1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 #include <asm/unaligned.h> 29 30 #include "sas_internal.h" 31 32 #include <scsi/sas_ata.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_transport_sas.h> 35 #include "../scsi_sas_internal.h" 36 37 static int sas_discover_expander(struct domain_device *dev); 38 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 39 static int sas_configure_phy(struct domain_device *dev, int phy_id, 40 u8 *sas_addr, int include); 41 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 42 43 /* ---------- SMP task management ---------- */ 44 45 static void smp_task_timedout(struct timer_list *t) 46 { 47 struct sas_task_slow *slow = from_timer(slow, t, timer); 48 struct sas_task *task = slow->task; 49 unsigned long flags; 50 51 spin_lock_irqsave(&task->task_state_lock, flags); 52 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 53 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 54 complete(&task->slow_task->completion); 55 } 56 spin_unlock_irqrestore(&task->task_state_lock, flags); 57 } 58 59 static void smp_task_done(struct sas_task *task) 60 { 61 del_timer(&task->slow_task->timer); 62 complete(&task->slow_task->completion); 63 } 64 65 /* Give it some long enough timeout. In seconds. */ 66 #define SMP_TIMEOUT 10 67 68 static int smp_execute_task_sg(struct domain_device *dev, 69 struct scatterlist *req, struct scatterlist *resp) 70 { 71 int res, retry; 72 struct sas_task *task = NULL; 73 struct sas_internal *i = 74 to_sas_internal(dev->port->ha->core.shost->transportt); 75 76 mutex_lock(&dev->ex_dev.cmd_mutex); 77 for (retry = 0; retry < 3; retry++) { 78 if (test_bit(SAS_DEV_GONE, &dev->state)) { 79 res = -ECOMM; 80 break; 81 } 82 83 task = sas_alloc_slow_task(GFP_KERNEL); 84 if (!task) { 85 res = -ENOMEM; 86 break; 87 } 88 task->dev = dev; 89 task->task_proto = dev->tproto; 90 task->smp_task.smp_req = *req; 91 task->smp_task.smp_resp = *resp; 92 93 task->task_done = smp_task_done; 94 95 task->slow_task->timer.function = smp_task_timedout; 96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 97 add_timer(&task->slow_task->timer); 98 99 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 100 101 if (res) { 102 del_timer(&task->slow_task->timer); 103 pr_notice("executing SMP task failed:%d\n", res); 104 break; 105 } 106 107 wait_for_completion(&task->slow_task->completion); 108 res = -ECOMM; 109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 110 pr_notice("smp task timed out or aborted\n"); 111 i->dft->lldd_abort_task(task); 112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 113 pr_notice("SMP task aborted and not done\n"); 114 break; 115 } 116 } 117 if (task->task_status.resp == SAS_TASK_COMPLETE && 118 task->task_status.stat == SAM_STAT_GOOD) { 119 res = 0; 120 break; 121 } 122 if (task->task_status.resp == SAS_TASK_COMPLETE && 123 task->task_status.stat == SAS_DATA_UNDERRUN) { 124 /* no error, but return the number of bytes of 125 * underrun */ 126 res = task->task_status.residual; 127 break; 128 } 129 if (task->task_status.resp == SAS_TASK_COMPLETE && 130 task->task_status.stat == SAS_DATA_OVERRUN) { 131 res = -EMSGSIZE; 132 break; 133 } 134 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 135 task->task_status.stat == SAS_DEVICE_UNKNOWN) 136 break; 137 else { 138 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 139 __func__, 140 SAS_ADDR(dev->sas_addr), 141 task->task_status.resp, 142 task->task_status.stat); 143 sas_free_task(task); 144 task = NULL; 145 } 146 } 147 mutex_unlock(&dev->ex_dev.cmd_mutex); 148 149 BUG_ON(retry == 3 && task != NULL); 150 sas_free_task(task); 151 return res; 152 } 153 154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 155 void *resp, int resp_size) 156 { 157 struct scatterlist req_sg; 158 struct scatterlist resp_sg; 159 160 sg_init_one(&req_sg, req, req_size); 161 sg_init_one(&resp_sg, resp, resp_size); 162 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 163 } 164 165 /* ---------- Allocations ---------- */ 166 167 static inline void *alloc_smp_req(int size) 168 { 169 u8 *p = kzalloc(size, GFP_KERNEL); 170 if (p) 171 p[0] = SMP_REQUEST; 172 return p; 173 } 174 175 static inline void *alloc_smp_resp(int size) 176 { 177 return kzalloc(size, GFP_KERNEL); 178 } 179 180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 181 { 182 switch (phy->routing_attr) { 183 case TABLE_ROUTING: 184 if (dev->ex_dev.t2t_supp) 185 return 'U'; 186 else 187 return 'T'; 188 case DIRECT_ROUTING: 189 return 'D'; 190 case SUBTRACTIVE_ROUTING: 191 return 'S'; 192 default: 193 return '?'; 194 } 195 } 196 197 static enum sas_device_type to_dev_type(struct discover_resp *dr) 198 { 199 /* This is detecting a failure to transmit initial dev to host 200 * FIS as described in section J.5 of sas-2 r16 201 */ 202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 204 return SAS_SATA_PENDING; 205 else 206 return dr->attached_dev_type; 207 } 208 209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 210 { 211 enum sas_device_type dev_type; 212 enum sas_linkrate linkrate; 213 u8 sas_addr[SAS_ADDR_SIZE]; 214 struct smp_resp *resp = rsp; 215 struct discover_resp *dr = &resp->disc; 216 struct sas_ha_struct *ha = dev->port->ha; 217 struct expander_device *ex = &dev->ex_dev; 218 struct ex_phy *phy = &ex->ex_phy[phy_id]; 219 struct sas_rphy *rphy = dev->rphy; 220 bool new_phy = !phy->phy; 221 char *type; 222 223 if (new_phy) { 224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 225 return; 226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 227 228 /* FIXME: error_handling */ 229 BUG_ON(!phy->phy); 230 } 231 232 switch (resp->result) { 233 case SMP_RESP_PHY_VACANT: 234 phy->phy_state = PHY_VACANT; 235 break; 236 default: 237 phy->phy_state = PHY_NOT_PRESENT; 238 break; 239 case SMP_RESP_FUNC_ACC: 240 phy->phy_state = PHY_EMPTY; /* do not know yet */ 241 break; 242 } 243 244 /* check if anything important changed to squelch debug */ 245 dev_type = phy->attached_dev_type; 246 linkrate = phy->linkrate; 247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 248 249 /* Handle vacant phy - rest of dr data is not valid so skip it */ 250 if (phy->phy_state == PHY_VACANT) { 251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 252 phy->attached_dev_type = SAS_PHY_UNUSED; 253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 254 phy->phy_id = phy_id; 255 goto skip; 256 } else 257 goto out; 258 } 259 260 phy->attached_dev_type = to_dev_type(dr); 261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 262 goto out; 263 phy->phy_id = phy_id; 264 phy->linkrate = dr->linkrate; 265 phy->attached_sata_host = dr->attached_sata_host; 266 phy->attached_sata_dev = dr->attached_sata_dev; 267 phy->attached_sata_ps = dr->attached_sata_ps; 268 phy->attached_iproto = dr->iproto << 1; 269 phy->attached_tproto = dr->tproto << 1; 270 /* help some expanders that fail to zero sas_address in the 'no 271 * device' case 272 */ 273 if (phy->attached_dev_type == SAS_PHY_UNUSED || 274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 276 else 277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 278 phy->attached_phy_id = dr->attached_phy_id; 279 phy->phy_change_count = dr->change_count; 280 phy->routing_attr = dr->routing_attr; 281 phy->virtual = dr->virtual; 282 phy->last_da_index = -1; 283 284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 285 phy->phy->identify.device_type = dr->attached_dev_type; 286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 287 phy->phy->identify.target_port_protocols = phy->attached_tproto; 288 if (!phy->attached_tproto && dr->attached_sata_dev) 289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 290 phy->phy->identify.phy_identifier = phy_id; 291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 293 phy->phy->minimum_linkrate = dr->pmin_linkrate; 294 phy->phy->maximum_linkrate = dr->pmax_linkrate; 295 phy->phy->negotiated_linkrate = phy->linkrate; 296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 297 298 skip: 299 if (new_phy) 300 if (sas_phy_add(phy->phy)) { 301 sas_phy_free(phy->phy); 302 return; 303 } 304 305 out: 306 switch (phy->attached_dev_type) { 307 case SAS_SATA_PENDING: 308 type = "stp pending"; 309 break; 310 case SAS_PHY_UNUSED: 311 type = "no device"; 312 break; 313 case SAS_END_DEVICE: 314 if (phy->attached_iproto) { 315 if (phy->attached_tproto) 316 type = "host+target"; 317 else 318 type = "host"; 319 } else { 320 if (dr->attached_sata_dev) 321 type = "stp"; 322 else 323 type = "ssp"; 324 } 325 break; 326 case SAS_EDGE_EXPANDER_DEVICE: 327 case SAS_FANOUT_EXPANDER_DEVICE: 328 type = "smp"; 329 break; 330 default: 331 type = "unknown"; 332 } 333 334 /* this routine is polled by libata error recovery so filter 335 * unimportant messages 336 */ 337 if (new_phy || phy->attached_dev_type != dev_type || 338 phy->linkrate != linkrate || 339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 340 /* pass */; 341 else 342 return; 343 344 /* if the attached device type changed and ata_eh is active, 345 * make sure we run revalidation when eh completes (see: 346 * sas_enable_revalidation) 347 */ 348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 350 351 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 353 SAS_ADDR(dev->sas_addr), phy->phy_id, 354 sas_route_char(dev, phy), phy->linkrate, 355 SAS_ADDR(phy->attached_sas_addr), type); 356 } 357 358 /* check if we have an existing attached ata device on this expander phy */ 359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 360 { 361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 362 struct domain_device *dev; 363 struct sas_rphy *rphy; 364 365 if (!ex_phy->port) 366 return NULL; 367 368 rphy = ex_phy->port->rphy; 369 if (!rphy) 370 return NULL; 371 372 dev = sas_find_dev_by_rphy(rphy); 373 374 if (dev && dev_is_sata(dev)) 375 return dev; 376 377 return NULL; 378 } 379 380 #define DISCOVER_REQ_SIZE 16 381 #define DISCOVER_RESP_SIZE 56 382 383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 384 u8 *disc_resp, int single) 385 { 386 struct discover_resp *dr; 387 int res; 388 389 disc_req[9] = single; 390 391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 392 disc_resp, DISCOVER_RESP_SIZE); 393 if (res) 394 return res; 395 dr = &((struct smp_resp *)disc_resp)->disc; 396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 397 pr_notice("Found loopback topology, just ignore it!\n"); 398 return 0; 399 } 400 sas_set_ex_phy(dev, single, disc_resp); 401 return 0; 402 } 403 404 int sas_ex_phy_discover(struct domain_device *dev, int single) 405 { 406 struct expander_device *ex = &dev->ex_dev; 407 int res = 0; 408 u8 *disc_req; 409 u8 *disc_resp; 410 411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 412 if (!disc_req) 413 return -ENOMEM; 414 415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 416 if (!disc_resp) { 417 kfree(disc_req); 418 return -ENOMEM; 419 } 420 421 disc_req[1] = SMP_DISCOVER; 422 423 if (0 <= single && single < ex->num_phys) { 424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 425 } else { 426 int i; 427 428 for (i = 0; i < ex->num_phys; i++) { 429 res = sas_ex_phy_discover_helper(dev, disc_req, 430 disc_resp, i); 431 if (res) 432 goto out_err; 433 } 434 } 435 out_err: 436 kfree(disc_resp); 437 kfree(disc_req); 438 return res; 439 } 440 441 static int sas_expander_discover(struct domain_device *dev) 442 { 443 struct expander_device *ex = &dev->ex_dev; 444 int res = -ENOMEM; 445 446 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 447 if (!ex->ex_phy) 448 return -ENOMEM; 449 450 res = sas_ex_phy_discover(dev, -1); 451 if (res) 452 goto out_err; 453 454 return 0; 455 out_err: 456 kfree(ex->ex_phy); 457 ex->ex_phy = NULL; 458 return res; 459 } 460 461 #define MAX_EXPANDER_PHYS 128 462 463 static void ex_assign_report_general(struct domain_device *dev, 464 struct smp_resp *resp) 465 { 466 struct report_general_resp *rg = &resp->rg; 467 468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 471 dev->ex_dev.t2t_supp = rg->t2t_supp; 472 dev->ex_dev.conf_route_table = rg->conf_route_table; 473 dev->ex_dev.configuring = rg->configuring; 474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 475 } 476 477 #define RG_REQ_SIZE 8 478 #define RG_RESP_SIZE 32 479 480 static int sas_ex_general(struct domain_device *dev) 481 { 482 u8 *rg_req; 483 struct smp_resp *rg_resp; 484 int res; 485 int i; 486 487 rg_req = alloc_smp_req(RG_REQ_SIZE); 488 if (!rg_req) 489 return -ENOMEM; 490 491 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 492 if (!rg_resp) { 493 kfree(rg_req); 494 return -ENOMEM; 495 } 496 497 rg_req[1] = SMP_REPORT_GENERAL; 498 499 for (i = 0; i < 5; i++) { 500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 501 RG_RESP_SIZE); 502 503 if (res) { 504 pr_notice("RG to ex %016llx failed:0x%x\n", 505 SAS_ADDR(dev->sas_addr), res); 506 goto out; 507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 508 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 509 SAS_ADDR(dev->sas_addr), rg_resp->result); 510 res = rg_resp->result; 511 goto out; 512 } 513 514 ex_assign_report_general(dev, rg_resp); 515 516 if (dev->ex_dev.configuring) { 517 pr_debug("RG: ex %llx self-configuring...\n", 518 SAS_ADDR(dev->sas_addr)); 519 schedule_timeout_interruptible(5*HZ); 520 } else 521 break; 522 } 523 out: 524 kfree(rg_req); 525 kfree(rg_resp); 526 return res; 527 } 528 529 static void ex_assign_manuf_info(struct domain_device *dev, void 530 *_mi_resp) 531 { 532 u8 *mi_resp = _mi_resp; 533 struct sas_rphy *rphy = dev->rphy; 534 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 535 536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 538 memcpy(edev->product_rev, mi_resp + 36, 539 SAS_EXPANDER_PRODUCT_REV_LEN); 540 541 if (mi_resp[8] & 1) { 542 memcpy(edev->component_vendor_id, mi_resp + 40, 543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 544 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 545 edev->component_revision_id = mi_resp[50]; 546 } 547 } 548 549 #define MI_REQ_SIZE 8 550 #define MI_RESP_SIZE 64 551 552 static int sas_ex_manuf_info(struct domain_device *dev) 553 { 554 u8 *mi_req; 555 u8 *mi_resp; 556 int res; 557 558 mi_req = alloc_smp_req(MI_REQ_SIZE); 559 if (!mi_req) 560 return -ENOMEM; 561 562 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 563 if (!mi_resp) { 564 kfree(mi_req); 565 return -ENOMEM; 566 } 567 568 mi_req[1] = SMP_REPORT_MANUF_INFO; 569 570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 571 if (res) { 572 pr_notice("MI: ex %016llx failed:0x%x\n", 573 SAS_ADDR(dev->sas_addr), res); 574 goto out; 575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 576 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 577 SAS_ADDR(dev->sas_addr), mi_resp[2]); 578 goto out; 579 } 580 581 ex_assign_manuf_info(dev, mi_resp); 582 out: 583 kfree(mi_req); 584 kfree(mi_resp); 585 return res; 586 } 587 588 #define PC_REQ_SIZE 44 589 #define PC_RESP_SIZE 8 590 591 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 592 enum phy_func phy_func, 593 struct sas_phy_linkrates *rates) 594 { 595 u8 *pc_req; 596 u8 *pc_resp; 597 int res; 598 599 pc_req = alloc_smp_req(PC_REQ_SIZE); 600 if (!pc_req) 601 return -ENOMEM; 602 603 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 604 if (!pc_resp) { 605 kfree(pc_req); 606 return -ENOMEM; 607 } 608 609 pc_req[1] = SMP_PHY_CONTROL; 610 pc_req[9] = phy_id; 611 pc_req[10]= phy_func; 612 if (rates) { 613 pc_req[32] = rates->minimum_linkrate << 4; 614 pc_req[33] = rates->maximum_linkrate << 4; 615 } 616 617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 618 if (res) { 619 pr_err("ex %016llx phy%02d PHY control failed: %d\n", 620 SAS_ADDR(dev->sas_addr), phy_id, res); 621 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) { 622 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n", 623 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]); 624 res = pc_resp[2]; 625 } 626 kfree(pc_resp); 627 kfree(pc_req); 628 return res; 629 } 630 631 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 632 { 633 struct expander_device *ex = &dev->ex_dev; 634 struct ex_phy *phy = &ex->ex_phy[phy_id]; 635 636 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 637 phy->linkrate = SAS_PHY_DISABLED; 638 } 639 640 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 641 { 642 struct expander_device *ex = &dev->ex_dev; 643 int i; 644 645 for (i = 0; i < ex->num_phys; i++) { 646 struct ex_phy *phy = &ex->ex_phy[i]; 647 648 if (phy->phy_state == PHY_VACANT || 649 phy->phy_state == PHY_NOT_PRESENT) 650 continue; 651 652 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 653 sas_ex_disable_phy(dev, i); 654 } 655 } 656 657 static int sas_dev_present_in_domain(struct asd_sas_port *port, 658 u8 *sas_addr) 659 { 660 struct domain_device *dev; 661 662 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 663 return 1; 664 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 665 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 666 return 1; 667 } 668 return 0; 669 } 670 671 #define RPEL_REQ_SIZE 16 672 #define RPEL_RESP_SIZE 32 673 int sas_smp_get_phy_events(struct sas_phy *phy) 674 { 675 int res; 676 u8 *req; 677 u8 *resp; 678 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 679 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 680 681 req = alloc_smp_req(RPEL_REQ_SIZE); 682 if (!req) 683 return -ENOMEM; 684 685 resp = alloc_smp_resp(RPEL_RESP_SIZE); 686 if (!resp) { 687 kfree(req); 688 return -ENOMEM; 689 } 690 691 req[1] = SMP_REPORT_PHY_ERR_LOG; 692 req[9] = phy->number; 693 694 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 695 resp, RPEL_RESP_SIZE); 696 697 if (res) 698 goto out; 699 700 phy->invalid_dword_count = get_unaligned_be32(&resp[12]); 701 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]); 702 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]); 703 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]); 704 705 out: 706 kfree(req); 707 kfree(resp); 708 return res; 709 710 } 711 712 #ifdef CONFIG_SCSI_SAS_ATA 713 714 #define RPS_REQ_SIZE 16 715 #define RPS_RESP_SIZE 60 716 717 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 718 struct smp_resp *rps_resp) 719 { 720 int res; 721 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 722 u8 *resp = (u8 *)rps_resp; 723 724 if (!rps_req) 725 return -ENOMEM; 726 727 rps_req[1] = SMP_REPORT_PHY_SATA; 728 rps_req[9] = phy_id; 729 730 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 731 rps_resp, RPS_RESP_SIZE); 732 733 /* 0x34 is the FIS type for the D2H fis. There's a potential 734 * standards cockup here. sas-2 explicitly specifies the FIS 735 * should be encoded so that FIS type is in resp[24]. 736 * However, some expanders endian reverse this. Undo the 737 * reversal here */ 738 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 739 int i; 740 741 for (i = 0; i < 5; i++) { 742 int j = 24 + (i*4); 743 u8 a, b; 744 a = resp[j + 0]; 745 b = resp[j + 1]; 746 resp[j + 0] = resp[j + 3]; 747 resp[j + 1] = resp[j + 2]; 748 resp[j + 2] = b; 749 resp[j + 3] = a; 750 } 751 } 752 753 kfree(rps_req); 754 return res; 755 } 756 #endif 757 758 static void sas_ex_get_linkrate(struct domain_device *parent, 759 struct domain_device *child, 760 struct ex_phy *parent_phy) 761 { 762 struct expander_device *parent_ex = &parent->ex_dev; 763 struct sas_port *port; 764 int i; 765 766 child->pathways = 0; 767 768 port = parent_phy->port; 769 770 for (i = 0; i < parent_ex->num_phys; i++) { 771 struct ex_phy *phy = &parent_ex->ex_phy[i]; 772 773 if (phy->phy_state == PHY_VACANT || 774 phy->phy_state == PHY_NOT_PRESENT) 775 continue; 776 777 if (SAS_ADDR(phy->attached_sas_addr) == 778 SAS_ADDR(child->sas_addr)) { 779 780 child->min_linkrate = min(parent->min_linkrate, 781 phy->linkrate); 782 child->max_linkrate = max(parent->max_linkrate, 783 phy->linkrate); 784 child->pathways++; 785 sas_port_add_phy(port, phy->phy); 786 } 787 } 788 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 789 child->pathways = min(child->pathways, parent->pathways); 790 } 791 792 static struct domain_device *sas_ex_discover_end_dev( 793 struct domain_device *parent, int phy_id) 794 { 795 struct expander_device *parent_ex = &parent->ex_dev; 796 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 797 struct domain_device *child = NULL; 798 struct sas_rphy *rphy; 799 int res; 800 801 if (phy->attached_sata_host || phy->attached_sata_ps) 802 return NULL; 803 804 child = sas_alloc_device(); 805 if (!child) 806 return NULL; 807 808 kref_get(&parent->kref); 809 child->parent = parent; 810 child->port = parent->port; 811 child->iproto = phy->attached_iproto; 812 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 813 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 814 if (!phy->port) { 815 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 816 if (unlikely(!phy->port)) 817 goto out_err; 818 if (unlikely(sas_port_add(phy->port) != 0)) { 819 sas_port_free(phy->port); 820 goto out_err; 821 } 822 } 823 sas_ex_get_linkrate(parent, child, phy); 824 sas_device_set_phy(child, phy->port); 825 826 #ifdef CONFIG_SCSI_SAS_ATA 827 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 828 if (child->linkrate > parent->min_linkrate) { 829 struct sas_phy *cphy = child->phy; 830 enum sas_linkrate min_prate = cphy->minimum_linkrate, 831 parent_min_lrate = parent->min_linkrate, 832 min_linkrate = (min_prate > parent_min_lrate) ? 833 parent_min_lrate : 0; 834 struct sas_phy_linkrates rates = { 835 .maximum_linkrate = parent->min_linkrate, 836 .minimum_linkrate = min_linkrate, 837 }; 838 int ret; 839 840 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n", 841 SAS_ADDR(child->sas_addr), phy_id); 842 ret = sas_smp_phy_control(parent, phy_id, 843 PHY_FUNC_LINK_RESET, &rates); 844 if (ret) { 845 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n", 846 SAS_ADDR(child->sas_addr), phy_id, ret); 847 goto out_free; 848 } 849 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n", 850 SAS_ADDR(child->sas_addr), phy_id); 851 child->linkrate = child->min_linkrate; 852 } 853 res = sas_get_ata_info(child, phy); 854 if (res) 855 goto out_free; 856 857 sas_init_dev(child); 858 res = sas_ata_init(child); 859 if (res) 860 goto out_free; 861 rphy = sas_end_device_alloc(phy->port); 862 if (!rphy) 863 goto out_free; 864 rphy->identify.phy_identifier = phy_id; 865 866 child->rphy = rphy; 867 get_device(&rphy->dev); 868 869 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 870 871 res = sas_discover_sata(child); 872 if (res) { 873 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n", 874 SAS_ADDR(child->sas_addr), 875 SAS_ADDR(parent->sas_addr), phy_id, res); 876 goto out_list_del; 877 } 878 } else 879 #endif 880 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 881 child->dev_type = SAS_END_DEVICE; 882 rphy = sas_end_device_alloc(phy->port); 883 /* FIXME: error handling */ 884 if (unlikely(!rphy)) 885 goto out_free; 886 child->tproto = phy->attached_tproto; 887 sas_init_dev(child); 888 889 child->rphy = rphy; 890 get_device(&rphy->dev); 891 rphy->identify.phy_identifier = phy_id; 892 sas_fill_in_rphy(child, rphy); 893 894 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 895 896 res = sas_discover_end_dev(child); 897 if (res) { 898 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n", 899 SAS_ADDR(child->sas_addr), 900 SAS_ADDR(parent->sas_addr), phy_id, res); 901 goto out_list_del; 902 } 903 } else { 904 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 905 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 906 phy_id); 907 goto out_free; 908 } 909 910 list_add_tail(&child->siblings, &parent_ex->children); 911 return child; 912 913 out_list_del: 914 sas_rphy_free(child->rphy); 915 list_del(&child->disco_list_node); 916 spin_lock_irq(&parent->port->dev_list_lock); 917 list_del(&child->dev_list_node); 918 spin_unlock_irq(&parent->port->dev_list_lock); 919 out_free: 920 sas_port_delete(phy->port); 921 out_err: 922 phy->port = NULL; 923 sas_put_device(child); 924 return NULL; 925 } 926 927 /* See if this phy is part of a wide port */ 928 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 929 { 930 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 931 int i; 932 933 for (i = 0; i < parent->ex_dev.num_phys; i++) { 934 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 935 936 if (ephy == phy) 937 continue; 938 939 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 940 SAS_ADDR_SIZE) && ephy->port) { 941 sas_port_add_phy(ephy->port, phy->phy); 942 phy->port = ephy->port; 943 phy->phy_state = PHY_DEVICE_DISCOVERED; 944 return true; 945 } 946 } 947 948 return false; 949 } 950 951 static struct domain_device *sas_ex_discover_expander( 952 struct domain_device *parent, int phy_id) 953 { 954 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 955 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 956 struct domain_device *child = NULL; 957 struct sas_rphy *rphy; 958 struct sas_expander_device *edev; 959 struct asd_sas_port *port; 960 int res; 961 962 if (phy->routing_attr == DIRECT_ROUTING) { 963 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n", 964 SAS_ADDR(parent->sas_addr), phy_id, 965 SAS_ADDR(phy->attached_sas_addr), 966 phy->attached_phy_id); 967 return NULL; 968 } 969 child = sas_alloc_device(); 970 if (!child) 971 return NULL; 972 973 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 974 /* FIXME: better error handling */ 975 BUG_ON(sas_port_add(phy->port) != 0); 976 977 978 switch (phy->attached_dev_type) { 979 case SAS_EDGE_EXPANDER_DEVICE: 980 rphy = sas_expander_alloc(phy->port, 981 SAS_EDGE_EXPANDER_DEVICE); 982 break; 983 case SAS_FANOUT_EXPANDER_DEVICE: 984 rphy = sas_expander_alloc(phy->port, 985 SAS_FANOUT_EXPANDER_DEVICE); 986 break; 987 default: 988 rphy = NULL; /* shut gcc up */ 989 BUG(); 990 } 991 port = parent->port; 992 child->rphy = rphy; 993 get_device(&rphy->dev); 994 edev = rphy_to_expander_device(rphy); 995 child->dev_type = phy->attached_dev_type; 996 kref_get(&parent->kref); 997 child->parent = parent; 998 child->port = port; 999 child->iproto = phy->attached_iproto; 1000 child->tproto = phy->attached_tproto; 1001 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1002 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 1003 sas_ex_get_linkrate(parent, child, phy); 1004 edev->level = parent_ex->level + 1; 1005 parent->port->disc.max_level = max(parent->port->disc.max_level, 1006 edev->level); 1007 sas_init_dev(child); 1008 sas_fill_in_rphy(child, rphy); 1009 sas_rphy_add(rphy); 1010 1011 spin_lock_irq(&parent->port->dev_list_lock); 1012 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 1013 spin_unlock_irq(&parent->port->dev_list_lock); 1014 1015 res = sas_discover_expander(child); 1016 if (res) { 1017 sas_rphy_delete(rphy); 1018 spin_lock_irq(&parent->port->dev_list_lock); 1019 list_del(&child->dev_list_node); 1020 spin_unlock_irq(&parent->port->dev_list_lock); 1021 sas_put_device(child); 1022 return NULL; 1023 } 1024 list_add_tail(&child->siblings, &parent->ex_dev.children); 1025 return child; 1026 } 1027 1028 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 1029 { 1030 struct expander_device *ex = &dev->ex_dev; 1031 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 1032 struct domain_device *child = NULL; 1033 int res = 0; 1034 1035 /* Phy state */ 1036 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1037 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1038 res = sas_ex_phy_discover(dev, phy_id); 1039 if (res) 1040 return res; 1041 } 1042 1043 /* Parent and domain coherency */ 1044 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1045 SAS_ADDR(dev->port->sas_addr))) { 1046 sas_add_parent_port(dev, phy_id); 1047 return 0; 1048 } 1049 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1050 SAS_ADDR(dev->parent->sas_addr))) { 1051 sas_add_parent_port(dev, phy_id); 1052 if (ex_phy->routing_attr == TABLE_ROUTING) 1053 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1054 return 0; 1055 } 1056 1057 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1058 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1059 1060 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1061 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1062 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1063 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1064 } 1065 return 0; 1066 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1067 return 0; 1068 1069 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1070 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1071 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1072 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1073 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n", 1074 ex_phy->attached_dev_type, 1075 SAS_ADDR(dev->sas_addr), 1076 phy_id); 1077 return 0; 1078 } 1079 1080 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1081 if (res) { 1082 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1083 SAS_ADDR(ex_phy->attached_sas_addr), res); 1084 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1085 return res; 1086 } 1087 1088 if (sas_ex_join_wide_port(dev, phy_id)) { 1089 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1090 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1091 return res; 1092 } 1093 1094 switch (ex_phy->attached_dev_type) { 1095 case SAS_END_DEVICE: 1096 case SAS_SATA_PENDING: 1097 child = sas_ex_discover_end_dev(dev, phy_id); 1098 break; 1099 case SAS_FANOUT_EXPANDER_DEVICE: 1100 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1101 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n", 1102 SAS_ADDR(ex_phy->attached_sas_addr), 1103 ex_phy->attached_phy_id, 1104 SAS_ADDR(dev->sas_addr), 1105 phy_id); 1106 sas_ex_disable_phy(dev, phy_id); 1107 break; 1108 } else 1109 memcpy(dev->port->disc.fanout_sas_addr, 1110 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1111 /* fallthrough */ 1112 case SAS_EDGE_EXPANDER_DEVICE: 1113 child = sas_ex_discover_expander(dev, phy_id); 1114 break; 1115 default: 1116 break; 1117 } 1118 1119 if (child) { 1120 int i; 1121 1122 for (i = 0; i < ex->num_phys; i++) { 1123 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1124 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1125 continue; 1126 /* 1127 * Due to races, the phy might not get added to the 1128 * wide port, so we add the phy to the wide port here. 1129 */ 1130 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1131 SAS_ADDR(child->sas_addr)) { 1132 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1133 if (sas_ex_join_wide_port(dev, i)) 1134 pr_debug("Attaching ex phy%02d to wide port %016llx\n", 1135 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1136 } 1137 } 1138 } 1139 1140 return res; 1141 } 1142 1143 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1144 { 1145 struct expander_device *ex = &dev->ex_dev; 1146 int i; 1147 1148 for (i = 0; i < ex->num_phys; i++) { 1149 struct ex_phy *phy = &ex->ex_phy[i]; 1150 1151 if (phy->phy_state == PHY_VACANT || 1152 phy->phy_state == PHY_NOT_PRESENT) 1153 continue; 1154 1155 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1156 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1157 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1158 1159 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 1160 1161 return 1; 1162 } 1163 } 1164 return 0; 1165 } 1166 1167 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1168 { 1169 struct expander_device *ex = &dev->ex_dev; 1170 struct domain_device *child; 1171 u8 sub_addr[SAS_ADDR_SIZE] = {0, }; 1172 1173 list_for_each_entry(child, &ex->children, siblings) { 1174 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1175 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1176 continue; 1177 if (sub_addr[0] == 0) { 1178 sas_find_sub_addr(child, sub_addr); 1179 continue; 1180 } else { 1181 u8 s2[SAS_ADDR_SIZE]; 1182 1183 if (sas_find_sub_addr(child, s2) && 1184 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1185 1186 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1187 SAS_ADDR(dev->sas_addr), 1188 SAS_ADDR(child->sas_addr), 1189 SAS_ADDR(s2), 1190 SAS_ADDR(sub_addr)); 1191 1192 sas_ex_disable_port(child, s2); 1193 } 1194 } 1195 } 1196 return 0; 1197 } 1198 /** 1199 * sas_ex_discover_devices - discover devices attached to this expander 1200 * @dev: pointer to the expander domain device 1201 * @single: if you want to do a single phy, else set to -1; 1202 * 1203 * Configure this expander for use with its devices and register the 1204 * devices of this expander. 1205 */ 1206 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1207 { 1208 struct expander_device *ex = &dev->ex_dev; 1209 int i = 0, end = ex->num_phys; 1210 int res = 0; 1211 1212 if (0 <= single && single < end) { 1213 i = single; 1214 end = i+1; 1215 } 1216 1217 for ( ; i < end; i++) { 1218 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1219 1220 if (ex_phy->phy_state == PHY_VACANT || 1221 ex_phy->phy_state == PHY_NOT_PRESENT || 1222 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1223 continue; 1224 1225 switch (ex_phy->linkrate) { 1226 case SAS_PHY_DISABLED: 1227 case SAS_PHY_RESET_PROBLEM: 1228 case SAS_SATA_PORT_SELECTOR: 1229 continue; 1230 default: 1231 res = sas_ex_discover_dev(dev, i); 1232 if (res) 1233 break; 1234 continue; 1235 } 1236 } 1237 1238 if (!res) 1239 sas_check_level_subtractive_boundary(dev); 1240 1241 return res; 1242 } 1243 1244 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1245 { 1246 struct expander_device *ex = &dev->ex_dev; 1247 int i; 1248 u8 *sub_sas_addr = NULL; 1249 1250 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1251 return 0; 1252 1253 for (i = 0; i < ex->num_phys; i++) { 1254 struct ex_phy *phy = &ex->ex_phy[i]; 1255 1256 if (phy->phy_state == PHY_VACANT || 1257 phy->phy_state == PHY_NOT_PRESENT) 1258 continue; 1259 1260 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1261 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1262 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1263 1264 if (!sub_sas_addr) 1265 sub_sas_addr = &phy->attached_sas_addr[0]; 1266 else if (SAS_ADDR(sub_sas_addr) != 1267 SAS_ADDR(phy->attached_sas_addr)) { 1268 1269 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1270 SAS_ADDR(dev->sas_addr), i, 1271 SAS_ADDR(phy->attached_sas_addr), 1272 SAS_ADDR(sub_sas_addr)); 1273 sas_ex_disable_phy(dev, i); 1274 } 1275 } 1276 } 1277 return 0; 1278 } 1279 1280 static void sas_print_parent_topology_bug(struct domain_device *child, 1281 struct ex_phy *parent_phy, 1282 struct ex_phy *child_phy) 1283 { 1284 static const char *ex_type[] = { 1285 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1286 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1287 }; 1288 struct domain_device *parent = child->parent; 1289 1290 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n", 1291 ex_type[parent->dev_type], 1292 SAS_ADDR(parent->sas_addr), 1293 parent_phy->phy_id, 1294 1295 ex_type[child->dev_type], 1296 SAS_ADDR(child->sas_addr), 1297 child_phy->phy_id, 1298 1299 sas_route_char(parent, parent_phy), 1300 sas_route_char(child, child_phy)); 1301 } 1302 1303 static int sas_check_eeds(struct domain_device *child, 1304 struct ex_phy *parent_phy, 1305 struct ex_phy *child_phy) 1306 { 1307 int res = 0; 1308 struct domain_device *parent = child->parent; 1309 1310 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1311 res = -ENODEV; 1312 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n", 1313 SAS_ADDR(parent->sas_addr), 1314 parent_phy->phy_id, 1315 SAS_ADDR(child->sas_addr), 1316 child_phy->phy_id, 1317 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1318 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1319 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1320 SAS_ADDR_SIZE); 1321 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1322 SAS_ADDR_SIZE); 1323 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1324 SAS_ADDR(parent->sas_addr)) || 1325 (SAS_ADDR(parent->port->disc.eeds_a) == 1326 SAS_ADDR(child->sas_addr))) 1327 && 1328 ((SAS_ADDR(parent->port->disc.eeds_b) == 1329 SAS_ADDR(parent->sas_addr)) || 1330 (SAS_ADDR(parent->port->disc.eeds_b) == 1331 SAS_ADDR(child->sas_addr)))) 1332 ; 1333 else { 1334 res = -ENODEV; 1335 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n", 1336 SAS_ADDR(parent->sas_addr), 1337 parent_phy->phy_id, 1338 SAS_ADDR(child->sas_addr), 1339 child_phy->phy_id); 1340 } 1341 1342 return res; 1343 } 1344 1345 /* Here we spill over 80 columns. It is intentional. 1346 */ 1347 static int sas_check_parent_topology(struct domain_device *child) 1348 { 1349 struct expander_device *child_ex = &child->ex_dev; 1350 struct expander_device *parent_ex; 1351 int i; 1352 int res = 0; 1353 1354 if (!child->parent) 1355 return 0; 1356 1357 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1358 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1359 return 0; 1360 1361 parent_ex = &child->parent->ex_dev; 1362 1363 for (i = 0; i < parent_ex->num_phys; i++) { 1364 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1365 struct ex_phy *child_phy; 1366 1367 if (parent_phy->phy_state == PHY_VACANT || 1368 parent_phy->phy_state == PHY_NOT_PRESENT) 1369 continue; 1370 1371 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1372 continue; 1373 1374 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1375 1376 switch (child->parent->dev_type) { 1377 case SAS_EDGE_EXPANDER_DEVICE: 1378 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1379 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1380 child_phy->routing_attr != TABLE_ROUTING) { 1381 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1382 res = -ENODEV; 1383 } 1384 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1385 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1386 res = sas_check_eeds(child, parent_phy, child_phy); 1387 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1388 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1389 res = -ENODEV; 1390 } 1391 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1392 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1393 (child_phy->routing_attr == TABLE_ROUTING && 1394 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1395 /* All good */; 1396 } else { 1397 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1398 res = -ENODEV; 1399 } 1400 } 1401 break; 1402 case SAS_FANOUT_EXPANDER_DEVICE: 1403 if (parent_phy->routing_attr != TABLE_ROUTING || 1404 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1405 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1406 res = -ENODEV; 1407 } 1408 break; 1409 default: 1410 break; 1411 } 1412 } 1413 1414 return res; 1415 } 1416 1417 #define RRI_REQ_SIZE 16 1418 #define RRI_RESP_SIZE 44 1419 1420 static int sas_configure_present(struct domain_device *dev, int phy_id, 1421 u8 *sas_addr, int *index, int *present) 1422 { 1423 int i, res = 0; 1424 struct expander_device *ex = &dev->ex_dev; 1425 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1426 u8 *rri_req; 1427 u8 *rri_resp; 1428 1429 *present = 0; 1430 *index = 0; 1431 1432 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1433 if (!rri_req) 1434 return -ENOMEM; 1435 1436 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1437 if (!rri_resp) { 1438 kfree(rri_req); 1439 return -ENOMEM; 1440 } 1441 1442 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1443 rri_req[9] = phy_id; 1444 1445 for (i = 0; i < ex->max_route_indexes ; i++) { 1446 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1447 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1448 RRI_RESP_SIZE); 1449 if (res) 1450 goto out; 1451 res = rri_resp[2]; 1452 if (res == SMP_RESP_NO_INDEX) { 1453 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1454 SAS_ADDR(dev->sas_addr), phy_id, i); 1455 goto out; 1456 } else if (res != SMP_RESP_FUNC_ACC) { 1457 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n", 1458 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1459 i, res); 1460 goto out; 1461 } 1462 if (SAS_ADDR(sas_addr) != 0) { 1463 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1464 *index = i; 1465 if ((rri_resp[12] & 0x80) == 0x80) 1466 *present = 0; 1467 else 1468 *present = 1; 1469 goto out; 1470 } else if (SAS_ADDR(rri_resp+16) == 0) { 1471 *index = i; 1472 *present = 0; 1473 goto out; 1474 } 1475 } else if (SAS_ADDR(rri_resp+16) == 0 && 1476 phy->last_da_index < i) { 1477 phy->last_da_index = i; 1478 *index = i; 1479 *present = 0; 1480 goto out; 1481 } 1482 } 1483 res = -1; 1484 out: 1485 kfree(rri_req); 1486 kfree(rri_resp); 1487 return res; 1488 } 1489 1490 #define CRI_REQ_SIZE 44 1491 #define CRI_RESP_SIZE 8 1492 1493 static int sas_configure_set(struct domain_device *dev, int phy_id, 1494 u8 *sas_addr, int index, int include) 1495 { 1496 int res; 1497 u8 *cri_req; 1498 u8 *cri_resp; 1499 1500 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1501 if (!cri_req) 1502 return -ENOMEM; 1503 1504 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1505 if (!cri_resp) { 1506 kfree(cri_req); 1507 return -ENOMEM; 1508 } 1509 1510 cri_req[1] = SMP_CONF_ROUTE_INFO; 1511 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1512 cri_req[9] = phy_id; 1513 if (SAS_ADDR(sas_addr) == 0 || !include) 1514 cri_req[12] |= 0x80; 1515 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1516 1517 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1518 CRI_RESP_SIZE); 1519 if (res) 1520 goto out; 1521 res = cri_resp[2]; 1522 if (res == SMP_RESP_NO_INDEX) { 1523 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n", 1524 SAS_ADDR(dev->sas_addr), phy_id, index); 1525 } 1526 out: 1527 kfree(cri_req); 1528 kfree(cri_resp); 1529 return res; 1530 } 1531 1532 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1533 u8 *sas_addr, int include) 1534 { 1535 int index; 1536 int present; 1537 int res; 1538 1539 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1540 if (res) 1541 return res; 1542 if (include ^ present) 1543 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1544 1545 return res; 1546 } 1547 1548 /** 1549 * sas_configure_parent - configure routing table of parent 1550 * @parent: parent expander 1551 * @child: child expander 1552 * @sas_addr: SAS port identifier of device directly attached to child 1553 * @include: whether or not to include @child in the expander routing table 1554 */ 1555 static int sas_configure_parent(struct domain_device *parent, 1556 struct domain_device *child, 1557 u8 *sas_addr, int include) 1558 { 1559 struct expander_device *ex_parent = &parent->ex_dev; 1560 int res = 0; 1561 int i; 1562 1563 if (parent->parent) { 1564 res = sas_configure_parent(parent->parent, parent, sas_addr, 1565 include); 1566 if (res) 1567 return res; 1568 } 1569 1570 if (ex_parent->conf_route_table == 0) { 1571 pr_debug("ex %016llx has self-configuring routing table\n", 1572 SAS_ADDR(parent->sas_addr)); 1573 return 0; 1574 } 1575 1576 for (i = 0; i < ex_parent->num_phys; i++) { 1577 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1578 1579 if ((phy->routing_attr == TABLE_ROUTING) && 1580 (SAS_ADDR(phy->attached_sas_addr) == 1581 SAS_ADDR(child->sas_addr))) { 1582 res = sas_configure_phy(parent, i, sas_addr, include); 1583 if (res) 1584 return res; 1585 } 1586 } 1587 1588 return res; 1589 } 1590 1591 /** 1592 * sas_configure_routing - configure routing 1593 * @dev: expander device 1594 * @sas_addr: port identifier of device directly attached to the expander device 1595 */ 1596 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1597 { 1598 if (dev->parent) 1599 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1600 return 0; 1601 } 1602 1603 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1604 { 1605 if (dev->parent) 1606 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1607 return 0; 1608 } 1609 1610 /** 1611 * sas_discover_expander - expander discovery 1612 * @dev: pointer to expander domain device 1613 * 1614 * See comment in sas_discover_sata(). 1615 */ 1616 static int sas_discover_expander(struct domain_device *dev) 1617 { 1618 int res; 1619 1620 res = sas_notify_lldd_dev_found(dev); 1621 if (res) 1622 return res; 1623 1624 res = sas_ex_general(dev); 1625 if (res) 1626 goto out_err; 1627 res = sas_ex_manuf_info(dev); 1628 if (res) 1629 goto out_err; 1630 1631 res = sas_expander_discover(dev); 1632 if (res) { 1633 pr_warn("expander %016llx discovery failed(0x%x)\n", 1634 SAS_ADDR(dev->sas_addr), res); 1635 goto out_err; 1636 } 1637 1638 sas_check_ex_subtractive_boundary(dev); 1639 res = sas_check_parent_topology(dev); 1640 if (res) 1641 goto out_err; 1642 return 0; 1643 out_err: 1644 sas_notify_lldd_dev_gone(dev); 1645 return res; 1646 } 1647 1648 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1649 { 1650 int res = 0; 1651 struct domain_device *dev; 1652 1653 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1654 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1655 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1656 struct sas_expander_device *ex = 1657 rphy_to_expander_device(dev->rphy); 1658 1659 if (level == ex->level) 1660 res = sas_ex_discover_devices(dev, -1); 1661 else if (level > 0) 1662 res = sas_ex_discover_devices(port->port_dev, -1); 1663 1664 } 1665 } 1666 1667 return res; 1668 } 1669 1670 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1671 { 1672 int res; 1673 int level; 1674 1675 do { 1676 level = port->disc.max_level; 1677 res = sas_ex_level_discovery(port, level); 1678 mb(); 1679 } while (level < port->disc.max_level); 1680 1681 return res; 1682 } 1683 1684 int sas_discover_root_expander(struct domain_device *dev) 1685 { 1686 int res; 1687 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1688 1689 res = sas_rphy_add(dev->rphy); 1690 if (res) 1691 goto out_err; 1692 1693 ex->level = dev->port->disc.max_level; /* 0 */ 1694 res = sas_discover_expander(dev); 1695 if (res) 1696 goto out_err2; 1697 1698 sas_ex_bfs_disc(dev->port); 1699 1700 return res; 1701 1702 out_err2: 1703 sas_rphy_remove(dev->rphy); 1704 out_err: 1705 return res; 1706 } 1707 1708 /* ---------- Domain revalidation ---------- */ 1709 1710 static int sas_get_phy_discover(struct domain_device *dev, 1711 int phy_id, struct smp_resp *disc_resp) 1712 { 1713 int res; 1714 u8 *disc_req; 1715 1716 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1717 if (!disc_req) 1718 return -ENOMEM; 1719 1720 disc_req[1] = SMP_DISCOVER; 1721 disc_req[9] = phy_id; 1722 1723 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1724 disc_resp, DISCOVER_RESP_SIZE); 1725 if (res) 1726 goto out; 1727 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1728 res = disc_resp->result; 1729 goto out; 1730 } 1731 out: 1732 kfree(disc_req); 1733 return res; 1734 } 1735 1736 static int sas_get_phy_change_count(struct domain_device *dev, 1737 int phy_id, int *pcc) 1738 { 1739 int res; 1740 struct smp_resp *disc_resp; 1741 1742 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1743 if (!disc_resp) 1744 return -ENOMEM; 1745 1746 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1747 if (!res) 1748 *pcc = disc_resp->disc.change_count; 1749 1750 kfree(disc_resp); 1751 return res; 1752 } 1753 1754 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1755 u8 *sas_addr, enum sas_device_type *type) 1756 { 1757 int res; 1758 struct smp_resp *disc_resp; 1759 struct discover_resp *dr; 1760 1761 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1762 if (!disc_resp) 1763 return -ENOMEM; 1764 dr = &disc_resp->disc; 1765 1766 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1767 if (res == 0) { 1768 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 1769 SAS_ADDR_SIZE); 1770 *type = to_dev_type(dr); 1771 if (*type == 0) 1772 memset(sas_addr, 0, SAS_ADDR_SIZE); 1773 } 1774 kfree(disc_resp); 1775 return res; 1776 } 1777 1778 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1779 int from_phy, bool update) 1780 { 1781 struct expander_device *ex = &dev->ex_dev; 1782 int res = 0; 1783 int i; 1784 1785 for (i = from_phy; i < ex->num_phys; i++) { 1786 int phy_change_count = 0; 1787 1788 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1789 switch (res) { 1790 case SMP_RESP_PHY_VACANT: 1791 case SMP_RESP_NO_PHY: 1792 continue; 1793 case SMP_RESP_FUNC_ACC: 1794 break; 1795 default: 1796 return res; 1797 } 1798 1799 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1800 if (update) 1801 ex->ex_phy[i].phy_change_count = 1802 phy_change_count; 1803 *phy_id = i; 1804 return 0; 1805 } 1806 } 1807 return 0; 1808 } 1809 1810 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1811 { 1812 int res; 1813 u8 *rg_req; 1814 struct smp_resp *rg_resp; 1815 1816 rg_req = alloc_smp_req(RG_REQ_SIZE); 1817 if (!rg_req) 1818 return -ENOMEM; 1819 1820 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1821 if (!rg_resp) { 1822 kfree(rg_req); 1823 return -ENOMEM; 1824 } 1825 1826 rg_req[1] = SMP_REPORT_GENERAL; 1827 1828 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1829 RG_RESP_SIZE); 1830 if (res) 1831 goto out; 1832 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1833 res = rg_resp->result; 1834 goto out; 1835 } 1836 1837 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1838 out: 1839 kfree(rg_resp); 1840 kfree(rg_req); 1841 return res; 1842 } 1843 /** 1844 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1845 * @dev:domain device to be detect. 1846 * @src_dev: the device which originated BROADCAST(CHANGE). 1847 * 1848 * Add self-configuration expander support. Suppose two expander cascading, 1849 * when the first level expander is self-configuring, hotplug the disks in 1850 * second level expander, BROADCAST(CHANGE) will not only be originated 1851 * in the second level expander, but also be originated in the first level 1852 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1853 * expander changed count in two level expanders will all increment at least 1854 * once, but the phy which chang count has changed is the source device which 1855 * we concerned. 1856 */ 1857 1858 static int sas_find_bcast_dev(struct domain_device *dev, 1859 struct domain_device **src_dev) 1860 { 1861 struct expander_device *ex = &dev->ex_dev; 1862 int ex_change_count = -1; 1863 int phy_id = -1; 1864 int res; 1865 struct domain_device *ch; 1866 1867 res = sas_get_ex_change_count(dev, &ex_change_count); 1868 if (res) 1869 goto out; 1870 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1871 /* Just detect if this expander phys phy change count changed, 1872 * in order to determine if this expander originate BROADCAST, 1873 * and do not update phy change count field in our structure. 1874 */ 1875 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1876 if (phy_id != -1) { 1877 *src_dev = dev; 1878 ex->ex_change_count = ex_change_count; 1879 pr_info("ex %016llx phy%02d change count has changed\n", 1880 SAS_ADDR(dev->sas_addr), phy_id); 1881 return res; 1882 } else 1883 pr_info("ex %016llx phys DID NOT change\n", 1884 SAS_ADDR(dev->sas_addr)); 1885 } 1886 list_for_each_entry(ch, &ex->children, siblings) { 1887 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1888 res = sas_find_bcast_dev(ch, src_dev); 1889 if (*src_dev) 1890 return res; 1891 } 1892 } 1893 out: 1894 return res; 1895 } 1896 1897 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1898 { 1899 struct expander_device *ex = &dev->ex_dev; 1900 struct domain_device *child, *n; 1901 1902 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1903 set_bit(SAS_DEV_GONE, &child->state); 1904 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1905 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1906 sas_unregister_ex_tree(port, child); 1907 else 1908 sas_unregister_dev(port, child); 1909 } 1910 sas_unregister_dev(port, dev); 1911 } 1912 1913 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1914 int phy_id, bool last) 1915 { 1916 struct expander_device *ex_dev = &parent->ex_dev; 1917 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1918 struct domain_device *child, *n, *found = NULL; 1919 if (last) { 1920 list_for_each_entry_safe(child, n, 1921 &ex_dev->children, siblings) { 1922 if (SAS_ADDR(child->sas_addr) == 1923 SAS_ADDR(phy->attached_sas_addr)) { 1924 set_bit(SAS_DEV_GONE, &child->state); 1925 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1926 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1927 sas_unregister_ex_tree(parent->port, child); 1928 else 1929 sas_unregister_dev(parent->port, child); 1930 found = child; 1931 break; 1932 } 1933 } 1934 sas_disable_routing(parent, phy->attached_sas_addr); 1935 } 1936 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1937 if (phy->port) { 1938 sas_port_delete_phy(phy->port, phy->phy); 1939 sas_device_set_phy(found, phy->port); 1940 if (phy->port->num_phys == 0) 1941 list_add_tail(&phy->port->del_list, 1942 &parent->port->sas_port_del_list); 1943 phy->port = NULL; 1944 } 1945 } 1946 1947 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1948 const int level) 1949 { 1950 struct expander_device *ex_root = &root->ex_dev; 1951 struct domain_device *child; 1952 int res = 0; 1953 1954 list_for_each_entry(child, &ex_root->children, siblings) { 1955 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1956 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1957 struct sas_expander_device *ex = 1958 rphy_to_expander_device(child->rphy); 1959 1960 if (level > ex->level) 1961 res = sas_discover_bfs_by_root_level(child, 1962 level); 1963 else if (level == ex->level) 1964 res = sas_ex_discover_devices(child, -1); 1965 } 1966 } 1967 return res; 1968 } 1969 1970 static int sas_discover_bfs_by_root(struct domain_device *dev) 1971 { 1972 int res; 1973 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1974 int level = ex->level+1; 1975 1976 res = sas_ex_discover_devices(dev, -1); 1977 if (res) 1978 goto out; 1979 do { 1980 res = sas_discover_bfs_by_root_level(dev, level); 1981 mb(); 1982 level += 1; 1983 } while (level <= dev->port->disc.max_level); 1984 out: 1985 return res; 1986 } 1987 1988 static int sas_discover_new(struct domain_device *dev, int phy_id) 1989 { 1990 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1991 struct domain_device *child; 1992 int res; 1993 1994 pr_debug("ex %016llx phy%02d new device attached\n", 1995 SAS_ADDR(dev->sas_addr), phy_id); 1996 res = sas_ex_phy_discover(dev, phy_id); 1997 if (res) 1998 return res; 1999 2000 if (sas_ex_join_wide_port(dev, phy_id)) 2001 return 0; 2002 2003 res = sas_ex_discover_devices(dev, phy_id); 2004 if (res) 2005 return res; 2006 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 2007 if (SAS_ADDR(child->sas_addr) == 2008 SAS_ADDR(ex_phy->attached_sas_addr)) { 2009 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 2010 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 2011 res = sas_discover_bfs_by_root(child); 2012 break; 2013 } 2014 } 2015 return res; 2016 } 2017 2018 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 2019 { 2020 if (old == new) 2021 return true; 2022 2023 /* treat device directed resets as flutter, if we went 2024 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 2025 */ 2026 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 2027 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 2028 return true; 2029 2030 return false; 2031 } 2032 2033 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, 2034 bool last, int sibling) 2035 { 2036 struct expander_device *ex = &dev->ex_dev; 2037 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2038 enum sas_device_type type = SAS_PHY_UNUSED; 2039 u8 sas_addr[SAS_ADDR_SIZE]; 2040 char msg[80] = ""; 2041 int res; 2042 2043 if (!last) 2044 sprintf(msg, ", part of a wide port with phy%02d", sibling); 2045 2046 pr_debug("ex %016llx rediscovering phy%02d%s\n", 2047 SAS_ADDR(dev->sas_addr), phy_id, msg); 2048 2049 memset(sas_addr, 0, SAS_ADDR_SIZE); 2050 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2051 switch (res) { 2052 case SMP_RESP_NO_PHY: 2053 phy->phy_state = PHY_NOT_PRESENT; 2054 sas_unregister_devs_sas_addr(dev, phy_id, last); 2055 return res; 2056 case SMP_RESP_PHY_VACANT: 2057 phy->phy_state = PHY_VACANT; 2058 sas_unregister_devs_sas_addr(dev, phy_id, last); 2059 return res; 2060 case SMP_RESP_FUNC_ACC: 2061 break; 2062 case -ECOMM: 2063 break; 2064 default: 2065 return res; 2066 } 2067 2068 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2069 phy->phy_state = PHY_EMPTY; 2070 sas_unregister_devs_sas_addr(dev, phy_id, last); 2071 /* 2072 * Even though the PHY is empty, for convenience we discover 2073 * the PHY to update the PHY info, like negotiated linkrate. 2074 */ 2075 sas_ex_phy_discover(dev, phy_id); 2076 return res; 2077 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2078 dev_type_flutter(type, phy->attached_dev_type)) { 2079 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2080 char *action = ""; 2081 2082 sas_ex_phy_discover(dev, phy_id); 2083 2084 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2085 action = ", needs recovery"; 2086 pr_debug("ex %016llx phy%02d broadcast flutter%s\n", 2087 SAS_ADDR(dev->sas_addr), phy_id, action); 2088 return res; 2089 } 2090 2091 /* we always have to delete the old device when we went here */ 2092 pr_info("ex %016llx phy%02d replace %016llx\n", 2093 SAS_ADDR(dev->sas_addr), phy_id, 2094 SAS_ADDR(phy->attached_sas_addr)); 2095 sas_unregister_devs_sas_addr(dev, phy_id, last); 2096 2097 return sas_discover_new(dev, phy_id); 2098 } 2099 2100 /** 2101 * sas_rediscover - revalidate the domain. 2102 * @dev:domain device to be detect. 2103 * @phy_id: the phy id will be detected. 2104 * 2105 * NOTE: this process _must_ quit (return) as soon as any connection 2106 * errors are encountered. Connection recovery is done elsewhere. 2107 * Discover process only interrogates devices in order to discover the 2108 * domain.For plugging out, we un-register the device only when it is 2109 * the last phy in the port, for other phys in this port, we just delete it 2110 * from the port.For inserting, we do discovery when it is the 2111 * first phy,for other phys in this port, we add it to the port to 2112 * forming the wide-port. 2113 */ 2114 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2115 { 2116 struct expander_device *ex = &dev->ex_dev; 2117 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2118 int res = 0; 2119 int i; 2120 bool last = true; /* is this the last phy of the port */ 2121 2122 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n", 2123 SAS_ADDR(dev->sas_addr), phy_id); 2124 2125 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2126 for (i = 0; i < ex->num_phys; i++) { 2127 struct ex_phy *phy = &ex->ex_phy[i]; 2128 2129 if (i == phy_id) 2130 continue; 2131 if (SAS_ADDR(phy->attached_sas_addr) == 2132 SAS_ADDR(changed_phy->attached_sas_addr)) { 2133 last = false; 2134 break; 2135 } 2136 } 2137 res = sas_rediscover_dev(dev, phy_id, last, i); 2138 } else 2139 res = sas_discover_new(dev, phy_id); 2140 return res; 2141 } 2142 2143 /** 2144 * sas_ex_revalidate_domain - revalidate the domain 2145 * @port_dev: port domain device. 2146 * 2147 * NOTE: this process _must_ quit (return) as soon as any connection 2148 * errors are encountered. Connection recovery is done elsewhere. 2149 * Discover process only interrogates devices in order to discover the 2150 * domain. 2151 */ 2152 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2153 { 2154 int res; 2155 struct domain_device *dev = NULL; 2156 2157 res = sas_find_bcast_dev(port_dev, &dev); 2158 if (res == 0 && dev) { 2159 struct expander_device *ex = &dev->ex_dev; 2160 int i = 0, phy_id; 2161 2162 do { 2163 phy_id = -1; 2164 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2165 if (phy_id == -1) 2166 break; 2167 res = sas_rediscover(dev, phy_id); 2168 i = phy_id + 1; 2169 } while (i < ex->num_phys); 2170 } 2171 return res; 2172 } 2173 2174 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2175 struct sas_rphy *rphy) 2176 { 2177 struct domain_device *dev; 2178 unsigned int rcvlen = 0; 2179 int ret = -EINVAL; 2180 2181 /* no rphy means no smp target support (ie aic94xx host) */ 2182 if (!rphy) 2183 return sas_smp_host_handler(job, shost); 2184 2185 switch (rphy->identify.device_type) { 2186 case SAS_EDGE_EXPANDER_DEVICE: 2187 case SAS_FANOUT_EXPANDER_DEVICE: 2188 break; 2189 default: 2190 pr_err("%s: can we send a smp request to a device?\n", 2191 __func__); 2192 goto out; 2193 } 2194 2195 dev = sas_find_dev_by_rphy(rphy); 2196 if (!dev) { 2197 pr_err("%s: fail to find a domain_device?\n", __func__); 2198 goto out; 2199 } 2200 2201 /* do we need to support multiple segments? */ 2202 if (job->request_payload.sg_cnt > 1 || 2203 job->reply_payload.sg_cnt > 1) { 2204 pr_info("%s: multiple segments req %u, rsp %u\n", 2205 __func__, job->request_payload.payload_len, 2206 job->reply_payload.payload_len); 2207 goto out; 2208 } 2209 2210 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2211 job->reply_payload.sg_list); 2212 if (ret >= 0) { 2213 /* bsg_job_done() requires the length received */ 2214 rcvlen = job->reply_payload.payload_len - ret; 2215 ret = 0; 2216 } 2217 2218 out: 2219 bsg_job_done(job, ret, rcvlen); 2220 } 2221