1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(struct timer_list *t) 45 { 46 struct sas_task_slow *slow = from_timer(slow, t, timer); 47 struct sas_task *task = slow->task; 48 unsigned long flags; 49 50 spin_lock_irqsave(&task->task_state_lock, flags); 51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 52 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 53 complete(&task->slow_task->completion); 54 } 55 spin_unlock_irqrestore(&task->task_state_lock, flags); 56 } 57 58 static void smp_task_done(struct sas_task *task) 59 { 60 del_timer(&task->slow_task->timer); 61 complete(&task->slow_task->completion); 62 } 63 64 /* Give it some long enough timeout. In seconds. */ 65 #define SMP_TIMEOUT 10 66 67 static int smp_execute_task_sg(struct domain_device *dev, 68 struct scatterlist *req, struct scatterlist *resp) 69 { 70 int res, retry; 71 struct sas_task *task = NULL; 72 struct sas_internal *i = 73 to_sas_internal(dev->port->ha->core.shost->transportt); 74 75 mutex_lock(&dev->ex_dev.cmd_mutex); 76 for (retry = 0; retry < 3; retry++) { 77 if (test_bit(SAS_DEV_GONE, &dev->state)) { 78 res = -ECOMM; 79 break; 80 } 81 82 task = sas_alloc_slow_task(GFP_KERNEL); 83 if (!task) { 84 res = -ENOMEM; 85 break; 86 } 87 task->dev = dev; 88 task->task_proto = dev->tproto; 89 task->smp_task.smp_req = *req; 90 task->smp_task.smp_resp = *resp; 91 92 task->task_done = smp_task_done; 93 94 task->slow_task->timer.function = smp_task_timedout; 95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 96 add_timer(&task->slow_task->timer); 97 98 res = i->dft->lldd_execute_task(task, GFP_KERNEL); 99 100 if (res) { 101 del_timer(&task->slow_task->timer); 102 SAS_DPRINTK("executing SMP task failed:%d\n", res); 103 break; 104 } 105 106 wait_for_completion(&task->slow_task->completion); 107 res = -ECOMM; 108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 109 SAS_DPRINTK("smp task timed out or aborted\n"); 110 i->dft->lldd_abort_task(task); 111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 112 SAS_DPRINTK("SMP task aborted and not done\n"); 113 break; 114 } 115 } 116 if (task->task_status.resp == SAS_TASK_COMPLETE && 117 task->task_status.stat == SAM_STAT_GOOD) { 118 res = 0; 119 break; 120 } 121 if (task->task_status.resp == SAS_TASK_COMPLETE && 122 task->task_status.stat == SAS_DATA_UNDERRUN) { 123 /* no error, but return the number of bytes of 124 * underrun */ 125 res = task->task_status.residual; 126 break; 127 } 128 if (task->task_status.resp == SAS_TASK_COMPLETE && 129 task->task_status.stat == SAS_DATA_OVERRUN) { 130 res = -EMSGSIZE; 131 break; 132 } 133 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 134 task->task_status.stat == SAS_DEVICE_UNKNOWN) 135 break; 136 else { 137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 138 "status 0x%x\n", __func__, 139 SAS_ADDR(dev->sas_addr), 140 task->task_status.resp, 141 task->task_status.stat); 142 sas_free_task(task); 143 task = NULL; 144 } 145 } 146 mutex_unlock(&dev->ex_dev.cmd_mutex); 147 148 BUG_ON(retry == 3 && task != NULL); 149 sas_free_task(task); 150 return res; 151 } 152 153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 154 void *resp, int resp_size) 155 { 156 struct scatterlist req_sg; 157 struct scatterlist resp_sg; 158 159 sg_init_one(&req_sg, req, req_size); 160 sg_init_one(&resp_sg, resp, resp_size); 161 return smp_execute_task_sg(dev, &req_sg, &resp_sg); 162 } 163 164 /* ---------- Allocations ---------- */ 165 166 static inline void *alloc_smp_req(int size) 167 { 168 u8 *p = kzalloc(size, GFP_KERNEL); 169 if (p) 170 p[0] = SMP_REQUEST; 171 return p; 172 } 173 174 static inline void *alloc_smp_resp(int size) 175 { 176 return kzalloc(size, GFP_KERNEL); 177 } 178 179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 180 { 181 switch (phy->routing_attr) { 182 case TABLE_ROUTING: 183 if (dev->ex_dev.t2t_supp) 184 return 'U'; 185 else 186 return 'T'; 187 case DIRECT_ROUTING: 188 return 'D'; 189 case SUBTRACTIVE_ROUTING: 190 return 'S'; 191 default: 192 return '?'; 193 } 194 } 195 196 static enum sas_device_type to_dev_type(struct discover_resp *dr) 197 { 198 /* This is detecting a failure to transmit initial dev to host 199 * FIS as described in section J.5 of sas-2 r16 200 */ 201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && 202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 203 return SAS_SATA_PENDING; 204 else 205 return dr->attached_dev_type; 206 } 207 208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 209 { 210 enum sas_device_type dev_type; 211 enum sas_linkrate linkrate; 212 u8 sas_addr[SAS_ADDR_SIZE]; 213 struct smp_resp *resp = rsp; 214 struct discover_resp *dr = &resp->disc; 215 struct sas_ha_struct *ha = dev->port->ha; 216 struct expander_device *ex = &dev->ex_dev; 217 struct ex_phy *phy = &ex->ex_phy[phy_id]; 218 struct sas_rphy *rphy = dev->rphy; 219 bool new_phy = !phy->phy; 220 char *type; 221 222 if (new_phy) { 223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 224 return; 225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 226 227 /* FIXME: error_handling */ 228 BUG_ON(!phy->phy); 229 } 230 231 switch (resp->result) { 232 case SMP_RESP_PHY_VACANT: 233 phy->phy_state = PHY_VACANT; 234 break; 235 default: 236 phy->phy_state = PHY_NOT_PRESENT; 237 break; 238 case SMP_RESP_FUNC_ACC: 239 phy->phy_state = PHY_EMPTY; /* do not know yet */ 240 break; 241 } 242 243 /* check if anything important changed to squelch debug */ 244 dev_type = phy->attached_dev_type; 245 linkrate = phy->linkrate; 246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 247 248 /* Handle vacant phy - rest of dr data is not valid so skip it */ 249 if (phy->phy_state == PHY_VACANT) { 250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 251 phy->attached_dev_type = SAS_PHY_UNUSED; 252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { 253 phy->phy_id = phy_id; 254 goto skip; 255 } else 256 goto out; 257 } 258 259 phy->attached_dev_type = to_dev_type(dr); 260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 261 goto out; 262 phy->phy_id = phy_id; 263 phy->linkrate = dr->linkrate; 264 phy->attached_sata_host = dr->attached_sata_host; 265 phy->attached_sata_dev = dr->attached_sata_dev; 266 phy->attached_sata_ps = dr->attached_sata_ps; 267 phy->attached_iproto = dr->iproto << 1; 268 phy->attached_tproto = dr->tproto << 1; 269 /* help some expanders that fail to zero sas_address in the 'no 270 * device' case 271 */ 272 if (phy->attached_dev_type == SAS_PHY_UNUSED || 273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 275 else 276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 277 phy->attached_phy_id = dr->attached_phy_id; 278 phy->phy_change_count = dr->change_count; 279 phy->routing_attr = dr->routing_attr; 280 phy->virtual = dr->virtual; 281 phy->last_da_index = -1; 282 283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 284 phy->phy->identify.device_type = dr->attached_dev_type; 285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 286 phy->phy->identify.target_port_protocols = phy->attached_tproto; 287 if (!phy->attached_tproto && dr->attached_sata_dev) 288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 289 phy->phy->identify.phy_identifier = phy_id; 290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 292 phy->phy->minimum_linkrate = dr->pmin_linkrate; 293 phy->phy->maximum_linkrate = dr->pmax_linkrate; 294 phy->phy->negotiated_linkrate = phy->linkrate; 295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED); 296 297 skip: 298 if (new_phy) 299 if (sas_phy_add(phy->phy)) { 300 sas_phy_free(phy->phy); 301 return; 302 } 303 304 out: 305 switch (phy->attached_dev_type) { 306 case SAS_SATA_PENDING: 307 type = "stp pending"; 308 break; 309 case SAS_PHY_UNUSED: 310 type = "no device"; 311 break; 312 case SAS_END_DEVICE: 313 if (phy->attached_iproto) { 314 if (phy->attached_tproto) 315 type = "host+target"; 316 else 317 type = "host"; 318 } else { 319 if (dr->attached_sata_dev) 320 type = "stp"; 321 else 322 type = "ssp"; 323 } 324 break; 325 case SAS_EDGE_EXPANDER_DEVICE: 326 case SAS_FANOUT_EXPANDER_DEVICE: 327 type = "smp"; 328 break; 329 default: 330 type = "unknown"; 331 } 332 333 /* this routine is polled by libata error recovery so filter 334 * unimportant messages 335 */ 336 if (new_phy || phy->attached_dev_type != dev_type || 337 phy->linkrate != linkrate || 338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 339 /* pass */; 340 else 341 return; 342 343 /* if the attached device type changed and ata_eh is active, 344 * make sure we run revalidation when eh completes (see: 345 * sas_enable_revalidation) 346 */ 347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 349 350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 352 SAS_ADDR(dev->sas_addr), phy->phy_id, 353 sas_route_char(dev, phy), phy->linkrate, 354 SAS_ADDR(phy->attached_sas_addr), type); 355 } 356 357 /* check if we have an existing attached ata device on this expander phy */ 358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 359 { 360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 361 struct domain_device *dev; 362 struct sas_rphy *rphy; 363 364 if (!ex_phy->port) 365 return NULL; 366 367 rphy = ex_phy->port->rphy; 368 if (!rphy) 369 return NULL; 370 371 dev = sas_find_dev_by_rphy(rphy); 372 373 if (dev && dev_is_sata(dev)) 374 return dev; 375 376 return NULL; 377 } 378 379 #define DISCOVER_REQ_SIZE 16 380 #define DISCOVER_RESP_SIZE 56 381 382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 383 u8 *disc_resp, int single) 384 { 385 struct discover_resp *dr; 386 int res; 387 388 disc_req[9] = single; 389 390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 391 disc_resp, DISCOVER_RESP_SIZE); 392 if (res) 393 return res; 394 dr = &((struct smp_resp *)disc_resp)->disc; 395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 396 sas_printk("Found loopback topology, just ignore it!\n"); 397 return 0; 398 } 399 sas_set_ex_phy(dev, single, disc_resp); 400 return 0; 401 } 402 403 int sas_ex_phy_discover(struct domain_device *dev, int single) 404 { 405 struct expander_device *ex = &dev->ex_dev; 406 int res = 0; 407 u8 *disc_req; 408 u8 *disc_resp; 409 410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 411 if (!disc_req) 412 return -ENOMEM; 413 414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 415 if (!disc_resp) { 416 kfree(disc_req); 417 return -ENOMEM; 418 } 419 420 disc_req[1] = SMP_DISCOVER; 421 422 if (0 <= single && single < ex->num_phys) { 423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 424 } else { 425 int i; 426 427 for (i = 0; i < ex->num_phys; i++) { 428 res = sas_ex_phy_discover_helper(dev, disc_req, 429 disc_resp, i); 430 if (res) 431 goto out_err; 432 } 433 } 434 out_err: 435 kfree(disc_resp); 436 kfree(disc_req); 437 return res; 438 } 439 440 static int sas_expander_discover(struct domain_device *dev) 441 { 442 struct expander_device *ex = &dev->ex_dev; 443 int res = -ENOMEM; 444 445 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL); 446 if (!ex->ex_phy) 447 return -ENOMEM; 448 449 res = sas_ex_phy_discover(dev, -1); 450 if (res) 451 goto out_err; 452 453 return 0; 454 out_err: 455 kfree(ex->ex_phy); 456 ex->ex_phy = NULL; 457 return res; 458 } 459 460 #define MAX_EXPANDER_PHYS 128 461 462 static void ex_assign_report_general(struct domain_device *dev, 463 struct smp_resp *resp) 464 { 465 struct report_general_resp *rg = &resp->rg; 466 467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 470 dev->ex_dev.t2t_supp = rg->t2t_supp; 471 dev->ex_dev.conf_route_table = rg->conf_route_table; 472 dev->ex_dev.configuring = rg->configuring; 473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 474 } 475 476 #define RG_REQ_SIZE 8 477 #define RG_RESP_SIZE 32 478 479 static int sas_ex_general(struct domain_device *dev) 480 { 481 u8 *rg_req; 482 struct smp_resp *rg_resp; 483 int res; 484 int i; 485 486 rg_req = alloc_smp_req(RG_REQ_SIZE); 487 if (!rg_req) 488 return -ENOMEM; 489 490 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 491 if (!rg_resp) { 492 kfree(rg_req); 493 return -ENOMEM; 494 } 495 496 rg_req[1] = SMP_REPORT_GENERAL; 497 498 for (i = 0; i < 5; i++) { 499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 500 RG_RESP_SIZE); 501 502 if (res) { 503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 504 SAS_ADDR(dev->sas_addr), res); 505 goto out; 506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 508 SAS_ADDR(dev->sas_addr), rg_resp->result); 509 res = rg_resp->result; 510 goto out; 511 } 512 513 ex_assign_report_general(dev, rg_resp); 514 515 if (dev->ex_dev.configuring) { 516 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 517 SAS_ADDR(dev->sas_addr)); 518 schedule_timeout_interruptible(5*HZ); 519 } else 520 break; 521 } 522 out: 523 kfree(rg_req); 524 kfree(rg_resp); 525 return res; 526 } 527 528 static void ex_assign_manuf_info(struct domain_device *dev, void 529 *_mi_resp) 530 { 531 u8 *mi_resp = _mi_resp; 532 struct sas_rphy *rphy = dev->rphy; 533 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 534 535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 537 memcpy(edev->product_rev, mi_resp + 36, 538 SAS_EXPANDER_PRODUCT_REV_LEN); 539 540 if (mi_resp[8] & 1) { 541 memcpy(edev->component_vendor_id, mi_resp + 40, 542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 543 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 544 edev->component_revision_id = mi_resp[50]; 545 } 546 } 547 548 #define MI_REQ_SIZE 8 549 #define MI_RESP_SIZE 64 550 551 static int sas_ex_manuf_info(struct domain_device *dev) 552 { 553 u8 *mi_req; 554 u8 *mi_resp; 555 int res; 556 557 mi_req = alloc_smp_req(MI_REQ_SIZE); 558 if (!mi_req) 559 return -ENOMEM; 560 561 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 562 if (!mi_resp) { 563 kfree(mi_req); 564 return -ENOMEM; 565 } 566 567 mi_req[1] = SMP_REPORT_MANUF_INFO; 568 569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 570 if (res) { 571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 572 SAS_ADDR(dev->sas_addr), res); 573 goto out; 574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 576 SAS_ADDR(dev->sas_addr), mi_resp[2]); 577 goto out; 578 } 579 580 ex_assign_manuf_info(dev, mi_resp); 581 out: 582 kfree(mi_req); 583 kfree(mi_resp); 584 return res; 585 } 586 587 #define PC_REQ_SIZE 44 588 #define PC_RESP_SIZE 8 589 590 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 591 enum phy_func phy_func, 592 struct sas_phy_linkrates *rates) 593 { 594 u8 *pc_req; 595 u8 *pc_resp; 596 int res; 597 598 pc_req = alloc_smp_req(PC_REQ_SIZE); 599 if (!pc_req) 600 return -ENOMEM; 601 602 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 603 if (!pc_resp) { 604 kfree(pc_req); 605 return -ENOMEM; 606 } 607 608 pc_req[1] = SMP_PHY_CONTROL; 609 pc_req[9] = phy_id; 610 pc_req[10]= phy_func; 611 if (rates) { 612 pc_req[32] = rates->minimum_linkrate << 4; 613 pc_req[33] = rates->maximum_linkrate << 4; 614 } 615 616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 617 618 kfree(pc_resp); 619 kfree(pc_req); 620 return res; 621 } 622 623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 624 { 625 struct expander_device *ex = &dev->ex_dev; 626 struct ex_phy *phy = &ex->ex_phy[phy_id]; 627 628 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 629 phy->linkrate = SAS_PHY_DISABLED; 630 } 631 632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 633 { 634 struct expander_device *ex = &dev->ex_dev; 635 int i; 636 637 for (i = 0; i < ex->num_phys; i++) { 638 struct ex_phy *phy = &ex->ex_phy[i]; 639 640 if (phy->phy_state == PHY_VACANT || 641 phy->phy_state == PHY_NOT_PRESENT) 642 continue; 643 644 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 645 sas_ex_disable_phy(dev, i); 646 } 647 } 648 649 static int sas_dev_present_in_domain(struct asd_sas_port *port, 650 u8 *sas_addr) 651 { 652 struct domain_device *dev; 653 654 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 655 return 1; 656 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 657 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 658 return 1; 659 } 660 return 0; 661 } 662 663 #define RPEL_REQ_SIZE 16 664 #define RPEL_RESP_SIZE 32 665 int sas_smp_get_phy_events(struct sas_phy *phy) 666 { 667 int res; 668 u8 *req; 669 u8 *resp; 670 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 671 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 672 673 req = alloc_smp_req(RPEL_REQ_SIZE); 674 if (!req) 675 return -ENOMEM; 676 677 resp = alloc_smp_resp(RPEL_RESP_SIZE); 678 if (!resp) { 679 kfree(req); 680 return -ENOMEM; 681 } 682 683 req[1] = SMP_REPORT_PHY_ERR_LOG; 684 req[9] = phy->number; 685 686 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 687 resp, RPEL_RESP_SIZE); 688 689 if (res) 690 goto out; 691 692 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 693 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 694 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 695 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 696 697 out: 698 kfree(req); 699 kfree(resp); 700 return res; 701 702 } 703 704 #ifdef CONFIG_SCSI_SAS_ATA 705 706 #define RPS_REQ_SIZE 16 707 #define RPS_RESP_SIZE 60 708 709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 710 struct smp_resp *rps_resp) 711 { 712 int res; 713 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 714 u8 *resp = (u8 *)rps_resp; 715 716 if (!rps_req) 717 return -ENOMEM; 718 719 rps_req[1] = SMP_REPORT_PHY_SATA; 720 rps_req[9] = phy_id; 721 722 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 723 rps_resp, RPS_RESP_SIZE); 724 725 /* 0x34 is the FIS type for the D2H fis. There's a potential 726 * standards cockup here. sas-2 explicitly specifies the FIS 727 * should be encoded so that FIS type is in resp[24]. 728 * However, some expanders endian reverse this. Undo the 729 * reversal here */ 730 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 731 int i; 732 733 for (i = 0; i < 5; i++) { 734 int j = 24 + (i*4); 735 u8 a, b; 736 a = resp[j + 0]; 737 b = resp[j + 1]; 738 resp[j + 0] = resp[j + 3]; 739 resp[j + 1] = resp[j + 2]; 740 resp[j + 2] = b; 741 resp[j + 3] = a; 742 } 743 } 744 745 kfree(rps_req); 746 return res; 747 } 748 #endif 749 750 static void sas_ex_get_linkrate(struct domain_device *parent, 751 struct domain_device *child, 752 struct ex_phy *parent_phy) 753 { 754 struct expander_device *parent_ex = &parent->ex_dev; 755 struct sas_port *port; 756 int i; 757 758 child->pathways = 0; 759 760 port = parent_phy->port; 761 762 for (i = 0; i < parent_ex->num_phys; i++) { 763 struct ex_phy *phy = &parent_ex->ex_phy[i]; 764 765 if (phy->phy_state == PHY_VACANT || 766 phy->phy_state == PHY_NOT_PRESENT) 767 continue; 768 769 if (SAS_ADDR(phy->attached_sas_addr) == 770 SAS_ADDR(child->sas_addr)) { 771 772 child->min_linkrate = min(parent->min_linkrate, 773 phy->linkrate); 774 child->max_linkrate = max(parent->max_linkrate, 775 phy->linkrate); 776 child->pathways++; 777 sas_port_add_phy(port, phy->phy); 778 } 779 } 780 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 781 child->pathways = min(child->pathways, parent->pathways); 782 } 783 784 static struct domain_device *sas_ex_discover_end_dev( 785 struct domain_device *parent, int phy_id) 786 { 787 struct expander_device *parent_ex = &parent->ex_dev; 788 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 789 struct domain_device *child = NULL; 790 struct sas_rphy *rphy; 791 int res; 792 793 if (phy->attached_sata_host || phy->attached_sata_ps) 794 return NULL; 795 796 child = sas_alloc_device(); 797 if (!child) 798 return NULL; 799 800 kref_get(&parent->kref); 801 child->parent = parent; 802 child->port = parent->port; 803 child->iproto = phy->attached_iproto; 804 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 805 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 806 if (!phy->port) { 807 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 808 if (unlikely(!phy->port)) 809 goto out_err; 810 if (unlikely(sas_port_add(phy->port) != 0)) { 811 sas_port_free(phy->port); 812 goto out_err; 813 } 814 } 815 sas_ex_get_linkrate(parent, child, phy); 816 sas_device_set_phy(child, phy->port); 817 818 #ifdef CONFIG_SCSI_SAS_ATA 819 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 820 res = sas_get_ata_info(child, phy); 821 if (res) 822 goto out_free; 823 824 sas_init_dev(child); 825 res = sas_ata_init(child); 826 if (res) 827 goto out_free; 828 rphy = sas_end_device_alloc(phy->port); 829 if (!rphy) 830 goto out_free; 831 832 child->rphy = rphy; 833 get_device(&rphy->dev); 834 835 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 836 837 res = sas_discover_sata(child); 838 if (res) { 839 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 840 "%016llx:0x%x returned 0x%x\n", 841 SAS_ADDR(child->sas_addr), 842 SAS_ADDR(parent->sas_addr), phy_id, res); 843 goto out_list_del; 844 } 845 } else 846 #endif 847 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 848 child->dev_type = SAS_END_DEVICE; 849 rphy = sas_end_device_alloc(phy->port); 850 /* FIXME: error handling */ 851 if (unlikely(!rphy)) 852 goto out_free; 853 child->tproto = phy->attached_tproto; 854 sas_init_dev(child); 855 856 child->rphy = rphy; 857 get_device(&rphy->dev); 858 sas_fill_in_rphy(child, rphy); 859 860 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 861 862 res = sas_discover_end_dev(child); 863 if (res) { 864 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 865 "at %016llx:0x%x returned 0x%x\n", 866 SAS_ADDR(child->sas_addr), 867 SAS_ADDR(parent->sas_addr), phy_id, res); 868 goto out_list_del; 869 } 870 } else { 871 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 872 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 873 phy_id); 874 goto out_free; 875 } 876 877 list_add_tail(&child->siblings, &parent_ex->children); 878 return child; 879 880 out_list_del: 881 sas_rphy_free(child->rphy); 882 list_del(&child->disco_list_node); 883 spin_lock_irq(&parent->port->dev_list_lock); 884 list_del(&child->dev_list_node); 885 spin_unlock_irq(&parent->port->dev_list_lock); 886 out_free: 887 sas_port_delete(phy->port); 888 out_err: 889 phy->port = NULL; 890 sas_put_device(child); 891 return NULL; 892 } 893 894 /* See if this phy is part of a wide port */ 895 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 896 { 897 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 898 int i; 899 900 for (i = 0; i < parent->ex_dev.num_phys; i++) { 901 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 902 903 if (ephy == phy) 904 continue; 905 906 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 907 SAS_ADDR_SIZE) && ephy->port) { 908 sas_port_add_phy(ephy->port, phy->phy); 909 phy->port = ephy->port; 910 phy->phy_state = PHY_DEVICE_DISCOVERED; 911 return true; 912 } 913 } 914 915 return false; 916 } 917 918 static struct domain_device *sas_ex_discover_expander( 919 struct domain_device *parent, int phy_id) 920 { 921 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 922 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 923 struct domain_device *child = NULL; 924 struct sas_rphy *rphy; 925 struct sas_expander_device *edev; 926 struct asd_sas_port *port; 927 int res; 928 929 if (phy->routing_attr == DIRECT_ROUTING) { 930 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 931 "allowed\n", 932 SAS_ADDR(parent->sas_addr), phy_id, 933 SAS_ADDR(phy->attached_sas_addr), 934 phy->attached_phy_id); 935 return NULL; 936 } 937 child = sas_alloc_device(); 938 if (!child) 939 return NULL; 940 941 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 942 /* FIXME: better error handling */ 943 BUG_ON(sas_port_add(phy->port) != 0); 944 945 946 switch (phy->attached_dev_type) { 947 case SAS_EDGE_EXPANDER_DEVICE: 948 rphy = sas_expander_alloc(phy->port, 949 SAS_EDGE_EXPANDER_DEVICE); 950 break; 951 case SAS_FANOUT_EXPANDER_DEVICE: 952 rphy = sas_expander_alloc(phy->port, 953 SAS_FANOUT_EXPANDER_DEVICE); 954 break; 955 default: 956 rphy = NULL; /* shut gcc up */ 957 BUG(); 958 } 959 port = parent->port; 960 child->rphy = rphy; 961 get_device(&rphy->dev); 962 edev = rphy_to_expander_device(rphy); 963 child->dev_type = phy->attached_dev_type; 964 kref_get(&parent->kref); 965 child->parent = parent; 966 child->port = port; 967 child->iproto = phy->attached_iproto; 968 child->tproto = phy->attached_tproto; 969 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 970 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 971 sas_ex_get_linkrate(parent, child, phy); 972 edev->level = parent_ex->level + 1; 973 parent->port->disc.max_level = max(parent->port->disc.max_level, 974 edev->level); 975 sas_init_dev(child); 976 sas_fill_in_rphy(child, rphy); 977 sas_rphy_add(rphy); 978 979 spin_lock_irq(&parent->port->dev_list_lock); 980 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 981 spin_unlock_irq(&parent->port->dev_list_lock); 982 983 res = sas_discover_expander(child); 984 if (res) { 985 sas_rphy_delete(rphy); 986 spin_lock_irq(&parent->port->dev_list_lock); 987 list_del(&child->dev_list_node); 988 spin_unlock_irq(&parent->port->dev_list_lock); 989 sas_put_device(child); 990 return NULL; 991 } 992 list_add_tail(&child->siblings, &parent->ex_dev.children); 993 return child; 994 } 995 996 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 997 { 998 struct expander_device *ex = &dev->ex_dev; 999 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 1000 struct domain_device *child = NULL; 1001 int res = 0; 1002 1003 /* Phy state */ 1004 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 1005 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 1006 res = sas_ex_phy_discover(dev, phy_id); 1007 if (res) 1008 return res; 1009 } 1010 1011 /* Parent and domain coherency */ 1012 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1013 SAS_ADDR(dev->port->sas_addr))) { 1014 sas_add_parent_port(dev, phy_id); 1015 return 0; 1016 } 1017 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 1018 SAS_ADDR(dev->parent->sas_addr))) { 1019 sas_add_parent_port(dev, phy_id); 1020 if (ex_phy->routing_attr == TABLE_ROUTING) 1021 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 1022 return 0; 1023 } 1024 1025 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1026 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1027 1028 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { 1029 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1030 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1031 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1032 } 1033 return 0; 1034 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1035 return 0; 1036 1037 if (ex_phy->attached_dev_type != SAS_END_DEVICE && 1038 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && 1039 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && 1040 ex_phy->attached_dev_type != SAS_SATA_PENDING) { 1041 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 1042 "phy 0x%x\n", ex_phy->attached_dev_type, 1043 SAS_ADDR(dev->sas_addr), 1044 phy_id); 1045 return 0; 1046 } 1047 1048 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1049 if (res) { 1050 SAS_DPRINTK("configure routing for dev %016llx " 1051 "reported 0x%x. Forgotten\n", 1052 SAS_ADDR(ex_phy->attached_sas_addr), res); 1053 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1054 return res; 1055 } 1056 1057 if (sas_ex_join_wide_port(dev, phy_id)) { 1058 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1059 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1060 return res; 1061 } 1062 1063 switch (ex_phy->attached_dev_type) { 1064 case SAS_END_DEVICE: 1065 case SAS_SATA_PENDING: 1066 child = sas_ex_discover_end_dev(dev, phy_id); 1067 break; 1068 case SAS_FANOUT_EXPANDER_DEVICE: 1069 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1070 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 1071 "attached to ex %016llx phy 0x%x\n", 1072 SAS_ADDR(ex_phy->attached_sas_addr), 1073 ex_phy->attached_phy_id, 1074 SAS_ADDR(dev->sas_addr), 1075 phy_id); 1076 sas_ex_disable_phy(dev, phy_id); 1077 break; 1078 } else 1079 memcpy(dev->port->disc.fanout_sas_addr, 1080 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1081 /* fallthrough */ 1082 case SAS_EDGE_EXPANDER_DEVICE: 1083 child = sas_ex_discover_expander(dev, phy_id); 1084 break; 1085 default: 1086 break; 1087 } 1088 1089 if (child) { 1090 int i; 1091 1092 for (i = 0; i < ex->num_phys; i++) { 1093 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1094 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1095 continue; 1096 /* 1097 * Due to races, the phy might not get added to the 1098 * wide port, so we add the phy to the wide port here. 1099 */ 1100 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1101 SAS_ADDR(child->sas_addr)) { 1102 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1103 if (sas_ex_join_wide_port(dev, i)) 1104 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1105 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1106 1107 } 1108 } 1109 } 1110 1111 return res; 1112 } 1113 1114 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1115 { 1116 struct expander_device *ex = &dev->ex_dev; 1117 int i; 1118 1119 for (i = 0; i < ex->num_phys; i++) { 1120 struct ex_phy *phy = &ex->ex_phy[i]; 1121 1122 if (phy->phy_state == PHY_VACANT || 1123 phy->phy_state == PHY_NOT_PRESENT) 1124 continue; 1125 1126 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || 1127 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && 1128 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1129 1130 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1131 1132 return 1; 1133 } 1134 } 1135 return 0; 1136 } 1137 1138 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1139 { 1140 struct expander_device *ex = &dev->ex_dev; 1141 struct domain_device *child; 1142 u8 sub_addr[8] = {0, }; 1143 1144 list_for_each_entry(child, &ex->children, siblings) { 1145 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1146 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1147 continue; 1148 if (sub_addr[0] == 0) { 1149 sas_find_sub_addr(child, sub_addr); 1150 continue; 1151 } else { 1152 u8 s2[8]; 1153 1154 if (sas_find_sub_addr(child, s2) && 1155 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1156 1157 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1158 "diverges from subtractive " 1159 "boundary %016llx\n", 1160 SAS_ADDR(dev->sas_addr), 1161 SAS_ADDR(child->sas_addr), 1162 SAS_ADDR(s2), 1163 SAS_ADDR(sub_addr)); 1164 1165 sas_ex_disable_port(child, s2); 1166 } 1167 } 1168 } 1169 return 0; 1170 } 1171 /** 1172 * sas_ex_discover_devices - discover devices attached to this expander 1173 * @dev: pointer to the expander domain device 1174 * @single: if you want to do a single phy, else set to -1; 1175 * 1176 * Configure this expander for use with its devices and register the 1177 * devices of this expander. 1178 */ 1179 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1180 { 1181 struct expander_device *ex = &dev->ex_dev; 1182 int i = 0, end = ex->num_phys; 1183 int res = 0; 1184 1185 if (0 <= single && single < end) { 1186 i = single; 1187 end = i+1; 1188 } 1189 1190 for ( ; i < end; i++) { 1191 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1192 1193 if (ex_phy->phy_state == PHY_VACANT || 1194 ex_phy->phy_state == PHY_NOT_PRESENT || 1195 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1196 continue; 1197 1198 switch (ex_phy->linkrate) { 1199 case SAS_PHY_DISABLED: 1200 case SAS_PHY_RESET_PROBLEM: 1201 case SAS_SATA_PORT_SELECTOR: 1202 continue; 1203 default: 1204 res = sas_ex_discover_dev(dev, i); 1205 if (res) 1206 break; 1207 continue; 1208 } 1209 } 1210 1211 if (!res) 1212 sas_check_level_subtractive_boundary(dev); 1213 1214 return res; 1215 } 1216 1217 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1218 { 1219 struct expander_device *ex = &dev->ex_dev; 1220 int i; 1221 u8 *sub_sas_addr = NULL; 1222 1223 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) 1224 return 0; 1225 1226 for (i = 0; i < ex->num_phys; i++) { 1227 struct ex_phy *phy = &ex->ex_phy[i]; 1228 1229 if (phy->phy_state == PHY_VACANT || 1230 phy->phy_state == PHY_NOT_PRESENT) 1231 continue; 1232 1233 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || 1234 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && 1235 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1236 1237 if (!sub_sas_addr) 1238 sub_sas_addr = &phy->attached_sas_addr[0]; 1239 else if (SAS_ADDR(sub_sas_addr) != 1240 SAS_ADDR(phy->attached_sas_addr)) { 1241 1242 SAS_DPRINTK("ex %016llx phy 0x%x " 1243 "diverges(%016llx) on subtractive " 1244 "boundary(%016llx). Disabled\n", 1245 SAS_ADDR(dev->sas_addr), i, 1246 SAS_ADDR(phy->attached_sas_addr), 1247 SAS_ADDR(sub_sas_addr)); 1248 sas_ex_disable_phy(dev, i); 1249 } 1250 } 1251 } 1252 return 0; 1253 } 1254 1255 static void sas_print_parent_topology_bug(struct domain_device *child, 1256 struct ex_phy *parent_phy, 1257 struct ex_phy *child_phy) 1258 { 1259 static const char *ex_type[] = { 1260 [SAS_EDGE_EXPANDER_DEVICE] = "edge", 1261 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", 1262 }; 1263 struct domain_device *parent = child->parent; 1264 1265 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " 1266 "phy 0x%x has %c:%c routing link!\n", 1267 1268 ex_type[parent->dev_type], 1269 SAS_ADDR(parent->sas_addr), 1270 parent_phy->phy_id, 1271 1272 ex_type[child->dev_type], 1273 SAS_ADDR(child->sas_addr), 1274 child_phy->phy_id, 1275 1276 sas_route_char(parent, parent_phy), 1277 sas_route_char(child, child_phy)); 1278 } 1279 1280 static int sas_check_eeds(struct domain_device *child, 1281 struct ex_phy *parent_phy, 1282 struct ex_phy *child_phy) 1283 { 1284 int res = 0; 1285 struct domain_device *parent = child->parent; 1286 1287 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1288 res = -ENODEV; 1289 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1290 "phy S:0x%x, while there is a fanout ex %016llx\n", 1291 SAS_ADDR(parent->sas_addr), 1292 parent_phy->phy_id, 1293 SAS_ADDR(child->sas_addr), 1294 child_phy->phy_id, 1295 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1296 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1297 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1298 SAS_ADDR_SIZE); 1299 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1300 SAS_ADDR_SIZE); 1301 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1302 SAS_ADDR(parent->sas_addr)) || 1303 (SAS_ADDR(parent->port->disc.eeds_a) == 1304 SAS_ADDR(child->sas_addr))) 1305 && 1306 ((SAS_ADDR(parent->port->disc.eeds_b) == 1307 SAS_ADDR(parent->sas_addr)) || 1308 (SAS_ADDR(parent->port->disc.eeds_b) == 1309 SAS_ADDR(child->sas_addr)))) 1310 ; 1311 else { 1312 res = -ENODEV; 1313 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1314 "phy 0x%x link forms a third EEDS!\n", 1315 SAS_ADDR(parent->sas_addr), 1316 parent_phy->phy_id, 1317 SAS_ADDR(child->sas_addr), 1318 child_phy->phy_id); 1319 } 1320 1321 return res; 1322 } 1323 1324 /* Here we spill over 80 columns. It is intentional. 1325 */ 1326 static int sas_check_parent_topology(struct domain_device *child) 1327 { 1328 struct expander_device *child_ex = &child->ex_dev; 1329 struct expander_device *parent_ex; 1330 int i; 1331 int res = 0; 1332 1333 if (!child->parent) 1334 return 0; 1335 1336 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && 1337 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) 1338 return 0; 1339 1340 parent_ex = &child->parent->ex_dev; 1341 1342 for (i = 0; i < parent_ex->num_phys; i++) { 1343 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1344 struct ex_phy *child_phy; 1345 1346 if (parent_phy->phy_state == PHY_VACANT || 1347 parent_phy->phy_state == PHY_NOT_PRESENT) 1348 continue; 1349 1350 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1351 continue; 1352 1353 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1354 1355 switch (child->parent->dev_type) { 1356 case SAS_EDGE_EXPANDER_DEVICE: 1357 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1358 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1359 child_phy->routing_attr != TABLE_ROUTING) { 1360 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1361 res = -ENODEV; 1362 } 1363 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1364 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1365 res = sas_check_eeds(child, parent_phy, child_phy); 1366 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1367 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1368 res = -ENODEV; 1369 } 1370 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1371 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1372 (child_phy->routing_attr == TABLE_ROUTING && 1373 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1374 /* All good */; 1375 } else { 1376 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1377 res = -ENODEV; 1378 } 1379 } 1380 break; 1381 case SAS_FANOUT_EXPANDER_DEVICE: 1382 if (parent_phy->routing_attr != TABLE_ROUTING || 1383 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1384 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1385 res = -ENODEV; 1386 } 1387 break; 1388 default: 1389 break; 1390 } 1391 } 1392 1393 return res; 1394 } 1395 1396 #define RRI_REQ_SIZE 16 1397 #define RRI_RESP_SIZE 44 1398 1399 static int sas_configure_present(struct domain_device *dev, int phy_id, 1400 u8 *sas_addr, int *index, int *present) 1401 { 1402 int i, res = 0; 1403 struct expander_device *ex = &dev->ex_dev; 1404 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1405 u8 *rri_req; 1406 u8 *rri_resp; 1407 1408 *present = 0; 1409 *index = 0; 1410 1411 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1412 if (!rri_req) 1413 return -ENOMEM; 1414 1415 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1416 if (!rri_resp) { 1417 kfree(rri_req); 1418 return -ENOMEM; 1419 } 1420 1421 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1422 rri_req[9] = phy_id; 1423 1424 for (i = 0; i < ex->max_route_indexes ; i++) { 1425 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1426 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1427 RRI_RESP_SIZE); 1428 if (res) 1429 goto out; 1430 res = rri_resp[2]; 1431 if (res == SMP_RESP_NO_INDEX) { 1432 SAS_DPRINTK("overflow of indexes: dev %016llx " 1433 "phy 0x%x index 0x%x\n", 1434 SAS_ADDR(dev->sas_addr), phy_id, i); 1435 goto out; 1436 } else if (res != SMP_RESP_FUNC_ACC) { 1437 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1438 "result 0x%x\n", __func__, 1439 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1440 goto out; 1441 } 1442 if (SAS_ADDR(sas_addr) != 0) { 1443 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1444 *index = i; 1445 if ((rri_resp[12] & 0x80) == 0x80) 1446 *present = 0; 1447 else 1448 *present = 1; 1449 goto out; 1450 } else if (SAS_ADDR(rri_resp+16) == 0) { 1451 *index = i; 1452 *present = 0; 1453 goto out; 1454 } 1455 } else if (SAS_ADDR(rri_resp+16) == 0 && 1456 phy->last_da_index < i) { 1457 phy->last_da_index = i; 1458 *index = i; 1459 *present = 0; 1460 goto out; 1461 } 1462 } 1463 res = -1; 1464 out: 1465 kfree(rri_req); 1466 kfree(rri_resp); 1467 return res; 1468 } 1469 1470 #define CRI_REQ_SIZE 44 1471 #define CRI_RESP_SIZE 8 1472 1473 static int sas_configure_set(struct domain_device *dev, int phy_id, 1474 u8 *sas_addr, int index, int include) 1475 { 1476 int res; 1477 u8 *cri_req; 1478 u8 *cri_resp; 1479 1480 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1481 if (!cri_req) 1482 return -ENOMEM; 1483 1484 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1485 if (!cri_resp) { 1486 kfree(cri_req); 1487 return -ENOMEM; 1488 } 1489 1490 cri_req[1] = SMP_CONF_ROUTE_INFO; 1491 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1492 cri_req[9] = phy_id; 1493 if (SAS_ADDR(sas_addr) == 0 || !include) 1494 cri_req[12] |= 0x80; 1495 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1496 1497 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1498 CRI_RESP_SIZE); 1499 if (res) 1500 goto out; 1501 res = cri_resp[2]; 1502 if (res == SMP_RESP_NO_INDEX) { 1503 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1504 "index 0x%x\n", 1505 SAS_ADDR(dev->sas_addr), phy_id, index); 1506 } 1507 out: 1508 kfree(cri_req); 1509 kfree(cri_resp); 1510 return res; 1511 } 1512 1513 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1514 u8 *sas_addr, int include) 1515 { 1516 int index; 1517 int present; 1518 int res; 1519 1520 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1521 if (res) 1522 return res; 1523 if (include ^ present) 1524 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1525 1526 return res; 1527 } 1528 1529 /** 1530 * sas_configure_parent - configure routing table of parent 1531 * @parent: parent expander 1532 * @child: child expander 1533 * @sas_addr: SAS port identifier of device directly attached to child 1534 * @include: whether or not to include @child in the expander routing table 1535 */ 1536 static int sas_configure_parent(struct domain_device *parent, 1537 struct domain_device *child, 1538 u8 *sas_addr, int include) 1539 { 1540 struct expander_device *ex_parent = &parent->ex_dev; 1541 int res = 0; 1542 int i; 1543 1544 if (parent->parent) { 1545 res = sas_configure_parent(parent->parent, parent, sas_addr, 1546 include); 1547 if (res) 1548 return res; 1549 } 1550 1551 if (ex_parent->conf_route_table == 0) { 1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1553 SAS_ADDR(parent->sas_addr)); 1554 return 0; 1555 } 1556 1557 for (i = 0; i < ex_parent->num_phys; i++) { 1558 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1559 1560 if ((phy->routing_attr == TABLE_ROUTING) && 1561 (SAS_ADDR(phy->attached_sas_addr) == 1562 SAS_ADDR(child->sas_addr))) { 1563 res = sas_configure_phy(parent, i, sas_addr, include); 1564 if (res) 1565 return res; 1566 } 1567 } 1568 1569 return res; 1570 } 1571 1572 /** 1573 * sas_configure_routing - configure routing 1574 * @dev: expander device 1575 * @sas_addr: port identifier of device directly attached to the expander device 1576 */ 1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1578 { 1579 if (dev->parent) 1580 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1581 return 0; 1582 } 1583 1584 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1585 { 1586 if (dev->parent) 1587 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1588 return 0; 1589 } 1590 1591 /** 1592 * sas_discover_expander - expander discovery 1593 * @dev: pointer to expander domain device 1594 * 1595 * See comment in sas_discover_sata(). 1596 */ 1597 static int sas_discover_expander(struct domain_device *dev) 1598 { 1599 int res; 1600 1601 res = sas_notify_lldd_dev_found(dev); 1602 if (res) 1603 return res; 1604 1605 res = sas_ex_general(dev); 1606 if (res) 1607 goto out_err; 1608 res = sas_ex_manuf_info(dev); 1609 if (res) 1610 goto out_err; 1611 1612 res = sas_expander_discover(dev); 1613 if (res) { 1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1615 SAS_ADDR(dev->sas_addr), res); 1616 goto out_err; 1617 } 1618 1619 sas_check_ex_subtractive_boundary(dev); 1620 res = sas_check_parent_topology(dev); 1621 if (res) 1622 goto out_err; 1623 return 0; 1624 out_err: 1625 sas_notify_lldd_dev_gone(dev); 1626 return res; 1627 } 1628 1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1630 { 1631 int res = 0; 1632 struct domain_device *dev; 1633 1634 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1635 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1636 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1637 struct sas_expander_device *ex = 1638 rphy_to_expander_device(dev->rphy); 1639 1640 if (level == ex->level) 1641 res = sas_ex_discover_devices(dev, -1); 1642 else if (level > 0) 1643 res = sas_ex_discover_devices(port->port_dev, -1); 1644 1645 } 1646 } 1647 1648 return res; 1649 } 1650 1651 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1652 { 1653 int res; 1654 int level; 1655 1656 do { 1657 level = port->disc.max_level; 1658 res = sas_ex_level_discovery(port, level); 1659 mb(); 1660 } while (level < port->disc.max_level); 1661 1662 return res; 1663 } 1664 1665 int sas_discover_root_expander(struct domain_device *dev) 1666 { 1667 int res; 1668 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1669 1670 res = sas_rphy_add(dev->rphy); 1671 if (res) 1672 goto out_err; 1673 1674 ex->level = dev->port->disc.max_level; /* 0 */ 1675 res = sas_discover_expander(dev); 1676 if (res) 1677 goto out_err2; 1678 1679 sas_ex_bfs_disc(dev->port); 1680 1681 return res; 1682 1683 out_err2: 1684 sas_rphy_remove(dev->rphy); 1685 out_err: 1686 return res; 1687 } 1688 1689 /* ---------- Domain revalidation ---------- */ 1690 1691 static int sas_get_phy_discover(struct domain_device *dev, 1692 int phy_id, struct smp_resp *disc_resp) 1693 { 1694 int res; 1695 u8 *disc_req; 1696 1697 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1698 if (!disc_req) 1699 return -ENOMEM; 1700 1701 disc_req[1] = SMP_DISCOVER; 1702 disc_req[9] = phy_id; 1703 1704 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1705 disc_resp, DISCOVER_RESP_SIZE); 1706 if (res) 1707 goto out; 1708 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1709 res = disc_resp->result; 1710 goto out; 1711 } 1712 out: 1713 kfree(disc_req); 1714 return res; 1715 } 1716 1717 static int sas_get_phy_change_count(struct domain_device *dev, 1718 int phy_id, int *pcc) 1719 { 1720 int res; 1721 struct smp_resp *disc_resp; 1722 1723 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1724 if (!disc_resp) 1725 return -ENOMEM; 1726 1727 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1728 if (!res) 1729 *pcc = disc_resp->disc.change_count; 1730 1731 kfree(disc_resp); 1732 return res; 1733 } 1734 1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1736 u8 *sas_addr, enum sas_device_type *type) 1737 { 1738 int res; 1739 struct smp_resp *disc_resp; 1740 struct discover_resp *dr; 1741 1742 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1743 if (!disc_resp) 1744 return -ENOMEM; 1745 dr = &disc_resp->disc; 1746 1747 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1748 if (res == 0) { 1749 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1750 *type = to_dev_type(dr); 1751 if (*type == 0) 1752 memset(sas_addr, 0, 8); 1753 } 1754 kfree(disc_resp); 1755 return res; 1756 } 1757 1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1759 int from_phy, bool update) 1760 { 1761 struct expander_device *ex = &dev->ex_dev; 1762 int res = 0; 1763 int i; 1764 1765 for (i = from_phy; i < ex->num_phys; i++) { 1766 int phy_change_count = 0; 1767 1768 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1769 switch (res) { 1770 case SMP_RESP_PHY_VACANT: 1771 case SMP_RESP_NO_PHY: 1772 continue; 1773 case SMP_RESP_FUNC_ACC: 1774 break; 1775 default: 1776 return res; 1777 } 1778 1779 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1780 if (update) 1781 ex->ex_phy[i].phy_change_count = 1782 phy_change_count; 1783 *phy_id = i; 1784 return 0; 1785 } 1786 } 1787 return 0; 1788 } 1789 1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1791 { 1792 int res; 1793 u8 *rg_req; 1794 struct smp_resp *rg_resp; 1795 1796 rg_req = alloc_smp_req(RG_REQ_SIZE); 1797 if (!rg_req) 1798 return -ENOMEM; 1799 1800 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1801 if (!rg_resp) { 1802 kfree(rg_req); 1803 return -ENOMEM; 1804 } 1805 1806 rg_req[1] = SMP_REPORT_GENERAL; 1807 1808 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1809 RG_RESP_SIZE); 1810 if (res) 1811 goto out; 1812 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1813 res = rg_resp->result; 1814 goto out; 1815 } 1816 1817 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1818 out: 1819 kfree(rg_resp); 1820 kfree(rg_req); 1821 return res; 1822 } 1823 /** 1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1825 * @dev:domain device to be detect. 1826 * @src_dev: the device which originated BROADCAST(CHANGE). 1827 * 1828 * Add self-configuration expander support. Suppose two expander cascading, 1829 * when the first level expander is self-configuring, hotplug the disks in 1830 * second level expander, BROADCAST(CHANGE) will not only be originated 1831 * in the second level expander, but also be originated in the first level 1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1833 * expander changed count in two level expanders will all increment at least 1834 * once, but the phy which chang count has changed is the source device which 1835 * we concerned. 1836 */ 1837 1838 static int sas_find_bcast_dev(struct domain_device *dev, 1839 struct domain_device **src_dev) 1840 { 1841 struct expander_device *ex = &dev->ex_dev; 1842 int ex_change_count = -1; 1843 int phy_id = -1; 1844 int res; 1845 struct domain_device *ch; 1846 1847 res = sas_get_ex_change_count(dev, &ex_change_count); 1848 if (res) 1849 goto out; 1850 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1851 /* Just detect if this expander phys phy change count changed, 1852 * in order to determine if this expander originate BROADCAST, 1853 * and do not update phy change count field in our structure. 1854 */ 1855 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1856 if (phy_id != -1) { 1857 *src_dev = dev; 1858 ex->ex_change_count = ex_change_count; 1859 SAS_DPRINTK("Expander phy change count has changed\n"); 1860 return res; 1861 } else 1862 SAS_DPRINTK("Expander phys DID NOT change\n"); 1863 } 1864 list_for_each_entry(ch, &ex->children, siblings) { 1865 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1866 res = sas_find_bcast_dev(ch, src_dev); 1867 if (*src_dev) 1868 return res; 1869 } 1870 } 1871 out: 1872 return res; 1873 } 1874 1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1876 { 1877 struct expander_device *ex = &dev->ex_dev; 1878 struct domain_device *child, *n; 1879 1880 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1881 set_bit(SAS_DEV_GONE, &child->state); 1882 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1883 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1884 sas_unregister_ex_tree(port, child); 1885 else 1886 sas_unregister_dev(port, child); 1887 } 1888 sas_unregister_dev(port, dev); 1889 } 1890 1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1892 int phy_id, bool last) 1893 { 1894 struct expander_device *ex_dev = &parent->ex_dev; 1895 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1896 struct domain_device *child, *n, *found = NULL; 1897 if (last) { 1898 list_for_each_entry_safe(child, n, 1899 &ex_dev->children, siblings) { 1900 if (SAS_ADDR(child->sas_addr) == 1901 SAS_ADDR(phy->attached_sas_addr)) { 1902 set_bit(SAS_DEV_GONE, &child->state); 1903 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1904 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1905 sas_unregister_ex_tree(parent->port, child); 1906 else 1907 sas_unregister_dev(parent->port, child); 1908 found = child; 1909 break; 1910 } 1911 } 1912 sas_disable_routing(parent, phy->attached_sas_addr); 1913 } 1914 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1915 if (phy->port) { 1916 sas_port_delete_phy(phy->port, phy->phy); 1917 sas_device_set_phy(found, phy->port); 1918 if (phy->port->num_phys == 0) 1919 list_add_tail(&phy->port->del_list, 1920 &parent->port->sas_port_del_list); 1921 phy->port = NULL; 1922 } 1923 } 1924 1925 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1926 const int level) 1927 { 1928 struct expander_device *ex_root = &root->ex_dev; 1929 struct domain_device *child; 1930 int res = 0; 1931 1932 list_for_each_entry(child, &ex_root->children, siblings) { 1933 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1934 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { 1935 struct sas_expander_device *ex = 1936 rphy_to_expander_device(child->rphy); 1937 1938 if (level > ex->level) 1939 res = sas_discover_bfs_by_root_level(child, 1940 level); 1941 else if (level == ex->level) 1942 res = sas_ex_discover_devices(child, -1); 1943 } 1944 } 1945 return res; 1946 } 1947 1948 static int sas_discover_bfs_by_root(struct domain_device *dev) 1949 { 1950 int res; 1951 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1952 int level = ex->level+1; 1953 1954 res = sas_ex_discover_devices(dev, -1); 1955 if (res) 1956 goto out; 1957 do { 1958 res = sas_discover_bfs_by_root_level(dev, level); 1959 mb(); 1960 level += 1; 1961 } while (level <= dev->port->disc.max_level); 1962 out: 1963 return res; 1964 } 1965 1966 static int sas_discover_new(struct domain_device *dev, int phy_id) 1967 { 1968 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1969 struct domain_device *child; 1970 int res; 1971 1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1973 SAS_ADDR(dev->sas_addr), phy_id); 1974 res = sas_ex_phy_discover(dev, phy_id); 1975 if (res) 1976 return res; 1977 1978 if (sas_ex_join_wide_port(dev, phy_id)) 1979 return 0; 1980 1981 res = sas_ex_discover_devices(dev, phy_id); 1982 if (res) 1983 return res; 1984 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1985 if (SAS_ADDR(child->sas_addr) == 1986 SAS_ADDR(ex_phy->attached_sas_addr)) { 1987 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || 1988 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) 1989 res = sas_discover_bfs_by_root(child); 1990 break; 1991 } 1992 } 1993 return res; 1994 } 1995 1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) 1997 { 1998 if (old == new) 1999 return true; 2000 2001 /* treat device directed resets as flutter, if we went 2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery 2003 */ 2004 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || 2005 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) 2006 return true; 2007 2008 return false; 2009 } 2010 2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 2012 { 2013 struct expander_device *ex = &dev->ex_dev; 2014 struct ex_phy *phy = &ex->ex_phy[phy_id]; 2015 enum sas_device_type type = SAS_PHY_UNUSED; 2016 u8 sas_addr[8]; 2017 int res; 2018 2019 memset(sas_addr, 0, 8); 2020 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 2021 switch (res) { 2022 case SMP_RESP_NO_PHY: 2023 phy->phy_state = PHY_NOT_PRESENT; 2024 sas_unregister_devs_sas_addr(dev, phy_id, last); 2025 return res; 2026 case SMP_RESP_PHY_VACANT: 2027 phy->phy_state = PHY_VACANT; 2028 sas_unregister_devs_sas_addr(dev, phy_id, last); 2029 return res; 2030 case SMP_RESP_FUNC_ACC: 2031 break; 2032 case -ECOMM: 2033 break; 2034 default: 2035 return res; 2036 } 2037 2038 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2039 phy->phy_state = PHY_EMPTY; 2040 sas_unregister_devs_sas_addr(dev, phy_id, last); 2041 return res; 2042 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2043 dev_type_flutter(type, phy->attached_dev_type)) { 2044 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2045 char *action = ""; 2046 2047 sas_ex_phy_discover(dev, phy_id); 2048 2049 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) 2050 action = ", needs recovery"; 2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", 2052 SAS_ADDR(dev->sas_addr), phy_id, action); 2053 return res; 2054 } 2055 2056 /* we always have to delete the old device when we went here */ 2057 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", 2058 SAS_ADDR(dev->sas_addr), phy_id, 2059 SAS_ADDR(phy->attached_sas_addr)); 2060 sas_unregister_devs_sas_addr(dev, phy_id, last); 2061 2062 return sas_discover_new(dev, phy_id); 2063 } 2064 2065 /** 2066 * sas_rediscover - revalidate the domain. 2067 * @dev:domain device to be detect. 2068 * @phy_id: the phy id will be detected. 2069 * 2070 * NOTE: this process _must_ quit (return) as soon as any connection 2071 * errors are encountered. Connection recovery is done elsewhere. 2072 * Discover process only interrogates devices in order to discover the 2073 * domain.For plugging out, we un-register the device only when it is 2074 * the last phy in the port, for other phys in this port, we just delete it 2075 * from the port.For inserting, we do discovery when it is the 2076 * first phy,for other phys in this port, we add it to the port to 2077 * forming the wide-port. 2078 */ 2079 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2080 { 2081 struct expander_device *ex = &dev->ex_dev; 2082 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2083 int res = 0; 2084 int i; 2085 bool last = true; /* is this the last phy of the port */ 2086 2087 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2088 SAS_ADDR(dev->sas_addr), phy_id); 2089 2090 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2091 for (i = 0; i < ex->num_phys; i++) { 2092 struct ex_phy *phy = &ex->ex_phy[i]; 2093 2094 if (i == phy_id) 2095 continue; 2096 if (SAS_ADDR(phy->attached_sas_addr) == 2097 SAS_ADDR(changed_phy->attached_sas_addr)) { 2098 SAS_DPRINTK("phy%d part of wide port with " 2099 "phy%d\n", phy_id, i); 2100 last = false; 2101 break; 2102 } 2103 } 2104 res = sas_rediscover_dev(dev, phy_id, last); 2105 } else 2106 res = sas_discover_new(dev, phy_id); 2107 return res; 2108 } 2109 2110 /** 2111 * sas_ex_revalidate_domain - revalidate the domain 2112 * @port_dev: port domain device. 2113 * 2114 * NOTE: this process _must_ quit (return) as soon as any connection 2115 * errors are encountered. Connection recovery is done elsewhere. 2116 * Discover process only interrogates devices in order to discover the 2117 * domain. 2118 */ 2119 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2120 { 2121 int res; 2122 struct domain_device *dev = NULL; 2123 2124 res = sas_find_bcast_dev(port_dev, &dev); 2125 if (res == 0 && dev) { 2126 struct expander_device *ex = &dev->ex_dev; 2127 int i = 0, phy_id; 2128 2129 do { 2130 phy_id = -1; 2131 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2132 if (phy_id == -1) 2133 break; 2134 res = sas_rediscover(dev, phy_id); 2135 i = phy_id + 1; 2136 } while (i < ex->num_phys); 2137 } 2138 return res; 2139 } 2140 2141 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, 2142 struct sas_rphy *rphy) 2143 { 2144 struct domain_device *dev; 2145 unsigned int rcvlen = 0; 2146 int ret = -EINVAL; 2147 2148 /* no rphy means no smp target support (ie aic94xx host) */ 2149 if (!rphy) 2150 return sas_smp_host_handler(job, shost); 2151 2152 switch (rphy->identify.device_type) { 2153 case SAS_EDGE_EXPANDER_DEVICE: 2154 case SAS_FANOUT_EXPANDER_DEVICE: 2155 break; 2156 default: 2157 printk("%s: can we send a smp request to a device?\n", 2158 __func__); 2159 goto out; 2160 } 2161 2162 dev = sas_find_dev_by_rphy(rphy); 2163 if (!dev) { 2164 printk("%s: fail to find a domain_device?\n", __func__); 2165 goto out; 2166 } 2167 2168 /* do we need to support multiple segments? */ 2169 if (job->request_payload.sg_cnt > 1 || 2170 job->reply_payload.sg_cnt > 1) { 2171 printk("%s: multiple segments req %u, rsp %u\n", 2172 __func__, job->request_payload.payload_len, 2173 job->reply_payload.payload_len); 2174 goto out; 2175 } 2176 2177 ret = smp_execute_task_sg(dev, job->request_payload.sg_list, 2178 job->reply_payload.sg_list); 2179 if (ret >= 0) { 2180 /* bsg_job_done() requires the length received */ 2181 rcvlen = job->reply_payload.payload_len - ret; 2182 ret = 0; 2183 } 2184 2185 out: 2186 bsg_job_done(job, ret, rcvlen); 2187 } 2188