1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/gfp.h> 28 #include <linux/err.h> 29 30 #include <scsi/fc/fc_fc2.h> 31 32 #include <scsi/libfc.h> 33 #include <scsi/fc_encode.h> 34 35 /* 36 * fc_exch_debug can be set in debugger or at compile time to get more logs. 37 */ 38 static int fc_exch_debug; 39 40 #define FC_DEBUG_EXCH(fmt...) \ 41 do { \ 42 if (fc_exch_debug) \ 43 FC_DBG(fmt); \ 44 } while (0) 45 46 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 47 48 /* 49 * Structure and function definitions for managing Fibre Channel Exchanges 50 * and Sequences. 51 * 52 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 53 * 54 * fc_exch_mgr holds the exchange state for an N port 55 * 56 * fc_exch holds state for one exchange and links to its active sequence. 57 * 58 * fc_seq holds the state for an individual sequence. 59 */ 60 61 /* 62 * Exchange manager. 63 * 64 * This structure is the center for creating exchanges and sequences. 65 * It manages the allocation of exchange IDs. 66 */ 67 struct fc_exch_mgr { 68 enum fc_class class; /* default class for sequences */ 69 spinlock_t em_lock; /* exchange manager lock, 70 must be taken before ex_lock */ 71 u16 last_xid; /* last allocated exchange ID */ 72 u16 min_xid; /* min exchange ID */ 73 u16 max_xid; /* max exchange ID */ 74 u16 max_read; /* max exchange ID for read */ 75 u16 last_read; /* last xid allocated for read */ 76 u32 total_exches; /* total allocated exchanges */ 77 struct list_head ex_list; /* allocated exchanges list */ 78 struct fc_lport *lp; /* fc device instance */ 79 mempool_t *ep_pool; /* reserve ep's */ 80 81 /* 82 * currently exchange mgr stats are updated but not used. 83 * either stats can be expose via sysfs or remove them 84 * all together if not used XXX 85 */ 86 struct { 87 atomic_t no_free_exch; 88 atomic_t no_free_exch_xid; 89 atomic_t xid_not_found; 90 atomic_t xid_busy; 91 atomic_t seq_not_found; 92 atomic_t non_bls_resp; 93 } stats; 94 struct fc_exch **exches; /* for exch pointers indexed by xid */ 95 }; 96 #define fc_seq_exch(sp) container_of(sp, struct fc_exch, seq) 97 98 static void fc_exch_rrq(struct fc_exch *); 99 static void fc_seq_ls_acc(struct fc_seq *); 100 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason, 101 enum fc_els_rjt_explan); 102 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *); 103 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *); 104 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp); 105 106 /* 107 * Internal implementation notes. 108 * 109 * The exchange manager is one by default in libfc but LLD may choose 110 * to have one per CPU. The sequence manager is one per exchange manager 111 * and currently never separated. 112 * 113 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 114 * assigned by the Sequence Initiator that shall be unique for a specific 115 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 116 * qualified by exchange ID, which one might think it would be. 117 * In practice this limits the number of open sequences and exchanges to 256 118 * per session. For most targets we could treat this limit as per exchange. 119 * 120 * The exchange and its sequence are freed when the last sequence is received. 121 * It's possible for the remote port to leave an exchange open without 122 * sending any sequences. 123 * 124 * Notes on reference counts: 125 * 126 * Exchanges are reference counted and exchange gets freed when the reference 127 * count becomes zero. 128 * 129 * Timeouts: 130 * Sequences are timed out for E_D_TOV and R_A_TOV. 131 * 132 * Sequence event handling: 133 * 134 * The following events may occur on initiator sequences: 135 * 136 * Send. 137 * For now, the whole thing is sent. 138 * Receive ACK 139 * This applies only to class F. 140 * The sequence is marked complete. 141 * ULP completion. 142 * The upper layer calls fc_exch_done() when done 143 * with exchange and sequence tuple. 144 * RX-inferred completion. 145 * When we receive the next sequence on the same exchange, we can 146 * retire the previous sequence ID. (XXX not implemented). 147 * Timeout. 148 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 149 * E_D_TOV causes abort and calls upper layer response handler 150 * with FC_EX_TIMEOUT error. 151 * Receive RJT 152 * XXX defer. 153 * Send ABTS 154 * On timeout. 155 * 156 * The following events may occur on recipient sequences: 157 * 158 * Receive 159 * Allocate sequence for first frame received. 160 * Hold during receive handler. 161 * Release when final frame received. 162 * Keep status of last N of these for the ELS RES command. XXX TBD. 163 * Receive ABTS 164 * Deallocate sequence 165 * Send RJT 166 * Deallocate 167 * 168 * For now, we neglect conditions where only part of a sequence was 169 * received or transmitted, or where out-of-order receipt is detected. 170 */ 171 172 /* 173 * Locking notes: 174 * 175 * The EM code run in a per-CPU worker thread. 176 * 177 * To protect against concurrency between a worker thread code and timers, 178 * sequence allocation and deallocation must be locked. 179 * - exchange refcnt can be done atomicly without locks. 180 * - sequence allocation must be locked by exch lock. 181 * - If the em_lock and ex_lock must be taken at the same time, then the 182 * em_lock must be taken before the ex_lock. 183 */ 184 185 /* 186 * opcode names for debugging. 187 */ 188 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 189 190 #define FC_TABLE_SIZE(x) (sizeof(x) / sizeof(x[0])) 191 192 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 193 unsigned int max_index) 194 { 195 const char *name = NULL; 196 197 if (op < max_index) 198 name = table[op]; 199 if (!name) 200 name = "unknown"; 201 return name; 202 } 203 204 static const char *fc_exch_rctl_name(unsigned int op) 205 { 206 return fc_exch_name_lookup(op, fc_exch_rctl_names, 207 FC_TABLE_SIZE(fc_exch_rctl_names)); 208 } 209 210 /* 211 * Hold an exchange - keep it from being freed. 212 */ 213 static void fc_exch_hold(struct fc_exch *ep) 214 { 215 atomic_inc(&ep->ex_refcnt); 216 } 217 218 /* 219 * setup fc hdr by initializing few more FC header fields and sof/eof. 220 * Initialized fields by this func: 221 * - fh_ox_id, fh_rx_id, fh_seq_id, fh_seq_cnt 222 * - sof and eof 223 */ 224 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 225 u32 f_ctl) 226 { 227 struct fc_frame_header *fh = fc_frame_header_get(fp); 228 u16 fill; 229 230 fr_sof(fp) = ep->class; 231 if (ep->seq.cnt) 232 fr_sof(fp) = fc_sof_normal(ep->class); 233 234 if (f_ctl & FC_FC_END_SEQ) { 235 fr_eof(fp) = FC_EOF_T; 236 if (fc_sof_needs_ack(ep->class)) 237 fr_eof(fp) = FC_EOF_N; 238 /* 239 * Form f_ctl. 240 * The number of fill bytes to make the length a 4-byte 241 * multiple is the low order 2-bits of the f_ctl. 242 * The fill itself will have been cleared by the frame 243 * allocation. 244 * After this, the length will be even, as expected by 245 * the transport. 246 */ 247 fill = fr_len(fp) & 3; 248 if (fill) { 249 fill = 4 - fill; 250 /* TODO, this may be a problem with fragmented skb */ 251 skb_put(fp_skb(fp), fill); 252 hton24(fh->fh_f_ctl, f_ctl | fill); 253 } 254 } else { 255 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 256 fr_eof(fp) = FC_EOF_N; 257 } 258 259 /* 260 * Initialize remainig fh fields 261 * from fc_fill_fc_hdr 262 */ 263 fh->fh_ox_id = htons(ep->oxid); 264 fh->fh_rx_id = htons(ep->rxid); 265 fh->fh_seq_id = ep->seq.id; 266 fh->fh_seq_cnt = htons(ep->seq.cnt); 267 } 268 269 270 /* 271 * Release a reference to an exchange. 272 * If the refcnt goes to zero and the exchange is complete, it is freed. 273 */ 274 static void fc_exch_release(struct fc_exch *ep) 275 { 276 struct fc_exch_mgr *mp; 277 278 if (atomic_dec_and_test(&ep->ex_refcnt)) { 279 mp = ep->em; 280 if (ep->destructor) 281 ep->destructor(&ep->seq, ep->arg); 282 if (ep->lp->tt.exch_put) 283 ep->lp->tt.exch_put(ep->lp, mp, ep->xid); 284 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 285 mempool_free(ep, mp->ep_pool); 286 } 287 } 288 289 static int fc_exch_done_locked(struct fc_exch *ep) 290 { 291 int rc = 1; 292 293 /* 294 * We must check for completion in case there are two threads 295 * tyring to complete this. But the rrq code will reuse the 296 * ep, and in that case we only clear the resp and set it as 297 * complete, so it can be reused by the timer to send the rrq. 298 */ 299 ep->resp = NULL; 300 if (ep->state & FC_EX_DONE) 301 return rc; 302 ep->esb_stat |= ESB_ST_COMPLETE; 303 304 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 305 ep->state |= FC_EX_DONE; 306 if (cancel_delayed_work(&ep->timeout_work)) 307 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 308 rc = 0; 309 } 310 return rc; 311 } 312 313 static void fc_exch_mgr_delete_ep(struct fc_exch *ep) 314 { 315 struct fc_exch_mgr *mp; 316 317 mp = ep->em; 318 spin_lock_bh(&mp->em_lock); 319 WARN_ON(mp->total_exches <= 0); 320 mp->total_exches--; 321 mp->exches[ep->xid - mp->min_xid] = NULL; 322 list_del(&ep->ex_list); 323 spin_unlock_bh(&mp->em_lock); 324 fc_exch_release(ep); /* drop hold for exch in mp */ 325 } 326 327 /* 328 * Internal version of fc_exch_timer_set - used with lock held. 329 */ 330 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 331 unsigned int timer_msec) 332 { 333 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 334 return; 335 336 FC_DEBUG_EXCH("Exchange (%4x) timed out, notifying the upper layer\n", 337 ep->xid); 338 if (schedule_delayed_work(&ep->timeout_work, 339 msecs_to_jiffies(timer_msec))) 340 fc_exch_hold(ep); /* hold for timer */ 341 } 342 343 /* 344 * Set timer for an exchange. 345 * The time is a minimum delay in milliseconds until the timer fires. 346 * Used for upper level protocols to time out the exchange. 347 * The timer is cancelled when it fires or when the exchange completes. 348 * Returns non-zero if a timer couldn't be allocated. 349 */ 350 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 351 { 352 spin_lock_bh(&ep->ex_lock); 353 fc_exch_timer_set_locked(ep, timer_msec); 354 spin_unlock_bh(&ep->ex_lock); 355 } 356 357 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec) 358 { 359 struct fc_seq *sp; 360 struct fc_exch *ep; 361 struct fc_frame *fp; 362 int error; 363 364 ep = fc_seq_exch(req_sp); 365 366 spin_lock_bh(&ep->ex_lock); 367 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 368 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) { 369 spin_unlock_bh(&ep->ex_lock); 370 return -ENXIO; 371 } 372 373 /* 374 * Send the abort on a new sequence if possible. 375 */ 376 sp = fc_seq_start_next_locked(&ep->seq); 377 if (!sp) { 378 spin_unlock_bh(&ep->ex_lock); 379 return -ENOMEM; 380 } 381 382 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL; 383 if (timer_msec) 384 fc_exch_timer_set_locked(ep, timer_msec); 385 spin_unlock_bh(&ep->ex_lock); 386 387 /* 388 * If not logged into the fabric, don't send ABTS but leave 389 * sequence active until next timeout. 390 */ 391 if (!ep->sid) 392 return 0; 393 394 /* 395 * Send an abort for the sequence that timed out. 396 */ 397 fp = fc_frame_alloc(ep->lp, 0); 398 if (fp) { 399 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 400 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 401 error = fc_seq_send(ep->lp, sp, fp); 402 } else 403 error = -ENOBUFS; 404 return error; 405 } 406 EXPORT_SYMBOL(fc_seq_exch_abort); 407 408 /* 409 * Exchange timeout - handle exchange timer expiration. 410 * The timer will have been cancelled before this is called. 411 */ 412 static void fc_exch_timeout(struct work_struct *work) 413 { 414 struct fc_exch *ep = container_of(work, struct fc_exch, 415 timeout_work.work); 416 struct fc_seq *sp = &ep->seq; 417 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 418 void *arg; 419 u32 e_stat; 420 int rc = 1; 421 422 spin_lock_bh(&ep->ex_lock); 423 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 424 goto unlock; 425 426 e_stat = ep->esb_stat; 427 if (e_stat & ESB_ST_COMPLETE) { 428 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 429 if (e_stat & ESB_ST_REC_QUAL) 430 fc_exch_rrq(ep); 431 spin_unlock_bh(&ep->ex_lock); 432 goto done; 433 } else { 434 resp = ep->resp; 435 arg = ep->arg; 436 ep->resp = NULL; 437 if (e_stat & ESB_ST_ABNORMAL) 438 rc = fc_exch_done_locked(ep); 439 spin_unlock_bh(&ep->ex_lock); 440 if (!rc) 441 fc_exch_mgr_delete_ep(ep); 442 if (resp) 443 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg); 444 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 445 goto done; 446 } 447 unlock: 448 spin_unlock_bh(&ep->ex_lock); 449 done: 450 /* 451 * This release matches the hold taken when the timer was set. 452 */ 453 fc_exch_release(ep); 454 } 455 456 /* 457 * Allocate a sequence. 458 * 459 * We don't support multiple originated sequences on the same exchange. 460 * By implication, any previously originated sequence on this exchange 461 * is complete, and we reallocate the same sequence. 462 */ 463 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 464 { 465 struct fc_seq *sp; 466 467 sp = &ep->seq; 468 sp->ssb_stat = 0; 469 sp->cnt = 0; 470 sp->id = seq_id; 471 return sp; 472 } 473 474 /* 475 * fc_em_alloc_xid - returns an xid based on request type 476 * @lp : ptr to associated lport 477 * @fp : ptr to the assocated frame 478 * 479 * check the associated fc_fsp_pkt to get scsi command type and 480 * command direction to decide from which range this exch id 481 * will be allocated from. 482 * 483 * Returns : 0 or an valid xid 484 */ 485 static u16 fc_em_alloc_xid(struct fc_exch_mgr *mp, const struct fc_frame *fp) 486 { 487 u16 xid, min, max; 488 u16 *plast; 489 struct fc_exch *ep = NULL; 490 491 if (mp->max_read) { 492 if (fc_fcp_is_read(fr_fsp(fp))) { 493 min = mp->min_xid; 494 max = mp->max_read; 495 plast = &mp->last_read; 496 } else { 497 min = mp->max_read + 1; 498 max = mp->max_xid; 499 plast = &mp->last_xid; 500 } 501 } else { 502 min = mp->min_xid; 503 max = mp->max_xid; 504 plast = &mp->last_xid; 505 } 506 xid = *plast; 507 do { 508 xid = (xid == max) ? min : xid + 1; 509 ep = mp->exches[xid - mp->min_xid]; 510 } while ((ep != NULL) && (xid != *plast)); 511 512 if (unlikely(ep)) 513 xid = 0; 514 else 515 *plast = xid; 516 517 return xid; 518 } 519 520 /* 521 * fc_exch_alloc - allocate an exchange. 522 * @mp : ptr to the exchange manager 523 * @xid: input xid 524 * 525 * if xid is supplied zero then assign next free exchange ID 526 * from exchange manager, otherwise use supplied xid. 527 * Returns with exch lock held. 528 */ 529 struct fc_exch *fc_exch_alloc(struct fc_exch_mgr *mp, 530 struct fc_frame *fp, u16 xid) 531 { 532 struct fc_exch *ep; 533 534 /* allocate memory for exchange */ 535 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 536 if (!ep) { 537 atomic_inc(&mp->stats.no_free_exch); 538 goto out; 539 } 540 memset(ep, 0, sizeof(*ep)); 541 542 spin_lock_bh(&mp->em_lock); 543 /* alloc xid if input xid 0 */ 544 if (!xid) { 545 /* alloc a new xid */ 546 xid = fc_em_alloc_xid(mp, fp); 547 if (!xid) { 548 printk(KERN_ERR "fc_em_alloc_xid() failed\n"); 549 goto err; 550 } 551 } 552 553 fc_exch_hold(ep); /* hold for exch in mp */ 554 spin_lock_init(&ep->ex_lock); 555 /* 556 * Hold exch lock for caller to prevent fc_exch_reset() 557 * from releasing exch while fc_exch_alloc() caller is 558 * still working on exch. 559 */ 560 spin_lock_bh(&ep->ex_lock); 561 562 mp->exches[xid - mp->min_xid] = ep; 563 list_add_tail(&ep->ex_list, &mp->ex_list); 564 fc_seq_alloc(ep, ep->seq_id++); 565 mp->total_exches++; 566 spin_unlock_bh(&mp->em_lock); 567 568 /* 569 * update exchange 570 */ 571 ep->oxid = ep->xid = xid; 572 ep->em = mp; 573 ep->lp = mp->lp; 574 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 575 ep->rxid = FC_XID_UNKNOWN; 576 ep->class = mp->class; 577 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 578 out: 579 return ep; 580 err: 581 spin_unlock_bh(&mp->em_lock); 582 atomic_inc(&mp->stats.no_free_exch_xid); 583 mempool_free(ep, mp->ep_pool); 584 return NULL; 585 } 586 EXPORT_SYMBOL(fc_exch_alloc); 587 588 /* 589 * Lookup and hold an exchange. 590 */ 591 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 592 { 593 struct fc_exch *ep = NULL; 594 595 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 596 spin_lock_bh(&mp->em_lock); 597 ep = mp->exches[xid - mp->min_xid]; 598 if (ep) { 599 fc_exch_hold(ep); 600 WARN_ON(ep->xid != xid); 601 } 602 spin_unlock_bh(&mp->em_lock); 603 } 604 return ep; 605 } 606 607 void fc_exch_done(struct fc_seq *sp) 608 { 609 struct fc_exch *ep = fc_seq_exch(sp); 610 int rc; 611 612 spin_lock_bh(&ep->ex_lock); 613 rc = fc_exch_done_locked(ep); 614 spin_unlock_bh(&ep->ex_lock); 615 if (!rc) 616 fc_exch_mgr_delete_ep(ep); 617 } 618 EXPORT_SYMBOL(fc_exch_done); 619 620 /* 621 * Allocate a new exchange as responder. 622 * Sets the responder ID in the frame header. 623 */ 624 static struct fc_exch *fc_exch_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 625 { 626 struct fc_exch *ep; 627 struct fc_frame_header *fh; 628 629 ep = mp->lp->tt.exch_get(mp->lp, fp); 630 if (ep) { 631 ep->class = fc_frame_class(fp); 632 633 /* 634 * Set EX_CTX indicating we're responding on this exchange. 635 */ 636 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 637 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 638 fh = fc_frame_header_get(fp); 639 ep->sid = ntoh24(fh->fh_d_id); 640 ep->did = ntoh24(fh->fh_s_id); 641 ep->oid = ep->did; 642 643 /* 644 * Allocated exchange has placed the XID in the 645 * originator field. Move it to the responder field, 646 * and set the originator XID from the frame. 647 */ 648 ep->rxid = ep->xid; 649 ep->oxid = ntohs(fh->fh_ox_id); 650 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 651 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 652 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 653 654 fc_exch_hold(ep); /* hold for caller */ 655 spin_unlock_bh(&ep->ex_lock); /* lock from exch_get */ 656 } 657 return ep; 658 } 659 660 /* 661 * Find a sequence for receive where the other end is originating the sequence. 662 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 663 * on the ep that should be released by the caller. 664 */ 665 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_exch_mgr *mp, 666 struct fc_frame *fp) 667 { 668 struct fc_frame_header *fh = fc_frame_header_get(fp); 669 struct fc_exch *ep = NULL; 670 struct fc_seq *sp = NULL; 671 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 672 u32 f_ctl; 673 u16 xid; 674 675 f_ctl = ntoh24(fh->fh_f_ctl); 676 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 677 678 /* 679 * Lookup or create the exchange if we will be creating the sequence. 680 */ 681 if (f_ctl & FC_FC_EX_CTX) { 682 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 683 ep = fc_exch_find(mp, xid); 684 if (!ep) { 685 atomic_inc(&mp->stats.xid_not_found); 686 reject = FC_RJT_OX_ID; 687 goto out; 688 } 689 if (ep->rxid == FC_XID_UNKNOWN) 690 ep->rxid = ntohs(fh->fh_rx_id); 691 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 692 reject = FC_RJT_OX_ID; 693 goto rel; 694 } 695 } else { 696 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 697 698 /* 699 * Special case for MDS issuing an ELS TEST with a 700 * bad rxid of 0. 701 * XXX take this out once we do the proper reject. 702 */ 703 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 704 fc_frame_payload_op(fp) == ELS_TEST) { 705 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 706 xid = FC_XID_UNKNOWN; 707 } 708 709 /* 710 * new sequence - find the exchange 711 */ 712 ep = fc_exch_find(mp, xid); 713 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 714 if (ep) { 715 atomic_inc(&mp->stats.xid_busy); 716 reject = FC_RJT_RX_ID; 717 goto rel; 718 } 719 ep = fc_exch_resp(mp, fp); 720 if (!ep) { 721 reject = FC_RJT_EXCH_EST; /* XXX */ 722 goto out; 723 } 724 xid = ep->xid; /* get our XID */ 725 } else if (!ep) { 726 atomic_inc(&mp->stats.xid_not_found); 727 reject = FC_RJT_RX_ID; /* XID not found */ 728 goto out; 729 } 730 } 731 732 /* 733 * At this point, we have the exchange held. 734 * Find or create the sequence. 735 */ 736 if (fc_sof_is_init(fr_sof(fp))) { 737 sp = fc_seq_start_next(&ep->seq); 738 if (!sp) { 739 reject = FC_RJT_SEQ_XS; /* exchange shortage */ 740 goto rel; 741 } 742 sp->id = fh->fh_seq_id; 743 sp->ssb_stat |= SSB_ST_RESP; 744 } else { 745 sp = &ep->seq; 746 if (sp->id != fh->fh_seq_id) { 747 atomic_inc(&mp->stats.seq_not_found); 748 reject = FC_RJT_SEQ_ID; /* sequence/exch should exist */ 749 goto rel; 750 } 751 } 752 WARN_ON(ep != fc_seq_exch(sp)); 753 754 if (f_ctl & FC_FC_SEQ_INIT) 755 ep->esb_stat |= ESB_ST_SEQ_INIT; 756 757 fr_seq(fp) = sp; 758 out: 759 return reject; 760 rel: 761 fc_exch_done(&ep->seq); 762 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 763 return reject; 764 } 765 766 /* 767 * Find the sequence for a frame being received. 768 * We originated the sequence, so it should be found. 769 * We may or may not have originated the exchange. 770 * Does not hold the sequence for the caller. 771 */ 772 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 773 struct fc_frame *fp) 774 { 775 struct fc_frame_header *fh = fc_frame_header_get(fp); 776 struct fc_exch *ep; 777 struct fc_seq *sp = NULL; 778 u32 f_ctl; 779 u16 xid; 780 781 f_ctl = ntoh24(fh->fh_f_ctl); 782 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 783 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 784 ep = fc_exch_find(mp, xid); 785 if (!ep) 786 return NULL; 787 if (ep->seq.id == fh->fh_seq_id) { 788 /* 789 * Save the RX_ID if we didn't previously know it. 790 */ 791 sp = &ep->seq; 792 if ((f_ctl & FC_FC_EX_CTX) != 0 && 793 ep->rxid == FC_XID_UNKNOWN) { 794 ep->rxid = ntohs(fh->fh_rx_id); 795 } 796 } 797 fc_exch_release(ep); 798 return sp; 799 } 800 801 /* 802 * Set addresses for an exchange. 803 * Note this must be done before the first sequence of the exchange is sent. 804 */ 805 static void fc_exch_set_addr(struct fc_exch *ep, 806 u32 orig_id, u32 resp_id) 807 { 808 ep->oid = orig_id; 809 if (ep->esb_stat & ESB_ST_RESP) { 810 ep->sid = resp_id; 811 ep->did = orig_id; 812 } else { 813 ep->sid = orig_id; 814 ep->did = resp_id; 815 } 816 } 817 818 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 819 { 820 struct fc_exch *ep = fc_seq_exch(sp); 821 822 sp = fc_seq_alloc(ep, ep->seq_id++); 823 FC_DEBUG_EXCH("exch %4x f_ctl %6x seq %2x\n", 824 ep->xid, ep->f_ctl, sp->id); 825 return sp; 826 } 827 /* 828 * Allocate a new sequence on the same exchange as the supplied sequence. 829 * This will never return NULL. 830 */ 831 struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 832 { 833 struct fc_exch *ep = fc_seq_exch(sp); 834 835 spin_lock_bh(&ep->ex_lock); 836 WARN_ON((ep->esb_stat & ESB_ST_COMPLETE) != 0); 837 sp = fc_seq_start_next_locked(sp); 838 spin_unlock_bh(&ep->ex_lock); 839 840 return sp; 841 } 842 EXPORT_SYMBOL(fc_seq_start_next); 843 844 int fc_seq_send(struct fc_lport *lp, struct fc_seq *sp, struct fc_frame *fp) 845 { 846 struct fc_exch *ep; 847 struct fc_frame_header *fh = fc_frame_header_get(fp); 848 int error; 849 u32 f_ctl; 850 851 ep = fc_seq_exch(sp); 852 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT); 853 854 f_ctl = ntoh24(fh->fh_f_ctl); 855 fc_exch_setup_hdr(ep, fp, f_ctl); 856 857 /* 858 * update sequence count if this frame is carrying 859 * multiple FC frames when sequence offload is enabled 860 * by LLD. 861 */ 862 if (fr_max_payload(fp)) 863 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 864 fr_max_payload(fp)); 865 else 866 sp->cnt++; 867 868 /* 869 * Send the frame. 870 */ 871 error = lp->tt.frame_send(lp, fp); 872 873 /* 874 * Update the exchange and sequence flags, 875 * assuming all frames for the sequence have been sent. 876 * We can only be called to send once for each sequence. 877 */ 878 spin_lock_bh(&ep->ex_lock); 879 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 880 if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT)) 881 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 882 spin_unlock_bh(&ep->ex_lock); 883 return error; 884 } 885 EXPORT_SYMBOL(fc_seq_send); 886 887 void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd, 888 struct fc_seq_els_data *els_data) 889 { 890 switch (els_cmd) { 891 case ELS_LS_RJT: 892 fc_seq_ls_rjt(sp, els_data->reason, els_data->explan); 893 break; 894 case ELS_LS_ACC: 895 fc_seq_ls_acc(sp); 896 break; 897 case ELS_RRQ: 898 fc_exch_els_rrq(sp, els_data->fp); 899 break; 900 case ELS_REC: 901 fc_exch_els_rec(sp, els_data->fp); 902 break; 903 default: 904 FC_DBG("Invalid ELS CMD:%x\n", els_cmd); 905 } 906 } 907 EXPORT_SYMBOL(fc_seq_els_rsp_send); 908 909 /* 910 * Send a sequence, which is also the last sequence in the exchange. 911 */ 912 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 913 enum fc_rctl rctl, enum fc_fh_type fh_type) 914 { 915 u32 f_ctl; 916 struct fc_exch *ep = fc_seq_exch(sp); 917 918 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 919 f_ctl |= ep->f_ctl; 920 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 921 fc_seq_send(ep->lp, sp, fp); 922 } 923 924 /* 925 * Send ACK_1 (or equiv.) indicating we received something. 926 * The frame we're acking is supplied. 927 */ 928 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 929 { 930 struct fc_frame *fp; 931 struct fc_frame_header *rx_fh; 932 struct fc_frame_header *fh; 933 struct fc_exch *ep = fc_seq_exch(sp); 934 struct fc_lport *lp = ep->lp; 935 unsigned int f_ctl; 936 937 /* 938 * Don't send ACKs for class 3. 939 */ 940 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 941 fp = fc_frame_alloc(lp, 0); 942 if (!fp) 943 return; 944 945 fh = fc_frame_header_get(fp); 946 fh->fh_r_ctl = FC_RCTL_ACK_1; 947 fh->fh_type = FC_TYPE_BLS; 948 949 /* 950 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 951 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 952 * Bits 9-8 are meaningful (retransmitted or unidirectional). 953 * Last ACK uses bits 7-6 (continue sequence), 954 * bits 5-4 are meaningful (what kind of ACK to use). 955 */ 956 rx_fh = fc_frame_header_get(rx_fp); 957 f_ctl = ntoh24(rx_fh->fh_f_ctl); 958 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 959 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 960 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 961 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 962 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 963 hton24(fh->fh_f_ctl, f_ctl); 964 965 fc_exch_setup_hdr(ep, fp, f_ctl); 966 fh->fh_seq_id = rx_fh->fh_seq_id; 967 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 968 fh->fh_parm_offset = htonl(1); /* ack single frame */ 969 970 fr_sof(fp) = fr_sof(rx_fp); 971 if (f_ctl & FC_FC_END_SEQ) 972 fr_eof(fp) = FC_EOF_T; 973 else 974 fr_eof(fp) = FC_EOF_N; 975 976 (void) lp->tt.frame_send(lp, fp); 977 } 978 } 979 980 /* 981 * Send BLS Reject. 982 * This is for rejecting BA_ABTS only. 983 */ 984 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 985 enum fc_ba_rjt_reason reason, 986 enum fc_ba_rjt_explan explan) 987 { 988 struct fc_frame *fp; 989 struct fc_frame_header *rx_fh; 990 struct fc_frame_header *fh; 991 struct fc_ba_rjt *rp; 992 struct fc_lport *lp; 993 unsigned int f_ctl; 994 995 lp = fr_dev(rx_fp); 996 fp = fc_frame_alloc(lp, sizeof(*rp)); 997 if (!fp) 998 return; 999 fh = fc_frame_header_get(fp); 1000 rx_fh = fc_frame_header_get(rx_fp); 1001 1002 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1003 1004 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1005 rp->br_reason = reason; 1006 rp->br_explan = explan; 1007 1008 /* 1009 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1010 */ 1011 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1012 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1013 fh->fh_ox_id = rx_fh->fh_rx_id; 1014 fh->fh_rx_id = rx_fh->fh_ox_id; 1015 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1016 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1017 fh->fh_type = FC_TYPE_BLS; 1018 1019 /* 1020 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1021 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1022 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1023 * Last ACK uses bits 7-6 (continue sequence), 1024 * bits 5-4 are meaningful (what kind of ACK to use). 1025 * Always set LAST_SEQ, END_SEQ. 1026 */ 1027 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1028 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1029 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1030 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1031 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1032 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1033 f_ctl &= ~FC_FC_FIRST_SEQ; 1034 hton24(fh->fh_f_ctl, f_ctl); 1035 1036 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1037 fr_eof(fp) = FC_EOF_T; 1038 if (fc_sof_needs_ack(fr_sof(fp))) 1039 fr_eof(fp) = FC_EOF_N; 1040 1041 (void) lp->tt.frame_send(lp, fp); 1042 } 1043 1044 /* 1045 * Handle an incoming ABTS. This would be for target mode usually, 1046 * but could be due to lost FCP transfer ready, confirm or RRQ. 1047 * We always handle this as an exchange abort, ignoring the parameter. 1048 */ 1049 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1050 { 1051 struct fc_frame *fp; 1052 struct fc_ba_acc *ap; 1053 struct fc_frame_header *fh; 1054 struct fc_seq *sp; 1055 1056 if (!ep) 1057 goto reject; 1058 spin_lock_bh(&ep->ex_lock); 1059 if (ep->esb_stat & ESB_ST_COMPLETE) { 1060 spin_unlock_bh(&ep->ex_lock); 1061 goto reject; 1062 } 1063 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) 1064 fc_exch_hold(ep); /* hold for REC_QUAL */ 1065 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL; 1066 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1067 1068 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1069 if (!fp) { 1070 spin_unlock_bh(&ep->ex_lock); 1071 goto free; 1072 } 1073 fh = fc_frame_header_get(fp); 1074 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1075 memset(ap, 0, sizeof(*ap)); 1076 sp = &ep->seq; 1077 ap->ba_high_seq_cnt = htons(0xffff); 1078 if (sp->ssb_stat & SSB_ST_RESP) { 1079 ap->ba_seq_id = sp->id; 1080 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1081 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1082 ap->ba_low_seq_cnt = htons(sp->cnt); 1083 } 1084 sp = fc_seq_start_next_locked(sp); 1085 spin_unlock_bh(&ep->ex_lock); 1086 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1087 fc_frame_free(rx_fp); 1088 return; 1089 1090 reject: 1091 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1092 free: 1093 fc_frame_free(rx_fp); 1094 } 1095 1096 /* 1097 * Handle receive where the other end is originating the sequence. 1098 */ 1099 static void fc_exch_recv_req(struct fc_lport *lp, struct fc_exch_mgr *mp, 1100 struct fc_frame *fp) 1101 { 1102 struct fc_frame_header *fh = fc_frame_header_get(fp); 1103 struct fc_seq *sp = NULL; 1104 struct fc_exch *ep = NULL; 1105 enum fc_sof sof; 1106 enum fc_eof eof; 1107 u32 f_ctl; 1108 enum fc_pf_rjt_reason reject; 1109 1110 fr_seq(fp) = NULL; 1111 reject = fc_seq_lookup_recip(mp, fp); 1112 if (reject == FC_RJT_NONE) { 1113 sp = fr_seq(fp); /* sequence will be held */ 1114 ep = fc_seq_exch(sp); 1115 sof = fr_sof(fp); 1116 eof = fr_eof(fp); 1117 f_ctl = ntoh24(fh->fh_f_ctl); 1118 fc_seq_send_ack(sp, fp); 1119 1120 /* 1121 * Call the receive function. 1122 * 1123 * The receive function may allocate a new sequence 1124 * over the old one, so we shouldn't change the 1125 * sequence after this. 1126 * 1127 * The frame will be freed by the receive function. 1128 * If new exch resp handler is valid then call that 1129 * first. 1130 */ 1131 if (ep->resp) 1132 ep->resp(sp, fp, ep->arg); 1133 else 1134 lp->tt.lport_recv(lp, sp, fp); 1135 fc_exch_release(ep); /* release from lookup */ 1136 } else { 1137 FC_DEBUG_EXCH("exch/seq lookup failed: reject %x\n", reject); 1138 fc_frame_free(fp); 1139 } 1140 } 1141 1142 /* 1143 * Handle receive where the other end is originating the sequence in 1144 * response to our exchange. 1145 */ 1146 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1147 { 1148 struct fc_frame_header *fh = fc_frame_header_get(fp); 1149 struct fc_seq *sp; 1150 struct fc_exch *ep; 1151 enum fc_sof sof; 1152 u32 f_ctl; 1153 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1154 void *ex_resp_arg; 1155 int rc; 1156 1157 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1158 if (!ep) { 1159 atomic_inc(&mp->stats.xid_not_found); 1160 goto out; 1161 } 1162 if (ep->rxid == FC_XID_UNKNOWN) 1163 ep->rxid = ntohs(fh->fh_rx_id); 1164 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1165 atomic_inc(&mp->stats.xid_not_found); 1166 goto rel; 1167 } 1168 if (ep->did != ntoh24(fh->fh_s_id) && 1169 ep->did != FC_FID_FLOGI) { 1170 atomic_inc(&mp->stats.xid_not_found); 1171 goto rel; 1172 } 1173 sof = fr_sof(fp); 1174 if (fc_sof_is_init(sof)) { 1175 sp = fc_seq_start_next(&ep->seq); 1176 sp->id = fh->fh_seq_id; 1177 sp->ssb_stat |= SSB_ST_RESP; 1178 } else { 1179 sp = &ep->seq; 1180 if (sp->id != fh->fh_seq_id) { 1181 atomic_inc(&mp->stats.seq_not_found); 1182 goto rel; 1183 } 1184 } 1185 f_ctl = ntoh24(fh->fh_f_ctl); 1186 fr_seq(fp) = sp; 1187 if (f_ctl & FC_FC_SEQ_INIT) 1188 ep->esb_stat |= ESB_ST_SEQ_INIT; 1189 1190 if (fc_sof_needs_ack(sof)) 1191 fc_seq_send_ack(sp, fp); 1192 resp = ep->resp; 1193 ex_resp_arg = ep->arg; 1194 1195 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1196 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1197 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1198 spin_lock_bh(&ep->ex_lock); 1199 rc = fc_exch_done_locked(ep); 1200 WARN_ON(fc_seq_exch(sp) != ep); 1201 spin_unlock_bh(&ep->ex_lock); 1202 if (!rc) 1203 fc_exch_mgr_delete_ep(ep); 1204 } 1205 1206 /* 1207 * Call the receive function. 1208 * The sequence is held (has a refcnt) for us, 1209 * but not for the receive function. 1210 * 1211 * The receive function may allocate a new sequence 1212 * over the old one, so we shouldn't change the 1213 * sequence after this. 1214 * 1215 * The frame will be freed by the receive function. 1216 * If new exch resp handler is valid then call that 1217 * first. 1218 */ 1219 if (resp) 1220 resp(sp, fp, ex_resp_arg); 1221 else 1222 fc_frame_free(fp); 1223 fc_exch_release(ep); 1224 return; 1225 rel: 1226 fc_exch_release(ep); 1227 out: 1228 fc_frame_free(fp); 1229 } 1230 1231 /* 1232 * Handle receive for a sequence where other end is responding to our sequence. 1233 */ 1234 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1235 { 1236 struct fc_seq *sp; 1237 1238 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1239 if (!sp) { 1240 atomic_inc(&mp->stats.xid_not_found); 1241 FC_DEBUG_EXCH("seq lookup failed\n"); 1242 } else { 1243 atomic_inc(&mp->stats.non_bls_resp); 1244 FC_DEBUG_EXCH("non-BLS response to sequence"); 1245 } 1246 fc_frame_free(fp); 1247 } 1248 1249 /* 1250 * Handle the response to an ABTS for exchange or sequence. 1251 * This can be BA_ACC or BA_RJT. 1252 */ 1253 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1254 { 1255 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 1256 void *ex_resp_arg; 1257 struct fc_frame_header *fh; 1258 struct fc_ba_acc *ap; 1259 struct fc_seq *sp; 1260 u16 low; 1261 u16 high; 1262 int rc = 1, has_rec = 0; 1263 1264 fh = fc_frame_header_get(fp); 1265 FC_DEBUG_EXCH("exch: BLS rctl %x - %s\n", 1266 fh->fh_r_ctl, fc_exch_rctl_name(fh->fh_r_ctl)); 1267 1268 if (cancel_delayed_work_sync(&ep->timeout_work)) 1269 fc_exch_release(ep); /* release from pending timer hold */ 1270 1271 spin_lock_bh(&ep->ex_lock); 1272 switch (fh->fh_r_ctl) { 1273 case FC_RCTL_BA_ACC: 1274 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1275 if (!ap) 1276 break; 1277 1278 /* 1279 * Decide whether to establish a Recovery Qualifier. 1280 * We do this if there is a non-empty SEQ_CNT range and 1281 * SEQ_ID is the same as the one we aborted. 1282 */ 1283 low = ntohs(ap->ba_low_seq_cnt); 1284 high = ntohs(ap->ba_high_seq_cnt); 1285 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1286 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1287 ap->ba_seq_id == ep->seq_id) && low != high) { 1288 ep->esb_stat |= ESB_ST_REC_QUAL; 1289 fc_exch_hold(ep); /* hold for recovery qualifier */ 1290 has_rec = 1; 1291 } 1292 break; 1293 case FC_RCTL_BA_RJT: 1294 break; 1295 default: 1296 break; 1297 } 1298 1299 resp = ep->resp; 1300 ex_resp_arg = ep->arg; 1301 1302 /* do we need to do some other checks here. Can we reuse more of 1303 * fc_exch_recv_seq_resp 1304 */ 1305 sp = &ep->seq; 1306 /* 1307 * do we want to check END_SEQ as well as LAST_SEQ here? 1308 */ 1309 if (ep->fh_type != FC_TYPE_FCP && 1310 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1311 rc = fc_exch_done_locked(ep); 1312 spin_unlock_bh(&ep->ex_lock); 1313 if (!rc) 1314 fc_exch_mgr_delete_ep(ep); 1315 1316 if (resp) 1317 resp(sp, fp, ex_resp_arg); 1318 else 1319 fc_frame_free(fp); 1320 1321 if (has_rec) 1322 fc_exch_timer_set(ep, ep->r_a_tov); 1323 1324 } 1325 1326 /* 1327 * Receive BLS sequence. 1328 * This is always a sequence initiated by the remote side. 1329 * We may be either the originator or recipient of the exchange. 1330 */ 1331 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1332 { 1333 struct fc_frame_header *fh; 1334 struct fc_exch *ep; 1335 u32 f_ctl; 1336 1337 fh = fc_frame_header_get(fp); 1338 f_ctl = ntoh24(fh->fh_f_ctl); 1339 fr_seq(fp) = NULL; 1340 1341 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1342 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1343 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1344 spin_lock_bh(&ep->ex_lock); 1345 ep->esb_stat |= ESB_ST_SEQ_INIT; 1346 spin_unlock_bh(&ep->ex_lock); 1347 } 1348 if (f_ctl & FC_FC_SEQ_CTX) { 1349 /* 1350 * A response to a sequence we initiated. 1351 * This should only be ACKs for class 2 or F. 1352 */ 1353 switch (fh->fh_r_ctl) { 1354 case FC_RCTL_ACK_1: 1355 case FC_RCTL_ACK_0: 1356 break; 1357 default: 1358 FC_DEBUG_EXCH("BLS rctl %x - %s received", 1359 fh->fh_r_ctl, 1360 fc_exch_rctl_name(fh->fh_r_ctl)); 1361 break; 1362 } 1363 fc_frame_free(fp); 1364 } else { 1365 switch (fh->fh_r_ctl) { 1366 case FC_RCTL_BA_RJT: 1367 case FC_RCTL_BA_ACC: 1368 if (ep) 1369 fc_exch_abts_resp(ep, fp); 1370 else 1371 fc_frame_free(fp); 1372 break; 1373 case FC_RCTL_BA_ABTS: 1374 fc_exch_recv_abts(ep, fp); 1375 break; 1376 default: /* ignore junk */ 1377 fc_frame_free(fp); 1378 break; 1379 } 1380 } 1381 if (ep) 1382 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1383 } 1384 1385 /* 1386 * Accept sequence with LS_ACC. 1387 * If this fails due to allocation or transmit congestion, assume the 1388 * originator will repeat the sequence. 1389 */ 1390 static void fc_seq_ls_acc(struct fc_seq *req_sp) 1391 { 1392 struct fc_seq *sp; 1393 struct fc_els_ls_acc *acc; 1394 struct fc_frame *fp; 1395 1396 sp = fc_seq_start_next(req_sp); 1397 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc)); 1398 if (fp) { 1399 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1400 memset(acc, 0, sizeof(*acc)); 1401 acc->la_cmd = ELS_LS_ACC; 1402 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1403 } 1404 } 1405 1406 /* 1407 * Reject sequence with ELS LS_RJT. 1408 * If this fails due to allocation or transmit congestion, assume the 1409 * originator will repeat the sequence. 1410 */ 1411 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason, 1412 enum fc_els_rjt_explan explan) 1413 { 1414 struct fc_seq *sp; 1415 struct fc_els_ls_rjt *rjt; 1416 struct fc_frame *fp; 1417 1418 sp = fc_seq_start_next(req_sp); 1419 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt)); 1420 if (fp) { 1421 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1422 memset(rjt, 0, sizeof(*rjt)); 1423 rjt->er_cmd = ELS_LS_RJT; 1424 rjt->er_reason = reason; 1425 rjt->er_explan = explan; 1426 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1427 } 1428 } 1429 1430 static void fc_exch_reset(struct fc_exch *ep) 1431 { 1432 struct fc_seq *sp; 1433 void (*resp)(struct fc_seq *, struct fc_frame *, void *); 1434 void *arg; 1435 int rc = 1; 1436 1437 spin_lock_bh(&ep->ex_lock); 1438 ep->state |= FC_EX_RST_CLEANUP; 1439 /* 1440 * we really want to call del_timer_sync, but cannot due 1441 * to the lport calling with the lport lock held (some resp 1442 * functions can also grab the lport lock which could cause 1443 * a deadlock). 1444 */ 1445 if (cancel_delayed_work(&ep->timeout_work)) 1446 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 1447 resp = ep->resp; 1448 ep->resp = NULL; 1449 if (ep->esb_stat & ESB_ST_REC_QUAL) 1450 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1451 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1452 arg = ep->arg; 1453 sp = &ep->seq; 1454 rc = fc_exch_done_locked(ep); 1455 spin_unlock_bh(&ep->ex_lock); 1456 if (!rc) 1457 fc_exch_mgr_delete_ep(ep); 1458 1459 if (resp) 1460 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg); 1461 } 1462 1463 /* 1464 * Reset an exchange manager, releasing all sequences and exchanges. 1465 * If sid is non-zero, reset only exchanges we source from that FID. 1466 * If did is non-zero, reset only exchanges destined to that FID. 1467 */ 1468 void fc_exch_mgr_reset(struct fc_lport *lp, u32 sid, u32 did) 1469 { 1470 struct fc_exch *ep; 1471 struct fc_exch *next; 1472 struct fc_exch_mgr *mp = lp->emp; 1473 1474 spin_lock_bh(&mp->em_lock); 1475 restart: 1476 list_for_each_entry_safe(ep, next, &mp->ex_list, ex_list) { 1477 if ((sid == 0 || sid == ep->sid) && 1478 (did == 0 || did == ep->did)) { 1479 fc_exch_hold(ep); 1480 spin_unlock_bh(&mp->em_lock); 1481 1482 fc_exch_reset(ep); 1483 1484 fc_exch_release(ep); 1485 spin_lock_bh(&mp->em_lock); 1486 1487 /* 1488 * must restart loop incase while lock was down 1489 * multiple eps were released. 1490 */ 1491 goto restart; 1492 } 1493 } 1494 spin_unlock_bh(&mp->em_lock); 1495 } 1496 EXPORT_SYMBOL(fc_exch_mgr_reset); 1497 1498 /* 1499 * Handle incoming ELS REC - Read Exchange Concise. 1500 * Note that the requesting port may be different than the S_ID in the request. 1501 */ 1502 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp) 1503 { 1504 struct fc_frame *fp; 1505 struct fc_exch *ep; 1506 struct fc_exch_mgr *em; 1507 struct fc_els_rec *rp; 1508 struct fc_els_rec_acc *acc; 1509 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 1510 enum fc_els_rjt_explan explan; 1511 u32 sid; 1512 u16 rxid; 1513 u16 oxid; 1514 1515 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 1516 explan = ELS_EXPL_INV_LEN; 1517 if (!rp) 1518 goto reject; 1519 sid = ntoh24(rp->rec_s_id); 1520 rxid = ntohs(rp->rec_rx_id); 1521 oxid = ntohs(rp->rec_ox_id); 1522 1523 /* 1524 * Currently it's hard to find the local S_ID from the exchange 1525 * manager. This will eventually be fixed, but for now it's easier 1526 * to lookup the subject exchange twice, once as if we were 1527 * the initiator, and then again if we weren't. 1528 */ 1529 em = fc_seq_exch(sp)->em; 1530 ep = fc_exch_find(em, oxid); 1531 explan = ELS_EXPL_OXID_RXID; 1532 if (ep && ep->oid == sid) { 1533 if (ep->rxid != FC_XID_UNKNOWN && 1534 rxid != FC_XID_UNKNOWN && 1535 ep->rxid != rxid) 1536 goto rel; 1537 } else { 1538 if (ep) 1539 fc_exch_release(ep); 1540 ep = NULL; 1541 if (rxid != FC_XID_UNKNOWN) 1542 ep = fc_exch_find(em, rxid); 1543 if (!ep) 1544 goto reject; 1545 } 1546 1547 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc)); 1548 if (!fp) { 1549 fc_exch_done(sp); 1550 goto out; 1551 } 1552 sp = fc_seq_start_next(sp); 1553 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1554 memset(acc, 0, sizeof(*acc)); 1555 acc->reca_cmd = ELS_LS_ACC; 1556 acc->reca_ox_id = rp->rec_ox_id; 1557 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 1558 acc->reca_rx_id = htons(ep->rxid); 1559 if (ep->sid == ep->oid) 1560 hton24(acc->reca_rfid, ep->did); 1561 else 1562 hton24(acc->reca_rfid, ep->sid); 1563 acc->reca_fc4value = htonl(ep->seq.rec_data); 1564 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 1565 ESB_ST_SEQ_INIT | 1566 ESB_ST_COMPLETE)); 1567 sp = fc_seq_start_next(sp); 1568 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS); 1569 out: 1570 fc_exch_release(ep); 1571 fc_frame_free(rfp); 1572 return; 1573 1574 rel: 1575 fc_exch_release(ep); 1576 reject: 1577 fc_seq_ls_rjt(sp, reason, explan); 1578 fc_frame_free(rfp); 1579 } 1580 1581 /* 1582 * Handle response from RRQ. 1583 * Not much to do here, really. 1584 * Should report errors. 1585 * 1586 * TODO: fix error handler. 1587 */ 1588 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 1589 { 1590 struct fc_exch *aborted_ep = arg; 1591 unsigned int op; 1592 1593 if (IS_ERR(fp)) { 1594 int err = PTR_ERR(fp); 1595 1596 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 1597 goto cleanup; 1598 FC_DBG("Cannot process RRQ, because of frame error %d\n", err); 1599 return; 1600 } 1601 1602 op = fc_frame_payload_op(fp); 1603 fc_frame_free(fp); 1604 1605 switch (op) { 1606 case ELS_LS_RJT: 1607 FC_DBG("LS_RJT for RRQ"); 1608 /* fall through */ 1609 case ELS_LS_ACC: 1610 goto cleanup; 1611 default: 1612 FC_DBG("unexpected response op %x for RRQ", op); 1613 return; 1614 } 1615 1616 cleanup: 1617 fc_exch_done(&aborted_ep->seq); 1618 /* drop hold for rec qual */ 1619 fc_exch_release(aborted_ep); 1620 } 1621 1622 /* 1623 * Send ELS RRQ - Reinstate Recovery Qualifier. 1624 * This tells the remote port to stop blocking the use of 1625 * the exchange and the seq_cnt range. 1626 */ 1627 static void fc_exch_rrq(struct fc_exch *ep) 1628 { 1629 struct fc_lport *lp; 1630 struct fc_els_rrq *rrq; 1631 struct fc_frame *fp; 1632 struct fc_seq *rrq_sp; 1633 u32 did; 1634 1635 lp = ep->lp; 1636 1637 fp = fc_frame_alloc(lp, sizeof(*rrq)); 1638 if (!fp) 1639 return; 1640 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 1641 memset(rrq, 0, sizeof(*rrq)); 1642 rrq->rrq_cmd = ELS_RRQ; 1643 hton24(rrq->rrq_s_id, ep->sid); 1644 rrq->rrq_ox_id = htons(ep->oxid); 1645 rrq->rrq_rx_id = htons(ep->rxid); 1646 1647 did = ep->did; 1648 if (ep->esb_stat & ESB_ST_RESP) 1649 did = ep->sid; 1650 1651 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 1652 fc_host_port_id(lp->host), FC_TYPE_ELS, 1653 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 1654 1655 rrq_sp = fc_exch_seq_send(lp, fp, fc_exch_rrq_resp, NULL, ep, 1656 lp->e_d_tov); 1657 if (!rrq_sp) { 1658 ep->esb_stat |= ESB_ST_REC_QUAL; 1659 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1660 return; 1661 } 1662 } 1663 1664 1665 /* 1666 * Handle incoming ELS RRQ - Reset Recovery Qualifier. 1667 */ 1668 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp) 1669 { 1670 struct fc_exch *ep; /* request or subject exchange */ 1671 struct fc_els_rrq *rp; 1672 u32 sid; 1673 u16 xid; 1674 enum fc_els_rjt_explan explan; 1675 1676 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1677 explan = ELS_EXPL_INV_LEN; 1678 if (!rp) 1679 goto reject; 1680 1681 /* 1682 * lookup subject exchange. 1683 */ 1684 ep = fc_seq_exch(sp); 1685 sid = ntoh24(rp->rrq_s_id); /* subject source */ 1686 xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 1687 ep = fc_exch_find(ep->em, xid); 1688 1689 explan = ELS_EXPL_OXID_RXID; 1690 if (!ep) 1691 goto reject; 1692 spin_lock_bh(&ep->ex_lock); 1693 if (ep->oxid != ntohs(rp->rrq_ox_id)) 1694 goto unlock_reject; 1695 if (ep->rxid != ntohs(rp->rrq_rx_id) && 1696 ep->rxid != FC_XID_UNKNOWN) 1697 goto unlock_reject; 1698 explan = ELS_EXPL_SID; 1699 if (ep->sid != sid) 1700 goto unlock_reject; 1701 1702 /* 1703 * Clear Recovery Qualifier state, and cancel timer if complete. 1704 */ 1705 if (ep->esb_stat & ESB_ST_REC_QUAL) { 1706 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1707 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 1708 } 1709 if (ep->esb_stat & ESB_ST_COMPLETE) { 1710 if (cancel_delayed_work(&ep->timeout_work)) 1711 atomic_dec(&ep->ex_refcnt); /* drop timer hold */ 1712 } 1713 1714 spin_unlock_bh(&ep->ex_lock); 1715 1716 /* 1717 * Send LS_ACC. 1718 */ 1719 fc_seq_ls_acc(sp); 1720 fc_frame_free(fp); 1721 return; 1722 1723 unlock_reject: 1724 spin_unlock_bh(&ep->ex_lock); 1725 fc_exch_release(ep); /* drop hold from fc_exch_find */ 1726 reject: 1727 fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan); 1728 fc_frame_free(fp); 1729 } 1730 1731 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lp, 1732 enum fc_class class, 1733 u16 min_xid, u16 max_xid) 1734 { 1735 struct fc_exch_mgr *mp; 1736 size_t len; 1737 1738 if (max_xid <= min_xid || min_xid == 0 || max_xid == FC_XID_UNKNOWN) { 1739 FC_DBG("Invalid min_xid 0x:%x and max_xid 0x:%x\n", 1740 min_xid, max_xid); 1741 return NULL; 1742 } 1743 1744 /* 1745 * Memory need for EM 1746 */ 1747 #define xid_ok(i, m1, m2) (((i) >= (m1)) && ((i) <= (m2))) 1748 len = (max_xid - min_xid + 1) * (sizeof(struct fc_exch *)); 1749 len += sizeof(struct fc_exch_mgr); 1750 1751 mp = kzalloc(len, GFP_ATOMIC); 1752 if (!mp) 1753 return NULL; 1754 1755 mp->class = class; 1756 mp->total_exches = 0; 1757 mp->exches = (struct fc_exch **)(mp + 1); 1758 mp->lp = lp; 1759 /* adjust em exch xid range for offload */ 1760 mp->min_xid = min_xid; 1761 mp->max_xid = max_xid; 1762 mp->last_xid = min_xid - 1; 1763 mp->max_read = 0; 1764 mp->last_read = 0; 1765 if (lp->lro_enabled && xid_ok(lp->lro_xid, min_xid, max_xid)) { 1766 mp->max_read = lp->lro_xid; 1767 mp->last_read = min_xid - 1; 1768 mp->last_xid = mp->max_read; 1769 } else { 1770 /* disable lro if no xid control over read */ 1771 lp->lro_enabled = 0; 1772 } 1773 1774 INIT_LIST_HEAD(&mp->ex_list); 1775 spin_lock_init(&mp->em_lock); 1776 1777 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 1778 if (!mp->ep_pool) 1779 goto free_mp; 1780 1781 return mp; 1782 1783 free_mp: 1784 kfree(mp); 1785 return NULL; 1786 } 1787 EXPORT_SYMBOL(fc_exch_mgr_alloc); 1788 1789 void fc_exch_mgr_free(struct fc_exch_mgr *mp) 1790 { 1791 WARN_ON(!mp); 1792 /* 1793 * The total exch count must be zero 1794 * before freeing exchange manager. 1795 */ 1796 WARN_ON(mp->total_exches != 0); 1797 mempool_destroy(mp->ep_pool); 1798 kfree(mp); 1799 } 1800 EXPORT_SYMBOL(fc_exch_mgr_free); 1801 1802 struct fc_exch *fc_exch_get(struct fc_lport *lp, struct fc_frame *fp) 1803 { 1804 if (!lp || !lp->emp) 1805 return NULL; 1806 1807 return fc_exch_alloc(lp->emp, fp, 0); 1808 } 1809 EXPORT_SYMBOL(fc_exch_get); 1810 1811 struct fc_seq *fc_exch_seq_send(struct fc_lport *lp, 1812 struct fc_frame *fp, 1813 void (*resp)(struct fc_seq *, 1814 struct fc_frame *fp, 1815 void *arg), 1816 void (*destructor)(struct fc_seq *, void *), 1817 void *arg, u32 timer_msec) 1818 { 1819 struct fc_exch *ep; 1820 struct fc_seq *sp = NULL; 1821 struct fc_frame_header *fh; 1822 int rc = 1; 1823 1824 ep = lp->tt.exch_get(lp, fp); 1825 if (!ep) { 1826 fc_frame_free(fp); 1827 return NULL; 1828 } 1829 ep->esb_stat |= ESB_ST_SEQ_INIT; 1830 fh = fc_frame_header_get(fp); 1831 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 1832 ep->resp = resp; 1833 ep->destructor = destructor; 1834 ep->arg = arg; 1835 ep->r_a_tov = FC_DEF_R_A_TOV; 1836 ep->lp = lp; 1837 sp = &ep->seq; 1838 1839 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 1840 ep->f_ctl = ntoh24(fh->fh_f_ctl); 1841 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 1842 sp->cnt++; 1843 1844 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 1845 1846 if (unlikely(lp->tt.frame_send(lp, fp))) 1847 goto err; 1848 1849 if (timer_msec) 1850 fc_exch_timer_set_locked(ep, timer_msec); 1851 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 1852 1853 if (ep->f_ctl & FC_FC_SEQ_INIT) 1854 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 1855 spin_unlock_bh(&ep->ex_lock); 1856 return sp; 1857 err: 1858 rc = fc_exch_done_locked(ep); 1859 spin_unlock_bh(&ep->ex_lock); 1860 if (!rc) 1861 fc_exch_mgr_delete_ep(ep); 1862 return NULL; 1863 } 1864 EXPORT_SYMBOL(fc_exch_seq_send); 1865 1866 /* 1867 * Receive a frame 1868 */ 1869 void fc_exch_recv(struct fc_lport *lp, struct fc_exch_mgr *mp, 1870 struct fc_frame *fp) 1871 { 1872 struct fc_frame_header *fh = fc_frame_header_get(fp); 1873 u32 f_ctl; 1874 1875 /* lport lock ? */ 1876 if (!lp || !mp || (lp->state == LPORT_ST_NONE)) { 1877 FC_DBG("fc_lport or EM is not allocated and configured"); 1878 fc_frame_free(fp); 1879 return; 1880 } 1881 1882 /* 1883 * If frame is marked invalid, just drop it. 1884 */ 1885 f_ctl = ntoh24(fh->fh_f_ctl); 1886 switch (fr_eof(fp)) { 1887 case FC_EOF_T: 1888 if (f_ctl & FC_FC_END_SEQ) 1889 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 1890 /* fall through */ 1891 case FC_EOF_N: 1892 if (fh->fh_type == FC_TYPE_BLS) 1893 fc_exch_recv_bls(mp, fp); 1894 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 1895 FC_FC_EX_CTX) 1896 fc_exch_recv_seq_resp(mp, fp); 1897 else if (f_ctl & FC_FC_SEQ_CTX) 1898 fc_exch_recv_resp(mp, fp); 1899 else 1900 fc_exch_recv_req(lp, mp, fp); 1901 break; 1902 default: 1903 FC_DBG("dropping invalid frame (eof %x)", fr_eof(fp)); 1904 fc_frame_free(fp); 1905 break; 1906 } 1907 } 1908 EXPORT_SYMBOL(fc_exch_recv); 1909 1910 int fc_exch_init(struct fc_lport *lp) 1911 { 1912 if (!lp->tt.exch_get) { 1913 /* 1914 * exch_put() should be NULL if 1915 * exch_get() is NULL 1916 */ 1917 WARN_ON(lp->tt.exch_put); 1918 lp->tt.exch_get = fc_exch_get; 1919 } 1920 1921 if (!lp->tt.seq_start_next) 1922 lp->tt.seq_start_next = fc_seq_start_next; 1923 1924 if (!lp->tt.exch_seq_send) 1925 lp->tt.exch_seq_send = fc_exch_seq_send; 1926 1927 if (!lp->tt.seq_send) 1928 lp->tt.seq_send = fc_seq_send; 1929 1930 if (!lp->tt.seq_els_rsp_send) 1931 lp->tt.seq_els_rsp_send = fc_seq_els_rsp_send; 1932 1933 if (!lp->tt.exch_done) 1934 lp->tt.exch_done = fc_exch_done; 1935 1936 if (!lp->tt.exch_mgr_reset) 1937 lp->tt.exch_mgr_reset = fc_exch_mgr_reset; 1938 1939 if (!lp->tt.seq_exch_abort) 1940 lp->tt.seq_exch_abort = fc_seq_exch_abort; 1941 1942 return 0; 1943 } 1944 EXPORT_SYMBOL(fc_exch_init); 1945 1946 int fc_setup_exch_mgr(void) 1947 { 1948 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 1949 0, SLAB_HWCACHE_ALIGN, NULL); 1950 if (!fc_em_cachep) 1951 return -ENOMEM; 1952 return 0; 1953 } 1954 1955 void fc_destroy_exch_mgr(void) 1956 { 1957 kmem_cache_destroy(fc_em_cachep); 1958 } 1959