1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 #include <linux/slab.h> 28 29 #include "sas_internal.h" 30 31 #include <scsi/sas_ata.h> 32 #include <scsi/scsi_transport.h> 33 #include <scsi/scsi_transport_sas.h> 34 #include "../scsi_sas_internal.h" 35 36 static int sas_discover_expander(struct domain_device *dev); 37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 38 static int sas_configure_phy(struct domain_device *dev, int phy_id, 39 u8 *sas_addr, int include); 40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 41 42 /* ---------- SMP task management ---------- */ 43 44 static void smp_task_timedout(unsigned long _task) 45 { 46 struct sas_task *task = (void *) _task; 47 unsigned long flags; 48 49 spin_lock_irqsave(&task->task_state_lock, flags); 50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 51 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 52 spin_unlock_irqrestore(&task->task_state_lock, flags); 53 54 complete(&task->slow_task->completion); 55 } 56 57 static void smp_task_done(struct sas_task *task) 58 { 59 if (!del_timer(&task->slow_task->timer)) 60 return; 61 complete(&task->slow_task->completion); 62 } 63 64 /* Give it some long enough timeout. In seconds. */ 65 #define SMP_TIMEOUT 10 66 67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 68 void *resp, int resp_size) 69 { 70 int res, retry; 71 struct sas_task *task = NULL; 72 struct sas_internal *i = 73 to_sas_internal(dev->port->ha->core.shost->transportt); 74 75 mutex_lock(&dev->ex_dev.cmd_mutex); 76 for (retry = 0; retry < 3; retry++) { 77 if (test_bit(SAS_DEV_GONE, &dev->state)) { 78 res = -ECOMM; 79 break; 80 } 81 82 task = sas_alloc_slow_task(GFP_KERNEL); 83 if (!task) { 84 res = -ENOMEM; 85 break; 86 } 87 task->dev = dev; 88 task->task_proto = dev->tproto; 89 sg_init_one(&task->smp_task.smp_req, req, req_size); 90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 91 92 task->task_done = smp_task_done; 93 94 task->slow_task->timer.data = (unsigned long) task; 95 task->slow_task->timer.function = smp_task_timedout; 96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 97 add_timer(&task->slow_task->timer); 98 99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 100 101 if (res) { 102 del_timer(&task->slow_task->timer); 103 SAS_DPRINTK("executing SMP task failed:%d\n", res); 104 break; 105 } 106 107 wait_for_completion(&task->slow_task->completion); 108 res = -ECOMM; 109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 110 SAS_DPRINTK("smp task timed out or aborted\n"); 111 i->dft->lldd_abort_task(task); 112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 113 SAS_DPRINTK("SMP task aborted and not done\n"); 114 break; 115 } 116 } 117 if (task->task_status.resp == SAS_TASK_COMPLETE && 118 task->task_status.stat == SAM_STAT_GOOD) { 119 res = 0; 120 break; 121 } 122 if (task->task_status.resp == SAS_TASK_COMPLETE && 123 task->task_status.stat == SAS_DATA_UNDERRUN) { 124 /* no error, but return the number of bytes of 125 * underrun */ 126 res = task->task_status.residual; 127 break; 128 } 129 if (task->task_status.resp == SAS_TASK_COMPLETE && 130 task->task_status.stat == SAS_DATA_OVERRUN) { 131 res = -EMSGSIZE; 132 break; 133 } 134 if (task->task_status.resp == SAS_TASK_UNDELIVERED && 135 task->task_status.stat == SAS_DEVICE_UNKNOWN) 136 break; 137 else { 138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 139 "status 0x%x\n", __func__, 140 SAS_ADDR(dev->sas_addr), 141 task->task_status.resp, 142 task->task_status.stat); 143 sas_free_task(task); 144 task = NULL; 145 } 146 } 147 mutex_unlock(&dev->ex_dev.cmd_mutex); 148 149 BUG_ON(retry == 3 && task != NULL); 150 sas_free_task(task); 151 return res; 152 } 153 154 /* ---------- Allocations ---------- */ 155 156 static inline void *alloc_smp_req(int size) 157 { 158 u8 *p = kzalloc(size, GFP_KERNEL); 159 if (p) 160 p[0] = SMP_REQUEST; 161 return p; 162 } 163 164 static inline void *alloc_smp_resp(int size) 165 { 166 return kzalloc(size, GFP_KERNEL); 167 } 168 169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) 170 { 171 switch (phy->routing_attr) { 172 case TABLE_ROUTING: 173 if (dev->ex_dev.t2t_supp) 174 return 'U'; 175 else 176 return 'T'; 177 case DIRECT_ROUTING: 178 return 'D'; 179 case SUBTRACTIVE_ROUTING: 180 return 'S'; 181 default: 182 return '?'; 183 } 184 } 185 186 static enum sas_dev_type to_dev_type(struct discover_resp *dr) 187 { 188 /* This is detecting a failure to transmit initial dev to host 189 * FIS as described in section J.5 of sas-2 r16 190 */ 191 if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev && 192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) 193 return SATA_PENDING; 194 else 195 return dr->attached_dev_type; 196 } 197 198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) 199 { 200 enum sas_dev_type dev_type; 201 enum sas_linkrate linkrate; 202 u8 sas_addr[SAS_ADDR_SIZE]; 203 struct smp_resp *resp = rsp; 204 struct discover_resp *dr = &resp->disc; 205 struct sas_ha_struct *ha = dev->port->ha; 206 struct expander_device *ex = &dev->ex_dev; 207 struct ex_phy *phy = &ex->ex_phy[phy_id]; 208 struct sas_rphy *rphy = dev->rphy; 209 bool new_phy = !phy->phy; 210 char *type; 211 212 if (new_phy) { 213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) 214 return; 215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 216 217 /* FIXME: error_handling */ 218 BUG_ON(!phy->phy); 219 } 220 221 switch (resp->result) { 222 case SMP_RESP_PHY_VACANT: 223 phy->phy_state = PHY_VACANT; 224 break; 225 default: 226 phy->phy_state = PHY_NOT_PRESENT; 227 break; 228 case SMP_RESP_FUNC_ACC: 229 phy->phy_state = PHY_EMPTY; /* do not know yet */ 230 break; 231 } 232 233 /* check if anything important changed to squelch debug */ 234 dev_type = phy->attached_dev_type; 235 linkrate = phy->linkrate; 236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 237 238 phy->attached_dev_type = to_dev_type(dr); 239 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 240 goto out; 241 phy->phy_id = phy_id; 242 phy->linkrate = dr->linkrate; 243 phy->attached_sata_host = dr->attached_sata_host; 244 phy->attached_sata_dev = dr->attached_sata_dev; 245 phy->attached_sata_ps = dr->attached_sata_ps; 246 phy->attached_iproto = dr->iproto << 1; 247 phy->attached_tproto = dr->tproto << 1; 248 /* help some expanders that fail to zero sas_address in the 'no 249 * device' case 250 */ 251 if (phy->attached_dev_type == NO_DEVICE || 252 phy->linkrate < SAS_LINK_RATE_1_5_GBPS) 253 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 254 else 255 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 256 phy->attached_phy_id = dr->attached_phy_id; 257 phy->phy_change_count = dr->change_count; 258 phy->routing_attr = dr->routing_attr; 259 phy->virtual = dr->virtual; 260 phy->last_da_index = -1; 261 262 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); 263 phy->phy->identify.device_type = dr->attached_dev_type; 264 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 265 phy->phy->identify.target_port_protocols = phy->attached_tproto; 266 if (!phy->attached_tproto && dr->attached_sata_dev) 267 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 268 phy->phy->identify.phy_identifier = phy_id; 269 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 270 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 271 phy->phy->minimum_linkrate = dr->pmin_linkrate; 272 phy->phy->maximum_linkrate = dr->pmax_linkrate; 273 phy->phy->negotiated_linkrate = phy->linkrate; 274 275 if (new_phy) 276 if (sas_phy_add(phy->phy)) { 277 sas_phy_free(phy->phy); 278 return; 279 } 280 281 out: 282 switch (phy->attached_dev_type) { 283 case SATA_PENDING: 284 type = "stp pending"; 285 break; 286 case NO_DEVICE: 287 type = "no device"; 288 break; 289 case SAS_END_DEV: 290 if (phy->attached_iproto) { 291 if (phy->attached_tproto) 292 type = "host+target"; 293 else 294 type = "host"; 295 } else { 296 if (dr->attached_sata_dev) 297 type = "stp"; 298 else 299 type = "ssp"; 300 } 301 break; 302 case EDGE_DEV: 303 case FANOUT_DEV: 304 type = "smp"; 305 break; 306 default: 307 type = "unknown"; 308 } 309 310 /* this routine is polled by libata error recovery so filter 311 * unimportant messages 312 */ 313 if (new_phy || phy->attached_dev_type != dev_type || 314 phy->linkrate != linkrate || 315 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) 316 /* pass */; 317 else 318 return; 319 320 /* if the attached device type changed and ata_eh is active, 321 * make sure we run revalidation when eh completes (see: 322 * sas_enable_revalidation) 323 */ 324 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) 325 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); 326 327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", 328 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", 329 SAS_ADDR(dev->sas_addr), phy->phy_id, 330 sas_route_char(dev, phy), phy->linkrate, 331 SAS_ADDR(phy->attached_sas_addr), type); 332 } 333 334 /* check if we have an existing attached ata device on this expander phy */ 335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) 336 { 337 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; 338 struct domain_device *dev; 339 struct sas_rphy *rphy; 340 341 if (!ex_phy->port) 342 return NULL; 343 344 rphy = ex_phy->port->rphy; 345 if (!rphy) 346 return NULL; 347 348 dev = sas_find_dev_by_rphy(rphy); 349 350 if (dev && dev_is_sata(dev)) 351 return dev; 352 353 return NULL; 354 } 355 356 #define DISCOVER_REQ_SIZE 16 357 #define DISCOVER_RESP_SIZE 56 358 359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 360 u8 *disc_resp, int single) 361 { 362 struct discover_resp *dr; 363 int res; 364 365 disc_req[9] = single; 366 367 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 368 disc_resp, DISCOVER_RESP_SIZE); 369 if (res) 370 return res; 371 dr = &((struct smp_resp *)disc_resp)->disc; 372 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { 373 sas_printk("Found loopback topology, just ignore it!\n"); 374 return 0; 375 } 376 sas_set_ex_phy(dev, single, disc_resp); 377 return 0; 378 } 379 380 int sas_ex_phy_discover(struct domain_device *dev, int single) 381 { 382 struct expander_device *ex = &dev->ex_dev; 383 int res = 0; 384 u8 *disc_req; 385 u8 *disc_resp; 386 387 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 388 if (!disc_req) 389 return -ENOMEM; 390 391 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 392 if (!disc_resp) { 393 kfree(disc_req); 394 return -ENOMEM; 395 } 396 397 disc_req[1] = SMP_DISCOVER; 398 399 if (0 <= single && single < ex->num_phys) { 400 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 401 } else { 402 int i; 403 404 for (i = 0; i < ex->num_phys; i++) { 405 res = sas_ex_phy_discover_helper(dev, disc_req, 406 disc_resp, i); 407 if (res) 408 goto out_err; 409 } 410 } 411 out_err: 412 kfree(disc_resp); 413 kfree(disc_req); 414 return res; 415 } 416 417 static int sas_expander_discover(struct domain_device *dev) 418 { 419 struct expander_device *ex = &dev->ex_dev; 420 int res = -ENOMEM; 421 422 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 423 if (!ex->ex_phy) 424 return -ENOMEM; 425 426 res = sas_ex_phy_discover(dev, -1); 427 if (res) 428 goto out_err; 429 430 return 0; 431 out_err: 432 kfree(ex->ex_phy); 433 ex->ex_phy = NULL; 434 return res; 435 } 436 437 #define MAX_EXPANDER_PHYS 128 438 439 static void ex_assign_report_general(struct domain_device *dev, 440 struct smp_resp *resp) 441 { 442 struct report_general_resp *rg = &resp->rg; 443 444 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 445 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 446 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 447 dev->ex_dev.t2t_supp = rg->t2t_supp; 448 dev->ex_dev.conf_route_table = rg->conf_route_table; 449 dev->ex_dev.configuring = rg->configuring; 450 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 451 } 452 453 #define RG_REQ_SIZE 8 454 #define RG_RESP_SIZE 32 455 456 static int sas_ex_general(struct domain_device *dev) 457 { 458 u8 *rg_req; 459 struct smp_resp *rg_resp; 460 int res; 461 int i; 462 463 rg_req = alloc_smp_req(RG_REQ_SIZE); 464 if (!rg_req) 465 return -ENOMEM; 466 467 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 468 if (!rg_resp) { 469 kfree(rg_req); 470 return -ENOMEM; 471 } 472 473 rg_req[1] = SMP_REPORT_GENERAL; 474 475 for (i = 0; i < 5; i++) { 476 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 477 RG_RESP_SIZE); 478 479 if (res) { 480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 481 SAS_ADDR(dev->sas_addr), res); 482 goto out; 483 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 485 SAS_ADDR(dev->sas_addr), rg_resp->result); 486 res = rg_resp->result; 487 goto out; 488 } 489 490 ex_assign_report_general(dev, rg_resp); 491 492 if (dev->ex_dev.configuring) { 493 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 494 SAS_ADDR(dev->sas_addr)); 495 schedule_timeout_interruptible(5*HZ); 496 } else 497 break; 498 } 499 out: 500 kfree(rg_req); 501 kfree(rg_resp); 502 return res; 503 } 504 505 static void ex_assign_manuf_info(struct domain_device *dev, void 506 *_mi_resp) 507 { 508 u8 *mi_resp = _mi_resp; 509 struct sas_rphy *rphy = dev->rphy; 510 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 511 512 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 513 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 514 memcpy(edev->product_rev, mi_resp + 36, 515 SAS_EXPANDER_PRODUCT_REV_LEN); 516 517 if (mi_resp[8] & 1) { 518 memcpy(edev->component_vendor_id, mi_resp + 40, 519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 520 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 521 edev->component_revision_id = mi_resp[50]; 522 } 523 } 524 525 #define MI_REQ_SIZE 8 526 #define MI_RESP_SIZE 64 527 528 static int sas_ex_manuf_info(struct domain_device *dev) 529 { 530 u8 *mi_req; 531 u8 *mi_resp; 532 int res; 533 534 mi_req = alloc_smp_req(MI_REQ_SIZE); 535 if (!mi_req) 536 return -ENOMEM; 537 538 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 539 if (!mi_resp) { 540 kfree(mi_req); 541 return -ENOMEM; 542 } 543 544 mi_req[1] = SMP_REPORT_MANUF_INFO; 545 546 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 547 if (res) { 548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 549 SAS_ADDR(dev->sas_addr), res); 550 goto out; 551 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 553 SAS_ADDR(dev->sas_addr), mi_resp[2]); 554 goto out; 555 } 556 557 ex_assign_manuf_info(dev, mi_resp); 558 out: 559 kfree(mi_req); 560 kfree(mi_resp); 561 return res; 562 } 563 564 #define PC_REQ_SIZE 44 565 #define PC_RESP_SIZE 8 566 567 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 568 enum phy_func phy_func, 569 struct sas_phy_linkrates *rates) 570 { 571 u8 *pc_req; 572 u8 *pc_resp; 573 int res; 574 575 pc_req = alloc_smp_req(PC_REQ_SIZE); 576 if (!pc_req) 577 return -ENOMEM; 578 579 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 580 if (!pc_resp) { 581 kfree(pc_req); 582 return -ENOMEM; 583 } 584 585 pc_req[1] = SMP_PHY_CONTROL; 586 pc_req[9] = phy_id; 587 pc_req[10]= phy_func; 588 if (rates) { 589 pc_req[32] = rates->minimum_linkrate << 4; 590 pc_req[33] = rates->maximum_linkrate << 4; 591 } 592 593 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 594 595 kfree(pc_resp); 596 kfree(pc_req); 597 return res; 598 } 599 600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 601 { 602 struct expander_device *ex = &dev->ex_dev; 603 struct ex_phy *phy = &ex->ex_phy[phy_id]; 604 605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 606 phy->linkrate = SAS_PHY_DISABLED; 607 } 608 609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 610 { 611 struct expander_device *ex = &dev->ex_dev; 612 int i; 613 614 for (i = 0; i < ex->num_phys; i++) { 615 struct ex_phy *phy = &ex->ex_phy[i]; 616 617 if (phy->phy_state == PHY_VACANT || 618 phy->phy_state == PHY_NOT_PRESENT) 619 continue; 620 621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 622 sas_ex_disable_phy(dev, i); 623 } 624 } 625 626 static int sas_dev_present_in_domain(struct asd_sas_port *port, 627 u8 *sas_addr) 628 { 629 struct domain_device *dev; 630 631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 632 return 1; 633 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 635 return 1; 636 } 637 return 0; 638 } 639 640 #define RPEL_REQ_SIZE 16 641 #define RPEL_RESP_SIZE 32 642 int sas_smp_get_phy_events(struct sas_phy *phy) 643 { 644 int res; 645 u8 *req; 646 u8 *resp; 647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 648 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 649 650 req = alloc_smp_req(RPEL_REQ_SIZE); 651 if (!req) 652 return -ENOMEM; 653 654 resp = alloc_smp_resp(RPEL_RESP_SIZE); 655 if (!resp) { 656 kfree(req); 657 return -ENOMEM; 658 } 659 660 req[1] = SMP_REPORT_PHY_ERR_LOG; 661 req[9] = phy->number; 662 663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 664 resp, RPEL_RESP_SIZE); 665 666 if (!res) 667 goto out; 668 669 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 670 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 671 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 672 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 673 674 out: 675 kfree(resp); 676 return res; 677 678 } 679 680 #ifdef CONFIG_SCSI_SAS_ATA 681 682 #define RPS_REQ_SIZE 16 683 #define RPS_RESP_SIZE 60 684 685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, 686 struct smp_resp *rps_resp) 687 { 688 int res; 689 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 690 u8 *resp = (u8 *)rps_resp; 691 692 if (!rps_req) 693 return -ENOMEM; 694 695 rps_req[1] = SMP_REPORT_PHY_SATA; 696 rps_req[9] = phy_id; 697 698 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 699 rps_resp, RPS_RESP_SIZE); 700 701 /* 0x34 is the FIS type for the D2H fis. There's a potential 702 * standards cockup here. sas-2 explicitly specifies the FIS 703 * should be encoded so that FIS type is in resp[24]. 704 * However, some expanders endian reverse this. Undo the 705 * reversal here */ 706 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 707 int i; 708 709 for (i = 0; i < 5; i++) { 710 int j = 24 + (i*4); 711 u8 a, b; 712 a = resp[j + 0]; 713 b = resp[j + 1]; 714 resp[j + 0] = resp[j + 3]; 715 resp[j + 1] = resp[j + 2]; 716 resp[j + 2] = b; 717 resp[j + 3] = a; 718 } 719 } 720 721 kfree(rps_req); 722 return res; 723 } 724 #endif 725 726 static void sas_ex_get_linkrate(struct domain_device *parent, 727 struct domain_device *child, 728 struct ex_phy *parent_phy) 729 { 730 struct expander_device *parent_ex = &parent->ex_dev; 731 struct sas_port *port; 732 int i; 733 734 child->pathways = 0; 735 736 port = parent_phy->port; 737 738 for (i = 0; i < parent_ex->num_phys; i++) { 739 struct ex_phy *phy = &parent_ex->ex_phy[i]; 740 741 if (phy->phy_state == PHY_VACANT || 742 phy->phy_state == PHY_NOT_PRESENT) 743 continue; 744 745 if (SAS_ADDR(phy->attached_sas_addr) == 746 SAS_ADDR(child->sas_addr)) { 747 748 child->min_linkrate = min(parent->min_linkrate, 749 phy->linkrate); 750 child->max_linkrate = max(parent->max_linkrate, 751 phy->linkrate); 752 child->pathways++; 753 sas_port_add_phy(port, phy->phy); 754 } 755 } 756 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 757 child->pathways = min(child->pathways, parent->pathways); 758 } 759 760 static struct domain_device *sas_ex_discover_end_dev( 761 struct domain_device *parent, int phy_id) 762 { 763 struct expander_device *parent_ex = &parent->ex_dev; 764 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 765 struct domain_device *child = NULL; 766 struct sas_rphy *rphy; 767 int res; 768 769 if (phy->attached_sata_host || phy->attached_sata_ps) 770 return NULL; 771 772 child = sas_alloc_device(); 773 if (!child) 774 return NULL; 775 776 kref_get(&parent->kref); 777 child->parent = parent; 778 child->port = parent->port; 779 child->iproto = phy->attached_iproto; 780 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 781 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 782 if (!phy->port) { 783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 784 if (unlikely(!phy->port)) 785 goto out_err; 786 if (unlikely(sas_port_add(phy->port) != 0)) { 787 sas_port_free(phy->port); 788 goto out_err; 789 } 790 } 791 sas_ex_get_linkrate(parent, child, phy); 792 sas_device_set_phy(child, phy->port); 793 794 #ifdef CONFIG_SCSI_SAS_ATA 795 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { 796 res = sas_get_ata_info(child, phy); 797 if (res) 798 goto out_free; 799 800 sas_init_dev(child); 801 res = sas_ata_init(child); 802 if (res) 803 goto out_free; 804 rphy = sas_end_device_alloc(phy->port); 805 if (!rphy) 806 goto out_free; 807 808 child->rphy = rphy; 809 get_device(&rphy->dev); 810 811 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 812 813 res = sas_discover_sata(child); 814 if (res) { 815 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 816 "%016llx:0x%x returned 0x%x\n", 817 SAS_ADDR(child->sas_addr), 818 SAS_ADDR(parent->sas_addr), phy_id, res); 819 goto out_list_del; 820 } 821 } else 822 #endif 823 if (phy->attached_tproto & SAS_PROTOCOL_SSP) { 824 child->dev_type = SAS_END_DEV; 825 rphy = sas_end_device_alloc(phy->port); 826 /* FIXME: error handling */ 827 if (unlikely(!rphy)) 828 goto out_free; 829 child->tproto = phy->attached_tproto; 830 sas_init_dev(child); 831 832 child->rphy = rphy; 833 get_device(&rphy->dev); 834 sas_fill_in_rphy(child, rphy); 835 836 list_add_tail(&child->disco_list_node, &parent->port->disco_list); 837 838 res = sas_discover_end_dev(child); 839 if (res) { 840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 841 "at %016llx:0x%x returned 0x%x\n", 842 SAS_ADDR(child->sas_addr), 843 SAS_ADDR(parent->sas_addr), phy_id, res); 844 goto out_list_del; 845 } 846 } else { 847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 848 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 849 phy_id); 850 goto out_free; 851 } 852 853 list_add_tail(&child->siblings, &parent_ex->children); 854 return child; 855 856 out_list_del: 857 sas_rphy_free(child->rphy); 858 list_del(&child->disco_list_node); 859 spin_lock_irq(&parent->port->dev_list_lock); 860 list_del(&child->dev_list_node); 861 spin_unlock_irq(&parent->port->dev_list_lock); 862 out_free: 863 sas_port_delete(phy->port); 864 out_err: 865 phy->port = NULL; 866 sas_put_device(child); 867 return NULL; 868 } 869 870 /* See if this phy is part of a wide port */ 871 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 872 { 873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 874 int i; 875 876 for (i = 0; i < parent->ex_dev.num_phys; i++) { 877 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 878 879 if (ephy == phy) 880 continue; 881 882 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 883 SAS_ADDR_SIZE) && ephy->port) { 884 sas_port_add_phy(ephy->port, phy->phy); 885 phy->port = ephy->port; 886 phy->phy_state = PHY_DEVICE_DISCOVERED; 887 return true; 888 } 889 } 890 891 return false; 892 } 893 894 static struct domain_device *sas_ex_discover_expander( 895 struct domain_device *parent, int phy_id) 896 { 897 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 899 struct domain_device *child = NULL; 900 struct sas_rphy *rphy; 901 struct sas_expander_device *edev; 902 struct asd_sas_port *port; 903 int res; 904 905 if (phy->routing_attr == DIRECT_ROUTING) { 906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 907 "allowed\n", 908 SAS_ADDR(parent->sas_addr), phy_id, 909 SAS_ADDR(phy->attached_sas_addr), 910 phy->attached_phy_id); 911 return NULL; 912 } 913 child = sas_alloc_device(); 914 if (!child) 915 return NULL; 916 917 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 918 /* FIXME: better error handling */ 919 BUG_ON(sas_port_add(phy->port) != 0); 920 921 922 switch (phy->attached_dev_type) { 923 case EDGE_DEV: 924 rphy = sas_expander_alloc(phy->port, 925 SAS_EDGE_EXPANDER_DEVICE); 926 break; 927 case FANOUT_DEV: 928 rphy = sas_expander_alloc(phy->port, 929 SAS_FANOUT_EXPANDER_DEVICE); 930 break; 931 default: 932 rphy = NULL; /* shut gcc up */ 933 BUG(); 934 } 935 port = parent->port; 936 child->rphy = rphy; 937 get_device(&rphy->dev); 938 edev = rphy_to_expander_device(rphy); 939 child->dev_type = phy->attached_dev_type; 940 kref_get(&parent->kref); 941 child->parent = parent; 942 child->port = port; 943 child->iproto = phy->attached_iproto; 944 child->tproto = phy->attached_tproto; 945 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 946 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 947 sas_ex_get_linkrate(parent, child, phy); 948 edev->level = parent_ex->level + 1; 949 parent->port->disc.max_level = max(parent->port->disc.max_level, 950 edev->level); 951 sas_init_dev(child); 952 sas_fill_in_rphy(child, rphy); 953 sas_rphy_add(rphy); 954 955 spin_lock_irq(&parent->port->dev_list_lock); 956 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 957 spin_unlock_irq(&parent->port->dev_list_lock); 958 959 res = sas_discover_expander(child); 960 if (res) { 961 sas_rphy_delete(rphy); 962 spin_lock_irq(&parent->port->dev_list_lock); 963 list_del(&child->dev_list_node); 964 spin_unlock_irq(&parent->port->dev_list_lock); 965 sas_put_device(child); 966 return NULL; 967 } 968 list_add_tail(&child->siblings, &parent->ex_dev.children); 969 return child; 970 } 971 972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 973 { 974 struct expander_device *ex = &dev->ex_dev; 975 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 976 struct domain_device *child = NULL; 977 int res = 0; 978 979 /* Phy state */ 980 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 981 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 982 res = sas_ex_phy_discover(dev, phy_id); 983 if (res) 984 return res; 985 } 986 987 /* Parent and domain coherency */ 988 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 989 SAS_ADDR(dev->port->sas_addr))) { 990 sas_add_parent_port(dev, phy_id); 991 return 0; 992 } 993 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 994 SAS_ADDR(dev->parent->sas_addr))) { 995 sas_add_parent_port(dev, phy_id); 996 if (ex_phy->routing_attr == TABLE_ROUTING) 997 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 998 return 0; 999 } 1000 1001 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 1002 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 1003 1004 if (ex_phy->attached_dev_type == NO_DEVICE) { 1005 if (ex_phy->routing_attr == DIRECT_ROUTING) { 1006 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1007 sas_configure_routing(dev, ex_phy->attached_sas_addr); 1008 } 1009 return 0; 1010 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 1011 return 0; 1012 1013 if (ex_phy->attached_dev_type != SAS_END_DEV && 1014 ex_phy->attached_dev_type != FANOUT_DEV && 1015 ex_phy->attached_dev_type != EDGE_DEV && 1016 ex_phy->attached_dev_type != SATA_PENDING) { 1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 1018 "phy 0x%x\n", ex_phy->attached_dev_type, 1019 SAS_ADDR(dev->sas_addr), 1020 phy_id); 1021 return 0; 1022 } 1023 1024 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 1025 if (res) { 1026 SAS_DPRINTK("configure routing for dev %016llx " 1027 "reported 0x%x. Forgotten\n", 1028 SAS_ADDR(ex_phy->attached_sas_addr), res); 1029 sas_disable_routing(dev, ex_phy->attached_sas_addr); 1030 return res; 1031 } 1032 1033 if (sas_ex_join_wide_port(dev, phy_id)) { 1034 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1035 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 1036 return res; 1037 } 1038 1039 switch (ex_phy->attached_dev_type) { 1040 case SAS_END_DEV: 1041 case SATA_PENDING: 1042 child = sas_ex_discover_end_dev(dev, phy_id); 1043 break; 1044 case FANOUT_DEV: 1045 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 1046 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 1047 "attached to ex %016llx phy 0x%x\n", 1048 SAS_ADDR(ex_phy->attached_sas_addr), 1049 ex_phy->attached_phy_id, 1050 SAS_ADDR(dev->sas_addr), 1051 phy_id); 1052 sas_ex_disable_phy(dev, phy_id); 1053 break; 1054 } else 1055 memcpy(dev->port->disc.fanout_sas_addr, 1056 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 1057 /* fallthrough */ 1058 case EDGE_DEV: 1059 child = sas_ex_discover_expander(dev, phy_id); 1060 break; 1061 default: 1062 break; 1063 } 1064 1065 if (child) { 1066 int i; 1067 1068 for (i = 0; i < ex->num_phys; i++) { 1069 if (ex->ex_phy[i].phy_state == PHY_VACANT || 1070 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 1071 continue; 1072 /* 1073 * Due to races, the phy might not get added to the 1074 * wide port, so we add the phy to the wide port here. 1075 */ 1076 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 1077 SAS_ADDR(child->sas_addr)) { 1078 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 1079 if (sas_ex_join_wide_port(dev, i)) 1080 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 1081 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); 1082 1083 } 1084 } 1085 } 1086 1087 return res; 1088 } 1089 1090 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 1091 { 1092 struct expander_device *ex = &dev->ex_dev; 1093 int i; 1094 1095 for (i = 0; i < ex->num_phys; i++) { 1096 struct ex_phy *phy = &ex->ex_phy[i]; 1097 1098 if (phy->phy_state == PHY_VACANT || 1099 phy->phy_state == PHY_NOT_PRESENT) 1100 continue; 1101 1102 if ((phy->attached_dev_type == EDGE_DEV || 1103 phy->attached_dev_type == FANOUT_DEV) && 1104 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1105 1106 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 1107 1108 return 1; 1109 } 1110 } 1111 return 0; 1112 } 1113 1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 1115 { 1116 struct expander_device *ex = &dev->ex_dev; 1117 struct domain_device *child; 1118 u8 sub_addr[8] = {0, }; 1119 1120 list_for_each_entry(child, &ex->children, siblings) { 1121 if (child->dev_type != EDGE_DEV && 1122 child->dev_type != FANOUT_DEV) 1123 continue; 1124 if (sub_addr[0] == 0) { 1125 sas_find_sub_addr(child, sub_addr); 1126 continue; 1127 } else { 1128 u8 s2[8]; 1129 1130 if (sas_find_sub_addr(child, s2) && 1131 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 1132 1133 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 1134 "diverges from subtractive " 1135 "boundary %016llx\n", 1136 SAS_ADDR(dev->sas_addr), 1137 SAS_ADDR(child->sas_addr), 1138 SAS_ADDR(s2), 1139 SAS_ADDR(sub_addr)); 1140 1141 sas_ex_disable_port(child, s2); 1142 } 1143 } 1144 } 1145 return 0; 1146 } 1147 /** 1148 * sas_ex_discover_devices -- discover devices attached to this expander 1149 * dev: pointer to the expander domain device 1150 * single: if you want to do a single phy, else set to -1; 1151 * 1152 * Configure this expander for use with its devices and register the 1153 * devices of this expander. 1154 */ 1155 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1156 { 1157 struct expander_device *ex = &dev->ex_dev; 1158 int i = 0, end = ex->num_phys; 1159 int res = 0; 1160 1161 if (0 <= single && single < end) { 1162 i = single; 1163 end = i+1; 1164 } 1165 1166 for ( ; i < end; i++) { 1167 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1168 1169 if (ex_phy->phy_state == PHY_VACANT || 1170 ex_phy->phy_state == PHY_NOT_PRESENT || 1171 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1172 continue; 1173 1174 switch (ex_phy->linkrate) { 1175 case SAS_PHY_DISABLED: 1176 case SAS_PHY_RESET_PROBLEM: 1177 case SAS_SATA_PORT_SELECTOR: 1178 continue; 1179 default: 1180 res = sas_ex_discover_dev(dev, i); 1181 if (res) 1182 break; 1183 continue; 1184 } 1185 } 1186 1187 if (!res) 1188 sas_check_level_subtractive_boundary(dev); 1189 1190 return res; 1191 } 1192 1193 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1194 { 1195 struct expander_device *ex = &dev->ex_dev; 1196 int i; 1197 u8 *sub_sas_addr = NULL; 1198 1199 if (dev->dev_type != EDGE_DEV) 1200 return 0; 1201 1202 for (i = 0; i < ex->num_phys; i++) { 1203 struct ex_phy *phy = &ex->ex_phy[i]; 1204 1205 if (phy->phy_state == PHY_VACANT || 1206 phy->phy_state == PHY_NOT_PRESENT) 1207 continue; 1208 1209 if ((phy->attached_dev_type == FANOUT_DEV || 1210 phy->attached_dev_type == EDGE_DEV) && 1211 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1212 1213 if (!sub_sas_addr) 1214 sub_sas_addr = &phy->attached_sas_addr[0]; 1215 else if (SAS_ADDR(sub_sas_addr) != 1216 SAS_ADDR(phy->attached_sas_addr)) { 1217 1218 SAS_DPRINTK("ex %016llx phy 0x%x " 1219 "diverges(%016llx) on subtractive " 1220 "boundary(%016llx). Disabled\n", 1221 SAS_ADDR(dev->sas_addr), i, 1222 SAS_ADDR(phy->attached_sas_addr), 1223 SAS_ADDR(sub_sas_addr)); 1224 sas_ex_disable_phy(dev, i); 1225 } 1226 } 1227 } 1228 return 0; 1229 } 1230 1231 static void sas_print_parent_topology_bug(struct domain_device *child, 1232 struct ex_phy *parent_phy, 1233 struct ex_phy *child_phy) 1234 { 1235 static const char *ex_type[] = { 1236 [EDGE_DEV] = "edge", 1237 [FANOUT_DEV] = "fanout", 1238 }; 1239 struct domain_device *parent = child->parent; 1240 1241 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " 1242 "phy 0x%x has %c:%c routing link!\n", 1243 1244 ex_type[parent->dev_type], 1245 SAS_ADDR(parent->sas_addr), 1246 parent_phy->phy_id, 1247 1248 ex_type[child->dev_type], 1249 SAS_ADDR(child->sas_addr), 1250 child_phy->phy_id, 1251 1252 sas_route_char(parent, parent_phy), 1253 sas_route_char(child, child_phy)); 1254 } 1255 1256 static int sas_check_eeds(struct domain_device *child, 1257 struct ex_phy *parent_phy, 1258 struct ex_phy *child_phy) 1259 { 1260 int res = 0; 1261 struct domain_device *parent = child->parent; 1262 1263 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1264 res = -ENODEV; 1265 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1266 "phy S:0x%x, while there is a fanout ex %016llx\n", 1267 SAS_ADDR(parent->sas_addr), 1268 parent_phy->phy_id, 1269 SAS_ADDR(child->sas_addr), 1270 child_phy->phy_id, 1271 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1272 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1273 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1274 SAS_ADDR_SIZE); 1275 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1276 SAS_ADDR_SIZE); 1277 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1278 SAS_ADDR(parent->sas_addr)) || 1279 (SAS_ADDR(parent->port->disc.eeds_a) == 1280 SAS_ADDR(child->sas_addr))) 1281 && 1282 ((SAS_ADDR(parent->port->disc.eeds_b) == 1283 SAS_ADDR(parent->sas_addr)) || 1284 (SAS_ADDR(parent->port->disc.eeds_b) == 1285 SAS_ADDR(child->sas_addr)))) 1286 ; 1287 else { 1288 res = -ENODEV; 1289 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1290 "phy 0x%x link forms a third EEDS!\n", 1291 SAS_ADDR(parent->sas_addr), 1292 parent_phy->phy_id, 1293 SAS_ADDR(child->sas_addr), 1294 child_phy->phy_id); 1295 } 1296 1297 return res; 1298 } 1299 1300 /* Here we spill over 80 columns. It is intentional. 1301 */ 1302 static int sas_check_parent_topology(struct domain_device *child) 1303 { 1304 struct expander_device *child_ex = &child->ex_dev; 1305 struct expander_device *parent_ex; 1306 int i; 1307 int res = 0; 1308 1309 if (!child->parent) 1310 return 0; 1311 1312 if (child->parent->dev_type != EDGE_DEV && 1313 child->parent->dev_type != FANOUT_DEV) 1314 return 0; 1315 1316 parent_ex = &child->parent->ex_dev; 1317 1318 for (i = 0; i < parent_ex->num_phys; i++) { 1319 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1320 struct ex_phy *child_phy; 1321 1322 if (parent_phy->phy_state == PHY_VACANT || 1323 parent_phy->phy_state == PHY_NOT_PRESENT) 1324 continue; 1325 1326 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1327 continue; 1328 1329 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1330 1331 switch (child->parent->dev_type) { 1332 case EDGE_DEV: 1333 if (child->dev_type == FANOUT_DEV) { 1334 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1335 child_phy->routing_attr != TABLE_ROUTING) { 1336 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1337 res = -ENODEV; 1338 } 1339 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1340 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1341 res = sas_check_eeds(child, parent_phy, child_phy); 1342 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1343 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1344 res = -ENODEV; 1345 } 1346 } else if (parent_phy->routing_attr == TABLE_ROUTING) { 1347 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || 1348 (child_phy->routing_attr == TABLE_ROUTING && 1349 child_ex->t2t_supp && parent_ex->t2t_supp)) { 1350 /* All good */; 1351 } else { 1352 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1353 res = -ENODEV; 1354 } 1355 } 1356 break; 1357 case FANOUT_DEV: 1358 if (parent_phy->routing_attr != TABLE_ROUTING || 1359 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1360 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1361 res = -ENODEV; 1362 } 1363 break; 1364 default: 1365 break; 1366 } 1367 } 1368 1369 return res; 1370 } 1371 1372 #define RRI_REQ_SIZE 16 1373 #define RRI_RESP_SIZE 44 1374 1375 static int sas_configure_present(struct domain_device *dev, int phy_id, 1376 u8 *sas_addr, int *index, int *present) 1377 { 1378 int i, res = 0; 1379 struct expander_device *ex = &dev->ex_dev; 1380 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1381 u8 *rri_req; 1382 u8 *rri_resp; 1383 1384 *present = 0; 1385 *index = 0; 1386 1387 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1388 if (!rri_req) 1389 return -ENOMEM; 1390 1391 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1392 if (!rri_resp) { 1393 kfree(rri_req); 1394 return -ENOMEM; 1395 } 1396 1397 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1398 rri_req[9] = phy_id; 1399 1400 for (i = 0; i < ex->max_route_indexes ; i++) { 1401 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1402 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1403 RRI_RESP_SIZE); 1404 if (res) 1405 goto out; 1406 res = rri_resp[2]; 1407 if (res == SMP_RESP_NO_INDEX) { 1408 SAS_DPRINTK("overflow of indexes: dev %016llx " 1409 "phy 0x%x index 0x%x\n", 1410 SAS_ADDR(dev->sas_addr), phy_id, i); 1411 goto out; 1412 } else if (res != SMP_RESP_FUNC_ACC) { 1413 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1414 "result 0x%x\n", __func__, 1415 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1416 goto out; 1417 } 1418 if (SAS_ADDR(sas_addr) != 0) { 1419 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1420 *index = i; 1421 if ((rri_resp[12] & 0x80) == 0x80) 1422 *present = 0; 1423 else 1424 *present = 1; 1425 goto out; 1426 } else if (SAS_ADDR(rri_resp+16) == 0) { 1427 *index = i; 1428 *present = 0; 1429 goto out; 1430 } 1431 } else if (SAS_ADDR(rri_resp+16) == 0 && 1432 phy->last_da_index < i) { 1433 phy->last_da_index = i; 1434 *index = i; 1435 *present = 0; 1436 goto out; 1437 } 1438 } 1439 res = -1; 1440 out: 1441 kfree(rri_req); 1442 kfree(rri_resp); 1443 return res; 1444 } 1445 1446 #define CRI_REQ_SIZE 44 1447 #define CRI_RESP_SIZE 8 1448 1449 static int sas_configure_set(struct domain_device *dev, int phy_id, 1450 u8 *sas_addr, int index, int include) 1451 { 1452 int res; 1453 u8 *cri_req; 1454 u8 *cri_resp; 1455 1456 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1457 if (!cri_req) 1458 return -ENOMEM; 1459 1460 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1461 if (!cri_resp) { 1462 kfree(cri_req); 1463 return -ENOMEM; 1464 } 1465 1466 cri_req[1] = SMP_CONF_ROUTE_INFO; 1467 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1468 cri_req[9] = phy_id; 1469 if (SAS_ADDR(sas_addr) == 0 || !include) 1470 cri_req[12] |= 0x80; 1471 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1472 1473 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1474 CRI_RESP_SIZE); 1475 if (res) 1476 goto out; 1477 res = cri_resp[2]; 1478 if (res == SMP_RESP_NO_INDEX) { 1479 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1480 "index 0x%x\n", 1481 SAS_ADDR(dev->sas_addr), phy_id, index); 1482 } 1483 out: 1484 kfree(cri_req); 1485 kfree(cri_resp); 1486 return res; 1487 } 1488 1489 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1490 u8 *sas_addr, int include) 1491 { 1492 int index; 1493 int present; 1494 int res; 1495 1496 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1497 if (res) 1498 return res; 1499 if (include ^ present) 1500 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1501 1502 return res; 1503 } 1504 1505 /** 1506 * sas_configure_parent -- configure routing table of parent 1507 * parent: parent expander 1508 * child: child expander 1509 * sas_addr: SAS port identifier of device directly attached to child 1510 */ 1511 static int sas_configure_parent(struct domain_device *parent, 1512 struct domain_device *child, 1513 u8 *sas_addr, int include) 1514 { 1515 struct expander_device *ex_parent = &parent->ex_dev; 1516 int res = 0; 1517 int i; 1518 1519 if (parent->parent) { 1520 res = sas_configure_parent(parent->parent, parent, sas_addr, 1521 include); 1522 if (res) 1523 return res; 1524 } 1525 1526 if (ex_parent->conf_route_table == 0) { 1527 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1528 SAS_ADDR(parent->sas_addr)); 1529 return 0; 1530 } 1531 1532 for (i = 0; i < ex_parent->num_phys; i++) { 1533 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1534 1535 if ((phy->routing_attr == TABLE_ROUTING) && 1536 (SAS_ADDR(phy->attached_sas_addr) == 1537 SAS_ADDR(child->sas_addr))) { 1538 res = sas_configure_phy(parent, i, sas_addr, include); 1539 if (res) 1540 return res; 1541 } 1542 } 1543 1544 return res; 1545 } 1546 1547 /** 1548 * sas_configure_routing -- configure routing 1549 * dev: expander device 1550 * sas_addr: port identifier of device directly attached to the expander device 1551 */ 1552 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1553 { 1554 if (dev->parent) 1555 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1556 return 0; 1557 } 1558 1559 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1560 { 1561 if (dev->parent) 1562 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1563 return 0; 1564 } 1565 1566 /** 1567 * sas_discover_expander -- expander discovery 1568 * @ex: pointer to expander domain device 1569 * 1570 * See comment in sas_discover_sata(). 1571 */ 1572 static int sas_discover_expander(struct domain_device *dev) 1573 { 1574 int res; 1575 1576 res = sas_notify_lldd_dev_found(dev); 1577 if (res) 1578 return res; 1579 1580 res = sas_ex_general(dev); 1581 if (res) 1582 goto out_err; 1583 res = sas_ex_manuf_info(dev); 1584 if (res) 1585 goto out_err; 1586 1587 res = sas_expander_discover(dev); 1588 if (res) { 1589 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1590 SAS_ADDR(dev->sas_addr), res); 1591 goto out_err; 1592 } 1593 1594 sas_check_ex_subtractive_boundary(dev); 1595 res = sas_check_parent_topology(dev); 1596 if (res) 1597 goto out_err; 1598 return 0; 1599 out_err: 1600 sas_notify_lldd_dev_gone(dev); 1601 return res; 1602 } 1603 1604 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1605 { 1606 int res = 0; 1607 struct domain_device *dev; 1608 1609 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1610 if (dev->dev_type == EDGE_DEV || 1611 dev->dev_type == FANOUT_DEV) { 1612 struct sas_expander_device *ex = 1613 rphy_to_expander_device(dev->rphy); 1614 1615 if (level == ex->level) 1616 res = sas_ex_discover_devices(dev, -1); 1617 else if (level > 0) 1618 res = sas_ex_discover_devices(port->port_dev, -1); 1619 1620 } 1621 } 1622 1623 return res; 1624 } 1625 1626 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1627 { 1628 int res; 1629 int level; 1630 1631 do { 1632 level = port->disc.max_level; 1633 res = sas_ex_level_discovery(port, level); 1634 mb(); 1635 } while (level < port->disc.max_level); 1636 1637 return res; 1638 } 1639 1640 int sas_discover_root_expander(struct domain_device *dev) 1641 { 1642 int res; 1643 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1644 1645 res = sas_rphy_add(dev->rphy); 1646 if (res) 1647 goto out_err; 1648 1649 ex->level = dev->port->disc.max_level; /* 0 */ 1650 res = sas_discover_expander(dev); 1651 if (res) 1652 goto out_err2; 1653 1654 sas_ex_bfs_disc(dev->port); 1655 1656 return res; 1657 1658 out_err2: 1659 sas_rphy_remove(dev->rphy); 1660 out_err: 1661 return res; 1662 } 1663 1664 /* ---------- Domain revalidation ---------- */ 1665 1666 static int sas_get_phy_discover(struct domain_device *dev, 1667 int phy_id, struct smp_resp *disc_resp) 1668 { 1669 int res; 1670 u8 *disc_req; 1671 1672 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1673 if (!disc_req) 1674 return -ENOMEM; 1675 1676 disc_req[1] = SMP_DISCOVER; 1677 disc_req[9] = phy_id; 1678 1679 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1680 disc_resp, DISCOVER_RESP_SIZE); 1681 if (res) 1682 goto out; 1683 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1684 res = disc_resp->result; 1685 goto out; 1686 } 1687 out: 1688 kfree(disc_req); 1689 return res; 1690 } 1691 1692 static int sas_get_phy_change_count(struct domain_device *dev, 1693 int phy_id, int *pcc) 1694 { 1695 int res; 1696 struct smp_resp *disc_resp; 1697 1698 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1699 if (!disc_resp) 1700 return -ENOMEM; 1701 1702 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1703 if (!res) 1704 *pcc = disc_resp->disc.change_count; 1705 1706 kfree(disc_resp); 1707 return res; 1708 } 1709 1710 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, 1711 u8 *sas_addr, enum sas_dev_type *type) 1712 { 1713 int res; 1714 struct smp_resp *disc_resp; 1715 struct discover_resp *dr; 1716 1717 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1718 if (!disc_resp) 1719 return -ENOMEM; 1720 dr = &disc_resp->disc; 1721 1722 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1723 if (res == 0) { 1724 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); 1725 *type = to_dev_type(dr); 1726 if (*type == 0) 1727 memset(sas_addr, 0, 8); 1728 } 1729 kfree(disc_resp); 1730 return res; 1731 } 1732 1733 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1734 int from_phy, bool update) 1735 { 1736 struct expander_device *ex = &dev->ex_dev; 1737 int res = 0; 1738 int i; 1739 1740 for (i = from_phy; i < ex->num_phys; i++) { 1741 int phy_change_count = 0; 1742 1743 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1744 switch (res) { 1745 case SMP_RESP_PHY_VACANT: 1746 case SMP_RESP_NO_PHY: 1747 continue; 1748 case SMP_RESP_FUNC_ACC: 1749 break; 1750 default: 1751 return res; 1752 } 1753 1754 if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1755 if (update) 1756 ex->ex_phy[i].phy_change_count = 1757 phy_change_count; 1758 *phy_id = i; 1759 return 0; 1760 } 1761 } 1762 return 0; 1763 } 1764 1765 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1766 { 1767 int res; 1768 u8 *rg_req; 1769 struct smp_resp *rg_resp; 1770 1771 rg_req = alloc_smp_req(RG_REQ_SIZE); 1772 if (!rg_req) 1773 return -ENOMEM; 1774 1775 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1776 if (!rg_resp) { 1777 kfree(rg_req); 1778 return -ENOMEM; 1779 } 1780 1781 rg_req[1] = SMP_REPORT_GENERAL; 1782 1783 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1784 RG_RESP_SIZE); 1785 if (res) 1786 goto out; 1787 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1788 res = rg_resp->result; 1789 goto out; 1790 } 1791 1792 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1793 out: 1794 kfree(rg_resp); 1795 kfree(rg_req); 1796 return res; 1797 } 1798 /** 1799 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). 1800 * @dev:domain device to be detect. 1801 * @src_dev: the device which originated BROADCAST(CHANGE). 1802 * 1803 * Add self-configuration expander suport. Suppose two expander cascading, 1804 * when the first level expander is self-configuring, hotplug the disks in 1805 * second level expander, BROADCAST(CHANGE) will not only be originated 1806 * in the second level expander, but also be originated in the first level 1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, 1808 * expander changed count in two level expanders will all increment at least 1809 * once, but the phy which chang count has changed is the source device which 1810 * we concerned. 1811 */ 1812 1813 static int sas_find_bcast_dev(struct domain_device *dev, 1814 struct domain_device **src_dev) 1815 { 1816 struct expander_device *ex = &dev->ex_dev; 1817 int ex_change_count = -1; 1818 int phy_id = -1; 1819 int res; 1820 struct domain_device *ch; 1821 1822 res = sas_get_ex_change_count(dev, &ex_change_count); 1823 if (res) 1824 goto out; 1825 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { 1826 /* Just detect if this expander phys phy change count changed, 1827 * in order to determine if this expander originate BROADCAST, 1828 * and do not update phy change count field in our structure. 1829 */ 1830 res = sas_find_bcast_phy(dev, &phy_id, 0, false); 1831 if (phy_id != -1) { 1832 *src_dev = dev; 1833 ex->ex_change_count = ex_change_count; 1834 SAS_DPRINTK("Expander phy change count has changed\n"); 1835 return res; 1836 } else 1837 SAS_DPRINTK("Expander phys DID NOT change\n"); 1838 } 1839 list_for_each_entry(ch, &ex->children, siblings) { 1840 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) { 1841 res = sas_find_bcast_dev(ch, src_dev); 1842 if (*src_dev) 1843 return res; 1844 } 1845 } 1846 out: 1847 return res; 1848 } 1849 1850 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) 1851 { 1852 struct expander_device *ex = &dev->ex_dev; 1853 struct domain_device *child, *n; 1854 1855 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1856 set_bit(SAS_DEV_GONE, &child->state); 1857 if (child->dev_type == EDGE_DEV || 1858 child->dev_type == FANOUT_DEV) 1859 sas_unregister_ex_tree(port, child); 1860 else 1861 sas_unregister_dev(port, child); 1862 } 1863 sas_unregister_dev(port, dev); 1864 } 1865 1866 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1867 int phy_id, bool last) 1868 { 1869 struct expander_device *ex_dev = &parent->ex_dev; 1870 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1871 struct domain_device *child, *n, *found = NULL; 1872 if (last) { 1873 list_for_each_entry_safe(child, n, 1874 &ex_dev->children, siblings) { 1875 if (SAS_ADDR(child->sas_addr) == 1876 SAS_ADDR(phy->attached_sas_addr)) { 1877 set_bit(SAS_DEV_GONE, &child->state); 1878 if (child->dev_type == EDGE_DEV || 1879 child->dev_type == FANOUT_DEV) 1880 sas_unregister_ex_tree(parent->port, child); 1881 else 1882 sas_unregister_dev(parent->port, child); 1883 found = child; 1884 break; 1885 } 1886 } 1887 sas_disable_routing(parent, phy->attached_sas_addr); 1888 } 1889 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1890 if (phy->port) { 1891 sas_port_delete_phy(phy->port, phy->phy); 1892 sas_device_set_phy(found, phy->port); 1893 if (phy->port->num_phys == 0) 1894 sas_port_delete(phy->port); 1895 phy->port = NULL; 1896 } 1897 } 1898 1899 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1900 const int level) 1901 { 1902 struct expander_device *ex_root = &root->ex_dev; 1903 struct domain_device *child; 1904 int res = 0; 1905 1906 list_for_each_entry(child, &ex_root->children, siblings) { 1907 if (child->dev_type == EDGE_DEV || 1908 child->dev_type == FANOUT_DEV) { 1909 struct sas_expander_device *ex = 1910 rphy_to_expander_device(child->rphy); 1911 1912 if (level > ex->level) 1913 res = sas_discover_bfs_by_root_level(child, 1914 level); 1915 else if (level == ex->level) 1916 res = sas_ex_discover_devices(child, -1); 1917 } 1918 } 1919 return res; 1920 } 1921 1922 static int sas_discover_bfs_by_root(struct domain_device *dev) 1923 { 1924 int res; 1925 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1926 int level = ex->level+1; 1927 1928 res = sas_ex_discover_devices(dev, -1); 1929 if (res) 1930 goto out; 1931 do { 1932 res = sas_discover_bfs_by_root_level(dev, level); 1933 mb(); 1934 level += 1; 1935 } while (level <= dev->port->disc.max_level); 1936 out: 1937 return res; 1938 } 1939 1940 static int sas_discover_new(struct domain_device *dev, int phy_id) 1941 { 1942 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1943 struct domain_device *child; 1944 int res; 1945 1946 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1947 SAS_ADDR(dev->sas_addr), phy_id); 1948 res = sas_ex_phy_discover(dev, phy_id); 1949 if (res) 1950 return res; 1951 1952 if (sas_ex_join_wide_port(dev, phy_id)) 1953 return 0; 1954 1955 res = sas_ex_discover_devices(dev, phy_id); 1956 if (res) 1957 return res; 1958 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1959 if (SAS_ADDR(child->sas_addr) == 1960 SAS_ADDR(ex_phy->attached_sas_addr)) { 1961 if (child->dev_type == EDGE_DEV || 1962 child->dev_type == FANOUT_DEV) 1963 res = sas_discover_bfs_by_root(child); 1964 break; 1965 } 1966 } 1967 return res; 1968 } 1969 1970 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old) 1971 { 1972 if (old == new) 1973 return true; 1974 1975 /* treat device directed resets as flutter, if we went 1976 * SAS_END_DEV to SATA_PENDING the link needs recovery 1977 */ 1978 if ((old == SATA_PENDING && new == SAS_END_DEV) || 1979 (old == SAS_END_DEV && new == SATA_PENDING)) 1980 return true; 1981 1982 return false; 1983 } 1984 1985 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) 1986 { 1987 struct expander_device *ex = &dev->ex_dev; 1988 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1989 enum sas_dev_type type = NO_DEVICE; 1990 u8 sas_addr[8]; 1991 int res; 1992 1993 memset(sas_addr, 0, 8); 1994 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); 1995 switch (res) { 1996 case SMP_RESP_NO_PHY: 1997 phy->phy_state = PHY_NOT_PRESENT; 1998 sas_unregister_devs_sas_addr(dev, phy_id, last); 1999 return res; 2000 case SMP_RESP_PHY_VACANT: 2001 phy->phy_state = PHY_VACANT; 2002 sas_unregister_devs_sas_addr(dev, phy_id, last); 2003 return res; 2004 case SMP_RESP_FUNC_ACC: 2005 break; 2006 case -ECOMM: 2007 break; 2008 default: 2009 return res; 2010 } 2011 2012 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { 2013 phy->phy_state = PHY_EMPTY; 2014 sas_unregister_devs_sas_addr(dev, phy_id, last); 2015 return res; 2016 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && 2017 dev_type_flutter(type, phy->attached_dev_type)) { 2018 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); 2019 char *action = ""; 2020 2021 sas_ex_phy_discover(dev, phy_id); 2022 2023 if (ata_dev && phy->attached_dev_type == SATA_PENDING) 2024 action = ", needs recovery"; 2025 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", 2026 SAS_ADDR(dev->sas_addr), phy_id, action); 2027 return res; 2028 } 2029 2030 /* delete the old link */ 2031 if (SAS_ADDR(phy->attached_sas_addr) && 2032 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { 2033 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", 2034 SAS_ADDR(dev->sas_addr), phy_id, 2035 SAS_ADDR(phy->attached_sas_addr)); 2036 sas_unregister_devs_sas_addr(dev, phy_id, last); 2037 } 2038 2039 return sas_discover_new(dev, phy_id); 2040 } 2041 2042 /** 2043 * sas_rediscover - revalidate the domain. 2044 * @dev:domain device to be detect. 2045 * @phy_id: the phy id will be detected. 2046 * 2047 * NOTE: this process _must_ quit (return) as soon as any connection 2048 * errors are encountered. Connection recovery is done elsewhere. 2049 * Discover process only interrogates devices in order to discover the 2050 * domain.For plugging out, we un-register the device only when it is 2051 * the last phy in the port, for other phys in this port, we just delete it 2052 * from the port.For inserting, we do discovery when it is the 2053 * first phy,for other phys in this port, we add it to the port to 2054 * forming the wide-port. 2055 */ 2056 static int sas_rediscover(struct domain_device *dev, const int phy_id) 2057 { 2058 struct expander_device *ex = &dev->ex_dev; 2059 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 2060 int res = 0; 2061 int i; 2062 bool last = true; /* is this the last phy of the port */ 2063 2064 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 2065 SAS_ADDR(dev->sas_addr), phy_id); 2066 2067 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 2068 for (i = 0; i < ex->num_phys; i++) { 2069 struct ex_phy *phy = &ex->ex_phy[i]; 2070 2071 if (i == phy_id) 2072 continue; 2073 if (SAS_ADDR(phy->attached_sas_addr) == 2074 SAS_ADDR(changed_phy->attached_sas_addr)) { 2075 SAS_DPRINTK("phy%d part of wide port with " 2076 "phy%d\n", phy_id, i); 2077 last = false; 2078 break; 2079 } 2080 } 2081 res = sas_rediscover_dev(dev, phy_id, last); 2082 } else 2083 res = sas_discover_new(dev, phy_id); 2084 return res; 2085 } 2086 2087 /** 2088 * sas_revalidate_domain -- revalidate the domain 2089 * @port: port to the domain of interest 2090 * 2091 * NOTE: this process _must_ quit (return) as soon as any connection 2092 * errors are encountered. Connection recovery is done elsewhere. 2093 * Discover process only interrogates devices in order to discover the 2094 * domain. 2095 */ 2096 int sas_ex_revalidate_domain(struct domain_device *port_dev) 2097 { 2098 int res; 2099 struct domain_device *dev = NULL; 2100 2101 res = sas_find_bcast_dev(port_dev, &dev); 2102 while (res == 0 && dev) { 2103 struct expander_device *ex = &dev->ex_dev; 2104 int i = 0, phy_id; 2105 2106 do { 2107 phy_id = -1; 2108 res = sas_find_bcast_phy(dev, &phy_id, i, true); 2109 if (phy_id == -1) 2110 break; 2111 res = sas_rediscover(dev, phy_id); 2112 i = phy_id + 1; 2113 } while (i < ex->num_phys); 2114 2115 dev = NULL; 2116 res = sas_find_bcast_dev(port_dev, &dev); 2117 } 2118 return res; 2119 } 2120 2121 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 2122 struct request *req) 2123 { 2124 struct domain_device *dev; 2125 int ret, type; 2126 struct request *rsp = req->next_rq; 2127 2128 if (!rsp) { 2129 printk("%s: space for a smp response is missing\n", 2130 __func__); 2131 return -EINVAL; 2132 } 2133 2134 /* no rphy means no smp target support (ie aic94xx host) */ 2135 if (!rphy) 2136 return sas_smp_host_handler(shost, req, rsp); 2137 2138 type = rphy->identify.device_type; 2139 2140 if (type != SAS_EDGE_EXPANDER_DEVICE && 2141 type != SAS_FANOUT_EXPANDER_DEVICE) { 2142 printk("%s: can we send a smp request to a device?\n", 2143 __func__); 2144 return -EINVAL; 2145 } 2146 2147 dev = sas_find_dev_by_rphy(rphy); 2148 if (!dev) { 2149 printk("%s: fail to find a domain_device?\n", __func__); 2150 return -EINVAL; 2151 } 2152 2153 /* do we need to support multiple segments? */ 2154 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 2155 printk("%s: multiple segments req %u %u, rsp %u %u\n", 2156 __func__, req->bio->bi_vcnt, blk_rq_bytes(req), 2157 rsp->bio->bi_vcnt, blk_rq_bytes(rsp)); 2158 return -EINVAL; 2159 } 2160 2161 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req), 2162 bio_data(rsp->bio), blk_rq_bytes(rsp)); 2163 if (ret > 0) { 2164 /* positive number is the untransferred residual */ 2165 rsp->resid_len = ret; 2166 req->resid_len = 0; 2167 ret = 0; 2168 } else if (ret == 0) { 2169 rsp->resid_len = 0; 2170 req->resid_len = 0; 2171 } 2172 2173 return ret; 2174 } 2175