1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/scsi_transport.h> 32 #include <scsi/scsi_transport_sas.h> 33 #include "../scsi_sas_internal.h" 34 35 static int sas_discover_expander(struct domain_device *dev); 36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 37 static int sas_configure_phy(struct domain_device *dev, int phy_id, 38 u8 *sas_addr, int include); 39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 40 41 /* ---------- SMP task management ---------- */ 42 43 static void smp_task_timedout(unsigned long _task) 44 { 45 struct sas_task *task = (void *) _task; 46 unsigned long flags; 47 48 spin_lock_irqsave(&task->task_state_lock, flags); 49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 50 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 51 spin_unlock_irqrestore(&task->task_state_lock, flags); 52 53 complete(&task->completion); 54 } 55 56 static void smp_task_done(struct sas_task *task) 57 { 58 if (!del_timer(&task->timer)) 59 return; 60 complete(&task->completion); 61 } 62 63 /* Give it some long enough timeout. In seconds. */ 64 #define SMP_TIMEOUT 10 65 66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 67 void *resp, int resp_size) 68 { 69 int res, retry; 70 struct sas_task *task = NULL; 71 struct sas_internal *i = 72 to_sas_internal(dev->port->ha->core.shost->transportt); 73 74 for (retry = 0; retry < 3; retry++) { 75 task = sas_alloc_task(GFP_KERNEL); 76 if (!task) 77 return -ENOMEM; 78 79 task->dev = dev; 80 task->task_proto = dev->tproto; 81 sg_init_one(&task->smp_task.smp_req, req, req_size); 82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 83 84 task->task_done = smp_task_done; 85 86 task->timer.data = (unsigned long) task; 87 task->timer.function = smp_task_timedout; 88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 89 add_timer(&task->timer); 90 91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 92 93 if (res) { 94 del_timer(&task->timer); 95 SAS_DPRINTK("executing SMP task failed:%d\n", res); 96 goto ex_err; 97 } 98 99 wait_for_completion(&task->completion); 100 res = -ECOMM; 101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 102 SAS_DPRINTK("smp task timed out or aborted\n"); 103 i->dft->lldd_abort_task(task); 104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 105 SAS_DPRINTK("SMP task aborted and not done\n"); 106 goto ex_err; 107 } 108 } 109 if (task->task_status.resp == SAS_TASK_COMPLETE && 110 task->task_status.stat == SAM_STAT_GOOD) { 111 res = 0; 112 break; 113 } if (task->task_status.resp == SAS_TASK_COMPLETE && 114 task->task_status.stat == SAS_DATA_UNDERRUN) { 115 /* no error, but return the number of bytes of 116 * underrun */ 117 res = task->task_status.residual; 118 break; 119 } if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } else { 124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 125 "status 0x%x\n", __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 ex_err: 134 BUG_ON(retry == 3 && task != NULL); 135 if (task != NULL) { 136 sas_free_task(task); 137 } 138 return res; 139 } 140 141 /* ---------- Allocations ---------- */ 142 143 static inline void *alloc_smp_req(int size) 144 { 145 u8 *p = kzalloc(size, GFP_KERNEL); 146 if (p) 147 p[0] = SMP_REQUEST; 148 return p; 149 } 150 151 static inline void *alloc_smp_resp(int size) 152 { 153 return kzalloc(size, GFP_KERNEL); 154 } 155 156 /* ---------- Expander configuration ---------- */ 157 158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 159 void *disc_resp) 160 { 161 struct expander_device *ex = &dev->ex_dev; 162 struct ex_phy *phy = &ex->ex_phy[phy_id]; 163 struct smp_resp *resp = disc_resp; 164 struct discover_resp *dr = &resp->disc; 165 struct sas_rphy *rphy = dev->rphy; 166 int rediscover = (phy->phy != NULL); 167 168 if (!rediscover) { 169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 170 171 /* FIXME: error_handling */ 172 BUG_ON(!phy->phy); 173 } 174 175 switch (resp->result) { 176 case SMP_RESP_PHY_VACANT: 177 phy->phy_state = PHY_VACANT; 178 break; 179 default: 180 phy->phy_state = PHY_NOT_PRESENT; 181 break; 182 case SMP_RESP_FUNC_ACC: 183 phy->phy_state = PHY_EMPTY; /* do not know yet */ 184 break; 185 } 186 187 phy->phy_id = phy_id; 188 phy->attached_dev_type = dr->attached_dev_type; 189 phy->linkrate = dr->linkrate; 190 phy->attached_sata_host = dr->attached_sata_host; 191 phy->attached_sata_dev = dr->attached_sata_dev; 192 phy->attached_sata_ps = dr->attached_sata_ps; 193 phy->attached_iproto = dr->iproto << 1; 194 phy->attached_tproto = dr->tproto << 1; 195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 196 phy->attached_phy_id = dr->attached_phy_id; 197 phy->phy_change_count = dr->change_count; 198 phy->routing_attr = dr->routing_attr; 199 phy->virtual = dr->virtual; 200 phy->last_da_index = -1; 201 202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 203 phy->phy->identify.target_port_protocols = phy->attached_tproto; 204 phy->phy->identify.phy_identifier = phy_id; 205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 207 phy->phy->minimum_linkrate = dr->pmin_linkrate; 208 phy->phy->maximum_linkrate = dr->pmax_linkrate; 209 phy->phy->negotiated_linkrate = phy->linkrate; 210 211 if (!rediscover) 212 if (sas_phy_add(phy->phy)) { 213 sas_phy_free(phy->phy); 214 return; 215 } 216 217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 218 SAS_ADDR(dev->sas_addr), phy->phy_id, 219 phy->routing_attr == TABLE_ROUTING ? 'T' : 220 phy->routing_attr == DIRECT_ROUTING ? 'D' : 221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 222 SAS_ADDR(phy->attached_sas_addr)); 223 224 return; 225 } 226 227 #define DISCOVER_REQ_SIZE 16 228 #define DISCOVER_RESP_SIZE 56 229 230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 231 u8 *disc_resp, int single) 232 { 233 int i, res; 234 235 disc_req[9] = single; 236 for (i = 1 ; i < 3; i++) { 237 struct discover_resp *dr; 238 239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 240 disc_resp, DISCOVER_RESP_SIZE); 241 if (res) 242 return res; 243 /* This is detecting a failure to transmit inital 244 * dev to host FIS as described in section G.5 of 245 * sas-2 r 04b */ 246 dr = &((struct smp_resp *)disc_resp)->disc; 247 if (memcmp(dev->sas_addr, dr->attached_sas_addr, 248 SAS_ADDR_SIZE) == 0) { 249 sas_printk("Found loopback topology, just ignore it!\n"); 250 return 0; 251 } 252 if (!(dr->attached_dev_type == 0 && 253 dr->attached_sata_dev)) 254 break; 255 /* In order to generate the dev to host FIS, we 256 * send a link reset to the expander port */ 257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 258 /* Wait for the reset to trigger the negotiation */ 259 msleep(500); 260 } 261 sas_set_ex_phy(dev, single, disc_resp); 262 return 0; 263 } 264 265 static int sas_ex_phy_discover(struct domain_device *dev, int single) 266 { 267 struct expander_device *ex = &dev->ex_dev; 268 int res = 0; 269 u8 *disc_req; 270 u8 *disc_resp; 271 272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 273 if (!disc_req) 274 return -ENOMEM; 275 276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 277 if (!disc_resp) { 278 kfree(disc_req); 279 return -ENOMEM; 280 } 281 282 disc_req[1] = SMP_DISCOVER; 283 284 if (0 <= single && single < ex->num_phys) { 285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 286 } else { 287 int i; 288 289 for (i = 0; i < ex->num_phys; i++) { 290 res = sas_ex_phy_discover_helper(dev, disc_req, 291 disc_resp, i); 292 if (res) 293 goto out_err; 294 } 295 } 296 out_err: 297 kfree(disc_resp); 298 kfree(disc_req); 299 return res; 300 } 301 302 static int sas_expander_discover(struct domain_device *dev) 303 { 304 struct expander_device *ex = &dev->ex_dev; 305 int res = -ENOMEM; 306 307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 308 if (!ex->ex_phy) 309 return -ENOMEM; 310 311 res = sas_ex_phy_discover(dev, -1); 312 if (res) 313 goto out_err; 314 315 return 0; 316 out_err: 317 kfree(ex->ex_phy); 318 ex->ex_phy = NULL; 319 return res; 320 } 321 322 #define MAX_EXPANDER_PHYS 128 323 324 static void ex_assign_report_general(struct domain_device *dev, 325 struct smp_resp *resp) 326 { 327 struct report_general_resp *rg = &resp->rg; 328 329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 332 dev->ex_dev.conf_route_table = rg->conf_route_table; 333 dev->ex_dev.configuring = rg->configuring; 334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 335 } 336 337 #define RG_REQ_SIZE 8 338 #define RG_RESP_SIZE 32 339 340 static int sas_ex_general(struct domain_device *dev) 341 { 342 u8 *rg_req; 343 struct smp_resp *rg_resp; 344 int res; 345 int i; 346 347 rg_req = alloc_smp_req(RG_REQ_SIZE); 348 if (!rg_req) 349 return -ENOMEM; 350 351 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 352 if (!rg_resp) { 353 kfree(rg_req); 354 return -ENOMEM; 355 } 356 357 rg_req[1] = SMP_REPORT_GENERAL; 358 359 for (i = 0; i < 5; i++) { 360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 361 RG_RESP_SIZE); 362 363 if (res) { 364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 365 SAS_ADDR(dev->sas_addr), res); 366 goto out; 367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 369 SAS_ADDR(dev->sas_addr), rg_resp->result); 370 res = rg_resp->result; 371 goto out; 372 } 373 374 ex_assign_report_general(dev, rg_resp); 375 376 if (dev->ex_dev.configuring) { 377 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 378 SAS_ADDR(dev->sas_addr)); 379 schedule_timeout_interruptible(5*HZ); 380 } else 381 break; 382 } 383 out: 384 kfree(rg_req); 385 kfree(rg_resp); 386 return res; 387 } 388 389 static void ex_assign_manuf_info(struct domain_device *dev, void 390 *_mi_resp) 391 { 392 u8 *mi_resp = _mi_resp; 393 struct sas_rphy *rphy = dev->rphy; 394 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 395 396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 398 memcpy(edev->product_rev, mi_resp + 36, 399 SAS_EXPANDER_PRODUCT_REV_LEN); 400 401 if (mi_resp[8] & 1) { 402 memcpy(edev->component_vendor_id, mi_resp + 40, 403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 404 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 405 edev->component_revision_id = mi_resp[50]; 406 } 407 } 408 409 #define MI_REQ_SIZE 8 410 #define MI_RESP_SIZE 64 411 412 static int sas_ex_manuf_info(struct domain_device *dev) 413 { 414 u8 *mi_req; 415 u8 *mi_resp; 416 int res; 417 418 mi_req = alloc_smp_req(MI_REQ_SIZE); 419 if (!mi_req) 420 return -ENOMEM; 421 422 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 423 if (!mi_resp) { 424 kfree(mi_req); 425 return -ENOMEM; 426 } 427 428 mi_req[1] = SMP_REPORT_MANUF_INFO; 429 430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 431 if (res) { 432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 433 SAS_ADDR(dev->sas_addr), res); 434 goto out; 435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 437 SAS_ADDR(dev->sas_addr), mi_resp[2]); 438 goto out; 439 } 440 441 ex_assign_manuf_info(dev, mi_resp); 442 out: 443 kfree(mi_req); 444 kfree(mi_resp); 445 return res; 446 } 447 448 #define PC_REQ_SIZE 44 449 #define PC_RESP_SIZE 8 450 451 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 452 enum phy_func phy_func, 453 struct sas_phy_linkrates *rates) 454 { 455 u8 *pc_req; 456 u8 *pc_resp; 457 int res; 458 459 pc_req = alloc_smp_req(PC_REQ_SIZE); 460 if (!pc_req) 461 return -ENOMEM; 462 463 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 464 if (!pc_resp) { 465 kfree(pc_req); 466 return -ENOMEM; 467 } 468 469 pc_req[1] = SMP_PHY_CONTROL; 470 pc_req[9] = phy_id; 471 pc_req[10]= phy_func; 472 if (rates) { 473 pc_req[32] = rates->minimum_linkrate << 4; 474 pc_req[33] = rates->maximum_linkrate << 4; 475 } 476 477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 478 479 kfree(pc_resp); 480 kfree(pc_req); 481 return res; 482 } 483 484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 485 { 486 struct expander_device *ex = &dev->ex_dev; 487 struct ex_phy *phy = &ex->ex_phy[phy_id]; 488 489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 490 phy->linkrate = SAS_PHY_DISABLED; 491 } 492 493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 494 { 495 struct expander_device *ex = &dev->ex_dev; 496 int i; 497 498 for (i = 0; i < ex->num_phys; i++) { 499 struct ex_phy *phy = &ex->ex_phy[i]; 500 501 if (phy->phy_state == PHY_VACANT || 502 phy->phy_state == PHY_NOT_PRESENT) 503 continue; 504 505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 506 sas_ex_disable_phy(dev, i); 507 } 508 } 509 510 static int sas_dev_present_in_domain(struct asd_sas_port *port, 511 u8 *sas_addr) 512 { 513 struct domain_device *dev; 514 515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 516 return 1; 517 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 519 return 1; 520 } 521 return 0; 522 } 523 524 #define RPEL_REQ_SIZE 16 525 #define RPEL_RESP_SIZE 32 526 int sas_smp_get_phy_events(struct sas_phy *phy) 527 { 528 int res; 529 u8 *req; 530 u8 *resp; 531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 532 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 533 534 req = alloc_smp_req(RPEL_REQ_SIZE); 535 if (!req) 536 return -ENOMEM; 537 538 resp = alloc_smp_resp(RPEL_RESP_SIZE); 539 if (!resp) { 540 kfree(req); 541 return -ENOMEM; 542 } 543 544 req[1] = SMP_REPORT_PHY_ERR_LOG; 545 req[9] = phy->number; 546 547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 548 resp, RPEL_RESP_SIZE); 549 550 if (!res) 551 goto out; 552 553 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 557 558 out: 559 kfree(resp); 560 return res; 561 562 } 563 564 #ifdef CONFIG_SCSI_SAS_ATA 565 566 #define RPS_REQ_SIZE 16 567 #define RPS_RESP_SIZE 60 568 569 static int sas_get_report_phy_sata(struct domain_device *dev, 570 int phy_id, 571 struct smp_resp *rps_resp) 572 { 573 int res; 574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 575 u8 *resp = (u8 *)rps_resp; 576 577 if (!rps_req) 578 return -ENOMEM; 579 580 rps_req[1] = SMP_REPORT_PHY_SATA; 581 rps_req[9] = phy_id; 582 583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 584 rps_resp, RPS_RESP_SIZE); 585 586 /* 0x34 is the FIS type for the D2H fis. There's a potential 587 * standards cockup here. sas-2 explicitly specifies the FIS 588 * should be encoded so that FIS type is in resp[24]. 589 * However, some expanders endian reverse this. Undo the 590 * reversal here */ 591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 592 int i; 593 594 for (i = 0; i < 5; i++) { 595 int j = 24 + (i*4); 596 u8 a, b; 597 a = resp[j + 0]; 598 b = resp[j + 1]; 599 resp[j + 0] = resp[j + 3]; 600 resp[j + 1] = resp[j + 2]; 601 resp[j + 2] = b; 602 resp[j + 3] = a; 603 } 604 } 605 606 kfree(rps_req); 607 return res; 608 } 609 #endif 610 611 static void sas_ex_get_linkrate(struct domain_device *parent, 612 struct domain_device *child, 613 struct ex_phy *parent_phy) 614 { 615 struct expander_device *parent_ex = &parent->ex_dev; 616 struct sas_port *port; 617 int i; 618 619 child->pathways = 0; 620 621 port = parent_phy->port; 622 623 for (i = 0; i < parent_ex->num_phys; i++) { 624 struct ex_phy *phy = &parent_ex->ex_phy[i]; 625 626 if (phy->phy_state == PHY_VACANT || 627 phy->phy_state == PHY_NOT_PRESENT) 628 continue; 629 630 if (SAS_ADDR(phy->attached_sas_addr) == 631 SAS_ADDR(child->sas_addr)) { 632 633 child->min_linkrate = min(parent->min_linkrate, 634 phy->linkrate); 635 child->max_linkrate = max(parent->max_linkrate, 636 phy->linkrate); 637 child->pathways++; 638 sas_port_add_phy(port, phy->phy); 639 } 640 } 641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 642 child->pathways = min(child->pathways, parent->pathways); 643 } 644 645 static struct domain_device *sas_ex_discover_end_dev( 646 struct domain_device *parent, int phy_id) 647 { 648 struct expander_device *parent_ex = &parent->ex_dev; 649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 650 struct domain_device *child = NULL; 651 struct sas_rphy *rphy; 652 int res; 653 654 if (phy->attached_sata_host || phy->attached_sata_ps) 655 return NULL; 656 657 child = kzalloc(sizeof(*child), GFP_KERNEL); 658 if (!child) 659 return NULL; 660 661 child->parent = parent; 662 child->port = parent->port; 663 child->iproto = phy->attached_iproto; 664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 666 if (!phy->port) { 667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 668 if (unlikely(!phy->port)) 669 goto out_err; 670 if (unlikely(sas_port_add(phy->port) != 0)) { 671 sas_port_free(phy->port); 672 goto out_err; 673 } 674 } 675 sas_ex_get_linkrate(parent, child, phy); 676 677 #ifdef CONFIG_SCSI_SAS_ATA 678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 679 child->dev_type = SATA_DEV; 680 if (phy->attached_tproto & SAS_PROTOCOL_STP) 681 child->tproto = phy->attached_tproto; 682 if (phy->attached_sata_dev) 683 child->tproto |= SATA_DEV; 684 res = sas_get_report_phy_sata(parent, phy_id, 685 &child->sata_dev.rps_resp); 686 if (res) { 687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 688 "0x%x\n", SAS_ADDR(parent->sas_addr), 689 phy_id, res); 690 goto out_free; 691 } 692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 693 sizeof(struct dev_to_host_fis)); 694 695 rphy = sas_end_device_alloc(phy->port); 696 if (unlikely(!rphy)) 697 goto out_free; 698 699 sas_init_dev(child); 700 701 child->rphy = rphy; 702 703 spin_lock_irq(&parent->port->dev_list_lock); 704 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 705 spin_unlock_irq(&parent->port->dev_list_lock); 706 707 res = sas_discover_sata(child); 708 if (res) { 709 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 710 "%016llx:0x%x returned 0x%x\n", 711 SAS_ADDR(child->sas_addr), 712 SAS_ADDR(parent->sas_addr), phy_id, res); 713 goto out_list_del; 714 } 715 } else 716 #endif 717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 718 child->dev_type = SAS_END_DEV; 719 rphy = sas_end_device_alloc(phy->port); 720 /* FIXME: error handling */ 721 if (unlikely(!rphy)) 722 goto out_free; 723 child->tproto = phy->attached_tproto; 724 sas_init_dev(child); 725 726 child->rphy = rphy; 727 sas_fill_in_rphy(child, rphy); 728 729 spin_lock_irq(&parent->port->dev_list_lock); 730 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 731 spin_unlock_irq(&parent->port->dev_list_lock); 732 733 res = sas_discover_end_dev(child); 734 if (res) { 735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 736 "at %016llx:0x%x returned 0x%x\n", 737 SAS_ADDR(child->sas_addr), 738 SAS_ADDR(parent->sas_addr), phy_id, res); 739 goto out_list_del; 740 } 741 } else { 742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 743 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 744 phy_id); 745 goto out_free; 746 } 747 748 list_add_tail(&child->siblings, &parent_ex->children); 749 return child; 750 751 out_list_del: 752 sas_rphy_free(child->rphy); 753 child->rphy = NULL; 754 list_del(&child->dev_list_node); 755 out_free: 756 sas_port_delete(phy->port); 757 out_err: 758 phy->port = NULL; 759 kfree(child); 760 return NULL; 761 } 762 763 /* See if this phy is part of a wide port */ 764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 765 { 766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 767 int i; 768 769 for (i = 0; i < parent->ex_dev.num_phys; i++) { 770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 771 772 if (ephy == phy) 773 continue; 774 775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 776 SAS_ADDR_SIZE) && ephy->port) { 777 sas_port_add_phy(ephy->port, phy->phy); 778 phy->port = ephy->port; 779 phy->phy_state = PHY_DEVICE_DISCOVERED; 780 return 0; 781 } 782 } 783 784 return -ENODEV; 785 } 786 787 static struct domain_device *sas_ex_discover_expander( 788 struct domain_device *parent, int phy_id) 789 { 790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 792 struct domain_device *child = NULL; 793 struct sas_rphy *rphy; 794 struct sas_expander_device *edev; 795 struct asd_sas_port *port; 796 int res; 797 798 if (phy->routing_attr == DIRECT_ROUTING) { 799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 800 "allowed\n", 801 SAS_ADDR(parent->sas_addr), phy_id, 802 SAS_ADDR(phy->attached_sas_addr), 803 phy->attached_phy_id); 804 return NULL; 805 } 806 child = kzalloc(sizeof(*child), GFP_KERNEL); 807 if (!child) 808 return NULL; 809 810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 811 /* FIXME: better error handling */ 812 BUG_ON(sas_port_add(phy->port) != 0); 813 814 815 switch (phy->attached_dev_type) { 816 case EDGE_DEV: 817 rphy = sas_expander_alloc(phy->port, 818 SAS_EDGE_EXPANDER_DEVICE); 819 break; 820 case FANOUT_DEV: 821 rphy = sas_expander_alloc(phy->port, 822 SAS_FANOUT_EXPANDER_DEVICE); 823 break; 824 default: 825 rphy = NULL; /* shut gcc up */ 826 BUG(); 827 } 828 port = parent->port; 829 child->rphy = rphy; 830 edev = rphy_to_expander_device(rphy); 831 child->dev_type = phy->attached_dev_type; 832 child->parent = parent; 833 child->port = port; 834 child->iproto = phy->attached_iproto; 835 child->tproto = phy->attached_tproto; 836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 838 sas_ex_get_linkrate(parent, child, phy); 839 edev->level = parent_ex->level + 1; 840 parent->port->disc.max_level = max(parent->port->disc.max_level, 841 edev->level); 842 sas_init_dev(child); 843 sas_fill_in_rphy(child, rphy); 844 sas_rphy_add(rphy); 845 846 spin_lock_irq(&parent->port->dev_list_lock); 847 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 848 spin_unlock_irq(&parent->port->dev_list_lock); 849 850 res = sas_discover_expander(child); 851 if (res) { 852 kfree(child); 853 return NULL; 854 } 855 list_add_tail(&child->siblings, &parent->ex_dev.children); 856 return child; 857 } 858 859 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 860 { 861 struct expander_device *ex = &dev->ex_dev; 862 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 863 struct domain_device *child = NULL; 864 int res = 0; 865 866 /* Phy state */ 867 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 868 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 869 res = sas_ex_phy_discover(dev, phy_id); 870 if (res) 871 return res; 872 } 873 874 /* Parent and domain coherency */ 875 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 876 SAS_ADDR(dev->port->sas_addr))) { 877 sas_add_parent_port(dev, phy_id); 878 return 0; 879 } 880 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 881 SAS_ADDR(dev->parent->sas_addr))) { 882 sas_add_parent_port(dev, phy_id); 883 if (ex_phy->routing_attr == TABLE_ROUTING) 884 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 885 return 0; 886 } 887 888 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 889 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 890 891 if (ex_phy->attached_dev_type == NO_DEVICE) { 892 if (ex_phy->routing_attr == DIRECT_ROUTING) { 893 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 894 sas_configure_routing(dev, ex_phy->attached_sas_addr); 895 } 896 return 0; 897 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 898 return 0; 899 900 if (ex_phy->attached_dev_type != SAS_END_DEV && 901 ex_phy->attached_dev_type != FANOUT_DEV && 902 ex_phy->attached_dev_type != EDGE_DEV) { 903 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 904 "phy 0x%x\n", ex_phy->attached_dev_type, 905 SAS_ADDR(dev->sas_addr), 906 phy_id); 907 return 0; 908 } 909 910 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 911 if (res) { 912 SAS_DPRINTK("configure routing for dev %016llx " 913 "reported 0x%x. Forgotten\n", 914 SAS_ADDR(ex_phy->attached_sas_addr), res); 915 sas_disable_routing(dev, ex_phy->attached_sas_addr); 916 return res; 917 } 918 919 res = sas_ex_join_wide_port(dev, phy_id); 920 if (!res) { 921 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 922 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 923 return res; 924 } 925 926 switch (ex_phy->attached_dev_type) { 927 case SAS_END_DEV: 928 child = sas_ex_discover_end_dev(dev, phy_id); 929 break; 930 case FANOUT_DEV: 931 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 932 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 933 "attached to ex %016llx phy 0x%x\n", 934 SAS_ADDR(ex_phy->attached_sas_addr), 935 ex_phy->attached_phy_id, 936 SAS_ADDR(dev->sas_addr), 937 phy_id); 938 sas_ex_disable_phy(dev, phy_id); 939 break; 940 } else 941 memcpy(dev->port->disc.fanout_sas_addr, 942 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 943 /* fallthrough */ 944 case EDGE_DEV: 945 child = sas_ex_discover_expander(dev, phy_id); 946 break; 947 default: 948 break; 949 } 950 951 if (child) { 952 int i; 953 954 for (i = 0; i < ex->num_phys; i++) { 955 if (ex->ex_phy[i].phy_state == PHY_VACANT || 956 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 957 continue; 958 /* 959 * Due to races, the phy might not get added to the 960 * wide port, so we add the phy to the wide port here. 961 */ 962 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 963 SAS_ADDR(child->sas_addr)) { 964 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 965 res = sas_ex_join_wide_port(dev, i); 966 if (!res) 967 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 968 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 969 970 } 971 } 972 } 973 974 return res; 975 } 976 977 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 978 { 979 struct expander_device *ex = &dev->ex_dev; 980 int i; 981 982 for (i = 0; i < ex->num_phys; i++) { 983 struct ex_phy *phy = &ex->ex_phy[i]; 984 985 if (phy->phy_state == PHY_VACANT || 986 phy->phy_state == PHY_NOT_PRESENT) 987 continue; 988 989 if ((phy->attached_dev_type == EDGE_DEV || 990 phy->attached_dev_type == FANOUT_DEV) && 991 phy->routing_attr == SUBTRACTIVE_ROUTING) { 992 993 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 994 995 return 1; 996 } 997 } 998 return 0; 999 } 1000 1001 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1002 { 1003 struct expander_device *ex = &dev->ex_dev; 1004 struct domain_device *child; 1005 u8 sub_addr[8] = {0, }; 1006 1007 list_for_each_entry(child, &ex->children, siblings) { 1008 if (child->dev_type != EDGE_DEV && 1009 child->dev_type != FANOUT_DEV) 1010 continue; 1011 if (sub_addr[0] == 0) { 1012 sas_find_sub_addr(child, sub_addr); 1013 continue; 1014 } else { 1015 u8 s2[8]; 1016 1017 if (sas_find_sub_addr(child, s2) && 1018 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1019 1020 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1021 "diverges from subtractive " 1022 "boundary %016llx\n", 1023 SAS_ADDR(dev->sas_addr), 1024 SAS_ADDR(child->sas_addr), 1025 SAS_ADDR(s2), 1026 SAS_ADDR(sub_addr)); 1027 1028 sas_ex_disable_port(child, s2); 1029 } 1030 } 1031 } 1032 return 0; 1033 } 1034 /** 1035 * sas_ex_discover_devices -- discover devices attached to this expander 1036 * dev: pointer to the expander domain device 1037 * single: if you want to do a single phy, else set to -1; 1038 * 1039 * Configure this expander for use with its devices and register the 1040 * devices of this expander. 1041 */ 1042 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1043 { 1044 struct expander_device *ex = &dev->ex_dev; 1045 int i = 0, end = ex->num_phys; 1046 int res = 0; 1047 1048 if (0 <= single && single < end) { 1049 i = single; 1050 end = i+1; 1051 } 1052 1053 for ( ; i < end; i++) { 1054 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1055 1056 if (ex_phy->phy_state == PHY_VACANT || 1057 ex_phy->phy_state == PHY_NOT_PRESENT || 1058 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1059 continue; 1060 1061 switch (ex_phy->linkrate) { 1062 case SAS_PHY_DISABLED: 1063 case SAS_PHY_RESET_PROBLEM: 1064 case SAS_SATA_PORT_SELECTOR: 1065 continue; 1066 default: 1067 res = sas_ex_discover_dev(dev, i); 1068 if (res) 1069 break; 1070 continue; 1071 } 1072 } 1073 1074 if (!res) 1075 sas_check_level_subtractive_boundary(dev); 1076 1077 return res; 1078 } 1079 1080 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1081 { 1082 struct expander_device *ex = &dev->ex_dev; 1083 int i; 1084 u8 *sub_sas_addr = NULL; 1085 1086 if (dev->dev_type != EDGE_DEV) 1087 return 0; 1088 1089 for (i = 0; i < ex->num_phys; i++) { 1090 struct ex_phy *phy = &ex->ex_phy[i]; 1091 1092 if (phy->phy_state == PHY_VACANT || 1093 phy->phy_state == PHY_NOT_PRESENT) 1094 continue; 1095 1096 if ((phy->attached_dev_type == FANOUT_DEV || 1097 phy->attached_dev_type == EDGE_DEV) && 1098 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1099 1100 if (!sub_sas_addr) 1101 sub_sas_addr = &phy->attached_sas_addr[0]; 1102 else if (SAS_ADDR(sub_sas_addr) != 1103 SAS_ADDR(phy->attached_sas_addr)) { 1104 1105 SAS_DPRINTK("ex %016llx phy 0x%x " 1106 "diverges(%016llx) on subtractive " 1107 "boundary(%016llx). Disabled\n", 1108 SAS_ADDR(dev->sas_addr), i, 1109 SAS_ADDR(phy->attached_sas_addr), 1110 SAS_ADDR(sub_sas_addr)); 1111 sas_ex_disable_phy(dev, i); 1112 } 1113 } 1114 } 1115 return 0; 1116 } 1117 1118 static void sas_print_parent_topology_bug(struct domain_device *child, 1119 struct ex_phy *parent_phy, 1120 struct ex_phy *child_phy) 1121 { 1122 static const char ra_char[] = { 1123 [DIRECT_ROUTING] = 'D', 1124 [SUBTRACTIVE_ROUTING] = 'S', 1125 [TABLE_ROUTING] = 'T', 1126 }; 1127 static const char *ex_type[] = { 1128 [EDGE_DEV] = "edge", 1129 [FANOUT_DEV] = "fanout", 1130 }; 1131 struct domain_device *parent = child->parent; 1132 1133 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1134 "has %c:%c routing link!\n", 1135 1136 ex_type[parent->dev_type], 1137 SAS_ADDR(parent->sas_addr), 1138 parent_phy->phy_id, 1139 1140 ex_type[child->dev_type], 1141 SAS_ADDR(child->sas_addr), 1142 child_phy->phy_id, 1143 1144 ra_char[parent_phy->routing_attr], 1145 ra_char[child_phy->routing_attr]); 1146 } 1147 1148 static int sas_check_eeds(struct domain_device *child, 1149 struct ex_phy *parent_phy, 1150 struct ex_phy *child_phy) 1151 { 1152 int res = 0; 1153 struct domain_device *parent = child->parent; 1154 1155 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1156 res = -ENODEV; 1157 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1158 "phy S:0x%x, while there is a fanout ex %016llx\n", 1159 SAS_ADDR(parent->sas_addr), 1160 parent_phy->phy_id, 1161 SAS_ADDR(child->sas_addr), 1162 child_phy->phy_id, 1163 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1164 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1165 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1166 SAS_ADDR_SIZE); 1167 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1168 SAS_ADDR_SIZE); 1169 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1170 SAS_ADDR(parent->sas_addr)) || 1171 (SAS_ADDR(parent->port->disc.eeds_a) == 1172 SAS_ADDR(child->sas_addr))) 1173 && 1174 ((SAS_ADDR(parent->port->disc.eeds_b) == 1175 SAS_ADDR(parent->sas_addr)) || 1176 (SAS_ADDR(parent->port->disc.eeds_b) == 1177 SAS_ADDR(child->sas_addr)))) 1178 ; 1179 else { 1180 res = -ENODEV; 1181 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1182 "phy 0x%x link forms a third EEDS!\n", 1183 SAS_ADDR(parent->sas_addr), 1184 parent_phy->phy_id, 1185 SAS_ADDR(child->sas_addr), 1186 child_phy->phy_id); 1187 } 1188 1189 return res; 1190 } 1191 1192 /* Here we spill over 80 columns. It is intentional. 1193 */ 1194 static int sas_check_parent_topology(struct domain_device *child) 1195 { 1196 struct expander_device *child_ex = &child->ex_dev; 1197 struct expander_device *parent_ex; 1198 int i; 1199 int res = 0; 1200 1201 if (!child->parent) 1202 return 0; 1203 1204 if (child->parent->dev_type != EDGE_DEV && 1205 child->parent->dev_type != FANOUT_DEV) 1206 return 0; 1207 1208 parent_ex = &child->parent->ex_dev; 1209 1210 for (i = 0; i < parent_ex->num_phys; i++) { 1211 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1212 struct ex_phy *child_phy; 1213 1214 if (parent_phy->phy_state == PHY_VACANT || 1215 parent_phy->phy_state == PHY_NOT_PRESENT) 1216 continue; 1217 1218 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1219 continue; 1220 1221 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1222 1223 switch (child->parent->dev_type) { 1224 case EDGE_DEV: 1225 if (child->dev_type == FANOUT_DEV) { 1226 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1227 child_phy->routing_attr != TABLE_ROUTING) { 1228 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1229 res = -ENODEV; 1230 } 1231 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1232 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1233 res = sas_check_eeds(child, parent_phy, child_phy); 1234 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1235 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1236 res = -ENODEV; 1237 } 1238 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1239 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1240 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1241 res = -ENODEV; 1242 } 1243 break; 1244 case FANOUT_DEV: 1245 if (parent_phy->routing_attr != TABLE_ROUTING || 1246 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1247 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1248 res = -ENODEV; 1249 } 1250 break; 1251 default: 1252 break; 1253 } 1254 } 1255 1256 return res; 1257 } 1258 1259 #define RRI_REQ_SIZE 16 1260 #define RRI_RESP_SIZE 44 1261 1262 static int sas_configure_present(struct domain_device *dev, int phy_id, 1263 u8 *sas_addr, int *index, int *present) 1264 { 1265 int i, res = 0; 1266 struct expander_device *ex = &dev->ex_dev; 1267 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1268 u8 *rri_req; 1269 u8 *rri_resp; 1270 1271 *present = 0; 1272 *index = 0; 1273 1274 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1275 if (!rri_req) 1276 return -ENOMEM; 1277 1278 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1279 if (!rri_resp) { 1280 kfree(rri_req); 1281 return -ENOMEM; 1282 } 1283 1284 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1285 rri_req[9] = phy_id; 1286 1287 for (i = 0; i < ex->max_route_indexes ; i++) { 1288 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1289 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1290 RRI_RESP_SIZE); 1291 if (res) 1292 goto out; 1293 res = rri_resp[2]; 1294 if (res == SMP_RESP_NO_INDEX) { 1295 SAS_DPRINTK("overflow of indexes: dev %016llx " 1296 "phy 0x%x index 0x%x\n", 1297 SAS_ADDR(dev->sas_addr), phy_id, i); 1298 goto out; 1299 } else if (res != SMP_RESP_FUNC_ACC) { 1300 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1301 "result 0x%x\n", __func__, 1302 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1303 goto out; 1304 } 1305 if (SAS_ADDR(sas_addr) != 0) { 1306 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1307 *index = i; 1308 if ((rri_resp[12] & 0x80) == 0x80) 1309 *present = 0; 1310 else 1311 *present = 1; 1312 goto out; 1313 } else if (SAS_ADDR(rri_resp+16) == 0) { 1314 *index = i; 1315 *present = 0; 1316 goto out; 1317 } 1318 } else if (SAS_ADDR(rri_resp+16) == 0 && 1319 phy->last_da_index < i) { 1320 phy->last_da_index = i; 1321 *index = i; 1322 *present = 0; 1323 goto out; 1324 } 1325 } 1326 res = -1; 1327 out: 1328 kfree(rri_req); 1329 kfree(rri_resp); 1330 return res; 1331 } 1332 1333 #define CRI_REQ_SIZE 44 1334 #define CRI_RESP_SIZE 8 1335 1336 static int sas_configure_set(struct domain_device *dev, int phy_id, 1337 u8 *sas_addr, int index, int include) 1338 { 1339 int res; 1340 u8 *cri_req; 1341 u8 *cri_resp; 1342 1343 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1344 if (!cri_req) 1345 return -ENOMEM; 1346 1347 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1348 if (!cri_resp) { 1349 kfree(cri_req); 1350 return -ENOMEM; 1351 } 1352 1353 cri_req[1] = SMP_CONF_ROUTE_INFO; 1354 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1355 cri_req[9] = phy_id; 1356 if (SAS_ADDR(sas_addr) == 0 || !include) 1357 cri_req[12] |= 0x80; 1358 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1359 1360 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1361 CRI_RESP_SIZE); 1362 if (res) 1363 goto out; 1364 res = cri_resp[2]; 1365 if (res == SMP_RESP_NO_INDEX) { 1366 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1367 "index 0x%x\n", 1368 SAS_ADDR(dev->sas_addr), phy_id, index); 1369 } 1370 out: 1371 kfree(cri_req); 1372 kfree(cri_resp); 1373 return res; 1374 } 1375 1376 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1377 u8 *sas_addr, int include) 1378 { 1379 int index; 1380 int present; 1381 int res; 1382 1383 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1384 if (res) 1385 return res; 1386 if (include ^ present) 1387 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1388 1389 return res; 1390 } 1391 1392 /** 1393 * sas_configure_parent -- configure routing table of parent 1394 * parent: parent expander 1395 * child: child expander 1396 * sas_addr: SAS port identifier of device directly attached to child 1397 */ 1398 static int sas_configure_parent(struct domain_device *parent, 1399 struct domain_device *child, 1400 u8 *sas_addr, int include) 1401 { 1402 struct expander_device *ex_parent = &parent->ex_dev; 1403 int res = 0; 1404 int i; 1405 1406 if (parent->parent) { 1407 res = sas_configure_parent(parent->parent, parent, sas_addr, 1408 include); 1409 if (res) 1410 return res; 1411 } 1412 1413 if (ex_parent->conf_route_table == 0) { 1414 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1415 SAS_ADDR(parent->sas_addr)); 1416 return 0; 1417 } 1418 1419 for (i = 0; i < ex_parent->num_phys; i++) { 1420 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1421 1422 if ((phy->routing_attr == TABLE_ROUTING) && 1423 (SAS_ADDR(phy->attached_sas_addr) == 1424 SAS_ADDR(child->sas_addr))) { 1425 res = sas_configure_phy(parent, i, sas_addr, include); 1426 if (res) 1427 return res; 1428 } 1429 } 1430 1431 return res; 1432 } 1433 1434 /** 1435 * sas_configure_routing -- configure routing 1436 * dev: expander device 1437 * sas_addr: port identifier of device directly attached to the expander device 1438 */ 1439 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1440 { 1441 if (dev->parent) 1442 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1443 return 0; 1444 } 1445 1446 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1447 { 1448 if (dev->parent) 1449 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1450 return 0; 1451 } 1452 1453 /** 1454 * sas_discover_expander -- expander discovery 1455 * @ex: pointer to expander domain device 1456 * 1457 * See comment in sas_discover_sata(). 1458 */ 1459 static int sas_discover_expander(struct domain_device *dev) 1460 { 1461 int res; 1462 1463 res = sas_notify_lldd_dev_found(dev); 1464 if (res) 1465 return res; 1466 1467 res = sas_ex_general(dev); 1468 if (res) 1469 goto out_err; 1470 res = sas_ex_manuf_info(dev); 1471 if (res) 1472 goto out_err; 1473 1474 res = sas_expander_discover(dev); 1475 if (res) { 1476 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1477 SAS_ADDR(dev->sas_addr), res); 1478 goto out_err; 1479 } 1480 1481 sas_check_ex_subtractive_boundary(dev); 1482 res = sas_check_parent_topology(dev); 1483 if (res) 1484 goto out_err; 1485 return 0; 1486 out_err: 1487 sas_notify_lldd_dev_gone(dev); 1488 return res; 1489 } 1490 1491 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1492 { 1493 int res = 0; 1494 struct domain_device *dev; 1495 1496 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1497 if (dev->dev_type == EDGE_DEV || 1498 dev->dev_type == FANOUT_DEV) { 1499 struct sas_expander_device *ex = 1500 rphy_to_expander_device(dev->rphy); 1501 1502 if (level == ex->level) 1503 res = sas_ex_discover_devices(dev, -1); 1504 else if (level > 0) 1505 res = sas_ex_discover_devices(port->port_dev, -1); 1506 1507 } 1508 } 1509 1510 return res; 1511 } 1512 1513 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1514 { 1515 int res; 1516 int level; 1517 1518 do { 1519 level = port->disc.max_level; 1520 res = sas_ex_level_discovery(port, level); 1521 mb(); 1522 } while (level < port->disc.max_level); 1523 1524 return res; 1525 } 1526 1527 int sas_discover_root_expander(struct domain_device *dev) 1528 { 1529 int res; 1530 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1531 1532 res = sas_rphy_add(dev->rphy); 1533 if (res) 1534 goto out_err; 1535 1536 ex->level = dev->port->disc.max_level; /* 0 */ 1537 res = sas_discover_expander(dev); 1538 if (res) 1539 goto out_err2; 1540 1541 sas_ex_bfs_disc(dev->port); 1542 1543 return res; 1544 1545 out_err2: 1546 sas_rphy_remove(dev->rphy); 1547 out_err: 1548 return res; 1549 } 1550 1551 /* ---------- Domain revalidation ---------- */ 1552 1553 static int sas_get_phy_discover(struct domain_device *dev, 1554 int phy_id, struct smp_resp *disc_resp) 1555 { 1556 int res; 1557 u8 *disc_req; 1558 1559 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1560 if (!disc_req) 1561 return -ENOMEM; 1562 1563 disc_req[1] = SMP_DISCOVER; 1564 disc_req[9] = phy_id; 1565 1566 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1567 disc_resp, DISCOVER_RESP_SIZE); 1568 if (res) 1569 goto out; 1570 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1571 res = disc_resp->result; 1572 goto out; 1573 } 1574 out: 1575 kfree(disc_req); 1576 return res; 1577 } 1578 1579 static int sas_get_phy_change_count(struct domain_device *dev, 1580 int phy_id, int *pcc) 1581 { 1582 int res; 1583 struct smp_resp *disc_resp; 1584 1585 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1586 if (!disc_resp) 1587 return -ENOMEM; 1588 1589 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1590 if (!res) 1591 *pcc = disc_resp->disc.change_count; 1592 1593 kfree(disc_resp); 1594 return res; 1595 } 1596 1597 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1598 int phy_id, u8 *attached_sas_addr) 1599 { 1600 int res; 1601 struct smp_resp *disc_resp; 1602 struct discover_resp *dr; 1603 1604 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1605 if (!disc_resp) 1606 return -ENOMEM; 1607 dr = &disc_resp->disc; 1608 1609 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1610 if (!res) { 1611 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1612 if (dr->attached_dev_type == 0) 1613 memset(attached_sas_addr, 0, 8); 1614 } 1615 kfree(disc_resp); 1616 return res; 1617 } 1618 1619 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1620 int from_phy, bool update) 1621 { 1622 struct expander_device *ex = &dev->ex_dev; 1623 int res = 0; 1624 int i; 1625 1626 for (i = from_phy; i < ex->num_phys; i++) { 1627 int phy_change_count = 0; 1628 1629 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1630 if (res) 1631 goto out; 1632 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1633 if (update) 1634 ex->ex_phy[i].phy_change_count = 1635 phy_change_count; 1636 *phy_id = i; 1637 return 0; 1638 } 1639 } 1640 out: 1641 return res; 1642 } 1643 1644 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1645 { 1646 int res; 1647 u8 *rg_req; 1648 struct smp_resp *rg_resp; 1649 1650 rg_req = alloc_smp_req(RG_REQ_SIZE); 1651 if (!rg_req) 1652 return -ENOMEM; 1653 1654 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1655 if (!rg_resp) { 1656 kfree(rg_req); 1657 return -ENOMEM; 1658 } 1659 1660 rg_req[1] = SMP_REPORT_GENERAL; 1661 1662 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1663 RG_RESP_SIZE); 1664 if (res) 1665 goto out; 1666 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1667 res = rg_resp->result; 1668 goto out; 1669 } 1670 1671 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1672 out: 1673 kfree(rg_resp); 1674 kfree(rg_req); 1675 return res; 1676 } 1677 /** 1678 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1679 * @dev:domain device to be detect. 1680 * @src_dev: the device which originated BROADCAST(CHANGE). 1681 * 1682 * Add self-configuration expander suport. Suppose two expander cascading, 1683 * when the first level expander is self-configuring, hotplug the disks in 1684 * second level expander, BROADCAST(CHANGE) will not only be originated 1685 * in the second level expander, but also be originated in the first level 1686 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1687 * expander changed count in two level expanders will all increment at least 1688 * once, but the phy which chang count has changed is the source device which 1689 * we concerned. 1690 */ 1691 1692 static int sas_find_bcast_dev(struct domain_device *dev, 1693 struct domain_device **src_dev) 1694 { 1695 struct expander_device *ex = &dev->ex_dev; 1696 int ex_change_count = -1; 1697 int phy_id = -1; 1698 int res; 1699 struct domain_device *ch; 1700 1701 res = sas_get_ex_change_count(dev, &ex_change_count); 1702 if (res) 1703 goto out; 1704 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1705 /* Just detect if this expander phys phy change count changed, 1706 * in order to determine if this expander originate BROADCAST, 1707 * and do not update phy change count field in our structure. 1708 */ 1709 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1710 if (phy_id != -1) { 1711 *src_dev = dev; 1712 ex->ex_change_count = ex_change_count; 1713 SAS_DPRINTK("Expander phy change count has changed\n"); 1714 return res; 1715 } else 1716 SAS_DPRINTK("Expander phys DID NOT change\n"); 1717 } 1718 list_for_each_entry(ch, &ex->children, siblings) { 1719 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1720 res = sas_find_bcast_dev(ch, src_dev); 1721 if (src_dev) 1722 return res; 1723 } 1724 } 1725 out: 1726 return res; 1727 } 1728 1729 static void sas_unregister_ex_tree(struct domain_device *dev) 1730 { 1731 struct expander_device *ex = &dev->ex_dev; 1732 struct domain_device *child, *n; 1733 1734 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1735 child->gone = 1; 1736 if (child->dev_type == EDGE_DEV || 1737 child->dev_type == FANOUT_DEV) 1738 sas_unregister_ex_tree(child); 1739 else 1740 sas_unregister_dev(child); 1741 } 1742 sas_unregister_dev(dev); 1743 } 1744 1745 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1746 int phy_id, bool last) 1747 { 1748 struct expander_device *ex_dev = &parent->ex_dev; 1749 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1750 struct domain_device *child, *n; 1751 if (last) { 1752 list_for_each_entry_safe(child, n, 1753 &ex_dev->children, siblings) { 1754 if (SAS_ADDR(child->sas_addr) == 1755 SAS_ADDR(phy->attached_sas_addr)) { 1756 child->gone = 1; 1757 if (child->dev_type == EDGE_DEV || 1758 child->dev_type == FANOUT_DEV) 1759 sas_unregister_ex_tree(child); 1760 else 1761 sas_unregister_dev(child); 1762 break; 1763 } 1764 } 1765 parent->gone = 1; 1766 sas_disable_routing(parent, phy->attached_sas_addr); 1767 } 1768 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1769 sas_port_delete_phy(phy->port, phy->phy); 1770 if (phy->port->num_phys == 0) 1771 sas_port_delete(phy->port); 1772 phy->port = NULL; 1773 } 1774 1775 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1776 const int level) 1777 { 1778 struct expander_device *ex_root = &root->ex_dev; 1779 struct domain_device *child; 1780 int res = 0; 1781 1782 list_for_each_entry(child, &ex_root->children, siblings) { 1783 if (child->dev_type == EDGE_DEV || 1784 child->dev_type == FANOUT_DEV) { 1785 struct sas_expander_device *ex = 1786 rphy_to_expander_device(child->rphy); 1787 1788 if (level > ex->level) 1789 res = sas_discover_bfs_by_root_level(child, 1790 level); 1791 else if (level == ex->level) 1792 res = sas_ex_discover_devices(child, -1); 1793 } 1794 } 1795 return res; 1796 } 1797 1798 static int sas_discover_bfs_by_root(struct domain_device *dev) 1799 { 1800 int res; 1801 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1802 int level = ex->level+1; 1803 1804 res = sas_ex_discover_devices(dev, -1); 1805 if (res) 1806 goto out; 1807 do { 1808 res = sas_discover_bfs_by_root_level(dev, level); 1809 mb(); 1810 level += 1; 1811 } while (level <= dev->port->disc.max_level); 1812 out: 1813 return res; 1814 } 1815 1816 static int sas_discover_new(struct domain_device *dev, int phy_id) 1817 { 1818 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1819 struct domain_device *child; 1820 bool found = false; 1821 int res, i; 1822 1823 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1824 SAS_ADDR(dev->sas_addr), phy_id); 1825 res = sas_ex_phy_discover(dev, phy_id); 1826 if (res) 1827 goto out; 1828 /* to support the wide port inserted */ 1829 for (i = 0; i < dev->ex_dev.num_phys; i++) { 1830 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; 1831 if (i == phy_id) 1832 continue; 1833 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == 1834 SAS_ADDR(ex_phy->attached_sas_addr)) { 1835 found = true; 1836 break; 1837 } 1838 } 1839 if (found) { 1840 sas_ex_join_wide_port(dev, phy_id); 1841 return 0; 1842 } 1843 res = sas_ex_discover_devices(dev, phy_id); 1844 if (!res) 1845 goto out; 1846 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1847 if (SAS_ADDR(child->sas_addr) == 1848 SAS_ADDR(ex_phy->attached_sas_addr)) { 1849 if (child->dev_type == EDGE_DEV || 1850 child->dev_type == FANOUT_DEV) 1851 res = sas_discover_bfs_by_root(child); 1852 break; 1853 } 1854 } 1855 out: 1856 return res; 1857 } 1858 1859 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1860 { 1861 struct expander_device *ex = &dev->ex_dev; 1862 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1863 u8 attached_sas_addr[8]; 1864 int res; 1865 1866 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1867 switch (res) { 1868 case SMP_RESP_NO_PHY: 1869 phy->phy_state = PHY_NOT_PRESENT; 1870 sas_unregister_devs_sas_addr(dev, phy_id, last); 1871 goto out; break; 1872 case SMP_RESP_PHY_VACANT: 1873 phy->phy_state = PHY_VACANT; 1874 sas_unregister_devs_sas_addr(dev, phy_id, last); 1875 goto out; break; 1876 case SMP_RESP_FUNC_ACC: 1877 break; 1878 } 1879 1880 if (SAS_ADDR(attached_sas_addr) == 0) { 1881 phy->phy_state = PHY_EMPTY; 1882 sas_unregister_devs_sas_addr(dev, phy_id, last); 1883 } else if (SAS_ADDR(attached_sas_addr) == 1884 SAS_ADDR(phy->attached_sas_addr)) { 1885 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1886 SAS_ADDR(dev->sas_addr), phy_id); 1887 sas_ex_phy_discover(dev, phy_id); 1888 } else 1889 res = sas_discover_new(dev, phy_id); 1890 out: 1891 return res; 1892 } 1893 1894 /** 1895 * sas_rediscover - revalidate the domain. 1896 * @dev:domain device to be detect. 1897 * @phy_id: the phy id will be detected. 1898 * 1899 * NOTE: this process _must_ quit (return) as soon as any connection 1900 * errors are encountered. Connection recovery is done elsewhere. 1901 * Discover process only interrogates devices in order to discover the 1902 * domain.For plugging out, we un-register the device only when it is 1903 * the last phy in the port, for other phys in this port, we just delete it 1904 * from the port.For inserting, we do discovery when it is the 1905 * first phy,for other phys in this port, we add it to the port to 1906 * forming the wide-port. 1907 */ 1908 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1909 { 1910 struct expander_device *ex = &dev->ex_dev; 1911 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1912 int res = 0; 1913 int i; 1914 bool last = true; /* is this the last phy of the port */ 1915 1916 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1917 SAS_ADDR(dev->sas_addr), phy_id); 1918 1919 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1920 for (i = 0; i < ex->num_phys; i++) { 1921 struct ex_phy *phy = &ex->ex_phy[i]; 1922 1923 if (i == phy_id) 1924 continue; 1925 if (SAS_ADDR(phy->attached_sas_addr) == 1926 SAS_ADDR(changed_phy->attached_sas_addr)) { 1927 SAS_DPRINTK("phy%d part of wide port with " 1928 "phy%d\n", phy_id, i); 1929 last = false; 1930 break; 1931 } 1932 } 1933 res = sas_rediscover_dev(dev, phy_id, last); 1934 } else 1935 res = sas_discover_new(dev, phy_id); 1936 return res; 1937 } 1938 1939 /** 1940 * sas_revalidate_domain -- revalidate the domain 1941 * @port: port to the domain of interest 1942 * 1943 * NOTE: this process _must_ quit (return) as soon as any connection 1944 * errors are encountered. Connection recovery is done elsewhere. 1945 * Discover process only interrogates devices in order to discover the 1946 * domain. 1947 */ 1948 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1949 { 1950 int res; 1951 struct domain_device *dev = NULL; 1952 1953 res = sas_find_bcast_dev(port_dev, &dev); 1954 if (res) 1955 goto out; 1956 if (dev) { 1957 struct expander_device *ex = &dev->ex_dev; 1958 int i = 0, phy_id; 1959 1960 do { 1961 phy_id = -1; 1962 res = sas_find_bcast_phy(dev, &phy_id, i, true); 1963 if (phy_id == -1) 1964 break; 1965 res = sas_rediscover(dev, phy_id); 1966 i = phy_id + 1; 1967 } while (i < ex->num_phys); 1968 } 1969 out: 1970 return res; 1971 } 1972 1973 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1974 struct request *req) 1975 { 1976 struct domain_device *dev; 1977 int ret, type; 1978 struct request *rsp = req->next_rq; 1979 1980 if (!rsp) { 1981 printk("%s: space for a smp response is missing\n", 1982 __func__); 1983 return -EINVAL; 1984 } 1985 1986 /* no rphy means no smp target support (ie aic94xx host) */ 1987 if (!rphy) 1988 return sas_smp_host_handler(shost, req, rsp); 1989 1990 type = rphy->identify.device_type; 1991 1992 if (type != SAS_EDGE_EXPANDER_DEVICE && 1993 type != SAS_FANOUT_EXPANDER_DEVICE) { 1994 printk("%s: can we send a smp request to a device?\n", 1995 __func__); 1996 return -EINVAL; 1997 } 1998 1999 dev = sas_find_dev_by_rphy(rphy); 2000 if (!dev) { 2001 printk("%s: fail to find a domain_device?\n", __func__); 2002 return -EINVAL; 2003 } 2004 2005 /* do we need to support multiple segments? */ 2006 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 2007 printk("%s: multiple segments req %u %u, rsp %u %u\n", 2008 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 2009 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 2010 return -EINVAL; 2011 } 2012 2013 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2014 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2015 if (ret > 0) { 2016 /* positive number is the untransferred residual */ 2017 rsp->resid_len = ret; 2018 req->resid_len = 0; 2019 ret = 0; 2020 } else if (ret == 0) { 2021 rsp->resid_len = 0; 2022 req->resid_len = 0; 2023 } 2024 2025 return ret; 2026 } 2027