1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
44 static void smp_task_timedout(struct timer_list *t)
45 {
46 	struct sas_task_slow *slow = from_timer(slow, t, timer);
47 	struct sas_task *task = slow->task;
48 	unsigned long flags;
49 
50 	spin_lock_irqsave(&task->task_state_lock, flags);
51 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 		complete(&task->slow_task->completion);
54 	}
55 	spin_unlock_irqrestore(&task->task_state_lock, flags);
56 }
57 
58 static void smp_task_done(struct sas_task *task)
59 {
60 	del_timer(&task->slow_task->timer);
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
67 static int smp_execute_task_sg(struct domain_device *dev,
68 		struct scatterlist *req, struct scatterlist *resp)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		task->smp_task.smp_req = *req;
90 		task->smp_task.smp_resp = *resp;
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.function = smp_task_timedout;
95 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 		add_timer(&task->slow_task->timer);
97 
98 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99 
100 		if (res) {
101 			del_timer(&task->slow_task->timer);
102 			pr_notice("executing SMP task failed:%d\n", res);
103 			break;
104 		}
105 
106 		wait_for_completion(&task->slow_task->completion);
107 		res = -ECOMM;
108 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 			pr_notice("smp task timed out or aborted\n");
110 			i->dft->lldd_abort_task(task);
111 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 				pr_notice("SMP task aborted and not done\n");
113 				break;
114 			}
115 		}
116 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 		    task->task_status.stat == SAM_STAT_GOOD) {
118 			res = 0;
119 			break;
120 		}
121 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
123 			/* no error, but return the number of bytes of
124 			 * underrun */
125 			res = task->task_status.residual;
126 			break;
127 		}
128 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 		    task->task_status.stat == SAS_DATA_OVERRUN) {
130 			res = -EMSGSIZE;
131 			break;
132 		}
133 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 			break;
136 		else {
137 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
138 				  __func__,
139 				  SAS_ADDR(dev->sas_addr),
140 				  task->task_status.resp,
141 				  task->task_status.stat);
142 			sas_free_task(task);
143 			task = NULL;
144 		}
145 	}
146 	mutex_unlock(&dev->ex_dev.cmd_mutex);
147 
148 	BUG_ON(retry == 3 && task != NULL);
149 	sas_free_task(task);
150 	return res;
151 }
152 
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 			    void *resp, int resp_size)
155 {
156 	struct scatterlist req_sg;
157 	struct scatterlist resp_sg;
158 
159 	sg_init_one(&req_sg, req, req_size);
160 	sg_init_one(&resp_sg, resp, resp_size);
161 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163 
164 /* ---------- Allocations ---------- */
165 
166 static inline void *alloc_smp_req(int size)
167 {
168 	u8 *p = kzalloc(size, GFP_KERNEL);
169 	if (p)
170 		p[0] = SMP_REQUEST;
171 	return p;
172 }
173 
174 static inline void *alloc_smp_resp(int size)
175 {
176 	return kzalloc(size, GFP_KERNEL);
177 }
178 
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181 	switch (phy->routing_attr) {
182 	case TABLE_ROUTING:
183 		if (dev->ex_dev.t2t_supp)
184 			return 'U';
185 		else
186 			return 'T';
187 	case DIRECT_ROUTING:
188 		return 'D';
189 	case SUBTRACTIVE_ROUTING:
190 		return 'S';
191 	default:
192 		return '?';
193 	}
194 }
195 
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198 	/* This is detecting a failure to transmit initial dev to host
199 	 * FIS as described in section J.5 of sas-2 r16
200 	 */
201 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 		return SAS_SATA_PENDING;
204 	else
205 		return dr->attached_dev_type;
206 }
207 
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210 	enum sas_device_type dev_type;
211 	enum sas_linkrate linkrate;
212 	u8 sas_addr[SAS_ADDR_SIZE];
213 	struct smp_resp *resp = rsp;
214 	struct discover_resp *dr = &resp->disc;
215 	struct sas_ha_struct *ha = dev->port->ha;
216 	struct expander_device *ex = &dev->ex_dev;
217 	struct ex_phy *phy = &ex->ex_phy[phy_id];
218 	struct sas_rphy *rphy = dev->rphy;
219 	bool new_phy = !phy->phy;
220 	char *type;
221 
222 	if (new_phy) {
223 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 			return;
225 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226 
227 		/* FIXME: error_handling */
228 		BUG_ON(!phy->phy);
229 	}
230 
231 	switch (resp->result) {
232 	case SMP_RESP_PHY_VACANT:
233 		phy->phy_state = PHY_VACANT;
234 		break;
235 	default:
236 		phy->phy_state = PHY_NOT_PRESENT;
237 		break;
238 	case SMP_RESP_FUNC_ACC:
239 		phy->phy_state = PHY_EMPTY; /* do not know yet */
240 		break;
241 	}
242 
243 	/* check if anything important changed to squelch debug */
244 	dev_type = phy->attached_dev_type;
245 	linkrate  = phy->linkrate;
246 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247 
248 	/* Handle vacant phy - rest of dr data is not valid so skip it */
249 	if (phy->phy_state == PHY_VACANT) {
250 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 		phy->attached_dev_type = SAS_PHY_UNUSED;
252 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 			phy->phy_id = phy_id;
254 			goto skip;
255 		} else
256 			goto out;
257 	}
258 
259 	phy->attached_dev_type = to_dev_type(dr);
260 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 		goto out;
262 	phy->phy_id = phy_id;
263 	phy->linkrate = dr->linkrate;
264 	phy->attached_sata_host = dr->attached_sata_host;
265 	phy->attached_sata_dev  = dr->attached_sata_dev;
266 	phy->attached_sata_ps   = dr->attached_sata_ps;
267 	phy->attached_iproto = dr->iproto << 1;
268 	phy->attached_tproto = dr->tproto << 1;
269 	/* help some expanders that fail to zero sas_address in the 'no
270 	 * device' case
271 	 */
272 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 	else
276 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 	phy->attached_phy_id = dr->attached_phy_id;
278 	phy->phy_change_count = dr->change_count;
279 	phy->routing_attr = dr->routing_attr;
280 	phy->virtual = dr->virtual;
281 	phy->last_da_index = -1;
282 
283 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 	phy->phy->identify.device_type = dr->attached_dev_type;
285 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 	if (!phy->attached_tproto && dr->attached_sata_dev)
288 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 	phy->phy->identify.phy_identifier = phy_id;
290 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 	phy->phy->negotiated_linkrate = phy->linkrate;
295 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296 
297  skip:
298 	if (new_phy)
299 		if (sas_phy_add(phy->phy)) {
300 			sas_phy_free(phy->phy);
301 			return;
302 		}
303 
304  out:
305 	switch (phy->attached_dev_type) {
306 	case SAS_SATA_PENDING:
307 		type = "stp pending";
308 		break;
309 	case SAS_PHY_UNUSED:
310 		type = "no device";
311 		break;
312 	case SAS_END_DEVICE:
313 		if (phy->attached_iproto) {
314 			if (phy->attached_tproto)
315 				type = "host+target";
316 			else
317 				type = "host";
318 		} else {
319 			if (dr->attached_sata_dev)
320 				type = "stp";
321 			else
322 				type = "ssp";
323 		}
324 		break;
325 	case SAS_EDGE_EXPANDER_DEVICE:
326 	case SAS_FANOUT_EXPANDER_DEVICE:
327 		type = "smp";
328 		break;
329 	default:
330 		type = "unknown";
331 	}
332 
333 	/* this routine is polled by libata error recovery so filter
334 	 * unimportant messages
335 	 */
336 	if (new_phy || phy->attached_dev_type != dev_type ||
337 	    phy->linkrate != linkrate ||
338 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 		/* pass */;
340 	else
341 		return;
342 
343 	/* if the attached device type changed and ata_eh is active,
344 	 * make sure we run revalidation when eh completes (see:
345 	 * sas_enable_revalidation)
346 	 */
347 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349 
350 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
353 		 sas_route_char(dev, phy), phy->linkrate,
354 		 SAS_ADDR(phy->attached_sas_addr), type);
355 }
356 
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 	struct domain_device *dev;
362 	struct sas_rphy *rphy;
363 
364 	if (!ex_phy->port)
365 		return NULL;
366 
367 	rphy = ex_phy->port->rphy;
368 	if (!rphy)
369 		return NULL;
370 
371 	dev = sas_find_dev_by_rphy(rphy);
372 
373 	if (dev && dev_is_sata(dev))
374 		return dev;
375 
376 	return NULL;
377 }
378 
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381 
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 				      u8 *disc_resp, int single)
384 {
385 	struct discover_resp *dr;
386 	int res;
387 
388 	disc_req[9] = single;
389 
390 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 			       disc_resp, DISCOVER_RESP_SIZE);
392 	if (res)
393 		return res;
394 	dr = &((struct smp_resp *)disc_resp)->disc;
395 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 		pr_notice("Found loopback topology, just ignore it!\n");
397 		return 0;
398 	}
399 	sas_set_ex_phy(dev, single, disc_resp);
400 	return 0;
401 }
402 
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405 	struct expander_device *ex = &dev->ex_dev;
406 	int  res = 0;
407 	u8   *disc_req;
408 	u8   *disc_resp;
409 
410 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 	if (!disc_req)
412 		return -ENOMEM;
413 
414 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 	if (!disc_resp) {
416 		kfree(disc_req);
417 		return -ENOMEM;
418 	}
419 
420 	disc_req[1] = SMP_DISCOVER;
421 
422 	if (0 <= single && single < ex->num_phys) {
423 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 	} else {
425 		int i;
426 
427 		for (i = 0; i < ex->num_phys; i++) {
428 			res = sas_ex_phy_discover_helper(dev, disc_req,
429 							 disc_resp, i);
430 			if (res)
431 				goto out_err;
432 		}
433 	}
434 out_err:
435 	kfree(disc_resp);
436 	kfree(disc_req);
437 	return res;
438 }
439 
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442 	struct expander_device *ex = &dev->ex_dev;
443 	int res = -ENOMEM;
444 
445 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446 	if (!ex->ex_phy)
447 		return -ENOMEM;
448 
449 	res = sas_ex_phy_discover(dev, -1);
450 	if (res)
451 		goto out_err;
452 
453 	return 0;
454  out_err:
455 	kfree(ex->ex_phy);
456 	ex->ex_phy = NULL;
457 	return res;
458 }
459 
460 #define MAX_EXPANDER_PHYS 128
461 
462 static void ex_assign_report_general(struct domain_device *dev,
463 					    struct smp_resp *resp)
464 {
465 	struct report_general_resp *rg = &resp->rg;
466 
467 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 	dev->ex_dev.t2t_supp = rg->t2t_supp;
471 	dev->ex_dev.conf_route_table = rg->conf_route_table;
472 	dev->ex_dev.configuring = rg->configuring;
473 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475 
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478 
479 static int sas_ex_general(struct domain_device *dev)
480 {
481 	u8 *rg_req;
482 	struct smp_resp *rg_resp;
483 	int res;
484 	int i;
485 
486 	rg_req = alloc_smp_req(RG_REQ_SIZE);
487 	if (!rg_req)
488 		return -ENOMEM;
489 
490 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 	if (!rg_resp) {
492 		kfree(rg_req);
493 		return -ENOMEM;
494 	}
495 
496 	rg_req[1] = SMP_REPORT_GENERAL;
497 
498 	for (i = 0; i < 5; i++) {
499 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 				       RG_RESP_SIZE);
501 
502 		if (res) {
503 			pr_notice("RG to ex %016llx failed:0x%x\n",
504 				  SAS_ADDR(dev->sas_addr), res);
505 			goto out;
506 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
508 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
509 			res = rg_resp->result;
510 			goto out;
511 		}
512 
513 		ex_assign_report_general(dev, rg_resp);
514 
515 		if (dev->ex_dev.configuring) {
516 			pr_debug("RG: ex %llx self-configuring...\n",
517 				 SAS_ADDR(dev->sas_addr));
518 			schedule_timeout_interruptible(5*HZ);
519 		} else
520 			break;
521 	}
522 out:
523 	kfree(rg_req);
524 	kfree(rg_resp);
525 	return res;
526 }
527 
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 					*_mi_resp)
530 {
531 	u8 *mi_resp = _mi_resp;
532 	struct sas_rphy *rphy = dev->rphy;
533 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534 
535 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 	memcpy(edev->product_rev, mi_resp + 36,
538 	       SAS_EXPANDER_PRODUCT_REV_LEN);
539 
540 	if (mi_resp[8] & 1) {
541 		memcpy(edev->component_vendor_id, mi_resp + 40,
542 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 		edev->component_revision_id = mi_resp[50];
545 	}
546 }
547 
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550 
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553 	u8 *mi_req;
554 	u8 *mi_resp;
555 	int res;
556 
557 	mi_req = alloc_smp_req(MI_REQ_SIZE);
558 	if (!mi_req)
559 		return -ENOMEM;
560 
561 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 	if (!mi_resp) {
563 		kfree(mi_req);
564 		return -ENOMEM;
565 	}
566 
567 	mi_req[1] = SMP_REPORT_MANUF_INFO;
568 
569 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 	if (res) {
571 		pr_notice("MI: ex %016llx failed:0x%x\n",
572 			  SAS_ADDR(dev->sas_addr), res);
573 		goto out;
574 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
576 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 		goto out;
578 	}
579 
580 	ex_assign_manuf_info(dev, mi_resp);
581 out:
582 	kfree(mi_req);
583 	kfree(mi_resp);
584 	return res;
585 }
586 
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589 
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 			enum phy_func phy_func,
592 			struct sas_phy_linkrates *rates)
593 {
594 	u8 *pc_req;
595 	u8 *pc_resp;
596 	int res;
597 
598 	pc_req = alloc_smp_req(PC_REQ_SIZE);
599 	if (!pc_req)
600 		return -ENOMEM;
601 
602 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 	if (!pc_resp) {
604 		kfree(pc_req);
605 		return -ENOMEM;
606 	}
607 
608 	pc_req[1] = SMP_PHY_CONTROL;
609 	pc_req[9] = phy_id;
610 	pc_req[10]= phy_func;
611 	if (rates) {
612 		pc_req[32] = rates->minimum_linkrate << 4;
613 		pc_req[33] = rates->maximum_linkrate << 4;
614 	}
615 
616 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 
618 	kfree(pc_resp);
619 	kfree(pc_req);
620 	return res;
621 }
622 
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
624 {
625 	struct expander_device *ex = &dev->ex_dev;
626 	struct ex_phy *phy = &ex->ex_phy[phy_id];
627 
628 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629 	phy->linkrate = SAS_PHY_DISABLED;
630 }
631 
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
633 {
634 	struct expander_device *ex = &dev->ex_dev;
635 	int i;
636 
637 	for (i = 0; i < ex->num_phys; i++) {
638 		struct ex_phy *phy = &ex->ex_phy[i];
639 
640 		if (phy->phy_state == PHY_VACANT ||
641 		    phy->phy_state == PHY_NOT_PRESENT)
642 			continue;
643 
644 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645 			sas_ex_disable_phy(dev, i);
646 	}
647 }
648 
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650 					    u8 *sas_addr)
651 {
652 	struct domain_device *dev;
653 
654 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655 		return 1;
656 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658 			return 1;
659 	}
660 	return 0;
661 }
662 
663 #define RPEL_REQ_SIZE	16
664 #define RPEL_RESP_SIZE	32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
666 {
667 	int res;
668 	u8 *req;
669 	u8 *resp;
670 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
672 
673 	req = alloc_smp_req(RPEL_REQ_SIZE);
674 	if (!req)
675 		return -ENOMEM;
676 
677 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
678 	if (!resp) {
679 		kfree(req);
680 		return -ENOMEM;
681 	}
682 
683 	req[1] = SMP_REPORT_PHY_ERR_LOG;
684 	req[9] = phy->number;
685 
686 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687 			            resp, RPEL_RESP_SIZE);
688 
689 	if (res)
690 		goto out;
691 
692 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
696 
697  out:
698 	kfree(req);
699 	kfree(resp);
700 	return res;
701 
702 }
703 
704 #ifdef CONFIG_SCSI_SAS_ATA
705 
706 #define RPS_REQ_SIZE  16
707 #define RPS_RESP_SIZE 60
708 
709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
710 			    struct smp_resp *rps_resp)
711 {
712 	int res;
713 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
714 	u8 *resp = (u8 *)rps_resp;
715 
716 	if (!rps_req)
717 		return -ENOMEM;
718 
719 	rps_req[1] = SMP_REPORT_PHY_SATA;
720 	rps_req[9] = phy_id;
721 
722 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
723 			            rps_resp, RPS_RESP_SIZE);
724 
725 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
726 	 * standards cockup here.  sas-2 explicitly specifies the FIS
727 	 * should be encoded so that FIS type is in resp[24].
728 	 * However, some expanders endian reverse this.  Undo the
729 	 * reversal here */
730 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
731 		int i;
732 
733 		for (i = 0; i < 5; i++) {
734 			int j = 24 + (i*4);
735 			u8 a, b;
736 			a = resp[j + 0];
737 			b = resp[j + 1];
738 			resp[j + 0] = resp[j + 3];
739 			resp[j + 1] = resp[j + 2];
740 			resp[j + 2] = b;
741 			resp[j + 3] = a;
742 		}
743 	}
744 
745 	kfree(rps_req);
746 	return res;
747 }
748 #endif
749 
750 static void sas_ex_get_linkrate(struct domain_device *parent,
751 				       struct domain_device *child,
752 				       struct ex_phy *parent_phy)
753 {
754 	struct expander_device *parent_ex = &parent->ex_dev;
755 	struct sas_port *port;
756 	int i;
757 
758 	child->pathways = 0;
759 
760 	port = parent_phy->port;
761 
762 	for (i = 0; i < parent_ex->num_phys; i++) {
763 		struct ex_phy *phy = &parent_ex->ex_phy[i];
764 
765 		if (phy->phy_state == PHY_VACANT ||
766 		    phy->phy_state == PHY_NOT_PRESENT)
767 			continue;
768 
769 		if (SAS_ADDR(phy->attached_sas_addr) ==
770 		    SAS_ADDR(child->sas_addr)) {
771 
772 			child->min_linkrate = min(parent->min_linkrate,
773 						  phy->linkrate);
774 			child->max_linkrate = max(parent->max_linkrate,
775 						  phy->linkrate);
776 			child->pathways++;
777 			sas_port_add_phy(port, phy->phy);
778 		}
779 	}
780 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
781 	child->pathways = min(child->pathways, parent->pathways);
782 }
783 
784 static struct domain_device *sas_ex_discover_end_dev(
785 	struct domain_device *parent, int phy_id)
786 {
787 	struct expander_device *parent_ex = &parent->ex_dev;
788 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
789 	struct domain_device *child = NULL;
790 	struct sas_rphy *rphy;
791 	int res;
792 
793 	if (phy->attached_sata_host || phy->attached_sata_ps)
794 		return NULL;
795 
796 	child = sas_alloc_device();
797 	if (!child)
798 		return NULL;
799 
800 	kref_get(&parent->kref);
801 	child->parent = parent;
802 	child->port   = parent->port;
803 	child->iproto = phy->attached_iproto;
804 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
805 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
806 	if (!phy->port) {
807 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
808 		if (unlikely(!phy->port))
809 			goto out_err;
810 		if (unlikely(sas_port_add(phy->port) != 0)) {
811 			sas_port_free(phy->port);
812 			goto out_err;
813 		}
814 	}
815 	sas_ex_get_linkrate(parent, child, phy);
816 	sas_device_set_phy(child, phy->port);
817 
818 #ifdef CONFIG_SCSI_SAS_ATA
819 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
820 		res = sas_get_ata_info(child, phy);
821 		if (res)
822 			goto out_free;
823 
824 		sas_init_dev(child);
825 		res = sas_ata_init(child);
826 		if (res)
827 			goto out_free;
828 		rphy = sas_end_device_alloc(phy->port);
829 		if (!rphy)
830 			goto out_free;
831 
832 		child->rphy = rphy;
833 		get_device(&rphy->dev);
834 
835 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
836 
837 		res = sas_discover_sata(child);
838 		if (res) {
839 			pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n",
840 				  SAS_ADDR(child->sas_addr),
841 				  SAS_ADDR(parent->sas_addr), phy_id, res);
842 			goto out_list_del;
843 		}
844 	} else
845 #endif
846 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
847 		child->dev_type = SAS_END_DEVICE;
848 		rphy = sas_end_device_alloc(phy->port);
849 		/* FIXME: error handling */
850 		if (unlikely(!rphy))
851 			goto out_free;
852 		child->tproto = phy->attached_tproto;
853 		sas_init_dev(child);
854 
855 		child->rphy = rphy;
856 		get_device(&rphy->dev);
857 		sas_fill_in_rphy(child, rphy);
858 
859 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
860 
861 		res = sas_discover_end_dev(child);
862 		if (res) {
863 			pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n",
864 				  SAS_ADDR(child->sas_addr),
865 				  SAS_ADDR(parent->sas_addr), phy_id, res);
866 			goto out_list_del;
867 		}
868 	} else {
869 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
870 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
871 			  phy_id);
872 		goto out_free;
873 	}
874 
875 	list_add_tail(&child->siblings, &parent_ex->children);
876 	return child;
877 
878  out_list_del:
879 	sas_rphy_free(child->rphy);
880 	list_del(&child->disco_list_node);
881 	spin_lock_irq(&parent->port->dev_list_lock);
882 	list_del(&child->dev_list_node);
883 	spin_unlock_irq(&parent->port->dev_list_lock);
884  out_free:
885 	sas_port_delete(phy->port);
886  out_err:
887 	phy->port = NULL;
888 	sas_put_device(child);
889 	return NULL;
890 }
891 
892 /* See if this phy is part of a wide port */
893 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
894 {
895 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
896 	int i;
897 
898 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
899 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
900 
901 		if (ephy == phy)
902 			continue;
903 
904 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
905 			    SAS_ADDR_SIZE) && ephy->port) {
906 			sas_port_add_phy(ephy->port, phy->phy);
907 			phy->port = ephy->port;
908 			phy->phy_state = PHY_DEVICE_DISCOVERED;
909 			return true;
910 		}
911 	}
912 
913 	return false;
914 }
915 
916 static struct domain_device *sas_ex_discover_expander(
917 	struct domain_device *parent, int phy_id)
918 {
919 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
920 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
921 	struct domain_device *child = NULL;
922 	struct sas_rphy *rphy;
923 	struct sas_expander_device *edev;
924 	struct asd_sas_port *port;
925 	int res;
926 
927 	if (phy->routing_attr == DIRECT_ROUTING) {
928 		pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n",
929 			SAS_ADDR(parent->sas_addr), phy_id,
930 			SAS_ADDR(phy->attached_sas_addr),
931 			phy->attached_phy_id);
932 		return NULL;
933 	}
934 	child = sas_alloc_device();
935 	if (!child)
936 		return NULL;
937 
938 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
939 	/* FIXME: better error handling */
940 	BUG_ON(sas_port_add(phy->port) != 0);
941 
942 
943 	switch (phy->attached_dev_type) {
944 	case SAS_EDGE_EXPANDER_DEVICE:
945 		rphy = sas_expander_alloc(phy->port,
946 					  SAS_EDGE_EXPANDER_DEVICE);
947 		break;
948 	case SAS_FANOUT_EXPANDER_DEVICE:
949 		rphy = sas_expander_alloc(phy->port,
950 					  SAS_FANOUT_EXPANDER_DEVICE);
951 		break;
952 	default:
953 		rphy = NULL;	/* shut gcc up */
954 		BUG();
955 	}
956 	port = parent->port;
957 	child->rphy = rphy;
958 	get_device(&rphy->dev);
959 	edev = rphy_to_expander_device(rphy);
960 	child->dev_type = phy->attached_dev_type;
961 	kref_get(&parent->kref);
962 	child->parent = parent;
963 	child->port = port;
964 	child->iproto = phy->attached_iproto;
965 	child->tproto = phy->attached_tproto;
966 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
967 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
968 	sas_ex_get_linkrate(parent, child, phy);
969 	edev->level = parent_ex->level + 1;
970 	parent->port->disc.max_level = max(parent->port->disc.max_level,
971 					   edev->level);
972 	sas_init_dev(child);
973 	sas_fill_in_rphy(child, rphy);
974 	sas_rphy_add(rphy);
975 
976 	spin_lock_irq(&parent->port->dev_list_lock);
977 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
978 	spin_unlock_irq(&parent->port->dev_list_lock);
979 
980 	res = sas_discover_expander(child);
981 	if (res) {
982 		sas_rphy_delete(rphy);
983 		spin_lock_irq(&parent->port->dev_list_lock);
984 		list_del(&child->dev_list_node);
985 		spin_unlock_irq(&parent->port->dev_list_lock);
986 		sas_put_device(child);
987 		return NULL;
988 	}
989 	list_add_tail(&child->siblings, &parent->ex_dev.children);
990 	return child;
991 }
992 
993 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
994 {
995 	struct expander_device *ex = &dev->ex_dev;
996 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
997 	struct domain_device *child = NULL;
998 	int res = 0;
999 
1000 	/* Phy state */
1001 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1002 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1003 			res = sas_ex_phy_discover(dev, phy_id);
1004 		if (res)
1005 			return res;
1006 	}
1007 
1008 	/* Parent and domain coherency */
1009 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1010 			     SAS_ADDR(dev->port->sas_addr))) {
1011 		sas_add_parent_port(dev, phy_id);
1012 		return 0;
1013 	}
1014 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1015 			    SAS_ADDR(dev->parent->sas_addr))) {
1016 		sas_add_parent_port(dev, phy_id);
1017 		if (ex_phy->routing_attr == TABLE_ROUTING)
1018 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1019 		return 0;
1020 	}
1021 
1022 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1023 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1024 
1025 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1026 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1027 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1028 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1029 		}
1030 		return 0;
1031 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1032 		return 0;
1033 
1034 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1035 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1036 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1037 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1038 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n",
1039 			ex_phy->attached_dev_type,
1040 			SAS_ADDR(dev->sas_addr),
1041 			phy_id);
1042 		return 0;
1043 	}
1044 
1045 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1046 	if (res) {
1047 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1048 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1049 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1050 		return res;
1051 	}
1052 
1053 	if (sas_ex_join_wide_port(dev, phy_id)) {
1054 		pr_debug("Attaching ex phy%d to wide port %016llx\n",
1055 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1056 		return res;
1057 	}
1058 
1059 	switch (ex_phy->attached_dev_type) {
1060 	case SAS_END_DEVICE:
1061 	case SAS_SATA_PENDING:
1062 		child = sas_ex_discover_end_dev(dev, phy_id);
1063 		break;
1064 	case SAS_FANOUT_EXPANDER_DEVICE:
1065 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1066 			pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n",
1067 				 SAS_ADDR(ex_phy->attached_sas_addr),
1068 				 ex_phy->attached_phy_id,
1069 				 SAS_ADDR(dev->sas_addr),
1070 				 phy_id);
1071 			sas_ex_disable_phy(dev, phy_id);
1072 			break;
1073 		} else
1074 			memcpy(dev->port->disc.fanout_sas_addr,
1075 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1076 		/* fallthrough */
1077 	case SAS_EDGE_EXPANDER_DEVICE:
1078 		child = sas_ex_discover_expander(dev, phy_id);
1079 		break;
1080 	default:
1081 		break;
1082 	}
1083 
1084 	if (child) {
1085 		int i;
1086 
1087 		for (i = 0; i < ex->num_phys; i++) {
1088 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1089 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1090 				continue;
1091 			/*
1092 			 * Due to races, the phy might not get added to the
1093 			 * wide port, so we add the phy to the wide port here.
1094 			 */
1095 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1096 			    SAS_ADDR(child->sas_addr)) {
1097 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1098 				if (sas_ex_join_wide_port(dev, i))
1099 					pr_debug("Attaching ex phy%d to wide port %016llx\n",
1100 						 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1101 			}
1102 		}
1103 	}
1104 
1105 	return res;
1106 }
1107 
1108 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1109 {
1110 	struct expander_device *ex = &dev->ex_dev;
1111 	int i;
1112 
1113 	for (i = 0; i < ex->num_phys; i++) {
1114 		struct ex_phy *phy = &ex->ex_phy[i];
1115 
1116 		if (phy->phy_state == PHY_VACANT ||
1117 		    phy->phy_state == PHY_NOT_PRESENT)
1118 			continue;
1119 
1120 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1121 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1122 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1123 
1124 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1125 
1126 			return 1;
1127 		}
1128 	}
1129 	return 0;
1130 }
1131 
1132 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1133 {
1134 	struct expander_device *ex = &dev->ex_dev;
1135 	struct domain_device *child;
1136 	u8 sub_addr[8] = {0, };
1137 
1138 	list_for_each_entry(child, &ex->children, siblings) {
1139 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1140 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1141 			continue;
1142 		if (sub_addr[0] == 0) {
1143 			sas_find_sub_addr(child, sub_addr);
1144 			continue;
1145 		} else {
1146 			u8 s2[8];
1147 
1148 			if (sas_find_sub_addr(child, s2) &&
1149 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1150 
1151 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1152 					  SAS_ADDR(dev->sas_addr),
1153 					  SAS_ADDR(child->sas_addr),
1154 					  SAS_ADDR(s2),
1155 					  SAS_ADDR(sub_addr));
1156 
1157 				sas_ex_disable_port(child, s2);
1158 			}
1159 		}
1160 	}
1161 	return 0;
1162 }
1163 /**
1164  * sas_ex_discover_devices - discover devices attached to this expander
1165  * @dev: pointer to the expander domain device
1166  * @single: if you want to do a single phy, else set to -1;
1167  *
1168  * Configure this expander for use with its devices and register the
1169  * devices of this expander.
1170  */
1171 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1172 {
1173 	struct expander_device *ex = &dev->ex_dev;
1174 	int i = 0, end = ex->num_phys;
1175 	int res = 0;
1176 
1177 	if (0 <= single && single < end) {
1178 		i = single;
1179 		end = i+1;
1180 	}
1181 
1182 	for ( ; i < end; i++) {
1183 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1184 
1185 		if (ex_phy->phy_state == PHY_VACANT ||
1186 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1187 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1188 			continue;
1189 
1190 		switch (ex_phy->linkrate) {
1191 		case SAS_PHY_DISABLED:
1192 		case SAS_PHY_RESET_PROBLEM:
1193 		case SAS_SATA_PORT_SELECTOR:
1194 			continue;
1195 		default:
1196 			res = sas_ex_discover_dev(dev, i);
1197 			if (res)
1198 				break;
1199 			continue;
1200 		}
1201 	}
1202 
1203 	if (!res)
1204 		sas_check_level_subtractive_boundary(dev);
1205 
1206 	return res;
1207 }
1208 
1209 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1210 {
1211 	struct expander_device *ex = &dev->ex_dev;
1212 	int i;
1213 	u8  *sub_sas_addr = NULL;
1214 
1215 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1216 		return 0;
1217 
1218 	for (i = 0; i < ex->num_phys; i++) {
1219 		struct ex_phy *phy = &ex->ex_phy[i];
1220 
1221 		if (phy->phy_state == PHY_VACANT ||
1222 		    phy->phy_state == PHY_NOT_PRESENT)
1223 			continue;
1224 
1225 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1226 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1227 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1228 
1229 			if (!sub_sas_addr)
1230 				sub_sas_addr = &phy->attached_sas_addr[0];
1231 			else if (SAS_ADDR(sub_sas_addr) !=
1232 				 SAS_ADDR(phy->attached_sas_addr)) {
1233 
1234 				pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1235 					  SAS_ADDR(dev->sas_addr), i,
1236 					  SAS_ADDR(phy->attached_sas_addr),
1237 					  SAS_ADDR(sub_sas_addr));
1238 				sas_ex_disable_phy(dev, i);
1239 			}
1240 		}
1241 	}
1242 	return 0;
1243 }
1244 
1245 static void sas_print_parent_topology_bug(struct domain_device *child,
1246 						 struct ex_phy *parent_phy,
1247 						 struct ex_phy *child_phy)
1248 {
1249 	static const char *ex_type[] = {
1250 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1251 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1252 	};
1253 	struct domain_device *parent = child->parent;
1254 
1255 	pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n",
1256 		  ex_type[parent->dev_type],
1257 		  SAS_ADDR(parent->sas_addr),
1258 		  parent_phy->phy_id,
1259 
1260 		  ex_type[child->dev_type],
1261 		  SAS_ADDR(child->sas_addr),
1262 		  child_phy->phy_id,
1263 
1264 		  sas_route_char(parent, parent_phy),
1265 		  sas_route_char(child, child_phy));
1266 }
1267 
1268 static int sas_check_eeds(struct domain_device *child,
1269 				 struct ex_phy *parent_phy,
1270 				 struct ex_phy *child_phy)
1271 {
1272 	int res = 0;
1273 	struct domain_device *parent = child->parent;
1274 
1275 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276 		res = -ENODEV;
1277 		pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n",
1278 			SAS_ADDR(parent->sas_addr),
1279 			parent_phy->phy_id,
1280 			SAS_ADDR(child->sas_addr),
1281 			child_phy->phy_id,
1282 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1283 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1284 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1285 		       SAS_ADDR_SIZE);
1286 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1287 		       SAS_ADDR_SIZE);
1288 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1289 		    SAS_ADDR(parent->sas_addr)) ||
1290 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1291 		    SAS_ADDR(child->sas_addr)))
1292 		   &&
1293 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1294 		     SAS_ADDR(parent->sas_addr)) ||
1295 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1296 		     SAS_ADDR(child->sas_addr))))
1297 		;
1298 	else {
1299 		res = -ENODEV;
1300 		pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n",
1301 			SAS_ADDR(parent->sas_addr),
1302 			parent_phy->phy_id,
1303 			SAS_ADDR(child->sas_addr),
1304 			child_phy->phy_id);
1305 	}
1306 
1307 	return res;
1308 }
1309 
1310 /* Here we spill over 80 columns.  It is intentional.
1311  */
1312 static int sas_check_parent_topology(struct domain_device *child)
1313 {
1314 	struct expander_device *child_ex = &child->ex_dev;
1315 	struct expander_device *parent_ex;
1316 	int i;
1317 	int res = 0;
1318 
1319 	if (!child->parent)
1320 		return 0;
1321 
1322 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1323 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1324 		return 0;
1325 
1326 	parent_ex = &child->parent->ex_dev;
1327 
1328 	for (i = 0; i < parent_ex->num_phys; i++) {
1329 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1330 		struct ex_phy *child_phy;
1331 
1332 		if (parent_phy->phy_state == PHY_VACANT ||
1333 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1334 			continue;
1335 
1336 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1337 			continue;
1338 
1339 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1340 
1341 		switch (child->parent->dev_type) {
1342 		case SAS_EDGE_EXPANDER_DEVICE:
1343 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1344 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1345 				    child_phy->routing_attr != TABLE_ROUTING) {
1346 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1347 					res = -ENODEV;
1348 				}
1349 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1350 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351 					res = sas_check_eeds(child, parent_phy, child_phy);
1352 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1353 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1354 					res = -ENODEV;
1355 				}
1356 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1357 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1358 				    (child_phy->routing_attr == TABLE_ROUTING &&
1359 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1360 					/* All good */;
1361 				} else {
1362 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1363 					res = -ENODEV;
1364 				}
1365 			}
1366 			break;
1367 		case SAS_FANOUT_EXPANDER_DEVICE:
1368 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1369 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1370 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1371 				res = -ENODEV;
1372 			}
1373 			break;
1374 		default:
1375 			break;
1376 		}
1377 	}
1378 
1379 	return res;
1380 }
1381 
1382 #define RRI_REQ_SIZE  16
1383 #define RRI_RESP_SIZE 44
1384 
1385 static int sas_configure_present(struct domain_device *dev, int phy_id,
1386 				 u8 *sas_addr, int *index, int *present)
1387 {
1388 	int i, res = 0;
1389 	struct expander_device *ex = &dev->ex_dev;
1390 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1391 	u8 *rri_req;
1392 	u8 *rri_resp;
1393 
1394 	*present = 0;
1395 	*index = 0;
1396 
1397 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1398 	if (!rri_req)
1399 		return -ENOMEM;
1400 
1401 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1402 	if (!rri_resp) {
1403 		kfree(rri_req);
1404 		return -ENOMEM;
1405 	}
1406 
1407 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1408 	rri_req[9] = phy_id;
1409 
1410 	for (i = 0; i < ex->max_route_indexes ; i++) {
1411 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1412 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1413 				       RRI_RESP_SIZE);
1414 		if (res)
1415 			goto out;
1416 		res = rri_resp[2];
1417 		if (res == SMP_RESP_NO_INDEX) {
1418 			pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1419 				SAS_ADDR(dev->sas_addr), phy_id, i);
1420 			goto out;
1421 		} else if (res != SMP_RESP_FUNC_ACC) {
1422 			pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n",
1423 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1424 				  i, res);
1425 			goto out;
1426 		}
1427 		if (SAS_ADDR(sas_addr) != 0) {
1428 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1429 				*index = i;
1430 				if ((rri_resp[12] & 0x80) == 0x80)
1431 					*present = 0;
1432 				else
1433 					*present = 1;
1434 				goto out;
1435 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1436 				*index = i;
1437 				*present = 0;
1438 				goto out;
1439 			}
1440 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1441 			   phy->last_da_index < i) {
1442 			phy->last_da_index = i;
1443 			*index = i;
1444 			*present = 0;
1445 			goto out;
1446 		}
1447 	}
1448 	res = -1;
1449 out:
1450 	kfree(rri_req);
1451 	kfree(rri_resp);
1452 	return res;
1453 }
1454 
1455 #define CRI_REQ_SIZE  44
1456 #define CRI_RESP_SIZE  8
1457 
1458 static int sas_configure_set(struct domain_device *dev, int phy_id,
1459 			     u8 *sas_addr, int index, int include)
1460 {
1461 	int res;
1462 	u8 *cri_req;
1463 	u8 *cri_resp;
1464 
1465 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1466 	if (!cri_req)
1467 		return -ENOMEM;
1468 
1469 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1470 	if (!cri_resp) {
1471 		kfree(cri_req);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1476 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1477 	cri_req[9] = phy_id;
1478 	if (SAS_ADDR(sas_addr) == 0 || !include)
1479 		cri_req[12] |= 0x80;
1480 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1481 
1482 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1483 			       CRI_RESP_SIZE);
1484 	if (res)
1485 		goto out;
1486 	res = cri_resp[2];
1487 	if (res == SMP_RESP_NO_INDEX) {
1488 		pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1489 			SAS_ADDR(dev->sas_addr), phy_id, index);
1490 	}
1491 out:
1492 	kfree(cri_req);
1493 	kfree(cri_resp);
1494 	return res;
1495 }
1496 
1497 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1498 				    u8 *sas_addr, int include)
1499 {
1500 	int index;
1501 	int present;
1502 	int res;
1503 
1504 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1505 	if (res)
1506 		return res;
1507 	if (include ^ present)
1508 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1509 
1510 	return res;
1511 }
1512 
1513 /**
1514  * sas_configure_parent - configure routing table of parent
1515  * @parent: parent expander
1516  * @child: child expander
1517  * @sas_addr: SAS port identifier of device directly attached to child
1518  * @include: whether or not to include @child in the expander routing table
1519  */
1520 static int sas_configure_parent(struct domain_device *parent,
1521 				struct domain_device *child,
1522 				u8 *sas_addr, int include)
1523 {
1524 	struct expander_device *ex_parent = &parent->ex_dev;
1525 	int res = 0;
1526 	int i;
1527 
1528 	if (parent->parent) {
1529 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1530 					   include);
1531 		if (res)
1532 			return res;
1533 	}
1534 
1535 	if (ex_parent->conf_route_table == 0) {
1536 		pr_debug("ex %016llx has self-configuring routing table\n",
1537 			 SAS_ADDR(parent->sas_addr));
1538 		return 0;
1539 	}
1540 
1541 	for (i = 0; i < ex_parent->num_phys; i++) {
1542 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1543 
1544 		if ((phy->routing_attr == TABLE_ROUTING) &&
1545 		    (SAS_ADDR(phy->attached_sas_addr) ==
1546 		     SAS_ADDR(child->sas_addr))) {
1547 			res = sas_configure_phy(parent, i, sas_addr, include);
1548 			if (res)
1549 				return res;
1550 		}
1551 	}
1552 
1553 	return res;
1554 }
1555 
1556 /**
1557  * sas_configure_routing - configure routing
1558  * @dev: expander device
1559  * @sas_addr: port identifier of device directly attached to the expander device
1560  */
1561 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1562 {
1563 	if (dev->parent)
1564 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1565 	return 0;
1566 }
1567 
1568 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1569 {
1570 	if (dev->parent)
1571 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1572 	return 0;
1573 }
1574 
1575 /**
1576  * sas_discover_expander - expander discovery
1577  * @dev: pointer to expander domain device
1578  *
1579  * See comment in sas_discover_sata().
1580  */
1581 static int sas_discover_expander(struct domain_device *dev)
1582 {
1583 	int res;
1584 
1585 	res = sas_notify_lldd_dev_found(dev);
1586 	if (res)
1587 		return res;
1588 
1589 	res = sas_ex_general(dev);
1590 	if (res)
1591 		goto out_err;
1592 	res = sas_ex_manuf_info(dev);
1593 	if (res)
1594 		goto out_err;
1595 
1596 	res = sas_expander_discover(dev);
1597 	if (res) {
1598 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1599 			SAS_ADDR(dev->sas_addr), res);
1600 		goto out_err;
1601 	}
1602 
1603 	sas_check_ex_subtractive_boundary(dev);
1604 	res = sas_check_parent_topology(dev);
1605 	if (res)
1606 		goto out_err;
1607 	return 0;
1608 out_err:
1609 	sas_notify_lldd_dev_gone(dev);
1610 	return res;
1611 }
1612 
1613 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1614 {
1615 	int res = 0;
1616 	struct domain_device *dev;
1617 
1618 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1619 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1620 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1621 			struct sas_expander_device *ex =
1622 				rphy_to_expander_device(dev->rphy);
1623 
1624 			if (level == ex->level)
1625 				res = sas_ex_discover_devices(dev, -1);
1626 			else if (level > 0)
1627 				res = sas_ex_discover_devices(port->port_dev, -1);
1628 
1629 		}
1630 	}
1631 
1632 	return res;
1633 }
1634 
1635 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636 {
1637 	int res;
1638 	int level;
1639 
1640 	do {
1641 		level = port->disc.max_level;
1642 		res = sas_ex_level_discovery(port, level);
1643 		mb();
1644 	} while (level < port->disc.max_level);
1645 
1646 	return res;
1647 }
1648 
1649 int sas_discover_root_expander(struct domain_device *dev)
1650 {
1651 	int res;
1652 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653 
1654 	res = sas_rphy_add(dev->rphy);
1655 	if (res)
1656 		goto out_err;
1657 
1658 	ex->level = dev->port->disc.max_level; /* 0 */
1659 	res = sas_discover_expander(dev);
1660 	if (res)
1661 		goto out_err2;
1662 
1663 	sas_ex_bfs_disc(dev->port);
1664 
1665 	return res;
1666 
1667 out_err2:
1668 	sas_rphy_remove(dev->rphy);
1669 out_err:
1670 	return res;
1671 }
1672 
1673 /* ---------- Domain revalidation ---------- */
1674 
1675 static int sas_get_phy_discover(struct domain_device *dev,
1676 				int phy_id, struct smp_resp *disc_resp)
1677 {
1678 	int res;
1679 	u8 *disc_req;
1680 
1681 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682 	if (!disc_req)
1683 		return -ENOMEM;
1684 
1685 	disc_req[1] = SMP_DISCOVER;
1686 	disc_req[9] = phy_id;
1687 
1688 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689 			       disc_resp, DISCOVER_RESP_SIZE);
1690 	if (res)
1691 		goto out;
1692 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693 		res = disc_resp->result;
1694 		goto out;
1695 	}
1696 out:
1697 	kfree(disc_req);
1698 	return res;
1699 }
1700 
1701 static int sas_get_phy_change_count(struct domain_device *dev,
1702 				    int phy_id, int *pcc)
1703 {
1704 	int res;
1705 	struct smp_resp *disc_resp;
1706 
1707 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708 	if (!disc_resp)
1709 		return -ENOMEM;
1710 
1711 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712 	if (!res)
1713 		*pcc = disc_resp->disc.change_count;
1714 
1715 	kfree(disc_resp);
1716 	return res;
1717 }
1718 
1719 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720 				    u8 *sas_addr, enum sas_device_type *type)
1721 {
1722 	int res;
1723 	struct smp_resp *disc_resp;
1724 	struct discover_resp *dr;
1725 
1726 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727 	if (!disc_resp)
1728 		return -ENOMEM;
1729 	dr = &disc_resp->disc;
1730 
1731 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732 	if (res == 0) {
1733 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1734 		*type = to_dev_type(dr);
1735 		if (*type == 0)
1736 			memset(sas_addr, 0, 8);
1737 	}
1738 	kfree(disc_resp);
1739 	return res;
1740 }
1741 
1742 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1743 			      int from_phy, bool update)
1744 {
1745 	struct expander_device *ex = &dev->ex_dev;
1746 	int res = 0;
1747 	int i;
1748 
1749 	for (i = from_phy; i < ex->num_phys; i++) {
1750 		int phy_change_count = 0;
1751 
1752 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1753 		switch (res) {
1754 		case SMP_RESP_PHY_VACANT:
1755 		case SMP_RESP_NO_PHY:
1756 			continue;
1757 		case SMP_RESP_FUNC_ACC:
1758 			break;
1759 		default:
1760 			return res;
1761 		}
1762 
1763 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1764 			if (update)
1765 				ex->ex_phy[i].phy_change_count =
1766 					phy_change_count;
1767 			*phy_id = i;
1768 			return 0;
1769 		}
1770 	}
1771 	return 0;
1772 }
1773 
1774 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1775 {
1776 	int res;
1777 	u8  *rg_req;
1778 	struct smp_resp  *rg_resp;
1779 
1780 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1781 	if (!rg_req)
1782 		return -ENOMEM;
1783 
1784 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1785 	if (!rg_resp) {
1786 		kfree(rg_req);
1787 		return -ENOMEM;
1788 	}
1789 
1790 	rg_req[1] = SMP_REPORT_GENERAL;
1791 
1792 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1793 			       RG_RESP_SIZE);
1794 	if (res)
1795 		goto out;
1796 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1797 		res = rg_resp->result;
1798 		goto out;
1799 	}
1800 
1801 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1802 out:
1803 	kfree(rg_resp);
1804 	kfree(rg_req);
1805 	return res;
1806 }
1807 /**
1808  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1809  * @dev:domain device to be detect.
1810  * @src_dev: the device which originated BROADCAST(CHANGE).
1811  *
1812  * Add self-configuration expander support. Suppose two expander cascading,
1813  * when the first level expander is self-configuring, hotplug the disks in
1814  * second level expander, BROADCAST(CHANGE) will not only be originated
1815  * in the second level expander, but also be originated in the first level
1816  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1817  * expander changed count in two level expanders will all increment at least
1818  * once, but the phy which chang count has changed is the source device which
1819  * we concerned.
1820  */
1821 
1822 static int sas_find_bcast_dev(struct domain_device *dev,
1823 			      struct domain_device **src_dev)
1824 {
1825 	struct expander_device *ex = &dev->ex_dev;
1826 	int ex_change_count = -1;
1827 	int phy_id = -1;
1828 	int res;
1829 	struct domain_device *ch;
1830 
1831 	res = sas_get_ex_change_count(dev, &ex_change_count);
1832 	if (res)
1833 		goto out;
1834 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1835 		/* Just detect if this expander phys phy change count changed,
1836 		* in order to determine if this expander originate BROADCAST,
1837 		* and do not update phy change count field in our structure.
1838 		*/
1839 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1840 		if (phy_id != -1) {
1841 			*src_dev = dev;
1842 			ex->ex_change_count = ex_change_count;
1843 			pr_info("Expander phy change count has changed\n");
1844 			return res;
1845 		} else
1846 			pr_info("Expander phys DID NOT change\n");
1847 	}
1848 	list_for_each_entry(ch, &ex->children, siblings) {
1849 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1850 			res = sas_find_bcast_dev(ch, src_dev);
1851 			if (*src_dev)
1852 				return res;
1853 		}
1854 	}
1855 out:
1856 	return res;
1857 }
1858 
1859 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1860 {
1861 	struct expander_device *ex = &dev->ex_dev;
1862 	struct domain_device *child, *n;
1863 
1864 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1865 		set_bit(SAS_DEV_GONE, &child->state);
1866 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1867 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1868 			sas_unregister_ex_tree(port, child);
1869 		else
1870 			sas_unregister_dev(port, child);
1871 	}
1872 	sas_unregister_dev(port, dev);
1873 }
1874 
1875 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1876 					 int phy_id, bool last)
1877 {
1878 	struct expander_device *ex_dev = &parent->ex_dev;
1879 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1880 	struct domain_device *child, *n, *found = NULL;
1881 	if (last) {
1882 		list_for_each_entry_safe(child, n,
1883 			&ex_dev->children, siblings) {
1884 			if (SAS_ADDR(child->sas_addr) ==
1885 			    SAS_ADDR(phy->attached_sas_addr)) {
1886 				set_bit(SAS_DEV_GONE, &child->state);
1887 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1888 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1889 					sas_unregister_ex_tree(parent->port, child);
1890 				else
1891 					sas_unregister_dev(parent->port, child);
1892 				found = child;
1893 				break;
1894 			}
1895 		}
1896 		sas_disable_routing(parent, phy->attached_sas_addr);
1897 	}
1898 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1899 	if (phy->port) {
1900 		sas_port_delete_phy(phy->port, phy->phy);
1901 		sas_device_set_phy(found, phy->port);
1902 		if (phy->port->num_phys == 0)
1903 			list_add_tail(&phy->port->del_list,
1904 				&parent->port->sas_port_del_list);
1905 		phy->port = NULL;
1906 	}
1907 }
1908 
1909 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1910 					  const int level)
1911 {
1912 	struct expander_device *ex_root = &root->ex_dev;
1913 	struct domain_device *child;
1914 	int res = 0;
1915 
1916 	list_for_each_entry(child, &ex_root->children, siblings) {
1917 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1918 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1919 			struct sas_expander_device *ex =
1920 				rphy_to_expander_device(child->rphy);
1921 
1922 			if (level > ex->level)
1923 				res = sas_discover_bfs_by_root_level(child,
1924 								     level);
1925 			else if (level == ex->level)
1926 				res = sas_ex_discover_devices(child, -1);
1927 		}
1928 	}
1929 	return res;
1930 }
1931 
1932 static int sas_discover_bfs_by_root(struct domain_device *dev)
1933 {
1934 	int res;
1935 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936 	int level = ex->level+1;
1937 
1938 	res = sas_ex_discover_devices(dev, -1);
1939 	if (res)
1940 		goto out;
1941 	do {
1942 		res = sas_discover_bfs_by_root_level(dev, level);
1943 		mb();
1944 		level += 1;
1945 	} while (level <= dev->port->disc.max_level);
1946 out:
1947 	return res;
1948 }
1949 
1950 static int sas_discover_new(struct domain_device *dev, int phy_id)
1951 {
1952 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953 	struct domain_device *child;
1954 	int res;
1955 
1956 	pr_debug("ex %016llx phy%d new device attached\n",
1957 		 SAS_ADDR(dev->sas_addr), phy_id);
1958 	res = sas_ex_phy_discover(dev, phy_id);
1959 	if (res)
1960 		return res;
1961 
1962 	if (sas_ex_join_wide_port(dev, phy_id))
1963 		return 0;
1964 
1965 	res = sas_ex_discover_devices(dev, phy_id);
1966 	if (res)
1967 		return res;
1968 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969 		if (SAS_ADDR(child->sas_addr) ==
1970 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1971 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1972 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1973 				res = sas_discover_bfs_by_root(child);
1974 			break;
1975 		}
1976 	}
1977 	return res;
1978 }
1979 
1980 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1981 {
1982 	if (old == new)
1983 		return true;
1984 
1985 	/* treat device directed resets as flutter, if we went
1986 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1987 	 */
1988 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1989 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1990 		return true;
1991 
1992 	return false;
1993 }
1994 
1995 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1996 {
1997 	struct expander_device *ex = &dev->ex_dev;
1998 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1999 	enum sas_device_type type = SAS_PHY_UNUSED;
2000 	u8 sas_addr[8];
2001 	int res;
2002 
2003 	memset(sas_addr, 0, 8);
2004 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2005 	switch (res) {
2006 	case SMP_RESP_NO_PHY:
2007 		phy->phy_state = PHY_NOT_PRESENT;
2008 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2009 		return res;
2010 	case SMP_RESP_PHY_VACANT:
2011 		phy->phy_state = PHY_VACANT;
2012 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2013 		return res;
2014 	case SMP_RESP_FUNC_ACC:
2015 		break;
2016 	case -ECOMM:
2017 		break;
2018 	default:
2019 		return res;
2020 	}
2021 
2022 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2023 		phy->phy_state = PHY_EMPTY;
2024 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 		return res;
2026 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2027 		   dev_type_flutter(type, phy->attached_dev_type)) {
2028 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2029 		char *action = "";
2030 
2031 		sas_ex_phy_discover(dev, phy_id);
2032 
2033 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2034 			action = ", needs recovery";
2035 		pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n",
2036 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2037 		return res;
2038 	}
2039 
2040 	/* we always have to delete the old device when we went here */
2041 	pr_info("ex %016llx phy 0x%x replace %016llx\n",
2042 		SAS_ADDR(dev->sas_addr), phy_id,
2043 		SAS_ADDR(phy->attached_sas_addr));
2044 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2045 
2046 	return sas_discover_new(dev, phy_id);
2047 }
2048 
2049 /**
2050  * sas_rediscover - revalidate the domain.
2051  * @dev:domain device to be detect.
2052  * @phy_id: the phy id will be detected.
2053  *
2054  * NOTE: this process _must_ quit (return) as soon as any connection
2055  * errors are encountered.  Connection recovery is done elsewhere.
2056  * Discover process only interrogates devices in order to discover the
2057  * domain.For plugging out, we un-register the device only when it is
2058  * the last phy in the port, for other phys in this port, we just delete it
2059  * from the port.For inserting, we do discovery when it is the
2060  * first phy,for other phys in this port, we add it to the port to
2061  * forming the wide-port.
2062  */
2063 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2064 {
2065 	struct expander_device *ex = &dev->ex_dev;
2066 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2067 	int res = 0;
2068 	int i;
2069 	bool last = true;	/* is this the last phy of the port */
2070 
2071 	pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2072 		 SAS_ADDR(dev->sas_addr), phy_id);
2073 
2074 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2075 		for (i = 0; i < ex->num_phys; i++) {
2076 			struct ex_phy *phy = &ex->ex_phy[i];
2077 
2078 			if (i == phy_id)
2079 				continue;
2080 			if (SAS_ADDR(phy->attached_sas_addr) ==
2081 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2082 				pr_debug("phy%d part of wide port with phy%d\n",
2083 					 phy_id, i);
2084 				last = false;
2085 				break;
2086 			}
2087 		}
2088 		res = sas_rediscover_dev(dev, phy_id, last);
2089 	} else
2090 		res = sas_discover_new(dev, phy_id);
2091 	return res;
2092 }
2093 
2094 /**
2095  * sas_ex_revalidate_domain - revalidate the domain
2096  * @port_dev: port domain device.
2097  *
2098  * NOTE: this process _must_ quit (return) as soon as any connection
2099  * errors are encountered.  Connection recovery is done elsewhere.
2100  * Discover process only interrogates devices in order to discover the
2101  * domain.
2102  */
2103 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2104 {
2105 	int res;
2106 	struct domain_device *dev = NULL;
2107 
2108 	res = sas_find_bcast_dev(port_dev, &dev);
2109 	if (res == 0 && dev) {
2110 		struct expander_device *ex = &dev->ex_dev;
2111 		int i = 0, phy_id;
2112 
2113 		do {
2114 			phy_id = -1;
2115 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2116 			if (phy_id == -1)
2117 				break;
2118 			res = sas_rediscover(dev, phy_id);
2119 			i = phy_id + 1;
2120 		} while (i < ex->num_phys);
2121 	}
2122 	return res;
2123 }
2124 
2125 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2126 		struct sas_rphy *rphy)
2127 {
2128 	struct domain_device *dev;
2129 	unsigned int rcvlen = 0;
2130 	int ret = -EINVAL;
2131 
2132 	/* no rphy means no smp target support (ie aic94xx host) */
2133 	if (!rphy)
2134 		return sas_smp_host_handler(job, shost);
2135 
2136 	switch (rphy->identify.device_type) {
2137 	case SAS_EDGE_EXPANDER_DEVICE:
2138 	case SAS_FANOUT_EXPANDER_DEVICE:
2139 		break;
2140 	default:
2141 		pr_err("%s: can we send a smp request to a device?\n",
2142 		       __func__);
2143 		goto out;
2144 	}
2145 
2146 	dev = sas_find_dev_by_rphy(rphy);
2147 	if (!dev) {
2148 		pr_err("%s: fail to find a domain_device?\n", __func__);
2149 		goto out;
2150 	}
2151 
2152 	/* do we need to support multiple segments? */
2153 	if (job->request_payload.sg_cnt > 1 ||
2154 	    job->reply_payload.sg_cnt > 1) {
2155 		pr_info("%s: multiple segments req %u, rsp %u\n",
2156 			__func__, job->request_payload.payload_len,
2157 			job->reply_payload.payload_len);
2158 		goto out;
2159 	}
2160 
2161 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2162 			job->reply_payload.sg_list);
2163 	if (ret >= 0) {
2164 		/* bsg_job_done() requires the length received  */
2165 		rcvlen = job->reply_payload.payload_len - ret;
2166 		ret = 0;
2167 	}
2168 
2169 out:
2170 	bsg_job_done(job, ret, rcvlen);
2171 }
2172