xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2007 Intel Corporation. All rights reserved.
4  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
5  * Copyright(c) 2008 Mike Christie
6  *
7  * Maintained at www.Open-FCoE.org
8  */
9 
10 /*
11  * Fibre Channel exchange and sequence handling.
12  */
13 
14 #include <linux/timer.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/export.h>
18 #include <linux/log2.h>
19 
20 #include <scsi/fc/fc_fc2.h>
21 
22 #include <scsi/libfc.h>
23 #include <scsi/fc_encode.h>
24 
25 #include "fc_libfc.h"
26 
27 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
28 EXPORT_SYMBOL(fc_cpu_mask);
29 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
30 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
31 static struct workqueue_struct *fc_exch_workqueue;
32 
33 /*
34  * Structure and function definitions for managing Fibre Channel Exchanges
35  * and Sequences.
36  *
37  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38  *
39  * fc_exch_mgr holds the exchange state for an N port
40  *
41  * fc_exch holds state for one exchange and links to its active sequence.
42  *
43  * fc_seq holds the state for an individual sequence.
44  */
45 
46 /**
47  * struct fc_exch_pool - Per cpu exchange pool
48  * @next_index:	  Next possible free exchange index
49  * @total_exches: Total allocated exchanges
50  * @lock:	  Exch pool lock
51  * @ex_list:	  List of exchanges
52  *
53  * This structure manages per cpu exchanges in array of exchange pointers.
54  * This array is allocated followed by struct fc_exch_pool memory for
55  * assigned range of exchanges to per cpu pool.
56  */
57 struct fc_exch_pool {
58 	spinlock_t	 lock;
59 	struct list_head ex_list;
60 	u16		 next_index;
61 	u16		 total_exches;
62 
63 	/* two cache of free slot in exch array */
64 	u16		 left;
65 	u16		 right;
66 } ____cacheline_aligned_in_smp;
67 
68 /**
69  * struct fc_exch_mgr - The Exchange Manager (EM).
70  * @class:	    Default class for new sequences
71  * @kref:	    Reference counter
72  * @min_xid:	    Minimum exchange ID
73  * @max_xid:	    Maximum exchange ID
74  * @ep_pool:	    Reserved exchange pointers
75  * @pool_max_index: Max exch array index in exch pool
76  * @pool:	    Per cpu exch pool
77  * @stats:	    Statistics structure
78  *
79  * This structure is the center for creating exchanges and sequences.
80  * It manages the allocation of exchange IDs.
81  */
82 struct fc_exch_mgr {
83 	struct fc_exch_pool __percpu *pool;
84 	mempool_t	*ep_pool;
85 	struct fc_lport	*lport;
86 	enum fc_class	class;
87 	struct kref	kref;
88 	u16		min_xid;
89 	u16		max_xid;
90 	u16		pool_max_index;
91 
92 	struct {
93 		atomic_t no_free_exch;
94 		atomic_t no_free_exch_xid;
95 		atomic_t xid_not_found;
96 		atomic_t xid_busy;
97 		atomic_t seq_not_found;
98 		atomic_t non_bls_resp;
99 	} stats;
100 };
101 
102 /**
103  * struct fc_exch_mgr_anchor - primary structure for list of EMs
104  * @ema_list: Exchange Manager Anchor list
105  * @mp:	      Exchange Manager associated with this anchor
106  * @match:    Routine to determine if this anchor's EM should be used
107  *
108  * When walking the list of anchors the match routine will be called
109  * for each anchor to determine if that EM should be used. The last
110  * anchor in the list will always match to handle any exchanges not
111  * handled by other EMs. The non-default EMs would be added to the
112  * anchor list by HW that provides offloads.
113  */
114 struct fc_exch_mgr_anchor {
115 	struct list_head ema_list;
116 	struct fc_exch_mgr *mp;
117 	bool (*match)(struct fc_frame *);
118 };
119 
120 static void fc_exch_rrq(struct fc_exch *);
121 static void fc_seq_ls_acc(struct fc_frame *);
122 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
123 			  enum fc_els_rjt_explan);
124 static void fc_exch_els_rec(struct fc_frame *);
125 static void fc_exch_els_rrq(struct fc_frame *);
126 
127 /*
128  * Internal implementation notes.
129  *
130  * The exchange manager is one by default in libfc but LLD may choose
131  * to have one per CPU. The sequence manager is one per exchange manager
132  * and currently never separated.
133  *
134  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
135  * assigned by the Sequence Initiator that shall be unique for a specific
136  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
137  * qualified by exchange ID, which one might think it would be.
138  * In practice this limits the number of open sequences and exchanges to 256
139  * per session.	 For most targets we could treat this limit as per exchange.
140  *
141  * The exchange and its sequence are freed when the last sequence is received.
142  * It's possible for the remote port to leave an exchange open without
143  * sending any sequences.
144  *
145  * Notes on reference counts:
146  *
147  * Exchanges are reference counted and exchange gets freed when the reference
148  * count becomes zero.
149  *
150  * Timeouts:
151  * Sequences are timed out for E_D_TOV and R_A_TOV.
152  *
153  * Sequence event handling:
154  *
155  * The following events may occur on initiator sequences:
156  *
157  *	Send.
158  *	    For now, the whole thing is sent.
159  *	Receive ACK
160  *	    This applies only to class F.
161  *	    The sequence is marked complete.
162  *	ULP completion.
163  *	    The upper layer calls fc_exch_done() when done
164  *	    with exchange and sequence tuple.
165  *	RX-inferred completion.
166  *	    When we receive the next sequence on the same exchange, we can
167  *	    retire the previous sequence ID.  (XXX not implemented).
168  *	Timeout.
169  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
170  *	    E_D_TOV causes abort and calls upper layer response handler
171  *	    with FC_EX_TIMEOUT error.
172  *	Receive RJT
173  *	    XXX defer.
174  *	Send ABTS
175  *	    On timeout.
176  *
177  * The following events may occur on recipient sequences:
178  *
179  *	Receive
180  *	    Allocate sequence for first frame received.
181  *	    Hold during receive handler.
182  *	    Release when final frame received.
183  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
184  *	Receive ABTS
185  *	    Deallocate sequence
186  *	Send RJT
187  *	    Deallocate
188  *
189  * For now, we neglect conditions where only part of a sequence was
190  * received or transmitted, or where out-of-order receipt is detected.
191  */
192 
193 /*
194  * Locking notes:
195  *
196  * The EM code run in a per-CPU worker thread.
197  *
198  * To protect against concurrency between a worker thread code and timers,
199  * sequence allocation and deallocation must be locked.
200  *  - exchange refcnt can be done atomicly without locks.
201  *  - sequence allocation must be locked by exch lock.
202  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
203  *    EM pool lock must be taken before the ex_lock.
204  */
205 
206 /*
207  * opcode names for debugging.
208  */
209 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
210 
211 /**
212  * fc_exch_name_lookup() - Lookup name by opcode
213  * @op:	       Opcode to be looked up
214  * @table:     Opcode/name table
215  * @max_index: Index not to be exceeded
216  *
217  * This routine is used to determine a human-readable string identifying
218  * a R_CTL opcode.
219  */
220 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
221 					      unsigned int max_index)
222 {
223 	const char *name = NULL;
224 
225 	if (op < max_index)
226 		name = table[op];
227 	if (!name)
228 		name = "unknown";
229 	return name;
230 }
231 
232 /**
233  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
234  * @op: The opcode to be looked up
235  */
236 static const char *fc_exch_rctl_name(unsigned int op)
237 {
238 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
239 				   ARRAY_SIZE(fc_exch_rctl_names));
240 }
241 
242 /**
243  * fc_exch_hold() - Increment an exchange's reference count
244  * @ep: Echange to be held
245  */
246 static inline void fc_exch_hold(struct fc_exch *ep)
247 {
248 	atomic_inc(&ep->ex_refcnt);
249 }
250 
251 /**
252  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
253  *			 and determine SOF and EOF.
254  * @ep:	   The exchange to that will use the header
255  * @fp:	   The frame whose header is to be modified
256  * @f_ctl: F_CTL bits that will be used for the frame header
257  *
258  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
259  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
260  */
261 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
262 			      u32 f_ctl)
263 {
264 	struct fc_frame_header *fh = fc_frame_header_get(fp);
265 	u16 fill;
266 
267 	fr_sof(fp) = ep->class;
268 	if (ep->seq.cnt)
269 		fr_sof(fp) = fc_sof_normal(ep->class);
270 
271 	if (f_ctl & FC_FC_END_SEQ) {
272 		fr_eof(fp) = FC_EOF_T;
273 		if (fc_sof_needs_ack(ep->class))
274 			fr_eof(fp) = FC_EOF_N;
275 		/*
276 		 * From F_CTL.
277 		 * The number of fill bytes to make the length a 4-byte
278 		 * multiple is the low order 2-bits of the f_ctl.
279 		 * The fill itself will have been cleared by the frame
280 		 * allocation.
281 		 * After this, the length will be even, as expected by
282 		 * the transport.
283 		 */
284 		fill = fr_len(fp) & 3;
285 		if (fill) {
286 			fill = 4 - fill;
287 			/* TODO, this may be a problem with fragmented skb */
288 			skb_put(fp_skb(fp), fill);
289 			hton24(fh->fh_f_ctl, f_ctl | fill);
290 		}
291 	} else {
292 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
293 		fr_eof(fp) = FC_EOF_N;
294 	}
295 
296 	/* Initialize remaining fh fields from fc_fill_fc_hdr */
297 	fh->fh_ox_id = htons(ep->oxid);
298 	fh->fh_rx_id = htons(ep->rxid);
299 	fh->fh_seq_id = ep->seq.id;
300 	fh->fh_seq_cnt = htons(ep->seq.cnt);
301 }
302 
303 /**
304  * fc_exch_release() - Decrement an exchange's reference count
305  * @ep: Exchange to be released
306  *
307  * If the reference count reaches zero and the exchange is complete,
308  * it is freed.
309  */
310 static void fc_exch_release(struct fc_exch *ep)
311 {
312 	struct fc_exch_mgr *mp;
313 
314 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
315 		mp = ep->em;
316 		if (ep->destructor)
317 			ep->destructor(&ep->seq, ep->arg);
318 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
319 		mempool_free(ep, mp->ep_pool);
320 	}
321 }
322 
323 /**
324  * fc_exch_timer_cancel() - cancel exch timer
325  * @ep:		The exchange whose timer to be canceled
326  */
327 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
328 {
329 	if (cancel_delayed_work(&ep->timeout_work)) {
330 		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
331 		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
332 	}
333 }
334 
335 /**
336  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
337  *				the exchange lock held
338  * @ep:		The exchange whose timer will start
339  * @timer_msec: The timeout period
340  *
341  * Used for upper level protocols to time out the exchange.
342  * The timer is cancelled when it fires or when the exchange completes.
343  */
344 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
345 					    unsigned int timer_msec)
346 {
347 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
348 		return;
349 
350 	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
351 
352 	fc_exch_hold(ep);		/* hold for timer */
353 	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
354 				msecs_to_jiffies(timer_msec))) {
355 		FC_EXCH_DBG(ep, "Exchange already queued\n");
356 		fc_exch_release(ep);
357 	}
358 }
359 
360 /**
361  * fc_exch_timer_set() - Lock the exchange and set the timer
362  * @ep:		The exchange whose timer will start
363  * @timer_msec: The timeout period
364  */
365 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
366 {
367 	spin_lock_bh(&ep->ex_lock);
368 	fc_exch_timer_set_locked(ep, timer_msec);
369 	spin_unlock_bh(&ep->ex_lock);
370 }
371 
372 /**
373  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
374  * @ep: The exchange that is complete
375  *
376  * Note: May sleep if invoked from outside a response handler.
377  */
378 static int fc_exch_done_locked(struct fc_exch *ep)
379 {
380 	int rc = 1;
381 
382 	/*
383 	 * We must check for completion in case there are two threads
384 	 * tyring to complete this. But the rrq code will reuse the
385 	 * ep, and in that case we only clear the resp and set it as
386 	 * complete, so it can be reused by the timer to send the rrq.
387 	 */
388 	if (ep->state & FC_EX_DONE)
389 		return rc;
390 	ep->esb_stat |= ESB_ST_COMPLETE;
391 
392 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
393 		ep->state |= FC_EX_DONE;
394 		fc_exch_timer_cancel(ep);
395 		rc = 0;
396 	}
397 	return rc;
398 }
399 
400 static struct fc_exch fc_quarantine_exch;
401 
402 /**
403  * fc_exch_ptr_get() - Return an exchange from an exchange pool
404  * @pool:  Exchange Pool to get an exchange from
405  * @index: Index of the exchange within the pool
406  *
407  * Use the index to get an exchange from within an exchange pool. exches
408  * will point to an array of exchange pointers. The index will select
409  * the exchange within the array.
410  */
411 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
412 					      u16 index)
413 {
414 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
415 	return exches[index];
416 }
417 
418 /**
419  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
420  * @pool:  The pool to assign the exchange to
421  * @index: The index in the pool where the exchange will be assigned
422  * @ep:	   The exchange to assign to the pool
423  */
424 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
425 				   struct fc_exch *ep)
426 {
427 	((struct fc_exch **)(pool + 1))[index] = ep;
428 }
429 
430 /**
431  * fc_exch_delete() - Delete an exchange
432  * @ep: The exchange to be deleted
433  */
434 static void fc_exch_delete(struct fc_exch *ep)
435 {
436 	struct fc_exch_pool *pool;
437 	u16 index;
438 
439 	pool = ep->pool;
440 	spin_lock_bh(&pool->lock);
441 	WARN_ON(pool->total_exches <= 0);
442 	pool->total_exches--;
443 
444 	/* update cache of free slot */
445 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
446 	if (!(ep->state & FC_EX_QUARANTINE)) {
447 		if (pool->left == FC_XID_UNKNOWN)
448 			pool->left = index;
449 		else if (pool->right == FC_XID_UNKNOWN)
450 			pool->right = index;
451 		else
452 			pool->next_index = index;
453 		fc_exch_ptr_set(pool, index, NULL);
454 	} else {
455 		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
456 	}
457 	list_del(&ep->ex_list);
458 	spin_unlock_bh(&pool->lock);
459 	fc_exch_release(ep);	/* drop hold for exch in mp */
460 }
461 
462 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
463 			      struct fc_frame *fp)
464 {
465 	struct fc_exch *ep;
466 	struct fc_frame_header *fh = fc_frame_header_get(fp);
467 	int error = -ENXIO;
468 	u32 f_ctl;
469 	u8 fh_type = fh->fh_type;
470 
471 	ep = fc_seq_exch(sp);
472 
473 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
474 		fc_frame_free(fp);
475 		goto out;
476 	}
477 
478 	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
479 
480 	f_ctl = ntoh24(fh->fh_f_ctl);
481 	fc_exch_setup_hdr(ep, fp, f_ctl);
482 	fr_encaps(fp) = ep->encaps;
483 
484 	/*
485 	 * update sequence count if this frame is carrying
486 	 * multiple FC frames when sequence offload is enabled
487 	 * by LLD.
488 	 */
489 	if (fr_max_payload(fp))
490 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
491 					fr_max_payload(fp));
492 	else
493 		sp->cnt++;
494 
495 	/*
496 	 * Send the frame.
497 	 */
498 	error = lport->tt.frame_send(lport, fp);
499 
500 	if (fh_type == FC_TYPE_BLS)
501 		goto out;
502 
503 	/*
504 	 * Update the exchange and sequence flags,
505 	 * assuming all frames for the sequence have been sent.
506 	 * We can only be called to send once for each sequence.
507 	 */
508 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
509 	if (f_ctl & FC_FC_SEQ_INIT)
510 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
511 out:
512 	return error;
513 }
514 
515 /**
516  * fc_seq_send() - Send a frame using existing sequence/exchange pair
517  * @lport: The local port that the exchange will be sent on
518  * @sp:	   The sequence to be sent
519  * @fp:	   The frame to be sent on the exchange
520  *
521  * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
522  * or indirectly by calling libfc_function_template.frame_send().
523  */
524 int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
525 {
526 	struct fc_exch *ep;
527 	int error;
528 	ep = fc_seq_exch(sp);
529 	spin_lock_bh(&ep->ex_lock);
530 	error = fc_seq_send_locked(lport, sp, fp);
531 	spin_unlock_bh(&ep->ex_lock);
532 	return error;
533 }
534 EXPORT_SYMBOL(fc_seq_send);
535 
536 /**
537  * fc_seq_alloc() - Allocate a sequence for a given exchange
538  * @ep:	    The exchange to allocate a new sequence for
539  * @seq_id: The sequence ID to be used
540  *
541  * We don't support multiple originated sequences on the same exchange.
542  * By implication, any previously originated sequence on this exchange
543  * is complete, and we reallocate the same sequence.
544  */
545 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
546 {
547 	struct fc_seq *sp;
548 
549 	sp = &ep->seq;
550 	sp->ssb_stat = 0;
551 	sp->cnt = 0;
552 	sp->id = seq_id;
553 	return sp;
554 }
555 
556 /**
557  * fc_seq_start_next_locked() - Allocate a new sequence on the same
558  *				exchange as the supplied sequence
559  * @sp: The sequence/exchange to get a new sequence for
560  */
561 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
562 {
563 	struct fc_exch *ep = fc_seq_exch(sp);
564 
565 	sp = fc_seq_alloc(ep, ep->seq_id++);
566 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
567 		    ep->f_ctl, sp->id);
568 	return sp;
569 }
570 
571 /**
572  * fc_seq_start_next() - Lock the exchange and get a new sequence
573  *			 for a given sequence/exchange pair
574  * @sp: The sequence/exchange to get a new exchange for
575  */
576 struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
577 {
578 	struct fc_exch *ep = fc_seq_exch(sp);
579 
580 	spin_lock_bh(&ep->ex_lock);
581 	sp = fc_seq_start_next_locked(sp);
582 	spin_unlock_bh(&ep->ex_lock);
583 
584 	return sp;
585 }
586 EXPORT_SYMBOL(fc_seq_start_next);
587 
588 /*
589  * Set the response handler for the exchange associated with a sequence.
590  *
591  * Note: May sleep if invoked from outside a response handler.
592  */
593 void fc_seq_set_resp(struct fc_seq *sp,
594 		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
595 		     void *arg)
596 {
597 	struct fc_exch *ep = fc_seq_exch(sp);
598 	DEFINE_WAIT(wait);
599 
600 	spin_lock_bh(&ep->ex_lock);
601 	while (ep->resp_active && ep->resp_task != current) {
602 		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
603 		spin_unlock_bh(&ep->ex_lock);
604 
605 		schedule();
606 
607 		spin_lock_bh(&ep->ex_lock);
608 	}
609 	finish_wait(&ep->resp_wq, &wait);
610 	ep->resp = resp;
611 	ep->arg = arg;
612 	spin_unlock_bh(&ep->ex_lock);
613 }
614 EXPORT_SYMBOL(fc_seq_set_resp);
615 
616 /**
617  * fc_exch_abort_locked() - Abort an exchange
618  * @ep:	The exchange to be aborted
619  * @timer_msec: The period of time to wait before aborting
620  *
621  * Abort an exchange and sequence. Generally called because of a
622  * exchange timeout or an abort from the upper layer.
623  *
624  * A timer_msec can be specified for abort timeout, if non-zero
625  * timer_msec value is specified then exchange resp handler
626  * will be called with timeout error if no response to abort.
627  *
628  * Locking notes:  Called with exch lock held
629  *
630  * Return value: 0 on success else error code
631  */
632 static int fc_exch_abort_locked(struct fc_exch *ep,
633 				unsigned int timer_msec)
634 {
635 	struct fc_seq *sp;
636 	struct fc_frame *fp;
637 	int error;
638 
639 	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
640 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
641 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
642 		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
643 			    ep->esb_stat, ep->state);
644 		return -ENXIO;
645 	}
646 
647 	/*
648 	 * Send the abort on a new sequence if possible.
649 	 */
650 	sp = fc_seq_start_next_locked(&ep->seq);
651 	if (!sp)
652 		return -ENOMEM;
653 
654 	if (timer_msec)
655 		fc_exch_timer_set_locked(ep, timer_msec);
656 
657 	if (ep->sid) {
658 		/*
659 		 * Send an abort for the sequence that timed out.
660 		 */
661 		fp = fc_frame_alloc(ep->lp, 0);
662 		if (fp) {
663 			ep->esb_stat |= ESB_ST_SEQ_INIT;
664 			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
665 				       FC_TYPE_BLS, FC_FC_END_SEQ |
666 				       FC_FC_SEQ_INIT, 0);
667 			error = fc_seq_send_locked(ep->lp, sp, fp);
668 		} else {
669 			error = -ENOBUFS;
670 		}
671 	} else {
672 		/*
673 		 * If not logged into the fabric, don't send ABTS but leave
674 		 * sequence active until next timeout.
675 		 */
676 		error = 0;
677 	}
678 	ep->esb_stat |= ESB_ST_ABNORMAL;
679 	return error;
680 }
681 
682 /**
683  * fc_seq_exch_abort() - Abort an exchange and sequence
684  * @req_sp:	The sequence to be aborted
685  * @timer_msec: The period of time to wait before aborting
686  *
687  * Generally called because of a timeout or an abort from the upper layer.
688  *
689  * Return value: 0 on success else error code
690  */
691 int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
692 {
693 	struct fc_exch *ep;
694 	int error;
695 
696 	ep = fc_seq_exch(req_sp);
697 	spin_lock_bh(&ep->ex_lock);
698 	error = fc_exch_abort_locked(ep, timer_msec);
699 	spin_unlock_bh(&ep->ex_lock);
700 	return error;
701 }
702 
703 /**
704  * fc_invoke_resp() - invoke ep->resp()
705  *
706  * Notes:
707  * It is assumed that after initialization finished (this means the
708  * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
709  * modified only via fc_seq_set_resp(). This guarantees that none of these
710  * two variables changes if ep->resp_active > 0.
711  *
712  * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
713  * this function is invoked, the first spin_lock_bh() call in this function
714  * will wait until fc_seq_set_resp() has finished modifying these variables.
715  *
716  * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
717  * ep->resp() won't be invoked after fc_exch_done() has returned.
718  *
719  * The response handler itself may invoke fc_exch_done(), which will clear the
720  * ep->resp pointer.
721  *
722  * Return value:
723  * Returns true if and only if ep->resp has been invoked.
724  */
725 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
726 			   struct fc_frame *fp)
727 {
728 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
729 	void *arg;
730 	bool res = false;
731 
732 	spin_lock_bh(&ep->ex_lock);
733 	ep->resp_active++;
734 	if (ep->resp_task != current)
735 		ep->resp_task = !ep->resp_task ? current : NULL;
736 	resp = ep->resp;
737 	arg = ep->arg;
738 	spin_unlock_bh(&ep->ex_lock);
739 
740 	if (resp) {
741 		resp(sp, fp, arg);
742 		res = true;
743 	}
744 
745 	spin_lock_bh(&ep->ex_lock);
746 	if (--ep->resp_active == 0)
747 		ep->resp_task = NULL;
748 	spin_unlock_bh(&ep->ex_lock);
749 
750 	if (ep->resp_active == 0)
751 		wake_up(&ep->resp_wq);
752 
753 	return res;
754 }
755 
756 /**
757  * fc_exch_timeout() - Handle exchange timer expiration
758  * @work: The work_struct identifying the exchange that timed out
759  */
760 static void fc_exch_timeout(struct work_struct *work)
761 {
762 	struct fc_exch *ep = container_of(work, struct fc_exch,
763 					  timeout_work.work);
764 	struct fc_seq *sp = &ep->seq;
765 	u32 e_stat;
766 	int rc = 1;
767 
768 	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
769 
770 	spin_lock_bh(&ep->ex_lock);
771 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
772 		goto unlock;
773 
774 	e_stat = ep->esb_stat;
775 	if (e_stat & ESB_ST_COMPLETE) {
776 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
777 		spin_unlock_bh(&ep->ex_lock);
778 		if (e_stat & ESB_ST_REC_QUAL)
779 			fc_exch_rrq(ep);
780 		goto done;
781 	} else {
782 		if (e_stat & ESB_ST_ABNORMAL)
783 			rc = fc_exch_done_locked(ep);
784 		spin_unlock_bh(&ep->ex_lock);
785 		if (!rc)
786 			fc_exch_delete(ep);
787 		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
788 		fc_seq_set_resp(sp, NULL, ep->arg);
789 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
790 		goto done;
791 	}
792 unlock:
793 	spin_unlock_bh(&ep->ex_lock);
794 done:
795 	/*
796 	 * This release matches the hold taken when the timer was set.
797 	 */
798 	fc_exch_release(ep);
799 }
800 
801 /**
802  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
803  * @lport: The local port that the exchange is for
804  * @mp:	   The exchange manager that will allocate the exchange
805  *
806  * Returns pointer to allocated fc_exch with exch lock held.
807  */
808 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
809 					struct fc_exch_mgr *mp)
810 {
811 	struct fc_exch *ep;
812 	unsigned int cpu;
813 	u16 index;
814 	struct fc_exch_pool *pool;
815 
816 	/* allocate memory for exchange */
817 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
818 	if (!ep) {
819 		atomic_inc(&mp->stats.no_free_exch);
820 		goto out;
821 	}
822 	memset(ep, 0, sizeof(*ep));
823 
824 	cpu = get_cpu();
825 	pool = per_cpu_ptr(mp->pool, cpu);
826 	spin_lock_bh(&pool->lock);
827 	put_cpu();
828 
829 	/* peek cache of free slot */
830 	if (pool->left != FC_XID_UNKNOWN) {
831 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
832 			index = pool->left;
833 			pool->left = FC_XID_UNKNOWN;
834 			goto hit;
835 		}
836 	}
837 	if (pool->right != FC_XID_UNKNOWN) {
838 		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
839 			index = pool->right;
840 			pool->right = FC_XID_UNKNOWN;
841 			goto hit;
842 		}
843 	}
844 
845 	index = pool->next_index;
846 	/* allocate new exch from pool */
847 	while (fc_exch_ptr_get(pool, index)) {
848 		index = index == mp->pool_max_index ? 0 : index + 1;
849 		if (index == pool->next_index)
850 			goto err;
851 	}
852 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
853 hit:
854 	fc_exch_hold(ep);	/* hold for exch in mp */
855 	spin_lock_init(&ep->ex_lock);
856 	/*
857 	 * Hold exch lock for caller to prevent fc_exch_reset()
858 	 * from releasing exch	while fc_exch_alloc() caller is
859 	 * still working on exch.
860 	 */
861 	spin_lock_bh(&ep->ex_lock);
862 
863 	fc_exch_ptr_set(pool, index, ep);
864 	list_add_tail(&ep->ex_list, &pool->ex_list);
865 	fc_seq_alloc(ep, ep->seq_id++);
866 	pool->total_exches++;
867 	spin_unlock_bh(&pool->lock);
868 
869 	/*
870 	 *  update exchange
871 	 */
872 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
873 	ep->em = mp;
874 	ep->pool = pool;
875 	ep->lp = lport;
876 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
877 	ep->rxid = FC_XID_UNKNOWN;
878 	ep->class = mp->class;
879 	ep->resp_active = 0;
880 	init_waitqueue_head(&ep->resp_wq);
881 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
882 out:
883 	return ep;
884 err:
885 	spin_unlock_bh(&pool->lock);
886 	atomic_inc(&mp->stats.no_free_exch_xid);
887 	mempool_free(ep, mp->ep_pool);
888 	return NULL;
889 }
890 
891 /**
892  * fc_exch_alloc() - Allocate an exchange from an EM on a
893  *		     local port's list of EMs.
894  * @lport: The local port that will own the exchange
895  * @fp:	   The FC frame that the exchange will be for
896  *
897  * This function walks the list of exchange manager(EM)
898  * anchors to select an EM for a new exchange allocation. The
899  * EM is selected when a NULL match function pointer is encountered
900  * or when a call to a match function returns true.
901  */
902 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
903 				     struct fc_frame *fp)
904 {
905 	struct fc_exch_mgr_anchor *ema;
906 	struct fc_exch *ep;
907 
908 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
909 		if (!ema->match || ema->match(fp)) {
910 			ep = fc_exch_em_alloc(lport, ema->mp);
911 			if (ep)
912 				return ep;
913 		}
914 	}
915 	return NULL;
916 }
917 
918 /**
919  * fc_exch_find() - Lookup and hold an exchange
920  * @mp:	 The exchange manager to lookup the exchange from
921  * @xid: The XID of the exchange to look up
922  */
923 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
924 {
925 	struct fc_lport *lport = mp->lport;
926 	struct fc_exch_pool *pool;
927 	struct fc_exch *ep = NULL;
928 	u16 cpu = xid & fc_cpu_mask;
929 
930 	if (xid == FC_XID_UNKNOWN)
931 		return NULL;
932 
933 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
934 		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
935 		       lport->host->host_no, lport->port_id, xid, cpu);
936 		return NULL;
937 	}
938 
939 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
940 		pool = per_cpu_ptr(mp->pool, cpu);
941 		spin_lock_bh(&pool->lock);
942 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
943 		if (ep == &fc_quarantine_exch) {
944 			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
945 			ep = NULL;
946 		}
947 		if (ep) {
948 			WARN_ON(ep->xid != xid);
949 			fc_exch_hold(ep);
950 		}
951 		spin_unlock_bh(&pool->lock);
952 	}
953 	return ep;
954 }
955 
956 
957 /**
958  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
959  *		    the memory allocated for the related objects may be freed.
960  * @sp: The sequence that has completed
961  *
962  * Note: May sleep if invoked from outside a response handler.
963  */
964 void fc_exch_done(struct fc_seq *sp)
965 {
966 	struct fc_exch *ep = fc_seq_exch(sp);
967 	int rc;
968 
969 	spin_lock_bh(&ep->ex_lock);
970 	rc = fc_exch_done_locked(ep);
971 	spin_unlock_bh(&ep->ex_lock);
972 
973 	fc_seq_set_resp(sp, NULL, ep->arg);
974 	if (!rc)
975 		fc_exch_delete(ep);
976 }
977 EXPORT_SYMBOL(fc_exch_done);
978 
979 /**
980  * fc_exch_resp() - Allocate a new exchange for a response frame
981  * @lport: The local port that the exchange was for
982  * @mp:	   The exchange manager to allocate the exchange from
983  * @fp:	   The response frame
984  *
985  * Sets the responder ID in the frame header.
986  */
987 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
988 				    struct fc_exch_mgr *mp,
989 				    struct fc_frame *fp)
990 {
991 	struct fc_exch *ep;
992 	struct fc_frame_header *fh;
993 
994 	ep = fc_exch_alloc(lport, fp);
995 	if (ep) {
996 		ep->class = fc_frame_class(fp);
997 
998 		/*
999 		 * Set EX_CTX indicating we're responding on this exchange.
1000 		 */
1001 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1002 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1003 		fh = fc_frame_header_get(fp);
1004 		ep->sid = ntoh24(fh->fh_d_id);
1005 		ep->did = ntoh24(fh->fh_s_id);
1006 		ep->oid = ep->did;
1007 
1008 		/*
1009 		 * Allocated exchange has placed the XID in the
1010 		 * originator field. Move it to the responder field,
1011 		 * and set the originator XID from the frame.
1012 		 */
1013 		ep->rxid = ep->xid;
1014 		ep->oxid = ntohs(fh->fh_ox_id);
1015 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1016 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1017 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1018 
1019 		fc_exch_hold(ep);	/* hold for caller */
1020 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1021 	}
1022 	return ep;
1023 }
1024 
1025 /**
1026  * fc_seq_lookup_recip() - Find a sequence where the other end
1027  *			   originated the sequence
1028  * @lport: The local port that the frame was sent to
1029  * @mp:	   The Exchange Manager to lookup the exchange from
1030  * @fp:	   The frame associated with the sequence we're looking for
1031  *
1032  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1033  * on the ep that should be released by the caller.
1034  */
1035 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1036 						 struct fc_exch_mgr *mp,
1037 						 struct fc_frame *fp)
1038 {
1039 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1040 	struct fc_exch *ep = NULL;
1041 	struct fc_seq *sp = NULL;
1042 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1043 	u32 f_ctl;
1044 	u16 xid;
1045 
1046 	f_ctl = ntoh24(fh->fh_f_ctl);
1047 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1048 
1049 	/*
1050 	 * Lookup or create the exchange if we will be creating the sequence.
1051 	 */
1052 	if (f_ctl & FC_FC_EX_CTX) {
1053 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1054 		ep = fc_exch_find(mp, xid);
1055 		if (!ep) {
1056 			atomic_inc(&mp->stats.xid_not_found);
1057 			reject = FC_RJT_OX_ID;
1058 			goto out;
1059 		}
1060 		if (ep->rxid == FC_XID_UNKNOWN)
1061 			ep->rxid = ntohs(fh->fh_rx_id);
1062 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1063 			reject = FC_RJT_OX_ID;
1064 			goto rel;
1065 		}
1066 	} else {
1067 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1068 
1069 		/*
1070 		 * Special case for MDS issuing an ELS TEST with a
1071 		 * bad rxid of 0.
1072 		 * XXX take this out once we do the proper reject.
1073 		 */
1074 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1075 		    fc_frame_payload_op(fp) == ELS_TEST) {
1076 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1077 			xid = FC_XID_UNKNOWN;
1078 		}
1079 
1080 		/*
1081 		 * new sequence - find the exchange
1082 		 */
1083 		ep = fc_exch_find(mp, xid);
1084 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1085 			if (ep) {
1086 				atomic_inc(&mp->stats.xid_busy);
1087 				reject = FC_RJT_RX_ID;
1088 				goto rel;
1089 			}
1090 			ep = fc_exch_resp(lport, mp, fp);
1091 			if (!ep) {
1092 				reject = FC_RJT_EXCH_EST;	/* XXX */
1093 				goto out;
1094 			}
1095 			xid = ep->xid;	/* get our XID */
1096 		} else if (!ep) {
1097 			atomic_inc(&mp->stats.xid_not_found);
1098 			reject = FC_RJT_RX_ID;	/* XID not found */
1099 			goto out;
1100 		}
1101 	}
1102 
1103 	spin_lock_bh(&ep->ex_lock);
1104 	/*
1105 	 * At this point, we have the exchange held.
1106 	 * Find or create the sequence.
1107 	 */
1108 	if (fc_sof_is_init(fr_sof(fp))) {
1109 		sp = &ep->seq;
1110 		sp->ssb_stat |= SSB_ST_RESP;
1111 		sp->id = fh->fh_seq_id;
1112 	} else {
1113 		sp = &ep->seq;
1114 		if (sp->id != fh->fh_seq_id) {
1115 			atomic_inc(&mp->stats.seq_not_found);
1116 			if (f_ctl & FC_FC_END_SEQ) {
1117 				/*
1118 				 * Update sequence_id based on incoming last
1119 				 * frame of sequence exchange. This is needed
1120 				 * for FC target where DDP has been used
1121 				 * on target where, stack is indicated only
1122 				 * about last frame's (payload _header) header.
1123 				 * Whereas "seq_id" which is part of
1124 				 * frame_header is allocated by initiator
1125 				 * which is totally different from "seq_id"
1126 				 * allocated when XFER_RDY was sent by target.
1127 				 * To avoid false -ve which results into not
1128 				 * sending RSP, hence write request on other
1129 				 * end never finishes.
1130 				 */
1131 				sp->ssb_stat |= SSB_ST_RESP;
1132 				sp->id = fh->fh_seq_id;
1133 			} else {
1134 				spin_unlock_bh(&ep->ex_lock);
1135 
1136 				/* sequence/exch should exist */
1137 				reject = FC_RJT_SEQ_ID;
1138 				goto rel;
1139 			}
1140 		}
1141 	}
1142 	WARN_ON(ep != fc_seq_exch(sp));
1143 
1144 	if (f_ctl & FC_FC_SEQ_INIT)
1145 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1146 	spin_unlock_bh(&ep->ex_lock);
1147 
1148 	fr_seq(fp) = sp;
1149 out:
1150 	return reject;
1151 rel:
1152 	fc_exch_done(&ep->seq);
1153 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1154 	return reject;
1155 }
1156 
1157 /**
1158  * fc_seq_lookup_orig() - Find a sequence where this end
1159  *			  originated the sequence
1160  * @mp:	   The Exchange Manager to lookup the exchange from
1161  * @fp:	   The frame associated with the sequence we're looking for
1162  *
1163  * Does not hold the sequence for the caller.
1164  */
1165 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1166 					 struct fc_frame *fp)
1167 {
1168 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1169 	struct fc_exch *ep;
1170 	struct fc_seq *sp = NULL;
1171 	u32 f_ctl;
1172 	u16 xid;
1173 
1174 	f_ctl = ntoh24(fh->fh_f_ctl);
1175 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1176 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1177 	ep = fc_exch_find(mp, xid);
1178 	if (!ep)
1179 		return NULL;
1180 	if (ep->seq.id == fh->fh_seq_id) {
1181 		/*
1182 		 * Save the RX_ID if we didn't previously know it.
1183 		 */
1184 		sp = &ep->seq;
1185 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1186 		    ep->rxid == FC_XID_UNKNOWN) {
1187 			ep->rxid = ntohs(fh->fh_rx_id);
1188 		}
1189 	}
1190 	fc_exch_release(ep);
1191 	return sp;
1192 }
1193 
1194 /**
1195  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1196  * @ep:	     The exchange to set the addresses for
1197  * @orig_id: The originator's ID
1198  * @resp_id: The responder's ID
1199  *
1200  * Note this must be done before the first sequence of the exchange is sent.
1201  */
1202 static void fc_exch_set_addr(struct fc_exch *ep,
1203 			     u32 orig_id, u32 resp_id)
1204 {
1205 	ep->oid = orig_id;
1206 	if (ep->esb_stat & ESB_ST_RESP) {
1207 		ep->sid = resp_id;
1208 		ep->did = orig_id;
1209 	} else {
1210 		ep->sid = orig_id;
1211 		ep->did = resp_id;
1212 	}
1213 }
1214 
1215 /**
1216  * fc_seq_els_rsp_send() - Send an ELS response using information from
1217  *			   the existing sequence/exchange.
1218  * @fp:	      The received frame
1219  * @els_cmd:  The ELS command to be sent
1220  * @els_data: The ELS data to be sent
1221  *
1222  * The received frame is not freed.
1223  */
1224 void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1225 			 struct fc_seq_els_data *els_data)
1226 {
1227 	switch (els_cmd) {
1228 	case ELS_LS_RJT:
1229 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1230 		break;
1231 	case ELS_LS_ACC:
1232 		fc_seq_ls_acc(fp);
1233 		break;
1234 	case ELS_RRQ:
1235 		fc_exch_els_rrq(fp);
1236 		break;
1237 	case ELS_REC:
1238 		fc_exch_els_rec(fp);
1239 		break;
1240 	default:
1241 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1242 	}
1243 }
1244 EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1245 
1246 /**
1247  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1248  * @sp:	     The sequence that is to be sent
1249  * @fp:	     The frame that will be sent on the sequence
1250  * @rctl:    The R_CTL information to be sent
1251  * @fh_type: The frame header type
1252  */
1253 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1254 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1255 {
1256 	u32 f_ctl;
1257 	struct fc_exch *ep = fc_seq_exch(sp);
1258 
1259 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1260 	f_ctl |= ep->f_ctl;
1261 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1262 	fc_seq_send_locked(ep->lp, sp, fp);
1263 }
1264 
1265 /**
1266  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1267  * @sp:	   The sequence to send the ACK on
1268  * @rx_fp: The received frame that is being acknoledged
1269  *
1270  * Send ACK_1 (or equiv.) indicating we received something.
1271  */
1272 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1273 {
1274 	struct fc_frame *fp;
1275 	struct fc_frame_header *rx_fh;
1276 	struct fc_frame_header *fh;
1277 	struct fc_exch *ep = fc_seq_exch(sp);
1278 	struct fc_lport *lport = ep->lp;
1279 	unsigned int f_ctl;
1280 
1281 	/*
1282 	 * Don't send ACKs for class 3.
1283 	 */
1284 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1285 		fp = fc_frame_alloc(lport, 0);
1286 		if (!fp) {
1287 			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1288 			return;
1289 		}
1290 
1291 		fh = fc_frame_header_get(fp);
1292 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1293 		fh->fh_type = FC_TYPE_BLS;
1294 
1295 		/*
1296 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1297 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1298 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1299 		 * Last ACK uses bits 7-6 (continue sequence),
1300 		 * bits 5-4 are meaningful (what kind of ACK to use).
1301 		 */
1302 		rx_fh = fc_frame_header_get(rx_fp);
1303 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1304 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1305 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1306 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1307 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1308 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1309 		hton24(fh->fh_f_ctl, f_ctl);
1310 
1311 		fc_exch_setup_hdr(ep, fp, f_ctl);
1312 		fh->fh_seq_id = rx_fh->fh_seq_id;
1313 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1314 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1315 
1316 		fr_sof(fp) = fr_sof(rx_fp);
1317 		if (f_ctl & FC_FC_END_SEQ)
1318 			fr_eof(fp) = FC_EOF_T;
1319 		else
1320 			fr_eof(fp) = FC_EOF_N;
1321 
1322 		lport->tt.frame_send(lport, fp);
1323 	}
1324 }
1325 
1326 /**
1327  * fc_exch_send_ba_rjt() - Send BLS Reject
1328  * @rx_fp:  The frame being rejected
1329  * @reason: The reason the frame is being rejected
1330  * @explan: The explanation for the rejection
1331  *
1332  * This is for rejecting BA_ABTS only.
1333  */
1334 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1335 				enum fc_ba_rjt_reason reason,
1336 				enum fc_ba_rjt_explan explan)
1337 {
1338 	struct fc_frame *fp;
1339 	struct fc_frame_header *rx_fh;
1340 	struct fc_frame_header *fh;
1341 	struct fc_ba_rjt *rp;
1342 	struct fc_seq *sp;
1343 	struct fc_lport *lport;
1344 	unsigned int f_ctl;
1345 
1346 	lport = fr_dev(rx_fp);
1347 	sp = fr_seq(rx_fp);
1348 	fp = fc_frame_alloc(lport, sizeof(*rp));
1349 	if (!fp) {
1350 		FC_EXCH_DBG(fc_seq_exch(sp),
1351 			     "Drop BA_RJT request, out of memory\n");
1352 		return;
1353 	}
1354 	fh = fc_frame_header_get(fp);
1355 	rx_fh = fc_frame_header_get(rx_fp);
1356 
1357 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1358 
1359 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1360 	rp->br_reason = reason;
1361 	rp->br_explan = explan;
1362 
1363 	/*
1364 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1365 	 */
1366 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1367 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1368 	fh->fh_ox_id = rx_fh->fh_ox_id;
1369 	fh->fh_rx_id = rx_fh->fh_rx_id;
1370 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1371 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1372 	fh->fh_type = FC_TYPE_BLS;
1373 
1374 	/*
1375 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1376 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1377 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1378 	 * Last ACK uses bits 7-6 (continue sequence),
1379 	 * bits 5-4 are meaningful (what kind of ACK to use).
1380 	 * Always set LAST_SEQ, END_SEQ.
1381 	 */
1382 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1383 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1384 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1385 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1386 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1387 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1388 	f_ctl &= ~FC_FC_FIRST_SEQ;
1389 	hton24(fh->fh_f_ctl, f_ctl);
1390 
1391 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1392 	fr_eof(fp) = FC_EOF_T;
1393 	if (fc_sof_needs_ack(fr_sof(fp)))
1394 		fr_eof(fp) = FC_EOF_N;
1395 
1396 	lport->tt.frame_send(lport, fp);
1397 }
1398 
1399 /**
1400  * fc_exch_recv_abts() - Handle an incoming ABTS
1401  * @ep:	   The exchange the abort was on
1402  * @rx_fp: The ABTS frame
1403  *
1404  * This would be for target mode usually, but could be due to lost
1405  * FCP transfer ready, confirm or RRQ. We always handle this as an
1406  * exchange abort, ignoring the parameter.
1407  */
1408 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1409 {
1410 	struct fc_frame *fp;
1411 	struct fc_ba_acc *ap;
1412 	struct fc_frame_header *fh;
1413 	struct fc_seq *sp;
1414 
1415 	if (!ep)
1416 		goto reject;
1417 
1418 	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1419 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1420 	if (!fp) {
1421 		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1422 		goto free;
1423 	}
1424 
1425 	spin_lock_bh(&ep->ex_lock);
1426 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1427 		spin_unlock_bh(&ep->ex_lock);
1428 		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1429 		fc_frame_free(fp);
1430 		goto reject;
1431 	}
1432 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1433 		ep->esb_stat |= ESB_ST_REC_QUAL;
1434 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1435 	}
1436 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1437 	fh = fc_frame_header_get(fp);
1438 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1439 	memset(ap, 0, sizeof(*ap));
1440 	sp = &ep->seq;
1441 	ap->ba_high_seq_cnt = htons(0xffff);
1442 	if (sp->ssb_stat & SSB_ST_RESP) {
1443 		ap->ba_seq_id = sp->id;
1444 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1445 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1446 		ap->ba_low_seq_cnt = htons(sp->cnt);
1447 	}
1448 	sp = fc_seq_start_next_locked(sp);
1449 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1450 	ep->esb_stat |= ESB_ST_ABNORMAL;
1451 	spin_unlock_bh(&ep->ex_lock);
1452 
1453 free:
1454 	fc_frame_free(rx_fp);
1455 	return;
1456 
1457 reject:
1458 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1459 	goto free;
1460 }
1461 
1462 /**
1463  * fc_seq_assign() - Assign exchange and sequence for incoming request
1464  * @lport: The local port that received the request
1465  * @fp:    The request frame
1466  *
1467  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1468  * A reference will be held on the exchange/sequence for the caller, which
1469  * must call fc_seq_release().
1470  */
1471 struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1472 {
1473 	struct fc_exch_mgr_anchor *ema;
1474 
1475 	WARN_ON(lport != fr_dev(fp));
1476 	WARN_ON(fr_seq(fp));
1477 	fr_seq(fp) = NULL;
1478 
1479 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1480 		if ((!ema->match || ema->match(fp)) &&
1481 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1482 			break;
1483 	return fr_seq(fp);
1484 }
1485 EXPORT_SYMBOL(fc_seq_assign);
1486 
1487 /**
1488  * fc_seq_release() - Release the hold
1489  * @sp:    The sequence.
1490  */
1491 void fc_seq_release(struct fc_seq *sp)
1492 {
1493 	fc_exch_release(fc_seq_exch(sp));
1494 }
1495 EXPORT_SYMBOL(fc_seq_release);
1496 
1497 /**
1498  * fc_exch_recv_req() - Handler for an incoming request
1499  * @lport: The local port that received the request
1500  * @mp:	   The EM that the exchange is on
1501  * @fp:	   The request frame
1502  *
1503  * This is used when the other end is originating the exchange
1504  * and the sequence.
1505  */
1506 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1507 			     struct fc_frame *fp)
1508 {
1509 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1510 	struct fc_seq *sp = NULL;
1511 	struct fc_exch *ep = NULL;
1512 	enum fc_pf_rjt_reason reject;
1513 
1514 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1515 	 * problem now that we know a new exchange needs to be allocated
1516 	 */
1517 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1518 	if (!lport) {
1519 		fc_frame_free(fp);
1520 		return;
1521 	}
1522 	fr_dev(fp) = lport;
1523 
1524 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1525 
1526 	/*
1527 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1528 	 * The upper-level protocol may request one later, if needed.
1529 	 */
1530 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1531 		return fc_lport_recv(lport, fp);
1532 
1533 	reject = fc_seq_lookup_recip(lport, mp, fp);
1534 	if (reject == FC_RJT_NONE) {
1535 		sp = fr_seq(fp);	/* sequence will be held */
1536 		ep = fc_seq_exch(sp);
1537 		fc_seq_send_ack(sp, fp);
1538 		ep->encaps = fr_encaps(fp);
1539 
1540 		/*
1541 		 * Call the receive function.
1542 		 *
1543 		 * The receive function may allocate a new sequence
1544 		 * over the old one, so we shouldn't change the
1545 		 * sequence after this.
1546 		 *
1547 		 * The frame will be freed by the receive function.
1548 		 * If new exch resp handler is valid then call that
1549 		 * first.
1550 		 */
1551 		if (!fc_invoke_resp(ep, sp, fp))
1552 			fc_lport_recv(lport, fp);
1553 		fc_exch_release(ep);	/* release from lookup */
1554 	} else {
1555 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1556 			     reject);
1557 		fc_frame_free(fp);
1558 	}
1559 }
1560 
1561 /**
1562  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1563  *			     end is the originator of the sequence that is a
1564  *			     response to our initial exchange
1565  * @mp: The EM that the exchange is on
1566  * @fp: The response frame
1567  */
1568 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1569 {
1570 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1571 	struct fc_seq *sp;
1572 	struct fc_exch *ep;
1573 	enum fc_sof sof;
1574 	u32 f_ctl;
1575 	int rc;
1576 
1577 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1578 	if (!ep) {
1579 		atomic_inc(&mp->stats.xid_not_found);
1580 		goto out;
1581 	}
1582 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1583 		atomic_inc(&mp->stats.xid_not_found);
1584 		goto rel;
1585 	}
1586 	if (ep->rxid == FC_XID_UNKNOWN)
1587 		ep->rxid = ntohs(fh->fh_rx_id);
1588 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1589 		atomic_inc(&mp->stats.xid_not_found);
1590 		goto rel;
1591 	}
1592 	if (ep->did != ntoh24(fh->fh_s_id) &&
1593 	    ep->did != FC_FID_FLOGI) {
1594 		atomic_inc(&mp->stats.xid_not_found);
1595 		goto rel;
1596 	}
1597 	sof = fr_sof(fp);
1598 	sp = &ep->seq;
1599 	if (fc_sof_is_init(sof)) {
1600 		sp->ssb_stat |= SSB_ST_RESP;
1601 		sp->id = fh->fh_seq_id;
1602 	}
1603 
1604 	f_ctl = ntoh24(fh->fh_f_ctl);
1605 	fr_seq(fp) = sp;
1606 
1607 	spin_lock_bh(&ep->ex_lock);
1608 	if (f_ctl & FC_FC_SEQ_INIT)
1609 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1610 	spin_unlock_bh(&ep->ex_lock);
1611 
1612 	if (fc_sof_needs_ack(sof))
1613 		fc_seq_send_ack(sp, fp);
1614 
1615 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1616 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1617 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1618 		spin_lock_bh(&ep->ex_lock);
1619 		rc = fc_exch_done_locked(ep);
1620 		WARN_ON(fc_seq_exch(sp) != ep);
1621 		spin_unlock_bh(&ep->ex_lock);
1622 		if (!rc)
1623 			fc_exch_delete(ep);
1624 	}
1625 
1626 	/*
1627 	 * Call the receive function.
1628 	 * The sequence is held (has a refcnt) for us,
1629 	 * but not for the receive function.
1630 	 *
1631 	 * The receive function may allocate a new sequence
1632 	 * over the old one, so we shouldn't change the
1633 	 * sequence after this.
1634 	 *
1635 	 * The frame will be freed by the receive function.
1636 	 * If new exch resp handler is valid then call that
1637 	 * first.
1638 	 */
1639 	if (!fc_invoke_resp(ep, sp, fp))
1640 		fc_frame_free(fp);
1641 
1642 	fc_exch_release(ep);
1643 	return;
1644 rel:
1645 	fc_exch_release(ep);
1646 out:
1647 	fc_frame_free(fp);
1648 }
1649 
1650 /**
1651  * fc_exch_recv_resp() - Handler for a sequence where other end is
1652  *			 responding to our sequence
1653  * @mp: The EM that the exchange is on
1654  * @fp: The response frame
1655  */
1656 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1657 {
1658 	struct fc_seq *sp;
1659 
1660 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1661 
1662 	if (!sp)
1663 		atomic_inc(&mp->stats.xid_not_found);
1664 	else
1665 		atomic_inc(&mp->stats.non_bls_resp);
1666 
1667 	fc_frame_free(fp);
1668 }
1669 
1670 /**
1671  * fc_exch_abts_resp() - Handler for a response to an ABT
1672  * @ep: The exchange that the frame is on
1673  * @fp: The response frame
1674  *
1675  * This response would be to an ABTS cancelling an exchange or sequence.
1676  * The response can be either BA_ACC or BA_RJT
1677  */
1678 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1679 {
1680 	struct fc_frame_header *fh;
1681 	struct fc_ba_acc *ap;
1682 	struct fc_seq *sp;
1683 	u16 low;
1684 	u16 high;
1685 	int rc = 1, has_rec = 0;
1686 
1687 	fh = fc_frame_header_get(fp);
1688 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1689 		    fc_exch_rctl_name(fh->fh_r_ctl));
1690 
1691 	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1692 		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1693 		fc_exch_release(ep);	/* release from pending timer hold */
1694 	}
1695 
1696 	spin_lock_bh(&ep->ex_lock);
1697 	switch (fh->fh_r_ctl) {
1698 	case FC_RCTL_BA_ACC:
1699 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1700 		if (!ap)
1701 			break;
1702 
1703 		/*
1704 		 * Decide whether to establish a Recovery Qualifier.
1705 		 * We do this if there is a non-empty SEQ_CNT range and
1706 		 * SEQ_ID is the same as the one we aborted.
1707 		 */
1708 		low = ntohs(ap->ba_low_seq_cnt);
1709 		high = ntohs(ap->ba_high_seq_cnt);
1710 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1711 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1712 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1713 			ep->esb_stat |= ESB_ST_REC_QUAL;
1714 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1715 			has_rec = 1;
1716 		}
1717 		break;
1718 	case FC_RCTL_BA_RJT:
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 
1724 	/* do we need to do some other checks here. Can we reuse more of
1725 	 * fc_exch_recv_seq_resp
1726 	 */
1727 	sp = &ep->seq;
1728 	/*
1729 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1730 	 */
1731 	if (ep->fh_type != FC_TYPE_FCP &&
1732 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1733 		rc = fc_exch_done_locked(ep);
1734 	spin_unlock_bh(&ep->ex_lock);
1735 
1736 	fc_exch_hold(ep);
1737 	if (!rc)
1738 		fc_exch_delete(ep);
1739 	if (!fc_invoke_resp(ep, sp, fp))
1740 		fc_frame_free(fp);
1741 	if (has_rec)
1742 		fc_exch_timer_set(ep, ep->r_a_tov);
1743 	fc_exch_release(ep);
1744 }
1745 
1746 /**
1747  * fc_exch_recv_bls() - Handler for a BLS sequence
1748  * @mp: The EM that the exchange is on
1749  * @fp: The request frame
1750  *
1751  * The BLS frame is always a sequence initiated by the remote side.
1752  * We may be either the originator or recipient of the exchange.
1753  */
1754 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1755 {
1756 	struct fc_frame_header *fh;
1757 	struct fc_exch *ep;
1758 	u32 f_ctl;
1759 
1760 	fh = fc_frame_header_get(fp);
1761 	f_ctl = ntoh24(fh->fh_f_ctl);
1762 	fr_seq(fp) = NULL;
1763 
1764 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1765 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1766 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1767 		spin_lock_bh(&ep->ex_lock);
1768 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1769 		spin_unlock_bh(&ep->ex_lock);
1770 	}
1771 	if (f_ctl & FC_FC_SEQ_CTX) {
1772 		/*
1773 		 * A response to a sequence we initiated.
1774 		 * This should only be ACKs for class 2 or F.
1775 		 */
1776 		switch (fh->fh_r_ctl) {
1777 		case FC_RCTL_ACK_1:
1778 		case FC_RCTL_ACK_0:
1779 			break;
1780 		default:
1781 			if (ep)
1782 				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1783 					    fh->fh_r_ctl,
1784 					    fc_exch_rctl_name(fh->fh_r_ctl));
1785 			break;
1786 		}
1787 		fc_frame_free(fp);
1788 	} else {
1789 		switch (fh->fh_r_ctl) {
1790 		case FC_RCTL_BA_RJT:
1791 		case FC_RCTL_BA_ACC:
1792 			if (ep)
1793 				fc_exch_abts_resp(ep, fp);
1794 			else
1795 				fc_frame_free(fp);
1796 			break;
1797 		case FC_RCTL_BA_ABTS:
1798 			if (ep)
1799 				fc_exch_recv_abts(ep, fp);
1800 			else
1801 				fc_frame_free(fp);
1802 			break;
1803 		default:			/* ignore junk */
1804 			fc_frame_free(fp);
1805 			break;
1806 		}
1807 	}
1808 	if (ep)
1809 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1810 }
1811 
1812 /**
1813  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1814  * @rx_fp: The received frame, not freed here.
1815  *
1816  * If this fails due to allocation or transmit congestion, assume the
1817  * originator will repeat the sequence.
1818  */
1819 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1820 {
1821 	struct fc_lport *lport;
1822 	struct fc_els_ls_acc *acc;
1823 	struct fc_frame *fp;
1824 	struct fc_seq *sp;
1825 
1826 	lport = fr_dev(rx_fp);
1827 	sp = fr_seq(rx_fp);
1828 	fp = fc_frame_alloc(lport, sizeof(*acc));
1829 	if (!fp) {
1830 		FC_EXCH_DBG(fc_seq_exch(sp),
1831 			    "exch: drop LS_ACC, out of memory\n");
1832 		return;
1833 	}
1834 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1835 	memset(acc, 0, sizeof(*acc));
1836 	acc->la_cmd = ELS_LS_ACC;
1837 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1838 	lport->tt.frame_send(lport, fp);
1839 }
1840 
1841 /**
1842  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1843  * @rx_fp: The received frame, not freed here.
1844  * @reason: The reason the sequence is being rejected
1845  * @explan: The explanation for the rejection
1846  *
1847  * If this fails due to allocation or transmit congestion, assume the
1848  * originator will repeat the sequence.
1849  */
1850 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1851 			  enum fc_els_rjt_explan explan)
1852 {
1853 	struct fc_lport *lport;
1854 	struct fc_els_ls_rjt *rjt;
1855 	struct fc_frame *fp;
1856 	struct fc_seq *sp;
1857 
1858 	lport = fr_dev(rx_fp);
1859 	sp = fr_seq(rx_fp);
1860 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1861 	if (!fp) {
1862 		FC_EXCH_DBG(fc_seq_exch(sp),
1863 			    "exch: drop LS_ACC, out of memory\n");
1864 		return;
1865 	}
1866 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1867 	memset(rjt, 0, sizeof(*rjt));
1868 	rjt->er_cmd = ELS_LS_RJT;
1869 	rjt->er_reason = reason;
1870 	rjt->er_explan = explan;
1871 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1872 	lport->tt.frame_send(lport, fp);
1873 }
1874 
1875 /**
1876  * fc_exch_reset() - Reset an exchange
1877  * @ep: The exchange to be reset
1878  *
1879  * Note: May sleep if invoked from outside a response handler.
1880  */
1881 static void fc_exch_reset(struct fc_exch *ep)
1882 {
1883 	struct fc_seq *sp;
1884 	int rc = 1;
1885 
1886 	spin_lock_bh(&ep->ex_lock);
1887 	ep->state |= FC_EX_RST_CLEANUP;
1888 	fc_exch_timer_cancel(ep);
1889 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1890 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1891 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1892 	sp = &ep->seq;
1893 	rc = fc_exch_done_locked(ep);
1894 	spin_unlock_bh(&ep->ex_lock);
1895 
1896 	fc_exch_hold(ep);
1897 
1898 	if (!rc)
1899 		fc_exch_delete(ep);
1900 
1901 	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1902 	fc_seq_set_resp(sp, NULL, ep->arg);
1903 	fc_exch_release(ep);
1904 }
1905 
1906 /**
1907  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1908  * @lport: The local port that the exchange pool is on
1909  * @pool:  The exchange pool to be reset
1910  * @sid:   The source ID
1911  * @did:   The destination ID
1912  *
1913  * Resets a per cpu exches pool, releasing all of its sequences
1914  * and exchanges. If sid is non-zero then reset only exchanges
1915  * we sourced from the local port's FID. If did is non-zero then
1916  * only reset exchanges destined for the local port's FID.
1917  */
1918 static void fc_exch_pool_reset(struct fc_lport *lport,
1919 			       struct fc_exch_pool *pool,
1920 			       u32 sid, u32 did)
1921 {
1922 	struct fc_exch *ep;
1923 	struct fc_exch *next;
1924 
1925 	spin_lock_bh(&pool->lock);
1926 restart:
1927 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1928 		if ((lport == ep->lp) &&
1929 		    (sid == 0 || sid == ep->sid) &&
1930 		    (did == 0 || did == ep->did)) {
1931 			fc_exch_hold(ep);
1932 			spin_unlock_bh(&pool->lock);
1933 
1934 			fc_exch_reset(ep);
1935 
1936 			fc_exch_release(ep);
1937 			spin_lock_bh(&pool->lock);
1938 
1939 			/*
1940 			 * must restart loop incase while lock
1941 			 * was down multiple eps were released.
1942 			 */
1943 			goto restart;
1944 		}
1945 	}
1946 	pool->next_index = 0;
1947 	pool->left = FC_XID_UNKNOWN;
1948 	pool->right = FC_XID_UNKNOWN;
1949 	spin_unlock_bh(&pool->lock);
1950 }
1951 
1952 /**
1953  * fc_exch_mgr_reset() - Reset all EMs of a local port
1954  * @lport: The local port whose EMs are to be reset
1955  * @sid:   The source ID
1956  * @did:   The destination ID
1957  *
1958  * Reset all EMs associated with a given local port. Release all
1959  * sequences and exchanges. If sid is non-zero then reset only the
1960  * exchanges sent from the local port's FID. If did is non-zero then
1961  * reset only exchanges destined for the local port's FID.
1962  */
1963 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1964 {
1965 	struct fc_exch_mgr_anchor *ema;
1966 	unsigned int cpu;
1967 
1968 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1969 		for_each_possible_cpu(cpu)
1970 			fc_exch_pool_reset(lport,
1971 					   per_cpu_ptr(ema->mp->pool, cpu),
1972 					   sid, did);
1973 	}
1974 }
1975 EXPORT_SYMBOL(fc_exch_mgr_reset);
1976 
1977 /**
1978  * fc_exch_lookup() - find an exchange
1979  * @lport: The local port
1980  * @xid: The exchange ID
1981  *
1982  * Returns exchange pointer with hold for caller, or NULL if not found.
1983  */
1984 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1985 {
1986 	struct fc_exch_mgr_anchor *ema;
1987 
1988 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1989 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1990 			return fc_exch_find(ema->mp, xid);
1991 	return NULL;
1992 }
1993 
1994 /**
1995  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1996  * @rfp: The REC frame, not freed here.
1997  *
1998  * Note that the requesting port may be different than the S_ID in the request.
1999  */
2000 static void fc_exch_els_rec(struct fc_frame *rfp)
2001 {
2002 	struct fc_lport *lport;
2003 	struct fc_frame *fp;
2004 	struct fc_exch *ep;
2005 	struct fc_els_rec *rp;
2006 	struct fc_els_rec_acc *acc;
2007 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2008 	enum fc_els_rjt_explan explan;
2009 	u32 sid;
2010 	u16 xid, rxid, oxid;
2011 
2012 	lport = fr_dev(rfp);
2013 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2014 	explan = ELS_EXPL_INV_LEN;
2015 	if (!rp)
2016 		goto reject;
2017 	sid = ntoh24(rp->rec_s_id);
2018 	rxid = ntohs(rp->rec_rx_id);
2019 	oxid = ntohs(rp->rec_ox_id);
2020 
2021 	explan = ELS_EXPL_OXID_RXID;
2022 	if (sid == fc_host_port_id(lport->host))
2023 		xid = oxid;
2024 	else
2025 		xid = rxid;
2026 	if (xid == FC_XID_UNKNOWN) {
2027 		FC_LPORT_DBG(lport,
2028 			     "REC request from %x: invalid rxid %x oxid %x\n",
2029 			     sid, rxid, oxid);
2030 		goto reject;
2031 	}
2032 	ep = fc_exch_lookup(lport, xid);
2033 	if (!ep) {
2034 		FC_LPORT_DBG(lport,
2035 			     "REC request from %x: rxid %x oxid %x not found\n",
2036 			     sid, rxid, oxid);
2037 		goto reject;
2038 	}
2039 	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2040 		    sid, rxid, oxid);
2041 	if (ep->oid != sid || oxid != ep->oxid)
2042 		goto rel;
2043 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2044 		goto rel;
2045 	fp = fc_frame_alloc(lport, sizeof(*acc));
2046 	if (!fp) {
2047 		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2048 		goto out;
2049 	}
2050 
2051 	acc = fc_frame_payload_get(fp, sizeof(*acc));
2052 	memset(acc, 0, sizeof(*acc));
2053 	acc->reca_cmd = ELS_LS_ACC;
2054 	acc->reca_ox_id = rp->rec_ox_id;
2055 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2056 	acc->reca_rx_id = htons(ep->rxid);
2057 	if (ep->sid == ep->oid)
2058 		hton24(acc->reca_rfid, ep->did);
2059 	else
2060 		hton24(acc->reca_rfid, ep->sid);
2061 	acc->reca_fc4value = htonl(ep->seq.rec_data);
2062 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2063 						 ESB_ST_SEQ_INIT |
2064 						 ESB_ST_COMPLETE));
2065 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2066 	lport->tt.frame_send(lport, fp);
2067 out:
2068 	fc_exch_release(ep);
2069 	return;
2070 
2071 rel:
2072 	fc_exch_release(ep);
2073 reject:
2074 	fc_seq_ls_rjt(rfp, reason, explan);
2075 }
2076 
2077 /**
2078  * fc_exch_rrq_resp() - Handler for RRQ responses
2079  * @sp:	 The sequence that the RRQ is on
2080  * @fp:	 The RRQ frame
2081  * @arg: The exchange that the RRQ is on
2082  *
2083  * TODO: fix error handler.
2084  */
2085 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2086 {
2087 	struct fc_exch *aborted_ep = arg;
2088 	unsigned int op;
2089 
2090 	if (IS_ERR(fp)) {
2091 		int err = PTR_ERR(fp);
2092 
2093 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2094 			goto cleanup;
2095 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2096 			    "frame error %d\n", err);
2097 		return;
2098 	}
2099 
2100 	op = fc_frame_payload_op(fp);
2101 	fc_frame_free(fp);
2102 
2103 	switch (op) {
2104 	case ELS_LS_RJT:
2105 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2106 		/* fall through */
2107 	case ELS_LS_ACC:
2108 		goto cleanup;
2109 	default:
2110 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2111 			    op);
2112 		return;
2113 	}
2114 
2115 cleanup:
2116 	fc_exch_done(&aborted_ep->seq);
2117 	/* drop hold for rec qual */
2118 	fc_exch_release(aborted_ep);
2119 }
2120 
2121 
2122 /**
2123  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2124  * @lport:	The local port to send the frame on
2125  * @fp:		The frame to be sent
2126  * @resp:	The response handler for this request
2127  * @destructor: The destructor for the exchange
2128  * @arg:	The argument to be passed to the response handler
2129  * @timer_msec: The timeout period for the exchange
2130  *
2131  * The exchange response handler is set in this routine to resp()
2132  * function pointer. It can be called in two scenarios: if a timeout
2133  * occurs or if a response frame is received for the exchange. The
2134  * fc_frame pointer in response handler will also indicate timeout
2135  * as error using IS_ERR related macros.
2136  *
2137  * The exchange destructor handler is also set in this routine.
2138  * The destructor handler is invoked by EM layer when exchange
2139  * is about to free, this can be used by caller to free its
2140  * resources along with exchange free.
2141  *
2142  * The arg is passed back to resp and destructor handler.
2143  *
2144  * The timeout value (in msec) for an exchange is set if non zero
2145  * timer_msec argument is specified. The timer is canceled when
2146  * it fires or when the exchange is done. The exchange timeout handler
2147  * is registered by EM layer.
2148  *
2149  * The frame pointer with some of the header's fields must be
2150  * filled before calling this routine, those fields are:
2151  *
2152  * - routing control
2153  * - FC port did
2154  * - FC port sid
2155  * - FC header type
2156  * - frame control
2157  * - parameter or relative offset
2158  */
2159 struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2160 				struct fc_frame *fp,
2161 				void (*resp)(struct fc_seq *,
2162 					     struct fc_frame *fp,
2163 					     void *arg),
2164 				void (*destructor)(struct fc_seq *, void *),
2165 				void *arg, u32 timer_msec)
2166 {
2167 	struct fc_exch *ep;
2168 	struct fc_seq *sp = NULL;
2169 	struct fc_frame_header *fh;
2170 	struct fc_fcp_pkt *fsp = NULL;
2171 	int rc = 1;
2172 
2173 	ep = fc_exch_alloc(lport, fp);
2174 	if (!ep) {
2175 		fc_frame_free(fp);
2176 		return NULL;
2177 	}
2178 	ep->esb_stat |= ESB_ST_SEQ_INIT;
2179 	fh = fc_frame_header_get(fp);
2180 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2181 	ep->resp = resp;
2182 	ep->destructor = destructor;
2183 	ep->arg = arg;
2184 	ep->r_a_tov = lport->r_a_tov;
2185 	ep->lp = lport;
2186 	sp = &ep->seq;
2187 
2188 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2189 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2190 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2191 	sp->cnt++;
2192 
2193 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2194 		fsp = fr_fsp(fp);
2195 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2196 	}
2197 
2198 	if (unlikely(lport->tt.frame_send(lport, fp)))
2199 		goto err;
2200 
2201 	if (timer_msec)
2202 		fc_exch_timer_set_locked(ep, timer_msec);
2203 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2204 
2205 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2206 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2207 	spin_unlock_bh(&ep->ex_lock);
2208 	return sp;
2209 err:
2210 	if (fsp)
2211 		fc_fcp_ddp_done(fsp);
2212 	rc = fc_exch_done_locked(ep);
2213 	spin_unlock_bh(&ep->ex_lock);
2214 	if (!rc)
2215 		fc_exch_delete(ep);
2216 	return NULL;
2217 }
2218 EXPORT_SYMBOL(fc_exch_seq_send);
2219 
2220 /**
2221  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2222  * @ep: The exchange to send the RRQ on
2223  *
2224  * This tells the remote port to stop blocking the use of
2225  * the exchange and the seq_cnt range.
2226  */
2227 static void fc_exch_rrq(struct fc_exch *ep)
2228 {
2229 	struct fc_lport *lport;
2230 	struct fc_els_rrq *rrq;
2231 	struct fc_frame *fp;
2232 	u32 did;
2233 
2234 	lport = ep->lp;
2235 
2236 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2237 	if (!fp)
2238 		goto retry;
2239 
2240 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2241 	memset(rrq, 0, sizeof(*rrq));
2242 	rrq->rrq_cmd = ELS_RRQ;
2243 	hton24(rrq->rrq_s_id, ep->sid);
2244 	rrq->rrq_ox_id = htons(ep->oxid);
2245 	rrq->rrq_rx_id = htons(ep->rxid);
2246 
2247 	did = ep->did;
2248 	if (ep->esb_stat & ESB_ST_RESP)
2249 		did = ep->sid;
2250 
2251 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2252 		       lport->port_id, FC_TYPE_ELS,
2253 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2254 
2255 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2256 			     lport->e_d_tov))
2257 		return;
2258 
2259 retry:
2260 	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2261 	spin_lock_bh(&ep->ex_lock);
2262 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2263 		spin_unlock_bh(&ep->ex_lock);
2264 		/* drop hold for rec qual */
2265 		fc_exch_release(ep);
2266 		return;
2267 	}
2268 	ep->esb_stat |= ESB_ST_REC_QUAL;
2269 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2270 	spin_unlock_bh(&ep->ex_lock);
2271 }
2272 
2273 /**
2274  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2275  * @fp: The RRQ frame, not freed here.
2276  */
2277 static void fc_exch_els_rrq(struct fc_frame *fp)
2278 {
2279 	struct fc_lport *lport;
2280 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2281 	struct fc_els_rrq *rp;
2282 	u32 sid;
2283 	u16 xid;
2284 	enum fc_els_rjt_explan explan;
2285 
2286 	lport = fr_dev(fp);
2287 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2288 	explan = ELS_EXPL_INV_LEN;
2289 	if (!rp)
2290 		goto reject;
2291 
2292 	/*
2293 	 * lookup subject exchange.
2294 	 */
2295 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2296 	xid = fc_host_port_id(lport->host) == sid ?
2297 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2298 	ep = fc_exch_lookup(lport, xid);
2299 	explan = ELS_EXPL_OXID_RXID;
2300 	if (!ep)
2301 		goto reject;
2302 	spin_lock_bh(&ep->ex_lock);
2303 	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2304 		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2305 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2306 		goto unlock_reject;
2307 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2308 	    ep->rxid != FC_XID_UNKNOWN)
2309 		goto unlock_reject;
2310 	explan = ELS_EXPL_SID;
2311 	if (ep->sid != sid)
2312 		goto unlock_reject;
2313 
2314 	/*
2315 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2316 	 */
2317 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2318 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2319 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2320 	}
2321 	if (ep->esb_stat & ESB_ST_COMPLETE)
2322 		fc_exch_timer_cancel(ep);
2323 
2324 	spin_unlock_bh(&ep->ex_lock);
2325 
2326 	/*
2327 	 * Send LS_ACC.
2328 	 */
2329 	fc_seq_ls_acc(fp);
2330 	goto out;
2331 
2332 unlock_reject:
2333 	spin_unlock_bh(&ep->ex_lock);
2334 reject:
2335 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2336 out:
2337 	if (ep)
2338 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2339 }
2340 
2341 /**
2342  * fc_exch_update_stats() - update exches stats to lport
2343  * @lport: The local port to update exchange manager stats
2344  */
2345 void fc_exch_update_stats(struct fc_lport *lport)
2346 {
2347 	struct fc_host_statistics *st;
2348 	struct fc_exch_mgr_anchor *ema;
2349 	struct fc_exch_mgr *mp;
2350 
2351 	st = &lport->host_stats;
2352 
2353 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2354 		mp = ema->mp;
2355 		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2356 		st->fc_no_free_exch_xid +=
2357 				atomic_read(&mp->stats.no_free_exch_xid);
2358 		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2359 		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2360 		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2361 		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2362 	}
2363 }
2364 EXPORT_SYMBOL(fc_exch_update_stats);
2365 
2366 /**
2367  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2368  * @lport: The local port to add the exchange manager to
2369  * @mp:	   The exchange manager to be added to the local port
2370  * @match: The match routine that indicates when this EM should be used
2371  */
2372 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2373 					   struct fc_exch_mgr *mp,
2374 					   bool (*match)(struct fc_frame *))
2375 {
2376 	struct fc_exch_mgr_anchor *ema;
2377 
2378 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2379 	if (!ema)
2380 		return ema;
2381 
2382 	ema->mp = mp;
2383 	ema->match = match;
2384 	/* add EM anchor to EM anchors list */
2385 	list_add_tail(&ema->ema_list, &lport->ema_list);
2386 	kref_get(&mp->kref);
2387 	return ema;
2388 }
2389 EXPORT_SYMBOL(fc_exch_mgr_add);
2390 
2391 /**
2392  * fc_exch_mgr_destroy() - Destroy an exchange manager
2393  * @kref: The reference to the EM to be destroyed
2394  */
2395 static void fc_exch_mgr_destroy(struct kref *kref)
2396 {
2397 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2398 
2399 	mempool_destroy(mp->ep_pool);
2400 	free_percpu(mp->pool);
2401 	kfree(mp);
2402 }
2403 
2404 /**
2405  * fc_exch_mgr_del() - Delete an EM from a local port's list
2406  * @ema: The exchange manager anchor identifying the EM to be deleted
2407  */
2408 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2409 {
2410 	/* remove EM anchor from EM anchors list */
2411 	list_del(&ema->ema_list);
2412 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2413 	kfree(ema);
2414 }
2415 EXPORT_SYMBOL(fc_exch_mgr_del);
2416 
2417 /**
2418  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2419  * @src: Source lport to clone exchange managers from
2420  * @dst: New lport that takes references to all the exchange managers
2421  */
2422 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2423 {
2424 	struct fc_exch_mgr_anchor *ema, *tmp;
2425 
2426 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2427 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2428 			goto err;
2429 	}
2430 	return 0;
2431 err:
2432 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2433 		fc_exch_mgr_del(ema);
2434 	return -ENOMEM;
2435 }
2436 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2437 
2438 /**
2439  * fc_exch_mgr_alloc() - Allocate an exchange manager
2440  * @lport:   The local port that the new EM will be associated with
2441  * @class:   The default FC class for new exchanges
2442  * @min_xid: The minimum XID for exchanges from the new EM
2443  * @max_xid: The maximum XID for exchanges from the new EM
2444  * @match:   The match routine for the new EM
2445  */
2446 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2447 				      enum fc_class class,
2448 				      u16 min_xid, u16 max_xid,
2449 				      bool (*match)(struct fc_frame *))
2450 {
2451 	struct fc_exch_mgr *mp;
2452 	u16 pool_exch_range;
2453 	size_t pool_size;
2454 	unsigned int cpu;
2455 	struct fc_exch_pool *pool;
2456 
2457 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2458 	    (min_xid & fc_cpu_mask) != 0) {
2459 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2460 			     min_xid, max_xid);
2461 		return NULL;
2462 	}
2463 
2464 	/*
2465 	 * allocate memory for EM
2466 	 */
2467 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2468 	if (!mp)
2469 		return NULL;
2470 
2471 	mp->class = class;
2472 	mp->lport = lport;
2473 	/* adjust em exch xid range for offload */
2474 	mp->min_xid = min_xid;
2475 
2476        /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2477 	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2478 		sizeof(struct fc_exch *);
2479 	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2480 		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2481 			min_xid - 1;
2482 	} else {
2483 		mp->max_xid = max_xid;
2484 		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2485 			(fc_cpu_mask + 1);
2486 	}
2487 
2488 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2489 	if (!mp->ep_pool)
2490 		goto free_mp;
2491 
2492 	/*
2493 	 * Setup per cpu exch pool with entire exchange id range equally
2494 	 * divided across all cpus. The exch pointers array memory is
2495 	 * allocated for exch range per pool.
2496 	 */
2497 	mp->pool_max_index = pool_exch_range - 1;
2498 
2499 	/*
2500 	 * Allocate and initialize per cpu exch pool
2501 	 */
2502 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2503 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2504 	if (!mp->pool)
2505 		goto free_mempool;
2506 	for_each_possible_cpu(cpu) {
2507 		pool = per_cpu_ptr(mp->pool, cpu);
2508 		pool->next_index = 0;
2509 		pool->left = FC_XID_UNKNOWN;
2510 		pool->right = FC_XID_UNKNOWN;
2511 		spin_lock_init(&pool->lock);
2512 		INIT_LIST_HEAD(&pool->ex_list);
2513 	}
2514 
2515 	kref_init(&mp->kref);
2516 	if (!fc_exch_mgr_add(lport, mp, match)) {
2517 		free_percpu(mp->pool);
2518 		goto free_mempool;
2519 	}
2520 
2521 	/*
2522 	 * Above kref_init() sets mp->kref to 1 and then
2523 	 * call to fc_exch_mgr_add incremented mp->kref again,
2524 	 * so adjust that extra increment.
2525 	 */
2526 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2527 	return mp;
2528 
2529 free_mempool:
2530 	mempool_destroy(mp->ep_pool);
2531 free_mp:
2532 	kfree(mp);
2533 	return NULL;
2534 }
2535 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2536 
2537 /**
2538  * fc_exch_mgr_free() - Free all exchange managers on a local port
2539  * @lport: The local port whose EMs are to be freed
2540  */
2541 void fc_exch_mgr_free(struct fc_lport *lport)
2542 {
2543 	struct fc_exch_mgr_anchor *ema, *next;
2544 
2545 	flush_workqueue(fc_exch_workqueue);
2546 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2547 		fc_exch_mgr_del(ema);
2548 }
2549 EXPORT_SYMBOL(fc_exch_mgr_free);
2550 
2551 /**
2552  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2553  * upon 'xid'.
2554  * @f_ctl: f_ctl
2555  * @lport: The local port the frame was received on
2556  * @fh: The received frame header
2557  */
2558 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2559 					      struct fc_lport *lport,
2560 					      struct fc_frame_header *fh)
2561 {
2562 	struct fc_exch_mgr_anchor *ema;
2563 	u16 xid;
2564 
2565 	if (f_ctl & FC_FC_EX_CTX)
2566 		xid = ntohs(fh->fh_ox_id);
2567 	else {
2568 		xid = ntohs(fh->fh_rx_id);
2569 		if (xid == FC_XID_UNKNOWN)
2570 			return list_entry(lport->ema_list.prev,
2571 					  typeof(*ema), ema_list);
2572 	}
2573 
2574 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2575 		if ((xid >= ema->mp->min_xid) &&
2576 		    (xid <= ema->mp->max_xid))
2577 			return ema;
2578 	}
2579 	return NULL;
2580 }
2581 /**
2582  * fc_exch_recv() - Handler for received frames
2583  * @lport: The local port the frame was received on
2584  * @fp:	The received frame
2585  */
2586 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2587 {
2588 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2589 	struct fc_exch_mgr_anchor *ema;
2590 	u32 f_ctl;
2591 
2592 	/* lport lock ? */
2593 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2594 		FC_LIBFC_DBG("Receiving frames for an lport that "
2595 			     "has not been initialized correctly\n");
2596 		fc_frame_free(fp);
2597 		return;
2598 	}
2599 
2600 	f_ctl = ntoh24(fh->fh_f_ctl);
2601 	ema = fc_find_ema(f_ctl, lport, fh);
2602 	if (!ema) {
2603 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2604 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2605 				     f_ctl,
2606 				     (f_ctl & FC_FC_EX_CTX) ?
2607 				     ntohs(fh->fh_ox_id) :
2608 				     ntohs(fh->fh_rx_id));
2609 		fc_frame_free(fp);
2610 		return;
2611 	}
2612 
2613 	/*
2614 	 * If frame is marked invalid, just drop it.
2615 	 */
2616 	switch (fr_eof(fp)) {
2617 	case FC_EOF_T:
2618 		if (f_ctl & FC_FC_END_SEQ)
2619 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2620 		/* fall through */
2621 	case FC_EOF_N:
2622 		if (fh->fh_type == FC_TYPE_BLS)
2623 			fc_exch_recv_bls(ema->mp, fp);
2624 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2625 			 FC_FC_EX_CTX)
2626 			fc_exch_recv_seq_resp(ema->mp, fp);
2627 		else if (f_ctl & FC_FC_SEQ_CTX)
2628 			fc_exch_recv_resp(ema->mp, fp);
2629 		else	/* no EX_CTX and no SEQ_CTX */
2630 			fc_exch_recv_req(lport, ema->mp, fp);
2631 		break;
2632 	default:
2633 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2634 			     fr_eof(fp));
2635 		fc_frame_free(fp);
2636 	}
2637 }
2638 EXPORT_SYMBOL(fc_exch_recv);
2639 
2640 /**
2641  * fc_exch_init() - Initialize the exchange layer for a local port
2642  * @lport: The local port to initialize the exchange layer for
2643  */
2644 int fc_exch_init(struct fc_lport *lport)
2645 {
2646 	if (!lport->tt.exch_mgr_reset)
2647 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(fc_exch_init);
2652 
2653 /**
2654  * fc_setup_exch_mgr() - Setup an exchange manager
2655  */
2656 int fc_setup_exch_mgr(void)
2657 {
2658 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2659 					 0, SLAB_HWCACHE_ALIGN, NULL);
2660 	if (!fc_em_cachep)
2661 		return -ENOMEM;
2662 
2663 	/*
2664 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2665 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2666 	 * to order of 2's * power and order is stored
2667 	 * in fc_cpu_order as this is later required in
2668 	 * mapping between an exch id and exch array index
2669 	 * in per cpu exch pool.
2670 	 *
2671 	 * This round up is required to align fc_cpu_mask
2672 	 * to exchange id's lower bits such that all incoming
2673 	 * frames of an exchange gets delivered to the same
2674 	 * cpu on which exchange originated by simple bitwise
2675 	 * AND operation between fc_cpu_mask and exchange id.
2676 	 */
2677 	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2678 	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2679 
2680 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2681 	if (!fc_exch_workqueue)
2682 		goto err;
2683 	return 0;
2684 err:
2685 	kmem_cache_destroy(fc_em_cachep);
2686 	return -ENOMEM;
2687 }
2688 
2689 /**
2690  * fc_destroy_exch_mgr() - Destroy an exchange manager
2691  */
2692 void fc_destroy_exch_mgr(void)
2693 {
2694 	destroy_workqueue(fc_exch_workqueue);
2695 	kmem_cache_destroy(fc_em_cachep);
2696 }
2697