xref: /openbmc/linux/drivers/scsi/libsas/sas_expander.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10 
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15 
16 #include "sas_internal.h"
17 
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22 
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 			     u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28 
29 /* ---------- SMP task management ---------- */
30 
31 static void smp_task_timedout(struct timer_list *t)
32 {
33 	struct sas_task_slow *slow = from_timer(slow, t, timer);
34 	struct sas_task *task = slow->task;
35 	unsigned long flags;
36 
37 	spin_lock_irqsave(&task->task_state_lock, flags);
38 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40 		complete(&task->slow_task->completion);
41 	}
42 	spin_unlock_irqrestore(&task->task_state_lock, flags);
43 }
44 
45 static void smp_task_done(struct sas_task *task)
46 {
47 	del_timer(&task->slow_task->timer);
48 	complete(&task->slow_task->completion);
49 }
50 
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
53 
54 static int smp_execute_task_sg(struct domain_device *dev,
55 		struct scatterlist *req, struct scatterlist *resp)
56 {
57 	int res, retry;
58 	struct sas_task *task = NULL;
59 	struct sas_internal *i =
60 		to_sas_internal(dev->port->ha->core.shost->transportt);
61 	struct sas_ha_struct *ha = dev->port->ha;
62 
63 	pm_runtime_get_sync(ha->dev);
64 	mutex_lock(&dev->ex_dev.cmd_mutex);
65 	for (retry = 0; retry < 3; retry++) {
66 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
67 			res = -ECOMM;
68 			break;
69 		}
70 
71 		task = sas_alloc_slow_task(GFP_KERNEL);
72 		if (!task) {
73 			res = -ENOMEM;
74 			break;
75 		}
76 		task->dev = dev;
77 		task->task_proto = dev->tproto;
78 		task->smp_task.smp_req = *req;
79 		task->smp_task.smp_resp = *resp;
80 
81 		task->task_done = smp_task_done;
82 
83 		task->slow_task->timer.function = smp_task_timedout;
84 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
85 		add_timer(&task->slow_task->timer);
86 
87 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
88 
89 		if (res) {
90 			del_timer(&task->slow_task->timer);
91 			pr_notice("executing SMP task failed:%d\n", res);
92 			break;
93 		}
94 
95 		wait_for_completion(&task->slow_task->completion);
96 		res = -ECOMM;
97 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
98 			pr_notice("smp task timed out or aborted\n");
99 			i->dft->lldd_abort_task(task);
100 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
101 				pr_notice("SMP task aborted and not done\n");
102 				break;
103 			}
104 		}
105 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
106 		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
107 			res = 0;
108 			break;
109 		}
110 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
111 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
112 			/* no error, but return the number of bytes of
113 			 * underrun */
114 			res = task->task_status.residual;
115 			break;
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAS_DATA_OVERRUN) {
119 			res = -EMSGSIZE;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
123 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
124 			break;
125 		else {
126 			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
127 				  __func__,
128 				  SAS_ADDR(dev->sas_addr),
129 				  task->task_status.resp,
130 				  task->task_status.stat);
131 			sas_free_task(task);
132 			task = NULL;
133 		}
134 	}
135 	mutex_unlock(&dev->ex_dev.cmd_mutex);
136 	pm_runtime_put_sync(ha->dev);
137 
138 	BUG_ON(retry == 3 && task != NULL);
139 	sas_free_task(task);
140 	return res;
141 }
142 
143 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
144 			    void *resp, int resp_size)
145 {
146 	struct scatterlist req_sg;
147 	struct scatterlist resp_sg;
148 
149 	sg_init_one(&req_sg, req, req_size);
150 	sg_init_one(&resp_sg, resp, resp_size);
151 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
152 }
153 
154 /* ---------- Allocations ---------- */
155 
156 static inline void *alloc_smp_req(int size)
157 {
158 	u8 *p = kzalloc(size, GFP_KERNEL);
159 	if (p)
160 		p[0] = SMP_REQUEST;
161 	return p;
162 }
163 
164 static inline void *alloc_smp_resp(int size)
165 {
166 	return kzalloc(size, GFP_KERNEL);
167 }
168 
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 	switch (phy->routing_attr) {
172 	case TABLE_ROUTING:
173 		if (dev->ex_dev.t2t_supp)
174 			return 'U';
175 		else
176 			return 'T';
177 	case DIRECT_ROUTING:
178 		return 'D';
179 	case SUBTRACTIVE_ROUTING:
180 		return 'S';
181 	default:
182 		return '?';
183 	}
184 }
185 
186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
187 {
188 	/* This is detecting a failure to transmit initial dev to host
189 	 * FIS as described in section J.5 of sas-2 r16
190 	 */
191 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 		return SAS_SATA_PENDING;
194 	else
195 		return dr->attached_dev_type;
196 }
197 
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 	enum sas_device_type dev_type;
201 	enum sas_linkrate linkrate;
202 	u8 sas_addr[SAS_ADDR_SIZE];
203 	struct smp_resp *resp = rsp;
204 	struct discover_resp *dr = &resp->disc;
205 	struct sas_ha_struct *ha = dev->port->ha;
206 	struct expander_device *ex = &dev->ex_dev;
207 	struct ex_phy *phy = &ex->ex_phy[phy_id];
208 	struct sas_rphy *rphy = dev->rphy;
209 	bool new_phy = !phy->phy;
210 	char *type;
211 
212 	if (new_phy) {
213 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 			return;
215 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216 
217 		/* FIXME: error_handling */
218 		BUG_ON(!phy->phy);
219 	}
220 
221 	switch (resp->result) {
222 	case SMP_RESP_PHY_VACANT:
223 		phy->phy_state = PHY_VACANT;
224 		break;
225 	default:
226 		phy->phy_state = PHY_NOT_PRESENT;
227 		break;
228 	case SMP_RESP_FUNC_ACC:
229 		phy->phy_state = PHY_EMPTY; /* do not know yet */
230 		break;
231 	}
232 
233 	/* check if anything important changed to squelch debug */
234 	dev_type = phy->attached_dev_type;
235 	linkrate  = phy->linkrate;
236 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237 
238 	/* Handle vacant phy - rest of dr data is not valid so skip it */
239 	if (phy->phy_state == PHY_VACANT) {
240 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 		phy->attached_dev_type = SAS_PHY_UNUSED;
242 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 			phy->phy_id = phy_id;
244 			goto skip;
245 		} else
246 			goto out;
247 	}
248 
249 	phy->attached_dev_type = to_dev_type(dr);
250 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251 		goto out;
252 	phy->phy_id = phy_id;
253 	phy->linkrate = dr->linkrate;
254 	phy->attached_sata_host = dr->attached_sata_host;
255 	phy->attached_sata_dev  = dr->attached_sata_dev;
256 	phy->attached_sata_ps   = dr->attached_sata_ps;
257 	phy->attached_iproto = dr->iproto << 1;
258 	phy->attached_tproto = dr->tproto << 1;
259 	/* help some expanders that fail to zero sas_address in the 'no
260 	 * device' case
261 	 */
262 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265 	else
266 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 	phy->attached_phy_id = dr->attached_phy_id;
268 	phy->phy_change_count = dr->change_count;
269 	phy->routing_attr = dr->routing_attr;
270 	phy->virtual = dr->virtual;
271 	phy->last_da_index = -1;
272 
273 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 	phy->phy->identify.device_type = dr->attached_dev_type;
275 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 	if (!phy->attached_tproto && dr->attached_sata_dev)
278 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 	phy->phy->identify.phy_identifier = phy_id;
280 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 	phy->phy->negotiated_linkrate = phy->linkrate;
285 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
286 
287  skip:
288 	if (new_phy)
289 		if (sas_phy_add(phy->phy)) {
290 			sas_phy_free(phy->phy);
291 			return;
292 		}
293 
294  out:
295 	switch (phy->attached_dev_type) {
296 	case SAS_SATA_PENDING:
297 		type = "stp pending";
298 		break;
299 	case SAS_PHY_UNUSED:
300 		type = "no device";
301 		break;
302 	case SAS_END_DEVICE:
303 		if (phy->attached_iproto) {
304 			if (phy->attached_tproto)
305 				type = "host+target";
306 			else
307 				type = "host";
308 		} else {
309 			if (dr->attached_sata_dev)
310 				type = "stp";
311 			else
312 				type = "ssp";
313 		}
314 		break;
315 	case SAS_EDGE_EXPANDER_DEVICE:
316 	case SAS_FANOUT_EXPANDER_DEVICE:
317 		type = "smp";
318 		break;
319 	default:
320 		type = "unknown";
321 	}
322 
323 	/* this routine is polled by libata error recovery so filter
324 	 * unimportant messages
325 	 */
326 	if (new_phy || phy->attached_dev_type != dev_type ||
327 	    phy->linkrate != linkrate ||
328 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
329 		/* pass */;
330 	else
331 		return;
332 
333 	/* if the attached device type changed and ata_eh is active,
334 	 * make sure we run revalidation when eh completes (see:
335 	 * sas_enable_revalidation)
336 	 */
337 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
338 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
339 
340 	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341 		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
342 		 SAS_ADDR(dev->sas_addr), phy->phy_id,
343 		 sas_route_char(dev, phy), phy->linkrate,
344 		 SAS_ADDR(phy->attached_sas_addr), type);
345 }
346 
347 /* check if we have an existing attached ata device on this expander phy */
348 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
349 {
350 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
351 	struct domain_device *dev;
352 	struct sas_rphy *rphy;
353 
354 	if (!ex_phy->port)
355 		return NULL;
356 
357 	rphy = ex_phy->port->rphy;
358 	if (!rphy)
359 		return NULL;
360 
361 	dev = sas_find_dev_by_rphy(rphy);
362 
363 	if (dev && dev_is_sata(dev))
364 		return dev;
365 
366 	return NULL;
367 }
368 
369 #define DISCOVER_REQ_SIZE  16
370 #define DISCOVER_RESP_SIZE 56
371 
372 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
373 				      u8 *disc_resp, int single)
374 {
375 	struct discover_resp *dr;
376 	int res;
377 
378 	disc_req[9] = single;
379 
380 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
381 			       disc_resp, DISCOVER_RESP_SIZE);
382 	if (res)
383 		return res;
384 	dr = &((struct smp_resp *)disc_resp)->disc;
385 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
386 		pr_notice("Found loopback topology, just ignore it!\n");
387 		return 0;
388 	}
389 	sas_set_ex_phy(dev, single, disc_resp);
390 	return 0;
391 }
392 
393 int sas_ex_phy_discover(struct domain_device *dev, int single)
394 {
395 	struct expander_device *ex = &dev->ex_dev;
396 	int  res = 0;
397 	u8   *disc_req;
398 	u8   *disc_resp;
399 
400 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
401 	if (!disc_req)
402 		return -ENOMEM;
403 
404 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
405 	if (!disc_resp) {
406 		kfree(disc_req);
407 		return -ENOMEM;
408 	}
409 
410 	disc_req[1] = SMP_DISCOVER;
411 
412 	if (0 <= single && single < ex->num_phys) {
413 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
414 	} else {
415 		int i;
416 
417 		for (i = 0; i < ex->num_phys; i++) {
418 			res = sas_ex_phy_discover_helper(dev, disc_req,
419 							 disc_resp, i);
420 			if (res)
421 				goto out_err;
422 		}
423 	}
424 out_err:
425 	kfree(disc_resp);
426 	kfree(disc_req);
427 	return res;
428 }
429 
430 static int sas_expander_discover(struct domain_device *dev)
431 {
432 	struct expander_device *ex = &dev->ex_dev;
433 	int res;
434 
435 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
436 	if (!ex->ex_phy)
437 		return -ENOMEM;
438 
439 	res = sas_ex_phy_discover(dev, -1);
440 	if (res)
441 		goto out_err;
442 
443 	return 0;
444  out_err:
445 	kfree(ex->ex_phy);
446 	ex->ex_phy = NULL;
447 	return res;
448 }
449 
450 #define MAX_EXPANDER_PHYS 128
451 
452 static void ex_assign_report_general(struct domain_device *dev,
453 					    struct smp_resp *resp)
454 {
455 	struct report_general_resp *rg = &resp->rg;
456 
457 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
458 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
459 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
460 	dev->ex_dev.t2t_supp = rg->t2t_supp;
461 	dev->ex_dev.conf_route_table = rg->conf_route_table;
462 	dev->ex_dev.configuring = rg->configuring;
463 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
464 }
465 
466 #define RG_REQ_SIZE   8
467 #define RG_RESP_SIZE 32
468 
469 static int sas_ex_general(struct domain_device *dev)
470 {
471 	u8 *rg_req;
472 	struct smp_resp *rg_resp;
473 	int res;
474 	int i;
475 
476 	rg_req = alloc_smp_req(RG_REQ_SIZE);
477 	if (!rg_req)
478 		return -ENOMEM;
479 
480 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
481 	if (!rg_resp) {
482 		kfree(rg_req);
483 		return -ENOMEM;
484 	}
485 
486 	rg_req[1] = SMP_REPORT_GENERAL;
487 
488 	for (i = 0; i < 5; i++) {
489 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
490 				       RG_RESP_SIZE);
491 
492 		if (res) {
493 			pr_notice("RG to ex %016llx failed:0x%x\n",
494 				  SAS_ADDR(dev->sas_addr), res);
495 			goto out;
496 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
497 			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
498 				 SAS_ADDR(dev->sas_addr), rg_resp->result);
499 			res = rg_resp->result;
500 			goto out;
501 		}
502 
503 		ex_assign_report_general(dev, rg_resp);
504 
505 		if (dev->ex_dev.configuring) {
506 			pr_debug("RG: ex %016llx self-configuring...\n",
507 				 SAS_ADDR(dev->sas_addr));
508 			schedule_timeout_interruptible(5*HZ);
509 		} else
510 			break;
511 	}
512 out:
513 	kfree(rg_req);
514 	kfree(rg_resp);
515 	return res;
516 }
517 
518 static void ex_assign_manuf_info(struct domain_device *dev, void
519 					*_mi_resp)
520 {
521 	u8 *mi_resp = _mi_resp;
522 	struct sas_rphy *rphy = dev->rphy;
523 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
524 
525 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
526 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
527 	memcpy(edev->product_rev, mi_resp + 36,
528 	       SAS_EXPANDER_PRODUCT_REV_LEN);
529 
530 	if (mi_resp[8] & 1) {
531 		memcpy(edev->component_vendor_id, mi_resp + 40,
532 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
533 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
534 		edev->component_revision_id = mi_resp[50];
535 	}
536 }
537 
538 #define MI_REQ_SIZE   8
539 #define MI_RESP_SIZE 64
540 
541 static int sas_ex_manuf_info(struct domain_device *dev)
542 {
543 	u8 *mi_req;
544 	u8 *mi_resp;
545 	int res;
546 
547 	mi_req = alloc_smp_req(MI_REQ_SIZE);
548 	if (!mi_req)
549 		return -ENOMEM;
550 
551 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
552 	if (!mi_resp) {
553 		kfree(mi_req);
554 		return -ENOMEM;
555 	}
556 
557 	mi_req[1] = SMP_REPORT_MANUF_INFO;
558 
559 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
560 	if (res) {
561 		pr_notice("MI: ex %016llx failed:0x%x\n",
562 			  SAS_ADDR(dev->sas_addr), res);
563 		goto out;
564 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
565 		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
566 			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
567 		goto out;
568 	}
569 
570 	ex_assign_manuf_info(dev, mi_resp);
571 out:
572 	kfree(mi_req);
573 	kfree(mi_resp);
574 	return res;
575 }
576 
577 #define PC_REQ_SIZE  44
578 #define PC_RESP_SIZE 8
579 
580 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
581 			enum phy_func phy_func,
582 			struct sas_phy_linkrates *rates)
583 {
584 	u8 *pc_req;
585 	u8 *pc_resp;
586 	int res;
587 
588 	pc_req = alloc_smp_req(PC_REQ_SIZE);
589 	if (!pc_req)
590 		return -ENOMEM;
591 
592 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
593 	if (!pc_resp) {
594 		kfree(pc_req);
595 		return -ENOMEM;
596 	}
597 
598 	pc_req[1] = SMP_PHY_CONTROL;
599 	pc_req[9] = phy_id;
600 	pc_req[10] = phy_func;
601 	if (rates) {
602 		pc_req[32] = rates->minimum_linkrate << 4;
603 		pc_req[33] = rates->maximum_linkrate << 4;
604 	}
605 
606 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
607 	if (res) {
608 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
609 		       SAS_ADDR(dev->sas_addr), phy_id, res);
610 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
611 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
612 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
613 		res = pc_resp[2];
614 	}
615 	kfree(pc_resp);
616 	kfree(pc_req);
617 	return res;
618 }
619 
620 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
621 {
622 	struct expander_device *ex = &dev->ex_dev;
623 	struct ex_phy *phy = &ex->ex_phy[phy_id];
624 
625 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
626 	phy->linkrate = SAS_PHY_DISABLED;
627 }
628 
629 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
630 {
631 	struct expander_device *ex = &dev->ex_dev;
632 	int i;
633 
634 	for (i = 0; i < ex->num_phys; i++) {
635 		struct ex_phy *phy = &ex->ex_phy[i];
636 
637 		if (phy->phy_state == PHY_VACANT ||
638 		    phy->phy_state == PHY_NOT_PRESENT)
639 			continue;
640 
641 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
642 			sas_ex_disable_phy(dev, i);
643 	}
644 }
645 
646 static int sas_dev_present_in_domain(struct asd_sas_port *port,
647 					    u8 *sas_addr)
648 {
649 	struct domain_device *dev;
650 
651 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
652 		return 1;
653 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
654 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
655 			return 1;
656 	}
657 	return 0;
658 }
659 
660 #define RPEL_REQ_SIZE	16
661 #define RPEL_RESP_SIZE	32
662 int sas_smp_get_phy_events(struct sas_phy *phy)
663 {
664 	int res;
665 	u8 *req;
666 	u8 *resp;
667 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
668 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
669 
670 	req = alloc_smp_req(RPEL_REQ_SIZE);
671 	if (!req)
672 		return -ENOMEM;
673 
674 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
675 	if (!resp) {
676 		kfree(req);
677 		return -ENOMEM;
678 	}
679 
680 	req[1] = SMP_REPORT_PHY_ERR_LOG;
681 	req[9] = phy->number;
682 
683 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
684 			       resp, RPEL_RESP_SIZE);
685 
686 	if (res)
687 		goto out;
688 
689 	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
690 	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
691 	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
692 	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
693 
694  out:
695 	kfree(req);
696 	kfree(resp);
697 	return res;
698 
699 }
700 
701 #ifdef CONFIG_SCSI_SAS_ATA
702 
703 #define RPS_REQ_SIZE  16
704 #define RPS_RESP_SIZE 60
705 
706 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
707 			    struct smp_resp *rps_resp)
708 {
709 	int res;
710 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
711 	u8 *resp = (u8 *)rps_resp;
712 
713 	if (!rps_req)
714 		return -ENOMEM;
715 
716 	rps_req[1] = SMP_REPORT_PHY_SATA;
717 	rps_req[9] = phy_id;
718 
719 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
720 			       rps_resp, RPS_RESP_SIZE);
721 
722 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
723 	 * standards cockup here.  sas-2 explicitly specifies the FIS
724 	 * should be encoded so that FIS type is in resp[24].
725 	 * However, some expanders endian reverse this.  Undo the
726 	 * reversal here */
727 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
728 		int i;
729 
730 		for (i = 0; i < 5; i++) {
731 			int j = 24 + (i*4);
732 			u8 a, b;
733 			a = resp[j + 0];
734 			b = resp[j + 1];
735 			resp[j + 0] = resp[j + 3];
736 			resp[j + 1] = resp[j + 2];
737 			resp[j + 2] = b;
738 			resp[j + 3] = a;
739 		}
740 	}
741 
742 	kfree(rps_req);
743 	return res;
744 }
745 #endif
746 
747 static void sas_ex_get_linkrate(struct domain_device *parent,
748 				       struct domain_device *child,
749 				       struct ex_phy *parent_phy)
750 {
751 	struct expander_device *parent_ex = &parent->ex_dev;
752 	struct sas_port *port;
753 	int i;
754 
755 	child->pathways = 0;
756 
757 	port = parent_phy->port;
758 
759 	for (i = 0; i < parent_ex->num_phys; i++) {
760 		struct ex_phy *phy = &parent_ex->ex_phy[i];
761 
762 		if (phy->phy_state == PHY_VACANT ||
763 		    phy->phy_state == PHY_NOT_PRESENT)
764 			continue;
765 
766 		if (SAS_ADDR(phy->attached_sas_addr) ==
767 		    SAS_ADDR(child->sas_addr)) {
768 
769 			child->min_linkrate = min(parent->min_linkrate,
770 						  phy->linkrate);
771 			child->max_linkrate = max(parent->max_linkrate,
772 						  phy->linkrate);
773 			child->pathways++;
774 			sas_port_add_phy(port, phy->phy);
775 		}
776 	}
777 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
778 	child->pathways = min(child->pathways, parent->pathways);
779 }
780 
781 static struct domain_device *sas_ex_discover_end_dev(
782 	struct domain_device *parent, int phy_id)
783 {
784 	struct expander_device *parent_ex = &parent->ex_dev;
785 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
786 	struct domain_device *child = NULL;
787 	struct sas_rphy *rphy;
788 	int res;
789 
790 	if (phy->attached_sata_host || phy->attached_sata_ps)
791 		return NULL;
792 
793 	child = sas_alloc_device();
794 	if (!child)
795 		return NULL;
796 
797 	kref_get(&parent->kref);
798 	child->parent = parent;
799 	child->port   = parent->port;
800 	child->iproto = phy->attached_iproto;
801 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
802 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
803 	if (!phy->port) {
804 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
805 		if (unlikely(!phy->port))
806 			goto out_err;
807 		if (unlikely(sas_port_add(phy->port) != 0)) {
808 			sas_port_free(phy->port);
809 			goto out_err;
810 		}
811 	}
812 	sas_ex_get_linkrate(parent, child, phy);
813 	sas_device_set_phy(child, phy->port);
814 
815 #ifdef CONFIG_SCSI_SAS_ATA
816 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
817 		if (child->linkrate > parent->min_linkrate) {
818 			struct sas_phy *cphy = child->phy;
819 			enum sas_linkrate min_prate = cphy->minimum_linkrate,
820 				parent_min_lrate = parent->min_linkrate,
821 				min_linkrate = (min_prate > parent_min_lrate) ?
822 					       parent_min_lrate : 0;
823 			struct sas_phy_linkrates rates = {
824 				.maximum_linkrate = parent->min_linkrate,
825 				.minimum_linkrate = min_linkrate,
826 			};
827 			int ret;
828 
829 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
830 				   SAS_ADDR(child->sas_addr), phy_id);
831 			ret = sas_smp_phy_control(parent, phy_id,
832 						  PHY_FUNC_LINK_RESET, &rates);
833 			if (ret) {
834 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
835 				       SAS_ADDR(child->sas_addr), phy_id, ret);
836 				goto out_free;
837 			}
838 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
839 				  SAS_ADDR(child->sas_addr), phy_id);
840 			child->linkrate = child->min_linkrate;
841 		}
842 		res = sas_get_ata_info(child, phy);
843 		if (res)
844 			goto out_free;
845 
846 		sas_init_dev(child);
847 		res = sas_ata_init(child);
848 		if (res)
849 			goto out_free;
850 		rphy = sas_end_device_alloc(phy->port);
851 		if (!rphy)
852 			goto out_free;
853 		rphy->identify.phy_identifier = phy_id;
854 
855 		child->rphy = rphy;
856 		get_device(&rphy->dev);
857 
858 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
859 
860 		res = sas_discover_sata(child);
861 		if (res) {
862 			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
863 				  SAS_ADDR(child->sas_addr),
864 				  SAS_ADDR(parent->sas_addr), phy_id, res);
865 			goto out_list_del;
866 		}
867 	} else
868 #endif
869 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
870 		child->dev_type = SAS_END_DEVICE;
871 		rphy = sas_end_device_alloc(phy->port);
872 		/* FIXME: error handling */
873 		if (unlikely(!rphy))
874 			goto out_free;
875 		child->tproto = phy->attached_tproto;
876 		sas_init_dev(child);
877 
878 		child->rphy = rphy;
879 		get_device(&rphy->dev);
880 		rphy->identify.phy_identifier = phy_id;
881 		sas_fill_in_rphy(child, rphy);
882 
883 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
884 
885 		res = sas_discover_end_dev(child);
886 		if (res) {
887 			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
888 				  SAS_ADDR(child->sas_addr),
889 				  SAS_ADDR(parent->sas_addr), phy_id, res);
890 			goto out_list_del;
891 		}
892 	} else {
893 		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
894 			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
895 			  phy_id);
896 		goto out_free;
897 	}
898 
899 	list_add_tail(&child->siblings, &parent_ex->children);
900 	return child;
901 
902  out_list_del:
903 	sas_rphy_free(child->rphy);
904 	list_del(&child->disco_list_node);
905 	spin_lock_irq(&parent->port->dev_list_lock);
906 	list_del(&child->dev_list_node);
907 	spin_unlock_irq(&parent->port->dev_list_lock);
908  out_free:
909 	sas_port_delete(phy->port);
910  out_err:
911 	phy->port = NULL;
912 	sas_put_device(child);
913 	return NULL;
914 }
915 
916 /* See if this phy is part of a wide port */
917 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
918 {
919 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920 	int i;
921 
922 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
923 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
924 
925 		if (ephy == phy)
926 			continue;
927 
928 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
929 			    SAS_ADDR_SIZE) && ephy->port) {
930 			sas_port_add_phy(ephy->port, phy->phy);
931 			phy->port = ephy->port;
932 			phy->phy_state = PHY_DEVICE_DISCOVERED;
933 			return true;
934 		}
935 	}
936 
937 	return false;
938 }
939 
940 static struct domain_device *sas_ex_discover_expander(
941 	struct domain_device *parent, int phy_id)
942 {
943 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
944 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
945 	struct domain_device *child = NULL;
946 	struct sas_rphy *rphy;
947 	struct sas_expander_device *edev;
948 	struct asd_sas_port *port;
949 	int res;
950 
951 	if (phy->routing_attr == DIRECT_ROUTING) {
952 		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
953 			SAS_ADDR(parent->sas_addr), phy_id,
954 			SAS_ADDR(phy->attached_sas_addr),
955 			phy->attached_phy_id);
956 		return NULL;
957 	}
958 	child = sas_alloc_device();
959 	if (!child)
960 		return NULL;
961 
962 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
963 	/* FIXME: better error handling */
964 	BUG_ON(sas_port_add(phy->port) != 0);
965 
966 
967 	switch (phy->attached_dev_type) {
968 	case SAS_EDGE_EXPANDER_DEVICE:
969 		rphy = sas_expander_alloc(phy->port,
970 					  SAS_EDGE_EXPANDER_DEVICE);
971 		break;
972 	case SAS_FANOUT_EXPANDER_DEVICE:
973 		rphy = sas_expander_alloc(phy->port,
974 					  SAS_FANOUT_EXPANDER_DEVICE);
975 		break;
976 	default:
977 		rphy = NULL;	/* shut gcc up */
978 		BUG();
979 	}
980 	port = parent->port;
981 	child->rphy = rphy;
982 	get_device(&rphy->dev);
983 	edev = rphy_to_expander_device(rphy);
984 	child->dev_type = phy->attached_dev_type;
985 	kref_get(&parent->kref);
986 	child->parent = parent;
987 	child->port = port;
988 	child->iproto = phy->attached_iproto;
989 	child->tproto = phy->attached_tproto;
990 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
991 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
992 	sas_ex_get_linkrate(parent, child, phy);
993 	edev->level = parent_ex->level + 1;
994 	parent->port->disc.max_level = max(parent->port->disc.max_level,
995 					   edev->level);
996 	sas_init_dev(child);
997 	sas_fill_in_rphy(child, rphy);
998 	sas_rphy_add(rphy);
999 
1000 	spin_lock_irq(&parent->port->dev_list_lock);
1001 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1002 	spin_unlock_irq(&parent->port->dev_list_lock);
1003 
1004 	res = sas_discover_expander(child);
1005 	if (res) {
1006 		sas_rphy_delete(rphy);
1007 		spin_lock_irq(&parent->port->dev_list_lock);
1008 		list_del(&child->dev_list_node);
1009 		spin_unlock_irq(&parent->port->dev_list_lock);
1010 		sas_put_device(child);
1011 		sas_port_delete(phy->port);
1012 		phy->port = NULL;
1013 		return NULL;
1014 	}
1015 	list_add_tail(&child->siblings, &parent->ex_dev.children);
1016 	return child;
1017 }
1018 
1019 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1020 {
1021 	struct expander_device *ex = &dev->ex_dev;
1022 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1023 	struct domain_device *child = NULL;
1024 	int res = 0;
1025 
1026 	/* Phy state */
1027 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1028 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1029 			res = sas_ex_phy_discover(dev, phy_id);
1030 		if (res)
1031 			return res;
1032 	}
1033 
1034 	/* Parent and domain coherency */
1035 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1036 			     SAS_ADDR(dev->port->sas_addr))) {
1037 		sas_add_parent_port(dev, phy_id);
1038 		return 0;
1039 	}
1040 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1041 			    SAS_ADDR(dev->parent->sas_addr))) {
1042 		sas_add_parent_port(dev, phy_id);
1043 		if (ex_phy->routing_attr == TABLE_ROUTING)
1044 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1045 		return 0;
1046 	}
1047 
1048 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1049 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1050 
1051 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1052 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1053 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1054 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1055 		}
1056 		return 0;
1057 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1058 		return 0;
1059 
1060 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1061 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1062 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1063 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1064 		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1065 			ex_phy->attached_dev_type,
1066 			SAS_ADDR(dev->sas_addr),
1067 			phy_id);
1068 		return 0;
1069 	}
1070 
1071 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1072 	if (res) {
1073 		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1074 			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1075 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1076 		return res;
1077 	}
1078 
1079 	if (sas_ex_join_wide_port(dev, phy_id)) {
1080 		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1081 			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1082 		return res;
1083 	}
1084 
1085 	switch (ex_phy->attached_dev_type) {
1086 	case SAS_END_DEVICE:
1087 	case SAS_SATA_PENDING:
1088 		child = sas_ex_discover_end_dev(dev, phy_id);
1089 		break;
1090 	case SAS_FANOUT_EXPANDER_DEVICE:
1091 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1092 			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1093 				 SAS_ADDR(ex_phy->attached_sas_addr),
1094 				 ex_phy->attached_phy_id,
1095 				 SAS_ADDR(dev->sas_addr),
1096 				 phy_id);
1097 			sas_ex_disable_phy(dev, phy_id);
1098 			return res;
1099 		} else
1100 			memcpy(dev->port->disc.fanout_sas_addr,
1101 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1102 		fallthrough;
1103 	case SAS_EDGE_EXPANDER_DEVICE:
1104 		child = sas_ex_discover_expander(dev, phy_id);
1105 		break;
1106 	default:
1107 		break;
1108 	}
1109 
1110 	if (!child)
1111 		pr_notice("ex %016llx phy%02d failed to discover\n",
1112 			  SAS_ADDR(dev->sas_addr), phy_id);
1113 	return res;
1114 }
1115 
1116 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1117 {
1118 	struct expander_device *ex = &dev->ex_dev;
1119 	int i;
1120 
1121 	for (i = 0; i < ex->num_phys; i++) {
1122 		struct ex_phy *phy = &ex->ex_phy[i];
1123 
1124 		if (phy->phy_state == PHY_VACANT ||
1125 		    phy->phy_state == PHY_NOT_PRESENT)
1126 			continue;
1127 
1128 		if (dev_is_expander(phy->attached_dev_type) &&
1129 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130 
1131 			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1132 
1133 			return 1;
1134 		}
1135 	}
1136 	return 0;
1137 }
1138 
1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 {
1141 	struct expander_device *ex = &dev->ex_dev;
1142 	struct domain_device *child;
1143 	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1144 
1145 	list_for_each_entry(child, &ex->children, siblings) {
1146 		if (!dev_is_expander(child->dev_type))
1147 			continue;
1148 		if (sub_addr[0] == 0) {
1149 			sas_find_sub_addr(child, sub_addr);
1150 			continue;
1151 		} else {
1152 			u8 s2[SAS_ADDR_SIZE];
1153 
1154 			if (sas_find_sub_addr(child, s2) &&
1155 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1156 
1157 				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1158 					  SAS_ADDR(dev->sas_addr),
1159 					  SAS_ADDR(child->sas_addr),
1160 					  SAS_ADDR(s2),
1161 					  SAS_ADDR(sub_addr));
1162 
1163 				sas_ex_disable_port(child, s2);
1164 			}
1165 		}
1166 	}
1167 	return 0;
1168 }
1169 /**
1170  * sas_ex_discover_devices - discover devices attached to this expander
1171  * @dev: pointer to the expander domain device
1172  * @single: if you want to do a single phy, else set to -1;
1173  *
1174  * Configure this expander for use with its devices and register the
1175  * devices of this expander.
1176  */
1177 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1178 {
1179 	struct expander_device *ex = &dev->ex_dev;
1180 	int i = 0, end = ex->num_phys;
1181 	int res = 0;
1182 
1183 	if (0 <= single && single < end) {
1184 		i = single;
1185 		end = i+1;
1186 	}
1187 
1188 	for ( ; i < end; i++) {
1189 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1190 
1191 		if (ex_phy->phy_state == PHY_VACANT ||
1192 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1193 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1194 			continue;
1195 
1196 		switch (ex_phy->linkrate) {
1197 		case SAS_PHY_DISABLED:
1198 		case SAS_PHY_RESET_PROBLEM:
1199 		case SAS_SATA_PORT_SELECTOR:
1200 			continue;
1201 		default:
1202 			res = sas_ex_discover_dev(dev, i);
1203 			if (res)
1204 				break;
1205 			continue;
1206 		}
1207 	}
1208 
1209 	if (!res)
1210 		sas_check_level_subtractive_boundary(dev);
1211 
1212 	return res;
1213 }
1214 
1215 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1216 {
1217 	struct expander_device *ex = &dev->ex_dev;
1218 	int i;
1219 	u8  *sub_sas_addr = NULL;
1220 
1221 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1222 		return 0;
1223 
1224 	for (i = 0; i < ex->num_phys; i++) {
1225 		struct ex_phy *phy = &ex->ex_phy[i];
1226 
1227 		if (phy->phy_state == PHY_VACANT ||
1228 		    phy->phy_state == PHY_NOT_PRESENT)
1229 			continue;
1230 
1231 		if (dev_is_expander(phy->attached_dev_type) &&
1232 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1233 
1234 			if (!sub_sas_addr)
1235 				sub_sas_addr = &phy->attached_sas_addr[0];
1236 			else if (SAS_ADDR(sub_sas_addr) !=
1237 				 SAS_ADDR(phy->attached_sas_addr)) {
1238 
1239 				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1240 					  SAS_ADDR(dev->sas_addr), i,
1241 					  SAS_ADDR(phy->attached_sas_addr),
1242 					  SAS_ADDR(sub_sas_addr));
1243 				sas_ex_disable_phy(dev, i);
1244 			}
1245 		}
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void sas_print_parent_topology_bug(struct domain_device *child,
1251 						 struct ex_phy *parent_phy,
1252 						 struct ex_phy *child_phy)
1253 {
1254 	static const char *ex_type[] = {
1255 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1256 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1257 	};
1258 	struct domain_device *parent = child->parent;
1259 
1260 	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1261 		  ex_type[parent->dev_type],
1262 		  SAS_ADDR(parent->sas_addr),
1263 		  parent_phy->phy_id,
1264 
1265 		  ex_type[child->dev_type],
1266 		  SAS_ADDR(child->sas_addr),
1267 		  child_phy->phy_id,
1268 
1269 		  sas_route_char(parent, parent_phy),
1270 		  sas_route_char(child, child_phy));
1271 }
1272 
1273 static int sas_check_eeds(struct domain_device *child,
1274 				 struct ex_phy *parent_phy,
1275 				 struct ex_phy *child_phy)
1276 {
1277 	int res = 0;
1278 	struct domain_device *parent = child->parent;
1279 
1280 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1281 		res = -ENODEV;
1282 		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1283 			SAS_ADDR(parent->sas_addr),
1284 			parent_phy->phy_id,
1285 			SAS_ADDR(child->sas_addr),
1286 			child_phy->phy_id,
1287 			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1288 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1289 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1290 		       SAS_ADDR_SIZE);
1291 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1292 		       SAS_ADDR_SIZE);
1293 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1294 		    SAS_ADDR(parent->sas_addr)) ||
1295 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1296 		    SAS_ADDR(child->sas_addr)))
1297 		   &&
1298 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1299 		     SAS_ADDR(parent->sas_addr)) ||
1300 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1301 		     SAS_ADDR(child->sas_addr))))
1302 		;
1303 	else {
1304 		res = -ENODEV;
1305 		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1306 			SAS_ADDR(parent->sas_addr),
1307 			parent_phy->phy_id,
1308 			SAS_ADDR(child->sas_addr),
1309 			child_phy->phy_id);
1310 	}
1311 
1312 	return res;
1313 }
1314 
1315 /* Here we spill over 80 columns.  It is intentional.
1316  */
1317 static int sas_check_parent_topology(struct domain_device *child)
1318 {
1319 	struct expander_device *child_ex = &child->ex_dev;
1320 	struct expander_device *parent_ex;
1321 	int i;
1322 	int res = 0;
1323 
1324 	if (!child->parent)
1325 		return 0;
1326 
1327 	if (!dev_is_expander(child->parent->dev_type))
1328 		return 0;
1329 
1330 	parent_ex = &child->parent->ex_dev;
1331 
1332 	for (i = 0; i < parent_ex->num_phys; i++) {
1333 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1334 		struct ex_phy *child_phy;
1335 
1336 		if (parent_phy->phy_state == PHY_VACANT ||
1337 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1338 			continue;
1339 
1340 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1341 			continue;
1342 
1343 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1344 
1345 		switch (child->parent->dev_type) {
1346 		case SAS_EDGE_EXPANDER_DEVICE:
1347 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1348 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1349 				    child_phy->routing_attr != TABLE_ROUTING) {
1350 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1351 					res = -ENODEV;
1352 				}
1353 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1354 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1355 					res = sas_check_eeds(child, parent_phy, child_phy);
1356 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1357 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1358 					res = -ENODEV;
1359 				}
1360 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1361 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1362 				    (child_phy->routing_attr == TABLE_ROUTING &&
1363 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1364 					/* All good */;
1365 				} else {
1366 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367 					res = -ENODEV;
1368 				}
1369 			}
1370 			break;
1371 		case SAS_FANOUT_EXPANDER_DEVICE:
1372 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1373 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1374 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1375 				res = -ENODEV;
1376 			}
1377 			break;
1378 		default:
1379 			break;
1380 		}
1381 	}
1382 
1383 	return res;
1384 }
1385 
1386 #define RRI_REQ_SIZE  16
1387 #define RRI_RESP_SIZE 44
1388 
1389 static int sas_configure_present(struct domain_device *dev, int phy_id,
1390 				 u8 *sas_addr, int *index, int *present)
1391 {
1392 	int i, res = 0;
1393 	struct expander_device *ex = &dev->ex_dev;
1394 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1395 	u8 *rri_req;
1396 	u8 *rri_resp;
1397 
1398 	*present = 0;
1399 	*index = 0;
1400 
1401 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1402 	if (!rri_req)
1403 		return -ENOMEM;
1404 
1405 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1406 	if (!rri_resp) {
1407 		kfree(rri_req);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1412 	rri_req[9] = phy_id;
1413 
1414 	for (i = 0; i < ex->max_route_indexes ; i++) {
1415 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1416 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1417 				       RRI_RESP_SIZE);
1418 		if (res)
1419 			goto out;
1420 		res = rri_resp[2];
1421 		if (res == SMP_RESP_NO_INDEX) {
1422 			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1423 				SAS_ADDR(dev->sas_addr), phy_id, i);
1424 			goto out;
1425 		} else if (res != SMP_RESP_FUNC_ACC) {
1426 			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1427 				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1428 				  i, res);
1429 			goto out;
1430 		}
1431 		if (SAS_ADDR(sas_addr) != 0) {
1432 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1433 				*index = i;
1434 				if ((rri_resp[12] & 0x80) == 0x80)
1435 					*present = 0;
1436 				else
1437 					*present = 1;
1438 				goto out;
1439 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1440 				*index = i;
1441 				*present = 0;
1442 				goto out;
1443 			}
1444 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1445 			   phy->last_da_index < i) {
1446 			phy->last_da_index = i;
1447 			*index = i;
1448 			*present = 0;
1449 			goto out;
1450 		}
1451 	}
1452 	res = -1;
1453 out:
1454 	kfree(rri_req);
1455 	kfree(rri_resp);
1456 	return res;
1457 }
1458 
1459 #define CRI_REQ_SIZE  44
1460 #define CRI_RESP_SIZE  8
1461 
1462 static int sas_configure_set(struct domain_device *dev, int phy_id,
1463 			     u8 *sas_addr, int index, int include)
1464 {
1465 	int res;
1466 	u8 *cri_req;
1467 	u8 *cri_resp;
1468 
1469 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1470 	if (!cri_req)
1471 		return -ENOMEM;
1472 
1473 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1474 	if (!cri_resp) {
1475 		kfree(cri_req);
1476 		return -ENOMEM;
1477 	}
1478 
1479 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1480 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1481 	cri_req[9] = phy_id;
1482 	if (SAS_ADDR(sas_addr) == 0 || !include)
1483 		cri_req[12] |= 0x80;
1484 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1485 
1486 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1487 			       CRI_RESP_SIZE);
1488 	if (res)
1489 		goto out;
1490 	res = cri_resp[2];
1491 	if (res == SMP_RESP_NO_INDEX) {
1492 		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1493 			SAS_ADDR(dev->sas_addr), phy_id, index);
1494 	}
1495 out:
1496 	kfree(cri_req);
1497 	kfree(cri_resp);
1498 	return res;
1499 }
1500 
1501 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502 				    u8 *sas_addr, int include)
1503 {
1504 	int index;
1505 	int present;
1506 	int res;
1507 
1508 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509 	if (res)
1510 		return res;
1511 	if (include ^ present)
1512 		return sas_configure_set(dev, phy_id, sas_addr, index,
1513 					 include);
1514 
1515 	return res;
1516 }
1517 
1518 /**
1519  * sas_configure_parent - configure routing table of parent
1520  * @parent: parent expander
1521  * @child: child expander
1522  * @sas_addr: SAS port identifier of device directly attached to child
1523  * @include: whether or not to include @child in the expander routing table
1524  */
1525 static int sas_configure_parent(struct domain_device *parent,
1526 				struct domain_device *child,
1527 				u8 *sas_addr, int include)
1528 {
1529 	struct expander_device *ex_parent = &parent->ex_dev;
1530 	int res = 0;
1531 	int i;
1532 
1533 	if (parent->parent) {
1534 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1535 					   include);
1536 		if (res)
1537 			return res;
1538 	}
1539 
1540 	if (ex_parent->conf_route_table == 0) {
1541 		pr_debug("ex %016llx has self-configuring routing table\n",
1542 			 SAS_ADDR(parent->sas_addr));
1543 		return 0;
1544 	}
1545 
1546 	for (i = 0; i < ex_parent->num_phys; i++) {
1547 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1548 
1549 		if ((phy->routing_attr == TABLE_ROUTING) &&
1550 		    (SAS_ADDR(phy->attached_sas_addr) ==
1551 		     SAS_ADDR(child->sas_addr))) {
1552 			res = sas_configure_phy(parent, i, sas_addr, include);
1553 			if (res)
1554 				return res;
1555 		}
1556 	}
1557 
1558 	return res;
1559 }
1560 
1561 /**
1562  * sas_configure_routing - configure routing
1563  * @dev: expander device
1564  * @sas_addr: port identifier of device directly attached to the expander device
1565  */
1566 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1567 {
1568 	if (dev->parent)
1569 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1570 	return 0;
1571 }
1572 
1573 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1574 {
1575 	if (dev->parent)
1576 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1577 	return 0;
1578 }
1579 
1580 /**
1581  * sas_discover_expander - expander discovery
1582  * @dev: pointer to expander domain device
1583  *
1584  * See comment in sas_discover_sata().
1585  */
1586 static int sas_discover_expander(struct domain_device *dev)
1587 {
1588 	int res;
1589 
1590 	res = sas_notify_lldd_dev_found(dev);
1591 	if (res)
1592 		return res;
1593 
1594 	res = sas_ex_general(dev);
1595 	if (res)
1596 		goto out_err;
1597 	res = sas_ex_manuf_info(dev);
1598 	if (res)
1599 		goto out_err;
1600 
1601 	res = sas_expander_discover(dev);
1602 	if (res) {
1603 		pr_warn("expander %016llx discovery failed(0x%x)\n",
1604 			SAS_ADDR(dev->sas_addr), res);
1605 		goto out_err;
1606 	}
1607 
1608 	sas_check_ex_subtractive_boundary(dev);
1609 	res = sas_check_parent_topology(dev);
1610 	if (res)
1611 		goto out_err;
1612 	return 0;
1613 out_err:
1614 	sas_notify_lldd_dev_gone(dev);
1615 	return res;
1616 }
1617 
1618 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1619 {
1620 	int res = 0;
1621 	struct domain_device *dev;
1622 
1623 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1624 		if (dev_is_expander(dev->dev_type)) {
1625 			struct sas_expander_device *ex =
1626 				rphy_to_expander_device(dev->rphy);
1627 
1628 			if (level == ex->level)
1629 				res = sas_ex_discover_devices(dev, -1);
1630 			else if (level > 0)
1631 				res = sas_ex_discover_devices(port->port_dev, -1);
1632 
1633 		}
1634 	}
1635 
1636 	return res;
1637 }
1638 
1639 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1640 {
1641 	int res;
1642 	int level;
1643 
1644 	do {
1645 		level = port->disc.max_level;
1646 		res = sas_ex_level_discovery(port, level);
1647 		mb();
1648 	} while (level < port->disc.max_level);
1649 
1650 	return res;
1651 }
1652 
1653 int sas_discover_root_expander(struct domain_device *dev)
1654 {
1655 	int res;
1656 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1657 
1658 	res = sas_rphy_add(dev->rphy);
1659 	if (res)
1660 		goto out_err;
1661 
1662 	ex->level = dev->port->disc.max_level; /* 0 */
1663 	res = sas_discover_expander(dev);
1664 	if (res)
1665 		goto out_err2;
1666 
1667 	sas_ex_bfs_disc(dev->port);
1668 
1669 	return res;
1670 
1671 out_err2:
1672 	sas_rphy_remove(dev->rphy);
1673 out_err:
1674 	return res;
1675 }
1676 
1677 /* ---------- Domain revalidation ---------- */
1678 
1679 static int sas_get_phy_discover(struct domain_device *dev,
1680 				int phy_id, struct smp_resp *disc_resp)
1681 {
1682 	int res;
1683 	u8 *disc_req;
1684 
1685 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1686 	if (!disc_req)
1687 		return -ENOMEM;
1688 
1689 	disc_req[1] = SMP_DISCOVER;
1690 	disc_req[9] = phy_id;
1691 
1692 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1693 			       disc_resp, DISCOVER_RESP_SIZE);
1694 	if (res)
1695 		goto out;
1696 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1697 		res = disc_resp->result;
1698 		goto out;
1699 	}
1700 out:
1701 	kfree(disc_req);
1702 	return res;
1703 }
1704 
1705 static int sas_get_phy_change_count(struct domain_device *dev,
1706 				    int phy_id, int *pcc)
1707 {
1708 	int res;
1709 	struct smp_resp *disc_resp;
1710 
1711 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1712 	if (!disc_resp)
1713 		return -ENOMEM;
1714 
1715 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1716 	if (!res)
1717 		*pcc = disc_resp->disc.change_count;
1718 
1719 	kfree(disc_resp);
1720 	return res;
1721 }
1722 
1723 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1724 				    u8 *sas_addr, enum sas_device_type *type)
1725 {
1726 	int res;
1727 	struct smp_resp *disc_resp;
1728 	struct discover_resp *dr;
1729 
1730 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1731 	if (!disc_resp)
1732 		return -ENOMEM;
1733 	dr = &disc_resp->disc;
1734 
1735 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1736 	if (res == 0) {
1737 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1738 		       SAS_ADDR_SIZE);
1739 		*type = to_dev_type(dr);
1740 		if (*type == 0)
1741 			memset(sas_addr, 0, SAS_ADDR_SIZE);
1742 	}
1743 	kfree(disc_resp);
1744 	return res;
1745 }
1746 
1747 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1748 			      int from_phy, bool update)
1749 {
1750 	struct expander_device *ex = &dev->ex_dev;
1751 	int res = 0;
1752 	int i;
1753 
1754 	for (i = from_phy; i < ex->num_phys; i++) {
1755 		int phy_change_count = 0;
1756 
1757 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1758 		switch (res) {
1759 		case SMP_RESP_PHY_VACANT:
1760 		case SMP_RESP_NO_PHY:
1761 			continue;
1762 		case SMP_RESP_FUNC_ACC:
1763 			break;
1764 		default:
1765 			return res;
1766 		}
1767 
1768 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1769 			if (update)
1770 				ex->ex_phy[i].phy_change_count =
1771 					phy_change_count;
1772 			*phy_id = i;
1773 			return 0;
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 
1779 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1780 {
1781 	int res;
1782 	u8  *rg_req;
1783 	struct smp_resp  *rg_resp;
1784 
1785 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1786 	if (!rg_req)
1787 		return -ENOMEM;
1788 
1789 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1790 	if (!rg_resp) {
1791 		kfree(rg_req);
1792 		return -ENOMEM;
1793 	}
1794 
1795 	rg_req[1] = SMP_REPORT_GENERAL;
1796 
1797 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1798 			       RG_RESP_SIZE);
1799 	if (res)
1800 		goto out;
1801 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1802 		res = rg_resp->result;
1803 		goto out;
1804 	}
1805 
1806 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1807 out:
1808 	kfree(rg_resp);
1809 	kfree(rg_req);
1810 	return res;
1811 }
1812 /**
1813  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1814  * @dev:domain device to be detect.
1815  * @src_dev: the device which originated BROADCAST(CHANGE).
1816  *
1817  * Add self-configuration expander support. Suppose two expander cascading,
1818  * when the first level expander is self-configuring, hotplug the disks in
1819  * second level expander, BROADCAST(CHANGE) will not only be originated
1820  * in the second level expander, but also be originated in the first level
1821  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822  * expander changed count in two level expanders will all increment at least
1823  * once, but the phy which chang count has changed is the source device which
1824  * we concerned.
1825  */
1826 
1827 static int sas_find_bcast_dev(struct domain_device *dev,
1828 			      struct domain_device **src_dev)
1829 {
1830 	struct expander_device *ex = &dev->ex_dev;
1831 	int ex_change_count = -1;
1832 	int phy_id = -1;
1833 	int res;
1834 	struct domain_device *ch;
1835 
1836 	res = sas_get_ex_change_count(dev, &ex_change_count);
1837 	if (res)
1838 		goto out;
1839 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1840 		/* Just detect if this expander phys phy change count changed,
1841 		* in order to determine if this expander originate BROADCAST,
1842 		* and do not update phy change count field in our structure.
1843 		*/
1844 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1845 		if (phy_id != -1) {
1846 			*src_dev = dev;
1847 			ex->ex_change_count = ex_change_count;
1848 			pr_info("ex %016llx phy%02d change count has changed\n",
1849 				SAS_ADDR(dev->sas_addr), phy_id);
1850 			return res;
1851 		} else
1852 			pr_info("ex %016llx phys DID NOT change\n",
1853 				SAS_ADDR(dev->sas_addr));
1854 	}
1855 	list_for_each_entry(ch, &ex->children, siblings) {
1856 		if (dev_is_expander(ch->dev_type)) {
1857 			res = sas_find_bcast_dev(ch, src_dev);
1858 			if (*src_dev)
1859 				return res;
1860 		}
1861 	}
1862 out:
1863 	return res;
1864 }
1865 
1866 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1867 {
1868 	struct expander_device *ex = &dev->ex_dev;
1869 	struct domain_device *child, *n;
1870 
1871 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1872 		set_bit(SAS_DEV_GONE, &child->state);
1873 		if (dev_is_expander(child->dev_type))
1874 			sas_unregister_ex_tree(port, child);
1875 		else
1876 			sas_unregister_dev(port, child);
1877 	}
1878 	sas_unregister_dev(port, dev);
1879 }
1880 
1881 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1882 					 int phy_id, bool last)
1883 {
1884 	struct expander_device *ex_dev = &parent->ex_dev;
1885 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1886 	struct domain_device *child, *n, *found = NULL;
1887 	if (last) {
1888 		list_for_each_entry_safe(child, n,
1889 			&ex_dev->children, siblings) {
1890 			if (SAS_ADDR(child->sas_addr) ==
1891 			    SAS_ADDR(phy->attached_sas_addr)) {
1892 				set_bit(SAS_DEV_GONE, &child->state);
1893 				if (dev_is_expander(child->dev_type))
1894 					sas_unregister_ex_tree(parent->port, child);
1895 				else
1896 					sas_unregister_dev(parent->port, child);
1897 				found = child;
1898 				break;
1899 			}
1900 		}
1901 		sas_disable_routing(parent, phy->attached_sas_addr);
1902 	}
1903 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1904 	if (phy->port) {
1905 		sas_port_delete_phy(phy->port, phy->phy);
1906 		sas_device_set_phy(found, phy->port);
1907 		if (phy->port->num_phys == 0)
1908 			list_add_tail(&phy->port->del_list,
1909 				&parent->port->sas_port_del_list);
1910 		phy->port = NULL;
1911 	}
1912 }
1913 
1914 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1915 					  const int level)
1916 {
1917 	struct expander_device *ex_root = &root->ex_dev;
1918 	struct domain_device *child;
1919 	int res = 0;
1920 
1921 	list_for_each_entry(child, &ex_root->children, siblings) {
1922 		if (dev_is_expander(child->dev_type)) {
1923 			struct sas_expander_device *ex =
1924 				rphy_to_expander_device(child->rphy);
1925 
1926 			if (level > ex->level)
1927 				res = sas_discover_bfs_by_root_level(child,
1928 								     level);
1929 			else if (level == ex->level)
1930 				res = sas_ex_discover_devices(child, -1);
1931 		}
1932 	}
1933 	return res;
1934 }
1935 
1936 static int sas_discover_bfs_by_root(struct domain_device *dev)
1937 {
1938 	int res;
1939 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1940 	int level = ex->level+1;
1941 
1942 	res = sas_ex_discover_devices(dev, -1);
1943 	if (res)
1944 		goto out;
1945 	do {
1946 		res = sas_discover_bfs_by_root_level(dev, level);
1947 		mb();
1948 		level += 1;
1949 	} while (level <= dev->port->disc.max_level);
1950 out:
1951 	return res;
1952 }
1953 
1954 static int sas_discover_new(struct domain_device *dev, int phy_id)
1955 {
1956 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1957 	struct domain_device *child;
1958 	int res;
1959 
1960 	pr_debug("ex %016llx phy%02d new device attached\n",
1961 		 SAS_ADDR(dev->sas_addr), phy_id);
1962 	res = sas_ex_phy_discover(dev, phy_id);
1963 	if (res)
1964 		return res;
1965 
1966 	if (sas_ex_join_wide_port(dev, phy_id))
1967 		return 0;
1968 
1969 	res = sas_ex_discover_devices(dev, phy_id);
1970 	if (res)
1971 		return res;
1972 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973 		if (SAS_ADDR(child->sas_addr) ==
1974 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1975 			if (dev_is_expander(child->dev_type))
1976 				res = sas_discover_bfs_by_root(child);
1977 			break;
1978 		}
1979 	}
1980 	return res;
1981 }
1982 
1983 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1984 {
1985 	if (old == new)
1986 		return true;
1987 
1988 	/* treat device directed resets as flutter, if we went
1989 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1990 	 */
1991 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1992 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1993 		return true;
1994 
1995 	return false;
1996 }
1997 
1998 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1999 			      bool last, int sibling)
2000 {
2001 	struct expander_device *ex = &dev->ex_dev;
2002 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2003 	enum sas_device_type type = SAS_PHY_UNUSED;
2004 	u8 sas_addr[SAS_ADDR_SIZE];
2005 	char msg[80] = "";
2006 	int res;
2007 
2008 	if (!last)
2009 		sprintf(msg, ", part of a wide port with phy%02d", sibling);
2010 
2011 	pr_debug("ex %016llx rediscovering phy%02d%s\n",
2012 		 SAS_ADDR(dev->sas_addr), phy_id, msg);
2013 
2014 	memset(sas_addr, 0, SAS_ADDR_SIZE);
2015 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2016 	switch (res) {
2017 	case SMP_RESP_NO_PHY:
2018 		phy->phy_state = PHY_NOT_PRESENT;
2019 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2020 		return res;
2021 	case SMP_RESP_PHY_VACANT:
2022 		phy->phy_state = PHY_VACANT;
2023 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2024 		return res;
2025 	case SMP_RESP_FUNC_ACC:
2026 		break;
2027 	case -ECOMM:
2028 		break;
2029 	default:
2030 		return res;
2031 	}
2032 
2033 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2034 		phy->phy_state = PHY_EMPTY;
2035 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2036 		/*
2037 		 * Even though the PHY is empty, for convenience we discover
2038 		 * the PHY to update the PHY info, like negotiated linkrate.
2039 		 */
2040 		sas_ex_phy_discover(dev, phy_id);
2041 		return res;
2042 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043 		   dev_type_flutter(type, phy->attached_dev_type)) {
2044 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045 		char *action = "";
2046 
2047 		sas_ex_phy_discover(dev, phy_id);
2048 
2049 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050 			action = ", needs recovery";
2051 		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2052 			 SAS_ADDR(dev->sas_addr), phy_id, action);
2053 		return res;
2054 	}
2055 
2056 	/* we always have to delete the old device when we went here */
2057 	pr_info("ex %016llx phy%02d replace %016llx\n",
2058 		SAS_ADDR(dev->sas_addr), phy_id,
2059 		SAS_ADDR(phy->attached_sas_addr));
2060 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2061 
2062 	return sas_discover_new(dev, phy_id);
2063 }
2064 
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081 	struct expander_device *ex = &dev->ex_dev;
2082 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083 	int res = 0;
2084 	int i;
2085 	bool last = true;	/* is this the last phy of the port */
2086 
2087 	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2088 		 SAS_ADDR(dev->sas_addr), phy_id);
2089 
2090 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091 		for (i = 0; i < ex->num_phys; i++) {
2092 			struct ex_phy *phy = &ex->ex_phy[i];
2093 
2094 			if (i == phy_id)
2095 				continue;
2096 			if (SAS_ADDR(phy->attached_sas_addr) ==
2097 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2098 				last = false;
2099 				break;
2100 			}
2101 		}
2102 		res = sas_rediscover_dev(dev, phy_id, last, i);
2103 	} else
2104 		res = sas_discover_new(dev, phy_id);
2105 	return res;
2106 }
2107 
2108 /**
2109  * sas_ex_revalidate_domain - revalidate the domain
2110  * @port_dev: port domain device.
2111  *
2112  * NOTE: this process _must_ quit (return) as soon as any connection
2113  * errors are encountered.  Connection recovery is done elsewhere.
2114  * Discover process only interrogates devices in order to discover the
2115  * domain.
2116  */
2117 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2118 {
2119 	int res;
2120 	struct domain_device *dev = NULL;
2121 
2122 	res = sas_find_bcast_dev(port_dev, &dev);
2123 	if (res == 0 && dev) {
2124 		struct expander_device *ex = &dev->ex_dev;
2125 		int i = 0, phy_id;
2126 
2127 		do {
2128 			phy_id = -1;
2129 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2130 			if (phy_id == -1)
2131 				break;
2132 			res = sas_rediscover(dev, phy_id);
2133 			i = phy_id + 1;
2134 		} while (i < ex->num_phys);
2135 	}
2136 	return res;
2137 }
2138 
2139 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2140 		struct sas_rphy *rphy)
2141 {
2142 	struct domain_device *dev;
2143 	unsigned int rcvlen = 0;
2144 	int ret = -EINVAL;
2145 
2146 	/* no rphy means no smp target support (ie aic94xx host) */
2147 	if (!rphy)
2148 		return sas_smp_host_handler(job, shost);
2149 
2150 	switch (rphy->identify.device_type) {
2151 	case SAS_EDGE_EXPANDER_DEVICE:
2152 	case SAS_FANOUT_EXPANDER_DEVICE:
2153 		break;
2154 	default:
2155 		pr_err("%s: can we send a smp request to a device?\n",
2156 		       __func__);
2157 		goto out;
2158 	}
2159 
2160 	dev = sas_find_dev_by_rphy(rphy);
2161 	if (!dev) {
2162 		pr_err("%s: fail to find a domain_device?\n", __func__);
2163 		goto out;
2164 	}
2165 
2166 	/* do we need to support multiple segments? */
2167 	if (job->request_payload.sg_cnt > 1 ||
2168 	    job->reply_payload.sg_cnt > 1) {
2169 		pr_info("%s: multiple segments req %u, rsp %u\n",
2170 			__func__, job->request_payload.payload_len,
2171 			job->reply_payload.payload_len);
2172 		goto out;
2173 	}
2174 
2175 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2176 			job->reply_payload.sg_list);
2177 	if (ret >= 0) {
2178 		/* bsg_job_done() requires the length received  */
2179 		rcvlen = job->reply_payload.payload_len - ret;
2180 		ret = 0;
2181 	}
2182 
2183 out:
2184 	bsg_job_done(job, ret, rcvlen);
2185 }
2186