xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision d0b73b48)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #include <scsi/fc/fc_fc2.h>
32 
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
35 
36 #include "fc_libfc.h"
37 
38 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
43 
44 /*
45  * Structure and function definitions for managing Fibre Channel Exchanges
46  * and Sequences.
47  *
48  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49  *
50  * fc_exch_mgr holds the exchange state for an N port
51  *
52  * fc_exch holds state for one exchange and links to its active sequence.
53  *
54  * fc_seq holds the state for an individual sequence.
55  */
56 
57 /**
58  * struct fc_exch_pool - Per cpu exchange pool
59  * @next_index:	  Next possible free exchange index
60  * @total_exches: Total allocated exchanges
61  * @lock:	  Exch pool lock
62  * @ex_list:	  List of exchanges
63  *
64  * This structure manages per cpu exchanges in array of exchange pointers.
65  * This array is allocated followed by struct fc_exch_pool memory for
66  * assigned range of exchanges to per cpu pool.
67  */
68 struct fc_exch_pool {
69 	spinlock_t	 lock;
70 	struct list_head ex_list;
71 	u16		 next_index;
72 	u16		 total_exches;
73 
74 	/* two cache of free slot in exch array */
75 	u16		 left;
76 	u16		 right;
77 } ____cacheline_aligned_in_smp;
78 
79 /**
80  * struct fc_exch_mgr - The Exchange Manager (EM).
81  * @class:	    Default class for new sequences
82  * @kref:	    Reference counter
83  * @min_xid:	    Minimum exchange ID
84  * @max_xid:	    Maximum exchange ID
85  * @ep_pool:	    Reserved exchange pointers
86  * @pool_max_index: Max exch array index in exch pool
87  * @pool:	    Per cpu exch pool
88  * @stats:	    Statistics structure
89  *
90  * This structure is the center for creating exchanges and sequences.
91  * It manages the allocation of exchange IDs.
92  */
93 struct fc_exch_mgr {
94 	struct fc_exch_pool __percpu *pool;
95 	mempool_t	*ep_pool;
96 	enum fc_class	class;
97 	struct kref	kref;
98 	u16		min_xid;
99 	u16		max_xid;
100 	u16		pool_max_index;
101 
102 	struct {
103 		atomic_t no_free_exch;
104 		atomic_t no_free_exch_xid;
105 		atomic_t xid_not_found;
106 		atomic_t xid_busy;
107 		atomic_t seq_not_found;
108 		atomic_t non_bls_resp;
109 	} stats;
110 };
111 
112 /**
113  * struct fc_exch_mgr_anchor - primary structure for list of EMs
114  * @ema_list: Exchange Manager Anchor list
115  * @mp:	      Exchange Manager associated with this anchor
116  * @match:    Routine to determine if this anchor's EM should be used
117  *
118  * When walking the list of anchors the match routine will be called
119  * for each anchor to determine if that EM should be used. The last
120  * anchor in the list will always match to handle any exchanges not
121  * handled by other EMs. The non-default EMs would be added to the
122  * anchor list by HW that provides offloads.
123  */
124 struct fc_exch_mgr_anchor {
125 	struct list_head ema_list;
126 	struct fc_exch_mgr *mp;
127 	bool (*match)(struct fc_frame *);
128 };
129 
130 static void fc_exch_rrq(struct fc_exch *);
131 static void fc_seq_ls_acc(struct fc_frame *);
132 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
133 			  enum fc_els_rjt_explan);
134 static void fc_exch_els_rec(struct fc_frame *);
135 static void fc_exch_els_rrq(struct fc_frame *);
136 
137 /*
138  * Internal implementation notes.
139  *
140  * The exchange manager is one by default in libfc but LLD may choose
141  * to have one per CPU. The sequence manager is one per exchange manager
142  * and currently never separated.
143  *
144  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
145  * assigned by the Sequence Initiator that shall be unique for a specific
146  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
147  * qualified by exchange ID, which one might think it would be.
148  * In practice this limits the number of open sequences and exchanges to 256
149  * per session.	 For most targets we could treat this limit as per exchange.
150  *
151  * The exchange and its sequence are freed when the last sequence is received.
152  * It's possible for the remote port to leave an exchange open without
153  * sending any sequences.
154  *
155  * Notes on reference counts:
156  *
157  * Exchanges are reference counted and exchange gets freed when the reference
158  * count becomes zero.
159  *
160  * Timeouts:
161  * Sequences are timed out for E_D_TOV and R_A_TOV.
162  *
163  * Sequence event handling:
164  *
165  * The following events may occur on initiator sequences:
166  *
167  *	Send.
168  *	    For now, the whole thing is sent.
169  *	Receive ACK
170  *	    This applies only to class F.
171  *	    The sequence is marked complete.
172  *	ULP completion.
173  *	    The upper layer calls fc_exch_done() when done
174  *	    with exchange and sequence tuple.
175  *	RX-inferred completion.
176  *	    When we receive the next sequence on the same exchange, we can
177  *	    retire the previous sequence ID.  (XXX not implemented).
178  *	Timeout.
179  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
180  *	    E_D_TOV causes abort and calls upper layer response handler
181  *	    with FC_EX_TIMEOUT error.
182  *	Receive RJT
183  *	    XXX defer.
184  *	Send ABTS
185  *	    On timeout.
186  *
187  * The following events may occur on recipient sequences:
188  *
189  *	Receive
190  *	    Allocate sequence for first frame received.
191  *	    Hold during receive handler.
192  *	    Release when final frame received.
193  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
194  *	Receive ABTS
195  *	    Deallocate sequence
196  *	Send RJT
197  *	    Deallocate
198  *
199  * For now, we neglect conditions where only part of a sequence was
200  * received or transmitted, or where out-of-order receipt is detected.
201  */
202 
203 /*
204  * Locking notes:
205  *
206  * The EM code run in a per-CPU worker thread.
207  *
208  * To protect against concurrency between a worker thread code and timers,
209  * sequence allocation and deallocation must be locked.
210  *  - exchange refcnt can be done atomicly without locks.
211  *  - sequence allocation must be locked by exch lock.
212  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
213  *    EM pool lock must be taken before the ex_lock.
214  */
215 
216 /*
217  * opcode names for debugging.
218  */
219 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
220 
221 /**
222  * fc_exch_name_lookup() - Lookup name by opcode
223  * @op:	       Opcode to be looked up
224  * @table:     Opcode/name table
225  * @max_index: Index not to be exceeded
226  *
227  * This routine is used to determine a human-readable string identifying
228  * a R_CTL opcode.
229  */
230 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
231 					      unsigned int max_index)
232 {
233 	const char *name = NULL;
234 
235 	if (op < max_index)
236 		name = table[op];
237 	if (!name)
238 		name = "unknown";
239 	return name;
240 }
241 
242 /**
243  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
244  * @op: The opcode to be looked up
245  */
246 static const char *fc_exch_rctl_name(unsigned int op)
247 {
248 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
249 				   ARRAY_SIZE(fc_exch_rctl_names));
250 }
251 
252 /**
253  * fc_exch_hold() - Increment an exchange's reference count
254  * @ep: Echange to be held
255  */
256 static inline void fc_exch_hold(struct fc_exch *ep)
257 {
258 	atomic_inc(&ep->ex_refcnt);
259 }
260 
261 /**
262  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
263  *			 and determine SOF and EOF.
264  * @ep:	   The exchange to that will use the header
265  * @fp:	   The frame whose header is to be modified
266  * @f_ctl: F_CTL bits that will be used for the frame header
267  *
268  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
269  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
270  */
271 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
272 			      u32 f_ctl)
273 {
274 	struct fc_frame_header *fh = fc_frame_header_get(fp);
275 	u16 fill;
276 
277 	fr_sof(fp) = ep->class;
278 	if (ep->seq.cnt)
279 		fr_sof(fp) = fc_sof_normal(ep->class);
280 
281 	if (f_ctl & FC_FC_END_SEQ) {
282 		fr_eof(fp) = FC_EOF_T;
283 		if (fc_sof_needs_ack(ep->class))
284 			fr_eof(fp) = FC_EOF_N;
285 		/*
286 		 * From F_CTL.
287 		 * The number of fill bytes to make the length a 4-byte
288 		 * multiple is the low order 2-bits of the f_ctl.
289 		 * The fill itself will have been cleared by the frame
290 		 * allocation.
291 		 * After this, the length will be even, as expected by
292 		 * the transport.
293 		 */
294 		fill = fr_len(fp) & 3;
295 		if (fill) {
296 			fill = 4 - fill;
297 			/* TODO, this may be a problem with fragmented skb */
298 			skb_put(fp_skb(fp), fill);
299 			hton24(fh->fh_f_ctl, f_ctl | fill);
300 		}
301 	} else {
302 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
303 		fr_eof(fp) = FC_EOF_N;
304 	}
305 
306 	/*
307 	 * Initialize remainig fh fields
308 	 * from fc_fill_fc_hdr
309 	 */
310 	fh->fh_ox_id = htons(ep->oxid);
311 	fh->fh_rx_id = htons(ep->rxid);
312 	fh->fh_seq_id = ep->seq.id;
313 	fh->fh_seq_cnt = htons(ep->seq.cnt);
314 }
315 
316 /**
317  * fc_exch_release() - Decrement an exchange's reference count
318  * @ep: Exchange to be released
319  *
320  * If the reference count reaches zero and the exchange is complete,
321  * it is freed.
322  */
323 static void fc_exch_release(struct fc_exch *ep)
324 {
325 	struct fc_exch_mgr *mp;
326 
327 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
328 		mp = ep->em;
329 		if (ep->destructor)
330 			ep->destructor(&ep->seq, ep->arg);
331 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
332 		mempool_free(ep, mp->ep_pool);
333 	}
334 }
335 
336 /**
337  * fc_exch_timer_cancel() - cancel exch timer
338  * @ep:		The exchange whose timer to be canceled
339  */
340 static inline  void fc_exch_timer_cancel(struct fc_exch *ep)
341 {
342 	if (cancel_delayed_work(&ep->timeout_work)) {
343 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
344 		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
345 	}
346 }
347 
348 /**
349  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
350  *				the exchange lock held
351  * @ep:		The exchange whose timer will start
352  * @timer_msec: The timeout period
353  *
354  * Used for upper level protocols to time out the exchange.
355  * The timer is cancelled when it fires or when the exchange completes.
356  */
357 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
358 					    unsigned int timer_msec)
359 {
360 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
361 		return;
362 
363 	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
364 
365 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 			       msecs_to_jiffies(timer_msec)))
367 		fc_exch_hold(ep);		/* hold for timer */
368 }
369 
370 /**
371  * fc_exch_timer_set() - Lock the exchange and set the timer
372  * @ep:		The exchange whose timer will start
373  * @timer_msec: The timeout period
374  */
375 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
376 {
377 	spin_lock_bh(&ep->ex_lock);
378 	fc_exch_timer_set_locked(ep, timer_msec);
379 	spin_unlock_bh(&ep->ex_lock);
380 }
381 
382 /**
383  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
384  * @ep: The exchange that is complete
385  */
386 static int fc_exch_done_locked(struct fc_exch *ep)
387 {
388 	int rc = 1;
389 
390 	/*
391 	 * We must check for completion in case there are two threads
392 	 * tyring to complete this. But the rrq code will reuse the
393 	 * ep, and in that case we only clear the resp and set it as
394 	 * complete, so it can be reused by the timer to send the rrq.
395 	 */
396 	ep->resp = NULL;
397 	if (ep->state & FC_EX_DONE)
398 		return rc;
399 	ep->esb_stat |= ESB_ST_COMPLETE;
400 
401 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 		ep->state |= FC_EX_DONE;
403 		fc_exch_timer_cancel(ep);
404 		rc = 0;
405 	}
406 	return rc;
407 }
408 
409 /**
410  * fc_exch_ptr_get() - Return an exchange from an exchange pool
411  * @pool:  Exchange Pool to get an exchange from
412  * @index: Index of the exchange within the pool
413  *
414  * Use the index to get an exchange from within an exchange pool. exches
415  * will point to an array of exchange pointers. The index will select
416  * the exchange within the array.
417  */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 					      u16 index)
420 {
421 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 	return exches[index];
423 }
424 
425 /**
426  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427  * @pool:  The pool to assign the exchange to
428  * @index: The index in the pool where the exchange will be assigned
429  * @ep:	   The exchange to assign to the pool
430  */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 				   struct fc_exch *ep)
433 {
434 	((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436 
437 /**
438  * fc_exch_delete() - Delete an exchange
439  * @ep: The exchange to be deleted
440  */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 	struct fc_exch_pool *pool;
444 	u16 index;
445 
446 	pool = ep->pool;
447 	spin_lock_bh(&pool->lock);
448 	WARN_ON(pool->total_exches <= 0);
449 	pool->total_exches--;
450 
451 	/* update cache of free slot */
452 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 	if (pool->left == FC_XID_UNKNOWN)
454 		pool->left = index;
455 	else if (pool->right == FC_XID_UNKNOWN)
456 		pool->right = index;
457 	else
458 		pool->next_index = index;
459 
460 	fc_exch_ptr_set(pool, index, NULL);
461 	list_del(&ep->ex_list);
462 	spin_unlock_bh(&pool->lock);
463 	fc_exch_release(ep);	/* drop hold for exch in mp */
464 }
465 
466 /**
467  * fc_seq_send() - Send a frame using existing sequence/exchange pair
468  * @lport: The local port that the exchange will be sent on
469  * @sp:	   The sequence to be sent
470  * @fp:	   The frame to be sent on the exchange
471  */
472 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
473 		       struct fc_frame *fp)
474 {
475 	struct fc_exch *ep;
476 	struct fc_frame_header *fh = fc_frame_header_get(fp);
477 	int error;
478 	u32 f_ctl;
479 	u8 fh_type = fh->fh_type;
480 
481 	ep = fc_seq_exch(sp);
482 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
483 
484 	f_ctl = ntoh24(fh->fh_f_ctl);
485 	fc_exch_setup_hdr(ep, fp, f_ctl);
486 	fr_encaps(fp) = ep->encaps;
487 
488 	/*
489 	 * update sequence count if this frame is carrying
490 	 * multiple FC frames when sequence offload is enabled
491 	 * by LLD.
492 	 */
493 	if (fr_max_payload(fp))
494 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
495 					fr_max_payload(fp));
496 	else
497 		sp->cnt++;
498 
499 	/*
500 	 * Send the frame.
501 	 */
502 	error = lport->tt.frame_send(lport, fp);
503 
504 	if (fh_type == FC_TYPE_BLS)
505 		return error;
506 
507 	/*
508 	 * Update the exchange and sequence flags,
509 	 * assuming all frames for the sequence have been sent.
510 	 * We can only be called to send once for each sequence.
511 	 */
512 	spin_lock_bh(&ep->ex_lock);
513 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
514 	if (f_ctl & FC_FC_SEQ_INIT)
515 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
516 	spin_unlock_bh(&ep->ex_lock);
517 	return error;
518 }
519 
520 /**
521  * fc_seq_alloc() - Allocate a sequence for a given exchange
522  * @ep:	    The exchange to allocate a new sequence for
523  * @seq_id: The sequence ID to be used
524  *
525  * We don't support multiple originated sequences on the same exchange.
526  * By implication, any previously originated sequence on this exchange
527  * is complete, and we reallocate the same sequence.
528  */
529 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
530 {
531 	struct fc_seq *sp;
532 
533 	sp = &ep->seq;
534 	sp->ssb_stat = 0;
535 	sp->cnt = 0;
536 	sp->id = seq_id;
537 	return sp;
538 }
539 
540 /**
541  * fc_seq_start_next_locked() - Allocate a new sequence on the same
542  *				exchange as the supplied sequence
543  * @sp: The sequence/exchange to get a new sequence for
544  */
545 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
546 {
547 	struct fc_exch *ep = fc_seq_exch(sp);
548 
549 	sp = fc_seq_alloc(ep, ep->seq_id++);
550 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
551 		    ep->f_ctl, sp->id);
552 	return sp;
553 }
554 
555 /**
556  * fc_seq_start_next() - Lock the exchange and get a new sequence
557  *			 for a given sequence/exchange pair
558  * @sp: The sequence/exchange to get a new exchange for
559  */
560 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
561 {
562 	struct fc_exch *ep = fc_seq_exch(sp);
563 
564 	spin_lock_bh(&ep->ex_lock);
565 	sp = fc_seq_start_next_locked(sp);
566 	spin_unlock_bh(&ep->ex_lock);
567 
568 	return sp;
569 }
570 
571 /*
572  * Set the response handler for the exchange associated with a sequence.
573  */
574 static void fc_seq_set_resp(struct fc_seq *sp,
575 			    void (*resp)(struct fc_seq *, struct fc_frame *,
576 					 void *),
577 			    void *arg)
578 {
579 	struct fc_exch *ep = fc_seq_exch(sp);
580 
581 	spin_lock_bh(&ep->ex_lock);
582 	ep->resp = resp;
583 	ep->arg = arg;
584 	spin_unlock_bh(&ep->ex_lock);
585 }
586 
587 /**
588  * fc_exch_abort_locked() - Abort an exchange
589  * @ep:	The exchange to be aborted
590  * @timer_msec: The period of time to wait before aborting
591  *
592  * Locking notes:  Called with exch lock held
593  *
594  * Return value: 0 on success else error code
595  */
596 static int fc_exch_abort_locked(struct fc_exch *ep,
597 				unsigned int timer_msec)
598 {
599 	struct fc_seq *sp;
600 	struct fc_frame *fp;
601 	int error;
602 
603 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
604 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
605 		return -ENXIO;
606 
607 	/*
608 	 * Send the abort on a new sequence if possible.
609 	 */
610 	sp = fc_seq_start_next_locked(&ep->seq);
611 	if (!sp)
612 		return -ENOMEM;
613 
614 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
615 	if (timer_msec)
616 		fc_exch_timer_set_locked(ep, timer_msec);
617 
618 	/*
619 	 * If not logged into the fabric, don't send ABTS but leave
620 	 * sequence active until next timeout.
621 	 */
622 	if (!ep->sid)
623 		return 0;
624 
625 	/*
626 	 * Send an abort for the sequence that timed out.
627 	 */
628 	fp = fc_frame_alloc(ep->lp, 0);
629 	if (fp) {
630 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
631 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
632 		error = fc_seq_send(ep->lp, sp, fp);
633 	} else
634 		error = -ENOBUFS;
635 	return error;
636 }
637 
638 /**
639  * fc_seq_exch_abort() - Abort an exchange and sequence
640  * @req_sp:	The sequence to be aborted
641  * @timer_msec: The period of time to wait before aborting
642  *
643  * Generally called because of a timeout or an abort from the upper layer.
644  *
645  * Return value: 0 on success else error code
646  */
647 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
648 			     unsigned int timer_msec)
649 {
650 	struct fc_exch *ep;
651 	int error;
652 
653 	ep = fc_seq_exch(req_sp);
654 	spin_lock_bh(&ep->ex_lock);
655 	error = fc_exch_abort_locked(ep, timer_msec);
656 	spin_unlock_bh(&ep->ex_lock);
657 	return error;
658 }
659 
660 /**
661  * fc_exch_timeout() - Handle exchange timer expiration
662  * @work: The work_struct identifying the exchange that timed out
663  */
664 static void fc_exch_timeout(struct work_struct *work)
665 {
666 	struct fc_exch *ep = container_of(work, struct fc_exch,
667 					  timeout_work.work);
668 	struct fc_seq *sp = &ep->seq;
669 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
670 	void *arg;
671 	u32 e_stat;
672 	int rc = 1;
673 
674 	FC_EXCH_DBG(ep, "Exchange timed out\n");
675 
676 	spin_lock_bh(&ep->ex_lock);
677 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
678 		goto unlock;
679 
680 	e_stat = ep->esb_stat;
681 	if (e_stat & ESB_ST_COMPLETE) {
682 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
683 		spin_unlock_bh(&ep->ex_lock);
684 		if (e_stat & ESB_ST_REC_QUAL)
685 			fc_exch_rrq(ep);
686 		goto done;
687 	} else {
688 		resp = ep->resp;
689 		arg = ep->arg;
690 		ep->resp = NULL;
691 		if (e_stat & ESB_ST_ABNORMAL)
692 			rc = fc_exch_done_locked(ep);
693 		spin_unlock_bh(&ep->ex_lock);
694 		if (!rc)
695 			fc_exch_delete(ep);
696 		if (resp)
697 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
698 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
699 		goto done;
700 	}
701 unlock:
702 	spin_unlock_bh(&ep->ex_lock);
703 done:
704 	/*
705 	 * This release matches the hold taken when the timer was set.
706 	 */
707 	fc_exch_release(ep);
708 }
709 
710 /**
711  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
712  * @lport: The local port that the exchange is for
713  * @mp:	   The exchange manager that will allocate the exchange
714  *
715  * Returns pointer to allocated fc_exch with exch lock held.
716  */
717 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
718 					struct fc_exch_mgr *mp)
719 {
720 	struct fc_exch *ep;
721 	unsigned int cpu;
722 	u16 index;
723 	struct fc_exch_pool *pool;
724 
725 	/* allocate memory for exchange */
726 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
727 	if (!ep) {
728 		atomic_inc(&mp->stats.no_free_exch);
729 		goto out;
730 	}
731 	memset(ep, 0, sizeof(*ep));
732 
733 	cpu = get_cpu();
734 	pool = per_cpu_ptr(mp->pool, cpu);
735 	spin_lock_bh(&pool->lock);
736 	put_cpu();
737 
738 	/* peek cache of free slot */
739 	if (pool->left != FC_XID_UNKNOWN) {
740 		index = pool->left;
741 		pool->left = FC_XID_UNKNOWN;
742 		goto hit;
743 	}
744 	if (pool->right != FC_XID_UNKNOWN) {
745 		index = pool->right;
746 		pool->right = FC_XID_UNKNOWN;
747 		goto hit;
748 	}
749 
750 	index = pool->next_index;
751 	/* allocate new exch from pool */
752 	while (fc_exch_ptr_get(pool, index)) {
753 		index = index == mp->pool_max_index ? 0 : index + 1;
754 		if (index == pool->next_index)
755 			goto err;
756 	}
757 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
758 hit:
759 	fc_exch_hold(ep);	/* hold for exch in mp */
760 	spin_lock_init(&ep->ex_lock);
761 	/*
762 	 * Hold exch lock for caller to prevent fc_exch_reset()
763 	 * from releasing exch	while fc_exch_alloc() caller is
764 	 * still working on exch.
765 	 */
766 	spin_lock_bh(&ep->ex_lock);
767 
768 	fc_exch_ptr_set(pool, index, ep);
769 	list_add_tail(&ep->ex_list, &pool->ex_list);
770 	fc_seq_alloc(ep, ep->seq_id++);
771 	pool->total_exches++;
772 	spin_unlock_bh(&pool->lock);
773 
774 	/*
775 	 *  update exchange
776 	 */
777 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
778 	ep->em = mp;
779 	ep->pool = pool;
780 	ep->lp = lport;
781 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
782 	ep->rxid = FC_XID_UNKNOWN;
783 	ep->class = mp->class;
784 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
785 out:
786 	return ep;
787 err:
788 	spin_unlock_bh(&pool->lock);
789 	atomic_inc(&mp->stats.no_free_exch_xid);
790 	mempool_free(ep, mp->ep_pool);
791 	return NULL;
792 }
793 
794 /**
795  * fc_exch_alloc() - Allocate an exchange from an EM on a
796  *		     local port's list of EMs.
797  * @lport: The local port that will own the exchange
798  * @fp:	   The FC frame that the exchange will be for
799  *
800  * This function walks the list of exchange manager(EM)
801  * anchors to select an EM for a new exchange allocation. The
802  * EM is selected when a NULL match function pointer is encountered
803  * or when a call to a match function returns true.
804  */
805 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
806 					    struct fc_frame *fp)
807 {
808 	struct fc_exch_mgr_anchor *ema;
809 
810 	list_for_each_entry(ema, &lport->ema_list, ema_list)
811 		if (!ema->match || ema->match(fp))
812 			return fc_exch_em_alloc(lport, ema->mp);
813 	return NULL;
814 }
815 
816 /**
817  * fc_exch_find() - Lookup and hold an exchange
818  * @mp:	 The exchange manager to lookup the exchange from
819  * @xid: The XID of the exchange to look up
820  */
821 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
822 {
823 	struct fc_exch_pool *pool;
824 	struct fc_exch *ep = NULL;
825 
826 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
827 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
828 		spin_lock_bh(&pool->lock);
829 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
830 		if (ep && ep->xid == xid)
831 			fc_exch_hold(ep);
832 		spin_unlock_bh(&pool->lock);
833 	}
834 	return ep;
835 }
836 
837 
838 /**
839  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
840  *		    the memory allocated for the related objects may be freed.
841  * @sp: The sequence that has completed
842  */
843 static void fc_exch_done(struct fc_seq *sp)
844 {
845 	struct fc_exch *ep = fc_seq_exch(sp);
846 	int rc;
847 
848 	spin_lock_bh(&ep->ex_lock);
849 	rc = fc_exch_done_locked(ep);
850 	spin_unlock_bh(&ep->ex_lock);
851 	if (!rc)
852 		fc_exch_delete(ep);
853 }
854 
855 /**
856  * fc_exch_resp() - Allocate a new exchange for a response frame
857  * @lport: The local port that the exchange was for
858  * @mp:	   The exchange manager to allocate the exchange from
859  * @fp:	   The response frame
860  *
861  * Sets the responder ID in the frame header.
862  */
863 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
864 				    struct fc_exch_mgr *mp,
865 				    struct fc_frame *fp)
866 {
867 	struct fc_exch *ep;
868 	struct fc_frame_header *fh;
869 
870 	ep = fc_exch_alloc(lport, fp);
871 	if (ep) {
872 		ep->class = fc_frame_class(fp);
873 
874 		/*
875 		 * Set EX_CTX indicating we're responding on this exchange.
876 		 */
877 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
878 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
879 		fh = fc_frame_header_get(fp);
880 		ep->sid = ntoh24(fh->fh_d_id);
881 		ep->did = ntoh24(fh->fh_s_id);
882 		ep->oid = ep->did;
883 
884 		/*
885 		 * Allocated exchange has placed the XID in the
886 		 * originator field. Move it to the responder field,
887 		 * and set the originator XID from the frame.
888 		 */
889 		ep->rxid = ep->xid;
890 		ep->oxid = ntohs(fh->fh_ox_id);
891 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
892 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
893 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
894 
895 		fc_exch_hold(ep);	/* hold for caller */
896 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
897 	}
898 	return ep;
899 }
900 
901 /**
902  * fc_seq_lookup_recip() - Find a sequence where the other end
903  *			   originated the sequence
904  * @lport: The local port that the frame was sent to
905  * @mp:	   The Exchange Manager to lookup the exchange from
906  * @fp:	   The frame associated with the sequence we're looking for
907  *
908  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
909  * on the ep that should be released by the caller.
910  */
911 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
912 						 struct fc_exch_mgr *mp,
913 						 struct fc_frame *fp)
914 {
915 	struct fc_frame_header *fh = fc_frame_header_get(fp);
916 	struct fc_exch *ep = NULL;
917 	struct fc_seq *sp = NULL;
918 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
919 	u32 f_ctl;
920 	u16 xid;
921 
922 	f_ctl = ntoh24(fh->fh_f_ctl);
923 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
924 
925 	/*
926 	 * Lookup or create the exchange if we will be creating the sequence.
927 	 */
928 	if (f_ctl & FC_FC_EX_CTX) {
929 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
930 		ep = fc_exch_find(mp, xid);
931 		if (!ep) {
932 			atomic_inc(&mp->stats.xid_not_found);
933 			reject = FC_RJT_OX_ID;
934 			goto out;
935 		}
936 		if (ep->rxid == FC_XID_UNKNOWN)
937 			ep->rxid = ntohs(fh->fh_rx_id);
938 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
939 			reject = FC_RJT_OX_ID;
940 			goto rel;
941 		}
942 	} else {
943 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
944 
945 		/*
946 		 * Special case for MDS issuing an ELS TEST with a
947 		 * bad rxid of 0.
948 		 * XXX take this out once we do the proper reject.
949 		 */
950 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
951 		    fc_frame_payload_op(fp) == ELS_TEST) {
952 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
953 			xid = FC_XID_UNKNOWN;
954 		}
955 
956 		/*
957 		 * new sequence - find the exchange
958 		 */
959 		ep = fc_exch_find(mp, xid);
960 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
961 			if (ep) {
962 				atomic_inc(&mp->stats.xid_busy);
963 				reject = FC_RJT_RX_ID;
964 				goto rel;
965 			}
966 			ep = fc_exch_resp(lport, mp, fp);
967 			if (!ep) {
968 				reject = FC_RJT_EXCH_EST;	/* XXX */
969 				goto out;
970 			}
971 			xid = ep->xid;	/* get our XID */
972 		} else if (!ep) {
973 			atomic_inc(&mp->stats.xid_not_found);
974 			reject = FC_RJT_RX_ID;	/* XID not found */
975 			goto out;
976 		}
977 	}
978 
979 	/*
980 	 * At this point, we have the exchange held.
981 	 * Find or create the sequence.
982 	 */
983 	if (fc_sof_is_init(fr_sof(fp))) {
984 		sp = &ep->seq;
985 		sp->ssb_stat |= SSB_ST_RESP;
986 		sp->id = fh->fh_seq_id;
987 	} else {
988 		sp = &ep->seq;
989 		if (sp->id != fh->fh_seq_id) {
990 			atomic_inc(&mp->stats.seq_not_found);
991 			if (f_ctl & FC_FC_END_SEQ) {
992 				/*
993 				 * Update sequence_id based on incoming last
994 				 * frame of sequence exchange. This is needed
995 				 * for FC target where DDP has been used
996 				 * on target where, stack is indicated only
997 				 * about last frame's (payload _header) header.
998 				 * Whereas "seq_id" which is part of
999 				 * frame_header is allocated by initiator
1000 				 * which is totally different from "seq_id"
1001 				 * allocated when XFER_RDY was sent by target.
1002 				 * To avoid false -ve which results into not
1003 				 * sending RSP, hence write request on other
1004 				 * end never finishes.
1005 				 */
1006 				spin_lock_bh(&ep->ex_lock);
1007 				sp->ssb_stat |= SSB_ST_RESP;
1008 				sp->id = fh->fh_seq_id;
1009 				spin_unlock_bh(&ep->ex_lock);
1010 			} else {
1011 				/* sequence/exch should exist */
1012 				reject = FC_RJT_SEQ_ID;
1013 				goto rel;
1014 			}
1015 		}
1016 	}
1017 	WARN_ON(ep != fc_seq_exch(sp));
1018 
1019 	if (f_ctl & FC_FC_SEQ_INIT)
1020 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1021 
1022 	fr_seq(fp) = sp;
1023 out:
1024 	return reject;
1025 rel:
1026 	fc_exch_done(&ep->seq);
1027 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1028 	return reject;
1029 }
1030 
1031 /**
1032  * fc_seq_lookup_orig() - Find a sequence where this end
1033  *			  originated the sequence
1034  * @mp:	   The Exchange Manager to lookup the exchange from
1035  * @fp:	   The frame associated with the sequence we're looking for
1036  *
1037  * Does not hold the sequence for the caller.
1038  */
1039 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1040 					 struct fc_frame *fp)
1041 {
1042 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1043 	struct fc_exch *ep;
1044 	struct fc_seq *sp = NULL;
1045 	u32 f_ctl;
1046 	u16 xid;
1047 
1048 	f_ctl = ntoh24(fh->fh_f_ctl);
1049 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1050 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1051 	ep = fc_exch_find(mp, xid);
1052 	if (!ep)
1053 		return NULL;
1054 	if (ep->seq.id == fh->fh_seq_id) {
1055 		/*
1056 		 * Save the RX_ID if we didn't previously know it.
1057 		 */
1058 		sp = &ep->seq;
1059 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1060 		    ep->rxid == FC_XID_UNKNOWN) {
1061 			ep->rxid = ntohs(fh->fh_rx_id);
1062 		}
1063 	}
1064 	fc_exch_release(ep);
1065 	return sp;
1066 }
1067 
1068 /**
1069  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1070  * @ep:	     The exchange to set the addresses for
1071  * @orig_id: The originator's ID
1072  * @resp_id: The responder's ID
1073  *
1074  * Note this must be done before the first sequence of the exchange is sent.
1075  */
1076 static void fc_exch_set_addr(struct fc_exch *ep,
1077 			     u32 orig_id, u32 resp_id)
1078 {
1079 	ep->oid = orig_id;
1080 	if (ep->esb_stat & ESB_ST_RESP) {
1081 		ep->sid = resp_id;
1082 		ep->did = orig_id;
1083 	} else {
1084 		ep->sid = orig_id;
1085 		ep->did = resp_id;
1086 	}
1087 }
1088 
1089 /**
1090  * fc_seq_els_rsp_send() - Send an ELS response using information from
1091  *			   the existing sequence/exchange.
1092  * @fp:	      The received frame
1093  * @els_cmd:  The ELS command to be sent
1094  * @els_data: The ELS data to be sent
1095  *
1096  * The received frame is not freed.
1097  */
1098 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1099 				struct fc_seq_els_data *els_data)
1100 {
1101 	switch (els_cmd) {
1102 	case ELS_LS_RJT:
1103 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1104 		break;
1105 	case ELS_LS_ACC:
1106 		fc_seq_ls_acc(fp);
1107 		break;
1108 	case ELS_RRQ:
1109 		fc_exch_els_rrq(fp);
1110 		break;
1111 	case ELS_REC:
1112 		fc_exch_els_rec(fp);
1113 		break;
1114 	default:
1115 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1116 	}
1117 }
1118 
1119 /**
1120  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1121  * @sp:	     The sequence that is to be sent
1122  * @fp:	     The frame that will be sent on the sequence
1123  * @rctl:    The R_CTL information to be sent
1124  * @fh_type: The frame header type
1125  */
1126 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1127 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1128 {
1129 	u32 f_ctl;
1130 	struct fc_exch *ep = fc_seq_exch(sp);
1131 
1132 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1133 	f_ctl |= ep->f_ctl;
1134 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1135 	fc_seq_send(ep->lp, sp, fp);
1136 }
1137 
1138 /**
1139  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1140  * @sp:	   The sequence to send the ACK on
1141  * @rx_fp: The received frame that is being acknoledged
1142  *
1143  * Send ACK_1 (or equiv.) indicating we received something.
1144  */
1145 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1146 {
1147 	struct fc_frame *fp;
1148 	struct fc_frame_header *rx_fh;
1149 	struct fc_frame_header *fh;
1150 	struct fc_exch *ep = fc_seq_exch(sp);
1151 	struct fc_lport *lport = ep->lp;
1152 	unsigned int f_ctl;
1153 
1154 	/*
1155 	 * Don't send ACKs for class 3.
1156 	 */
1157 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1158 		fp = fc_frame_alloc(lport, 0);
1159 		if (!fp)
1160 			return;
1161 
1162 		fh = fc_frame_header_get(fp);
1163 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1164 		fh->fh_type = FC_TYPE_BLS;
1165 
1166 		/*
1167 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1168 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1169 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1170 		 * Last ACK uses bits 7-6 (continue sequence),
1171 		 * bits 5-4 are meaningful (what kind of ACK to use).
1172 		 */
1173 		rx_fh = fc_frame_header_get(rx_fp);
1174 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1175 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1176 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1177 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1178 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1179 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1180 		hton24(fh->fh_f_ctl, f_ctl);
1181 
1182 		fc_exch_setup_hdr(ep, fp, f_ctl);
1183 		fh->fh_seq_id = rx_fh->fh_seq_id;
1184 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1185 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1186 
1187 		fr_sof(fp) = fr_sof(rx_fp);
1188 		if (f_ctl & FC_FC_END_SEQ)
1189 			fr_eof(fp) = FC_EOF_T;
1190 		else
1191 			fr_eof(fp) = FC_EOF_N;
1192 
1193 		lport->tt.frame_send(lport, fp);
1194 	}
1195 }
1196 
1197 /**
1198  * fc_exch_send_ba_rjt() - Send BLS Reject
1199  * @rx_fp:  The frame being rejected
1200  * @reason: The reason the frame is being rejected
1201  * @explan: The explanation for the rejection
1202  *
1203  * This is for rejecting BA_ABTS only.
1204  */
1205 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1206 				enum fc_ba_rjt_reason reason,
1207 				enum fc_ba_rjt_explan explan)
1208 {
1209 	struct fc_frame *fp;
1210 	struct fc_frame_header *rx_fh;
1211 	struct fc_frame_header *fh;
1212 	struct fc_ba_rjt *rp;
1213 	struct fc_lport *lport;
1214 	unsigned int f_ctl;
1215 
1216 	lport = fr_dev(rx_fp);
1217 	fp = fc_frame_alloc(lport, sizeof(*rp));
1218 	if (!fp)
1219 		return;
1220 	fh = fc_frame_header_get(fp);
1221 	rx_fh = fc_frame_header_get(rx_fp);
1222 
1223 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1224 
1225 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1226 	rp->br_reason = reason;
1227 	rp->br_explan = explan;
1228 
1229 	/*
1230 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1231 	 */
1232 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1233 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1234 	fh->fh_ox_id = rx_fh->fh_ox_id;
1235 	fh->fh_rx_id = rx_fh->fh_rx_id;
1236 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1237 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1238 	fh->fh_type = FC_TYPE_BLS;
1239 
1240 	/*
1241 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1242 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1243 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1244 	 * Last ACK uses bits 7-6 (continue sequence),
1245 	 * bits 5-4 are meaningful (what kind of ACK to use).
1246 	 * Always set LAST_SEQ, END_SEQ.
1247 	 */
1248 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1249 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1250 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1251 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1252 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1253 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1254 	f_ctl &= ~FC_FC_FIRST_SEQ;
1255 	hton24(fh->fh_f_ctl, f_ctl);
1256 
1257 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1258 	fr_eof(fp) = FC_EOF_T;
1259 	if (fc_sof_needs_ack(fr_sof(fp)))
1260 		fr_eof(fp) = FC_EOF_N;
1261 
1262 	lport->tt.frame_send(lport, fp);
1263 }
1264 
1265 /**
1266  * fc_exch_recv_abts() - Handle an incoming ABTS
1267  * @ep:	   The exchange the abort was on
1268  * @rx_fp: The ABTS frame
1269  *
1270  * This would be for target mode usually, but could be due to lost
1271  * FCP transfer ready, confirm or RRQ. We always handle this as an
1272  * exchange abort, ignoring the parameter.
1273  */
1274 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1275 {
1276 	struct fc_frame *fp;
1277 	struct fc_ba_acc *ap;
1278 	struct fc_frame_header *fh;
1279 	struct fc_seq *sp;
1280 
1281 	if (!ep)
1282 		goto reject;
1283 	spin_lock_bh(&ep->ex_lock);
1284 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1285 		spin_unlock_bh(&ep->ex_lock);
1286 		goto reject;
1287 	}
1288 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1289 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1290 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1291 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1292 
1293 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1294 	if (!fp) {
1295 		spin_unlock_bh(&ep->ex_lock);
1296 		goto free;
1297 	}
1298 	fh = fc_frame_header_get(fp);
1299 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1300 	memset(ap, 0, sizeof(*ap));
1301 	sp = &ep->seq;
1302 	ap->ba_high_seq_cnt = htons(0xffff);
1303 	if (sp->ssb_stat & SSB_ST_RESP) {
1304 		ap->ba_seq_id = sp->id;
1305 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1306 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1307 		ap->ba_low_seq_cnt = htons(sp->cnt);
1308 	}
1309 	sp = fc_seq_start_next_locked(sp);
1310 	spin_unlock_bh(&ep->ex_lock);
1311 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1312 	fc_frame_free(rx_fp);
1313 	return;
1314 
1315 reject:
1316 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1317 free:
1318 	fc_frame_free(rx_fp);
1319 }
1320 
1321 /**
1322  * fc_seq_assign() - Assign exchange and sequence for incoming request
1323  * @lport: The local port that received the request
1324  * @fp:    The request frame
1325  *
1326  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1327  * A reference will be held on the exchange/sequence for the caller, which
1328  * must call fc_seq_release().
1329  */
1330 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1331 {
1332 	struct fc_exch_mgr_anchor *ema;
1333 
1334 	WARN_ON(lport != fr_dev(fp));
1335 	WARN_ON(fr_seq(fp));
1336 	fr_seq(fp) = NULL;
1337 
1338 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1339 		if ((!ema->match || ema->match(fp)) &&
1340 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1341 			break;
1342 	return fr_seq(fp);
1343 }
1344 
1345 /**
1346  * fc_seq_release() - Release the hold
1347  * @sp:    The sequence.
1348  */
1349 static void fc_seq_release(struct fc_seq *sp)
1350 {
1351 	fc_exch_release(fc_seq_exch(sp));
1352 }
1353 
1354 /**
1355  * fc_exch_recv_req() - Handler for an incoming request
1356  * @lport: The local port that received the request
1357  * @mp:	   The EM that the exchange is on
1358  * @fp:	   The request frame
1359  *
1360  * This is used when the other end is originating the exchange
1361  * and the sequence.
1362  */
1363 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1364 			     struct fc_frame *fp)
1365 {
1366 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1367 	struct fc_seq *sp = NULL;
1368 	struct fc_exch *ep = NULL;
1369 	enum fc_pf_rjt_reason reject;
1370 
1371 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1372 	 * problem now that we know a new exchange needs to be allocated
1373 	 */
1374 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1375 	if (!lport) {
1376 		fc_frame_free(fp);
1377 		return;
1378 	}
1379 	fr_dev(fp) = lport;
1380 
1381 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1382 
1383 	/*
1384 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1385 	 * The upper-level protocol may request one later, if needed.
1386 	 */
1387 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1388 		return lport->tt.lport_recv(lport, fp);
1389 
1390 	reject = fc_seq_lookup_recip(lport, mp, fp);
1391 	if (reject == FC_RJT_NONE) {
1392 		sp = fr_seq(fp);	/* sequence will be held */
1393 		ep = fc_seq_exch(sp);
1394 		fc_seq_send_ack(sp, fp);
1395 		ep->encaps = fr_encaps(fp);
1396 
1397 		/*
1398 		 * Call the receive function.
1399 		 *
1400 		 * The receive function may allocate a new sequence
1401 		 * over the old one, so we shouldn't change the
1402 		 * sequence after this.
1403 		 *
1404 		 * The frame will be freed by the receive function.
1405 		 * If new exch resp handler is valid then call that
1406 		 * first.
1407 		 */
1408 		if (ep->resp)
1409 			ep->resp(sp, fp, ep->arg);
1410 		else
1411 			lport->tt.lport_recv(lport, fp);
1412 		fc_exch_release(ep);	/* release from lookup */
1413 	} else {
1414 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1415 			     reject);
1416 		fc_frame_free(fp);
1417 	}
1418 }
1419 
1420 /**
1421  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1422  *			     end is the originator of the sequence that is a
1423  *			     response to our initial exchange
1424  * @mp: The EM that the exchange is on
1425  * @fp: The response frame
1426  */
1427 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1428 {
1429 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1430 	struct fc_seq *sp;
1431 	struct fc_exch *ep;
1432 	enum fc_sof sof;
1433 	u32 f_ctl;
1434 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1435 	void *ex_resp_arg;
1436 	int rc;
1437 
1438 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1439 	if (!ep) {
1440 		atomic_inc(&mp->stats.xid_not_found);
1441 		goto out;
1442 	}
1443 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1444 		atomic_inc(&mp->stats.xid_not_found);
1445 		goto rel;
1446 	}
1447 	if (ep->rxid == FC_XID_UNKNOWN)
1448 		ep->rxid = ntohs(fh->fh_rx_id);
1449 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1450 		atomic_inc(&mp->stats.xid_not_found);
1451 		goto rel;
1452 	}
1453 	if (ep->did != ntoh24(fh->fh_s_id) &&
1454 	    ep->did != FC_FID_FLOGI) {
1455 		atomic_inc(&mp->stats.xid_not_found);
1456 		goto rel;
1457 	}
1458 	sof = fr_sof(fp);
1459 	sp = &ep->seq;
1460 	if (fc_sof_is_init(sof)) {
1461 		sp->ssb_stat |= SSB_ST_RESP;
1462 		sp->id = fh->fh_seq_id;
1463 	} else if (sp->id != fh->fh_seq_id) {
1464 		atomic_inc(&mp->stats.seq_not_found);
1465 		goto rel;
1466 	}
1467 
1468 	f_ctl = ntoh24(fh->fh_f_ctl);
1469 	fr_seq(fp) = sp;
1470 	if (f_ctl & FC_FC_SEQ_INIT)
1471 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1472 
1473 	if (fc_sof_needs_ack(sof))
1474 		fc_seq_send_ack(sp, fp);
1475 	resp = ep->resp;
1476 	ex_resp_arg = ep->arg;
1477 
1478 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1479 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1480 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1481 		spin_lock_bh(&ep->ex_lock);
1482 		resp = ep->resp;
1483 		rc = fc_exch_done_locked(ep);
1484 		WARN_ON(fc_seq_exch(sp) != ep);
1485 		spin_unlock_bh(&ep->ex_lock);
1486 		if (!rc)
1487 			fc_exch_delete(ep);
1488 	}
1489 
1490 	/*
1491 	 * Call the receive function.
1492 	 * The sequence is held (has a refcnt) for us,
1493 	 * but not for the receive function.
1494 	 *
1495 	 * The receive function may allocate a new sequence
1496 	 * over the old one, so we shouldn't change the
1497 	 * sequence after this.
1498 	 *
1499 	 * The frame will be freed by the receive function.
1500 	 * If new exch resp handler is valid then call that
1501 	 * first.
1502 	 */
1503 	if (resp)
1504 		resp(sp, fp, ex_resp_arg);
1505 	else
1506 		fc_frame_free(fp);
1507 	fc_exch_release(ep);
1508 	return;
1509 rel:
1510 	fc_exch_release(ep);
1511 out:
1512 	fc_frame_free(fp);
1513 }
1514 
1515 /**
1516  * fc_exch_recv_resp() - Handler for a sequence where other end is
1517  *			 responding to our sequence
1518  * @mp: The EM that the exchange is on
1519  * @fp: The response frame
1520  */
1521 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1522 {
1523 	struct fc_seq *sp;
1524 
1525 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1526 
1527 	if (!sp)
1528 		atomic_inc(&mp->stats.xid_not_found);
1529 	else
1530 		atomic_inc(&mp->stats.non_bls_resp);
1531 
1532 	fc_frame_free(fp);
1533 }
1534 
1535 /**
1536  * fc_exch_abts_resp() - Handler for a response to an ABT
1537  * @ep: The exchange that the frame is on
1538  * @fp: The response frame
1539  *
1540  * This response would be to an ABTS cancelling an exchange or sequence.
1541  * The response can be either BA_ACC or BA_RJT
1542  */
1543 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1544 {
1545 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1546 	void *ex_resp_arg;
1547 	struct fc_frame_header *fh;
1548 	struct fc_ba_acc *ap;
1549 	struct fc_seq *sp;
1550 	u16 low;
1551 	u16 high;
1552 	int rc = 1, has_rec = 0;
1553 
1554 	fh = fc_frame_header_get(fp);
1555 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1556 		    fc_exch_rctl_name(fh->fh_r_ctl));
1557 
1558 	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1559 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
1560 		fc_exch_release(ep);	/* release from pending timer hold */
1561 	}
1562 
1563 	spin_lock_bh(&ep->ex_lock);
1564 	switch (fh->fh_r_ctl) {
1565 	case FC_RCTL_BA_ACC:
1566 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1567 		if (!ap)
1568 			break;
1569 
1570 		/*
1571 		 * Decide whether to establish a Recovery Qualifier.
1572 		 * We do this if there is a non-empty SEQ_CNT range and
1573 		 * SEQ_ID is the same as the one we aborted.
1574 		 */
1575 		low = ntohs(ap->ba_low_seq_cnt);
1576 		high = ntohs(ap->ba_high_seq_cnt);
1577 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1578 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1579 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1580 			ep->esb_stat |= ESB_ST_REC_QUAL;
1581 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1582 			has_rec = 1;
1583 		}
1584 		break;
1585 	case FC_RCTL_BA_RJT:
1586 		break;
1587 	default:
1588 		break;
1589 	}
1590 
1591 	resp = ep->resp;
1592 	ex_resp_arg = ep->arg;
1593 
1594 	/* do we need to do some other checks here. Can we reuse more of
1595 	 * fc_exch_recv_seq_resp
1596 	 */
1597 	sp = &ep->seq;
1598 	/*
1599 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1600 	 */
1601 	if (ep->fh_type != FC_TYPE_FCP &&
1602 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1603 		rc = fc_exch_done_locked(ep);
1604 	spin_unlock_bh(&ep->ex_lock);
1605 	if (!rc)
1606 		fc_exch_delete(ep);
1607 
1608 	if (resp)
1609 		resp(sp, fp, ex_resp_arg);
1610 	else
1611 		fc_frame_free(fp);
1612 
1613 	if (has_rec)
1614 		fc_exch_timer_set(ep, ep->r_a_tov);
1615 
1616 }
1617 
1618 /**
1619  * fc_exch_recv_bls() - Handler for a BLS sequence
1620  * @mp: The EM that the exchange is on
1621  * @fp: The request frame
1622  *
1623  * The BLS frame is always a sequence initiated by the remote side.
1624  * We may be either the originator or recipient of the exchange.
1625  */
1626 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1627 {
1628 	struct fc_frame_header *fh;
1629 	struct fc_exch *ep;
1630 	u32 f_ctl;
1631 
1632 	fh = fc_frame_header_get(fp);
1633 	f_ctl = ntoh24(fh->fh_f_ctl);
1634 	fr_seq(fp) = NULL;
1635 
1636 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1637 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1638 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1639 		spin_lock_bh(&ep->ex_lock);
1640 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1641 		spin_unlock_bh(&ep->ex_lock);
1642 	}
1643 	if (f_ctl & FC_FC_SEQ_CTX) {
1644 		/*
1645 		 * A response to a sequence we initiated.
1646 		 * This should only be ACKs for class 2 or F.
1647 		 */
1648 		switch (fh->fh_r_ctl) {
1649 		case FC_RCTL_ACK_1:
1650 		case FC_RCTL_ACK_0:
1651 			break;
1652 		default:
1653 			if (ep)
1654 				FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1655 					    fh->fh_r_ctl,
1656 					    fc_exch_rctl_name(fh->fh_r_ctl));
1657 			break;
1658 		}
1659 		fc_frame_free(fp);
1660 	} else {
1661 		switch (fh->fh_r_ctl) {
1662 		case FC_RCTL_BA_RJT:
1663 		case FC_RCTL_BA_ACC:
1664 			if (ep)
1665 				fc_exch_abts_resp(ep, fp);
1666 			else
1667 				fc_frame_free(fp);
1668 			break;
1669 		case FC_RCTL_BA_ABTS:
1670 			fc_exch_recv_abts(ep, fp);
1671 			break;
1672 		default:			/* ignore junk */
1673 			fc_frame_free(fp);
1674 			break;
1675 		}
1676 	}
1677 	if (ep)
1678 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1679 }
1680 
1681 /**
1682  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1683  * @rx_fp: The received frame, not freed here.
1684  *
1685  * If this fails due to allocation or transmit congestion, assume the
1686  * originator will repeat the sequence.
1687  */
1688 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1689 {
1690 	struct fc_lport *lport;
1691 	struct fc_els_ls_acc *acc;
1692 	struct fc_frame *fp;
1693 
1694 	lport = fr_dev(rx_fp);
1695 	fp = fc_frame_alloc(lport, sizeof(*acc));
1696 	if (!fp)
1697 		return;
1698 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1699 	memset(acc, 0, sizeof(*acc));
1700 	acc->la_cmd = ELS_LS_ACC;
1701 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1702 	lport->tt.frame_send(lport, fp);
1703 }
1704 
1705 /**
1706  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1707  * @rx_fp: The received frame, not freed here.
1708  * @reason: The reason the sequence is being rejected
1709  * @explan: The explanation for the rejection
1710  *
1711  * If this fails due to allocation or transmit congestion, assume the
1712  * originator will repeat the sequence.
1713  */
1714 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1715 			  enum fc_els_rjt_explan explan)
1716 {
1717 	struct fc_lport *lport;
1718 	struct fc_els_ls_rjt *rjt;
1719 	struct fc_frame *fp;
1720 
1721 	lport = fr_dev(rx_fp);
1722 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1723 	if (!fp)
1724 		return;
1725 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1726 	memset(rjt, 0, sizeof(*rjt));
1727 	rjt->er_cmd = ELS_LS_RJT;
1728 	rjt->er_reason = reason;
1729 	rjt->er_explan = explan;
1730 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1731 	lport->tt.frame_send(lport, fp);
1732 }
1733 
1734 /**
1735  * fc_exch_reset() - Reset an exchange
1736  * @ep: The exchange to be reset
1737  */
1738 static void fc_exch_reset(struct fc_exch *ep)
1739 {
1740 	struct fc_seq *sp;
1741 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1742 	void *arg;
1743 	int rc = 1;
1744 
1745 	spin_lock_bh(&ep->ex_lock);
1746 	fc_exch_abort_locked(ep, 0);
1747 	ep->state |= FC_EX_RST_CLEANUP;
1748 	fc_exch_timer_cancel(ep);
1749 	resp = ep->resp;
1750 	ep->resp = NULL;
1751 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1752 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1753 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1754 	arg = ep->arg;
1755 	sp = &ep->seq;
1756 	rc = fc_exch_done_locked(ep);
1757 	spin_unlock_bh(&ep->ex_lock);
1758 	if (!rc)
1759 		fc_exch_delete(ep);
1760 
1761 	if (resp)
1762 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1763 }
1764 
1765 /**
1766  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1767  * @lport: The local port that the exchange pool is on
1768  * @pool:  The exchange pool to be reset
1769  * @sid:   The source ID
1770  * @did:   The destination ID
1771  *
1772  * Resets a per cpu exches pool, releasing all of its sequences
1773  * and exchanges. If sid is non-zero then reset only exchanges
1774  * we sourced from the local port's FID. If did is non-zero then
1775  * only reset exchanges destined for the local port's FID.
1776  */
1777 static void fc_exch_pool_reset(struct fc_lport *lport,
1778 			       struct fc_exch_pool *pool,
1779 			       u32 sid, u32 did)
1780 {
1781 	struct fc_exch *ep;
1782 	struct fc_exch *next;
1783 
1784 	spin_lock_bh(&pool->lock);
1785 restart:
1786 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1787 		if ((lport == ep->lp) &&
1788 		    (sid == 0 || sid == ep->sid) &&
1789 		    (did == 0 || did == ep->did)) {
1790 			fc_exch_hold(ep);
1791 			spin_unlock_bh(&pool->lock);
1792 
1793 			fc_exch_reset(ep);
1794 
1795 			fc_exch_release(ep);
1796 			spin_lock_bh(&pool->lock);
1797 
1798 			/*
1799 			 * must restart loop incase while lock
1800 			 * was down multiple eps were released.
1801 			 */
1802 			goto restart;
1803 		}
1804 	}
1805 	pool->next_index = 0;
1806 	pool->left = FC_XID_UNKNOWN;
1807 	pool->right = FC_XID_UNKNOWN;
1808 	spin_unlock_bh(&pool->lock);
1809 }
1810 
1811 /**
1812  * fc_exch_mgr_reset() - Reset all EMs of a local port
1813  * @lport: The local port whose EMs are to be reset
1814  * @sid:   The source ID
1815  * @did:   The destination ID
1816  *
1817  * Reset all EMs associated with a given local port. Release all
1818  * sequences and exchanges. If sid is non-zero then reset only the
1819  * exchanges sent from the local port's FID. If did is non-zero then
1820  * reset only exchanges destined for the local port's FID.
1821  */
1822 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1823 {
1824 	struct fc_exch_mgr_anchor *ema;
1825 	unsigned int cpu;
1826 
1827 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1828 		for_each_possible_cpu(cpu)
1829 			fc_exch_pool_reset(lport,
1830 					   per_cpu_ptr(ema->mp->pool, cpu),
1831 					   sid, did);
1832 	}
1833 }
1834 EXPORT_SYMBOL(fc_exch_mgr_reset);
1835 
1836 /**
1837  * fc_exch_lookup() - find an exchange
1838  * @lport: The local port
1839  * @xid: The exchange ID
1840  *
1841  * Returns exchange pointer with hold for caller, or NULL if not found.
1842  */
1843 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1844 {
1845 	struct fc_exch_mgr_anchor *ema;
1846 
1847 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1848 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1849 			return fc_exch_find(ema->mp, xid);
1850 	return NULL;
1851 }
1852 
1853 /**
1854  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1855  * @rfp: The REC frame, not freed here.
1856  *
1857  * Note that the requesting port may be different than the S_ID in the request.
1858  */
1859 static void fc_exch_els_rec(struct fc_frame *rfp)
1860 {
1861 	struct fc_lport *lport;
1862 	struct fc_frame *fp;
1863 	struct fc_exch *ep;
1864 	struct fc_els_rec *rp;
1865 	struct fc_els_rec_acc *acc;
1866 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1867 	enum fc_els_rjt_explan explan;
1868 	u32 sid;
1869 	u16 rxid;
1870 	u16 oxid;
1871 
1872 	lport = fr_dev(rfp);
1873 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1874 	explan = ELS_EXPL_INV_LEN;
1875 	if (!rp)
1876 		goto reject;
1877 	sid = ntoh24(rp->rec_s_id);
1878 	rxid = ntohs(rp->rec_rx_id);
1879 	oxid = ntohs(rp->rec_ox_id);
1880 
1881 	ep = fc_exch_lookup(lport,
1882 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1883 	explan = ELS_EXPL_OXID_RXID;
1884 	if (!ep)
1885 		goto reject;
1886 	if (ep->oid != sid || oxid != ep->oxid)
1887 		goto rel;
1888 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1889 		goto rel;
1890 	fp = fc_frame_alloc(lport, sizeof(*acc));
1891 	if (!fp)
1892 		goto out;
1893 
1894 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1895 	memset(acc, 0, sizeof(*acc));
1896 	acc->reca_cmd = ELS_LS_ACC;
1897 	acc->reca_ox_id = rp->rec_ox_id;
1898 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1899 	acc->reca_rx_id = htons(ep->rxid);
1900 	if (ep->sid == ep->oid)
1901 		hton24(acc->reca_rfid, ep->did);
1902 	else
1903 		hton24(acc->reca_rfid, ep->sid);
1904 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1905 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1906 						 ESB_ST_SEQ_INIT |
1907 						 ESB_ST_COMPLETE));
1908 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1909 	lport->tt.frame_send(lport, fp);
1910 out:
1911 	fc_exch_release(ep);
1912 	return;
1913 
1914 rel:
1915 	fc_exch_release(ep);
1916 reject:
1917 	fc_seq_ls_rjt(rfp, reason, explan);
1918 }
1919 
1920 /**
1921  * fc_exch_rrq_resp() - Handler for RRQ responses
1922  * @sp:	 The sequence that the RRQ is on
1923  * @fp:	 The RRQ frame
1924  * @arg: The exchange that the RRQ is on
1925  *
1926  * TODO: fix error handler.
1927  */
1928 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1929 {
1930 	struct fc_exch *aborted_ep = arg;
1931 	unsigned int op;
1932 
1933 	if (IS_ERR(fp)) {
1934 		int err = PTR_ERR(fp);
1935 
1936 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1937 			goto cleanup;
1938 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1939 			    "frame error %d\n", err);
1940 		return;
1941 	}
1942 
1943 	op = fc_frame_payload_op(fp);
1944 	fc_frame_free(fp);
1945 
1946 	switch (op) {
1947 	case ELS_LS_RJT:
1948 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1949 		/* fall through */
1950 	case ELS_LS_ACC:
1951 		goto cleanup;
1952 	default:
1953 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1954 			    "for RRQ", op);
1955 		return;
1956 	}
1957 
1958 cleanup:
1959 	fc_exch_done(&aborted_ep->seq);
1960 	/* drop hold for rec qual */
1961 	fc_exch_release(aborted_ep);
1962 }
1963 
1964 
1965 /**
1966  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1967  * @lport:	The local port to send the frame on
1968  * @fp:		The frame to be sent
1969  * @resp:	The response handler for this request
1970  * @destructor: The destructor for the exchange
1971  * @arg:	The argument to be passed to the response handler
1972  * @timer_msec: The timeout period for the exchange
1973  *
1974  * The frame pointer with some of the header's fields must be
1975  * filled before calling this routine, those fields are:
1976  *
1977  * - routing control
1978  * - FC port did
1979  * - FC port sid
1980  * - FC header type
1981  * - frame control
1982  * - parameter or relative offset
1983  */
1984 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1985 				       struct fc_frame *fp,
1986 				       void (*resp)(struct fc_seq *,
1987 						    struct fc_frame *fp,
1988 						    void *arg),
1989 				       void (*destructor)(struct fc_seq *,
1990 							  void *),
1991 				       void *arg, u32 timer_msec)
1992 {
1993 	struct fc_exch *ep;
1994 	struct fc_seq *sp = NULL;
1995 	struct fc_frame_header *fh;
1996 	struct fc_fcp_pkt *fsp = NULL;
1997 	int rc = 1;
1998 
1999 	ep = fc_exch_alloc(lport, fp);
2000 	if (!ep) {
2001 		fc_frame_free(fp);
2002 		return NULL;
2003 	}
2004 	ep->esb_stat |= ESB_ST_SEQ_INIT;
2005 	fh = fc_frame_header_get(fp);
2006 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2007 	ep->resp = resp;
2008 	ep->destructor = destructor;
2009 	ep->arg = arg;
2010 	ep->r_a_tov = FC_DEF_R_A_TOV;
2011 	ep->lp = lport;
2012 	sp = &ep->seq;
2013 
2014 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2015 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2016 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2017 	sp->cnt++;
2018 
2019 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2020 		fsp = fr_fsp(fp);
2021 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2022 	}
2023 
2024 	if (unlikely(lport->tt.frame_send(lport, fp)))
2025 		goto err;
2026 
2027 	if (timer_msec)
2028 		fc_exch_timer_set_locked(ep, timer_msec);
2029 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2030 
2031 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2032 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2033 	spin_unlock_bh(&ep->ex_lock);
2034 	return sp;
2035 err:
2036 	if (fsp)
2037 		fc_fcp_ddp_done(fsp);
2038 	rc = fc_exch_done_locked(ep);
2039 	spin_unlock_bh(&ep->ex_lock);
2040 	if (!rc)
2041 		fc_exch_delete(ep);
2042 	return NULL;
2043 }
2044 
2045 /**
2046  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2047  * @ep: The exchange to send the RRQ on
2048  *
2049  * This tells the remote port to stop blocking the use of
2050  * the exchange and the seq_cnt range.
2051  */
2052 static void fc_exch_rrq(struct fc_exch *ep)
2053 {
2054 	struct fc_lport *lport;
2055 	struct fc_els_rrq *rrq;
2056 	struct fc_frame *fp;
2057 	u32 did;
2058 
2059 	lport = ep->lp;
2060 
2061 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2062 	if (!fp)
2063 		goto retry;
2064 
2065 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2066 	memset(rrq, 0, sizeof(*rrq));
2067 	rrq->rrq_cmd = ELS_RRQ;
2068 	hton24(rrq->rrq_s_id, ep->sid);
2069 	rrq->rrq_ox_id = htons(ep->oxid);
2070 	rrq->rrq_rx_id = htons(ep->rxid);
2071 
2072 	did = ep->did;
2073 	if (ep->esb_stat & ESB_ST_RESP)
2074 		did = ep->sid;
2075 
2076 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2077 		       lport->port_id, FC_TYPE_ELS,
2078 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2079 
2080 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2081 			     lport->e_d_tov))
2082 		return;
2083 
2084 retry:
2085 	spin_lock_bh(&ep->ex_lock);
2086 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2087 		spin_unlock_bh(&ep->ex_lock);
2088 		/* drop hold for rec qual */
2089 		fc_exch_release(ep);
2090 		return;
2091 	}
2092 	ep->esb_stat |= ESB_ST_REC_QUAL;
2093 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2094 	spin_unlock_bh(&ep->ex_lock);
2095 }
2096 
2097 /**
2098  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2099  * @fp: The RRQ frame, not freed here.
2100  */
2101 static void fc_exch_els_rrq(struct fc_frame *fp)
2102 {
2103 	struct fc_lport *lport;
2104 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2105 	struct fc_els_rrq *rp;
2106 	u32 sid;
2107 	u16 xid;
2108 	enum fc_els_rjt_explan explan;
2109 
2110 	lport = fr_dev(fp);
2111 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2112 	explan = ELS_EXPL_INV_LEN;
2113 	if (!rp)
2114 		goto reject;
2115 
2116 	/*
2117 	 * lookup subject exchange.
2118 	 */
2119 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2120 	xid = fc_host_port_id(lport->host) == sid ?
2121 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2122 	ep = fc_exch_lookup(lport, xid);
2123 	explan = ELS_EXPL_OXID_RXID;
2124 	if (!ep)
2125 		goto reject;
2126 	spin_lock_bh(&ep->ex_lock);
2127 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2128 		goto unlock_reject;
2129 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2130 	    ep->rxid != FC_XID_UNKNOWN)
2131 		goto unlock_reject;
2132 	explan = ELS_EXPL_SID;
2133 	if (ep->sid != sid)
2134 		goto unlock_reject;
2135 
2136 	/*
2137 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2138 	 */
2139 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2140 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2141 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2142 	}
2143 	if (ep->esb_stat & ESB_ST_COMPLETE)
2144 		fc_exch_timer_cancel(ep);
2145 
2146 	spin_unlock_bh(&ep->ex_lock);
2147 
2148 	/*
2149 	 * Send LS_ACC.
2150 	 */
2151 	fc_seq_ls_acc(fp);
2152 	goto out;
2153 
2154 unlock_reject:
2155 	spin_unlock_bh(&ep->ex_lock);
2156 reject:
2157 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2158 out:
2159 	if (ep)
2160 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2161 }
2162 
2163 /**
2164  * fc_exch_update_stats() - update exches stats to lport
2165  * @lport: The local port to update exchange manager stats
2166  */
2167 void fc_exch_update_stats(struct fc_lport *lport)
2168 {
2169 	struct fc_host_statistics *st;
2170 	struct fc_exch_mgr_anchor *ema;
2171 	struct fc_exch_mgr *mp;
2172 
2173 	st = &lport->host_stats;
2174 
2175 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2176 		mp = ema->mp;
2177 		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2178 		st->fc_no_free_exch_xid +=
2179 				atomic_read(&mp->stats.no_free_exch_xid);
2180 		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2181 		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2182 		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2183 		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2184 	}
2185 }
2186 EXPORT_SYMBOL(fc_exch_update_stats);
2187 
2188 /**
2189  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2190  * @lport: The local port to add the exchange manager to
2191  * @mp:	   The exchange manager to be added to the local port
2192  * @match: The match routine that indicates when this EM should be used
2193  */
2194 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2195 					   struct fc_exch_mgr *mp,
2196 					   bool (*match)(struct fc_frame *))
2197 {
2198 	struct fc_exch_mgr_anchor *ema;
2199 
2200 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2201 	if (!ema)
2202 		return ema;
2203 
2204 	ema->mp = mp;
2205 	ema->match = match;
2206 	/* add EM anchor to EM anchors list */
2207 	list_add_tail(&ema->ema_list, &lport->ema_list);
2208 	kref_get(&mp->kref);
2209 	return ema;
2210 }
2211 EXPORT_SYMBOL(fc_exch_mgr_add);
2212 
2213 /**
2214  * fc_exch_mgr_destroy() - Destroy an exchange manager
2215  * @kref: The reference to the EM to be destroyed
2216  */
2217 static void fc_exch_mgr_destroy(struct kref *kref)
2218 {
2219 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2220 
2221 	mempool_destroy(mp->ep_pool);
2222 	free_percpu(mp->pool);
2223 	kfree(mp);
2224 }
2225 
2226 /**
2227  * fc_exch_mgr_del() - Delete an EM from a local port's list
2228  * @ema: The exchange manager anchor identifying the EM to be deleted
2229  */
2230 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2231 {
2232 	/* remove EM anchor from EM anchors list */
2233 	list_del(&ema->ema_list);
2234 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2235 	kfree(ema);
2236 }
2237 EXPORT_SYMBOL(fc_exch_mgr_del);
2238 
2239 /**
2240  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2241  * @src: Source lport to clone exchange managers from
2242  * @dst: New lport that takes references to all the exchange managers
2243  */
2244 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2245 {
2246 	struct fc_exch_mgr_anchor *ema, *tmp;
2247 
2248 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2249 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2250 			goto err;
2251 	}
2252 	return 0;
2253 err:
2254 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2255 		fc_exch_mgr_del(ema);
2256 	return -ENOMEM;
2257 }
2258 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2259 
2260 /**
2261  * fc_exch_mgr_alloc() - Allocate an exchange manager
2262  * @lport:   The local port that the new EM will be associated with
2263  * @class:   The default FC class for new exchanges
2264  * @min_xid: The minimum XID for exchanges from the new EM
2265  * @max_xid: The maximum XID for exchanges from the new EM
2266  * @match:   The match routine for the new EM
2267  */
2268 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2269 				      enum fc_class class,
2270 				      u16 min_xid, u16 max_xid,
2271 				      bool (*match)(struct fc_frame *))
2272 {
2273 	struct fc_exch_mgr *mp;
2274 	u16 pool_exch_range;
2275 	size_t pool_size;
2276 	unsigned int cpu;
2277 	struct fc_exch_pool *pool;
2278 
2279 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2280 	    (min_xid & fc_cpu_mask) != 0) {
2281 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2282 			     min_xid, max_xid);
2283 		return NULL;
2284 	}
2285 
2286 	/*
2287 	 * allocate memory for EM
2288 	 */
2289 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2290 	if (!mp)
2291 		return NULL;
2292 
2293 	mp->class = class;
2294 	/* adjust em exch xid range for offload */
2295 	mp->min_xid = min_xid;
2296 
2297        /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2298 	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2299 		sizeof(struct fc_exch *);
2300 	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2301 		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2302 			min_xid - 1;
2303 	} else {
2304 		mp->max_xid = max_xid;
2305 		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2306 			(fc_cpu_mask + 1);
2307 	}
2308 
2309 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2310 	if (!mp->ep_pool)
2311 		goto free_mp;
2312 
2313 	/*
2314 	 * Setup per cpu exch pool with entire exchange id range equally
2315 	 * divided across all cpus. The exch pointers array memory is
2316 	 * allocated for exch range per pool.
2317 	 */
2318 	mp->pool_max_index = pool_exch_range - 1;
2319 
2320 	/*
2321 	 * Allocate and initialize per cpu exch pool
2322 	 */
2323 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2324 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2325 	if (!mp->pool)
2326 		goto free_mempool;
2327 	for_each_possible_cpu(cpu) {
2328 		pool = per_cpu_ptr(mp->pool, cpu);
2329 		pool->next_index = 0;
2330 		pool->left = FC_XID_UNKNOWN;
2331 		pool->right = FC_XID_UNKNOWN;
2332 		spin_lock_init(&pool->lock);
2333 		INIT_LIST_HEAD(&pool->ex_list);
2334 	}
2335 
2336 	kref_init(&mp->kref);
2337 	if (!fc_exch_mgr_add(lport, mp, match)) {
2338 		free_percpu(mp->pool);
2339 		goto free_mempool;
2340 	}
2341 
2342 	/*
2343 	 * Above kref_init() sets mp->kref to 1 and then
2344 	 * call to fc_exch_mgr_add incremented mp->kref again,
2345 	 * so adjust that extra increment.
2346 	 */
2347 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2348 	return mp;
2349 
2350 free_mempool:
2351 	mempool_destroy(mp->ep_pool);
2352 free_mp:
2353 	kfree(mp);
2354 	return NULL;
2355 }
2356 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2357 
2358 /**
2359  * fc_exch_mgr_free() - Free all exchange managers on a local port
2360  * @lport: The local port whose EMs are to be freed
2361  */
2362 void fc_exch_mgr_free(struct fc_lport *lport)
2363 {
2364 	struct fc_exch_mgr_anchor *ema, *next;
2365 
2366 	flush_workqueue(fc_exch_workqueue);
2367 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2368 		fc_exch_mgr_del(ema);
2369 }
2370 EXPORT_SYMBOL(fc_exch_mgr_free);
2371 
2372 /**
2373  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2374  * upon 'xid'.
2375  * @f_ctl: f_ctl
2376  * @lport: The local port the frame was received on
2377  * @fh: The received frame header
2378  */
2379 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2380 					      struct fc_lport *lport,
2381 					      struct fc_frame_header *fh)
2382 {
2383 	struct fc_exch_mgr_anchor *ema;
2384 	u16 xid;
2385 
2386 	if (f_ctl & FC_FC_EX_CTX)
2387 		xid = ntohs(fh->fh_ox_id);
2388 	else {
2389 		xid = ntohs(fh->fh_rx_id);
2390 		if (xid == FC_XID_UNKNOWN)
2391 			return list_entry(lport->ema_list.prev,
2392 					  typeof(*ema), ema_list);
2393 	}
2394 
2395 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2396 		if ((xid >= ema->mp->min_xid) &&
2397 		    (xid <= ema->mp->max_xid))
2398 			return ema;
2399 	}
2400 	return NULL;
2401 }
2402 /**
2403  * fc_exch_recv() - Handler for received frames
2404  * @lport: The local port the frame was received on
2405  * @fp:	The received frame
2406  */
2407 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2408 {
2409 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2410 	struct fc_exch_mgr_anchor *ema;
2411 	u32 f_ctl;
2412 
2413 	/* lport lock ? */
2414 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2415 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2416 			     "has not been initialized correctly\n");
2417 		fc_frame_free(fp);
2418 		return;
2419 	}
2420 
2421 	f_ctl = ntoh24(fh->fh_f_ctl);
2422 	ema = fc_find_ema(f_ctl, lport, fh);
2423 	if (!ema) {
2424 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2425 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2426 				     f_ctl,
2427 				     (f_ctl & FC_FC_EX_CTX) ?
2428 				     ntohs(fh->fh_ox_id) :
2429 				     ntohs(fh->fh_rx_id));
2430 		fc_frame_free(fp);
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * If frame is marked invalid, just drop it.
2436 	 */
2437 	switch (fr_eof(fp)) {
2438 	case FC_EOF_T:
2439 		if (f_ctl & FC_FC_END_SEQ)
2440 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2441 		/* fall through */
2442 	case FC_EOF_N:
2443 		if (fh->fh_type == FC_TYPE_BLS)
2444 			fc_exch_recv_bls(ema->mp, fp);
2445 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2446 			 FC_FC_EX_CTX)
2447 			fc_exch_recv_seq_resp(ema->mp, fp);
2448 		else if (f_ctl & FC_FC_SEQ_CTX)
2449 			fc_exch_recv_resp(ema->mp, fp);
2450 		else	/* no EX_CTX and no SEQ_CTX */
2451 			fc_exch_recv_req(lport, ema->mp, fp);
2452 		break;
2453 	default:
2454 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2455 			     fr_eof(fp));
2456 		fc_frame_free(fp);
2457 	}
2458 }
2459 EXPORT_SYMBOL(fc_exch_recv);
2460 
2461 /**
2462  * fc_exch_init() - Initialize the exchange layer for a local port
2463  * @lport: The local port to initialize the exchange layer for
2464  */
2465 int fc_exch_init(struct fc_lport *lport)
2466 {
2467 	if (!lport->tt.seq_start_next)
2468 		lport->tt.seq_start_next = fc_seq_start_next;
2469 
2470 	if (!lport->tt.seq_set_resp)
2471 		lport->tt.seq_set_resp = fc_seq_set_resp;
2472 
2473 	if (!lport->tt.exch_seq_send)
2474 		lport->tt.exch_seq_send = fc_exch_seq_send;
2475 
2476 	if (!lport->tt.seq_send)
2477 		lport->tt.seq_send = fc_seq_send;
2478 
2479 	if (!lport->tt.seq_els_rsp_send)
2480 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2481 
2482 	if (!lport->tt.exch_done)
2483 		lport->tt.exch_done = fc_exch_done;
2484 
2485 	if (!lport->tt.exch_mgr_reset)
2486 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2487 
2488 	if (!lport->tt.seq_exch_abort)
2489 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2490 
2491 	if (!lport->tt.seq_assign)
2492 		lport->tt.seq_assign = fc_seq_assign;
2493 
2494 	if (!lport->tt.seq_release)
2495 		lport->tt.seq_release = fc_seq_release;
2496 
2497 	return 0;
2498 }
2499 EXPORT_SYMBOL(fc_exch_init);
2500 
2501 /**
2502  * fc_setup_exch_mgr() - Setup an exchange manager
2503  */
2504 int fc_setup_exch_mgr(void)
2505 {
2506 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2507 					 0, SLAB_HWCACHE_ALIGN, NULL);
2508 	if (!fc_em_cachep)
2509 		return -ENOMEM;
2510 
2511 	/*
2512 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2513 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2514 	 * to order of 2's * power and order is stored
2515 	 * in fc_cpu_order as this is later required in
2516 	 * mapping between an exch id and exch array index
2517 	 * in per cpu exch pool.
2518 	 *
2519 	 * This round up is required to align fc_cpu_mask
2520 	 * to exchange id's lower bits such that all incoming
2521 	 * frames of an exchange gets delivered to the same
2522 	 * cpu on which exchange originated by simple bitwise
2523 	 * AND operation between fc_cpu_mask and exchange id.
2524 	 */
2525 	fc_cpu_mask = 1;
2526 	fc_cpu_order = 0;
2527 	while (fc_cpu_mask < nr_cpu_ids) {
2528 		fc_cpu_mask <<= 1;
2529 		fc_cpu_order++;
2530 	}
2531 	fc_cpu_mask--;
2532 
2533 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2534 	if (!fc_exch_workqueue)
2535 		goto err;
2536 	return 0;
2537 err:
2538 	kmem_cache_destroy(fc_em_cachep);
2539 	return -ENOMEM;
2540 }
2541 
2542 /**
2543  * fc_destroy_exch_mgr() - Destroy an exchange manager
2544  */
2545 void fc_destroy_exch_mgr(void)
2546 {
2547 	destroy_workqueue(fc_exch_workqueue);
2548 	kmem_cache_destroy(fc_em_cachep);
2549 }
2550