1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 #include <linux/export.h> 30 #include <linux/log2.h> 31 32 #include <scsi/fc/fc_fc2.h> 33 34 #include <scsi/libfc.h> 35 #include <scsi/fc_encode.h> 36 37 #include "fc_libfc.h" 38 39 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 40 EXPORT_SYMBOL(fc_cpu_mask); 41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 43 static struct workqueue_struct *fc_exch_workqueue; 44 45 /* 46 * Structure and function definitions for managing Fibre Channel Exchanges 47 * and Sequences. 48 * 49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 50 * 51 * fc_exch_mgr holds the exchange state for an N port 52 * 53 * fc_exch holds state for one exchange and links to its active sequence. 54 * 55 * fc_seq holds the state for an individual sequence. 56 */ 57 58 /** 59 * struct fc_exch_pool - Per cpu exchange pool 60 * @next_index: Next possible free exchange index 61 * @total_exches: Total allocated exchanges 62 * @lock: Exch pool lock 63 * @ex_list: List of exchanges 64 * 65 * This structure manages per cpu exchanges in array of exchange pointers. 66 * This array is allocated followed by struct fc_exch_pool memory for 67 * assigned range of exchanges to per cpu pool. 68 */ 69 struct fc_exch_pool { 70 spinlock_t lock; 71 struct list_head ex_list; 72 u16 next_index; 73 u16 total_exches; 74 75 /* two cache of free slot in exch array */ 76 u16 left; 77 u16 right; 78 } ____cacheline_aligned_in_smp; 79 80 /** 81 * struct fc_exch_mgr - The Exchange Manager (EM). 82 * @class: Default class for new sequences 83 * @kref: Reference counter 84 * @min_xid: Minimum exchange ID 85 * @max_xid: Maximum exchange ID 86 * @ep_pool: Reserved exchange pointers 87 * @pool_max_index: Max exch array index in exch pool 88 * @pool: Per cpu exch pool 89 * @stats: Statistics structure 90 * 91 * This structure is the center for creating exchanges and sequences. 92 * It manages the allocation of exchange IDs. 93 */ 94 struct fc_exch_mgr { 95 struct fc_exch_pool __percpu *pool; 96 mempool_t *ep_pool; 97 struct fc_lport *lport; 98 enum fc_class class; 99 struct kref kref; 100 u16 min_xid; 101 u16 max_xid; 102 u16 pool_max_index; 103 104 struct { 105 atomic_t no_free_exch; 106 atomic_t no_free_exch_xid; 107 atomic_t xid_not_found; 108 atomic_t xid_busy; 109 atomic_t seq_not_found; 110 atomic_t non_bls_resp; 111 } stats; 112 }; 113 114 /** 115 * struct fc_exch_mgr_anchor - primary structure for list of EMs 116 * @ema_list: Exchange Manager Anchor list 117 * @mp: Exchange Manager associated with this anchor 118 * @match: Routine to determine if this anchor's EM should be used 119 * 120 * When walking the list of anchors the match routine will be called 121 * for each anchor to determine if that EM should be used. The last 122 * anchor in the list will always match to handle any exchanges not 123 * handled by other EMs. The non-default EMs would be added to the 124 * anchor list by HW that provides offloads. 125 */ 126 struct fc_exch_mgr_anchor { 127 struct list_head ema_list; 128 struct fc_exch_mgr *mp; 129 bool (*match)(struct fc_frame *); 130 }; 131 132 static void fc_exch_rrq(struct fc_exch *); 133 static void fc_seq_ls_acc(struct fc_frame *); 134 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 135 enum fc_els_rjt_explan); 136 static void fc_exch_els_rec(struct fc_frame *); 137 static void fc_exch_els_rrq(struct fc_frame *); 138 139 /* 140 * Internal implementation notes. 141 * 142 * The exchange manager is one by default in libfc but LLD may choose 143 * to have one per CPU. The sequence manager is one per exchange manager 144 * and currently never separated. 145 * 146 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 147 * assigned by the Sequence Initiator that shall be unique for a specific 148 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 149 * qualified by exchange ID, which one might think it would be. 150 * In practice this limits the number of open sequences and exchanges to 256 151 * per session. For most targets we could treat this limit as per exchange. 152 * 153 * The exchange and its sequence are freed when the last sequence is received. 154 * It's possible for the remote port to leave an exchange open without 155 * sending any sequences. 156 * 157 * Notes on reference counts: 158 * 159 * Exchanges are reference counted and exchange gets freed when the reference 160 * count becomes zero. 161 * 162 * Timeouts: 163 * Sequences are timed out for E_D_TOV and R_A_TOV. 164 * 165 * Sequence event handling: 166 * 167 * The following events may occur on initiator sequences: 168 * 169 * Send. 170 * For now, the whole thing is sent. 171 * Receive ACK 172 * This applies only to class F. 173 * The sequence is marked complete. 174 * ULP completion. 175 * The upper layer calls fc_exch_done() when done 176 * with exchange and sequence tuple. 177 * RX-inferred completion. 178 * When we receive the next sequence on the same exchange, we can 179 * retire the previous sequence ID. (XXX not implemented). 180 * Timeout. 181 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 182 * E_D_TOV causes abort and calls upper layer response handler 183 * with FC_EX_TIMEOUT error. 184 * Receive RJT 185 * XXX defer. 186 * Send ABTS 187 * On timeout. 188 * 189 * The following events may occur on recipient sequences: 190 * 191 * Receive 192 * Allocate sequence for first frame received. 193 * Hold during receive handler. 194 * Release when final frame received. 195 * Keep status of last N of these for the ELS RES command. XXX TBD. 196 * Receive ABTS 197 * Deallocate sequence 198 * Send RJT 199 * Deallocate 200 * 201 * For now, we neglect conditions where only part of a sequence was 202 * received or transmitted, or where out-of-order receipt is detected. 203 */ 204 205 /* 206 * Locking notes: 207 * 208 * The EM code run in a per-CPU worker thread. 209 * 210 * To protect against concurrency between a worker thread code and timers, 211 * sequence allocation and deallocation must be locked. 212 * - exchange refcnt can be done atomicly without locks. 213 * - sequence allocation must be locked by exch lock. 214 * - If the EM pool lock and ex_lock must be taken at the same time, then the 215 * EM pool lock must be taken before the ex_lock. 216 */ 217 218 /* 219 * opcode names for debugging. 220 */ 221 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 222 223 /** 224 * fc_exch_name_lookup() - Lookup name by opcode 225 * @op: Opcode to be looked up 226 * @table: Opcode/name table 227 * @max_index: Index not to be exceeded 228 * 229 * This routine is used to determine a human-readable string identifying 230 * a R_CTL opcode. 231 */ 232 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 233 unsigned int max_index) 234 { 235 const char *name = NULL; 236 237 if (op < max_index) 238 name = table[op]; 239 if (!name) 240 name = "unknown"; 241 return name; 242 } 243 244 /** 245 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 246 * @op: The opcode to be looked up 247 */ 248 static const char *fc_exch_rctl_name(unsigned int op) 249 { 250 return fc_exch_name_lookup(op, fc_exch_rctl_names, 251 ARRAY_SIZE(fc_exch_rctl_names)); 252 } 253 254 /** 255 * fc_exch_hold() - Increment an exchange's reference count 256 * @ep: Echange to be held 257 */ 258 static inline void fc_exch_hold(struct fc_exch *ep) 259 { 260 atomic_inc(&ep->ex_refcnt); 261 } 262 263 /** 264 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 265 * and determine SOF and EOF. 266 * @ep: The exchange to that will use the header 267 * @fp: The frame whose header is to be modified 268 * @f_ctl: F_CTL bits that will be used for the frame header 269 * 270 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 271 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 272 */ 273 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 274 u32 f_ctl) 275 { 276 struct fc_frame_header *fh = fc_frame_header_get(fp); 277 u16 fill; 278 279 fr_sof(fp) = ep->class; 280 if (ep->seq.cnt) 281 fr_sof(fp) = fc_sof_normal(ep->class); 282 283 if (f_ctl & FC_FC_END_SEQ) { 284 fr_eof(fp) = FC_EOF_T; 285 if (fc_sof_needs_ack(ep->class)) 286 fr_eof(fp) = FC_EOF_N; 287 /* 288 * From F_CTL. 289 * The number of fill bytes to make the length a 4-byte 290 * multiple is the low order 2-bits of the f_ctl. 291 * The fill itself will have been cleared by the frame 292 * allocation. 293 * After this, the length will be even, as expected by 294 * the transport. 295 */ 296 fill = fr_len(fp) & 3; 297 if (fill) { 298 fill = 4 - fill; 299 /* TODO, this may be a problem with fragmented skb */ 300 skb_put(fp_skb(fp), fill); 301 hton24(fh->fh_f_ctl, f_ctl | fill); 302 } 303 } else { 304 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 305 fr_eof(fp) = FC_EOF_N; 306 } 307 308 /* Initialize remaining fh fields from fc_fill_fc_hdr */ 309 fh->fh_ox_id = htons(ep->oxid); 310 fh->fh_rx_id = htons(ep->rxid); 311 fh->fh_seq_id = ep->seq.id; 312 fh->fh_seq_cnt = htons(ep->seq.cnt); 313 } 314 315 /** 316 * fc_exch_release() - Decrement an exchange's reference count 317 * @ep: Exchange to be released 318 * 319 * If the reference count reaches zero and the exchange is complete, 320 * it is freed. 321 */ 322 static void fc_exch_release(struct fc_exch *ep) 323 { 324 struct fc_exch_mgr *mp; 325 326 if (atomic_dec_and_test(&ep->ex_refcnt)) { 327 mp = ep->em; 328 if (ep->destructor) 329 ep->destructor(&ep->seq, ep->arg); 330 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 331 mempool_free(ep, mp->ep_pool); 332 } 333 } 334 335 /** 336 * fc_exch_timer_cancel() - cancel exch timer 337 * @ep: The exchange whose timer to be canceled 338 */ 339 static inline void fc_exch_timer_cancel(struct fc_exch *ep) 340 { 341 if (cancel_delayed_work(&ep->timeout_work)) { 342 FC_EXCH_DBG(ep, "Exchange timer canceled\n"); 343 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 344 } 345 } 346 347 /** 348 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 349 * the exchange lock held 350 * @ep: The exchange whose timer will start 351 * @timer_msec: The timeout period 352 * 353 * Used for upper level protocols to time out the exchange. 354 * The timer is cancelled when it fires or when the exchange completes. 355 */ 356 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 357 unsigned int timer_msec) 358 { 359 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 360 return; 361 362 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec); 363 364 fc_exch_hold(ep); /* hold for timer */ 365 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 366 msecs_to_jiffies(timer_msec))) { 367 FC_EXCH_DBG(ep, "Exchange already queued\n"); 368 fc_exch_release(ep); 369 } 370 } 371 372 /** 373 * fc_exch_timer_set() - Lock the exchange and set the timer 374 * @ep: The exchange whose timer will start 375 * @timer_msec: The timeout period 376 */ 377 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 378 { 379 spin_lock_bh(&ep->ex_lock); 380 fc_exch_timer_set_locked(ep, timer_msec); 381 spin_unlock_bh(&ep->ex_lock); 382 } 383 384 /** 385 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 386 * @ep: The exchange that is complete 387 * 388 * Note: May sleep if invoked from outside a response handler. 389 */ 390 static int fc_exch_done_locked(struct fc_exch *ep) 391 { 392 int rc = 1; 393 394 /* 395 * We must check for completion in case there are two threads 396 * tyring to complete this. But the rrq code will reuse the 397 * ep, and in that case we only clear the resp and set it as 398 * complete, so it can be reused by the timer to send the rrq. 399 */ 400 if (ep->state & FC_EX_DONE) 401 return rc; 402 ep->esb_stat |= ESB_ST_COMPLETE; 403 404 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 405 ep->state |= FC_EX_DONE; 406 fc_exch_timer_cancel(ep); 407 rc = 0; 408 } 409 return rc; 410 } 411 412 static struct fc_exch fc_quarantine_exch; 413 414 /** 415 * fc_exch_ptr_get() - Return an exchange from an exchange pool 416 * @pool: Exchange Pool to get an exchange from 417 * @index: Index of the exchange within the pool 418 * 419 * Use the index to get an exchange from within an exchange pool. exches 420 * will point to an array of exchange pointers. The index will select 421 * the exchange within the array. 422 */ 423 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 424 u16 index) 425 { 426 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 427 return exches[index]; 428 } 429 430 /** 431 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 432 * @pool: The pool to assign the exchange to 433 * @index: The index in the pool where the exchange will be assigned 434 * @ep: The exchange to assign to the pool 435 */ 436 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 437 struct fc_exch *ep) 438 { 439 ((struct fc_exch **)(pool + 1))[index] = ep; 440 } 441 442 /** 443 * fc_exch_delete() - Delete an exchange 444 * @ep: The exchange to be deleted 445 */ 446 static void fc_exch_delete(struct fc_exch *ep) 447 { 448 struct fc_exch_pool *pool; 449 u16 index; 450 451 pool = ep->pool; 452 spin_lock_bh(&pool->lock); 453 WARN_ON(pool->total_exches <= 0); 454 pool->total_exches--; 455 456 /* update cache of free slot */ 457 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 458 if (!(ep->state & FC_EX_QUARANTINE)) { 459 if (pool->left == FC_XID_UNKNOWN) 460 pool->left = index; 461 else if (pool->right == FC_XID_UNKNOWN) 462 pool->right = index; 463 else 464 pool->next_index = index; 465 fc_exch_ptr_set(pool, index, NULL); 466 } else { 467 fc_exch_ptr_set(pool, index, &fc_quarantine_exch); 468 } 469 list_del(&ep->ex_list); 470 spin_unlock_bh(&pool->lock); 471 fc_exch_release(ep); /* drop hold for exch in mp */ 472 } 473 474 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp, 475 struct fc_frame *fp) 476 { 477 struct fc_exch *ep; 478 struct fc_frame_header *fh = fc_frame_header_get(fp); 479 int error = -ENXIO; 480 u32 f_ctl; 481 u8 fh_type = fh->fh_type; 482 483 ep = fc_seq_exch(sp); 484 485 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) { 486 fc_frame_free(fp); 487 goto out; 488 } 489 490 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT)); 491 492 f_ctl = ntoh24(fh->fh_f_ctl); 493 fc_exch_setup_hdr(ep, fp, f_ctl); 494 fr_encaps(fp) = ep->encaps; 495 496 /* 497 * update sequence count if this frame is carrying 498 * multiple FC frames when sequence offload is enabled 499 * by LLD. 500 */ 501 if (fr_max_payload(fp)) 502 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 503 fr_max_payload(fp)); 504 else 505 sp->cnt++; 506 507 /* 508 * Send the frame. 509 */ 510 error = lport->tt.frame_send(lport, fp); 511 512 if (fh_type == FC_TYPE_BLS) 513 goto out; 514 515 /* 516 * Update the exchange and sequence flags, 517 * assuming all frames for the sequence have been sent. 518 * We can only be called to send once for each sequence. 519 */ 520 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 521 if (f_ctl & FC_FC_SEQ_INIT) 522 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 523 out: 524 return error; 525 } 526 527 /** 528 * fc_seq_send() - Send a frame using existing sequence/exchange pair 529 * @lport: The local port that the exchange will be sent on 530 * @sp: The sequence to be sent 531 * @fp: The frame to be sent on the exchange 532 * 533 * Note: The frame will be freed either by a direct call to fc_frame_free(fp) 534 * or indirectly by calling libfc_function_template.frame_send(). 535 */ 536 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp) 537 { 538 struct fc_exch *ep; 539 int error; 540 ep = fc_seq_exch(sp); 541 spin_lock_bh(&ep->ex_lock); 542 error = fc_seq_send_locked(lport, sp, fp); 543 spin_unlock_bh(&ep->ex_lock); 544 return error; 545 } 546 EXPORT_SYMBOL(fc_seq_send); 547 548 /** 549 * fc_seq_alloc() - Allocate a sequence for a given exchange 550 * @ep: The exchange to allocate a new sequence for 551 * @seq_id: The sequence ID to be used 552 * 553 * We don't support multiple originated sequences on the same exchange. 554 * By implication, any previously originated sequence on this exchange 555 * is complete, and we reallocate the same sequence. 556 */ 557 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 558 { 559 struct fc_seq *sp; 560 561 sp = &ep->seq; 562 sp->ssb_stat = 0; 563 sp->cnt = 0; 564 sp->id = seq_id; 565 return sp; 566 } 567 568 /** 569 * fc_seq_start_next_locked() - Allocate a new sequence on the same 570 * exchange as the supplied sequence 571 * @sp: The sequence/exchange to get a new sequence for 572 */ 573 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 574 { 575 struct fc_exch *ep = fc_seq_exch(sp); 576 577 sp = fc_seq_alloc(ep, ep->seq_id++); 578 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 579 ep->f_ctl, sp->id); 580 return sp; 581 } 582 583 /** 584 * fc_seq_start_next() - Lock the exchange and get a new sequence 585 * for a given sequence/exchange pair 586 * @sp: The sequence/exchange to get a new exchange for 587 */ 588 struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 589 { 590 struct fc_exch *ep = fc_seq_exch(sp); 591 592 spin_lock_bh(&ep->ex_lock); 593 sp = fc_seq_start_next_locked(sp); 594 spin_unlock_bh(&ep->ex_lock); 595 596 return sp; 597 } 598 EXPORT_SYMBOL(fc_seq_start_next); 599 600 /* 601 * Set the response handler for the exchange associated with a sequence. 602 * 603 * Note: May sleep if invoked from outside a response handler. 604 */ 605 void fc_seq_set_resp(struct fc_seq *sp, 606 void (*resp)(struct fc_seq *, struct fc_frame *, void *), 607 void *arg) 608 { 609 struct fc_exch *ep = fc_seq_exch(sp); 610 DEFINE_WAIT(wait); 611 612 spin_lock_bh(&ep->ex_lock); 613 while (ep->resp_active && ep->resp_task != current) { 614 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE); 615 spin_unlock_bh(&ep->ex_lock); 616 617 schedule(); 618 619 spin_lock_bh(&ep->ex_lock); 620 } 621 finish_wait(&ep->resp_wq, &wait); 622 ep->resp = resp; 623 ep->arg = arg; 624 spin_unlock_bh(&ep->ex_lock); 625 } 626 EXPORT_SYMBOL(fc_seq_set_resp); 627 628 /** 629 * fc_exch_abort_locked() - Abort an exchange 630 * @ep: The exchange to be aborted 631 * @timer_msec: The period of time to wait before aborting 632 * 633 * Abort an exchange and sequence. Generally called because of a 634 * exchange timeout or an abort from the upper layer. 635 * 636 * A timer_msec can be specified for abort timeout, if non-zero 637 * timer_msec value is specified then exchange resp handler 638 * will be called with timeout error if no response to abort. 639 * 640 * Locking notes: Called with exch lock held 641 * 642 * Return value: 0 on success else error code 643 */ 644 static int fc_exch_abort_locked(struct fc_exch *ep, 645 unsigned int timer_msec) 646 { 647 struct fc_seq *sp; 648 struct fc_frame *fp; 649 int error; 650 651 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec); 652 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 653 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) { 654 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n", 655 ep->esb_stat, ep->state); 656 return -ENXIO; 657 } 658 659 /* 660 * Send the abort on a new sequence if possible. 661 */ 662 sp = fc_seq_start_next_locked(&ep->seq); 663 if (!sp) 664 return -ENOMEM; 665 666 if (timer_msec) 667 fc_exch_timer_set_locked(ep, timer_msec); 668 669 if (ep->sid) { 670 /* 671 * Send an abort for the sequence that timed out. 672 */ 673 fp = fc_frame_alloc(ep->lp, 0); 674 if (fp) { 675 ep->esb_stat |= ESB_ST_SEQ_INIT; 676 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 677 FC_TYPE_BLS, FC_FC_END_SEQ | 678 FC_FC_SEQ_INIT, 0); 679 error = fc_seq_send_locked(ep->lp, sp, fp); 680 } else { 681 error = -ENOBUFS; 682 } 683 } else { 684 /* 685 * If not logged into the fabric, don't send ABTS but leave 686 * sequence active until next timeout. 687 */ 688 error = 0; 689 } 690 ep->esb_stat |= ESB_ST_ABNORMAL; 691 return error; 692 } 693 694 /** 695 * fc_seq_exch_abort() - Abort an exchange and sequence 696 * @req_sp: The sequence to be aborted 697 * @timer_msec: The period of time to wait before aborting 698 * 699 * Generally called because of a timeout or an abort from the upper layer. 700 * 701 * Return value: 0 on success else error code 702 */ 703 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec) 704 { 705 struct fc_exch *ep; 706 int error; 707 708 ep = fc_seq_exch(req_sp); 709 spin_lock_bh(&ep->ex_lock); 710 error = fc_exch_abort_locked(ep, timer_msec); 711 spin_unlock_bh(&ep->ex_lock); 712 return error; 713 } 714 715 /** 716 * fc_invoke_resp() - invoke ep->resp() 717 * 718 * Notes: 719 * It is assumed that after initialization finished (this means the 720 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are 721 * modified only via fc_seq_set_resp(). This guarantees that none of these 722 * two variables changes if ep->resp_active > 0. 723 * 724 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when 725 * this function is invoked, the first spin_lock_bh() call in this function 726 * will wait until fc_seq_set_resp() has finished modifying these variables. 727 * 728 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that 729 * ep->resp() won't be invoked after fc_exch_done() has returned. 730 * 731 * The response handler itself may invoke fc_exch_done(), which will clear the 732 * ep->resp pointer. 733 * 734 * Return value: 735 * Returns true if and only if ep->resp has been invoked. 736 */ 737 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp, 738 struct fc_frame *fp) 739 { 740 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 741 void *arg; 742 bool res = false; 743 744 spin_lock_bh(&ep->ex_lock); 745 ep->resp_active++; 746 if (ep->resp_task != current) 747 ep->resp_task = !ep->resp_task ? current : NULL; 748 resp = ep->resp; 749 arg = ep->arg; 750 spin_unlock_bh(&ep->ex_lock); 751 752 if (resp) { 753 resp(sp, fp, arg); 754 res = true; 755 } 756 757 spin_lock_bh(&ep->ex_lock); 758 if (--ep->resp_active == 0) 759 ep->resp_task = NULL; 760 spin_unlock_bh(&ep->ex_lock); 761 762 if (ep->resp_active == 0) 763 wake_up(&ep->resp_wq); 764 765 return res; 766 } 767 768 /** 769 * fc_exch_timeout() - Handle exchange timer expiration 770 * @work: The work_struct identifying the exchange that timed out 771 */ 772 static void fc_exch_timeout(struct work_struct *work) 773 { 774 struct fc_exch *ep = container_of(work, struct fc_exch, 775 timeout_work.work); 776 struct fc_seq *sp = &ep->seq; 777 u32 e_stat; 778 int rc = 1; 779 780 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state); 781 782 spin_lock_bh(&ep->ex_lock); 783 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 784 goto unlock; 785 786 e_stat = ep->esb_stat; 787 if (e_stat & ESB_ST_COMPLETE) { 788 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 789 spin_unlock_bh(&ep->ex_lock); 790 if (e_stat & ESB_ST_REC_QUAL) 791 fc_exch_rrq(ep); 792 goto done; 793 } else { 794 if (e_stat & ESB_ST_ABNORMAL) 795 rc = fc_exch_done_locked(ep); 796 spin_unlock_bh(&ep->ex_lock); 797 if (!rc) 798 fc_exch_delete(ep); 799 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT)); 800 fc_seq_set_resp(sp, NULL, ep->arg); 801 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 802 goto done; 803 } 804 unlock: 805 spin_unlock_bh(&ep->ex_lock); 806 done: 807 /* 808 * This release matches the hold taken when the timer was set. 809 */ 810 fc_exch_release(ep); 811 } 812 813 /** 814 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 815 * @lport: The local port that the exchange is for 816 * @mp: The exchange manager that will allocate the exchange 817 * 818 * Returns pointer to allocated fc_exch with exch lock held. 819 */ 820 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 821 struct fc_exch_mgr *mp) 822 { 823 struct fc_exch *ep; 824 unsigned int cpu; 825 u16 index; 826 struct fc_exch_pool *pool; 827 828 /* allocate memory for exchange */ 829 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 830 if (!ep) { 831 atomic_inc(&mp->stats.no_free_exch); 832 goto out; 833 } 834 memset(ep, 0, sizeof(*ep)); 835 836 cpu = get_cpu(); 837 pool = per_cpu_ptr(mp->pool, cpu); 838 spin_lock_bh(&pool->lock); 839 put_cpu(); 840 841 /* peek cache of free slot */ 842 if (pool->left != FC_XID_UNKNOWN) { 843 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) { 844 index = pool->left; 845 pool->left = FC_XID_UNKNOWN; 846 goto hit; 847 } 848 } 849 if (pool->right != FC_XID_UNKNOWN) { 850 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) { 851 index = pool->right; 852 pool->right = FC_XID_UNKNOWN; 853 goto hit; 854 } 855 } 856 857 index = pool->next_index; 858 /* allocate new exch from pool */ 859 while (fc_exch_ptr_get(pool, index)) { 860 index = index == mp->pool_max_index ? 0 : index + 1; 861 if (index == pool->next_index) 862 goto err; 863 } 864 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 865 hit: 866 fc_exch_hold(ep); /* hold for exch in mp */ 867 spin_lock_init(&ep->ex_lock); 868 /* 869 * Hold exch lock for caller to prevent fc_exch_reset() 870 * from releasing exch while fc_exch_alloc() caller is 871 * still working on exch. 872 */ 873 spin_lock_bh(&ep->ex_lock); 874 875 fc_exch_ptr_set(pool, index, ep); 876 list_add_tail(&ep->ex_list, &pool->ex_list); 877 fc_seq_alloc(ep, ep->seq_id++); 878 pool->total_exches++; 879 spin_unlock_bh(&pool->lock); 880 881 /* 882 * update exchange 883 */ 884 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 885 ep->em = mp; 886 ep->pool = pool; 887 ep->lp = lport; 888 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 889 ep->rxid = FC_XID_UNKNOWN; 890 ep->class = mp->class; 891 ep->resp_active = 0; 892 init_waitqueue_head(&ep->resp_wq); 893 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 894 out: 895 return ep; 896 err: 897 spin_unlock_bh(&pool->lock); 898 atomic_inc(&mp->stats.no_free_exch_xid); 899 mempool_free(ep, mp->ep_pool); 900 return NULL; 901 } 902 903 /** 904 * fc_exch_alloc() - Allocate an exchange from an EM on a 905 * local port's list of EMs. 906 * @lport: The local port that will own the exchange 907 * @fp: The FC frame that the exchange will be for 908 * 909 * This function walks the list of exchange manager(EM) 910 * anchors to select an EM for a new exchange allocation. The 911 * EM is selected when a NULL match function pointer is encountered 912 * or when a call to a match function returns true. 913 */ 914 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 915 struct fc_frame *fp) 916 { 917 struct fc_exch_mgr_anchor *ema; 918 struct fc_exch *ep; 919 920 list_for_each_entry(ema, &lport->ema_list, ema_list) { 921 if (!ema->match || ema->match(fp)) { 922 ep = fc_exch_em_alloc(lport, ema->mp); 923 if (ep) 924 return ep; 925 } 926 } 927 return NULL; 928 } 929 930 /** 931 * fc_exch_find() - Lookup and hold an exchange 932 * @mp: The exchange manager to lookup the exchange from 933 * @xid: The XID of the exchange to look up 934 */ 935 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 936 { 937 struct fc_lport *lport = mp->lport; 938 struct fc_exch_pool *pool; 939 struct fc_exch *ep = NULL; 940 u16 cpu = xid & fc_cpu_mask; 941 942 if (xid == FC_XID_UNKNOWN) 943 return NULL; 944 945 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 946 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:", 947 lport->host->host_no, lport->port_id, xid, cpu); 948 return NULL; 949 } 950 951 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 952 pool = per_cpu_ptr(mp->pool, cpu); 953 spin_lock_bh(&pool->lock); 954 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 955 if (ep == &fc_quarantine_exch) { 956 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid); 957 ep = NULL; 958 } 959 if (ep) { 960 WARN_ON(ep->xid != xid); 961 fc_exch_hold(ep); 962 } 963 spin_unlock_bh(&pool->lock); 964 } 965 return ep; 966 } 967 968 969 /** 970 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 971 * the memory allocated for the related objects may be freed. 972 * @sp: The sequence that has completed 973 * 974 * Note: May sleep if invoked from outside a response handler. 975 */ 976 void fc_exch_done(struct fc_seq *sp) 977 { 978 struct fc_exch *ep = fc_seq_exch(sp); 979 int rc; 980 981 spin_lock_bh(&ep->ex_lock); 982 rc = fc_exch_done_locked(ep); 983 spin_unlock_bh(&ep->ex_lock); 984 985 fc_seq_set_resp(sp, NULL, ep->arg); 986 if (!rc) 987 fc_exch_delete(ep); 988 } 989 EXPORT_SYMBOL(fc_exch_done); 990 991 /** 992 * fc_exch_resp() - Allocate a new exchange for a response frame 993 * @lport: The local port that the exchange was for 994 * @mp: The exchange manager to allocate the exchange from 995 * @fp: The response frame 996 * 997 * Sets the responder ID in the frame header. 998 */ 999 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 1000 struct fc_exch_mgr *mp, 1001 struct fc_frame *fp) 1002 { 1003 struct fc_exch *ep; 1004 struct fc_frame_header *fh; 1005 1006 ep = fc_exch_alloc(lport, fp); 1007 if (ep) { 1008 ep->class = fc_frame_class(fp); 1009 1010 /* 1011 * Set EX_CTX indicating we're responding on this exchange. 1012 */ 1013 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 1014 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 1015 fh = fc_frame_header_get(fp); 1016 ep->sid = ntoh24(fh->fh_d_id); 1017 ep->did = ntoh24(fh->fh_s_id); 1018 ep->oid = ep->did; 1019 1020 /* 1021 * Allocated exchange has placed the XID in the 1022 * originator field. Move it to the responder field, 1023 * and set the originator XID from the frame. 1024 */ 1025 ep->rxid = ep->xid; 1026 ep->oxid = ntohs(fh->fh_ox_id); 1027 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 1028 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 1029 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 1030 1031 fc_exch_hold(ep); /* hold for caller */ 1032 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 1033 } 1034 return ep; 1035 } 1036 1037 /** 1038 * fc_seq_lookup_recip() - Find a sequence where the other end 1039 * originated the sequence 1040 * @lport: The local port that the frame was sent to 1041 * @mp: The Exchange Manager to lookup the exchange from 1042 * @fp: The frame associated with the sequence we're looking for 1043 * 1044 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 1045 * on the ep that should be released by the caller. 1046 */ 1047 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 1048 struct fc_exch_mgr *mp, 1049 struct fc_frame *fp) 1050 { 1051 struct fc_frame_header *fh = fc_frame_header_get(fp); 1052 struct fc_exch *ep = NULL; 1053 struct fc_seq *sp = NULL; 1054 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 1055 u32 f_ctl; 1056 u16 xid; 1057 1058 f_ctl = ntoh24(fh->fh_f_ctl); 1059 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 1060 1061 /* 1062 * Lookup or create the exchange if we will be creating the sequence. 1063 */ 1064 if (f_ctl & FC_FC_EX_CTX) { 1065 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 1066 ep = fc_exch_find(mp, xid); 1067 if (!ep) { 1068 atomic_inc(&mp->stats.xid_not_found); 1069 reject = FC_RJT_OX_ID; 1070 goto out; 1071 } 1072 if (ep->rxid == FC_XID_UNKNOWN) 1073 ep->rxid = ntohs(fh->fh_rx_id); 1074 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 1075 reject = FC_RJT_OX_ID; 1076 goto rel; 1077 } 1078 } else { 1079 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 1080 1081 /* 1082 * Special case for MDS issuing an ELS TEST with a 1083 * bad rxid of 0. 1084 * XXX take this out once we do the proper reject. 1085 */ 1086 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 1087 fc_frame_payload_op(fp) == ELS_TEST) { 1088 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 1089 xid = FC_XID_UNKNOWN; 1090 } 1091 1092 /* 1093 * new sequence - find the exchange 1094 */ 1095 ep = fc_exch_find(mp, xid); 1096 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 1097 if (ep) { 1098 atomic_inc(&mp->stats.xid_busy); 1099 reject = FC_RJT_RX_ID; 1100 goto rel; 1101 } 1102 ep = fc_exch_resp(lport, mp, fp); 1103 if (!ep) { 1104 reject = FC_RJT_EXCH_EST; /* XXX */ 1105 goto out; 1106 } 1107 xid = ep->xid; /* get our XID */ 1108 } else if (!ep) { 1109 atomic_inc(&mp->stats.xid_not_found); 1110 reject = FC_RJT_RX_ID; /* XID not found */ 1111 goto out; 1112 } 1113 } 1114 1115 spin_lock_bh(&ep->ex_lock); 1116 /* 1117 * At this point, we have the exchange held. 1118 * Find or create the sequence. 1119 */ 1120 if (fc_sof_is_init(fr_sof(fp))) { 1121 sp = &ep->seq; 1122 sp->ssb_stat |= SSB_ST_RESP; 1123 sp->id = fh->fh_seq_id; 1124 } else { 1125 sp = &ep->seq; 1126 if (sp->id != fh->fh_seq_id) { 1127 atomic_inc(&mp->stats.seq_not_found); 1128 if (f_ctl & FC_FC_END_SEQ) { 1129 /* 1130 * Update sequence_id based on incoming last 1131 * frame of sequence exchange. This is needed 1132 * for FC target where DDP has been used 1133 * on target where, stack is indicated only 1134 * about last frame's (payload _header) header. 1135 * Whereas "seq_id" which is part of 1136 * frame_header is allocated by initiator 1137 * which is totally different from "seq_id" 1138 * allocated when XFER_RDY was sent by target. 1139 * To avoid false -ve which results into not 1140 * sending RSP, hence write request on other 1141 * end never finishes. 1142 */ 1143 sp->ssb_stat |= SSB_ST_RESP; 1144 sp->id = fh->fh_seq_id; 1145 } else { 1146 spin_unlock_bh(&ep->ex_lock); 1147 1148 /* sequence/exch should exist */ 1149 reject = FC_RJT_SEQ_ID; 1150 goto rel; 1151 } 1152 } 1153 } 1154 WARN_ON(ep != fc_seq_exch(sp)); 1155 1156 if (f_ctl & FC_FC_SEQ_INIT) 1157 ep->esb_stat |= ESB_ST_SEQ_INIT; 1158 spin_unlock_bh(&ep->ex_lock); 1159 1160 fr_seq(fp) = sp; 1161 out: 1162 return reject; 1163 rel: 1164 fc_exch_done(&ep->seq); 1165 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1166 return reject; 1167 } 1168 1169 /** 1170 * fc_seq_lookup_orig() - Find a sequence where this end 1171 * originated the sequence 1172 * @mp: The Exchange Manager to lookup the exchange from 1173 * @fp: The frame associated with the sequence we're looking for 1174 * 1175 * Does not hold the sequence for the caller. 1176 */ 1177 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1178 struct fc_frame *fp) 1179 { 1180 struct fc_frame_header *fh = fc_frame_header_get(fp); 1181 struct fc_exch *ep; 1182 struct fc_seq *sp = NULL; 1183 u32 f_ctl; 1184 u16 xid; 1185 1186 f_ctl = ntoh24(fh->fh_f_ctl); 1187 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1188 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1189 ep = fc_exch_find(mp, xid); 1190 if (!ep) 1191 return NULL; 1192 if (ep->seq.id == fh->fh_seq_id) { 1193 /* 1194 * Save the RX_ID if we didn't previously know it. 1195 */ 1196 sp = &ep->seq; 1197 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1198 ep->rxid == FC_XID_UNKNOWN) { 1199 ep->rxid = ntohs(fh->fh_rx_id); 1200 } 1201 } 1202 fc_exch_release(ep); 1203 return sp; 1204 } 1205 1206 /** 1207 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1208 * @ep: The exchange to set the addresses for 1209 * @orig_id: The originator's ID 1210 * @resp_id: The responder's ID 1211 * 1212 * Note this must be done before the first sequence of the exchange is sent. 1213 */ 1214 static void fc_exch_set_addr(struct fc_exch *ep, 1215 u32 orig_id, u32 resp_id) 1216 { 1217 ep->oid = orig_id; 1218 if (ep->esb_stat & ESB_ST_RESP) { 1219 ep->sid = resp_id; 1220 ep->did = orig_id; 1221 } else { 1222 ep->sid = orig_id; 1223 ep->did = resp_id; 1224 } 1225 } 1226 1227 /** 1228 * fc_seq_els_rsp_send() - Send an ELS response using information from 1229 * the existing sequence/exchange. 1230 * @fp: The received frame 1231 * @els_cmd: The ELS command to be sent 1232 * @els_data: The ELS data to be sent 1233 * 1234 * The received frame is not freed. 1235 */ 1236 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1237 struct fc_seq_els_data *els_data) 1238 { 1239 switch (els_cmd) { 1240 case ELS_LS_RJT: 1241 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1242 break; 1243 case ELS_LS_ACC: 1244 fc_seq_ls_acc(fp); 1245 break; 1246 case ELS_RRQ: 1247 fc_exch_els_rrq(fp); 1248 break; 1249 case ELS_REC: 1250 fc_exch_els_rec(fp); 1251 break; 1252 default: 1253 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1254 } 1255 } 1256 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send); 1257 1258 /** 1259 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1260 * @sp: The sequence that is to be sent 1261 * @fp: The frame that will be sent on the sequence 1262 * @rctl: The R_CTL information to be sent 1263 * @fh_type: The frame header type 1264 */ 1265 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1266 enum fc_rctl rctl, enum fc_fh_type fh_type) 1267 { 1268 u32 f_ctl; 1269 struct fc_exch *ep = fc_seq_exch(sp); 1270 1271 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1272 f_ctl |= ep->f_ctl; 1273 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1274 fc_seq_send_locked(ep->lp, sp, fp); 1275 } 1276 1277 /** 1278 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1279 * @sp: The sequence to send the ACK on 1280 * @rx_fp: The received frame that is being acknoledged 1281 * 1282 * Send ACK_1 (or equiv.) indicating we received something. 1283 */ 1284 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1285 { 1286 struct fc_frame *fp; 1287 struct fc_frame_header *rx_fh; 1288 struct fc_frame_header *fh; 1289 struct fc_exch *ep = fc_seq_exch(sp); 1290 struct fc_lport *lport = ep->lp; 1291 unsigned int f_ctl; 1292 1293 /* 1294 * Don't send ACKs for class 3. 1295 */ 1296 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1297 fp = fc_frame_alloc(lport, 0); 1298 if (!fp) { 1299 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n"); 1300 return; 1301 } 1302 1303 fh = fc_frame_header_get(fp); 1304 fh->fh_r_ctl = FC_RCTL_ACK_1; 1305 fh->fh_type = FC_TYPE_BLS; 1306 1307 /* 1308 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1309 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1310 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1311 * Last ACK uses bits 7-6 (continue sequence), 1312 * bits 5-4 are meaningful (what kind of ACK to use). 1313 */ 1314 rx_fh = fc_frame_header_get(rx_fp); 1315 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1316 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1317 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1318 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1319 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1320 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1321 hton24(fh->fh_f_ctl, f_ctl); 1322 1323 fc_exch_setup_hdr(ep, fp, f_ctl); 1324 fh->fh_seq_id = rx_fh->fh_seq_id; 1325 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1326 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1327 1328 fr_sof(fp) = fr_sof(rx_fp); 1329 if (f_ctl & FC_FC_END_SEQ) 1330 fr_eof(fp) = FC_EOF_T; 1331 else 1332 fr_eof(fp) = FC_EOF_N; 1333 1334 lport->tt.frame_send(lport, fp); 1335 } 1336 } 1337 1338 /** 1339 * fc_exch_send_ba_rjt() - Send BLS Reject 1340 * @rx_fp: The frame being rejected 1341 * @reason: The reason the frame is being rejected 1342 * @explan: The explanation for the rejection 1343 * 1344 * This is for rejecting BA_ABTS only. 1345 */ 1346 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1347 enum fc_ba_rjt_reason reason, 1348 enum fc_ba_rjt_explan explan) 1349 { 1350 struct fc_frame *fp; 1351 struct fc_frame_header *rx_fh; 1352 struct fc_frame_header *fh; 1353 struct fc_ba_rjt *rp; 1354 struct fc_seq *sp; 1355 struct fc_lport *lport; 1356 unsigned int f_ctl; 1357 1358 lport = fr_dev(rx_fp); 1359 sp = fr_seq(rx_fp); 1360 fp = fc_frame_alloc(lport, sizeof(*rp)); 1361 if (!fp) { 1362 FC_EXCH_DBG(fc_seq_exch(sp), 1363 "Drop BA_RJT request, out of memory\n"); 1364 return; 1365 } 1366 fh = fc_frame_header_get(fp); 1367 rx_fh = fc_frame_header_get(rx_fp); 1368 1369 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1370 1371 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1372 rp->br_reason = reason; 1373 rp->br_explan = explan; 1374 1375 /* 1376 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1377 */ 1378 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1379 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1380 fh->fh_ox_id = rx_fh->fh_ox_id; 1381 fh->fh_rx_id = rx_fh->fh_rx_id; 1382 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1383 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1384 fh->fh_type = FC_TYPE_BLS; 1385 1386 /* 1387 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1388 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1389 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1390 * Last ACK uses bits 7-6 (continue sequence), 1391 * bits 5-4 are meaningful (what kind of ACK to use). 1392 * Always set LAST_SEQ, END_SEQ. 1393 */ 1394 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1395 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1396 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1397 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1398 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1399 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1400 f_ctl &= ~FC_FC_FIRST_SEQ; 1401 hton24(fh->fh_f_ctl, f_ctl); 1402 1403 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1404 fr_eof(fp) = FC_EOF_T; 1405 if (fc_sof_needs_ack(fr_sof(fp))) 1406 fr_eof(fp) = FC_EOF_N; 1407 1408 lport->tt.frame_send(lport, fp); 1409 } 1410 1411 /** 1412 * fc_exch_recv_abts() - Handle an incoming ABTS 1413 * @ep: The exchange the abort was on 1414 * @rx_fp: The ABTS frame 1415 * 1416 * This would be for target mode usually, but could be due to lost 1417 * FCP transfer ready, confirm or RRQ. We always handle this as an 1418 * exchange abort, ignoring the parameter. 1419 */ 1420 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1421 { 1422 struct fc_frame *fp; 1423 struct fc_ba_acc *ap; 1424 struct fc_frame_header *fh; 1425 struct fc_seq *sp; 1426 1427 if (!ep) 1428 goto reject; 1429 1430 FC_EXCH_DBG(ep, "exch: ABTS received\n"); 1431 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1432 if (!fp) { 1433 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n"); 1434 goto free; 1435 } 1436 1437 spin_lock_bh(&ep->ex_lock); 1438 if (ep->esb_stat & ESB_ST_COMPLETE) { 1439 spin_unlock_bh(&ep->ex_lock); 1440 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n"); 1441 fc_frame_free(fp); 1442 goto reject; 1443 } 1444 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 1445 ep->esb_stat |= ESB_ST_REC_QUAL; 1446 fc_exch_hold(ep); /* hold for REC_QUAL */ 1447 } 1448 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1449 fh = fc_frame_header_get(fp); 1450 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1451 memset(ap, 0, sizeof(*ap)); 1452 sp = &ep->seq; 1453 ap->ba_high_seq_cnt = htons(0xffff); 1454 if (sp->ssb_stat & SSB_ST_RESP) { 1455 ap->ba_seq_id = sp->id; 1456 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1457 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1458 ap->ba_low_seq_cnt = htons(sp->cnt); 1459 } 1460 sp = fc_seq_start_next_locked(sp); 1461 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1462 ep->esb_stat |= ESB_ST_ABNORMAL; 1463 spin_unlock_bh(&ep->ex_lock); 1464 1465 free: 1466 fc_frame_free(rx_fp); 1467 return; 1468 1469 reject: 1470 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1471 goto free; 1472 } 1473 1474 /** 1475 * fc_seq_assign() - Assign exchange and sequence for incoming request 1476 * @lport: The local port that received the request 1477 * @fp: The request frame 1478 * 1479 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1480 * A reference will be held on the exchange/sequence for the caller, which 1481 * must call fc_seq_release(). 1482 */ 1483 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1484 { 1485 struct fc_exch_mgr_anchor *ema; 1486 1487 WARN_ON(lport != fr_dev(fp)); 1488 WARN_ON(fr_seq(fp)); 1489 fr_seq(fp) = NULL; 1490 1491 list_for_each_entry(ema, &lport->ema_list, ema_list) 1492 if ((!ema->match || ema->match(fp)) && 1493 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1494 break; 1495 return fr_seq(fp); 1496 } 1497 EXPORT_SYMBOL(fc_seq_assign); 1498 1499 /** 1500 * fc_seq_release() - Release the hold 1501 * @sp: The sequence. 1502 */ 1503 void fc_seq_release(struct fc_seq *sp) 1504 { 1505 fc_exch_release(fc_seq_exch(sp)); 1506 } 1507 EXPORT_SYMBOL(fc_seq_release); 1508 1509 /** 1510 * fc_exch_recv_req() - Handler for an incoming request 1511 * @lport: The local port that received the request 1512 * @mp: The EM that the exchange is on 1513 * @fp: The request frame 1514 * 1515 * This is used when the other end is originating the exchange 1516 * and the sequence. 1517 */ 1518 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1519 struct fc_frame *fp) 1520 { 1521 struct fc_frame_header *fh = fc_frame_header_get(fp); 1522 struct fc_seq *sp = NULL; 1523 struct fc_exch *ep = NULL; 1524 enum fc_pf_rjt_reason reject; 1525 1526 /* We can have the wrong fc_lport at this point with NPIV, which is a 1527 * problem now that we know a new exchange needs to be allocated 1528 */ 1529 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1530 if (!lport) { 1531 fc_frame_free(fp); 1532 return; 1533 } 1534 fr_dev(fp) = lport; 1535 1536 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1537 1538 /* 1539 * If the RX_ID is 0xffff, don't allocate an exchange. 1540 * The upper-level protocol may request one later, if needed. 1541 */ 1542 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1543 return fc_lport_recv(lport, fp); 1544 1545 reject = fc_seq_lookup_recip(lport, mp, fp); 1546 if (reject == FC_RJT_NONE) { 1547 sp = fr_seq(fp); /* sequence will be held */ 1548 ep = fc_seq_exch(sp); 1549 fc_seq_send_ack(sp, fp); 1550 ep->encaps = fr_encaps(fp); 1551 1552 /* 1553 * Call the receive function. 1554 * 1555 * The receive function may allocate a new sequence 1556 * over the old one, so we shouldn't change the 1557 * sequence after this. 1558 * 1559 * The frame will be freed by the receive function. 1560 * If new exch resp handler is valid then call that 1561 * first. 1562 */ 1563 if (!fc_invoke_resp(ep, sp, fp)) 1564 fc_lport_recv(lport, fp); 1565 fc_exch_release(ep); /* release from lookup */ 1566 } else { 1567 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1568 reject); 1569 fc_frame_free(fp); 1570 } 1571 } 1572 1573 /** 1574 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1575 * end is the originator of the sequence that is a 1576 * response to our initial exchange 1577 * @mp: The EM that the exchange is on 1578 * @fp: The response frame 1579 */ 1580 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1581 { 1582 struct fc_frame_header *fh = fc_frame_header_get(fp); 1583 struct fc_seq *sp; 1584 struct fc_exch *ep; 1585 enum fc_sof sof; 1586 u32 f_ctl; 1587 int rc; 1588 1589 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1590 if (!ep) { 1591 atomic_inc(&mp->stats.xid_not_found); 1592 goto out; 1593 } 1594 if (ep->esb_stat & ESB_ST_COMPLETE) { 1595 atomic_inc(&mp->stats.xid_not_found); 1596 goto rel; 1597 } 1598 if (ep->rxid == FC_XID_UNKNOWN) 1599 ep->rxid = ntohs(fh->fh_rx_id); 1600 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1601 atomic_inc(&mp->stats.xid_not_found); 1602 goto rel; 1603 } 1604 if (ep->did != ntoh24(fh->fh_s_id) && 1605 ep->did != FC_FID_FLOGI) { 1606 atomic_inc(&mp->stats.xid_not_found); 1607 goto rel; 1608 } 1609 sof = fr_sof(fp); 1610 sp = &ep->seq; 1611 if (fc_sof_is_init(sof)) { 1612 sp->ssb_stat |= SSB_ST_RESP; 1613 sp->id = fh->fh_seq_id; 1614 } 1615 1616 f_ctl = ntoh24(fh->fh_f_ctl); 1617 fr_seq(fp) = sp; 1618 1619 spin_lock_bh(&ep->ex_lock); 1620 if (f_ctl & FC_FC_SEQ_INIT) 1621 ep->esb_stat |= ESB_ST_SEQ_INIT; 1622 spin_unlock_bh(&ep->ex_lock); 1623 1624 if (fc_sof_needs_ack(sof)) 1625 fc_seq_send_ack(sp, fp); 1626 1627 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1628 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1629 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1630 spin_lock_bh(&ep->ex_lock); 1631 rc = fc_exch_done_locked(ep); 1632 WARN_ON(fc_seq_exch(sp) != ep); 1633 spin_unlock_bh(&ep->ex_lock); 1634 if (!rc) 1635 fc_exch_delete(ep); 1636 } 1637 1638 /* 1639 * Call the receive function. 1640 * The sequence is held (has a refcnt) for us, 1641 * but not for the receive function. 1642 * 1643 * The receive function may allocate a new sequence 1644 * over the old one, so we shouldn't change the 1645 * sequence after this. 1646 * 1647 * The frame will be freed by the receive function. 1648 * If new exch resp handler is valid then call that 1649 * first. 1650 */ 1651 if (!fc_invoke_resp(ep, sp, fp)) 1652 fc_frame_free(fp); 1653 1654 fc_exch_release(ep); 1655 return; 1656 rel: 1657 fc_exch_release(ep); 1658 out: 1659 fc_frame_free(fp); 1660 } 1661 1662 /** 1663 * fc_exch_recv_resp() - Handler for a sequence where other end is 1664 * responding to our sequence 1665 * @mp: The EM that the exchange is on 1666 * @fp: The response frame 1667 */ 1668 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1669 { 1670 struct fc_seq *sp; 1671 1672 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1673 1674 if (!sp) 1675 atomic_inc(&mp->stats.xid_not_found); 1676 else 1677 atomic_inc(&mp->stats.non_bls_resp); 1678 1679 fc_frame_free(fp); 1680 } 1681 1682 /** 1683 * fc_exch_abts_resp() - Handler for a response to an ABT 1684 * @ep: The exchange that the frame is on 1685 * @fp: The response frame 1686 * 1687 * This response would be to an ABTS cancelling an exchange or sequence. 1688 * The response can be either BA_ACC or BA_RJT 1689 */ 1690 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1691 { 1692 struct fc_frame_header *fh; 1693 struct fc_ba_acc *ap; 1694 struct fc_seq *sp; 1695 u16 low; 1696 u16 high; 1697 int rc = 1, has_rec = 0; 1698 1699 fh = fc_frame_header_get(fp); 1700 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1701 fc_exch_rctl_name(fh->fh_r_ctl)); 1702 1703 if (cancel_delayed_work_sync(&ep->timeout_work)) { 1704 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n"); 1705 fc_exch_release(ep); /* release from pending timer hold */ 1706 } 1707 1708 spin_lock_bh(&ep->ex_lock); 1709 switch (fh->fh_r_ctl) { 1710 case FC_RCTL_BA_ACC: 1711 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1712 if (!ap) 1713 break; 1714 1715 /* 1716 * Decide whether to establish a Recovery Qualifier. 1717 * We do this if there is a non-empty SEQ_CNT range and 1718 * SEQ_ID is the same as the one we aborted. 1719 */ 1720 low = ntohs(ap->ba_low_seq_cnt); 1721 high = ntohs(ap->ba_high_seq_cnt); 1722 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1723 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1724 ap->ba_seq_id == ep->seq_id) && low != high) { 1725 ep->esb_stat |= ESB_ST_REC_QUAL; 1726 fc_exch_hold(ep); /* hold for recovery qualifier */ 1727 has_rec = 1; 1728 } 1729 break; 1730 case FC_RCTL_BA_RJT: 1731 break; 1732 default: 1733 break; 1734 } 1735 1736 /* do we need to do some other checks here. Can we reuse more of 1737 * fc_exch_recv_seq_resp 1738 */ 1739 sp = &ep->seq; 1740 /* 1741 * do we want to check END_SEQ as well as LAST_SEQ here? 1742 */ 1743 if (ep->fh_type != FC_TYPE_FCP && 1744 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1745 rc = fc_exch_done_locked(ep); 1746 spin_unlock_bh(&ep->ex_lock); 1747 1748 fc_exch_hold(ep); 1749 if (!rc) 1750 fc_exch_delete(ep); 1751 if (!fc_invoke_resp(ep, sp, fp)) 1752 fc_frame_free(fp); 1753 if (has_rec) 1754 fc_exch_timer_set(ep, ep->r_a_tov); 1755 fc_exch_release(ep); 1756 } 1757 1758 /** 1759 * fc_exch_recv_bls() - Handler for a BLS sequence 1760 * @mp: The EM that the exchange is on 1761 * @fp: The request frame 1762 * 1763 * The BLS frame is always a sequence initiated by the remote side. 1764 * We may be either the originator or recipient of the exchange. 1765 */ 1766 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1767 { 1768 struct fc_frame_header *fh; 1769 struct fc_exch *ep; 1770 u32 f_ctl; 1771 1772 fh = fc_frame_header_get(fp); 1773 f_ctl = ntoh24(fh->fh_f_ctl); 1774 fr_seq(fp) = NULL; 1775 1776 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1777 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1778 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1779 spin_lock_bh(&ep->ex_lock); 1780 ep->esb_stat |= ESB_ST_SEQ_INIT; 1781 spin_unlock_bh(&ep->ex_lock); 1782 } 1783 if (f_ctl & FC_FC_SEQ_CTX) { 1784 /* 1785 * A response to a sequence we initiated. 1786 * This should only be ACKs for class 2 or F. 1787 */ 1788 switch (fh->fh_r_ctl) { 1789 case FC_RCTL_ACK_1: 1790 case FC_RCTL_ACK_0: 1791 break; 1792 default: 1793 if (ep) 1794 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n", 1795 fh->fh_r_ctl, 1796 fc_exch_rctl_name(fh->fh_r_ctl)); 1797 break; 1798 } 1799 fc_frame_free(fp); 1800 } else { 1801 switch (fh->fh_r_ctl) { 1802 case FC_RCTL_BA_RJT: 1803 case FC_RCTL_BA_ACC: 1804 if (ep) 1805 fc_exch_abts_resp(ep, fp); 1806 else 1807 fc_frame_free(fp); 1808 break; 1809 case FC_RCTL_BA_ABTS: 1810 if (ep) 1811 fc_exch_recv_abts(ep, fp); 1812 else 1813 fc_frame_free(fp); 1814 break; 1815 default: /* ignore junk */ 1816 fc_frame_free(fp); 1817 break; 1818 } 1819 } 1820 if (ep) 1821 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1822 } 1823 1824 /** 1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1826 * @rx_fp: The received frame, not freed here. 1827 * 1828 * If this fails due to allocation or transmit congestion, assume the 1829 * originator will repeat the sequence. 1830 */ 1831 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1832 { 1833 struct fc_lport *lport; 1834 struct fc_els_ls_acc *acc; 1835 struct fc_frame *fp; 1836 struct fc_seq *sp; 1837 1838 lport = fr_dev(rx_fp); 1839 sp = fr_seq(rx_fp); 1840 fp = fc_frame_alloc(lport, sizeof(*acc)); 1841 if (!fp) { 1842 FC_EXCH_DBG(fc_seq_exch(sp), 1843 "exch: drop LS_ACC, out of memory\n"); 1844 return; 1845 } 1846 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1847 memset(acc, 0, sizeof(*acc)); 1848 acc->la_cmd = ELS_LS_ACC; 1849 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1850 lport->tt.frame_send(lport, fp); 1851 } 1852 1853 /** 1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1855 * @rx_fp: The received frame, not freed here. 1856 * @reason: The reason the sequence is being rejected 1857 * @explan: The explanation for the rejection 1858 * 1859 * If this fails due to allocation or transmit congestion, assume the 1860 * originator will repeat the sequence. 1861 */ 1862 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1863 enum fc_els_rjt_explan explan) 1864 { 1865 struct fc_lport *lport; 1866 struct fc_els_ls_rjt *rjt; 1867 struct fc_frame *fp; 1868 struct fc_seq *sp; 1869 1870 lport = fr_dev(rx_fp); 1871 sp = fr_seq(rx_fp); 1872 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1873 if (!fp) { 1874 FC_EXCH_DBG(fc_seq_exch(sp), 1875 "exch: drop LS_ACC, out of memory\n"); 1876 return; 1877 } 1878 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1879 memset(rjt, 0, sizeof(*rjt)); 1880 rjt->er_cmd = ELS_LS_RJT; 1881 rjt->er_reason = reason; 1882 rjt->er_explan = explan; 1883 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1884 lport->tt.frame_send(lport, fp); 1885 } 1886 1887 /** 1888 * fc_exch_reset() - Reset an exchange 1889 * @ep: The exchange to be reset 1890 * 1891 * Note: May sleep if invoked from outside a response handler. 1892 */ 1893 static void fc_exch_reset(struct fc_exch *ep) 1894 { 1895 struct fc_seq *sp; 1896 int rc = 1; 1897 1898 spin_lock_bh(&ep->ex_lock); 1899 ep->state |= FC_EX_RST_CLEANUP; 1900 fc_exch_timer_cancel(ep); 1901 if (ep->esb_stat & ESB_ST_REC_QUAL) 1902 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1903 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1904 sp = &ep->seq; 1905 rc = fc_exch_done_locked(ep); 1906 spin_unlock_bh(&ep->ex_lock); 1907 1908 fc_exch_hold(ep); 1909 1910 if (!rc) 1911 fc_exch_delete(ep); 1912 1913 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED)); 1914 fc_seq_set_resp(sp, NULL, ep->arg); 1915 fc_exch_release(ep); 1916 } 1917 1918 /** 1919 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1920 * @lport: The local port that the exchange pool is on 1921 * @pool: The exchange pool to be reset 1922 * @sid: The source ID 1923 * @did: The destination ID 1924 * 1925 * Resets a per cpu exches pool, releasing all of its sequences 1926 * and exchanges. If sid is non-zero then reset only exchanges 1927 * we sourced from the local port's FID. If did is non-zero then 1928 * only reset exchanges destined for the local port's FID. 1929 */ 1930 static void fc_exch_pool_reset(struct fc_lport *lport, 1931 struct fc_exch_pool *pool, 1932 u32 sid, u32 did) 1933 { 1934 struct fc_exch *ep; 1935 struct fc_exch *next; 1936 1937 spin_lock_bh(&pool->lock); 1938 restart: 1939 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1940 if ((lport == ep->lp) && 1941 (sid == 0 || sid == ep->sid) && 1942 (did == 0 || did == ep->did)) { 1943 fc_exch_hold(ep); 1944 spin_unlock_bh(&pool->lock); 1945 1946 fc_exch_reset(ep); 1947 1948 fc_exch_release(ep); 1949 spin_lock_bh(&pool->lock); 1950 1951 /* 1952 * must restart loop incase while lock 1953 * was down multiple eps were released. 1954 */ 1955 goto restart; 1956 } 1957 } 1958 pool->next_index = 0; 1959 pool->left = FC_XID_UNKNOWN; 1960 pool->right = FC_XID_UNKNOWN; 1961 spin_unlock_bh(&pool->lock); 1962 } 1963 1964 /** 1965 * fc_exch_mgr_reset() - Reset all EMs of a local port 1966 * @lport: The local port whose EMs are to be reset 1967 * @sid: The source ID 1968 * @did: The destination ID 1969 * 1970 * Reset all EMs associated with a given local port. Release all 1971 * sequences and exchanges. If sid is non-zero then reset only the 1972 * exchanges sent from the local port's FID. If did is non-zero then 1973 * reset only exchanges destined for the local port's FID. 1974 */ 1975 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1976 { 1977 struct fc_exch_mgr_anchor *ema; 1978 unsigned int cpu; 1979 1980 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1981 for_each_possible_cpu(cpu) 1982 fc_exch_pool_reset(lport, 1983 per_cpu_ptr(ema->mp->pool, cpu), 1984 sid, did); 1985 } 1986 } 1987 EXPORT_SYMBOL(fc_exch_mgr_reset); 1988 1989 /** 1990 * fc_exch_lookup() - find an exchange 1991 * @lport: The local port 1992 * @xid: The exchange ID 1993 * 1994 * Returns exchange pointer with hold for caller, or NULL if not found. 1995 */ 1996 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 1997 { 1998 struct fc_exch_mgr_anchor *ema; 1999 2000 list_for_each_entry(ema, &lport->ema_list, ema_list) 2001 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 2002 return fc_exch_find(ema->mp, xid); 2003 return NULL; 2004 } 2005 2006 /** 2007 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 2008 * @rfp: The REC frame, not freed here. 2009 * 2010 * Note that the requesting port may be different than the S_ID in the request. 2011 */ 2012 static void fc_exch_els_rec(struct fc_frame *rfp) 2013 { 2014 struct fc_lport *lport; 2015 struct fc_frame *fp; 2016 struct fc_exch *ep; 2017 struct fc_els_rec *rp; 2018 struct fc_els_rec_acc *acc; 2019 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 2020 enum fc_els_rjt_explan explan; 2021 u32 sid; 2022 u16 xid, rxid, oxid; 2023 2024 lport = fr_dev(rfp); 2025 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 2026 explan = ELS_EXPL_INV_LEN; 2027 if (!rp) 2028 goto reject; 2029 sid = ntoh24(rp->rec_s_id); 2030 rxid = ntohs(rp->rec_rx_id); 2031 oxid = ntohs(rp->rec_ox_id); 2032 2033 explan = ELS_EXPL_OXID_RXID; 2034 if (sid == fc_host_port_id(lport->host)) 2035 xid = oxid; 2036 else 2037 xid = rxid; 2038 if (xid == FC_XID_UNKNOWN) { 2039 FC_LPORT_DBG(lport, 2040 "REC request from %x: invalid rxid %x oxid %x\n", 2041 sid, rxid, oxid); 2042 goto reject; 2043 } 2044 ep = fc_exch_lookup(lport, xid); 2045 if (!ep) { 2046 FC_LPORT_DBG(lport, 2047 "REC request from %x: rxid %x oxid %x not found\n", 2048 sid, rxid, oxid); 2049 goto reject; 2050 } 2051 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n", 2052 sid, rxid, oxid); 2053 if (ep->oid != sid || oxid != ep->oxid) 2054 goto rel; 2055 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 2056 goto rel; 2057 fp = fc_frame_alloc(lport, sizeof(*acc)); 2058 if (!fp) { 2059 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n"); 2060 goto out; 2061 } 2062 2063 acc = fc_frame_payload_get(fp, sizeof(*acc)); 2064 memset(acc, 0, sizeof(*acc)); 2065 acc->reca_cmd = ELS_LS_ACC; 2066 acc->reca_ox_id = rp->rec_ox_id; 2067 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 2068 acc->reca_rx_id = htons(ep->rxid); 2069 if (ep->sid == ep->oid) 2070 hton24(acc->reca_rfid, ep->did); 2071 else 2072 hton24(acc->reca_rfid, ep->sid); 2073 acc->reca_fc4value = htonl(ep->seq.rec_data); 2074 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 2075 ESB_ST_SEQ_INIT | 2076 ESB_ST_COMPLETE)); 2077 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 2078 lport->tt.frame_send(lport, fp); 2079 out: 2080 fc_exch_release(ep); 2081 return; 2082 2083 rel: 2084 fc_exch_release(ep); 2085 reject: 2086 fc_seq_ls_rjt(rfp, reason, explan); 2087 } 2088 2089 /** 2090 * fc_exch_rrq_resp() - Handler for RRQ responses 2091 * @sp: The sequence that the RRQ is on 2092 * @fp: The RRQ frame 2093 * @arg: The exchange that the RRQ is on 2094 * 2095 * TODO: fix error handler. 2096 */ 2097 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 2098 { 2099 struct fc_exch *aborted_ep = arg; 2100 unsigned int op; 2101 2102 if (IS_ERR(fp)) { 2103 int err = PTR_ERR(fp); 2104 2105 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 2106 goto cleanup; 2107 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 2108 "frame error %d\n", err); 2109 return; 2110 } 2111 2112 op = fc_frame_payload_op(fp); 2113 fc_frame_free(fp); 2114 2115 switch (op) { 2116 case ELS_LS_RJT: 2117 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n"); 2118 /* fall through */ 2119 case ELS_LS_ACC: 2120 goto cleanup; 2121 default: 2122 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n", 2123 op); 2124 return; 2125 } 2126 2127 cleanup: 2128 fc_exch_done(&aborted_ep->seq); 2129 /* drop hold for rec qual */ 2130 fc_exch_release(aborted_ep); 2131 } 2132 2133 2134 /** 2135 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 2136 * @lport: The local port to send the frame on 2137 * @fp: The frame to be sent 2138 * @resp: The response handler for this request 2139 * @destructor: The destructor for the exchange 2140 * @arg: The argument to be passed to the response handler 2141 * @timer_msec: The timeout period for the exchange 2142 * 2143 * The exchange response handler is set in this routine to resp() 2144 * function pointer. It can be called in two scenarios: if a timeout 2145 * occurs or if a response frame is received for the exchange. The 2146 * fc_frame pointer in response handler will also indicate timeout 2147 * as error using IS_ERR related macros. 2148 * 2149 * The exchange destructor handler is also set in this routine. 2150 * The destructor handler is invoked by EM layer when exchange 2151 * is about to free, this can be used by caller to free its 2152 * resources along with exchange free. 2153 * 2154 * The arg is passed back to resp and destructor handler. 2155 * 2156 * The timeout value (in msec) for an exchange is set if non zero 2157 * timer_msec argument is specified. The timer is canceled when 2158 * it fires or when the exchange is done. The exchange timeout handler 2159 * is registered by EM layer. 2160 * 2161 * The frame pointer with some of the header's fields must be 2162 * filled before calling this routine, those fields are: 2163 * 2164 * - routing control 2165 * - FC port did 2166 * - FC port sid 2167 * - FC header type 2168 * - frame control 2169 * - parameter or relative offset 2170 */ 2171 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 2172 struct fc_frame *fp, 2173 void (*resp)(struct fc_seq *, 2174 struct fc_frame *fp, 2175 void *arg), 2176 void (*destructor)(struct fc_seq *, void *), 2177 void *arg, u32 timer_msec) 2178 { 2179 struct fc_exch *ep; 2180 struct fc_seq *sp = NULL; 2181 struct fc_frame_header *fh; 2182 struct fc_fcp_pkt *fsp = NULL; 2183 int rc = 1; 2184 2185 ep = fc_exch_alloc(lport, fp); 2186 if (!ep) { 2187 fc_frame_free(fp); 2188 return NULL; 2189 } 2190 ep->esb_stat |= ESB_ST_SEQ_INIT; 2191 fh = fc_frame_header_get(fp); 2192 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 2193 ep->resp = resp; 2194 ep->destructor = destructor; 2195 ep->arg = arg; 2196 ep->r_a_tov = lport->r_a_tov; 2197 ep->lp = lport; 2198 sp = &ep->seq; 2199 2200 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2201 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2202 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2203 sp->cnt++; 2204 2205 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2206 fsp = fr_fsp(fp); 2207 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2208 } 2209 2210 if (unlikely(lport->tt.frame_send(lport, fp))) 2211 goto err; 2212 2213 if (timer_msec) 2214 fc_exch_timer_set_locked(ep, timer_msec); 2215 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2216 2217 if (ep->f_ctl & FC_FC_SEQ_INIT) 2218 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2219 spin_unlock_bh(&ep->ex_lock); 2220 return sp; 2221 err: 2222 if (fsp) 2223 fc_fcp_ddp_done(fsp); 2224 rc = fc_exch_done_locked(ep); 2225 spin_unlock_bh(&ep->ex_lock); 2226 if (!rc) 2227 fc_exch_delete(ep); 2228 return NULL; 2229 } 2230 EXPORT_SYMBOL(fc_exch_seq_send); 2231 2232 /** 2233 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2234 * @ep: The exchange to send the RRQ on 2235 * 2236 * This tells the remote port to stop blocking the use of 2237 * the exchange and the seq_cnt range. 2238 */ 2239 static void fc_exch_rrq(struct fc_exch *ep) 2240 { 2241 struct fc_lport *lport; 2242 struct fc_els_rrq *rrq; 2243 struct fc_frame *fp; 2244 u32 did; 2245 2246 lport = ep->lp; 2247 2248 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2249 if (!fp) 2250 goto retry; 2251 2252 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2253 memset(rrq, 0, sizeof(*rrq)); 2254 rrq->rrq_cmd = ELS_RRQ; 2255 hton24(rrq->rrq_s_id, ep->sid); 2256 rrq->rrq_ox_id = htons(ep->oxid); 2257 rrq->rrq_rx_id = htons(ep->rxid); 2258 2259 did = ep->did; 2260 if (ep->esb_stat & ESB_ST_RESP) 2261 did = ep->sid; 2262 2263 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2264 lport->port_id, FC_TYPE_ELS, 2265 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2266 2267 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2268 lport->e_d_tov)) 2269 return; 2270 2271 retry: 2272 FC_EXCH_DBG(ep, "exch: RRQ send failed\n"); 2273 spin_lock_bh(&ep->ex_lock); 2274 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2275 spin_unlock_bh(&ep->ex_lock); 2276 /* drop hold for rec qual */ 2277 fc_exch_release(ep); 2278 return; 2279 } 2280 ep->esb_stat |= ESB_ST_REC_QUAL; 2281 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2282 spin_unlock_bh(&ep->ex_lock); 2283 } 2284 2285 /** 2286 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2287 * @fp: The RRQ frame, not freed here. 2288 */ 2289 static void fc_exch_els_rrq(struct fc_frame *fp) 2290 { 2291 struct fc_lport *lport; 2292 struct fc_exch *ep = NULL; /* request or subject exchange */ 2293 struct fc_els_rrq *rp; 2294 u32 sid; 2295 u16 xid; 2296 enum fc_els_rjt_explan explan; 2297 2298 lport = fr_dev(fp); 2299 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2300 explan = ELS_EXPL_INV_LEN; 2301 if (!rp) 2302 goto reject; 2303 2304 /* 2305 * lookup subject exchange. 2306 */ 2307 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2308 xid = fc_host_port_id(lport->host) == sid ? 2309 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2310 ep = fc_exch_lookup(lport, xid); 2311 explan = ELS_EXPL_OXID_RXID; 2312 if (!ep) 2313 goto reject; 2314 spin_lock_bh(&ep->ex_lock); 2315 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n", 2316 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id)); 2317 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2318 goto unlock_reject; 2319 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2320 ep->rxid != FC_XID_UNKNOWN) 2321 goto unlock_reject; 2322 explan = ELS_EXPL_SID; 2323 if (ep->sid != sid) 2324 goto unlock_reject; 2325 2326 /* 2327 * Clear Recovery Qualifier state, and cancel timer if complete. 2328 */ 2329 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2330 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2331 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2332 } 2333 if (ep->esb_stat & ESB_ST_COMPLETE) 2334 fc_exch_timer_cancel(ep); 2335 2336 spin_unlock_bh(&ep->ex_lock); 2337 2338 /* 2339 * Send LS_ACC. 2340 */ 2341 fc_seq_ls_acc(fp); 2342 goto out; 2343 2344 unlock_reject: 2345 spin_unlock_bh(&ep->ex_lock); 2346 reject: 2347 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2348 out: 2349 if (ep) 2350 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2351 } 2352 2353 /** 2354 * fc_exch_update_stats() - update exches stats to lport 2355 * @lport: The local port to update exchange manager stats 2356 */ 2357 void fc_exch_update_stats(struct fc_lport *lport) 2358 { 2359 struct fc_host_statistics *st; 2360 struct fc_exch_mgr_anchor *ema; 2361 struct fc_exch_mgr *mp; 2362 2363 st = &lport->host_stats; 2364 2365 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2366 mp = ema->mp; 2367 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch); 2368 st->fc_no_free_exch_xid += 2369 atomic_read(&mp->stats.no_free_exch_xid); 2370 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found); 2371 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy); 2372 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found); 2373 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp); 2374 } 2375 } 2376 EXPORT_SYMBOL(fc_exch_update_stats); 2377 2378 /** 2379 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2380 * @lport: The local port to add the exchange manager to 2381 * @mp: The exchange manager to be added to the local port 2382 * @match: The match routine that indicates when this EM should be used 2383 */ 2384 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2385 struct fc_exch_mgr *mp, 2386 bool (*match)(struct fc_frame *)) 2387 { 2388 struct fc_exch_mgr_anchor *ema; 2389 2390 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2391 if (!ema) 2392 return ema; 2393 2394 ema->mp = mp; 2395 ema->match = match; 2396 /* add EM anchor to EM anchors list */ 2397 list_add_tail(&ema->ema_list, &lport->ema_list); 2398 kref_get(&mp->kref); 2399 return ema; 2400 } 2401 EXPORT_SYMBOL(fc_exch_mgr_add); 2402 2403 /** 2404 * fc_exch_mgr_destroy() - Destroy an exchange manager 2405 * @kref: The reference to the EM to be destroyed 2406 */ 2407 static void fc_exch_mgr_destroy(struct kref *kref) 2408 { 2409 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2410 2411 mempool_destroy(mp->ep_pool); 2412 free_percpu(mp->pool); 2413 kfree(mp); 2414 } 2415 2416 /** 2417 * fc_exch_mgr_del() - Delete an EM from a local port's list 2418 * @ema: The exchange manager anchor identifying the EM to be deleted 2419 */ 2420 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2421 { 2422 /* remove EM anchor from EM anchors list */ 2423 list_del(&ema->ema_list); 2424 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2425 kfree(ema); 2426 } 2427 EXPORT_SYMBOL(fc_exch_mgr_del); 2428 2429 /** 2430 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2431 * @src: Source lport to clone exchange managers from 2432 * @dst: New lport that takes references to all the exchange managers 2433 */ 2434 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2435 { 2436 struct fc_exch_mgr_anchor *ema, *tmp; 2437 2438 list_for_each_entry(ema, &src->ema_list, ema_list) { 2439 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2440 goto err; 2441 } 2442 return 0; 2443 err: 2444 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2445 fc_exch_mgr_del(ema); 2446 return -ENOMEM; 2447 } 2448 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2449 2450 /** 2451 * fc_exch_mgr_alloc() - Allocate an exchange manager 2452 * @lport: The local port that the new EM will be associated with 2453 * @class: The default FC class for new exchanges 2454 * @min_xid: The minimum XID for exchanges from the new EM 2455 * @max_xid: The maximum XID for exchanges from the new EM 2456 * @match: The match routine for the new EM 2457 */ 2458 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2459 enum fc_class class, 2460 u16 min_xid, u16 max_xid, 2461 bool (*match)(struct fc_frame *)) 2462 { 2463 struct fc_exch_mgr *mp; 2464 u16 pool_exch_range; 2465 size_t pool_size; 2466 unsigned int cpu; 2467 struct fc_exch_pool *pool; 2468 2469 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2470 (min_xid & fc_cpu_mask) != 0) { 2471 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2472 min_xid, max_xid); 2473 return NULL; 2474 } 2475 2476 /* 2477 * allocate memory for EM 2478 */ 2479 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2480 if (!mp) 2481 return NULL; 2482 2483 mp->class = class; 2484 mp->lport = lport; 2485 /* adjust em exch xid range for offload */ 2486 mp->min_xid = min_xid; 2487 2488 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */ 2489 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) / 2490 sizeof(struct fc_exch *); 2491 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) { 2492 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) + 2493 min_xid - 1; 2494 } else { 2495 mp->max_xid = max_xid; 2496 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / 2497 (fc_cpu_mask + 1); 2498 } 2499 2500 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2501 if (!mp->ep_pool) 2502 goto free_mp; 2503 2504 /* 2505 * Setup per cpu exch pool with entire exchange id range equally 2506 * divided across all cpus. The exch pointers array memory is 2507 * allocated for exch range per pool. 2508 */ 2509 mp->pool_max_index = pool_exch_range - 1; 2510 2511 /* 2512 * Allocate and initialize per cpu exch pool 2513 */ 2514 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2515 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2516 if (!mp->pool) 2517 goto free_mempool; 2518 for_each_possible_cpu(cpu) { 2519 pool = per_cpu_ptr(mp->pool, cpu); 2520 pool->next_index = 0; 2521 pool->left = FC_XID_UNKNOWN; 2522 pool->right = FC_XID_UNKNOWN; 2523 spin_lock_init(&pool->lock); 2524 INIT_LIST_HEAD(&pool->ex_list); 2525 } 2526 2527 kref_init(&mp->kref); 2528 if (!fc_exch_mgr_add(lport, mp, match)) { 2529 free_percpu(mp->pool); 2530 goto free_mempool; 2531 } 2532 2533 /* 2534 * Above kref_init() sets mp->kref to 1 and then 2535 * call to fc_exch_mgr_add incremented mp->kref again, 2536 * so adjust that extra increment. 2537 */ 2538 kref_put(&mp->kref, fc_exch_mgr_destroy); 2539 return mp; 2540 2541 free_mempool: 2542 mempool_destroy(mp->ep_pool); 2543 free_mp: 2544 kfree(mp); 2545 return NULL; 2546 } 2547 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2548 2549 /** 2550 * fc_exch_mgr_free() - Free all exchange managers on a local port 2551 * @lport: The local port whose EMs are to be freed 2552 */ 2553 void fc_exch_mgr_free(struct fc_lport *lport) 2554 { 2555 struct fc_exch_mgr_anchor *ema, *next; 2556 2557 flush_workqueue(fc_exch_workqueue); 2558 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2559 fc_exch_mgr_del(ema); 2560 } 2561 EXPORT_SYMBOL(fc_exch_mgr_free); 2562 2563 /** 2564 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2565 * upon 'xid'. 2566 * @f_ctl: f_ctl 2567 * @lport: The local port the frame was received on 2568 * @fh: The received frame header 2569 */ 2570 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2571 struct fc_lport *lport, 2572 struct fc_frame_header *fh) 2573 { 2574 struct fc_exch_mgr_anchor *ema; 2575 u16 xid; 2576 2577 if (f_ctl & FC_FC_EX_CTX) 2578 xid = ntohs(fh->fh_ox_id); 2579 else { 2580 xid = ntohs(fh->fh_rx_id); 2581 if (xid == FC_XID_UNKNOWN) 2582 return list_entry(lport->ema_list.prev, 2583 typeof(*ema), ema_list); 2584 } 2585 2586 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2587 if ((xid >= ema->mp->min_xid) && 2588 (xid <= ema->mp->max_xid)) 2589 return ema; 2590 } 2591 return NULL; 2592 } 2593 /** 2594 * fc_exch_recv() - Handler for received frames 2595 * @lport: The local port the frame was received on 2596 * @fp: The received frame 2597 */ 2598 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2599 { 2600 struct fc_frame_header *fh = fc_frame_header_get(fp); 2601 struct fc_exch_mgr_anchor *ema; 2602 u32 f_ctl; 2603 2604 /* lport lock ? */ 2605 if (!lport || lport->state == LPORT_ST_DISABLED) { 2606 FC_LPORT_DBG(lport, "Receiving frames for an lport that " 2607 "has not been initialized correctly\n"); 2608 fc_frame_free(fp); 2609 return; 2610 } 2611 2612 f_ctl = ntoh24(fh->fh_f_ctl); 2613 ema = fc_find_ema(f_ctl, lport, fh); 2614 if (!ema) { 2615 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2616 "fc_ctl <0x%x>, xid <0x%x>\n", 2617 f_ctl, 2618 (f_ctl & FC_FC_EX_CTX) ? 2619 ntohs(fh->fh_ox_id) : 2620 ntohs(fh->fh_rx_id)); 2621 fc_frame_free(fp); 2622 return; 2623 } 2624 2625 /* 2626 * If frame is marked invalid, just drop it. 2627 */ 2628 switch (fr_eof(fp)) { 2629 case FC_EOF_T: 2630 if (f_ctl & FC_FC_END_SEQ) 2631 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2632 /* fall through */ 2633 case FC_EOF_N: 2634 if (fh->fh_type == FC_TYPE_BLS) 2635 fc_exch_recv_bls(ema->mp, fp); 2636 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2637 FC_FC_EX_CTX) 2638 fc_exch_recv_seq_resp(ema->mp, fp); 2639 else if (f_ctl & FC_FC_SEQ_CTX) 2640 fc_exch_recv_resp(ema->mp, fp); 2641 else /* no EX_CTX and no SEQ_CTX */ 2642 fc_exch_recv_req(lport, ema->mp, fp); 2643 break; 2644 default: 2645 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2646 fr_eof(fp)); 2647 fc_frame_free(fp); 2648 } 2649 } 2650 EXPORT_SYMBOL(fc_exch_recv); 2651 2652 /** 2653 * fc_exch_init() - Initialize the exchange layer for a local port 2654 * @lport: The local port to initialize the exchange layer for 2655 */ 2656 int fc_exch_init(struct fc_lport *lport) 2657 { 2658 if (!lport->tt.exch_mgr_reset) 2659 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2660 2661 return 0; 2662 } 2663 EXPORT_SYMBOL(fc_exch_init); 2664 2665 /** 2666 * fc_setup_exch_mgr() - Setup an exchange manager 2667 */ 2668 int fc_setup_exch_mgr(void) 2669 { 2670 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2671 0, SLAB_HWCACHE_ALIGN, NULL); 2672 if (!fc_em_cachep) 2673 return -ENOMEM; 2674 2675 /* 2676 * Initialize fc_cpu_mask and fc_cpu_order. The 2677 * fc_cpu_mask is set for nr_cpu_ids rounded up 2678 * to order of 2's * power and order is stored 2679 * in fc_cpu_order as this is later required in 2680 * mapping between an exch id and exch array index 2681 * in per cpu exch pool. 2682 * 2683 * This round up is required to align fc_cpu_mask 2684 * to exchange id's lower bits such that all incoming 2685 * frames of an exchange gets delivered to the same 2686 * cpu on which exchange originated by simple bitwise 2687 * AND operation between fc_cpu_mask and exchange id. 2688 */ 2689 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids)); 2690 fc_cpu_mask = (1 << fc_cpu_order) - 1; 2691 2692 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2693 if (!fc_exch_workqueue) 2694 goto err; 2695 return 0; 2696 err: 2697 kmem_cache_destroy(fc_em_cachep); 2698 return -ENOMEM; 2699 } 2700 2701 /** 2702 * fc_destroy_exch_mgr() - Destroy an exchange manager 2703 */ 2704 void fc_destroy_exch_mgr(void) 2705 { 2706 destroy_workqueue(fc_exch_workqueue); 2707 kmem_cache_destroy(fc_em_cachep); 2708 } 2709