1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(struct timer_list *t) 45 { 46 struct sas_task_slow *slow = from_timer(slow, t, timer); 47 struct sas_task *task = slow->task; 48 unsigned long flags; 49 50 spin_lock_irqsave(&task->task_state_lock, flags); 51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 52 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 53 complete(&task->slow_task->completion); 54 } 55 spin_unlock_irqrestore(&task->task_state_lock, flags); 56 } 57 58 static void smp_task_done(struct sas_task *task) 59 { 60 del_timer(&task->slow_task->timer); 61 complete(&task->slow_task->completion); 62 } 63 64 /* Give it some long enough timeout. In seconds. */ 65 #define SMP_TIMEOUT 10 66 67 static int smp_execute_task_sg(struct domain_device *dev, 68 struct scatterlist *req, struct scatterlist *resp) 69 { 70 int res, retry; 71 struct sas_task *task = NULL; 72 struct sas_internal *i = 73 to_sas_internal(dev->port->ha->core.shost->transportt); 74 75 mutex_lock(&dev->ex_dev.cmd_mutex); 76 for (retry = 0; retry < 3; retry++) { 77 if (test_bit(SAS_DEV_GONE, &dev->state)) { 78 res = -ECOMM; 79 break; 80 } 81 82 task = sas_alloc_slow_task(GFP_KERNEL); 83 if (!task) { 84 res = -ENOMEM; 85 break; 86 } 87 task->dev = dev; 88 task->task_proto = dev->tproto; 89 task->smp_task.smp_req = *req; 90 task->smp_task.smp_resp = *resp; 91 92 task->task_done = smp_task_done; 93 94 task->slow_task->timer.function = smp_task_timedout; 95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 96 add_timer(&task->slow_task->timer); 97 98 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 99 100 if (res) { 101 del_timer(&task->slow_task->timer); 102 pr_notice("executing SMP task failed:%d\n", res); 103 break; 104 } 105 106 wait_for_completion(&task->slow_task->completion); 107 res = -ECOMM; 108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 109 pr_notice("smp task timed out or aborted\n"); 110 i->dft->lldd_abort_task(task); 111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 112 pr_notice("SMP task aborted and not done\n"); 113 break; 114 } 115 } 116 if (task->task_status.resp == SAS_TASK_COMPLETE && 117 task->task_status.stat == SAM_STAT_GOOD) { 118 res = 0; 119 break; 120 } 121 if (task->task_status.resp == SAS_TASK_COMPLETE && 122 task->task_status.stat == SAS_DATA_UNDERRUN) { 123 /* no error, but return the number of bytes of 124 * underrun */ 125 res = task->task_status.residual; 126 break; 127 } 128 if (task->task_status.resp == SAS_TASK_COMPLETE && 129 task->task_status.stat == SAS_DATA_OVERRUN) { 130 res = -EMSGSIZE; 131 break; 132 } 133 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 134 task->task_status.stat == SAS_DEVICE_UNKNOWN) 135 break; 136 else { 137 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n", 138 __func__, 139 SAS_ADDR(dev->sas_addr), 140 task->task_status.resp, 141 task->task_status.stat); 142 sas_free_task(task); 143 task = NULL; 144 } 145 } 146 mutex_unlock(&dev->ex_dev.cmd_mutex); 147 148 BUG_ON(retry == 3 && task != NULL); 149 sas_free_task(task); 150 return res; 151 } 152 153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 154 void *resp, int resp_size) 155 { 156 struct scatterlist req_sg; 157 struct scatterlist resp_sg; 158 159 sg_init_one(&req_sg, req, req_size); 160 sg_init_one(&resp_sg, resp, resp_size); 161 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 162 } 163 164 /* ---------- Allocations ---------- */ 165 166 static inline void *alloc_smp_req(int size) 167 { 168 u8 *p = kzalloc(size, GFP_KERNEL); 169 if (p) 170 p[0] = SMP_REQUEST; 171 return p; 172 } 173 174 static inline void *alloc_smp_resp(int size) 175 { 176 return kzalloc(size, GFP_KERNEL); 177 } 178 179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 180 { 181 switch (phy->routing_attr) { 182 case TABLE_ROUTING: 183 if (dev->ex_dev.t2t_supp) 184 return 'U'; 185 else 186 return 'T'; 187 case DIRECT_ROUTING: 188 return 'D'; 189 case SUBTRACTIVE_ROUTING: 190 return 'S'; 191 default: 192 return '?'; 193 } 194 } 195 196 static enum sas_device_type to_dev_type(struct discover_resp *dr) 197 { 198 /* This is detecting a failure to transmit initial dev to host 199 * FIS as described in section J.5 of sas-2 r16 200 */ 201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 203 return SAS_SATA_PENDING; 204 else 205 return dr->attached_dev_type; 206 } 207 208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 209 { 210 enum sas_device_type dev_type; 211 enum sas_linkrate linkrate; 212 u8 sas_addr[SAS_ADDR_SIZE]; 213 struct smp_resp *resp = rsp; 214 struct discover_resp *dr = &resp->disc; 215 struct sas_ha_struct *ha = dev->port->ha; 216 struct expander_device *ex = &dev->ex_dev; 217 struct ex_phy *phy = &ex->ex_phy[phy_id]; 218 struct sas_rphy *rphy = dev->rphy; 219 bool new_phy = !phy->phy; 220 char *type; 221 222 if (new_phy) { 223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 224 return; 225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 226 227 /* FIXME: error_handling */ 228 BUG_ON(!phy->phy); 229 } 230 231 switch (resp->result) { 232 case SMP_RESP_PHY_VACANT: 233 phy->phy_state = PHY_VACANT; 234 break; 235 default: 236 phy->phy_state = PHY_NOT_PRESENT; 237 break; 238 case SMP_RESP_FUNC_ACC: 239 phy->phy_state = PHY_EMPTY; /* do not know yet */ 240 break; 241 } 242 243 /* check if anything important changed to squelch debug */ 244 dev_type = phy->attached_dev_type; 245 linkrate = phy->linkrate; 246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 247 248 /* Handle vacant phy - rest of dr data is not valid so skip it */ 249 if (phy->phy_state == PHY_VACANT) { 250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 251 phy->attached_dev_type = SAS_PHY_UNUSED; 252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 253 phy->phy_id = phy_id; 254 goto skip; 255 } else 256 goto out; 257 } 258 259 phy->attached_dev_type = to_dev_type(dr); 260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 261 goto out; 262 phy->phy_id = phy_id; 263 phy->linkrate = dr->linkrate; 264 phy->attached_sata_host = dr->attached_sata_host; 265 phy->attached_sata_dev = dr->attached_sata_dev; 266 phy->attached_sata_ps = dr->attached_sata_ps; 267 phy->attached_iproto = dr->iproto << 1; 268 phy->attached_tproto = dr->tproto << 1; 269 /* help some expanders that fail to zero sas_address in the 'no 270 * device' case 271 */ 272 if (phy->attached_dev_type == SAS_PHY_UNUSED || 273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 275 else 276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 277 phy->attached_phy_id = dr->attached_phy_id; 278 phy->phy_change_count = dr->change_count; 279 phy->routing_attr = dr->routing_attr; 280 phy->virtual = dr->virtual; 281 phy->last_da_index = -1; 282 283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 284 phy->phy->identify.device_type = dr->attached_dev_type; 285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 286 phy->phy->identify.target_port_protocols = phy->attached_tproto; 287 if (!phy->attached_tproto && dr->attached_sata_dev) 288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 289 phy->phy->identify.phy_identifier = phy_id; 290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 292 phy->phy->minimum_linkrate = dr->pmin_linkrate; 293 phy->phy->maximum_linkrate = dr->pmax_linkrate; 294 phy->phy->negotiated_linkrate = phy->linkrate; 295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 296 297 skip: 298 if (new_phy) 299 if (sas_phy_add(phy->phy)) { 300 sas_phy_free(phy->phy); 301 return; 302 } 303 304 out: 305 switch (phy->attached_dev_type) { 306 case SAS_SATA_PENDING: 307 type = "stp pending"; 308 break; 309 case SAS_PHY_UNUSED: 310 type = "no device"; 311 break; 312 case SAS_END_DEVICE: 313 if (phy->attached_iproto) { 314 if (phy->attached_tproto) 315 type = "host+target"; 316 else 317 type = "host"; 318 } else { 319 if (dr->attached_sata_dev) 320 type = "stp"; 321 else 322 type = "ssp"; 323 } 324 break; 325 case SAS_EDGE_EXPANDER_DEVICE: 326 case SAS_FANOUT_EXPANDER_DEVICE: 327 type = "smp"; 328 break; 329 default: 330 type = "unknown"; 331 } 332 333 /* this routine is polled by libata error recovery so filter 334 * unimportant messages 335 */ 336 if (new_phy || phy->attached_dev_type != dev_type || 337 phy->linkrate != linkrate || 338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 339 /* pass */; 340 else 341 return; 342 343 /* if the attached device type changed and ata_eh is active, 344 * make sure we run revalidation when eh completes (see: 345 * sas_enable_revalidation) 346 */ 347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 349 350 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 352 SAS_ADDR(dev->sas_addr), phy->phy_id, 353 sas_route_char(dev, phy), phy->linkrate, 354 SAS_ADDR(phy->attached_sas_addr), type); 355 } 356 357 /* check if we have an existing attached ata device on this expander phy */ 358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 359 { 360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 361 struct domain_device *dev; 362 struct sas_rphy *rphy; 363 364 if (!ex_phy->port) 365 return NULL; 366 367 rphy = ex_phy->port->rphy; 368 if (!rphy) 369 return NULL; 370 371 dev = sas_find_dev_by_rphy(rphy); 372 373 if (dev && dev_is_sata(dev)) 374 return dev; 375 376 return NULL; 377 } 378 379 #define DISCOVER_REQ_SIZE 16 380 #define DISCOVER_RESP_SIZE 56 381 382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 383 u8 *disc_resp, int single) 384 { 385 struct discover_resp *dr; 386 int res; 387 388 disc_req[9] = single; 389 390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 391 disc_resp, DISCOVER_RESP_SIZE); 392 if (res) 393 return res; 394 dr = &((struct smp_resp *)disc_resp)->disc; 395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 396 pr_notice("Found loopback topology, just ignore it!\n"); 397 return 0; 398 } 399 sas_set_ex_phy(dev, single, disc_resp); 400 return 0; 401 } 402 403 int sas_ex_phy_discover(struct domain_device *dev, int single) 404 { 405 struct expander_device *ex = &dev->ex_dev; 406 int res = 0; 407 u8 *disc_req; 408 u8 *disc_resp; 409 410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 411 if (!disc_req) 412 return -ENOMEM; 413 414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 415 if (!disc_resp) { 416 kfree(disc_req); 417 return -ENOMEM; 418 } 419 420 disc_req[1] = SMP_DISCOVER; 421 422 if (0 <= single && single < ex->num_phys) { 423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 424 } else { 425 int i; 426 427 for (i = 0; i < ex->num_phys; i++) { 428 res = sas_ex_phy_discover_helper(dev, disc_req, 429 disc_resp, i); 430 if (res) 431 goto out_err; 432 } 433 } 434 out_err: 435 kfree(disc_resp); 436 kfree(disc_req); 437 return res; 438 } 439 440 static int sas_expander_discover(struct domain_device *dev) 441 { 442 struct expander_device *ex = &dev->ex_dev; 443 int res = -ENOMEM; 444 445 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 446 if (!ex->ex_phy) 447 return -ENOMEM; 448 449 res = sas_ex_phy_discover(dev, -1); 450 if (res) 451 goto out_err; 452 453 return 0; 454 out_err: 455 kfree(ex->ex_phy); 456 ex->ex_phy = NULL; 457 return res; 458 } 459 460 #define MAX_EXPANDER_PHYS 128 461 462 static void ex_assign_report_general(struct domain_device *dev, 463 struct smp_resp *resp) 464 { 465 struct report_general_resp *rg = &resp->rg; 466 467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 470 dev->ex_dev.t2t_supp = rg->t2t_supp; 471 dev->ex_dev.conf_route_table = rg->conf_route_table; 472 dev->ex_dev.configuring = rg->configuring; 473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 474 } 475 476 #define RG_REQ_SIZE 8 477 #define RG_RESP_SIZE 32 478 479 static int sas_ex_general(struct domain_device *dev) 480 { 481 u8 *rg_req; 482 struct smp_resp *rg_resp; 483 int res; 484 int i; 485 486 rg_req = alloc_smp_req(RG_REQ_SIZE); 487 if (!rg_req) 488 return -ENOMEM; 489 490 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 491 if (!rg_resp) { 492 kfree(rg_req); 493 return -ENOMEM; 494 } 495 496 rg_req[1] = SMP_REPORT_GENERAL; 497 498 for (i = 0; i < 5; i++) { 499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 500 RG_RESP_SIZE); 501 502 if (res) { 503 pr_notice("RG to ex %016llx failed:0x%x\n", 504 SAS_ADDR(dev->sas_addr), res); 505 goto out; 506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 507 pr_debug("RG:ex %016llx returned SMP result:0x%x\n", 508 SAS_ADDR(dev->sas_addr), rg_resp->result); 509 res = rg_resp->result; 510 goto out; 511 } 512 513 ex_assign_report_general(dev, rg_resp); 514 515 if (dev->ex_dev.configuring) { 516 pr_debug("RG: ex %llx self-configuring...\n", 517 SAS_ADDR(dev->sas_addr)); 518 schedule_timeout_interruptible(5*HZ); 519 } else 520 break; 521 } 522 out: 523 kfree(rg_req); 524 kfree(rg_resp); 525 return res; 526 } 527 528 static void ex_assign_manuf_info(struct domain_device *dev, void 529 *_mi_resp) 530 { 531 u8 *mi_resp = _mi_resp; 532 struct sas_rphy *rphy = dev->rphy; 533 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 534 535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 537 memcpy(edev->product_rev, mi_resp + 36, 538 SAS_EXPANDER_PRODUCT_REV_LEN); 539 540 if (mi_resp[8] & 1) { 541 memcpy(edev->component_vendor_id, mi_resp + 40, 542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 543 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 544 edev->component_revision_id = mi_resp[50]; 545 } 546 } 547 548 #define MI_REQ_SIZE 8 549 #define MI_RESP_SIZE 64 550 551 static int sas_ex_manuf_info(struct domain_device *dev) 552 { 553 u8 *mi_req; 554 u8 *mi_resp; 555 int res; 556 557 mi_req = alloc_smp_req(MI_REQ_SIZE); 558 if (!mi_req) 559 return -ENOMEM; 560 561 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 562 if (!mi_resp) { 563 kfree(mi_req); 564 return -ENOMEM; 565 } 566 567 mi_req[1] = SMP_REPORT_MANUF_INFO; 568 569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 570 if (res) { 571 pr_notice("MI: ex %016llx failed:0x%x\n", 572 SAS_ADDR(dev->sas_addr), res); 573 goto out; 574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 575 pr_debug("MI ex %016llx returned SMP result:0x%x\n", 576 SAS_ADDR(dev->sas_addr), mi_resp[2]); 577 goto out; 578 } 579 580 ex_assign_manuf_info(dev, mi_resp); 581 out: 582 kfree(mi_req); 583 kfree(mi_resp); 584 return res; 585 } 586 587 #define PC_REQ_SIZE 44 588 #define PC_RESP_SIZE 8 589 590 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 591 enum phy_func phy_func, 592 struct sas_phy_linkrates *rates) 593 { 594 u8 *pc_req; 595 u8 *pc_resp; 596 int res; 597 598 pc_req = alloc_smp_req(PC_REQ_SIZE); 599 if (!pc_req) 600 return -ENOMEM; 601 602 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 603 if (!pc_resp) { 604 kfree(pc_req); 605 return -ENOMEM; 606 } 607 608 pc_req[1] = SMP_PHY_CONTROL; 609 pc_req[9] = phy_id; 610 pc_req[10]= phy_func; 611 if (rates) { 612 pc_req[32] = rates->minimum_linkrate << 4; 613 pc_req[33] = rates->maximum_linkrate << 4; 614 } 615 616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 617 618 kfree(pc_resp); 619 kfree(pc_req); 620 return res; 621 } 622 623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 624 { 625 struct expander_device *ex = &dev->ex_dev; 626 struct ex_phy *phy = &ex->ex_phy[phy_id]; 627 628 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 629 phy->linkrate = SAS_PHY_DISABLED; 630 } 631 632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 633 { 634 struct expander_device *ex = &dev->ex_dev; 635 int i; 636 637 for (i = 0; i < ex->num_phys; i++) { 638 struct ex_phy *phy = &ex->ex_phy[i]; 639 640 if (phy->phy_state == PHY_VACANT || 641 phy->phy_state == PHY_NOT_PRESENT) 642 continue; 643 644 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 645 sas_ex_disable_phy(dev, i); 646 } 647 } 648 649 static int sas_dev_present_in_domain(struct asd_sas_port *port, 650 u8 *sas_addr) 651 { 652 struct domain_device *dev; 653 654 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 655 return 1; 656 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 657 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 658 return 1; 659 } 660 return 0; 661 } 662 663 #define RPEL_REQ_SIZE 16 664 #define RPEL_RESP_SIZE 32 665 int sas_smp_get_phy_events(struct sas_phy *phy) 666 { 667 int res; 668 u8 *req; 669 u8 *resp; 670 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 671 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 672 673 req = alloc_smp_req(RPEL_REQ_SIZE); 674 if (!req) 675 return -ENOMEM; 676 677 resp = alloc_smp_resp(RPEL_RESP_SIZE); 678 if (!resp) { 679 kfree(req); 680 return -ENOMEM; 681 } 682 683 req[1] = SMP_REPORT_PHY_ERR_LOG; 684 req[9] = phy->number; 685 686 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 687 resp, RPEL_RESP_SIZE); 688 689 if (res) 690 goto out; 691 692 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 693 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 694 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 695 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 696 697 out: 698 kfree(req); 699 kfree(resp); 700 return res; 701 702 } 703 704 #ifdef CONFIG_SCSI_SAS_ATA 705 706 #define RPS_REQ_SIZE 16 707 #define RPS_RESP_SIZE 60 708 709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 710 struct smp_resp *rps_resp) 711 { 712 int res; 713 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 714 u8 *resp = (u8 *)rps_resp; 715 716 if (!rps_req) 717 return -ENOMEM; 718 719 rps_req[1] = SMP_REPORT_PHY_SATA; 720 rps_req[9] = phy_id; 721 722 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 723 rps_resp, RPS_RESP_SIZE); 724 725 /* 0x34 is the FIS type for the D2H fis. There's a potential 726 * standards cockup here. sas-2 explicitly specifies the FIS 727 * should be encoded so that FIS type is in resp[24]. 728 * However, some expanders endian reverse this. Undo the 729 * reversal here */ 730 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 731 int i; 732 733 for (i = 0; i < 5; i++) { 734 int j = 24 + (i*4); 735 u8 a, b; 736 a = resp[j + 0]; 737 b = resp[j + 1]; 738 resp[j + 0] = resp[j + 3]; 739 resp[j + 1] = resp[j + 2]; 740 resp[j + 2] = b; 741 resp[j + 3] = a; 742 } 743 } 744 745 kfree(rps_req); 746 return res; 747 } 748 #endif 749 750 static void sas_ex_get_linkrate(struct domain_device *parent, 751 struct domain_device *child, 752 struct ex_phy *parent_phy) 753 { 754 struct expander_device *parent_ex = &parent->ex_dev; 755 struct sas_port *port; 756 int i; 757 758 child->pathways = 0; 759 760 port = parent_phy->port; 761 762 for (i = 0; i < parent_ex->num_phys; i++) { 763 struct ex_phy *phy = &parent_ex->ex_phy[i]; 764 765 if (phy->phy_state == PHY_VACANT || 766 phy->phy_state == PHY_NOT_PRESENT) 767 continue; 768 769 if (SAS_ADDR(phy->attached_sas_addr) == 770 SAS_ADDR(child->sas_addr)) { 771 772 child->min_linkrate = min(parent->min_linkrate, 773 phy->linkrate); 774 child->max_linkrate = max(parent->max_linkrate, 775 phy->linkrate); 776 child->pathways++; 777 sas_port_add_phy(port, phy->phy); 778 } 779 } 780 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 781 child->pathways = min(child->pathways, parent->pathways); 782 } 783 784 static struct domain_device *sas_ex_discover_end_dev( 785 struct domain_device *parent, int phy_id) 786 { 787 struct expander_device *parent_ex = &parent->ex_dev; 788 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 789 struct domain_device *child = NULL; 790 struct sas_rphy *rphy; 791 int res; 792 793 if (phy->attached_sata_host || phy->attached_sata_ps) 794 return NULL; 795 796 child = sas_alloc_device(); 797 if (!child) 798 return NULL; 799 800 kref_get(&parent->kref); 801 child->parent = parent; 802 child->port = parent->port; 803 child->iproto = phy->attached_iproto; 804 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 805 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 806 if (!phy->port) { 807 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 808 if (unlikely(!phy->port)) 809 goto out_err; 810 if (unlikely(sas_port_add(phy->port) != 0)) { 811 sas_port_free(phy->port); 812 goto out_err; 813 } 814 } 815 sas_ex_get_linkrate(parent, child, phy); 816 sas_device_set_phy(child, phy->port); 817 818 #ifdef CONFIG_SCSI_SAS_ATA 819 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 820 res = sas_get_ata_info(child, phy); 821 if (res) 822 goto out_free; 823 824 sas_init_dev(child); 825 res = sas_ata_init(child); 826 if (res) 827 goto out_free; 828 rphy = sas_end_device_alloc(phy->port); 829 if (!rphy) 830 goto out_free; 831 832 child->rphy = rphy; 833 get_device(&rphy->dev); 834 835 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 836 837 res = sas_discover_sata(child); 838 if (res) { 839 pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n", 840 SAS_ADDR(child->sas_addr), 841 SAS_ADDR(parent->sas_addr), phy_id, res); 842 goto out_list_del; 843 } 844 } else 845 #endif 846 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 847 child->dev_type = SAS_END_DEVICE; 848 rphy = sas_end_device_alloc(phy->port); 849 /* FIXME: error handling */ 850 if (unlikely(!rphy)) 851 goto out_free; 852 child->tproto = phy->attached_tproto; 853 sas_init_dev(child); 854 855 child->rphy = rphy; 856 get_device(&rphy->dev); 857 sas_fill_in_rphy(child, rphy); 858 859 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 860 861 res = sas_discover_end_dev(child); 862 if (res) { 863 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n", 864 SAS_ADDR(child->sas_addr), 865 SAS_ADDR(parent->sas_addr), phy_id, res); 866 goto out_list_del; 867 } 868 } else { 869 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n", 870 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 871 phy_id); 872 goto out_free; 873 } 874 875 list_add_tail(&child->siblings, &parent_ex->children); 876 return child; 877 878 out_list_del: 879 sas_rphy_free(child->rphy); 880 list_del(&child->disco_list_node); 881 spin_lock_irq(&parent->port->dev_list_lock); 882 list_del(&child->dev_list_node); 883 spin_unlock_irq(&parent->port->dev_list_lock); 884 out_free: 885 sas_port_delete(phy->port); 886 out_err: 887 phy->port = NULL; 888 sas_put_device(child); 889 return NULL; 890 } 891 892 /* See if this phy is part of a wide port */ 893 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 894 { 895 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 896 int i; 897 898 for (i = 0; i < parent->ex_dev.num_phys; i++) { 899 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 900 901 if (ephy == phy) 902 continue; 903 904 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 905 SAS_ADDR_SIZE) && ephy->port) { 906 sas_port_add_phy(ephy->port, phy->phy); 907 phy->port = ephy->port; 908 phy->phy_state = PHY_DEVICE_DISCOVERED; 909 return true; 910 } 911 } 912 913 return false; 914 } 915 916 static struct domain_device *sas_ex_discover_expander( 917 struct domain_device *parent, int phy_id) 918 { 919 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 920 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 921 struct domain_device *child = NULL; 922 struct sas_rphy *rphy; 923 struct sas_expander_device *edev; 924 struct asd_sas_port *port; 925 int res; 926 927 if (phy->routing_attr == DIRECT_ROUTING) { 928 pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n", 929 SAS_ADDR(parent->sas_addr), phy_id, 930 SAS_ADDR(phy->attached_sas_addr), 931 phy->attached_phy_id); 932 return NULL; 933 } 934 child = sas_alloc_device(); 935 if (!child) 936 return NULL; 937 938 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 939 /* FIXME: better error handling */ 940 BUG_ON(sas_port_add(phy->port) != 0); 941 942 943 switch (phy->attached_dev_type) { 944 case SAS_EDGE_EXPANDER_DEVICE: 945 rphy = sas_expander_alloc(phy->port, 946 SAS_EDGE_EXPANDER_DEVICE); 947 break; 948 case SAS_FANOUT_EXPANDER_DEVICE: 949 rphy = sas_expander_alloc(phy->port, 950 SAS_FANOUT_EXPANDER_DEVICE); 951 break; 952 default: 953 rphy = NULL; /* shut gcc up */ 954 BUG(); 955 } 956 port = parent->port; 957 child->rphy = rphy; 958 get_device(&rphy->dev); 959 edev = rphy_to_expander_device(rphy); 960 child->dev_type = phy->attached_dev_type; 961 kref_get(&parent->kref); 962 child->parent = parent; 963 child->port = port; 964 child->iproto = phy->attached_iproto; 965 child->tproto = phy->attached_tproto; 966 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 967 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 968 sas_ex_get_linkrate(parent, child, phy); 969 edev->level = parent_ex->level + 1; 970 parent->port->disc.max_level = max(parent->port->disc.max_level, 971 edev->level); 972 sas_init_dev(child); 973 sas_fill_in_rphy(child, rphy); 974 sas_rphy_add(rphy); 975 976 spin_lock_irq(&parent->port->dev_list_lock); 977 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 978 spin_unlock_irq(&parent->port->dev_list_lock); 979 980 res = sas_discover_expander(child); 981 if (res) { 982 sas_rphy_delete(rphy); 983 spin_lock_irq(&parent->port->dev_list_lock); 984 list_del(&child->dev_list_node); 985 spin_unlock_irq(&parent->port->dev_list_lock); 986 sas_put_device(child); 987 return NULL; 988 } 989 list_add_tail(&child->siblings, &parent->ex_dev.children); 990 return child; 991 } 992 993 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 994 { 995 struct expander_device *ex = &dev->ex_dev; 996 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 997 struct domain_device *child = NULL; 998 int res = 0; 999 1000 /* Phy state */ 1001 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1002 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1003 res = sas_ex_phy_discover(dev, phy_id); 1004 if (res) 1005 return res; 1006 } 1007 1008 /* Parent and domain coherency */ 1009 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1010 SAS_ADDR(dev->port->sas_addr))) { 1011 sas_add_parent_port(dev, phy_id); 1012 return 0; 1013 } 1014 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1015 SAS_ADDR(dev->parent->sas_addr))) { 1016 sas_add_parent_port(dev, phy_id); 1017 if (ex_phy->routing_attr == TABLE_ROUTING) 1018 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1019 return 0; 1020 } 1021 1022 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1023 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1024 1025 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1026 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1027 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1028 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1029 } 1030 return 0; 1031 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1032 return 0; 1033 1034 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1035 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1036 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1037 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1038 pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n", 1039 ex_phy->attached_dev_type, 1040 SAS_ADDR(dev->sas_addr), 1041 phy_id); 1042 return 0; 1043 } 1044 1045 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1046 if (res) { 1047 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n", 1048 SAS_ADDR(ex_phy->attached_sas_addr), res); 1049 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1050 return res; 1051 } 1052 1053 if (sas_ex_join_wide_port(dev, phy_id)) { 1054 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1055 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1056 return res; 1057 } 1058 1059 switch (ex_phy->attached_dev_type) { 1060 case SAS_END_DEVICE: 1061 case SAS_SATA_PENDING: 1062 child = sas_ex_discover_end_dev(dev, phy_id); 1063 break; 1064 case SAS_FANOUT_EXPANDER_DEVICE: 1065 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1066 pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n", 1067 SAS_ADDR(ex_phy->attached_sas_addr), 1068 ex_phy->attached_phy_id, 1069 SAS_ADDR(dev->sas_addr), 1070 phy_id); 1071 sas_ex_disable_phy(dev, phy_id); 1072 break; 1073 } else 1074 memcpy(dev->port->disc.fanout_sas_addr, 1075 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1076 /* fallthrough */ 1077 case SAS_EDGE_EXPANDER_DEVICE: 1078 child = sas_ex_discover_expander(dev, phy_id); 1079 break; 1080 default: 1081 break; 1082 } 1083 1084 if (child) { 1085 int i; 1086 1087 for (i = 0; i < ex->num_phys; i++) { 1088 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1089 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1090 continue; 1091 /* 1092 * Due to races, the phy might not get added to the 1093 * wide port, so we add the phy to the wide port here. 1094 */ 1095 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1096 SAS_ADDR(child->sas_addr)) { 1097 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1098 if (sas_ex_join_wide_port(dev, i)) 1099 pr_debug("Attaching ex phy%d to wide port %016llx\n", 1100 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1101 } 1102 } 1103 } 1104 1105 return res; 1106 } 1107 1108 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1109 { 1110 struct expander_device *ex = &dev->ex_dev; 1111 int i; 1112 1113 for (i = 0; i < ex->num_phys; i++) { 1114 struct ex_phy *phy = &ex->ex_phy[i]; 1115 1116 if (phy->phy_state == PHY_VACANT || 1117 phy->phy_state == PHY_NOT_PRESENT) 1118 continue; 1119 1120 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1121 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1122 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1123 1124 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1125 1126 return 1; 1127 } 1128 } 1129 return 0; 1130 } 1131 1132 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1133 { 1134 struct expander_device *ex = &dev->ex_dev; 1135 struct domain_device *child; 1136 u8 sub_addr[8] = {0, }; 1137 1138 list_for_each_entry(child, &ex->children, siblings) { 1139 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1140 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1141 continue; 1142 if (sub_addr[0] == 0) { 1143 sas_find_sub_addr(child, sub_addr); 1144 continue; 1145 } else { 1146 u8 s2[8]; 1147 1148 if (sas_find_sub_addr(child, s2) && 1149 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1150 1151 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n", 1152 SAS_ADDR(dev->sas_addr), 1153 SAS_ADDR(child->sas_addr), 1154 SAS_ADDR(s2), 1155 SAS_ADDR(sub_addr)); 1156 1157 sas_ex_disable_port(child, s2); 1158 } 1159 } 1160 } 1161 return 0; 1162 } 1163 /** 1164 * sas_ex_discover_devices - discover devices attached to this expander 1165 * @dev: pointer to the expander domain device 1166 * @single: if you want to do a single phy, else set to -1; 1167 * 1168 * Configure this expander for use with its devices and register the 1169 * devices of this expander. 1170 */ 1171 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1172 { 1173 struct expander_device *ex = &dev->ex_dev; 1174 int i = 0, end = ex->num_phys; 1175 int res = 0; 1176 1177 if (0 <= single && single < end) { 1178 i = single; 1179 end = i+1; 1180 } 1181 1182 for ( ; i < end; i++) { 1183 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1184 1185 if (ex_phy->phy_state == PHY_VACANT || 1186 ex_phy->phy_state == PHY_NOT_PRESENT || 1187 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1188 continue; 1189 1190 switch (ex_phy->linkrate) { 1191 case SAS_PHY_DISABLED: 1192 case SAS_PHY_RESET_PROBLEM: 1193 case SAS_SATA_PORT_SELECTOR: 1194 continue; 1195 default: 1196 res = sas_ex_discover_dev(dev, i); 1197 if (res) 1198 break; 1199 continue; 1200 } 1201 } 1202 1203 if (!res) 1204 sas_check_level_subtractive_boundary(dev); 1205 1206 return res; 1207 } 1208 1209 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1210 { 1211 struct expander_device *ex = &dev->ex_dev; 1212 int i; 1213 u8 *sub_sas_addr = NULL; 1214 1215 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1216 return 0; 1217 1218 for (i = 0; i < ex->num_phys; i++) { 1219 struct ex_phy *phy = &ex->ex_phy[i]; 1220 1221 if (phy->phy_state == PHY_VACANT || 1222 phy->phy_state == PHY_NOT_PRESENT) 1223 continue; 1224 1225 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1226 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1227 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1228 1229 if (!sub_sas_addr) 1230 sub_sas_addr = &phy->attached_sas_addr[0]; 1231 else if (SAS_ADDR(sub_sas_addr) != 1232 SAS_ADDR(phy->attached_sas_addr)) { 1233 1234 pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n", 1235 SAS_ADDR(dev->sas_addr), i, 1236 SAS_ADDR(phy->attached_sas_addr), 1237 SAS_ADDR(sub_sas_addr)); 1238 sas_ex_disable_phy(dev, i); 1239 } 1240 } 1241 } 1242 return 0; 1243 } 1244 1245 static void sas_print_parent_topology_bug(struct domain_device *child, 1246 struct ex_phy *parent_phy, 1247 struct ex_phy *child_phy) 1248 { 1249 static const char *ex_type[] = { 1250 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1251 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1252 }; 1253 struct domain_device *parent = child->parent; 1254 1255 pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n", 1256 ex_type[parent->dev_type], 1257 SAS_ADDR(parent->sas_addr), 1258 parent_phy->phy_id, 1259 1260 ex_type[child->dev_type], 1261 SAS_ADDR(child->sas_addr), 1262 child_phy->phy_id, 1263 1264 sas_route_char(parent, parent_phy), 1265 sas_route_char(child, child_phy)); 1266 } 1267 1268 static int sas_check_eeds(struct domain_device *child, 1269 struct ex_phy *parent_phy, 1270 struct ex_phy *child_phy) 1271 { 1272 int res = 0; 1273 struct domain_device *parent = child->parent; 1274 1275 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1276 res = -ENODEV; 1277 pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n", 1278 SAS_ADDR(parent->sas_addr), 1279 parent_phy->phy_id, 1280 SAS_ADDR(child->sas_addr), 1281 child_phy->phy_id, 1282 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1283 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1284 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1285 SAS_ADDR_SIZE); 1286 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1287 SAS_ADDR_SIZE); 1288 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1289 SAS_ADDR(parent->sas_addr)) || 1290 (SAS_ADDR(parent->port->disc.eeds_a) == 1291 SAS_ADDR(child->sas_addr))) 1292 && 1293 ((SAS_ADDR(parent->port->disc.eeds_b) == 1294 SAS_ADDR(parent->sas_addr)) || 1295 (SAS_ADDR(parent->port->disc.eeds_b) == 1296 SAS_ADDR(child->sas_addr)))) 1297 ; 1298 else { 1299 res = -ENODEV; 1300 pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n", 1301 SAS_ADDR(parent->sas_addr), 1302 parent_phy->phy_id, 1303 SAS_ADDR(child->sas_addr), 1304 child_phy->phy_id); 1305 } 1306 1307 return res; 1308 } 1309 1310 /* Here we spill over 80 columns. It is intentional. 1311 */ 1312 static int sas_check_parent_topology(struct domain_device *child) 1313 { 1314 struct expander_device *child_ex = &child->ex_dev; 1315 struct expander_device *parent_ex; 1316 int i; 1317 int res = 0; 1318 1319 if (!child->parent) 1320 return 0; 1321 1322 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1323 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1324 return 0; 1325 1326 parent_ex = &child->parent->ex_dev; 1327 1328 for (i = 0; i < parent_ex->num_phys; i++) { 1329 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1330 struct ex_phy *child_phy; 1331 1332 if (parent_phy->phy_state == PHY_VACANT || 1333 parent_phy->phy_state == PHY_NOT_PRESENT) 1334 continue; 1335 1336 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1337 continue; 1338 1339 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1340 1341 switch (child->parent->dev_type) { 1342 case SAS_EDGE_EXPANDER_DEVICE: 1343 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1344 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1345 child_phy->routing_attr != TABLE_ROUTING) { 1346 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1347 res = -ENODEV; 1348 } 1349 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1350 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1351 res = sas_check_eeds(child, parent_phy, child_phy); 1352 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1353 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1354 res = -ENODEV; 1355 } 1356 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1357 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1358 (child_phy->routing_attr == TABLE_ROUTING && 1359 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1360 /* All good */; 1361 } else { 1362 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1363 res = -ENODEV; 1364 } 1365 } 1366 break; 1367 case SAS_FANOUT_EXPANDER_DEVICE: 1368 if (parent_phy->routing_attr != TABLE_ROUTING || 1369 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1370 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1371 res = -ENODEV; 1372 } 1373 break; 1374 default: 1375 break; 1376 } 1377 } 1378 1379 return res; 1380 } 1381 1382 #define RRI_REQ_SIZE 16 1383 #define RRI_RESP_SIZE 44 1384 1385 static int sas_configure_present(struct domain_device *dev, int phy_id, 1386 u8 *sas_addr, int *index, int *present) 1387 { 1388 int i, res = 0; 1389 struct expander_device *ex = &dev->ex_dev; 1390 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1391 u8 *rri_req; 1392 u8 *rri_resp; 1393 1394 *present = 0; 1395 *index = 0; 1396 1397 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1398 if (!rri_req) 1399 return -ENOMEM; 1400 1401 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1402 if (!rri_resp) { 1403 kfree(rri_req); 1404 return -ENOMEM; 1405 } 1406 1407 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1408 rri_req[9] = phy_id; 1409 1410 for (i = 0; i < ex->max_route_indexes ; i++) { 1411 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1412 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1413 RRI_RESP_SIZE); 1414 if (res) 1415 goto out; 1416 res = rri_resp[2]; 1417 if (res == SMP_RESP_NO_INDEX) { 1418 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1419 SAS_ADDR(dev->sas_addr), phy_id, i); 1420 goto out; 1421 } else if (res != SMP_RESP_FUNC_ACC) { 1422 pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n", 1423 __func__, SAS_ADDR(dev->sas_addr), phy_id, 1424 i, res); 1425 goto out; 1426 } 1427 if (SAS_ADDR(sas_addr) != 0) { 1428 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1429 *index = i; 1430 if ((rri_resp[12] & 0x80) == 0x80) 1431 *present = 0; 1432 else 1433 *present = 1; 1434 goto out; 1435 } else if (SAS_ADDR(rri_resp+16) == 0) { 1436 *index = i; 1437 *present = 0; 1438 goto out; 1439 } 1440 } else if (SAS_ADDR(rri_resp+16) == 0 && 1441 phy->last_da_index < i) { 1442 phy->last_da_index = i; 1443 *index = i; 1444 *present = 0; 1445 goto out; 1446 } 1447 } 1448 res = -1; 1449 out: 1450 kfree(rri_req); 1451 kfree(rri_resp); 1452 return res; 1453 } 1454 1455 #define CRI_REQ_SIZE 44 1456 #define CRI_RESP_SIZE 8 1457 1458 static int sas_configure_set(struct domain_device *dev, int phy_id, 1459 u8 *sas_addr, int index, int include) 1460 { 1461 int res; 1462 u8 *cri_req; 1463 u8 *cri_resp; 1464 1465 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1466 if (!cri_req) 1467 return -ENOMEM; 1468 1469 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1470 if (!cri_resp) { 1471 kfree(cri_req); 1472 return -ENOMEM; 1473 } 1474 1475 cri_req[1] = SMP_CONF_ROUTE_INFO; 1476 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1477 cri_req[9] = phy_id; 1478 if (SAS_ADDR(sas_addr) == 0 || !include) 1479 cri_req[12] |= 0x80; 1480 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1481 1482 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1483 CRI_RESP_SIZE); 1484 if (res) 1485 goto out; 1486 res = cri_resp[2]; 1487 if (res == SMP_RESP_NO_INDEX) { 1488 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n", 1489 SAS_ADDR(dev->sas_addr), phy_id, index); 1490 } 1491 out: 1492 kfree(cri_req); 1493 kfree(cri_resp); 1494 return res; 1495 } 1496 1497 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1498 u8 *sas_addr, int include) 1499 { 1500 int index; 1501 int present; 1502 int res; 1503 1504 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1505 if (res) 1506 return res; 1507 if (include ^ present) 1508 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1509 1510 return res; 1511 } 1512 1513 /** 1514 * sas_configure_parent - configure routing table of parent 1515 * @parent: parent expander 1516 * @child: child expander 1517 * @sas_addr: SAS port identifier of device directly attached to child 1518 * @include: whether or not to include @child in the expander routing table 1519 */ 1520 static int sas_configure_parent(struct domain_device *parent, 1521 struct domain_device *child, 1522 u8 *sas_addr, int include) 1523 { 1524 struct expander_device *ex_parent = &parent->ex_dev; 1525 int res = 0; 1526 int i; 1527 1528 if (parent->parent) { 1529 res = sas_configure_parent(parent->parent, parent, sas_addr, 1530 include); 1531 if (res) 1532 return res; 1533 } 1534 1535 if (ex_parent->conf_route_table == 0) { 1536 pr_debug("ex %016llx has self-configuring routing table\n", 1537 SAS_ADDR(parent->sas_addr)); 1538 return 0; 1539 } 1540 1541 for (i = 0; i < ex_parent->num_phys; i++) { 1542 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1543 1544 if ((phy->routing_attr == TABLE_ROUTING) && 1545 (SAS_ADDR(phy->attached_sas_addr) == 1546 SAS_ADDR(child->sas_addr))) { 1547 res = sas_configure_phy(parent, i, sas_addr, include); 1548 if (res) 1549 return res; 1550 } 1551 } 1552 1553 return res; 1554 } 1555 1556 /** 1557 * sas_configure_routing - configure routing 1558 * @dev: expander device 1559 * @sas_addr: port identifier of device directly attached to the expander device 1560 */ 1561 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1562 { 1563 if (dev->parent) 1564 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1565 return 0; 1566 } 1567 1568 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1569 { 1570 if (dev->parent) 1571 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1572 return 0; 1573 } 1574 1575 /** 1576 * sas_discover_expander - expander discovery 1577 * @dev: pointer to expander domain device 1578 * 1579 * See comment in sas_discover_sata(). 1580 */ 1581 static int sas_discover_expander(struct domain_device *dev) 1582 { 1583 int res; 1584 1585 res = sas_notify_lldd_dev_found(dev); 1586 if (res) 1587 return res; 1588 1589 res = sas_ex_general(dev); 1590 if (res) 1591 goto out_err; 1592 res = sas_ex_manuf_info(dev); 1593 if (res) 1594 goto out_err; 1595 1596 res = sas_expander_discover(dev); 1597 if (res) { 1598 pr_warn("expander %016llx discovery failed(0x%x)\n", 1599 SAS_ADDR(dev->sas_addr), res); 1600 goto out_err; 1601 } 1602 1603 sas_check_ex_subtractive_boundary(dev); 1604 res = sas_check_parent_topology(dev); 1605 if (res) 1606 goto out_err; 1607 return 0; 1608 out_err: 1609 sas_notify_lldd_dev_gone(dev); 1610 return res; 1611 } 1612 1613 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1614 { 1615 int res = 0; 1616 struct domain_device *dev; 1617 1618 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1619 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1620 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1621 struct sas_expander_device *ex = 1622 rphy_to_expander_device(dev->rphy); 1623 1624 if (level == ex->level) 1625 res = sas_ex_discover_devices(dev, -1); 1626 else if (level > 0) 1627 res = sas_ex_discover_devices(port->port_dev, -1); 1628 1629 } 1630 } 1631 1632 return res; 1633 } 1634 1635 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1636 { 1637 int res; 1638 int level; 1639 1640 do { 1641 level = port->disc.max_level; 1642 res = sas_ex_level_discovery(port, level); 1643 mb(); 1644 } while (level < port->disc.max_level); 1645 1646 return res; 1647 } 1648 1649 int sas_discover_root_expander(struct domain_device *dev) 1650 { 1651 int res; 1652 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1653 1654 res = sas_rphy_add(dev->rphy); 1655 if (res) 1656 goto out_err; 1657 1658 ex->level = dev->port->disc.max_level; /* 0 */ 1659 res = sas_discover_expander(dev); 1660 if (res) 1661 goto out_err2; 1662 1663 sas_ex_bfs_disc(dev->port); 1664 1665 return res; 1666 1667 out_err2: 1668 sas_rphy_remove(dev->rphy); 1669 out_err: 1670 return res; 1671 } 1672 1673 /* ---------- Domain revalidation ---------- */ 1674 1675 static int sas_get_phy_discover(struct domain_device *dev, 1676 int phy_id, struct smp_resp *disc_resp) 1677 { 1678 int res; 1679 u8 *disc_req; 1680 1681 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1682 if (!disc_req) 1683 return -ENOMEM; 1684 1685 disc_req[1] = SMP_DISCOVER; 1686 disc_req[9] = phy_id; 1687 1688 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1689 disc_resp, DISCOVER_RESP_SIZE); 1690 if (res) 1691 goto out; 1692 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1693 res = disc_resp->result; 1694 goto out; 1695 } 1696 out: 1697 kfree(disc_req); 1698 return res; 1699 } 1700 1701 static int sas_get_phy_change_count(struct domain_device *dev, 1702 int phy_id, int *pcc) 1703 { 1704 int res; 1705 struct smp_resp *disc_resp; 1706 1707 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1708 if (!disc_resp) 1709 return -ENOMEM; 1710 1711 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1712 if (!res) 1713 *pcc = disc_resp->disc.change_count; 1714 1715 kfree(disc_resp); 1716 return res; 1717 } 1718 1719 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1720 u8 *sas_addr, enum sas_device_type *type) 1721 { 1722 int res; 1723 struct smp_resp *disc_resp; 1724 struct discover_resp *dr; 1725 1726 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1727 if (!disc_resp) 1728 return -ENOMEM; 1729 dr = &disc_resp->disc; 1730 1731 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1732 if (res == 0) { 1733 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1734 *type = to_dev_type(dr); 1735 if (*type == 0) 1736 memset(sas_addr, 0, 8); 1737 } 1738 kfree(disc_resp); 1739 return res; 1740 } 1741 1742 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1743 int from_phy, bool update) 1744 { 1745 struct expander_device *ex = &dev->ex_dev; 1746 int res = 0; 1747 int i; 1748 1749 for (i = from_phy; i < ex->num_phys; i++) { 1750 int phy_change_count = 0; 1751 1752 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1753 switch (res) { 1754 case SMP_RESP_PHY_VACANT: 1755 case SMP_RESP_NO_PHY: 1756 continue; 1757 case SMP_RESP_FUNC_ACC: 1758 break; 1759 default: 1760 return res; 1761 } 1762 1763 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1764 if (update) 1765 ex->ex_phy[i].phy_change_count = 1766 phy_change_count; 1767 *phy_id = i; 1768 return 0; 1769 } 1770 } 1771 return 0; 1772 } 1773 1774 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1775 { 1776 int res; 1777 u8 *rg_req; 1778 struct smp_resp *rg_resp; 1779 1780 rg_req = alloc_smp_req(RG_REQ_SIZE); 1781 if (!rg_req) 1782 return -ENOMEM; 1783 1784 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1785 if (!rg_resp) { 1786 kfree(rg_req); 1787 return -ENOMEM; 1788 } 1789 1790 rg_req[1] = SMP_REPORT_GENERAL; 1791 1792 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1793 RG_RESP_SIZE); 1794 if (res) 1795 goto out; 1796 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1797 res = rg_resp->result; 1798 goto out; 1799 } 1800 1801 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1802 out: 1803 kfree(rg_resp); 1804 kfree(rg_req); 1805 return res; 1806 } 1807 /** 1808 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1809 * @dev:domain device to be detect. 1810 * @src_dev: the device which originated BROADCAST(CHANGE). 1811 * 1812 * Add self-configuration expander support. Suppose two expander cascading, 1813 * when the first level expander is self-configuring, hotplug the disks in 1814 * second level expander, BROADCAST(CHANGE) will not only be originated 1815 * in the second level expander, but also be originated in the first level 1816 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1817 * expander changed count in two level expanders will all increment at least 1818 * once, but the phy which chang count has changed is the source device which 1819 * we concerned. 1820 */ 1821 1822 static int sas_find_bcast_dev(struct domain_device *dev, 1823 struct domain_device **src_dev) 1824 { 1825 struct expander_device *ex = &dev->ex_dev; 1826 int ex_change_count = -1; 1827 int phy_id = -1; 1828 int res; 1829 struct domain_device *ch; 1830 1831 res = sas_get_ex_change_count(dev, &ex_change_count); 1832 if (res) 1833 goto out; 1834 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1835 /* Just detect if this expander phys phy change count changed, 1836 * in order to determine if this expander originate BROADCAST, 1837 * and do not update phy change count field in our structure. 1838 */ 1839 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1840 if (phy_id != -1) { 1841 *src_dev = dev; 1842 ex->ex_change_count = ex_change_count; 1843 pr_info("Expander phy change count has changed\n"); 1844 return res; 1845 } else 1846 pr_info("Expander phys DID NOT change\n"); 1847 } 1848 list_for_each_entry(ch, &ex->children, siblings) { 1849 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1850 res = sas_find_bcast_dev(ch, src_dev); 1851 if (*src_dev) 1852 return res; 1853 } 1854 } 1855 out: 1856 return res; 1857 } 1858 1859 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1860 { 1861 struct expander_device *ex = &dev->ex_dev; 1862 struct domain_device *child, *n; 1863 1864 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1865 set_bit(SAS_DEV_GONE, &child->state); 1866 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1867 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1868 sas_unregister_ex_tree(port, child); 1869 else 1870 sas_unregister_dev(port, child); 1871 } 1872 sas_unregister_dev(port, dev); 1873 } 1874 1875 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1876 int phy_id, bool last) 1877 { 1878 struct expander_device *ex_dev = &parent->ex_dev; 1879 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1880 struct domain_device *child, *n, *found = NULL; 1881 if (last) { 1882 list_for_each_entry_safe(child, n, 1883 &ex_dev->children, siblings) { 1884 if (SAS_ADDR(child->sas_addr) == 1885 SAS_ADDR(phy->attached_sas_addr)) { 1886 set_bit(SAS_DEV_GONE, &child->state); 1887 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1888 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1889 sas_unregister_ex_tree(parent->port, child); 1890 else 1891 sas_unregister_dev(parent->port, child); 1892 found = child; 1893 break; 1894 } 1895 } 1896 sas_disable_routing(parent, phy->attached_sas_addr); 1897 } 1898 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1899 if (phy->port) { 1900 sas_port_delete_phy(phy->port, phy->phy); 1901 sas_device_set_phy(found, phy->port); 1902 if (phy->port->num_phys == 0) 1903 list_add_tail(&phy->port->del_list, 1904 &parent->port->sas_port_del_list); 1905 phy->port = NULL; 1906 } 1907 } 1908 1909 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1910 const int level) 1911 { 1912 struct expander_device *ex_root = &root->ex_dev; 1913 struct domain_device *child; 1914 int res = 0; 1915 1916 list_for_each_entry(child, &ex_root->children, siblings) { 1917 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1918 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1919 struct sas_expander_device *ex = 1920 rphy_to_expander_device(child->rphy); 1921 1922 if (level > ex->level) 1923 res = sas_discover_bfs_by_root_level(child, 1924 level); 1925 else if (level == ex->level) 1926 res = sas_ex_discover_devices(child, -1); 1927 } 1928 } 1929 return res; 1930 } 1931 1932 static int sas_discover_bfs_by_root(struct domain_device *dev) 1933 { 1934 int res; 1935 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1936 int level = ex->level+1; 1937 1938 res = sas_ex_discover_devices(dev, -1); 1939 if (res) 1940 goto out; 1941 do { 1942 res = sas_discover_bfs_by_root_level(dev, level); 1943 mb(); 1944 level += 1; 1945 } while (level <= dev->port->disc.max_level); 1946 out: 1947 return res; 1948 } 1949 1950 static int sas_discover_new(struct domain_device *dev, int phy_id) 1951 { 1952 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1953 struct domain_device *child; 1954 int res; 1955 1956 pr_debug("ex %016llx phy%d new device attached\n", 1957 SAS_ADDR(dev->sas_addr), phy_id); 1958 res = sas_ex_phy_discover(dev, phy_id); 1959 if (res) 1960 return res; 1961 1962 if (sas_ex_join_wide_port(dev, phy_id)) 1963 return 0; 1964 1965 res = sas_ex_discover_devices(dev, phy_id); 1966 if (res) 1967 return res; 1968 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1969 if (SAS_ADDR(child->sas_addr) == 1970 SAS_ADDR(ex_phy->attached_sas_addr)) { 1971 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1972 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1973 res = sas_discover_bfs_by_root(child); 1974 break; 1975 } 1976 } 1977 return res; 1978 } 1979 1980 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1981 { 1982 if (old == new) 1983 return true; 1984 1985 /* treat device directed resets as flutter, if we went 1986 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 1987 */ 1988 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 1989 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 1990 return true; 1991 1992 return false; 1993 } 1994 1995 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1996 { 1997 struct expander_device *ex = &dev->ex_dev; 1998 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1999 enum sas_device_type type = SAS_PHY_UNUSED; 2000 u8 sas_addr[8]; 2001 int res; 2002 2003 memset(sas_addr, 0, 8); 2004 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2005 switch (res) { 2006 case SMP_RESP_NO_PHY: 2007 phy->phy_state = PHY_NOT_PRESENT; 2008 sas_unregister_devs_sas_addr(dev, phy_id, last); 2009 return res; 2010 case SMP_RESP_PHY_VACANT: 2011 phy->phy_state = PHY_VACANT; 2012 sas_unregister_devs_sas_addr(dev, phy_id, last); 2013 return res; 2014 case SMP_RESP_FUNC_ACC: 2015 break; 2016 case -ECOMM: 2017 break; 2018 default: 2019 return res; 2020 } 2021 2022 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2023 phy->phy_state = PHY_EMPTY; 2024 sas_unregister_devs_sas_addr(dev, phy_id, last); 2025 return res; 2026 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2027 dev_type_flutter(type, phy->attached_dev_type)) { 2028 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2029 char *action = ""; 2030 2031 sas_ex_phy_discover(dev, phy_id); 2032 2033 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2034 action = ", needs recovery"; 2035 pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n", 2036 SAS_ADDR(dev->sas_addr), phy_id, action); 2037 return res; 2038 } 2039 2040 /* we always have to delete the old device when we went here */ 2041 pr_info("ex %016llx phy 0x%x replace %016llx\n", 2042 SAS_ADDR(dev->sas_addr), phy_id, 2043 SAS_ADDR(phy->attached_sas_addr)); 2044 sas_unregister_devs_sas_addr(dev, phy_id, last); 2045 2046 return sas_discover_new(dev, phy_id); 2047 } 2048 2049 /** 2050 * sas_rediscover - revalidate the domain. 2051 * @dev:domain device to be detect. 2052 * @phy_id: the phy id will be detected. 2053 * 2054 * NOTE: this process _must_ quit (return) as soon as any connection 2055 * errors are encountered. Connection recovery is done elsewhere. 2056 * Discover process only interrogates devices in order to discover the 2057 * domain.For plugging out, we un-register the device only when it is 2058 * the last phy in the port, for other phys in this port, we just delete it 2059 * from the port.For inserting, we do discovery when it is the 2060 * first phy,for other phys in this port, we add it to the port to 2061 * forming the wide-port. 2062 */ 2063 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2064 { 2065 struct expander_device *ex = &dev->ex_dev; 2066 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2067 int res = 0; 2068 int i; 2069 bool last = true; /* is this the last phy of the port */ 2070 2071 pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2072 SAS_ADDR(dev->sas_addr), phy_id); 2073 2074 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2075 for (i = 0; i < ex->num_phys; i++) { 2076 struct ex_phy *phy = &ex->ex_phy[i]; 2077 2078 if (i == phy_id) 2079 continue; 2080 if (SAS_ADDR(phy->attached_sas_addr) == 2081 SAS_ADDR(changed_phy->attached_sas_addr)) { 2082 pr_debug("phy%d part of wide port with phy%d\n", 2083 phy_id, i); 2084 last = false; 2085 break; 2086 } 2087 } 2088 res = sas_rediscover_dev(dev, phy_id, last); 2089 } else 2090 res = sas_discover_new(dev, phy_id); 2091 return res; 2092 } 2093 2094 /** 2095 * sas_ex_revalidate_domain - revalidate the domain 2096 * @port_dev: port domain device. 2097 * 2098 * NOTE: this process _must_ quit (return) as soon as any connection 2099 * errors are encountered. Connection recovery is done elsewhere. 2100 * Discover process only interrogates devices in order to discover the 2101 * domain. 2102 */ 2103 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2104 { 2105 int res; 2106 struct domain_device *dev = NULL; 2107 2108 res = sas_find_bcast_dev(port_dev, &dev); 2109 if (res == 0 && dev) { 2110 struct expander_device *ex = &dev->ex_dev; 2111 int i = 0, phy_id; 2112 2113 do { 2114 phy_id = -1; 2115 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2116 if (phy_id == -1) 2117 break; 2118 res = sas_rediscover(dev, phy_id); 2119 i = phy_id + 1; 2120 } while (i < ex->num_phys); 2121 } 2122 return res; 2123 } 2124 2125 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2126 struct sas_rphy *rphy) 2127 { 2128 struct domain_device *dev; 2129 unsigned int rcvlen = 0; 2130 int ret = -EINVAL; 2131 2132 /* no rphy means no smp target support (ie aic94xx host) */ 2133 if (!rphy) 2134 return sas_smp_host_handler(job, shost); 2135 2136 switch (rphy->identify.device_type) { 2137 case SAS_EDGE_EXPANDER_DEVICE: 2138 case SAS_FANOUT_EXPANDER_DEVICE: 2139 break; 2140 default: 2141 pr_err("%s: can we send a smp request to a device?\n", 2142 __func__); 2143 goto out; 2144 } 2145 2146 dev = sas_find_dev_by_rphy(rphy); 2147 if (!dev) { 2148 pr_err("%s: fail to find a domain_device?\n", __func__); 2149 goto out; 2150 } 2151 2152 /* do we need to support multiple segments? */ 2153 if (job->request_payload.sg_cnt > 1 || 2154 job->reply_payload.sg_cnt > 1) { 2155 pr_info("%s: multiple segments req %u, rsp %u\n", 2156 __func__, job->request_payload.payload_len, 2157 job->reply_payload.payload_len); 2158 goto out; 2159 } 2160 2161 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2162 job->reply_payload.sg_list); 2163 if (ret >= 0) { 2164 /* bsg_job_done() requires the length received */ 2165 rcvlen = job->reply_payload.payload_len - ret; 2166 ret = 0; 2167 } 2168 2169 out: 2170 bsg_job_done(job, ret, rcvlen); 2171 } 2172