1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2007 Intel Corporation. All rights reserved. 4 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 5 * Copyright(c) 2008 Mike Christie 6 * 7 * Maintained at www.Open-FCoE.org 8 */ 9 10 /* 11 * Fibre Channel exchange and sequence handling. 12 */ 13 14 #include <linux/timer.h> 15 #include <linux/slab.h> 16 #include <linux/err.h> 17 #include <linux/export.h> 18 #include <linux/log2.h> 19 20 #include <scsi/fc/fc_fc2.h> 21 22 #include <scsi/libfc.h> 23 24 #include "fc_libfc.h" 25 26 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 27 EXPORT_SYMBOL(fc_cpu_mask); 28 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 29 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 30 static struct workqueue_struct *fc_exch_workqueue; 31 32 /* 33 * Structure and function definitions for managing Fibre Channel Exchanges 34 * and Sequences. 35 * 36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 37 * 38 * fc_exch_mgr holds the exchange state for an N port 39 * 40 * fc_exch holds state for one exchange and links to its active sequence. 41 * 42 * fc_seq holds the state for an individual sequence. 43 */ 44 45 /** 46 * struct fc_exch_pool - Per cpu exchange pool 47 * @next_index: Next possible free exchange index 48 * @total_exches: Total allocated exchanges 49 * @lock: Exch pool lock 50 * @ex_list: List of exchanges 51 * @left: Cache of free slot in exch array 52 * @right: Cache of free slot in exch array 53 * 54 * This structure manages per cpu exchanges in array of exchange pointers. 55 * This array is allocated followed by struct fc_exch_pool memory for 56 * assigned range of exchanges to per cpu pool. 57 */ 58 struct fc_exch_pool { 59 spinlock_t lock; 60 struct list_head ex_list; 61 u16 next_index; 62 u16 total_exches; 63 64 u16 left; 65 u16 right; 66 } ____cacheline_aligned_in_smp; 67 68 /** 69 * struct fc_exch_mgr - The Exchange Manager (EM). 70 * @class: Default class for new sequences 71 * @kref: Reference counter 72 * @min_xid: Minimum exchange ID 73 * @max_xid: Maximum exchange ID 74 * @ep_pool: Reserved exchange pointers 75 * @pool_max_index: Max exch array index in exch pool 76 * @pool: Per cpu exch pool 77 * @lport: Local exchange port 78 * @stats: Statistics structure 79 * 80 * This structure is the center for creating exchanges and sequences. 81 * It manages the allocation of exchange IDs. 82 */ 83 struct fc_exch_mgr { 84 struct fc_exch_pool __percpu *pool; 85 mempool_t *ep_pool; 86 struct fc_lport *lport; 87 enum fc_class class; 88 struct kref kref; 89 u16 min_xid; 90 u16 max_xid; 91 u16 pool_max_index; 92 93 struct { 94 atomic_t no_free_exch; 95 atomic_t no_free_exch_xid; 96 atomic_t xid_not_found; 97 atomic_t xid_busy; 98 atomic_t seq_not_found; 99 atomic_t non_bls_resp; 100 } stats; 101 }; 102 103 /** 104 * struct fc_exch_mgr_anchor - primary structure for list of EMs 105 * @ema_list: Exchange Manager Anchor list 106 * @mp: Exchange Manager associated with this anchor 107 * @match: Routine to determine if this anchor's EM should be used 108 * 109 * When walking the list of anchors the match routine will be called 110 * for each anchor to determine if that EM should be used. The last 111 * anchor in the list will always match to handle any exchanges not 112 * handled by other EMs. The non-default EMs would be added to the 113 * anchor list by HW that provides offloads. 114 */ 115 struct fc_exch_mgr_anchor { 116 struct list_head ema_list; 117 struct fc_exch_mgr *mp; 118 bool (*match)(struct fc_frame *); 119 }; 120 121 static void fc_exch_rrq(struct fc_exch *); 122 static void fc_seq_ls_acc(struct fc_frame *); 123 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 124 enum fc_els_rjt_explan); 125 static void fc_exch_els_rec(struct fc_frame *); 126 static void fc_exch_els_rrq(struct fc_frame *); 127 128 /* 129 * Internal implementation notes. 130 * 131 * The exchange manager is one by default in libfc but LLD may choose 132 * to have one per CPU. The sequence manager is one per exchange manager 133 * and currently never separated. 134 * 135 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 136 * assigned by the Sequence Initiator that shall be unique for a specific 137 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 138 * qualified by exchange ID, which one might think it would be. 139 * In practice this limits the number of open sequences and exchanges to 256 140 * per session. For most targets we could treat this limit as per exchange. 141 * 142 * The exchange and its sequence are freed when the last sequence is received. 143 * It's possible for the remote port to leave an exchange open without 144 * sending any sequences. 145 * 146 * Notes on reference counts: 147 * 148 * Exchanges are reference counted and exchange gets freed when the reference 149 * count becomes zero. 150 * 151 * Timeouts: 152 * Sequences are timed out for E_D_TOV and R_A_TOV. 153 * 154 * Sequence event handling: 155 * 156 * The following events may occur on initiator sequences: 157 * 158 * Send. 159 * For now, the whole thing is sent. 160 * Receive ACK 161 * This applies only to class F. 162 * The sequence is marked complete. 163 * ULP completion. 164 * The upper layer calls fc_exch_done() when done 165 * with exchange and sequence tuple. 166 * RX-inferred completion. 167 * When we receive the next sequence on the same exchange, we can 168 * retire the previous sequence ID. (XXX not implemented). 169 * Timeout. 170 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 171 * E_D_TOV causes abort and calls upper layer response handler 172 * with FC_EX_TIMEOUT error. 173 * Receive RJT 174 * XXX defer. 175 * Send ABTS 176 * On timeout. 177 * 178 * The following events may occur on recipient sequences: 179 * 180 * Receive 181 * Allocate sequence for first frame received. 182 * Hold during receive handler. 183 * Release when final frame received. 184 * Keep status of last N of these for the ELS RES command. XXX TBD. 185 * Receive ABTS 186 * Deallocate sequence 187 * Send RJT 188 * Deallocate 189 * 190 * For now, we neglect conditions where only part of a sequence was 191 * received or transmitted, or where out-of-order receipt is detected. 192 */ 193 194 /* 195 * Locking notes: 196 * 197 * The EM code run in a per-CPU worker thread. 198 * 199 * To protect against concurrency between a worker thread code and timers, 200 * sequence allocation and deallocation must be locked. 201 * - exchange refcnt can be done atomicly without locks. 202 * - sequence allocation must be locked by exch lock. 203 * - If the EM pool lock and ex_lock must be taken at the same time, then the 204 * EM pool lock must be taken before the ex_lock. 205 */ 206 207 /* 208 * opcode names for debugging. 209 */ 210 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 211 212 /** 213 * fc_exch_name_lookup() - Lookup name by opcode 214 * @op: Opcode to be looked up 215 * @table: Opcode/name table 216 * @max_index: Index not to be exceeded 217 * 218 * This routine is used to determine a human-readable string identifying 219 * a R_CTL opcode. 220 */ 221 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 222 unsigned int max_index) 223 { 224 const char *name = NULL; 225 226 if (op < max_index) 227 name = table[op]; 228 if (!name) 229 name = "unknown"; 230 return name; 231 } 232 233 /** 234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 235 * @op: The opcode to be looked up 236 */ 237 static const char *fc_exch_rctl_name(unsigned int op) 238 { 239 return fc_exch_name_lookup(op, fc_exch_rctl_names, 240 ARRAY_SIZE(fc_exch_rctl_names)); 241 } 242 243 /** 244 * fc_exch_hold() - Increment an exchange's reference count 245 * @ep: Echange to be held 246 */ 247 static inline void fc_exch_hold(struct fc_exch *ep) 248 { 249 atomic_inc(&ep->ex_refcnt); 250 } 251 252 /** 253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 254 * and determine SOF and EOF. 255 * @ep: The exchange to that will use the header 256 * @fp: The frame whose header is to be modified 257 * @f_ctl: F_CTL bits that will be used for the frame header 258 * 259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 260 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 261 */ 262 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 263 u32 f_ctl) 264 { 265 struct fc_frame_header *fh = fc_frame_header_get(fp); 266 u16 fill; 267 268 fr_sof(fp) = ep->class; 269 if (ep->seq.cnt) 270 fr_sof(fp) = fc_sof_normal(ep->class); 271 272 if (f_ctl & FC_FC_END_SEQ) { 273 fr_eof(fp) = FC_EOF_T; 274 if (fc_sof_needs_ack((enum fc_sof)ep->class)) 275 fr_eof(fp) = FC_EOF_N; 276 /* 277 * From F_CTL. 278 * The number of fill bytes to make the length a 4-byte 279 * multiple is the low order 2-bits of the f_ctl. 280 * The fill itself will have been cleared by the frame 281 * allocation. 282 * After this, the length will be even, as expected by 283 * the transport. 284 */ 285 fill = fr_len(fp) & 3; 286 if (fill) { 287 fill = 4 - fill; 288 /* TODO, this may be a problem with fragmented skb */ 289 skb_put(fp_skb(fp), fill); 290 hton24(fh->fh_f_ctl, f_ctl | fill); 291 } 292 } else { 293 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 294 fr_eof(fp) = FC_EOF_N; 295 } 296 297 /* Initialize remaining fh fields from fc_fill_fc_hdr */ 298 fh->fh_ox_id = htons(ep->oxid); 299 fh->fh_rx_id = htons(ep->rxid); 300 fh->fh_seq_id = ep->seq.id; 301 fh->fh_seq_cnt = htons(ep->seq.cnt); 302 } 303 304 /** 305 * fc_exch_release() - Decrement an exchange's reference count 306 * @ep: Exchange to be released 307 * 308 * If the reference count reaches zero and the exchange is complete, 309 * it is freed. 310 */ 311 static void fc_exch_release(struct fc_exch *ep) 312 { 313 struct fc_exch_mgr *mp; 314 315 if (atomic_dec_and_test(&ep->ex_refcnt)) { 316 mp = ep->em; 317 if (ep->destructor) 318 ep->destructor(&ep->seq, ep->arg); 319 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 320 mempool_free(ep, mp->ep_pool); 321 } 322 } 323 324 /** 325 * fc_exch_timer_cancel() - cancel exch timer 326 * @ep: The exchange whose timer to be canceled 327 */ 328 static inline void fc_exch_timer_cancel(struct fc_exch *ep) 329 { 330 if (cancel_delayed_work(&ep->timeout_work)) { 331 FC_EXCH_DBG(ep, "Exchange timer canceled\n"); 332 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 333 } 334 } 335 336 /** 337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 338 * the exchange lock held 339 * @ep: The exchange whose timer will start 340 * @timer_msec: The timeout period 341 * 342 * Used for upper level protocols to time out the exchange. 343 * The timer is cancelled when it fires or when the exchange completes. 344 */ 345 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 346 unsigned int timer_msec) 347 { 348 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 349 return; 350 351 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec); 352 353 fc_exch_hold(ep); /* hold for timer */ 354 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 355 msecs_to_jiffies(timer_msec))) { 356 FC_EXCH_DBG(ep, "Exchange already queued\n"); 357 fc_exch_release(ep); 358 } 359 } 360 361 /** 362 * fc_exch_timer_set() - Lock the exchange and set the timer 363 * @ep: The exchange whose timer will start 364 * @timer_msec: The timeout period 365 */ 366 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 367 { 368 spin_lock_bh(&ep->ex_lock); 369 fc_exch_timer_set_locked(ep, timer_msec); 370 spin_unlock_bh(&ep->ex_lock); 371 } 372 373 /** 374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 375 * @ep: The exchange that is complete 376 * 377 * Note: May sleep if invoked from outside a response handler. 378 */ 379 static int fc_exch_done_locked(struct fc_exch *ep) 380 { 381 int rc = 1; 382 383 /* 384 * We must check for completion in case there are two threads 385 * tyring to complete this. But the rrq code will reuse the 386 * ep, and in that case we only clear the resp and set it as 387 * complete, so it can be reused by the timer to send the rrq. 388 */ 389 if (ep->state & FC_EX_DONE) 390 return rc; 391 ep->esb_stat |= ESB_ST_COMPLETE; 392 393 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 394 ep->state |= FC_EX_DONE; 395 fc_exch_timer_cancel(ep); 396 rc = 0; 397 } 398 return rc; 399 } 400 401 static struct fc_exch fc_quarantine_exch; 402 403 /** 404 * fc_exch_ptr_get() - Return an exchange from an exchange pool 405 * @pool: Exchange Pool to get an exchange from 406 * @index: Index of the exchange within the pool 407 * 408 * Use the index to get an exchange from within an exchange pool. exches 409 * will point to an array of exchange pointers. The index will select 410 * the exchange within the array. 411 */ 412 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 413 u16 index) 414 { 415 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 416 return exches[index]; 417 } 418 419 /** 420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 421 * @pool: The pool to assign the exchange to 422 * @index: The index in the pool where the exchange will be assigned 423 * @ep: The exchange to assign to the pool 424 */ 425 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 426 struct fc_exch *ep) 427 { 428 ((struct fc_exch **)(pool + 1))[index] = ep; 429 } 430 431 /** 432 * fc_exch_delete() - Delete an exchange 433 * @ep: The exchange to be deleted 434 */ 435 static void fc_exch_delete(struct fc_exch *ep) 436 { 437 struct fc_exch_pool *pool; 438 u16 index; 439 440 pool = ep->pool; 441 spin_lock_bh(&pool->lock); 442 WARN_ON(pool->total_exches <= 0); 443 pool->total_exches--; 444 445 /* update cache of free slot */ 446 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 447 if (!(ep->state & FC_EX_QUARANTINE)) { 448 if (pool->left == FC_XID_UNKNOWN) 449 pool->left = index; 450 else if (pool->right == FC_XID_UNKNOWN) 451 pool->right = index; 452 else 453 pool->next_index = index; 454 fc_exch_ptr_set(pool, index, NULL); 455 } else { 456 fc_exch_ptr_set(pool, index, &fc_quarantine_exch); 457 } 458 list_del(&ep->ex_list); 459 spin_unlock_bh(&pool->lock); 460 fc_exch_release(ep); /* drop hold for exch in mp */ 461 } 462 463 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp, 464 struct fc_frame *fp) 465 { 466 struct fc_exch *ep; 467 struct fc_frame_header *fh = fc_frame_header_get(fp); 468 int error = -ENXIO; 469 u32 f_ctl; 470 u8 fh_type = fh->fh_type; 471 472 ep = fc_seq_exch(sp); 473 474 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) { 475 fc_frame_free(fp); 476 goto out; 477 } 478 479 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT)); 480 481 f_ctl = ntoh24(fh->fh_f_ctl); 482 fc_exch_setup_hdr(ep, fp, f_ctl); 483 fr_encaps(fp) = ep->encaps; 484 485 /* 486 * update sequence count if this frame is carrying 487 * multiple FC frames when sequence offload is enabled 488 * by LLD. 489 */ 490 if (fr_max_payload(fp)) 491 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 492 fr_max_payload(fp)); 493 else 494 sp->cnt++; 495 496 /* 497 * Send the frame. 498 */ 499 error = lport->tt.frame_send(lport, fp); 500 501 if (fh_type == FC_TYPE_BLS) 502 goto out; 503 504 /* 505 * Update the exchange and sequence flags, 506 * assuming all frames for the sequence have been sent. 507 * We can only be called to send once for each sequence. 508 */ 509 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 510 if (f_ctl & FC_FC_SEQ_INIT) 511 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 512 out: 513 return error; 514 } 515 516 /** 517 * fc_seq_send() - Send a frame using existing sequence/exchange pair 518 * @lport: The local port that the exchange will be sent on 519 * @sp: The sequence to be sent 520 * @fp: The frame to be sent on the exchange 521 * 522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp) 523 * or indirectly by calling libfc_function_template.frame_send(). 524 */ 525 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp) 526 { 527 struct fc_exch *ep; 528 int error; 529 ep = fc_seq_exch(sp); 530 spin_lock_bh(&ep->ex_lock); 531 error = fc_seq_send_locked(lport, sp, fp); 532 spin_unlock_bh(&ep->ex_lock); 533 return error; 534 } 535 EXPORT_SYMBOL(fc_seq_send); 536 537 /** 538 * fc_seq_alloc() - Allocate a sequence for a given exchange 539 * @ep: The exchange to allocate a new sequence for 540 * @seq_id: The sequence ID to be used 541 * 542 * We don't support multiple originated sequences on the same exchange. 543 * By implication, any previously originated sequence on this exchange 544 * is complete, and we reallocate the same sequence. 545 */ 546 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 547 { 548 struct fc_seq *sp; 549 550 sp = &ep->seq; 551 sp->ssb_stat = 0; 552 sp->cnt = 0; 553 sp->id = seq_id; 554 return sp; 555 } 556 557 /** 558 * fc_seq_start_next_locked() - Allocate a new sequence on the same 559 * exchange as the supplied sequence 560 * @sp: The sequence/exchange to get a new sequence for 561 */ 562 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 563 { 564 struct fc_exch *ep = fc_seq_exch(sp); 565 566 sp = fc_seq_alloc(ep, ep->seq_id++); 567 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 568 ep->f_ctl, sp->id); 569 return sp; 570 } 571 572 /** 573 * fc_seq_start_next() - Lock the exchange and get a new sequence 574 * for a given sequence/exchange pair 575 * @sp: The sequence/exchange to get a new exchange for 576 */ 577 struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 578 { 579 struct fc_exch *ep = fc_seq_exch(sp); 580 581 spin_lock_bh(&ep->ex_lock); 582 sp = fc_seq_start_next_locked(sp); 583 spin_unlock_bh(&ep->ex_lock); 584 585 return sp; 586 } 587 EXPORT_SYMBOL(fc_seq_start_next); 588 589 /* 590 * Set the response handler for the exchange associated with a sequence. 591 * 592 * Note: May sleep if invoked from outside a response handler. 593 */ 594 void fc_seq_set_resp(struct fc_seq *sp, 595 void (*resp)(struct fc_seq *, struct fc_frame *, void *), 596 void *arg) 597 { 598 struct fc_exch *ep = fc_seq_exch(sp); 599 DEFINE_WAIT(wait); 600 601 spin_lock_bh(&ep->ex_lock); 602 while (ep->resp_active && ep->resp_task != current) { 603 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE); 604 spin_unlock_bh(&ep->ex_lock); 605 606 schedule(); 607 608 spin_lock_bh(&ep->ex_lock); 609 } 610 finish_wait(&ep->resp_wq, &wait); 611 ep->resp = resp; 612 ep->arg = arg; 613 spin_unlock_bh(&ep->ex_lock); 614 } 615 EXPORT_SYMBOL(fc_seq_set_resp); 616 617 /** 618 * fc_exch_abort_locked() - Abort an exchange 619 * @ep: The exchange to be aborted 620 * @timer_msec: The period of time to wait before aborting 621 * 622 * Abort an exchange and sequence. Generally called because of a 623 * exchange timeout or an abort from the upper layer. 624 * 625 * A timer_msec can be specified for abort timeout, if non-zero 626 * timer_msec value is specified then exchange resp handler 627 * will be called with timeout error if no response to abort. 628 * 629 * Locking notes: Called with exch lock held 630 * 631 * Return value: 0 on success else error code 632 */ 633 static int fc_exch_abort_locked(struct fc_exch *ep, 634 unsigned int timer_msec) 635 { 636 struct fc_seq *sp; 637 struct fc_frame *fp; 638 int error; 639 640 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec); 641 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 642 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) { 643 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n", 644 ep->esb_stat, ep->state); 645 return -ENXIO; 646 } 647 648 /* 649 * Send the abort on a new sequence if possible. 650 */ 651 sp = fc_seq_start_next_locked(&ep->seq); 652 if (!sp) 653 return -ENOMEM; 654 655 if (timer_msec) 656 fc_exch_timer_set_locked(ep, timer_msec); 657 658 if (ep->sid) { 659 /* 660 * Send an abort for the sequence that timed out. 661 */ 662 fp = fc_frame_alloc(ep->lp, 0); 663 if (fp) { 664 ep->esb_stat |= ESB_ST_SEQ_INIT; 665 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 666 FC_TYPE_BLS, FC_FC_END_SEQ | 667 FC_FC_SEQ_INIT, 0); 668 error = fc_seq_send_locked(ep->lp, sp, fp); 669 } else { 670 error = -ENOBUFS; 671 } 672 } else { 673 /* 674 * If not logged into the fabric, don't send ABTS but leave 675 * sequence active until next timeout. 676 */ 677 error = 0; 678 } 679 ep->esb_stat |= ESB_ST_ABNORMAL; 680 return error; 681 } 682 683 /** 684 * fc_seq_exch_abort() - Abort an exchange and sequence 685 * @req_sp: The sequence to be aborted 686 * @timer_msec: The period of time to wait before aborting 687 * 688 * Generally called because of a timeout or an abort from the upper layer. 689 * 690 * Return value: 0 on success else error code 691 */ 692 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec) 693 { 694 struct fc_exch *ep; 695 int error; 696 697 ep = fc_seq_exch(req_sp); 698 spin_lock_bh(&ep->ex_lock); 699 error = fc_exch_abort_locked(ep, timer_msec); 700 spin_unlock_bh(&ep->ex_lock); 701 return error; 702 } 703 704 /** 705 * fc_invoke_resp() - invoke ep->resp() 706 * @ep: The exchange to be operated on 707 * @fp: The frame pointer to pass through to ->resp() 708 * @sp: The sequence pointer to pass through to ->resp() 709 * 710 * Notes: 711 * It is assumed that after initialization finished (this means the 712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are 713 * modified only via fc_seq_set_resp(). This guarantees that none of these 714 * two variables changes if ep->resp_active > 0. 715 * 716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when 717 * this function is invoked, the first spin_lock_bh() call in this function 718 * will wait until fc_seq_set_resp() has finished modifying these variables. 719 * 720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that 721 * ep->resp() won't be invoked after fc_exch_done() has returned. 722 * 723 * The response handler itself may invoke fc_exch_done(), which will clear the 724 * ep->resp pointer. 725 * 726 * Return value: 727 * Returns true if and only if ep->resp has been invoked. 728 */ 729 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp, 730 struct fc_frame *fp) 731 { 732 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 733 void *arg; 734 bool res = false; 735 736 spin_lock_bh(&ep->ex_lock); 737 ep->resp_active++; 738 if (ep->resp_task != current) 739 ep->resp_task = !ep->resp_task ? current : NULL; 740 resp = ep->resp; 741 arg = ep->arg; 742 spin_unlock_bh(&ep->ex_lock); 743 744 if (resp) { 745 resp(sp, fp, arg); 746 res = true; 747 } 748 749 spin_lock_bh(&ep->ex_lock); 750 if (--ep->resp_active == 0) 751 ep->resp_task = NULL; 752 spin_unlock_bh(&ep->ex_lock); 753 754 if (ep->resp_active == 0) 755 wake_up(&ep->resp_wq); 756 757 return res; 758 } 759 760 /** 761 * fc_exch_timeout() - Handle exchange timer expiration 762 * @work: The work_struct identifying the exchange that timed out 763 */ 764 static void fc_exch_timeout(struct work_struct *work) 765 { 766 struct fc_exch *ep = container_of(work, struct fc_exch, 767 timeout_work.work); 768 struct fc_seq *sp = &ep->seq; 769 u32 e_stat; 770 int rc = 1; 771 772 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state); 773 774 spin_lock_bh(&ep->ex_lock); 775 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 776 goto unlock; 777 778 e_stat = ep->esb_stat; 779 if (e_stat & ESB_ST_COMPLETE) { 780 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 781 spin_unlock_bh(&ep->ex_lock); 782 if (e_stat & ESB_ST_REC_QUAL) 783 fc_exch_rrq(ep); 784 goto done; 785 } else { 786 if (e_stat & ESB_ST_ABNORMAL) 787 rc = fc_exch_done_locked(ep); 788 spin_unlock_bh(&ep->ex_lock); 789 if (!rc) 790 fc_exch_delete(ep); 791 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT)); 792 fc_seq_set_resp(sp, NULL, ep->arg); 793 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 794 goto done; 795 } 796 unlock: 797 spin_unlock_bh(&ep->ex_lock); 798 done: 799 /* 800 * This release matches the hold taken when the timer was set. 801 */ 802 fc_exch_release(ep); 803 } 804 805 /** 806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 807 * @lport: The local port that the exchange is for 808 * @mp: The exchange manager that will allocate the exchange 809 * 810 * Returns pointer to allocated fc_exch with exch lock held. 811 */ 812 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 813 struct fc_exch_mgr *mp) 814 { 815 struct fc_exch *ep; 816 unsigned int cpu; 817 u16 index; 818 struct fc_exch_pool *pool; 819 820 /* allocate memory for exchange */ 821 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 822 if (!ep) { 823 atomic_inc(&mp->stats.no_free_exch); 824 goto out; 825 } 826 memset(ep, 0, sizeof(*ep)); 827 828 cpu = get_cpu(); 829 pool = per_cpu_ptr(mp->pool, cpu); 830 spin_lock_bh(&pool->lock); 831 put_cpu(); 832 833 /* peek cache of free slot */ 834 if (pool->left != FC_XID_UNKNOWN) { 835 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) { 836 index = pool->left; 837 pool->left = FC_XID_UNKNOWN; 838 goto hit; 839 } 840 } 841 if (pool->right != FC_XID_UNKNOWN) { 842 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) { 843 index = pool->right; 844 pool->right = FC_XID_UNKNOWN; 845 goto hit; 846 } 847 } 848 849 index = pool->next_index; 850 /* allocate new exch from pool */ 851 while (fc_exch_ptr_get(pool, index)) { 852 index = index == mp->pool_max_index ? 0 : index + 1; 853 if (index == pool->next_index) 854 goto err; 855 } 856 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 857 hit: 858 fc_exch_hold(ep); /* hold for exch in mp */ 859 spin_lock_init(&ep->ex_lock); 860 /* 861 * Hold exch lock for caller to prevent fc_exch_reset() 862 * from releasing exch while fc_exch_alloc() caller is 863 * still working on exch. 864 */ 865 spin_lock_bh(&ep->ex_lock); 866 867 fc_exch_ptr_set(pool, index, ep); 868 list_add_tail(&ep->ex_list, &pool->ex_list); 869 fc_seq_alloc(ep, ep->seq_id++); 870 pool->total_exches++; 871 spin_unlock_bh(&pool->lock); 872 873 /* 874 * update exchange 875 */ 876 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 877 ep->em = mp; 878 ep->pool = pool; 879 ep->lp = lport; 880 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 881 ep->rxid = FC_XID_UNKNOWN; 882 ep->class = mp->class; 883 ep->resp_active = 0; 884 init_waitqueue_head(&ep->resp_wq); 885 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 886 out: 887 return ep; 888 err: 889 spin_unlock_bh(&pool->lock); 890 atomic_inc(&mp->stats.no_free_exch_xid); 891 mempool_free(ep, mp->ep_pool); 892 return NULL; 893 } 894 895 /** 896 * fc_exch_alloc() - Allocate an exchange from an EM on a 897 * local port's list of EMs. 898 * @lport: The local port that will own the exchange 899 * @fp: The FC frame that the exchange will be for 900 * 901 * This function walks the list of exchange manager(EM) 902 * anchors to select an EM for a new exchange allocation. The 903 * EM is selected when a NULL match function pointer is encountered 904 * or when a call to a match function returns true. 905 */ 906 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 907 struct fc_frame *fp) 908 { 909 struct fc_exch_mgr_anchor *ema; 910 struct fc_exch *ep; 911 912 list_for_each_entry(ema, &lport->ema_list, ema_list) { 913 if (!ema->match || ema->match(fp)) { 914 ep = fc_exch_em_alloc(lport, ema->mp); 915 if (ep) 916 return ep; 917 } 918 } 919 return NULL; 920 } 921 922 /** 923 * fc_exch_find() - Lookup and hold an exchange 924 * @mp: The exchange manager to lookup the exchange from 925 * @xid: The XID of the exchange to look up 926 */ 927 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 928 { 929 struct fc_lport *lport = mp->lport; 930 struct fc_exch_pool *pool; 931 struct fc_exch *ep = NULL; 932 u16 cpu = xid & fc_cpu_mask; 933 934 if (xid == FC_XID_UNKNOWN) 935 return NULL; 936 937 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 938 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:", 939 lport->host->host_no, lport->port_id, xid, cpu); 940 return NULL; 941 } 942 943 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 944 pool = per_cpu_ptr(mp->pool, cpu); 945 spin_lock_bh(&pool->lock); 946 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 947 if (ep == &fc_quarantine_exch) { 948 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid); 949 ep = NULL; 950 } 951 if (ep) { 952 WARN_ON(ep->xid != xid); 953 fc_exch_hold(ep); 954 } 955 spin_unlock_bh(&pool->lock); 956 } 957 return ep; 958 } 959 960 961 /** 962 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 963 * the memory allocated for the related objects may be freed. 964 * @sp: The sequence that has completed 965 * 966 * Note: May sleep if invoked from outside a response handler. 967 */ 968 void fc_exch_done(struct fc_seq *sp) 969 { 970 struct fc_exch *ep = fc_seq_exch(sp); 971 int rc; 972 973 spin_lock_bh(&ep->ex_lock); 974 rc = fc_exch_done_locked(ep); 975 spin_unlock_bh(&ep->ex_lock); 976 977 fc_seq_set_resp(sp, NULL, ep->arg); 978 if (!rc) 979 fc_exch_delete(ep); 980 } 981 EXPORT_SYMBOL(fc_exch_done); 982 983 /** 984 * fc_exch_resp() - Allocate a new exchange for a response frame 985 * @lport: The local port that the exchange was for 986 * @mp: The exchange manager to allocate the exchange from 987 * @fp: The response frame 988 * 989 * Sets the responder ID in the frame header. 990 */ 991 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 992 struct fc_exch_mgr *mp, 993 struct fc_frame *fp) 994 { 995 struct fc_exch *ep; 996 struct fc_frame_header *fh; 997 998 ep = fc_exch_alloc(lport, fp); 999 if (ep) { 1000 ep->class = fc_frame_class(fp); 1001 1002 /* 1003 * Set EX_CTX indicating we're responding on this exchange. 1004 */ 1005 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 1006 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 1007 fh = fc_frame_header_get(fp); 1008 ep->sid = ntoh24(fh->fh_d_id); 1009 ep->did = ntoh24(fh->fh_s_id); 1010 ep->oid = ep->did; 1011 1012 /* 1013 * Allocated exchange has placed the XID in the 1014 * originator field. Move it to the responder field, 1015 * and set the originator XID from the frame. 1016 */ 1017 ep->rxid = ep->xid; 1018 ep->oxid = ntohs(fh->fh_ox_id); 1019 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 1020 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 1021 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 1022 1023 fc_exch_hold(ep); /* hold for caller */ 1024 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 1025 } 1026 return ep; 1027 } 1028 1029 /** 1030 * fc_seq_lookup_recip() - Find a sequence where the other end 1031 * originated the sequence 1032 * @lport: The local port that the frame was sent to 1033 * @mp: The Exchange Manager to lookup the exchange from 1034 * @fp: The frame associated with the sequence we're looking for 1035 * 1036 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 1037 * on the ep that should be released by the caller. 1038 */ 1039 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 1040 struct fc_exch_mgr *mp, 1041 struct fc_frame *fp) 1042 { 1043 struct fc_frame_header *fh = fc_frame_header_get(fp); 1044 struct fc_exch *ep = NULL; 1045 struct fc_seq *sp = NULL; 1046 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 1047 u32 f_ctl; 1048 u16 xid; 1049 1050 f_ctl = ntoh24(fh->fh_f_ctl); 1051 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 1052 1053 /* 1054 * Lookup or create the exchange if we will be creating the sequence. 1055 */ 1056 if (f_ctl & FC_FC_EX_CTX) { 1057 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 1058 ep = fc_exch_find(mp, xid); 1059 if (!ep) { 1060 atomic_inc(&mp->stats.xid_not_found); 1061 reject = FC_RJT_OX_ID; 1062 goto out; 1063 } 1064 if (ep->rxid == FC_XID_UNKNOWN) 1065 ep->rxid = ntohs(fh->fh_rx_id); 1066 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 1067 reject = FC_RJT_OX_ID; 1068 goto rel; 1069 } 1070 } else { 1071 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 1072 1073 /* 1074 * Special case for MDS issuing an ELS TEST with a 1075 * bad rxid of 0. 1076 * XXX take this out once we do the proper reject. 1077 */ 1078 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 1079 fc_frame_payload_op(fp) == ELS_TEST) { 1080 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 1081 xid = FC_XID_UNKNOWN; 1082 } 1083 1084 /* 1085 * new sequence - find the exchange 1086 */ 1087 ep = fc_exch_find(mp, xid); 1088 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 1089 if (ep) { 1090 atomic_inc(&mp->stats.xid_busy); 1091 reject = FC_RJT_RX_ID; 1092 goto rel; 1093 } 1094 ep = fc_exch_resp(lport, mp, fp); 1095 if (!ep) { 1096 reject = FC_RJT_EXCH_EST; /* XXX */ 1097 goto out; 1098 } 1099 xid = ep->xid; /* get our XID */ 1100 } else if (!ep) { 1101 atomic_inc(&mp->stats.xid_not_found); 1102 reject = FC_RJT_RX_ID; /* XID not found */ 1103 goto out; 1104 } 1105 } 1106 1107 spin_lock_bh(&ep->ex_lock); 1108 /* 1109 * At this point, we have the exchange held. 1110 * Find or create the sequence. 1111 */ 1112 if (fc_sof_is_init(fr_sof(fp))) { 1113 sp = &ep->seq; 1114 sp->ssb_stat |= SSB_ST_RESP; 1115 sp->id = fh->fh_seq_id; 1116 } else { 1117 sp = &ep->seq; 1118 if (sp->id != fh->fh_seq_id) { 1119 atomic_inc(&mp->stats.seq_not_found); 1120 if (f_ctl & FC_FC_END_SEQ) { 1121 /* 1122 * Update sequence_id based on incoming last 1123 * frame of sequence exchange. This is needed 1124 * for FC target where DDP has been used 1125 * on target where, stack is indicated only 1126 * about last frame's (payload _header) header. 1127 * Whereas "seq_id" which is part of 1128 * frame_header is allocated by initiator 1129 * which is totally different from "seq_id" 1130 * allocated when XFER_RDY was sent by target. 1131 * To avoid false -ve which results into not 1132 * sending RSP, hence write request on other 1133 * end never finishes. 1134 */ 1135 sp->ssb_stat |= SSB_ST_RESP; 1136 sp->id = fh->fh_seq_id; 1137 } else { 1138 spin_unlock_bh(&ep->ex_lock); 1139 1140 /* sequence/exch should exist */ 1141 reject = FC_RJT_SEQ_ID; 1142 goto rel; 1143 } 1144 } 1145 } 1146 WARN_ON(ep != fc_seq_exch(sp)); 1147 1148 if (f_ctl & FC_FC_SEQ_INIT) 1149 ep->esb_stat |= ESB_ST_SEQ_INIT; 1150 spin_unlock_bh(&ep->ex_lock); 1151 1152 fr_seq(fp) = sp; 1153 out: 1154 return reject; 1155 rel: 1156 fc_exch_done(&ep->seq); 1157 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1158 return reject; 1159 } 1160 1161 /** 1162 * fc_seq_lookup_orig() - Find a sequence where this end 1163 * originated the sequence 1164 * @mp: The Exchange Manager to lookup the exchange from 1165 * @fp: The frame associated with the sequence we're looking for 1166 * 1167 * Does not hold the sequence for the caller. 1168 */ 1169 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1170 struct fc_frame *fp) 1171 { 1172 struct fc_frame_header *fh = fc_frame_header_get(fp); 1173 struct fc_exch *ep; 1174 struct fc_seq *sp = NULL; 1175 u32 f_ctl; 1176 u16 xid; 1177 1178 f_ctl = ntoh24(fh->fh_f_ctl); 1179 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1180 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1181 ep = fc_exch_find(mp, xid); 1182 if (!ep) 1183 return NULL; 1184 if (ep->seq.id == fh->fh_seq_id) { 1185 /* 1186 * Save the RX_ID if we didn't previously know it. 1187 */ 1188 sp = &ep->seq; 1189 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1190 ep->rxid == FC_XID_UNKNOWN) { 1191 ep->rxid = ntohs(fh->fh_rx_id); 1192 } 1193 } 1194 fc_exch_release(ep); 1195 return sp; 1196 } 1197 1198 /** 1199 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1200 * @ep: The exchange to set the addresses for 1201 * @orig_id: The originator's ID 1202 * @resp_id: The responder's ID 1203 * 1204 * Note this must be done before the first sequence of the exchange is sent. 1205 */ 1206 static void fc_exch_set_addr(struct fc_exch *ep, 1207 u32 orig_id, u32 resp_id) 1208 { 1209 ep->oid = orig_id; 1210 if (ep->esb_stat & ESB_ST_RESP) { 1211 ep->sid = resp_id; 1212 ep->did = orig_id; 1213 } else { 1214 ep->sid = orig_id; 1215 ep->did = resp_id; 1216 } 1217 } 1218 1219 /** 1220 * fc_seq_els_rsp_send() - Send an ELS response using information from 1221 * the existing sequence/exchange. 1222 * @fp: The received frame 1223 * @els_cmd: The ELS command to be sent 1224 * @els_data: The ELS data to be sent 1225 * 1226 * The received frame is not freed. 1227 */ 1228 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1229 struct fc_seq_els_data *els_data) 1230 { 1231 switch (els_cmd) { 1232 case ELS_LS_RJT: 1233 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1234 break; 1235 case ELS_LS_ACC: 1236 fc_seq_ls_acc(fp); 1237 break; 1238 case ELS_RRQ: 1239 fc_exch_els_rrq(fp); 1240 break; 1241 case ELS_REC: 1242 fc_exch_els_rec(fp); 1243 break; 1244 default: 1245 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1246 } 1247 } 1248 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send); 1249 1250 /** 1251 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1252 * @sp: The sequence that is to be sent 1253 * @fp: The frame that will be sent on the sequence 1254 * @rctl: The R_CTL information to be sent 1255 * @fh_type: The frame header type 1256 */ 1257 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1258 enum fc_rctl rctl, enum fc_fh_type fh_type) 1259 { 1260 u32 f_ctl; 1261 struct fc_exch *ep = fc_seq_exch(sp); 1262 1263 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1264 f_ctl |= ep->f_ctl; 1265 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1266 fc_seq_send_locked(ep->lp, sp, fp); 1267 } 1268 1269 /** 1270 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1271 * @sp: The sequence to send the ACK on 1272 * @rx_fp: The received frame that is being acknoledged 1273 * 1274 * Send ACK_1 (or equiv.) indicating we received something. 1275 */ 1276 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1277 { 1278 struct fc_frame *fp; 1279 struct fc_frame_header *rx_fh; 1280 struct fc_frame_header *fh; 1281 struct fc_exch *ep = fc_seq_exch(sp); 1282 struct fc_lport *lport = ep->lp; 1283 unsigned int f_ctl; 1284 1285 /* 1286 * Don't send ACKs for class 3. 1287 */ 1288 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1289 fp = fc_frame_alloc(lport, 0); 1290 if (!fp) { 1291 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n"); 1292 return; 1293 } 1294 1295 fh = fc_frame_header_get(fp); 1296 fh->fh_r_ctl = FC_RCTL_ACK_1; 1297 fh->fh_type = FC_TYPE_BLS; 1298 1299 /* 1300 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1301 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1302 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1303 * Last ACK uses bits 7-6 (continue sequence), 1304 * bits 5-4 are meaningful (what kind of ACK to use). 1305 */ 1306 rx_fh = fc_frame_header_get(rx_fp); 1307 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1308 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1309 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1310 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1311 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1312 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1313 hton24(fh->fh_f_ctl, f_ctl); 1314 1315 fc_exch_setup_hdr(ep, fp, f_ctl); 1316 fh->fh_seq_id = rx_fh->fh_seq_id; 1317 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1318 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1319 1320 fr_sof(fp) = fr_sof(rx_fp); 1321 if (f_ctl & FC_FC_END_SEQ) 1322 fr_eof(fp) = FC_EOF_T; 1323 else 1324 fr_eof(fp) = FC_EOF_N; 1325 1326 lport->tt.frame_send(lport, fp); 1327 } 1328 } 1329 1330 /** 1331 * fc_exch_send_ba_rjt() - Send BLS Reject 1332 * @rx_fp: The frame being rejected 1333 * @reason: The reason the frame is being rejected 1334 * @explan: The explanation for the rejection 1335 * 1336 * This is for rejecting BA_ABTS only. 1337 */ 1338 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1339 enum fc_ba_rjt_reason reason, 1340 enum fc_ba_rjt_explan explan) 1341 { 1342 struct fc_frame *fp; 1343 struct fc_frame_header *rx_fh; 1344 struct fc_frame_header *fh; 1345 struct fc_ba_rjt *rp; 1346 struct fc_seq *sp; 1347 struct fc_lport *lport; 1348 unsigned int f_ctl; 1349 1350 lport = fr_dev(rx_fp); 1351 sp = fr_seq(rx_fp); 1352 fp = fc_frame_alloc(lport, sizeof(*rp)); 1353 if (!fp) { 1354 FC_EXCH_DBG(fc_seq_exch(sp), 1355 "Drop BA_RJT request, out of memory\n"); 1356 return; 1357 } 1358 fh = fc_frame_header_get(fp); 1359 rx_fh = fc_frame_header_get(rx_fp); 1360 1361 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1362 1363 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1364 rp->br_reason = reason; 1365 rp->br_explan = explan; 1366 1367 /* 1368 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1369 */ 1370 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1371 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1372 fh->fh_ox_id = rx_fh->fh_ox_id; 1373 fh->fh_rx_id = rx_fh->fh_rx_id; 1374 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1375 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1376 fh->fh_type = FC_TYPE_BLS; 1377 1378 /* 1379 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1380 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1381 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1382 * Last ACK uses bits 7-6 (continue sequence), 1383 * bits 5-4 are meaningful (what kind of ACK to use). 1384 * Always set LAST_SEQ, END_SEQ. 1385 */ 1386 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1387 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1388 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1389 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1390 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1391 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1392 f_ctl &= ~FC_FC_FIRST_SEQ; 1393 hton24(fh->fh_f_ctl, f_ctl); 1394 1395 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1396 fr_eof(fp) = FC_EOF_T; 1397 if (fc_sof_needs_ack(fr_sof(fp))) 1398 fr_eof(fp) = FC_EOF_N; 1399 1400 lport->tt.frame_send(lport, fp); 1401 } 1402 1403 /** 1404 * fc_exch_recv_abts() - Handle an incoming ABTS 1405 * @ep: The exchange the abort was on 1406 * @rx_fp: The ABTS frame 1407 * 1408 * This would be for target mode usually, but could be due to lost 1409 * FCP transfer ready, confirm or RRQ. We always handle this as an 1410 * exchange abort, ignoring the parameter. 1411 */ 1412 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1413 { 1414 struct fc_frame *fp; 1415 struct fc_ba_acc *ap; 1416 struct fc_frame_header *fh; 1417 struct fc_seq *sp; 1418 1419 if (!ep) 1420 goto reject; 1421 1422 FC_EXCH_DBG(ep, "exch: ABTS received\n"); 1423 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1424 if (!fp) { 1425 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n"); 1426 goto free; 1427 } 1428 1429 spin_lock_bh(&ep->ex_lock); 1430 if (ep->esb_stat & ESB_ST_COMPLETE) { 1431 spin_unlock_bh(&ep->ex_lock); 1432 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n"); 1433 fc_frame_free(fp); 1434 goto reject; 1435 } 1436 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 1437 ep->esb_stat |= ESB_ST_REC_QUAL; 1438 fc_exch_hold(ep); /* hold for REC_QUAL */ 1439 } 1440 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1441 fh = fc_frame_header_get(fp); 1442 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1443 memset(ap, 0, sizeof(*ap)); 1444 sp = &ep->seq; 1445 ap->ba_high_seq_cnt = htons(0xffff); 1446 if (sp->ssb_stat & SSB_ST_RESP) { 1447 ap->ba_seq_id = sp->id; 1448 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1449 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1450 ap->ba_low_seq_cnt = htons(sp->cnt); 1451 } 1452 sp = fc_seq_start_next_locked(sp); 1453 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1454 ep->esb_stat |= ESB_ST_ABNORMAL; 1455 spin_unlock_bh(&ep->ex_lock); 1456 1457 free: 1458 fc_frame_free(rx_fp); 1459 return; 1460 1461 reject: 1462 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1463 goto free; 1464 } 1465 1466 /** 1467 * fc_seq_assign() - Assign exchange and sequence for incoming request 1468 * @lport: The local port that received the request 1469 * @fp: The request frame 1470 * 1471 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1472 * A reference will be held on the exchange/sequence for the caller, which 1473 * must call fc_seq_release(). 1474 */ 1475 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1476 { 1477 struct fc_exch_mgr_anchor *ema; 1478 1479 WARN_ON(lport != fr_dev(fp)); 1480 WARN_ON(fr_seq(fp)); 1481 fr_seq(fp) = NULL; 1482 1483 list_for_each_entry(ema, &lport->ema_list, ema_list) 1484 if ((!ema->match || ema->match(fp)) && 1485 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1486 break; 1487 return fr_seq(fp); 1488 } 1489 EXPORT_SYMBOL(fc_seq_assign); 1490 1491 /** 1492 * fc_seq_release() - Release the hold 1493 * @sp: The sequence. 1494 */ 1495 void fc_seq_release(struct fc_seq *sp) 1496 { 1497 fc_exch_release(fc_seq_exch(sp)); 1498 } 1499 EXPORT_SYMBOL(fc_seq_release); 1500 1501 /** 1502 * fc_exch_recv_req() - Handler for an incoming request 1503 * @lport: The local port that received the request 1504 * @mp: The EM that the exchange is on 1505 * @fp: The request frame 1506 * 1507 * This is used when the other end is originating the exchange 1508 * and the sequence. 1509 */ 1510 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1511 struct fc_frame *fp) 1512 { 1513 struct fc_frame_header *fh = fc_frame_header_get(fp); 1514 struct fc_seq *sp = NULL; 1515 struct fc_exch *ep = NULL; 1516 enum fc_pf_rjt_reason reject; 1517 1518 /* We can have the wrong fc_lport at this point with NPIV, which is a 1519 * problem now that we know a new exchange needs to be allocated 1520 */ 1521 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1522 if (!lport) { 1523 fc_frame_free(fp); 1524 return; 1525 } 1526 fr_dev(fp) = lport; 1527 1528 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1529 1530 /* 1531 * If the RX_ID is 0xffff, don't allocate an exchange. 1532 * The upper-level protocol may request one later, if needed. 1533 */ 1534 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1535 return fc_lport_recv(lport, fp); 1536 1537 reject = fc_seq_lookup_recip(lport, mp, fp); 1538 if (reject == FC_RJT_NONE) { 1539 sp = fr_seq(fp); /* sequence will be held */ 1540 ep = fc_seq_exch(sp); 1541 fc_seq_send_ack(sp, fp); 1542 ep->encaps = fr_encaps(fp); 1543 1544 /* 1545 * Call the receive function. 1546 * 1547 * The receive function may allocate a new sequence 1548 * over the old one, so we shouldn't change the 1549 * sequence after this. 1550 * 1551 * The frame will be freed by the receive function. 1552 * If new exch resp handler is valid then call that 1553 * first. 1554 */ 1555 if (!fc_invoke_resp(ep, sp, fp)) 1556 fc_lport_recv(lport, fp); 1557 fc_exch_release(ep); /* release from lookup */ 1558 } else { 1559 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1560 reject); 1561 fc_frame_free(fp); 1562 } 1563 } 1564 1565 /** 1566 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1567 * end is the originator of the sequence that is a 1568 * response to our initial exchange 1569 * @mp: The EM that the exchange is on 1570 * @fp: The response frame 1571 */ 1572 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1573 { 1574 struct fc_frame_header *fh = fc_frame_header_get(fp); 1575 struct fc_seq *sp; 1576 struct fc_exch *ep; 1577 enum fc_sof sof; 1578 u32 f_ctl; 1579 int rc; 1580 1581 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1582 if (!ep) { 1583 atomic_inc(&mp->stats.xid_not_found); 1584 goto out; 1585 } 1586 if (ep->esb_stat & ESB_ST_COMPLETE) { 1587 atomic_inc(&mp->stats.xid_not_found); 1588 goto rel; 1589 } 1590 if (ep->rxid == FC_XID_UNKNOWN) 1591 ep->rxid = ntohs(fh->fh_rx_id); 1592 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1593 atomic_inc(&mp->stats.xid_not_found); 1594 goto rel; 1595 } 1596 if (ep->did != ntoh24(fh->fh_s_id) && 1597 ep->did != FC_FID_FLOGI) { 1598 atomic_inc(&mp->stats.xid_not_found); 1599 goto rel; 1600 } 1601 sof = fr_sof(fp); 1602 sp = &ep->seq; 1603 if (fc_sof_is_init(sof)) { 1604 sp->ssb_stat |= SSB_ST_RESP; 1605 sp->id = fh->fh_seq_id; 1606 } 1607 1608 f_ctl = ntoh24(fh->fh_f_ctl); 1609 fr_seq(fp) = sp; 1610 1611 spin_lock_bh(&ep->ex_lock); 1612 if (f_ctl & FC_FC_SEQ_INIT) 1613 ep->esb_stat |= ESB_ST_SEQ_INIT; 1614 spin_unlock_bh(&ep->ex_lock); 1615 1616 if (fc_sof_needs_ack(sof)) 1617 fc_seq_send_ack(sp, fp); 1618 1619 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1620 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1621 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1622 spin_lock_bh(&ep->ex_lock); 1623 rc = fc_exch_done_locked(ep); 1624 WARN_ON(fc_seq_exch(sp) != ep); 1625 spin_unlock_bh(&ep->ex_lock); 1626 if (!rc) 1627 fc_exch_delete(ep); 1628 } 1629 1630 /* 1631 * Call the receive function. 1632 * The sequence is held (has a refcnt) for us, 1633 * but not for the receive function. 1634 * 1635 * The receive function may allocate a new sequence 1636 * over the old one, so we shouldn't change the 1637 * sequence after this. 1638 * 1639 * The frame will be freed by the receive function. 1640 * If new exch resp handler is valid then call that 1641 * first. 1642 */ 1643 if (!fc_invoke_resp(ep, sp, fp)) 1644 fc_frame_free(fp); 1645 1646 fc_exch_release(ep); 1647 return; 1648 rel: 1649 fc_exch_release(ep); 1650 out: 1651 fc_frame_free(fp); 1652 } 1653 1654 /** 1655 * fc_exch_recv_resp() - Handler for a sequence where other end is 1656 * responding to our sequence 1657 * @mp: The EM that the exchange is on 1658 * @fp: The response frame 1659 */ 1660 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1661 { 1662 struct fc_seq *sp; 1663 1664 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1665 1666 if (!sp) 1667 atomic_inc(&mp->stats.xid_not_found); 1668 else 1669 atomic_inc(&mp->stats.non_bls_resp); 1670 1671 fc_frame_free(fp); 1672 } 1673 1674 /** 1675 * fc_exch_abts_resp() - Handler for a response to an ABT 1676 * @ep: The exchange that the frame is on 1677 * @fp: The response frame 1678 * 1679 * This response would be to an ABTS cancelling an exchange or sequence. 1680 * The response can be either BA_ACC or BA_RJT 1681 */ 1682 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1683 { 1684 struct fc_frame_header *fh; 1685 struct fc_ba_acc *ap; 1686 struct fc_seq *sp; 1687 u16 low; 1688 u16 high; 1689 int rc = 1, has_rec = 0; 1690 1691 fh = fc_frame_header_get(fp); 1692 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1693 fc_exch_rctl_name(fh->fh_r_ctl)); 1694 1695 if (cancel_delayed_work_sync(&ep->timeout_work)) { 1696 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n"); 1697 fc_exch_release(ep); /* release from pending timer hold */ 1698 } 1699 1700 spin_lock_bh(&ep->ex_lock); 1701 switch (fh->fh_r_ctl) { 1702 case FC_RCTL_BA_ACC: 1703 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1704 if (!ap) 1705 break; 1706 1707 /* 1708 * Decide whether to establish a Recovery Qualifier. 1709 * We do this if there is a non-empty SEQ_CNT range and 1710 * SEQ_ID is the same as the one we aborted. 1711 */ 1712 low = ntohs(ap->ba_low_seq_cnt); 1713 high = ntohs(ap->ba_high_seq_cnt); 1714 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1715 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1716 ap->ba_seq_id == ep->seq_id) && low != high) { 1717 ep->esb_stat |= ESB_ST_REC_QUAL; 1718 fc_exch_hold(ep); /* hold for recovery qualifier */ 1719 has_rec = 1; 1720 } 1721 break; 1722 case FC_RCTL_BA_RJT: 1723 break; 1724 default: 1725 break; 1726 } 1727 1728 /* do we need to do some other checks here. Can we reuse more of 1729 * fc_exch_recv_seq_resp 1730 */ 1731 sp = &ep->seq; 1732 /* 1733 * do we want to check END_SEQ as well as LAST_SEQ here? 1734 */ 1735 if (ep->fh_type != FC_TYPE_FCP && 1736 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1737 rc = fc_exch_done_locked(ep); 1738 spin_unlock_bh(&ep->ex_lock); 1739 1740 fc_exch_hold(ep); 1741 if (!rc) 1742 fc_exch_delete(ep); 1743 if (!fc_invoke_resp(ep, sp, fp)) 1744 fc_frame_free(fp); 1745 if (has_rec) 1746 fc_exch_timer_set(ep, ep->r_a_tov); 1747 fc_exch_release(ep); 1748 } 1749 1750 /** 1751 * fc_exch_recv_bls() - Handler for a BLS sequence 1752 * @mp: The EM that the exchange is on 1753 * @fp: The request frame 1754 * 1755 * The BLS frame is always a sequence initiated by the remote side. 1756 * We may be either the originator or recipient of the exchange. 1757 */ 1758 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1759 { 1760 struct fc_frame_header *fh; 1761 struct fc_exch *ep; 1762 u32 f_ctl; 1763 1764 fh = fc_frame_header_get(fp); 1765 f_ctl = ntoh24(fh->fh_f_ctl); 1766 fr_seq(fp) = NULL; 1767 1768 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1769 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1770 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1771 spin_lock_bh(&ep->ex_lock); 1772 ep->esb_stat |= ESB_ST_SEQ_INIT; 1773 spin_unlock_bh(&ep->ex_lock); 1774 } 1775 if (f_ctl & FC_FC_SEQ_CTX) { 1776 /* 1777 * A response to a sequence we initiated. 1778 * This should only be ACKs for class 2 or F. 1779 */ 1780 switch (fh->fh_r_ctl) { 1781 case FC_RCTL_ACK_1: 1782 case FC_RCTL_ACK_0: 1783 break; 1784 default: 1785 if (ep) 1786 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n", 1787 fh->fh_r_ctl, 1788 fc_exch_rctl_name(fh->fh_r_ctl)); 1789 break; 1790 } 1791 fc_frame_free(fp); 1792 } else { 1793 switch (fh->fh_r_ctl) { 1794 case FC_RCTL_BA_RJT: 1795 case FC_RCTL_BA_ACC: 1796 if (ep) 1797 fc_exch_abts_resp(ep, fp); 1798 else 1799 fc_frame_free(fp); 1800 break; 1801 case FC_RCTL_BA_ABTS: 1802 if (ep) 1803 fc_exch_recv_abts(ep, fp); 1804 else 1805 fc_frame_free(fp); 1806 break; 1807 default: /* ignore junk */ 1808 fc_frame_free(fp); 1809 break; 1810 } 1811 } 1812 if (ep) 1813 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1814 } 1815 1816 /** 1817 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1818 * @rx_fp: The received frame, not freed here. 1819 * 1820 * If this fails due to allocation or transmit congestion, assume the 1821 * originator will repeat the sequence. 1822 */ 1823 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1824 { 1825 struct fc_lport *lport; 1826 struct fc_els_ls_acc *acc; 1827 struct fc_frame *fp; 1828 struct fc_seq *sp; 1829 1830 lport = fr_dev(rx_fp); 1831 sp = fr_seq(rx_fp); 1832 fp = fc_frame_alloc(lport, sizeof(*acc)); 1833 if (!fp) { 1834 FC_EXCH_DBG(fc_seq_exch(sp), 1835 "exch: drop LS_ACC, out of memory\n"); 1836 return; 1837 } 1838 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1839 memset(acc, 0, sizeof(*acc)); 1840 acc->la_cmd = ELS_LS_ACC; 1841 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1842 lport->tt.frame_send(lport, fp); 1843 } 1844 1845 /** 1846 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1847 * @rx_fp: The received frame, not freed here. 1848 * @reason: The reason the sequence is being rejected 1849 * @explan: The explanation for the rejection 1850 * 1851 * If this fails due to allocation or transmit congestion, assume the 1852 * originator will repeat the sequence. 1853 */ 1854 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1855 enum fc_els_rjt_explan explan) 1856 { 1857 struct fc_lport *lport; 1858 struct fc_els_ls_rjt *rjt; 1859 struct fc_frame *fp; 1860 struct fc_seq *sp; 1861 1862 lport = fr_dev(rx_fp); 1863 sp = fr_seq(rx_fp); 1864 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1865 if (!fp) { 1866 FC_EXCH_DBG(fc_seq_exch(sp), 1867 "exch: drop LS_ACC, out of memory\n"); 1868 return; 1869 } 1870 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1871 memset(rjt, 0, sizeof(*rjt)); 1872 rjt->er_cmd = ELS_LS_RJT; 1873 rjt->er_reason = reason; 1874 rjt->er_explan = explan; 1875 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1876 lport->tt.frame_send(lport, fp); 1877 } 1878 1879 /** 1880 * fc_exch_reset() - Reset an exchange 1881 * @ep: The exchange to be reset 1882 * 1883 * Note: May sleep if invoked from outside a response handler. 1884 */ 1885 static void fc_exch_reset(struct fc_exch *ep) 1886 { 1887 struct fc_seq *sp; 1888 int rc = 1; 1889 1890 spin_lock_bh(&ep->ex_lock); 1891 ep->state |= FC_EX_RST_CLEANUP; 1892 fc_exch_timer_cancel(ep); 1893 if (ep->esb_stat & ESB_ST_REC_QUAL) 1894 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1895 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1896 sp = &ep->seq; 1897 rc = fc_exch_done_locked(ep); 1898 spin_unlock_bh(&ep->ex_lock); 1899 1900 fc_exch_hold(ep); 1901 1902 if (!rc) 1903 fc_exch_delete(ep); 1904 1905 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED)); 1906 fc_seq_set_resp(sp, NULL, ep->arg); 1907 fc_exch_release(ep); 1908 } 1909 1910 /** 1911 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1912 * @lport: The local port that the exchange pool is on 1913 * @pool: The exchange pool to be reset 1914 * @sid: The source ID 1915 * @did: The destination ID 1916 * 1917 * Resets a per cpu exches pool, releasing all of its sequences 1918 * and exchanges. If sid is non-zero then reset only exchanges 1919 * we sourced from the local port's FID. If did is non-zero then 1920 * only reset exchanges destined for the local port's FID. 1921 */ 1922 static void fc_exch_pool_reset(struct fc_lport *lport, 1923 struct fc_exch_pool *pool, 1924 u32 sid, u32 did) 1925 { 1926 struct fc_exch *ep; 1927 struct fc_exch *next; 1928 1929 spin_lock_bh(&pool->lock); 1930 restart: 1931 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1932 if ((lport == ep->lp) && 1933 (sid == 0 || sid == ep->sid) && 1934 (did == 0 || did == ep->did)) { 1935 fc_exch_hold(ep); 1936 spin_unlock_bh(&pool->lock); 1937 1938 fc_exch_reset(ep); 1939 1940 fc_exch_release(ep); 1941 spin_lock_bh(&pool->lock); 1942 1943 /* 1944 * must restart loop incase while lock 1945 * was down multiple eps were released. 1946 */ 1947 goto restart; 1948 } 1949 } 1950 pool->next_index = 0; 1951 pool->left = FC_XID_UNKNOWN; 1952 pool->right = FC_XID_UNKNOWN; 1953 spin_unlock_bh(&pool->lock); 1954 } 1955 1956 /** 1957 * fc_exch_mgr_reset() - Reset all EMs of a local port 1958 * @lport: The local port whose EMs are to be reset 1959 * @sid: The source ID 1960 * @did: The destination ID 1961 * 1962 * Reset all EMs associated with a given local port. Release all 1963 * sequences and exchanges. If sid is non-zero then reset only the 1964 * exchanges sent from the local port's FID. If did is non-zero then 1965 * reset only exchanges destined for the local port's FID. 1966 */ 1967 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1968 { 1969 struct fc_exch_mgr_anchor *ema; 1970 unsigned int cpu; 1971 1972 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1973 for_each_possible_cpu(cpu) 1974 fc_exch_pool_reset(lport, 1975 per_cpu_ptr(ema->mp->pool, cpu), 1976 sid, did); 1977 } 1978 } 1979 EXPORT_SYMBOL(fc_exch_mgr_reset); 1980 1981 /** 1982 * fc_exch_lookup() - find an exchange 1983 * @lport: The local port 1984 * @xid: The exchange ID 1985 * 1986 * Returns exchange pointer with hold for caller, or NULL if not found. 1987 */ 1988 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 1989 { 1990 struct fc_exch_mgr_anchor *ema; 1991 1992 list_for_each_entry(ema, &lport->ema_list, ema_list) 1993 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 1994 return fc_exch_find(ema->mp, xid); 1995 return NULL; 1996 } 1997 1998 /** 1999 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 2000 * @rfp: The REC frame, not freed here. 2001 * 2002 * Note that the requesting port may be different than the S_ID in the request. 2003 */ 2004 static void fc_exch_els_rec(struct fc_frame *rfp) 2005 { 2006 struct fc_lport *lport; 2007 struct fc_frame *fp; 2008 struct fc_exch *ep; 2009 struct fc_els_rec *rp; 2010 struct fc_els_rec_acc *acc; 2011 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 2012 enum fc_els_rjt_explan explan; 2013 u32 sid; 2014 u16 xid, rxid, oxid; 2015 2016 lport = fr_dev(rfp); 2017 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 2018 explan = ELS_EXPL_INV_LEN; 2019 if (!rp) 2020 goto reject; 2021 sid = ntoh24(rp->rec_s_id); 2022 rxid = ntohs(rp->rec_rx_id); 2023 oxid = ntohs(rp->rec_ox_id); 2024 2025 explan = ELS_EXPL_OXID_RXID; 2026 if (sid == fc_host_port_id(lport->host)) 2027 xid = oxid; 2028 else 2029 xid = rxid; 2030 if (xid == FC_XID_UNKNOWN) { 2031 FC_LPORT_DBG(lport, 2032 "REC request from %x: invalid rxid %x oxid %x\n", 2033 sid, rxid, oxid); 2034 goto reject; 2035 } 2036 ep = fc_exch_lookup(lport, xid); 2037 if (!ep) { 2038 FC_LPORT_DBG(lport, 2039 "REC request from %x: rxid %x oxid %x not found\n", 2040 sid, rxid, oxid); 2041 goto reject; 2042 } 2043 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n", 2044 sid, rxid, oxid); 2045 if (ep->oid != sid || oxid != ep->oxid) 2046 goto rel; 2047 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 2048 goto rel; 2049 fp = fc_frame_alloc(lport, sizeof(*acc)); 2050 if (!fp) { 2051 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n"); 2052 goto out; 2053 } 2054 2055 acc = fc_frame_payload_get(fp, sizeof(*acc)); 2056 memset(acc, 0, sizeof(*acc)); 2057 acc->reca_cmd = ELS_LS_ACC; 2058 acc->reca_ox_id = rp->rec_ox_id; 2059 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 2060 acc->reca_rx_id = htons(ep->rxid); 2061 if (ep->sid == ep->oid) 2062 hton24(acc->reca_rfid, ep->did); 2063 else 2064 hton24(acc->reca_rfid, ep->sid); 2065 acc->reca_fc4value = htonl(ep->seq.rec_data); 2066 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 2067 ESB_ST_SEQ_INIT | 2068 ESB_ST_COMPLETE)); 2069 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 2070 lport->tt.frame_send(lport, fp); 2071 out: 2072 fc_exch_release(ep); 2073 return; 2074 2075 rel: 2076 fc_exch_release(ep); 2077 reject: 2078 fc_seq_ls_rjt(rfp, reason, explan); 2079 } 2080 2081 /** 2082 * fc_exch_rrq_resp() - Handler for RRQ responses 2083 * @sp: The sequence that the RRQ is on 2084 * @fp: The RRQ frame 2085 * @arg: The exchange that the RRQ is on 2086 * 2087 * TODO: fix error handler. 2088 */ 2089 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 2090 { 2091 struct fc_exch *aborted_ep = arg; 2092 unsigned int op; 2093 2094 if (IS_ERR(fp)) { 2095 int err = PTR_ERR(fp); 2096 2097 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 2098 goto cleanup; 2099 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 2100 "frame error %d\n", err); 2101 return; 2102 } 2103 2104 op = fc_frame_payload_op(fp); 2105 fc_frame_free(fp); 2106 2107 switch (op) { 2108 case ELS_LS_RJT: 2109 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n"); 2110 fallthrough; 2111 case ELS_LS_ACC: 2112 goto cleanup; 2113 default: 2114 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n", 2115 op); 2116 return; 2117 } 2118 2119 cleanup: 2120 fc_exch_done(&aborted_ep->seq); 2121 /* drop hold for rec qual */ 2122 fc_exch_release(aborted_ep); 2123 } 2124 2125 2126 /** 2127 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 2128 * @lport: The local port to send the frame on 2129 * @fp: The frame to be sent 2130 * @resp: The response handler for this request 2131 * @destructor: The destructor for the exchange 2132 * @arg: The argument to be passed to the response handler 2133 * @timer_msec: The timeout period for the exchange 2134 * 2135 * The exchange response handler is set in this routine to resp() 2136 * function pointer. It can be called in two scenarios: if a timeout 2137 * occurs or if a response frame is received for the exchange. The 2138 * fc_frame pointer in response handler will also indicate timeout 2139 * as error using IS_ERR related macros. 2140 * 2141 * The exchange destructor handler is also set in this routine. 2142 * The destructor handler is invoked by EM layer when exchange 2143 * is about to free, this can be used by caller to free its 2144 * resources along with exchange free. 2145 * 2146 * The arg is passed back to resp and destructor handler. 2147 * 2148 * The timeout value (in msec) for an exchange is set if non zero 2149 * timer_msec argument is specified. The timer is canceled when 2150 * it fires or when the exchange is done. The exchange timeout handler 2151 * is registered by EM layer. 2152 * 2153 * The frame pointer with some of the header's fields must be 2154 * filled before calling this routine, those fields are: 2155 * 2156 * - routing control 2157 * - FC port did 2158 * - FC port sid 2159 * - FC header type 2160 * - frame control 2161 * - parameter or relative offset 2162 */ 2163 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 2164 struct fc_frame *fp, 2165 void (*resp)(struct fc_seq *, 2166 struct fc_frame *fp, 2167 void *arg), 2168 void (*destructor)(struct fc_seq *, void *), 2169 void *arg, u32 timer_msec) 2170 { 2171 struct fc_exch *ep; 2172 struct fc_seq *sp = NULL; 2173 struct fc_frame_header *fh; 2174 struct fc_fcp_pkt *fsp = NULL; 2175 int rc = 1; 2176 2177 ep = fc_exch_alloc(lport, fp); 2178 if (!ep) { 2179 fc_frame_free(fp); 2180 return NULL; 2181 } 2182 ep->esb_stat |= ESB_ST_SEQ_INIT; 2183 fh = fc_frame_header_get(fp); 2184 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 2185 ep->resp = resp; 2186 ep->destructor = destructor; 2187 ep->arg = arg; 2188 ep->r_a_tov = lport->r_a_tov; 2189 ep->lp = lport; 2190 sp = &ep->seq; 2191 2192 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2193 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2194 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2195 sp->cnt++; 2196 2197 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2198 fsp = fr_fsp(fp); 2199 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2200 } 2201 2202 if (unlikely(lport->tt.frame_send(lport, fp))) 2203 goto err; 2204 2205 if (timer_msec) 2206 fc_exch_timer_set_locked(ep, timer_msec); 2207 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2208 2209 if (ep->f_ctl & FC_FC_SEQ_INIT) 2210 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2211 spin_unlock_bh(&ep->ex_lock); 2212 return sp; 2213 err: 2214 if (fsp) 2215 fc_fcp_ddp_done(fsp); 2216 rc = fc_exch_done_locked(ep); 2217 spin_unlock_bh(&ep->ex_lock); 2218 if (!rc) 2219 fc_exch_delete(ep); 2220 return NULL; 2221 } 2222 EXPORT_SYMBOL(fc_exch_seq_send); 2223 2224 /** 2225 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2226 * @ep: The exchange to send the RRQ on 2227 * 2228 * This tells the remote port to stop blocking the use of 2229 * the exchange and the seq_cnt range. 2230 */ 2231 static void fc_exch_rrq(struct fc_exch *ep) 2232 { 2233 struct fc_lport *lport; 2234 struct fc_els_rrq *rrq; 2235 struct fc_frame *fp; 2236 u32 did; 2237 2238 lport = ep->lp; 2239 2240 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2241 if (!fp) 2242 goto retry; 2243 2244 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2245 memset(rrq, 0, sizeof(*rrq)); 2246 rrq->rrq_cmd = ELS_RRQ; 2247 hton24(rrq->rrq_s_id, ep->sid); 2248 rrq->rrq_ox_id = htons(ep->oxid); 2249 rrq->rrq_rx_id = htons(ep->rxid); 2250 2251 did = ep->did; 2252 if (ep->esb_stat & ESB_ST_RESP) 2253 did = ep->sid; 2254 2255 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2256 lport->port_id, FC_TYPE_ELS, 2257 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2258 2259 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2260 lport->e_d_tov)) 2261 return; 2262 2263 retry: 2264 FC_EXCH_DBG(ep, "exch: RRQ send failed\n"); 2265 spin_lock_bh(&ep->ex_lock); 2266 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2267 spin_unlock_bh(&ep->ex_lock); 2268 /* drop hold for rec qual */ 2269 fc_exch_release(ep); 2270 return; 2271 } 2272 ep->esb_stat |= ESB_ST_REC_QUAL; 2273 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2274 spin_unlock_bh(&ep->ex_lock); 2275 } 2276 2277 /** 2278 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2279 * @fp: The RRQ frame, not freed here. 2280 */ 2281 static void fc_exch_els_rrq(struct fc_frame *fp) 2282 { 2283 struct fc_lport *lport; 2284 struct fc_exch *ep = NULL; /* request or subject exchange */ 2285 struct fc_els_rrq *rp; 2286 u32 sid; 2287 u16 xid; 2288 enum fc_els_rjt_explan explan; 2289 2290 lport = fr_dev(fp); 2291 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2292 explan = ELS_EXPL_INV_LEN; 2293 if (!rp) 2294 goto reject; 2295 2296 /* 2297 * lookup subject exchange. 2298 */ 2299 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2300 xid = fc_host_port_id(lport->host) == sid ? 2301 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2302 ep = fc_exch_lookup(lport, xid); 2303 explan = ELS_EXPL_OXID_RXID; 2304 if (!ep) 2305 goto reject; 2306 spin_lock_bh(&ep->ex_lock); 2307 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n", 2308 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id)); 2309 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2310 goto unlock_reject; 2311 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2312 ep->rxid != FC_XID_UNKNOWN) 2313 goto unlock_reject; 2314 explan = ELS_EXPL_SID; 2315 if (ep->sid != sid) 2316 goto unlock_reject; 2317 2318 /* 2319 * Clear Recovery Qualifier state, and cancel timer if complete. 2320 */ 2321 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2322 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2323 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2324 } 2325 if (ep->esb_stat & ESB_ST_COMPLETE) 2326 fc_exch_timer_cancel(ep); 2327 2328 spin_unlock_bh(&ep->ex_lock); 2329 2330 /* 2331 * Send LS_ACC. 2332 */ 2333 fc_seq_ls_acc(fp); 2334 goto out; 2335 2336 unlock_reject: 2337 spin_unlock_bh(&ep->ex_lock); 2338 reject: 2339 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2340 out: 2341 if (ep) 2342 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2343 } 2344 2345 /** 2346 * fc_exch_update_stats() - update exches stats to lport 2347 * @lport: The local port to update exchange manager stats 2348 */ 2349 void fc_exch_update_stats(struct fc_lport *lport) 2350 { 2351 struct fc_host_statistics *st; 2352 struct fc_exch_mgr_anchor *ema; 2353 struct fc_exch_mgr *mp; 2354 2355 st = &lport->host_stats; 2356 2357 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2358 mp = ema->mp; 2359 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch); 2360 st->fc_no_free_exch_xid += 2361 atomic_read(&mp->stats.no_free_exch_xid); 2362 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found); 2363 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy); 2364 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found); 2365 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp); 2366 } 2367 } 2368 EXPORT_SYMBOL(fc_exch_update_stats); 2369 2370 /** 2371 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2372 * @lport: The local port to add the exchange manager to 2373 * @mp: The exchange manager to be added to the local port 2374 * @match: The match routine that indicates when this EM should be used 2375 */ 2376 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2377 struct fc_exch_mgr *mp, 2378 bool (*match)(struct fc_frame *)) 2379 { 2380 struct fc_exch_mgr_anchor *ema; 2381 2382 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2383 if (!ema) 2384 return ema; 2385 2386 ema->mp = mp; 2387 ema->match = match; 2388 /* add EM anchor to EM anchors list */ 2389 list_add_tail(&ema->ema_list, &lport->ema_list); 2390 kref_get(&mp->kref); 2391 return ema; 2392 } 2393 EXPORT_SYMBOL(fc_exch_mgr_add); 2394 2395 /** 2396 * fc_exch_mgr_destroy() - Destroy an exchange manager 2397 * @kref: The reference to the EM to be destroyed 2398 */ 2399 static void fc_exch_mgr_destroy(struct kref *kref) 2400 { 2401 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2402 2403 mempool_destroy(mp->ep_pool); 2404 free_percpu(mp->pool); 2405 kfree(mp); 2406 } 2407 2408 /** 2409 * fc_exch_mgr_del() - Delete an EM from a local port's list 2410 * @ema: The exchange manager anchor identifying the EM to be deleted 2411 */ 2412 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2413 { 2414 /* remove EM anchor from EM anchors list */ 2415 list_del(&ema->ema_list); 2416 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2417 kfree(ema); 2418 } 2419 EXPORT_SYMBOL(fc_exch_mgr_del); 2420 2421 /** 2422 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2423 * @src: Source lport to clone exchange managers from 2424 * @dst: New lport that takes references to all the exchange managers 2425 */ 2426 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2427 { 2428 struct fc_exch_mgr_anchor *ema, *tmp; 2429 2430 list_for_each_entry(ema, &src->ema_list, ema_list) { 2431 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2432 goto err; 2433 } 2434 return 0; 2435 err: 2436 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2437 fc_exch_mgr_del(ema); 2438 return -ENOMEM; 2439 } 2440 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2441 2442 /** 2443 * fc_exch_mgr_alloc() - Allocate an exchange manager 2444 * @lport: The local port that the new EM will be associated with 2445 * @class: The default FC class for new exchanges 2446 * @min_xid: The minimum XID for exchanges from the new EM 2447 * @max_xid: The maximum XID for exchanges from the new EM 2448 * @match: The match routine for the new EM 2449 */ 2450 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2451 enum fc_class class, 2452 u16 min_xid, u16 max_xid, 2453 bool (*match)(struct fc_frame *)) 2454 { 2455 struct fc_exch_mgr *mp; 2456 u16 pool_exch_range; 2457 size_t pool_size; 2458 unsigned int cpu; 2459 struct fc_exch_pool *pool; 2460 2461 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2462 (min_xid & fc_cpu_mask) != 0) { 2463 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2464 min_xid, max_xid); 2465 return NULL; 2466 } 2467 2468 /* 2469 * allocate memory for EM 2470 */ 2471 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2472 if (!mp) 2473 return NULL; 2474 2475 mp->class = class; 2476 mp->lport = lport; 2477 /* adjust em exch xid range for offload */ 2478 mp->min_xid = min_xid; 2479 2480 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */ 2481 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) / 2482 sizeof(struct fc_exch *); 2483 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) { 2484 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) + 2485 min_xid - 1; 2486 } else { 2487 mp->max_xid = max_xid; 2488 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / 2489 (fc_cpu_mask + 1); 2490 } 2491 2492 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2493 if (!mp->ep_pool) 2494 goto free_mp; 2495 2496 /* 2497 * Setup per cpu exch pool with entire exchange id range equally 2498 * divided across all cpus. The exch pointers array memory is 2499 * allocated for exch range per pool. 2500 */ 2501 mp->pool_max_index = pool_exch_range - 1; 2502 2503 /* 2504 * Allocate and initialize per cpu exch pool 2505 */ 2506 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2507 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2508 if (!mp->pool) 2509 goto free_mempool; 2510 for_each_possible_cpu(cpu) { 2511 pool = per_cpu_ptr(mp->pool, cpu); 2512 pool->next_index = 0; 2513 pool->left = FC_XID_UNKNOWN; 2514 pool->right = FC_XID_UNKNOWN; 2515 spin_lock_init(&pool->lock); 2516 INIT_LIST_HEAD(&pool->ex_list); 2517 } 2518 2519 kref_init(&mp->kref); 2520 if (!fc_exch_mgr_add(lport, mp, match)) { 2521 free_percpu(mp->pool); 2522 goto free_mempool; 2523 } 2524 2525 /* 2526 * Above kref_init() sets mp->kref to 1 and then 2527 * call to fc_exch_mgr_add incremented mp->kref again, 2528 * so adjust that extra increment. 2529 */ 2530 kref_put(&mp->kref, fc_exch_mgr_destroy); 2531 return mp; 2532 2533 free_mempool: 2534 mempool_destroy(mp->ep_pool); 2535 free_mp: 2536 kfree(mp); 2537 return NULL; 2538 } 2539 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2540 2541 /** 2542 * fc_exch_mgr_free() - Free all exchange managers on a local port 2543 * @lport: The local port whose EMs are to be freed 2544 */ 2545 void fc_exch_mgr_free(struct fc_lport *lport) 2546 { 2547 struct fc_exch_mgr_anchor *ema, *next; 2548 2549 flush_workqueue(fc_exch_workqueue); 2550 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2551 fc_exch_mgr_del(ema); 2552 } 2553 EXPORT_SYMBOL(fc_exch_mgr_free); 2554 2555 /** 2556 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2557 * upon 'xid'. 2558 * @f_ctl: f_ctl 2559 * @lport: The local port the frame was received on 2560 * @fh: The received frame header 2561 */ 2562 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2563 struct fc_lport *lport, 2564 struct fc_frame_header *fh) 2565 { 2566 struct fc_exch_mgr_anchor *ema; 2567 u16 xid; 2568 2569 if (f_ctl & FC_FC_EX_CTX) 2570 xid = ntohs(fh->fh_ox_id); 2571 else { 2572 xid = ntohs(fh->fh_rx_id); 2573 if (xid == FC_XID_UNKNOWN) 2574 return list_entry(lport->ema_list.prev, 2575 typeof(*ema), ema_list); 2576 } 2577 2578 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2579 if ((xid >= ema->mp->min_xid) && 2580 (xid <= ema->mp->max_xid)) 2581 return ema; 2582 } 2583 return NULL; 2584 } 2585 /** 2586 * fc_exch_recv() - Handler for received frames 2587 * @lport: The local port the frame was received on 2588 * @fp: The received frame 2589 */ 2590 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2591 { 2592 struct fc_frame_header *fh = fc_frame_header_get(fp); 2593 struct fc_exch_mgr_anchor *ema; 2594 u32 f_ctl; 2595 2596 /* lport lock ? */ 2597 if (!lport || lport->state == LPORT_ST_DISABLED) { 2598 FC_LIBFC_DBG("Receiving frames for an lport that " 2599 "has not been initialized correctly\n"); 2600 fc_frame_free(fp); 2601 return; 2602 } 2603 2604 f_ctl = ntoh24(fh->fh_f_ctl); 2605 ema = fc_find_ema(f_ctl, lport, fh); 2606 if (!ema) { 2607 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2608 "fc_ctl <0x%x>, xid <0x%x>\n", 2609 f_ctl, 2610 (f_ctl & FC_FC_EX_CTX) ? 2611 ntohs(fh->fh_ox_id) : 2612 ntohs(fh->fh_rx_id)); 2613 fc_frame_free(fp); 2614 return; 2615 } 2616 2617 /* 2618 * If frame is marked invalid, just drop it. 2619 */ 2620 switch (fr_eof(fp)) { 2621 case FC_EOF_T: 2622 if (f_ctl & FC_FC_END_SEQ) 2623 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2624 fallthrough; 2625 case FC_EOF_N: 2626 if (fh->fh_type == FC_TYPE_BLS) 2627 fc_exch_recv_bls(ema->mp, fp); 2628 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2629 FC_FC_EX_CTX) 2630 fc_exch_recv_seq_resp(ema->mp, fp); 2631 else if (f_ctl & FC_FC_SEQ_CTX) 2632 fc_exch_recv_resp(ema->mp, fp); 2633 else /* no EX_CTX and no SEQ_CTX */ 2634 fc_exch_recv_req(lport, ema->mp, fp); 2635 break; 2636 default: 2637 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2638 fr_eof(fp)); 2639 fc_frame_free(fp); 2640 } 2641 } 2642 EXPORT_SYMBOL(fc_exch_recv); 2643 2644 /** 2645 * fc_exch_init() - Initialize the exchange layer for a local port 2646 * @lport: The local port to initialize the exchange layer for 2647 */ 2648 int fc_exch_init(struct fc_lport *lport) 2649 { 2650 if (!lport->tt.exch_mgr_reset) 2651 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2652 2653 return 0; 2654 } 2655 EXPORT_SYMBOL(fc_exch_init); 2656 2657 /** 2658 * fc_setup_exch_mgr() - Setup an exchange manager 2659 */ 2660 int fc_setup_exch_mgr(void) 2661 { 2662 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2663 0, SLAB_HWCACHE_ALIGN, NULL); 2664 if (!fc_em_cachep) 2665 return -ENOMEM; 2666 2667 /* 2668 * Initialize fc_cpu_mask and fc_cpu_order. The 2669 * fc_cpu_mask is set for nr_cpu_ids rounded up 2670 * to order of 2's * power and order is stored 2671 * in fc_cpu_order as this is later required in 2672 * mapping between an exch id and exch array index 2673 * in per cpu exch pool. 2674 * 2675 * This round up is required to align fc_cpu_mask 2676 * to exchange id's lower bits such that all incoming 2677 * frames of an exchange gets delivered to the same 2678 * cpu on which exchange originated by simple bitwise 2679 * AND operation between fc_cpu_mask and exchange id. 2680 */ 2681 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids)); 2682 fc_cpu_mask = (1 << fc_cpu_order) - 1; 2683 2684 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2685 if (!fc_exch_workqueue) 2686 goto err; 2687 return 0; 2688 err: 2689 kmem_cache_destroy(fc_em_cachep); 2690 return -ENOMEM; 2691 } 2692 2693 /** 2694 * fc_destroy_exch_mgr() - Destroy an exchange manager 2695 */ 2696 void fc_destroy_exch_mgr(void) 2697 { 2698 destroy_workqueue(fc_exch_workqueue); 2699 kmem_cache_destroy(fc_em_cachep); 2700 } 2701