidate the domain. 2070 * @dev:domain device to be detect. 2071 * @phy_id: the phy id will be detected. 2072 * 2073 * NOTE: this process _must_ quit (return) as soon as any connection 2074 * errors are encountered. Connection recovery is done elsewhere. 2075 * Discover process only interrogates devices in order to discover the 2076 * domain.For plugging out, we un-register the device only when it is 2077 * the last phy in the port, for other phys in this port, we just delete it 2078 * from the port.For inserting, we do discovery when it is the 2079 * first phy,for other phys in this port, we add it to the port to 2080 * forming the wide-port. 2081 */ 2082 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2083 { 2084 struct expander_device *ex = &dev->ex_dev; 2085 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2086 int res = 0; 2087 int i; 2088 bool last = true; /* is this the last phy of the port */ 2089 2090 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2091 SAS_ADDR(dev->sas_addr), phy_id); 2092 2093 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2094 for (i = 0; i < ex->num_phys; i++) { 2095 struct ex_phy *phy = &ex->ex_phy[i]; 2096 2097 if (i == phy_id) 2098 continue; 2099 if (SAS_ADDR(phy->attached_sas_addr) == 2100 SAS_ADDR(changed_phy->attached_sas_addr)) { 2101 SAS_DPRINTK("phy%d part of wide port with " 2102 "phy%d\n", phy_id, i); 2103 last = false; 2104 break; 2105 } 2106 } 2107 res = sas_rediscover_dev(dev, phy_id, last); 2108 } else 2109 res = sas_discover_new(dev, phy_id); 2110 return res; 2111 } 2112 2113 /** 2114 * sas_revalidate_domain -- revalidate the domain 2115 * @port: port to the domain of interest 2116 * 2117 * NOTE: this process _must_ quit (return) as soon as any connection 2118 * errors are encountered. Connection recovery is done elsewhere. 2119 * Discover process only interrogates devices in order to discover the 2120 * domain. 2121 */ 2122 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2123 { 2124 int res; 2125 struct domain_device *dev = NULL; 2126 2127 res = sas_find_bcast_dev(port_dev, &dev); 2128 if (res == 0 && dev) { 2129 struct expander_device *ex = &dev->ex_dev; 2130 int i = 0, phy_id; 2131 2132 do { 2133 phy_id = -1; 2134 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2135 if (phy_id == -1) 2136 break; 2137 res = sas_rediscover(dev, phy_id); 2138 i = phy_id + 1; 2139 } while (i < ex->num_phys); 2140 } 2141 return res; 2142 } 2143 2144 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2145 struct sas_rphy *rphy) 2146 { 2147 struct domain_device *dev; 2148 unsigned int rcvlen = 0; 2149 int ret = -EINVAL; 2150 2151 /* no rphy means no smp target support (ie aic94xx host) */ 2152 if (!rphy) 2153 return sas_smp_host_handler(job, shost); 2154 2155 switch (rphy->identify.device_type) { 2156 case SAS_EDGE_EXPANDER_DEVICE: 2157 case SAS_FANOUT_EXPANDER_DEVICE: 2158 break; 2159 default: 2160 printk("%s: can we send a smp request to a device?\n", 2161 __func__); 2162 goto out; 2163 } 2164 2165 dev = sas_find_dev_by_rphy(rphy); 2166 if (!dev) { 2167 printk("%s: fail to find a domain_device?\n", __func__); 2168 goto out; 2169 } 2170 2171 /* do we need to support multiple segments? */ 2172 if (job->request_payload.sg_cnt > 1 || 2173 job->reply_payload.sg_cnt > 1) { 2174 printk("%s: multiple segments req %u, rsp %u\n", 2175 __func__, job->request_payload.payload_len, 2176 job->reply_payload.payload_len); 2177 goto out; 2178 } 2179 2180 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2181 job->reply_payload.sg_list); 2182 if (ret >= 0) { 2183 /* bsg_job_done() requires the length received */ 2184 rcvlen = job->reply_payload.payload_len - ret; 2185 ret = 0; 2186 } 2187 2188 out: 2189 bsg_job_done(job, ret, rcvlen); 2190 } 2191