1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/scsi_transport.h> 32 #include <scsi/scsi_transport_sas.h> 33 #include "../scsi_sas_internal.h" 34 35 static int sas_discover_expander(struct domain_device *dev); 36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 37 static int sas_configure_phy(struct domain_device *dev, int phy_id, 38 u8 *sas_addr, int include); 39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 40 41 /* ---------- SMP task management ---------- */ 42 43 static void smp_task_timedout(unsigned long _task) 44 { 45 struct sas_task *task = (void *) _task; 46 unsigned long flags; 47 48 spin_lock_irqsave(&task->task_state_lock, flags); 49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 50 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 51 spin_unlock_irqrestore(&task->task_state_lock, flags); 52 53 complete(&task->completion); 54 } 55 56 static void smp_task_done(struct sas_task *task) 57 { 58 if (!del_timer(&task->timer)) 59 return; 60 complete(&task->completion); 61 } 62 63 /* Give it some long enough timeout. In seconds. */ 64 #define SMP_TIMEOUT 10 65 66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 67 void *resp, int resp_size) 68 { 69 int res, retry; 70 struct sas_task *task = NULL; 71 struct sas_internal *i = 72 to_sas_internal(dev->port->ha->core.shost->transportt); 73 74 for (retry = 0; retry < 3; retry++) { 75 task = sas_alloc_task(GFP_KERNEL); 76 if (!task) 77 return -ENOMEM; 78 79 task->dev = dev; 80 task->task_proto = dev->tproto; 81 sg_init_one(&task->smp_task.smp_req, req, req_size); 82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 83 84 task->task_done = smp_task_done; 85 86 task->timer.data = (unsigned long) task; 87 task->timer.function = smp_task_timedout; 88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 89 add_timer(&task->timer); 90 91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 92 93 if (res) { 94 del_timer(&task->timer); 95 SAS_DPRINTK("executing SMP task failed:%d\n", res); 96 goto ex_err; 97 } 98 99 wait_for_completion(&task->completion); 100 res = -ECOMM; 101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 102 SAS_DPRINTK("smp task timed out or aborted\n"); 103 i->dft->lldd_abort_task(task); 104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 105 SAS_DPRINTK("SMP task aborted and not done\n"); 106 goto ex_err; 107 } 108 } 109 if (task->task_status.resp == SAS_TASK_COMPLETE && 110 task->task_status.stat == SAM_STAT_GOOD) { 111 res = 0; 112 break; 113 } if (task->task_status.resp == SAS_TASK_COMPLETE && 114 task->task_status.stat == SAS_DATA_UNDERRUN) { 115 /* no error, but return the number of bytes of 116 * underrun */ 117 res = task->task_status.residual; 118 break; 119 } if (task->task_status.resp == SAS_TASK_COMPLETE && 120 task->task_status.stat == SAS_DATA_OVERRUN) { 121 res = -EMSGSIZE; 122 break; 123 } else { 124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 125 "status 0x%x\n", __func__, 126 SAS_ADDR(dev->sas_addr), 127 task->task_status.resp, 128 task->task_status.stat); 129 sas_free_task(task); 130 task = NULL; 131 } 132 } 133 ex_err: 134 BUG_ON(retry == 3 && task != NULL); 135 if (task != NULL) { 136 sas_free_task(task); 137 } 138 return res; 139 } 140 141 /* ---------- Allocations ---------- */ 142 143 static inline void *alloc_smp_req(int size) 144 { 145 u8 *p = kzalloc(size, GFP_KERNEL); 146 if (p) 147 p[0] = SMP_REQUEST; 148 return p; 149 } 150 151 static inline void *alloc_smp_resp(int size) 152 { 153 return kzalloc(size, GFP_KERNEL); 154 } 155 156 /* ---------- Expander configuration ---------- */ 157 158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 159 void *disc_resp) 160 { 161 struct expander_device *ex = &dev->ex_dev; 162 struct ex_phy *phy = &ex->ex_phy[phy_id]; 163 struct smp_resp *resp = disc_resp; 164 struct discover_resp *dr = &resp->disc; 165 struct sas_rphy *rphy = dev->rphy; 166 int rediscover = (phy->phy != NULL); 167 168 if (!rediscover) { 169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 170 171 /* FIXME: error_handling */ 172 BUG_ON(!phy->phy); 173 } 174 175 switch (resp->result) { 176 case SMP_RESP_PHY_VACANT: 177 phy->phy_state = PHY_VACANT; 178 break; 179 default: 180 phy->phy_state = PHY_NOT_PRESENT; 181 break; 182 case SMP_RESP_FUNC_ACC: 183 phy->phy_state = PHY_EMPTY; /* do not know yet */ 184 break; 185 } 186 187 phy->phy_id = phy_id; 188 phy->attached_dev_type = dr->attached_dev_type; 189 phy->linkrate = dr->linkrate; 190 phy->attached_sata_host = dr->attached_sata_host; 191 phy->attached_sata_dev = dr->attached_sata_dev; 192 phy->attached_sata_ps = dr->attached_sata_ps; 193 phy->attached_iproto = dr->iproto << 1; 194 phy->attached_tproto = dr->tproto << 1; 195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 196 phy->attached_phy_id = dr->attached_phy_id; 197 phy->phy_change_count = dr->change_count; 198 phy->routing_attr = dr->routing_attr; 199 phy->virtual = dr->virtual; 200 phy->last_da_index = -1; 201 202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 203 phy->phy->identify.target_port_protocols = phy->attached_tproto; 204 phy->phy->identify.phy_identifier = phy_id; 205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 207 phy->phy->minimum_linkrate = dr->pmin_linkrate; 208 phy->phy->maximum_linkrate = dr->pmax_linkrate; 209 phy->phy->negotiated_linkrate = phy->linkrate; 210 211 if (!rediscover) 212 if (sas_phy_add(phy->phy)) { 213 sas_phy_free(phy->phy); 214 return; 215 } 216 217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 218 SAS_ADDR(dev->sas_addr), phy->phy_id, 219 phy->routing_attr == TABLE_ROUTING ? 'T' : 220 phy->routing_attr == DIRECT_ROUTING ? 'D' : 221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 222 SAS_ADDR(phy->attached_sas_addr)); 223 224 return; 225 } 226 227 #define DISCOVER_REQ_SIZE 16 228 #define DISCOVER_RESP_SIZE 56 229 230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 231 u8 *disc_resp, int single) 232 { 233 int i, res; 234 235 disc_req[9] = single; 236 for (i = 1 ; i < 3; i++) { 237 struct discover_resp *dr; 238 239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 240 disc_resp, DISCOVER_RESP_SIZE); 241 if (res) 242 return res; 243 /* This is detecting a failure to transmit inital 244 * dev to host FIS as described in section G.5 of 245 * sas-2 r 04b */ 246 dr = &((struct smp_resp *)disc_resp)->disc; 247 if (!(dr->attached_dev_type == 0 && 248 dr->attached_sata_dev)) 249 break; 250 /* In order to generate the dev to host FIS, we 251 * send a link reset to the expander port */ 252 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 253 /* Wait for the reset to trigger the negotiation */ 254 msleep(500); 255 } 256 sas_set_ex_phy(dev, single, disc_resp); 257 return 0; 258 } 259 260 static int sas_ex_phy_discover(struct domain_device *dev, int single) 261 { 262 struct expander_device *ex = &dev->ex_dev; 263 int res = 0; 264 u8 *disc_req; 265 u8 *disc_resp; 266 267 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 268 if (!disc_req) 269 return -ENOMEM; 270 271 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 272 if (!disc_resp) { 273 kfree(disc_req); 274 return -ENOMEM; 275 } 276 277 disc_req[1] = SMP_DISCOVER; 278 279 if (0 <= single && single < ex->num_phys) { 280 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 281 } else { 282 int i; 283 284 for (i = 0; i < ex->num_phys; i++) { 285 res = sas_ex_phy_discover_helper(dev, disc_req, 286 disc_resp, i); 287 if (res) 288 goto out_err; 289 } 290 } 291 out_err: 292 kfree(disc_resp); 293 kfree(disc_req); 294 return res; 295 } 296 297 static int sas_expander_discover(struct domain_device *dev) 298 { 299 struct expander_device *ex = &dev->ex_dev; 300 int res = -ENOMEM; 301 302 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 303 if (!ex->ex_phy) 304 return -ENOMEM; 305 306 res = sas_ex_phy_discover(dev, -1); 307 if (res) 308 goto out_err; 309 310 return 0; 311 out_err: 312 kfree(ex->ex_phy); 313 ex->ex_phy = NULL; 314 return res; 315 } 316 317 #define MAX_EXPANDER_PHYS 128 318 319 static void ex_assign_report_general(struct domain_device *dev, 320 struct smp_resp *resp) 321 { 322 struct report_general_resp *rg = &resp->rg; 323 324 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 325 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 326 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 327 dev->ex_dev.conf_route_table = rg->conf_route_table; 328 dev->ex_dev.configuring = rg->configuring; 329 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 330 } 331 332 #define RG_REQ_SIZE 8 333 #define RG_RESP_SIZE 32 334 335 static int sas_ex_general(struct domain_device *dev) 336 { 337 u8 *rg_req; 338 struct smp_resp *rg_resp; 339 int res; 340 int i; 341 342 rg_req = alloc_smp_req(RG_REQ_SIZE); 343 if (!rg_req) 344 return -ENOMEM; 345 346 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 347 if (!rg_resp) { 348 kfree(rg_req); 349 return -ENOMEM; 350 } 351 352 rg_req[1] = SMP_REPORT_GENERAL; 353 354 for (i = 0; i < 5; i++) { 355 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 356 RG_RESP_SIZE); 357 358 if (res) { 359 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 360 SAS_ADDR(dev->sas_addr), res); 361 goto out; 362 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 363 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 364 SAS_ADDR(dev->sas_addr), rg_resp->result); 365 res = rg_resp->result; 366 goto out; 367 } 368 369 ex_assign_report_general(dev, rg_resp); 370 371 if (dev->ex_dev.configuring) { 372 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 373 SAS_ADDR(dev->sas_addr)); 374 schedule_timeout_interruptible(5*HZ); 375 } else 376 break; 377 } 378 out: 379 kfree(rg_req); 380 kfree(rg_resp); 381 return res; 382 } 383 384 static void ex_assign_manuf_info(struct domain_device *dev, void 385 *_mi_resp) 386 { 387 u8 *mi_resp = _mi_resp; 388 struct sas_rphy *rphy = dev->rphy; 389 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 390 391 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 392 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 393 memcpy(edev->product_rev, mi_resp + 36, 394 SAS_EXPANDER_PRODUCT_REV_LEN); 395 396 if (mi_resp[8] & 1) { 397 memcpy(edev->component_vendor_id, mi_resp + 40, 398 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 399 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 400 edev->component_revision_id = mi_resp[50]; 401 } 402 } 403 404 #define MI_REQ_SIZE 8 405 #define MI_RESP_SIZE 64 406 407 static int sas_ex_manuf_info(struct domain_device *dev) 408 { 409 u8 *mi_req; 410 u8 *mi_resp; 411 int res; 412 413 mi_req = alloc_smp_req(MI_REQ_SIZE); 414 if (!mi_req) 415 return -ENOMEM; 416 417 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 418 if (!mi_resp) { 419 kfree(mi_req); 420 return -ENOMEM; 421 } 422 423 mi_req[1] = SMP_REPORT_MANUF_INFO; 424 425 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 426 if (res) { 427 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 428 SAS_ADDR(dev->sas_addr), res); 429 goto out; 430 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 431 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 432 SAS_ADDR(dev->sas_addr), mi_resp[2]); 433 goto out; 434 } 435 436 ex_assign_manuf_info(dev, mi_resp); 437 out: 438 kfree(mi_req); 439 kfree(mi_resp); 440 return res; 441 } 442 443 #define PC_REQ_SIZE 44 444 #define PC_RESP_SIZE 8 445 446 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 447 enum phy_func phy_func, 448 struct sas_phy_linkrates *rates) 449 { 450 u8 *pc_req; 451 u8 *pc_resp; 452 int res; 453 454 pc_req = alloc_smp_req(PC_REQ_SIZE); 455 if (!pc_req) 456 return -ENOMEM; 457 458 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 459 if (!pc_resp) { 460 kfree(pc_req); 461 return -ENOMEM; 462 } 463 464 pc_req[1] = SMP_PHY_CONTROL; 465 pc_req[9] = phy_id; 466 pc_req[10]= phy_func; 467 if (rates) { 468 pc_req[32] = rates->minimum_linkrate << 4; 469 pc_req[33] = rates->maximum_linkrate << 4; 470 } 471 472 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 473 474 kfree(pc_resp); 475 kfree(pc_req); 476 return res; 477 } 478 479 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 480 { 481 struct expander_device *ex = &dev->ex_dev; 482 struct ex_phy *phy = &ex->ex_phy[phy_id]; 483 484 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 485 phy->linkrate = SAS_PHY_DISABLED; 486 } 487 488 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 489 { 490 struct expander_device *ex = &dev->ex_dev; 491 int i; 492 493 for (i = 0; i < ex->num_phys; i++) { 494 struct ex_phy *phy = &ex->ex_phy[i]; 495 496 if (phy->phy_state == PHY_VACANT || 497 phy->phy_state == PHY_NOT_PRESENT) 498 continue; 499 500 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 501 sas_ex_disable_phy(dev, i); 502 } 503 } 504 505 static int sas_dev_present_in_domain(struct asd_sas_port *port, 506 u8 *sas_addr) 507 { 508 struct domain_device *dev; 509 510 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 511 return 1; 512 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 513 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 514 return 1; 515 } 516 return 0; 517 } 518 519 #define RPEL_REQ_SIZE 16 520 #define RPEL_RESP_SIZE 32 521 int sas_smp_get_phy_events(struct sas_phy *phy) 522 { 523 int res; 524 u8 *req; 525 u8 *resp; 526 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 527 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 528 529 req = alloc_smp_req(RPEL_REQ_SIZE); 530 if (!req) 531 return -ENOMEM; 532 533 resp = alloc_smp_resp(RPEL_RESP_SIZE); 534 if (!resp) { 535 kfree(req); 536 return -ENOMEM; 537 } 538 539 req[1] = SMP_REPORT_PHY_ERR_LOG; 540 req[9] = phy->number; 541 542 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 543 resp, RPEL_RESP_SIZE); 544 545 if (!res) 546 goto out; 547 548 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 549 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 550 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 551 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 552 553 out: 554 kfree(resp); 555 return res; 556 557 } 558 559 #ifdef CONFIG_SCSI_SAS_ATA 560 561 #define RPS_REQ_SIZE 16 562 #define RPS_RESP_SIZE 60 563 564 static int sas_get_report_phy_sata(struct domain_device *dev, 565 int phy_id, 566 struct smp_resp *rps_resp) 567 { 568 int res; 569 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 570 u8 *resp = (u8 *)rps_resp; 571 572 if (!rps_req) 573 return -ENOMEM; 574 575 rps_req[1] = SMP_REPORT_PHY_SATA; 576 rps_req[9] = phy_id; 577 578 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 579 rps_resp, RPS_RESP_SIZE); 580 581 /* 0x34 is the FIS type for the D2H fis. There's a potential 582 * standards cockup here. sas-2 explicitly specifies the FIS 583 * should be encoded so that FIS type is in resp[24]. 584 * However, some expanders endian reverse this. Undo the 585 * reversal here */ 586 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 587 int i; 588 589 for (i = 0; i < 5; i++) { 590 int j = 24 + (i*4); 591 u8 a, b; 592 a = resp[j + 0]; 593 b = resp[j + 1]; 594 resp[j + 0] = resp[j + 3]; 595 resp[j + 1] = resp[j + 2]; 596 resp[j + 2] = b; 597 resp[j + 3] = a; 598 } 599 } 600 601 kfree(rps_req); 602 return res; 603 } 604 #endif 605 606 static void sas_ex_get_linkrate(struct domain_device *parent, 607 struct domain_device *child, 608 struct ex_phy *parent_phy) 609 { 610 struct expander_device *parent_ex = &parent->ex_dev; 611 struct sas_port *port; 612 int i; 613 614 child->pathways = 0; 615 616 port = parent_phy->port; 617 618 for (i = 0; i < parent_ex->num_phys; i++) { 619 struct ex_phy *phy = &parent_ex->ex_phy[i]; 620 621 if (phy->phy_state == PHY_VACANT || 622 phy->phy_state == PHY_NOT_PRESENT) 623 continue; 624 625 if (SAS_ADDR(phy->attached_sas_addr) == 626 SAS_ADDR(child->sas_addr)) { 627 628 child->min_linkrate = min(parent->min_linkrate, 629 phy->linkrate); 630 child->max_linkrate = max(parent->max_linkrate, 631 phy->linkrate); 632 child->pathways++; 633 sas_port_add_phy(port, phy->phy); 634 } 635 } 636 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 637 child->pathways = min(child->pathways, parent->pathways); 638 } 639 640 static struct domain_device *sas_ex_discover_end_dev( 641 struct domain_device *parent, int phy_id) 642 { 643 struct expander_device *parent_ex = &parent->ex_dev; 644 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 645 struct domain_device *child = NULL; 646 struct sas_rphy *rphy; 647 int res; 648 649 if (phy->attached_sata_host || phy->attached_sata_ps) 650 return NULL; 651 652 child = kzalloc(sizeof(*child), GFP_KERNEL); 653 if (!child) 654 return NULL; 655 656 child->parent = parent; 657 child->port = parent->port; 658 child->iproto = phy->attached_iproto; 659 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 660 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 661 if (!phy->port) { 662 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 663 if (unlikely(!phy->port)) 664 goto out_err; 665 if (unlikely(sas_port_add(phy->port) != 0)) { 666 sas_port_free(phy->port); 667 goto out_err; 668 } 669 } 670 sas_ex_get_linkrate(parent, child, phy); 671 672 #ifdef CONFIG_SCSI_SAS_ATA 673 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 674 child->dev_type = SATA_DEV; 675 if (phy->attached_tproto & SAS_PROTOCOL_STP) 676 child->tproto = phy->attached_tproto; 677 if (phy->attached_sata_dev) 678 child->tproto |= SATA_DEV; 679 res = sas_get_report_phy_sata(parent, phy_id, 680 &child->sata_dev.rps_resp); 681 if (res) { 682 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 683 "0x%x\n", SAS_ADDR(parent->sas_addr), 684 phy_id, res); 685 goto out_free; 686 } 687 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 688 sizeof(struct dev_to_host_fis)); 689 690 rphy = sas_end_device_alloc(phy->port); 691 if (unlikely(!rphy)) 692 goto out_free; 693 694 sas_init_dev(child); 695 696 child->rphy = rphy; 697 698 spin_lock_irq(&parent->port->dev_list_lock); 699 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 700 spin_unlock_irq(&parent->port->dev_list_lock); 701 702 res = sas_discover_sata(child); 703 if (res) { 704 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 705 "%016llx:0x%x returned 0x%x\n", 706 SAS_ADDR(child->sas_addr), 707 SAS_ADDR(parent->sas_addr), phy_id, res); 708 goto out_list_del; 709 } 710 } else 711 #endif 712 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 713 child->dev_type = SAS_END_DEV; 714 rphy = sas_end_device_alloc(phy->port); 715 /* FIXME: error handling */ 716 if (unlikely(!rphy)) 717 goto out_free; 718 child->tproto = phy->attached_tproto; 719 sas_init_dev(child); 720 721 child->rphy = rphy; 722 sas_fill_in_rphy(child, rphy); 723 724 spin_lock_irq(&parent->port->dev_list_lock); 725 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 726 spin_unlock_irq(&parent->port->dev_list_lock); 727 728 res = sas_discover_end_dev(child); 729 if (res) { 730 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 731 "at %016llx:0x%x returned 0x%x\n", 732 SAS_ADDR(child->sas_addr), 733 SAS_ADDR(parent->sas_addr), phy_id, res); 734 goto out_list_del; 735 } 736 } else { 737 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 738 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 739 phy_id); 740 goto out_free; 741 } 742 743 list_add_tail(&child->siblings, &parent_ex->children); 744 return child; 745 746 out_list_del: 747 sas_rphy_free(child->rphy); 748 child->rphy = NULL; 749 list_del(&child->dev_list_node); 750 out_free: 751 sas_port_delete(phy->port); 752 out_err: 753 phy->port = NULL; 754 kfree(child); 755 return NULL; 756 } 757 758 /* See if this phy is part of a wide port */ 759 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 760 { 761 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 762 int i; 763 764 for (i = 0; i < parent->ex_dev.num_phys; i++) { 765 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 766 767 if (ephy == phy) 768 continue; 769 770 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 771 SAS_ADDR_SIZE) && ephy->port) { 772 sas_port_add_phy(ephy->port, phy->phy); 773 phy->port = ephy->port; 774 phy->phy_state = PHY_DEVICE_DISCOVERED; 775 return 0; 776 } 777 } 778 779 return -ENODEV; 780 } 781 782 static struct domain_device *sas_ex_discover_expander( 783 struct domain_device *parent, int phy_id) 784 { 785 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 786 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 787 struct domain_device *child = NULL; 788 struct sas_rphy *rphy; 789 struct sas_expander_device *edev; 790 struct asd_sas_port *port; 791 int res; 792 793 if (phy->routing_attr == DIRECT_ROUTING) { 794 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 795 "allowed\n", 796 SAS_ADDR(parent->sas_addr), phy_id, 797 SAS_ADDR(phy->attached_sas_addr), 798 phy->attached_phy_id); 799 return NULL; 800 } 801 child = kzalloc(sizeof(*child), GFP_KERNEL); 802 if (!child) 803 return NULL; 804 805 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 806 /* FIXME: better error handling */ 807 BUG_ON(sas_port_add(phy->port) != 0); 808 809 810 switch (phy->attached_dev_type) { 811 case EDGE_DEV: 812 rphy = sas_expander_alloc(phy->port, 813 SAS_EDGE_EXPANDER_DEVICE); 814 break; 815 case FANOUT_DEV: 816 rphy = sas_expander_alloc(phy->port, 817 SAS_FANOUT_EXPANDER_DEVICE); 818 break; 819 default: 820 rphy = NULL; /* shut gcc up */ 821 BUG(); 822 } 823 port = parent->port; 824 child->rphy = rphy; 825 edev = rphy_to_expander_device(rphy); 826 child->dev_type = phy->attached_dev_type; 827 child->parent = parent; 828 child->port = port; 829 child->iproto = phy->attached_iproto; 830 child->tproto = phy->attached_tproto; 831 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 832 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 833 sas_ex_get_linkrate(parent, child, phy); 834 edev->level = parent_ex->level + 1; 835 parent->port->disc.max_level = max(parent->port->disc.max_level, 836 edev->level); 837 sas_init_dev(child); 838 sas_fill_in_rphy(child, rphy); 839 sas_rphy_add(rphy); 840 841 spin_lock_irq(&parent->port->dev_list_lock); 842 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 843 spin_unlock_irq(&parent->port->dev_list_lock); 844 845 res = sas_discover_expander(child); 846 if (res) { 847 kfree(child); 848 return NULL; 849 } 850 list_add_tail(&child->siblings, &parent->ex_dev.children); 851 return child; 852 } 853 854 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 855 { 856 struct expander_device *ex = &dev->ex_dev; 857 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 858 struct domain_device *child = NULL; 859 int res = 0; 860 861 /* Phy state */ 862 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 863 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 864 res = sas_ex_phy_discover(dev, phy_id); 865 if (res) 866 return res; 867 } 868 869 /* Parent and domain coherency */ 870 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 871 SAS_ADDR(dev->port->sas_addr))) { 872 sas_add_parent_port(dev, phy_id); 873 return 0; 874 } 875 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 876 SAS_ADDR(dev->parent->sas_addr))) { 877 sas_add_parent_port(dev, phy_id); 878 if (ex_phy->routing_attr == TABLE_ROUTING) 879 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 880 return 0; 881 } 882 883 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 884 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 885 886 if (ex_phy->attached_dev_type == NO_DEVICE) { 887 if (ex_phy->routing_attr == DIRECT_ROUTING) { 888 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 889 sas_configure_routing(dev, ex_phy->attached_sas_addr); 890 } 891 return 0; 892 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 893 return 0; 894 895 if (ex_phy->attached_dev_type != SAS_END_DEV && 896 ex_phy->attached_dev_type != FANOUT_DEV && 897 ex_phy->attached_dev_type != EDGE_DEV) { 898 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 899 "phy 0x%x\n", ex_phy->attached_dev_type, 900 SAS_ADDR(dev->sas_addr), 901 phy_id); 902 return 0; 903 } 904 905 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 906 if (res) { 907 SAS_DPRINTK("configure routing for dev %016llx " 908 "reported 0x%x. Forgotten\n", 909 SAS_ADDR(ex_phy->attached_sas_addr), res); 910 sas_disable_routing(dev, ex_phy->attached_sas_addr); 911 return res; 912 } 913 914 res = sas_ex_join_wide_port(dev, phy_id); 915 if (!res) { 916 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 917 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 918 return res; 919 } 920 921 switch (ex_phy->attached_dev_type) { 922 case SAS_END_DEV: 923 child = sas_ex_discover_end_dev(dev, phy_id); 924 break; 925 case FANOUT_DEV: 926 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 927 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 928 "attached to ex %016llx phy 0x%x\n", 929 SAS_ADDR(ex_phy->attached_sas_addr), 930 ex_phy->attached_phy_id, 931 SAS_ADDR(dev->sas_addr), 932 phy_id); 933 sas_ex_disable_phy(dev, phy_id); 934 break; 935 } else 936 memcpy(dev->port->disc.fanout_sas_addr, 937 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 938 /* fallthrough */ 939 case EDGE_DEV: 940 child = sas_ex_discover_expander(dev, phy_id); 941 break; 942 default: 943 break; 944 } 945 946 if (child) { 947 int i; 948 949 for (i = 0; i < ex->num_phys; i++) { 950 if (ex->ex_phy[i].phy_state == PHY_VACANT || 951 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 952 continue; 953 /* 954 * Due to races, the phy might not get added to the 955 * wide port, so we add the phy to the wide port here. 956 */ 957 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 958 SAS_ADDR(child->sas_addr)) { 959 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 960 res = sas_ex_join_wide_port(dev, i); 961 if (!res) 962 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 963 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 964 965 } 966 } 967 } 968 969 return res; 970 } 971 972 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 973 { 974 struct expander_device *ex = &dev->ex_dev; 975 int i; 976 977 for (i = 0; i < ex->num_phys; i++) { 978 struct ex_phy *phy = &ex->ex_phy[i]; 979 980 if (phy->phy_state == PHY_VACANT || 981 phy->phy_state == PHY_NOT_PRESENT) 982 continue; 983 984 if ((phy->attached_dev_type == EDGE_DEV || 985 phy->attached_dev_type == FANOUT_DEV) && 986 phy->routing_attr == SUBTRACTIVE_ROUTING) { 987 988 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 989 990 return 1; 991 } 992 } 993 return 0; 994 } 995 996 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 997 { 998 struct expander_device *ex = &dev->ex_dev; 999 struct domain_device *child; 1000 u8 sub_addr[8] = {0, }; 1001 1002 list_for_each_entry(child, &ex->children, siblings) { 1003 if (child->dev_type != EDGE_DEV && 1004 child->dev_type != FANOUT_DEV) 1005 continue; 1006 if (sub_addr[0] == 0) { 1007 sas_find_sub_addr(child, sub_addr); 1008 continue; 1009 } else { 1010 u8 s2[8]; 1011 1012 if (sas_find_sub_addr(child, s2) && 1013 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1014 1015 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1016 "diverges from subtractive " 1017 "boundary %016llx\n", 1018 SAS_ADDR(dev->sas_addr), 1019 SAS_ADDR(child->sas_addr), 1020 SAS_ADDR(s2), 1021 SAS_ADDR(sub_addr)); 1022 1023 sas_ex_disable_port(child, s2); 1024 } 1025 } 1026 } 1027 return 0; 1028 } 1029 /** 1030 * sas_ex_discover_devices -- discover devices attached to this expander 1031 * dev: pointer to the expander domain device 1032 * single: if you want to do a single phy, else set to -1; 1033 * 1034 * Configure this expander for use with its devices and register the 1035 * devices of this expander. 1036 */ 1037 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1038 { 1039 struct expander_device *ex = &dev->ex_dev; 1040 int i = 0, end = ex->num_phys; 1041 int res = 0; 1042 1043 if (0 <= single && single < end) { 1044 i = single; 1045 end = i+1; 1046 } 1047 1048 for ( ; i < end; i++) { 1049 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1050 1051 if (ex_phy->phy_state == PHY_VACANT || 1052 ex_phy->phy_state == PHY_NOT_PRESENT || 1053 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1054 continue; 1055 1056 switch (ex_phy->linkrate) { 1057 case SAS_PHY_DISABLED: 1058 case SAS_PHY_RESET_PROBLEM: 1059 case SAS_SATA_PORT_SELECTOR: 1060 continue; 1061 default: 1062 res = sas_ex_discover_dev(dev, i); 1063 if (res) 1064 break; 1065 continue; 1066 } 1067 } 1068 1069 if (!res) 1070 sas_check_level_subtractive_boundary(dev); 1071 1072 return res; 1073 } 1074 1075 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1076 { 1077 struct expander_device *ex = &dev->ex_dev; 1078 int i; 1079 u8 *sub_sas_addr = NULL; 1080 1081 if (dev->dev_type != EDGE_DEV) 1082 return 0; 1083 1084 for (i = 0; i < ex->num_phys; i++) { 1085 struct ex_phy *phy = &ex->ex_phy[i]; 1086 1087 if (phy->phy_state == PHY_VACANT || 1088 phy->phy_state == PHY_NOT_PRESENT) 1089 continue; 1090 1091 if ((phy->attached_dev_type == FANOUT_DEV || 1092 phy->attached_dev_type == EDGE_DEV) && 1093 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1094 1095 if (!sub_sas_addr) 1096 sub_sas_addr = &phy->attached_sas_addr[0]; 1097 else if (SAS_ADDR(sub_sas_addr) != 1098 SAS_ADDR(phy->attached_sas_addr)) { 1099 1100 SAS_DPRINTK("ex %016llx phy 0x%x " 1101 "diverges(%016llx) on subtractive " 1102 "boundary(%016llx). Disabled\n", 1103 SAS_ADDR(dev->sas_addr), i, 1104 SAS_ADDR(phy->attached_sas_addr), 1105 SAS_ADDR(sub_sas_addr)); 1106 sas_ex_disable_phy(dev, i); 1107 } 1108 } 1109 } 1110 return 0; 1111 } 1112 1113 static void sas_print_parent_topology_bug(struct domain_device *child, 1114 struct ex_phy *parent_phy, 1115 struct ex_phy *child_phy) 1116 { 1117 static const char ra_char[] = { 1118 [DIRECT_ROUTING] = 'D', 1119 [SUBTRACTIVE_ROUTING] = 'S', 1120 [TABLE_ROUTING] = 'T', 1121 }; 1122 static const char *ex_type[] = { 1123 [EDGE_DEV] = "edge", 1124 [FANOUT_DEV] = "fanout", 1125 }; 1126 struct domain_device *parent = child->parent; 1127 1128 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1129 "has %c:%c routing link!\n", 1130 1131 ex_type[parent->dev_type], 1132 SAS_ADDR(parent->sas_addr), 1133 parent_phy->phy_id, 1134 1135 ex_type[child->dev_type], 1136 SAS_ADDR(child->sas_addr), 1137 child_phy->phy_id, 1138 1139 ra_char[parent_phy->routing_attr], 1140 ra_char[child_phy->routing_attr]); 1141 } 1142 1143 static int sas_check_eeds(struct domain_device *child, 1144 struct ex_phy *parent_phy, 1145 struct ex_phy *child_phy) 1146 { 1147 int res = 0; 1148 struct domain_device *parent = child->parent; 1149 1150 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1151 res = -ENODEV; 1152 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1153 "phy S:0x%x, while there is a fanout ex %016llx\n", 1154 SAS_ADDR(parent->sas_addr), 1155 parent_phy->phy_id, 1156 SAS_ADDR(child->sas_addr), 1157 child_phy->phy_id, 1158 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1159 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1160 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1161 SAS_ADDR_SIZE); 1162 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1163 SAS_ADDR_SIZE); 1164 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1165 SAS_ADDR(parent->sas_addr)) || 1166 (SAS_ADDR(parent->port->disc.eeds_a) == 1167 SAS_ADDR(child->sas_addr))) 1168 && 1169 ((SAS_ADDR(parent->port->disc.eeds_b) == 1170 SAS_ADDR(parent->sas_addr)) || 1171 (SAS_ADDR(parent->port->disc.eeds_b) == 1172 SAS_ADDR(child->sas_addr)))) 1173 ; 1174 else { 1175 res = -ENODEV; 1176 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1177 "phy 0x%x link forms a third EEDS!\n", 1178 SAS_ADDR(parent->sas_addr), 1179 parent_phy->phy_id, 1180 SAS_ADDR(child->sas_addr), 1181 child_phy->phy_id); 1182 } 1183 1184 return res; 1185 } 1186 1187 /* Here we spill over 80 columns. It is intentional. 1188 */ 1189 static int sas_check_parent_topology(struct domain_device *child) 1190 { 1191 struct expander_device *child_ex = &child->ex_dev; 1192 struct expander_device *parent_ex; 1193 int i; 1194 int res = 0; 1195 1196 if (!child->parent) 1197 return 0; 1198 1199 if (child->parent->dev_type != EDGE_DEV && 1200 child->parent->dev_type != FANOUT_DEV) 1201 return 0; 1202 1203 parent_ex = &child->parent->ex_dev; 1204 1205 for (i = 0; i < parent_ex->num_phys; i++) { 1206 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1207 struct ex_phy *child_phy; 1208 1209 if (parent_phy->phy_state == PHY_VACANT || 1210 parent_phy->phy_state == PHY_NOT_PRESENT) 1211 continue; 1212 1213 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1214 continue; 1215 1216 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1217 1218 switch (child->parent->dev_type) { 1219 case EDGE_DEV: 1220 if (child->dev_type == FANOUT_DEV) { 1221 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1222 child_phy->routing_attr != TABLE_ROUTING) { 1223 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1224 res = -ENODEV; 1225 } 1226 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1227 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1228 res = sas_check_eeds(child, parent_phy, child_phy); 1229 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1230 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1231 res = -ENODEV; 1232 } 1233 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1234 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1235 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1236 res = -ENODEV; 1237 } 1238 break; 1239 case FANOUT_DEV: 1240 if (parent_phy->routing_attr != TABLE_ROUTING || 1241 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1242 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1243 res = -ENODEV; 1244 } 1245 break; 1246 default: 1247 break; 1248 } 1249 } 1250 1251 return res; 1252 } 1253 1254 #define RRI_REQ_SIZE 16 1255 #define RRI_RESP_SIZE 44 1256 1257 static int sas_configure_present(struct domain_device *dev, int phy_id, 1258 u8 *sas_addr, int *index, int *present) 1259 { 1260 int i, res = 0; 1261 struct expander_device *ex = &dev->ex_dev; 1262 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1263 u8 *rri_req; 1264 u8 *rri_resp; 1265 1266 *present = 0; 1267 *index = 0; 1268 1269 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1270 if (!rri_req) 1271 return -ENOMEM; 1272 1273 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1274 if (!rri_resp) { 1275 kfree(rri_req); 1276 return -ENOMEM; 1277 } 1278 1279 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1280 rri_req[9] = phy_id; 1281 1282 for (i = 0; i < ex->max_route_indexes ; i++) { 1283 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1284 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1285 RRI_RESP_SIZE); 1286 if (res) 1287 goto out; 1288 res = rri_resp[2]; 1289 if (res == SMP_RESP_NO_INDEX) { 1290 SAS_DPRINTK("overflow of indexes: dev %016llx " 1291 "phy 0x%x index 0x%x\n", 1292 SAS_ADDR(dev->sas_addr), phy_id, i); 1293 goto out; 1294 } else if (res != SMP_RESP_FUNC_ACC) { 1295 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1296 "result 0x%x\n", __func__, 1297 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1298 goto out; 1299 } 1300 if (SAS_ADDR(sas_addr) != 0) { 1301 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1302 *index = i; 1303 if ((rri_resp[12] & 0x80) == 0x80) 1304 *present = 0; 1305 else 1306 *present = 1; 1307 goto out; 1308 } else if (SAS_ADDR(rri_resp+16) == 0) { 1309 *index = i; 1310 *present = 0; 1311 goto out; 1312 } 1313 } else if (SAS_ADDR(rri_resp+16) == 0 && 1314 phy->last_da_index < i) { 1315 phy->last_da_index = i; 1316 *index = i; 1317 *present = 0; 1318 goto out; 1319 } 1320 } 1321 res = -1; 1322 out: 1323 kfree(rri_req); 1324 kfree(rri_resp); 1325 return res; 1326 } 1327 1328 #define CRI_REQ_SIZE 44 1329 #define CRI_RESP_SIZE 8 1330 1331 static int sas_configure_set(struct domain_device *dev, int phy_id, 1332 u8 *sas_addr, int index, int include) 1333 { 1334 int res; 1335 u8 *cri_req; 1336 u8 *cri_resp; 1337 1338 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1339 if (!cri_req) 1340 return -ENOMEM; 1341 1342 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1343 if (!cri_resp) { 1344 kfree(cri_req); 1345 return -ENOMEM; 1346 } 1347 1348 cri_req[1] = SMP_CONF_ROUTE_INFO; 1349 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1350 cri_req[9] = phy_id; 1351 if (SAS_ADDR(sas_addr) == 0 || !include) 1352 cri_req[12] |= 0x80; 1353 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1354 1355 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1356 CRI_RESP_SIZE); 1357 if (res) 1358 goto out; 1359 res = cri_resp[2]; 1360 if (res == SMP_RESP_NO_INDEX) { 1361 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1362 "index 0x%x\n", 1363 SAS_ADDR(dev->sas_addr), phy_id, index); 1364 } 1365 out: 1366 kfree(cri_req); 1367 kfree(cri_resp); 1368 return res; 1369 } 1370 1371 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1372 u8 *sas_addr, int include) 1373 { 1374 int index; 1375 int present; 1376 int res; 1377 1378 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1379 if (res) 1380 return res; 1381 if (include ^ present) 1382 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1383 1384 return res; 1385 } 1386 1387 /** 1388 * sas_configure_parent -- configure routing table of parent 1389 * parent: parent expander 1390 * child: child expander 1391 * sas_addr: SAS port identifier of device directly attached to child 1392 */ 1393 static int sas_configure_parent(struct domain_device *parent, 1394 struct domain_device *child, 1395 u8 *sas_addr, int include) 1396 { 1397 struct expander_device *ex_parent = &parent->ex_dev; 1398 int res = 0; 1399 int i; 1400 1401 if (parent->parent) { 1402 res = sas_configure_parent(parent->parent, parent, sas_addr, 1403 include); 1404 if (res) 1405 return res; 1406 } 1407 1408 if (ex_parent->conf_route_table == 0) { 1409 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1410 SAS_ADDR(parent->sas_addr)); 1411 return 0; 1412 } 1413 1414 for (i = 0; i < ex_parent->num_phys; i++) { 1415 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1416 1417 if ((phy->routing_attr == TABLE_ROUTING) && 1418 (SAS_ADDR(phy->attached_sas_addr) == 1419 SAS_ADDR(child->sas_addr))) { 1420 res = sas_configure_phy(parent, i, sas_addr, include); 1421 if (res) 1422 return res; 1423 } 1424 } 1425 1426 return res; 1427 } 1428 1429 /** 1430 * sas_configure_routing -- configure routing 1431 * dev: expander device 1432 * sas_addr: port identifier of device directly attached to the expander device 1433 */ 1434 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1435 { 1436 if (dev->parent) 1437 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1438 return 0; 1439 } 1440 1441 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1442 { 1443 if (dev->parent) 1444 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1445 return 0; 1446 } 1447 1448 /** 1449 * sas_discover_expander -- expander discovery 1450 * @ex: pointer to expander domain device 1451 * 1452 * See comment in sas_discover_sata(). 1453 */ 1454 static int sas_discover_expander(struct domain_device *dev) 1455 { 1456 int res; 1457 1458 res = sas_notify_lldd_dev_found(dev); 1459 if (res) 1460 return res; 1461 1462 res = sas_ex_general(dev); 1463 if (res) 1464 goto out_err; 1465 res = sas_ex_manuf_info(dev); 1466 if (res) 1467 goto out_err; 1468 1469 res = sas_expander_discover(dev); 1470 if (res) { 1471 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1472 SAS_ADDR(dev->sas_addr), res); 1473 goto out_err; 1474 } 1475 1476 sas_check_ex_subtractive_boundary(dev); 1477 res = sas_check_parent_topology(dev); 1478 if (res) 1479 goto out_err; 1480 return 0; 1481 out_err: 1482 sas_notify_lldd_dev_gone(dev); 1483 return res; 1484 } 1485 1486 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1487 { 1488 int res = 0; 1489 struct domain_device *dev; 1490 1491 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1492 if (dev->dev_type == EDGE_DEV || 1493 dev->dev_type == FANOUT_DEV) { 1494 struct sas_expander_device *ex = 1495 rphy_to_expander_device(dev->rphy); 1496 1497 if (level == ex->level) 1498 res = sas_ex_discover_devices(dev, -1); 1499 else if (level > 0) 1500 res = sas_ex_discover_devices(port->port_dev, -1); 1501 1502 } 1503 } 1504 1505 return res; 1506 } 1507 1508 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1509 { 1510 int res; 1511 int level; 1512 1513 do { 1514 level = port->disc.max_level; 1515 res = sas_ex_level_discovery(port, level); 1516 mb(); 1517 } while (level < port->disc.max_level); 1518 1519 return res; 1520 } 1521 1522 int sas_discover_root_expander(struct domain_device *dev) 1523 { 1524 int res; 1525 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1526 1527 res = sas_rphy_add(dev->rphy); 1528 if (res) 1529 goto out_err; 1530 1531 ex->level = dev->port->disc.max_level; /* 0 */ 1532 res = sas_discover_expander(dev); 1533 if (res) 1534 goto out_err2; 1535 1536 sas_ex_bfs_disc(dev->port); 1537 1538 return res; 1539 1540 out_err2: 1541 sas_rphy_remove(dev->rphy); 1542 out_err: 1543 return res; 1544 } 1545 1546 /* ---------- Domain revalidation ---------- */ 1547 1548 static int sas_get_phy_discover(struct domain_device *dev, 1549 int phy_id, struct smp_resp *disc_resp) 1550 { 1551 int res; 1552 u8 *disc_req; 1553 1554 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1555 if (!disc_req) 1556 return -ENOMEM; 1557 1558 disc_req[1] = SMP_DISCOVER; 1559 disc_req[9] = phy_id; 1560 1561 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1562 disc_resp, DISCOVER_RESP_SIZE); 1563 if (res) 1564 goto out; 1565 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1566 res = disc_resp->result; 1567 goto out; 1568 } 1569 out: 1570 kfree(disc_req); 1571 return res; 1572 } 1573 1574 static int sas_get_phy_change_count(struct domain_device *dev, 1575 int phy_id, int *pcc) 1576 { 1577 int res; 1578 struct smp_resp *disc_resp; 1579 1580 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1581 if (!disc_resp) 1582 return -ENOMEM; 1583 1584 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1585 if (!res) 1586 *pcc = disc_resp->disc.change_count; 1587 1588 kfree(disc_resp); 1589 return res; 1590 } 1591 1592 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1593 int phy_id, u8 *attached_sas_addr) 1594 { 1595 int res; 1596 struct smp_resp *disc_resp; 1597 struct discover_resp *dr; 1598 1599 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1600 if (!disc_resp) 1601 return -ENOMEM; 1602 dr = &disc_resp->disc; 1603 1604 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1605 if (!res) { 1606 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1607 if (dr->attached_dev_type == 0) 1608 memset(attached_sas_addr, 0, 8); 1609 } 1610 kfree(disc_resp); 1611 return res; 1612 } 1613 1614 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1615 int from_phy, bool update) 1616 { 1617 struct expander_device *ex = &dev->ex_dev; 1618 int res = 0; 1619 int i; 1620 1621 for (i = from_phy; i < ex->num_phys; i++) { 1622 int phy_change_count = 0; 1623 1624 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1625 if (res) 1626 goto out; 1627 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1628 if (update) 1629 ex->ex_phy[i].phy_change_count = 1630 phy_change_count; 1631 *phy_id = i; 1632 return 0; 1633 } 1634 } 1635 out: 1636 return res; 1637 } 1638 1639 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1640 { 1641 int res; 1642 u8 *rg_req; 1643 struct smp_resp *rg_resp; 1644 1645 rg_req = alloc_smp_req(RG_REQ_SIZE); 1646 if (!rg_req) 1647 return -ENOMEM; 1648 1649 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1650 if (!rg_resp) { 1651 kfree(rg_req); 1652 return -ENOMEM; 1653 } 1654 1655 rg_req[1] = SMP_REPORT_GENERAL; 1656 1657 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1658 RG_RESP_SIZE); 1659 if (res) 1660 goto out; 1661 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1662 res = rg_resp->result; 1663 goto out; 1664 } 1665 1666 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1667 out: 1668 kfree(rg_resp); 1669 kfree(rg_req); 1670 return res; 1671 } 1672 /** 1673 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1674 * @dev:domain device to be detect. 1675 * @src_dev: the device which originated BROADCAST(CHANGE). 1676 * 1677 * Add self-configuration expander suport. Suppose two expander cascading, 1678 * when the first level expander is self-configuring, hotplug the disks in 1679 * second level expander, BROADCAST(CHANGE) will not only be originated 1680 * in the second level expander, but also be originated in the first level 1681 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1682 * expander changed count in two level expanders will all increment at least 1683 * once, but the phy which chang count has changed is the source device which 1684 * we concerned. 1685 */ 1686 1687 static int sas_find_bcast_dev(struct domain_device *dev, 1688 struct domain_device **src_dev) 1689 { 1690 struct expander_device *ex = &dev->ex_dev; 1691 int ex_change_count = -1; 1692 int phy_id = -1; 1693 int res; 1694 struct domain_device *ch; 1695 1696 res = sas_get_ex_change_count(dev, &ex_change_count); 1697 if (res) 1698 goto out; 1699 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1700 /* Just detect if this expander phys phy change count changed, 1701 * in order to determine if this expander originate BROADCAST, 1702 * and do not update phy change count field in our structure. 1703 */ 1704 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1705 if (phy_id != -1) { 1706 *src_dev = dev; 1707 ex->ex_change_count = ex_change_count; 1708 SAS_DPRINTK("Expander phy change count has changed\n"); 1709 return res; 1710 } else 1711 SAS_DPRINTK("Expander phys DID NOT change\n"); 1712 } 1713 list_for_each_entry(ch, &ex->children, siblings) { 1714 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1715 res = sas_find_bcast_dev(ch, src_dev); 1716 if (src_dev) 1717 return res; 1718 } 1719 } 1720 out: 1721 return res; 1722 } 1723 1724 static void sas_unregister_ex_tree(struct domain_device *dev) 1725 { 1726 struct expander_device *ex = &dev->ex_dev; 1727 struct domain_device *child, *n; 1728 1729 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1730 child->gone = 1; 1731 if (child->dev_type == EDGE_DEV || 1732 child->dev_type == FANOUT_DEV) 1733 sas_unregister_ex_tree(child); 1734 else 1735 sas_unregister_dev(child); 1736 } 1737 sas_unregister_dev(dev); 1738 } 1739 1740 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1741 int phy_id, bool last) 1742 { 1743 struct expander_device *ex_dev = &parent->ex_dev; 1744 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1745 struct domain_device *child, *n; 1746 if (last) { 1747 list_for_each_entry_safe(child, n, 1748 &ex_dev->children, siblings) { 1749 if (SAS_ADDR(child->sas_addr) == 1750 SAS_ADDR(phy->attached_sas_addr)) { 1751 child->gone = 1; 1752 if (child->dev_type == EDGE_DEV || 1753 child->dev_type == FANOUT_DEV) 1754 sas_unregister_ex_tree(child); 1755 else 1756 sas_unregister_dev(child); 1757 break; 1758 } 1759 } 1760 parent->gone = 1; 1761 sas_disable_routing(parent, phy->attached_sas_addr); 1762 } 1763 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1764 sas_port_delete_phy(phy->port, phy->phy); 1765 if (phy->port->num_phys == 0) 1766 sas_port_delete(phy->port); 1767 phy->port = NULL; 1768 } 1769 1770 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1771 const int level) 1772 { 1773 struct expander_device *ex_root = &root->ex_dev; 1774 struct domain_device *child; 1775 int res = 0; 1776 1777 list_for_each_entry(child, &ex_root->children, siblings) { 1778 if (child->dev_type == EDGE_DEV || 1779 child->dev_type == FANOUT_DEV) { 1780 struct sas_expander_device *ex = 1781 rphy_to_expander_device(child->rphy); 1782 1783 if (level > ex->level) 1784 res = sas_discover_bfs_by_root_level(child, 1785 level); 1786 else if (level == ex->level) 1787 res = sas_ex_discover_devices(child, -1); 1788 } 1789 } 1790 return res; 1791 } 1792 1793 static int sas_discover_bfs_by_root(struct domain_device *dev) 1794 { 1795 int res; 1796 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1797 int level = ex->level+1; 1798 1799 res = sas_ex_discover_devices(dev, -1); 1800 if (res) 1801 goto out; 1802 do { 1803 res = sas_discover_bfs_by_root_level(dev, level); 1804 mb(); 1805 level += 1; 1806 } while (level <= dev->port->disc.max_level); 1807 out: 1808 return res; 1809 } 1810 1811 static int sas_discover_new(struct domain_device *dev, int phy_id) 1812 { 1813 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1814 struct domain_device *child; 1815 bool found = false; 1816 int res, i; 1817 1818 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1819 SAS_ADDR(dev->sas_addr), phy_id); 1820 res = sas_ex_phy_discover(dev, phy_id); 1821 if (res) 1822 goto out; 1823 /* to support the wide port inserted */ 1824 for (i = 0; i < dev->ex_dev.num_phys; i++) { 1825 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i]; 1826 if (i == phy_id) 1827 continue; 1828 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) == 1829 SAS_ADDR(ex_phy->attached_sas_addr)) { 1830 found = true; 1831 break; 1832 } 1833 } 1834 if (found) { 1835 sas_ex_join_wide_port(dev, phy_id); 1836 return 0; 1837 } 1838 res = sas_ex_discover_devices(dev, phy_id); 1839 if (!res) 1840 goto out; 1841 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1842 if (SAS_ADDR(child->sas_addr) == 1843 SAS_ADDR(ex_phy->attached_sas_addr)) { 1844 if (child->dev_type == EDGE_DEV || 1845 child->dev_type == FANOUT_DEV) 1846 res = sas_discover_bfs_by_root(child); 1847 break; 1848 } 1849 } 1850 out: 1851 return res; 1852 } 1853 1854 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1855 { 1856 struct expander_device *ex = &dev->ex_dev; 1857 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1858 u8 attached_sas_addr[8]; 1859 int res; 1860 1861 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1862 switch (res) { 1863 case SMP_RESP_NO_PHY: 1864 phy->phy_state = PHY_NOT_PRESENT; 1865 sas_unregister_devs_sas_addr(dev, phy_id, last); 1866 goto out; break; 1867 case SMP_RESP_PHY_VACANT: 1868 phy->phy_state = PHY_VACANT; 1869 sas_unregister_devs_sas_addr(dev, phy_id, last); 1870 goto out; break; 1871 case SMP_RESP_FUNC_ACC: 1872 break; 1873 } 1874 1875 if (SAS_ADDR(attached_sas_addr) == 0) { 1876 phy->phy_state = PHY_EMPTY; 1877 sas_unregister_devs_sas_addr(dev, phy_id, last); 1878 } else if (SAS_ADDR(attached_sas_addr) == 1879 SAS_ADDR(phy->attached_sas_addr)) { 1880 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1881 SAS_ADDR(dev->sas_addr), phy_id); 1882 sas_ex_phy_discover(dev, phy_id); 1883 } else 1884 res = sas_discover_new(dev, phy_id); 1885 out: 1886 return res; 1887 } 1888 1889 /** 1890 * sas_rediscover - revalidate the domain. 1891 * @dev:domain device to be detect. 1892 * @phy_id: the phy id will be detected. 1893 * 1894 * NOTE: this process _must_ quit (return) as soon as any connection 1895 * errors are encountered. Connection recovery is done elsewhere. 1896 * Discover process only interrogates devices in order to discover the 1897 * domain.For plugging out, we un-register the device only when it is 1898 * the last phy in the port, for other phys in this port, we just delete it 1899 * from the port.For inserting, we do discovery when it is the 1900 * first phy,for other phys in this port, we add it to the port to 1901 * forming the wide-port. 1902 */ 1903 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1904 { 1905 struct expander_device *ex = &dev->ex_dev; 1906 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1907 int res = 0; 1908 int i; 1909 bool last = true; /* is this the last phy of the port */ 1910 1911 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1912 SAS_ADDR(dev->sas_addr), phy_id); 1913 1914 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1915 for (i = 0; i < ex->num_phys; i++) { 1916 struct ex_phy *phy = &ex->ex_phy[i]; 1917 1918 if (i == phy_id) 1919 continue; 1920 if (SAS_ADDR(phy->attached_sas_addr) == 1921 SAS_ADDR(changed_phy->attached_sas_addr)) { 1922 SAS_DPRINTK("phy%d part of wide port with " 1923 "phy%d\n", phy_id, i); 1924 last = false; 1925 break; 1926 } 1927 } 1928 res = sas_rediscover_dev(dev, phy_id, last); 1929 } else 1930 res = sas_discover_new(dev, phy_id); 1931 return res; 1932 } 1933 1934 /** 1935 * sas_revalidate_domain -- revalidate the domain 1936 * @port: port to the domain of interest 1937 * 1938 * NOTE: this process _must_ quit (return) as soon as any connection 1939 * errors are encountered. Connection recovery is done elsewhere. 1940 * Discover process only interrogates devices in order to discover the 1941 * domain. 1942 */ 1943 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1944 { 1945 int res; 1946 struct domain_device *dev = NULL; 1947 1948 res = sas_find_bcast_dev(port_dev, &dev); 1949 if (res) 1950 goto out; 1951 if (dev) { 1952 struct expander_device *ex = &dev->ex_dev; 1953 int i = 0, phy_id; 1954 1955 do { 1956 phy_id = -1; 1957 res = sas_find_bcast_phy(dev, &phy_id, i, true); 1958 if (phy_id == -1) 1959 break; 1960 res = sas_rediscover(dev, phy_id); 1961 i = phy_id + 1; 1962 } while (i < ex->num_phys); 1963 } 1964 out: 1965 return res; 1966 } 1967 1968 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1969 struct request *req) 1970 { 1971 struct domain_device *dev; 1972 int ret, type; 1973 struct request *rsp = req->next_rq; 1974 1975 if (!rsp) { 1976 printk("%s: space for a smp response is missing\n", 1977 __func__); 1978 return -EINVAL; 1979 } 1980 1981 /* no rphy means no smp target support (ie aic94xx host) */ 1982 if (!rphy) 1983 return sas_smp_host_handler(shost, req, rsp); 1984 1985 type = rphy->identify.device_type; 1986 1987 if (type != SAS_EDGE_EXPANDER_DEVICE && 1988 type != SAS_FANOUT_EXPANDER_DEVICE) { 1989 printk("%s: can we send a smp request to a device?\n", 1990 __func__); 1991 return -EINVAL; 1992 } 1993 1994 dev = sas_find_dev_by_rphy(rphy); 1995 if (!dev) { 1996 printk("%s: fail to find a domain_device?\n", __func__); 1997 return -EINVAL; 1998 } 1999 2000 /* do we need to support multiple segments? */ 2001 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 2002 printk("%s: multiple segments req %u %u, rsp %u %u\n", 2003 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 2004 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 2005 return -EINVAL; 2006 } 2007 2008 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2009 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2010 if (ret > 0) { 2011 /* positive number is the untransferred residual */ 2012 rsp->resid_len = ret; 2013 req->resid_len = 0; 2014 ret = 0; 2015 } else if (ret == 0) { 2016 rsp->resid_len = 0; 2017 req->resid_len = 0; 2018 } 2019 2020 return ret; 2021 } 2022