1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 #include <linux/export.h> 30 #include <linux/log2.h> 31 32 #include <scsi/fc/fc_fc2.h> 33 34 #include <scsi/libfc.h> 35 #include <scsi/fc_encode.h> 36 37 #include "fc_libfc.h" 38 39 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 40 EXPORT_SYMBOL(fc_cpu_mask); 41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 43 static struct workqueue_struct *fc_exch_workqueue; 44 45 /* 46 * Structure and function definitions for managing Fibre Channel Exchanges 47 * and Sequences. 48 * 49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 50 * 51 * fc_exch_mgr holds the exchange state for an N port 52 * 53 * fc_exch holds state for one exchange and links to its active sequence. 54 * 55 * fc_seq holds the state for an individual sequence. 56 */ 57 58 /** 59 * struct fc_exch_pool - Per cpu exchange pool 60 * @next_index: Next possible free exchange index 61 * @total_exches: Total allocated exchanges 62 * @lock: Exch pool lock 63 * @ex_list: List of exchanges 64 * 65 * This structure manages per cpu exchanges in array of exchange pointers. 66 * This array is allocated followed by struct fc_exch_pool memory for 67 * assigned range of exchanges to per cpu pool. 68 */ 69 struct fc_exch_pool { 70 spinlock_t lock; 71 struct list_head ex_list; 72 u16 next_index; 73 u16 total_exches; 74 75 /* two cache of free slot in exch array */ 76 u16 left; 77 u16 right; 78 } ____cacheline_aligned_in_smp; 79 80 /** 81 * struct fc_exch_mgr - The Exchange Manager (EM). 82 * @class: Default class for new sequences 83 * @kref: Reference counter 84 * @min_xid: Minimum exchange ID 85 * @max_xid: Maximum exchange ID 86 * @ep_pool: Reserved exchange pointers 87 * @pool_max_index: Max exch array index in exch pool 88 * @pool: Per cpu exch pool 89 * @stats: Statistics structure 90 * 91 * This structure is the center for creating exchanges and sequences. 92 * It manages the allocation of exchange IDs. 93 */ 94 struct fc_exch_mgr { 95 struct fc_exch_pool __percpu *pool; 96 mempool_t *ep_pool; 97 enum fc_class class; 98 struct kref kref; 99 u16 min_xid; 100 u16 max_xid; 101 u16 pool_max_index; 102 103 struct { 104 atomic_t no_free_exch; 105 atomic_t no_free_exch_xid; 106 atomic_t xid_not_found; 107 atomic_t xid_busy; 108 atomic_t seq_not_found; 109 atomic_t non_bls_resp; 110 } stats; 111 }; 112 113 /** 114 * struct fc_exch_mgr_anchor - primary structure for list of EMs 115 * @ema_list: Exchange Manager Anchor list 116 * @mp: Exchange Manager associated with this anchor 117 * @match: Routine to determine if this anchor's EM should be used 118 * 119 * When walking the list of anchors the match routine will be called 120 * for each anchor to determine if that EM should be used. The last 121 * anchor in the list will always match to handle any exchanges not 122 * handled by other EMs. The non-default EMs would be added to the 123 * anchor list by HW that provides offloads. 124 */ 125 struct fc_exch_mgr_anchor { 126 struct list_head ema_list; 127 struct fc_exch_mgr *mp; 128 bool (*match)(struct fc_frame *); 129 }; 130 131 static void fc_exch_rrq(struct fc_exch *); 132 static void fc_seq_ls_acc(struct fc_frame *); 133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 134 enum fc_els_rjt_explan); 135 static void fc_exch_els_rec(struct fc_frame *); 136 static void fc_exch_els_rrq(struct fc_frame *); 137 138 /* 139 * Internal implementation notes. 140 * 141 * The exchange manager is one by default in libfc but LLD may choose 142 * to have one per CPU. The sequence manager is one per exchange manager 143 * and currently never separated. 144 * 145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 146 * assigned by the Sequence Initiator that shall be unique for a specific 147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 148 * qualified by exchange ID, which one might think it would be. 149 * In practice this limits the number of open sequences and exchanges to 256 150 * per session. For most targets we could treat this limit as per exchange. 151 * 152 * The exchange and its sequence are freed when the last sequence is received. 153 * It's possible for the remote port to leave an exchange open without 154 * sending any sequences. 155 * 156 * Notes on reference counts: 157 * 158 * Exchanges are reference counted and exchange gets freed when the reference 159 * count becomes zero. 160 * 161 * Timeouts: 162 * Sequences are timed out for E_D_TOV and R_A_TOV. 163 * 164 * Sequence event handling: 165 * 166 * The following events may occur on initiator sequences: 167 * 168 * Send. 169 * For now, the whole thing is sent. 170 * Receive ACK 171 * This applies only to class F. 172 * The sequence is marked complete. 173 * ULP completion. 174 * The upper layer calls fc_exch_done() when done 175 * with exchange and sequence tuple. 176 * RX-inferred completion. 177 * When we receive the next sequence on the same exchange, we can 178 * retire the previous sequence ID. (XXX not implemented). 179 * Timeout. 180 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 181 * E_D_TOV causes abort and calls upper layer response handler 182 * with FC_EX_TIMEOUT error. 183 * Receive RJT 184 * XXX defer. 185 * Send ABTS 186 * On timeout. 187 * 188 * The following events may occur on recipient sequences: 189 * 190 * Receive 191 * Allocate sequence for first frame received. 192 * Hold during receive handler. 193 * Release when final frame received. 194 * Keep status of last N of these for the ELS RES command. XXX TBD. 195 * Receive ABTS 196 * Deallocate sequence 197 * Send RJT 198 * Deallocate 199 * 200 * For now, we neglect conditions where only part of a sequence was 201 * received or transmitted, or where out-of-order receipt is detected. 202 */ 203 204 /* 205 * Locking notes: 206 * 207 * The EM code run in a per-CPU worker thread. 208 * 209 * To protect against concurrency between a worker thread code and timers, 210 * sequence allocation and deallocation must be locked. 211 * - exchange refcnt can be done atomicly without locks. 212 * - sequence allocation must be locked by exch lock. 213 * - If the EM pool lock and ex_lock must be taken at the same time, then the 214 * EM pool lock must be taken before the ex_lock. 215 */ 216 217 /* 218 * opcode names for debugging. 219 */ 220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 221 222 /** 223 * fc_exch_name_lookup() - Lookup name by opcode 224 * @op: Opcode to be looked up 225 * @table: Opcode/name table 226 * @max_index: Index not to be exceeded 227 * 228 * This routine is used to determine a human-readable string identifying 229 * a R_CTL opcode. 230 */ 231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 232 unsigned int max_index) 233 { 234 const char *name = NULL; 235 236 if (op < max_index) 237 name = table[op]; 238 if (!name) 239 name = "unknown"; 240 return name; 241 } 242 243 /** 244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 245 * @op: The opcode to be looked up 246 */ 247 static const char *fc_exch_rctl_name(unsigned int op) 248 { 249 return fc_exch_name_lookup(op, fc_exch_rctl_names, 250 ARRAY_SIZE(fc_exch_rctl_names)); 251 } 252 253 /** 254 * fc_exch_hold() - Increment an exchange's reference count 255 * @ep: Echange to be held 256 */ 257 static inline void fc_exch_hold(struct fc_exch *ep) 258 { 259 atomic_inc(&ep->ex_refcnt); 260 } 261 262 /** 263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 264 * and determine SOF and EOF. 265 * @ep: The exchange to that will use the header 266 * @fp: The frame whose header is to be modified 267 * @f_ctl: F_CTL bits that will be used for the frame header 268 * 269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 270 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 271 */ 272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 273 u32 f_ctl) 274 { 275 struct fc_frame_header *fh = fc_frame_header_get(fp); 276 u16 fill; 277 278 fr_sof(fp) = ep->class; 279 if (ep->seq.cnt) 280 fr_sof(fp) = fc_sof_normal(ep->class); 281 282 if (f_ctl & FC_FC_END_SEQ) { 283 fr_eof(fp) = FC_EOF_T; 284 if (fc_sof_needs_ack(ep->class)) 285 fr_eof(fp) = FC_EOF_N; 286 /* 287 * From F_CTL. 288 * The number of fill bytes to make the length a 4-byte 289 * multiple is the low order 2-bits of the f_ctl. 290 * The fill itself will have been cleared by the frame 291 * allocation. 292 * After this, the length will be even, as expected by 293 * the transport. 294 */ 295 fill = fr_len(fp) & 3; 296 if (fill) { 297 fill = 4 - fill; 298 /* TODO, this may be a problem with fragmented skb */ 299 skb_put(fp_skb(fp), fill); 300 hton24(fh->fh_f_ctl, f_ctl | fill); 301 } 302 } else { 303 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 304 fr_eof(fp) = FC_EOF_N; 305 } 306 307 /* Initialize remaining fh fields from fc_fill_fc_hdr */ 308 fh->fh_ox_id = htons(ep->oxid); 309 fh->fh_rx_id = htons(ep->rxid); 310 fh->fh_seq_id = ep->seq.id; 311 fh->fh_seq_cnt = htons(ep->seq.cnt); 312 } 313 314 /** 315 * fc_exch_release() - Decrement an exchange's reference count 316 * @ep: Exchange to be released 317 * 318 * If the reference count reaches zero and the exchange is complete, 319 * it is freed. 320 */ 321 static void fc_exch_release(struct fc_exch *ep) 322 { 323 struct fc_exch_mgr *mp; 324 325 if (atomic_dec_and_test(&ep->ex_refcnt)) { 326 mp = ep->em; 327 if (ep->destructor) 328 ep->destructor(&ep->seq, ep->arg); 329 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 330 mempool_free(ep, mp->ep_pool); 331 } 332 } 333 334 /** 335 * fc_exch_timer_cancel() - cancel exch timer 336 * @ep: The exchange whose timer to be canceled 337 */ 338 static inline void fc_exch_timer_cancel(struct fc_exch *ep) 339 { 340 if (cancel_delayed_work(&ep->timeout_work)) { 341 FC_EXCH_DBG(ep, "Exchange timer canceled\n"); 342 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 343 } 344 } 345 346 /** 347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 348 * the exchange lock held 349 * @ep: The exchange whose timer will start 350 * @timer_msec: The timeout period 351 * 352 * Used for upper level protocols to time out the exchange. 353 * The timer is cancelled when it fires or when the exchange completes. 354 */ 355 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 356 unsigned int timer_msec) 357 { 358 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 359 return; 360 361 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec); 362 363 fc_exch_hold(ep); /* hold for timer */ 364 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 365 msecs_to_jiffies(timer_msec))) 366 fc_exch_release(ep); 367 } 368 369 /** 370 * fc_exch_timer_set() - Lock the exchange and set the timer 371 * @ep: The exchange whose timer will start 372 * @timer_msec: The timeout period 373 */ 374 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 375 { 376 spin_lock_bh(&ep->ex_lock); 377 fc_exch_timer_set_locked(ep, timer_msec); 378 spin_unlock_bh(&ep->ex_lock); 379 } 380 381 /** 382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 383 * @ep: The exchange that is complete 384 * 385 * Note: May sleep if invoked from outside a response handler. 386 */ 387 static int fc_exch_done_locked(struct fc_exch *ep) 388 { 389 int rc = 1; 390 391 /* 392 * We must check for completion in case there are two threads 393 * tyring to complete this. But the rrq code will reuse the 394 * ep, and in that case we only clear the resp and set it as 395 * complete, so it can be reused by the timer to send the rrq. 396 */ 397 if (ep->state & FC_EX_DONE) 398 return rc; 399 ep->esb_stat |= ESB_ST_COMPLETE; 400 401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 402 ep->state |= FC_EX_DONE; 403 fc_exch_timer_cancel(ep); 404 rc = 0; 405 } 406 return rc; 407 } 408 409 /** 410 * fc_exch_ptr_get() - Return an exchange from an exchange pool 411 * @pool: Exchange Pool to get an exchange from 412 * @index: Index of the exchange within the pool 413 * 414 * Use the index to get an exchange from within an exchange pool. exches 415 * will point to an array of exchange pointers. The index will select 416 * the exchange within the array. 417 */ 418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 419 u16 index) 420 { 421 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 422 return exches[index]; 423 } 424 425 /** 426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 427 * @pool: The pool to assign the exchange to 428 * @index: The index in the pool where the exchange will be assigned 429 * @ep: The exchange to assign to the pool 430 */ 431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 432 struct fc_exch *ep) 433 { 434 ((struct fc_exch **)(pool + 1))[index] = ep; 435 } 436 437 /** 438 * fc_exch_delete() - Delete an exchange 439 * @ep: The exchange to be deleted 440 */ 441 static void fc_exch_delete(struct fc_exch *ep) 442 { 443 struct fc_exch_pool *pool; 444 u16 index; 445 446 pool = ep->pool; 447 spin_lock_bh(&pool->lock); 448 WARN_ON(pool->total_exches <= 0); 449 pool->total_exches--; 450 451 /* update cache of free slot */ 452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 453 if (pool->left == FC_XID_UNKNOWN) 454 pool->left = index; 455 else if (pool->right == FC_XID_UNKNOWN) 456 pool->right = index; 457 else 458 pool->next_index = index; 459 460 fc_exch_ptr_set(pool, index, NULL); 461 list_del(&ep->ex_list); 462 spin_unlock_bh(&pool->lock); 463 fc_exch_release(ep); /* drop hold for exch in mp */ 464 } 465 466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp, 467 struct fc_frame *fp) 468 { 469 struct fc_exch *ep; 470 struct fc_frame_header *fh = fc_frame_header_get(fp); 471 int error = -ENXIO; 472 u32 f_ctl; 473 u8 fh_type = fh->fh_type; 474 475 ep = fc_seq_exch(sp); 476 477 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) { 478 fc_frame_free(fp); 479 goto out; 480 } 481 482 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT)); 483 484 f_ctl = ntoh24(fh->fh_f_ctl); 485 fc_exch_setup_hdr(ep, fp, f_ctl); 486 fr_encaps(fp) = ep->encaps; 487 488 /* 489 * update sequence count if this frame is carrying 490 * multiple FC frames when sequence offload is enabled 491 * by LLD. 492 */ 493 if (fr_max_payload(fp)) 494 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 495 fr_max_payload(fp)); 496 else 497 sp->cnt++; 498 499 /* 500 * Send the frame. 501 */ 502 error = lport->tt.frame_send(lport, fp); 503 504 if (fh_type == FC_TYPE_BLS) 505 goto out; 506 507 /* 508 * Update the exchange and sequence flags, 509 * assuming all frames for the sequence have been sent. 510 * We can only be called to send once for each sequence. 511 */ 512 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 513 if (f_ctl & FC_FC_SEQ_INIT) 514 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 515 out: 516 return error; 517 } 518 519 /** 520 * fc_seq_send() - Send a frame using existing sequence/exchange pair 521 * @lport: The local port that the exchange will be sent on 522 * @sp: The sequence to be sent 523 * @fp: The frame to be sent on the exchange 524 * 525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp) 526 * or indirectly by calling libfc_function_template.frame_send(). 527 */ 528 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, 529 struct fc_frame *fp) 530 { 531 struct fc_exch *ep; 532 int error; 533 ep = fc_seq_exch(sp); 534 spin_lock_bh(&ep->ex_lock); 535 error = fc_seq_send_locked(lport, sp, fp); 536 spin_unlock_bh(&ep->ex_lock); 537 return error; 538 } 539 540 /** 541 * fc_seq_alloc() - Allocate a sequence for a given exchange 542 * @ep: The exchange to allocate a new sequence for 543 * @seq_id: The sequence ID to be used 544 * 545 * We don't support multiple originated sequences on the same exchange. 546 * By implication, any previously originated sequence on this exchange 547 * is complete, and we reallocate the same sequence. 548 */ 549 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 550 { 551 struct fc_seq *sp; 552 553 sp = &ep->seq; 554 sp->ssb_stat = 0; 555 sp->cnt = 0; 556 sp->id = seq_id; 557 return sp; 558 } 559 560 /** 561 * fc_seq_start_next_locked() - Allocate a new sequence on the same 562 * exchange as the supplied sequence 563 * @sp: The sequence/exchange to get a new sequence for 564 */ 565 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 566 { 567 struct fc_exch *ep = fc_seq_exch(sp); 568 569 sp = fc_seq_alloc(ep, ep->seq_id++); 570 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 571 ep->f_ctl, sp->id); 572 return sp; 573 } 574 575 /** 576 * fc_seq_start_next() - Lock the exchange and get a new sequence 577 * for a given sequence/exchange pair 578 * @sp: The sequence/exchange to get a new exchange for 579 */ 580 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 581 { 582 struct fc_exch *ep = fc_seq_exch(sp); 583 584 spin_lock_bh(&ep->ex_lock); 585 sp = fc_seq_start_next_locked(sp); 586 spin_unlock_bh(&ep->ex_lock); 587 588 return sp; 589 } 590 591 /* 592 * Set the response handler for the exchange associated with a sequence. 593 * 594 * Note: May sleep if invoked from outside a response handler. 595 */ 596 static void fc_seq_set_resp(struct fc_seq *sp, 597 void (*resp)(struct fc_seq *, struct fc_frame *, 598 void *), 599 void *arg) 600 { 601 struct fc_exch *ep = fc_seq_exch(sp); 602 DEFINE_WAIT(wait); 603 604 spin_lock_bh(&ep->ex_lock); 605 while (ep->resp_active && ep->resp_task != current) { 606 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE); 607 spin_unlock_bh(&ep->ex_lock); 608 609 schedule(); 610 611 spin_lock_bh(&ep->ex_lock); 612 } 613 finish_wait(&ep->resp_wq, &wait); 614 ep->resp = resp; 615 ep->arg = arg; 616 spin_unlock_bh(&ep->ex_lock); 617 } 618 619 /** 620 * fc_exch_abort_locked() - Abort an exchange 621 * @ep: The exchange to be aborted 622 * @timer_msec: The period of time to wait before aborting 623 * 624 * Locking notes: Called with exch lock held 625 * 626 * Return value: 0 on success else error code 627 */ 628 static int fc_exch_abort_locked(struct fc_exch *ep, 629 unsigned int timer_msec) 630 { 631 struct fc_seq *sp; 632 struct fc_frame *fp; 633 int error; 634 635 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 636 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) 637 return -ENXIO; 638 639 /* 640 * Send the abort on a new sequence if possible. 641 */ 642 sp = fc_seq_start_next_locked(&ep->seq); 643 if (!sp) 644 return -ENOMEM; 645 646 if (timer_msec) 647 fc_exch_timer_set_locked(ep, timer_msec); 648 649 if (ep->sid) { 650 /* 651 * Send an abort for the sequence that timed out. 652 */ 653 fp = fc_frame_alloc(ep->lp, 0); 654 if (fp) { 655 ep->esb_stat |= ESB_ST_SEQ_INIT; 656 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 657 FC_TYPE_BLS, FC_FC_END_SEQ | 658 FC_FC_SEQ_INIT, 0); 659 error = fc_seq_send_locked(ep->lp, sp, fp); 660 } else { 661 error = -ENOBUFS; 662 } 663 } else { 664 /* 665 * If not logged into the fabric, don't send ABTS but leave 666 * sequence active until next timeout. 667 */ 668 error = 0; 669 } 670 ep->esb_stat |= ESB_ST_ABNORMAL; 671 return error; 672 } 673 674 /** 675 * fc_seq_exch_abort() - Abort an exchange and sequence 676 * @req_sp: The sequence to be aborted 677 * @timer_msec: The period of time to wait before aborting 678 * 679 * Generally called because of a timeout or an abort from the upper layer. 680 * 681 * Return value: 0 on success else error code 682 */ 683 static int fc_seq_exch_abort(const struct fc_seq *req_sp, 684 unsigned int timer_msec) 685 { 686 struct fc_exch *ep; 687 int error; 688 689 ep = fc_seq_exch(req_sp); 690 spin_lock_bh(&ep->ex_lock); 691 error = fc_exch_abort_locked(ep, timer_msec); 692 spin_unlock_bh(&ep->ex_lock); 693 return error; 694 } 695 696 /** 697 * fc_invoke_resp() - invoke ep->resp() 698 * 699 * Notes: 700 * It is assumed that after initialization finished (this means the 701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are 702 * modified only via fc_seq_set_resp(). This guarantees that none of these 703 * two variables changes if ep->resp_active > 0. 704 * 705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when 706 * this function is invoked, the first spin_lock_bh() call in this function 707 * will wait until fc_seq_set_resp() has finished modifying these variables. 708 * 709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that 710 * ep->resp() won't be invoked after fc_exch_done() has returned. 711 * 712 * The response handler itself may invoke fc_exch_done(), which will clear the 713 * ep->resp pointer. 714 * 715 * Return value: 716 * Returns true if and only if ep->resp has been invoked. 717 */ 718 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp, 719 struct fc_frame *fp) 720 { 721 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 722 void *arg; 723 bool res = false; 724 725 spin_lock_bh(&ep->ex_lock); 726 ep->resp_active++; 727 if (ep->resp_task != current) 728 ep->resp_task = !ep->resp_task ? current : NULL; 729 resp = ep->resp; 730 arg = ep->arg; 731 spin_unlock_bh(&ep->ex_lock); 732 733 if (resp) { 734 resp(sp, fp, arg); 735 res = true; 736 } 737 738 spin_lock_bh(&ep->ex_lock); 739 if (--ep->resp_active == 0) 740 ep->resp_task = NULL; 741 spin_unlock_bh(&ep->ex_lock); 742 743 if (ep->resp_active == 0) 744 wake_up(&ep->resp_wq); 745 746 return res; 747 } 748 749 /** 750 * fc_exch_timeout() - Handle exchange timer expiration 751 * @work: The work_struct identifying the exchange that timed out 752 */ 753 static void fc_exch_timeout(struct work_struct *work) 754 { 755 struct fc_exch *ep = container_of(work, struct fc_exch, 756 timeout_work.work); 757 struct fc_seq *sp = &ep->seq; 758 u32 e_stat; 759 int rc = 1; 760 761 FC_EXCH_DBG(ep, "Exchange timed out\n"); 762 763 spin_lock_bh(&ep->ex_lock); 764 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 765 goto unlock; 766 767 e_stat = ep->esb_stat; 768 if (e_stat & ESB_ST_COMPLETE) { 769 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 770 spin_unlock_bh(&ep->ex_lock); 771 if (e_stat & ESB_ST_REC_QUAL) 772 fc_exch_rrq(ep); 773 goto done; 774 } else { 775 if (e_stat & ESB_ST_ABNORMAL) 776 rc = fc_exch_done_locked(ep); 777 spin_unlock_bh(&ep->ex_lock); 778 if (!rc) 779 fc_exch_delete(ep); 780 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT)); 781 fc_seq_set_resp(sp, NULL, ep->arg); 782 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 783 goto done; 784 } 785 unlock: 786 spin_unlock_bh(&ep->ex_lock); 787 done: 788 /* 789 * This release matches the hold taken when the timer was set. 790 */ 791 fc_exch_release(ep); 792 } 793 794 /** 795 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 796 * @lport: The local port that the exchange is for 797 * @mp: The exchange manager that will allocate the exchange 798 * 799 * Returns pointer to allocated fc_exch with exch lock held. 800 */ 801 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 802 struct fc_exch_mgr *mp) 803 { 804 struct fc_exch *ep; 805 unsigned int cpu; 806 u16 index; 807 struct fc_exch_pool *pool; 808 809 /* allocate memory for exchange */ 810 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 811 if (!ep) { 812 atomic_inc(&mp->stats.no_free_exch); 813 goto out; 814 } 815 memset(ep, 0, sizeof(*ep)); 816 817 cpu = get_cpu(); 818 pool = per_cpu_ptr(mp->pool, cpu); 819 spin_lock_bh(&pool->lock); 820 put_cpu(); 821 822 /* peek cache of free slot */ 823 if (pool->left != FC_XID_UNKNOWN) { 824 index = pool->left; 825 pool->left = FC_XID_UNKNOWN; 826 goto hit; 827 } 828 if (pool->right != FC_XID_UNKNOWN) { 829 index = pool->right; 830 pool->right = FC_XID_UNKNOWN; 831 goto hit; 832 } 833 834 index = pool->next_index; 835 /* allocate new exch from pool */ 836 while (fc_exch_ptr_get(pool, index)) { 837 index = index == mp->pool_max_index ? 0 : index + 1; 838 if (index == pool->next_index) 839 goto err; 840 } 841 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 842 hit: 843 fc_exch_hold(ep); /* hold for exch in mp */ 844 spin_lock_init(&ep->ex_lock); 845 /* 846 * Hold exch lock for caller to prevent fc_exch_reset() 847 * from releasing exch while fc_exch_alloc() caller is 848 * still working on exch. 849 */ 850 spin_lock_bh(&ep->ex_lock); 851 852 fc_exch_ptr_set(pool, index, ep); 853 list_add_tail(&ep->ex_list, &pool->ex_list); 854 fc_seq_alloc(ep, ep->seq_id++); 855 pool->total_exches++; 856 spin_unlock_bh(&pool->lock); 857 858 /* 859 * update exchange 860 */ 861 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 862 ep->em = mp; 863 ep->pool = pool; 864 ep->lp = lport; 865 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 866 ep->rxid = FC_XID_UNKNOWN; 867 ep->class = mp->class; 868 ep->resp_active = 0; 869 init_waitqueue_head(&ep->resp_wq); 870 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 871 out: 872 return ep; 873 err: 874 spin_unlock_bh(&pool->lock); 875 atomic_inc(&mp->stats.no_free_exch_xid); 876 mempool_free(ep, mp->ep_pool); 877 return NULL; 878 } 879 880 /** 881 * fc_exch_alloc() - Allocate an exchange from an EM on a 882 * local port's list of EMs. 883 * @lport: The local port that will own the exchange 884 * @fp: The FC frame that the exchange will be for 885 * 886 * This function walks the list of exchange manager(EM) 887 * anchors to select an EM for a new exchange allocation. The 888 * EM is selected when a NULL match function pointer is encountered 889 * or when a call to a match function returns true. 890 */ 891 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 892 struct fc_frame *fp) 893 { 894 struct fc_exch_mgr_anchor *ema; 895 896 list_for_each_entry(ema, &lport->ema_list, ema_list) 897 if (!ema->match || ema->match(fp)) 898 return fc_exch_em_alloc(lport, ema->mp); 899 return NULL; 900 } 901 902 /** 903 * fc_exch_find() - Lookup and hold an exchange 904 * @mp: The exchange manager to lookup the exchange from 905 * @xid: The XID of the exchange to look up 906 */ 907 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 908 { 909 struct fc_exch_pool *pool; 910 struct fc_exch *ep = NULL; 911 u16 cpu = xid & fc_cpu_mask; 912 913 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { 914 printk_ratelimited(KERN_ERR 915 "libfc: lookup request for XID = %d, " 916 "indicates invalid CPU %d\n", xid, cpu); 917 return NULL; 918 } 919 920 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 921 pool = per_cpu_ptr(mp->pool, cpu); 922 spin_lock_bh(&pool->lock); 923 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 924 if (ep) { 925 WARN_ON(ep->xid != xid); 926 fc_exch_hold(ep); 927 } 928 spin_unlock_bh(&pool->lock); 929 } 930 return ep; 931 } 932 933 934 /** 935 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 936 * the memory allocated for the related objects may be freed. 937 * @sp: The sequence that has completed 938 * 939 * Note: May sleep if invoked from outside a response handler. 940 */ 941 static void fc_exch_done(struct fc_seq *sp) 942 { 943 struct fc_exch *ep = fc_seq_exch(sp); 944 int rc; 945 946 spin_lock_bh(&ep->ex_lock); 947 rc = fc_exch_done_locked(ep); 948 spin_unlock_bh(&ep->ex_lock); 949 950 fc_seq_set_resp(sp, NULL, ep->arg); 951 if (!rc) 952 fc_exch_delete(ep); 953 } 954 955 /** 956 * fc_exch_resp() - Allocate a new exchange for a response frame 957 * @lport: The local port that the exchange was for 958 * @mp: The exchange manager to allocate the exchange from 959 * @fp: The response frame 960 * 961 * Sets the responder ID in the frame header. 962 */ 963 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 964 struct fc_exch_mgr *mp, 965 struct fc_frame *fp) 966 { 967 struct fc_exch *ep; 968 struct fc_frame_header *fh; 969 970 ep = fc_exch_alloc(lport, fp); 971 if (ep) { 972 ep->class = fc_frame_class(fp); 973 974 /* 975 * Set EX_CTX indicating we're responding on this exchange. 976 */ 977 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 978 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 979 fh = fc_frame_header_get(fp); 980 ep->sid = ntoh24(fh->fh_d_id); 981 ep->did = ntoh24(fh->fh_s_id); 982 ep->oid = ep->did; 983 984 /* 985 * Allocated exchange has placed the XID in the 986 * originator field. Move it to the responder field, 987 * and set the originator XID from the frame. 988 */ 989 ep->rxid = ep->xid; 990 ep->oxid = ntohs(fh->fh_ox_id); 991 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 992 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 993 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 994 995 fc_exch_hold(ep); /* hold for caller */ 996 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 997 } 998 return ep; 999 } 1000 1001 /** 1002 * fc_seq_lookup_recip() - Find a sequence where the other end 1003 * originated the sequence 1004 * @lport: The local port that the frame was sent to 1005 * @mp: The Exchange Manager to lookup the exchange from 1006 * @fp: The frame associated with the sequence we're looking for 1007 * 1008 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 1009 * on the ep that should be released by the caller. 1010 */ 1011 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 1012 struct fc_exch_mgr *mp, 1013 struct fc_frame *fp) 1014 { 1015 struct fc_frame_header *fh = fc_frame_header_get(fp); 1016 struct fc_exch *ep = NULL; 1017 struct fc_seq *sp = NULL; 1018 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 1019 u32 f_ctl; 1020 u16 xid; 1021 1022 f_ctl = ntoh24(fh->fh_f_ctl); 1023 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 1024 1025 /* 1026 * Lookup or create the exchange if we will be creating the sequence. 1027 */ 1028 if (f_ctl & FC_FC_EX_CTX) { 1029 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 1030 ep = fc_exch_find(mp, xid); 1031 if (!ep) { 1032 atomic_inc(&mp->stats.xid_not_found); 1033 reject = FC_RJT_OX_ID; 1034 goto out; 1035 } 1036 if (ep->rxid == FC_XID_UNKNOWN) 1037 ep->rxid = ntohs(fh->fh_rx_id); 1038 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 1039 reject = FC_RJT_OX_ID; 1040 goto rel; 1041 } 1042 } else { 1043 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 1044 1045 /* 1046 * Special case for MDS issuing an ELS TEST with a 1047 * bad rxid of 0. 1048 * XXX take this out once we do the proper reject. 1049 */ 1050 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 1051 fc_frame_payload_op(fp) == ELS_TEST) { 1052 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 1053 xid = FC_XID_UNKNOWN; 1054 } 1055 1056 /* 1057 * new sequence - find the exchange 1058 */ 1059 ep = fc_exch_find(mp, xid); 1060 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 1061 if (ep) { 1062 atomic_inc(&mp->stats.xid_busy); 1063 reject = FC_RJT_RX_ID; 1064 goto rel; 1065 } 1066 ep = fc_exch_resp(lport, mp, fp); 1067 if (!ep) { 1068 reject = FC_RJT_EXCH_EST; /* XXX */ 1069 goto out; 1070 } 1071 xid = ep->xid; /* get our XID */ 1072 } else if (!ep) { 1073 atomic_inc(&mp->stats.xid_not_found); 1074 reject = FC_RJT_RX_ID; /* XID not found */ 1075 goto out; 1076 } 1077 } 1078 1079 spin_lock_bh(&ep->ex_lock); 1080 /* 1081 * At this point, we have the exchange held. 1082 * Find or create the sequence. 1083 */ 1084 if (fc_sof_is_init(fr_sof(fp))) { 1085 sp = &ep->seq; 1086 sp->ssb_stat |= SSB_ST_RESP; 1087 sp->id = fh->fh_seq_id; 1088 } else { 1089 sp = &ep->seq; 1090 if (sp->id != fh->fh_seq_id) { 1091 atomic_inc(&mp->stats.seq_not_found); 1092 if (f_ctl & FC_FC_END_SEQ) { 1093 /* 1094 * Update sequence_id based on incoming last 1095 * frame of sequence exchange. This is needed 1096 * for FC target where DDP has been used 1097 * on target where, stack is indicated only 1098 * about last frame's (payload _header) header. 1099 * Whereas "seq_id" which is part of 1100 * frame_header is allocated by initiator 1101 * which is totally different from "seq_id" 1102 * allocated when XFER_RDY was sent by target. 1103 * To avoid false -ve which results into not 1104 * sending RSP, hence write request on other 1105 * end never finishes. 1106 */ 1107 sp->ssb_stat |= SSB_ST_RESP; 1108 sp->id = fh->fh_seq_id; 1109 } else { 1110 spin_unlock_bh(&ep->ex_lock); 1111 1112 /* sequence/exch should exist */ 1113 reject = FC_RJT_SEQ_ID; 1114 goto rel; 1115 } 1116 } 1117 } 1118 WARN_ON(ep != fc_seq_exch(sp)); 1119 1120 if (f_ctl & FC_FC_SEQ_INIT) 1121 ep->esb_stat |= ESB_ST_SEQ_INIT; 1122 spin_unlock_bh(&ep->ex_lock); 1123 1124 fr_seq(fp) = sp; 1125 out: 1126 return reject; 1127 rel: 1128 fc_exch_done(&ep->seq); 1129 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1130 return reject; 1131 } 1132 1133 /** 1134 * fc_seq_lookup_orig() - Find a sequence where this end 1135 * originated the sequence 1136 * @mp: The Exchange Manager to lookup the exchange from 1137 * @fp: The frame associated with the sequence we're looking for 1138 * 1139 * Does not hold the sequence for the caller. 1140 */ 1141 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1142 struct fc_frame *fp) 1143 { 1144 struct fc_frame_header *fh = fc_frame_header_get(fp); 1145 struct fc_exch *ep; 1146 struct fc_seq *sp = NULL; 1147 u32 f_ctl; 1148 u16 xid; 1149 1150 f_ctl = ntoh24(fh->fh_f_ctl); 1151 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1152 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1153 ep = fc_exch_find(mp, xid); 1154 if (!ep) 1155 return NULL; 1156 if (ep->seq.id == fh->fh_seq_id) { 1157 /* 1158 * Save the RX_ID if we didn't previously know it. 1159 */ 1160 sp = &ep->seq; 1161 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1162 ep->rxid == FC_XID_UNKNOWN) { 1163 ep->rxid = ntohs(fh->fh_rx_id); 1164 } 1165 } 1166 fc_exch_release(ep); 1167 return sp; 1168 } 1169 1170 /** 1171 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1172 * @ep: The exchange to set the addresses for 1173 * @orig_id: The originator's ID 1174 * @resp_id: The responder's ID 1175 * 1176 * Note this must be done before the first sequence of the exchange is sent. 1177 */ 1178 static void fc_exch_set_addr(struct fc_exch *ep, 1179 u32 orig_id, u32 resp_id) 1180 { 1181 ep->oid = orig_id; 1182 if (ep->esb_stat & ESB_ST_RESP) { 1183 ep->sid = resp_id; 1184 ep->did = orig_id; 1185 } else { 1186 ep->sid = orig_id; 1187 ep->did = resp_id; 1188 } 1189 } 1190 1191 /** 1192 * fc_seq_els_rsp_send() - Send an ELS response using information from 1193 * the existing sequence/exchange. 1194 * @fp: The received frame 1195 * @els_cmd: The ELS command to be sent 1196 * @els_data: The ELS data to be sent 1197 * 1198 * The received frame is not freed. 1199 */ 1200 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1201 struct fc_seq_els_data *els_data) 1202 { 1203 switch (els_cmd) { 1204 case ELS_LS_RJT: 1205 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1206 break; 1207 case ELS_LS_ACC: 1208 fc_seq_ls_acc(fp); 1209 break; 1210 case ELS_RRQ: 1211 fc_exch_els_rrq(fp); 1212 break; 1213 case ELS_REC: 1214 fc_exch_els_rec(fp); 1215 break; 1216 default: 1217 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1218 } 1219 } 1220 1221 /** 1222 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1223 * @sp: The sequence that is to be sent 1224 * @fp: The frame that will be sent on the sequence 1225 * @rctl: The R_CTL information to be sent 1226 * @fh_type: The frame header type 1227 */ 1228 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1229 enum fc_rctl rctl, enum fc_fh_type fh_type) 1230 { 1231 u32 f_ctl; 1232 struct fc_exch *ep = fc_seq_exch(sp); 1233 1234 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1235 f_ctl |= ep->f_ctl; 1236 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1237 fc_seq_send_locked(ep->lp, sp, fp); 1238 } 1239 1240 /** 1241 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1242 * @sp: The sequence to send the ACK on 1243 * @rx_fp: The received frame that is being acknoledged 1244 * 1245 * Send ACK_1 (or equiv.) indicating we received something. 1246 */ 1247 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1248 { 1249 struct fc_frame *fp; 1250 struct fc_frame_header *rx_fh; 1251 struct fc_frame_header *fh; 1252 struct fc_exch *ep = fc_seq_exch(sp); 1253 struct fc_lport *lport = ep->lp; 1254 unsigned int f_ctl; 1255 1256 /* 1257 * Don't send ACKs for class 3. 1258 */ 1259 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1260 fp = fc_frame_alloc(lport, 0); 1261 if (!fp) 1262 return; 1263 1264 fh = fc_frame_header_get(fp); 1265 fh->fh_r_ctl = FC_RCTL_ACK_1; 1266 fh->fh_type = FC_TYPE_BLS; 1267 1268 /* 1269 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1270 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1271 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1272 * Last ACK uses bits 7-6 (continue sequence), 1273 * bits 5-4 are meaningful (what kind of ACK to use). 1274 */ 1275 rx_fh = fc_frame_header_get(rx_fp); 1276 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1277 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1278 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1279 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1280 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1281 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1282 hton24(fh->fh_f_ctl, f_ctl); 1283 1284 fc_exch_setup_hdr(ep, fp, f_ctl); 1285 fh->fh_seq_id = rx_fh->fh_seq_id; 1286 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1287 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1288 1289 fr_sof(fp) = fr_sof(rx_fp); 1290 if (f_ctl & FC_FC_END_SEQ) 1291 fr_eof(fp) = FC_EOF_T; 1292 else 1293 fr_eof(fp) = FC_EOF_N; 1294 1295 lport->tt.frame_send(lport, fp); 1296 } 1297 } 1298 1299 /** 1300 * fc_exch_send_ba_rjt() - Send BLS Reject 1301 * @rx_fp: The frame being rejected 1302 * @reason: The reason the frame is being rejected 1303 * @explan: The explanation for the rejection 1304 * 1305 * This is for rejecting BA_ABTS only. 1306 */ 1307 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1308 enum fc_ba_rjt_reason reason, 1309 enum fc_ba_rjt_explan explan) 1310 { 1311 struct fc_frame *fp; 1312 struct fc_frame_header *rx_fh; 1313 struct fc_frame_header *fh; 1314 struct fc_ba_rjt *rp; 1315 struct fc_lport *lport; 1316 unsigned int f_ctl; 1317 1318 lport = fr_dev(rx_fp); 1319 fp = fc_frame_alloc(lport, sizeof(*rp)); 1320 if (!fp) 1321 return; 1322 fh = fc_frame_header_get(fp); 1323 rx_fh = fc_frame_header_get(rx_fp); 1324 1325 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1326 1327 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1328 rp->br_reason = reason; 1329 rp->br_explan = explan; 1330 1331 /* 1332 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1333 */ 1334 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1335 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1336 fh->fh_ox_id = rx_fh->fh_ox_id; 1337 fh->fh_rx_id = rx_fh->fh_rx_id; 1338 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1339 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1340 fh->fh_type = FC_TYPE_BLS; 1341 1342 /* 1343 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1344 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1345 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1346 * Last ACK uses bits 7-6 (continue sequence), 1347 * bits 5-4 are meaningful (what kind of ACK to use). 1348 * Always set LAST_SEQ, END_SEQ. 1349 */ 1350 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1351 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1352 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1353 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1354 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1355 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1356 f_ctl &= ~FC_FC_FIRST_SEQ; 1357 hton24(fh->fh_f_ctl, f_ctl); 1358 1359 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1360 fr_eof(fp) = FC_EOF_T; 1361 if (fc_sof_needs_ack(fr_sof(fp))) 1362 fr_eof(fp) = FC_EOF_N; 1363 1364 lport->tt.frame_send(lport, fp); 1365 } 1366 1367 /** 1368 * fc_exch_recv_abts() - Handle an incoming ABTS 1369 * @ep: The exchange the abort was on 1370 * @rx_fp: The ABTS frame 1371 * 1372 * This would be for target mode usually, but could be due to lost 1373 * FCP transfer ready, confirm or RRQ. We always handle this as an 1374 * exchange abort, ignoring the parameter. 1375 */ 1376 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1377 { 1378 struct fc_frame *fp; 1379 struct fc_ba_acc *ap; 1380 struct fc_frame_header *fh; 1381 struct fc_seq *sp; 1382 1383 if (!ep) 1384 goto reject; 1385 1386 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1387 if (!fp) 1388 goto free; 1389 1390 spin_lock_bh(&ep->ex_lock); 1391 if (ep->esb_stat & ESB_ST_COMPLETE) { 1392 spin_unlock_bh(&ep->ex_lock); 1393 1394 fc_frame_free(fp); 1395 goto reject; 1396 } 1397 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 1398 ep->esb_stat |= ESB_ST_REC_QUAL; 1399 fc_exch_hold(ep); /* hold for REC_QUAL */ 1400 } 1401 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1402 fh = fc_frame_header_get(fp); 1403 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1404 memset(ap, 0, sizeof(*ap)); 1405 sp = &ep->seq; 1406 ap->ba_high_seq_cnt = htons(0xffff); 1407 if (sp->ssb_stat & SSB_ST_RESP) { 1408 ap->ba_seq_id = sp->id; 1409 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1410 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1411 ap->ba_low_seq_cnt = htons(sp->cnt); 1412 } 1413 sp = fc_seq_start_next_locked(sp); 1414 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1415 ep->esb_stat |= ESB_ST_ABNORMAL; 1416 spin_unlock_bh(&ep->ex_lock); 1417 1418 free: 1419 fc_frame_free(rx_fp); 1420 return; 1421 1422 reject: 1423 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1424 goto free; 1425 } 1426 1427 /** 1428 * fc_seq_assign() - Assign exchange and sequence for incoming request 1429 * @lport: The local port that received the request 1430 * @fp: The request frame 1431 * 1432 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1433 * A reference will be held on the exchange/sequence for the caller, which 1434 * must call fc_seq_release(). 1435 */ 1436 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1437 { 1438 struct fc_exch_mgr_anchor *ema; 1439 1440 WARN_ON(lport != fr_dev(fp)); 1441 WARN_ON(fr_seq(fp)); 1442 fr_seq(fp) = NULL; 1443 1444 list_for_each_entry(ema, &lport->ema_list, ema_list) 1445 if ((!ema->match || ema->match(fp)) && 1446 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1447 break; 1448 return fr_seq(fp); 1449 } 1450 1451 /** 1452 * fc_seq_release() - Release the hold 1453 * @sp: The sequence. 1454 */ 1455 static void fc_seq_release(struct fc_seq *sp) 1456 { 1457 fc_exch_release(fc_seq_exch(sp)); 1458 } 1459 1460 /** 1461 * fc_exch_recv_req() - Handler for an incoming request 1462 * @lport: The local port that received the request 1463 * @mp: The EM that the exchange is on 1464 * @fp: The request frame 1465 * 1466 * This is used when the other end is originating the exchange 1467 * and the sequence. 1468 */ 1469 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1470 struct fc_frame *fp) 1471 { 1472 struct fc_frame_header *fh = fc_frame_header_get(fp); 1473 struct fc_seq *sp = NULL; 1474 struct fc_exch *ep = NULL; 1475 enum fc_pf_rjt_reason reject; 1476 1477 /* We can have the wrong fc_lport at this point with NPIV, which is a 1478 * problem now that we know a new exchange needs to be allocated 1479 */ 1480 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1481 if (!lport) { 1482 fc_frame_free(fp); 1483 return; 1484 } 1485 fr_dev(fp) = lport; 1486 1487 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1488 1489 /* 1490 * If the RX_ID is 0xffff, don't allocate an exchange. 1491 * The upper-level protocol may request one later, if needed. 1492 */ 1493 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1494 return lport->tt.lport_recv(lport, fp); 1495 1496 reject = fc_seq_lookup_recip(lport, mp, fp); 1497 if (reject == FC_RJT_NONE) { 1498 sp = fr_seq(fp); /* sequence will be held */ 1499 ep = fc_seq_exch(sp); 1500 fc_seq_send_ack(sp, fp); 1501 ep->encaps = fr_encaps(fp); 1502 1503 /* 1504 * Call the receive function. 1505 * 1506 * The receive function may allocate a new sequence 1507 * over the old one, so we shouldn't change the 1508 * sequence after this. 1509 * 1510 * The frame will be freed by the receive function. 1511 * If new exch resp handler is valid then call that 1512 * first. 1513 */ 1514 if (!fc_invoke_resp(ep, sp, fp)) 1515 lport->tt.lport_recv(lport, fp); 1516 fc_exch_release(ep); /* release from lookup */ 1517 } else { 1518 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1519 reject); 1520 fc_frame_free(fp); 1521 } 1522 } 1523 1524 /** 1525 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1526 * end is the originator of the sequence that is a 1527 * response to our initial exchange 1528 * @mp: The EM that the exchange is on 1529 * @fp: The response frame 1530 */ 1531 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1532 { 1533 struct fc_frame_header *fh = fc_frame_header_get(fp); 1534 struct fc_seq *sp; 1535 struct fc_exch *ep; 1536 enum fc_sof sof; 1537 u32 f_ctl; 1538 int rc; 1539 1540 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1541 if (!ep) { 1542 atomic_inc(&mp->stats.xid_not_found); 1543 goto out; 1544 } 1545 if (ep->esb_stat & ESB_ST_COMPLETE) { 1546 atomic_inc(&mp->stats.xid_not_found); 1547 goto rel; 1548 } 1549 if (ep->rxid == FC_XID_UNKNOWN) 1550 ep->rxid = ntohs(fh->fh_rx_id); 1551 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1552 atomic_inc(&mp->stats.xid_not_found); 1553 goto rel; 1554 } 1555 if (ep->did != ntoh24(fh->fh_s_id) && 1556 ep->did != FC_FID_FLOGI) { 1557 atomic_inc(&mp->stats.xid_not_found); 1558 goto rel; 1559 } 1560 sof = fr_sof(fp); 1561 sp = &ep->seq; 1562 if (fc_sof_is_init(sof)) { 1563 sp->ssb_stat |= SSB_ST_RESP; 1564 sp->id = fh->fh_seq_id; 1565 } else if (sp->id != fh->fh_seq_id) { 1566 atomic_inc(&mp->stats.seq_not_found); 1567 goto rel; 1568 } 1569 1570 f_ctl = ntoh24(fh->fh_f_ctl); 1571 fr_seq(fp) = sp; 1572 1573 spin_lock_bh(&ep->ex_lock); 1574 if (f_ctl & FC_FC_SEQ_INIT) 1575 ep->esb_stat |= ESB_ST_SEQ_INIT; 1576 spin_unlock_bh(&ep->ex_lock); 1577 1578 if (fc_sof_needs_ack(sof)) 1579 fc_seq_send_ack(sp, fp); 1580 1581 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1582 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1583 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1584 spin_lock_bh(&ep->ex_lock); 1585 rc = fc_exch_done_locked(ep); 1586 WARN_ON(fc_seq_exch(sp) != ep); 1587 spin_unlock_bh(&ep->ex_lock); 1588 if (!rc) 1589 fc_exch_delete(ep); 1590 } 1591 1592 /* 1593 * Call the receive function. 1594 * The sequence is held (has a refcnt) for us, 1595 * but not for the receive function. 1596 * 1597 * The receive function may allocate a new sequence 1598 * over the old one, so we shouldn't change the 1599 * sequence after this. 1600 * 1601 * The frame will be freed by the receive function. 1602 * If new exch resp handler is valid then call that 1603 * first. 1604 */ 1605 if (!fc_invoke_resp(ep, sp, fp)) 1606 fc_frame_free(fp); 1607 1608 fc_exch_release(ep); 1609 return; 1610 rel: 1611 fc_exch_release(ep); 1612 out: 1613 fc_frame_free(fp); 1614 } 1615 1616 /** 1617 * fc_exch_recv_resp() - Handler for a sequence where other end is 1618 * responding to our sequence 1619 * @mp: The EM that the exchange is on 1620 * @fp: The response frame 1621 */ 1622 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1623 { 1624 struct fc_seq *sp; 1625 1626 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1627 1628 if (!sp) 1629 atomic_inc(&mp->stats.xid_not_found); 1630 else 1631 atomic_inc(&mp->stats.non_bls_resp); 1632 1633 fc_frame_free(fp); 1634 } 1635 1636 /** 1637 * fc_exch_abts_resp() - Handler for a response to an ABT 1638 * @ep: The exchange that the frame is on 1639 * @fp: The response frame 1640 * 1641 * This response would be to an ABTS cancelling an exchange or sequence. 1642 * The response can be either BA_ACC or BA_RJT 1643 */ 1644 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1645 { 1646 struct fc_frame_header *fh; 1647 struct fc_ba_acc *ap; 1648 struct fc_seq *sp; 1649 u16 low; 1650 u16 high; 1651 int rc = 1, has_rec = 0; 1652 1653 fh = fc_frame_header_get(fp); 1654 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1655 fc_exch_rctl_name(fh->fh_r_ctl)); 1656 1657 if (cancel_delayed_work_sync(&ep->timeout_work)) { 1658 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n"); 1659 fc_exch_release(ep); /* release from pending timer hold */ 1660 } 1661 1662 spin_lock_bh(&ep->ex_lock); 1663 switch (fh->fh_r_ctl) { 1664 case FC_RCTL_BA_ACC: 1665 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1666 if (!ap) 1667 break; 1668 1669 /* 1670 * Decide whether to establish a Recovery Qualifier. 1671 * We do this if there is a non-empty SEQ_CNT range and 1672 * SEQ_ID is the same as the one we aborted. 1673 */ 1674 low = ntohs(ap->ba_low_seq_cnt); 1675 high = ntohs(ap->ba_high_seq_cnt); 1676 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1677 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1678 ap->ba_seq_id == ep->seq_id) && low != high) { 1679 ep->esb_stat |= ESB_ST_REC_QUAL; 1680 fc_exch_hold(ep); /* hold for recovery qualifier */ 1681 has_rec = 1; 1682 } 1683 break; 1684 case FC_RCTL_BA_RJT: 1685 break; 1686 default: 1687 break; 1688 } 1689 1690 /* do we need to do some other checks here. Can we reuse more of 1691 * fc_exch_recv_seq_resp 1692 */ 1693 sp = &ep->seq; 1694 /* 1695 * do we want to check END_SEQ as well as LAST_SEQ here? 1696 */ 1697 if (ep->fh_type != FC_TYPE_FCP && 1698 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1699 rc = fc_exch_done_locked(ep); 1700 spin_unlock_bh(&ep->ex_lock); 1701 1702 fc_exch_hold(ep); 1703 if (!rc) 1704 fc_exch_delete(ep); 1705 if (!fc_invoke_resp(ep, sp, fp)) 1706 fc_frame_free(fp); 1707 if (has_rec) 1708 fc_exch_timer_set(ep, ep->r_a_tov); 1709 fc_exch_release(ep); 1710 } 1711 1712 /** 1713 * fc_exch_recv_bls() - Handler for a BLS sequence 1714 * @mp: The EM that the exchange is on 1715 * @fp: The request frame 1716 * 1717 * The BLS frame is always a sequence initiated by the remote side. 1718 * We may be either the originator or recipient of the exchange. 1719 */ 1720 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1721 { 1722 struct fc_frame_header *fh; 1723 struct fc_exch *ep; 1724 u32 f_ctl; 1725 1726 fh = fc_frame_header_get(fp); 1727 f_ctl = ntoh24(fh->fh_f_ctl); 1728 fr_seq(fp) = NULL; 1729 1730 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1731 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1732 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1733 spin_lock_bh(&ep->ex_lock); 1734 ep->esb_stat |= ESB_ST_SEQ_INIT; 1735 spin_unlock_bh(&ep->ex_lock); 1736 } 1737 if (f_ctl & FC_FC_SEQ_CTX) { 1738 /* 1739 * A response to a sequence we initiated. 1740 * This should only be ACKs for class 2 or F. 1741 */ 1742 switch (fh->fh_r_ctl) { 1743 case FC_RCTL_ACK_1: 1744 case FC_RCTL_ACK_0: 1745 break; 1746 default: 1747 if (ep) 1748 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n", 1749 fh->fh_r_ctl, 1750 fc_exch_rctl_name(fh->fh_r_ctl)); 1751 break; 1752 } 1753 fc_frame_free(fp); 1754 } else { 1755 switch (fh->fh_r_ctl) { 1756 case FC_RCTL_BA_RJT: 1757 case FC_RCTL_BA_ACC: 1758 if (ep) 1759 fc_exch_abts_resp(ep, fp); 1760 else 1761 fc_frame_free(fp); 1762 break; 1763 case FC_RCTL_BA_ABTS: 1764 fc_exch_recv_abts(ep, fp); 1765 break; 1766 default: /* ignore junk */ 1767 fc_frame_free(fp); 1768 break; 1769 } 1770 } 1771 if (ep) 1772 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1773 } 1774 1775 /** 1776 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1777 * @rx_fp: The received frame, not freed here. 1778 * 1779 * If this fails due to allocation or transmit congestion, assume the 1780 * originator will repeat the sequence. 1781 */ 1782 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1783 { 1784 struct fc_lport *lport; 1785 struct fc_els_ls_acc *acc; 1786 struct fc_frame *fp; 1787 1788 lport = fr_dev(rx_fp); 1789 fp = fc_frame_alloc(lport, sizeof(*acc)); 1790 if (!fp) 1791 return; 1792 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1793 memset(acc, 0, sizeof(*acc)); 1794 acc->la_cmd = ELS_LS_ACC; 1795 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1796 lport->tt.frame_send(lport, fp); 1797 } 1798 1799 /** 1800 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1801 * @rx_fp: The received frame, not freed here. 1802 * @reason: The reason the sequence is being rejected 1803 * @explan: The explanation for the rejection 1804 * 1805 * If this fails due to allocation or transmit congestion, assume the 1806 * originator will repeat the sequence. 1807 */ 1808 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1809 enum fc_els_rjt_explan explan) 1810 { 1811 struct fc_lport *lport; 1812 struct fc_els_ls_rjt *rjt; 1813 struct fc_frame *fp; 1814 1815 lport = fr_dev(rx_fp); 1816 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1817 if (!fp) 1818 return; 1819 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1820 memset(rjt, 0, sizeof(*rjt)); 1821 rjt->er_cmd = ELS_LS_RJT; 1822 rjt->er_reason = reason; 1823 rjt->er_explan = explan; 1824 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1825 lport->tt.frame_send(lport, fp); 1826 } 1827 1828 /** 1829 * fc_exch_reset() - Reset an exchange 1830 * @ep: The exchange to be reset 1831 * 1832 * Note: May sleep if invoked from outside a response handler. 1833 */ 1834 static void fc_exch_reset(struct fc_exch *ep) 1835 { 1836 struct fc_seq *sp; 1837 int rc = 1; 1838 1839 spin_lock_bh(&ep->ex_lock); 1840 ep->state |= FC_EX_RST_CLEANUP; 1841 fc_exch_timer_cancel(ep); 1842 if (ep->esb_stat & ESB_ST_REC_QUAL) 1843 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1844 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1845 sp = &ep->seq; 1846 rc = fc_exch_done_locked(ep); 1847 spin_unlock_bh(&ep->ex_lock); 1848 1849 fc_exch_hold(ep); 1850 1851 if (!rc) 1852 fc_exch_delete(ep); 1853 1854 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED)); 1855 fc_seq_set_resp(sp, NULL, ep->arg); 1856 fc_exch_release(ep); 1857 } 1858 1859 /** 1860 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1861 * @lport: The local port that the exchange pool is on 1862 * @pool: The exchange pool to be reset 1863 * @sid: The source ID 1864 * @did: The destination ID 1865 * 1866 * Resets a per cpu exches pool, releasing all of its sequences 1867 * and exchanges. If sid is non-zero then reset only exchanges 1868 * we sourced from the local port's FID. If did is non-zero then 1869 * only reset exchanges destined for the local port's FID. 1870 */ 1871 static void fc_exch_pool_reset(struct fc_lport *lport, 1872 struct fc_exch_pool *pool, 1873 u32 sid, u32 did) 1874 { 1875 struct fc_exch *ep; 1876 struct fc_exch *next; 1877 1878 spin_lock_bh(&pool->lock); 1879 restart: 1880 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1881 if ((lport == ep->lp) && 1882 (sid == 0 || sid == ep->sid) && 1883 (did == 0 || did == ep->did)) { 1884 fc_exch_hold(ep); 1885 spin_unlock_bh(&pool->lock); 1886 1887 fc_exch_reset(ep); 1888 1889 fc_exch_release(ep); 1890 spin_lock_bh(&pool->lock); 1891 1892 /* 1893 * must restart loop incase while lock 1894 * was down multiple eps were released. 1895 */ 1896 goto restart; 1897 } 1898 } 1899 pool->next_index = 0; 1900 pool->left = FC_XID_UNKNOWN; 1901 pool->right = FC_XID_UNKNOWN; 1902 spin_unlock_bh(&pool->lock); 1903 } 1904 1905 /** 1906 * fc_exch_mgr_reset() - Reset all EMs of a local port 1907 * @lport: The local port whose EMs are to be reset 1908 * @sid: The source ID 1909 * @did: The destination ID 1910 * 1911 * Reset all EMs associated with a given local port. Release all 1912 * sequences and exchanges. If sid is non-zero then reset only the 1913 * exchanges sent from the local port's FID. If did is non-zero then 1914 * reset only exchanges destined for the local port's FID. 1915 */ 1916 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1917 { 1918 struct fc_exch_mgr_anchor *ema; 1919 unsigned int cpu; 1920 1921 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1922 for_each_possible_cpu(cpu) 1923 fc_exch_pool_reset(lport, 1924 per_cpu_ptr(ema->mp->pool, cpu), 1925 sid, did); 1926 } 1927 } 1928 EXPORT_SYMBOL(fc_exch_mgr_reset); 1929 1930 /** 1931 * fc_exch_lookup() - find an exchange 1932 * @lport: The local port 1933 * @xid: The exchange ID 1934 * 1935 * Returns exchange pointer with hold for caller, or NULL if not found. 1936 */ 1937 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 1938 { 1939 struct fc_exch_mgr_anchor *ema; 1940 1941 list_for_each_entry(ema, &lport->ema_list, ema_list) 1942 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 1943 return fc_exch_find(ema->mp, xid); 1944 return NULL; 1945 } 1946 1947 /** 1948 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 1949 * @rfp: The REC frame, not freed here. 1950 * 1951 * Note that the requesting port may be different than the S_ID in the request. 1952 */ 1953 static void fc_exch_els_rec(struct fc_frame *rfp) 1954 { 1955 struct fc_lport *lport; 1956 struct fc_frame *fp; 1957 struct fc_exch *ep; 1958 struct fc_els_rec *rp; 1959 struct fc_els_rec_acc *acc; 1960 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 1961 enum fc_els_rjt_explan explan; 1962 u32 sid; 1963 u16 rxid; 1964 u16 oxid; 1965 1966 lport = fr_dev(rfp); 1967 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 1968 explan = ELS_EXPL_INV_LEN; 1969 if (!rp) 1970 goto reject; 1971 sid = ntoh24(rp->rec_s_id); 1972 rxid = ntohs(rp->rec_rx_id); 1973 oxid = ntohs(rp->rec_ox_id); 1974 1975 ep = fc_exch_lookup(lport, 1976 sid == fc_host_port_id(lport->host) ? oxid : rxid); 1977 explan = ELS_EXPL_OXID_RXID; 1978 if (!ep) 1979 goto reject; 1980 if (ep->oid != sid || oxid != ep->oxid) 1981 goto rel; 1982 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 1983 goto rel; 1984 fp = fc_frame_alloc(lport, sizeof(*acc)); 1985 if (!fp) 1986 goto out; 1987 1988 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1989 memset(acc, 0, sizeof(*acc)); 1990 acc->reca_cmd = ELS_LS_ACC; 1991 acc->reca_ox_id = rp->rec_ox_id; 1992 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 1993 acc->reca_rx_id = htons(ep->rxid); 1994 if (ep->sid == ep->oid) 1995 hton24(acc->reca_rfid, ep->did); 1996 else 1997 hton24(acc->reca_rfid, ep->sid); 1998 acc->reca_fc4value = htonl(ep->seq.rec_data); 1999 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 2000 ESB_ST_SEQ_INIT | 2001 ESB_ST_COMPLETE)); 2002 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 2003 lport->tt.frame_send(lport, fp); 2004 out: 2005 fc_exch_release(ep); 2006 return; 2007 2008 rel: 2009 fc_exch_release(ep); 2010 reject: 2011 fc_seq_ls_rjt(rfp, reason, explan); 2012 } 2013 2014 /** 2015 * fc_exch_rrq_resp() - Handler for RRQ responses 2016 * @sp: The sequence that the RRQ is on 2017 * @fp: The RRQ frame 2018 * @arg: The exchange that the RRQ is on 2019 * 2020 * TODO: fix error handler. 2021 */ 2022 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 2023 { 2024 struct fc_exch *aborted_ep = arg; 2025 unsigned int op; 2026 2027 if (IS_ERR(fp)) { 2028 int err = PTR_ERR(fp); 2029 2030 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 2031 goto cleanup; 2032 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 2033 "frame error %d\n", err); 2034 return; 2035 } 2036 2037 op = fc_frame_payload_op(fp); 2038 fc_frame_free(fp); 2039 2040 switch (op) { 2041 case ELS_LS_RJT: 2042 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n"); 2043 /* fall through */ 2044 case ELS_LS_ACC: 2045 goto cleanup; 2046 default: 2047 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n", 2048 op); 2049 return; 2050 } 2051 2052 cleanup: 2053 fc_exch_done(&aborted_ep->seq); 2054 /* drop hold for rec qual */ 2055 fc_exch_release(aborted_ep); 2056 } 2057 2058 2059 /** 2060 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 2061 * @lport: The local port to send the frame on 2062 * @fp: The frame to be sent 2063 * @resp: The response handler for this request 2064 * @destructor: The destructor for the exchange 2065 * @arg: The argument to be passed to the response handler 2066 * @timer_msec: The timeout period for the exchange 2067 * 2068 * The frame pointer with some of the header's fields must be 2069 * filled before calling this routine, those fields are: 2070 * 2071 * - routing control 2072 * - FC port did 2073 * - FC port sid 2074 * - FC header type 2075 * - frame control 2076 * - parameter or relative offset 2077 */ 2078 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 2079 struct fc_frame *fp, 2080 void (*resp)(struct fc_seq *, 2081 struct fc_frame *fp, 2082 void *arg), 2083 void (*destructor)(struct fc_seq *, 2084 void *), 2085 void *arg, u32 timer_msec) 2086 { 2087 struct fc_exch *ep; 2088 struct fc_seq *sp = NULL; 2089 struct fc_frame_header *fh; 2090 struct fc_fcp_pkt *fsp = NULL; 2091 int rc = 1; 2092 2093 ep = fc_exch_alloc(lport, fp); 2094 if (!ep) { 2095 fc_frame_free(fp); 2096 return NULL; 2097 } 2098 ep->esb_stat |= ESB_ST_SEQ_INIT; 2099 fh = fc_frame_header_get(fp); 2100 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 2101 ep->resp = resp; 2102 ep->destructor = destructor; 2103 ep->arg = arg; 2104 ep->r_a_tov = FC_DEF_R_A_TOV; 2105 ep->lp = lport; 2106 sp = &ep->seq; 2107 2108 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2109 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2110 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2111 sp->cnt++; 2112 2113 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2114 fsp = fr_fsp(fp); 2115 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2116 } 2117 2118 if (unlikely(lport->tt.frame_send(lport, fp))) 2119 goto err; 2120 2121 if (timer_msec) 2122 fc_exch_timer_set_locked(ep, timer_msec); 2123 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2124 2125 if (ep->f_ctl & FC_FC_SEQ_INIT) 2126 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2127 spin_unlock_bh(&ep->ex_lock); 2128 return sp; 2129 err: 2130 if (fsp) 2131 fc_fcp_ddp_done(fsp); 2132 rc = fc_exch_done_locked(ep); 2133 spin_unlock_bh(&ep->ex_lock); 2134 if (!rc) 2135 fc_exch_delete(ep); 2136 return NULL; 2137 } 2138 2139 /** 2140 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2141 * @ep: The exchange to send the RRQ on 2142 * 2143 * This tells the remote port to stop blocking the use of 2144 * the exchange and the seq_cnt range. 2145 */ 2146 static void fc_exch_rrq(struct fc_exch *ep) 2147 { 2148 struct fc_lport *lport; 2149 struct fc_els_rrq *rrq; 2150 struct fc_frame *fp; 2151 u32 did; 2152 2153 lport = ep->lp; 2154 2155 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2156 if (!fp) 2157 goto retry; 2158 2159 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2160 memset(rrq, 0, sizeof(*rrq)); 2161 rrq->rrq_cmd = ELS_RRQ; 2162 hton24(rrq->rrq_s_id, ep->sid); 2163 rrq->rrq_ox_id = htons(ep->oxid); 2164 rrq->rrq_rx_id = htons(ep->rxid); 2165 2166 did = ep->did; 2167 if (ep->esb_stat & ESB_ST_RESP) 2168 did = ep->sid; 2169 2170 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2171 lport->port_id, FC_TYPE_ELS, 2172 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2173 2174 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2175 lport->e_d_tov)) 2176 return; 2177 2178 retry: 2179 spin_lock_bh(&ep->ex_lock); 2180 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2181 spin_unlock_bh(&ep->ex_lock); 2182 /* drop hold for rec qual */ 2183 fc_exch_release(ep); 2184 return; 2185 } 2186 ep->esb_stat |= ESB_ST_REC_QUAL; 2187 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2188 spin_unlock_bh(&ep->ex_lock); 2189 } 2190 2191 /** 2192 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2193 * @fp: The RRQ frame, not freed here. 2194 */ 2195 static void fc_exch_els_rrq(struct fc_frame *fp) 2196 { 2197 struct fc_lport *lport; 2198 struct fc_exch *ep = NULL; /* request or subject exchange */ 2199 struct fc_els_rrq *rp; 2200 u32 sid; 2201 u16 xid; 2202 enum fc_els_rjt_explan explan; 2203 2204 lport = fr_dev(fp); 2205 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2206 explan = ELS_EXPL_INV_LEN; 2207 if (!rp) 2208 goto reject; 2209 2210 /* 2211 * lookup subject exchange. 2212 */ 2213 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2214 xid = fc_host_port_id(lport->host) == sid ? 2215 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2216 ep = fc_exch_lookup(lport, xid); 2217 explan = ELS_EXPL_OXID_RXID; 2218 if (!ep) 2219 goto reject; 2220 spin_lock_bh(&ep->ex_lock); 2221 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2222 goto unlock_reject; 2223 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2224 ep->rxid != FC_XID_UNKNOWN) 2225 goto unlock_reject; 2226 explan = ELS_EXPL_SID; 2227 if (ep->sid != sid) 2228 goto unlock_reject; 2229 2230 /* 2231 * Clear Recovery Qualifier state, and cancel timer if complete. 2232 */ 2233 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2234 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2235 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2236 } 2237 if (ep->esb_stat & ESB_ST_COMPLETE) 2238 fc_exch_timer_cancel(ep); 2239 2240 spin_unlock_bh(&ep->ex_lock); 2241 2242 /* 2243 * Send LS_ACC. 2244 */ 2245 fc_seq_ls_acc(fp); 2246 goto out; 2247 2248 unlock_reject: 2249 spin_unlock_bh(&ep->ex_lock); 2250 reject: 2251 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2252 out: 2253 if (ep) 2254 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2255 } 2256 2257 /** 2258 * fc_exch_update_stats() - update exches stats to lport 2259 * @lport: The local port to update exchange manager stats 2260 */ 2261 void fc_exch_update_stats(struct fc_lport *lport) 2262 { 2263 struct fc_host_statistics *st; 2264 struct fc_exch_mgr_anchor *ema; 2265 struct fc_exch_mgr *mp; 2266 2267 st = &lport->host_stats; 2268 2269 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2270 mp = ema->mp; 2271 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch); 2272 st->fc_no_free_exch_xid += 2273 atomic_read(&mp->stats.no_free_exch_xid); 2274 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found); 2275 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy); 2276 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found); 2277 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp); 2278 } 2279 } 2280 EXPORT_SYMBOL(fc_exch_update_stats); 2281 2282 /** 2283 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2284 * @lport: The local port to add the exchange manager to 2285 * @mp: The exchange manager to be added to the local port 2286 * @match: The match routine that indicates when this EM should be used 2287 */ 2288 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2289 struct fc_exch_mgr *mp, 2290 bool (*match)(struct fc_frame *)) 2291 { 2292 struct fc_exch_mgr_anchor *ema; 2293 2294 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2295 if (!ema) 2296 return ema; 2297 2298 ema->mp = mp; 2299 ema->match = match; 2300 /* add EM anchor to EM anchors list */ 2301 list_add_tail(&ema->ema_list, &lport->ema_list); 2302 kref_get(&mp->kref); 2303 return ema; 2304 } 2305 EXPORT_SYMBOL(fc_exch_mgr_add); 2306 2307 /** 2308 * fc_exch_mgr_destroy() - Destroy an exchange manager 2309 * @kref: The reference to the EM to be destroyed 2310 */ 2311 static void fc_exch_mgr_destroy(struct kref *kref) 2312 { 2313 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2314 2315 mempool_destroy(mp->ep_pool); 2316 free_percpu(mp->pool); 2317 kfree(mp); 2318 } 2319 2320 /** 2321 * fc_exch_mgr_del() - Delete an EM from a local port's list 2322 * @ema: The exchange manager anchor identifying the EM to be deleted 2323 */ 2324 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2325 { 2326 /* remove EM anchor from EM anchors list */ 2327 list_del(&ema->ema_list); 2328 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2329 kfree(ema); 2330 } 2331 EXPORT_SYMBOL(fc_exch_mgr_del); 2332 2333 /** 2334 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2335 * @src: Source lport to clone exchange managers from 2336 * @dst: New lport that takes references to all the exchange managers 2337 */ 2338 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2339 { 2340 struct fc_exch_mgr_anchor *ema, *tmp; 2341 2342 list_for_each_entry(ema, &src->ema_list, ema_list) { 2343 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2344 goto err; 2345 } 2346 return 0; 2347 err: 2348 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2349 fc_exch_mgr_del(ema); 2350 return -ENOMEM; 2351 } 2352 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2353 2354 /** 2355 * fc_exch_mgr_alloc() - Allocate an exchange manager 2356 * @lport: The local port that the new EM will be associated with 2357 * @class: The default FC class for new exchanges 2358 * @min_xid: The minimum XID for exchanges from the new EM 2359 * @max_xid: The maximum XID for exchanges from the new EM 2360 * @match: The match routine for the new EM 2361 */ 2362 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2363 enum fc_class class, 2364 u16 min_xid, u16 max_xid, 2365 bool (*match)(struct fc_frame *)) 2366 { 2367 struct fc_exch_mgr *mp; 2368 u16 pool_exch_range; 2369 size_t pool_size; 2370 unsigned int cpu; 2371 struct fc_exch_pool *pool; 2372 2373 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2374 (min_xid & fc_cpu_mask) != 0) { 2375 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2376 min_xid, max_xid); 2377 return NULL; 2378 } 2379 2380 /* 2381 * allocate memory for EM 2382 */ 2383 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2384 if (!mp) 2385 return NULL; 2386 2387 mp->class = class; 2388 /* adjust em exch xid range for offload */ 2389 mp->min_xid = min_xid; 2390 2391 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */ 2392 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) / 2393 sizeof(struct fc_exch *); 2394 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) { 2395 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) + 2396 min_xid - 1; 2397 } else { 2398 mp->max_xid = max_xid; 2399 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / 2400 (fc_cpu_mask + 1); 2401 } 2402 2403 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2404 if (!mp->ep_pool) 2405 goto free_mp; 2406 2407 /* 2408 * Setup per cpu exch pool with entire exchange id range equally 2409 * divided across all cpus. The exch pointers array memory is 2410 * allocated for exch range per pool. 2411 */ 2412 mp->pool_max_index = pool_exch_range - 1; 2413 2414 /* 2415 * Allocate and initialize per cpu exch pool 2416 */ 2417 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2418 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2419 if (!mp->pool) 2420 goto free_mempool; 2421 for_each_possible_cpu(cpu) { 2422 pool = per_cpu_ptr(mp->pool, cpu); 2423 pool->next_index = 0; 2424 pool->left = FC_XID_UNKNOWN; 2425 pool->right = FC_XID_UNKNOWN; 2426 spin_lock_init(&pool->lock); 2427 INIT_LIST_HEAD(&pool->ex_list); 2428 } 2429 2430 kref_init(&mp->kref); 2431 if (!fc_exch_mgr_add(lport, mp, match)) { 2432 free_percpu(mp->pool); 2433 goto free_mempool; 2434 } 2435 2436 /* 2437 * Above kref_init() sets mp->kref to 1 and then 2438 * call to fc_exch_mgr_add incremented mp->kref again, 2439 * so adjust that extra increment. 2440 */ 2441 kref_put(&mp->kref, fc_exch_mgr_destroy); 2442 return mp; 2443 2444 free_mempool: 2445 mempool_destroy(mp->ep_pool); 2446 free_mp: 2447 kfree(mp); 2448 return NULL; 2449 } 2450 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2451 2452 /** 2453 * fc_exch_mgr_free() - Free all exchange managers on a local port 2454 * @lport: The local port whose EMs are to be freed 2455 */ 2456 void fc_exch_mgr_free(struct fc_lport *lport) 2457 { 2458 struct fc_exch_mgr_anchor *ema, *next; 2459 2460 flush_workqueue(fc_exch_workqueue); 2461 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2462 fc_exch_mgr_del(ema); 2463 } 2464 EXPORT_SYMBOL(fc_exch_mgr_free); 2465 2466 /** 2467 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2468 * upon 'xid'. 2469 * @f_ctl: f_ctl 2470 * @lport: The local port the frame was received on 2471 * @fh: The received frame header 2472 */ 2473 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2474 struct fc_lport *lport, 2475 struct fc_frame_header *fh) 2476 { 2477 struct fc_exch_mgr_anchor *ema; 2478 u16 xid; 2479 2480 if (f_ctl & FC_FC_EX_CTX) 2481 xid = ntohs(fh->fh_ox_id); 2482 else { 2483 xid = ntohs(fh->fh_rx_id); 2484 if (xid == FC_XID_UNKNOWN) 2485 return list_entry(lport->ema_list.prev, 2486 typeof(*ema), ema_list); 2487 } 2488 2489 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2490 if ((xid >= ema->mp->min_xid) && 2491 (xid <= ema->mp->max_xid)) 2492 return ema; 2493 } 2494 return NULL; 2495 } 2496 /** 2497 * fc_exch_recv() - Handler for received frames 2498 * @lport: The local port the frame was received on 2499 * @fp: The received frame 2500 */ 2501 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2502 { 2503 struct fc_frame_header *fh = fc_frame_header_get(fp); 2504 struct fc_exch_mgr_anchor *ema; 2505 u32 f_ctl; 2506 2507 /* lport lock ? */ 2508 if (!lport || lport->state == LPORT_ST_DISABLED) { 2509 FC_LPORT_DBG(lport, "Receiving frames for an lport that " 2510 "has not been initialized correctly\n"); 2511 fc_frame_free(fp); 2512 return; 2513 } 2514 2515 f_ctl = ntoh24(fh->fh_f_ctl); 2516 ema = fc_find_ema(f_ctl, lport, fh); 2517 if (!ema) { 2518 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2519 "fc_ctl <0x%x>, xid <0x%x>\n", 2520 f_ctl, 2521 (f_ctl & FC_FC_EX_CTX) ? 2522 ntohs(fh->fh_ox_id) : 2523 ntohs(fh->fh_rx_id)); 2524 fc_frame_free(fp); 2525 return; 2526 } 2527 2528 /* 2529 * If frame is marked invalid, just drop it. 2530 */ 2531 switch (fr_eof(fp)) { 2532 case FC_EOF_T: 2533 if (f_ctl & FC_FC_END_SEQ) 2534 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2535 /* fall through */ 2536 case FC_EOF_N: 2537 if (fh->fh_type == FC_TYPE_BLS) 2538 fc_exch_recv_bls(ema->mp, fp); 2539 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2540 FC_FC_EX_CTX) 2541 fc_exch_recv_seq_resp(ema->mp, fp); 2542 else if (f_ctl & FC_FC_SEQ_CTX) 2543 fc_exch_recv_resp(ema->mp, fp); 2544 else /* no EX_CTX and no SEQ_CTX */ 2545 fc_exch_recv_req(lport, ema->mp, fp); 2546 break; 2547 default: 2548 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2549 fr_eof(fp)); 2550 fc_frame_free(fp); 2551 } 2552 } 2553 EXPORT_SYMBOL(fc_exch_recv); 2554 2555 /** 2556 * fc_exch_init() - Initialize the exchange layer for a local port 2557 * @lport: The local port to initialize the exchange layer for 2558 */ 2559 int fc_exch_init(struct fc_lport *lport) 2560 { 2561 if (!lport->tt.seq_start_next) 2562 lport->tt.seq_start_next = fc_seq_start_next; 2563 2564 if (!lport->tt.seq_set_resp) 2565 lport->tt.seq_set_resp = fc_seq_set_resp; 2566 2567 if (!lport->tt.exch_seq_send) 2568 lport->tt.exch_seq_send = fc_exch_seq_send; 2569 2570 if (!lport->tt.seq_send) 2571 lport->tt.seq_send = fc_seq_send; 2572 2573 if (!lport->tt.seq_els_rsp_send) 2574 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send; 2575 2576 if (!lport->tt.exch_done) 2577 lport->tt.exch_done = fc_exch_done; 2578 2579 if (!lport->tt.exch_mgr_reset) 2580 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2581 2582 if (!lport->tt.seq_exch_abort) 2583 lport->tt.seq_exch_abort = fc_seq_exch_abort; 2584 2585 if (!lport->tt.seq_assign) 2586 lport->tt.seq_assign = fc_seq_assign; 2587 2588 if (!lport->tt.seq_release) 2589 lport->tt.seq_release = fc_seq_release; 2590 2591 return 0; 2592 } 2593 EXPORT_SYMBOL(fc_exch_init); 2594 2595 /** 2596 * fc_setup_exch_mgr() - Setup an exchange manager 2597 */ 2598 int fc_setup_exch_mgr(void) 2599 { 2600 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2601 0, SLAB_HWCACHE_ALIGN, NULL); 2602 if (!fc_em_cachep) 2603 return -ENOMEM; 2604 2605 /* 2606 * Initialize fc_cpu_mask and fc_cpu_order. The 2607 * fc_cpu_mask is set for nr_cpu_ids rounded up 2608 * to order of 2's * power and order is stored 2609 * in fc_cpu_order as this is later required in 2610 * mapping between an exch id and exch array index 2611 * in per cpu exch pool. 2612 * 2613 * This round up is required to align fc_cpu_mask 2614 * to exchange id's lower bits such that all incoming 2615 * frames of an exchange gets delivered to the same 2616 * cpu on which exchange originated by simple bitwise 2617 * AND operation between fc_cpu_mask and exchange id. 2618 */ 2619 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids)); 2620 fc_cpu_mask = (1 << fc_cpu_order) - 1; 2621 2622 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2623 if (!fc_exch_workqueue) 2624 goto err; 2625 return 0; 2626 err: 2627 kmem_cache_destroy(fc_em_cachep); 2628 return -ENOMEM; 2629 } 2630 2631 /** 2632 * fc_destroy_exch_mgr() - Destroy an exchange manager 2633 */ 2634 void fc_destroy_exch_mgr(void) 2635 { 2636 destroy_workqueue(fc_exch_workqueue); 2637 kmem_cache_destroy(fc_em_cachep); 2638 } 2639