1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
44 static void smp_task_timedout(unsigned long _task)
45 {
46 	struct sas_task *task = (void *) _task;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&task->task_state_lock, flags);
50 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 	spin_unlock_irqrestore(&task->task_state_lock, flags);
53 
54 	complete(&task->slow_task->completion);
55 }
56 
57 static void smp_task_done(struct sas_task *task)
58 {
59 	if (!del_timer(&task->slow_task->timer))
60 		return;
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
67 static int smp_execute_task_sg(struct domain_device *dev,
68 		struct scatterlist *req, struct scatterlist *resp)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		task->smp_task.smp_req = *req;
90 		task->smp_task.smp_resp = *resp;
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.data = (unsigned long) task;
95 		task->slow_task->timer.function = smp_task_timedout;
96 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 		add_timer(&task->slow_task->timer);
98 
99 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 
101 		if (res) {
102 			del_timer(&task->slow_task->timer);
103 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 			break;
105 		}
106 
107 		wait_for_completion(&task->slow_task->completion);
108 		res = -ECOMM;
109 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 			SAS_DPRINTK("smp task timed out or aborted\n");
111 			i->dft->lldd_abort_task(task);
112 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 				SAS_DPRINTK("SMP task aborted and not done\n");
114 				break;
115 			}
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAM_STAT_GOOD) {
119 			res = 0;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124 			/* no error, but return the number of bytes of
125 			 * underrun */
126 			res = task->task_status.residual;
127 			break;
128 		}
129 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 		    task->task_status.stat == SAS_DATA_OVERRUN) {
131 			res = -EMSGSIZE;
132 			break;
133 		}
134 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 			break;
137 		else {
138 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 				    "status 0x%x\n", __func__,
140 				    SAS_ADDR(dev->sas_addr),
141 				    task->task_status.resp,
142 				    task->task_status.stat);
143 			sas_free_task(task);
144 			task = NULL;
145 		}
146 	}
147 	mutex_unlock(&dev->ex_dev.cmd_mutex);
148 
149 	BUG_ON(retry == 3 && task != NULL);
150 	sas_free_task(task);
151 	return res;
152 }
153 
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 			    void *resp, int resp_size)
156 {
157 	struct scatterlist req_sg;
158 	struct scatterlist resp_sg;
159 
160 	sg_init_one(&req_sg, req, req_size);
161 	sg_init_one(&resp_sg, resp, resp_size);
162 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164 
165 /* ---------- Allocations ---------- */
166 
167 static inline void *alloc_smp_req(int size)
168 {
169 	u8 *p = kzalloc(size, GFP_KERNEL);
170 	if (p)
171 		p[0] = SMP_REQUEST;
172 	return p;
173 }
174 
175 static inline void *alloc_smp_resp(int size)
176 {
177 	return kzalloc(size, GFP_KERNEL);
178 }
179 
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182 	switch (phy->routing_attr) {
183 	case TABLE_ROUTING:
184 		if (dev->ex_dev.t2t_supp)
185 			return 'U';
186 		else
187 			return 'T';
188 	case DIRECT_ROUTING:
189 		return 'D';
190 	case SUBTRACTIVE_ROUTING:
191 		return 'S';
192 	default:
193 		return '?';
194 	}
195 }
196 
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199 	/* This is detecting a failure to transmit initial dev to host
200 	 * FIS as described in section J.5 of sas-2 r16
201 	 */
202 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 		return SAS_SATA_PENDING;
205 	else
206 		return dr->attached_dev_type;
207 }
208 
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211 	enum sas_device_type dev_type;
212 	enum sas_linkrate linkrate;
213 	u8 sas_addr[SAS_ADDR_SIZE];
214 	struct smp_resp *resp = rsp;
215 	struct discover_resp *dr = &resp->disc;
216 	struct sas_ha_struct *ha = dev->port->ha;
217 	struct expander_device *ex = &dev->ex_dev;
218 	struct ex_phy *phy = &ex->ex_phy[phy_id];
219 	struct sas_rphy *rphy = dev->rphy;
220 	bool new_phy = !phy->phy;
221 	char *type;
222 
223 	if (new_phy) {
224 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 			return;
226 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227 
228 		/* FIXME: error_handling */
229 		BUG_ON(!phy->phy);
230 	}
231 
232 	switch (resp->result) {
233 	case SMP_RESP_PHY_VACANT:
234 		phy->phy_state = PHY_VACANT;
235 		break;
236 	default:
237 		phy->phy_state = PHY_NOT_PRESENT;
238 		break;
239 	case SMP_RESP_FUNC_ACC:
240 		phy->phy_state = PHY_EMPTY; /* do not know yet */
241 		break;
242 	}
243 
244 	/* check if anything important changed to squelch debug */
245 	dev_type = phy->attached_dev_type;
246 	linkrate  = phy->linkrate;
247 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248 
249 	/* Handle vacant phy - rest of dr data is not valid so skip it */
250 	if (phy->phy_state == PHY_VACANT) {
251 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 		phy->attached_dev_type = SAS_PHY_UNUSED;
253 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 			phy->phy_id = phy_id;
255 			goto skip;
256 		} else
257 			goto out;
258 	}
259 
260 	phy->attached_dev_type = to_dev_type(dr);
261 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 		goto out;
263 	phy->phy_id = phy_id;
264 	phy->linkrate = dr->linkrate;
265 	phy->attached_sata_host = dr->attached_sata_host;
266 	phy->attached_sata_dev  = dr->attached_sata_dev;
267 	phy->attached_sata_ps   = dr->attached_sata_ps;
268 	phy->attached_iproto = dr->iproto << 1;
269 	phy->attached_tproto = dr->tproto << 1;
270 	/* help some expanders that fail to zero sas_address in the 'no
271 	 * device' case
272 	 */
273 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 	else
277 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 	phy->attached_phy_id = dr->attached_phy_id;
279 	phy->phy_change_count = dr->change_count;
280 	phy->routing_attr = dr->routing_attr;
281 	phy->virtual = dr->virtual;
282 	phy->last_da_index = -1;
283 
284 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 	phy->phy->identify.device_type = dr->attached_dev_type;
286 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 	if (!phy->attached_tproto && dr->attached_sata_dev)
289 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 	phy->phy->identify.phy_identifier = phy_id;
291 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 	phy->phy->negotiated_linkrate = phy->linkrate;
296 
297  skip:
298 	if (new_phy)
299 		if (sas_phy_add(phy->phy)) {
300 			sas_phy_free(phy->phy);
301 			return;
302 		}
303 
304  out:
305 	switch (phy->attached_dev_type) {
306 	case SAS_SATA_PENDING:
307 		type = "stp pending";
308 		break;
309 	case SAS_PHY_UNUSED:
310 		type = "no device";
311 		break;
312 	case SAS_END_DEVICE:
313 		if (phy->attached_iproto) {
314 			if (phy->attached_tproto)
315 				type = "host+target";
316 			else
317 				type = "host";
318 		} else {
319 			if (dr->attached_sata_dev)
320 				type = "stp";
321 			else
322 				type = "ssp";
323 		}
324 		break;
325 	case SAS_EDGE_EXPANDER_DEVICE:
326 	case SAS_FANOUT_EXPANDER_DEVICE:
327 		type = "smp";
328 		break;
329 	default:
330 		type = "unknown";
331 	}
332 
333 	/* this routine is polled by libata error recovery so filter
334 	 * unimportant messages
335 	 */
336 	if (new_phy || phy->attached_dev_type != dev_type ||
337 	    phy->linkrate != linkrate ||
338 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 		/* pass */;
340 	else
341 		return;
342 
343 	/* if the attached device type changed and ata_eh is active,
344 	 * make sure we run revalidation when eh completes (see:
345 	 * sas_enable_revalidation)
346 	 */
347 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349 
350 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
353 		    sas_route_char(dev, phy), phy->linkrate,
354 		    SAS_ADDR(phy->attached_sas_addr), type);
355 }
356 
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 	struct domain_device *dev;
362 	struct sas_rphy *rphy;
363 
364 	if (!ex_phy->port)
365 		return NULL;
366 
367 	rphy = ex_phy->port->rphy;
368 	if (!rphy)
369 		return NULL;
370 
371 	dev = sas_find_dev_by_rphy(rphy);
372 
373 	if (dev && dev_is_sata(dev))
374 		return dev;
375 
376 	return NULL;
377 }
378 
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381 
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 				      u8 *disc_resp, int single)
384 {
385 	struct discover_resp *dr;
386 	int res;
387 
388 	disc_req[9] = single;
389 
390 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 			       disc_resp, DISCOVER_RESP_SIZE);
392 	if (res)
393 		return res;
394 	dr = &((struct smp_resp *)disc_resp)->disc;
395 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 		sas_printk("Found loopback topology, just ignore it!\n");
397 		return 0;
398 	}
399 	sas_set_ex_phy(dev, single, disc_resp);
400 	return 0;
401 }
402 
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405 	struct expander_device *ex = &dev->ex_dev;
406 	int  res = 0;
407 	u8   *disc_req;
408 	u8   *disc_resp;
409 
410 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 	if (!disc_req)
412 		return -ENOMEM;
413 
414 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 	if (!disc_resp) {
416 		kfree(disc_req);
417 		return -ENOMEM;
418 	}
419 
420 	disc_req[1] = SMP_DISCOVER;
421 
422 	if (0 <= single && single < ex->num_phys) {
423 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 	} else {
425 		int i;
426 
427 		for (i = 0; i < ex->num_phys; i++) {
428 			res = sas_ex_phy_discover_helper(dev, disc_req,
429 							 disc_resp, i);
430 			if (res)
431 				goto out_err;
432 		}
433 	}
434 out_err:
435 	kfree(disc_resp);
436 	kfree(disc_req);
437 	return res;
438 }
439 
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442 	struct expander_device *ex = &dev->ex_dev;
443 	int res = -ENOMEM;
444 
445 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
446 	if (!ex->ex_phy)
447 		return -ENOMEM;
448 
449 	res = sas_ex_phy_discover(dev, -1);
450 	if (res)
451 		goto out_err;
452 
453 	return 0;
454  out_err:
455 	kfree(ex->ex_phy);
456 	ex->ex_phy = NULL;
457 	return res;
458 }
459 
460 #define MAX_EXPANDER_PHYS 128
461 
462 static void ex_assign_report_general(struct domain_device *dev,
463 					    struct smp_resp *resp)
464 {
465 	struct report_general_resp *rg = &resp->rg;
466 
467 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 	dev->ex_dev.t2t_supp = rg->t2t_supp;
471 	dev->ex_dev.conf_route_table = rg->conf_route_table;
472 	dev->ex_dev.configuring = rg->configuring;
473 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475 
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478 
479 static int sas_ex_general(struct domain_device *dev)
480 {
481 	u8 *rg_req;
482 	struct smp_resp *rg_resp;
483 	int res;
484 	int i;
485 
486 	rg_req = alloc_smp_req(RG_REQ_SIZE);
487 	if (!rg_req)
488 		return -ENOMEM;
489 
490 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 	if (!rg_resp) {
492 		kfree(rg_req);
493 		return -ENOMEM;
494 	}
495 
496 	rg_req[1] = SMP_REPORT_GENERAL;
497 
498 	for (i = 0; i < 5; i++) {
499 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 				       RG_RESP_SIZE);
501 
502 		if (res) {
503 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 				    SAS_ADDR(dev->sas_addr), res);
505 			goto out;
506 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
509 			res = rg_resp->result;
510 			goto out;
511 		}
512 
513 		ex_assign_report_general(dev, rg_resp);
514 
515 		if (dev->ex_dev.configuring) {
516 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 				    SAS_ADDR(dev->sas_addr));
518 			schedule_timeout_interruptible(5*HZ);
519 		} else
520 			break;
521 	}
522 out:
523 	kfree(rg_req);
524 	kfree(rg_resp);
525 	return res;
526 }
527 
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 					*_mi_resp)
530 {
531 	u8 *mi_resp = _mi_resp;
532 	struct sas_rphy *rphy = dev->rphy;
533 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534 
535 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 	memcpy(edev->product_rev, mi_resp + 36,
538 	       SAS_EXPANDER_PRODUCT_REV_LEN);
539 
540 	if (mi_resp[8] & 1) {
541 		memcpy(edev->component_vendor_id, mi_resp + 40,
542 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 		edev->component_revision_id = mi_resp[50];
545 	}
546 }
547 
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550 
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553 	u8 *mi_req;
554 	u8 *mi_resp;
555 	int res;
556 
557 	mi_req = alloc_smp_req(MI_REQ_SIZE);
558 	if (!mi_req)
559 		return -ENOMEM;
560 
561 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 	if (!mi_resp) {
563 		kfree(mi_req);
564 		return -ENOMEM;
565 	}
566 
567 	mi_req[1] = SMP_REPORT_MANUF_INFO;
568 
569 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 	if (res) {
571 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 			    SAS_ADDR(dev->sas_addr), res);
573 		goto out;
574 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 		goto out;
578 	}
579 
580 	ex_assign_manuf_info(dev, mi_resp);
581 out:
582 	kfree(mi_req);
583 	kfree(mi_resp);
584 	return res;
585 }
586 
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589 
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 			enum phy_func phy_func,
592 			struct sas_phy_linkrates *rates)
593 {
594 	u8 *pc_req;
595 	u8 *pc_resp;
596 	int res;
597 
598 	pc_req = alloc_smp_req(PC_REQ_SIZE);
599 	if (!pc_req)
600 		return -ENOMEM;
601 
602 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 	if (!pc_resp) {
604 		kfree(pc_req);
605 		return -ENOMEM;
606 	}
607 
608 	pc_req[1] = SMP_PHY_CONTROL;
609 	pc_req[9] = phy_id;
610 	pc_req[10]= phy_func;
611 	if (rates) {
612 		pc_req[32] = rates->minimum_linkrate << 4;
613 		pc_req[33] = rates->maximum_linkrate << 4;
614 	}
615 
616 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 
618 	kfree(pc_resp);
619 	kfree(pc_req);
620 	return res;
621 }
622 
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
624 {
625 	struct expander_device *ex = &dev->ex_dev;
626 	struct ex_phy *phy = &ex->ex_phy[phy_id];
627 
628 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629 	phy->linkrate = SAS_PHY_DISABLED;
630 }
631 
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
633 {
634 	struct expander_device *ex = &dev->ex_dev;
635 	int i;
636 
637 	for (i = 0; i < ex->num_phys; i++) {
638 		struct ex_phy *phy = &ex->ex_phy[i];
639 
640 		if (phy->phy_state == PHY_VACANT ||
641 		    phy->phy_state == PHY_NOT_PRESENT)
642 			continue;
643 
644 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645 			sas_ex_disable_phy(dev, i);
646 	}
647 }
648 
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650 					    u8 *sas_addr)
651 {
652 	struct domain_device *dev;
653 
654 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655 		return 1;
656 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658 			return 1;
659 	}
660 	return 0;
661 }
662 
663 #define RPEL_REQ_SIZE	16
664 #define RPEL_RESP_SIZE	32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
666 {
667 	int res;
668 	u8 *req;
669 	u8 *resp;
670 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
672 
673 	req = alloc_smp_req(RPEL_REQ_SIZE);
674 	if (!req)
675 		return -ENOMEM;
676 
677 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
678 	if (!resp) {
679 		kfree(req);
680 		return -ENOMEM;
681 	}
682 
683 	req[1] = SMP_REPORT_PHY_ERR_LOG;
684 	req[9] = phy->number;
685 
686 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687 			            resp, RPEL_RESP_SIZE);
688 
689 	if (!res)
690 		goto out;
691 
692 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
696 
697  out:
698 	kfree(resp);
699 	return res;
700 
701 }
702 
703 #ifdef CONFIG_SCSI_SAS_ATA
704 
705 #define RPS_REQ_SIZE  16
706 #define RPS_RESP_SIZE 60
707 
708 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
709 			    struct smp_resp *rps_resp)
710 {
711 	int res;
712 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
713 	u8 *resp = (u8 *)rps_resp;
714 
715 	if (!rps_req)
716 		return -ENOMEM;
717 
718 	rps_req[1] = SMP_REPORT_PHY_SATA;
719 	rps_req[9] = phy_id;
720 
721 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
722 			            rps_resp, RPS_RESP_SIZE);
723 
724 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
725 	 * standards cockup here.  sas-2 explicitly specifies the FIS
726 	 * should be encoded so that FIS type is in resp[24].
727 	 * However, some expanders endian reverse this.  Undo the
728 	 * reversal here */
729 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
730 		int i;
731 
732 		for (i = 0; i < 5; i++) {
733 			int j = 24 + (i*4);
734 			u8 a, b;
735 			a = resp[j + 0];
736 			b = resp[j + 1];
737 			resp[j + 0] = resp[j + 3];
738 			resp[j + 1] = resp[j + 2];
739 			resp[j + 2] = b;
740 			resp[j + 3] = a;
741 		}
742 	}
743 
744 	kfree(rps_req);
745 	return res;
746 }
747 #endif
748 
749 static void sas_ex_get_linkrate(struct domain_device *parent,
750 				       struct domain_device *child,
751 				       struct ex_phy *parent_phy)
752 {
753 	struct expander_device *parent_ex = &parent->ex_dev;
754 	struct sas_port *port;
755 	int i;
756 
757 	child->pathways = 0;
758 
759 	port = parent_phy->port;
760 
761 	for (i = 0; i < parent_ex->num_phys; i++) {
762 		struct ex_phy *phy = &parent_ex->ex_phy[i];
763 
764 		if (phy->phy_state == PHY_VACANT ||
765 		    phy->phy_state == PHY_NOT_PRESENT)
766 			continue;
767 
768 		if (SAS_ADDR(phy->attached_sas_addr) ==
769 		    SAS_ADDR(child->sas_addr)) {
770 
771 			child->min_linkrate = min(parent->min_linkrate,
772 						  phy->linkrate);
773 			child->max_linkrate = max(parent->max_linkrate,
774 						  phy->linkrate);
775 			child->pathways++;
776 			sas_port_add_phy(port, phy->phy);
777 		}
778 	}
779 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
780 	child->pathways = min(child->pathways, parent->pathways);
781 }
782 
783 static struct domain_device *sas_ex_discover_end_dev(
784 	struct domain_device *parent, int phy_id)
785 {
786 	struct expander_device *parent_ex = &parent->ex_dev;
787 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
788 	struct domain_device *child = NULL;
789 	struct sas_rphy *rphy;
790 	int res;
791 
792 	if (phy->attached_sata_host || phy->attached_sata_ps)
793 		return NULL;
794 
795 	child = sas_alloc_device();
796 	if (!child)
797 		return NULL;
798 
799 	kref_get(&parent->kref);
800 	child->parent = parent;
801 	child->port   = parent->port;
802 	child->iproto = phy->attached_iproto;
803 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
804 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
805 	if (!phy->port) {
806 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
807 		if (unlikely(!phy->port))
808 			goto out_err;
809 		if (unlikely(sas_port_add(phy->port) != 0)) {
810 			sas_port_free(phy->port);
811 			goto out_err;
812 		}
813 	}
814 	sas_ex_get_linkrate(parent, child, phy);
815 	sas_device_set_phy(child, phy->port);
816 
817 #ifdef CONFIG_SCSI_SAS_ATA
818 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
819 		res = sas_get_ata_info(child, phy);
820 		if (res)
821 			goto out_free;
822 
823 		sas_init_dev(child);
824 		res = sas_ata_init(child);
825 		if (res)
826 			goto out_free;
827 		rphy = sas_end_device_alloc(phy->port);
828 		if (!rphy)
829 			goto out_free;
830 
831 		child->rphy = rphy;
832 		get_device(&rphy->dev);
833 
834 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
835 
836 		res = sas_discover_sata(child);
837 		if (res) {
838 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
839 				    "%016llx:0x%x returned 0x%x\n",
840 				    SAS_ADDR(child->sas_addr),
841 				    SAS_ADDR(parent->sas_addr), phy_id, res);
842 			goto out_list_del;
843 		}
844 	} else
845 #endif
846 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
847 		child->dev_type = SAS_END_DEVICE;
848 		rphy = sas_end_device_alloc(phy->port);
849 		/* FIXME: error handling */
850 		if (unlikely(!rphy))
851 			goto out_free;
852 		child->tproto = phy->attached_tproto;
853 		sas_init_dev(child);
854 
855 		child->rphy = rphy;
856 		get_device(&rphy->dev);
857 		sas_fill_in_rphy(child, rphy);
858 
859 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
860 
861 		res = sas_discover_end_dev(child);
862 		if (res) {
863 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
864 				    "at %016llx:0x%x returned 0x%x\n",
865 				    SAS_ADDR(child->sas_addr),
866 				    SAS_ADDR(parent->sas_addr), phy_id, res);
867 			goto out_list_del;
868 		}
869 	} else {
870 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
871 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
872 			    phy_id);
873 		goto out_free;
874 	}
875 
876 	list_add_tail(&child->siblings, &parent_ex->children);
877 	return child;
878 
879  out_list_del:
880 	sas_rphy_free(child->rphy);
881 	list_del(&child->disco_list_node);
882 	spin_lock_irq(&parent->port->dev_list_lock);
883 	list_del(&child->dev_list_node);
884 	spin_unlock_irq(&parent->port->dev_list_lock);
885  out_free:
886 	sas_port_delete(phy->port);
887  out_err:
888 	phy->port = NULL;
889 	sas_put_device(child);
890 	return NULL;
891 }
892 
893 /* See if this phy is part of a wide port */
894 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
895 {
896 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
897 	int i;
898 
899 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
900 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
901 
902 		if (ephy == phy)
903 			continue;
904 
905 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
906 			    SAS_ADDR_SIZE) && ephy->port) {
907 			sas_port_add_phy(ephy->port, phy->phy);
908 			phy->port = ephy->port;
909 			phy->phy_state = PHY_DEVICE_DISCOVERED;
910 			return true;
911 		}
912 	}
913 
914 	return false;
915 }
916 
917 static struct domain_device *sas_ex_discover_expander(
918 	struct domain_device *parent, int phy_id)
919 {
920 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
921 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
922 	struct domain_device *child = NULL;
923 	struct sas_rphy *rphy;
924 	struct sas_expander_device *edev;
925 	struct asd_sas_port *port;
926 	int res;
927 
928 	if (phy->routing_attr == DIRECT_ROUTING) {
929 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
930 			    "allowed\n",
931 			    SAS_ADDR(parent->sas_addr), phy_id,
932 			    SAS_ADDR(phy->attached_sas_addr),
933 			    phy->attached_phy_id);
934 		return NULL;
935 	}
936 	child = sas_alloc_device();
937 	if (!child)
938 		return NULL;
939 
940 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
941 	/* FIXME: better error handling */
942 	BUG_ON(sas_port_add(phy->port) != 0);
943 
944 
945 	switch (phy->attached_dev_type) {
946 	case SAS_EDGE_EXPANDER_DEVICE:
947 		rphy = sas_expander_alloc(phy->port,
948 					  SAS_EDGE_EXPANDER_DEVICE);
949 		break;
950 	case SAS_FANOUT_EXPANDER_DEVICE:
951 		rphy = sas_expander_alloc(phy->port,
952 					  SAS_FANOUT_EXPANDER_DEVICE);
953 		break;
954 	default:
955 		rphy = NULL;	/* shut gcc up */
956 		BUG();
957 	}
958 	port = parent->port;
959 	child->rphy = rphy;
960 	get_device(&rphy->dev);
961 	edev = rphy_to_expander_device(rphy);
962 	child->dev_type = phy->attached_dev_type;
963 	kref_get(&parent->kref);
964 	child->parent = parent;
965 	child->port = port;
966 	child->iproto = phy->attached_iproto;
967 	child->tproto = phy->attached_tproto;
968 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
969 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
970 	sas_ex_get_linkrate(parent, child, phy);
971 	edev->level = parent_ex->level + 1;
972 	parent->port->disc.max_level = max(parent->port->disc.max_level,
973 					   edev->level);
974 	sas_init_dev(child);
975 	sas_fill_in_rphy(child, rphy);
976 	sas_rphy_add(rphy);
977 
978 	spin_lock_irq(&parent->port->dev_list_lock);
979 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
980 	spin_unlock_irq(&parent->port->dev_list_lock);
981 
982 	res = sas_discover_expander(child);
983 	if (res) {
984 		sas_rphy_delete(rphy);
985 		spin_lock_irq(&parent->port->dev_list_lock);
986 		list_del(&child->dev_list_node);
987 		spin_unlock_irq(&parent->port->dev_list_lock);
988 		sas_put_device(child);
989 		return NULL;
990 	}
991 	list_add_tail(&child->siblings, &parent->ex_dev.children);
992 	return child;
993 }
994 
995 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
996 {
997 	struct expander_device *ex = &dev->ex_dev;
998 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
999 	struct domain_device *child = NULL;
1000 	int res = 0;
1001 
1002 	/* Phy state */
1003 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1004 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1005 			res = sas_ex_phy_discover(dev, phy_id);
1006 		if (res)
1007 			return res;
1008 	}
1009 
1010 	/* Parent and domain coherency */
1011 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1012 			     SAS_ADDR(dev->port->sas_addr))) {
1013 		sas_add_parent_port(dev, phy_id);
1014 		return 0;
1015 	}
1016 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1017 			    SAS_ADDR(dev->parent->sas_addr))) {
1018 		sas_add_parent_port(dev, phy_id);
1019 		if (ex_phy->routing_attr == TABLE_ROUTING)
1020 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1021 		return 0;
1022 	}
1023 
1024 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1025 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1026 
1027 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1028 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1029 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1030 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1031 		}
1032 		return 0;
1033 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1034 		return 0;
1035 
1036 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1037 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1038 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1039 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1040 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1041 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1042 			    SAS_ADDR(dev->sas_addr),
1043 			    phy_id);
1044 		return 0;
1045 	}
1046 
1047 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1048 	if (res) {
1049 		SAS_DPRINTK("configure routing for dev %016llx "
1050 			    "reported 0x%x. Forgotten\n",
1051 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1052 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1053 		return res;
1054 	}
1055 
1056 	if (sas_ex_join_wide_port(dev, phy_id)) {
1057 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1058 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1059 		return res;
1060 	}
1061 
1062 	switch (ex_phy->attached_dev_type) {
1063 	case SAS_END_DEVICE:
1064 	case SAS_SATA_PENDING:
1065 		child = sas_ex_discover_end_dev(dev, phy_id);
1066 		break;
1067 	case SAS_FANOUT_EXPANDER_DEVICE:
1068 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1069 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1070 				    "attached to ex %016llx phy 0x%x\n",
1071 				    SAS_ADDR(ex_phy->attached_sas_addr),
1072 				    ex_phy->attached_phy_id,
1073 				    SAS_ADDR(dev->sas_addr),
1074 				    phy_id);
1075 			sas_ex_disable_phy(dev, phy_id);
1076 			break;
1077 		} else
1078 			memcpy(dev->port->disc.fanout_sas_addr,
1079 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1080 		/* fallthrough */
1081 	case SAS_EDGE_EXPANDER_DEVICE:
1082 		child = sas_ex_discover_expander(dev, phy_id);
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 
1088 	if (child) {
1089 		int i;
1090 
1091 		for (i = 0; i < ex->num_phys; i++) {
1092 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1093 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1094 				continue;
1095 			/*
1096 			 * Due to races, the phy might not get added to the
1097 			 * wide port, so we add the phy to the wide port here.
1098 			 */
1099 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1100 			    SAS_ADDR(child->sas_addr)) {
1101 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1102 				if (sas_ex_join_wide_port(dev, i))
1103 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1104 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1105 
1106 			}
1107 		}
1108 	}
1109 
1110 	return res;
1111 }
1112 
1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114 {
1115 	struct expander_device *ex = &dev->ex_dev;
1116 	int i;
1117 
1118 	for (i = 0; i < ex->num_phys; i++) {
1119 		struct ex_phy *phy = &ex->ex_phy[i];
1120 
1121 		if (phy->phy_state == PHY_VACANT ||
1122 		    phy->phy_state == PHY_NOT_PRESENT)
1123 			continue;
1124 
1125 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1126 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1127 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1128 
1129 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1130 
1131 			return 1;
1132 		}
1133 	}
1134 	return 0;
1135 }
1136 
1137 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1138 {
1139 	struct expander_device *ex = &dev->ex_dev;
1140 	struct domain_device *child;
1141 	u8 sub_addr[8] = {0, };
1142 
1143 	list_for_each_entry(child, &ex->children, siblings) {
1144 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1145 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1146 			continue;
1147 		if (sub_addr[0] == 0) {
1148 			sas_find_sub_addr(child, sub_addr);
1149 			continue;
1150 		} else {
1151 			u8 s2[8];
1152 
1153 			if (sas_find_sub_addr(child, s2) &&
1154 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1155 
1156 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1157 					    "diverges from subtractive "
1158 					    "boundary %016llx\n",
1159 					    SAS_ADDR(dev->sas_addr),
1160 					    SAS_ADDR(child->sas_addr),
1161 					    SAS_ADDR(s2),
1162 					    SAS_ADDR(sub_addr));
1163 
1164 				sas_ex_disable_port(child, s2);
1165 			}
1166 		}
1167 	}
1168 	return 0;
1169 }
1170 /**
1171  * sas_ex_discover_devices -- discover devices attached to this expander
1172  * dev: pointer to the expander domain device
1173  * single: if you want to do a single phy, else set to -1;
1174  *
1175  * Configure this expander for use with its devices and register the
1176  * devices of this expander.
1177  */
1178 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1179 {
1180 	struct expander_device *ex = &dev->ex_dev;
1181 	int i = 0, end = ex->num_phys;
1182 	int res = 0;
1183 
1184 	if (0 <= single && single < end) {
1185 		i = single;
1186 		end = i+1;
1187 	}
1188 
1189 	for ( ; i < end; i++) {
1190 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1191 
1192 		if (ex_phy->phy_state == PHY_VACANT ||
1193 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1194 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1195 			continue;
1196 
1197 		switch (ex_phy->linkrate) {
1198 		case SAS_PHY_DISABLED:
1199 		case SAS_PHY_RESET_PROBLEM:
1200 		case SAS_SATA_PORT_SELECTOR:
1201 			continue;
1202 		default:
1203 			res = sas_ex_discover_dev(dev, i);
1204 			if (res)
1205 				break;
1206 			continue;
1207 		}
1208 	}
1209 
1210 	if (!res)
1211 		sas_check_level_subtractive_boundary(dev);
1212 
1213 	return res;
1214 }
1215 
1216 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1217 {
1218 	struct expander_device *ex = &dev->ex_dev;
1219 	int i;
1220 	u8  *sub_sas_addr = NULL;
1221 
1222 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1223 		return 0;
1224 
1225 	for (i = 0; i < ex->num_phys; i++) {
1226 		struct ex_phy *phy = &ex->ex_phy[i];
1227 
1228 		if (phy->phy_state == PHY_VACANT ||
1229 		    phy->phy_state == PHY_NOT_PRESENT)
1230 			continue;
1231 
1232 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1233 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1234 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235 
1236 			if (!sub_sas_addr)
1237 				sub_sas_addr = &phy->attached_sas_addr[0];
1238 			else if (SAS_ADDR(sub_sas_addr) !=
1239 				 SAS_ADDR(phy->attached_sas_addr)) {
1240 
1241 				SAS_DPRINTK("ex %016llx phy 0x%x "
1242 					    "diverges(%016llx) on subtractive "
1243 					    "boundary(%016llx). Disabled\n",
1244 					    SAS_ADDR(dev->sas_addr), i,
1245 					    SAS_ADDR(phy->attached_sas_addr),
1246 					    SAS_ADDR(sub_sas_addr));
1247 				sas_ex_disable_phy(dev, i);
1248 			}
1249 		}
1250 	}
1251 	return 0;
1252 }
1253 
1254 static void sas_print_parent_topology_bug(struct domain_device *child,
1255 						 struct ex_phy *parent_phy,
1256 						 struct ex_phy *child_phy)
1257 {
1258 	static const char *ex_type[] = {
1259 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1260 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1261 	};
1262 	struct domain_device *parent = child->parent;
1263 
1264 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1265 		   "phy 0x%x has %c:%c routing link!\n",
1266 
1267 		   ex_type[parent->dev_type],
1268 		   SAS_ADDR(parent->sas_addr),
1269 		   parent_phy->phy_id,
1270 
1271 		   ex_type[child->dev_type],
1272 		   SAS_ADDR(child->sas_addr),
1273 		   child_phy->phy_id,
1274 
1275 		   sas_route_char(parent, parent_phy),
1276 		   sas_route_char(child, child_phy));
1277 }
1278 
1279 static int sas_check_eeds(struct domain_device *child,
1280 				 struct ex_phy *parent_phy,
1281 				 struct ex_phy *child_phy)
1282 {
1283 	int res = 0;
1284 	struct domain_device *parent = child->parent;
1285 
1286 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1287 		res = -ENODEV;
1288 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1289 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1290 			    SAS_ADDR(parent->sas_addr),
1291 			    parent_phy->phy_id,
1292 			    SAS_ADDR(child->sas_addr),
1293 			    child_phy->phy_id,
1294 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1295 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1296 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1297 		       SAS_ADDR_SIZE);
1298 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1299 		       SAS_ADDR_SIZE);
1300 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1301 		    SAS_ADDR(parent->sas_addr)) ||
1302 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1303 		    SAS_ADDR(child->sas_addr)))
1304 		   &&
1305 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1306 		     SAS_ADDR(parent->sas_addr)) ||
1307 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1308 		     SAS_ADDR(child->sas_addr))))
1309 		;
1310 	else {
1311 		res = -ENODEV;
1312 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1313 			    "phy 0x%x link forms a third EEDS!\n",
1314 			    SAS_ADDR(parent->sas_addr),
1315 			    parent_phy->phy_id,
1316 			    SAS_ADDR(child->sas_addr),
1317 			    child_phy->phy_id);
1318 	}
1319 
1320 	return res;
1321 }
1322 
1323 /* Here we spill over 80 columns.  It is intentional.
1324  */
1325 static int sas_check_parent_topology(struct domain_device *child)
1326 {
1327 	struct expander_device *child_ex = &child->ex_dev;
1328 	struct expander_device *parent_ex;
1329 	int i;
1330 	int res = 0;
1331 
1332 	if (!child->parent)
1333 		return 0;
1334 
1335 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1336 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1337 		return 0;
1338 
1339 	parent_ex = &child->parent->ex_dev;
1340 
1341 	for (i = 0; i < parent_ex->num_phys; i++) {
1342 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1343 		struct ex_phy *child_phy;
1344 
1345 		if (parent_phy->phy_state == PHY_VACANT ||
1346 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1347 			continue;
1348 
1349 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1350 			continue;
1351 
1352 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1353 
1354 		switch (child->parent->dev_type) {
1355 		case SAS_EDGE_EXPANDER_DEVICE:
1356 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1357 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1358 				    child_phy->routing_attr != TABLE_ROUTING) {
1359 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1360 					res = -ENODEV;
1361 				}
1362 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1363 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1364 					res = sas_check_eeds(child, parent_phy, child_phy);
1365 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1366 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367 					res = -ENODEV;
1368 				}
1369 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1370 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1371 				    (child_phy->routing_attr == TABLE_ROUTING &&
1372 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1373 					/* All good */;
1374 				} else {
1375 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1376 					res = -ENODEV;
1377 				}
1378 			}
1379 			break;
1380 		case SAS_FANOUT_EXPANDER_DEVICE:
1381 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1382 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1383 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1384 				res = -ENODEV;
1385 			}
1386 			break;
1387 		default:
1388 			break;
1389 		}
1390 	}
1391 
1392 	return res;
1393 }
1394 
1395 #define RRI_REQ_SIZE  16
1396 #define RRI_RESP_SIZE 44
1397 
1398 static int sas_configure_present(struct domain_device *dev, int phy_id,
1399 				 u8 *sas_addr, int *index, int *present)
1400 {
1401 	int i, res = 0;
1402 	struct expander_device *ex = &dev->ex_dev;
1403 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1404 	u8 *rri_req;
1405 	u8 *rri_resp;
1406 
1407 	*present = 0;
1408 	*index = 0;
1409 
1410 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1411 	if (!rri_req)
1412 		return -ENOMEM;
1413 
1414 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1415 	if (!rri_resp) {
1416 		kfree(rri_req);
1417 		return -ENOMEM;
1418 	}
1419 
1420 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1421 	rri_req[9] = phy_id;
1422 
1423 	for (i = 0; i < ex->max_route_indexes ; i++) {
1424 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1425 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1426 				       RRI_RESP_SIZE);
1427 		if (res)
1428 			goto out;
1429 		res = rri_resp[2];
1430 		if (res == SMP_RESP_NO_INDEX) {
1431 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1432 				    "phy 0x%x index 0x%x\n",
1433 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1434 			goto out;
1435 		} else if (res != SMP_RESP_FUNC_ACC) {
1436 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1437 				    "result 0x%x\n", __func__,
1438 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1439 			goto out;
1440 		}
1441 		if (SAS_ADDR(sas_addr) != 0) {
1442 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1443 				*index = i;
1444 				if ((rri_resp[12] & 0x80) == 0x80)
1445 					*present = 0;
1446 				else
1447 					*present = 1;
1448 				goto out;
1449 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1450 				*index = i;
1451 				*present = 0;
1452 				goto out;
1453 			}
1454 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1455 			   phy->last_da_index < i) {
1456 			phy->last_da_index = i;
1457 			*index = i;
1458 			*present = 0;
1459 			goto out;
1460 		}
1461 	}
1462 	res = -1;
1463 out:
1464 	kfree(rri_req);
1465 	kfree(rri_resp);
1466 	return res;
1467 }
1468 
1469 #define CRI_REQ_SIZE  44
1470 #define CRI_RESP_SIZE  8
1471 
1472 static int sas_configure_set(struct domain_device *dev, int phy_id,
1473 			     u8 *sas_addr, int index, int include)
1474 {
1475 	int res;
1476 	u8 *cri_req;
1477 	u8 *cri_resp;
1478 
1479 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1480 	if (!cri_req)
1481 		return -ENOMEM;
1482 
1483 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1484 	if (!cri_resp) {
1485 		kfree(cri_req);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1490 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1491 	cri_req[9] = phy_id;
1492 	if (SAS_ADDR(sas_addr) == 0 || !include)
1493 		cri_req[12] |= 0x80;
1494 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1495 
1496 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1497 			       CRI_RESP_SIZE);
1498 	if (res)
1499 		goto out;
1500 	res = cri_resp[2];
1501 	if (res == SMP_RESP_NO_INDEX) {
1502 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1503 			    "index 0x%x\n",
1504 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1505 	}
1506 out:
1507 	kfree(cri_req);
1508 	kfree(cri_resp);
1509 	return res;
1510 }
1511 
1512 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1513 				    u8 *sas_addr, int include)
1514 {
1515 	int index;
1516 	int present;
1517 	int res;
1518 
1519 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1520 	if (res)
1521 		return res;
1522 	if (include ^ present)
1523 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1524 
1525 	return res;
1526 }
1527 
1528 /**
1529  * sas_configure_parent -- configure routing table of parent
1530  * parent: parent expander
1531  * child: child expander
1532  * sas_addr: SAS port identifier of device directly attached to child
1533  */
1534 static int sas_configure_parent(struct domain_device *parent,
1535 				struct domain_device *child,
1536 				u8 *sas_addr, int include)
1537 {
1538 	struct expander_device *ex_parent = &parent->ex_dev;
1539 	int res = 0;
1540 	int i;
1541 
1542 	if (parent->parent) {
1543 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1544 					   include);
1545 		if (res)
1546 			return res;
1547 	}
1548 
1549 	if (ex_parent->conf_route_table == 0) {
1550 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1551 			    SAS_ADDR(parent->sas_addr));
1552 		return 0;
1553 	}
1554 
1555 	for (i = 0; i < ex_parent->num_phys; i++) {
1556 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1557 
1558 		if ((phy->routing_attr == TABLE_ROUTING) &&
1559 		    (SAS_ADDR(phy->attached_sas_addr) ==
1560 		     SAS_ADDR(child->sas_addr))) {
1561 			res = sas_configure_phy(parent, i, sas_addr, include);
1562 			if (res)
1563 				return res;
1564 		}
1565 	}
1566 
1567 	return res;
1568 }
1569 
1570 /**
1571  * sas_configure_routing -- configure routing
1572  * dev: expander device
1573  * sas_addr: port identifier of device directly attached to the expander device
1574  */
1575 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1576 {
1577 	if (dev->parent)
1578 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1579 	return 0;
1580 }
1581 
1582 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1583 {
1584 	if (dev->parent)
1585 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1586 	return 0;
1587 }
1588 
1589 /**
1590  * sas_discover_expander -- expander discovery
1591  * @ex: pointer to expander domain device
1592  *
1593  * See comment in sas_discover_sata().
1594  */
1595 static int sas_discover_expander(struct domain_device *dev)
1596 {
1597 	int res;
1598 
1599 	res = sas_notify_lldd_dev_found(dev);
1600 	if (res)
1601 		return res;
1602 
1603 	res = sas_ex_general(dev);
1604 	if (res)
1605 		goto out_err;
1606 	res = sas_ex_manuf_info(dev);
1607 	if (res)
1608 		goto out_err;
1609 
1610 	res = sas_expander_discover(dev);
1611 	if (res) {
1612 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1613 			    SAS_ADDR(dev->sas_addr), res);
1614 		goto out_err;
1615 	}
1616 
1617 	sas_check_ex_subtractive_boundary(dev);
1618 	res = sas_check_parent_topology(dev);
1619 	if (res)
1620 		goto out_err;
1621 	return 0;
1622 out_err:
1623 	sas_notify_lldd_dev_gone(dev);
1624 	return res;
1625 }
1626 
1627 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1628 {
1629 	int res = 0;
1630 	struct domain_device *dev;
1631 
1632 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1633 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1634 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1635 			struct sas_expander_device *ex =
1636 				rphy_to_expander_device(dev->rphy);
1637 
1638 			if (level == ex->level)
1639 				res = sas_ex_discover_devices(dev, -1);
1640 			else if (level > 0)
1641 				res = sas_ex_discover_devices(port->port_dev, -1);
1642 
1643 		}
1644 	}
1645 
1646 	return res;
1647 }
1648 
1649 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1650 {
1651 	int res;
1652 	int level;
1653 
1654 	do {
1655 		level = port->disc.max_level;
1656 		res = sas_ex_level_discovery(port, level);
1657 		mb();
1658 	} while (level < port->disc.max_level);
1659 
1660 	return res;
1661 }
1662 
1663 int sas_discover_root_expander(struct domain_device *dev)
1664 {
1665 	int res;
1666 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1667 
1668 	res = sas_rphy_add(dev->rphy);
1669 	if (res)
1670 		goto out_err;
1671 
1672 	ex->level = dev->port->disc.max_level; /* 0 */
1673 	res = sas_discover_expander(dev);
1674 	if (res)
1675 		goto out_err2;
1676 
1677 	sas_ex_bfs_disc(dev->port);
1678 
1679 	return res;
1680 
1681 out_err2:
1682 	sas_rphy_remove(dev->rphy);
1683 out_err:
1684 	return res;
1685 }
1686 
1687 /* ---------- Domain revalidation ---------- */
1688 
1689 static int sas_get_phy_discover(struct domain_device *dev,
1690 				int phy_id, struct smp_resp *disc_resp)
1691 {
1692 	int res;
1693 	u8 *disc_req;
1694 
1695 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1696 	if (!disc_req)
1697 		return -ENOMEM;
1698 
1699 	disc_req[1] = SMP_DISCOVER;
1700 	disc_req[9] = phy_id;
1701 
1702 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1703 			       disc_resp, DISCOVER_RESP_SIZE);
1704 	if (res)
1705 		goto out;
1706 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1707 		res = disc_resp->result;
1708 		goto out;
1709 	}
1710 out:
1711 	kfree(disc_req);
1712 	return res;
1713 }
1714 
1715 static int sas_get_phy_change_count(struct domain_device *dev,
1716 				    int phy_id, int *pcc)
1717 {
1718 	int res;
1719 	struct smp_resp *disc_resp;
1720 
1721 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1722 	if (!disc_resp)
1723 		return -ENOMEM;
1724 
1725 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1726 	if (!res)
1727 		*pcc = disc_resp->disc.change_count;
1728 
1729 	kfree(disc_resp);
1730 	return res;
1731 }
1732 
1733 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1734 				    u8 *sas_addr, enum sas_device_type *type)
1735 {
1736 	int res;
1737 	struct smp_resp *disc_resp;
1738 	struct discover_resp *dr;
1739 
1740 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1741 	if (!disc_resp)
1742 		return -ENOMEM;
1743 	dr = &disc_resp->disc;
1744 
1745 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1746 	if (res == 0) {
1747 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1748 		*type = to_dev_type(dr);
1749 		if (*type == 0)
1750 			memset(sas_addr, 0, 8);
1751 	}
1752 	kfree(disc_resp);
1753 	return res;
1754 }
1755 
1756 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1757 			      int from_phy, bool update)
1758 {
1759 	struct expander_device *ex = &dev->ex_dev;
1760 	int res = 0;
1761 	int i;
1762 
1763 	for (i = from_phy; i < ex->num_phys; i++) {
1764 		int phy_change_count = 0;
1765 
1766 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1767 		switch (res) {
1768 		case SMP_RESP_PHY_VACANT:
1769 		case SMP_RESP_NO_PHY:
1770 			continue;
1771 		case SMP_RESP_FUNC_ACC:
1772 			break;
1773 		default:
1774 			return res;
1775 		}
1776 
1777 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1778 			if (update)
1779 				ex->ex_phy[i].phy_change_count =
1780 					phy_change_count;
1781 			*phy_id = i;
1782 			return 0;
1783 		}
1784 	}
1785 	return 0;
1786 }
1787 
1788 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1789 {
1790 	int res;
1791 	u8  *rg_req;
1792 	struct smp_resp  *rg_resp;
1793 
1794 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1795 	if (!rg_req)
1796 		return -ENOMEM;
1797 
1798 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1799 	if (!rg_resp) {
1800 		kfree(rg_req);
1801 		return -ENOMEM;
1802 	}
1803 
1804 	rg_req[1] = SMP_REPORT_GENERAL;
1805 
1806 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1807 			       RG_RESP_SIZE);
1808 	if (res)
1809 		goto out;
1810 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1811 		res = rg_resp->result;
1812 		goto out;
1813 	}
1814 
1815 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1816 out:
1817 	kfree(rg_resp);
1818 	kfree(rg_req);
1819 	return res;
1820 }
1821 /**
1822  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1823  * @dev:domain device to be detect.
1824  * @src_dev: the device which originated BROADCAST(CHANGE).
1825  *
1826  * Add self-configuration expander support. Suppose two expander cascading,
1827  * when the first level expander is self-configuring, hotplug the disks in
1828  * second level expander, BROADCAST(CHANGE) will not only be originated
1829  * in the second level expander, but also be originated in the first level
1830  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1831  * expander changed count in two level expanders will all increment at least
1832  * once, but the phy which chang count has changed is the source device which
1833  * we concerned.
1834  */
1835 
1836 static int sas_find_bcast_dev(struct domain_device *dev,
1837 			      struct domain_device **src_dev)
1838 {
1839 	struct expander_device *ex = &dev->ex_dev;
1840 	int ex_change_count = -1;
1841 	int phy_id = -1;
1842 	int res;
1843 	struct domain_device *ch;
1844 
1845 	res = sas_get_ex_change_count(dev, &ex_change_count);
1846 	if (res)
1847 		goto out;
1848 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1849 		/* Just detect if this expander phys phy change count changed,
1850 		* in order to determine if this expander originate BROADCAST,
1851 		* and do not update phy change count field in our structure.
1852 		*/
1853 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1854 		if (phy_id != -1) {
1855 			*src_dev = dev;
1856 			ex->ex_change_count = ex_change_count;
1857 			SAS_DPRINTK("Expander phy change count has changed\n");
1858 			return res;
1859 		} else
1860 			SAS_DPRINTK("Expander phys DID NOT change\n");
1861 	}
1862 	list_for_each_entry(ch, &ex->children, siblings) {
1863 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1864 			res = sas_find_bcast_dev(ch, src_dev);
1865 			if (*src_dev)
1866 				return res;
1867 		}
1868 	}
1869 out:
1870 	return res;
1871 }
1872 
1873 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1874 {
1875 	struct expander_device *ex = &dev->ex_dev;
1876 	struct domain_device *child, *n;
1877 
1878 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1879 		set_bit(SAS_DEV_GONE, &child->state);
1880 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1881 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1882 			sas_unregister_ex_tree(port, child);
1883 		else
1884 			sas_unregister_dev(port, child);
1885 	}
1886 	sas_unregister_dev(port, dev);
1887 }
1888 
1889 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1890 					 int phy_id, bool last)
1891 {
1892 	struct expander_device *ex_dev = &parent->ex_dev;
1893 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1894 	struct domain_device *child, *n, *found = NULL;
1895 	if (last) {
1896 		list_for_each_entry_safe(child, n,
1897 			&ex_dev->children, siblings) {
1898 			if (SAS_ADDR(child->sas_addr) ==
1899 			    SAS_ADDR(phy->attached_sas_addr)) {
1900 				set_bit(SAS_DEV_GONE, &child->state);
1901 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1902 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1903 					sas_unregister_ex_tree(parent->port, child);
1904 				else
1905 					sas_unregister_dev(parent->port, child);
1906 				found = child;
1907 				break;
1908 			}
1909 		}
1910 		sas_disable_routing(parent, phy->attached_sas_addr);
1911 	}
1912 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1913 	if (phy->port) {
1914 		sas_port_delete_phy(phy->port, phy->phy);
1915 		sas_device_set_phy(found, phy->port);
1916 		if (phy->port->num_phys == 0)
1917 			sas_port_delete(phy->port);
1918 		phy->port = NULL;
1919 	}
1920 }
1921 
1922 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1923 					  const int level)
1924 {
1925 	struct expander_device *ex_root = &root->ex_dev;
1926 	struct domain_device *child;
1927 	int res = 0;
1928 
1929 	list_for_each_entry(child, &ex_root->children, siblings) {
1930 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1931 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1932 			struct sas_expander_device *ex =
1933 				rphy_to_expander_device(child->rphy);
1934 
1935 			if (level > ex->level)
1936 				res = sas_discover_bfs_by_root_level(child,
1937 								     level);
1938 			else if (level == ex->level)
1939 				res = sas_ex_discover_devices(child, -1);
1940 		}
1941 	}
1942 	return res;
1943 }
1944 
1945 static int sas_discover_bfs_by_root(struct domain_device *dev)
1946 {
1947 	int res;
1948 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1949 	int level = ex->level+1;
1950 
1951 	res = sas_ex_discover_devices(dev, -1);
1952 	if (res)
1953 		goto out;
1954 	do {
1955 		res = sas_discover_bfs_by_root_level(dev, level);
1956 		mb();
1957 		level += 1;
1958 	} while (level <= dev->port->disc.max_level);
1959 out:
1960 	return res;
1961 }
1962 
1963 static int sas_discover_new(struct domain_device *dev, int phy_id)
1964 {
1965 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1966 	struct domain_device *child;
1967 	int res;
1968 
1969 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1970 		    SAS_ADDR(dev->sas_addr), phy_id);
1971 	res = sas_ex_phy_discover(dev, phy_id);
1972 	if (res)
1973 		return res;
1974 
1975 	if (sas_ex_join_wide_port(dev, phy_id))
1976 		return 0;
1977 
1978 	res = sas_ex_discover_devices(dev, phy_id);
1979 	if (res)
1980 		return res;
1981 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1982 		if (SAS_ADDR(child->sas_addr) ==
1983 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1984 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1985 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1986 				res = sas_discover_bfs_by_root(child);
1987 			break;
1988 		}
1989 	}
1990 	return res;
1991 }
1992 
1993 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1994 {
1995 	if (old == new)
1996 		return true;
1997 
1998 	/* treat device directed resets as flutter, if we went
1999 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2000 	 */
2001 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2002 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2003 		return true;
2004 
2005 	return false;
2006 }
2007 
2008 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2009 {
2010 	struct expander_device *ex = &dev->ex_dev;
2011 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2012 	enum sas_device_type type = SAS_PHY_UNUSED;
2013 	u8 sas_addr[8];
2014 	int res;
2015 
2016 	memset(sas_addr, 0, 8);
2017 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2018 	switch (res) {
2019 	case SMP_RESP_NO_PHY:
2020 		phy->phy_state = PHY_NOT_PRESENT;
2021 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2022 		return res;
2023 	case SMP_RESP_PHY_VACANT:
2024 		phy->phy_state = PHY_VACANT;
2025 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2026 		return res;
2027 	case SMP_RESP_FUNC_ACC:
2028 		break;
2029 	case -ECOMM:
2030 		break;
2031 	default:
2032 		return res;
2033 	}
2034 
2035 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2036 		phy->phy_state = PHY_EMPTY;
2037 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2038 		return res;
2039 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2040 		   dev_type_flutter(type, phy->attached_dev_type)) {
2041 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2042 		char *action = "";
2043 
2044 		sas_ex_phy_discover(dev, phy_id);
2045 
2046 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2047 			action = ", needs recovery";
2048 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2049 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2050 		return res;
2051 	}
2052 
2053 	/* delete the old link */
2054 	if (SAS_ADDR(phy->attached_sas_addr) &&
2055 	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2056 		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2057 			    SAS_ADDR(dev->sas_addr), phy_id,
2058 			    SAS_ADDR(phy->attached_sas_addr));
2059 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2060 	}
2061 
2062 	return sas_discover_new(dev, phy_id);
2063 }
2064 
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081 	struct expander_device *ex = &dev->ex_dev;
2082 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083 	int res = 0;
2084 	int i;
2085 	bool last = true;	/* is this the last phy of the port */
2086 
2087 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088 		    SAS_ADDR(dev->sas_addr), phy_id);
2089 
2090 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091 		for (i = 0; i < ex->num_phys; i++) {
2092 			struct ex_phy *phy = &ex->ex_phy[i];
2093 
2094 			if (i == phy_id)
2095 				continue;
2096 			if (SAS_ADDR(phy->attached_sas_addr) ==
2097 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2098 				SAS_DPRINTK("phy%d part of wide port with "
2099 					    "phy%d\n", phy_id, i);
2100 				last = false;
2101 				break;
2102 			}
2103 		}
2104 		res = sas_rediscover_dev(dev, phy_id, last);
2105 	} else
2106 		res = sas_discover_new(dev, phy_id);
2107 	return res;
2108 }
2109 
2110 /**
2111  * sas_revalidate_domain -- revalidate the domain
2112  * @port: port to the domain of interest
2113  *
2114  * NOTE: this process _must_ quit (return) as soon as any connection
2115  * errors are encountered.  Connection recovery is done elsewhere.
2116  * Discover process only interrogates devices in order to discover the
2117  * domain.
2118  */
2119 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2120 {
2121 	int res;
2122 	struct domain_device *dev = NULL;
2123 
2124 	res = sas_find_bcast_dev(port_dev, &dev);
2125 	while (res == 0 && dev) {
2126 		struct expander_device *ex = &dev->ex_dev;
2127 		int i = 0, phy_id;
2128 
2129 		do {
2130 			phy_id = -1;
2131 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132 			if (phy_id == -1)
2133 				break;
2134 			res = sas_rediscover(dev, phy_id);
2135 			i = phy_id + 1;
2136 		} while (i < ex->num_phys);
2137 
2138 		dev = NULL;
2139 		res = sas_find_bcast_dev(port_dev, &dev);
2140 	}
2141 	return res;
2142 }
2143 
2144 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2145 		struct sas_rphy *rphy)
2146 {
2147 	struct domain_device *dev;
2148 	unsigned int reslen = 0;
2149 	int ret = -EINVAL;
2150 
2151 	/* no rphy means no smp target support (ie aic94xx host) */
2152 	if (!rphy)
2153 		return sas_smp_host_handler(job, shost);
2154 
2155 	switch (rphy->identify.device_type) {
2156 	case SAS_EDGE_EXPANDER_DEVICE:
2157 	case SAS_FANOUT_EXPANDER_DEVICE:
2158 		break;
2159 	default:
2160 		printk("%s: can we send a smp request to a device?\n",
2161 		       __func__);
2162 		goto out;
2163 	}
2164 
2165 	dev = sas_find_dev_by_rphy(rphy);
2166 	if (!dev) {
2167 		printk("%s: fail to find a domain_device?\n", __func__);
2168 		goto out;
2169 	}
2170 
2171 	/* do we need to support multiple segments? */
2172 	if (job->request_payload.sg_cnt > 1 ||
2173 	    job->reply_payload.sg_cnt > 1) {
2174 		printk("%s: multiple segments req %u, rsp %u\n",
2175 		       __func__, job->request_payload.payload_len,
2176 		       job->reply_payload.payload_len);
2177 		goto out;
2178 	}
2179 
2180 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2181 			job->reply_payload.sg_list);
2182 	if (ret > 0) {
2183 		/* positive number is the untransferred residual */
2184 		reslen = ret;
2185 		ret = 0;
2186 	}
2187 
2188 out:
2189 	bsg_job_done(job, ret, reslen);
2190 }
2191