xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision e8e0929d)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/gfp.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
36 EXPORT_SYMBOL(fc_cpu_mask);
37 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
38 static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
39 
40 /*
41  * Structure and function definitions for managing Fibre Channel Exchanges
42  * and Sequences.
43  *
44  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
45  *
46  * fc_exch_mgr holds the exchange state for an N port
47  *
48  * fc_exch holds state for one exchange and links to its active sequence.
49  *
50  * fc_seq holds the state for an individual sequence.
51  */
52 
53 /*
54  * Per cpu exchange pool
55  *
56  * This structure manages per cpu exchanges in array of exchange pointers.
57  * This array is allocated followed by struct fc_exch_pool memory for
58  * assigned range of exchanges to per cpu pool.
59  */
60 struct fc_exch_pool {
61 	u16		next_index;	/* next possible free exchange index */
62 	u16		total_exches;	/* total allocated exchanges */
63 	spinlock_t	lock;		/* exch pool lock */
64 	struct list_head	ex_list;	/* allocated exchanges list */
65 };
66 
67 /*
68  * Exchange manager.
69  *
70  * This structure is the center for creating exchanges and sequences.
71  * It manages the allocation of exchange IDs.
72  */
73 struct fc_exch_mgr {
74 	enum fc_class	class;		/* default class for sequences */
75 	struct kref	kref;		/* exchange mgr reference count */
76 	u16		min_xid;	/* min exchange ID */
77 	u16		max_xid;	/* max exchange ID */
78 	struct list_head	ex_list;	/* allocated exchanges list */
79 	mempool_t	*ep_pool;	/* reserve ep's */
80 	u16		pool_max_index;	/* max exch array index in exch pool */
81 	struct fc_exch_pool *pool;	/* per cpu exch pool */
82 
83 	/*
84 	 * currently exchange mgr stats are updated but not used.
85 	 * either stats can be expose via sysfs or remove them
86 	 * all together if not used XXX
87 	 */
88 	struct {
89 		atomic_t no_free_exch;
90 		atomic_t no_free_exch_xid;
91 		atomic_t xid_not_found;
92 		atomic_t xid_busy;
93 		atomic_t seq_not_found;
94 		atomic_t non_bls_resp;
95 	} stats;
96 };
97 #define	fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
98 
99 struct fc_exch_mgr_anchor {
100 	struct list_head ema_list;
101 	struct fc_exch_mgr *mp;
102 	bool (*match)(struct fc_frame *);
103 };
104 
105 static void fc_exch_rrq(struct fc_exch *);
106 static void fc_seq_ls_acc(struct fc_seq *);
107 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason,
108 			  enum fc_els_rjt_explan);
109 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *);
110 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *);
111 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp);
112 
113 /*
114  * Internal implementation notes.
115  *
116  * The exchange manager is one by default in libfc but LLD may choose
117  * to have one per CPU. The sequence manager is one per exchange manager
118  * and currently never separated.
119  *
120  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
121  * assigned by the Sequence Initiator that shall be unique for a specific
122  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
123  * qualified by exchange ID, which one might think it would be.
124  * In practice this limits the number of open sequences and exchanges to 256
125  * per session.	 For most targets we could treat this limit as per exchange.
126  *
127  * The exchange and its sequence are freed when the last sequence is received.
128  * It's possible for the remote port to leave an exchange open without
129  * sending any sequences.
130  *
131  * Notes on reference counts:
132  *
133  * Exchanges are reference counted and exchange gets freed when the reference
134  * count becomes zero.
135  *
136  * Timeouts:
137  * Sequences are timed out for E_D_TOV and R_A_TOV.
138  *
139  * Sequence event handling:
140  *
141  * The following events may occur on initiator sequences:
142  *
143  *	Send.
144  *	    For now, the whole thing is sent.
145  *	Receive ACK
146  *	    This applies only to class F.
147  *	    The sequence is marked complete.
148  *	ULP completion.
149  *	    The upper layer calls fc_exch_done() when done
150  *	    with exchange and sequence tuple.
151  *	RX-inferred completion.
152  *	    When we receive the next sequence on the same exchange, we can
153  *	    retire the previous sequence ID.  (XXX not implemented).
154  *	Timeout.
155  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
156  *	    E_D_TOV causes abort and calls upper layer response handler
157  *	    with FC_EX_TIMEOUT error.
158  *	Receive RJT
159  *	    XXX defer.
160  *	Send ABTS
161  *	    On timeout.
162  *
163  * The following events may occur on recipient sequences:
164  *
165  *	Receive
166  *	    Allocate sequence for first frame received.
167  *	    Hold during receive handler.
168  *	    Release when final frame received.
169  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
170  *	Receive ABTS
171  *	    Deallocate sequence
172  *	Send RJT
173  *	    Deallocate
174  *
175  * For now, we neglect conditions where only part of a sequence was
176  * received or transmitted, or where out-of-order receipt is detected.
177  */
178 
179 /*
180  * Locking notes:
181  *
182  * The EM code run in a per-CPU worker thread.
183  *
184  * To protect against concurrency between a worker thread code and timers,
185  * sequence allocation and deallocation must be locked.
186  *  - exchange refcnt can be done atomicly without locks.
187  *  - sequence allocation must be locked by exch lock.
188  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
189  *    EM pool lock must be taken before the ex_lock.
190  */
191 
192 /*
193  * opcode names for debugging.
194  */
195 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
196 
197 #define FC_TABLE_SIZE(x)   (sizeof(x) / sizeof(x[0]))
198 
199 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
200 					      unsigned int max_index)
201 {
202 	const char *name = NULL;
203 
204 	if (op < max_index)
205 		name = table[op];
206 	if (!name)
207 		name = "unknown";
208 	return name;
209 }
210 
211 static const char *fc_exch_rctl_name(unsigned int op)
212 {
213 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
214 				   FC_TABLE_SIZE(fc_exch_rctl_names));
215 }
216 
217 /*
218  * Hold an exchange - keep it from being freed.
219  */
220 static void fc_exch_hold(struct fc_exch *ep)
221 {
222 	atomic_inc(&ep->ex_refcnt);
223 }
224 
225 /*
226  * setup fc hdr by initializing few more FC header fields and sof/eof.
227  * Initialized fields by this func:
228  *	- fh_ox_id, fh_rx_id, fh_seq_id, fh_seq_cnt
229  *	- sof and eof
230  */
231 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
232 			      u32 f_ctl)
233 {
234 	struct fc_frame_header *fh = fc_frame_header_get(fp);
235 	u16 fill;
236 
237 	fr_sof(fp) = ep->class;
238 	if (ep->seq.cnt)
239 		fr_sof(fp) = fc_sof_normal(ep->class);
240 
241 	if (f_ctl & FC_FC_END_SEQ) {
242 		fr_eof(fp) = FC_EOF_T;
243 		if (fc_sof_needs_ack(ep->class))
244 			fr_eof(fp) = FC_EOF_N;
245 		/*
246 		 * Form f_ctl.
247 		 * The number of fill bytes to make the length a 4-byte
248 		 * multiple is the low order 2-bits of the f_ctl.
249 		 * The fill itself will have been cleared by the frame
250 		 * allocation.
251 		 * After this, the length will be even, as expected by
252 		 * the transport.
253 		 */
254 		fill = fr_len(fp) & 3;
255 		if (fill) {
256 			fill = 4 - fill;
257 			/* TODO, this may be a problem with fragmented skb */
258 			skb_put(fp_skb(fp), fill);
259 			hton24(fh->fh_f_ctl, f_ctl | fill);
260 		}
261 	} else {
262 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
263 		fr_eof(fp) = FC_EOF_N;
264 	}
265 
266 	/*
267 	 * Initialize remainig fh fields
268 	 * from fc_fill_fc_hdr
269 	 */
270 	fh->fh_ox_id = htons(ep->oxid);
271 	fh->fh_rx_id = htons(ep->rxid);
272 	fh->fh_seq_id = ep->seq.id;
273 	fh->fh_seq_cnt = htons(ep->seq.cnt);
274 }
275 
276 
277 /*
278  * Release a reference to an exchange.
279  * If the refcnt goes to zero and the exchange is complete, it is freed.
280  */
281 static void fc_exch_release(struct fc_exch *ep)
282 {
283 	struct fc_exch_mgr *mp;
284 
285 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
286 		mp = ep->em;
287 		if (ep->destructor)
288 			ep->destructor(&ep->seq, ep->arg);
289 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
290 		mempool_free(ep, mp->ep_pool);
291 	}
292 }
293 
294 static int fc_exch_done_locked(struct fc_exch *ep)
295 {
296 	int rc = 1;
297 
298 	/*
299 	 * We must check for completion in case there are two threads
300 	 * tyring to complete this. But the rrq code will reuse the
301 	 * ep, and in that case we only clear the resp and set it as
302 	 * complete, so it can be reused by the timer to send the rrq.
303 	 */
304 	ep->resp = NULL;
305 	if (ep->state & FC_EX_DONE)
306 		return rc;
307 	ep->esb_stat |= ESB_ST_COMPLETE;
308 
309 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
310 		ep->state |= FC_EX_DONE;
311 		if (cancel_delayed_work(&ep->timeout_work))
312 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
313 		rc = 0;
314 	}
315 	return rc;
316 }
317 
318 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
319 					      u16 index)
320 {
321 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
322 	return exches[index];
323 }
324 
325 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
326 				   struct fc_exch *ep)
327 {
328 	((struct fc_exch **)(pool + 1))[index] = ep;
329 }
330 
331 static void fc_exch_delete(struct fc_exch *ep)
332 {
333 	struct fc_exch_pool *pool;
334 
335 	pool = ep->pool;
336 	spin_lock_bh(&pool->lock);
337 	WARN_ON(pool->total_exches <= 0);
338 	pool->total_exches--;
339 	fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
340 			NULL);
341 	list_del(&ep->ex_list);
342 	spin_unlock_bh(&pool->lock);
343 	fc_exch_release(ep);	/* drop hold for exch in mp */
344 }
345 
346 /*
347  * Internal version of fc_exch_timer_set - used with lock held.
348  */
349 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
350 					    unsigned int timer_msec)
351 {
352 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
353 		return;
354 
355 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
356 
357 	if (schedule_delayed_work(&ep->timeout_work,
358 				  msecs_to_jiffies(timer_msec)))
359 		fc_exch_hold(ep);		/* hold for timer */
360 }
361 
362 /*
363  * Set timer for an exchange.
364  * The time is a minimum delay in milliseconds until the timer fires.
365  * Used for upper level protocols to time out the exchange.
366  * The timer is cancelled when it fires or when the exchange completes.
367  * Returns non-zero if a timer couldn't be allocated.
368  */
369 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
370 {
371 	spin_lock_bh(&ep->ex_lock);
372 	fc_exch_timer_set_locked(ep, timer_msec);
373 	spin_unlock_bh(&ep->ex_lock);
374 }
375 
376 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
377 {
378 	struct fc_seq *sp;
379 	struct fc_exch *ep;
380 	struct fc_frame *fp;
381 	int error;
382 
383 	ep = fc_seq_exch(req_sp);
384 
385 	spin_lock_bh(&ep->ex_lock);
386 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
387 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
388 		spin_unlock_bh(&ep->ex_lock);
389 		return -ENXIO;
390 	}
391 
392 	/*
393 	 * Send the abort on a new sequence if possible.
394 	 */
395 	sp = fc_seq_start_next_locked(&ep->seq);
396 	if (!sp) {
397 		spin_unlock_bh(&ep->ex_lock);
398 		return -ENOMEM;
399 	}
400 
401 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
402 	if (timer_msec)
403 		fc_exch_timer_set_locked(ep, timer_msec);
404 	spin_unlock_bh(&ep->ex_lock);
405 
406 	/*
407 	 * If not logged into the fabric, don't send ABTS but leave
408 	 * sequence active until next timeout.
409 	 */
410 	if (!ep->sid)
411 		return 0;
412 
413 	/*
414 	 * Send an abort for the sequence that timed out.
415 	 */
416 	fp = fc_frame_alloc(ep->lp, 0);
417 	if (fp) {
418 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
419 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
420 		error = fc_seq_send(ep->lp, sp, fp);
421 	} else
422 		error = -ENOBUFS;
423 	return error;
424 }
425 EXPORT_SYMBOL(fc_seq_exch_abort);
426 
427 /*
428  * Exchange timeout - handle exchange timer expiration.
429  * The timer will have been cancelled before this is called.
430  */
431 static void fc_exch_timeout(struct work_struct *work)
432 {
433 	struct fc_exch *ep = container_of(work, struct fc_exch,
434 					  timeout_work.work);
435 	struct fc_seq *sp = &ep->seq;
436 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
437 	void *arg;
438 	u32 e_stat;
439 	int rc = 1;
440 
441 	FC_EXCH_DBG(ep, "Exchange timed out\n");
442 
443 	spin_lock_bh(&ep->ex_lock);
444 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
445 		goto unlock;
446 
447 	e_stat = ep->esb_stat;
448 	if (e_stat & ESB_ST_COMPLETE) {
449 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
450 		spin_unlock_bh(&ep->ex_lock);
451 		if (e_stat & ESB_ST_REC_QUAL)
452 			fc_exch_rrq(ep);
453 		goto done;
454 	} else {
455 		resp = ep->resp;
456 		arg = ep->arg;
457 		ep->resp = NULL;
458 		if (e_stat & ESB_ST_ABNORMAL)
459 			rc = fc_exch_done_locked(ep);
460 		spin_unlock_bh(&ep->ex_lock);
461 		if (!rc)
462 			fc_exch_delete(ep);
463 		if (resp)
464 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
465 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
466 		goto done;
467 	}
468 unlock:
469 	spin_unlock_bh(&ep->ex_lock);
470 done:
471 	/*
472 	 * This release matches the hold taken when the timer was set.
473 	 */
474 	fc_exch_release(ep);
475 }
476 
477 /*
478  * Allocate a sequence.
479  *
480  * We don't support multiple originated sequences on the same exchange.
481  * By implication, any previously originated sequence on this exchange
482  * is complete, and we reallocate the same sequence.
483  */
484 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
485 {
486 	struct fc_seq *sp;
487 
488 	sp = &ep->seq;
489 	sp->ssb_stat = 0;
490 	sp->cnt = 0;
491 	sp->id = seq_id;
492 	return sp;
493 }
494 
495 /**
496  * fc_exch_em_alloc() - allocate an exchange from a specified EM.
497  * @lport:	ptr to the local port
498  * @mp:		ptr to the exchange manager
499  *
500  * Returns pointer to allocated fc_exch with exch lock held.
501  */
502 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
503 					struct fc_exch_mgr *mp)
504 {
505 	struct fc_exch *ep;
506 	unsigned int cpu;
507 	u16 index;
508 	struct fc_exch_pool *pool;
509 
510 	/* allocate memory for exchange */
511 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
512 	if (!ep) {
513 		atomic_inc(&mp->stats.no_free_exch);
514 		goto out;
515 	}
516 	memset(ep, 0, sizeof(*ep));
517 
518 	cpu = smp_processor_id();
519 	pool = per_cpu_ptr(mp->pool, cpu);
520 	spin_lock_bh(&pool->lock);
521 	index = pool->next_index;
522 	/* allocate new exch from pool */
523 	while (fc_exch_ptr_get(pool, index)) {
524 		index = index == mp->pool_max_index ? 0 : index + 1;
525 		if (index == pool->next_index)
526 			goto err;
527 	}
528 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
529 
530 	fc_exch_hold(ep);	/* hold for exch in mp */
531 	spin_lock_init(&ep->ex_lock);
532 	/*
533 	 * Hold exch lock for caller to prevent fc_exch_reset()
534 	 * from releasing exch	while fc_exch_alloc() caller is
535 	 * still working on exch.
536 	 */
537 	spin_lock_bh(&ep->ex_lock);
538 
539 	fc_exch_ptr_set(pool, index, ep);
540 	list_add_tail(&ep->ex_list, &pool->ex_list);
541 	fc_seq_alloc(ep, ep->seq_id++);
542 	pool->total_exches++;
543 	spin_unlock_bh(&pool->lock);
544 
545 	/*
546 	 *  update exchange
547 	 */
548 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
549 	ep->em = mp;
550 	ep->pool = pool;
551 	ep->lp = lport;
552 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
553 	ep->rxid = FC_XID_UNKNOWN;
554 	ep->class = mp->class;
555 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
556 out:
557 	return ep;
558 err:
559 	spin_unlock_bh(&pool->lock);
560 	atomic_inc(&mp->stats.no_free_exch_xid);
561 	mempool_free(ep, mp->ep_pool);
562 	return NULL;
563 }
564 
565 /**
566  * fc_exch_alloc() - allocate an exchange.
567  * @lport:	ptr to the local port
568  * @fp:		ptr to the FC frame
569  *
570  * This function walks the list of the exchange manager(EM)
571  * anchors to select a EM for new exchange allocation. The
572  * EM is selected having either a NULL match function pointer
573  * or call to match function returning true.
574  */
575 struct fc_exch *fc_exch_alloc(struct fc_lport *lport, struct fc_frame *fp)
576 {
577 	struct fc_exch_mgr_anchor *ema;
578 	struct fc_exch *ep;
579 
580 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
581 		if (!ema->match || ema->match(fp)) {
582 			ep = fc_exch_em_alloc(lport, ema->mp);
583 			if (ep)
584 				return ep;
585 		}
586 	}
587 	return NULL;
588 }
589 EXPORT_SYMBOL(fc_exch_alloc);
590 
591 /*
592  * Lookup and hold an exchange.
593  */
594 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
595 {
596 	struct fc_exch_pool *pool;
597 	struct fc_exch *ep = NULL;
598 
599 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
600 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
601 		spin_lock_bh(&pool->lock);
602 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
603 		if (ep) {
604 			fc_exch_hold(ep);
605 			WARN_ON(ep->xid != xid);
606 		}
607 		spin_unlock_bh(&pool->lock);
608 	}
609 	return ep;
610 }
611 
612 void fc_exch_done(struct fc_seq *sp)
613 {
614 	struct fc_exch *ep = fc_seq_exch(sp);
615 	int rc;
616 
617 	spin_lock_bh(&ep->ex_lock);
618 	rc = fc_exch_done_locked(ep);
619 	spin_unlock_bh(&ep->ex_lock);
620 	if (!rc)
621 		fc_exch_delete(ep);
622 }
623 EXPORT_SYMBOL(fc_exch_done);
624 
625 /*
626  * Allocate a new exchange as responder.
627  * Sets the responder ID in the frame header.
628  */
629 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
630 				    struct fc_exch_mgr *mp,
631 				    struct fc_frame *fp)
632 {
633 	struct fc_exch *ep;
634 	struct fc_frame_header *fh;
635 
636 	ep = fc_exch_alloc(lport, fp);
637 	if (ep) {
638 		ep->class = fc_frame_class(fp);
639 
640 		/*
641 		 * Set EX_CTX indicating we're responding on this exchange.
642 		 */
643 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
644 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
645 		fh = fc_frame_header_get(fp);
646 		ep->sid = ntoh24(fh->fh_d_id);
647 		ep->did = ntoh24(fh->fh_s_id);
648 		ep->oid = ep->did;
649 
650 		/*
651 		 * Allocated exchange has placed the XID in the
652 		 * originator field. Move it to the responder field,
653 		 * and set the originator XID from the frame.
654 		 */
655 		ep->rxid = ep->xid;
656 		ep->oxid = ntohs(fh->fh_ox_id);
657 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
658 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
659 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
660 
661 		fc_exch_hold(ep);	/* hold for caller */
662 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
663 	}
664 	return ep;
665 }
666 
667 /*
668  * Find a sequence for receive where the other end is originating the sequence.
669  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
670  * on the ep that should be released by the caller.
671  */
672 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
673 						 struct fc_exch_mgr *mp,
674 						 struct fc_frame *fp)
675 {
676 	struct fc_frame_header *fh = fc_frame_header_get(fp);
677 	struct fc_exch *ep = NULL;
678 	struct fc_seq *sp = NULL;
679 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
680 	u32 f_ctl;
681 	u16 xid;
682 
683 	f_ctl = ntoh24(fh->fh_f_ctl);
684 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
685 
686 	/*
687 	 * Lookup or create the exchange if we will be creating the sequence.
688 	 */
689 	if (f_ctl & FC_FC_EX_CTX) {
690 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
691 		ep = fc_exch_find(mp, xid);
692 		if (!ep) {
693 			atomic_inc(&mp->stats.xid_not_found);
694 			reject = FC_RJT_OX_ID;
695 			goto out;
696 		}
697 		if (ep->rxid == FC_XID_UNKNOWN)
698 			ep->rxid = ntohs(fh->fh_rx_id);
699 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
700 			reject = FC_RJT_OX_ID;
701 			goto rel;
702 		}
703 	} else {
704 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
705 
706 		/*
707 		 * Special case for MDS issuing an ELS TEST with a
708 		 * bad rxid of 0.
709 		 * XXX take this out once we do the proper reject.
710 		 */
711 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
712 		    fc_frame_payload_op(fp) == ELS_TEST) {
713 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
714 			xid = FC_XID_UNKNOWN;
715 		}
716 
717 		/*
718 		 * new sequence - find the exchange
719 		 */
720 		ep = fc_exch_find(mp, xid);
721 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
722 			if (ep) {
723 				atomic_inc(&mp->stats.xid_busy);
724 				reject = FC_RJT_RX_ID;
725 				goto rel;
726 			}
727 			ep = fc_exch_resp(lport, mp, fp);
728 			if (!ep) {
729 				reject = FC_RJT_EXCH_EST;	/* XXX */
730 				goto out;
731 			}
732 			xid = ep->xid;	/* get our XID */
733 		} else if (!ep) {
734 			atomic_inc(&mp->stats.xid_not_found);
735 			reject = FC_RJT_RX_ID;	/* XID not found */
736 			goto out;
737 		}
738 	}
739 
740 	/*
741 	 * At this point, we have the exchange held.
742 	 * Find or create the sequence.
743 	 */
744 	if (fc_sof_is_init(fr_sof(fp))) {
745 		sp = fc_seq_start_next(&ep->seq);
746 		if (!sp) {
747 			reject = FC_RJT_SEQ_XS;	/* exchange shortage */
748 			goto rel;
749 		}
750 		sp->id = fh->fh_seq_id;
751 		sp->ssb_stat |= SSB_ST_RESP;
752 	} else {
753 		sp = &ep->seq;
754 		if (sp->id != fh->fh_seq_id) {
755 			atomic_inc(&mp->stats.seq_not_found);
756 			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
757 			goto rel;
758 		}
759 	}
760 	WARN_ON(ep != fc_seq_exch(sp));
761 
762 	if (f_ctl & FC_FC_SEQ_INIT)
763 		ep->esb_stat |= ESB_ST_SEQ_INIT;
764 
765 	fr_seq(fp) = sp;
766 out:
767 	return reject;
768 rel:
769 	fc_exch_done(&ep->seq);
770 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
771 	return reject;
772 }
773 
774 /*
775  * Find the sequence for a frame being received.
776  * We originated the sequence, so it should be found.
777  * We may or may not have originated the exchange.
778  * Does not hold the sequence for the caller.
779  */
780 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
781 					 struct fc_frame *fp)
782 {
783 	struct fc_frame_header *fh = fc_frame_header_get(fp);
784 	struct fc_exch *ep;
785 	struct fc_seq *sp = NULL;
786 	u32 f_ctl;
787 	u16 xid;
788 
789 	f_ctl = ntoh24(fh->fh_f_ctl);
790 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
791 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
792 	ep = fc_exch_find(mp, xid);
793 	if (!ep)
794 		return NULL;
795 	if (ep->seq.id == fh->fh_seq_id) {
796 		/*
797 		 * Save the RX_ID if we didn't previously know it.
798 		 */
799 		sp = &ep->seq;
800 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
801 		    ep->rxid == FC_XID_UNKNOWN) {
802 			ep->rxid = ntohs(fh->fh_rx_id);
803 		}
804 	}
805 	fc_exch_release(ep);
806 	return sp;
807 }
808 
809 /*
810  * Set addresses for an exchange.
811  * Note this must be done before the first sequence of the exchange is sent.
812  */
813 static void fc_exch_set_addr(struct fc_exch *ep,
814 			     u32 orig_id, u32 resp_id)
815 {
816 	ep->oid = orig_id;
817 	if (ep->esb_stat & ESB_ST_RESP) {
818 		ep->sid = resp_id;
819 		ep->did = orig_id;
820 	} else {
821 		ep->sid = orig_id;
822 		ep->did = resp_id;
823 	}
824 }
825 
826 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
827 {
828 	struct fc_exch *ep = fc_seq_exch(sp);
829 
830 	sp = fc_seq_alloc(ep, ep->seq_id++);
831 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
832 		    ep->f_ctl, sp->id);
833 	return sp;
834 }
835 /*
836  * Allocate a new sequence on the same exchange as the supplied sequence.
837  * This will never return NULL.
838  */
839 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
840 {
841 	struct fc_exch *ep = fc_seq_exch(sp);
842 
843 	spin_lock_bh(&ep->ex_lock);
844 	sp = fc_seq_start_next_locked(sp);
845 	spin_unlock_bh(&ep->ex_lock);
846 
847 	return sp;
848 }
849 EXPORT_SYMBOL(fc_seq_start_next);
850 
851 int fc_seq_send(struct fc_lport *lp, struct fc_seq *sp, struct fc_frame *fp)
852 {
853 	struct fc_exch *ep;
854 	struct fc_frame_header *fh = fc_frame_header_get(fp);
855 	int error;
856 	u32	f_ctl;
857 
858 	ep = fc_seq_exch(sp);
859 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
860 
861 	f_ctl = ntoh24(fh->fh_f_ctl);
862 	fc_exch_setup_hdr(ep, fp, f_ctl);
863 
864 	/*
865 	 * update sequence count if this frame is carrying
866 	 * multiple FC frames when sequence offload is enabled
867 	 * by LLD.
868 	 */
869 	if (fr_max_payload(fp))
870 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
871 					fr_max_payload(fp));
872 	else
873 		sp->cnt++;
874 
875 	/*
876 	 * Send the frame.
877 	 */
878 	error = lp->tt.frame_send(lp, fp);
879 
880 	/*
881 	 * Update the exchange and sequence flags,
882 	 * assuming all frames for the sequence have been sent.
883 	 * We can only be called to send once for each sequence.
884 	 */
885 	spin_lock_bh(&ep->ex_lock);
886 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
887 	if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT))
888 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
889 	spin_unlock_bh(&ep->ex_lock);
890 	return error;
891 }
892 EXPORT_SYMBOL(fc_seq_send);
893 
894 void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd,
895 			 struct fc_seq_els_data *els_data)
896 {
897 	switch (els_cmd) {
898 	case ELS_LS_RJT:
899 		fc_seq_ls_rjt(sp, els_data->reason, els_data->explan);
900 		break;
901 	case ELS_LS_ACC:
902 		fc_seq_ls_acc(sp);
903 		break;
904 	case ELS_RRQ:
905 		fc_exch_els_rrq(sp, els_data->fp);
906 		break;
907 	case ELS_REC:
908 		fc_exch_els_rec(sp, els_data->fp);
909 		break;
910 	default:
911 		FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd);
912 	}
913 }
914 EXPORT_SYMBOL(fc_seq_els_rsp_send);
915 
916 /*
917  * Send a sequence, which is also the last sequence in the exchange.
918  */
919 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
920 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
921 {
922 	u32 f_ctl;
923 	struct fc_exch *ep = fc_seq_exch(sp);
924 
925 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
926 	f_ctl |= ep->f_ctl;
927 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
928 	fc_seq_send(ep->lp, sp, fp);
929 }
930 
931 /*
932  * Send ACK_1 (or equiv.) indicating we received something.
933  * The frame we're acking is supplied.
934  */
935 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
936 {
937 	struct fc_frame *fp;
938 	struct fc_frame_header *rx_fh;
939 	struct fc_frame_header *fh;
940 	struct fc_exch *ep = fc_seq_exch(sp);
941 	struct fc_lport *lp = ep->lp;
942 	unsigned int f_ctl;
943 
944 	/*
945 	 * Don't send ACKs for class 3.
946 	 */
947 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
948 		fp = fc_frame_alloc(lp, 0);
949 		if (!fp)
950 			return;
951 
952 		fh = fc_frame_header_get(fp);
953 		fh->fh_r_ctl = FC_RCTL_ACK_1;
954 		fh->fh_type = FC_TYPE_BLS;
955 
956 		/*
957 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
958 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
959 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
960 		 * Last ACK uses bits 7-6 (continue sequence),
961 		 * bits 5-4 are meaningful (what kind of ACK to use).
962 		 */
963 		rx_fh = fc_frame_header_get(rx_fp);
964 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
965 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
966 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
967 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
968 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
969 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
970 		hton24(fh->fh_f_ctl, f_ctl);
971 
972 		fc_exch_setup_hdr(ep, fp, f_ctl);
973 		fh->fh_seq_id = rx_fh->fh_seq_id;
974 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
975 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
976 
977 		fr_sof(fp) = fr_sof(rx_fp);
978 		if (f_ctl & FC_FC_END_SEQ)
979 			fr_eof(fp) = FC_EOF_T;
980 		else
981 			fr_eof(fp) = FC_EOF_N;
982 
983 		(void) lp->tt.frame_send(lp, fp);
984 	}
985 }
986 
987 /*
988  * Send BLS Reject.
989  * This is for rejecting BA_ABTS only.
990  */
991 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
992 				enum fc_ba_rjt_reason reason,
993 				enum fc_ba_rjt_explan explan)
994 {
995 	struct fc_frame *fp;
996 	struct fc_frame_header *rx_fh;
997 	struct fc_frame_header *fh;
998 	struct fc_ba_rjt *rp;
999 	struct fc_lport *lp;
1000 	unsigned int f_ctl;
1001 
1002 	lp = fr_dev(rx_fp);
1003 	fp = fc_frame_alloc(lp, sizeof(*rp));
1004 	if (!fp)
1005 		return;
1006 	fh = fc_frame_header_get(fp);
1007 	rx_fh = fc_frame_header_get(rx_fp);
1008 
1009 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1010 
1011 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1012 	rp->br_reason = reason;
1013 	rp->br_explan = explan;
1014 
1015 	/*
1016 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1017 	 */
1018 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1019 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1020 	fh->fh_ox_id = rx_fh->fh_ox_id;
1021 	fh->fh_rx_id = rx_fh->fh_rx_id;
1022 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1023 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1024 	fh->fh_type = FC_TYPE_BLS;
1025 
1026 	/*
1027 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1028 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1029 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1030 	 * Last ACK uses bits 7-6 (continue sequence),
1031 	 * bits 5-4 are meaningful (what kind of ACK to use).
1032 	 * Always set LAST_SEQ, END_SEQ.
1033 	 */
1034 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1035 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1036 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1037 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1038 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1039 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1040 	f_ctl &= ~FC_FC_FIRST_SEQ;
1041 	hton24(fh->fh_f_ctl, f_ctl);
1042 
1043 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1044 	fr_eof(fp) = FC_EOF_T;
1045 	if (fc_sof_needs_ack(fr_sof(fp)))
1046 		fr_eof(fp) = FC_EOF_N;
1047 
1048 	(void) lp->tt.frame_send(lp, fp);
1049 }
1050 
1051 /*
1052  * Handle an incoming ABTS.  This would be for target mode usually,
1053  * but could be due to lost FCP transfer ready, confirm or RRQ.
1054  * We always handle this as an exchange abort, ignoring the parameter.
1055  */
1056 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1057 {
1058 	struct fc_frame *fp;
1059 	struct fc_ba_acc *ap;
1060 	struct fc_frame_header *fh;
1061 	struct fc_seq *sp;
1062 
1063 	if (!ep)
1064 		goto reject;
1065 	spin_lock_bh(&ep->ex_lock);
1066 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1067 		spin_unlock_bh(&ep->ex_lock);
1068 		goto reject;
1069 	}
1070 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1071 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1072 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1073 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1074 
1075 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1076 	if (!fp) {
1077 		spin_unlock_bh(&ep->ex_lock);
1078 		goto free;
1079 	}
1080 	fh = fc_frame_header_get(fp);
1081 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1082 	memset(ap, 0, sizeof(*ap));
1083 	sp = &ep->seq;
1084 	ap->ba_high_seq_cnt = htons(0xffff);
1085 	if (sp->ssb_stat & SSB_ST_RESP) {
1086 		ap->ba_seq_id = sp->id;
1087 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1088 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1089 		ap->ba_low_seq_cnt = htons(sp->cnt);
1090 	}
1091 	sp = fc_seq_start_next_locked(sp);
1092 	spin_unlock_bh(&ep->ex_lock);
1093 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1094 	fc_frame_free(rx_fp);
1095 	return;
1096 
1097 reject:
1098 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1099 free:
1100 	fc_frame_free(rx_fp);
1101 }
1102 
1103 /*
1104  * Handle receive where the other end is originating the sequence.
1105  */
1106 static void fc_exch_recv_req(struct fc_lport *lp, struct fc_exch_mgr *mp,
1107 			     struct fc_frame *fp)
1108 {
1109 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1110 	struct fc_seq *sp = NULL;
1111 	struct fc_exch *ep = NULL;
1112 	enum fc_sof sof;
1113 	enum fc_eof eof;
1114 	u32 f_ctl;
1115 	enum fc_pf_rjt_reason reject;
1116 
1117 	fr_seq(fp) = NULL;
1118 	reject = fc_seq_lookup_recip(lp, mp, fp);
1119 	if (reject == FC_RJT_NONE) {
1120 		sp = fr_seq(fp);	/* sequence will be held */
1121 		ep = fc_seq_exch(sp);
1122 		sof = fr_sof(fp);
1123 		eof = fr_eof(fp);
1124 		f_ctl = ntoh24(fh->fh_f_ctl);
1125 		fc_seq_send_ack(sp, fp);
1126 
1127 		/*
1128 		 * Call the receive function.
1129 		 *
1130 		 * The receive function may allocate a new sequence
1131 		 * over the old one, so we shouldn't change the
1132 		 * sequence after this.
1133 		 *
1134 		 * The frame will be freed by the receive function.
1135 		 * If new exch resp handler is valid then call that
1136 		 * first.
1137 		 */
1138 		if (ep->resp)
1139 			ep->resp(sp, fp, ep->arg);
1140 		else
1141 			lp->tt.lport_recv(lp, sp, fp);
1142 		fc_exch_release(ep);	/* release from lookup */
1143 	} else {
1144 		FC_LPORT_DBG(lp, "exch/seq lookup failed: reject %x\n", reject);
1145 		fc_frame_free(fp);
1146 	}
1147 }
1148 
1149 /*
1150  * Handle receive where the other end is originating the sequence in
1151  * response to our exchange.
1152  */
1153 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1154 {
1155 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1156 	struct fc_seq *sp;
1157 	struct fc_exch *ep;
1158 	enum fc_sof sof;
1159 	u32 f_ctl;
1160 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1161 	void *ex_resp_arg;
1162 	int rc;
1163 
1164 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1165 	if (!ep) {
1166 		atomic_inc(&mp->stats.xid_not_found);
1167 		goto out;
1168 	}
1169 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1170 		atomic_inc(&mp->stats.xid_not_found);
1171 		goto out;
1172 	}
1173 	if (ep->rxid == FC_XID_UNKNOWN)
1174 		ep->rxid = ntohs(fh->fh_rx_id);
1175 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1176 		atomic_inc(&mp->stats.xid_not_found);
1177 		goto rel;
1178 	}
1179 	if (ep->did != ntoh24(fh->fh_s_id) &&
1180 	    ep->did != FC_FID_FLOGI) {
1181 		atomic_inc(&mp->stats.xid_not_found);
1182 		goto rel;
1183 	}
1184 	sof = fr_sof(fp);
1185 	if (fc_sof_is_init(sof)) {
1186 		sp = fc_seq_start_next(&ep->seq);
1187 		sp->id = fh->fh_seq_id;
1188 		sp->ssb_stat |= SSB_ST_RESP;
1189 	} else {
1190 		sp = &ep->seq;
1191 		if (sp->id != fh->fh_seq_id) {
1192 			atomic_inc(&mp->stats.seq_not_found);
1193 			goto rel;
1194 		}
1195 	}
1196 	f_ctl = ntoh24(fh->fh_f_ctl);
1197 	fr_seq(fp) = sp;
1198 	if (f_ctl & FC_FC_SEQ_INIT)
1199 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1200 
1201 	if (fc_sof_needs_ack(sof))
1202 		fc_seq_send_ack(sp, fp);
1203 	resp = ep->resp;
1204 	ex_resp_arg = ep->arg;
1205 
1206 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1207 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1208 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1209 		spin_lock_bh(&ep->ex_lock);
1210 		rc = fc_exch_done_locked(ep);
1211 		WARN_ON(fc_seq_exch(sp) != ep);
1212 		spin_unlock_bh(&ep->ex_lock);
1213 		if (!rc)
1214 			fc_exch_delete(ep);
1215 	}
1216 
1217 	/*
1218 	 * Call the receive function.
1219 	 * The sequence is held (has a refcnt) for us,
1220 	 * but not for the receive function.
1221 	 *
1222 	 * The receive function may allocate a new sequence
1223 	 * over the old one, so we shouldn't change the
1224 	 * sequence after this.
1225 	 *
1226 	 * The frame will be freed by the receive function.
1227 	 * If new exch resp handler is valid then call that
1228 	 * first.
1229 	 */
1230 	if (resp)
1231 		resp(sp, fp, ex_resp_arg);
1232 	else
1233 		fc_frame_free(fp);
1234 	fc_exch_release(ep);
1235 	return;
1236 rel:
1237 	fc_exch_release(ep);
1238 out:
1239 	fc_frame_free(fp);
1240 }
1241 
1242 /*
1243  * Handle receive for a sequence where other end is responding to our sequence.
1244  */
1245 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1246 {
1247 	struct fc_seq *sp;
1248 
1249 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1250 
1251 	if (!sp)
1252 		atomic_inc(&mp->stats.xid_not_found);
1253 	else
1254 		atomic_inc(&mp->stats.non_bls_resp);
1255 
1256 	fc_frame_free(fp);
1257 }
1258 
1259 /*
1260  * Handle the response to an ABTS for exchange or sequence.
1261  * This can be BA_ACC or BA_RJT.
1262  */
1263 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1264 {
1265 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1266 	void *ex_resp_arg;
1267 	struct fc_frame_header *fh;
1268 	struct fc_ba_acc *ap;
1269 	struct fc_seq *sp;
1270 	u16 low;
1271 	u16 high;
1272 	int rc = 1, has_rec = 0;
1273 
1274 	fh = fc_frame_header_get(fp);
1275 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1276 		    fc_exch_rctl_name(fh->fh_r_ctl));
1277 
1278 	if (cancel_delayed_work_sync(&ep->timeout_work))
1279 		fc_exch_release(ep);	/* release from pending timer hold */
1280 
1281 	spin_lock_bh(&ep->ex_lock);
1282 	switch (fh->fh_r_ctl) {
1283 	case FC_RCTL_BA_ACC:
1284 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1285 		if (!ap)
1286 			break;
1287 
1288 		/*
1289 		 * Decide whether to establish a Recovery Qualifier.
1290 		 * We do this if there is a non-empty SEQ_CNT range and
1291 		 * SEQ_ID is the same as the one we aborted.
1292 		 */
1293 		low = ntohs(ap->ba_low_seq_cnt);
1294 		high = ntohs(ap->ba_high_seq_cnt);
1295 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1296 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1297 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1298 			ep->esb_stat |= ESB_ST_REC_QUAL;
1299 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1300 			has_rec = 1;
1301 		}
1302 		break;
1303 	case FC_RCTL_BA_RJT:
1304 		break;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	resp = ep->resp;
1310 	ex_resp_arg = ep->arg;
1311 
1312 	/* do we need to do some other checks here. Can we reuse more of
1313 	 * fc_exch_recv_seq_resp
1314 	 */
1315 	sp = &ep->seq;
1316 	/*
1317 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1318 	 */
1319 	if (ep->fh_type != FC_TYPE_FCP &&
1320 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1321 		rc = fc_exch_done_locked(ep);
1322 	spin_unlock_bh(&ep->ex_lock);
1323 	if (!rc)
1324 		fc_exch_delete(ep);
1325 
1326 	if (resp)
1327 		resp(sp, fp, ex_resp_arg);
1328 	else
1329 		fc_frame_free(fp);
1330 
1331 	if (has_rec)
1332 		fc_exch_timer_set(ep, ep->r_a_tov);
1333 
1334 }
1335 
1336 /*
1337  * Receive BLS sequence.
1338  * This is always a sequence initiated by the remote side.
1339  * We may be either the originator or recipient of the exchange.
1340  */
1341 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1342 {
1343 	struct fc_frame_header *fh;
1344 	struct fc_exch *ep;
1345 	u32 f_ctl;
1346 
1347 	fh = fc_frame_header_get(fp);
1348 	f_ctl = ntoh24(fh->fh_f_ctl);
1349 	fr_seq(fp) = NULL;
1350 
1351 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1352 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1353 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1354 		spin_lock_bh(&ep->ex_lock);
1355 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1356 		spin_unlock_bh(&ep->ex_lock);
1357 	}
1358 	if (f_ctl & FC_FC_SEQ_CTX) {
1359 		/*
1360 		 * A response to a sequence we initiated.
1361 		 * This should only be ACKs for class 2 or F.
1362 		 */
1363 		switch (fh->fh_r_ctl) {
1364 		case FC_RCTL_ACK_1:
1365 		case FC_RCTL_ACK_0:
1366 			break;
1367 		default:
1368 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1369 				    fh->fh_r_ctl,
1370 				    fc_exch_rctl_name(fh->fh_r_ctl));
1371 			break;
1372 		}
1373 		fc_frame_free(fp);
1374 	} else {
1375 		switch (fh->fh_r_ctl) {
1376 		case FC_RCTL_BA_RJT:
1377 		case FC_RCTL_BA_ACC:
1378 			if (ep)
1379 				fc_exch_abts_resp(ep, fp);
1380 			else
1381 				fc_frame_free(fp);
1382 			break;
1383 		case FC_RCTL_BA_ABTS:
1384 			fc_exch_recv_abts(ep, fp);
1385 			break;
1386 		default:			/* ignore junk */
1387 			fc_frame_free(fp);
1388 			break;
1389 		}
1390 	}
1391 	if (ep)
1392 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1393 }
1394 
1395 /*
1396  * Accept sequence with LS_ACC.
1397  * If this fails due to allocation or transmit congestion, assume the
1398  * originator will repeat the sequence.
1399  */
1400 static void fc_seq_ls_acc(struct fc_seq *req_sp)
1401 {
1402 	struct fc_seq *sp;
1403 	struct fc_els_ls_acc *acc;
1404 	struct fc_frame *fp;
1405 
1406 	sp = fc_seq_start_next(req_sp);
1407 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1408 	if (fp) {
1409 		acc = fc_frame_payload_get(fp, sizeof(*acc));
1410 		memset(acc, 0, sizeof(*acc));
1411 		acc->la_cmd = ELS_LS_ACC;
1412 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1413 	}
1414 }
1415 
1416 /*
1417  * Reject sequence with ELS LS_RJT.
1418  * If this fails due to allocation or transmit congestion, assume the
1419  * originator will repeat the sequence.
1420  */
1421 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason,
1422 			  enum fc_els_rjt_explan explan)
1423 {
1424 	struct fc_seq *sp;
1425 	struct fc_els_ls_rjt *rjt;
1426 	struct fc_frame *fp;
1427 
1428 	sp = fc_seq_start_next(req_sp);
1429 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt));
1430 	if (fp) {
1431 		rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1432 		memset(rjt, 0, sizeof(*rjt));
1433 		rjt->er_cmd = ELS_LS_RJT;
1434 		rjt->er_reason = reason;
1435 		rjt->er_explan = explan;
1436 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1437 	}
1438 }
1439 
1440 static void fc_exch_reset(struct fc_exch *ep)
1441 {
1442 	struct fc_seq *sp;
1443 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1444 	void *arg;
1445 	int rc = 1;
1446 
1447 	spin_lock_bh(&ep->ex_lock);
1448 	ep->state |= FC_EX_RST_CLEANUP;
1449 	/*
1450 	 * we really want to call del_timer_sync, but cannot due
1451 	 * to the lport calling with the lport lock held (some resp
1452 	 * functions can also grab the lport lock which could cause
1453 	 * a deadlock).
1454 	 */
1455 	if (cancel_delayed_work(&ep->timeout_work))
1456 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1457 	resp = ep->resp;
1458 	ep->resp = NULL;
1459 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1460 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1461 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1462 	arg = ep->arg;
1463 	sp = &ep->seq;
1464 	rc = fc_exch_done_locked(ep);
1465 	spin_unlock_bh(&ep->ex_lock);
1466 	if (!rc)
1467 		fc_exch_delete(ep);
1468 
1469 	if (resp)
1470 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1471 }
1472 
1473 /**
1474  * fc_exch_pool_reset() - Resets an per cpu exches pool.
1475  * @lport:	ptr to the local port
1476  * @pool:	ptr to the per cpu exches pool
1477  * @sid:	source FC ID
1478  * @did:	destination FC ID
1479  *
1480  * Resets an per cpu exches pool, releasing its all sequences
1481  * and exchanges. If sid is non-zero, then reset only exchanges
1482  * we sourced from that FID. If did is non-zero, reset only
1483  * exchanges destined to that FID.
1484  */
1485 static void fc_exch_pool_reset(struct fc_lport *lport,
1486 			       struct fc_exch_pool *pool,
1487 			       u32 sid, u32 did)
1488 {
1489 	struct fc_exch *ep;
1490 	struct fc_exch *next;
1491 
1492 	spin_lock_bh(&pool->lock);
1493 restart:
1494 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1495 		if ((lport == ep->lp) &&
1496 		    (sid == 0 || sid == ep->sid) &&
1497 		    (did == 0 || did == ep->did)) {
1498 			fc_exch_hold(ep);
1499 			spin_unlock_bh(&pool->lock);
1500 
1501 			fc_exch_reset(ep);
1502 
1503 			fc_exch_release(ep);
1504 			spin_lock_bh(&pool->lock);
1505 
1506 			/*
1507 			 * must restart loop incase while lock
1508 			 * was down multiple eps were released.
1509 			 */
1510 			goto restart;
1511 		}
1512 	}
1513 	spin_unlock_bh(&pool->lock);
1514 }
1515 
1516 /**
1517  * fc_exch_mgr_reset() - Resets all EMs of a lport
1518  * @lport:	ptr to the local port
1519  * @sid:	source FC ID
1520  * @did:	destination FC ID
1521  *
1522  * Reset all EMs of a lport, releasing its all sequences and
1523  * exchanges. If sid is non-zero, then reset only exchanges
1524  * we sourced from that FID. If did is non-zero, reset only
1525  * exchanges destined to that FID.
1526  */
1527 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1528 {
1529 	struct fc_exch_mgr_anchor *ema;
1530 	unsigned int cpu;
1531 
1532 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1533 		for_each_possible_cpu(cpu)
1534 			fc_exch_pool_reset(lport,
1535 					   per_cpu_ptr(ema->mp->pool, cpu),
1536 					   sid, did);
1537 	}
1538 }
1539 EXPORT_SYMBOL(fc_exch_mgr_reset);
1540 
1541 /*
1542  * Handle incoming ELS REC - Read Exchange Concise.
1543  * Note that the requesting port may be different than the S_ID in the request.
1544  */
1545 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp)
1546 {
1547 	struct fc_frame *fp;
1548 	struct fc_exch *ep;
1549 	struct fc_exch_mgr *em;
1550 	struct fc_els_rec *rp;
1551 	struct fc_els_rec_acc *acc;
1552 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1553 	enum fc_els_rjt_explan explan;
1554 	u32 sid;
1555 	u16 rxid;
1556 	u16 oxid;
1557 
1558 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1559 	explan = ELS_EXPL_INV_LEN;
1560 	if (!rp)
1561 		goto reject;
1562 	sid = ntoh24(rp->rec_s_id);
1563 	rxid = ntohs(rp->rec_rx_id);
1564 	oxid = ntohs(rp->rec_ox_id);
1565 
1566 	/*
1567 	 * Currently it's hard to find the local S_ID from the exchange
1568 	 * manager.  This will eventually be fixed, but for now it's easier
1569 	 * to lookup the subject exchange twice, once as if we were
1570 	 * the initiator, and then again if we weren't.
1571 	 */
1572 	em = fc_seq_exch(sp)->em;
1573 	ep = fc_exch_find(em, oxid);
1574 	explan = ELS_EXPL_OXID_RXID;
1575 	if (ep && ep->oid == sid) {
1576 		if (ep->rxid != FC_XID_UNKNOWN &&
1577 		    rxid != FC_XID_UNKNOWN &&
1578 		    ep->rxid != rxid)
1579 			goto rel;
1580 	} else {
1581 		if (ep)
1582 			fc_exch_release(ep);
1583 		ep = NULL;
1584 		if (rxid != FC_XID_UNKNOWN)
1585 			ep = fc_exch_find(em, rxid);
1586 		if (!ep)
1587 			goto reject;
1588 	}
1589 
1590 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1591 	if (!fp) {
1592 		fc_exch_done(sp);
1593 		goto out;
1594 	}
1595 	sp = fc_seq_start_next(sp);
1596 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1597 	memset(acc, 0, sizeof(*acc));
1598 	acc->reca_cmd = ELS_LS_ACC;
1599 	acc->reca_ox_id = rp->rec_ox_id;
1600 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1601 	acc->reca_rx_id = htons(ep->rxid);
1602 	if (ep->sid == ep->oid)
1603 		hton24(acc->reca_rfid, ep->did);
1604 	else
1605 		hton24(acc->reca_rfid, ep->sid);
1606 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1607 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1608 						 ESB_ST_SEQ_INIT |
1609 						 ESB_ST_COMPLETE));
1610 	sp = fc_seq_start_next(sp);
1611 	fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1612 out:
1613 	fc_exch_release(ep);
1614 	fc_frame_free(rfp);
1615 	return;
1616 
1617 rel:
1618 	fc_exch_release(ep);
1619 reject:
1620 	fc_seq_ls_rjt(sp, reason, explan);
1621 	fc_frame_free(rfp);
1622 }
1623 
1624 /*
1625  * Handle response from RRQ.
1626  * Not much to do here, really.
1627  * Should report errors.
1628  *
1629  * TODO: fix error handler.
1630  */
1631 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1632 {
1633 	struct fc_exch *aborted_ep = arg;
1634 	unsigned int op;
1635 
1636 	if (IS_ERR(fp)) {
1637 		int err = PTR_ERR(fp);
1638 
1639 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1640 			goto cleanup;
1641 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1642 			    "frame error %d\n", err);
1643 		return;
1644 	}
1645 
1646 	op = fc_frame_payload_op(fp);
1647 	fc_frame_free(fp);
1648 
1649 	switch (op) {
1650 	case ELS_LS_RJT:
1651 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1652 		/* fall through */
1653 	case ELS_LS_ACC:
1654 		goto cleanup;
1655 	default:
1656 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1657 			    "for RRQ", op);
1658 		return;
1659 	}
1660 
1661 cleanup:
1662 	fc_exch_done(&aborted_ep->seq);
1663 	/* drop hold for rec qual */
1664 	fc_exch_release(aborted_ep);
1665 }
1666 
1667 /*
1668  * Send ELS RRQ - Reinstate Recovery Qualifier.
1669  * This tells the remote port to stop blocking the use of
1670  * the exchange and the seq_cnt range.
1671  */
1672 static void fc_exch_rrq(struct fc_exch *ep)
1673 {
1674 	struct fc_lport *lp;
1675 	struct fc_els_rrq *rrq;
1676 	struct fc_frame *fp;
1677 	u32 did;
1678 
1679 	lp = ep->lp;
1680 
1681 	fp = fc_frame_alloc(lp, sizeof(*rrq));
1682 	if (!fp)
1683 		goto retry;
1684 
1685 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1686 	memset(rrq, 0, sizeof(*rrq));
1687 	rrq->rrq_cmd = ELS_RRQ;
1688 	hton24(rrq->rrq_s_id, ep->sid);
1689 	rrq->rrq_ox_id = htons(ep->oxid);
1690 	rrq->rrq_rx_id = htons(ep->rxid);
1691 
1692 	did = ep->did;
1693 	if (ep->esb_stat & ESB_ST_RESP)
1694 		did = ep->sid;
1695 
1696 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1697 		       fc_host_port_id(lp->host), FC_TYPE_ELS,
1698 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1699 
1700 	if (fc_exch_seq_send(lp, fp, fc_exch_rrq_resp, NULL, ep, lp->e_d_tov))
1701 		return;
1702 
1703 retry:
1704 	spin_lock_bh(&ep->ex_lock);
1705 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1706 		spin_unlock_bh(&ep->ex_lock);
1707 		/* drop hold for rec qual */
1708 		fc_exch_release(ep);
1709 		return;
1710 	}
1711 	ep->esb_stat |= ESB_ST_REC_QUAL;
1712 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1713 	spin_unlock_bh(&ep->ex_lock);
1714 }
1715 
1716 
1717 /*
1718  * Handle incoming ELS RRQ - Reset Recovery Qualifier.
1719  */
1720 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp)
1721 {
1722 	struct fc_exch *ep;		/* request or subject exchange */
1723 	struct fc_els_rrq *rp;
1724 	u32 sid;
1725 	u16 xid;
1726 	enum fc_els_rjt_explan explan;
1727 
1728 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1729 	explan = ELS_EXPL_INV_LEN;
1730 	if (!rp)
1731 		goto reject;
1732 
1733 	/*
1734 	 * lookup subject exchange.
1735 	 */
1736 	ep = fc_seq_exch(sp);
1737 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
1738 	xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1739 	ep = fc_exch_find(ep->em, xid);
1740 
1741 	explan = ELS_EXPL_OXID_RXID;
1742 	if (!ep)
1743 		goto reject;
1744 	spin_lock_bh(&ep->ex_lock);
1745 	if (ep->oxid != ntohs(rp->rrq_ox_id))
1746 		goto unlock_reject;
1747 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
1748 	    ep->rxid != FC_XID_UNKNOWN)
1749 		goto unlock_reject;
1750 	explan = ELS_EXPL_SID;
1751 	if (ep->sid != sid)
1752 		goto unlock_reject;
1753 
1754 	/*
1755 	 * Clear Recovery Qualifier state, and cancel timer if complete.
1756 	 */
1757 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
1758 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
1759 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
1760 	}
1761 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1762 		if (cancel_delayed_work(&ep->timeout_work))
1763 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
1764 	}
1765 
1766 	spin_unlock_bh(&ep->ex_lock);
1767 
1768 	/*
1769 	 * Send LS_ACC.
1770 	 */
1771 	fc_seq_ls_acc(sp);
1772 	fc_frame_free(fp);
1773 	return;
1774 
1775 unlock_reject:
1776 	spin_unlock_bh(&ep->ex_lock);
1777 	fc_exch_release(ep);	/* drop hold from fc_exch_find */
1778 reject:
1779 	fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan);
1780 	fc_frame_free(fp);
1781 }
1782 
1783 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
1784 					   struct fc_exch_mgr *mp,
1785 					   bool (*match)(struct fc_frame *))
1786 {
1787 	struct fc_exch_mgr_anchor *ema;
1788 
1789 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
1790 	if (!ema)
1791 		return ema;
1792 
1793 	ema->mp = mp;
1794 	ema->match = match;
1795 	/* add EM anchor to EM anchors list */
1796 	list_add_tail(&ema->ema_list, &lport->ema_list);
1797 	kref_get(&mp->kref);
1798 	return ema;
1799 }
1800 EXPORT_SYMBOL(fc_exch_mgr_add);
1801 
1802 static void fc_exch_mgr_destroy(struct kref *kref)
1803 {
1804 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
1805 
1806 	mempool_destroy(mp->ep_pool);
1807 	free_percpu(mp->pool);
1808 	kfree(mp);
1809 }
1810 
1811 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
1812 {
1813 	/* remove EM anchor from EM anchors list */
1814 	list_del(&ema->ema_list);
1815 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
1816 	kfree(ema);
1817 }
1818 EXPORT_SYMBOL(fc_exch_mgr_del);
1819 
1820 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lp,
1821 				      enum fc_class class,
1822 				      u16 min_xid, u16 max_xid,
1823 				      bool (*match)(struct fc_frame *))
1824 {
1825 	struct fc_exch_mgr *mp;
1826 	u16 pool_exch_range;
1827 	size_t pool_size;
1828 	unsigned int cpu;
1829 	struct fc_exch_pool *pool;
1830 
1831 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
1832 	    (min_xid & fc_cpu_mask) != 0) {
1833 		FC_LPORT_DBG(lp, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
1834 			     min_xid, max_xid);
1835 		return NULL;
1836 	}
1837 
1838 	/*
1839 	 * allocate memory for EM
1840 	 */
1841 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
1842 	if (!mp)
1843 		return NULL;
1844 
1845 	mp->class = class;
1846 	/* adjust em exch xid range for offload */
1847 	mp->min_xid = min_xid;
1848 	mp->max_xid = max_xid;
1849 
1850 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
1851 	if (!mp->ep_pool)
1852 		goto free_mp;
1853 
1854 	/*
1855 	 * Setup per cpu exch pool with entire exchange id range equally
1856 	 * divided across all cpus. The exch pointers array memory is
1857 	 * allocated for exch range per pool.
1858 	 */
1859 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
1860 	mp->pool_max_index = pool_exch_range - 1;
1861 
1862 	/*
1863 	 * Allocate and initialize per cpu exch pool
1864 	 */
1865 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
1866 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
1867 	if (!mp->pool)
1868 		goto free_mempool;
1869 	for_each_possible_cpu(cpu) {
1870 		pool = per_cpu_ptr(mp->pool, cpu);
1871 		spin_lock_init(&pool->lock);
1872 		INIT_LIST_HEAD(&pool->ex_list);
1873 	}
1874 
1875 	kref_init(&mp->kref);
1876 	if (!fc_exch_mgr_add(lp, mp, match)) {
1877 		free_percpu(mp->pool);
1878 		goto free_mempool;
1879 	}
1880 
1881 	/*
1882 	 * Above kref_init() sets mp->kref to 1 and then
1883 	 * call to fc_exch_mgr_add incremented mp->kref again,
1884 	 * so adjust that extra increment.
1885 	 */
1886 	kref_put(&mp->kref, fc_exch_mgr_destroy);
1887 	return mp;
1888 
1889 free_mempool:
1890 	mempool_destroy(mp->ep_pool);
1891 free_mp:
1892 	kfree(mp);
1893 	return NULL;
1894 }
1895 EXPORT_SYMBOL(fc_exch_mgr_alloc);
1896 
1897 void fc_exch_mgr_free(struct fc_lport *lport)
1898 {
1899 	struct fc_exch_mgr_anchor *ema, *next;
1900 
1901 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
1902 		fc_exch_mgr_del(ema);
1903 }
1904 EXPORT_SYMBOL(fc_exch_mgr_free);
1905 
1906 
1907 struct fc_seq *fc_exch_seq_send(struct fc_lport *lp,
1908 				struct fc_frame *fp,
1909 				void (*resp)(struct fc_seq *,
1910 					     struct fc_frame *fp,
1911 					     void *arg),
1912 				void (*destructor)(struct fc_seq *, void *),
1913 				void *arg, u32 timer_msec)
1914 {
1915 	struct fc_exch *ep;
1916 	struct fc_seq *sp = NULL;
1917 	struct fc_frame_header *fh;
1918 	int rc = 1;
1919 
1920 	ep = fc_exch_alloc(lp, fp);
1921 	if (!ep) {
1922 		fc_frame_free(fp);
1923 		return NULL;
1924 	}
1925 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1926 	fh = fc_frame_header_get(fp);
1927 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1928 	ep->resp = resp;
1929 	ep->destructor = destructor;
1930 	ep->arg = arg;
1931 	ep->r_a_tov = FC_DEF_R_A_TOV;
1932 	ep->lp = lp;
1933 	sp = &ep->seq;
1934 
1935 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1936 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1937 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1938 	sp->cnt++;
1939 
1940 	if (ep->xid <= lp->lro_xid)
1941 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1942 
1943 	if (unlikely(lp->tt.frame_send(lp, fp)))
1944 		goto err;
1945 
1946 	if (timer_msec)
1947 		fc_exch_timer_set_locked(ep, timer_msec);
1948 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1949 
1950 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1951 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1952 	spin_unlock_bh(&ep->ex_lock);
1953 	return sp;
1954 err:
1955 	rc = fc_exch_done_locked(ep);
1956 	spin_unlock_bh(&ep->ex_lock);
1957 	if (!rc)
1958 		fc_exch_delete(ep);
1959 	return NULL;
1960 }
1961 EXPORT_SYMBOL(fc_exch_seq_send);
1962 
1963 /*
1964  * Receive a frame
1965  */
1966 void fc_exch_recv(struct fc_lport *lp, struct fc_frame *fp)
1967 {
1968 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1969 	struct fc_exch_mgr_anchor *ema;
1970 	u32 f_ctl, found = 0;
1971 	u16 oxid;
1972 
1973 	/* lport lock ? */
1974 	if (!lp || lp->state == LPORT_ST_DISABLED) {
1975 		FC_LPORT_DBG(lp, "Receiving frames for an lport that "
1976 			     "has not been initialized correctly\n");
1977 		fc_frame_free(fp);
1978 		return;
1979 	}
1980 
1981 	f_ctl = ntoh24(fh->fh_f_ctl);
1982 	oxid = ntohs(fh->fh_ox_id);
1983 	if (f_ctl & FC_FC_EX_CTX) {
1984 		list_for_each_entry(ema, &lp->ema_list, ema_list) {
1985 			if ((oxid >= ema->mp->min_xid) &&
1986 			    (oxid <= ema->mp->max_xid)) {
1987 				found = 1;
1988 				break;
1989 			}
1990 		}
1991 
1992 		if (!found) {
1993 			FC_LPORT_DBG(lp, "Received response for out "
1994 				     "of range oxid:%hx\n", oxid);
1995 			fc_frame_free(fp);
1996 			return;
1997 		}
1998 	} else
1999 		ema = list_entry(lp->ema_list.prev, typeof(*ema), ema_list);
2000 
2001 	/*
2002 	 * If frame is marked invalid, just drop it.
2003 	 */
2004 	switch (fr_eof(fp)) {
2005 	case FC_EOF_T:
2006 		if (f_ctl & FC_FC_END_SEQ)
2007 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2008 		/* fall through */
2009 	case FC_EOF_N:
2010 		if (fh->fh_type == FC_TYPE_BLS)
2011 			fc_exch_recv_bls(ema->mp, fp);
2012 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2013 			 FC_FC_EX_CTX)
2014 			fc_exch_recv_seq_resp(ema->mp, fp);
2015 		else if (f_ctl & FC_FC_SEQ_CTX)
2016 			fc_exch_recv_resp(ema->mp, fp);
2017 		else
2018 			fc_exch_recv_req(lp, ema->mp, fp);
2019 		break;
2020 	default:
2021 		FC_LPORT_DBG(lp, "dropping invalid frame (eof %x)", fr_eof(fp));
2022 		fc_frame_free(fp);
2023 	}
2024 }
2025 EXPORT_SYMBOL(fc_exch_recv);
2026 
2027 int fc_exch_init(struct fc_lport *lp)
2028 {
2029 	if (!lp->tt.seq_start_next)
2030 		lp->tt.seq_start_next = fc_seq_start_next;
2031 
2032 	if (!lp->tt.exch_seq_send)
2033 		lp->tt.exch_seq_send = fc_exch_seq_send;
2034 
2035 	if (!lp->tt.seq_send)
2036 		lp->tt.seq_send = fc_seq_send;
2037 
2038 	if (!lp->tt.seq_els_rsp_send)
2039 		lp->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2040 
2041 	if (!lp->tt.exch_done)
2042 		lp->tt.exch_done = fc_exch_done;
2043 
2044 	if (!lp->tt.exch_mgr_reset)
2045 		lp->tt.exch_mgr_reset = fc_exch_mgr_reset;
2046 
2047 	if (!lp->tt.seq_exch_abort)
2048 		lp->tt.seq_exch_abort = fc_seq_exch_abort;
2049 
2050 	/*
2051 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2052 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2053 	 * to order of 2's * power and order is stored
2054 	 * in fc_cpu_order as this is later required in
2055 	 * mapping between an exch id and exch array index
2056 	 * in per cpu exch pool.
2057 	 *
2058 	 * This round up is required to align fc_cpu_mask
2059 	 * to exchange id's lower bits such that all incoming
2060 	 * frames of an exchange gets delivered to the same
2061 	 * cpu on which exchange originated by simple bitwise
2062 	 * AND operation between fc_cpu_mask and exchange id.
2063 	 */
2064 	fc_cpu_mask = 1;
2065 	fc_cpu_order = 0;
2066 	while (fc_cpu_mask < nr_cpu_ids) {
2067 		fc_cpu_mask <<= 1;
2068 		fc_cpu_order++;
2069 	}
2070 	fc_cpu_mask--;
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL(fc_exch_init);
2075 
2076 int fc_setup_exch_mgr(void)
2077 {
2078 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2079 					 0, SLAB_HWCACHE_ALIGN, NULL);
2080 	if (!fc_em_cachep)
2081 		return -ENOMEM;
2082 	return 0;
2083 }
2084 
2085 void fc_destroy_exch_mgr(void)
2086 {
2087 	kmem_cache_destroy(fc_em_cachep);
2088 }
2089