xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision 64405360)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #include <scsi/fc/fc_fc2.h>
32 
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
35 
36 #include "fc_libfc.h"
37 
38 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
43 
44 /*
45  * Structure and function definitions for managing Fibre Channel Exchanges
46  * and Sequences.
47  *
48  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49  *
50  * fc_exch_mgr holds the exchange state for an N port
51  *
52  * fc_exch holds state for one exchange and links to its active sequence.
53  *
54  * fc_seq holds the state for an individual sequence.
55  */
56 
57 /**
58  * struct fc_exch_pool - Per cpu exchange pool
59  * @next_index:	  Next possible free exchange index
60  * @total_exches: Total allocated exchanges
61  * @lock:	  Exch pool lock
62  * @ex_list:	  List of exchanges
63  *
64  * This structure manages per cpu exchanges in array of exchange pointers.
65  * This array is allocated followed by struct fc_exch_pool memory for
66  * assigned range of exchanges to per cpu pool.
67  */
68 struct fc_exch_pool {
69 	spinlock_t	 lock;
70 	struct list_head ex_list;
71 	u16		 next_index;
72 	u16		 total_exches;
73 
74 	/* two cache of free slot in exch array */
75 	u16		 left;
76 	u16		 right;
77 } ____cacheline_aligned_in_smp;
78 
79 /**
80  * struct fc_exch_mgr - The Exchange Manager (EM).
81  * @class:	    Default class for new sequences
82  * @kref:	    Reference counter
83  * @min_xid:	    Minimum exchange ID
84  * @max_xid:	    Maximum exchange ID
85  * @ep_pool:	    Reserved exchange pointers
86  * @pool_max_index: Max exch array index in exch pool
87  * @pool:	    Per cpu exch pool
88  * @stats:	    Statistics structure
89  *
90  * This structure is the center for creating exchanges and sequences.
91  * It manages the allocation of exchange IDs.
92  */
93 struct fc_exch_mgr {
94 	struct fc_exch_pool __percpu *pool;
95 	mempool_t	*ep_pool;
96 	enum fc_class	class;
97 	struct kref	kref;
98 	u16		min_xid;
99 	u16		max_xid;
100 	u16		pool_max_index;
101 
102 	/*
103 	 * currently exchange mgr stats are updated but not used.
104 	 * either stats can be expose via sysfs or remove them
105 	 * all together if not used XXX
106 	 */
107 	struct {
108 		atomic_t no_free_exch;
109 		atomic_t no_free_exch_xid;
110 		atomic_t xid_not_found;
111 		atomic_t xid_busy;
112 		atomic_t seq_not_found;
113 		atomic_t non_bls_resp;
114 	} stats;
115 };
116 
117 /**
118  * struct fc_exch_mgr_anchor - primary structure for list of EMs
119  * @ema_list: Exchange Manager Anchor list
120  * @mp:	      Exchange Manager associated with this anchor
121  * @match:    Routine to determine if this anchor's EM should be used
122  *
123  * When walking the list of anchors the match routine will be called
124  * for each anchor to determine if that EM should be used. The last
125  * anchor in the list will always match to handle any exchanges not
126  * handled by other EMs. The non-default EMs would be added to the
127  * anchor list by HW that provides FCoE offloads.
128  */
129 struct fc_exch_mgr_anchor {
130 	struct list_head ema_list;
131 	struct fc_exch_mgr *mp;
132 	bool (*match)(struct fc_frame *);
133 };
134 
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 			  enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
141 
142 /*
143  * Internal implementation notes.
144  *
145  * The exchange manager is one by default in libfc but LLD may choose
146  * to have one per CPU. The sequence manager is one per exchange manager
147  * and currently never separated.
148  *
149  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
150  * assigned by the Sequence Initiator that shall be unique for a specific
151  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
152  * qualified by exchange ID, which one might think it would be.
153  * In practice this limits the number of open sequences and exchanges to 256
154  * per session.	 For most targets we could treat this limit as per exchange.
155  *
156  * The exchange and its sequence are freed when the last sequence is received.
157  * It's possible for the remote port to leave an exchange open without
158  * sending any sequences.
159  *
160  * Notes on reference counts:
161  *
162  * Exchanges are reference counted and exchange gets freed when the reference
163  * count becomes zero.
164  *
165  * Timeouts:
166  * Sequences are timed out for E_D_TOV and R_A_TOV.
167  *
168  * Sequence event handling:
169  *
170  * The following events may occur on initiator sequences:
171  *
172  *	Send.
173  *	    For now, the whole thing is sent.
174  *	Receive ACK
175  *	    This applies only to class F.
176  *	    The sequence is marked complete.
177  *	ULP completion.
178  *	    The upper layer calls fc_exch_done() when done
179  *	    with exchange and sequence tuple.
180  *	RX-inferred completion.
181  *	    When we receive the next sequence on the same exchange, we can
182  *	    retire the previous sequence ID.  (XXX not implemented).
183  *	Timeout.
184  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
185  *	    E_D_TOV causes abort and calls upper layer response handler
186  *	    with FC_EX_TIMEOUT error.
187  *	Receive RJT
188  *	    XXX defer.
189  *	Send ABTS
190  *	    On timeout.
191  *
192  * The following events may occur on recipient sequences:
193  *
194  *	Receive
195  *	    Allocate sequence for first frame received.
196  *	    Hold during receive handler.
197  *	    Release when final frame received.
198  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
199  *	Receive ABTS
200  *	    Deallocate sequence
201  *	Send RJT
202  *	    Deallocate
203  *
204  * For now, we neglect conditions where only part of a sequence was
205  * received or transmitted, or where out-of-order receipt is detected.
206  */
207 
208 /*
209  * Locking notes:
210  *
211  * The EM code run in a per-CPU worker thread.
212  *
213  * To protect against concurrency between a worker thread code and timers,
214  * sequence allocation and deallocation must be locked.
215  *  - exchange refcnt can be done atomicly without locks.
216  *  - sequence allocation must be locked by exch lock.
217  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
218  *    EM pool lock must be taken before the ex_lock.
219  */
220 
221 /*
222  * opcode names for debugging.
223  */
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225 
226 /**
227  * fc_exch_name_lookup() - Lookup name by opcode
228  * @op:	       Opcode to be looked up
229  * @table:     Opcode/name table
230  * @max_index: Index not to be exceeded
231  *
232  * This routine is used to determine a human-readable string identifying
233  * a R_CTL opcode.
234  */
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 					      unsigned int max_index)
237 {
238 	const char *name = NULL;
239 
240 	if (op < max_index)
241 		name = table[op];
242 	if (!name)
243 		name = "unknown";
244 	return name;
245 }
246 
247 /**
248  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249  * @op: The opcode to be looked up
250  */
251 static const char *fc_exch_rctl_name(unsigned int op)
252 {
253 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 				   ARRAY_SIZE(fc_exch_rctl_names));
255 }
256 
257 /**
258  * fc_exch_hold() - Increment an exchange's reference count
259  * @ep: Echange to be held
260  */
261 static inline void fc_exch_hold(struct fc_exch *ep)
262 {
263 	atomic_inc(&ep->ex_refcnt);
264 }
265 
266 /**
267  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268  *			 and determine SOF and EOF.
269  * @ep:	   The exchange to that will use the header
270  * @fp:	   The frame whose header is to be modified
271  * @f_ctl: F_CTL bits that will be used for the frame header
272  *
273  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275  */
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 			      u32 f_ctl)
278 {
279 	struct fc_frame_header *fh = fc_frame_header_get(fp);
280 	u16 fill;
281 
282 	fr_sof(fp) = ep->class;
283 	if (ep->seq.cnt)
284 		fr_sof(fp) = fc_sof_normal(ep->class);
285 
286 	if (f_ctl & FC_FC_END_SEQ) {
287 		fr_eof(fp) = FC_EOF_T;
288 		if (fc_sof_needs_ack(ep->class))
289 			fr_eof(fp) = FC_EOF_N;
290 		/*
291 		 * From F_CTL.
292 		 * The number of fill bytes to make the length a 4-byte
293 		 * multiple is the low order 2-bits of the f_ctl.
294 		 * The fill itself will have been cleared by the frame
295 		 * allocation.
296 		 * After this, the length will be even, as expected by
297 		 * the transport.
298 		 */
299 		fill = fr_len(fp) & 3;
300 		if (fill) {
301 			fill = 4 - fill;
302 			/* TODO, this may be a problem with fragmented skb */
303 			skb_put(fp_skb(fp), fill);
304 			hton24(fh->fh_f_ctl, f_ctl | fill);
305 		}
306 	} else {
307 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
308 		fr_eof(fp) = FC_EOF_N;
309 	}
310 
311 	/*
312 	 * Initialize remainig fh fields
313 	 * from fc_fill_fc_hdr
314 	 */
315 	fh->fh_ox_id = htons(ep->oxid);
316 	fh->fh_rx_id = htons(ep->rxid);
317 	fh->fh_seq_id = ep->seq.id;
318 	fh->fh_seq_cnt = htons(ep->seq.cnt);
319 }
320 
321 /**
322  * fc_exch_release() - Decrement an exchange's reference count
323  * @ep: Exchange to be released
324  *
325  * If the reference count reaches zero and the exchange is complete,
326  * it is freed.
327  */
328 static void fc_exch_release(struct fc_exch *ep)
329 {
330 	struct fc_exch_mgr *mp;
331 
332 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 		mp = ep->em;
334 		if (ep->destructor)
335 			ep->destructor(&ep->seq, ep->arg);
336 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 		mempool_free(ep, mp->ep_pool);
338 	}
339 }
340 
341 /**
342  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343  * @ep: The exchange that is complete
344  */
345 static int fc_exch_done_locked(struct fc_exch *ep)
346 {
347 	int rc = 1;
348 
349 	/*
350 	 * We must check for completion in case there are two threads
351 	 * tyring to complete this. But the rrq code will reuse the
352 	 * ep, and in that case we only clear the resp and set it as
353 	 * complete, so it can be reused by the timer to send the rrq.
354 	 */
355 	ep->resp = NULL;
356 	if (ep->state & FC_EX_DONE)
357 		return rc;
358 	ep->esb_stat |= ESB_ST_COMPLETE;
359 
360 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 		ep->state |= FC_EX_DONE;
362 		if (cancel_delayed_work(&ep->timeout_work))
363 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 		rc = 0;
365 	}
366 	return rc;
367 }
368 
369 /**
370  * fc_exch_ptr_get() - Return an exchange from an exchange pool
371  * @pool:  Exchange Pool to get an exchange from
372  * @index: Index of the exchange within the pool
373  *
374  * Use the index to get an exchange from within an exchange pool. exches
375  * will point to an array of exchange pointers. The index will select
376  * the exchange within the array.
377  */
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 					      u16 index)
380 {
381 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 	return exches[index];
383 }
384 
385 /**
386  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387  * @pool:  The pool to assign the exchange to
388  * @index: The index in the pool where the exchange will be assigned
389  * @ep:	   The exchange to assign to the pool
390  */
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 				   struct fc_exch *ep)
393 {
394 	((struct fc_exch **)(pool + 1))[index] = ep;
395 }
396 
397 /**
398  * fc_exch_delete() - Delete an exchange
399  * @ep: The exchange to be deleted
400  */
401 static void fc_exch_delete(struct fc_exch *ep)
402 {
403 	struct fc_exch_pool *pool;
404 	u16 index;
405 
406 	pool = ep->pool;
407 	spin_lock_bh(&pool->lock);
408 	WARN_ON(pool->total_exches <= 0);
409 	pool->total_exches--;
410 
411 	/* update cache of free slot */
412 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 	if (pool->left == FC_XID_UNKNOWN)
414 		pool->left = index;
415 	else if (pool->right == FC_XID_UNKNOWN)
416 		pool->right = index;
417 	else
418 		pool->next_index = index;
419 
420 	fc_exch_ptr_set(pool, index, NULL);
421 	list_del(&ep->ex_list);
422 	spin_unlock_bh(&pool->lock);
423 	fc_exch_release(ep);	/* drop hold for exch in mp */
424 }
425 
426 /**
427  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428  *				the exchange lock held
429  * @ep:		The exchange whose timer will start
430  * @timer_msec: The timeout period
431  *
432  * Used for upper level protocols to time out the exchange.
433  * The timer is cancelled when it fires or when the exchange completes.
434  */
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 					    unsigned int timer_msec)
437 {
438 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 		return;
440 
441 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
442 
443 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 			       msecs_to_jiffies(timer_msec)))
445 		fc_exch_hold(ep);		/* hold for timer */
446 }
447 
448 /**
449  * fc_exch_timer_set() - Lock the exchange and set the timer
450  * @ep:		The exchange whose timer will start
451  * @timer_msec: The timeout period
452  */
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454 {
455 	spin_lock_bh(&ep->ex_lock);
456 	fc_exch_timer_set_locked(ep, timer_msec);
457 	spin_unlock_bh(&ep->ex_lock);
458 }
459 
460 /**
461  * fc_seq_send() - Send a frame using existing sequence/exchange pair
462  * @lport: The local port that the exchange will be sent on
463  * @sp:	   The sequence to be sent
464  * @fp:	   The frame to be sent on the exchange
465  */
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 		       struct fc_frame *fp)
468 {
469 	struct fc_exch *ep;
470 	struct fc_frame_header *fh = fc_frame_header_get(fp);
471 	int error;
472 	u32 f_ctl;
473 	u8 fh_type = fh->fh_type;
474 
475 	ep = fc_seq_exch(sp);
476 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
477 
478 	f_ctl = ntoh24(fh->fh_f_ctl);
479 	fc_exch_setup_hdr(ep, fp, f_ctl);
480 	fr_encaps(fp) = ep->encaps;
481 
482 	/*
483 	 * update sequence count if this frame is carrying
484 	 * multiple FC frames when sequence offload is enabled
485 	 * by LLD.
486 	 */
487 	if (fr_max_payload(fp))
488 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 					fr_max_payload(fp));
490 	else
491 		sp->cnt++;
492 
493 	/*
494 	 * Send the frame.
495 	 */
496 	error = lport->tt.frame_send(lport, fp);
497 
498 	if (fh_type == FC_TYPE_BLS)
499 		return error;
500 
501 	/*
502 	 * Update the exchange and sequence flags,
503 	 * assuming all frames for the sequence have been sent.
504 	 * We can only be called to send once for each sequence.
505 	 */
506 	spin_lock_bh(&ep->ex_lock);
507 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
508 	if (f_ctl & FC_FC_SEQ_INIT)
509 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
510 	spin_unlock_bh(&ep->ex_lock);
511 	return error;
512 }
513 
514 /**
515  * fc_seq_alloc() - Allocate a sequence for a given exchange
516  * @ep:	    The exchange to allocate a new sequence for
517  * @seq_id: The sequence ID to be used
518  *
519  * We don't support multiple originated sequences on the same exchange.
520  * By implication, any previously originated sequence on this exchange
521  * is complete, and we reallocate the same sequence.
522  */
523 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
524 {
525 	struct fc_seq *sp;
526 
527 	sp = &ep->seq;
528 	sp->ssb_stat = 0;
529 	sp->cnt = 0;
530 	sp->id = seq_id;
531 	return sp;
532 }
533 
534 /**
535  * fc_seq_start_next_locked() - Allocate a new sequence on the same
536  *				exchange as the supplied sequence
537  * @sp: The sequence/exchange to get a new sequence for
538  */
539 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
540 {
541 	struct fc_exch *ep = fc_seq_exch(sp);
542 
543 	sp = fc_seq_alloc(ep, ep->seq_id++);
544 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
545 		    ep->f_ctl, sp->id);
546 	return sp;
547 }
548 
549 /**
550  * fc_seq_start_next() - Lock the exchange and get a new sequence
551  *			 for a given sequence/exchange pair
552  * @sp: The sequence/exchange to get a new exchange for
553  */
554 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
555 {
556 	struct fc_exch *ep = fc_seq_exch(sp);
557 
558 	spin_lock_bh(&ep->ex_lock);
559 	sp = fc_seq_start_next_locked(sp);
560 	spin_unlock_bh(&ep->ex_lock);
561 
562 	return sp;
563 }
564 
565 /*
566  * Set the response handler for the exchange associated with a sequence.
567  */
568 static void fc_seq_set_resp(struct fc_seq *sp,
569 			    void (*resp)(struct fc_seq *, struct fc_frame *,
570 					 void *),
571 			    void *arg)
572 {
573 	struct fc_exch *ep = fc_seq_exch(sp);
574 
575 	spin_lock_bh(&ep->ex_lock);
576 	ep->resp = resp;
577 	ep->arg = arg;
578 	spin_unlock_bh(&ep->ex_lock);
579 }
580 
581 /**
582  * fc_exch_abort_locked() - Abort an exchange
583  * @ep:	The exchange to be aborted
584  * @timer_msec: The period of time to wait before aborting
585  *
586  * Locking notes:  Called with exch lock held
587  *
588  * Return value: 0 on success else error code
589  */
590 static int fc_exch_abort_locked(struct fc_exch *ep,
591 				unsigned int timer_msec)
592 {
593 	struct fc_seq *sp;
594 	struct fc_frame *fp;
595 	int error;
596 
597 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
598 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
599 		return -ENXIO;
600 
601 	/*
602 	 * Send the abort on a new sequence if possible.
603 	 */
604 	sp = fc_seq_start_next_locked(&ep->seq);
605 	if (!sp)
606 		return -ENOMEM;
607 
608 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
609 	if (timer_msec)
610 		fc_exch_timer_set_locked(ep, timer_msec);
611 
612 	/*
613 	 * If not logged into the fabric, don't send ABTS but leave
614 	 * sequence active until next timeout.
615 	 */
616 	if (!ep->sid)
617 		return 0;
618 
619 	/*
620 	 * Send an abort for the sequence that timed out.
621 	 */
622 	fp = fc_frame_alloc(ep->lp, 0);
623 	if (fp) {
624 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
625 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
626 		error = fc_seq_send(ep->lp, sp, fp);
627 	} else
628 		error = -ENOBUFS;
629 	return error;
630 }
631 
632 /**
633  * fc_seq_exch_abort() - Abort an exchange and sequence
634  * @req_sp:	The sequence to be aborted
635  * @timer_msec: The period of time to wait before aborting
636  *
637  * Generally called because of a timeout or an abort from the upper layer.
638  *
639  * Return value: 0 on success else error code
640  */
641 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
642 			     unsigned int timer_msec)
643 {
644 	struct fc_exch *ep;
645 	int error;
646 
647 	ep = fc_seq_exch(req_sp);
648 	spin_lock_bh(&ep->ex_lock);
649 	error = fc_exch_abort_locked(ep, timer_msec);
650 	spin_unlock_bh(&ep->ex_lock);
651 	return error;
652 }
653 
654 /**
655  * fc_exch_timeout() - Handle exchange timer expiration
656  * @work: The work_struct identifying the exchange that timed out
657  */
658 static void fc_exch_timeout(struct work_struct *work)
659 {
660 	struct fc_exch *ep = container_of(work, struct fc_exch,
661 					  timeout_work.work);
662 	struct fc_seq *sp = &ep->seq;
663 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
664 	void *arg;
665 	u32 e_stat;
666 	int rc = 1;
667 
668 	FC_EXCH_DBG(ep, "Exchange timed out\n");
669 
670 	spin_lock_bh(&ep->ex_lock);
671 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
672 		goto unlock;
673 
674 	e_stat = ep->esb_stat;
675 	if (e_stat & ESB_ST_COMPLETE) {
676 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
677 		spin_unlock_bh(&ep->ex_lock);
678 		if (e_stat & ESB_ST_REC_QUAL)
679 			fc_exch_rrq(ep);
680 		goto done;
681 	} else {
682 		resp = ep->resp;
683 		arg = ep->arg;
684 		ep->resp = NULL;
685 		if (e_stat & ESB_ST_ABNORMAL)
686 			rc = fc_exch_done_locked(ep);
687 		spin_unlock_bh(&ep->ex_lock);
688 		if (!rc)
689 			fc_exch_delete(ep);
690 		if (resp)
691 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
692 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
693 		goto done;
694 	}
695 unlock:
696 	spin_unlock_bh(&ep->ex_lock);
697 done:
698 	/*
699 	 * This release matches the hold taken when the timer was set.
700 	 */
701 	fc_exch_release(ep);
702 }
703 
704 /**
705  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
706  * @lport: The local port that the exchange is for
707  * @mp:	   The exchange manager that will allocate the exchange
708  *
709  * Returns pointer to allocated fc_exch with exch lock held.
710  */
711 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
712 					struct fc_exch_mgr *mp)
713 {
714 	struct fc_exch *ep;
715 	unsigned int cpu;
716 	u16 index;
717 	struct fc_exch_pool *pool;
718 
719 	/* allocate memory for exchange */
720 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
721 	if (!ep) {
722 		atomic_inc(&mp->stats.no_free_exch);
723 		goto out;
724 	}
725 	memset(ep, 0, sizeof(*ep));
726 
727 	cpu = get_cpu();
728 	pool = per_cpu_ptr(mp->pool, cpu);
729 	spin_lock_bh(&pool->lock);
730 	put_cpu();
731 
732 	/* peek cache of free slot */
733 	if (pool->left != FC_XID_UNKNOWN) {
734 		index = pool->left;
735 		pool->left = FC_XID_UNKNOWN;
736 		goto hit;
737 	}
738 	if (pool->right != FC_XID_UNKNOWN) {
739 		index = pool->right;
740 		pool->right = FC_XID_UNKNOWN;
741 		goto hit;
742 	}
743 
744 	index = pool->next_index;
745 	/* allocate new exch from pool */
746 	while (fc_exch_ptr_get(pool, index)) {
747 		index = index == mp->pool_max_index ? 0 : index + 1;
748 		if (index == pool->next_index)
749 			goto err;
750 	}
751 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
752 hit:
753 	fc_exch_hold(ep);	/* hold for exch in mp */
754 	spin_lock_init(&ep->ex_lock);
755 	/*
756 	 * Hold exch lock for caller to prevent fc_exch_reset()
757 	 * from releasing exch	while fc_exch_alloc() caller is
758 	 * still working on exch.
759 	 */
760 	spin_lock_bh(&ep->ex_lock);
761 
762 	fc_exch_ptr_set(pool, index, ep);
763 	list_add_tail(&ep->ex_list, &pool->ex_list);
764 	fc_seq_alloc(ep, ep->seq_id++);
765 	pool->total_exches++;
766 	spin_unlock_bh(&pool->lock);
767 
768 	/*
769 	 *  update exchange
770 	 */
771 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
772 	ep->em = mp;
773 	ep->pool = pool;
774 	ep->lp = lport;
775 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
776 	ep->rxid = FC_XID_UNKNOWN;
777 	ep->class = mp->class;
778 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
779 out:
780 	return ep;
781 err:
782 	spin_unlock_bh(&pool->lock);
783 	atomic_inc(&mp->stats.no_free_exch_xid);
784 	mempool_free(ep, mp->ep_pool);
785 	return NULL;
786 }
787 
788 /**
789  * fc_exch_alloc() - Allocate an exchange from an EM on a
790  *		     local port's list of EMs.
791  * @lport: The local port that will own the exchange
792  * @fp:	   The FC frame that the exchange will be for
793  *
794  * This function walks the list of exchange manager(EM)
795  * anchors to select an EM for a new exchange allocation. The
796  * EM is selected when a NULL match function pointer is encountered
797  * or when a call to a match function returns true.
798  */
799 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
800 					    struct fc_frame *fp)
801 {
802 	struct fc_exch_mgr_anchor *ema;
803 
804 	list_for_each_entry(ema, &lport->ema_list, ema_list)
805 		if (!ema->match || ema->match(fp))
806 			return fc_exch_em_alloc(lport, ema->mp);
807 	return NULL;
808 }
809 
810 /**
811  * fc_exch_find() - Lookup and hold an exchange
812  * @mp:	 The exchange manager to lookup the exchange from
813  * @xid: The XID of the exchange to look up
814  */
815 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
816 {
817 	struct fc_exch_pool *pool;
818 	struct fc_exch *ep = NULL;
819 
820 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
821 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
822 		spin_lock_bh(&pool->lock);
823 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
824 		if (ep && ep->xid == xid)
825 			fc_exch_hold(ep);
826 		spin_unlock_bh(&pool->lock);
827 	}
828 	return ep;
829 }
830 
831 
832 /**
833  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
834  *		    the memory allocated for the related objects may be freed.
835  * @sp: The sequence that has completed
836  */
837 static void fc_exch_done(struct fc_seq *sp)
838 {
839 	struct fc_exch *ep = fc_seq_exch(sp);
840 	int rc;
841 
842 	spin_lock_bh(&ep->ex_lock);
843 	rc = fc_exch_done_locked(ep);
844 	spin_unlock_bh(&ep->ex_lock);
845 	if (!rc)
846 		fc_exch_delete(ep);
847 }
848 
849 /**
850  * fc_exch_resp() - Allocate a new exchange for a response frame
851  * @lport: The local port that the exchange was for
852  * @mp:	   The exchange manager to allocate the exchange from
853  * @fp:	   The response frame
854  *
855  * Sets the responder ID in the frame header.
856  */
857 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
858 				    struct fc_exch_mgr *mp,
859 				    struct fc_frame *fp)
860 {
861 	struct fc_exch *ep;
862 	struct fc_frame_header *fh;
863 
864 	ep = fc_exch_alloc(lport, fp);
865 	if (ep) {
866 		ep->class = fc_frame_class(fp);
867 
868 		/*
869 		 * Set EX_CTX indicating we're responding on this exchange.
870 		 */
871 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
872 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
873 		fh = fc_frame_header_get(fp);
874 		ep->sid = ntoh24(fh->fh_d_id);
875 		ep->did = ntoh24(fh->fh_s_id);
876 		ep->oid = ep->did;
877 
878 		/*
879 		 * Allocated exchange has placed the XID in the
880 		 * originator field. Move it to the responder field,
881 		 * and set the originator XID from the frame.
882 		 */
883 		ep->rxid = ep->xid;
884 		ep->oxid = ntohs(fh->fh_ox_id);
885 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
886 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
887 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
888 
889 		fc_exch_hold(ep);	/* hold for caller */
890 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
891 	}
892 	return ep;
893 }
894 
895 /**
896  * fc_seq_lookup_recip() - Find a sequence where the other end
897  *			   originated the sequence
898  * @lport: The local port that the frame was sent to
899  * @mp:	   The Exchange Manager to lookup the exchange from
900  * @fp:	   The frame associated with the sequence we're looking for
901  *
902  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
903  * on the ep that should be released by the caller.
904  */
905 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
906 						 struct fc_exch_mgr *mp,
907 						 struct fc_frame *fp)
908 {
909 	struct fc_frame_header *fh = fc_frame_header_get(fp);
910 	struct fc_exch *ep = NULL;
911 	struct fc_seq *sp = NULL;
912 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
913 	u32 f_ctl;
914 	u16 xid;
915 
916 	f_ctl = ntoh24(fh->fh_f_ctl);
917 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
918 
919 	/*
920 	 * Lookup or create the exchange if we will be creating the sequence.
921 	 */
922 	if (f_ctl & FC_FC_EX_CTX) {
923 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
924 		ep = fc_exch_find(mp, xid);
925 		if (!ep) {
926 			atomic_inc(&mp->stats.xid_not_found);
927 			reject = FC_RJT_OX_ID;
928 			goto out;
929 		}
930 		if (ep->rxid == FC_XID_UNKNOWN)
931 			ep->rxid = ntohs(fh->fh_rx_id);
932 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
933 			reject = FC_RJT_OX_ID;
934 			goto rel;
935 		}
936 	} else {
937 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
938 
939 		/*
940 		 * Special case for MDS issuing an ELS TEST with a
941 		 * bad rxid of 0.
942 		 * XXX take this out once we do the proper reject.
943 		 */
944 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
945 		    fc_frame_payload_op(fp) == ELS_TEST) {
946 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
947 			xid = FC_XID_UNKNOWN;
948 		}
949 
950 		/*
951 		 * new sequence - find the exchange
952 		 */
953 		ep = fc_exch_find(mp, xid);
954 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
955 			if (ep) {
956 				atomic_inc(&mp->stats.xid_busy);
957 				reject = FC_RJT_RX_ID;
958 				goto rel;
959 			}
960 			ep = fc_exch_resp(lport, mp, fp);
961 			if (!ep) {
962 				reject = FC_RJT_EXCH_EST;	/* XXX */
963 				goto out;
964 			}
965 			xid = ep->xid;	/* get our XID */
966 		} else if (!ep) {
967 			atomic_inc(&mp->stats.xid_not_found);
968 			reject = FC_RJT_RX_ID;	/* XID not found */
969 			goto out;
970 		}
971 	}
972 
973 	/*
974 	 * At this point, we have the exchange held.
975 	 * Find or create the sequence.
976 	 */
977 	if (fc_sof_is_init(fr_sof(fp))) {
978 		sp = &ep->seq;
979 		sp->ssb_stat |= SSB_ST_RESP;
980 		sp->id = fh->fh_seq_id;
981 	} else {
982 		sp = &ep->seq;
983 		if (sp->id != fh->fh_seq_id) {
984 			atomic_inc(&mp->stats.seq_not_found);
985 			if (f_ctl & FC_FC_END_SEQ) {
986 				/*
987 				 * Update sequence_id based on incoming last
988 				 * frame of sequence exchange. This is needed
989 				 * for FCoE target where DDP has been used
990 				 * on target where, stack is indicated only
991 				 * about last frame's (payload _header) header.
992 				 * Whereas "seq_id" which is part of
993 				 * frame_header is allocated by initiator
994 				 * which is totally different from "seq_id"
995 				 * allocated when XFER_RDY was sent by target.
996 				 * To avoid false -ve which results into not
997 				 * sending RSP, hence write request on other
998 				 * end never finishes.
999 				 */
1000 				spin_lock_bh(&ep->ex_lock);
1001 				sp->ssb_stat |= SSB_ST_RESP;
1002 				sp->id = fh->fh_seq_id;
1003 				spin_unlock_bh(&ep->ex_lock);
1004 			} else {
1005 				/* sequence/exch should exist */
1006 				reject = FC_RJT_SEQ_ID;
1007 				goto rel;
1008 			}
1009 		}
1010 	}
1011 	WARN_ON(ep != fc_seq_exch(sp));
1012 
1013 	if (f_ctl & FC_FC_SEQ_INIT)
1014 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1015 
1016 	fr_seq(fp) = sp;
1017 out:
1018 	return reject;
1019 rel:
1020 	fc_exch_done(&ep->seq);
1021 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1022 	return reject;
1023 }
1024 
1025 /**
1026  * fc_seq_lookup_orig() - Find a sequence where this end
1027  *			  originated the sequence
1028  * @mp:	   The Exchange Manager to lookup the exchange from
1029  * @fp:	   The frame associated with the sequence we're looking for
1030  *
1031  * Does not hold the sequence for the caller.
1032  */
1033 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034 					 struct fc_frame *fp)
1035 {
1036 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1037 	struct fc_exch *ep;
1038 	struct fc_seq *sp = NULL;
1039 	u32 f_ctl;
1040 	u16 xid;
1041 
1042 	f_ctl = ntoh24(fh->fh_f_ctl);
1043 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045 	ep = fc_exch_find(mp, xid);
1046 	if (!ep)
1047 		return NULL;
1048 	if (ep->seq.id == fh->fh_seq_id) {
1049 		/*
1050 		 * Save the RX_ID if we didn't previously know it.
1051 		 */
1052 		sp = &ep->seq;
1053 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054 		    ep->rxid == FC_XID_UNKNOWN) {
1055 			ep->rxid = ntohs(fh->fh_rx_id);
1056 		}
1057 	}
1058 	fc_exch_release(ep);
1059 	return sp;
1060 }
1061 
1062 /**
1063  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064  * @ep:	     The exchange to set the addresses for
1065  * @orig_id: The originator's ID
1066  * @resp_id: The responder's ID
1067  *
1068  * Note this must be done before the first sequence of the exchange is sent.
1069  */
1070 static void fc_exch_set_addr(struct fc_exch *ep,
1071 			     u32 orig_id, u32 resp_id)
1072 {
1073 	ep->oid = orig_id;
1074 	if (ep->esb_stat & ESB_ST_RESP) {
1075 		ep->sid = resp_id;
1076 		ep->did = orig_id;
1077 	} else {
1078 		ep->sid = orig_id;
1079 		ep->did = resp_id;
1080 	}
1081 }
1082 
1083 /**
1084  * fc_seq_els_rsp_send() - Send an ELS response using information from
1085  *			   the existing sequence/exchange.
1086  * @fp:	      The received frame
1087  * @els_cmd:  The ELS command to be sent
1088  * @els_data: The ELS data to be sent
1089  *
1090  * The received frame is not freed.
1091  */
1092 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093 				struct fc_seq_els_data *els_data)
1094 {
1095 	switch (els_cmd) {
1096 	case ELS_LS_RJT:
1097 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098 		break;
1099 	case ELS_LS_ACC:
1100 		fc_seq_ls_acc(fp);
1101 		break;
1102 	case ELS_RRQ:
1103 		fc_exch_els_rrq(fp);
1104 		break;
1105 	case ELS_REC:
1106 		fc_exch_els_rec(fp);
1107 		break;
1108 	default:
1109 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1110 	}
1111 }
1112 
1113 /**
1114  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115  * @sp:	     The sequence that is to be sent
1116  * @fp:	     The frame that will be sent on the sequence
1117  * @rctl:    The R_CTL information to be sent
1118  * @fh_type: The frame header type
1119  */
1120 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1122 {
1123 	u32 f_ctl;
1124 	struct fc_exch *ep = fc_seq_exch(sp);
1125 
1126 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127 	f_ctl |= ep->f_ctl;
1128 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129 	fc_seq_send(ep->lp, sp, fp);
1130 }
1131 
1132 /**
1133  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134  * @sp:	   The sequence to send the ACK on
1135  * @rx_fp: The received frame that is being acknoledged
1136  *
1137  * Send ACK_1 (or equiv.) indicating we received something.
1138  */
1139 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1140 {
1141 	struct fc_frame *fp;
1142 	struct fc_frame_header *rx_fh;
1143 	struct fc_frame_header *fh;
1144 	struct fc_exch *ep = fc_seq_exch(sp);
1145 	struct fc_lport *lport = ep->lp;
1146 	unsigned int f_ctl;
1147 
1148 	/*
1149 	 * Don't send ACKs for class 3.
1150 	 */
1151 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152 		fp = fc_frame_alloc(lport, 0);
1153 		if (!fp)
1154 			return;
1155 
1156 		fh = fc_frame_header_get(fp);
1157 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1158 		fh->fh_type = FC_TYPE_BLS;
1159 
1160 		/*
1161 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164 		 * Last ACK uses bits 7-6 (continue sequence),
1165 		 * bits 5-4 are meaningful (what kind of ACK to use).
1166 		 */
1167 		rx_fh = fc_frame_header_get(rx_fp);
1168 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174 		hton24(fh->fh_f_ctl, f_ctl);
1175 
1176 		fc_exch_setup_hdr(ep, fp, f_ctl);
1177 		fh->fh_seq_id = rx_fh->fh_seq_id;
1178 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1180 
1181 		fr_sof(fp) = fr_sof(rx_fp);
1182 		if (f_ctl & FC_FC_END_SEQ)
1183 			fr_eof(fp) = FC_EOF_T;
1184 		else
1185 			fr_eof(fp) = FC_EOF_N;
1186 
1187 		lport->tt.frame_send(lport, fp);
1188 	}
1189 }
1190 
1191 /**
1192  * fc_exch_send_ba_rjt() - Send BLS Reject
1193  * @rx_fp:  The frame being rejected
1194  * @reason: The reason the frame is being rejected
1195  * @explan: The explanation for the rejection
1196  *
1197  * This is for rejecting BA_ABTS only.
1198  */
1199 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200 				enum fc_ba_rjt_reason reason,
1201 				enum fc_ba_rjt_explan explan)
1202 {
1203 	struct fc_frame *fp;
1204 	struct fc_frame_header *rx_fh;
1205 	struct fc_frame_header *fh;
1206 	struct fc_ba_rjt *rp;
1207 	struct fc_lport *lport;
1208 	unsigned int f_ctl;
1209 
1210 	lport = fr_dev(rx_fp);
1211 	fp = fc_frame_alloc(lport, sizeof(*rp));
1212 	if (!fp)
1213 		return;
1214 	fh = fc_frame_header_get(fp);
1215 	rx_fh = fc_frame_header_get(rx_fp);
1216 
1217 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1218 
1219 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1220 	rp->br_reason = reason;
1221 	rp->br_explan = explan;
1222 
1223 	/*
1224 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1225 	 */
1226 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228 	fh->fh_ox_id = rx_fh->fh_ox_id;
1229 	fh->fh_rx_id = rx_fh->fh_rx_id;
1230 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232 	fh->fh_type = FC_TYPE_BLS;
1233 
1234 	/*
1235 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238 	 * Last ACK uses bits 7-6 (continue sequence),
1239 	 * bits 5-4 are meaningful (what kind of ACK to use).
1240 	 * Always set LAST_SEQ, END_SEQ.
1241 	 */
1242 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248 	f_ctl &= ~FC_FC_FIRST_SEQ;
1249 	hton24(fh->fh_f_ctl, f_ctl);
1250 
1251 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252 	fr_eof(fp) = FC_EOF_T;
1253 	if (fc_sof_needs_ack(fr_sof(fp)))
1254 		fr_eof(fp) = FC_EOF_N;
1255 
1256 	lport->tt.frame_send(lport, fp);
1257 }
1258 
1259 /**
1260  * fc_exch_recv_abts() - Handle an incoming ABTS
1261  * @ep:	   The exchange the abort was on
1262  * @rx_fp: The ABTS frame
1263  *
1264  * This would be for target mode usually, but could be due to lost
1265  * FCP transfer ready, confirm or RRQ. We always handle this as an
1266  * exchange abort, ignoring the parameter.
1267  */
1268 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1269 {
1270 	struct fc_frame *fp;
1271 	struct fc_ba_acc *ap;
1272 	struct fc_frame_header *fh;
1273 	struct fc_seq *sp;
1274 
1275 	if (!ep)
1276 		goto reject;
1277 	spin_lock_bh(&ep->ex_lock);
1278 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1279 		spin_unlock_bh(&ep->ex_lock);
1280 		goto reject;
1281 	}
1282 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1283 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1284 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1286 
1287 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288 	if (!fp) {
1289 		spin_unlock_bh(&ep->ex_lock);
1290 		goto free;
1291 	}
1292 	fh = fc_frame_header_get(fp);
1293 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1294 	memset(ap, 0, sizeof(*ap));
1295 	sp = &ep->seq;
1296 	ap->ba_high_seq_cnt = htons(0xffff);
1297 	if (sp->ssb_stat & SSB_ST_RESP) {
1298 		ap->ba_seq_id = sp->id;
1299 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301 		ap->ba_low_seq_cnt = htons(sp->cnt);
1302 	}
1303 	sp = fc_seq_start_next_locked(sp);
1304 	spin_unlock_bh(&ep->ex_lock);
1305 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1306 	fc_frame_free(rx_fp);
1307 	return;
1308 
1309 reject:
1310 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311 free:
1312 	fc_frame_free(rx_fp);
1313 }
1314 
1315 /**
1316  * fc_seq_assign() - Assign exchange and sequence for incoming request
1317  * @lport: The local port that received the request
1318  * @fp:    The request frame
1319  *
1320  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321  * A reference will be held on the exchange/sequence for the caller, which
1322  * must call fc_seq_release().
1323  */
1324 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1325 {
1326 	struct fc_exch_mgr_anchor *ema;
1327 
1328 	WARN_ON(lport != fr_dev(fp));
1329 	WARN_ON(fr_seq(fp));
1330 	fr_seq(fp) = NULL;
1331 
1332 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1333 		if ((!ema->match || ema->match(fp)) &&
1334 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335 			break;
1336 	return fr_seq(fp);
1337 }
1338 
1339 /**
1340  * fc_seq_release() - Release the hold
1341  * @sp:    The sequence.
1342  */
1343 static void fc_seq_release(struct fc_seq *sp)
1344 {
1345 	fc_exch_release(fc_seq_exch(sp));
1346 }
1347 
1348 /**
1349  * fc_exch_recv_req() - Handler for an incoming request
1350  * @lport: The local port that received the request
1351  * @mp:	   The EM that the exchange is on
1352  * @fp:	   The request frame
1353  *
1354  * This is used when the other end is originating the exchange
1355  * and the sequence.
1356  */
1357 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358 			     struct fc_frame *fp)
1359 {
1360 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1361 	struct fc_seq *sp = NULL;
1362 	struct fc_exch *ep = NULL;
1363 	enum fc_pf_rjt_reason reject;
1364 
1365 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1366 	 * problem now that we know a new exchange needs to be allocated
1367 	 */
1368 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369 	if (!lport) {
1370 		fc_frame_free(fp);
1371 		return;
1372 	}
1373 	fr_dev(fp) = lport;
1374 
1375 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1376 
1377 	/*
1378 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1379 	 * The upper-level protocol may request one later, if needed.
1380 	 */
1381 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382 		return lport->tt.lport_recv(lport, fp);
1383 
1384 	reject = fc_seq_lookup_recip(lport, mp, fp);
1385 	if (reject == FC_RJT_NONE) {
1386 		sp = fr_seq(fp);	/* sequence will be held */
1387 		ep = fc_seq_exch(sp);
1388 		fc_seq_send_ack(sp, fp);
1389 		ep->encaps = fr_encaps(fp);
1390 
1391 		/*
1392 		 * Call the receive function.
1393 		 *
1394 		 * The receive function may allocate a new sequence
1395 		 * over the old one, so we shouldn't change the
1396 		 * sequence after this.
1397 		 *
1398 		 * The frame will be freed by the receive function.
1399 		 * If new exch resp handler is valid then call that
1400 		 * first.
1401 		 */
1402 		if (ep->resp)
1403 			ep->resp(sp, fp, ep->arg);
1404 		else
1405 			lport->tt.lport_recv(lport, fp);
1406 		fc_exch_release(ep);	/* release from lookup */
1407 	} else {
1408 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409 			     reject);
1410 		fc_frame_free(fp);
1411 	}
1412 }
1413 
1414 /**
1415  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416  *			     end is the originator of the sequence that is a
1417  *			     response to our initial exchange
1418  * @mp: The EM that the exchange is on
1419  * @fp: The response frame
1420  */
1421 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1422 {
1423 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1424 	struct fc_seq *sp;
1425 	struct fc_exch *ep;
1426 	enum fc_sof sof;
1427 	u32 f_ctl;
1428 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429 	void *ex_resp_arg;
1430 	int rc;
1431 
1432 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433 	if (!ep) {
1434 		atomic_inc(&mp->stats.xid_not_found);
1435 		goto out;
1436 	}
1437 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1438 		atomic_inc(&mp->stats.xid_not_found);
1439 		goto rel;
1440 	}
1441 	if (ep->rxid == FC_XID_UNKNOWN)
1442 		ep->rxid = ntohs(fh->fh_rx_id);
1443 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444 		atomic_inc(&mp->stats.xid_not_found);
1445 		goto rel;
1446 	}
1447 	if (ep->did != ntoh24(fh->fh_s_id) &&
1448 	    ep->did != FC_FID_FLOGI) {
1449 		atomic_inc(&mp->stats.xid_not_found);
1450 		goto rel;
1451 	}
1452 	sof = fr_sof(fp);
1453 	sp = &ep->seq;
1454 	if (fc_sof_is_init(sof)) {
1455 		sp->ssb_stat |= SSB_ST_RESP;
1456 		sp->id = fh->fh_seq_id;
1457 	} else if (sp->id != fh->fh_seq_id) {
1458 		atomic_inc(&mp->stats.seq_not_found);
1459 		goto rel;
1460 	}
1461 
1462 	f_ctl = ntoh24(fh->fh_f_ctl);
1463 	fr_seq(fp) = sp;
1464 	if (f_ctl & FC_FC_SEQ_INIT)
1465 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1466 
1467 	if (fc_sof_needs_ack(sof))
1468 		fc_seq_send_ack(sp, fp);
1469 	resp = ep->resp;
1470 	ex_resp_arg = ep->arg;
1471 
1472 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475 		spin_lock_bh(&ep->ex_lock);
1476 		resp = ep->resp;
1477 		rc = fc_exch_done_locked(ep);
1478 		WARN_ON(fc_seq_exch(sp) != ep);
1479 		spin_unlock_bh(&ep->ex_lock);
1480 		if (!rc)
1481 			fc_exch_delete(ep);
1482 	}
1483 
1484 	/*
1485 	 * Call the receive function.
1486 	 * The sequence is held (has a refcnt) for us,
1487 	 * but not for the receive function.
1488 	 *
1489 	 * The receive function may allocate a new sequence
1490 	 * over the old one, so we shouldn't change the
1491 	 * sequence after this.
1492 	 *
1493 	 * The frame will be freed by the receive function.
1494 	 * If new exch resp handler is valid then call that
1495 	 * first.
1496 	 */
1497 	if (resp)
1498 		resp(sp, fp, ex_resp_arg);
1499 	else
1500 		fc_frame_free(fp);
1501 	fc_exch_release(ep);
1502 	return;
1503 rel:
1504 	fc_exch_release(ep);
1505 out:
1506 	fc_frame_free(fp);
1507 }
1508 
1509 /**
1510  * fc_exch_recv_resp() - Handler for a sequence where other end is
1511  *			 responding to our sequence
1512  * @mp: The EM that the exchange is on
1513  * @fp: The response frame
1514  */
1515 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1516 {
1517 	struct fc_seq *sp;
1518 
1519 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1520 
1521 	if (!sp)
1522 		atomic_inc(&mp->stats.xid_not_found);
1523 	else
1524 		atomic_inc(&mp->stats.non_bls_resp);
1525 
1526 	fc_frame_free(fp);
1527 }
1528 
1529 /**
1530  * fc_exch_abts_resp() - Handler for a response to an ABT
1531  * @ep: The exchange that the frame is on
1532  * @fp: The response frame
1533  *
1534  * This response would be to an ABTS cancelling an exchange or sequence.
1535  * The response can be either BA_ACC or BA_RJT
1536  */
1537 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1538 {
1539 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540 	void *ex_resp_arg;
1541 	struct fc_frame_header *fh;
1542 	struct fc_ba_acc *ap;
1543 	struct fc_seq *sp;
1544 	u16 low;
1545 	u16 high;
1546 	int rc = 1, has_rec = 0;
1547 
1548 	fh = fc_frame_header_get(fp);
1549 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550 		    fc_exch_rctl_name(fh->fh_r_ctl));
1551 
1552 	if (cancel_delayed_work_sync(&ep->timeout_work))
1553 		fc_exch_release(ep);	/* release from pending timer hold */
1554 
1555 	spin_lock_bh(&ep->ex_lock);
1556 	switch (fh->fh_r_ctl) {
1557 	case FC_RCTL_BA_ACC:
1558 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1559 		if (!ap)
1560 			break;
1561 
1562 		/*
1563 		 * Decide whether to establish a Recovery Qualifier.
1564 		 * We do this if there is a non-empty SEQ_CNT range and
1565 		 * SEQ_ID is the same as the one we aborted.
1566 		 */
1567 		low = ntohs(ap->ba_low_seq_cnt);
1568 		high = ntohs(ap->ba_high_seq_cnt);
1569 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1572 			ep->esb_stat |= ESB_ST_REC_QUAL;
1573 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1574 			has_rec = 1;
1575 		}
1576 		break;
1577 	case FC_RCTL_BA_RJT:
1578 		break;
1579 	default:
1580 		break;
1581 	}
1582 
1583 	resp = ep->resp;
1584 	ex_resp_arg = ep->arg;
1585 
1586 	/* do we need to do some other checks here. Can we reuse more of
1587 	 * fc_exch_recv_seq_resp
1588 	 */
1589 	sp = &ep->seq;
1590 	/*
1591 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1592 	 */
1593 	if (ep->fh_type != FC_TYPE_FCP &&
1594 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595 		rc = fc_exch_done_locked(ep);
1596 	spin_unlock_bh(&ep->ex_lock);
1597 	if (!rc)
1598 		fc_exch_delete(ep);
1599 
1600 	if (resp)
1601 		resp(sp, fp, ex_resp_arg);
1602 	else
1603 		fc_frame_free(fp);
1604 
1605 	if (has_rec)
1606 		fc_exch_timer_set(ep, ep->r_a_tov);
1607 
1608 }
1609 
1610 /**
1611  * fc_exch_recv_bls() - Handler for a BLS sequence
1612  * @mp: The EM that the exchange is on
1613  * @fp: The request frame
1614  *
1615  * The BLS frame is always a sequence initiated by the remote side.
1616  * We may be either the originator or recipient of the exchange.
1617  */
1618 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1619 {
1620 	struct fc_frame_header *fh;
1621 	struct fc_exch *ep;
1622 	u32 f_ctl;
1623 
1624 	fh = fc_frame_header_get(fp);
1625 	f_ctl = ntoh24(fh->fh_f_ctl);
1626 	fr_seq(fp) = NULL;
1627 
1628 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631 		spin_lock_bh(&ep->ex_lock);
1632 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1633 		spin_unlock_bh(&ep->ex_lock);
1634 	}
1635 	if (f_ctl & FC_FC_SEQ_CTX) {
1636 		/*
1637 		 * A response to a sequence we initiated.
1638 		 * This should only be ACKs for class 2 or F.
1639 		 */
1640 		switch (fh->fh_r_ctl) {
1641 		case FC_RCTL_ACK_1:
1642 		case FC_RCTL_ACK_0:
1643 			break;
1644 		default:
1645 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1646 				    fh->fh_r_ctl,
1647 				    fc_exch_rctl_name(fh->fh_r_ctl));
1648 			break;
1649 		}
1650 		fc_frame_free(fp);
1651 	} else {
1652 		switch (fh->fh_r_ctl) {
1653 		case FC_RCTL_BA_RJT:
1654 		case FC_RCTL_BA_ACC:
1655 			if (ep)
1656 				fc_exch_abts_resp(ep, fp);
1657 			else
1658 				fc_frame_free(fp);
1659 			break;
1660 		case FC_RCTL_BA_ABTS:
1661 			fc_exch_recv_abts(ep, fp);
1662 			break;
1663 		default:			/* ignore junk */
1664 			fc_frame_free(fp);
1665 			break;
1666 		}
1667 	}
1668 	if (ep)
1669 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1670 }
1671 
1672 /**
1673  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1674  * @rx_fp: The received frame, not freed here.
1675  *
1676  * If this fails due to allocation or transmit congestion, assume the
1677  * originator will repeat the sequence.
1678  */
1679 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1680 {
1681 	struct fc_lport *lport;
1682 	struct fc_els_ls_acc *acc;
1683 	struct fc_frame *fp;
1684 
1685 	lport = fr_dev(rx_fp);
1686 	fp = fc_frame_alloc(lport, sizeof(*acc));
1687 	if (!fp)
1688 		return;
1689 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1690 	memset(acc, 0, sizeof(*acc));
1691 	acc->la_cmd = ELS_LS_ACC;
1692 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1693 	lport->tt.frame_send(lport, fp);
1694 }
1695 
1696 /**
1697  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1698  * @rx_fp: The received frame, not freed here.
1699  * @reason: The reason the sequence is being rejected
1700  * @explan: The explanation for the rejection
1701  *
1702  * If this fails due to allocation or transmit congestion, assume the
1703  * originator will repeat the sequence.
1704  */
1705 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1706 			  enum fc_els_rjt_explan explan)
1707 {
1708 	struct fc_lport *lport;
1709 	struct fc_els_ls_rjt *rjt;
1710 	struct fc_frame *fp;
1711 
1712 	lport = fr_dev(rx_fp);
1713 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1714 	if (!fp)
1715 		return;
1716 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1717 	memset(rjt, 0, sizeof(*rjt));
1718 	rjt->er_cmd = ELS_LS_RJT;
1719 	rjt->er_reason = reason;
1720 	rjt->er_explan = explan;
1721 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1722 	lport->tt.frame_send(lport, fp);
1723 }
1724 
1725 /**
1726  * fc_exch_reset() - Reset an exchange
1727  * @ep: The exchange to be reset
1728  */
1729 static void fc_exch_reset(struct fc_exch *ep)
1730 {
1731 	struct fc_seq *sp;
1732 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1733 	void *arg;
1734 	int rc = 1;
1735 
1736 	spin_lock_bh(&ep->ex_lock);
1737 	fc_exch_abort_locked(ep, 0);
1738 	ep->state |= FC_EX_RST_CLEANUP;
1739 	if (cancel_delayed_work(&ep->timeout_work))
1740 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1741 	resp = ep->resp;
1742 	ep->resp = NULL;
1743 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1744 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1745 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1746 	arg = ep->arg;
1747 	sp = &ep->seq;
1748 	rc = fc_exch_done_locked(ep);
1749 	spin_unlock_bh(&ep->ex_lock);
1750 	if (!rc)
1751 		fc_exch_delete(ep);
1752 
1753 	if (resp)
1754 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1755 }
1756 
1757 /**
1758  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1759  * @lport: The local port that the exchange pool is on
1760  * @pool:  The exchange pool to be reset
1761  * @sid:   The source ID
1762  * @did:   The destination ID
1763  *
1764  * Resets a per cpu exches pool, releasing all of its sequences
1765  * and exchanges. If sid is non-zero then reset only exchanges
1766  * we sourced from the local port's FID. If did is non-zero then
1767  * only reset exchanges destined for the local port's FID.
1768  */
1769 static void fc_exch_pool_reset(struct fc_lport *lport,
1770 			       struct fc_exch_pool *pool,
1771 			       u32 sid, u32 did)
1772 {
1773 	struct fc_exch *ep;
1774 	struct fc_exch *next;
1775 
1776 	spin_lock_bh(&pool->lock);
1777 restart:
1778 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1779 		if ((lport == ep->lp) &&
1780 		    (sid == 0 || sid == ep->sid) &&
1781 		    (did == 0 || did == ep->did)) {
1782 			fc_exch_hold(ep);
1783 			spin_unlock_bh(&pool->lock);
1784 
1785 			fc_exch_reset(ep);
1786 
1787 			fc_exch_release(ep);
1788 			spin_lock_bh(&pool->lock);
1789 
1790 			/*
1791 			 * must restart loop incase while lock
1792 			 * was down multiple eps were released.
1793 			 */
1794 			goto restart;
1795 		}
1796 	}
1797 	pool->next_index = 0;
1798 	pool->left = FC_XID_UNKNOWN;
1799 	pool->right = FC_XID_UNKNOWN;
1800 	spin_unlock_bh(&pool->lock);
1801 }
1802 
1803 /**
1804  * fc_exch_mgr_reset() - Reset all EMs of a local port
1805  * @lport: The local port whose EMs are to be reset
1806  * @sid:   The source ID
1807  * @did:   The destination ID
1808  *
1809  * Reset all EMs associated with a given local port. Release all
1810  * sequences and exchanges. If sid is non-zero then reset only the
1811  * exchanges sent from the local port's FID. If did is non-zero then
1812  * reset only exchanges destined for the local port's FID.
1813  */
1814 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1815 {
1816 	struct fc_exch_mgr_anchor *ema;
1817 	unsigned int cpu;
1818 
1819 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1820 		for_each_possible_cpu(cpu)
1821 			fc_exch_pool_reset(lport,
1822 					   per_cpu_ptr(ema->mp->pool, cpu),
1823 					   sid, did);
1824 	}
1825 }
1826 EXPORT_SYMBOL(fc_exch_mgr_reset);
1827 
1828 /**
1829  * fc_exch_lookup() - find an exchange
1830  * @lport: The local port
1831  * @xid: The exchange ID
1832  *
1833  * Returns exchange pointer with hold for caller, or NULL if not found.
1834  */
1835 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1836 {
1837 	struct fc_exch_mgr_anchor *ema;
1838 
1839 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1840 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1841 			return fc_exch_find(ema->mp, xid);
1842 	return NULL;
1843 }
1844 
1845 /**
1846  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1847  * @rfp: The REC frame, not freed here.
1848  *
1849  * Note that the requesting port may be different than the S_ID in the request.
1850  */
1851 static void fc_exch_els_rec(struct fc_frame *rfp)
1852 {
1853 	struct fc_lport *lport;
1854 	struct fc_frame *fp;
1855 	struct fc_exch *ep;
1856 	struct fc_els_rec *rp;
1857 	struct fc_els_rec_acc *acc;
1858 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1859 	enum fc_els_rjt_explan explan;
1860 	u32 sid;
1861 	u16 rxid;
1862 	u16 oxid;
1863 
1864 	lport = fr_dev(rfp);
1865 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1866 	explan = ELS_EXPL_INV_LEN;
1867 	if (!rp)
1868 		goto reject;
1869 	sid = ntoh24(rp->rec_s_id);
1870 	rxid = ntohs(rp->rec_rx_id);
1871 	oxid = ntohs(rp->rec_ox_id);
1872 
1873 	ep = fc_exch_lookup(lport,
1874 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1875 	explan = ELS_EXPL_OXID_RXID;
1876 	if (!ep)
1877 		goto reject;
1878 	if (ep->oid != sid || oxid != ep->oxid)
1879 		goto rel;
1880 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1881 		goto rel;
1882 	fp = fc_frame_alloc(lport, sizeof(*acc));
1883 	if (!fp)
1884 		goto out;
1885 
1886 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1887 	memset(acc, 0, sizeof(*acc));
1888 	acc->reca_cmd = ELS_LS_ACC;
1889 	acc->reca_ox_id = rp->rec_ox_id;
1890 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1891 	acc->reca_rx_id = htons(ep->rxid);
1892 	if (ep->sid == ep->oid)
1893 		hton24(acc->reca_rfid, ep->did);
1894 	else
1895 		hton24(acc->reca_rfid, ep->sid);
1896 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1897 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1898 						 ESB_ST_SEQ_INIT |
1899 						 ESB_ST_COMPLETE));
1900 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1901 	lport->tt.frame_send(lport, fp);
1902 out:
1903 	fc_exch_release(ep);
1904 	return;
1905 
1906 rel:
1907 	fc_exch_release(ep);
1908 reject:
1909 	fc_seq_ls_rjt(rfp, reason, explan);
1910 }
1911 
1912 /**
1913  * fc_exch_rrq_resp() - Handler for RRQ responses
1914  * @sp:	 The sequence that the RRQ is on
1915  * @fp:	 The RRQ frame
1916  * @arg: The exchange that the RRQ is on
1917  *
1918  * TODO: fix error handler.
1919  */
1920 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1921 {
1922 	struct fc_exch *aborted_ep = arg;
1923 	unsigned int op;
1924 
1925 	if (IS_ERR(fp)) {
1926 		int err = PTR_ERR(fp);
1927 
1928 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1929 			goto cleanup;
1930 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1931 			    "frame error %d\n", err);
1932 		return;
1933 	}
1934 
1935 	op = fc_frame_payload_op(fp);
1936 	fc_frame_free(fp);
1937 
1938 	switch (op) {
1939 	case ELS_LS_RJT:
1940 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1941 		/* fall through */
1942 	case ELS_LS_ACC:
1943 		goto cleanup;
1944 	default:
1945 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1946 			    "for RRQ", op);
1947 		return;
1948 	}
1949 
1950 cleanup:
1951 	fc_exch_done(&aborted_ep->seq);
1952 	/* drop hold for rec qual */
1953 	fc_exch_release(aborted_ep);
1954 }
1955 
1956 
1957 /**
1958  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1959  * @lport:	The local port to send the frame on
1960  * @fp:		The frame to be sent
1961  * @resp:	The response handler for this request
1962  * @destructor: The destructor for the exchange
1963  * @arg:	The argument to be passed to the response handler
1964  * @timer_msec: The timeout period for the exchange
1965  *
1966  * The frame pointer with some of the header's fields must be
1967  * filled before calling this routine, those fields are:
1968  *
1969  * - routing control
1970  * - FC port did
1971  * - FC port sid
1972  * - FC header type
1973  * - frame control
1974  * - parameter or relative offset
1975  */
1976 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1977 				       struct fc_frame *fp,
1978 				       void (*resp)(struct fc_seq *,
1979 						    struct fc_frame *fp,
1980 						    void *arg),
1981 				       void (*destructor)(struct fc_seq *,
1982 							  void *),
1983 				       void *arg, u32 timer_msec)
1984 {
1985 	struct fc_exch *ep;
1986 	struct fc_seq *sp = NULL;
1987 	struct fc_frame_header *fh;
1988 	struct fc_fcp_pkt *fsp = NULL;
1989 	int rc = 1;
1990 
1991 	ep = fc_exch_alloc(lport, fp);
1992 	if (!ep) {
1993 		fc_frame_free(fp);
1994 		return NULL;
1995 	}
1996 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1997 	fh = fc_frame_header_get(fp);
1998 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1999 	ep->resp = resp;
2000 	ep->destructor = destructor;
2001 	ep->arg = arg;
2002 	ep->r_a_tov = FC_DEF_R_A_TOV;
2003 	ep->lp = lport;
2004 	sp = &ep->seq;
2005 
2006 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2007 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2008 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2009 	sp->cnt++;
2010 
2011 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2012 		fsp = fr_fsp(fp);
2013 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2014 	}
2015 
2016 	if (unlikely(lport->tt.frame_send(lport, fp)))
2017 		goto err;
2018 
2019 	if (timer_msec)
2020 		fc_exch_timer_set_locked(ep, timer_msec);
2021 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2022 
2023 	if (ep->f_ctl & FC_FC_SEQ_INIT)
2024 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2025 	spin_unlock_bh(&ep->ex_lock);
2026 	return sp;
2027 err:
2028 	if (fsp)
2029 		fc_fcp_ddp_done(fsp);
2030 	rc = fc_exch_done_locked(ep);
2031 	spin_unlock_bh(&ep->ex_lock);
2032 	if (!rc)
2033 		fc_exch_delete(ep);
2034 	return NULL;
2035 }
2036 
2037 /**
2038  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2039  * @ep: The exchange to send the RRQ on
2040  *
2041  * This tells the remote port to stop blocking the use of
2042  * the exchange and the seq_cnt range.
2043  */
2044 static void fc_exch_rrq(struct fc_exch *ep)
2045 {
2046 	struct fc_lport *lport;
2047 	struct fc_els_rrq *rrq;
2048 	struct fc_frame *fp;
2049 	u32 did;
2050 
2051 	lport = ep->lp;
2052 
2053 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2054 	if (!fp)
2055 		goto retry;
2056 
2057 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2058 	memset(rrq, 0, sizeof(*rrq));
2059 	rrq->rrq_cmd = ELS_RRQ;
2060 	hton24(rrq->rrq_s_id, ep->sid);
2061 	rrq->rrq_ox_id = htons(ep->oxid);
2062 	rrq->rrq_rx_id = htons(ep->rxid);
2063 
2064 	did = ep->did;
2065 	if (ep->esb_stat & ESB_ST_RESP)
2066 		did = ep->sid;
2067 
2068 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2069 		       lport->port_id, FC_TYPE_ELS,
2070 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2071 
2072 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2073 			     lport->e_d_tov))
2074 		return;
2075 
2076 retry:
2077 	spin_lock_bh(&ep->ex_lock);
2078 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2079 		spin_unlock_bh(&ep->ex_lock);
2080 		/* drop hold for rec qual */
2081 		fc_exch_release(ep);
2082 		return;
2083 	}
2084 	ep->esb_stat |= ESB_ST_REC_QUAL;
2085 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2086 	spin_unlock_bh(&ep->ex_lock);
2087 }
2088 
2089 /**
2090  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2091  * @fp: The RRQ frame, not freed here.
2092  */
2093 static void fc_exch_els_rrq(struct fc_frame *fp)
2094 {
2095 	struct fc_lport *lport;
2096 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2097 	struct fc_els_rrq *rp;
2098 	u32 sid;
2099 	u16 xid;
2100 	enum fc_els_rjt_explan explan;
2101 
2102 	lport = fr_dev(fp);
2103 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2104 	explan = ELS_EXPL_INV_LEN;
2105 	if (!rp)
2106 		goto reject;
2107 
2108 	/*
2109 	 * lookup subject exchange.
2110 	 */
2111 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2112 	xid = fc_host_port_id(lport->host) == sid ?
2113 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2114 	ep = fc_exch_lookup(lport, xid);
2115 	explan = ELS_EXPL_OXID_RXID;
2116 	if (!ep)
2117 		goto reject;
2118 	spin_lock_bh(&ep->ex_lock);
2119 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2120 		goto unlock_reject;
2121 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2122 	    ep->rxid != FC_XID_UNKNOWN)
2123 		goto unlock_reject;
2124 	explan = ELS_EXPL_SID;
2125 	if (ep->sid != sid)
2126 		goto unlock_reject;
2127 
2128 	/*
2129 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2130 	 */
2131 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2132 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2133 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2134 	}
2135 	if (ep->esb_stat & ESB_ST_COMPLETE) {
2136 		if (cancel_delayed_work(&ep->timeout_work))
2137 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2138 	}
2139 
2140 	spin_unlock_bh(&ep->ex_lock);
2141 
2142 	/*
2143 	 * Send LS_ACC.
2144 	 */
2145 	fc_seq_ls_acc(fp);
2146 	goto out;
2147 
2148 unlock_reject:
2149 	spin_unlock_bh(&ep->ex_lock);
2150 reject:
2151 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2152 out:
2153 	if (ep)
2154 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2155 }
2156 
2157 /**
2158  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2159  * @lport: The local port to add the exchange manager to
2160  * @mp:	   The exchange manager to be added to the local port
2161  * @match: The match routine that indicates when this EM should be used
2162  */
2163 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2164 					   struct fc_exch_mgr *mp,
2165 					   bool (*match)(struct fc_frame *))
2166 {
2167 	struct fc_exch_mgr_anchor *ema;
2168 
2169 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2170 	if (!ema)
2171 		return ema;
2172 
2173 	ema->mp = mp;
2174 	ema->match = match;
2175 	/* add EM anchor to EM anchors list */
2176 	list_add_tail(&ema->ema_list, &lport->ema_list);
2177 	kref_get(&mp->kref);
2178 	return ema;
2179 }
2180 EXPORT_SYMBOL(fc_exch_mgr_add);
2181 
2182 /**
2183  * fc_exch_mgr_destroy() - Destroy an exchange manager
2184  * @kref: The reference to the EM to be destroyed
2185  */
2186 static void fc_exch_mgr_destroy(struct kref *kref)
2187 {
2188 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2189 
2190 	mempool_destroy(mp->ep_pool);
2191 	free_percpu(mp->pool);
2192 	kfree(mp);
2193 }
2194 
2195 /**
2196  * fc_exch_mgr_del() - Delete an EM from a local port's list
2197  * @ema: The exchange manager anchor identifying the EM to be deleted
2198  */
2199 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2200 {
2201 	/* remove EM anchor from EM anchors list */
2202 	list_del(&ema->ema_list);
2203 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2204 	kfree(ema);
2205 }
2206 EXPORT_SYMBOL(fc_exch_mgr_del);
2207 
2208 /**
2209  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2210  * @src: Source lport to clone exchange managers from
2211  * @dst: New lport that takes references to all the exchange managers
2212  */
2213 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2214 {
2215 	struct fc_exch_mgr_anchor *ema, *tmp;
2216 
2217 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2218 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2219 			goto err;
2220 	}
2221 	return 0;
2222 err:
2223 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2224 		fc_exch_mgr_del(ema);
2225 	return -ENOMEM;
2226 }
2227 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2228 
2229 /**
2230  * fc_exch_mgr_alloc() - Allocate an exchange manager
2231  * @lport:   The local port that the new EM will be associated with
2232  * @class:   The default FC class for new exchanges
2233  * @min_xid: The minimum XID for exchanges from the new EM
2234  * @max_xid: The maximum XID for exchanges from the new EM
2235  * @match:   The match routine for the new EM
2236  */
2237 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2238 				      enum fc_class class,
2239 				      u16 min_xid, u16 max_xid,
2240 				      bool (*match)(struct fc_frame *))
2241 {
2242 	struct fc_exch_mgr *mp;
2243 	u16 pool_exch_range;
2244 	size_t pool_size;
2245 	unsigned int cpu;
2246 	struct fc_exch_pool *pool;
2247 
2248 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2249 	    (min_xid & fc_cpu_mask) != 0) {
2250 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2251 			     min_xid, max_xid);
2252 		return NULL;
2253 	}
2254 
2255 	/*
2256 	 * allocate memory for EM
2257 	 */
2258 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2259 	if (!mp)
2260 		return NULL;
2261 
2262 	mp->class = class;
2263 	/* adjust em exch xid range for offload */
2264 	mp->min_xid = min_xid;
2265 	mp->max_xid = max_xid;
2266 
2267 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2268 	if (!mp->ep_pool)
2269 		goto free_mp;
2270 
2271 	/*
2272 	 * Setup per cpu exch pool with entire exchange id range equally
2273 	 * divided across all cpus. The exch pointers array memory is
2274 	 * allocated for exch range per pool.
2275 	 */
2276 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2277 	mp->pool_max_index = pool_exch_range - 1;
2278 
2279 	/*
2280 	 * Allocate and initialize per cpu exch pool
2281 	 */
2282 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2283 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2284 	if (!mp->pool)
2285 		goto free_mempool;
2286 	for_each_possible_cpu(cpu) {
2287 		pool = per_cpu_ptr(mp->pool, cpu);
2288 		pool->next_index = 0;
2289 		pool->left = FC_XID_UNKNOWN;
2290 		pool->right = FC_XID_UNKNOWN;
2291 		spin_lock_init(&pool->lock);
2292 		INIT_LIST_HEAD(&pool->ex_list);
2293 	}
2294 
2295 	kref_init(&mp->kref);
2296 	if (!fc_exch_mgr_add(lport, mp, match)) {
2297 		free_percpu(mp->pool);
2298 		goto free_mempool;
2299 	}
2300 
2301 	/*
2302 	 * Above kref_init() sets mp->kref to 1 and then
2303 	 * call to fc_exch_mgr_add incremented mp->kref again,
2304 	 * so adjust that extra increment.
2305 	 */
2306 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2307 	return mp;
2308 
2309 free_mempool:
2310 	mempool_destroy(mp->ep_pool);
2311 free_mp:
2312 	kfree(mp);
2313 	return NULL;
2314 }
2315 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2316 
2317 /**
2318  * fc_exch_mgr_free() - Free all exchange managers on a local port
2319  * @lport: The local port whose EMs are to be freed
2320  */
2321 void fc_exch_mgr_free(struct fc_lport *lport)
2322 {
2323 	struct fc_exch_mgr_anchor *ema, *next;
2324 
2325 	flush_workqueue(fc_exch_workqueue);
2326 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2327 		fc_exch_mgr_del(ema);
2328 }
2329 EXPORT_SYMBOL(fc_exch_mgr_free);
2330 
2331 /**
2332  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2333  * upon 'xid'.
2334  * @f_ctl: f_ctl
2335  * @lport: The local port the frame was received on
2336  * @fh: The received frame header
2337  */
2338 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2339 					      struct fc_lport *lport,
2340 					      struct fc_frame_header *fh)
2341 {
2342 	struct fc_exch_mgr_anchor *ema;
2343 	u16 xid;
2344 
2345 	if (f_ctl & FC_FC_EX_CTX)
2346 		xid = ntohs(fh->fh_ox_id);
2347 	else {
2348 		xid = ntohs(fh->fh_rx_id);
2349 		if (xid == FC_XID_UNKNOWN)
2350 			return list_entry(lport->ema_list.prev,
2351 					  typeof(*ema), ema_list);
2352 	}
2353 
2354 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2355 		if ((xid >= ema->mp->min_xid) &&
2356 		    (xid <= ema->mp->max_xid))
2357 			return ema;
2358 	}
2359 	return NULL;
2360 }
2361 /**
2362  * fc_exch_recv() - Handler for received frames
2363  * @lport: The local port the frame was received on
2364  * @fp:	The received frame
2365  */
2366 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2367 {
2368 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2369 	struct fc_exch_mgr_anchor *ema;
2370 	u32 f_ctl;
2371 
2372 	/* lport lock ? */
2373 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2374 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2375 			     "has not been initialized correctly\n");
2376 		fc_frame_free(fp);
2377 		return;
2378 	}
2379 
2380 	f_ctl = ntoh24(fh->fh_f_ctl);
2381 	ema = fc_find_ema(f_ctl, lport, fh);
2382 	if (!ema) {
2383 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2384 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2385 				     f_ctl,
2386 				     (f_ctl & FC_FC_EX_CTX) ?
2387 				     ntohs(fh->fh_ox_id) :
2388 				     ntohs(fh->fh_rx_id));
2389 		fc_frame_free(fp);
2390 		return;
2391 	}
2392 
2393 	/*
2394 	 * If frame is marked invalid, just drop it.
2395 	 */
2396 	switch (fr_eof(fp)) {
2397 	case FC_EOF_T:
2398 		if (f_ctl & FC_FC_END_SEQ)
2399 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2400 		/* fall through */
2401 	case FC_EOF_N:
2402 		if (fh->fh_type == FC_TYPE_BLS)
2403 			fc_exch_recv_bls(ema->mp, fp);
2404 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2405 			 FC_FC_EX_CTX)
2406 			fc_exch_recv_seq_resp(ema->mp, fp);
2407 		else if (f_ctl & FC_FC_SEQ_CTX)
2408 			fc_exch_recv_resp(ema->mp, fp);
2409 		else	/* no EX_CTX and no SEQ_CTX */
2410 			fc_exch_recv_req(lport, ema->mp, fp);
2411 		break;
2412 	default:
2413 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2414 			     fr_eof(fp));
2415 		fc_frame_free(fp);
2416 	}
2417 }
2418 EXPORT_SYMBOL(fc_exch_recv);
2419 
2420 /**
2421  * fc_exch_init() - Initialize the exchange layer for a local port
2422  * @lport: The local port to initialize the exchange layer for
2423  */
2424 int fc_exch_init(struct fc_lport *lport)
2425 {
2426 	if (!lport->tt.seq_start_next)
2427 		lport->tt.seq_start_next = fc_seq_start_next;
2428 
2429 	if (!lport->tt.seq_set_resp)
2430 		lport->tt.seq_set_resp = fc_seq_set_resp;
2431 
2432 	if (!lport->tt.exch_seq_send)
2433 		lport->tt.exch_seq_send = fc_exch_seq_send;
2434 
2435 	if (!lport->tt.seq_send)
2436 		lport->tt.seq_send = fc_seq_send;
2437 
2438 	if (!lport->tt.seq_els_rsp_send)
2439 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2440 
2441 	if (!lport->tt.exch_done)
2442 		lport->tt.exch_done = fc_exch_done;
2443 
2444 	if (!lport->tt.exch_mgr_reset)
2445 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2446 
2447 	if (!lport->tt.seq_exch_abort)
2448 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2449 
2450 	if (!lport->tt.seq_assign)
2451 		lport->tt.seq_assign = fc_seq_assign;
2452 
2453 	if (!lport->tt.seq_release)
2454 		lport->tt.seq_release = fc_seq_release;
2455 
2456 	return 0;
2457 }
2458 EXPORT_SYMBOL(fc_exch_init);
2459 
2460 /**
2461  * fc_setup_exch_mgr() - Setup an exchange manager
2462  */
2463 int fc_setup_exch_mgr(void)
2464 {
2465 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2466 					 0, SLAB_HWCACHE_ALIGN, NULL);
2467 	if (!fc_em_cachep)
2468 		return -ENOMEM;
2469 
2470 	/*
2471 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2472 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2473 	 * to order of 2's * power and order is stored
2474 	 * in fc_cpu_order as this is later required in
2475 	 * mapping between an exch id and exch array index
2476 	 * in per cpu exch pool.
2477 	 *
2478 	 * This round up is required to align fc_cpu_mask
2479 	 * to exchange id's lower bits such that all incoming
2480 	 * frames of an exchange gets delivered to the same
2481 	 * cpu on which exchange originated by simple bitwise
2482 	 * AND operation between fc_cpu_mask and exchange id.
2483 	 */
2484 	fc_cpu_mask = 1;
2485 	fc_cpu_order = 0;
2486 	while (fc_cpu_mask < nr_cpu_ids) {
2487 		fc_cpu_mask <<= 1;
2488 		fc_cpu_order++;
2489 	}
2490 	fc_cpu_mask--;
2491 
2492 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2493 	if (!fc_exch_workqueue)
2494 		goto err;
2495 	return 0;
2496 err:
2497 	kmem_cache_destroy(fc_em_cachep);
2498 	return -ENOMEM;
2499 }
2500 
2501 /**
2502  * fc_destroy_exch_mgr() - Destroy an exchange manager
2503  */
2504 void fc_destroy_exch_mgr(void)
2505 {
2506 	destroy_workqueue(fc_exch_workqueue);
2507 	kmem_cache_destroy(fc_em_cachep);
2508 }
2509