1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 #include <asm/unaligned.h>
29 
30 #include "sas_internal.h"
31 
32 #include <scsi/sas_ata.h>
33 #include <scsi/scsi_transport.h>
34 #include <scsi/scsi_transport_sas.h>
35 #include "../scsi_sas_internal.h"
36 
37 static int sas_discover_expander(struct domain_device *dev);
38 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
39 static int sas_configure_phy(struct domain_device *dev, int phy_id,
40 			     u8 *sas_addr, int include);
41 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
42 
43 /* ---------- SMP task management ---------- */
44 
45 static void smp_task_timedout(struct timer_list *t)
46 {
47 	struct sas_task_slow *slow = from_timer(slow, t, timer);
48 	struct sas_task *task = slow->task;
49 	unsigned long flags;
50 
51 	spin_lock_irqsave(&task->task_state_lock, flags);
52 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
53 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
54 		complete(&task->slow_task->completion);
55 	}
56 	spin_unlock_irqrestore(&task->task_state_lock, flags);
57 }
58 
59 static void smp_task_done(struct sas_task *task)
60 {
61 	del_timer(&task->slow_task->timer);
62 	complete(&task->slow_task->completion);
63 }
64 
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67 
68 static int smp_execute_task_sg(struct domain_device *dev,
69 		struct scatterlist *req, struct scatterlist *resp)
70 {
71 	int res, retry;
72 	struct sas_task *task = NULL;
73 	struct sas_internal *i =
74 		to_sas_internal(dev->port->ha->core.shost->transportt);
75 
76 	mutex_lock(&dev->ex_dev.cmd_mutex);
77 	for (retry = 0; retry < 3; retry++) {
78 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
79 			res = -ECOMM;
80 			break;
81 		}
82 
83 		task = sas_alloc_slow_task(GFP_KERNEL);
84 		if (!task) {
85 			res = -ENOMEM;
86 			break;
87 		}
88 		task->dev = dev;
89 		task->task_proto = dev->tproto;
90 		task->smp_task.smp_req = *req;
91 		task->smp_task.smp_resp = *resp;
92 
93 		task->task_done = smp_task_done;
94 
95 		task->slow_task->timer.function = smp_task_timedout;
96 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 		add_timer(&task->slow_task->timer);
98 
99 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 
101 		if (res) {
102 			del_timer(&task->slow_task->timer);
103 			pr_notice("executing SMP task failed:%d\n", res);
104 			break;
105 		}
106 
107 		wait_for_completion(&task->slow_task->completion);
108 		res = -ECOMM;
109 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 			pr_notice("smp task timed out or aborted\n");
111 			i->dft->lldd_abort_task(task);
112 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 				pr_notice("SMP task aborted and not done\n");
114 				break;
115 			}
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAM_STAT_GOOD) {
119 			res = 0;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124 			/* no error, but return the number of bytes of
125 			 * underrun */
126 			res = task->task_status.residual;
127 			break;
128 		}
129 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 		    task->task_status.stat == SAS_DATA_OVERRUN) {
131 			res = -EMSGSIZE;
132 			break;
133 		}
134 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 			break;
137 		else {
138 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
139 				  __func__,
140 				  SAS_ADDR(dev->sas_addr),
141 				  task->task_status.resp,
142 				  task->task_status.stat);
143 			sas_free_task(task);
144 			task = NULL;
145 		}
146 	}
147 	mutex_unlock(&dev->ex_dev.cmd_mutex);
148 
149 	BUG_ON(retry == 3 && task != NULL);
150 	sas_free_task(task);
151 	return res;
152 }
153 
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 			    void *resp, int resp_size)
156 {
157 	struct scatterlist req_sg;
158 	struct scatterlist resp_sg;
159 
160 	sg_init_one(&req_sg, req, req_size);
161 	sg_init_one(&resp_sg, resp, resp_size);
162 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164 
165 /* ---------- Allocations ---------- */
166 
167 static inline void *alloc_smp_req(int size)
168 {
169 	u8 *p = kzalloc(size, GFP_KERNEL);
170 	if (p)
171 		p[0] = SMP_REQUEST;
172 	return p;
173 }
174 
175 static inline void *alloc_smp_resp(int size)
176 {
177 	return kzalloc(size, GFP_KERNEL);
178 }
179 
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182 	switch (phy->routing_attr) {
183 	case TABLE_ROUTING:
184 		if (dev->ex_dev.t2t_supp)
185 			return 'U';
186 		else
187 			return 'T';
188 	case DIRECT_ROUTING:
189 		return 'D';
190 	case SUBTRACTIVE_ROUTING:
191 		return 'S';
192 	default:
193 		return '?';
194 	}
195 }
196 
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199 	/* This is detecting a failure to transmit initial dev to host
200 	 * FIS as described in section J.5 of sas-2 r16
201 	 */
202 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 		return SAS_SATA_PENDING;
205 	else
206 		return dr->attached_dev_type;
207 }
208 
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211 	enum sas_device_type dev_type;
212 	enum sas_linkrate linkrate;
213 	u8 sas_addr[SAS_ADDR_SIZE];
214 	struct smp_resp *resp = rsp;
215 	struct discover_resp *dr = &resp->disc;
216 	struct sas_ha_struct *ha = dev->port->ha;
217 	struct expander_device *ex = &dev->ex_dev;
218 	struct ex_phy *phy = &ex->ex_phy[phy_id];
219 	struct sas_rphy *rphy = dev->rphy;
220 	bool new_phy = !phy->phy;
221 	char *type;
222 
223 	if (new_phy) {
224 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 			return;
226 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227 
228 		/* FIXME: error_handling */
229 		BUG_ON(!phy->phy);
230 	}
231 
232 	switch (resp->result) {
233 	case SMP_RESP_PHY_VACANT:
234 		phy->phy_state = PHY_VACANT;
235 		break;
236 	default:
237 		phy->phy_state = PHY_NOT_PRESENT;
238 		break;
239 	case SMP_RESP_FUNC_ACC:
240 		phy->phy_state = PHY_EMPTY; /* do not know yet */
241 		break;
242 	}
243 
244 	/* check if anything important changed to squelch debug */
245 	dev_type = phy->attached_dev_type;
246 	linkrate  = phy->linkrate;
247 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248 
249 	/* Handle vacant phy - rest of dr data is not valid so skip it */
250 	if (phy->phy_state == PHY_VACANT) {
251 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 		phy->attached_dev_type = SAS_PHY_UNUSED;
253 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 			phy->phy_id = phy_id;
255 			goto skip;
256 		} else
257 			goto out;
258 	}
259 
260 	phy->attached_dev_type = to_dev_type(dr);
261 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 		goto out;
263 	phy->phy_id = phy_id;
264 	phy->linkrate = dr->linkrate;
265 	phy->attached_sata_host = dr->attached_sata_host;
266 	phy->attached_sata_dev  = dr->attached_sata_dev;
267 	phy->attached_sata_ps   = dr->attached_sata_ps;
268 	phy->attached_iproto = dr->iproto << 1;
269 	phy->attached_tproto = dr->tproto << 1;
270 	/* help some expanders that fail to zero sas_address in the 'no
271 	 * device' case
272 	 */
273 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 	else
277 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 	phy->attached_phy_id = dr->attached_phy_id;
279 	phy->phy_change_count = dr->change_count;
280 	phy->routing_attr = dr->routing_attr;
281 	phy->virtual = dr->virtual;
282 	phy->last_da_index = -1;
283 
284 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 	phy->phy->identify.device_type = dr->attached_dev_type;
286 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 	if (!phy->attached_tproto && dr->attached_sata_dev)
289 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 	phy->phy->identify.phy_identifier = phy_id;
291 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 	phy->phy->negotiated_linkrate = phy->linkrate;
296 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297 
298  skip:
299 	if (new_phy)
300 		if (sas_phy_add(phy->phy)) {
301 			sas_phy_free(phy->phy);
302 			return;
303 		}
304 
305  out:
306 	switch (phy->attached_dev_type) {
307 	case SAS_SATA_PENDING:
308 		type = "stp pending";
309 		break;
310 	case SAS_PHY_UNUSED:
311 		type = "no device";
312 		break;
313 	case SAS_END_DEVICE:
314 		if (phy->attached_iproto) {
315 			if (phy->attached_tproto)
316 				type = "host+target";
317 			else
318 				type = "host";
319 		} else {
320 			if (dr->attached_sata_dev)
321 				type = "stp";
322 			else
323 				type = "ssp";
324 		}
325 		break;
326 	case SAS_EDGE_EXPANDER_DEVICE:
327 	case SAS_FANOUT_EXPANDER_DEVICE:
328 		type = "smp";
329 		break;
330 	default:
331 		type = "unknown";
332 	}
333 
334 	/* this routine is polled by libata error recovery so filter
335 	 * unimportant messages
336 	 */
337 	if (new_phy || phy->attached_dev_type != dev_type ||
338 	    phy->linkrate != linkrate ||
339 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340 		/* pass */;
341 	else
342 		return;
343 
344 	/* if the attached device type changed and ata_eh is active,
345 	 * make sure we run revalidation when eh completes (see:
346 	 * sas_enable_revalidation)
347 	 */
348 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350 
351 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
354 		 sas_route_char(dev, phy), phy->linkrate,
355 		 SAS_ADDR(phy->attached_sas_addr), type);
356 }
357 
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 {
361 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 	struct domain_device *dev;
363 	struct sas_rphy *rphy;
364 
365 	if (!ex_phy->port)
366 		return NULL;
367 
368 	rphy = ex_phy->port->rphy;
369 	if (!rphy)
370 		return NULL;
371 
372 	dev = sas_find_dev_by_rphy(rphy);
373 
374 	if (dev && dev_is_sata(dev))
375 		return dev;
376 
377 	return NULL;
378 }
379 
380 #define DISCOVER_REQ_SIZE  16
381 #define DISCOVER_RESP_SIZE 56
382 
383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 				      u8 *disc_resp, int single)
385 {
386 	struct discover_resp *dr;
387 	int res;
388 
389 	disc_req[9] = single;
390 
391 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 			       disc_resp, DISCOVER_RESP_SIZE);
393 	if (res)
394 		return res;
395 	dr = &((struct smp_resp *)disc_resp)->disc;
396 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 		pr_notice("Found loopback topology, just ignore it!\n");
398 		return 0;
399 	}
400 	sas_set_ex_phy(dev, single, disc_resp);
401 	return 0;
402 }
403 
404 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 {
406 	struct expander_device *ex = &dev->ex_dev;
407 	int  res = 0;
408 	u8   *disc_req;
409 	u8   *disc_resp;
410 
411 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412 	if (!disc_req)
413 		return -ENOMEM;
414 
415 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416 	if (!disc_resp) {
417 		kfree(disc_req);
418 		return -ENOMEM;
419 	}
420 
421 	disc_req[1] = SMP_DISCOVER;
422 
423 	if (0 <= single && single < ex->num_phys) {
424 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425 	} else {
426 		int i;
427 
428 		for (i = 0; i < ex->num_phys; i++) {
429 			res = sas_ex_phy_discover_helper(dev, disc_req,
430 							 disc_resp, i);
431 			if (res)
432 				goto out_err;
433 		}
434 	}
435 out_err:
436 	kfree(disc_resp);
437 	kfree(disc_req);
438 	return res;
439 }
440 
441 static int sas_expander_discover(struct domain_device *dev)
442 {
443 	struct expander_device *ex = &dev->ex_dev;
444 	int res = -ENOMEM;
445 
446 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
447 	if (!ex->ex_phy)
448 		return -ENOMEM;
449 
450 	res = sas_ex_phy_discover(dev, -1);
451 	if (res)
452 		goto out_err;
453 
454 	return 0;
455  out_err:
456 	kfree(ex->ex_phy);
457 	ex->ex_phy = NULL;
458 	return res;
459 }
460 
461 #define MAX_EXPANDER_PHYS 128
462 
463 static void ex_assign_report_general(struct domain_device *dev,
464 					    struct smp_resp *resp)
465 {
466 	struct report_general_resp *rg = &resp->rg;
467 
468 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 	dev->ex_dev.t2t_supp = rg->t2t_supp;
472 	dev->ex_dev.conf_route_table = rg->conf_route_table;
473 	dev->ex_dev.configuring = rg->configuring;
474 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475 }
476 
477 #define RG_REQ_SIZE   8
478 #define RG_RESP_SIZE 32
479 
480 static int sas_ex_general(struct domain_device *dev)
481 {
482 	u8 *rg_req;
483 	struct smp_resp *rg_resp;
484 	int res;
485 	int i;
486 
487 	rg_req = alloc_smp_req(RG_REQ_SIZE);
488 	if (!rg_req)
489 		return -ENOMEM;
490 
491 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492 	if (!rg_resp) {
493 		kfree(rg_req);
494 		return -ENOMEM;
495 	}
496 
497 	rg_req[1] = SMP_REPORT_GENERAL;
498 
499 	for (i = 0; i < 5; i++) {
500 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501 				       RG_RESP_SIZE);
502 
503 		if (res) {
504 			pr_notice("RG to ex %016llx failed:0x%x\n",
505 				  SAS_ADDR(dev->sas_addr), res);
506 			goto out;
507 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
509 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
510 			res = rg_resp->result;
511 			goto out;
512 		}
513 
514 		ex_assign_report_general(dev, rg_resp);
515 
516 		if (dev->ex_dev.configuring) {
517 			pr_debug("RG: ex %llx self-configuring...\n",
518 				 SAS_ADDR(dev->sas_addr));
519 			schedule_timeout_interruptible(5*HZ);
520 		} else
521 			break;
522 	}
523 out:
524 	kfree(rg_req);
525 	kfree(rg_resp);
526 	return res;
527 }
528 
529 static void ex_assign_manuf_info(struct domain_device *dev, void
530 					*_mi_resp)
531 {
532 	u8 *mi_resp = _mi_resp;
533 	struct sas_rphy *rphy = dev->rphy;
534 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535 
536 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 	memcpy(edev->product_rev, mi_resp + 36,
539 	       SAS_EXPANDER_PRODUCT_REV_LEN);
540 
541 	if (mi_resp[8] & 1) {
542 		memcpy(edev->component_vendor_id, mi_resp + 40,
543 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 		edev->component_revision_id = mi_resp[50];
546 	}
547 }
548 
549 #define MI_REQ_SIZE   8
550 #define MI_RESP_SIZE 64
551 
552 static int sas_ex_manuf_info(struct domain_device *dev)
553 {
554 	u8 *mi_req;
555 	u8 *mi_resp;
556 	int res;
557 
558 	mi_req = alloc_smp_req(MI_REQ_SIZE);
559 	if (!mi_req)
560 		return -ENOMEM;
561 
562 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563 	if (!mi_resp) {
564 		kfree(mi_req);
565 		return -ENOMEM;
566 	}
567 
568 	mi_req[1] = SMP_REPORT_MANUF_INFO;
569 
570 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571 	if (res) {
572 		pr_notice("MI: ex %016llx failed:0x%x\n",
573 			  SAS_ADDR(dev->sas_addr), res);
574 		goto out;
575 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
577 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
578 		goto out;
579 	}
580 
581 	ex_assign_manuf_info(dev, mi_resp);
582 out:
583 	kfree(mi_req);
584 	kfree(mi_resp);
585 	return res;
586 }
587 
588 #define PC_REQ_SIZE  44
589 #define PC_RESP_SIZE 8
590 
591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 			enum phy_func phy_func,
593 			struct sas_phy_linkrates *rates)
594 {
595 	u8 *pc_req;
596 	u8 *pc_resp;
597 	int res;
598 
599 	pc_req = alloc_smp_req(PC_REQ_SIZE);
600 	if (!pc_req)
601 		return -ENOMEM;
602 
603 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604 	if (!pc_resp) {
605 		kfree(pc_req);
606 		return -ENOMEM;
607 	}
608 
609 	pc_req[1] = SMP_PHY_CONTROL;
610 	pc_req[9] = phy_id;
611 	pc_req[10]= phy_func;
612 	if (rates) {
613 		pc_req[32] = rates->minimum_linkrate << 4;
614 		pc_req[33] = rates->maximum_linkrate << 4;
615 	}
616 
617 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618 	if (res) {
619 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
620 		       SAS_ADDR(dev->sas_addr), phy_id, res);
621 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
622 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
623 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
624 		res = pc_resp[2];
625 	}
626 	kfree(pc_resp);
627 	kfree(pc_req);
628 	return res;
629 }
630 
631 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
632 {
633 	struct expander_device *ex = &dev->ex_dev;
634 	struct ex_phy *phy = &ex->ex_phy[phy_id];
635 
636 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
637 	phy->linkrate = SAS_PHY_DISABLED;
638 }
639 
640 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
641 {
642 	struct expander_device *ex = &dev->ex_dev;
643 	int i;
644 
645 	for (i = 0; i < ex->num_phys; i++) {
646 		struct ex_phy *phy = &ex->ex_phy[i];
647 
648 		if (phy->phy_state == PHY_VACANT ||
649 		    phy->phy_state == PHY_NOT_PRESENT)
650 			continue;
651 
652 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
653 			sas_ex_disable_phy(dev, i);
654 	}
655 }
656 
657 static int sas_dev_present_in_domain(struct asd_sas_port *port,
658 					    u8 *sas_addr)
659 {
660 	struct domain_device *dev;
661 
662 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
663 		return 1;
664 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
665 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
666 			return 1;
667 	}
668 	return 0;
669 }
670 
671 #define RPEL_REQ_SIZE	16
672 #define RPEL_RESP_SIZE	32
673 int sas_smp_get_phy_events(struct sas_phy *phy)
674 {
675 	int res;
676 	u8 *req;
677 	u8 *resp;
678 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
679 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
680 
681 	req = alloc_smp_req(RPEL_REQ_SIZE);
682 	if (!req)
683 		return -ENOMEM;
684 
685 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
686 	if (!resp) {
687 		kfree(req);
688 		return -ENOMEM;
689 	}
690 
691 	req[1] = SMP_REPORT_PHY_ERR_LOG;
692 	req[9] = phy->number;
693 
694 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
695 			            resp, RPEL_RESP_SIZE);
696 
697 	if (res)
698 		goto out;
699 
700 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
701 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
702 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
703 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
704 
705  out:
706 	kfree(req);
707 	kfree(resp);
708 	return res;
709 
710 }
711 
712 #ifdef CONFIG_SCSI_SAS_ATA
713 
714 #define RPS_REQ_SIZE  16
715 #define RPS_RESP_SIZE 60
716 
717 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
718 			    struct smp_resp *rps_resp)
719 {
720 	int res;
721 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
722 	u8 *resp = (u8 *)rps_resp;
723 
724 	if (!rps_req)
725 		return -ENOMEM;
726 
727 	rps_req[1] = SMP_REPORT_PHY_SATA;
728 	rps_req[9] = phy_id;
729 
730 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
731 			            rps_resp, RPS_RESP_SIZE);
732 
733 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
734 	 * standards cockup here.  sas-2 explicitly specifies the FIS
735 	 * should be encoded so that FIS type is in resp[24].
736 	 * However, some expanders endian reverse this.  Undo the
737 	 * reversal here */
738 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
739 		int i;
740 
741 		for (i = 0; i < 5; i++) {
742 			int j = 24 + (i*4);
743 			u8 a, b;
744 			a = resp[j + 0];
745 			b = resp[j + 1];
746 			resp[j + 0] = resp[j + 3];
747 			resp[j + 1] = resp[j + 2];
748 			resp[j + 2] = b;
749 			resp[j + 3] = a;
750 		}
751 	}
752 
753 	kfree(rps_req);
754 	return res;
755 }
756 #endif
757 
758 static void sas_ex_get_linkrate(struct domain_device *parent,
759 				       struct domain_device *child,
760 				       struct ex_phy *parent_phy)
761 {
762 	struct expander_device *parent_ex = &parent->ex_dev;
763 	struct sas_port *port;
764 	int i;
765 
766 	child->pathways = 0;
767 
768 	port = parent_phy->port;
769 
770 	for (i = 0; i < parent_ex->num_phys; i++) {
771 		struct ex_phy *phy = &parent_ex->ex_phy[i];
772 
773 		if (phy->phy_state == PHY_VACANT ||
774 		    phy->phy_state == PHY_NOT_PRESENT)
775 			continue;
776 
777 		if (SAS_ADDR(phy->attached_sas_addr) ==
778 		    SAS_ADDR(child->sas_addr)) {
779 
780 			child->min_linkrate = min(parent->min_linkrate,
781 						  phy->linkrate);
782 			child->max_linkrate = max(parent->max_linkrate,
783 						  phy->linkrate);
784 			child->pathways++;
785 			sas_port_add_phy(port, phy->phy);
786 		}
787 	}
788 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
789 	child->pathways = min(child->pathways, parent->pathways);
790 }
791 
792 static struct domain_device *sas_ex_discover_end_dev(
793 	struct domain_device *parent, int phy_id)
794 {
795 	struct expander_device *parent_ex = &parent->ex_dev;
796 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
797 	struct domain_device *child = NULL;
798 	struct sas_rphy *rphy;
799 	int res;
800 
801 	if (phy->attached_sata_host || phy->attached_sata_ps)
802 		return NULL;
803 
804 	child = sas_alloc_device();
805 	if (!child)
806 		return NULL;
807 
808 	kref_get(&parent->kref);
809 	child->parent = parent;
810 	child->port   = parent->port;
811 	child->iproto = phy->attached_iproto;
812 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
813 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
814 	if (!phy->port) {
815 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
816 		if (unlikely(!phy->port))
817 			goto out_err;
818 		if (unlikely(sas_port_add(phy->port) != 0)) {
819 			sas_port_free(phy->port);
820 			goto out_err;
821 		}
822 	}
823 	sas_ex_get_linkrate(parent, child, phy);
824 	sas_device_set_phy(child, phy->port);
825 
826 #ifdef CONFIG_SCSI_SAS_ATA
827 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
828 		if (child->linkrate > parent->min_linkrate) {
829 			struct sas_phy *cphy = child->phy;
830 			enum sas_linkrate min_prate = cphy->minimum_linkrate,
831 				parent_min_lrate = parent->min_linkrate,
832 				min_linkrate = (min_prate > parent_min_lrate) ?
833 					       parent_min_lrate : 0;
834 			struct sas_phy_linkrates rates = {
835 				.maximum_linkrate = parent->min_linkrate,
836 				.minimum_linkrate = min_linkrate,
837 			};
838 			int ret;
839 
840 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
841 				   SAS_ADDR(child->sas_addr), phy_id);
842 			ret = sas_smp_phy_control(parent, phy_id,
843 						  PHY_FUNC_LINK_RESET, &rates);
844 			if (ret) {
845 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
846 				       SAS_ADDR(child->sas_addr), phy_id, ret);
847 				goto out_free;
848 			}
849 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
850 				  SAS_ADDR(child->sas_addr), phy_id);
851 			child->linkrate = child->min_linkrate;
852 		}
853 		res = sas_get_ata_info(child, phy);
854 		if (res)
855 			goto out_free;
856 
857 		sas_init_dev(child);
858 		res = sas_ata_init(child);
859 		if (res)
860 			goto out_free;
861 		rphy = sas_end_device_alloc(phy->port);
862 		if (!rphy)
863 			goto out_free;
864 		rphy->identify.phy_identifier = phy_id;
865 
866 		child->rphy = rphy;
867 		get_device(&rphy->dev);
868 
869 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
870 
871 		res = sas_discover_sata(child);
872 		if (res) {
873 			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
874 				  SAS_ADDR(child->sas_addr),
875 				  SAS_ADDR(parent->sas_addr), phy_id, res);
876 			goto out_list_del;
877 		}
878 	} else
879 #endif
880 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
881 		child->dev_type = SAS_END_DEVICE;
882 		rphy = sas_end_device_alloc(phy->port);
883 		/* FIXME: error handling */
884 		if (unlikely(!rphy))
885 			goto out_free;
886 		child->tproto = phy->attached_tproto;
887 		sas_init_dev(child);
888 
889 		child->rphy = rphy;
890 		get_device(&rphy->dev);
891 		rphy->identify.phy_identifier = phy_id;
892 		sas_fill_in_rphy(child, rphy);
893 
894 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
895 
896 		res = sas_discover_end_dev(child);
897 		if (res) {
898 			pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
899 				  SAS_ADDR(child->sas_addr),
900 				  SAS_ADDR(parent->sas_addr), phy_id, res);
901 			goto out_list_del;
902 		}
903 	} else {
904 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
905 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
906 			  phy_id);
907 		goto out_free;
908 	}
909 
910 	list_add_tail(&child->siblings, &parent_ex->children);
911 	return child;
912 
913  out_list_del:
914 	sas_rphy_free(child->rphy);
915 	list_del(&child->disco_list_node);
916 	spin_lock_irq(&parent->port->dev_list_lock);
917 	list_del(&child->dev_list_node);
918 	spin_unlock_irq(&parent->port->dev_list_lock);
919  out_free:
920 	sas_port_delete(phy->port);
921  out_err:
922 	phy->port = NULL;
923 	sas_put_device(child);
924 	return NULL;
925 }
926 
927 /* See if this phy is part of a wide port */
928 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
929 {
930 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
931 	int i;
932 
933 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
934 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
935 
936 		if (ephy == phy)
937 			continue;
938 
939 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
940 			    SAS_ADDR_SIZE) && ephy->port) {
941 			sas_port_add_phy(ephy->port, phy->phy);
942 			phy->port = ephy->port;
943 			phy->phy_state = PHY_DEVICE_DISCOVERED;
944 			return true;
945 		}
946 	}
947 
948 	return false;
949 }
950 
951 static struct domain_device *sas_ex_discover_expander(
952 	struct domain_device *parent, int phy_id)
953 {
954 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
955 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
956 	struct domain_device *child = NULL;
957 	struct sas_rphy *rphy;
958 	struct sas_expander_device *edev;
959 	struct asd_sas_port *port;
960 	int res;
961 
962 	if (phy->routing_attr == DIRECT_ROUTING) {
963 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
964 			SAS_ADDR(parent->sas_addr), phy_id,
965 			SAS_ADDR(phy->attached_sas_addr),
966 			phy->attached_phy_id);
967 		return NULL;
968 	}
969 	child = sas_alloc_device();
970 	if (!child)
971 		return NULL;
972 
973 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
974 	/* FIXME: better error handling */
975 	BUG_ON(sas_port_add(phy->port) != 0);
976 
977 
978 	switch (phy->attached_dev_type) {
979 	case SAS_EDGE_EXPANDER_DEVICE:
980 		rphy = sas_expander_alloc(phy->port,
981 					  SAS_EDGE_EXPANDER_DEVICE);
982 		break;
983 	case SAS_FANOUT_EXPANDER_DEVICE:
984 		rphy = sas_expander_alloc(phy->port,
985 					  SAS_FANOUT_EXPANDER_DEVICE);
986 		break;
987 	default:
988 		rphy = NULL;	/* shut gcc up */
989 		BUG();
990 	}
991 	port = parent->port;
992 	child->rphy = rphy;
993 	get_device(&rphy->dev);
994 	edev = rphy_to_expander_device(rphy);
995 	child->dev_type = phy->attached_dev_type;
996 	kref_get(&parent->kref);
997 	child->parent = parent;
998 	child->port = port;
999 	child->iproto = phy->attached_iproto;
1000 	child->tproto = phy->attached_tproto;
1001 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1002 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1003 	sas_ex_get_linkrate(parent, child, phy);
1004 	edev->level = parent_ex->level + 1;
1005 	parent->port->disc.max_level = max(parent->port->disc.max_level,
1006 					   edev->level);
1007 	sas_init_dev(child);
1008 	sas_fill_in_rphy(child, rphy);
1009 	sas_rphy_add(rphy);
1010 
1011 	spin_lock_irq(&parent->port->dev_list_lock);
1012 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1013 	spin_unlock_irq(&parent->port->dev_list_lock);
1014 
1015 	res = sas_discover_expander(child);
1016 	if (res) {
1017 		sas_rphy_delete(rphy);
1018 		spin_lock_irq(&parent->port->dev_list_lock);
1019 		list_del(&child->dev_list_node);
1020 		spin_unlock_irq(&parent->port->dev_list_lock);
1021 		sas_put_device(child);
1022 		return NULL;
1023 	}
1024 	list_add_tail(&child->siblings, &parent->ex_dev.children);
1025 	return child;
1026 }
1027 
1028 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1029 {
1030 	struct expander_device *ex = &dev->ex_dev;
1031 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1032 	struct domain_device *child = NULL;
1033 	int res = 0;
1034 
1035 	/* Phy state */
1036 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1037 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1038 			res = sas_ex_phy_discover(dev, phy_id);
1039 		if (res)
1040 			return res;
1041 	}
1042 
1043 	/* Parent and domain coherency */
1044 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1045 			     SAS_ADDR(dev->port->sas_addr))) {
1046 		sas_add_parent_port(dev, phy_id);
1047 		return 0;
1048 	}
1049 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1050 			    SAS_ADDR(dev->parent->sas_addr))) {
1051 		sas_add_parent_port(dev, phy_id);
1052 		if (ex_phy->routing_attr == TABLE_ROUTING)
1053 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1054 		return 0;
1055 	}
1056 
1057 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1058 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1059 
1060 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1061 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1062 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1063 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1064 		}
1065 		return 0;
1066 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1067 		return 0;
1068 
1069 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1070 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1071 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1072 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1073 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1074 			ex_phy->attached_dev_type,
1075 			SAS_ADDR(dev->sas_addr),
1076 			phy_id);
1077 		return 0;
1078 	}
1079 
1080 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1081 	if (res) {
1082 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1083 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1084 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1085 		return res;
1086 	}
1087 
1088 	if (sas_ex_join_wide_port(dev, phy_id)) {
1089 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1090 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1091 		return res;
1092 	}
1093 
1094 	switch (ex_phy->attached_dev_type) {
1095 	case SAS_END_DEVICE:
1096 	case SAS_SATA_PENDING:
1097 		child = sas_ex_discover_end_dev(dev, phy_id);
1098 		break;
1099 	case SAS_FANOUT_EXPANDER_DEVICE:
1100 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1101 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1102 				 SAS_ADDR(ex_phy->attached_sas_addr),
1103 				 ex_phy->attached_phy_id,
1104 				 SAS_ADDR(dev->sas_addr),
1105 				 phy_id);
1106 			sas_ex_disable_phy(dev, phy_id);
1107 			break;
1108 		} else
1109 			memcpy(dev->port->disc.fanout_sas_addr,
1110 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1111 		/* fallthrough */
1112 	case SAS_EDGE_EXPANDER_DEVICE:
1113 		child = sas_ex_discover_expander(dev, phy_id);
1114 		break;
1115 	default:
1116 		break;
1117 	}
1118 
1119 	if (child) {
1120 		int i;
1121 
1122 		for (i = 0; i < ex->num_phys; i++) {
1123 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1124 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1125 				continue;
1126 			/*
1127 			 * Due to races, the phy might not get added to the
1128 			 * wide port, so we add the phy to the wide port here.
1129 			 */
1130 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1131 			    SAS_ADDR(child->sas_addr)) {
1132 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1133 				if (sas_ex_join_wide_port(dev, i))
1134 					pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1135 						 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1136 			}
1137 		}
1138 	}
1139 
1140 	return res;
1141 }
1142 
1143 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1144 {
1145 	struct expander_device *ex = &dev->ex_dev;
1146 	int i;
1147 
1148 	for (i = 0; i < ex->num_phys; i++) {
1149 		struct ex_phy *phy = &ex->ex_phy[i];
1150 
1151 		if (phy->phy_state == PHY_VACANT ||
1152 		    phy->phy_state == PHY_NOT_PRESENT)
1153 			continue;
1154 
1155 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1156 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1157 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1158 
1159 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1160 
1161 			return 1;
1162 		}
1163 	}
1164 	return 0;
1165 }
1166 
1167 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1168 {
1169 	struct expander_device *ex = &dev->ex_dev;
1170 	struct domain_device *child;
1171 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1172 
1173 	list_for_each_entry(child, &ex->children, siblings) {
1174 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1175 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1176 			continue;
1177 		if (sub_addr[0] == 0) {
1178 			sas_find_sub_addr(child, sub_addr);
1179 			continue;
1180 		} else {
1181 			u8 s2[SAS_ADDR_SIZE];
1182 
1183 			if (sas_find_sub_addr(child, s2) &&
1184 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1185 
1186 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1187 					  SAS_ADDR(dev->sas_addr),
1188 					  SAS_ADDR(child->sas_addr),
1189 					  SAS_ADDR(s2),
1190 					  SAS_ADDR(sub_addr));
1191 
1192 				sas_ex_disable_port(child, s2);
1193 			}
1194 		}
1195 	}
1196 	return 0;
1197 }
1198 /**
1199  * sas_ex_discover_devices - discover devices attached to this expander
1200  * @dev: pointer to the expander domain device
1201  * @single: if you want to do a single phy, else set to -1;
1202  *
1203  * Configure this expander for use with its devices and register the
1204  * devices of this expander.
1205  */
1206 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1207 {
1208 	struct expander_device *ex = &dev->ex_dev;
1209 	int i = 0, end = ex->num_phys;
1210 	int res = 0;
1211 
1212 	if (0 <= single && single < end) {
1213 		i = single;
1214 		end = i+1;
1215 	}
1216 
1217 	for ( ; i < end; i++) {
1218 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1219 
1220 		if (ex_phy->phy_state == PHY_VACANT ||
1221 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1222 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1223 			continue;
1224 
1225 		switch (ex_phy->linkrate) {
1226 		case SAS_PHY_DISABLED:
1227 		case SAS_PHY_RESET_PROBLEM:
1228 		case SAS_SATA_PORT_SELECTOR:
1229 			continue;
1230 		default:
1231 			res = sas_ex_discover_dev(dev, i);
1232 			if (res)
1233 				break;
1234 			continue;
1235 		}
1236 	}
1237 
1238 	if (!res)
1239 		sas_check_level_subtractive_boundary(dev);
1240 
1241 	return res;
1242 }
1243 
1244 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1245 {
1246 	struct expander_device *ex = &dev->ex_dev;
1247 	int i;
1248 	u8  *sub_sas_addr = NULL;
1249 
1250 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1251 		return 0;
1252 
1253 	for (i = 0; i < ex->num_phys; i++) {
1254 		struct ex_phy *phy = &ex->ex_phy[i];
1255 
1256 		if (phy->phy_state == PHY_VACANT ||
1257 		    phy->phy_state == PHY_NOT_PRESENT)
1258 			continue;
1259 
1260 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1261 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1262 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1263 
1264 			if (!sub_sas_addr)
1265 				sub_sas_addr = &phy->attached_sas_addr[0];
1266 			else if (SAS_ADDR(sub_sas_addr) !=
1267 				 SAS_ADDR(phy->attached_sas_addr)) {
1268 
1269 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1270 					  SAS_ADDR(dev->sas_addr), i,
1271 					  SAS_ADDR(phy->attached_sas_addr),
1272 					  SAS_ADDR(sub_sas_addr));
1273 				sas_ex_disable_phy(dev, i);
1274 			}
1275 		}
1276 	}
1277 	return 0;
1278 }
1279 
1280 static void sas_print_parent_topology_bug(struct domain_device *child,
1281 						 struct ex_phy *parent_phy,
1282 						 struct ex_phy *child_phy)
1283 {
1284 	static const char *ex_type[] = {
1285 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1286 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1287 	};
1288 	struct domain_device *parent = child->parent;
1289 
1290 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1291 		  ex_type[parent->dev_type],
1292 		  SAS_ADDR(parent->sas_addr),
1293 		  parent_phy->phy_id,
1294 
1295 		  ex_type[child->dev_type],
1296 		  SAS_ADDR(child->sas_addr),
1297 		  child_phy->phy_id,
1298 
1299 		  sas_route_char(parent, parent_phy),
1300 		  sas_route_char(child, child_phy));
1301 }
1302 
1303 static int sas_check_eeds(struct domain_device *child,
1304 				 struct ex_phy *parent_phy,
1305 				 struct ex_phy *child_phy)
1306 {
1307 	int res = 0;
1308 	struct domain_device *parent = child->parent;
1309 
1310 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1311 		res = -ENODEV;
1312 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1313 			SAS_ADDR(parent->sas_addr),
1314 			parent_phy->phy_id,
1315 			SAS_ADDR(child->sas_addr),
1316 			child_phy->phy_id,
1317 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1318 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1319 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1320 		       SAS_ADDR_SIZE);
1321 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1322 		       SAS_ADDR_SIZE);
1323 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1324 		    SAS_ADDR(parent->sas_addr)) ||
1325 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1326 		    SAS_ADDR(child->sas_addr)))
1327 		   &&
1328 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1329 		     SAS_ADDR(parent->sas_addr)) ||
1330 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1331 		     SAS_ADDR(child->sas_addr))))
1332 		;
1333 	else {
1334 		res = -ENODEV;
1335 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1336 			SAS_ADDR(parent->sas_addr),
1337 			parent_phy->phy_id,
1338 			SAS_ADDR(child->sas_addr),
1339 			child_phy->phy_id);
1340 	}
1341 
1342 	return res;
1343 }
1344 
1345 /* Here we spill over 80 columns.  It is intentional.
1346  */
1347 static int sas_check_parent_topology(struct domain_device *child)
1348 {
1349 	struct expander_device *child_ex = &child->ex_dev;
1350 	struct expander_device *parent_ex;
1351 	int i;
1352 	int res = 0;
1353 
1354 	if (!child->parent)
1355 		return 0;
1356 
1357 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1358 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1359 		return 0;
1360 
1361 	parent_ex = &child->parent->ex_dev;
1362 
1363 	for (i = 0; i < parent_ex->num_phys; i++) {
1364 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1365 		struct ex_phy *child_phy;
1366 
1367 		if (parent_phy->phy_state == PHY_VACANT ||
1368 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1369 			continue;
1370 
1371 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1372 			continue;
1373 
1374 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1375 
1376 		switch (child->parent->dev_type) {
1377 		case SAS_EDGE_EXPANDER_DEVICE:
1378 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1379 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1380 				    child_phy->routing_attr != TABLE_ROUTING) {
1381 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1382 					res = -ENODEV;
1383 				}
1384 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1385 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1386 					res = sas_check_eeds(child, parent_phy, child_phy);
1387 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1388 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1389 					res = -ENODEV;
1390 				}
1391 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1392 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1393 				    (child_phy->routing_attr == TABLE_ROUTING &&
1394 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1395 					/* All good */;
1396 				} else {
1397 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1398 					res = -ENODEV;
1399 				}
1400 			}
1401 			break;
1402 		case SAS_FANOUT_EXPANDER_DEVICE:
1403 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1404 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1405 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1406 				res = -ENODEV;
1407 			}
1408 			break;
1409 		default:
1410 			break;
1411 		}
1412 	}
1413 
1414 	return res;
1415 }
1416 
1417 #define RRI_REQ_SIZE  16
1418 #define RRI_RESP_SIZE 44
1419 
1420 static int sas_configure_present(struct domain_device *dev, int phy_id,
1421 				 u8 *sas_addr, int *index, int *present)
1422 {
1423 	int i, res = 0;
1424 	struct expander_device *ex = &dev->ex_dev;
1425 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1426 	u8 *rri_req;
1427 	u8 *rri_resp;
1428 
1429 	*present = 0;
1430 	*index = 0;
1431 
1432 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1433 	if (!rri_req)
1434 		return -ENOMEM;
1435 
1436 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1437 	if (!rri_resp) {
1438 		kfree(rri_req);
1439 		return -ENOMEM;
1440 	}
1441 
1442 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1443 	rri_req[9] = phy_id;
1444 
1445 	for (i = 0; i < ex->max_route_indexes ; i++) {
1446 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1447 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1448 				       RRI_RESP_SIZE);
1449 		if (res)
1450 			goto out;
1451 		res = rri_resp[2];
1452 		if (res == SMP_RESP_NO_INDEX) {
1453 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1454 				SAS_ADDR(dev->sas_addr), phy_id, i);
1455 			goto out;
1456 		} else if (res != SMP_RESP_FUNC_ACC) {
1457 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1458 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1459 				  i, res);
1460 			goto out;
1461 		}
1462 		if (SAS_ADDR(sas_addr) != 0) {
1463 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1464 				*index = i;
1465 				if ((rri_resp[12] & 0x80) == 0x80)
1466 					*present = 0;
1467 				else
1468 					*present = 1;
1469 				goto out;
1470 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1471 				*index = i;
1472 				*present = 0;
1473 				goto out;
1474 			}
1475 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1476 			   phy->last_da_index < i) {
1477 			phy->last_da_index = i;
1478 			*index = i;
1479 			*present = 0;
1480 			goto out;
1481 		}
1482 	}
1483 	res = -1;
1484 out:
1485 	kfree(rri_req);
1486 	kfree(rri_resp);
1487 	return res;
1488 }
1489 
1490 #define CRI_REQ_SIZE  44
1491 #define CRI_RESP_SIZE  8
1492 
1493 static int sas_configure_set(struct domain_device *dev, int phy_id,
1494 			     u8 *sas_addr, int index, int include)
1495 {
1496 	int res;
1497 	u8 *cri_req;
1498 	u8 *cri_resp;
1499 
1500 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1501 	if (!cri_req)
1502 		return -ENOMEM;
1503 
1504 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1505 	if (!cri_resp) {
1506 		kfree(cri_req);
1507 		return -ENOMEM;
1508 	}
1509 
1510 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1511 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1512 	cri_req[9] = phy_id;
1513 	if (SAS_ADDR(sas_addr) == 0 || !include)
1514 		cri_req[12] |= 0x80;
1515 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1516 
1517 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1518 			       CRI_RESP_SIZE);
1519 	if (res)
1520 		goto out;
1521 	res = cri_resp[2];
1522 	if (res == SMP_RESP_NO_INDEX) {
1523 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1524 			SAS_ADDR(dev->sas_addr), phy_id, index);
1525 	}
1526 out:
1527 	kfree(cri_req);
1528 	kfree(cri_resp);
1529 	return res;
1530 }
1531 
1532 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1533 				    u8 *sas_addr, int include)
1534 {
1535 	int index;
1536 	int present;
1537 	int res;
1538 
1539 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1540 	if (res)
1541 		return res;
1542 	if (include ^ present)
1543 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1544 
1545 	return res;
1546 }
1547 
1548 /**
1549  * sas_configure_parent - configure routing table of parent
1550  * @parent: parent expander
1551  * @child: child expander
1552  * @sas_addr: SAS port identifier of device directly attached to child
1553  * @include: whether or not to include @child in the expander routing table
1554  */
1555 static int sas_configure_parent(struct domain_device *parent,
1556 				struct domain_device *child,
1557 				u8 *sas_addr, int include)
1558 {
1559 	struct expander_device *ex_parent = &parent->ex_dev;
1560 	int res = 0;
1561 	int i;
1562 
1563 	if (parent->parent) {
1564 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1565 					   include);
1566 		if (res)
1567 			return res;
1568 	}
1569 
1570 	if (ex_parent->conf_route_table == 0) {
1571 		pr_debug("ex %016llx has self-configuring routing table\n",
1572 			 SAS_ADDR(parent->sas_addr));
1573 		return 0;
1574 	}
1575 
1576 	for (i = 0; i < ex_parent->num_phys; i++) {
1577 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1578 
1579 		if ((phy->routing_attr == TABLE_ROUTING) &&
1580 		    (SAS_ADDR(phy->attached_sas_addr) ==
1581 		     SAS_ADDR(child->sas_addr))) {
1582 			res = sas_configure_phy(parent, i, sas_addr, include);
1583 			if (res)
1584 				return res;
1585 		}
1586 	}
1587 
1588 	return res;
1589 }
1590 
1591 /**
1592  * sas_configure_routing - configure routing
1593  * @dev: expander device
1594  * @sas_addr: port identifier of device directly attached to the expander device
1595  */
1596 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1597 {
1598 	if (dev->parent)
1599 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1600 	return 0;
1601 }
1602 
1603 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1604 {
1605 	if (dev->parent)
1606 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1607 	return 0;
1608 }
1609 
1610 /**
1611  * sas_discover_expander - expander discovery
1612  * @dev: pointer to expander domain device
1613  *
1614  * See comment in sas_discover_sata().
1615  */
1616 static int sas_discover_expander(struct domain_device *dev)
1617 {
1618 	int res;
1619 
1620 	res = sas_notify_lldd_dev_found(dev);
1621 	if (res)
1622 		return res;
1623 
1624 	res = sas_ex_general(dev);
1625 	if (res)
1626 		goto out_err;
1627 	res = sas_ex_manuf_info(dev);
1628 	if (res)
1629 		goto out_err;
1630 
1631 	res = sas_expander_discover(dev);
1632 	if (res) {
1633 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1634 			SAS_ADDR(dev->sas_addr), res);
1635 		goto out_err;
1636 	}
1637 
1638 	sas_check_ex_subtractive_boundary(dev);
1639 	res = sas_check_parent_topology(dev);
1640 	if (res)
1641 		goto out_err;
1642 	return 0;
1643 out_err:
1644 	sas_notify_lldd_dev_gone(dev);
1645 	return res;
1646 }
1647 
1648 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1649 {
1650 	int res = 0;
1651 	struct domain_device *dev;
1652 
1653 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1654 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1655 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1656 			struct sas_expander_device *ex =
1657 				rphy_to_expander_device(dev->rphy);
1658 
1659 			if (level == ex->level)
1660 				res = sas_ex_discover_devices(dev, -1);
1661 			else if (level > 0)
1662 				res = sas_ex_discover_devices(port->port_dev, -1);
1663 
1664 		}
1665 	}
1666 
1667 	return res;
1668 }
1669 
1670 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1671 {
1672 	int res;
1673 	int level;
1674 
1675 	do {
1676 		level = port->disc.max_level;
1677 		res = sas_ex_level_discovery(port, level);
1678 		mb();
1679 	} while (level < port->disc.max_level);
1680 
1681 	return res;
1682 }
1683 
1684 int sas_discover_root_expander(struct domain_device *dev)
1685 {
1686 	int res;
1687 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1688 
1689 	res = sas_rphy_add(dev->rphy);
1690 	if (res)
1691 		goto out_err;
1692 
1693 	ex->level = dev->port->disc.max_level; /* 0 */
1694 	res = sas_discover_expander(dev);
1695 	if (res)
1696 		goto out_err2;
1697 
1698 	sas_ex_bfs_disc(dev->port);
1699 
1700 	return res;
1701 
1702 out_err2:
1703 	sas_rphy_remove(dev->rphy);
1704 out_err:
1705 	return res;
1706 }
1707 
1708 /* ---------- Domain revalidation ---------- */
1709 
1710 static int sas_get_phy_discover(struct domain_device *dev,
1711 				int phy_id, struct smp_resp *disc_resp)
1712 {
1713 	int res;
1714 	u8 *disc_req;
1715 
1716 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1717 	if (!disc_req)
1718 		return -ENOMEM;
1719 
1720 	disc_req[1] = SMP_DISCOVER;
1721 	disc_req[9] = phy_id;
1722 
1723 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1724 			       disc_resp, DISCOVER_RESP_SIZE);
1725 	if (res)
1726 		goto out;
1727 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1728 		res = disc_resp->result;
1729 		goto out;
1730 	}
1731 out:
1732 	kfree(disc_req);
1733 	return res;
1734 }
1735 
1736 static int sas_get_phy_change_count(struct domain_device *dev,
1737 				    int phy_id, int *pcc)
1738 {
1739 	int res;
1740 	struct smp_resp *disc_resp;
1741 
1742 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1743 	if (!disc_resp)
1744 		return -ENOMEM;
1745 
1746 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1747 	if (!res)
1748 		*pcc = disc_resp->disc.change_count;
1749 
1750 	kfree(disc_resp);
1751 	return res;
1752 }
1753 
1754 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1755 				    u8 *sas_addr, enum sas_device_type *type)
1756 {
1757 	int res;
1758 	struct smp_resp *disc_resp;
1759 	struct discover_resp *dr;
1760 
1761 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1762 	if (!disc_resp)
1763 		return -ENOMEM;
1764 	dr = &disc_resp->disc;
1765 
1766 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1767 	if (res == 0) {
1768 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1769 		       SAS_ADDR_SIZE);
1770 		*type = to_dev_type(dr);
1771 		if (*type == 0)
1772 			memset(sas_addr, 0, SAS_ADDR_SIZE);
1773 	}
1774 	kfree(disc_resp);
1775 	return res;
1776 }
1777 
1778 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1779 			      int from_phy, bool update)
1780 {
1781 	struct expander_device *ex = &dev->ex_dev;
1782 	int res = 0;
1783 	int i;
1784 
1785 	for (i = from_phy; i < ex->num_phys; i++) {
1786 		int phy_change_count = 0;
1787 
1788 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1789 		switch (res) {
1790 		case SMP_RESP_PHY_VACANT:
1791 		case SMP_RESP_NO_PHY:
1792 			continue;
1793 		case SMP_RESP_FUNC_ACC:
1794 			break;
1795 		default:
1796 			return res;
1797 		}
1798 
1799 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1800 			if (update)
1801 				ex->ex_phy[i].phy_change_count =
1802 					phy_change_count;
1803 			*phy_id = i;
1804 			return 0;
1805 		}
1806 	}
1807 	return 0;
1808 }
1809 
1810 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1811 {
1812 	int res;
1813 	u8  *rg_req;
1814 	struct smp_resp  *rg_resp;
1815 
1816 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1817 	if (!rg_req)
1818 		return -ENOMEM;
1819 
1820 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1821 	if (!rg_resp) {
1822 		kfree(rg_req);
1823 		return -ENOMEM;
1824 	}
1825 
1826 	rg_req[1] = SMP_REPORT_GENERAL;
1827 
1828 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1829 			       RG_RESP_SIZE);
1830 	if (res)
1831 		goto out;
1832 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1833 		res = rg_resp->result;
1834 		goto out;
1835 	}
1836 
1837 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1838 out:
1839 	kfree(rg_resp);
1840 	kfree(rg_req);
1841 	return res;
1842 }
1843 /**
1844  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1845  * @dev:domain device to be detect.
1846  * @src_dev: the device which originated BROADCAST(CHANGE).
1847  *
1848  * Add self-configuration expander support. Suppose two expander cascading,
1849  * when the first level expander is self-configuring, hotplug the disks in
1850  * second level expander, BROADCAST(CHANGE) will not only be originated
1851  * in the second level expander, but also be originated in the first level
1852  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1853  * expander changed count in two level expanders will all increment at least
1854  * once, but the phy which chang count has changed is the source device which
1855  * we concerned.
1856  */
1857 
1858 static int sas_find_bcast_dev(struct domain_device *dev,
1859 			      struct domain_device **src_dev)
1860 {
1861 	struct expander_device *ex = &dev->ex_dev;
1862 	int ex_change_count = -1;
1863 	int phy_id = -1;
1864 	int res;
1865 	struct domain_device *ch;
1866 
1867 	res = sas_get_ex_change_count(dev, &ex_change_count);
1868 	if (res)
1869 		goto out;
1870 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1871 		/* Just detect if this expander phys phy change count changed,
1872 		* in order to determine if this expander originate BROADCAST,
1873 		* and do not update phy change count field in our structure.
1874 		*/
1875 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1876 		if (phy_id != -1) {
1877 			*src_dev = dev;
1878 			ex->ex_change_count = ex_change_count;
1879 			pr_info("ex %016llx phy%02d change count has changed\n",
1880 				SAS_ADDR(dev->sas_addr), phy_id);
1881 			return res;
1882 		} else
1883 			pr_info("ex %016llx phys DID NOT change\n",
1884 				SAS_ADDR(dev->sas_addr));
1885 	}
1886 	list_for_each_entry(ch, &ex->children, siblings) {
1887 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1888 			res = sas_find_bcast_dev(ch, src_dev);
1889 			if (*src_dev)
1890 				return res;
1891 		}
1892 	}
1893 out:
1894 	return res;
1895 }
1896 
1897 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1898 {
1899 	struct expander_device *ex = &dev->ex_dev;
1900 	struct domain_device *child, *n;
1901 
1902 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1903 		set_bit(SAS_DEV_GONE, &child->state);
1904 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906 			sas_unregister_ex_tree(port, child);
1907 		else
1908 			sas_unregister_dev(port, child);
1909 	}
1910 	sas_unregister_dev(port, dev);
1911 }
1912 
1913 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1914 					 int phy_id, bool last)
1915 {
1916 	struct expander_device *ex_dev = &parent->ex_dev;
1917 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1918 	struct domain_device *child, *n, *found = NULL;
1919 	if (last) {
1920 		list_for_each_entry_safe(child, n,
1921 			&ex_dev->children, siblings) {
1922 			if (SAS_ADDR(child->sas_addr) ==
1923 			    SAS_ADDR(phy->attached_sas_addr)) {
1924 				set_bit(SAS_DEV_GONE, &child->state);
1925 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1926 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1927 					sas_unregister_ex_tree(parent->port, child);
1928 				else
1929 					sas_unregister_dev(parent->port, child);
1930 				found = child;
1931 				break;
1932 			}
1933 		}
1934 		sas_disable_routing(parent, phy->attached_sas_addr);
1935 	}
1936 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1937 	if (phy->port) {
1938 		sas_port_delete_phy(phy->port, phy->phy);
1939 		sas_device_set_phy(found, phy->port);
1940 		if (phy->port->num_phys == 0)
1941 			list_add_tail(&phy->port->del_list,
1942 				&parent->port->sas_port_del_list);
1943 		phy->port = NULL;
1944 	}
1945 }
1946 
1947 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1948 					  const int level)
1949 {
1950 	struct expander_device *ex_root = &root->ex_dev;
1951 	struct domain_device *child;
1952 	int res = 0;
1953 
1954 	list_for_each_entry(child, &ex_root->children, siblings) {
1955 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1956 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1957 			struct sas_expander_device *ex =
1958 				rphy_to_expander_device(child->rphy);
1959 
1960 			if (level > ex->level)
1961 				res = sas_discover_bfs_by_root_level(child,
1962 								     level);
1963 			else if (level == ex->level)
1964 				res = sas_ex_discover_devices(child, -1);
1965 		}
1966 	}
1967 	return res;
1968 }
1969 
1970 static int sas_discover_bfs_by_root(struct domain_device *dev)
1971 {
1972 	int res;
1973 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1974 	int level = ex->level+1;
1975 
1976 	res = sas_ex_discover_devices(dev, -1);
1977 	if (res)
1978 		goto out;
1979 	do {
1980 		res = sas_discover_bfs_by_root_level(dev, level);
1981 		mb();
1982 		level += 1;
1983 	} while (level <= dev->port->disc.max_level);
1984 out:
1985 	return res;
1986 }
1987 
1988 static int sas_discover_new(struct domain_device *dev, int phy_id)
1989 {
1990 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1991 	struct domain_device *child;
1992 	int res;
1993 
1994 	pr_debug("ex %016llx phy%02d new device attached\n",
1995 		 SAS_ADDR(dev->sas_addr), phy_id);
1996 	res = sas_ex_phy_discover(dev, phy_id);
1997 	if (res)
1998 		return res;
1999 
2000 	if (sas_ex_join_wide_port(dev, phy_id))
2001 		return 0;
2002 
2003 	res = sas_ex_discover_devices(dev, phy_id);
2004 	if (res)
2005 		return res;
2006 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2007 		if (SAS_ADDR(child->sas_addr) ==
2008 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
2009 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2010 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2011 				res = sas_discover_bfs_by_root(child);
2012 			break;
2013 		}
2014 	}
2015 	return res;
2016 }
2017 
2018 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2019 {
2020 	if (old == new)
2021 		return true;
2022 
2023 	/* treat device directed resets as flutter, if we went
2024 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2025 	 */
2026 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2027 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2028 		return true;
2029 
2030 	return false;
2031 }
2032 
2033 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
2034 			      bool last, int sibling)
2035 {
2036 	struct expander_device *ex = &dev->ex_dev;
2037 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2038 	enum sas_device_type type = SAS_PHY_UNUSED;
2039 	u8 sas_addr[SAS_ADDR_SIZE];
2040 	char msg[80] = "";
2041 	int res;
2042 
2043 	if (!last)
2044 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
2045 
2046 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
2047 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
2048 
2049 	memset(sas_addr, 0, SAS_ADDR_SIZE);
2050 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2051 	switch (res) {
2052 	case SMP_RESP_NO_PHY:
2053 		phy->phy_state = PHY_NOT_PRESENT;
2054 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2055 		return res;
2056 	case SMP_RESP_PHY_VACANT:
2057 		phy->phy_state = PHY_VACANT;
2058 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2059 		return res;
2060 	case SMP_RESP_FUNC_ACC:
2061 		break;
2062 	case -ECOMM:
2063 		break;
2064 	default:
2065 		return res;
2066 	}
2067 
2068 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2069 		phy->phy_state = PHY_EMPTY;
2070 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2071 		/*
2072 		 * Even though the PHY is empty, for convenience we discover
2073 		 * the PHY to update the PHY info, like negotiated linkrate.
2074 		 */
2075 		sas_ex_phy_discover(dev, phy_id);
2076 		return res;
2077 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2078 		   dev_type_flutter(type, phy->attached_dev_type)) {
2079 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2080 		char *action = "";
2081 
2082 		sas_ex_phy_discover(dev, phy_id);
2083 
2084 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2085 			action = ", needs recovery";
2086 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2087 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2088 		return res;
2089 	}
2090 
2091 	/* we always have to delete the old device when we went here */
2092 	pr_info("ex %016llx phy%02d replace %016llx\n",
2093 		SAS_ADDR(dev->sas_addr), phy_id,
2094 		SAS_ADDR(phy->attached_sas_addr));
2095 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2096 
2097 	return sas_discover_new(dev, phy_id);
2098 }
2099 
2100 /**
2101  * sas_rediscover - revalidate the domain.
2102  * @dev:domain device to be detect.
2103  * @phy_id: the phy id will be detected.
2104  *
2105  * NOTE: this process _must_ quit (return) as soon as any connection
2106  * errors are encountered.  Connection recovery is done elsewhere.
2107  * Discover process only interrogates devices in order to discover the
2108  * domain.For plugging out, we un-register the device only when it is
2109  * the last phy in the port, for other phys in this port, we just delete it
2110  * from the port.For inserting, we do discovery when it is the
2111  * first phy,for other phys in this port, we add it to the port to
2112  * forming the wide-port.
2113  */
2114 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2115 {
2116 	struct expander_device *ex = &dev->ex_dev;
2117 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2118 	int res = 0;
2119 	int i;
2120 	bool last = true;	/* is this the last phy of the port */
2121 
2122 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2123 		 SAS_ADDR(dev->sas_addr), phy_id);
2124 
2125 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2126 		for (i = 0; i < ex->num_phys; i++) {
2127 			struct ex_phy *phy = &ex->ex_phy[i];
2128 
2129 			if (i == phy_id)
2130 				continue;
2131 			if (SAS_ADDR(phy->attached_sas_addr) ==
2132 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2133 				last = false;
2134 				break;
2135 			}
2136 		}
2137 		res = sas_rediscover_dev(dev, phy_id, last, i);
2138 	} else
2139 		res = sas_discover_new(dev, phy_id);
2140 	return res;
2141 }
2142 
2143 /**
2144  * sas_ex_revalidate_domain - revalidate the domain
2145  * @port_dev: port domain device.
2146  *
2147  * NOTE: this process _must_ quit (return) as soon as any connection
2148  * errors are encountered.  Connection recovery is done elsewhere.
2149  * Discover process only interrogates devices in order to discover the
2150  * domain.
2151  */
2152 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2153 {
2154 	int res;
2155 	struct domain_device *dev = NULL;
2156 
2157 	res = sas_find_bcast_dev(port_dev, &dev);
2158 	if (res == 0 && dev) {
2159 		struct expander_device *ex = &dev->ex_dev;
2160 		int i = 0, phy_id;
2161 
2162 		do {
2163 			phy_id = -1;
2164 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2165 			if (phy_id == -1)
2166 				break;
2167 			res = sas_rediscover(dev, phy_id);
2168 			i = phy_id + 1;
2169 		} while (i < ex->num_phys);
2170 	}
2171 	return res;
2172 }
2173 
2174 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2175 		struct sas_rphy *rphy)
2176 {
2177 	struct domain_device *dev;
2178 	unsigned int rcvlen = 0;
2179 	int ret = -EINVAL;
2180 
2181 	/* no rphy means no smp target support (ie aic94xx host) */
2182 	if (!rphy)
2183 		return sas_smp_host_handler(job, shost);
2184 
2185 	switch (rphy->identify.device_type) {
2186 	case SAS_EDGE_EXPANDER_DEVICE:
2187 	case SAS_FANOUT_EXPANDER_DEVICE:
2188 		break;
2189 	default:
2190 		pr_err("%s: can we send a smp request to a device?\n",
2191 		       __func__);
2192 		goto out;
2193 	}
2194 
2195 	dev = sas_find_dev_by_rphy(rphy);
2196 	if (!dev) {
2197 		pr_err("%s: fail to find a domain_device?\n", __func__);
2198 		goto out;
2199 	}
2200 
2201 	/* do we need to support multiple segments? */
2202 	if (job->request_payload.sg_cnt > 1 ||
2203 	    job->reply_payload.sg_cnt > 1) {
2204 		pr_info("%s: multiple segments req %u, rsp %u\n",
2205 			__func__, job->request_payload.payload_len,
2206 			job->reply_payload.payload_len);
2207 		goto out;
2208 	}
2209 
2210 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2211 			job->reply_payload.sg_list);
2212 	if (ret >= 0) {
2213 		/* bsg_job_done() requires the length received  */
2214 		rcvlen = job->reply_payload.payload_len - ret;
2215 		ret = 0;
2216 	}
2217 
2218 out:
2219 	bsg_job_done(job, ret, rcvlen);
2220 }
2221