1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(struct timer_list *t) 45 { 46 struct sas_task_slow *slow = from_timer(slow, t, timer); 47 struct sas_task *task = slow->task; 48 unsigned long flags; 49 50 spin_lock_irqsave(&task->task_state_lock, flags); 51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 52 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 53 spin_unlock_irqrestore(&task->task_state_lock, flags); 54 55 complete(&task->slow_task->completion); 56 } 57 58 static void smp_task_done(struct sas_task *task) 59 { 60 if (!del_timer(&task->slow_task->timer)) 61 return; 62 complete(&task->slow_task->completion); 63 } 64 65 /* Give it some long enough timeout. In seconds. */ 66 #define SMP_TIMEOUT 10 67 68 static int smp_execute_task_sg(struct domain_device *dev, 69 struct scatterlist *req, struct scatterlist *resp) 70 { 71 int res, retry; 72 struct sas_task *task = NULL; 73 struct sas_internal *i = 74 to_sas_internal(dev->port->ha->core.shost->transportt); 75 76 mutex_lock(&dev->ex_dev.cmd_mutex); 77 for (retry = 0; retry < 3; retry++) { 78 if (test_bit(SAS_DEV_GONE, &dev->state)) { 79 res = -ECOMM; 80 break; 81 } 82 83 task = sas_alloc_slow_task(GFP_KERNEL); 84 if (!task) { 85 res = -ENOMEM; 86 break; 87 } 88 task->dev = dev; 89 task->task_proto = dev->tproto; 90 task->smp_task.smp_req = *req; 91 task->smp_task.smp_resp = *resp; 92 93 task->task_done = smp_task_done; 94 95 task->slow_task->timer.function = smp_task_timedout; 96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 97 add_timer(&task->slow_task->timer); 98 99 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 100 101 if (res) { 102 del_timer(&task->slow_task->timer); 103 SAS_DPRINTK("executing SMP task failed:%d\n", res); 104 break; 105 } 106 107 wait_for_completion(&task->slow_task->completion); 108 res = -ECOMM; 109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 110 SAS_DPRINTK("smp task timed out or aborted\n"); 111 i->dft->lldd_abort_task(task); 112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 113 SAS_DPRINTK("SMP task aborted and not done\n"); 114 break; 115 } 116 } 117 if (task->task_status.resp == SAS_TASK_COMPLETE && 118 task->task_status.stat == SAM_STAT_GOOD) { 119 res = 0; 120 break; 121 } 122 if (task->task_status.resp == SAS_TASK_COMPLETE && 123 task->task_status.stat == SAS_DATA_UNDERRUN) { 124 /* no error, but return the number of bytes of 125 * underrun */ 126 res = task->task_status.residual; 127 break; 128 } 129 if (task->task_status.resp == SAS_TASK_COMPLETE && 130 task->task_status.stat == SAS_DATA_OVERRUN) { 131 res = -EMSGSIZE; 132 break; 133 } 134 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 135 task->task_status.stat == SAS_DEVICE_UNKNOWN) 136 break; 137 else { 138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 139 "status 0x%x\n", __func__, 140 SAS_ADDR(dev->sas_addr), 141 task->task_status.resp, 142 task->task_status.stat); 143 sas_free_task(task); 144 task = NULL; 145 } 146 } 147 mutex_unlock(&dev->ex_dev.cmd_mutex); 148 149 BUG_ON(retry == 3 && task != NULL); 150 sas_free_task(task); 151 return res; 152 } 153 154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 155 void *resp, int resp_size) 156 { 157 struct scatterlist req_sg; 158 struct scatterlist resp_sg; 159 160 sg_init_one(&req_sg, req, req_size); 161 sg_init_one(&resp_sg, resp, resp_size); 162 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 163 } 164 165 /* ---------- Allocations ---------- */ 166 167 static inline void *alloc_smp_req(int size) 168 { 169 u8 *p = kzalloc(size, GFP_KERNEL); 170 if (p) 171 p[0] = SMP_REQUEST; 172 return p; 173 } 174 175 static inline void *alloc_smp_resp(int size) 176 { 177 return kzalloc(size, GFP_KERNEL); 178 } 179 180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 181 { 182 switch (phy->routing_attr) { 183 case TABLE_ROUTING: 184 if (dev->ex_dev.t2t_supp) 185 return 'U'; 186 else 187 return 'T'; 188 case DIRECT_ROUTING: 189 return 'D'; 190 case SUBTRACTIVE_ROUTING: 191 return 'S'; 192 default: 193 return '?'; 194 } 195 } 196 197 static enum sas_device_type to_dev_type(struct discover_resp *dr) 198 { 199 /* This is detecting a failure to transmit initial dev to host 200 * FIS as described in section J.5 of sas-2 r16 201 */ 202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 204 return SAS_SATA_PENDING; 205 else 206 return dr->attached_dev_type; 207 } 208 209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 210 { 211 enum sas_device_type dev_type; 212 enum sas_linkrate linkrate; 213 u8 sas_addr[SAS_ADDR_SIZE]; 214 struct smp_resp *resp = rsp; 215 struct discover_resp *dr = &resp->disc; 216 struct sas_ha_struct *ha = dev->port->ha; 217 struct expander_device *ex = &dev->ex_dev; 218 struct ex_phy *phy = &ex->ex_phy[phy_id]; 219 struct sas_rphy *rphy = dev->rphy; 220 bool new_phy = !phy->phy; 221 char *type; 222 223 if (new_phy) { 224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 225 return; 226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 227 228 /* FIXME: error_handling */ 229 BUG_ON(!phy->phy); 230 } 231 232 switch (resp->result) { 233 case SMP_RESP_PHY_VACANT: 234 phy->phy_state = PHY_VACANT; 235 break; 236 default: 237 phy->phy_state = PHY_NOT_PRESENT; 238 break; 239 case SMP_RESP_FUNC_ACC: 240 phy->phy_state = PHY_EMPTY; /* do not know yet */ 241 break; 242 } 243 244 /* check if anything important changed to squelch debug */ 245 dev_type = phy->attached_dev_type; 246 linkrate = phy->linkrate; 247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 248 249 /* Handle vacant phy - rest of dr data is not valid so skip it */ 250 if (phy->phy_state == PHY_VACANT) { 251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 252 phy->attached_dev_type = SAS_PHY_UNUSED; 253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 254 phy->phy_id = phy_id; 255 goto skip; 256 } else 257 goto out; 258 } 259 260 phy->attached_dev_type = to_dev_type(dr); 261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 262 goto out; 263 phy->phy_id = phy_id; 264 phy->linkrate = dr->linkrate; 265 phy->attached_sata_host = dr->attached_sata_host; 266 phy->attached_sata_dev = dr->attached_sata_dev; 267 phy->attached_sata_ps = dr->attached_sata_ps; 268 phy->attached_iproto = dr->iproto << 1; 269 phy->attached_tproto = dr->tproto << 1; 270 /* help some expanders that fail to zero sas_address in the 'no 271 * device' case 272 */ 273 if (phy->attached_dev_type == SAS_PHY_UNUSED || 274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 276 else 277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 278 phy->attached_phy_id = dr->attached_phy_id; 279 phy->phy_change_count = dr->change_count; 280 phy->routing_attr = dr->routing_attr; 281 phy->virtual = dr->virtual; 282 phy->last_da_index = -1; 283 284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 285 phy->phy->identify.device_type = dr->attached_dev_type; 286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 287 phy->phy->identify.target_port_protocols = phy->attached_tproto; 288 if (!phy->attached_tproto && dr->attached_sata_dev) 289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 290 phy->phy->identify.phy_identifier = phy_id; 291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 293 phy->phy->minimum_linkrate = dr->pmin_linkrate; 294 phy->phy->maximum_linkrate = dr->pmax_linkrate; 295 phy->phy->negotiated_linkrate = phy->linkrate; 296 297 skip: 298 if (new_phy) 299 if (sas_phy_add(phy->phy)) { 300 sas_phy_free(phy->phy); 301 return; 302 } 303 304 out: 305 switch (phy->attached_dev_type) { 306 case SAS_SATA_PENDING: 307 type = "stp pending"; 308 break; 309 case SAS_PHY_UNUSED: 310 type = "no device"; 311 break; 312 case SAS_END_DEVICE: 313 if (phy->attached_iproto) { 314 if (phy->attached_tproto) 315 type = "host+target"; 316 else 317 type = "host"; 318 } else { 319 if (dr->attached_sata_dev) 320 type = "stp"; 321 else 322 type = "ssp"; 323 } 324 break; 325 case SAS_EDGE_EXPANDER_DEVICE: 326 case SAS_FANOUT_EXPANDER_DEVICE: 327 type = "smp"; 328 break; 329 default: 330 type = "unknown"; 331 } 332 333 /* this routine is polled by libata error recovery so filter 334 * unimportant messages 335 */ 336 if (new_phy || phy->attached_dev_type != dev_type || 337 phy->linkrate != linkrate || 338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 339 /* pass */; 340 else 341 return; 342 343 /* if the attached device type changed and ata_eh is active, 344 * make sure we run revalidation when eh completes (see: 345 * sas_enable_revalidation) 346 */ 347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 349 350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 352 SAS_ADDR(dev->sas_addr), phy->phy_id, 353 sas_route_char(dev, phy), phy->linkrate, 354 SAS_ADDR(phy->attached_sas_addr), type); 355 } 356 357 /* check if we have an existing attached ata device on this expander phy */ 358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 359 { 360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 361 struct domain_device *dev; 362 struct sas_rphy *rphy; 363 364 if (!ex_phy->port) 365 return NULL; 366 367 rphy = ex_phy->port->rphy; 368 if (!rphy) 369 return NULL; 370 371 dev = sas_find_dev_by_rphy(rphy); 372 373 if (dev && dev_is_sata(dev)) 374 return dev; 375 376 return NULL; 377 } 378 379 #define DISCOVER_REQ_SIZE 16 380 #define DISCOVER_RESP_SIZE 56 381 382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 383 u8 *disc_resp, int single) 384 { 385 struct discover_resp *dr; 386 int res; 387 388 disc_req[9] = single; 389 390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 391 disc_resp, DISCOVER_RESP_SIZE); 392 if (res) 393 return res; 394 dr = &((struct smp_resp *)disc_resp)->disc; 395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 396 sas_printk("Found loopback topology, just ignore it!\n"); 397 return 0; 398 } 399 sas_set_ex_phy(dev, single, disc_resp); 400 return 0; 401 } 402 403 int sas_ex_phy_discover(struct domain_device *dev, int single) 404 { 405 struct expander_device *ex = &dev->ex_dev; 406 int res = 0; 407 u8 *disc_req; 408 u8 *disc_resp; 409 410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 411 if (!disc_req) 412 return -ENOMEM; 413 414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 415 if (!disc_resp) { 416 kfree(disc_req); 417 return -ENOMEM; 418 } 419 420 disc_req[1] = SMP_DISCOVER; 421 422 if (0 <= single && single < ex->num_phys) { 423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 424 } else { 425 int i; 426 427 for (i = 0; i < ex->num_phys; i++) { 428 res = sas_ex_phy_discover_helper(dev, disc_req, 429 disc_resp, i); 430 if (res) 431 goto out_err; 432 } 433 } 434 out_err: 435 kfree(disc_resp); 436 kfree(disc_req); 437 return res; 438 } 439 440 static int sas_expander_discover(struct domain_device *dev) 441 { 442 struct expander_device *ex = &dev->ex_dev; 443 int res = -ENOMEM; 444 445 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 446 if (!ex->ex_phy) 447 return -ENOMEM; 448 449 res = sas_ex_phy_discover(dev, -1); 450 if (res) 451 goto out_err; 452 453 return 0; 454 out_err: 455 kfree(ex->ex_phy); 456 ex->ex_phy = NULL; 457 return res; 458 } 459 460 #define MAX_EXPANDER_PHYS 128 461 462 static void ex_assign_report_general(struct domain_device *dev, 463 struct smp_resp *resp) 464 { 465 struct report_general_resp *rg = &resp->rg; 466 467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 470 dev->ex_dev.t2t_supp = rg->t2t_supp; 471 dev->ex_dev.conf_route_table = rg->conf_route_table; 472 dev->ex_dev.configuring = rg->configuring; 473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 474 } 475 476 #define RG_REQ_SIZE 8 477 #define RG_RESP_SIZE 32 478 479 static int sas_ex_general(struct domain_device *dev) 480 { 481 u8 *rg_req; 482 struct smp_resp *rg_resp; 483 int res; 484 int i; 485 486 rg_req = alloc_smp_req(RG_REQ_SIZE); 487 if (!rg_req) 488 return -ENOMEM; 489 490 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 491 if (!rg_resp) { 492 kfree(rg_req); 493 return -ENOMEM; 494 } 495 496 rg_req[1] = SMP_REPORT_GENERAL; 497 498 for (i = 0; i < 5; i++) { 499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 500 RG_RESP_SIZE); 501 502 if (res) { 503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 504 SAS_ADDR(dev->sas_addr), res); 505 goto out; 506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 508 SAS_ADDR(dev->sas_addr), rg_resp->result); 509 res = rg_resp->result; 510 goto out; 511 } 512 513 ex_assign_report_general(dev, rg_resp); 514 515 if (dev->ex_dev.configuring) { 516 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 517 SAS_ADDR(dev->sas_addr)); 518 schedule_timeout_interruptible(5*HZ); 519 } else 520 break; 521 } 522 out: 523 kfree(rg_req); 524 kfree(rg_resp); 525 return res; 526 } 527 528 static void ex_assign_manuf_info(struct domain_device *dev, void 529 *_mi_resp) 530 { 531 u8 *mi_resp = _mi_resp; 532 struct sas_rphy *rphy = dev->rphy; 533 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 534 535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 537 memcpy(edev->product_rev, mi_resp + 36, 538 SAS_EXPANDER_PRODUCT_REV_LEN); 539 540 if (mi_resp[8] & 1) { 541 memcpy(edev->component_vendor_id, mi_resp + 40, 542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 543 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 544 edev->component_revision_id = mi_resp[50]; 545 } 546 } 547 548 #define MI_REQ_SIZE 8 549 #define MI_RESP_SIZE 64 550 551 static int sas_ex_manuf_info(struct domain_device *dev) 552 { 553 u8 *mi_req; 554 u8 *mi_resp; 555 int res; 556 557 mi_req = alloc_smp_req(MI_REQ_SIZE); 558 if (!mi_req) 559 return -ENOMEM; 560 561 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 562 if (!mi_resp) { 563 kfree(mi_req); 564 return -ENOMEM; 565 } 566 567 mi_req[1] = SMP_REPORT_MANUF_INFO; 568 569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 570 if (res) { 571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 572 SAS_ADDR(dev->sas_addr), res); 573 goto out; 574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 576 SAS_ADDR(dev->sas_addr), mi_resp[2]); 577 goto out; 578 } 579 580 ex_assign_manuf_info(dev, mi_resp); 581 out: 582 kfree(mi_req); 583 kfree(mi_resp); 584 return res; 585 } 586 587 #define PC_REQ_SIZE 44 588 #define PC_RESP_SIZE 8 589 590 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 591 enum phy_func phy_func, 592 struct sas_phy_linkrates *rates) 593 { 594 u8 *pc_req; 595 u8 *pc_resp; 596 int res; 597 598 pc_req = alloc_smp_req(PC_REQ_SIZE); 599 if (!pc_req) 600 return -ENOMEM; 601 602 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 603 if (!pc_resp) { 604 kfree(pc_req); 605 return -ENOMEM; 606 } 607 608 pc_req[1] = SMP_PHY_CONTROL; 609 pc_req[9] = phy_id; 610 pc_req[10]= phy_func; 611 if (rates) { 612 pc_req[32] = rates->minimum_linkrate << 4; 613 pc_req[33] = rates->maximum_linkrate << 4; 614 } 615 616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 617 618 kfree(pc_resp); 619 kfree(pc_req); 620 return res; 621 } 622 623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 624 { 625 struct expander_device *ex = &dev->ex_dev; 626 struct ex_phy *phy = &ex->ex_phy[phy_id]; 627 628 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 629 phy->linkrate = SAS_PHY_DISABLED; 630 } 631 632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 633 { 634 struct expander_device *ex = &dev->ex_dev; 635 int i; 636 637 for (i = 0; i < ex->num_phys; i++) { 638 struct ex_phy *phy = &ex->ex_phy[i]; 639 640 if (phy->phy_state == PHY_VACANT || 641 phy->phy_state == PHY_NOT_PRESENT) 642 continue; 643 644 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 645 sas_ex_disable_phy(dev, i); 646 } 647 } 648 649 static int sas_dev_present_in_domain(struct asd_sas_port *port, 650 u8 *sas_addr) 651 { 652 struct domain_device *dev; 653 654 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 655 return 1; 656 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 657 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 658 return 1; 659 } 660 return 0; 661 } 662 663 #define RPEL_REQ_SIZE 16 664 #define RPEL_RESP_SIZE 32 665 int sas_smp_get_phy_events(struct sas_phy *phy) 666 { 667 int res; 668 u8 *req; 669 u8 *resp; 670 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 671 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 672 673 req = alloc_smp_req(RPEL_REQ_SIZE); 674 if (!req) 675 return -ENOMEM; 676 677 resp = alloc_smp_resp(RPEL_RESP_SIZE); 678 if (!resp) { 679 kfree(req); 680 return -ENOMEM; 681 } 682 683 req[1] = SMP_REPORT_PHY_ERR_LOG; 684 req[9] = phy->number; 685 686 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 687 resp, RPEL_RESP_SIZE); 688 689 if (!res) 690 goto out; 691 692 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 693 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 694 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 695 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 696 697 out: 698 kfree(resp); 699 return res; 700 701 } 702 703 #ifdef CONFIG_SCSI_SAS_ATA 704 705 #define RPS_REQ_SIZE 16 706 #define RPS_RESP_SIZE 60 707 708 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 709 struct smp_resp *rps_resp) 710 { 711 int res; 712 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 713 u8 *resp = (u8 *)rps_resp; 714 715 if (!rps_req) 716 return -ENOMEM; 717 718 rps_req[1] = SMP_REPORT_PHY_SATA; 719 rps_req[9] = phy_id; 720 721 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 722 rps_resp, RPS_RESP_SIZE); 723 724 /* 0x34 is the FIS type for the D2H fis. There's a potential 725 * standards cockup here. sas-2 explicitly specifies the FIS 726 * should be encoded so that FIS type is in resp[24]. 727 * However, some expanders endian reverse this. Undo the 728 * reversal here */ 729 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 730 int i; 731 732 for (i = 0; i < 5; i++) { 733 int j = 24 + (i*4); 734 u8 a, b; 735 a = resp[j + 0]; 736 b = resp[j + 1]; 737 resp[j + 0] = resp[j + 3]; 738 resp[j + 1] = resp[j + 2]; 739 resp[j + 2] = b; 740 resp[j + 3] = a; 741 } 742 } 743 744 kfree(rps_req); 745 return res; 746 } 747 #endif 748 749 static void sas_ex_get_linkrate(struct domain_device *parent, 750 struct domain_device *child, 751 struct ex_phy *parent_phy) 752 { 753 struct expander_device *parent_ex = &parent->ex_dev; 754 struct sas_port *port; 755 int i; 756 757 child->pathways = 0; 758 759 port = parent_phy->port; 760 761 for (i = 0; i < parent_ex->num_phys; i++) { 762 struct ex_phy *phy = &parent_ex->ex_phy[i]; 763 764 if (phy->phy_state == PHY_VACANT || 765 phy->phy_state == PHY_NOT_PRESENT) 766 continue; 767 768 if (SAS_ADDR(phy->attached_sas_addr) == 769 SAS_ADDR(child->sas_addr)) { 770 771 child->min_linkrate = min(parent->min_linkrate, 772 phy->linkrate); 773 child->max_linkrate = max(parent->max_linkrate, 774 phy->linkrate); 775 child->pathways++; 776 sas_port_add_phy(port, phy->phy); 777 } 778 } 779 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 780 child->pathways = min(child->pathways, parent->pathways); 781 } 782 783 static struct domain_device *sas_ex_discover_end_dev( 784 struct domain_device *parent, int phy_id) 785 { 786 struct expander_device *parent_ex = &parent->ex_dev; 787 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 788 struct domain_device *child = NULL; 789 struct sas_rphy *rphy; 790 int res; 791 792 if (phy->attached_sata_host || phy->attached_sata_ps) 793 return NULL; 794 795 child = sas_alloc_device(); 796 if (!child) 797 return NULL; 798 799 kref_get(&parent->kref); 800 child->parent = parent; 801 child->port = parent->port; 802 child->iproto = phy->attached_iproto; 803 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 804 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 805 if (!phy->port) { 806 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 807 if (unlikely(!phy->port)) 808 goto out_err; 809 if (unlikely(sas_port_add(phy->port) != 0)) { 810 sas_port_free(phy->port); 811 goto out_err; 812 } 813 } 814 sas_ex_get_linkrate(parent, child, phy); 815 sas_device_set_phy(child, phy->port); 816 817 #ifdef CONFIG_SCSI_SAS_ATA 818 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 819 res = sas_get_ata_info(child, phy); 820 if (res) 821 goto out_free; 822 823 sas_init_dev(child); 824 res = sas_ata_init(child); 825 if (res) 826 goto out_free; 827 rphy = sas_end_device_alloc(phy->port); 828 if (!rphy) 829 goto out_free; 830 831 child->rphy = rphy; 832 get_device(&rphy->dev); 833 834 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 835 836 res = sas_discover_sata(child); 837 if (res) { 838 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 839 "%016llx:0x%x returned 0x%x\n", 840 SAS_ADDR(child->sas_addr), 841 SAS_ADDR(parent->sas_addr), phy_id, res); 842 goto out_list_del; 843 } 844 } else 845 #endif 846 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 847 child->dev_type = SAS_END_DEVICE; 848 rphy = sas_end_device_alloc(phy->port); 849 /* FIXME: error handling */ 850 if (unlikely(!rphy)) 851 goto out_free; 852 child->tproto = phy->attached_tproto; 853 sas_init_dev(child); 854 855 child->rphy = rphy; 856 get_device(&rphy->dev); 857 sas_fill_in_rphy(child, rphy); 858 859 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 860 861 res = sas_discover_end_dev(child); 862 if (res) { 863 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 864 "at %016llx:0x%x returned 0x%x\n", 865 SAS_ADDR(child->sas_addr), 866 SAS_ADDR(parent->sas_addr), phy_id, res); 867 goto out_list_del; 868 } 869 } else { 870 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 871 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 872 phy_id); 873 goto out_free; 874 } 875 876 list_add_tail(&child->siblings, &parent_ex->children); 877 return child; 878 879 out_list_del: 880 sas_rphy_free(child->rphy); 881 list_del(&child->disco_list_node); 882 spin_lock_irq(&parent->port->dev_list_lock); 883 list_del(&child->dev_list_node); 884 spin_unlock_irq(&parent->port->dev_list_lock); 885 out_free: 886 sas_port_delete(phy->port); 887 out_err: 888 phy->port = NULL; 889 sas_put_device(child); 890 return NULL; 891 } 892 893 /* See if this phy is part of a wide port */ 894 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 895 { 896 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 897 int i; 898 899 for (i = 0; i < parent->ex_dev.num_phys; i++) { 900 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 901 902 if (ephy == phy) 903 continue; 904 905 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 906 SAS_ADDR_SIZE) && ephy->port) { 907 sas_port_add_phy(ephy->port, phy->phy); 908 phy->port = ephy->port; 909 phy->phy_state = PHY_DEVICE_DISCOVERED; 910 return true; 911 } 912 } 913 914 return false; 915 } 916 917 static struct domain_device *sas_ex_discover_expander( 918 struct domain_device *parent, int phy_id) 919 { 920 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 921 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 922 struct domain_device *child = NULL; 923 struct sas_rphy *rphy; 924 struct sas_expander_device *edev; 925 struct asd_sas_port *port; 926 int res; 927 928 if (phy->routing_attr == DIRECT_ROUTING) { 929 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 930 "allowed\n", 931 SAS_ADDR(parent->sas_addr), phy_id, 932 SAS_ADDR(phy->attached_sas_addr), 933 phy->attached_phy_id); 934 return NULL; 935 } 936 child = sas_alloc_device(); 937 if (!child) 938 return NULL; 939 940 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 941 /* FIXME: better error handling */ 942 BUG_ON(sas_port_add(phy->port) != 0); 943 944 945 switch (phy->attached_dev_type) { 946 case SAS_EDGE_EXPANDER_DEVICE: 947 rphy = sas_expander_alloc(phy->port, 948 SAS_EDGE_EXPANDER_DEVICE); 949 break; 950 case SAS_FANOUT_EXPANDER_DEVICE: 951 rphy = sas_expander_alloc(phy->port, 952 SAS_FANOUT_EXPANDER_DEVICE); 953 break; 954 default: 955 rphy = NULL; /* shut gcc up */ 956 BUG(); 957 } 958 port = parent->port; 959 child->rphy = rphy; 960 get_device(&rphy->dev); 961 edev = rphy_to_expander_device(rphy); 962 child->dev_type = phy->attached_dev_type; 963 kref_get(&parent->kref); 964 child->parent = parent; 965 child->port = port; 966 child->iproto = phy->attached_iproto; 967 child->tproto = phy->attached_tproto; 968 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 969 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 970 sas_ex_get_linkrate(parent, child, phy); 971 edev->level = parent_ex->level + 1; 972 parent->port->disc.max_level = max(parent->port->disc.max_level, 973 edev->level); 974 sas_init_dev(child); 975 sas_fill_in_rphy(child, rphy); 976 sas_rphy_add(rphy); 977 978 spin_lock_irq(&parent->port->dev_list_lock); 979 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 980 spin_unlock_irq(&parent->port->dev_list_lock); 981 982 res = sas_discover_expander(child); 983 if (res) { 984 sas_rphy_delete(rphy); 985 spin_lock_irq(&parent->port->dev_list_lock); 986 list_del(&child->dev_list_node); 987 spin_unlock_irq(&parent->port->dev_list_lock); 988 sas_put_device(child); 989 return NULL; 990 } 991 list_add_tail(&child->siblings, &parent->ex_dev.children); 992 return child; 993 } 994 995 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 996 { 997 struct expander_device *ex = &dev->ex_dev; 998 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 999 struct domain_device *child = NULL; 1000 int res = 0; 1001 1002 /* Phy state */ 1003 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1004 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1005 res = sas_ex_phy_discover(dev, phy_id); 1006 if (res) 1007 return res; 1008 } 1009 1010 /* Parent and domain coherency */ 1011 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1012 SAS_ADDR(dev->port->sas_addr))) { 1013 sas_add_parent_port(dev, phy_id); 1014 return 0; 1015 } 1016 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1017 SAS_ADDR(dev->parent->sas_addr))) { 1018 sas_add_parent_port(dev, phy_id); 1019 if (ex_phy->routing_attr == TABLE_ROUTING) 1020 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1021 return 0; 1022 } 1023 1024 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1025 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1026 1027 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1028 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1029 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1030 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1031 } 1032 return 0; 1033 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1034 return 0; 1035 1036 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1037 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1038 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1039 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1040 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 1041 "phy 0x%x\n", ex_phy->attached_dev_type, 1042 SAS_ADDR(dev->sas_addr), 1043 phy_id); 1044 return 0; 1045 } 1046 1047 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1048 if (res) { 1049 SAS_DPRINTK("configure routing for dev %016llx " 1050 "reported 0x%x. Forgotten\n", 1051 SAS_ADDR(ex_phy->attached_sas_addr), res); 1052 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1053 return res; 1054 } 1055 1056 if (sas_ex_join_wide_port(dev, phy_id)) { 1057 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1058 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1059 return res; 1060 } 1061 1062 switch (ex_phy->attached_dev_type) { 1063 case SAS_END_DEVICE: 1064 case SAS_SATA_PENDING: 1065 child = sas_ex_discover_end_dev(dev, phy_id); 1066 break; 1067 case SAS_FANOUT_EXPANDER_DEVICE: 1068 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1069 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 1070 "attached to ex %016llx phy 0x%x\n", 1071 SAS_ADDR(ex_phy->attached_sas_addr), 1072 ex_phy->attached_phy_id, 1073 SAS_ADDR(dev->sas_addr), 1074 phy_id); 1075 sas_ex_disable_phy(dev, phy_id); 1076 break; 1077 } else 1078 memcpy(dev->port->disc.fanout_sas_addr, 1079 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1080 /* fallthrough */ 1081 case SAS_EDGE_EXPANDER_DEVICE: 1082 child = sas_ex_discover_expander(dev, phy_id); 1083 break; 1084 default: 1085 break; 1086 } 1087 1088 if (child) { 1089 int i; 1090 1091 for (i = 0; i < ex->num_phys; i++) { 1092 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1093 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1094 continue; 1095 /* 1096 * Due to races, the phy might not get added to the 1097 * wide port, so we add the phy to the wide port here. 1098 */ 1099 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1100 SAS_ADDR(child->sas_addr)) { 1101 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1102 if (sas_ex_join_wide_port(dev, i)) 1103 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1104 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1105 1106 } 1107 } 1108 } 1109 1110 return res; 1111 } 1112 1113 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1114 { 1115 struct expander_device *ex = &dev->ex_dev; 1116 int i; 1117 1118 for (i = 0; i < ex->num_phys; i++) { 1119 struct ex_phy *phy = &ex->ex_phy[i]; 1120 1121 if (phy->phy_state == PHY_VACANT || 1122 phy->phy_state == PHY_NOT_PRESENT) 1123 continue; 1124 1125 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1126 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1127 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1128 1129 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1130 1131 return 1; 1132 } 1133 } 1134 return 0; 1135 } 1136 1137 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1138 { 1139 struct expander_device *ex = &dev->ex_dev; 1140 struct domain_device *child; 1141 u8 sub_addr[8] = {0, }; 1142 1143 list_for_each_entry(child, &ex->children, siblings) { 1144 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1145 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1146 continue; 1147 if (sub_addr[0] == 0) { 1148 sas_find_sub_addr(child, sub_addr); 1149 continue; 1150 } else { 1151 u8 s2[8]; 1152 1153 if (sas_find_sub_addr(child, s2) && 1154 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1155 1156 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1157 "diverges from subtractive " 1158 "boundary %016llx\n", 1159 SAS_ADDR(dev->sas_addr), 1160 SAS_ADDR(child->sas_addr), 1161 SAS_ADDR(s2), 1162 SAS_ADDR(sub_addr)); 1163 1164 sas_ex_disable_port(child, s2); 1165 } 1166 } 1167 } 1168 return 0; 1169 } 1170 /** 1171 * sas_ex_discover_devices -- discover devices attached to this expander 1172 * dev: pointer to the expander domain device 1173 * single: if you want to do a single phy, else set to -1; 1174 * 1175 * Configure this expander for use with its devices and register the 1176 * devices of this expander. 1177 */ 1178 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1179 { 1180 struct expander_device *ex = &dev->ex_dev; 1181 int i = 0, end = ex->num_phys; 1182 int res = 0; 1183 1184 if (0 <= single && single < end) { 1185 i = single; 1186 end = i+1; 1187 } 1188 1189 for ( ; i < end; i++) { 1190 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1191 1192 if (ex_phy->phy_state == PHY_VACANT || 1193 ex_phy->phy_state == PHY_NOT_PRESENT || 1194 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1195 continue; 1196 1197 switch (ex_phy->linkrate) { 1198 case SAS_PHY_DISABLED: 1199 case SAS_PHY_RESET_PROBLEM: 1200 case SAS_SATA_PORT_SELECTOR: 1201 continue; 1202 default: 1203 res = sas_ex_discover_dev(dev, i); 1204 if (res) 1205 break; 1206 continue; 1207 } 1208 } 1209 1210 if (!res) 1211 sas_check_level_subtractive_boundary(dev); 1212 1213 return res; 1214 } 1215 1216 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1217 { 1218 struct expander_device *ex = &dev->ex_dev; 1219 int i; 1220 u8 *sub_sas_addr = NULL; 1221 1222 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1223 return 0; 1224 1225 for (i = 0; i < ex->num_phys; i++) { 1226 struct ex_phy *phy = &ex->ex_phy[i]; 1227 1228 if (phy->phy_state == PHY_VACANT || 1229 phy->phy_state == PHY_NOT_PRESENT) 1230 continue; 1231 1232 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1233 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1234 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1235 1236 if (!sub_sas_addr) 1237 sub_sas_addr = &phy->attached_sas_addr[0]; 1238 else if (SAS_ADDR(sub_sas_addr) != 1239 SAS_ADDR(phy->attached_sas_addr)) { 1240 1241 SAS_DPRINTK("ex %016llx phy 0x%x " 1242 "diverges(%016llx) on subtractive " 1243 "boundary(%016llx). Disabled\n", 1244 SAS_ADDR(dev->sas_addr), i, 1245 SAS_ADDR(phy->attached_sas_addr), 1246 SAS_ADDR(sub_sas_addr)); 1247 sas_ex_disable_phy(dev, i); 1248 } 1249 } 1250 } 1251 return 0; 1252 } 1253 1254 static void sas_print_parent_topology_bug(struct domain_device *child, 1255 struct ex_phy *parent_phy, 1256 struct ex_phy *child_phy) 1257 { 1258 static const char *ex_type[] = { 1259 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1260 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1261 }; 1262 struct domain_device *parent = child->parent; 1263 1264 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " 1265 "phy 0x%x has %c:%c routing link!\n", 1266 1267 ex_type[parent->dev_type], 1268 SAS_ADDR(parent->sas_addr), 1269 parent_phy->phy_id, 1270 1271 ex_type[child->dev_type], 1272 SAS_ADDR(child->sas_addr), 1273 child_phy->phy_id, 1274 1275 sas_route_char(parent, parent_phy), 1276 sas_route_char(child, child_phy)); 1277 } 1278 1279 static int sas_check_eeds(struct domain_device *child, 1280 struct ex_phy *parent_phy, 1281 struct ex_phy *child_phy) 1282 { 1283 int res = 0; 1284 struct domain_device *parent = child->parent; 1285 1286 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1287 res = -ENODEV; 1288 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1289 "phy S:0x%x, while there is a fanout ex %016llx\n", 1290 SAS_ADDR(parent->sas_addr), 1291 parent_phy->phy_id, 1292 SAS_ADDR(child->sas_addr), 1293 child_phy->phy_id, 1294 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1295 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1296 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1297 SAS_ADDR_SIZE); 1298 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1299 SAS_ADDR_SIZE); 1300 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1301 SAS_ADDR(parent->sas_addr)) || 1302 (SAS_ADDR(parent->port->disc.eeds_a) == 1303 SAS_ADDR(child->sas_addr))) 1304 && 1305 ((SAS_ADDR(parent->port->disc.eeds_b) == 1306 SAS_ADDR(parent->sas_addr)) || 1307 (SAS_ADDR(parent->port->disc.eeds_b) == 1308 SAS_ADDR(child->sas_addr)))) 1309 ; 1310 else { 1311 res = -ENODEV; 1312 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1313 "phy 0x%x link forms a third EEDS!\n", 1314 SAS_ADDR(parent->sas_addr), 1315 parent_phy->phy_id, 1316 SAS_ADDR(child->sas_addr), 1317 child_phy->phy_id); 1318 } 1319 1320 return res; 1321 } 1322 1323 /* Here we spill over 80 columns. It is intentional. 1324 */ 1325 static int sas_check_parent_topology(struct domain_device *child) 1326 { 1327 struct expander_device *child_ex = &child->ex_dev; 1328 struct expander_device *parent_ex; 1329 int i; 1330 int res = 0; 1331 1332 if (!child->parent) 1333 return 0; 1334 1335 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1336 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1337 return 0; 1338 1339 parent_ex = &child->parent->ex_dev; 1340 1341 for (i = 0; i < parent_ex->num_phys; i++) { 1342 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1343 struct ex_phy *child_phy; 1344 1345 if (parent_phy->phy_state == PHY_VACANT || 1346 parent_phy->phy_state == PHY_NOT_PRESENT) 1347 continue; 1348 1349 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1350 continue; 1351 1352 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1353 1354 switch (child->parent->dev_type) { 1355 case SAS_EDGE_EXPANDER_DEVICE: 1356 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1357 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1358 child_phy->routing_attr != TABLE_ROUTING) { 1359 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1360 res = -ENODEV; 1361 } 1362 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1363 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1364 res = sas_check_eeds(child, parent_phy, child_phy); 1365 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1366 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1367 res = -ENODEV; 1368 } 1369 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1370 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1371 (child_phy->routing_attr == TABLE_ROUTING && 1372 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1373 /* All good */; 1374 } else { 1375 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1376 res = -ENODEV; 1377 } 1378 } 1379 break; 1380 case SAS_FANOUT_EXPANDER_DEVICE: 1381 if (parent_phy->routing_attr != TABLE_ROUTING || 1382 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1383 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1384 res = -ENODEV; 1385 } 1386 break; 1387 default: 1388 break; 1389 } 1390 } 1391 1392 return res; 1393 } 1394 1395 #define RRI_REQ_SIZE 16 1396 #define RRI_RESP_SIZE 44 1397 1398 static int sas_configure_present(struct domain_device *dev, int phy_id, 1399 u8 *sas_addr, int *index, int *present) 1400 { 1401 int i, res = 0; 1402 struct expander_device *ex = &dev->ex_dev; 1403 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1404 u8 *rri_req; 1405 u8 *rri_resp; 1406 1407 *present = 0; 1408 *index = 0; 1409 1410 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1411 if (!rri_req) 1412 return -ENOMEM; 1413 1414 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1415 if (!rri_resp) { 1416 kfree(rri_req); 1417 return -ENOMEM; 1418 } 1419 1420 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1421 rri_req[9] = phy_id; 1422 1423 for (i = 0; i < ex->max_route_indexes ; i++) { 1424 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1425 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1426 RRI_RESP_SIZE); 1427 if (res) 1428 goto out; 1429 res = rri_resp[2]; 1430 if (res == SMP_RESP_NO_INDEX) { 1431 SAS_DPRINTK("overflow of indexes: dev %016llx " 1432 "phy 0x%x index 0x%x\n", 1433 SAS_ADDR(dev->sas_addr), phy_id, i); 1434 goto out; 1435 } else if (res != SMP_RESP_FUNC_ACC) { 1436 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1437 "result 0x%x\n", __func__, 1438 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1439 goto out; 1440 } 1441 if (SAS_ADDR(sas_addr) != 0) { 1442 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1443 *index = i; 1444 if ((rri_resp[12] & 0x80) == 0x80) 1445 *present = 0; 1446 else 1447 *present = 1; 1448 goto out; 1449 } else if (SAS_ADDR(rri_resp+16) == 0) { 1450 *index = i; 1451 *present = 0; 1452 goto out; 1453 } 1454 } else if (SAS_ADDR(rri_resp+16) == 0 && 1455 phy->last_da_index < i) { 1456 phy->last_da_index = i; 1457 *index = i; 1458 *present = 0; 1459 goto out; 1460 } 1461 } 1462 res = -1; 1463 out: 1464 kfree(rri_req); 1465 kfree(rri_resp); 1466 return res; 1467 } 1468 1469 #define CRI_REQ_SIZE 44 1470 #define CRI_RESP_SIZE 8 1471 1472 static int sas_configure_set(struct domain_device *dev, int phy_id, 1473 u8 *sas_addr, int index, int include) 1474 { 1475 int res; 1476 u8 *cri_req; 1477 u8 *cri_resp; 1478 1479 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1480 if (!cri_req) 1481 return -ENOMEM; 1482 1483 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1484 if (!cri_resp) { 1485 kfree(cri_req); 1486 return -ENOMEM; 1487 } 1488 1489 cri_req[1] = SMP_CONF_ROUTE_INFO; 1490 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1491 cri_req[9] = phy_id; 1492 if (SAS_ADDR(sas_addr) == 0 || !include) 1493 cri_req[12] |= 0x80; 1494 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1495 1496 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1497 CRI_RESP_SIZE); 1498 if (res) 1499 goto out; 1500 res = cri_resp[2]; 1501 if (res == SMP_RESP_NO_INDEX) { 1502 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1503 "index 0x%x\n", 1504 SAS_ADDR(dev->sas_addr), phy_id, index); 1505 } 1506 out: 1507 kfree(cri_req); 1508 kfree(cri_resp); 1509 return res; 1510 } 1511 1512 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1513 u8 *sas_addr, int include) 1514 { 1515 int index; 1516 int present; 1517 int res; 1518 1519 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1520 if (res) 1521 return res; 1522 if (include ^ present) 1523 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1524 1525 return res; 1526 } 1527 1528 /** 1529 * sas_configure_parent -- configure routing table of parent 1530 * parent: parent expander 1531 * child: child expander 1532 * sas_addr: SAS port identifier of device directly attached to child 1533 */ 1534 static int sas_configure_parent(struct domain_device *parent, 1535 struct domain_device *child, 1536 u8 *sas_addr, int include) 1537 { 1538 struct expander_device *ex_parent = &parent->ex_dev; 1539 int res = 0; 1540 int i; 1541 1542 if (parent->parent) { 1543 res = sas_configure_parent(parent->parent, parent, sas_addr, 1544 include); 1545 if (res) 1546 return res; 1547 } 1548 1549 if (ex_parent->conf_route_table == 0) { 1550 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1551 SAS_ADDR(parent->sas_addr)); 1552 return 0; 1553 } 1554 1555 for (i = 0; i < ex_parent->num_phys; i++) { 1556 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1557 1558 if ((phy->routing_attr == TABLE_ROUTING) && 1559 (SAS_ADDR(phy->attached_sas_addr) == 1560 SAS_ADDR(child->sas_addr))) { 1561 res = sas_configure_phy(parent, i, sas_addr, include); 1562 if (res) 1563 return res; 1564 } 1565 } 1566 1567 return res; 1568 } 1569 1570 /** 1571 * sas_configure_routing -- configure routing 1572 * dev: expander device 1573 * sas_addr: port identifier of device directly attached to the expander device 1574 */ 1575 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1576 { 1577 if (dev->parent) 1578 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1579 return 0; 1580 } 1581 1582 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1583 { 1584 if (dev->parent) 1585 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1586 return 0; 1587 } 1588 1589 /** 1590 * sas_discover_expander -- expander discovery 1591 * @ex: pointer to expander domain device 1592 * 1593 * See comment in sas_discover_sata(). 1594 */ 1595 static int sas_discover_expander(struct domain_device *dev) 1596 { 1597 int res; 1598 1599 res = sas_notify_lldd_dev_found(dev); 1600 if (res) 1601 return res; 1602 1603 res = sas_ex_general(dev); 1604 if (res) 1605 goto out_err; 1606 res = sas_ex_manuf_info(dev); 1607 if (res) 1608 goto out_err; 1609 1610 res = sas_expander_discover(dev); 1611 if (res) { 1612 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1613 SAS_ADDR(dev->sas_addr), res); 1614 goto out_err; 1615 } 1616 1617 sas_check_ex_subtractive_boundary(dev); 1618 res = sas_check_parent_topology(dev); 1619 if (res) 1620 goto out_err; 1621 return 0; 1622 out_err: 1623 sas_notify_lldd_dev_gone(dev); 1624 return res; 1625 } 1626 1627 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1628 { 1629 int res = 0; 1630 struct domain_device *dev; 1631 1632 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1633 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1634 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1635 struct sas_expander_device *ex = 1636 rphy_to_expander_device(dev->rphy); 1637 1638 if (level == ex->level) 1639 res = sas_ex_discover_devices(dev, -1); 1640 else if (level > 0) 1641 res = sas_ex_discover_devices(port->port_dev, -1); 1642 1643 } 1644 } 1645 1646 return res; 1647 } 1648 1649 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1650 { 1651 int res; 1652 int level; 1653 1654 do { 1655 level = port->disc.max_level; 1656 res = sas_ex_level_discovery(port, level); 1657 mb(); 1658 } while (level < port->disc.max_level); 1659 1660 return res; 1661 } 1662 1663 int sas_discover_root_expander(struct domain_device *dev) 1664 { 1665 int res; 1666 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1667 1668 res = sas_rphy_add(dev->rphy); 1669 if (res) 1670 goto out_err; 1671 1672 ex->level = dev->port->disc.max_level; /* 0 */ 1673 res = sas_discover_expander(dev); 1674 if (res) 1675 goto out_err2; 1676 1677 sas_ex_bfs_disc(dev->port); 1678 1679 return res; 1680 1681 out_err2: 1682 sas_rphy_remove(dev->rphy); 1683 out_err: 1684 return res; 1685 } 1686 1687 /* ---------- Domain revalidation ---------- */ 1688 1689 static int sas_get_phy_discover(struct domain_device *dev, 1690 int phy_id, struct smp_resp *disc_resp) 1691 { 1692 int res; 1693 u8 *disc_req; 1694 1695 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1696 if (!disc_req) 1697 return -ENOMEM; 1698 1699 disc_req[1] = SMP_DISCOVER; 1700 disc_req[9] = phy_id; 1701 1702 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1703 disc_resp, DISCOVER_RESP_SIZE); 1704 if (res) 1705 goto out; 1706 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1707 res = disc_resp->result; 1708 goto out; 1709 } 1710 out: 1711 kfree(disc_req); 1712 return res; 1713 } 1714 1715 static int sas_get_phy_change_count(struct domain_device *dev, 1716 int phy_id, int *pcc) 1717 { 1718 int res; 1719 struct smp_resp *disc_resp; 1720 1721 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1722 if (!disc_resp) 1723 return -ENOMEM; 1724 1725 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1726 if (!res) 1727 *pcc = disc_resp->disc.change_count; 1728 1729 kfree(disc_resp); 1730 return res; 1731 } 1732 1733 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1734 u8 *sas_addr, enum sas_device_type *type) 1735 { 1736 int res; 1737 struct smp_resp *disc_resp; 1738 struct discover_resp *dr; 1739 1740 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1741 if (!disc_resp) 1742 return -ENOMEM; 1743 dr = &disc_resp->disc; 1744 1745 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1746 if (res == 0) { 1747 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1748 *type = to_dev_type(dr); 1749 if (*type == 0) 1750 memset(sas_addr, 0, 8); 1751 } 1752 kfree(disc_resp); 1753 return res; 1754 } 1755 1756 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1757 int from_phy, bool update) 1758 { 1759 struct expander_device *ex = &dev->ex_dev; 1760 int res = 0; 1761 int i; 1762 1763 for (i = from_phy; i < ex->num_phys; i++) { 1764 int phy_change_count = 0; 1765 1766 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1767 switch (res) { 1768 case SMP_RESP_PHY_VACANT: 1769 case SMP_RESP_NO_PHY: 1770 continue; 1771 case SMP_RESP_FUNC_ACC: 1772 break; 1773 default: 1774 return res; 1775 } 1776 1777 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1778 if (update) 1779 ex->ex_phy[i].phy_change_count = 1780 phy_change_count; 1781 *phy_id = i; 1782 return 0; 1783 } 1784 } 1785 return 0; 1786 } 1787 1788 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1789 { 1790 int res; 1791 u8 *rg_req; 1792 struct smp_resp *rg_resp; 1793 1794 rg_req = alloc_smp_req(RG_REQ_SIZE); 1795 if (!rg_req) 1796 return -ENOMEM; 1797 1798 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1799 if (!rg_resp) { 1800 kfree(rg_req); 1801 return -ENOMEM; 1802 } 1803 1804 rg_req[1] = SMP_REPORT_GENERAL; 1805 1806 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1807 RG_RESP_SIZE); 1808 if (res) 1809 goto out; 1810 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1811 res = rg_resp->result; 1812 goto out; 1813 } 1814 1815 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1816 out: 1817 kfree(rg_resp); 1818 kfree(rg_req); 1819 return res; 1820 } 1821 /** 1822 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1823 * @dev:domain device to be detect. 1824 * @src_dev: the device which originated BROADCAST(CHANGE). 1825 * 1826 * Add self-configuration expander support. Suppose two expander cascading, 1827 * when the first level expander is self-configuring, hotplug the disks in 1828 * second level expander, BROADCAST(CHANGE) will not only be originated 1829 * in the second level expander, but also be originated in the first level 1830 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1831 * expander changed count in two level expanders will all increment at least 1832 * once, but the phy which chang count has changed is the source device which 1833 * we concerned. 1834 */ 1835 1836 static int sas_find_bcast_dev(struct domain_device *dev, 1837 struct domain_device **src_dev) 1838 { 1839 struct expander_device *ex = &dev->ex_dev; 1840 int ex_change_count = -1; 1841 int phy_id = -1; 1842 int res; 1843 struct domain_device *ch; 1844 1845 res = sas_get_ex_change_count(dev, &ex_change_count); 1846 if (res) 1847 goto out; 1848 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1849 /* Just detect if this expander phys phy change count changed, 1850 * in order to determine if this expander originate BROADCAST, 1851 * and do not update phy change count field in our structure. 1852 */ 1853 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1854 if (phy_id != -1) { 1855 *src_dev = dev; 1856 ex->ex_change_count = ex_change_count; 1857 SAS_DPRINTK("Expander phy change count has changed\n"); 1858 return res; 1859 } else 1860 SAS_DPRINTK("Expander phys DID NOT change\n"); 1861 } 1862 list_for_each_entry(ch, &ex->children, siblings) { 1863 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1864 res = sas_find_bcast_dev(ch, src_dev); 1865 if (*src_dev) 1866 return res; 1867 } 1868 } 1869 out: 1870 return res; 1871 } 1872 1873 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1874 { 1875 struct expander_device *ex = &dev->ex_dev; 1876 struct domain_device *child, *n; 1877 1878 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1879 set_bit(SAS_DEV_GONE, &child->state); 1880 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1881 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1882 sas_unregister_ex_tree(port, child); 1883 else 1884 sas_unregister_dev(port, child); 1885 } 1886 sas_unregister_dev(port, dev); 1887 } 1888 1889 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1890 int phy_id, bool last) 1891 { 1892 struct expander_device *ex_dev = &parent->ex_dev; 1893 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1894 struct domain_device *child, *n, *found = NULL; 1895 if (last) { 1896 list_for_each_entry_safe(child, n, 1897 &ex_dev->children, siblings) { 1898 if (SAS_ADDR(child->sas_addr) == 1899 SAS_ADDR(phy->attached_sas_addr)) { 1900 set_bit(SAS_DEV_GONE, &child->state); 1901 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1902 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1903 sas_unregister_ex_tree(parent->port, child); 1904 else 1905 sas_unregister_dev(parent->port, child); 1906 found = child; 1907 break; 1908 } 1909 } 1910 sas_disable_routing(parent, phy->attached_sas_addr); 1911 } 1912 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1913 if (phy->port) { 1914 sas_port_delete_phy(phy->port, phy->phy); 1915 sas_device_set_phy(found, phy->port); 1916 if (phy->port->num_phys == 0) 1917 sas_port_delete(phy->port); 1918 phy->port = NULL; 1919 } 1920 } 1921 1922 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1923 const int level) 1924 { 1925 struct expander_device *ex_root = &root->ex_dev; 1926 struct domain_device *child; 1927 int res = 0; 1928 1929 list_for_each_entry(child, &ex_root->children, siblings) { 1930 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1931 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1932 struct sas_expander_device *ex = 1933 rphy_to_expander_device(child->rphy); 1934 1935 if (level > ex->level) 1936 res = sas_discover_bfs_by_root_level(child, 1937 level); 1938 else if (level == ex->level) 1939 res = sas_ex_discover_devices(child, -1); 1940 } 1941 } 1942 return res; 1943 } 1944 1945 static int sas_discover_bfs_by_root(struct domain_device *dev) 1946 { 1947 int res; 1948 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1949 int level = ex->level+1; 1950 1951 res = sas_ex_discover_devices(dev, -1); 1952 if (res) 1953 goto out; 1954 do { 1955 res = sas_discover_bfs_by_root_level(dev, level); 1956 mb(); 1957 level += 1; 1958 } while (level <= dev->port->disc.max_level); 1959 out: 1960 return res; 1961 } 1962 1963 static int sas_discover_new(struct domain_device *dev, int phy_id) 1964 { 1965 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1966 struct domain_device *child; 1967 int res; 1968 1969 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1970 SAS_ADDR(dev->sas_addr), phy_id); 1971 res = sas_ex_phy_discover(dev, phy_id); 1972 if (res) 1973 return res; 1974 1975 if (sas_ex_join_wide_port(dev, phy_id)) 1976 return 0; 1977 1978 res = sas_ex_discover_devices(dev, phy_id); 1979 if (res) 1980 return res; 1981 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1982 if (SAS_ADDR(child->sas_addr) == 1983 SAS_ADDR(ex_phy->attached_sas_addr)) { 1984 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1985 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1986 res = sas_discover_bfs_by_root(child); 1987 break; 1988 } 1989 } 1990 return res; 1991 } 1992 1993 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1994 { 1995 if (old == new) 1996 return true; 1997 1998 /* treat device directed resets as flutter, if we went 1999 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 2000 */ 2001 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 2002 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 2003 return true; 2004 2005 return false; 2006 } 2007 2008 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 2009 { 2010 struct expander_device *ex = &dev->ex_dev; 2011 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2012 enum sas_device_type type = SAS_PHY_UNUSED; 2013 u8 sas_addr[8]; 2014 int res; 2015 2016 memset(sas_addr, 0, 8); 2017 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2018 switch (res) { 2019 case SMP_RESP_NO_PHY: 2020 phy->phy_state = PHY_NOT_PRESENT; 2021 sas_unregister_devs_sas_addr(dev, phy_id, last); 2022 return res; 2023 case SMP_RESP_PHY_VACANT: 2024 phy->phy_state = PHY_VACANT; 2025 sas_unregister_devs_sas_addr(dev, phy_id, last); 2026 return res; 2027 case SMP_RESP_FUNC_ACC: 2028 break; 2029 case -ECOMM: 2030 break; 2031 default: 2032 return res; 2033 } 2034 2035 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2036 phy->phy_state = PHY_EMPTY; 2037 sas_unregister_devs_sas_addr(dev, phy_id, last); 2038 return res; 2039 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2040 dev_type_flutter(type, phy->attached_dev_type)) { 2041 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2042 char *action = ""; 2043 2044 sas_ex_phy_discover(dev, phy_id); 2045 2046 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2047 action = ", needs recovery"; 2048 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", 2049 SAS_ADDR(dev->sas_addr), phy_id, action); 2050 return res; 2051 } 2052 2053 /* delete the old link */ 2054 if (SAS_ADDR(phy->attached_sas_addr) && 2055 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { 2056 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", 2057 SAS_ADDR(dev->sas_addr), phy_id, 2058 SAS_ADDR(phy->attached_sas_addr)); 2059 sas_unregister_devs_sas_addr(dev, phy_id, last); 2060 } 2061 2062 return sas_discover_new(dev, phy_id); 2063 } 2064 2065 /** 2066 * sas_rediscover - revalidate the domain. 2067 * @dev:domain device to be detect. 2068 * @phy_id: the phy id will be detected. 2069 * 2070 * NOTE: this process _must_ quit (return) as soon as any connection 2071 * errors are encountered. Connection recovery is done elsewhere. 2072 * Discover process only interrogates devices in order to discover the 2073 * domain.For plugging out, we un-register the device only when it is 2074 * the last phy in the port, for other phys in this port, we just delete it 2075 * from the port.For inserting, we do discovery when it is the 2076 * first phy,for other phys in this port, we add it to the port to 2077 * forming the wide-port. 2078 */ 2079 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2080 { 2081 struct expander_device *ex = &dev->ex_dev; 2082 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2083 int res = 0; 2084 int i; 2085 bool last = true; /* is this the last phy of the port */ 2086 2087 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2088 SAS_ADDR(dev->sas_addr), phy_id); 2089 2090 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2091 for (i = 0; i < ex->num_phys; i++) { 2092 struct ex_phy *phy = &ex->ex_phy[i]; 2093 2094 if (i == phy_id) 2095 continue; 2096 if (SAS_ADDR(phy->attached_sas_addr) == 2097 SAS_ADDR(changed_phy->attached_sas_addr)) { 2098 SAS_DPRINTK("phy%d part of wide port with " 2099 "phy%d\n", phy_id, i); 2100 last = false; 2101 break; 2102 } 2103 } 2104 res = sas_rediscover_dev(dev, phy_id, last); 2105 } else 2106 res = sas_discover_new(dev, phy_id); 2107 return res; 2108 } 2109 2110 /** 2111 * sas_revalidate_domain -- revalidate the domain 2112 * @port: port to the domain of interest 2113 * 2114 * NOTE: this process _must_ quit (return) as soon as any connection 2115 * errors are encountered. Connection recovery is done elsewhere. 2116 * Discover process only interrogates devices in order to discover the 2117 * domain. 2118 */ 2119 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2120 { 2121 int res; 2122 struct domain_device *dev = NULL; 2123 2124 res = sas_find_bcast_dev(port_dev, &dev); 2125 while (res == 0 && dev) { 2126 struct expander_device *ex = &dev->ex_dev; 2127 int i = 0, phy_id; 2128 2129 do { 2130 phy_id = -1; 2131 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2132 if (phy_id == -1) 2133 break; 2134 res = sas_rediscover(dev, phy_id); 2135 i = phy_id + 1; 2136 } while (i < ex->num_phys); 2137 2138 dev = NULL; 2139 res = sas_find_bcast_dev(port_dev, &dev); 2140 } 2141 return res; 2142 } 2143 2144 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2145 struct sas_rphy *rphy) 2146 { 2147 struct domain_device *dev; 2148 unsigned int reslen = 0; 2149 int ret = -EINVAL; 2150 2151 /* no rphy means no smp target support (ie aic94xx host) */ 2152 if (!rphy) 2153 return sas_smp_host_handler(job, shost); 2154 2155 switch (rphy->identify.device_type) { 2156 case SAS_EDGE_EXPANDER_DEVICE: 2157 case SAS_FANOUT_EXPANDER_DEVICE: 2158 break; 2159 default: 2160 printk("%s: can we send a smp request to a device?\n", 2161 __func__); 2162 goto out; 2163 } 2164 2165 dev = sas_find_dev_by_rphy(rphy); 2166 if (!dev) { 2167 printk("%s: fail to find a domain_device?\n", __func__); 2168 goto out; 2169 } 2170 2171 /* do we need to support multiple segments? */ 2172 if (job->request_payload.sg_cnt > 1 || 2173 job->reply_payload.sg_cnt > 1) { 2174 printk("%s: multiple segments req %u, rsp %u\n", 2175 __func__, job->request_payload.payload_len, 2176 job->reply_payload.payload_len); 2177 goto out; 2178 } 2179 2180 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2181 job->reply_payload.sg_list); 2182 if (ret > 0) { 2183 /* positive number is the untransferred residual */ 2184 reslen = ret; 2185 ret = 0; 2186 } 2187 2188 out: 2189 bsg_job_done(job, ret, reslen); 2190 } 2191