1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 28 #include "sas_internal.h" 29 30 #include <scsi/scsi_transport.h> 31 #include <scsi/scsi_transport_sas.h> 32 #include "../scsi_sas_internal.h" 33 34 static int sas_discover_expander(struct domain_device *dev); 35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 36 static int sas_configure_phy(struct domain_device *dev, int phy_id, 37 u8 *sas_addr, int include); 38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 39 40 /* ---------- SMP task management ---------- */ 41 42 static void smp_task_timedout(unsigned long _task) 43 { 44 struct sas_task *task = (void *) _task; 45 unsigned long flags; 46 47 spin_lock_irqsave(&task->task_state_lock, flags); 48 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 49 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 50 spin_unlock_irqrestore(&task->task_state_lock, flags); 51 52 complete(&task->completion); 53 } 54 55 static void smp_task_done(struct sas_task *task) 56 { 57 if (!del_timer(&task->timer)) 58 return; 59 complete(&task->completion); 60 } 61 62 /* Give it some long enough timeout. In seconds. */ 63 #define SMP_TIMEOUT 10 64 65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 66 void *resp, int resp_size) 67 { 68 int res, retry; 69 struct sas_task *task = NULL; 70 struct sas_internal *i = 71 to_sas_internal(dev->port->ha->core.shost->transportt); 72 73 for (retry = 0; retry < 3; retry++) { 74 task = sas_alloc_task(GFP_KERNEL); 75 if (!task) 76 return -ENOMEM; 77 78 task->dev = dev; 79 task->task_proto = dev->tproto; 80 sg_init_one(&task->smp_task.smp_req, req, req_size); 81 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 82 83 task->task_done = smp_task_done; 84 85 task->timer.data = (unsigned long) task; 86 task->timer.function = smp_task_timedout; 87 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 88 add_timer(&task->timer); 89 90 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 91 92 if (res) { 93 del_timer(&task->timer); 94 SAS_DPRINTK("executing SMP task failed:%d\n", res); 95 goto ex_err; 96 } 97 98 wait_for_completion(&task->completion); 99 res = -ECOMM; 100 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 101 SAS_DPRINTK("smp task timed out or aborted\n"); 102 i->dft->lldd_abort_task(task); 103 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 104 SAS_DPRINTK("SMP task aborted and not done\n"); 105 goto ex_err; 106 } 107 } 108 if (task->task_status.resp == SAS_TASK_COMPLETE && 109 task->task_status.stat == SAM_GOOD) { 110 res = 0; 111 break; 112 } if (task->task_status.resp == SAS_TASK_COMPLETE && 113 task->task_status.stat == SAS_DATA_UNDERRUN) { 114 /* no error, but return the number of bytes of 115 * underrun */ 116 res = task->task_status.residual; 117 break; 118 } if (task->task_status.resp == SAS_TASK_COMPLETE && 119 task->task_status.stat == SAS_DATA_OVERRUN) { 120 res = -EMSGSIZE; 121 break; 122 } else { 123 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 124 "status 0x%x\n", __func__, 125 SAS_ADDR(dev->sas_addr), 126 task->task_status.resp, 127 task->task_status.stat); 128 sas_free_task(task); 129 task = NULL; 130 } 131 } 132 ex_err: 133 BUG_ON(retry == 3 && task != NULL); 134 if (task != NULL) { 135 sas_free_task(task); 136 } 137 return res; 138 } 139 140 /* ---------- Allocations ---------- */ 141 142 static inline void *alloc_smp_req(int size) 143 { 144 u8 *p = kzalloc(size, GFP_KERNEL); 145 if (p) 146 p[0] = SMP_REQUEST; 147 return p; 148 } 149 150 static inline void *alloc_smp_resp(int size) 151 { 152 return kzalloc(size, GFP_KERNEL); 153 } 154 155 /* ---------- Expander configuration ---------- */ 156 157 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 158 void *disc_resp) 159 { 160 struct expander_device *ex = &dev->ex_dev; 161 struct ex_phy *phy = &ex->ex_phy[phy_id]; 162 struct smp_resp *resp = disc_resp; 163 struct discover_resp *dr = &resp->disc; 164 struct sas_rphy *rphy = dev->rphy; 165 int rediscover = (phy->phy != NULL); 166 167 if (!rediscover) { 168 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 169 170 /* FIXME: error_handling */ 171 BUG_ON(!phy->phy); 172 } 173 174 switch (resp->result) { 175 case SMP_RESP_PHY_VACANT: 176 phy->phy_state = PHY_VACANT; 177 return; 178 default: 179 phy->phy_state = PHY_NOT_PRESENT; 180 return; 181 case SMP_RESP_FUNC_ACC: 182 phy->phy_state = PHY_EMPTY; /* do not know yet */ 183 break; 184 } 185 186 phy->phy_id = phy_id; 187 phy->attached_dev_type = dr->attached_dev_type; 188 phy->linkrate = dr->linkrate; 189 phy->attached_sata_host = dr->attached_sata_host; 190 phy->attached_sata_dev = dr->attached_sata_dev; 191 phy->attached_sata_ps = dr->attached_sata_ps; 192 phy->attached_iproto = dr->iproto << 1; 193 phy->attached_tproto = dr->tproto << 1; 194 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 195 phy->attached_phy_id = dr->attached_phy_id; 196 phy->phy_change_count = dr->change_count; 197 phy->routing_attr = dr->routing_attr; 198 phy->virtual = dr->virtual; 199 phy->last_da_index = -1; 200 201 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 202 phy->phy->identify.target_port_protocols = phy->attached_tproto; 203 phy->phy->identify.phy_identifier = phy_id; 204 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 205 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 206 phy->phy->minimum_linkrate = dr->pmin_linkrate; 207 phy->phy->maximum_linkrate = dr->pmax_linkrate; 208 phy->phy->negotiated_linkrate = phy->linkrate; 209 210 if (!rediscover) 211 sas_phy_add(phy->phy); 212 213 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 214 SAS_ADDR(dev->sas_addr), phy->phy_id, 215 phy->routing_attr == TABLE_ROUTING ? 'T' : 216 phy->routing_attr == DIRECT_ROUTING ? 'D' : 217 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 218 SAS_ADDR(phy->attached_sas_addr)); 219 220 return; 221 } 222 223 #define DISCOVER_REQ_SIZE 16 224 #define DISCOVER_RESP_SIZE 56 225 226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 227 u8 *disc_resp, int single) 228 { 229 int i, res; 230 231 disc_req[9] = single; 232 for (i = 1 ; i < 3; i++) { 233 struct discover_resp *dr; 234 235 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 236 disc_resp, DISCOVER_RESP_SIZE); 237 if (res) 238 return res; 239 /* This is detecting a failure to transmit inital 240 * dev to host FIS as described in section G.5 of 241 * sas-2 r 04b */ 242 dr = &((struct smp_resp *)disc_resp)->disc; 243 if (!(dr->attached_dev_type == 0 && 244 dr->attached_sata_dev)) 245 break; 246 /* In order to generate the dev to host FIS, we 247 * send a link reset to the expander port */ 248 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 249 /* Wait for the reset to trigger the negotiation */ 250 msleep(500); 251 } 252 sas_set_ex_phy(dev, single, disc_resp); 253 return 0; 254 } 255 256 static int sas_ex_phy_discover(struct domain_device *dev, int single) 257 { 258 struct expander_device *ex = &dev->ex_dev; 259 int res = 0; 260 u8 *disc_req; 261 u8 *disc_resp; 262 263 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 264 if (!disc_req) 265 return -ENOMEM; 266 267 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 268 if (!disc_resp) { 269 kfree(disc_req); 270 return -ENOMEM; 271 } 272 273 disc_req[1] = SMP_DISCOVER; 274 275 if (0 <= single && single < ex->num_phys) { 276 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 277 } else { 278 int i; 279 280 for (i = 0; i < ex->num_phys; i++) { 281 res = sas_ex_phy_discover_helper(dev, disc_req, 282 disc_resp, i); 283 if (res) 284 goto out_err; 285 } 286 } 287 out_err: 288 kfree(disc_resp); 289 kfree(disc_req); 290 return res; 291 } 292 293 static int sas_expander_discover(struct domain_device *dev) 294 { 295 struct expander_device *ex = &dev->ex_dev; 296 int res = -ENOMEM; 297 298 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 299 if (!ex->ex_phy) 300 return -ENOMEM; 301 302 res = sas_ex_phy_discover(dev, -1); 303 if (res) 304 goto out_err; 305 306 return 0; 307 out_err: 308 kfree(ex->ex_phy); 309 ex->ex_phy = NULL; 310 return res; 311 } 312 313 #define MAX_EXPANDER_PHYS 128 314 315 static void ex_assign_report_general(struct domain_device *dev, 316 struct smp_resp *resp) 317 { 318 struct report_general_resp *rg = &resp->rg; 319 320 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 321 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 322 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 323 dev->ex_dev.conf_route_table = rg->conf_route_table; 324 dev->ex_dev.configuring = rg->configuring; 325 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 326 } 327 328 #define RG_REQ_SIZE 8 329 #define RG_RESP_SIZE 32 330 331 static int sas_ex_general(struct domain_device *dev) 332 { 333 u8 *rg_req; 334 struct smp_resp *rg_resp; 335 int res; 336 int i; 337 338 rg_req = alloc_smp_req(RG_REQ_SIZE); 339 if (!rg_req) 340 return -ENOMEM; 341 342 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 343 if (!rg_resp) { 344 kfree(rg_req); 345 return -ENOMEM; 346 } 347 348 rg_req[1] = SMP_REPORT_GENERAL; 349 350 for (i = 0; i < 5; i++) { 351 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 352 RG_RESP_SIZE); 353 354 if (res) { 355 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 356 SAS_ADDR(dev->sas_addr), res); 357 goto out; 358 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 359 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 360 SAS_ADDR(dev->sas_addr), rg_resp->result); 361 res = rg_resp->result; 362 goto out; 363 } 364 365 ex_assign_report_general(dev, rg_resp); 366 367 if (dev->ex_dev.configuring) { 368 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 369 SAS_ADDR(dev->sas_addr)); 370 schedule_timeout_interruptible(5*HZ); 371 } else 372 break; 373 } 374 out: 375 kfree(rg_req); 376 kfree(rg_resp); 377 return res; 378 } 379 380 static void ex_assign_manuf_info(struct domain_device *dev, void 381 *_mi_resp) 382 { 383 u8 *mi_resp = _mi_resp; 384 struct sas_rphy *rphy = dev->rphy; 385 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 386 387 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 388 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 389 memcpy(edev->product_rev, mi_resp + 36, 390 SAS_EXPANDER_PRODUCT_REV_LEN); 391 392 if (mi_resp[8] & 1) { 393 memcpy(edev->component_vendor_id, mi_resp + 40, 394 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 395 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 396 edev->component_revision_id = mi_resp[50]; 397 } 398 } 399 400 #define MI_REQ_SIZE 8 401 #define MI_RESP_SIZE 64 402 403 static int sas_ex_manuf_info(struct domain_device *dev) 404 { 405 u8 *mi_req; 406 u8 *mi_resp; 407 int res; 408 409 mi_req = alloc_smp_req(MI_REQ_SIZE); 410 if (!mi_req) 411 return -ENOMEM; 412 413 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 414 if (!mi_resp) { 415 kfree(mi_req); 416 return -ENOMEM; 417 } 418 419 mi_req[1] = SMP_REPORT_MANUF_INFO; 420 421 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 422 if (res) { 423 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 424 SAS_ADDR(dev->sas_addr), res); 425 goto out; 426 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 427 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 428 SAS_ADDR(dev->sas_addr), mi_resp[2]); 429 goto out; 430 } 431 432 ex_assign_manuf_info(dev, mi_resp); 433 out: 434 kfree(mi_req); 435 kfree(mi_resp); 436 return res; 437 } 438 439 #define PC_REQ_SIZE 44 440 #define PC_RESP_SIZE 8 441 442 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 443 enum phy_func phy_func, 444 struct sas_phy_linkrates *rates) 445 { 446 u8 *pc_req; 447 u8 *pc_resp; 448 int res; 449 450 pc_req = alloc_smp_req(PC_REQ_SIZE); 451 if (!pc_req) 452 return -ENOMEM; 453 454 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 455 if (!pc_resp) { 456 kfree(pc_req); 457 return -ENOMEM; 458 } 459 460 pc_req[1] = SMP_PHY_CONTROL; 461 pc_req[9] = phy_id; 462 pc_req[10]= phy_func; 463 if (rates) { 464 pc_req[32] = rates->minimum_linkrate << 4; 465 pc_req[33] = rates->maximum_linkrate << 4; 466 } 467 468 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 469 470 kfree(pc_resp); 471 kfree(pc_req); 472 return res; 473 } 474 475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 476 { 477 struct expander_device *ex = &dev->ex_dev; 478 struct ex_phy *phy = &ex->ex_phy[phy_id]; 479 480 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 481 phy->linkrate = SAS_PHY_DISABLED; 482 } 483 484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 485 { 486 struct expander_device *ex = &dev->ex_dev; 487 int i; 488 489 for (i = 0; i < ex->num_phys; i++) { 490 struct ex_phy *phy = &ex->ex_phy[i]; 491 492 if (phy->phy_state == PHY_VACANT || 493 phy->phy_state == PHY_NOT_PRESENT) 494 continue; 495 496 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 497 sas_ex_disable_phy(dev, i); 498 } 499 } 500 501 static int sas_dev_present_in_domain(struct asd_sas_port *port, 502 u8 *sas_addr) 503 { 504 struct domain_device *dev; 505 506 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 507 return 1; 508 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 509 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 510 return 1; 511 } 512 return 0; 513 } 514 515 #define RPEL_REQ_SIZE 16 516 #define RPEL_RESP_SIZE 32 517 int sas_smp_get_phy_events(struct sas_phy *phy) 518 { 519 int res; 520 u8 *req; 521 u8 *resp; 522 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 523 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 524 525 req = alloc_smp_req(RPEL_REQ_SIZE); 526 if (!req) 527 return -ENOMEM; 528 529 resp = alloc_smp_resp(RPEL_RESP_SIZE); 530 if (!resp) { 531 kfree(req); 532 return -ENOMEM; 533 } 534 535 req[1] = SMP_REPORT_PHY_ERR_LOG; 536 req[9] = phy->number; 537 538 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 539 resp, RPEL_RESP_SIZE); 540 541 if (!res) 542 goto out; 543 544 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 545 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 546 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 547 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 548 549 out: 550 kfree(resp); 551 return res; 552 553 } 554 555 #ifdef CONFIG_SCSI_SAS_ATA 556 557 #define RPS_REQ_SIZE 16 558 #define RPS_RESP_SIZE 60 559 560 static int sas_get_report_phy_sata(struct domain_device *dev, 561 int phy_id, 562 struct smp_resp *rps_resp) 563 { 564 int res; 565 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 566 u8 *resp = (u8 *)rps_resp; 567 568 if (!rps_req) 569 return -ENOMEM; 570 571 rps_req[1] = SMP_REPORT_PHY_SATA; 572 rps_req[9] = phy_id; 573 574 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 575 rps_resp, RPS_RESP_SIZE); 576 577 /* 0x34 is the FIS type for the D2H fis. There's a potential 578 * standards cockup here. sas-2 explicitly specifies the FIS 579 * should be encoded so that FIS type is in resp[24]. 580 * However, some expanders endian reverse this. Undo the 581 * reversal here */ 582 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 583 int i; 584 585 for (i = 0; i < 5; i++) { 586 int j = 24 + (i*4); 587 u8 a, b; 588 a = resp[j + 0]; 589 b = resp[j + 1]; 590 resp[j + 0] = resp[j + 3]; 591 resp[j + 1] = resp[j + 2]; 592 resp[j + 2] = b; 593 resp[j + 3] = a; 594 } 595 } 596 597 kfree(rps_req); 598 return res; 599 } 600 #endif 601 602 static void sas_ex_get_linkrate(struct domain_device *parent, 603 struct domain_device *child, 604 struct ex_phy *parent_phy) 605 { 606 struct expander_device *parent_ex = &parent->ex_dev; 607 struct sas_port *port; 608 int i; 609 610 child->pathways = 0; 611 612 port = parent_phy->port; 613 614 for (i = 0; i < parent_ex->num_phys; i++) { 615 struct ex_phy *phy = &parent_ex->ex_phy[i]; 616 617 if (phy->phy_state == PHY_VACANT || 618 phy->phy_state == PHY_NOT_PRESENT) 619 continue; 620 621 if (SAS_ADDR(phy->attached_sas_addr) == 622 SAS_ADDR(child->sas_addr)) { 623 624 child->min_linkrate = min(parent->min_linkrate, 625 phy->linkrate); 626 child->max_linkrate = max(parent->max_linkrate, 627 phy->linkrate); 628 child->pathways++; 629 sas_port_add_phy(port, phy->phy); 630 } 631 } 632 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 633 child->pathways = min(child->pathways, parent->pathways); 634 } 635 636 static struct domain_device *sas_ex_discover_end_dev( 637 struct domain_device *parent, int phy_id) 638 { 639 struct expander_device *parent_ex = &parent->ex_dev; 640 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 641 struct domain_device *child = NULL; 642 struct sas_rphy *rphy; 643 int res; 644 645 if (phy->attached_sata_host || phy->attached_sata_ps) 646 return NULL; 647 648 child = kzalloc(sizeof(*child), GFP_KERNEL); 649 if (!child) 650 return NULL; 651 652 child->parent = parent; 653 child->port = parent->port; 654 child->iproto = phy->attached_iproto; 655 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 656 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 657 if (!phy->port) { 658 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 659 if (unlikely(!phy->port)) 660 goto out_err; 661 if (unlikely(sas_port_add(phy->port) != 0)) { 662 sas_port_free(phy->port); 663 goto out_err; 664 } 665 } 666 sas_ex_get_linkrate(parent, child, phy); 667 668 #ifdef CONFIG_SCSI_SAS_ATA 669 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 670 child->dev_type = SATA_DEV; 671 if (phy->attached_tproto & SAS_PROTOCOL_STP) 672 child->tproto = phy->attached_tproto; 673 if (phy->attached_sata_dev) 674 child->tproto |= SATA_DEV; 675 res = sas_get_report_phy_sata(parent, phy_id, 676 &child->sata_dev.rps_resp); 677 if (res) { 678 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 679 "0x%x\n", SAS_ADDR(parent->sas_addr), 680 phy_id, res); 681 goto out_free; 682 } 683 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 684 sizeof(struct dev_to_host_fis)); 685 686 rphy = sas_end_device_alloc(phy->port); 687 if (unlikely(!rphy)) 688 goto out_free; 689 690 sas_init_dev(child); 691 692 child->rphy = rphy; 693 694 spin_lock_irq(&parent->port->dev_list_lock); 695 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 696 spin_unlock_irq(&parent->port->dev_list_lock); 697 698 res = sas_discover_sata(child); 699 if (res) { 700 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 701 "%016llx:0x%x returned 0x%x\n", 702 SAS_ADDR(child->sas_addr), 703 SAS_ADDR(parent->sas_addr), phy_id, res); 704 goto out_list_del; 705 } 706 } else 707 #endif 708 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 709 child->dev_type = SAS_END_DEV; 710 rphy = sas_end_device_alloc(phy->port); 711 /* FIXME: error handling */ 712 if (unlikely(!rphy)) 713 goto out_free; 714 child->tproto = phy->attached_tproto; 715 sas_init_dev(child); 716 717 child->rphy = rphy; 718 sas_fill_in_rphy(child, rphy); 719 720 spin_lock_irq(&parent->port->dev_list_lock); 721 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 722 spin_unlock_irq(&parent->port->dev_list_lock); 723 724 res = sas_discover_end_dev(child); 725 if (res) { 726 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 727 "at %016llx:0x%x returned 0x%x\n", 728 SAS_ADDR(child->sas_addr), 729 SAS_ADDR(parent->sas_addr), phy_id, res); 730 goto out_list_del; 731 } 732 } else { 733 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 734 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 735 phy_id); 736 goto out_free; 737 } 738 739 list_add_tail(&child->siblings, &parent_ex->children); 740 return child; 741 742 out_list_del: 743 sas_rphy_free(child->rphy); 744 child->rphy = NULL; 745 list_del(&child->dev_list_node); 746 out_free: 747 sas_port_delete(phy->port); 748 out_err: 749 phy->port = NULL; 750 kfree(child); 751 return NULL; 752 } 753 754 /* See if this phy is part of a wide port */ 755 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 756 { 757 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 758 int i; 759 760 for (i = 0; i < parent->ex_dev.num_phys; i++) { 761 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 762 763 if (ephy == phy) 764 continue; 765 766 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 767 SAS_ADDR_SIZE) && ephy->port) { 768 sas_port_add_phy(ephy->port, phy->phy); 769 phy->phy_state = PHY_DEVICE_DISCOVERED; 770 return 0; 771 } 772 } 773 774 return -ENODEV; 775 } 776 777 static struct domain_device *sas_ex_discover_expander( 778 struct domain_device *parent, int phy_id) 779 { 780 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 781 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 782 struct domain_device *child = NULL; 783 struct sas_rphy *rphy; 784 struct sas_expander_device *edev; 785 struct asd_sas_port *port; 786 int res; 787 788 if (phy->routing_attr == DIRECT_ROUTING) { 789 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 790 "allowed\n", 791 SAS_ADDR(parent->sas_addr), phy_id, 792 SAS_ADDR(phy->attached_sas_addr), 793 phy->attached_phy_id); 794 return NULL; 795 } 796 child = kzalloc(sizeof(*child), GFP_KERNEL); 797 if (!child) 798 return NULL; 799 800 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 801 /* FIXME: better error handling */ 802 BUG_ON(sas_port_add(phy->port) != 0); 803 804 805 switch (phy->attached_dev_type) { 806 case EDGE_DEV: 807 rphy = sas_expander_alloc(phy->port, 808 SAS_EDGE_EXPANDER_DEVICE); 809 break; 810 case FANOUT_DEV: 811 rphy = sas_expander_alloc(phy->port, 812 SAS_FANOUT_EXPANDER_DEVICE); 813 break; 814 default: 815 rphy = NULL; /* shut gcc up */ 816 BUG(); 817 } 818 port = parent->port; 819 child->rphy = rphy; 820 edev = rphy_to_expander_device(rphy); 821 child->dev_type = phy->attached_dev_type; 822 child->parent = parent; 823 child->port = port; 824 child->iproto = phy->attached_iproto; 825 child->tproto = phy->attached_tproto; 826 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 827 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 828 sas_ex_get_linkrate(parent, child, phy); 829 edev->level = parent_ex->level + 1; 830 parent->port->disc.max_level = max(parent->port->disc.max_level, 831 edev->level); 832 sas_init_dev(child); 833 sas_fill_in_rphy(child, rphy); 834 sas_rphy_add(rphy); 835 836 spin_lock_irq(&parent->port->dev_list_lock); 837 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 838 spin_unlock_irq(&parent->port->dev_list_lock); 839 840 res = sas_discover_expander(child); 841 if (res) { 842 kfree(child); 843 return NULL; 844 } 845 list_add_tail(&child->siblings, &parent->ex_dev.children); 846 return child; 847 } 848 849 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 850 { 851 struct expander_device *ex = &dev->ex_dev; 852 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 853 struct domain_device *child = NULL; 854 int res = 0; 855 856 /* Phy state */ 857 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 858 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 859 res = sas_ex_phy_discover(dev, phy_id); 860 if (res) 861 return res; 862 } 863 864 /* Parent and domain coherency */ 865 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 866 SAS_ADDR(dev->port->sas_addr))) { 867 sas_add_parent_port(dev, phy_id); 868 return 0; 869 } 870 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 871 SAS_ADDR(dev->parent->sas_addr))) { 872 sas_add_parent_port(dev, phy_id); 873 if (ex_phy->routing_attr == TABLE_ROUTING) 874 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 875 return 0; 876 } 877 878 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 879 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 880 881 if (ex_phy->attached_dev_type == NO_DEVICE) { 882 if (ex_phy->routing_attr == DIRECT_ROUTING) { 883 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 884 sas_configure_routing(dev, ex_phy->attached_sas_addr); 885 } 886 return 0; 887 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 888 return 0; 889 890 if (ex_phy->attached_dev_type != SAS_END_DEV && 891 ex_phy->attached_dev_type != FANOUT_DEV && 892 ex_phy->attached_dev_type != EDGE_DEV) { 893 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 894 "phy 0x%x\n", ex_phy->attached_dev_type, 895 SAS_ADDR(dev->sas_addr), 896 phy_id); 897 return 0; 898 } 899 900 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 901 if (res) { 902 SAS_DPRINTK("configure routing for dev %016llx " 903 "reported 0x%x. Forgotten\n", 904 SAS_ADDR(ex_phy->attached_sas_addr), res); 905 sas_disable_routing(dev, ex_phy->attached_sas_addr); 906 return res; 907 } 908 909 res = sas_ex_join_wide_port(dev, phy_id); 910 if (!res) { 911 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 912 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 913 return res; 914 } 915 916 switch (ex_phy->attached_dev_type) { 917 case SAS_END_DEV: 918 child = sas_ex_discover_end_dev(dev, phy_id); 919 break; 920 case FANOUT_DEV: 921 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 922 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 923 "attached to ex %016llx phy 0x%x\n", 924 SAS_ADDR(ex_phy->attached_sas_addr), 925 ex_phy->attached_phy_id, 926 SAS_ADDR(dev->sas_addr), 927 phy_id); 928 sas_ex_disable_phy(dev, phy_id); 929 break; 930 } else 931 memcpy(dev->port->disc.fanout_sas_addr, 932 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 933 /* fallthrough */ 934 case EDGE_DEV: 935 child = sas_ex_discover_expander(dev, phy_id); 936 break; 937 default: 938 break; 939 } 940 941 if (child) { 942 int i; 943 944 for (i = 0; i < ex->num_phys; i++) { 945 if (ex->ex_phy[i].phy_state == PHY_VACANT || 946 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 947 continue; 948 949 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 950 SAS_ADDR(child->sas_addr)) 951 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 952 } 953 } 954 955 return res; 956 } 957 958 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 959 { 960 struct expander_device *ex = &dev->ex_dev; 961 int i; 962 963 for (i = 0; i < ex->num_phys; i++) { 964 struct ex_phy *phy = &ex->ex_phy[i]; 965 966 if (phy->phy_state == PHY_VACANT || 967 phy->phy_state == PHY_NOT_PRESENT) 968 continue; 969 970 if ((phy->attached_dev_type == EDGE_DEV || 971 phy->attached_dev_type == FANOUT_DEV) && 972 phy->routing_attr == SUBTRACTIVE_ROUTING) { 973 974 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 975 976 return 1; 977 } 978 } 979 return 0; 980 } 981 982 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 983 { 984 struct expander_device *ex = &dev->ex_dev; 985 struct domain_device *child; 986 u8 sub_addr[8] = {0, }; 987 988 list_for_each_entry(child, &ex->children, siblings) { 989 if (child->dev_type != EDGE_DEV && 990 child->dev_type != FANOUT_DEV) 991 continue; 992 if (sub_addr[0] == 0) { 993 sas_find_sub_addr(child, sub_addr); 994 continue; 995 } else { 996 u8 s2[8]; 997 998 if (sas_find_sub_addr(child, s2) && 999 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1000 1001 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1002 "diverges from subtractive " 1003 "boundary %016llx\n", 1004 SAS_ADDR(dev->sas_addr), 1005 SAS_ADDR(child->sas_addr), 1006 SAS_ADDR(s2), 1007 SAS_ADDR(sub_addr)); 1008 1009 sas_ex_disable_port(child, s2); 1010 } 1011 } 1012 } 1013 return 0; 1014 } 1015 /** 1016 * sas_ex_discover_devices -- discover devices attached to this expander 1017 * dev: pointer to the expander domain device 1018 * single: if you want to do a single phy, else set to -1; 1019 * 1020 * Configure this expander for use with its devices and register the 1021 * devices of this expander. 1022 */ 1023 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1024 { 1025 struct expander_device *ex = &dev->ex_dev; 1026 int i = 0, end = ex->num_phys; 1027 int res = 0; 1028 1029 if (0 <= single && single < end) { 1030 i = single; 1031 end = i+1; 1032 } 1033 1034 for ( ; i < end; i++) { 1035 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1036 1037 if (ex_phy->phy_state == PHY_VACANT || 1038 ex_phy->phy_state == PHY_NOT_PRESENT || 1039 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1040 continue; 1041 1042 switch (ex_phy->linkrate) { 1043 case SAS_PHY_DISABLED: 1044 case SAS_PHY_RESET_PROBLEM: 1045 case SAS_SATA_PORT_SELECTOR: 1046 continue; 1047 default: 1048 res = sas_ex_discover_dev(dev, i); 1049 if (res) 1050 break; 1051 continue; 1052 } 1053 } 1054 1055 if (!res) 1056 sas_check_level_subtractive_boundary(dev); 1057 1058 return res; 1059 } 1060 1061 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1062 { 1063 struct expander_device *ex = &dev->ex_dev; 1064 int i; 1065 u8 *sub_sas_addr = NULL; 1066 1067 if (dev->dev_type != EDGE_DEV) 1068 return 0; 1069 1070 for (i = 0; i < ex->num_phys; i++) { 1071 struct ex_phy *phy = &ex->ex_phy[i]; 1072 1073 if (phy->phy_state == PHY_VACANT || 1074 phy->phy_state == PHY_NOT_PRESENT) 1075 continue; 1076 1077 if ((phy->attached_dev_type == FANOUT_DEV || 1078 phy->attached_dev_type == EDGE_DEV) && 1079 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1080 1081 if (!sub_sas_addr) 1082 sub_sas_addr = &phy->attached_sas_addr[0]; 1083 else if (SAS_ADDR(sub_sas_addr) != 1084 SAS_ADDR(phy->attached_sas_addr)) { 1085 1086 SAS_DPRINTK("ex %016llx phy 0x%x " 1087 "diverges(%016llx) on subtractive " 1088 "boundary(%016llx). Disabled\n", 1089 SAS_ADDR(dev->sas_addr), i, 1090 SAS_ADDR(phy->attached_sas_addr), 1091 SAS_ADDR(sub_sas_addr)); 1092 sas_ex_disable_phy(dev, i); 1093 } 1094 } 1095 } 1096 return 0; 1097 } 1098 1099 static void sas_print_parent_topology_bug(struct domain_device *child, 1100 struct ex_phy *parent_phy, 1101 struct ex_phy *child_phy) 1102 { 1103 static const char ra_char[] = { 1104 [DIRECT_ROUTING] = 'D', 1105 [SUBTRACTIVE_ROUTING] = 'S', 1106 [TABLE_ROUTING] = 'T', 1107 }; 1108 static const char *ex_type[] = { 1109 [EDGE_DEV] = "edge", 1110 [FANOUT_DEV] = "fanout", 1111 }; 1112 struct domain_device *parent = child->parent; 1113 1114 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1115 "has %c:%c routing link!\n", 1116 1117 ex_type[parent->dev_type], 1118 SAS_ADDR(parent->sas_addr), 1119 parent_phy->phy_id, 1120 1121 ex_type[child->dev_type], 1122 SAS_ADDR(child->sas_addr), 1123 child_phy->phy_id, 1124 1125 ra_char[parent_phy->routing_attr], 1126 ra_char[child_phy->routing_attr]); 1127 } 1128 1129 static int sas_check_eeds(struct domain_device *child, 1130 struct ex_phy *parent_phy, 1131 struct ex_phy *child_phy) 1132 { 1133 int res = 0; 1134 struct domain_device *parent = child->parent; 1135 1136 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1137 res = -ENODEV; 1138 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1139 "phy S:0x%x, while there is a fanout ex %016llx\n", 1140 SAS_ADDR(parent->sas_addr), 1141 parent_phy->phy_id, 1142 SAS_ADDR(child->sas_addr), 1143 child_phy->phy_id, 1144 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1145 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1146 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1147 SAS_ADDR_SIZE); 1148 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1149 SAS_ADDR_SIZE); 1150 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1151 SAS_ADDR(parent->sas_addr)) || 1152 (SAS_ADDR(parent->port->disc.eeds_a) == 1153 SAS_ADDR(child->sas_addr))) 1154 && 1155 ((SAS_ADDR(parent->port->disc.eeds_b) == 1156 SAS_ADDR(parent->sas_addr)) || 1157 (SAS_ADDR(parent->port->disc.eeds_b) == 1158 SAS_ADDR(child->sas_addr)))) 1159 ; 1160 else { 1161 res = -ENODEV; 1162 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1163 "phy 0x%x link forms a third EEDS!\n", 1164 SAS_ADDR(parent->sas_addr), 1165 parent_phy->phy_id, 1166 SAS_ADDR(child->sas_addr), 1167 child_phy->phy_id); 1168 } 1169 1170 return res; 1171 } 1172 1173 /* Here we spill over 80 columns. It is intentional. 1174 */ 1175 static int sas_check_parent_topology(struct domain_device *child) 1176 { 1177 struct expander_device *child_ex = &child->ex_dev; 1178 struct expander_device *parent_ex; 1179 int i; 1180 int res = 0; 1181 1182 if (!child->parent) 1183 return 0; 1184 1185 if (child->parent->dev_type != EDGE_DEV && 1186 child->parent->dev_type != FANOUT_DEV) 1187 return 0; 1188 1189 parent_ex = &child->parent->ex_dev; 1190 1191 for (i = 0; i < parent_ex->num_phys; i++) { 1192 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1193 struct ex_phy *child_phy; 1194 1195 if (parent_phy->phy_state == PHY_VACANT || 1196 parent_phy->phy_state == PHY_NOT_PRESENT) 1197 continue; 1198 1199 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1200 continue; 1201 1202 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1203 1204 switch (child->parent->dev_type) { 1205 case EDGE_DEV: 1206 if (child->dev_type == FANOUT_DEV) { 1207 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1208 child_phy->routing_attr != TABLE_ROUTING) { 1209 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1210 res = -ENODEV; 1211 } 1212 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1213 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1214 res = sas_check_eeds(child, parent_phy, child_phy); 1215 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1216 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1217 res = -ENODEV; 1218 } 1219 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1220 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1221 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1222 res = -ENODEV; 1223 } 1224 break; 1225 case FANOUT_DEV: 1226 if (parent_phy->routing_attr != TABLE_ROUTING || 1227 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1228 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1229 res = -ENODEV; 1230 } 1231 break; 1232 default: 1233 break; 1234 } 1235 } 1236 1237 return res; 1238 } 1239 1240 #define RRI_REQ_SIZE 16 1241 #define RRI_RESP_SIZE 44 1242 1243 static int sas_configure_present(struct domain_device *dev, int phy_id, 1244 u8 *sas_addr, int *index, int *present) 1245 { 1246 int i, res = 0; 1247 struct expander_device *ex = &dev->ex_dev; 1248 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1249 u8 *rri_req; 1250 u8 *rri_resp; 1251 1252 *present = 0; 1253 *index = 0; 1254 1255 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1256 if (!rri_req) 1257 return -ENOMEM; 1258 1259 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1260 if (!rri_resp) { 1261 kfree(rri_req); 1262 return -ENOMEM; 1263 } 1264 1265 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1266 rri_req[9] = phy_id; 1267 1268 for (i = 0; i < ex->max_route_indexes ; i++) { 1269 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1270 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1271 RRI_RESP_SIZE); 1272 if (res) 1273 goto out; 1274 res = rri_resp[2]; 1275 if (res == SMP_RESP_NO_INDEX) { 1276 SAS_DPRINTK("overflow of indexes: dev %016llx " 1277 "phy 0x%x index 0x%x\n", 1278 SAS_ADDR(dev->sas_addr), phy_id, i); 1279 goto out; 1280 } else if (res != SMP_RESP_FUNC_ACC) { 1281 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1282 "result 0x%x\n", __func__, 1283 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1284 goto out; 1285 } 1286 if (SAS_ADDR(sas_addr) != 0) { 1287 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1288 *index = i; 1289 if ((rri_resp[12] & 0x80) == 0x80) 1290 *present = 0; 1291 else 1292 *present = 1; 1293 goto out; 1294 } else if (SAS_ADDR(rri_resp+16) == 0) { 1295 *index = i; 1296 *present = 0; 1297 goto out; 1298 } 1299 } else if (SAS_ADDR(rri_resp+16) == 0 && 1300 phy->last_da_index < i) { 1301 phy->last_da_index = i; 1302 *index = i; 1303 *present = 0; 1304 goto out; 1305 } 1306 } 1307 res = -1; 1308 out: 1309 kfree(rri_req); 1310 kfree(rri_resp); 1311 return res; 1312 } 1313 1314 #define CRI_REQ_SIZE 44 1315 #define CRI_RESP_SIZE 8 1316 1317 static int sas_configure_set(struct domain_device *dev, int phy_id, 1318 u8 *sas_addr, int index, int include) 1319 { 1320 int res; 1321 u8 *cri_req; 1322 u8 *cri_resp; 1323 1324 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1325 if (!cri_req) 1326 return -ENOMEM; 1327 1328 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1329 if (!cri_resp) { 1330 kfree(cri_req); 1331 return -ENOMEM; 1332 } 1333 1334 cri_req[1] = SMP_CONF_ROUTE_INFO; 1335 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1336 cri_req[9] = phy_id; 1337 if (SAS_ADDR(sas_addr) == 0 || !include) 1338 cri_req[12] |= 0x80; 1339 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1340 1341 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1342 CRI_RESP_SIZE); 1343 if (res) 1344 goto out; 1345 res = cri_resp[2]; 1346 if (res == SMP_RESP_NO_INDEX) { 1347 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1348 "index 0x%x\n", 1349 SAS_ADDR(dev->sas_addr), phy_id, index); 1350 } 1351 out: 1352 kfree(cri_req); 1353 kfree(cri_resp); 1354 return res; 1355 } 1356 1357 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1358 u8 *sas_addr, int include) 1359 { 1360 int index; 1361 int present; 1362 int res; 1363 1364 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1365 if (res) 1366 return res; 1367 if (include ^ present) 1368 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1369 1370 return res; 1371 } 1372 1373 /** 1374 * sas_configure_parent -- configure routing table of parent 1375 * parent: parent expander 1376 * child: child expander 1377 * sas_addr: SAS port identifier of device directly attached to child 1378 */ 1379 static int sas_configure_parent(struct domain_device *parent, 1380 struct domain_device *child, 1381 u8 *sas_addr, int include) 1382 { 1383 struct expander_device *ex_parent = &parent->ex_dev; 1384 int res = 0; 1385 int i; 1386 1387 if (parent->parent) { 1388 res = sas_configure_parent(parent->parent, parent, sas_addr, 1389 include); 1390 if (res) 1391 return res; 1392 } 1393 1394 if (ex_parent->conf_route_table == 0) { 1395 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1396 SAS_ADDR(parent->sas_addr)); 1397 return 0; 1398 } 1399 1400 for (i = 0; i < ex_parent->num_phys; i++) { 1401 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1402 1403 if ((phy->routing_attr == TABLE_ROUTING) && 1404 (SAS_ADDR(phy->attached_sas_addr) == 1405 SAS_ADDR(child->sas_addr))) { 1406 res = sas_configure_phy(parent, i, sas_addr, include); 1407 if (res) 1408 return res; 1409 } 1410 } 1411 1412 return res; 1413 } 1414 1415 /** 1416 * sas_configure_routing -- configure routing 1417 * dev: expander device 1418 * sas_addr: port identifier of device directly attached to the expander device 1419 */ 1420 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1421 { 1422 if (dev->parent) 1423 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1424 return 0; 1425 } 1426 1427 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1428 { 1429 if (dev->parent) 1430 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1431 return 0; 1432 } 1433 1434 /** 1435 * sas_discover_expander -- expander discovery 1436 * @ex: pointer to expander domain device 1437 * 1438 * See comment in sas_discover_sata(). 1439 */ 1440 static int sas_discover_expander(struct domain_device *dev) 1441 { 1442 int res; 1443 1444 res = sas_notify_lldd_dev_found(dev); 1445 if (res) 1446 return res; 1447 1448 res = sas_ex_general(dev); 1449 if (res) 1450 goto out_err; 1451 res = sas_ex_manuf_info(dev); 1452 if (res) 1453 goto out_err; 1454 1455 res = sas_expander_discover(dev); 1456 if (res) { 1457 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1458 SAS_ADDR(dev->sas_addr), res); 1459 goto out_err; 1460 } 1461 1462 sas_check_ex_subtractive_boundary(dev); 1463 res = sas_check_parent_topology(dev); 1464 if (res) 1465 goto out_err; 1466 return 0; 1467 out_err: 1468 sas_notify_lldd_dev_gone(dev); 1469 return res; 1470 } 1471 1472 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1473 { 1474 int res = 0; 1475 struct domain_device *dev; 1476 1477 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1478 if (dev->dev_type == EDGE_DEV || 1479 dev->dev_type == FANOUT_DEV) { 1480 struct sas_expander_device *ex = 1481 rphy_to_expander_device(dev->rphy); 1482 1483 if (level == ex->level) 1484 res = sas_ex_discover_devices(dev, -1); 1485 else if (level > 0) 1486 res = sas_ex_discover_devices(port->port_dev, -1); 1487 1488 } 1489 } 1490 1491 return res; 1492 } 1493 1494 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1495 { 1496 int res; 1497 int level; 1498 1499 do { 1500 level = port->disc.max_level; 1501 res = sas_ex_level_discovery(port, level); 1502 mb(); 1503 } while (level < port->disc.max_level); 1504 1505 return res; 1506 } 1507 1508 int sas_discover_root_expander(struct domain_device *dev) 1509 { 1510 int res; 1511 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1512 1513 res = sas_rphy_add(dev->rphy); 1514 if (res) 1515 goto out_err; 1516 1517 ex->level = dev->port->disc.max_level; /* 0 */ 1518 res = sas_discover_expander(dev); 1519 if (res) 1520 goto out_err2; 1521 1522 sas_ex_bfs_disc(dev->port); 1523 1524 return res; 1525 1526 out_err2: 1527 sas_rphy_remove(dev->rphy); 1528 out_err: 1529 return res; 1530 } 1531 1532 /* ---------- Domain revalidation ---------- */ 1533 1534 static int sas_get_phy_discover(struct domain_device *dev, 1535 int phy_id, struct smp_resp *disc_resp) 1536 { 1537 int res; 1538 u8 *disc_req; 1539 1540 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1541 if (!disc_req) 1542 return -ENOMEM; 1543 1544 disc_req[1] = SMP_DISCOVER; 1545 disc_req[9] = phy_id; 1546 1547 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1548 disc_resp, DISCOVER_RESP_SIZE); 1549 if (res) 1550 goto out; 1551 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1552 res = disc_resp->result; 1553 goto out; 1554 } 1555 out: 1556 kfree(disc_req); 1557 return res; 1558 } 1559 1560 static int sas_get_phy_change_count(struct domain_device *dev, 1561 int phy_id, int *pcc) 1562 { 1563 int res; 1564 struct smp_resp *disc_resp; 1565 1566 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1567 if (!disc_resp) 1568 return -ENOMEM; 1569 1570 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1571 if (!res) 1572 *pcc = disc_resp->disc.change_count; 1573 1574 kfree(disc_resp); 1575 return res; 1576 } 1577 1578 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1579 int phy_id, u8 *attached_sas_addr) 1580 { 1581 int res; 1582 struct smp_resp *disc_resp; 1583 struct discover_resp *dr; 1584 1585 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1586 if (!disc_resp) 1587 return -ENOMEM; 1588 dr = &disc_resp->disc; 1589 1590 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1591 if (!res) { 1592 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1593 if (dr->attached_dev_type == 0) 1594 memset(attached_sas_addr, 0, 8); 1595 } 1596 kfree(disc_resp); 1597 return res; 1598 } 1599 1600 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1601 int from_phy) 1602 { 1603 struct expander_device *ex = &dev->ex_dev; 1604 int res = 0; 1605 int i; 1606 1607 for (i = from_phy; i < ex->num_phys; i++) { 1608 int phy_change_count = 0; 1609 1610 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1611 if (res) 1612 goto out; 1613 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1614 ex->ex_phy[i].phy_change_count = phy_change_count; 1615 *phy_id = i; 1616 return 0; 1617 } 1618 } 1619 out: 1620 return res; 1621 } 1622 1623 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1624 { 1625 int res; 1626 u8 *rg_req; 1627 struct smp_resp *rg_resp; 1628 1629 rg_req = alloc_smp_req(RG_REQ_SIZE); 1630 if (!rg_req) 1631 return -ENOMEM; 1632 1633 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1634 if (!rg_resp) { 1635 kfree(rg_req); 1636 return -ENOMEM; 1637 } 1638 1639 rg_req[1] = SMP_REPORT_GENERAL; 1640 1641 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1642 RG_RESP_SIZE); 1643 if (res) 1644 goto out; 1645 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1646 res = rg_resp->result; 1647 goto out; 1648 } 1649 1650 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1651 out: 1652 kfree(rg_resp); 1653 kfree(rg_req); 1654 return res; 1655 } 1656 1657 static int sas_find_bcast_dev(struct domain_device *dev, 1658 struct domain_device **src_dev) 1659 { 1660 struct expander_device *ex = &dev->ex_dev; 1661 int ex_change_count = -1; 1662 int res; 1663 1664 res = sas_get_ex_change_count(dev, &ex_change_count); 1665 if (res) 1666 goto out; 1667 if (ex_change_count != -1 && 1668 ex_change_count != ex->ex_change_count) { 1669 *src_dev = dev; 1670 ex->ex_change_count = ex_change_count; 1671 } else { 1672 struct domain_device *ch; 1673 1674 list_for_each_entry(ch, &ex->children, siblings) { 1675 if (ch->dev_type == EDGE_DEV || 1676 ch->dev_type == FANOUT_DEV) { 1677 res = sas_find_bcast_dev(ch, src_dev); 1678 if (src_dev) 1679 return res; 1680 } 1681 } 1682 } 1683 out: 1684 return res; 1685 } 1686 1687 static void sas_unregister_ex_tree(struct domain_device *dev) 1688 { 1689 struct expander_device *ex = &dev->ex_dev; 1690 struct domain_device *child, *n; 1691 1692 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1693 if (child->dev_type == EDGE_DEV || 1694 child->dev_type == FANOUT_DEV) 1695 sas_unregister_ex_tree(child); 1696 else 1697 sas_unregister_dev(child); 1698 } 1699 sas_unregister_dev(dev); 1700 } 1701 1702 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1703 int phy_id) 1704 { 1705 struct expander_device *ex_dev = &parent->ex_dev; 1706 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1707 struct domain_device *child, *n; 1708 1709 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) { 1710 if (SAS_ADDR(child->sas_addr) == 1711 SAS_ADDR(phy->attached_sas_addr)) { 1712 if (child->dev_type == EDGE_DEV || 1713 child->dev_type == FANOUT_DEV) 1714 sas_unregister_ex_tree(child); 1715 else 1716 sas_unregister_dev(child); 1717 break; 1718 } 1719 } 1720 sas_disable_routing(parent, phy->attached_sas_addr); 1721 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1722 sas_port_delete_phy(phy->port, phy->phy); 1723 if (phy->port->num_phys == 0) 1724 sas_port_delete(phy->port); 1725 phy->port = NULL; 1726 } 1727 1728 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1729 const int level) 1730 { 1731 struct expander_device *ex_root = &root->ex_dev; 1732 struct domain_device *child; 1733 int res = 0; 1734 1735 list_for_each_entry(child, &ex_root->children, siblings) { 1736 if (child->dev_type == EDGE_DEV || 1737 child->dev_type == FANOUT_DEV) { 1738 struct sas_expander_device *ex = 1739 rphy_to_expander_device(child->rphy); 1740 1741 if (level > ex->level) 1742 res = sas_discover_bfs_by_root_level(child, 1743 level); 1744 else if (level == ex->level) 1745 res = sas_ex_discover_devices(child, -1); 1746 } 1747 } 1748 return res; 1749 } 1750 1751 static int sas_discover_bfs_by_root(struct domain_device *dev) 1752 { 1753 int res; 1754 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1755 int level = ex->level+1; 1756 1757 res = sas_ex_discover_devices(dev, -1); 1758 if (res) 1759 goto out; 1760 do { 1761 res = sas_discover_bfs_by_root_level(dev, level); 1762 mb(); 1763 level += 1; 1764 } while (level <= dev->port->disc.max_level); 1765 out: 1766 return res; 1767 } 1768 1769 static int sas_discover_new(struct domain_device *dev, int phy_id) 1770 { 1771 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1772 struct domain_device *child; 1773 int res; 1774 1775 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1776 SAS_ADDR(dev->sas_addr), phy_id); 1777 res = sas_ex_phy_discover(dev, phy_id); 1778 if (res) 1779 goto out; 1780 res = sas_ex_discover_devices(dev, phy_id); 1781 if (res) 1782 goto out; 1783 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1784 if (SAS_ADDR(child->sas_addr) == 1785 SAS_ADDR(ex_phy->attached_sas_addr)) { 1786 if (child->dev_type == EDGE_DEV || 1787 child->dev_type == FANOUT_DEV) 1788 res = sas_discover_bfs_by_root(child); 1789 break; 1790 } 1791 } 1792 out: 1793 return res; 1794 } 1795 1796 static int sas_rediscover_dev(struct domain_device *dev, int phy_id) 1797 { 1798 struct expander_device *ex = &dev->ex_dev; 1799 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1800 u8 attached_sas_addr[8]; 1801 int res; 1802 1803 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1804 switch (res) { 1805 case SMP_RESP_NO_PHY: 1806 phy->phy_state = PHY_NOT_PRESENT; 1807 sas_unregister_devs_sas_addr(dev, phy_id); 1808 goto out; break; 1809 case SMP_RESP_PHY_VACANT: 1810 phy->phy_state = PHY_VACANT; 1811 sas_unregister_devs_sas_addr(dev, phy_id); 1812 goto out; break; 1813 case SMP_RESP_FUNC_ACC: 1814 break; 1815 } 1816 1817 if (SAS_ADDR(attached_sas_addr) == 0) { 1818 phy->phy_state = PHY_EMPTY; 1819 sas_unregister_devs_sas_addr(dev, phy_id); 1820 } else if (SAS_ADDR(attached_sas_addr) == 1821 SAS_ADDR(phy->attached_sas_addr)) { 1822 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1823 SAS_ADDR(dev->sas_addr), phy_id); 1824 sas_ex_phy_discover(dev, phy_id); 1825 } else 1826 res = sas_discover_new(dev, phy_id); 1827 out: 1828 return res; 1829 } 1830 1831 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1832 { 1833 struct expander_device *ex = &dev->ex_dev; 1834 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1835 int res = 0; 1836 int i; 1837 1838 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1839 SAS_ADDR(dev->sas_addr), phy_id); 1840 1841 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1842 for (i = 0; i < ex->num_phys; i++) { 1843 struct ex_phy *phy = &ex->ex_phy[i]; 1844 1845 if (i == phy_id) 1846 continue; 1847 if (SAS_ADDR(phy->attached_sas_addr) == 1848 SAS_ADDR(changed_phy->attached_sas_addr)) { 1849 SAS_DPRINTK("phy%d part of wide port with " 1850 "phy%d\n", phy_id, i); 1851 goto out; 1852 } 1853 } 1854 res = sas_rediscover_dev(dev, phy_id); 1855 } else 1856 res = sas_discover_new(dev, phy_id); 1857 out: 1858 return res; 1859 } 1860 1861 /** 1862 * sas_revalidate_domain -- revalidate the domain 1863 * @port: port to the domain of interest 1864 * 1865 * NOTE: this process _must_ quit (return) as soon as any connection 1866 * errors are encountered. Connection recovery is done elsewhere. 1867 * Discover process only interrogates devices in order to discover the 1868 * domain. 1869 */ 1870 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1871 { 1872 int res; 1873 struct domain_device *dev = NULL; 1874 1875 res = sas_find_bcast_dev(port_dev, &dev); 1876 if (res) 1877 goto out; 1878 if (dev) { 1879 struct expander_device *ex = &dev->ex_dev; 1880 int i = 0, phy_id; 1881 1882 do { 1883 phy_id = -1; 1884 res = sas_find_bcast_phy(dev, &phy_id, i); 1885 if (phy_id == -1) 1886 break; 1887 res = sas_rediscover(dev, phy_id); 1888 i = phy_id + 1; 1889 } while (i < ex->num_phys); 1890 } 1891 out: 1892 return res; 1893 } 1894 1895 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1896 struct request *req) 1897 { 1898 struct domain_device *dev; 1899 int ret, type; 1900 struct request *rsp = req->next_rq; 1901 1902 if (!rsp) { 1903 printk("%s: space for a smp response is missing\n", 1904 __func__); 1905 return -EINVAL; 1906 } 1907 1908 /* no rphy means no smp target support (ie aic94xx host) */ 1909 if (!rphy) 1910 return sas_smp_host_handler(shost, req, rsp); 1911 1912 type = rphy->identify.device_type; 1913 1914 if (type != SAS_EDGE_EXPANDER_DEVICE && 1915 type != SAS_FANOUT_EXPANDER_DEVICE) { 1916 printk("%s: can we send a smp request to a device?\n", 1917 __func__); 1918 return -EINVAL; 1919 } 1920 1921 dev = sas_find_dev_by_rphy(rphy); 1922 if (!dev) { 1923 printk("%s: fail to find a domain_device?\n", __func__); 1924 return -EINVAL; 1925 } 1926 1927 /* do we need to support multiple segments? */ 1928 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 1929 printk("%s: multiple segments req %u %u, rsp %u %u\n", 1930 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 1931 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 1932 return -EINVAL; 1933 } 1934 1935 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 1936 bio_data(rsp->bio), blk_rq_bytes(rsp)); 1937 if (ret > 0) { 1938 /* positive number is the untransferred residual */ 1939 rsp->resid_len = ret; 1940 req->resid_len = 0; 1941 ret = 0; 1942 } else if (ret == 0) { 1943 rsp->resid_len = 0; 1944 req->resid_len = 0; 1945 } 1946 1947 return ret; 1948 } 1949