1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
44 static void smp_task_timedout(unsigned long _task)
45 {
46 	struct sas_task *task = (void *) _task;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&task->task_state_lock, flags);
50 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 	spin_unlock_irqrestore(&task->task_state_lock, flags);
53 
54 	complete(&task->slow_task->completion);
55 }
56 
57 static void smp_task_done(struct sas_task *task)
58 {
59 	if (!del_timer(&task->slow_task->timer))
60 		return;
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 			    void *resp, int resp_size)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		sg_init_one(&task->smp_task.smp_req, req, req_size);
90 		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.data = (unsigned long) task;
95 		task->slow_task->timer.function = smp_task_timedout;
96 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 		add_timer(&task->slow_task->timer);
98 
99 		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100 
101 		if (res) {
102 			del_timer(&task->slow_task->timer);
103 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 			break;
105 		}
106 
107 		wait_for_completion(&task->slow_task->completion);
108 		res = -ECOMM;
109 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 			SAS_DPRINTK("smp task timed out or aborted\n");
111 			i->dft->lldd_abort_task(task);
112 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 				SAS_DPRINTK("SMP task aborted and not done\n");
114 				break;
115 			}
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAM_STAT_GOOD) {
119 			res = 0;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124 			/* no error, but return the number of bytes of
125 			 * underrun */
126 			res = task->task_status.residual;
127 			break;
128 		}
129 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 		    task->task_status.stat == SAS_DATA_OVERRUN) {
131 			res = -EMSGSIZE;
132 			break;
133 		}
134 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 			break;
137 		else {
138 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 				    "status 0x%x\n", __func__,
140 				    SAS_ADDR(dev->sas_addr),
141 				    task->task_status.resp,
142 				    task->task_status.stat);
143 			sas_free_task(task);
144 			task = NULL;
145 		}
146 	}
147 	mutex_unlock(&dev->ex_dev.cmd_mutex);
148 
149 	BUG_ON(retry == 3 && task != NULL);
150 	sas_free_task(task);
151 	return res;
152 }
153 
154 /* ---------- Allocations ---------- */
155 
156 static inline void *alloc_smp_req(int size)
157 {
158 	u8 *p = kzalloc(size, GFP_KERNEL);
159 	if (p)
160 		p[0] = SMP_REQUEST;
161 	return p;
162 }
163 
164 static inline void *alloc_smp_resp(int size)
165 {
166 	return kzalloc(size, GFP_KERNEL);
167 }
168 
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 	switch (phy->routing_attr) {
172 	case TABLE_ROUTING:
173 		if (dev->ex_dev.t2t_supp)
174 			return 'U';
175 		else
176 			return 'T';
177 	case DIRECT_ROUTING:
178 		return 'D';
179 	case SUBTRACTIVE_ROUTING:
180 		return 'S';
181 	default:
182 		return '?';
183 	}
184 }
185 
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188 	/* This is detecting a failure to transmit initial dev to host
189 	 * FIS as described in section J.5 of sas-2 r16
190 	 */
191 	if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 		return SATA_PENDING;
194 	else
195 		return dr->attached_dev_type;
196 }
197 
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 	enum sas_dev_type dev_type;
201 	enum sas_linkrate linkrate;
202 	u8 sas_addr[SAS_ADDR_SIZE];
203 	struct smp_resp *resp = rsp;
204 	struct discover_resp *dr = &resp->disc;
205 	struct sas_ha_struct *ha = dev->port->ha;
206 	struct expander_device *ex = &dev->ex_dev;
207 	struct ex_phy *phy = &ex->ex_phy[phy_id];
208 	struct sas_rphy *rphy = dev->rphy;
209 	bool new_phy = !phy->phy;
210 	char *type;
211 
212 	if (new_phy) {
213 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 			return;
215 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216 
217 		/* FIXME: error_handling */
218 		BUG_ON(!phy->phy);
219 	}
220 
221 	switch (resp->result) {
222 	case SMP_RESP_PHY_VACANT:
223 		phy->phy_state = PHY_VACANT;
224 		break;
225 	default:
226 		phy->phy_state = PHY_NOT_PRESENT;
227 		break;
228 	case SMP_RESP_FUNC_ACC:
229 		phy->phy_state = PHY_EMPTY; /* do not know yet */
230 		break;
231 	}
232 
233 	/* check if anything important changed to squelch debug */
234 	dev_type = phy->attached_dev_type;
235 	linkrate  = phy->linkrate;
236 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237 
238 	phy->attached_dev_type = to_dev_type(dr);
239 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240 		goto out;
241 	phy->phy_id = phy_id;
242 	phy->linkrate = dr->linkrate;
243 	phy->attached_sata_host = dr->attached_sata_host;
244 	phy->attached_sata_dev  = dr->attached_sata_dev;
245 	phy->attached_sata_ps   = dr->attached_sata_ps;
246 	phy->attached_iproto = dr->iproto << 1;
247 	phy->attached_tproto = dr->tproto << 1;
248 	/* help some expanders that fail to zero sas_address in the 'no
249 	 * device' case
250 	 */
251 	if (phy->attached_dev_type == NO_DEVICE ||
252 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254 	else
255 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256 	phy->attached_phy_id = dr->attached_phy_id;
257 	phy->phy_change_count = dr->change_count;
258 	phy->routing_attr = dr->routing_attr;
259 	phy->virtual = dr->virtual;
260 	phy->last_da_index = -1;
261 
262 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263 	phy->phy->identify.device_type = dr->attached_dev_type;
264 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
266 	if (!phy->attached_tproto && dr->attached_sata_dev)
267 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268 	phy->phy->identify.phy_identifier = phy_id;
269 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
272 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
273 	phy->phy->negotiated_linkrate = phy->linkrate;
274 
275 	if (new_phy)
276 		if (sas_phy_add(phy->phy)) {
277 			sas_phy_free(phy->phy);
278 			return;
279 		}
280 
281  out:
282 	switch (phy->attached_dev_type) {
283 	case SATA_PENDING:
284 		type = "stp pending";
285 		break;
286 	case NO_DEVICE:
287 		type = "no device";
288 		break;
289 	case SAS_END_DEV:
290 		if (phy->attached_iproto) {
291 			if (phy->attached_tproto)
292 				type = "host+target";
293 			else
294 				type = "host";
295 		} else {
296 			if (dr->attached_sata_dev)
297 				type = "stp";
298 			else
299 				type = "ssp";
300 		}
301 		break;
302 	case EDGE_DEV:
303 	case FANOUT_DEV:
304 		type = "smp";
305 		break;
306 	default:
307 		type = "unknown";
308 	}
309 
310 	/* this routine is polled by libata error recovery so filter
311 	 * unimportant messages
312 	 */
313 	if (new_phy || phy->attached_dev_type != dev_type ||
314 	    phy->linkrate != linkrate ||
315 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316 		/* pass */;
317 	else
318 		return;
319 
320 	/* if the attached device type changed and ata_eh is active,
321 	 * make sure we run revalidation when eh completes (see:
322 	 * sas_enable_revalidation)
323 	 */
324 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326 
327 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
330 		    sas_route_char(dev, phy), phy->linkrate,
331 		    SAS_ADDR(phy->attached_sas_addr), type);
332 }
333 
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336 {
337 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338 	struct domain_device *dev;
339 	struct sas_rphy *rphy;
340 
341 	if (!ex_phy->port)
342 		return NULL;
343 
344 	rphy = ex_phy->port->rphy;
345 	if (!rphy)
346 		return NULL;
347 
348 	dev = sas_find_dev_by_rphy(rphy);
349 
350 	if (dev && dev_is_sata(dev))
351 		return dev;
352 
353 	return NULL;
354 }
355 
356 #define DISCOVER_REQ_SIZE  16
357 #define DISCOVER_RESP_SIZE 56
358 
359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360 				      u8 *disc_resp, int single)
361 {
362 	struct discover_resp *dr;
363 	int res;
364 
365 	disc_req[9] = single;
366 
367 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368 			       disc_resp, DISCOVER_RESP_SIZE);
369 	if (res)
370 		return res;
371 	dr = &((struct smp_resp *)disc_resp)->disc;
372 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373 		sas_printk("Found loopback topology, just ignore it!\n");
374 		return 0;
375 	}
376 	sas_set_ex_phy(dev, single, disc_resp);
377 	return 0;
378 }
379 
380 int sas_ex_phy_discover(struct domain_device *dev, int single)
381 {
382 	struct expander_device *ex = &dev->ex_dev;
383 	int  res = 0;
384 	u8   *disc_req;
385 	u8   *disc_resp;
386 
387 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388 	if (!disc_req)
389 		return -ENOMEM;
390 
391 	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392 	if (!disc_resp) {
393 		kfree(disc_req);
394 		return -ENOMEM;
395 	}
396 
397 	disc_req[1] = SMP_DISCOVER;
398 
399 	if (0 <= single && single < ex->num_phys) {
400 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401 	} else {
402 		int i;
403 
404 		for (i = 0; i < ex->num_phys; i++) {
405 			res = sas_ex_phy_discover_helper(dev, disc_req,
406 							 disc_resp, i);
407 			if (res)
408 				goto out_err;
409 		}
410 	}
411 out_err:
412 	kfree(disc_resp);
413 	kfree(disc_req);
414 	return res;
415 }
416 
417 static int sas_expander_discover(struct domain_device *dev)
418 {
419 	struct expander_device *ex = &dev->ex_dev;
420 	int res = -ENOMEM;
421 
422 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423 	if (!ex->ex_phy)
424 		return -ENOMEM;
425 
426 	res = sas_ex_phy_discover(dev, -1);
427 	if (res)
428 		goto out_err;
429 
430 	return 0;
431  out_err:
432 	kfree(ex->ex_phy);
433 	ex->ex_phy = NULL;
434 	return res;
435 }
436 
437 #define MAX_EXPANDER_PHYS 128
438 
439 static void ex_assign_report_general(struct domain_device *dev,
440 					    struct smp_resp *resp)
441 {
442 	struct report_general_resp *rg = &resp->rg;
443 
444 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447 	dev->ex_dev.t2t_supp = rg->t2t_supp;
448 	dev->ex_dev.conf_route_table = rg->conf_route_table;
449 	dev->ex_dev.configuring = rg->configuring;
450 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451 }
452 
453 #define RG_REQ_SIZE   8
454 #define RG_RESP_SIZE 32
455 
456 static int sas_ex_general(struct domain_device *dev)
457 {
458 	u8 *rg_req;
459 	struct smp_resp *rg_resp;
460 	int res;
461 	int i;
462 
463 	rg_req = alloc_smp_req(RG_REQ_SIZE);
464 	if (!rg_req)
465 		return -ENOMEM;
466 
467 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468 	if (!rg_resp) {
469 		kfree(rg_req);
470 		return -ENOMEM;
471 	}
472 
473 	rg_req[1] = SMP_REPORT_GENERAL;
474 
475 	for (i = 0; i < 5; i++) {
476 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477 				       RG_RESP_SIZE);
478 
479 		if (res) {
480 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 				    SAS_ADDR(dev->sas_addr), res);
482 			goto out;
483 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
486 			res = rg_resp->result;
487 			goto out;
488 		}
489 
490 		ex_assign_report_general(dev, rg_resp);
491 
492 		if (dev->ex_dev.configuring) {
493 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 				    SAS_ADDR(dev->sas_addr));
495 			schedule_timeout_interruptible(5*HZ);
496 		} else
497 			break;
498 	}
499 out:
500 	kfree(rg_req);
501 	kfree(rg_resp);
502 	return res;
503 }
504 
505 static void ex_assign_manuf_info(struct domain_device *dev, void
506 					*_mi_resp)
507 {
508 	u8 *mi_resp = _mi_resp;
509 	struct sas_rphy *rphy = dev->rphy;
510 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511 
512 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514 	memcpy(edev->product_rev, mi_resp + 36,
515 	       SAS_EXPANDER_PRODUCT_REV_LEN);
516 
517 	if (mi_resp[8] & 1) {
518 		memcpy(edev->component_vendor_id, mi_resp + 40,
519 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521 		edev->component_revision_id = mi_resp[50];
522 	}
523 }
524 
525 #define MI_REQ_SIZE   8
526 #define MI_RESP_SIZE 64
527 
528 static int sas_ex_manuf_info(struct domain_device *dev)
529 {
530 	u8 *mi_req;
531 	u8 *mi_resp;
532 	int res;
533 
534 	mi_req = alloc_smp_req(MI_REQ_SIZE);
535 	if (!mi_req)
536 		return -ENOMEM;
537 
538 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539 	if (!mi_resp) {
540 		kfree(mi_req);
541 		return -ENOMEM;
542 	}
543 
544 	mi_req[1] = SMP_REPORT_MANUF_INFO;
545 
546 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547 	if (res) {
548 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 			    SAS_ADDR(dev->sas_addr), res);
550 		goto out;
551 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
554 		goto out;
555 	}
556 
557 	ex_assign_manuf_info(dev, mi_resp);
558 out:
559 	kfree(mi_req);
560 	kfree(mi_resp);
561 	return res;
562 }
563 
564 #define PC_REQ_SIZE  44
565 #define PC_RESP_SIZE 8
566 
567 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568 			enum phy_func phy_func,
569 			struct sas_phy_linkrates *rates)
570 {
571 	u8 *pc_req;
572 	u8 *pc_resp;
573 	int res;
574 
575 	pc_req = alloc_smp_req(PC_REQ_SIZE);
576 	if (!pc_req)
577 		return -ENOMEM;
578 
579 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580 	if (!pc_resp) {
581 		kfree(pc_req);
582 		return -ENOMEM;
583 	}
584 
585 	pc_req[1] = SMP_PHY_CONTROL;
586 	pc_req[9] = phy_id;
587 	pc_req[10]= phy_func;
588 	if (rates) {
589 		pc_req[32] = rates->minimum_linkrate << 4;
590 		pc_req[33] = rates->maximum_linkrate << 4;
591 	}
592 
593 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594 
595 	kfree(pc_resp);
596 	kfree(pc_req);
597 	return res;
598 }
599 
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602 	struct expander_device *ex = &dev->ex_dev;
603 	struct ex_phy *phy = &ex->ex_phy[phy_id];
604 
605 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 	phy->linkrate = SAS_PHY_DISABLED;
607 }
608 
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611 	struct expander_device *ex = &dev->ex_dev;
612 	int i;
613 
614 	for (i = 0; i < ex->num_phys; i++) {
615 		struct ex_phy *phy = &ex->ex_phy[i];
616 
617 		if (phy->phy_state == PHY_VACANT ||
618 		    phy->phy_state == PHY_NOT_PRESENT)
619 			continue;
620 
621 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 			sas_ex_disable_phy(dev, i);
623 	}
624 }
625 
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 					    u8 *sas_addr)
628 {
629 	struct domain_device *dev;
630 
631 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 		return 1;
633 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 			return 1;
636 	}
637 	return 0;
638 }
639 
640 #define RPEL_REQ_SIZE	16
641 #define RPEL_RESP_SIZE	32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644 	int res;
645 	u8 *req;
646 	u8 *resp;
647 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649 
650 	req = alloc_smp_req(RPEL_REQ_SIZE);
651 	if (!req)
652 		return -ENOMEM;
653 
654 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 	if (!resp) {
656 		kfree(req);
657 		return -ENOMEM;
658 	}
659 
660 	req[1] = SMP_REPORT_PHY_ERR_LOG;
661 	req[9] = phy->number;
662 
663 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 			            resp, RPEL_RESP_SIZE);
665 
666 	if (!res)
667 		goto out;
668 
669 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673 
674  out:
675 	kfree(resp);
676 	return res;
677 
678 }
679 
680 #ifdef CONFIG_SCSI_SAS_ATA
681 
682 #define RPS_REQ_SIZE  16
683 #define RPS_RESP_SIZE 60
684 
685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686 			    struct smp_resp *rps_resp)
687 {
688 	int res;
689 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690 	u8 *resp = (u8 *)rps_resp;
691 
692 	if (!rps_req)
693 		return -ENOMEM;
694 
695 	rps_req[1] = SMP_REPORT_PHY_SATA;
696 	rps_req[9] = phy_id;
697 
698 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699 			            rps_resp, RPS_RESP_SIZE);
700 
701 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
702 	 * standards cockup here.  sas-2 explicitly specifies the FIS
703 	 * should be encoded so that FIS type is in resp[24].
704 	 * However, some expanders endian reverse this.  Undo the
705 	 * reversal here */
706 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707 		int i;
708 
709 		for (i = 0; i < 5; i++) {
710 			int j = 24 + (i*4);
711 			u8 a, b;
712 			a = resp[j + 0];
713 			b = resp[j + 1];
714 			resp[j + 0] = resp[j + 3];
715 			resp[j + 1] = resp[j + 2];
716 			resp[j + 2] = b;
717 			resp[j + 3] = a;
718 		}
719 	}
720 
721 	kfree(rps_req);
722 	return res;
723 }
724 #endif
725 
726 static void sas_ex_get_linkrate(struct domain_device *parent,
727 				       struct domain_device *child,
728 				       struct ex_phy *parent_phy)
729 {
730 	struct expander_device *parent_ex = &parent->ex_dev;
731 	struct sas_port *port;
732 	int i;
733 
734 	child->pathways = 0;
735 
736 	port = parent_phy->port;
737 
738 	for (i = 0; i < parent_ex->num_phys; i++) {
739 		struct ex_phy *phy = &parent_ex->ex_phy[i];
740 
741 		if (phy->phy_state == PHY_VACANT ||
742 		    phy->phy_state == PHY_NOT_PRESENT)
743 			continue;
744 
745 		if (SAS_ADDR(phy->attached_sas_addr) ==
746 		    SAS_ADDR(child->sas_addr)) {
747 
748 			child->min_linkrate = min(parent->min_linkrate,
749 						  phy->linkrate);
750 			child->max_linkrate = max(parent->max_linkrate,
751 						  phy->linkrate);
752 			child->pathways++;
753 			sas_port_add_phy(port, phy->phy);
754 		}
755 	}
756 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757 	child->pathways = min(child->pathways, parent->pathways);
758 }
759 
760 static struct domain_device *sas_ex_discover_end_dev(
761 	struct domain_device *parent, int phy_id)
762 {
763 	struct expander_device *parent_ex = &parent->ex_dev;
764 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765 	struct domain_device *child = NULL;
766 	struct sas_rphy *rphy;
767 	int res;
768 
769 	if (phy->attached_sata_host || phy->attached_sata_ps)
770 		return NULL;
771 
772 	child = sas_alloc_device();
773 	if (!child)
774 		return NULL;
775 
776 	kref_get(&parent->kref);
777 	child->parent = parent;
778 	child->port   = parent->port;
779 	child->iproto = phy->attached_iproto;
780 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782 	if (!phy->port) {
783 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 		if (unlikely(!phy->port))
785 			goto out_err;
786 		if (unlikely(sas_port_add(phy->port) != 0)) {
787 			sas_port_free(phy->port);
788 			goto out_err;
789 		}
790 	}
791 	sas_ex_get_linkrate(parent, child, phy);
792 	sas_device_set_phy(child, phy->port);
793 
794 #ifdef CONFIG_SCSI_SAS_ATA
795 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796 		res = sas_get_ata_info(child, phy);
797 		if (res)
798 			goto out_free;
799 
800 		sas_init_dev(child);
801 		res = sas_ata_init(child);
802 		if (res)
803 			goto out_free;
804 		rphy = sas_end_device_alloc(phy->port);
805 		if (!rphy)
806 			goto out_free;
807 
808 		child->rphy = rphy;
809 		get_device(&rphy->dev);
810 
811 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812 
813 		res = sas_discover_sata(child);
814 		if (res) {
815 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 				    "%016llx:0x%x returned 0x%x\n",
817 				    SAS_ADDR(child->sas_addr),
818 				    SAS_ADDR(parent->sas_addr), phy_id, res);
819 			goto out_list_del;
820 		}
821 	} else
822 #endif
823 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 		child->dev_type = SAS_END_DEV;
825 		rphy = sas_end_device_alloc(phy->port);
826 		/* FIXME: error handling */
827 		if (unlikely(!rphy))
828 			goto out_free;
829 		child->tproto = phy->attached_tproto;
830 		sas_init_dev(child);
831 
832 		child->rphy = rphy;
833 		get_device(&rphy->dev);
834 		sas_fill_in_rphy(child, rphy);
835 
836 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837 
838 		res = sas_discover_end_dev(child);
839 		if (res) {
840 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 				    "at %016llx:0x%x returned 0x%x\n",
842 				    SAS_ADDR(child->sas_addr),
843 				    SAS_ADDR(parent->sas_addr), phy_id, res);
844 			goto out_list_del;
845 		}
846 	} else {
847 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 			    phy_id);
850 		goto out_free;
851 	}
852 
853 	list_add_tail(&child->siblings, &parent_ex->children);
854 	return child;
855 
856  out_list_del:
857 	sas_rphy_free(child->rphy);
858 	list_del(&child->disco_list_node);
859 	spin_lock_irq(&parent->port->dev_list_lock);
860 	list_del(&child->dev_list_node);
861 	spin_unlock_irq(&parent->port->dev_list_lock);
862  out_free:
863 	sas_port_delete(phy->port);
864  out_err:
865 	phy->port = NULL;
866 	sas_put_device(child);
867 	return NULL;
868 }
869 
870 /* See if this phy is part of a wide port */
871 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872 {
873 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 	int i;
875 
876 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
877 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878 
879 		if (ephy == phy)
880 			continue;
881 
882 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883 			    SAS_ADDR_SIZE) && ephy->port) {
884 			sas_port_add_phy(ephy->port, phy->phy);
885 			phy->port = ephy->port;
886 			phy->phy_state = PHY_DEVICE_DISCOVERED;
887 			return true;
888 		}
889 	}
890 
891 	return false;
892 }
893 
894 static struct domain_device *sas_ex_discover_expander(
895 	struct domain_device *parent, int phy_id)
896 {
897 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 	struct domain_device *child = NULL;
900 	struct sas_rphy *rphy;
901 	struct sas_expander_device *edev;
902 	struct asd_sas_port *port;
903 	int res;
904 
905 	if (phy->routing_attr == DIRECT_ROUTING) {
906 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907 			    "allowed\n",
908 			    SAS_ADDR(parent->sas_addr), phy_id,
909 			    SAS_ADDR(phy->attached_sas_addr),
910 			    phy->attached_phy_id);
911 		return NULL;
912 	}
913 	child = sas_alloc_device();
914 	if (!child)
915 		return NULL;
916 
917 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918 	/* FIXME: better error handling */
919 	BUG_ON(sas_port_add(phy->port) != 0);
920 
921 
922 	switch (phy->attached_dev_type) {
923 	case EDGE_DEV:
924 		rphy = sas_expander_alloc(phy->port,
925 					  SAS_EDGE_EXPANDER_DEVICE);
926 		break;
927 	case FANOUT_DEV:
928 		rphy = sas_expander_alloc(phy->port,
929 					  SAS_FANOUT_EXPANDER_DEVICE);
930 		break;
931 	default:
932 		rphy = NULL;	/* shut gcc up */
933 		BUG();
934 	}
935 	port = parent->port;
936 	child->rphy = rphy;
937 	get_device(&rphy->dev);
938 	edev = rphy_to_expander_device(rphy);
939 	child->dev_type = phy->attached_dev_type;
940 	kref_get(&parent->kref);
941 	child->parent = parent;
942 	child->port = port;
943 	child->iproto = phy->attached_iproto;
944 	child->tproto = phy->attached_tproto;
945 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947 	sas_ex_get_linkrate(parent, child, phy);
948 	edev->level = parent_ex->level + 1;
949 	parent->port->disc.max_level = max(parent->port->disc.max_level,
950 					   edev->level);
951 	sas_init_dev(child);
952 	sas_fill_in_rphy(child, rphy);
953 	sas_rphy_add(rphy);
954 
955 	spin_lock_irq(&parent->port->dev_list_lock);
956 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957 	spin_unlock_irq(&parent->port->dev_list_lock);
958 
959 	res = sas_discover_expander(child);
960 	if (res) {
961 		sas_rphy_delete(rphy);
962 		spin_lock_irq(&parent->port->dev_list_lock);
963 		list_del(&child->dev_list_node);
964 		spin_unlock_irq(&parent->port->dev_list_lock);
965 		sas_put_device(child);
966 		return NULL;
967 	}
968 	list_add_tail(&child->siblings, &parent->ex_dev.children);
969 	return child;
970 }
971 
972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973 {
974 	struct expander_device *ex = &dev->ex_dev;
975 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976 	struct domain_device *child = NULL;
977 	int res = 0;
978 
979 	/* Phy state */
980 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982 			res = sas_ex_phy_discover(dev, phy_id);
983 		if (res)
984 			return res;
985 	}
986 
987 	/* Parent and domain coherency */
988 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989 			     SAS_ADDR(dev->port->sas_addr))) {
990 		sas_add_parent_port(dev, phy_id);
991 		return 0;
992 	}
993 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994 			    SAS_ADDR(dev->parent->sas_addr))) {
995 		sas_add_parent_port(dev, phy_id);
996 		if (ex_phy->routing_attr == TABLE_ROUTING)
997 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998 		return 0;
999 	}
1000 
1001 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003 
1004 	if (ex_phy->attached_dev_type == NO_DEVICE) {
1005 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008 		}
1009 		return 0;
1010 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011 		return 0;
1012 
1013 	if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014 	    ex_phy->attached_dev_type != FANOUT_DEV &&
1015 	    ex_phy->attached_dev_type != EDGE_DEV &&
1016 	    ex_phy->attached_dev_type != SATA_PENDING) {
1017 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1019 			    SAS_ADDR(dev->sas_addr),
1020 			    phy_id);
1021 		return 0;
1022 	}
1023 
1024 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025 	if (res) {
1026 		SAS_DPRINTK("configure routing for dev %016llx "
1027 			    "reported 0x%x. Forgotten\n",
1028 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1029 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030 		return res;
1031 	}
1032 
1033 	if (sas_ex_join_wide_port(dev, phy_id)) {
1034 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036 		return res;
1037 	}
1038 
1039 	switch (ex_phy->attached_dev_type) {
1040 	case SAS_END_DEV:
1041 	case SATA_PENDING:
1042 		child = sas_ex_discover_end_dev(dev, phy_id);
1043 		break;
1044 	case FANOUT_DEV:
1045 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047 				    "attached to ex %016llx phy 0x%x\n",
1048 				    SAS_ADDR(ex_phy->attached_sas_addr),
1049 				    ex_phy->attached_phy_id,
1050 				    SAS_ADDR(dev->sas_addr),
1051 				    phy_id);
1052 			sas_ex_disable_phy(dev, phy_id);
1053 			break;
1054 		} else
1055 			memcpy(dev->port->disc.fanout_sas_addr,
1056 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057 		/* fallthrough */
1058 	case EDGE_DEV:
1059 		child = sas_ex_discover_expander(dev, phy_id);
1060 		break;
1061 	default:
1062 		break;
1063 	}
1064 
1065 	if (child) {
1066 		int i;
1067 
1068 		for (i = 0; i < ex->num_phys; i++) {
1069 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071 				continue;
1072 			/*
1073 			 * Due to races, the phy might not get added to the
1074 			 * wide port, so we add the phy to the wide port here.
1075 			 */
1076 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077 			    SAS_ADDR(child->sas_addr)) {
1078 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079 				if (sas_ex_join_wide_port(dev, i))
1080 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082 
1083 			}
1084 		}
1085 	}
1086 
1087 	return res;
1088 }
1089 
1090 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091 {
1092 	struct expander_device *ex = &dev->ex_dev;
1093 	int i;
1094 
1095 	for (i = 0; i < ex->num_phys; i++) {
1096 		struct ex_phy *phy = &ex->ex_phy[i];
1097 
1098 		if (phy->phy_state == PHY_VACANT ||
1099 		    phy->phy_state == PHY_NOT_PRESENT)
1100 			continue;
1101 
1102 		if ((phy->attached_dev_type == EDGE_DEV ||
1103 		     phy->attached_dev_type == FANOUT_DEV) &&
1104 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105 
1106 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107 
1108 			return 1;
1109 		}
1110 	}
1111 	return 0;
1112 }
1113 
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116 	struct expander_device *ex = &dev->ex_dev;
1117 	struct domain_device *child;
1118 	u8 sub_addr[8] = {0, };
1119 
1120 	list_for_each_entry(child, &ex->children, siblings) {
1121 		if (child->dev_type != EDGE_DEV &&
1122 		    child->dev_type != FANOUT_DEV)
1123 			continue;
1124 		if (sub_addr[0] == 0) {
1125 			sas_find_sub_addr(child, sub_addr);
1126 			continue;
1127 		} else {
1128 			u8 s2[8];
1129 
1130 			if (sas_find_sub_addr(child, s2) &&
1131 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132 
1133 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134 					    "diverges from subtractive "
1135 					    "boundary %016llx\n",
1136 					    SAS_ADDR(dev->sas_addr),
1137 					    SAS_ADDR(child->sas_addr),
1138 					    SAS_ADDR(s2),
1139 					    SAS_ADDR(sub_addr));
1140 
1141 				sas_ex_disable_port(child, s2);
1142 			}
1143 		}
1144 	}
1145 	return 0;
1146 }
1147 /**
1148  * sas_ex_discover_devices -- discover devices attached to this expander
1149  * dev: pointer to the expander domain device
1150  * single: if you want to do a single phy, else set to -1;
1151  *
1152  * Configure this expander for use with its devices and register the
1153  * devices of this expander.
1154  */
1155 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156 {
1157 	struct expander_device *ex = &dev->ex_dev;
1158 	int i = 0, end = ex->num_phys;
1159 	int res = 0;
1160 
1161 	if (0 <= single && single < end) {
1162 		i = single;
1163 		end = i+1;
1164 	}
1165 
1166 	for ( ; i < end; i++) {
1167 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1168 
1169 		if (ex_phy->phy_state == PHY_VACANT ||
1170 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1171 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172 			continue;
1173 
1174 		switch (ex_phy->linkrate) {
1175 		case SAS_PHY_DISABLED:
1176 		case SAS_PHY_RESET_PROBLEM:
1177 		case SAS_SATA_PORT_SELECTOR:
1178 			continue;
1179 		default:
1180 			res = sas_ex_discover_dev(dev, i);
1181 			if (res)
1182 				break;
1183 			continue;
1184 		}
1185 	}
1186 
1187 	if (!res)
1188 		sas_check_level_subtractive_boundary(dev);
1189 
1190 	return res;
1191 }
1192 
1193 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194 {
1195 	struct expander_device *ex = &dev->ex_dev;
1196 	int i;
1197 	u8  *sub_sas_addr = NULL;
1198 
1199 	if (dev->dev_type != EDGE_DEV)
1200 		return 0;
1201 
1202 	for (i = 0; i < ex->num_phys; i++) {
1203 		struct ex_phy *phy = &ex->ex_phy[i];
1204 
1205 		if (phy->phy_state == PHY_VACANT ||
1206 		    phy->phy_state == PHY_NOT_PRESENT)
1207 			continue;
1208 
1209 		if ((phy->attached_dev_type == FANOUT_DEV ||
1210 		     phy->attached_dev_type == EDGE_DEV) &&
1211 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212 
1213 			if (!sub_sas_addr)
1214 				sub_sas_addr = &phy->attached_sas_addr[0];
1215 			else if (SAS_ADDR(sub_sas_addr) !=
1216 				 SAS_ADDR(phy->attached_sas_addr)) {
1217 
1218 				SAS_DPRINTK("ex %016llx phy 0x%x "
1219 					    "diverges(%016llx) on subtractive "
1220 					    "boundary(%016llx). Disabled\n",
1221 					    SAS_ADDR(dev->sas_addr), i,
1222 					    SAS_ADDR(phy->attached_sas_addr),
1223 					    SAS_ADDR(sub_sas_addr));
1224 				sas_ex_disable_phy(dev, i);
1225 			}
1226 		}
1227 	}
1228 	return 0;
1229 }
1230 
1231 static void sas_print_parent_topology_bug(struct domain_device *child,
1232 						 struct ex_phy *parent_phy,
1233 						 struct ex_phy *child_phy)
1234 {
1235 	static const char *ex_type[] = {
1236 		[EDGE_DEV] = "edge",
1237 		[FANOUT_DEV] = "fanout",
1238 	};
1239 	struct domain_device *parent = child->parent;
1240 
1241 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242 		   "phy 0x%x has %c:%c routing link!\n",
1243 
1244 		   ex_type[parent->dev_type],
1245 		   SAS_ADDR(parent->sas_addr),
1246 		   parent_phy->phy_id,
1247 
1248 		   ex_type[child->dev_type],
1249 		   SAS_ADDR(child->sas_addr),
1250 		   child_phy->phy_id,
1251 
1252 		   sas_route_char(parent, parent_phy),
1253 		   sas_route_char(child, child_phy));
1254 }
1255 
1256 static int sas_check_eeds(struct domain_device *child,
1257 				 struct ex_phy *parent_phy,
1258 				 struct ex_phy *child_phy)
1259 {
1260 	int res = 0;
1261 	struct domain_device *parent = child->parent;
1262 
1263 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264 		res = -ENODEV;
1265 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1267 			    SAS_ADDR(parent->sas_addr),
1268 			    parent_phy->phy_id,
1269 			    SAS_ADDR(child->sas_addr),
1270 			    child_phy->phy_id,
1271 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274 		       SAS_ADDR_SIZE);
1275 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276 		       SAS_ADDR_SIZE);
1277 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278 		    SAS_ADDR(parent->sas_addr)) ||
1279 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1280 		    SAS_ADDR(child->sas_addr)))
1281 		   &&
1282 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283 		     SAS_ADDR(parent->sas_addr)) ||
1284 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1285 		     SAS_ADDR(child->sas_addr))))
1286 		;
1287 	else {
1288 		res = -ENODEV;
1289 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290 			    "phy 0x%x link forms a third EEDS!\n",
1291 			    SAS_ADDR(parent->sas_addr),
1292 			    parent_phy->phy_id,
1293 			    SAS_ADDR(child->sas_addr),
1294 			    child_phy->phy_id);
1295 	}
1296 
1297 	return res;
1298 }
1299 
1300 /* Here we spill over 80 columns.  It is intentional.
1301  */
1302 static int sas_check_parent_topology(struct domain_device *child)
1303 {
1304 	struct expander_device *child_ex = &child->ex_dev;
1305 	struct expander_device *parent_ex;
1306 	int i;
1307 	int res = 0;
1308 
1309 	if (!child->parent)
1310 		return 0;
1311 
1312 	if (child->parent->dev_type != EDGE_DEV &&
1313 	    child->parent->dev_type != FANOUT_DEV)
1314 		return 0;
1315 
1316 	parent_ex = &child->parent->ex_dev;
1317 
1318 	for (i = 0; i < parent_ex->num_phys; i++) {
1319 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320 		struct ex_phy *child_phy;
1321 
1322 		if (parent_phy->phy_state == PHY_VACANT ||
1323 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1324 			continue;
1325 
1326 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327 			continue;
1328 
1329 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330 
1331 		switch (child->parent->dev_type) {
1332 		case EDGE_DEV:
1333 			if (child->dev_type == FANOUT_DEV) {
1334 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335 				    child_phy->routing_attr != TABLE_ROUTING) {
1336 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337 					res = -ENODEV;
1338 				}
1339 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341 					res = sas_check_eeds(child, parent_phy, child_phy);
1342 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1343 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344 					res = -ENODEV;
1345 				}
1346 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348 				    (child_phy->routing_attr == TABLE_ROUTING &&
1349 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350 					/* All good */;
1351 				} else {
1352 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353 					res = -ENODEV;
1354 				}
1355 			}
1356 			break;
1357 		case FANOUT_DEV:
1358 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1359 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 				res = -ENODEV;
1362 			}
1363 			break;
1364 		default:
1365 			break;
1366 		}
1367 	}
1368 
1369 	return res;
1370 }
1371 
1372 #define RRI_REQ_SIZE  16
1373 #define RRI_RESP_SIZE 44
1374 
1375 static int sas_configure_present(struct domain_device *dev, int phy_id,
1376 				 u8 *sas_addr, int *index, int *present)
1377 {
1378 	int i, res = 0;
1379 	struct expander_device *ex = &dev->ex_dev;
1380 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1381 	u8 *rri_req;
1382 	u8 *rri_resp;
1383 
1384 	*present = 0;
1385 	*index = 0;
1386 
1387 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388 	if (!rri_req)
1389 		return -ENOMEM;
1390 
1391 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392 	if (!rri_resp) {
1393 		kfree(rri_req);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398 	rri_req[9] = phy_id;
1399 
1400 	for (i = 0; i < ex->max_route_indexes ; i++) {
1401 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403 				       RRI_RESP_SIZE);
1404 		if (res)
1405 			goto out;
1406 		res = rri_resp[2];
1407 		if (res == SMP_RESP_NO_INDEX) {
1408 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1409 				    "phy 0x%x index 0x%x\n",
1410 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1411 			goto out;
1412 		} else if (res != SMP_RESP_FUNC_ACC) {
1413 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414 				    "result 0x%x\n", __func__,
1415 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416 			goto out;
1417 		}
1418 		if (SAS_ADDR(sas_addr) != 0) {
1419 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420 				*index = i;
1421 				if ((rri_resp[12] & 0x80) == 0x80)
1422 					*present = 0;
1423 				else
1424 					*present = 1;
1425 				goto out;
1426 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1427 				*index = i;
1428 				*present = 0;
1429 				goto out;
1430 			}
1431 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1432 			   phy->last_da_index < i) {
1433 			phy->last_da_index = i;
1434 			*index = i;
1435 			*present = 0;
1436 			goto out;
1437 		}
1438 	}
1439 	res = -1;
1440 out:
1441 	kfree(rri_req);
1442 	kfree(rri_resp);
1443 	return res;
1444 }
1445 
1446 #define CRI_REQ_SIZE  44
1447 #define CRI_RESP_SIZE  8
1448 
1449 static int sas_configure_set(struct domain_device *dev, int phy_id,
1450 			     u8 *sas_addr, int index, int include)
1451 {
1452 	int res;
1453 	u8 *cri_req;
1454 	u8 *cri_resp;
1455 
1456 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457 	if (!cri_req)
1458 		return -ENOMEM;
1459 
1460 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461 	if (!cri_resp) {
1462 		kfree(cri_req);
1463 		return -ENOMEM;
1464 	}
1465 
1466 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1467 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468 	cri_req[9] = phy_id;
1469 	if (SAS_ADDR(sas_addr) == 0 || !include)
1470 		cri_req[12] |= 0x80;
1471 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472 
1473 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474 			       CRI_RESP_SIZE);
1475 	if (res)
1476 		goto out;
1477 	res = cri_resp[2];
1478 	if (res == SMP_RESP_NO_INDEX) {
1479 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480 			    "index 0x%x\n",
1481 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1482 	}
1483 out:
1484 	kfree(cri_req);
1485 	kfree(cri_resp);
1486 	return res;
1487 }
1488 
1489 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490 				    u8 *sas_addr, int include)
1491 {
1492 	int index;
1493 	int present;
1494 	int res;
1495 
1496 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497 	if (res)
1498 		return res;
1499 	if (include ^ present)
1500 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501 
1502 	return res;
1503 }
1504 
1505 /**
1506  * sas_configure_parent -- configure routing table of parent
1507  * parent: parent expander
1508  * child: child expander
1509  * sas_addr: SAS port identifier of device directly attached to child
1510  */
1511 static int sas_configure_parent(struct domain_device *parent,
1512 				struct domain_device *child,
1513 				u8 *sas_addr, int include)
1514 {
1515 	struct expander_device *ex_parent = &parent->ex_dev;
1516 	int res = 0;
1517 	int i;
1518 
1519 	if (parent->parent) {
1520 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1521 					   include);
1522 		if (res)
1523 			return res;
1524 	}
1525 
1526 	if (ex_parent->conf_route_table == 0) {
1527 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528 			    SAS_ADDR(parent->sas_addr));
1529 		return 0;
1530 	}
1531 
1532 	for (i = 0; i < ex_parent->num_phys; i++) {
1533 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1534 
1535 		if ((phy->routing_attr == TABLE_ROUTING) &&
1536 		    (SAS_ADDR(phy->attached_sas_addr) ==
1537 		     SAS_ADDR(child->sas_addr))) {
1538 			res = sas_configure_phy(parent, i, sas_addr, include);
1539 			if (res)
1540 				return res;
1541 		}
1542 	}
1543 
1544 	return res;
1545 }
1546 
1547 /**
1548  * sas_configure_routing -- configure routing
1549  * dev: expander device
1550  * sas_addr: port identifier of device directly attached to the expander device
1551  */
1552 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553 {
1554 	if (dev->parent)
1555 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556 	return 0;
1557 }
1558 
1559 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1560 {
1561 	if (dev->parent)
1562 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563 	return 0;
1564 }
1565 
1566 /**
1567  * sas_discover_expander -- expander discovery
1568  * @ex: pointer to expander domain device
1569  *
1570  * See comment in sas_discover_sata().
1571  */
1572 static int sas_discover_expander(struct domain_device *dev)
1573 {
1574 	int res;
1575 
1576 	res = sas_notify_lldd_dev_found(dev);
1577 	if (res)
1578 		return res;
1579 
1580 	res = sas_ex_general(dev);
1581 	if (res)
1582 		goto out_err;
1583 	res = sas_ex_manuf_info(dev);
1584 	if (res)
1585 		goto out_err;
1586 
1587 	res = sas_expander_discover(dev);
1588 	if (res) {
1589 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590 			    SAS_ADDR(dev->sas_addr), res);
1591 		goto out_err;
1592 	}
1593 
1594 	sas_check_ex_subtractive_boundary(dev);
1595 	res = sas_check_parent_topology(dev);
1596 	if (res)
1597 		goto out_err;
1598 	return 0;
1599 out_err:
1600 	sas_notify_lldd_dev_gone(dev);
1601 	return res;
1602 }
1603 
1604 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605 {
1606 	int res = 0;
1607 	struct domain_device *dev;
1608 
1609 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610 		if (dev->dev_type == EDGE_DEV ||
1611 		    dev->dev_type == FANOUT_DEV) {
1612 			struct sas_expander_device *ex =
1613 				rphy_to_expander_device(dev->rphy);
1614 
1615 			if (level == ex->level)
1616 				res = sas_ex_discover_devices(dev, -1);
1617 			else if (level > 0)
1618 				res = sas_ex_discover_devices(port->port_dev, -1);
1619 
1620 		}
1621 	}
1622 
1623 	return res;
1624 }
1625 
1626 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627 {
1628 	int res;
1629 	int level;
1630 
1631 	do {
1632 		level = port->disc.max_level;
1633 		res = sas_ex_level_discovery(port, level);
1634 		mb();
1635 	} while (level < port->disc.max_level);
1636 
1637 	return res;
1638 }
1639 
1640 int sas_discover_root_expander(struct domain_device *dev)
1641 {
1642 	int res;
1643 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644 
1645 	res = sas_rphy_add(dev->rphy);
1646 	if (res)
1647 		goto out_err;
1648 
1649 	ex->level = dev->port->disc.max_level; /* 0 */
1650 	res = sas_discover_expander(dev);
1651 	if (res)
1652 		goto out_err2;
1653 
1654 	sas_ex_bfs_disc(dev->port);
1655 
1656 	return res;
1657 
1658 out_err2:
1659 	sas_rphy_remove(dev->rphy);
1660 out_err:
1661 	return res;
1662 }
1663 
1664 /* ---------- Domain revalidation ---------- */
1665 
1666 static int sas_get_phy_discover(struct domain_device *dev,
1667 				int phy_id, struct smp_resp *disc_resp)
1668 {
1669 	int res;
1670 	u8 *disc_req;
1671 
1672 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673 	if (!disc_req)
1674 		return -ENOMEM;
1675 
1676 	disc_req[1] = SMP_DISCOVER;
1677 	disc_req[9] = phy_id;
1678 
1679 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680 			       disc_resp, DISCOVER_RESP_SIZE);
1681 	if (res)
1682 		goto out;
1683 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684 		res = disc_resp->result;
1685 		goto out;
1686 	}
1687 out:
1688 	kfree(disc_req);
1689 	return res;
1690 }
1691 
1692 static int sas_get_phy_change_count(struct domain_device *dev,
1693 				    int phy_id, int *pcc)
1694 {
1695 	int res;
1696 	struct smp_resp *disc_resp;
1697 
1698 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699 	if (!disc_resp)
1700 		return -ENOMEM;
1701 
1702 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703 	if (!res)
1704 		*pcc = disc_resp->disc.change_count;
1705 
1706 	kfree(disc_resp);
1707 	return res;
1708 }
1709 
1710 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711 				    u8 *sas_addr, enum sas_dev_type *type)
1712 {
1713 	int res;
1714 	struct smp_resp *disc_resp;
1715 	struct discover_resp *dr;
1716 
1717 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718 	if (!disc_resp)
1719 		return -ENOMEM;
1720 	dr = &disc_resp->disc;
1721 
1722 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723 	if (res == 0) {
1724 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725 		*type = to_dev_type(dr);
1726 		if (*type == 0)
1727 			memset(sas_addr, 0, 8);
1728 	}
1729 	kfree(disc_resp);
1730 	return res;
1731 }
1732 
1733 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734 			      int from_phy, bool update)
1735 {
1736 	struct expander_device *ex = &dev->ex_dev;
1737 	int res = 0;
1738 	int i;
1739 
1740 	for (i = from_phy; i < ex->num_phys; i++) {
1741 		int phy_change_count = 0;
1742 
1743 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744 		switch (res) {
1745 		case SMP_RESP_PHY_VACANT:
1746 		case SMP_RESP_NO_PHY:
1747 			continue;
1748 		case SMP_RESP_FUNC_ACC:
1749 			break;
1750 		default:
1751 			return res;
1752 		}
1753 
1754 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755 			if (update)
1756 				ex->ex_phy[i].phy_change_count =
1757 					phy_change_count;
1758 			*phy_id = i;
1759 			return 0;
1760 		}
1761 	}
1762 	return 0;
1763 }
1764 
1765 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766 {
1767 	int res;
1768 	u8  *rg_req;
1769 	struct smp_resp  *rg_resp;
1770 
1771 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1772 	if (!rg_req)
1773 		return -ENOMEM;
1774 
1775 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776 	if (!rg_resp) {
1777 		kfree(rg_req);
1778 		return -ENOMEM;
1779 	}
1780 
1781 	rg_req[1] = SMP_REPORT_GENERAL;
1782 
1783 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784 			       RG_RESP_SIZE);
1785 	if (res)
1786 		goto out;
1787 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788 		res = rg_resp->result;
1789 		goto out;
1790 	}
1791 
1792 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1793 out:
1794 	kfree(rg_resp);
1795 	kfree(rg_req);
1796 	return res;
1797 }
1798 /**
1799  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1800  * @dev:domain device to be detect.
1801  * @src_dev: the device which originated BROADCAST(CHANGE).
1802  *
1803  * Add self-configuration expander suport. Suppose two expander cascading,
1804  * when the first level expander is self-configuring, hotplug the disks in
1805  * second level expander, BROADCAST(CHANGE) will not only be originated
1806  * in the second level expander, but also be originated in the first level
1807  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808  * expander changed count in two level expanders will all increment at least
1809  * once, but the phy which chang count has changed is the source device which
1810  * we concerned.
1811  */
1812 
1813 static int sas_find_bcast_dev(struct domain_device *dev,
1814 			      struct domain_device **src_dev)
1815 {
1816 	struct expander_device *ex = &dev->ex_dev;
1817 	int ex_change_count = -1;
1818 	int phy_id = -1;
1819 	int res;
1820 	struct domain_device *ch;
1821 
1822 	res = sas_get_ex_change_count(dev, &ex_change_count);
1823 	if (res)
1824 		goto out;
1825 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826 		/* Just detect if this expander phys phy change count changed,
1827 		* in order to determine if this expander originate BROADCAST,
1828 		* and do not update phy change count field in our structure.
1829 		*/
1830 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831 		if (phy_id != -1) {
1832 			*src_dev = dev;
1833 			ex->ex_change_count = ex_change_count;
1834 			SAS_DPRINTK("Expander phy change count has changed\n");
1835 			return res;
1836 		} else
1837 			SAS_DPRINTK("Expander phys DID NOT change\n");
1838 	}
1839 	list_for_each_entry(ch, &ex->children, siblings) {
1840 		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841 			res = sas_find_bcast_dev(ch, src_dev);
1842 			if (*src_dev)
1843 				return res;
1844 		}
1845 	}
1846 out:
1847 	return res;
1848 }
1849 
1850 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851 {
1852 	struct expander_device *ex = &dev->ex_dev;
1853 	struct domain_device *child, *n;
1854 
1855 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856 		set_bit(SAS_DEV_GONE, &child->state);
1857 		if (child->dev_type == EDGE_DEV ||
1858 		    child->dev_type == FANOUT_DEV)
1859 			sas_unregister_ex_tree(port, child);
1860 		else
1861 			sas_unregister_dev(port, child);
1862 	}
1863 	sas_unregister_dev(port, dev);
1864 }
1865 
1866 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867 					 int phy_id, bool last)
1868 {
1869 	struct expander_device *ex_dev = &parent->ex_dev;
1870 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871 	struct domain_device *child, *n, *found = NULL;
1872 	if (last) {
1873 		list_for_each_entry_safe(child, n,
1874 			&ex_dev->children, siblings) {
1875 			if (SAS_ADDR(child->sas_addr) ==
1876 			    SAS_ADDR(phy->attached_sas_addr)) {
1877 				set_bit(SAS_DEV_GONE, &child->state);
1878 				if (child->dev_type == EDGE_DEV ||
1879 				    child->dev_type == FANOUT_DEV)
1880 					sas_unregister_ex_tree(parent->port, child);
1881 				else
1882 					sas_unregister_dev(parent->port, child);
1883 				found = child;
1884 				break;
1885 			}
1886 		}
1887 		sas_disable_routing(parent, phy->attached_sas_addr);
1888 	}
1889 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890 	if (phy->port) {
1891 		sas_port_delete_phy(phy->port, phy->phy);
1892 		sas_device_set_phy(found, phy->port);
1893 		if (phy->port->num_phys == 0)
1894 			sas_port_delete(phy->port);
1895 		phy->port = NULL;
1896 	}
1897 }
1898 
1899 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900 					  const int level)
1901 {
1902 	struct expander_device *ex_root = &root->ex_dev;
1903 	struct domain_device *child;
1904 	int res = 0;
1905 
1906 	list_for_each_entry(child, &ex_root->children, siblings) {
1907 		if (child->dev_type == EDGE_DEV ||
1908 		    child->dev_type == FANOUT_DEV) {
1909 			struct sas_expander_device *ex =
1910 				rphy_to_expander_device(child->rphy);
1911 
1912 			if (level > ex->level)
1913 				res = sas_discover_bfs_by_root_level(child,
1914 								     level);
1915 			else if (level == ex->level)
1916 				res = sas_ex_discover_devices(child, -1);
1917 		}
1918 	}
1919 	return res;
1920 }
1921 
1922 static int sas_discover_bfs_by_root(struct domain_device *dev)
1923 {
1924 	int res;
1925 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926 	int level = ex->level+1;
1927 
1928 	res = sas_ex_discover_devices(dev, -1);
1929 	if (res)
1930 		goto out;
1931 	do {
1932 		res = sas_discover_bfs_by_root_level(dev, level);
1933 		mb();
1934 		level += 1;
1935 	} while (level <= dev->port->disc.max_level);
1936 out:
1937 	return res;
1938 }
1939 
1940 static int sas_discover_new(struct domain_device *dev, int phy_id)
1941 {
1942 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943 	struct domain_device *child;
1944 	int res;
1945 
1946 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947 		    SAS_ADDR(dev->sas_addr), phy_id);
1948 	res = sas_ex_phy_discover(dev, phy_id);
1949 	if (res)
1950 		return res;
1951 
1952 	if (sas_ex_join_wide_port(dev, phy_id))
1953 		return 0;
1954 
1955 	res = sas_ex_discover_devices(dev, phy_id);
1956 	if (res)
1957 		return res;
1958 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959 		if (SAS_ADDR(child->sas_addr) ==
1960 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1961 			if (child->dev_type == EDGE_DEV ||
1962 			    child->dev_type == FANOUT_DEV)
1963 				res = sas_discover_bfs_by_root(child);
1964 			break;
1965 		}
1966 	}
1967 	return res;
1968 }
1969 
1970 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971 {
1972 	if (old == new)
1973 		return true;
1974 
1975 	/* treat device directed resets as flutter, if we went
1976 	 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977 	 */
1978 	if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979 	    (old == SAS_END_DEV && new == SATA_PENDING))
1980 		return true;
1981 
1982 	return false;
1983 }
1984 
1985 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986 {
1987 	struct expander_device *ex = &dev->ex_dev;
1988 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1989 	enum sas_dev_type type = NO_DEVICE;
1990 	u8 sas_addr[8];
1991 	int res;
1992 
1993 	memset(sas_addr, 0, 8);
1994 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1995 	switch (res) {
1996 	case SMP_RESP_NO_PHY:
1997 		phy->phy_state = PHY_NOT_PRESENT;
1998 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1999 		return res;
2000 	case SMP_RESP_PHY_VACANT:
2001 		phy->phy_state = PHY_VACANT;
2002 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2003 		return res;
2004 	case SMP_RESP_FUNC_ACC:
2005 		break;
2006 	case -ECOMM:
2007 		break;
2008 	default:
2009 		return res;
2010 	}
2011 
2012 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2013 		phy->phy_state = PHY_EMPTY;
2014 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015 		return res;
2016 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2017 		   dev_type_flutter(type, phy->attached_dev_type)) {
2018 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2019 		char *action = "";
2020 
2021 		sas_ex_phy_discover(dev, phy_id);
2022 
2023 		if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2024 			action = ", needs recovery";
2025 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2026 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2027 		return res;
2028 	}
2029 
2030 	/* delete the old link */
2031 	if (SAS_ADDR(phy->attached_sas_addr) &&
2032 	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2033 		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2034 			    SAS_ADDR(dev->sas_addr), phy_id,
2035 			    SAS_ADDR(phy->attached_sas_addr));
2036 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2037 	}
2038 
2039 	return sas_discover_new(dev, phy_id);
2040 }
2041 
2042 /**
2043  * sas_rediscover - revalidate the domain.
2044  * @dev:domain device to be detect.
2045  * @phy_id: the phy id will be detected.
2046  *
2047  * NOTE: this process _must_ quit (return) as soon as any connection
2048  * errors are encountered.  Connection recovery is done elsewhere.
2049  * Discover process only interrogates devices in order to discover the
2050  * domain.For plugging out, we un-register the device only when it is
2051  * the last phy in the port, for other phys in this port, we just delete it
2052  * from the port.For inserting, we do discovery when it is the
2053  * first phy,for other phys in this port, we add it to the port to
2054  * forming the wide-port.
2055  */
2056 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2057 {
2058 	struct expander_device *ex = &dev->ex_dev;
2059 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2060 	int res = 0;
2061 	int i;
2062 	bool last = true;	/* is this the last phy of the port */
2063 
2064 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2065 		    SAS_ADDR(dev->sas_addr), phy_id);
2066 
2067 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2068 		for (i = 0; i < ex->num_phys; i++) {
2069 			struct ex_phy *phy = &ex->ex_phy[i];
2070 
2071 			if (i == phy_id)
2072 				continue;
2073 			if (SAS_ADDR(phy->attached_sas_addr) ==
2074 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2075 				SAS_DPRINTK("phy%d part of wide port with "
2076 					    "phy%d\n", phy_id, i);
2077 				last = false;
2078 				break;
2079 			}
2080 		}
2081 		res = sas_rediscover_dev(dev, phy_id, last);
2082 	} else
2083 		res = sas_discover_new(dev, phy_id);
2084 	return res;
2085 }
2086 
2087 /**
2088  * sas_revalidate_domain -- revalidate the domain
2089  * @port: port to the domain of interest
2090  *
2091  * NOTE: this process _must_ quit (return) as soon as any connection
2092  * errors are encountered.  Connection recovery is done elsewhere.
2093  * Discover process only interrogates devices in order to discover the
2094  * domain.
2095  */
2096 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2097 {
2098 	int res;
2099 	struct domain_device *dev = NULL;
2100 
2101 	res = sas_find_bcast_dev(port_dev, &dev);
2102 	while (res == 0 && dev) {
2103 		struct expander_device *ex = &dev->ex_dev;
2104 		int i = 0, phy_id;
2105 
2106 		do {
2107 			phy_id = -1;
2108 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2109 			if (phy_id == -1)
2110 				break;
2111 			res = sas_rediscover(dev, phy_id);
2112 			i = phy_id + 1;
2113 		} while (i < ex->num_phys);
2114 
2115 		dev = NULL;
2116 		res = sas_find_bcast_dev(port_dev, &dev);
2117 	}
2118 	return res;
2119 }
2120 
2121 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2122 		    struct request *req)
2123 {
2124 	struct domain_device *dev;
2125 	int ret, type;
2126 	struct request *rsp = req->next_rq;
2127 
2128 	if (!rsp) {
2129 		printk("%s: space for a smp response is missing\n",
2130 		       __func__);
2131 		return -EINVAL;
2132 	}
2133 
2134 	/* no rphy means no smp target support (ie aic94xx host) */
2135 	if (!rphy)
2136 		return sas_smp_host_handler(shost, req, rsp);
2137 
2138 	type = rphy->identify.device_type;
2139 
2140 	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2141 	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2142 		printk("%s: can we send a smp request to a device?\n",
2143 		       __func__);
2144 		return -EINVAL;
2145 	}
2146 
2147 	dev = sas_find_dev_by_rphy(rphy);
2148 	if (!dev) {
2149 		printk("%s: fail to find a domain_device?\n", __func__);
2150 		return -EINVAL;
2151 	}
2152 
2153 	/* do we need to support multiple segments? */
2154 	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2155 		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2156 		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2157 		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2158 		return -EINVAL;
2159 	}
2160 
2161 	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2162 			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2163 	if (ret > 0) {
2164 		/* positive number is the untransferred residual */
2165 		rsp->resid_len = ret;
2166 		req->resid_len = 0;
2167 		ret = 0;
2168 	} else if (ret == 0) {
2169 		rsp->resid_len = 0;
2170 		req->resid_len = 0;
2171 	}
2172 
2173 	return ret;
2174 }
2175