1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
44 static void smp_task_timedout(struct timer_list *t)
45 {
46 	struct sas_task_slow *slow = from_timer(slow, t, timer);
47 	struct sas_task *task = slow->task;
48 	unsigned long flags;
49 
50 	spin_lock_irqsave(&task->task_state_lock, flags);
51 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 		complete(&task->slow_task->completion);
54 	}
55 	spin_unlock_irqrestore(&task->task_state_lock, flags);
56 }
57 
58 static void smp_task_done(struct sas_task *task)
59 {
60 	del_timer(&task->slow_task->timer);
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
67 static int smp_execute_task_sg(struct domain_device *dev,
68 		struct scatterlist *req, struct scatterlist *resp)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		task->smp_task.smp_req = *req;
90 		task->smp_task.smp_resp = *resp;
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.function = smp_task_timedout;
95 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 		add_timer(&task->slow_task->timer);
97 
98 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99 
100 		if (res) {
101 			del_timer(&task->slow_task->timer);
102 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
103 			break;
104 		}
105 
106 		wait_for_completion(&task->slow_task->completion);
107 		res = -ECOMM;
108 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 			SAS_DPRINTK("smp task timed out or aborted\n");
110 			i->dft->lldd_abort_task(task);
111 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 				SAS_DPRINTK("SMP task aborted and not done\n");
113 				break;
114 			}
115 		}
116 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 		    task->task_status.stat == SAM_STAT_GOOD) {
118 			res = 0;
119 			break;
120 		}
121 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
123 			/* no error, but return the number of bytes of
124 			 * underrun */
125 			res = task->task_status.residual;
126 			break;
127 		}
128 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 		    task->task_status.stat == SAS_DATA_OVERRUN) {
130 			res = -EMSGSIZE;
131 			break;
132 		}
133 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 			break;
136 		else {
137 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 				    "status 0x%x\n", __func__,
139 				    SAS_ADDR(dev->sas_addr),
140 				    task->task_status.resp,
141 				    task->task_status.stat);
142 			sas_free_task(task);
143 			task = NULL;
144 		}
145 	}
146 	mutex_unlock(&dev->ex_dev.cmd_mutex);
147 
148 	BUG_ON(retry == 3 && task != NULL);
149 	sas_free_task(task);
150 	return res;
151 }
152 
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 			    void *resp, int resp_size)
155 {
156 	struct scatterlist req_sg;
157 	struct scatterlist resp_sg;
158 
159 	sg_init_one(&req_sg, req, req_size);
160 	sg_init_one(&resp_sg, resp, resp_size);
161 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163 
164 /* ---------- Allocations ---------- */
165 
166 static inline void *alloc_smp_req(int size)
167 {
168 	u8 *p = kzalloc(size, GFP_KERNEL);
169 	if (p)
170 		p[0] = SMP_REQUEST;
171 	return p;
172 }
173 
174 static inline void *alloc_smp_resp(int size)
175 {
176 	return kzalloc(size, GFP_KERNEL);
177 }
178 
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181 	switch (phy->routing_attr) {
182 	case TABLE_ROUTING:
183 		if (dev->ex_dev.t2t_supp)
184 			return 'U';
185 		else
186 			return 'T';
187 	case DIRECT_ROUTING:
188 		return 'D';
189 	case SUBTRACTIVE_ROUTING:
190 		return 'S';
191 	default:
192 		return '?';
193 	}
194 }
195 
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198 	/* This is detecting a failure to transmit initial dev to host
199 	 * FIS as described in section J.5 of sas-2 r16
200 	 */
201 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 		return SAS_SATA_PENDING;
204 	else
205 		return dr->attached_dev_type;
206 }
207 
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210 	enum sas_device_type dev_type;
211 	enum sas_linkrate linkrate;
212 	u8 sas_addr[SAS_ADDR_SIZE];
213 	struct smp_resp *resp = rsp;
214 	struct discover_resp *dr = &resp->disc;
215 	struct sas_ha_struct *ha = dev->port->ha;
216 	struct expander_device *ex = &dev->ex_dev;
217 	struct ex_phy *phy = &ex->ex_phy[phy_id];
218 	struct sas_rphy *rphy = dev->rphy;
219 	bool new_phy = !phy->phy;
220 	char *type;
221 
222 	if (new_phy) {
223 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 			return;
225 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226 
227 		/* FIXME: error_handling */
228 		BUG_ON(!phy->phy);
229 	}
230 
231 	switch (resp->result) {
232 	case SMP_RESP_PHY_VACANT:
233 		phy->phy_state = PHY_VACANT;
234 		break;
235 	default:
236 		phy->phy_state = PHY_NOT_PRESENT;
237 		break;
238 	case SMP_RESP_FUNC_ACC:
239 		phy->phy_state = PHY_EMPTY; /* do not know yet */
240 		break;
241 	}
242 
243 	/* check if anything important changed to squelch debug */
244 	dev_type = phy->attached_dev_type;
245 	linkrate  = phy->linkrate;
246 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247 
248 	/* Handle vacant phy - rest of dr data is not valid so skip it */
249 	if (phy->phy_state == PHY_VACANT) {
250 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 		phy->attached_dev_type = SAS_PHY_UNUSED;
252 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 			phy->phy_id = phy_id;
254 			goto skip;
255 		} else
256 			goto out;
257 	}
258 
259 	phy->attached_dev_type = to_dev_type(dr);
260 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 		goto out;
262 	phy->phy_id = phy_id;
263 	phy->linkrate = dr->linkrate;
264 	phy->attached_sata_host = dr->attached_sata_host;
265 	phy->attached_sata_dev  = dr->attached_sata_dev;
266 	phy->attached_sata_ps   = dr->attached_sata_ps;
267 	phy->attached_iproto = dr->iproto << 1;
268 	phy->attached_tproto = dr->tproto << 1;
269 	/* help some expanders that fail to zero sas_address in the 'no
270 	 * device' case
271 	 */
272 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 	else
276 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 	phy->attached_phy_id = dr->attached_phy_id;
278 	phy->phy_change_count = dr->change_count;
279 	phy->routing_attr = dr->routing_attr;
280 	phy->virtual = dr->virtual;
281 	phy->last_da_index = -1;
282 
283 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 	phy->phy->identify.device_type = dr->attached_dev_type;
285 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 	if (!phy->attached_tproto && dr->attached_sata_dev)
288 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 	phy->phy->identify.phy_identifier = phy_id;
290 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 	phy->phy->negotiated_linkrate = phy->linkrate;
295 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296 
297  skip:
298 	if (new_phy)
299 		if (sas_phy_add(phy->phy)) {
300 			sas_phy_free(phy->phy);
301 			return;
302 		}
303 
304  out:
305 	switch (phy->attached_dev_type) {
306 	case SAS_SATA_PENDING:
307 		type = "stp pending";
308 		break;
309 	case SAS_PHY_UNUSED:
310 		type = "no device";
311 		break;
312 	case SAS_END_DEVICE:
313 		if (phy->attached_iproto) {
314 			if (phy->attached_tproto)
315 				type = "host+target";
316 			else
317 				type = "host";
318 		} else {
319 			if (dr->attached_sata_dev)
320 				type = "stp";
321 			else
322 				type = "ssp";
323 		}
324 		break;
325 	case SAS_EDGE_EXPANDER_DEVICE:
326 	case SAS_FANOUT_EXPANDER_DEVICE:
327 		type = "smp";
328 		break;
329 	default:
330 		type = "unknown";
331 	}
332 
333 	/* this routine is polled by libata error recovery so filter
334 	 * unimportant messages
335 	 */
336 	if (new_phy || phy->attached_dev_type != dev_type ||
337 	    phy->linkrate != linkrate ||
338 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 		/* pass */;
340 	else
341 		return;
342 
343 	/* if the attached device type changed and ata_eh is active,
344 	 * make sure we run revalidation when eh completes (see:
345 	 * sas_enable_revalidation)
346 	 */
347 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349 
350 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
353 		    sas_route_char(dev, phy), phy->linkrate,
354 		    SAS_ADDR(phy->attached_sas_addr), type);
355 }
356 
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 	struct domain_device *dev;
362 	struct sas_rphy *rphy;
363 
364 	if (!ex_phy->port)
365 		return NULL;
366 
367 	rphy = ex_phy->port->rphy;
368 	if (!rphy)
369 		return NULL;
370 
371 	dev = sas_find_dev_by_rphy(rphy);
372 
373 	if (dev && dev_is_sata(dev))
374 		return dev;
375 
376 	return NULL;
377 }
378 
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381 
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 				      u8 *disc_resp, int single)
384 {
385 	struct discover_resp *dr;
386 	int res;
387 
388 	disc_req[9] = single;
389 
390 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 			       disc_resp, DISCOVER_RESP_SIZE);
392 	if (res)
393 		return res;
394 	dr = &((struct smp_resp *)disc_resp)->disc;
395 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 		sas_printk("Found loopback topology, just ignore it!\n");
397 		return 0;
398 	}
399 	sas_set_ex_phy(dev, single, disc_resp);
400 	return 0;
401 }
402 
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405 	struct expander_device *ex = &dev->ex_dev;
406 	int  res = 0;
407 	u8   *disc_req;
408 	u8   *disc_resp;
409 
410 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 	if (!disc_req)
412 		return -ENOMEM;
413 
414 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 	if (!disc_resp) {
416 		kfree(disc_req);
417 		return -ENOMEM;
418 	}
419 
420 	disc_req[1] = SMP_DISCOVER;
421 
422 	if (0 <= single && single < ex->num_phys) {
423 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 	} else {
425 		int i;
426 
427 		for (i = 0; i < ex->num_phys; i++) {
428 			res = sas_ex_phy_discover_helper(dev, disc_req,
429 							 disc_resp, i);
430 			if (res)
431 				goto out_err;
432 		}
433 	}
434 out_err:
435 	kfree(disc_resp);
436 	kfree(disc_req);
437 	return res;
438 }
439 
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442 	struct expander_device *ex = &dev->ex_dev;
443 	int res = -ENOMEM;
444 
445 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446 	if (!ex->ex_phy)
447 		return -ENOMEM;
448 
449 	res = sas_ex_phy_discover(dev, -1);
450 	if (res)
451 		goto out_err;
452 
453 	return 0;
454  out_err:
455 	kfree(ex->ex_phy);
456 	ex->ex_phy = NULL;
457 	return res;
458 }
459 
460 #define MAX_EXPANDER_PHYS 128
461 
462 static void ex_assign_report_general(struct domain_device *dev,
463 					    struct smp_resp *resp)
464 {
465 	struct report_general_resp *rg = &resp->rg;
466 
467 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 	dev->ex_dev.t2t_supp = rg->t2t_supp;
471 	dev->ex_dev.conf_route_table = rg->conf_route_table;
472 	dev->ex_dev.configuring = rg->configuring;
473 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475 
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478 
479 static int sas_ex_general(struct domain_device *dev)
480 {
481 	u8 *rg_req;
482 	struct smp_resp *rg_resp;
483 	int res;
484 	int i;
485 
486 	rg_req = alloc_smp_req(RG_REQ_SIZE);
487 	if (!rg_req)
488 		return -ENOMEM;
489 
490 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 	if (!rg_resp) {
492 		kfree(rg_req);
493 		return -ENOMEM;
494 	}
495 
496 	rg_req[1] = SMP_REPORT_GENERAL;
497 
498 	for (i = 0; i < 5; i++) {
499 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 				       RG_RESP_SIZE);
501 
502 		if (res) {
503 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 				    SAS_ADDR(dev->sas_addr), res);
505 			goto out;
506 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
509 			res = rg_resp->result;
510 			goto out;
511 		}
512 
513 		ex_assign_report_general(dev, rg_resp);
514 
515 		if (dev->ex_dev.configuring) {
516 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 				    SAS_ADDR(dev->sas_addr));
518 			schedule_timeout_interruptible(5*HZ);
519 		} else
520 			break;
521 	}
522 out:
523 	kfree(rg_req);
524 	kfree(rg_resp);
525 	return res;
526 }
527 
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 					*_mi_resp)
530 {
531 	u8 *mi_resp = _mi_resp;
532 	struct sas_rphy *rphy = dev->rphy;
533 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534 
535 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 	memcpy(edev->product_rev, mi_resp + 36,
538 	       SAS_EXPANDER_PRODUCT_REV_LEN);
539 
540 	if (mi_resp[8] & 1) {
541 		memcpy(edev->component_vendor_id, mi_resp + 40,
542 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 		edev->component_revision_id = mi_resp[50];
545 	}
546 }
547 
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550 
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553 	u8 *mi_req;
554 	u8 *mi_resp;
555 	int res;
556 
557 	mi_req = alloc_smp_req(MI_REQ_SIZE);
558 	if (!mi_req)
559 		return -ENOMEM;
560 
561 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 	if (!mi_resp) {
563 		kfree(mi_req);
564 		return -ENOMEM;
565 	}
566 
567 	mi_req[1] = SMP_REPORT_MANUF_INFO;
568 
569 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 	if (res) {
571 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 			    SAS_ADDR(dev->sas_addr), res);
573 		goto out;
574 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 		goto out;
578 	}
579 
580 	ex_assign_manuf_info(dev, mi_resp);
581 out:
582 	kfree(mi_req);
583 	kfree(mi_resp);
584 	return res;
585 }
586 
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589 
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 			enum phy_func phy_func,
592 			struct sas_phy_linkrates *rates)
593 {
594 	u8 *pc_req;
595 	u8 *pc_resp;
596 	int res;
597 
598 	pc_req = alloc_smp_req(PC_REQ_SIZE);
599 	if (!pc_req)
600 		return -ENOMEM;
601 
602 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 	if (!pc_resp) {
604 		kfree(pc_req);
605 		return -ENOMEM;
606 	}
607 
608 	pc_req[1] = SMP_PHY_CONTROL;
609 	pc_req[9] = phy_id;
610 	pc_req[10]= phy_func;
611 	if (rates) {
612 		pc_req[32] = rates->minimum_linkrate << 4;
613 		pc_req[33] = rates->maximum_linkrate << 4;
614 	}
615 
616 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 
618 	kfree(pc_resp);
619 	kfree(pc_req);
620 	return res;
621 }
622 
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
624 {
625 	struct expander_device *ex = &dev->ex_dev;
626 	struct ex_phy *phy = &ex->ex_phy[phy_id];
627 
628 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629 	phy->linkrate = SAS_PHY_DISABLED;
630 }
631 
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
633 {
634 	struct expander_device *ex = &dev->ex_dev;
635 	int i;
636 
637 	for (i = 0; i < ex->num_phys; i++) {
638 		struct ex_phy *phy = &ex->ex_phy[i];
639 
640 		if (phy->phy_state == PHY_VACANT ||
641 		    phy->phy_state == PHY_NOT_PRESENT)
642 			continue;
643 
644 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645 			sas_ex_disable_phy(dev, i);
646 	}
647 }
648 
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650 					    u8 *sas_addr)
651 {
652 	struct domain_device *dev;
653 
654 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655 		return 1;
656 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658 			return 1;
659 	}
660 	return 0;
661 }
662 
663 #define RPEL_REQ_SIZE	16
664 #define RPEL_RESP_SIZE	32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
666 {
667 	int res;
668 	u8 *req;
669 	u8 *resp;
670 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
672 
673 	req = alloc_smp_req(RPEL_REQ_SIZE);
674 	if (!req)
675 		return -ENOMEM;
676 
677 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
678 	if (!resp) {
679 		kfree(req);
680 		return -ENOMEM;
681 	}
682 
683 	req[1] = SMP_REPORT_PHY_ERR_LOG;
684 	req[9] = phy->number;
685 
686 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687 			            resp, RPEL_RESP_SIZE);
688 
689 	if (res)
690 		goto out;
691 
692 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
696 
697  out:
698 	kfree(req);
699 	kfree(resp);
700 	return res;
701 
702 }
703 
704 #ifdef CONFIG_SCSI_SAS_ATA
705 
706 #define RPS_REQ_SIZE  16
707 #define RPS_RESP_SIZE 60
708 
709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
710 			    struct smp_resp *rps_resp)
711 {
712 	int res;
713 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
714 	u8 *resp = (u8 *)rps_resp;
715 
716 	if (!rps_req)
717 		return -ENOMEM;
718 
719 	rps_req[1] = SMP_REPORT_PHY_SATA;
720 	rps_req[9] = phy_id;
721 
722 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
723 			            rps_resp, RPS_RESP_SIZE);
724 
725 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
726 	 * standards cockup here.  sas-2 explicitly specifies the FIS
727 	 * should be encoded so that FIS type is in resp[24].
728 	 * However, some expanders endian reverse this.  Undo the
729 	 * reversal here */
730 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
731 		int i;
732 
733 		for (i = 0; i < 5; i++) {
734 			int j = 24 + (i*4);
735 			u8 a, b;
736 			a = resp[j + 0];
737 			b = resp[j + 1];
738 			resp[j + 0] = resp[j + 3];
739 			resp[j + 1] = resp[j + 2];
740 			resp[j + 2] = b;
741 			resp[j + 3] = a;
742 		}
743 	}
744 
745 	kfree(rps_req);
746 	return res;
747 }
748 #endif
749 
750 static void sas_ex_get_linkrate(struct domain_device *parent,
751 				       struct domain_device *child,
752 				       struct ex_phy *parent_phy)
753 {
754 	struct expander_device *parent_ex = &parent->ex_dev;
755 	struct sas_port *port;
756 	int i;
757 
758 	child->pathways = 0;
759 
760 	port = parent_phy->port;
761 
762 	for (i = 0; i < parent_ex->num_phys; i++) {
763 		struct ex_phy *phy = &parent_ex->ex_phy[i];
764 
765 		if (phy->phy_state == PHY_VACANT ||
766 		    phy->phy_state == PHY_NOT_PRESENT)
767 			continue;
768 
769 		if (SAS_ADDR(phy->attached_sas_addr) ==
770 		    SAS_ADDR(child->sas_addr)) {
771 
772 			child->min_linkrate = min(parent->min_linkrate,
773 						  phy->linkrate);
774 			child->max_linkrate = max(parent->max_linkrate,
775 						  phy->linkrate);
776 			child->pathways++;
777 			sas_port_add_phy(port, phy->phy);
778 		}
779 	}
780 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
781 	child->pathways = min(child->pathways, parent->pathways);
782 }
783 
784 static struct domain_device *sas_ex_discover_end_dev(
785 	struct domain_device *parent, int phy_id)
786 {
787 	struct expander_device *parent_ex = &parent->ex_dev;
788 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
789 	struct domain_device *child = NULL;
790 	struct sas_rphy *rphy;
791 	int res;
792 
793 	if (phy->attached_sata_host || phy->attached_sata_ps)
794 		return NULL;
795 
796 	child = sas_alloc_device();
797 	if (!child)
798 		return NULL;
799 
800 	kref_get(&parent->kref);
801 	child->parent = parent;
802 	child->port   = parent->port;
803 	child->iproto = phy->attached_iproto;
804 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
805 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
806 	if (!phy->port) {
807 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
808 		if (unlikely(!phy->port))
809 			goto out_err;
810 		if (unlikely(sas_port_add(phy->port) != 0)) {
811 			sas_port_free(phy->port);
812 			goto out_err;
813 		}
814 	}
815 	sas_ex_get_linkrate(parent, child, phy);
816 	sas_device_set_phy(child, phy->port);
817 
818 #ifdef CONFIG_SCSI_SAS_ATA
819 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
820 		res = sas_get_ata_info(child, phy);
821 		if (res)
822 			goto out_free;
823 
824 		sas_init_dev(child);
825 		res = sas_ata_init(child);
826 		if (res)
827 			goto out_free;
828 		rphy = sas_end_device_alloc(phy->port);
829 		if (!rphy)
830 			goto out_free;
831 
832 		child->rphy = rphy;
833 		get_device(&rphy->dev);
834 
835 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
836 
837 		res = sas_discover_sata(child);
838 		if (res) {
839 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
840 				    "%016llx:0x%x returned 0x%x\n",
841 				    SAS_ADDR(child->sas_addr),
842 				    SAS_ADDR(parent->sas_addr), phy_id, res);
843 			goto out_list_del;
844 		}
845 	} else
846 #endif
847 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
848 		child->dev_type = SAS_END_DEVICE;
849 		rphy = sas_end_device_alloc(phy->port);
850 		/* FIXME: error handling */
851 		if (unlikely(!rphy))
852 			goto out_free;
853 		child->tproto = phy->attached_tproto;
854 		sas_init_dev(child);
855 
856 		child->rphy = rphy;
857 		get_device(&rphy->dev);
858 		sas_fill_in_rphy(child, rphy);
859 
860 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
861 
862 		res = sas_discover_end_dev(child);
863 		if (res) {
864 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
865 				    "at %016llx:0x%x returned 0x%x\n",
866 				    SAS_ADDR(child->sas_addr),
867 				    SAS_ADDR(parent->sas_addr), phy_id, res);
868 			goto out_list_del;
869 		}
870 	} else {
871 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
872 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
873 			    phy_id);
874 		goto out_free;
875 	}
876 
877 	list_add_tail(&child->siblings, &parent_ex->children);
878 	return child;
879 
880  out_list_del:
881 	sas_rphy_free(child->rphy);
882 	list_del(&child->disco_list_node);
883 	spin_lock_irq(&parent->port->dev_list_lock);
884 	list_del(&child->dev_list_node);
885 	spin_unlock_irq(&parent->port->dev_list_lock);
886  out_free:
887 	sas_port_delete(phy->port);
888  out_err:
889 	phy->port = NULL;
890 	sas_put_device(child);
891 	return NULL;
892 }
893 
894 /* See if this phy is part of a wide port */
895 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
896 {
897 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
898 	int i;
899 
900 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
901 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
902 
903 		if (ephy == phy)
904 			continue;
905 
906 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
907 			    SAS_ADDR_SIZE) && ephy->port) {
908 			sas_port_add_phy(ephy->port, phy->phy);
909 			phy->port = ephy->port;
910 			phy->phy_state = PHY_DEVICE_DISCOVERED;
911 			return true;
912 		}
913 	}
914 
915 	return false;
916 }
917 
918 static struct domain_device *sas_ex_discover_expander(
919 	struct domain_device *parent, int phy_id)
920 {
921 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
922 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
923 	struct domain_device *child = NULL;
924 	struct sas_rphy *rphy;
925 	struct sas_expander_device *edev;
926 	struct asd_sas_port *port;
927 	int res;
928 
929 	if (phy->routing_attr == DIRECT_ROUTING) {
930 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
931 			    "allowed\n",
932 			    SAS_ADDR(parent->sas_addr), phy_id,
933 			    SAS_ADDR(phy->attached_sas_addr),
934 			    phy->attached_phy_id);
935 		return NULL;
936 	}
937 	child = sas_alloc_device();
938 	if (!child)
939 		return NULL;
940 
941 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
942 	/* FIXME: better error handling */
943 	BUG_ON(sas_port_add(phy->port) != 0);
944 
945 
946 	switch (phy->attached_dev_type) {
947 	case SAS_EDGE_EXPANDER_DEVICE:
948 		rphy = sas_expander_alloc(phy->port,
949 					  SAS_EDGE_EXPANDER_DEVICE);
950 		break;
951 	case SAS_FANOUT_EXPANDER_DEVICE:
952 		rphy = sas_expander_alloc(phy->port,
953 					  SAS_FANOUT_EXPANDER_DEVICE);
954 		break;
955 	default:
956 		rphy = NULL;	/* shut gcc up */
957 		BUG();
958 	}
959 	port = parent->port;
960 	child->rphy = rphy;
961 	get_device(&rphy->dev);
962 	edev = rphy_to_expander_device(rphy);
963 	child->dev_type = phy->attached_dev_type;
964 	kref_get(&parent->kref);
965 	child->parent = parent;
966 	child->port = port;
967 	child->iproto = phy->attached_iproto;
968 	child->tproto = phy->attached_tproto;
969 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
970 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
971 	sas_ex_get_linkrate(parent, child, phy);
972 	edev->level = parent_ex->level + 1;
973 	parent->port->disc.max_level = max(parent->port->disc.max_level,
974 					   edev->level);
975 	sas_init_dev(child);
976 	sas_fill_in_rphy(child, rphy);
977 	sas_rphy_add(rphy);
978 
979 	spin_lock_irq(&parent->port->dev_list_lock);
980 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
981 	spin_unlock_irq(&parent->port->dev_list_lock);
982 
983 	res = sas_discover_expander(child);
984 	if (res) {
985 		sas_rphy_delete(rphy);
986 		spin_lock_irq(&parent->port->dev_list_lock);
987 		list_del(&child->dev_list_node);
988 		spin_unlock_irq(&parent->port->dev_list_lock);
989 		sas_put_device(child);
990 		return NULL;
991 	}
992 	list_add_tail(&child->siblings, &parent->ex_dev.children);
993 	return child;
994 }
995 
996 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
997 {
998 	struct expander_device *ex = &dev->ex_dev;
999 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1000 	struct domain_device *child = NULL;
1001 	int res = 0;
1002 
1003 	/* Phy state */
1004 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1005 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1006 			res = sas_ex_phy_discover(dev, phy_id);
1007 		if (res)
1008 			return res;
1009 	}
1010 
1011 	/* Parent and domain coherency */
1012 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1013 			     SAS_ADDR(dev->port->sas_addr))) {
1014 		sas_add_parent_port(dev, phy_id);
1015 		return 0;
1016 	}
1017 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1018 			    SAS_ADDR(dev->parent->sas_addr))) {
1019 		sas_add_parent_port(dev, phy_id);
1020 		if (ex_phy->routing_attr == TABLE_ROUTING)
1021 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1022 		return 0;
1023 	}
1024 
1025 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1026 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1027 
1028 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1029 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1030 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1031 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1032 		}
1033 		return 0;
1034 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1035 		return 0;
1036 
1037 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1038 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1039 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1040 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1041 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1042 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1043 			    SAS_ADDR(dev->sas_addr),
1044 			    phy_id);
1045 		return 0;
1046 	}
1047 
1048 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1049 	if (res) {
1050 		SAS_DPRINTK("configure routing for dev %016llx "
1051 			    "reported 0x%x. Forgotten\n",
1052 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1053 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1054 		return res;
1055 	}
1056 
1057 	if (sas_ex_join_wide_port(dev, phy_id)) {
1058 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1059 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1060 		return res;
1061 	}
1062 
1063 	switch (ex_phy->attached_dev_type) {
1064 	case SAS_END_DEVICE:
1065 	case SAS_SATA_PENDING:
1066 		child = sas_ex_discover_end_dev(dev, phy_id);
1067 		break;
1068 	case SAS_FANOUT_EXPANDER_DEVICE:
1069 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1070 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1071 				    "attached to ex %016llx phy 0x%x\n",
1072 				    SAS_ADDR(ex_phy->attached_sas_addr),
1073 				    ex_phy->attached_phy_id,
1074 				    SAS_ADDR(dev->sas_addr),
1075 				    phy_id);
1076 			sas_ex_disable_phy(dev, phy_id);
1077 			break;
1078 		} else
1079 			memcpy(dev->port->disc.fanout_sas_addr,
1080 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1081 		/* fallthrough */
1082 	case SAS_EDGE_EXPANDER_DEVICE:
1083 		child = sas_ex_discover_expander(dev, phy_id);
1084 		break;
1085 	default:
1086 		break;
1087 	}
1088 
1089 	if (child) {
1090 		int i;
1091 
1092 		for (i = 0; i < ex->num_phys; i++) {
1093 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1094 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1095 				continue;
1096 			/*
1097 			 * Due to races, the phy might not get added to the
1098 			 * wide port, so we add the phy to the wide port here.
1099 			 */
1100 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1101 			    SAS_ADDR(child->sas_addr)) {
1102 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1103 				if (sas_ex_join_wide_port(dev, i))
1104 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1105 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1106 
1107 			}
1108 		}
1109 	}
1110 
1111 	return res;
1112 }
1113 
1114 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1115 {
1116 	struct expander_device *ex = &dev->ex_dev;
1117 	int i;
1118 
1119 	for (i = 0; i < ex->num_phys; i++) {
1120 		struct ex_phy *phy = &ex->ex_phy[i];
1121 
1122 		if (phy->phy_state == PHY_VACANT ||
1123 		    phy->phy_state == PHY_NOT_PRESENT)
1124 			continue;
1125 
1126 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1127 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1128 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1129 
1130 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1131 
1132 			return 1;
1133 		}
1134 	}
1135 	return 0;
1136 }
1137 
1138 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1139 {
1140 	struct expander_device *ex = &dev->ex_dev;
1141 	struct domain_device *child;
1142 	u8 sub_addr[8] = {0, };
1143 
1144 	list_for_each_entry(child, &ex->children, siblings) {
1145 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1146 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1147 			continue;
1148 		if (sub_addr[0] == 0) {
1149 			sas_find_sub_addr(child, sub_addr);
1150 			continue;
1151 		} else {
1152 			u8 s2[8];
1153 
1154 			if (sas_find_sub_addr(child, s2) &&
1155 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1156 
1157 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1158 					    "diverges from subtractive "
1159 					    "boundary %016llx\n",
1160 					    SAS_ADDR(dev->sas_addr),
1161 					    SAS_ADDR(child->sas_addr),
1162 					    SAS_ADDR(s2),
1163 					    SAS_ADDR(sub_addr));
1164 
1165 				sas_ex_disable_port(child, s2);
1166 			}
1167 		}
1168 	}
1169 	return 0;
1170 }
1171 /**
1172  * sas_ex_discover_devices - discover devices attached to this expander
1173  * @dev: pointer to the expander domain device
1174  * @single: if you want to do a single phy, else set to -1;
1175  *
1176  * Configure this expander for use with its devices and register the
1177  * devices of this expander.
1178  */
1179 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1180 {
1181 	struct expander_device *ex = &dev->ex_dev;
1182 	int i = 0, end = ex->num_phys;
1183 	int res = 0;
1184 
1185 	if (0 <= single && single < end) {
1186 		i = single;
1187 		end = i+1;
1188 	}
1189 
1190 	for ( ; i < end; i++) {
1191 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1192 
1193 		if (ex_phy->phy_state == PHY_VACANT ||
1194 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1195 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1196 			continue;
1197 
1198 		switch (ex_phy->linkrate) {
1199 		case SAS_PHY_DISABLED:
1200 		case SAS_PHY_RESET_PROBLEM:
1201 		case SAS_SATA_PORT_SELECTOR:
1202 			continue;
1203 		default:
1204 			res = sas_ex_discover_dev(dev, i);
1205 			if (res)
1206 				break;
1207 			continue;
1208 		}
1209 	}
1210 
1211 	if (!res)
1212 		sas_check_level_subtractive_boundary(dev);
1213 
1214 	return res;
1215 }
1216 
1217 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1218 {
1219 	struct expander_device *ex = &dev->ex_dev;
1220 	int i;
1221 	u8  *sub_sas_addr = NULL;
1222 
1223 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1224 		return 0;
1225 
1226 	for (i = 0; i < ex->num_phys; i++) {
1227 		struct ex_phy *phy = &ex->ex_phy[i];
1228 
1229 		if (phy->phy_state == PHY_VACANT ||
1230 		    phy->phy_state == PHY_NOT_PRESENT)
1231 			continue;
1232 
1233 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1234 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1235 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236 
1237 			if (!sub_sas_addr)
1238 				sub_sas_addr = &phy->attached_sas_addr[0];
1239 			else if (SAS_ADDR(sub_sas_addr) !=
1240 				 SAS_ADDR(phy->attached_sas_addr)) {
1241 
1242 				SAS_DPRINTK("ex %016llx phy 0x%x "
1243 					    "diverges(%016llx) on subtractive "
1244 					    "boundary(%016llx). Disabled\n",
1245 					    SAS_ADDR(dev->sas_addr), i,
1246 					    SAS_ADDR(phy->attached_sas_addr),
1247 					    SAS_ADDR(sub_sas_addr));
1248 				sas_ex_disable_phy(dev, i);
1249 			}
1250 		}
1251 	}
1252 	return 0;
1253 }
1254 
1255 static void sas_print_parent_topology_bug(struct domain_device *child,
1256 						 struct ex_phy *parent_phy,
1257 						 struct ex_phy *child_phy)
1258 {
1259 	static const char *ex_type[] = {
1260 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1261 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1262 	};
1263 	struct domain_device *parent = child->parent;
1264 
1265 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1266 		   "phy 0x%x has %c:%c routing link!\n",
1267 
1268 		   ex_type[parent->dev_type],
1269 		   SAS_ADDR(parent->sas_addr),
1270 		   parent_phy->phy_id,
1271 
1272 		   ex_type[child->dev_type],
1273 		   SAS_ADDR(child->sas_addr),
1274 		   child_phy->phy_id,
1275 
1276 		   sas_route_char(parent, parent_phy),
1277 		   sas_route_char(child, child_phy));
1278 }
1279 
1280 static int sas_check_eeds(struct domain_device *child,
1281 				 struct ex_phy *parent_phy,
1282 				 struct ex_phy *child_phy)
1283 {
1284 	int res = 0;
1285 	struct domain_device *parent = child->parent;
1286 
1287 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1288 		res = -ENODEV;
1289 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1290 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1291 			    SAS_ADDR(parent->sas_addr),
1292 			    parent_phy->phy_id,
1293 			    SAS_ADDR(child->sas_addr),
1294 			    child_phy->phy_id,
1295 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1296 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1297 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1298 		       SAS_ADDR_SIZE);
1299 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1300 		       SAS_ADDR_SIZE);
1301 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1302 		    SAS_ADDR(parent->sas_addr)) ||
1303 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1304 		    SAS_ADDR(child->sas_addr)))
1305 		   &&
1306 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1307 		     SAS_ADDR(parent->sas_addr)) ||
1308 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1309 		     SAS_ADDR(child->sas_addr))))
1310 		;
1311 	else {
1312 		res = -ENODEV;
1313 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1314 			    "phy 0x%x link forms a third EEDS!\n",
1315 			    SAS_ADDR(parent->sas_addr),
1316 			    parent_phy->phy_id,
1317 			    SAS_ADDR(child->sas_addr),
1318 			    child_phy->phy_id);
1319 	}
1320 
1321 	return res;
1322 }
1323 
1324 /* Here we spill over 80 columns.  It is intentional.
1325  */
1326 static int sas_check_parent_topology(struct domain_device *child)
1327 {
1328 	struct expander_device *child_ex = &child->ex_dev;
1329 	struct expander_device *parent_ex;
1330 	int i;
1331 	int res = 0;
1332 
1333 	if (!child->parent)
1334 		return 0;
1335 
1336 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1337 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1338 		return 0;
1339 
1340 	parent_ex = &child->parent->ex_dev;
1341 
1342 	for (i = 0; i < parent_ex->num_phys; i++) {
1343 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1344 		struct ex_phy *child_phy;
1345 
1346 		if (parent_phy->phy_state == PHY_VACANT ||
1347 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1348 			continue;
1349 
1350 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1351 			continue;
1352 
1353 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1354 
1355 		switch (child->parent->dev_type) {
1356 		case SAS_EDGE_EXPANDER_DEVICE:
1357 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1358 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1359 				    child_phy->routing_attr != TABLE_ROUTING) {
1360 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 					res = -ENODEV;
1362 				}
1363 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1364 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 					res = sas_check_eeds(child, parent_phy, child_phy);
1366 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1367 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1368 					res = -ENODEV;
1369 				}
1370 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1371 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1372 				    (child_phy->routing_attr == TABLE_ROUTING &&
1373 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1374 					/* All good */;
1375 				} else {
1376 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1377 					res = -ENODEV;
1378 				}
1379 			}
1380 			break;
1381 		case SAS_FANOUT_EXPANDER_DEVICE:
1382 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1383 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1384 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1385 				res = -ENODEV;
1386 			}
1387 			break;
1388 		default:
1389 			break;
1390 		}
1391 	}
1392 
1393 	return res;
1394 }
1395 
1396 #define RRI_REQ_SIZE  16
1397 #define RRI_RESP_SIZE 44
1398 
1399 static int sas_configure_present(struct domain_device *dev, int phy_id,
1400 				 u8 *sas_addr, int *index, int *present)
1401 {
1402 	int i, res = 0;
1403 	struct expander_device *ex = &dev->ex_dev;
1404 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1405 	u8 *rri_req;
1406 	u8 *rri_resp;
1407 
1408 	*present = 0;
1409 	*index = 0;
1410 
1411 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1412 	if (!rri_req)
1413 		return -ENOMEM;
1414 
1415 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1416 	if (!rri_resp) {
1417 		kfree(rri_req);
1418 		return -ENOMEM;
1419 	}
1420 
1421 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1422 	rri_req[9] = phy_id;
1423 
1424 	for (i = 0; i < ex->max_route_indexes ; i++) {
1425 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1426 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1427 				       RRI_RESP_SIZE);
1428 		if (res)
1429 			goto out;
1430 		res = rri_resp[2];
1431 		if (res == SMP_RESP_NO_INDEX) {
1432 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1433 				    "phy 0x%x index 0x%x\n",
1434 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1435 			goto out;
1436 		} else if (res != SMP_RESP_FUNC_ACC) {
1437 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1438 				    "result 0x%x\n", __func__,
1439 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1440 			goto out;
1441 		}
1442 		if (SAS_ADDR(sas_addr) != 0) {
1443 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1444 				*index = i;
1445 				if ((rri_resp[12] & 0x80) == 0x80)
1446 					*present = 0;
1447 				else
1448 					*present = 1;
1449 				goto out;
1450 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1451 				*index = i;
1452 				*present = 0;
1453 				goto out;
1454 			}
1455 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1456 			   phy->last_da_index < i) {
1457 			phy->last_da_index = i;
1458 			*index = i;
1459 			*present = 0;
1460 			goto out;
1461 		}
1462 	}
1463 	res = -1;
1464 out:
1465 	kfree(rri_req);
1466 	kfree(rri_resp);
1467 	return res;
1468 }
1469 
1470 #define CRI_REQ_SIZE  44
1471 #define CRI_RESP_SIZE  8
1472 
1473 static int sas_configure_set(struct domain_device *dev, int phy_id,
1474 			     u8 *sas_addr, int index, int include)
1475 {
1476 	int res;
1477 	u8 *cri_req;
1478 	u8 *cri_resp;
1479 
1480 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1481 	if (!cri_req)
1482 		return -ENOMEM;
1483 
1484 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1485 	if (!cri_resp) {
1486 		kfree(cri_req);
1487 		return -ENOMEM;
1488 	}
1489 
1490 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1491 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1492 	cri_req[9] = phy_id;
1493 	if (SAS_ADDR(sas_addr) == 0 || !include)
1494 		cri_req[12] |= 0x80;
1495 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1496 
1497 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1498 			       CRI_RESP_SIZE);
1499 	if (res)
1500 		goto out;
1501 	res = cri_resp[2];
1502 	if (res == SMP_RESP_NO_INDEX) {
1503 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1504 			    "index 0x%x\n",
1505 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1506 	}
1507 out:
1508 	kfree(cri_req);
1509 	kfree(cri_resp);
1510 	return res;
1511 }
1512 
1513 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1514 				    u8 *sas_addr, int include)
1515 {
1516 	int index;
1517 	int present;
1518 	int res;
1519 
1520 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1521 	if (res)
1522 		return res;
1523 	if (include ^ present)
1524 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1525 
1526 	return res;
1527 }
1528 
1529 /**
1530  * sas_configure_parent - configure routing table of parent
1531  * @parent: parent expander
1532  * @child: child expander
1533  * @sas_addr: SAS port identifier of device directly attached to child
1534  * @include: whether or not to include @child in the expander routing table
1535  */
1536 static int sas_configure_parent(struct domain_device *parent,
1537 				struct domain_device *child,
1538 				u8 *sas_addr, int include)
1539 {
1540 	struct expander_device *ex_parent = &parent->ex_dev;
1541 	int res = 0;
1542 	int i;
1543 
1544 	if (parent->parent) {
1545 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1546 					   include);
1547 		if (res)
1548 			return res;
1549 	}
1550 
1551 	if (ex_parent->conf_route_table == 0) {
1552 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553 			    SAS_ADDR(parent->sas_addr));
1554 		return 0;
1555 	}
1556 
1557 	for (i = 0; i < ex_parent->num_phys; i++) {
1558 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1559 
1560 		if ((phy->routing_attr == TABLE_ROUTING) &&
1561 		    (SAS_ADDR(phy->attached_sas_addr) ==
1562 		     SAS_ADDR(child->sas_addr))) {
1563 			res = sas_configure_phy(parent, i, sas_addr, include);
1564 			if (res)
1565 				return res;
1566 		}
1567 	}
1568 
1569 	return res;
1570 }
1571 
1572 /**
1573  * sas_configure_routing - configure routing
1574  * @dev: expander device
1575  * @sas_addr: port identifier of device directly attached to the expander device
1576  */
1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1578 {
1579 	if (dev->parent)
1580 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1581 	return 0;
1582 }
1583 
1584 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1585 {
1586 	if (dev->parent)
1587 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1588 	return 0;
1589 }
1590 
1591 /**
1592  * sas_discover_expander - expander discovery
1593  * @dev: pointer to expander domain device
1594  *
1595  * See comment in sas_discover_sata().
1596  */
1597 static int sas_discover_expander(struct domain_device *dev)
1598 {
1599 	int res;
1600 
1601 	res = sas_notify_lldd_dev_found(dev);
1602 	if (res)
1603 		return res;
1604 
1605 	res = sas_ex_general(dev);
1606 	if (res)
1607 		goto out_err;
1608 	res = sas_ex_manuf_info(dev);
1609 	if (res)
1610 		goto out_err;
1611 
1612 	res = sas_expander_discover(dev);
1613 	if (res) {
1614 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615 			    SAS_ADDR(dev->sas_addr), res);
1616 		goto out_err;
1617 	}
1618 
1619 	sas_check_ex_subtractive_boundary(dev);
1620 	res = sas_check_parent_topology(dev);
1621 	if (res)
1622 		goto out_err;
1623 	return 0;
1624 out_err:
1625 	sas_notify_lldd_dev_gone(dev);
1626 	return res;
1627 }
1628 
1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1630 {
1631 	int res = 0;
1632 	struct domain_device *dev;
1633 
1634 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1635 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1636 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1637 			struct sas_expander_device *ex =
1638 				rphy_to_expander_device(dev->rphy);
1639 
1640 			if (level == ex->level)
1641 				res = sas_ex_discover_devices(dev, -1);
1642 			else if (level > 0)
1643 				res = sas_ex_discover_devices(port->port_dev, -1);
1644 
1645 		}
1646 	}
1647 
1648 	return res;
1649 }
1650 
1651 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1652 {
1653 	int res;
1654 	int level;
1655 
1656 	do {
1657 		level = port->disc.max_level;
1658 		res = sas_ex_level_discovery(port, level);
1659 		mb();
1660 	} while (level < port->disc.max_level);
1661 
1662 	return res;
1663 }
1664 
1665 int sas_discover_root_expander(struct domain_device *dev)
1666 {
1667 	int res;
1668 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1669 
1670 	res = sas_rphy_add(dev->rphy);
1671 	if (res)
1672 		goto out_err;
1673 
1674 	ex->level = dev->port->disc.max_level; /* 0 */
1675 	res = sas_discover_expander(dev);
1676 	if (res)
1677 		goto out_err2;
1678 
1679 	sas_ex_bfs_disc(dev->port);
1680 
1681 	return res;
1682 
1683 out_err2:
1684 	sas_rphy_remove(dev->rphy);
1685 out_err:
1686 	return res;
1687 }
1688 
1689 /* ---------- Domain revalidation ---------- */
1690 
1691 static int sas_get_phy_discover(struct domain_device *dev,
1692 				int phy_id, struct smp_resp *disc_resp)
1693 {
1694 	int res;
1695 	u8 *disc_req;
1696 
1697 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1698 	if (!disc_req)
1699 		return -ENOMEM;
1700 
1701 	disc_req[1] = SMP_DISCOVER;
1702 	disc_req[9] = phy_id;
1703 
1704 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1705 			       disc_resp, DISCOVER_RESP_SIZE);
1706 	if (res)
1707 		goto out;
1708 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1709 		res = disc_resp->result;
1710 		goto out;
1711 	}
1712 out:
1713 	kfree(disc_req);
1714 	return res;
1715 }
1716 
1717 static int sas_get_phy_change_count(struct domain_device *dev,
1718 				    int phy_id, int *pcc)
1719 {
1720 	int res;
1721 	struct smp_resp *disc_resp;
1722 
1723 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1724 	if (!disc_resp)
1725 		return -ENOMEM;
1726 
1727 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1728 	if (!res)
1729 		*pcc = disc_resp->disc.change_count;
1730 
1731 	kfree(disc_resp);
1732 	return res;
1733 }
1734 
1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1736 				    u8 *sas_addr, enum sas_device_type *type)
1737 {
1738 	int res;
1739 	struct smp_resp *disc_resp;
1740 	struct discover_resp *dr;
1741 
1742 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1743 	if (!disc_resp)
1744 		return -ENOMEM;
1745 	dr = &disc_resp->disc;
1746 
1747 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1748 	if (res == 0) {
1749 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1750 		*type = to_dev_type(dr);
1751 		if (*type == 0)
1752 			memset(sas_addr, 0, 8);
1753 	}
1754 	kfree(disc_resp);
1755 	return res;
1756 }
1757 
1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1759 			      int from_phy, bool update)
1760 {
1761 	struct expander_device *ex = &dev->ex_dev;
1762 	int res = 0;
1763 	int i;
1764 
1765 	for (i = from_phy; i < ex->num_phys; i++) {
1766 		int phy_change_count = 0;
1767 
1768 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1769 		switch (res) {
1770 		case SMP_RESP_PHY_VACANT:
1771 		case SMP_RESP_NO_PHY:
1772 			continue;
1773 		case SMP_RESP_FUNC_ACC:
1774 			break;
1775 		default:
1776 			return res;
1777 		}
1778 
1779 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1780 			if (update)
1781 				ex->ex_phy[i].phy_change_count =
1782 					phy_change_count;
1783 			*phy_id = i;
1784 			return 0;
1785 		}
1786 	}
1787 	return 0;
1788 }
1789 
1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1791 {
1792 	int res;
1793 	u8  *rg_req;
1794 	struct smp_resp  *rg_resp;
1795 
1796 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1797 	if (!rg_req)
1798 		return -ENOMEM;
1799 
1800 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1801 	if (!rg_resp) {
1802 		kfree(rg_req);
1803 		return -ENOMEM;
1804 	}
1805 
1806 	rg_req[1] = SMP_REPORT_GENERAL;
1807 
1808 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1809 			       RG_RESP_SIZE);
1810 	if (res)
1811 		goto out;
1812 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1813 		res = rg_resp->result;
1814 		goto out;
1815 	}
1816 
1817 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1818 out:
1819 	kfree(rg_resp);
1820 	kfree(rg_req);
1821 	return res;
1822 }
1823 /**
1824  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1825  * @dev:domain device to be detect.
1826  * @src_dev: the device which originated BROADCAST(CHANGE).
1827  *
1828  * Add self-configuration expander support. Suppose two expander cascading,
1829  * when the first level expander is self-configuring, hotplug the disks in
1830  * second level expander, BROADCAST(CHANGE) will not only be originated
1831  * in the second level expander, but also be originated in the first level
1832  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833  * expander changed count in two level expanders will all increment at least
1834  * once, but the phy which chang count has changed is the source device which
1835  * we concerned.
1836  */
1837 
1838 static int sas_find_bcast_dev(struct domain_device *dev,
1839 			      struct domain_device **src_dev)
1840 {
1841 	struct expander_device *ex = &dev->ex_dev;
1842 	int ex_change_count = -1;
1843 	int phy_id = -1;
1844 	int res;
1845 	struct domain_device *ch;
1846 
1847 	res = sas_get_ex_change_count(dev, &ex_change_count);
1848 	if (res)
1849 		goto out;
1850 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1851 		/* Just detect if this expander phys phy change count changed,
1852 		* in order to determine if this expander originate BROADCAST,
1853 		* and do not update phy change count field in our structure.
1854 		*/
1855 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1856 		if (phy_id != -1) {
1857 			*src_dev = dev;
1858 			ex->ex_change_count = ex_change_count;
1859 			SAS_DPRINTK("Expander phy change count has changed\n");
1860 			return res;
1861 		} else
1862 			SAS_DPRINTK("Expander phys DID NOT change\n");
1863 	}
1864 	list_for_each_entry(ch, &ex->children, siblings) {
1865 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1866 			res = sas_find_bcast_dev(ch, src_dev);
1867 			if (*src_dev)
1868 				return res;
1869 		}
1870 	}
1871 out:
1872 	return res;
1873 }
1874 
1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1876 {
1877 	struct expander_device *ex = &dev->ex_dev;
1878 	struct domain_device *child, *n;
1879 
1880 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1881 		set_bit(SAS_DEV_GONE, &child->state);
1882 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1883 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1884 			sas_unregister_ex_tree(port, child);
1885 		else
1886 			sas_unregister_dev(port, child);
1887 	}
1888 	sas_unregister_dev(port, dev);
1889 }
1890 
1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1892 					 int phy_id, bool last)
1893 {
1894 	struct expander_device *ex_dev = &parent->ex_dev;
1895 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1896 	struct domain_device *child, *n, *found = NULL;
1897 	if (last) {
1898 		list_for_each_entry_safe(child, n,
1899 			&ex_dev->children, siblings) {
1900 			if (SAS_ADDR(child->sas_addr) ==
1901 			    SAS_ADDR(phy->attached_sas_addr)) {
1902 				set_bit(SAS_DEV_GONE, &child->state);
1903 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1904 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1905 					sas_unregister_ex_tree(parent->port, child);
1906 				else
1907 					sas_unregister_dev(parent->port, child);
1908 				found = child;
1909 				break;
1910 			}
1911 		}
1912 		sas_disable_routing(parent, phy->attached_sas_addr);
1913 	}
1914 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1915 	if (phy->port) {
1916 		sas_port_delete_phy(phy->port, phy->phy);
1917 		sas_device_set_phy(found, phy->port);
1918 		if (phy->port->num_phys == 0)
1919 			list_add_tail(&phy->port->del_list,
1920 				&parent->port->sas_port_del_list);
1921 		phy->port = NULL;
1922 	}
1923 }
1924 
1925 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1926 					  const int level)
1927 {
1928 	struct expander_device *ex_root = &root->ex_dev;
1929 	struct domain_device *child;
1930 	int res = 0;
1931 
1932 	list_for_each_entry(child, &ex_root->children, siblings) {
1933 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1935 			struct sas_expander_device *ex =
1936 				rphy_to_expander_device(child->rphy);
1937 
1938 			if (level > ex->level)
1939 				res = sas_discover_bfs_by_root_level(child,
1940 								     level);
1941 			else if (level == ex->level)
1942 				res = sas_ex_discover_devices(child, -1);
1943 		}
1944 	}
1945 	return res;
1946 }
1947 
1948 static int sas_discover_bfs_by_root(struct domain_device *dev)
1949 {
1950 	int res;
1951 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1952 	int level = ex->level+1;
1953 
1954 	res = sas_ex_discover_devices(dev, -1);
1955 	if (res)
1956 		goto out;
1957 	do {
1958 		res = sas_discover_bfs_by_root_level(dev, level);
1959 		mb();
1960 		level += 1;
1961 	} while (level <= dev->port->disc.max_level);
1962 out:
1963 	return res;
1964 }
1965 
1966 static int sas_discover_new(struct domain_device *dev, int phy_id)
1967 {
1968 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1969 	struct domain_device *child;
1970 	int res;
1971 
1972 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973 		    SAS_ADDR(dev->sas_addr), phy_id);
1974 	res = sas_ex_phy_discover(dev, phy_id);
1975 	if (res)
1976 		return res;
1977 
1978 	if (sas_ex_join_wide_port(dev, phy_id))
1979 		return 0;
1980 
1981 	res = sas_ex_discover_devices(dev, phy_id);
1982 	if (res)
1983 		return res;
1984 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1985 		if (SAS_ADDR(child->sas_addr) ==
1986 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1987 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1988 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1989 				res = sas_discover_bfs_by_root(child);
1990 			break;
1991 		}
1992 	}
1993 	return res;
1994 }
1995 
1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1997 {
1998 	if (old == new)
1999 		return true;
2000 
2001 	/* treat device directed resets as flutter, if we went
2002 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2003 	 */
2004 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2005 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2006 		return true;
2007 
2008 	return false;
2009 }
2010 
2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2012 {
2013 	struct expander_device *ex = &dev->ex_dev;
2014 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2015 	enum sas_device_type type = SAS_PHY_UNUSED;
2016 	u8 sas_addr[8];
2017 	int res;
2018 
2019 	memset(sas_addr, 0, 8);
2020 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2021 	switch (res) {
2022 	case SMP_RESP_NO_PHY:
2023 		phy->phy_state = PHY_NOT_PRESENT;
2024 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 		return res;
2026 	case SMP_RESP_PHY_VACANT:
2027 		phy->phy_state = PHY_VACANT;
2028 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2029 		return res;
2030 	case SMP_RESP_FUNC_ACC:
2031 		break;
2032 	case -ECOMM:
2033 		break;
2034 	default:
2035 		return res;
2036 	}
2037 
2038 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2039 		phy->phy_state = PHY_EMPTY;
2040 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2041 		return res;
2042 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043 		   dev_type_flutter(type, phy->attached_dev_type)) {
2044 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045 		char *action = "";
2046 
2047 		sas_ex_phy_discover(dev, phy_id);
2048 
2049 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050 			action = ", needs recovery";
2051 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2053 		return res;
2054 	}
2055 
2056 	/* we always have to delete the old device when we went here */
2057 	SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2058 		    SAS_ADDR(dev->sas_addr), phy_id,
2059 		    SAS_ADDR(phy->attached_sas_addr));
2060 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2061 
2062 	return sas_discover_new(dev, phy_id);
2063 }
2064 
2065 /**
2066  * sas_rediscover - revalidate the domain.
2067  * @dev:domain device to be detect.
2068  * @phy_id: the phy id will be detected.
2069  *
2070  * NOTE: this process _must_ quit (return) as soon as any connection
2071  * errors are encountered.  Connection recovery is done elsewhere.
2072  * Discover process only interrogates devices in order to discover the
2073  * domain.For plugging out, we un-register the device only when it is
2074  * the last phy in the port, for other phys in this port, we just delete it
2075  * from the port.For inserting, we do discovery when it is the
2076  * first phy,for other phys in this port, we add it to the port to
2077  * forming the wide-port.
2078  */
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2080 {
2081 	struct expander_device *ex = &dev->ex_dev;
2082 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083 	int res = 0;
2084 	int i;
2085 	bool last = true;	/* is this the last phy of the port */
2086 
2087 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088 		    SAS_ADDR(dev->sas_addr), phy_id);
2089 
2090 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091 		for (i = 0; i < ex->num_phys; i++) {
2092 			struct ex_phy *phy = &ex->ex_phy[i];
2093 
2094 			if (i == phy_id)
2095 				continue;
2096 			if (SAS_ADDR(phy->attached_sas_addr) ==
2097 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2098 				SAS_DPRINTK("phy%d part of wide port with "
2099 					    "phy%d\n", phy_id, i);
2100 				last = false;
2101 				break;
2102 			}
2103 		}
2104 		res = sas_rediscover_dev(dev, phy_id, last);
2105 	} else
2106 		res = sas_discover_new(dev, phy_id);
2107 	return res;
2108 }
2109 
2110 /**
2111  * sas_ex_revalidate_domain - revalidate the domain
2112  * @port_dev: port domain device.
2113  *
2114  * NOTE: this process _must_ quit (return) as soon as any connection
2115  * errors are encountered.  Connection recovery is done elsewhere.
2116  * Discover process only interrogates devices in order to discover the
2117  * domain.
2118  */
2119 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2120 {
2121 	int res;
2122 	struct domain_device *dev = NULL;
2123 
2124 	res = sas_find_bcast_dev(port_dev, &dev);
2125 	if (res == 0 && dev) {
2126 		struct expander_device *ex = &dev->ex_dev;
2127 		int i = 0, phy_id;
2128 
2129 		do {
2130 			phy_id = -1;
2131 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132 			if (phy_id == -1)
2133 				break;
2134 			res = sas_rediscover(dev, phy_id);
2135 			i = phy_id + 1;
2136 		} while (i < ex->num_phys);
2137 	}
2138 	return res;
2139 }
2140 
2141 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2142 		struct sas_rphy *rphy)
2143 {
2144 	struct domain_device *dev;
2145 	unsigned int rcvlen = 0;
2146 	int ret = -EINVAL;
2147 
2148 	/* no rphy means no smp target support (ie aic94xx host) */
2149 	if (!rphy)
2150 		return sas_smp_host_handler(job, shost);
2151 
2152 	switch (rphy->identify.device_type) {
2153 	case SAS_EDGE_EXPANDER_DEVICE:
2154 	case SAS_FANOUT_EXPANDER_DEVICE:
2155 		break;
2156 	default:
2157 		printk("%s: can we send a smp request to a device?\n",
2158 		       __func__);
2159 		goto out;
2160 	}
2161 
2162 	dev = sas_find_dev_by_rphy(rphy);
2163 	if (!dev) {
2164 		printk("%s: fail to find a domain_device?\n", __func__);
2165 		goto out;
2166 	}
2167 
2168 	/* do we need to support multiple segments? */
2169 	if (job->request_payload.sg_cnt > 1 ||
2170 	    job->reply_payload.sg_cnt > 1) {
2171 		printk("%s: multiple segments req %u, rsp %u\n",
2172 		       __func__, job->request_payload.payload_len,
2173 		       job->reply_payload.payload_len);
2174 		goto out;
2175 	}
2176 
2177 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2178 			job->reply_payload.sg_list);
2179 	if (ret >= 0) {
2180 		/* bsg_job_done() requires the length received  */
2181 		rcvlen = job->reply_payload.payload_len - ret;
2182 		ret = 0;
2183 	}
2184 
2185 out:
2186 	bsg_job_done(job, ret, rcvlen);
2187 }
2188