xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision 7b6d864b)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #include <scsi/fc/fc_fc2.h>
32 
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
35 
36 #include "fc_libfc.h"
37 
38 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
43 
44 /*
45  * Structure and function definitions for managing Fibre Channel Exchanges
46  * and Sequences.
47  *
48  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49  *
50  * fc_exch_mgr holds the exchange state for an N port
51  *
52  * fc_exch holds state for one exchange and links to its active sequence.
53  *
54  * fc_seq holds the state for an individual sequence.
55  */
56 
57 /**
58  * struct fc_exch_pool - Per cpu exchange pool
59  * @next_index:	  Next possible free exchange index
60  * @total_exches: Total allocated exchanges
61  * @lock:	  Exch pool lock
62  * @ex_list:	  List of exchanges
63  *
64  * This structure manages per cpu exchanges in array of exchange pointers.
65  * This array is allocated followed by struct fc_exch_pool memory for
66  * assigned range of exchanges to per cpu pool.
67  */
68 struct fc_exch_pool {
69 	spinlock_t	 lock;
70 	struct list_head ex_list;
71 	u16		 next_index;
72 	u16		 total_exches;
73 
74 	/* two cache of free slot in exch array */
75 	u16		 left;
76 	u16		 right;
77 } ____cacheline_aligned_in_smp;
78 
79 /**
80  * struct fc_exch_mgr - The Exchange Manager (EM).
81  * @class:	    Default class for new sequences
82  * @kref:	    Reference counter
83  * @min_xid:	    Minimum exchange ID
84  * @max_xid:	    Maximum exchange ID
85  * @ep_pool:	    Reserved exchange pointers
86  * @pool_max_index: Max exch array index in exch pool
87  * @pool:	    Per cpu exch pool
88  * @stats:	    Statistics structure
89  *
90  * This structure is the center for creating exchanges and sequences.
91  * It manages the allocation of exchange IDs.
92  */
93 struct fc_exch_mgr {
94 	struct fc_exch_pool __percpu *pool;
95 	mempool_t	*ep_pool;
96 	enum fc_class	class;
97 	struct kref	kref;
98 	u16		min_xid;
99 	u16		max_xid;
100 	u16		pool_max_index;
101 
102 	struct {
103 		atomic_t no_free_exch;
104 		atomic_t no_free_exch_xid;
105 		atomic_t xid_not_found;
106 		atomic_t xid_busy;
107 		atomic_t seq_not_found;
108 		atomic_t non_bls_resp;
109 	} stats;
110 };
111 
112 /**
113  * struct fc_exch_mgr_anchor - primary structure for list of EMs
114  * @ema_list: Exchange Manager Anchor list
115  * @mp:	      Exchange Manager associated with this anchor
116  * @match:    Routine to determine if this anchor's EM should be used
117  *
118  * When walking the list of anchors the match routine will be called
119  * for each anchor to determine if that EM should be used. The last
120  * anchor in the list will always match to handle any exchanges not
121  * handled by other EMs. The non-default EMs would be added to the
122  * anchor list by HW that provides offloads.
123  */
124 struct fc_exch_mgr_anchor {
125 	struct list_head ema_list;
126 	struct fc_exch_mgr *mp;
127 	bool (*match)(struct fc_frame *);
128 };
129 
130 static void fc_exch_rrq(struct fc_exch *);
131 static void fc_seq_ls_acc(struct fc_frame *);
132 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
133 			  enum fc_els_rjt_explan);
134 static void fc_exch_els_rec(struct fc_frame *);
135 static void fc_exch_els_rrq(struct fc_frame *);
136 
137 /*
138  * Internal implementation notes.
139  *
140  * The exchange manager is one by default in libfc but LLD may choose
141  * to have one per CPU. The sequence manager is one per exchange manager
142  * and currently never separated.
143  *
144  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
145  * assigned by the Sequence Initiator that shall be unique for a specific
146  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
147  * qualified by exchange ID, which one might think it would be.
148  * In practice this limits the number of open sequences and exchanges to 256
149  * per session.	 For most targets we could treat this limit as per exchange.
150  *
151  * The exchange and its sequence are freed when the last sequence is received.
152  * It's possible for the remote port to leave an exchange open without
153  * sending any sequences.
154  *
155  * Notes on reference counts:
156  *
157  * Exchanges are reference counted and exchange gets freed when the reference
158  * count becomes zero.
159  *
160  * Timeouts:
161  * Sequences are timed out for E_D_TOV and R_A_TOV.
162  *
163  * Sequence event handling:
164  *
165  * The following events may occur on initiator sequences:
166  *
167  *	Send.
168  *	    For now, the whole thing is sent.
169  *	Receive ACK
170  *	    This applies only to class F.
171  *	    The sequence is marked complete.
172  *	ULP completion.
173  *	    The upper layer calls fc_exch_done() when done
174  *	    with exchange and sequence tuple.
175  *	RX-inferred completion.
176  *	    When we receive the next sequence on the same exchange, we can
177  *	    retire the previous sequence ID.  (XXX not implemented).
178  *	Timeout.
179  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
180  *	    E_D_TOV causes abort and calls upper layer response handler
181  *	    with FC_EX_TIMEOUT error.
182  *	Receive RJT
183  *	    XXX defer.
184  *	Send ABTS
185  *	    On timeout.
186  *
187  * The following events may occur on recipient sequences:
188  *
189  *	Receive
190  *	    Allocate sequence for first frame received.
191  *	    Hold during receive handler.
192  *	    Release when final frame received.
193  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
194  *	Receive ABTS
195  *	    Deallocate sequence
196  *	Send RJT
197  *	    Deallocate
198  *
199  * For now, we neglect conditions where only part of a sequence was
200  * received or transmitted, or where out-of-order receipt is detected.
201  */
202 
203 /*
204  * Locking notes:
205  *
206  * The EM code run in a per-CPU worker thread.
207  *
208  * To protect against concurrency between a worker thread code and timers,
209  * sequence allocation and deallocation must be locked.
210  *  - exchange refcnt can be done atomicly without locks.
211  *  - sequence allocation must be locked by exch lock.
212  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
213  *    EM pool lock must be taken before the ex_lock.
214  */
215 
216 /*
217  * opcode names for debugging.
218  */
219 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
220 
221 /**
222  * fc_exch_name_lookup() - Lookup name by opcode
223  * @op:	       Opcode to be looked up
224  * @table:     Opcode/name table
225  * @max_index: Index not to be exceeded
226  *
227  * This routine is used to determine a human-readable string identifying
228  * a R_CTL opcode.
229  */
230 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
231 					      unsigned int max_index)
232 {
233 	const char *name = NULL;
234 
235 	if (op < max_index)
236 		name = table[op];
237 	if (!name)
238 		name = "unknown";
239 	return name;
240 }
241 
242 /**
243  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
244  * @op: The opcode to be looked up
245  */
246 static const char *fc_exch_rctl_name(unsigned int op)
247 {
248 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
249 				   ARRAY_SIZE(fc_exch_rctl_names));
250 }
251 
252 /**
253  * fc_exch_hold() - Increment an exchange's reference count
254  * @ep: Echange to be held
255  */
256 static inline void fc_exch_hold(struct fc_exch *ep)
257 {
258 	atomic_inc(&ep->ex_refcnt);
259 }
260 
261 /**
262  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
263  *			 and determine SOF and EOF.
264  * @ep:	   The exchange to that will use the header
265  * @fp:	   The frame whose header is to be modified
266  * @f_ctl: F_CTL bits that will be used for the frame header
267  *
268  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
269  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
270  */
271 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
272 			      u32 f_ctl)
273 {
274 	struct fc_frame_header *fh = fc_frame_header_get(fp);
275 	u16 fill;
276 
277 	fr_sof(fp) = ep->class;
278 	if (ep->seq.cnt)
279 		fr_sof(fp) = fc_sof_normal(ep->class);
280 
281 	if (f_ctl & FC_FC_END_SEQ) {
282 		fr_eof(fp) = FC_EOF_T;
283 		if (fc_sof_needs_ack(ep->class))
284 			fr_eof(fp) = FC_EOF_N;
285 		/*
286 		 * From F_CTL.
287 		 * The number of fill bytes to make the length a 4-byte
288 		 * multiple is the low order 2-bits of the f_ctl.
289 		 * The fill itself will have been cleared by the frame
290 		 * allocation.
291 		 * After this, the length will be even, as expected by
292 		 * the transport.
293 		 */
294 		fill = fr_len(fp) & 3;
295 		if (fill) {
296 			fill = 4 - fill;
297 			/* TODO, this may be a problem with fragmented skb */
298 			skb_put(fp_skb(fp), fill);
299 			hton24(fh->fh_f_ctl, f_ctl | fill);
300 		}
301 	} else {
302 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
303 		fr_eof(fp) = FC_EOF_N;
304 	}
305 
306 	/*
307 	 * Initialize remainig fh fields
308 	 * from fc_fill_fc_hdr
309 	 */
310 	fh->fh_ox_id = htons(ep->oxid);
311 	fh->fh_rx_id = htons(ep->rxid);
312 	fh->fh_seq_id = ep->seq.id;
313 	fh->fh_seq_cnt = htons(ep->seq.cnt);
314 }
315 
316 /**
317  * fc_exch_release() - Decrement an exchange's reference count
318  * @ep: Exchange to be released
319  *
320  * If the reference count reaches zero and the exchange is complete,
321  * it is freed.
322  */
323 static void fc_exch_release(struct fc_exch *ep)
324 {
325 	struct fc_exch_mgr *mp;
326 
327 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
328 		mp = ep->em;
329 		if (ep->destructor)
330 			ep->destructor(&ep->seq, ep->arg);
331 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
332 		mempool_free(ep, mp->ep_pool);
333 	}
334 }
335 
336 /**
337  * fc_exch_timer_cancel() - cancel exch timer
338  * @ep:		The exchange whose timer to be canceled
339  */
340 static inline  void fc_exch_timer_cancel(struct fc_exch *ep)
341 {
342 	if (cancel_delayed_work(&ep->timeout_work)) {
343 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
344 		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
345 	}
346 }
347 
348 /**
349  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
350  *				the exchange lock held
351  * @ep:		The exchange whose timer will start
352  * @timer_msec: The timeout period
353  *
354  * Used for upper level protocols to time out the exchange.
355  * The timer is cancelled when it fires or when the exchange completes.
356  */
357 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
358 					    unsigned int timer_msec)
359 {
360 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
361 		return;
362 
363 	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
364 
365 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 			       msecs_to_jiffies(timer_msec)))
367 		fc_exch_hold(ep);		/* hold for timer */
368 }
369 
370 /**
371  * fc_exch_timer_set() - Lock the exchange and set the timer
372  * @ep:		The exchange whose timer will start
373  * @timer_msec: The timeout period
374  */
375 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
376 {
377 	spin_lock_bh(&ep->ex_lock);
378 	fc_exch_timer_set_locked(ep, timer_msec);
379 	spin_unlock_bh(&ep->ex_lock);
380 }
381 
382 /**
383  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
384  * @ep: The exchange that is complete
385  */
386 static int fc_exch_done_locked(struct fc_exch *ep)
387 {
388 	int rc = 1;
389 
390 	/*
391 	 * We must check for completion in case there are two threads
392 	 * tyring to complete this. But the rrq code will reuse the
393 	 * ep, and in that case we only clear the resp and set it as
394 	 * complete, so it can be reused by the timer to send the rrq.
395 	 */
396 	ep->resp = NULL;
397 	if (ep->state & FC_EX_DONE)
398 		return rc;
399 	ep->esb_stat |= ESB_ST_COMPLETE;
400 
401 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 		ep->state |= FC_EX_DONE;
403 		fc_exch_timer_cancel(ep);
404 		rc = 0;
405 	}
406 	return rc;
407 }
408 
409 /**
410  * fc_exch_ptr_get() - Return an exchange from an exchange pool
411  * @pool:  Exchange Pool to get an exchange from
412  * @index: Index of the exchange within the pool
413  *
414  * Use the index to get an exchange from within an exchange pool. exches
415  * will point to an array of exchange pointers. The index will select
416  * the exchange within the array.
417  */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 					      u16 index)
420 {
421 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 	return exches[index];
423 }
424 
425 /**
426  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427  * @pool:  The pool to assign the exchange to
428  * @index: The index in the pool where the exchange will be assigned
429  * @ep:	   The exchange to assign to the pool
430  */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 				   struct fc_exch *ep)
433 {
434 	((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436 
437 /**
438  * fc_exch_delete() - Delete an exchange
439  * @ep: The exchange to be deleted
440  */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 	struct fc_exch_pool *pool;
444 	u16 index;
445 
446 	pool = ep->pool;
447 	spin_lock_bh(&pool->lock);
448 	WARN_ON(pool->total_exches <= 0);
449 	pool->total_exches--;
450 
451 	/* update cache of free slot */
452 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 	if (pool->left == FC_XID_UNKNOWN)
454 		pool->left = index;
455 	else if (pool->right == FC_XID_UNKNOWN)
456 		pool->right = index;
457 	else
458 		pool->next_index = index;
459 
460 	fc_exch_ptr_set(pool, index, NULL);
461 	list_del(&ep->ex_list);
462 	spin_unlock_bh(&pool->lock);
463 	fc_exch_release(ep);	/* drop hold for exch in mp */
464 }
465 
466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
467 		       struct fc_frame *fp)
468 {
469 	struct fc_exch *ep;
470 	struct fc_frame_header *fh = fc_frame_header_get(fp);
471 	int error;
472 	u32 f_ctl;
473 	u8 fh_type = fh->fh_type;
474 
475 	ep = fc_seq_exch(sp);
476 	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
477 
478 	f_ctl = ntoh24(fh->fh_f_ctl);
479 	fc_exch_setup_hdr(ep, fp, f_ctl);
480 	fr_encaps(fp) = ep->encaps;
481 
482 	/*
483 	 * update sequence count if this frame is carrying
484 	 * multiple FC frames when sequence offload is enabled
485 	 * by LLD.
486 	 */
487 	if (fr_max_payload(fp))
488 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 					fr_max_payload(fp));
490 	else
491 		sp->cnt++;
492 
493 	/*
494 	 * Send the frame.
495 	 */
496 	error = lport->tt.frame_send(lport, fp);
497 
498 	if (fh_type == FC_TYPE_BLS)
499 		goto out;
500 
501 	/*
502 	 * Update the exchange and sequence flags,
503 	 * assuming all frames for the sequence have been sent.
504 	 * We can only be called to send once for each sequence.
505 	 */
506 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
507 	if (f_ctl & FC_FC_SEQ_INIT)
508 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
509 out:
510 	return error;
511 }
512 
513 /**
514  * fc_seq_send() - Send a frame using existing sequence/exchange pair
515  * @lport: The local port that the exchange will be sent on
516  * @sp:	   The sequence to be sent
517  * @fp:	   The frame to be sent on the exchange
518  */
519 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
520 		       struct fc_frame *fp)
521 {
522 	struct fc_exch *ep;
523 	int error;
524 	ep = fc_seq_exch(sp);
525 	spin_lock_bh(&ep->ex_lock);
526 	error = fc_seq_send_locked(lport, sp, fp);
527 	spin_unlock_bh(&ep->ex_lock);
528 	return error;
529 }
530 
531 /**
532  * fc_seq_alloc() - Allocate a sequence for a given exchange
533  * @ep:	    The exchange to allocate a new sequence for
534  * @seq_id: The sequence ID to be used
535  *
536  * We don't support multiple originated sequences on the same exchange.
537  * By implication, any previously originated sequence on this exchange
538  * is complete, and we reallocate the same sequence.
539  */
540 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
541 {
542 	struct fc_seq *sp;
543 
544 	sp = &ep->seq;
545 	sp->ssb_stat = 0;
546 	sp->cnt = 0;
547 	sp->id = seq_id;
548 	return sp;
549 }
550 
551 /**
552  * fc_seq_start_next_locked() - Allocate a new sequence on the same
553  *				exchange as the supplied sequence
554  * @sp: The sequence/exchange to get a new sequence for
555  */
556 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
557 {
558 	struct fc_exch *ep = fc_seq_exch(sp);
559 
560 	sp = fc_seq_alloc(ep, ep->seq_id++);
561 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
562 		    ep->f_ctl, sp->id);
563 	return sp;
564 }
565 
566 /**
567  * fc_seq_start_next() - Lock the exchange and get a new sequence
568  *			 for a given sequence/exchange pair
569  * @sp: The sequence/exchange to get a new exchange for
570  */
571 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
572 {
573 	struct fc_exch *ep = fc_seq_exch(sp);
574 
575 	spin_lock_bh(&ep->ex_lock);
576 	sp = fc_seq_start_next_locked(sp);
577 	spin_unlock_bh(&ep->ex_lock);
578 
579 	return sp;
580 }
581 
582 /*
583  * Set the response handler for the exchange associated with a sequence.
584  */
585 static void fc_seq_set_resp(struct fc_seq *sp,
586 			    void (*resp)(struct fc_seq *, struct fc_frame *,
587 					 void *),
588 			    void *arg)
589 {
590 	struct fc_exch *ep = fc_seq_exch(sp);
591 
592 	spin_lock_bh(&ep->ex_lock);
593 	ep->resp = resp;
594 	ep->arg = arg;
595 	spin_unlock_bh(&ep->ex_lock);
596 }
597 
598 /**
599  * fc_exch_abort_locked() - Abort an exchange
600  * @ep:	The exchange to be aborted
601  * @timer_msec: The period of time to wait before aborting
602  *
603  * Locking notes:  Called with exch lock held
604  *
605  * Return value: 0 on success else error code
606  */
607 static int fc_exch_abort_locked(struct fc_exch *ep,
608 				unsigned int timer_msec)
609 {
610 	struct fc_seq *sp;
611 	struct fc_frame *fp;
612 	int error;
613 
614 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
615 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
616 		return -ENXIO;
617 
618 	/*
619 	 * Send the abort on a new sequence if possible.
620 	 */
621 	sp = fc_seq_start_next_locked(&ep->seq);
622 	if (!sp)
623 		return -ENOMEM;
624 
625 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
626 	if (timer_msec)
627 		fc_exch_timer_set_locked(ep, timer_msec);
628 
629 	/*
630 	 * If not logged into the fabric, don't send ABTS but leave
631 	 * sequence active until next timeout.
632 	 */
633 	if (!ep->sid)
634 		return 0;
635 
636 	/*
637 	 * Send an abort for the sequence that timed out.
638 	 */
639 	fp = fc_frame_alloc(ep->lp, 0);
640 	if (fp) {
641 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
642 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
643 		error = fc_seq_send_locked(ep->lp, sp, fp);
644 	} else
645 		error = -ENOBUFS;
646 	return error;
647 }
648 
649 /**
650  * fc_seq_exch_abort() - Abort an exchange and sequence
651  * @req_sp:	The sequence to be aborted
652  * @timer_msec: The period of time to wait before aborting
653  *
654  * Generally called because of a timeout or an abort from the upper layer.
655  *
656  * Return value: 0 on success else error code
657  */
658 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
659 			     unsigned int timer_msec)
660 {
661 	struct fc_exch *ep;
662 	int error;
663 
664 	ep = fc_seq_exch(req_sp);
665 	spin_lock_bh(&ep->ex_lock);
666 	error = fc_exch_abort_locked(ep, timer_msec);
667 	spin_unlock_bh(&ep->ex_lock);
668 	return error;
669 }
670 
671 /**
672  * fc_exch_timeout() - Handle exchange timer expiration
673  * @work: The work_struct identifying the exchange that timed out
674  */
675 static void fc_exch_timeout(struct work_struct *work)
676 {
677 	struct fc_exch *ep = container_of(work, struct fc_exch,
678 					  timeout_work.work);
679 	struct fc_seq *sp = &ep->seq;
680 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
681 	void *arg;
682 	u32 e_stat;
683 	int rc = 1;
684 
685 	FC_EXCH_DBG(ep, "Exchange timed out\n");
686 
687 	spin_lock_bh(&ep->ex_lock);
688 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
689 		goto unlock;
690 
691 	e_stat = ep->esb_stat;
692 	if (e_stat & ESB_ST_COMPLETE) {
693 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
694 		spin_unlock_bh(&ep->ex_lock);
695 		if (e_stat & ESB_ST_REC_QUAL)
696 			fc_exch_rrq(ep);
697 		goto done;
698 	} else {
699 		resp = ep->resp;
700 		arg = ep->arg;
701 		ep->resp = NULL;
702 		if (e_stat & ESB_ST_ABNORMAL)
703 			rc = fc_exch_done_locked(ep);
704 		spin_unlock_bh(&ep->ex_lock);
705 		if (!rc)
706 			fc_exch_delete(ep);
707 		if (resp)
708 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
709 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
710 		goto done;
711 	}
712 unlock:
713 	spin_unlock_bh(&ep->ex_lock);
714 done:
715 	/*
716 	 * This release matches the hold taken when the timer was set.
717 	 */
718 	fc_exch_release(ep);
719 }
720 
721 /**
722  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
723  * @lport: The local port that the exchange is for
724  * @mp:	   The exchange manager that will allocate the exchange
725  *
726  * Returns pointer to allocated fc_exch with exch lock held.
727  */
728 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
729 					struct fc_exch_mgr *mp)
730 {
731 	struct fc_exch *ep;
732 	unsigned int cpu;
733 	u16 index;
734 	struct fc_exch_pool *pool;
735 
736 	/* allocate memory for exchange */
737 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
738 	if (!ep) {
739 		atomic_inc(&mp->stats.no_free_exch);
740 		goto out;
741 	}
742 	memset(ep, 0, sizeof(*ep));
743 
744 	cpu = get_cpu();
745 	pool = per_cpu_ptr(mp->pool, cpu);
746 	spin_lock_bh(&pool->lock);
747 	put_cpu();
748 
749 	/* peek cache of free slot */
750 	if (pool->left != FC_XID_UNKNOWN) {
751 		index = pool->left;
752 		pool->left = FC_XID_UNKNOWN;
753 		goto hit;
754 	}
755 	if (pool->right != FC_XID_UNKNOWN) {
756 		index = pool->right;
757 		pool->right = FC_XID_UNKNOWN;
758 		goto hit;
759 	}
760 
761 	index = pool->next_index;
762 	/* allocate new exch from pool */
763 	while (fc_exch_ptr_get(pool, index)) {
764 		index = index == mp->pool_max_index ? 0 : index + 1;
765 		if (index == pool->next_index)
766 			goto err;
767 	}
768 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
769 hit:
770 	fc_exch_hold(ep);	/* hold for exch in mp */
771 	spin_lock_init(&ep->ex_lock);
772 	/*
773 	 * Hold exch lock for caller to prevent fc_exch_reset()
774 	 * from releasing exch	while fc_exch_alloc() caller is
775 	 * still working on exch.
776 	 */
777 	spin_lock_bh(&ep->ex_lock);
778 
779 	fc_exch_ptr_set(pool, index, ep);
780 	list_add_tail(&ep->ex_list, &pool->ex_list);
781 	fc_seq_alloc(ep, ep->seq_id++);
782 	pool->total_exches++;
783 	spin_unlock_bh(&pool->lock);
784 
785 	/*
786 	 *  update exchange
787 	 */
788 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
789 	ep->em = mp;
790 	ep->pool = pool;
791 	ep->lp = lport;
792 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
793 	ep->rxid = FC_XID_UNKNOWN;
794 	ep->class = mp->class;
795 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
796 out:
797 	return ep;
798 err:
799 	spin_unlock_bh(&pool->lock);
800 	atomic_inc(&mp->stats.no_free_exch_xid);
801 	mempool_free(ep, mp->ep_pool);
802 	return NULL;
803 }
804 
805 /**
806  * fc_exch_alloc() - Allocate an exchange from an EM on a
807  *		     local port's list of EMs.
808  * @lport: The local port that will own the exchange
809  * @fp:	   The FC frame that the exchange will be for
810  *
811  * This function walks the list of exchange manager(EM)
812  * anchors to select an EM for a new exchange allocation. The
813  * EM is selected when a NULL match function pointer is encountered
814  * or when a call to a match function returns true.
815  */
816 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
817 					    struct fc_frame *fp)
818 {
819 	struct fc_exch_mgr_anchor *ema;
820 
821 	list_for_each_entry(ema, &lport->ema_list, ema_list)
822 		if (!ema->match || ema->match(fp))
823 			return fc_exch_em_alloc(lport, ema->mp);
824 	return NULL;
825 }
826 
827 /**
828  * fc_exch_find() - Lookup and hold an exchange
829  * @mp:	 The exchange manager to lookup the exchange from
830  * @xid: The XID of the exchange to look up
831  */
832 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
833 {
834 	struct fc_exch_pool *pool;
835 	struct fc_exch *ep = NULL;
836 
837 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
838 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
839 		spin_lock_bh(&pool->lock);
840 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
841 		if (ep && ep->xid == xid)
842 			fc_exch_hold(ep);
843 		spin_unlock_bh(&pool->lock);
844 	}
845 	return ep;
846 }
847 
848 
849 /**
850  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
851  *		    the memory allocated for the related objects may be freed.
852  * @sp: The sequence that has completed
853  */
854 static void fc_exch_done(struct fc_seq *sp)
855 {
856 	struct fc_exch *ep = fc_seq_exch(sp);
857 	int rc;
858 
859 	spin_lock_bh(&ep->ex_lock);
860 	rc = fc_exch_done_locked(ep);
861 	spin_unlock_bh(&ep->ex_lock);
862 	if (!rc)
863 		fc_exch_delete(ep);
864 }
865 
866 /**
867  * fc_exch_resp() - Allocate a new exchange for a response frame
868  * @lport: The local port that the exchange was for
869  * @mp:	   The exchange manager to allocate the exchange from
870  * @fp:	   The response frame
871  *
872  * Sets the responder ID in the frame header.
873  */
874 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
875 				    struct fc_exch_mgr *mp,
876 				    struct fc_frame *fp)
877 {
878 	struct fc_exch *ep;
879 	struct fc_frame_header *fh;
880 
881 	ep = fc_exch_alloc(lport, fp);
882 	if (ep) {
883 		ep->class = fc_frame_class(fp);
884 
885 		/*
886 		 * Set EX_CTX indicating we're responding on this exchange.
887 		 */
888 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
889 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
890 		fh = fc_frame_header_get(fp);
891 		ep->sid = ntoh24(fh->fh_d_id);
892 		ep->did = ntoh24(fh->fh_s_id);
893 		ep->oid = ep->did;
894 
895 		/*
896 		 * Allocated exchange has placed the XID in the
897 		 * originator field. Move it to the responder field,
898 		 * and set the originator XID from the frame.
899 		 */
900 		ep->rxid = ep->xid;
901 		ep->oxid = ntohs(fh->fh_ox_id);
902 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
903 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
904 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
905 
906 		fc_exch_hold(ep);	/* hold for caller */
907 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
908 	}
909 	return ep;
910 }
911 
912 /**
913  * fc_seq_lookup_recip() - Find a sequence where the other end
914  *			   originated the sequence
915  * @lport: The local port that the frame was sent to
916  * @mp:	   The Exchange Manager to lookup the exchange from
917  * @fp:	   The frame associated with the sequence we're looking for
918  *
919  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
920  * on the ep that should be released by the caller.
921  */
922 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
923 						 struct fc_exch_mgr *mp,
924 						 struct fc_frame *fp)
925 {
926 	struct fc_frame_header *fh = fc_frame_header_get(fp);
927 	struct fc_exch *ep = NULL;
928 	struct fc_seq *sp = NULL;
929 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
930 	u32 f_ctl;
931 	u16 xid;
932 
933 	f_ctl = ntoh24(fh->fh_f_ctl);
934 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
935 
936 	/*
937 	 * Lookup or create the exchange if we will be creating the sequence.
938 	 */
939 	if (f_ctl & FC_FC_EX_CTX) {
940 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
941 		ep = fc_exch_find(mp, xid);
942 		if (!ep) {
943 			atomic_inc(&mp->stats.xid_not_found);
944 			reject = FC_RJT_OX_ID;
945 			goto out;
946 		}
947 		if (ep->rxid == FC_XID_UNKNOWN)
948 			ep->rxid = ntohs(fh->fh_rx_id);
949 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
950 			reject = FC_RJT_OX_ID;
951 			goto rel;
952 		}
953 	} else {
954 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
955 
956 		/*
957 		 * Special case for MDS issuing an ELS TEST with a
958 		 * bad rxid of 0.
959 		 * XXX take this out once we do the proper reject.
960 		 */
961 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
962 		    fc_frame_payload_op(fp) == ELS_TEST) {
963 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
964 			xid = FC_XID_UNKNOWN;
965 		}
966 
967 		/*
968 		 * new sequence - find the exchange
969 		 */
970 		ep = fc_exch_find(mp, xid);
971 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
972 			if (ep) {
973 				atomic_inc(&mp->stats.xid_busy);
974 				reject = FC_RJT_RX_ID;
975 				goto rel;
976 			}
977 			ep = fc_exch_resp(lport, mp, fp);
978 			if (!ep) {
979 				reject = FC_RJT_EXCH_EST;	/* XXX */
980 				goto out;
981 			}
982 			xid = ep->xid;	/* get our XID */
983 		} else if (!ep) {
984 			atomic_inc(&mp->stats.xid_not_found);
985 			reject = FC_RJT_RX_ID;	/* XID not found */
986 			goto out;
987 		}
988 	}
989 
990 	/*
991 	 * At this point, we have the exchange held.
992 	 * Find or create the sequence.
993 	 */
994 	if (fc_sof_is_init(fr_sof(fp))) {
995 		sp = &ep->seq;
996 		sp->ssb_stat |= SSB_ST_RESP;
997 		sp->id = fh->fh_seq_id;
998 	} else {
999 		sp = &ep->seq;
1000 		if (sp->id != fh->fh_seq_id) {
1001 			atomic_inc(&mp->stats.seq_not_found);
1002 			if (f_ctl & FC_FC_END_SEQ) {
1003 				/*
1004 				 * Update sequence_id based on incoming last
1005 				 * frame of sequence exchange. This is needed
1006 				 * for FC target where DDP has been used
1007 				 * on target where, stack is indicated only
1008 				 * about last frame's (payload _header) header.
1009 				 * Whereas "seq_id" which is part of
1010 				 * frame_header is allocated by initiator
1011 				 * which is totally different from "seq_id"
1012 				 * allocated when XFER_RDY was sent by target.
1013 				 * To avoid false -ve which results into not
1014 				 * sending RSP, hence write request on other
1015 				 * end never finishes.
1016 				 */
1017 				spin_lock_bh(&ep->ex_lock);
1018 				sp->ssb_stat |= SSB_ST_RESP;
1019 				sp->id = fh->fh_seq_id;
1020 				spin_unlock_bh(&ep->ex_lock);
1021 			} else {
1022 				/* sequence/exch should exist */
1023 				reject = FC_RJT_SEQ_ID;
1024 				goto rel;
1025 			}
1026 		}
1027 	}
1028 	WARN_ON(ep != fc_seq_exch(sp));
1029 
1030 	if (f_ctl & FC_FC_SEQ_INIT)
1031 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1032 
1033 	fr_seq(fp) = sp;
1034 out:
1035 	return reject;
1036 rel:
1037 	fc_exch_done(&ep->seq);
1038 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1039 	return reject;
1040 }
1041 
1042 /**
1043  * fc_seq_lookup_orig() - Find a sequence where this end
1044  *			  originated the sequence
1045  * @mp:	   The Exchange Manager to lookup the exchange from
1046  * @fp:	   The frame associated with the sequence we're looking for
1047  *
1048  * Does not hold the sequence for the caller.
1049  */
1050 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1051 					 struct fc_frame *fp)
1052 {
1053 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1054 	struct fc_exch *ep;
1055 	struct fc_seq *sp = NULL;
1056 	u32 f_ctl;
1057 	u16 xid;
1058 
1059 	f_ctl = ntoh24(fh->fh_f_ctl);
1060 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1061 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1062 	ep = fc_exch_find(mp, xid);
1063 	if (!ep)
1064 		return NULL;
1065 	if (ep->seq.id == fh->fh_seq_id) {
1066 		/*
1067 		 * Save the RX_ID if we didn't previously know it.
1068 		 */
1069 		sp = &ep->seq;
1070 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1071 		    ep->rxid == FC_XID_UNKNOWN) {
1072 			ep->rxid = ntohs(fh->fh_rx_id);
1073 		}
1074 	}
1075 	fc_exch_release(ep);
1076 	return sp;
1077 }
1078 
1079 /**
1080  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1081  * @ep:	     The exchange to set the addresses for
1082  * @orig_id: The originator's ID
1083  * @resp_id: The responder's ID
1084  *
1085  * Note this must be done before the first sequence of the exchange is sent.
1086  */
1087 static void fc_exch_set_addr(struct fc_exch *ep,
1088 			     u32 orig_id, u32 resp_id)
1089 {
1090 	ep->oid = orig_id;
1091 	if (ep->esb_stat & ESB_ST_RESP) {
1092 		ep->sid = resp_id;
1093 		ep->did = orig_id;
1094 	} else {
1095 		ep->sid = orig_id;
1096 		ep->did = resp_id;
1097 	}
1098 }
1099 
1100 /**
1101  * fc_seq_els_rsp_send() - Send an ELS response using information from
1102  *			   the existing sequence/exchange.
1103  * @fp:	      The received frame
1104  * @els_cmd:  The ELS command to be sent
1105  * @els_data: The ELS data to be sent
1106  *
1107  * The received frame is not freed.
1108  */
1109 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1110 				struct fc_seq_els_data *els_data)
1111 {
1112 	switch (els_cmd) {
1113 	case ELS_LS_RJT:
1114 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1115 		break;
1116 	case ELS_LS_ACC:
1117 		fc_seq_ls_acc(fp);
1118 		break;
1119 	case ELS_RRQ:
1120 		fc_exch_els_rrq(fp);
1121 		break;
1122 	case ELS_REC:
1123 		fc_exch_els_rec(fp);
1124 		break;
1125 	default:
1126 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1127 	}
1128 }
1129 
1130 /**
1131  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1132  * @sp:	     The sequence that is to be sent
1133  * @fp:	     The frame that will be sent on the sequence
1134  * @rctl:    The R_CTL information to be sent
1135  * @fh_type: The frame header type
1136  */
1137 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1138 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1139 {
1140 	u32 f_ctl;
1141 	struct fc_exch *ep = fc_seq_exch(sp);
1142 
1143 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1144 	f_ctl |= ep->f_ctl;
1145 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1146 	fc_seq_send_locked(ep->lp, sp, fp);
1147 }
1148 
1149 /**
1150  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1151  * @sp:	   The sequence to send the ACK on
1152  * @rx_fp: The received frame that is being acknoledged
1153  *
1154  * Send ACK_1 (or equiv.) indicating we received something.
1155  */
1156 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1157 {
1158 	struct fc_frame *fp;
1159 	struct fc_frame_header *rx_fh;
1160 	struct fc_frame_header *fh;
1161 	struct fc_exch *ep = fc_seq_exch(sp);
1162 	struct fc_lport *lport = ep->lp;
1163 	unsigned int f_ctl;
1164 
1165 	/*
1166 	 * Don't send ACKs for class 3.
1167 	 */
1168 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1169 		fp = fc_frame_alloc(lport, 0);
1170 		if (!fp)
1171 			return;
1172 
1173 		fh = fc_frame_header_get(fp);
1174 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1175 		fh->fh_type = FC_TYPE_BLS;
1176 
1177 		/*
1178 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1179 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1180 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1181 		 * Last ACK uses bits 7-6 (continue sequence),
1182 		 * bits 5-4 are meaningful (what kind of ACK to use).
1183 		 */
1184 		rx_fh = fc_frame_header_get(rx_fp);
1185 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1186 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1187 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1188 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1189 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1190 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1191 		hton24(fh->fh_f_ctl, f_ctl);
1192 
1193 		fc_exch_setup_hdr(ep, fp, f_ctl);
1194 		fh->fh_seq_id = rx_fh->fh_seq_id;
1195 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1196 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1197 
1198 		fr_sof(fp) = fr_sof(rx_fp);
1199 		if (f_ctl & FC_FC_END_SEQ)
1200 			fr_eof(fp) = FC_EOF_T;
1201 		else
1202 			fr_eof(fp) = FC_EOF_N;
1203 
1204 		lport->tt.frame_send(lport, fp);
1205 	}
1206 }
1207 
1208 /**
1209  * fc_exch_send_ba_rjt() - Send BLS Reject
1210  * @rx_fp:  The frame being rejected
1211  * @reason: The reason the frame is being rejected
1212  * @explan: The explanation for the rejection
1213  *
1214  * This is for rejecting BA_ABTS only.
1215  */
1216 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1217 				enum fc_ba_rjt_reason reason,
1218 				enum fc_ba_rjt_explan explan)
1219 {
1220 	struct fc_frame *fp;
1221 	struct fc_frame_header *rx_fh;
1222 	struct fc_frame_header *fh;
1223 	struct fc_ba_rjt *rp;
1224 	struct fc_lport *lport;
1225 	unsigned int f_ctl;
1226 
1227 	lport = fr_dev(rx_fp);
1228 	fp = fc_frame_alloc(lport, sizeof(*rp));
1229 	if (!fp)
1230 		return;
1231 	fh = fc_frame_header_get(fp);
1232 	rx_fh = fc_frame_header_get(rx_fp);
1233 
1234 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1235 
1236 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1237 	rp->br_reason = reason;
1238 	rp->br_explan = explan;
1239 
1240 	/*
1241 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1242 	 */
1243 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1244 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1245 	fh->fh_ox_id = rx_fh->fh_ox_id;
1246 	fh->fh_rx_id = rx_fh->fh_rx_id;
1247 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1248 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1249 	fh->fh_type = FC_TYPE_BLS;
1250 
1251 	/*
1252 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1253 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1254 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1255 	 * Last ACK uses bits 7-6 (continue sequence),
1256 	 * bits 5-4 are meaningful (what kind of ACK to use).
1257 	 * Always set LAST_SEQ, END_SEQ.
1258 	 */
1259 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1260 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1261 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1262 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1263 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1264 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1265 	f_ctl &= ~FC_FC_FIRST_SEQ;
1266 	hton24(fh->fh_f_ctl, f_ctl);
1267 
1268 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1269 	fr_eof(fp) = FC_EOF_T;
1270 	if (fc_sof_needs_ack(fr_sof(fp)))
1271 		fr_eof(fp) = FC_EOF_N;
1272 
1273 	lport->tt.frame_send(lport, fp);
1274 }
1275 
1276 /**
1277  * fc_exch_recv_abts() - Handle an incoming ABTS
1278  * @ep:	   The exchange the abort was on
1279  * @rx_fp: The ABTS frame
1280  *
1281  * This would be for target mode usually, but could be due to lost
1282  * FCP transfer ready, confirm or RRQ. We always handle this as an
1283  * exchange abort, ignoring the parameter.
1284  */
1285 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1286 {
1287 	struct fc_frame *fp;
1288 	struct fc_ba_acc *ap;
1289 	struct fc_frame_header *fh;
1290 	struct fc_seq *sp;
1291 
1292 	if (!ep)
1293 		goto reject;
1294 	spin_lock_bh(&ep->ex_lock);
1295 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1296 		spin_unlock_bh(&ep->ex_lock);
1297 		goto reject;
1298 	}
1299 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1300 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1301 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1302 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1303 
1304 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1305 	if (!fp) {
1306 		spin_unlock_bh(&ep->ex_lock);
1307 		goto free;
1308 	}
1309 	fh = fc_frame_header_get(fp);
1310 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1311 	memset(ap, 0, sizeof(*ap));
1312 	sp = &ep->seq;
1313 	ap->ba_high_seq_cnt = htons(0xffff);
1314 	if (sp->ssb_stat & SSB_ST_RESP) {
1315 		ap->ba_seq_id = sp->id;
1316 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1317 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1318 		ap->ba_low_seq_cnt = htons(sp->cnt);
1319 	}
1320 	sp = fc_seq_start_next_locked(sp);
1321 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1322 	spin_unlock_bh(&ep->ex_lock);
1323 	fc_frame_free(rx_fp);
1324 	return;
1325 
1326 reject:
1327 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1328 free:
1329 	fc_frame_free(rx_fp);
1330 }
1331 
1332 /**
1333  * fc_seq_assign() - Assign exchange and sequence for incoming request
1334  * @lport: The local port that received the request
1335  * @fp:    The request frame
1336  *
1337  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1338  * A reference will be held on the exchange/sequence for the caller, which
1339  * must call fc_seq_release().
1340  */
1341 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1342 {
1343 	struct fc_exch_mgr_anchor *ema;
1344 
1345 	WARN_ON(lport != fr_dev(fp));
1346 	WARN_ON(fr_seq(fp));
1347 	fr_seq(fp) = NULL;
1348 
1349 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1350 		if ((!ema->match || ema->match(fp)) &&
1351 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1352 			break;
1353 	return fr_seq(fp);
1354 }
1355 
1356 /**
1357  * fc_seq_release() - Release the hold
1358  * @sp:    The sequence.
1359  */
1360 static void fc_seq_release(struct fc_seq *sp)
1361 {
1362 	fc_exch_release(fc_seq_exch(sp));
1363 }
1364 
1365 /**
1366  * fc_exch_recv_req() - Handler for an incoming request
1367  * @lport: The local port that received the request
1368  * @mp:	   The EM that the exchange is on
1369  * @fp:	   The request frame
1370  *
1371  * This is used when the other end is originating the exchange
1372  * and the sequence.
1373  */
1374 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1375 			     struct fc_frame *fp)
1376 {
1377 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1378 	struct fc_seq *sp = NULL;
1379 	struct fc_exch *ep = NULL;
1380 	enum fc_pf_rjt_reason reject;
1381 
1382 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1383 	 * problem now that we know a new exchange needs to be allocated
1384 	 */
1385 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1386 	if (!lport) {
1387 		fc_frame_free(fp);
1388 		return;
1389 	}
1390 	fr_dev(fp) = lport;
1391 
1392 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1393 
1394 	/*
1395 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1396 	 * The upper-level protocol may request one later, if needed.
1397 	 */
1398 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1399 		return lport->tt.lport_recv(lport, fp);
1400 
1401 	reject = fc_seq_lookup_recip(lport, mp, fp);
1402 	if (reject == FC_RJT_NONE) {
1403 		sp = fr_seq(fp);	/* sequence will be held */
1404 		ep = fc_seq_exch(sp);
1405 		fc_seq_send_ack(sp, fp);
1406 		ep->encaps = fr_encaps(fp);
1407 
1408 		/*
1409 		 * Call the receive function.
1410 		 *
1411 		 * The receive function may allocate a new sequence
1412 		 * over the old one, so we shouldn't change the
1413 		 * sequence after this.
1414 		 *
1415 		 * The frame will be freed by the receive function.
1416 		 * If new exch resp handler is valid then call that
1417 		 * first.
1418 		 */
1419 		if (ep->resp)
1420 			ep->resp(sp, fp, ep->arg);
1421 		else
1422 			lport->tt.lport_recv(lport, fp);
1423 		fc_exch_release(ep);	/* release from lookup */
1424 	} else {
1425 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1426 			     reject);
1427 		fc_frame_free(fp);
1428 	}
1429 }
1430 
1431 /**
1432  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1433  *			     end is the originator of the sequence that is a
1434  *			     response to our initial exchange
1435  * @mp: The EM that the exchange is on
1436  * @fp: The response frame
1437  */
1438 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1439 {
1440 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1441 	struct fc_seq *sp;
1442 	struct fc_exch *ep;
1443 	enum fc_sof sof;
1444 	u32 f_ctl;
1445 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1446 	void *ex_resp_arg;
1447 	int rc;
1448 
1449 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1450 	if (!ep) {
1451 		atomic_inc(&mp->stats.xid_not_found);
1452 		goto out;
1453 	}
1454 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1455 		atomic_inc(&mp->stats.xid_not_found);
1456 		goto rel;
1457 	}
1458 	if (ep->rxid == FC_XID_UNKNOWN)
1459 		ep->rxid = ntohs(fh->fh_rx_id);
1460 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1461 		atomic_inc(&mp->stats.xid_not_found);
1462 		goto rel;
1463 	}
1464 	if (ep->did != ntoh24(fh->fh_s_id) &&
1465 	    ep->did != FC_FID_FLOGI) {
1466 		atomic_inc(&mp->stats.xid_not_found);
1467 		goto rel;
1468 	}
1469 	sof = fr_sof(fp);
1470 	sp = &ep->seq;
1471 	if (fc_sof_is_init(sof)) {
1472 		sp->ssb_stat |= SSB_ST_RESP;
1473 		sp->id = fh->fh_seq_id;
1474 	} else if (sp->id != fh->fh_seq_id) {
1475 		atomic_inc(&mp->stats.seq_not_found);
1476 		goto rel;
1477 	}
1478 
1479 	f_ctl = ntoh24(fh->fh_f_ctl);
1480 	fr_seq(fp) = sp;
1481 	if (f_ctl & FC_FC_SEQ_INIT)
1482 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1483 
1484 	if (fc_sof_needs_ack(sof))
1485 		fc_seq_send_ack(sp, fp);
1486 	resp = ep->resp;
1487 	ex_resp_arg = ep->arg;
1488 
1489 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1490 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1491 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1492 		spin_lock_bh(&ep->ex_lock);
1493 		resp = ep->resp;
1494 		rc = fc_exch_done_locked(ep);
1495 		WARN_ON(fc_seq_exch(sp) != ep);
1496 		spin_unlock_bh(&ep->ex_lock);
1497 		if (!rc)
1498 			fc_exch_delete(ep);
1499 	}
1500 
1501 	/*
1502 	 * Call the receive function.
1503 	 * The sequence is held (has a refcnt) for us,
1504 	 * but not for the receive function.
1505 	 *
1506 	 * The receive function may allocate a new sequence
1507 	 * over the old one, so we shouldn't change the
1508 	 * sequence after this.
1509 	 *
1510 	 * The frame will be freed by the receive function.
1511 	 * If new exch resp handler is valid then call that
1512 	 * first.
1513 	 */
1514 	if (resp)
1515 		resp(sp, fp, ex_resp_arg);
1516 	else
1517 		fc_frame_free(fp);
1518 	fc_exch_release(ep);
1519 	return;
1520 rel:
1521 	fc_exch_release(ep);
1522 out:
1523 	fc_frame_free(fp);
1524 }
1525 
1526 /**
1527  * fc_exch_recv_resp() - Handler for a sequence where other end is
1528  *			 responding to our sequence
1529  * @mp: The EM that the exchange is on
1530  * @fp: The response frame
1531  */
1532 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1533 {
1534 	struct fc_seq *sp;
1535 
1536 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1537 
1538 	if (!sp)
1539 		atomic_inc(&mp->stats.xid_not_found);
1540 	else
1541 		atomic_inc(&mp->stats.non_bls_resp);
1542 
1543 	fc_frame_free(fp);
1544 }
1545 
1546 /**
1547  * fc_exch_abts_resp() - Handler for a response to an ABT
1548  * @ep: The exchange that the frame is on
1549  * @fp: The response frame
1550  *
1551  * This response would be to an ABTS cancelling an exchange or sequence.
1552  * The response can be either BA_ACC or BA_RJT
1553  */
1554 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1555 {
1556 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1557 	void *ex_resp_arg;
1558 	struct fc_frame_header *fh;
1559 	struct fc_ba_acc *ap;
1560 	struct fc_seq *sp;
1561 	u16 low;
1562 	u16 high;
1563 	int rc = 1, has_rec = 0;
1564 
1565 	fh = fc_frame_header_get(fp);
1566 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1567 		    fc_exch_rctl_name(fh->fh_r_ctl));
1568 
1569 	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1570 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
1571 		fc_exch_release(ep);	/* release from pending timer hold */
1572 	}
1573 
1574 	spin_lock_bh(&ep->ex_lock);
1575 	switch (fh->fh_r_ctl) {
1576 	case FC_RCTL_BA_ACC:
1577 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1578 		if (!ap)
1579 			break;
1580 
1581 		/*
1582 		 * Decide whether to establish a Recovery Qualifier.
1583 		 * We do this if there is a non-empty SEQ_CNT range and
1584 		 * SEQ_ID is the same as the one we aborted.
1585 		 */
1586 		low = ntohs(ap->ba_low_seq_cnt);
1587 		high = ntohs(ap->ba_high_seq_cnt);
1588 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1589 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1590 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1591 			ep->esb_stat |= ESB_ST_REC_QUAL;
1592 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1593 			has_rec = 1;
1594 		}
1595 		break;
1596 	case FC_RCTL_BA_RJT:
1597 		break;
1598 	default:
1599 		break;
1600 	}
1601 
1602 	resp = ep->resp;
1603 	ex_resp_arg = ep->arg;
1604 
1605 	/* do we need to do some other checks here. Can we reuse more of
1606 	 * fc_exch_recv_seq_resp
1607 	 */
1608 	sp = &ep->seq;
1609 	/*
1610 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1611 	 */
1612 	if (ep->fh_type != FC_TYPE_FCP &&
1613 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1614 		rc = fc_exch_done_locked(ep);
1615 	spin_unlock_bh(&ep->ex_lock);
1616 	if (!rc)
1617 		fc_exch_delete(ep);
1618 
1619 	if (resp)
1620 		resp(sp, fp, ex_resp_arg);
1621 	else
1622 		fc_frame_free(fp);
1623 
1624 	if (has_rec)
1625 		fc_exch_timer_set(ep, ep->r_a_tov);
1626 
1627 }
1628 
1629 /**
1630  * fc_exch_recv_bls() - Handler for a BLS sequence
1631  * @mp: The EM that the exchange is on
1632  * @fp: The request frame
1633  *
1634  * The BLS frame is always a sequence initiated by the remote side.
1635  * We may be either the originator or recipient of the exchange.
1636  */
1637 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1638 {
1639 	struct fc_frame_header *fh;
1640 	struct fc_exch *ep;
1641 	u32 f_ctl;
1642 
1643 	fh = fc_frame_header_get(fp);
1644 	f_ctl = ntoh24(fh->fh_f_ctl);
1645 	fr_seq(fp) = NULL;
1646 
1647 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1648 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1649 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1650 		spin_lock_bh(&ep->ex_lock);
1651 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1652 		spin_unlock_bh(&ep->ex_lock);
1653 	}
1654 	if (f_ctl & FC_FC_SEQ_CTX) {
1655 		/*
1656 		 * A response to a sequence we initiated.
1657 		 * This should only be ACKs for class 2 or F.
1658 		 */
1659 		switch (fh->fh_r_ctl) {
1660 		case FC_RCTL_ACK_1:
1661 		case FC_RCTL_ACK_0:
1662 			break;
1663 		default:
1664 			if (ep)
1665 				FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1666 					    fh->fh_r_ctl,
1667 					    fc_exch_rctl_name(fh->fh_r_ctl));
1668 			break;
1669 		}
1670 		fc_frame_free(fp);
1671 	} else {
1672 		switch (fh->fh_r_ctl) {
1673 		case FC_RCTL_BA_RJT:
1674 		case FC_RCTL_BA_ACC:
1675 			if (ep)
1676 				fc_exch_abts_resp(ep, fp);
1677 			else
1678 				fc_frame_free(fp);
1679 			break;
1680 		case FC_RCTL_BA_ABTS:
1681 			fc_exch_recv_abts(ep, fp);
1682 			break;
1683 		default:			/* ignore junk */
1684 			fc_frame_free(fp);
1685 			break;
1686 		}
1687 	}
1688 	if (ep)
1689 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1690 }
1691 
1692 /**
1693  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1694  * @rx_fp: The received frame, not freed here.
1695  *
1696  * If this fails due to allocation or transmit congestion, assume the
1697  * originator will repeat the sequence.
1698  */
1699 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1700 {
1701 	struct fc_lport *lport;
1702 	struct fc_els_ls_acc *acc;
1703 	struct fc_frame *fp;
1704 
1705 	lport = fr_dev(rx_fp);
1706 	fp = fc_frame_alloc(lport, sizeof(*acc));
1707 	if (!fp)
1708 		return;
1709 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1710 	memset(acc, 0, sizeof(*acc));
1711 	acc->la_cmd = ELS_LS_ACC;
1712 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1713 	lport->tt.frame_send(lport, fp);
1714 }
1715 
1716 /**
1717  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1718  * @rx_fp: The received frame, not freed here.
1719  * @reason: The reason the sequence is being rejected
1720  * @explan: The explanation for the rejection
1721  *
1722  * If this fails due to allocation or transmit congestion, assume the
1723  * originator will repeat the sequence.
1724  */
1725 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1726 			  enum fc_els_rjt_explan explan)
1727 {
1728 	struct fc_lport *lport;
1729 	struct fc_els_ls_rjt *rjt;
1730 	struct fc_frame *fp;
1731 
1732 	lport = fr_dev(rx_fp);
1733 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1734 	if (!fp)
1735 		return;
1736 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1737 	memset(rjt, 0, sizeof(*rjt));
1738 	rjt->er_cmd = ELS_LS_RJT;
1739 	rjt->er_reason = reason;
1740 	rjt->er_explan = explan;
1741 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1742 	lport->tt.frame_send(lport, fp);
1743 }
1744 
1745 /**
1746  * fc_exch_reset() - Reset an exchange
1747  * @ep: The exchange to be reset
1748  */
1749 static void fc_exch_reset(struct fc_exch *ep)
1750 {
1751 	struct fc_seq *sp;
1752 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1753 	void *arg;
1754 	int rc = 1;
1755 
1756 	spin_lock_bh(&ep->ex_lock);
1757 	fc_exch_abort_locked(ep, 0);
1758 	ep->state |= FC_EX_RST_CLEANUP;
1759 	fc_exch_timer_cancel(ep);
1760 	resp = ep->resp;
1761 	ep->resp = NULL;
1762 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1763 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1764 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1765 	arg = ep->arg;
1766 	sp = &ep->seq;
1767 	rc = fc_exch_done_locked(ep);
1768 	spin_unlock_bh(&ep->ex_lock);
1769 	if (!rc)
1770 		fc_exch_delete(ep);
1771 
1772 	if (resp)
1773 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1774 }
1775 
1776 /**
1777  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1778  * @lport: The local port that the exchange pool is on
1779  * @pool:  The exchange pool to be reset
1780  * @sid:   The source ID
1781  * @did:   The destination ID
1782  *
1783  * Resets a per cpu exches pool, releasing all of its sequences
1784  * and exchanges. If sid is non-zero then reset only exchanges
1785  * we sourced from the local port's FID. If did is non-zero then
1786  * only reset exchanges destined for the local port's FID.
1787  */
1788 static void fc_exch_pool_reset(struct fc_lport *lport,
1789 			       struct fc_exch_pool *pool,
1790 			       u32 sid, u32 did)
1791 {
1792 	struct fc_exch *ep;
1793 	struct fc_exch *next;
1794 
1795 	spin_lock_bh(&pool->lock);
1796 restart:
1797 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1798 		if ((lport == ep->lp) &&
1799 		    (sid == 0 || sid == ep->sid) &&
1800 		    (did == 0 || did == ep->did)) {
1801 			fc_exch_hold(ep);
1802 			spin_unlock_bh(&pool->lock);
1803 
1804 			fc_exch_reset(ep);
1805 
1806 			fc_exch_release(ep);
1807 			spin_lock_bh(&pool->lock);
1808 
1809 			/*
1810 			 * must restart loop incase while lock
1811 			 * was down multiple eps were released.
1812 			 */
1813 			goto restart;
1814 		}
1815 	}
1816 	pool->next_index = 0;
1817 	pool->left = FC_XID_UNKNOWN;
1818 	pool->right = FC_XID_UNKNOWN;
1819 	spin_unlock_bh(&pool->lock);
1820 }
1821 
1822 /**
1823  * fc_exch_mgr_reset() - Reset all EMs of a local port
1824  * @lport: The local port whose EMs are to be reset
1825  * @sid:   The source ID
1826  * @did:   The destination ID
1827  *
1828  * Reset all EMs associated with a given local port. Release all
1829  * sequences and exchanges. If sid is non-zero then reset only the
1830  * exchanges sent from the local port's FID. If did is non-zero then
1831  * reset only exchanges destined for the local port's FID.
1832  */
1833 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1834 {
1835 	struct fc_exch_mgr_anchor *ema;
1836 	unsigned int cpu;
1837 
1838 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1839 		for_each_possible_cpu(cpu)
1840 			fc_exch_pool_reset(lport,
1841 					   per_cpu_ptr(ema->mp->pool, cpu),
1842 					   sid, did);
1843 	}
1844 }
1845 EXPORT_SYMBOL(fc_exch_mgr_reset);
1846 
1847 /**
1848  * fc_exch_lookup() - find an exchange
1849  * @lport: The local port
1850  * @xid: The exchange ID
1851  *
1852  * Returns exchange pointer with hold for caller, or NULL if not found.
1853  */
1854 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1855 {
1856 	struct fc_exch_mgr_anchor *ema;
1857 
1858 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1859 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1860 			return fc_exch_find(ema->mp, xid);
1861 	return NULL;
1862 }
1863 
1864 /**
1865  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1866  * @rfp: The REC frame, not freed here.
1867  *
1868  * Note that the requesting port may be different than the S_ID in the request.
1869  */
1870 static void fc_exch_els_rec(struct fc_frame *rfp)
1871 {
1872 	struct fc_lport *lport;
1873 	struct fc_frame *fp;
1874 	struct fc_exch *ep;
1875 	struct fc_els_rec *rp;
1876 	struct fc_els_rec_acc *acc;
1877 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1878 	enum fc_els_rjt_explan explan;
1879 	u32 sid;
1880 	u16 rxid;
1881 	u16 oxid;
1882 
1883 	lport = fr_dev(rfp);
1884 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1885 	explan = ELS_EXPL_INV_LEN;
1886 	if (!rp)
1887 		goto reject;
1888 	sid = ntoh24(rp->rec_s_id);
1889 	rxid = ntohs(rp->rec_rx_id);
1890 	oxid = ntohs(rp->rec_ox_id);
1891 
1892 	ep = fc_exch_lookup(lport,
1893 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1894 	explan = ELS_EXPL_OXID_RXID;
1895 	if (!ep)
1896 		goto reject;
1897 	if (ep->oid != sid || oxid != ep->oxid)
1898 		goto rel;
1899 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1900 		goto rel;
1901 	fp = fc_frame_alloc(lport, sizeof(*acc));
1902 	if (!fp)
1903 		goto out;
1904 
1905 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1906 	memset(acc, 0, sizeof(*acc));
1907 	acc->reca_cmd = ELS_LS_ACC;
1908 	acc->reca_ox_id = rp->rec_ox_id;
1909 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1910 	acc->reca_rx_id = htons(ep->rxid);
1911 	if (ep->sid == ep->oid)
1912 		hton24(acc->reca_rfid, ep->did);
1913 	else
1914 		hton24(acc->reca_rfid, ep->sid);
1915 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1916 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1917 						 ESB_ST_SEQ_INIT |
1918 						 ESB_ST_COMPLETE));
1919 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1920 	lport->tt.frame_send(lport, fp);
1921 out:
1922 	fc_exch_release(ep);
1923 	return;
1924 
1925 rel:
1926 	fc_exch_release(ep);
1927 reject:
1928 	fc_seq_ls_rjt(rfp, reason, explan);
1929 }
1930 
1931 /**
1932  * fc_exch_rrq_resp() - Handler for RRQ responses
1933  * @sp:	 The sequence that the RRQ is on
1934  * @fp:	 The RRQ frame
1935  * @arg: The exchange that the RRQ is on
1936  *
1937  * TODO: fix error handler.
1938  */
1939 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1940 {
1941 	struct fc_exch *aborted_ep = arg;
1942 	unsigned int op;
1943 
1944 	if (IS_ERR(fp)) {
1945 		int err = PTR_ERR(fp);
1946 
1947 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1948 			goto cleanup;
1949 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1950 			    "frame error %d\n", err);
1951 		return;
1952 	}
1953 
1954 	op = fc_frame_payload_op(fp);
1955 	fc_frame_free(fp);
1956 
1957 	switch (op) {
1958 	case ELS_LS_RJT:
1959 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1960 		/* fall through */
1961 	case ELS_LS_ACC:
1962 		goto cleanup;
1963 	default:
1964 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1965 			    "for RRQ", op);
1966 		return;
1967 	}
1968 
1969 cleanup:
1970 	fc_exch_done(&aborted_ep->seq);
1971 	/* drop hold for rec qual */
1972 	fc_exch_release(aborted_ep);
1973 }
1974 
1975 
1976 /**
1977  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1978  * @lport:	The local port to send the frame on
1979  * @fp:		The frame to be sent
1980  * @resp:	The response handler for this request
1981  * @destructor: The destructor for the exchange
1982  * @arg:	The argument to be passed to the response handler
1983  * @timer_msec: The timeout period for the exchange
1984  *
1985  * The frame pointer with some of the header's fields must be
1986  * filled before calling this routine, those fields are:
1987  *
1988  * - routing control
1989  * - FC port did
1990  * - FC port sid
1991  * - FC header type
1992  * - frame control
1993  * - parameter or relative offset
1994  */
1995 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1996 				       struct fc_frame *fp,
1997 				       void (*resp)(struct fc_seq *,
1998 						    struct fc_frame *fp,
1999 						    void *arg),
2000 				       void (*destructor)(struct fc_seq *,
2001 							  void *),
2002 				       void *arg, u32 timer_msec)
2003 {
2004 	struct fc_exch *ep;
2005 	struct fc_seq *sp = NULL;
2006 	struct fc_frame_header *fh;
2007 	struct fc_fcp_pkt *fsp = NULL;
2008 	int rc = 1;
2009 
2010 	ep = fc_exch_alloc(lport, fp);
2011 	if (!ep) {
2012 		fc_frame_free(fp);
2013 		return NULL;
2014 	}
2015 	ep->esb_stat |= ESB_ST_SEQ_INIT;
2016 	fh = fc_frame_header_get(fp);
2017 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2018 	ep->resp = resp;
2019 	ep->destructor = destructor;
2020 	ep->arg = arg;
2021 	ep->r_a_tov = FC_DEF_R_A_TOV;
2022 	ep->lp = lport;
2023 	sp = &ep->seq;
2024 
2025 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2026 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2027 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2028 	sp->cnt++;
2029 
2030 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2031 		fsp = fr_fsp(fp);
2032 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2033 	}
2034 
2035 	if (unlikely(lport->tt.frame_send(lport, fp)))
2036 		goto err;
2037 
2038 	if (timer_msec)
2039 		fc_exch_timer_set_locked(ep, timer_msec);
2040 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2041 
2042 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2043 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2044 	spin_unlock_bh(&ep->ex_lock);
2045 	return sp;
2046 err:
2047 	if (fsp)
2048 		fc_fcp_ddp_done(fsp);
2049 	rc = fc_exch_done_locked(ep);
2050 	spin_unlock_bh(&ep->ex_lock);
2051 	if (!rc)
2052 		fc_exch_delete(ep);
2053 	return NULL;
2054 }
2055 
2056 /**
2057  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2058  * @ep: The exchange to send the RRQ on
2059  *
2060  * This tells the remote port to stop blocking the use of
2061  * the exchange and the seq_cnt range.
2062  */
2063 static void fc_exch_rrq(struct fc_exch *ep)
2064 {
2065 	struct fc_lport *lport;
2066 	struct fc_els_rrq *rrq;
2067 	struct fc_frame *fp;
2068 	u32 did;
2069 
2070 	lport = ep->lp;
2071 
2072 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2073 	if (!fp)
2074 		goto retry;
2075 
2076 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2077 	memset(rrq, 0, sizeof(*rrq));
2078 	rrq->rrq_cmd = ELS_RRQ;
2079 	hton24(rrq->rrq_s_id, ep->sid);
2080 	rrq->rrq_ox_id = htons(ep->oxid);
2081 	rrq->rrq_rx_id = htons(ep->rxid);
2082 
2083 	did = ep->did;
2084 	if (ep->esb_stat & ESB_ST_RESP)
2085 		did = ep->sid;
2086 
2087 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2088 		       lport->port_id, FC_TYPE_ELS,
2089 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2090 
2091 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2092 			     lport->e_d_tov))
2093 		return;
2094 
2095 retry:
2096 	spin_lock_bh(&ep->ex_lock);
2097 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2098 		spin_unlock_bh(&ep->ex_lock);
2099 		/* drop hold for rec qual */
2100 		fc_exch_release(ep);
2101 		return;
2102 	}
2103 	ep->esb_stat |= ESB_ST_REC_QUAL;
2104 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2105 	spin_unlock_bh(&ep->ex_lock);
2106 }
2107 
2108 /**
2109  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2110  * @fp: The RRQ frame, not freed here.
2111  */
2112 static void fc_exch_els_rrq(struct fc_frame *fp)
2113 {
2114 	struct fc_lport *lport;
2115 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2116 	struct fc_els_rrq *rp;
2117 	u32 sid;
2118 	u16 xid;
2119 	enum fc_els_rjt_explan explan;
2120 
2121 	lport = fr_dev(fp);
2122 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2123 	explan = ELS_EXPL_INV_LEN;
2124 	if (!rp)
2125 		goto reject;
2126 
2127 	/*
2128 	 * lookup subject exchange.
2129 	 */
2130 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2131 	xid = fc_host_port_id(lport->host) == sid ?
2132 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2133 	ep = fc_exch_lookup(lport, xid);
2134 	explan = ELS_EXPL_OXID_RXID;
2135 	if (!ep)
2136 		goto reject;
2137 	spin_lock_bh(&ep->ex_lock);
2138 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2139 		goto unlock_reject;
2140 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2141 	    ep->rxid != FC_XID_UNKNOWN)
2142 		goto unlock_reject;
2143 	explan = ELS_EXPL_SID;
2144 	if (ep->sid != sid)
2145 		goto unlock_reject;
2146 
2147 	/*
2148 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2149 	 */
2150 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2151 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2152 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2153 	}
2154 	if (ep->esb_stat & ESB_ST_COMPLETE)
2155 		fc_exch_timer_cancel(ep);
2156 
2157 	spin_unlock_bh(&ep->ex_lock);
2158 
2159 	/*
2160 	 * Send LS_ACC.
2161 	 */
2162 	fc_seq_ls_acc(fp);
2163 	goto out;
2164 
2165 unlock_reject:
2166 	spin_unlock_bh(&ep->ex_lock);
2167 reject:
2168 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2169 out:
2170 	if (ep)
2171 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2172 }
2173 
2174 /**
2175  * fc_exch_update_stats() - update exches stats to lport
2176  * @lport: The local port to update exchange manager stats
2177  */
2178 void fc_exch_update_stats(struct fc_lport *lport)
2179 {
2180 	struct fc_host_statistics *st;
2181 	struct fc_exch_mgr_anchor *ema;
2182 	struct fc_exch_mgr *mp;
2183 
2184 	st = &lport->host_stats;
2185 
2186 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2187 		mp = ema->mp;
2188 		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2189 		st->fc_no_free_exch_xid +=
2190 				atomic_read(&mp->stats.no_free_exch_xid);
2191 		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2192 		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2193 		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2194 		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2195 	}
2196 }
2197 EXPORT_SYMBOL(fc_exch_update_stats);
2198 
2199 /**
2200  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2201  * @lport: The local port to add the exchange manager to
2202  * @mp:	   The exchange manager to be added to the local port
2203  * @match: The match routine that indicates when this EM should be used
2204  */
2205 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2206 					   struct fc_exch_mgr *mp,
2207 					   bool (*match)(struct fc_frame *))
2208 {
2209 	struct fc_exch_mgr_anchor *ema;
2210 
2211 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2212 	if (!ema)
2213 		return ema;
2214 
2215 	ema->mp = mp;
2216 	ema->match = match;
2217 	/* add EM anchor to EM anchors list */
2218 	list_add_tail(&ema->ema_list, &lport->ema_list);
2219 	kref_get(&mp->kref);
2220 	return ema;
2221 }
2222 EXPORT_SYMBOL(fc_exch_mgr_add);
2223 
2224 /**
2225  * fc_exch_mgr_destroy() - Destroy an exchange manager
2226  * @kref: The reference to the EM to be destroyed
2227  */
2228 static void fc_exch_mgr_destroy(struct kref *kref)
2229 {
2230 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2231 
2232 	mempool_destroy(mp->ep_pool);
2233 	free_percpu(mp->pool);
2234 	kfree(mp);
2235 }
2236 
2237 /**
2238  * fc_exch_mgr_del() - Delete an EM from a local port's list
2239  * @ema: The exchange manager anchor identifying the EM to be deleted
2240  */
2241 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2242 {
2243 	/* remove EM anchor from EM anchors list */
2244 	list_del(&ema->ema_list);
2245 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2246 	kfree(ema);
2247 }
2248 EXPORT_SYMBOL(fc_exch_mgr_del);
2249 
2250 /**
2251  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2252  * @src: Source lport to clone exchange managers from
2253  * @dst: New lport that takes references to all the exchange managers
2254  */
2255 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2256 {
2257 	struct fc_exch_mgr_anchor *ema, *tmp;
2258 
2259 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2260 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2261 			goto err;
2262 	}
2263 	return 0;
2264 err:
2265 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2266 		fc_exch_mgr_del(ema);
2267 	return -ENOMEM;
2268 }
2269 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2270 
2271 /**
2272  * fc_exch_mgr_alloc() - Allocate an exchange manager
2273  * @lport:   The local port that the new EM will be associated with
2274  * @class:   The default FC class for new exchanges
2275  * @min_xid: The minimum XID for exchanges from the new EM
2276  * @max_xid: The maximum XID for exchanges from the new EM
2277  * @match:   The match routine for the new EM
2278  */
2279 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2280 				      enum fc_class class,
2281 				      u16 min_xid, u16 max_xid,
2282 				      bool (*match)(struct fc_frame *))
2283 {
2284 	struct fc_exch_mgr *mp;
2285 	u16 pool_exch_range;
2286 	size_t pool_size;
2287 	unsigned int cpu;
2288 	struct fc_exch_pool *pool;
2289 
2290 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2291 	    (min_xid & fc_cpu_mask) != 0) {
2292 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2293 			     min_xid, max_xid);
2294 		return NULL;
2295 	}
2296 
2297 	/*
2298 	 * allocate memory for EM
2299 	 */
2300 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2301 	if (!mp)
2302 		return NULL;
2303 
2304 	mp->class = class;
2305 	/* adjust em exch xid range for offload */
2306 	mp->min_xid = min_xid;
2307 
2308        /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2309 	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2310 		sizeof(struct fc_exch *);
2311 	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2312 		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2313 			min_xid - 1;
2314 	} else {
2315 		mp->max_xid = max_xid;
2316 		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2317 			(fc_cpu_mask + 1);
2318 	}
2319 
2320 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2321 	if (!mp->ep_pool)
2322 		goto free_mp;
2323 
2324 	/*
2325 	 * Setup per cpu exch pool with entire exchange id range equally
2326 	 * divided across all cpus. The exch pointers array memory is
2327 	 * allocated for exch range per pool.
2328 	 */
2329 	mp->pool_max_index = pool_exch_range - 1;
2330 
2331 	/*
2332 	 * Allocate and initialize per cpu exch pool
2333 	 */
2334 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2335 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2336 	if (!mp->pool)
2337 		goto free_mempool;
2338 	for_each_possible_cpu(cpu) {
2339 		pool = per_cpu_ptr(mp->pool, cpu);
2340 		pool->next_index = 0;
2341 		pool->left = FC_XID_UNKNOWN;
2342 		pool->right = FC_XID_UNKNOWN;
2343 		spin_lock_init(&pool->lock);
2344 		INIT_LIST_HEAD(&pool->ex_list);
2345 	}
2346 
2347 	kref_init(&mp->kref);
2348 	if (!fc_exch_mgr_add(lport, mp, match)) {
2349 		free_percpu(mp->pool);
2350 		goto free_mempool;
2351 	}
2352 
2353 	/*
2354 	 * Above kref_init() sets mp->kref to 1 and then
2355 	 * call to fc_exch_mgr_add incremented mp->kref again,
2356 	 * so adjust that extra increment.
2357 	 */
2358 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2359 	return mp;
2360 
2361 free_mempool:
2362 	mempool_destroy(mp->ep_pool);
2363 free_mp:
2364 	kfree(mp);
2365 	return NULL;
2366 }
2367 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2368 
2369 /**
2370  * fc_exch_mgr_free() - Free all exchange managers on a local port
2371  * @lport: The local port whose EMs are to be freed
2372  */
2373 void fc_exch_mgr_free(struct fc_lport *lport)
2374 {
2375 	struct fc_exch_mgr_anchor *ema, *next;
2376 
2377 	flush_workqueue(fc_exch_workqueue);
2378 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2379 		fc_exch_mgr_del(ema);
2380 }
2381 EXPORT_SYMBOL(fc_exch_mgr_free);
2382 
2383 /**
2384  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2385  * upon 'xid'.
2386  * @f_ctl: f_ctl
2387  * @lport: The local port the frame was received on
2388  * @fh: The received frame header
2389  */
2390 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2391 					      struct fc_lport *lport,
2392 					      struct fc_frame_header *fh)
2393 {
2394 	struct fc_exch_mgr_anchor *ema;
2395 	u16 xid;
2396 
2397 	if (f_ctl & FC_FC_EX_CTX)
2398 		xid = ntohs(fh->fh_ox_id);
2399 	else {
2400 		xid = ntohs(fh->fh_rx_id);
2401 		if (xid == FC_XID_UNKNOWN)
2402 			return list_entry(lport->ema_list.prev,
2403 					  typeof(*ema), ema_list);
2404 	}
2405 
2406 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2407 		if ((xid >= ema->mp->min_xid) &&
2408 		    (xid <= ema->mp->max_xid))
2409 			return ema;
2410 	}
2411 	return NULL;
2412 }
2413 /**
2414  * fc_exch_recv() - Handler for received frames
2415  * @lport: The local port the frame was received on
2416  * @fp:	The received frame
2417  */
2418 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2419 {
2420 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2421 	struct fc_exch_mgr_anchor *ema;
2422 	u32 f_ctl;
2423 
2424 	/* lport lock ? */
2425 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2426 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2427 			     "has not been initialized correctly\n");
2428 		fc_frame_free(fp);
2429 		return;
2430 	}
2431 
2432 	f_ctl = ntoh24(fh->fh_f_ctl);
2433 	ema = fc_find_ema(f_ctl, lport, fh);
2434 	if (!ema) {
2435 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2436 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2437 				     f_ctl,
2438 				     (f_ctl & FC_FC_EX_CTX) ?
2439 				     ntohs(fh->fh_ox_id) :
2440 				     ntohs(fh->fh_rx_id));
2441 		fc_frame_free(fp);
2442 		return;
2443 	}
2444 
2445 	/*
2446 	 * If frame is marked invalid, just drop it.
2447 	 */
2448 	switch (fr_eof(fp)) {
2449 	case FC_EOF_T:
2450 		if (f_ctl & FC_FC_END_SEQ)
2451 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2452 		/* fall through */
2453 	case FC_EOF_N:
2454 		if (fh->fh_type == FC_TYPE_BLS)
2455 			fc_exch_recv_bls(ema->mp, fp);
2456 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2457 			 FC_FC_EX_CTX)
2458 			fc_exch_recv_seq_resp(ema->mp, fp);
2459 		else if (f_ctl & FC_FC_SEQ_CTX)
2460 			fc_exch_recv_resp(ema->mp, fp);
2461 		else	/* no EX_CTX and no SEQ_CTX */
2462 			fc_exch_recv_req(lport, ema->mp, fp);
2463 		break;
2464 	default:
2465 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2466 			     fr_eof(fp));
2467 		fc_frame_free(fp);
2468 	}
2469 }
2470 EXPORT_SYMBOL(fc_exch_recv);
2471 
2472 /**
2473  * fc_exch_init() - Initialize the exchange layer for a local port
2474  * @lport: The local port to initialize the exchange layer for
2475  */
2476 int fc_exch_init(struct fc_lport *lport)
2477 {
2478 	if (!lport->tt.seq_start_next)
2479 		lport->tt.seq_start_next = fc_seq_start_next;
2480 
2481 	if (!lport->tt.seq_set_resp)
2482 		lport->tt.seq_set_resp = fc_seq_set_resp;
2483 
2484 	if (!lport->tt.exch_seq_send)
2485 		lport->tt.exch_seq_send = fc_exch_seq_send;
2486 
2487 	if (!lport->tt.seq_send)
2488 		lport->tt.seq_send = fc_seq_send;
2489 
2490 	if (!lport->tt.seq_els_rsp_send)
2491 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2492 
2493 	if (!lport->tt.exch_done)
2494 		lport->tt.exch_done = fc_exch_done;
2495 
2496 	if (!lport->tt.exch_mgr_reset)
2497 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2498 
2499 	if (!lport->tt.seq_exch_abort)
2500 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2501 
2502 	if (!lport->tt.seq_assign)
2503 		lport->tt.seq_assign = fc_seq_assign;
2504 
2505 	if (!lport->tt.seq_release)
2506 		lport->tt.seq_release = fc_seq_release;
2507 
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(fc_exch_init);
2511 
2512 /**
2513  * fc_setup_exch_mgr() - Setup an exchange manager
2514  */
2515 int fc_setup_exch_mgr(void)
2516 {
2517 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2518 					 0, SLAB_HWCACHE_ALIGN, NULL);
2519 	if (!fc_em_cachep)
2520 		return -ENOMEM;
2521 
2522 	/*
2523 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2524 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2525 	 * to order of 2's * power and order is stored
2526 	 * in fc_cpu_order as this is later required in
2527 	 * mapping between an exch id and exch array index
2528 	 * in per cpu exch pool.
2529 	 *
2530 	 * This round up is required to align fc_cpu_mask
2531 	 * to exchange id's lower bits such that all incoming
2532 	 * frames of an exchange gets delivered to the same
2533 	 * cpu on which exchange originated by simple bitwise
2534 	 * AND operation between fc_cpu_mask and exchange id.
2535 	 */
2536 	fc_cpu_mask = 1;
2537 	fc_cpu_order = 0;
2538 	while (fc_cpu_mask < nr_cpu_ids) {
2539 		fc_cpu_mask <<= 1;
2540 		fc_cpu_order++;
2541 	}
2542 	fc_cpu_mask--;
2543 
2544 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2545 	if (!fc_exch_workqueue)
2546 		goto err;
2547 	return 0;
2548 err:
2549 	kmem_cache_destroy(fc_em_cachep);
2550 	return -ENOMEM;
2551 }
2552 
2553 /**
2554  * fc_destroy_exch_mgr() - Destroy an exchange manager
2555  */
2556 void fc_destroy_exch_mgr(void)
2557 {
2558 	destroy_workqueue(fc_exch_workqueue);
2559 	kmem_cache_destroy(fc_em_cachep);
2560 }
2561