xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision 565d76cb)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 #include "fc_libfc.h"
36 
37 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41 static struct workqueue_struct *fc_exch_workqueue;
42 
43 /*
44  * Structure and function definitions for managing Fibre Channel Exchanges
45  * and Sequences.
46  *
47  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48  *
49  * fc_exch_mgr holds the exchange state for an N port
50  *
51  * fc_exch holds state for one exchange and links to its active sequence.
52  *
53  * fc_seq holds the state for an individual sequence.
54  */
55 
56 /**
57  * struct fc_exch_pool - Per cpu exchange pool
58  * @next_index:	  Next possible free exchange index
59  * @total_exches: Total allocated exchanges
60  * @lock:	  Exch pool lock
61  * @ex_list:	  List of exchanges
62  *
63  * This structure manages per cpu exchanges in array of exchange pointers.
64  * This array is allocated followed by struct fc_exch_pool memory for
65  * assigned range of exchanges to per cpu pool.
66  */
67 struct fc_exch_pool {
68 	u16		 next_index;
69 	u16		 total_exches;
70 
71 	/* two cache of free slot in exch array */
72 	u16		 left;
73 	u16		 right;
74 
75 	spinlock_t	 lock;
76 	struct list_head ex_list;
77 };
78 
79 /**
80  * struct fc_exch_mgr - The Exchange Manager (EM).
81  * @class:	    Default class for new sequences
82  * @kref:	    Reference counter
83  * @min_xid:	    Minimum exchange ID
84  * @max_xid:	    Maximum exchange ID
85  * @ep_pool:	    Reserved exchange pointers
86  * @pool_max_index: Max exch array index in exch pool
87  * @pool:	    Per cpu exch pool
88  * @stats:	    Statistics structure
89  *
90  * This structure is the center for creating exchanges and sequences.
91  * It manages the allocation of exchange IDs.
92  */
93 struct fc_exch_mgr {
94 	enum fc_class	class;
95 	struct kref	kref;
96 	u16		min_xid;
97 	u16		max_xid;
98 	mempool_t	*ep_pool;
99 	u16		pool_max_index;
100 	struct fc_exch_pool *pool;
101 
102 	/*
103 	 * currently exchange mgr stats are updated but not used.
104 	 * either stats can be expose via sysfs or remove them
105 	 * all together if not used XXX
106 	 */
107 	struct {
108 		atomic_t no_free_exch;
109 		atomic_t no_free_exch_xid;
110 		atomic_t xid_not_found;
111 		atomic_t xid_busy;
112 		atomic_t seq_not_found;
113 		atomic_t non_bls_resp;
114 	} stats;
115 };
116 
117 /**
118  * struct fc_exch_mgr_anchor - primary structure for list of EMs
119  * @ema_list: Exchange Manager Anchor list
120  * @mp:	      Exchange Manager associated with this anchor
121  * @match:    Routine to determine if this anchor's EM should be used
122  *
123  * When walking the list of anchors the match routine will be called
124  * for each anchor to determine if that EM should be used. The last
125  * anchor in the list will always match to handle any exchanges not
126  * handled by other EMs. The non-default EMs would be added to the
127  * anchor list by HW that provides FCoE offloads.
128  */
129 struct fc_exch_mgr_anchor {
130 	struct list_head ema_list;
131 	struct fc_exch_mgr *mp;
132 	bool (*match)(struct fc_frame *);
133 };
134 
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 			  enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
141 
142 /*
143  * Internal implementation notes.
144  *
145  * The exchange manager is one by default in libfc but LLD may choose
146  * to have one per CPU. The sequence manager is one per exchange manager
147  * and currently never separated.
148  *
149  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
150  * assigned by the Sequence Initiator that shall be unique for a specific
151  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
152  * qualified by exchange ID, which one might think it would be.
153  * In practice this limits the number of open sequences and exchanges to 256
154  * per session.	 For most targets we could treat this limit as per exchange.
155  *
156  * The exchange and its sequence are freed when the last sequence is received.
157  * It's possible for the remote port to leave an exchange open without
158  * sending any sequences.
159  *
160  * Notes on reference counts:
161  *
162  * Exchanges are reference counted and exchange gets freed when the reference
163  * count becomes zero.
164  *
165  * Timeouts:
166  * Sequences are timed out for E_D_TOV and R_A_TOV.
167  *
168  * Sequence event handling:
169  *
170  * The following events may occur on initiator sequences:
171  *
172  *	Send.
173  *	    For now, the whole thing is sent.
174  *	Receive ACK
175  *	    This applies only to class F.
176  *	    The sequence is marked complete.
177  *	ULP completion.
178  *	    The upper layer calls fc_exch_done() when done
179  *	    with exchange and sequence tuple.
180  *	RX-inferred completion.
181  *	    When we receive the next sequence on the same exchange, we can
182  *	    retire the previous sequence ID.  (XXX not implemented).
183  *	Timeout.
184  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
185  *	    E_D_TOV causes abort and calls upper layer response handler
186  *	    with FC_EX_TIMEOUT error.
187  *	Receive RJT
188  *	    XXX defer.
189  *	Send ABTS
190  *	    On timeout.
191  *
192  * The following events may occur on recipient sequences:
193  *
194  *	Receive
195  *	    Allocate sequence for first frame received.
196  *	    Hold during receive handler.
197  *	    Release when final frame received.
198  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
199  *	Receive ABTS
200  *	    Deallocate sequence
201  *	Send RJT
202  *	    Deallocate
203  *
204  * For now, we neglect conditions where only part of a sequence was
205  * received or transmitted, or where out-of-order receipt is detected.
206  */
207 
208 /*
209  * Locking notes:
210  *
211  * The EM code run in a per-CPU worker thread.
212  *
213  * To protect against concurrency between a worker thread code and timers,
214  * sequence allocation and deallocation must be locked.
215  *  - exchange refcnt can be done atomicly without locks.
216  *  - sequence allocation must be locked by exch lock.
217  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
218  *    EM pool lock must be taken before the ex_lock.
219  */
220 
221 /*
222  * opcode names for debugging.
223  */
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225 
226 /**
227  * fc_exch_name_lookup() - Lookup name by opcode
228  * @op:	       Opcode to be looked up
229  * @table:     Opcode/name table
230  * @max_index: Index not to be exceeded
231  *
232  * This routine is used to determine a human-readable string identifying
233  * a R_CTL opcode.
234  */
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 					      unsigned int max_index)
237 {
238 	const char *name = NULL;
239 
240 	if (op < max_index)
241 		name = table[op];
242 	if (!name)
243 		name = "unknown";
244 	return name;
245 }
246 
247 /**
248  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249  * @op: The opcode to be looked up
250  */
251 static const char *fc_exch_rctl_name(unsigned int op)
252 {
253 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 				   ARRAY_SIZE(fc_exch_rctl_names));
255 }
256 
257 /**
258  * fc_exch_hold() - Increment an exchange's reference count
259  * @ep: Echange to be held
260  */
261 static inline void fc_exch_hold(struct fc_exch *ep)
262 {
263 	atomic_inc(&ep->ex_refcnt);
264 }
265 
266 /**
267  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268  *			 and determine SOF and EOF.
269  * @ep:	   The exchange to that will use the header
270  * @fp:	   The frame whose header is to be modified
271  * @f_ctl: F_CTL bits that will be used for the frame header
272  *
273  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275  */
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 			      u32 f_ctl)
278 {
279 	struct fc_frame_header *fh = fc_frame_header_get(fp);
280 	u16 fill;
281 
282 	fr_sof(fp) = ep->class;
283 	if (ep->seq.cnt)
284 		fr_sof(fp) = fc_sof_normal(ep->class);
285 
286 	if (f_ctl & FC_FC_END_SEQ) {
287 		fr_eof(fp) = FC_EOF_T;
288 		if (fc_sof_needs_ack(ep->class))
289 			fr_eof(fp) = FC_EOF_N;
290 		/*
291 		 * From F_CTL.
292 		 * The number of fill bytes to make the length a 4-byte
293 		 * multiple is the low order 2-bits of the f_ctl.
294 		 * The fill itself will have been cleared by the frame
295 		 * allocation.
296 		 * After this, the length will be even, as expected by
297 		 * the transport.
298 		 */
299 		fill = fr_len(fp) & 3;
300 		if (fill) {
301 			fill = 4 - fill;
302 			/* TODO, this may be a problem with fragmented skb */
303 			skb_put(fp_skb(fp), fill);
304 			hton24(fh->fh_f_ctl, f_ctl | fill);
305 		}
306 	} else {
307 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
308 		fr_eof(fp) = FC_EOF_N;
309 	}
310 
311 	/*
312 	 * Initialize remainig fh fields
313 	 * from fc_fill_fc_hdr
314 	 */
315 	fh->fh_ox_id = htons(ep->oxid);
316 	fh->fh_rx_id = htons(ep->rxid);
317 	fh->fh_seq_id = ep->seq.id;
318 	fh->fh_seq_cnt = htons(ep->seq.cnt);
319 }
320 
321 /**
322  * fc_exch_release() - Decrement an exchange's reference count
323  * @ep: Exchange to be released
324  *
325  * If the reference count reaches zero and the exchange is complete,
326  * it is freed.
327  */
328 static void fc_exch_release(struct fc_exch *ep)
329 {
330 	struct fc_exch_mgr *mp;
331 
332 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 		mp = ep->em;
334 		if (ep->destructor)
335 			ep->destructor(&ep->seq, ep->arg);
336 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 		mempool_free(ep, mp->ep_pool);
338 	}
339 }
340 
341 /**
342  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343  * @ep: The exchange that is complete
344  */
345 static int fc_exch_done_locked(struct fc_exch *ep)
346 {
347 	int rc = 1;
348 
349 	/*
350 	 * We must check for completion in case there are two threads
351 	 * tyring to complete this. But the rrq code will reuse the
352 	 * ep, and in that case we only clear the resp and set it as
353 	 * complete, so it can be reused by the timer to send the rrq.
354 	 */
355 	ep->resp = NULL;
356 	if (ep->state & FC_EX_DONE)
357 		return rc;
358 	ep->esb_stat |= ESB_ST_COMPLETE;
359 
360 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 		ep->state |= FC_EX_DONE;
362 		if (cancel_delayed_work(&ep->timeout_work))
363 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 		rc = 0;
365 	}
366 	return rc;
367 }
368 
369 /**
370  * fc_exch_ptr_get() - Return an exchange from an exchange pool
371  * @pool:  Exchange Pool to get an exchange from
372  * @index: Index of the exchange within the pool
373  *
374  * Use the index to get an exchange from within an exchange pool. exches
375  * will point to an array of exchange pointers. The index will select
376  * the exchange within the array.
377  */
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 					      u16 index)
380 {
381 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 	return exches[index];
383 }
384 
385 /**
386  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387  * @pool:  The pool to assign the exchange to
388  * @index: The index in the pool where the exchange will be assigned
389  * @ep:	   The exchange to assign to the pool
390  */
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 				   struct fc_exch *ep)
393 {
394 	((struct fc_exch **)(pool + 1))[index] = ep;
395 }
396 
397 /**
398  * fc_exch_delete() - Delete an exchange
399  * @ep: The exchange to be deleted
400  */
401 static void fc_exch_delete(struct fc_exch *ep)
402 {
403 	struct fc_exch_pool *pool;
404 	u16 index;
405 
406 	pool = ep->pool;
407 	spin_lock_bh(&pool->lock);
408 	WARN_ON(pool->total_exches <= 0);
409 	pool->total_exches--;
410 
411 	/* update cache of free slot */
412 	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 	if (pool->left == FC_XID_UNKNOWN)
414 		pool->left = index;
415 	else if (pool->right == FC_XID_UNKNOWN)
416 		pool->right = index;
417 	else
418 		pool->next_index = index;
419 
420 	fc_exch_ptr_set(pool, index, NULL);
421 	list_del(&ep->ex_list);
422 	spin_unlock_bh(&pool->lock);
423 	fc_exch_release(ep);	/* drop hold for exch in mp */
424 }
425 
426 /**
427  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428  *				the exchange lock held
429  * @ep:		The exchange whose timer will start
430  * @timer_msec: The timeout period
431  *
432  * Used for upper level protocols to time out the exchange.
433  * The timer is cancelled when it fires or when the exchange completes.
434  */
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 					    unsigned int timer_msec)
437 {
438 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 		return;
440 
441 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
442 
443 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 			       msecs_to_jiffies(timer_msec)))
445 		fc_exch_hold(ep);		/* hold for timer */
446 }
447 
448 /**
449  * fc_exch_timer_set() - Lock the exchange and set the timer
450  * @ep:		The exchange whose timer will start
451  * @timer_msec: The timeout period
452  */
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454 {
455 	spin_lock_bh(&ep->ex_lock);
456 	fc_exch_timer_set_locked(ep, timer_msec);
457 	spin_unlock_bh(&ep->ex_lock);
458 }
459 
460 /**
461  * fc_seq_send() - Send a frame using existing sequence/exchange pair
462  * @lport: The local port that the exchange will be sent on
463  * @sp:	   The sequence to be sent
464  * @fp:	   The frame to be sent on the exchange
465  */
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 		       struct fc_frame *fp)
468 {
469 	struct fc_exch *ep;
470 	struct fc_frame_header *fh = fc_frame_header_get(fp);
471 	int error;
472 	u32 f_ctl;
473 
474 	ep = fc_seq_exch(sp);
475 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476 
477 	f_ctl = ntoh24(fh->fh_f_ctl);
478 	fc_exch_setup_hdr(ep, fp, f_ctl);
479 	fr_encaps(fp) = ep->encaps;
480 
481 	/*
482 	 * update sequence count if this frame is carrying
483 	 * multiple FC frames when sequence offload is enabled
484 	 * by LLD.
485 	 */
486 	if (fr_max_payload(fp))
487 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 					fr_max_payload(fp));
489 	else
490 		sp->cnt++;
491 
492 	/*
493 	 * Send the frame.
494 	 */
495 	error = lport->tt.frame_send(lport, fp);
496 
497 	/*
498 	 * Update the exchange and sequence flags,
499 	 * assuming all frames for the sequence have been sent.
500 	 * We can only be called to send once for each sequence.
501 	 */
502 	spin_lock_bh(&ep->ex_lock);
503 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
504 	if (f_ctl & FC_FC_SEQ_INIT)
505 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
506 	spin_unlock_bh(&ep->ex_lock);
507 	return error;
508 }
509 
510 /**
511  * fc_seq_alloc() - Allocate a sequence for a given exchange
512  * @ep:	    The exchange to allocate a new sequence for
513  * @seq_id: The sequence ID to be used
514  *
515  * We don't support multiple originated sequences on the same exchange.
516  * By implication, any previously originated sequence on this exchange
517  * is complete, and we reallocate the same sequence.
518  */
519 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
520 {
521 	struct fc_seq *sp;
522 
523 	sp = &ep->seq;
524 	sp->ssb_stat = 0;
525 	sp->cnt = 0;
526 	sp->id = seq_id;
527 	return sp;
528 }
529 
530 /**
531  * fc_seq_start_next_locked() - Allocate a new sequence on the same
532  *				exchange as the supplied sequence
533  * @sp: The sequence/exchange to get a new sequence for
534  */
535 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
536 {
537 	struct fc_exch *ep = fc_seq_exch(sp);
538 
539 	sp = fc_seq_alloc(ep, ep->seq_id++);
540 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
541 		    ep->f_ctl, sp->id);
542 	return sp;
543 }
544 
545 /**
546  * fc_seq_start_next() - Lock the exchange and get a new sequence
547  *			 for a given sequence/exchange pair
548  * @sp: The sequence/exchange to get a new exchange for
549  */
550 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
551 {
552 	struct fc_exch *ep = fc_seq_exch(sp);
553 
554 	spin_lock_bh(&ep->ex_lock);
555 	sp = fc_seq_start_next_locked(sp);
556 	spin_unlock_bh(&ep->ex_lock);
557 
558 	return sp;
559 }
560 
561 /*
562  * Set the response handler for the exchange associated with a sequence.
563  */
564 static void fc_seq_set_resp(struct fc_seq *sp,
565 			    void (*resp)(struct fc_seq *, struct fc_frame *,
566 					 void *),
567 			    void *arg)
568 {
569 	struct fc_exch *ep = fc_seq_exch(sp);
570 
571 	spin_lock_bh(&ep->ex_lock);
572 	ep->resp = resp;
573 	ep->arg = arg;
574 	spin_unlock_bh(&ep->ex_lock);
575 }
576 
577 /**
578  * fc_seq_exch_abort() - Abort an exchange and sequence
579  * @req_sp:	The sequence to be aborted
580  * @timer_msec: The period of time to wait before aborting
581  *
582  * Generally called because of a timeout or an abort from the upper layer.
583  */
584 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
585 			     unsigned int timer_msec)
586 {
587 	struct fc_seq *sp;
588 	struct fc_exch *ep;
589 	struct fc_frame *fp;
590 	int error;
591 
592 	ep = fc_seq_exch(req_sp);
593 
594 	spin_lock_bh(&ep->ex_lock);
595 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
596 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
597 		spin_unlock_bh(&ep->ex_lock);
598 		return -ENXIO;
599 	}
600 
601 	/*
602 	 * Send the abort on a new sequence if possible.
603 	 */
604 	sp = fc_seq_start_next_locked(&ep->seq);
605 	if (!sp) {
606 		spin_unlock_bh(&ep->ex_lock);
607 		return -ENOMEM;
608 	}
609 
610 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
611 	if (timer_msec)
612 		fc_exch_timer_set_locked(ep, timer_msec);
613 	spin_unlock_bh(&ep->ex_lock);
614 
615 	/*
616 	 * If not logged into the fabric, don't send ABTS but leave
617 	 * sequence active until next timeout.
618 	 */
619 	if (!ep->sid)
620 		return 0;
621 
622 	/*
623 	 * Send an abort for the sequence that timed out.
624 	 */
625 	fp = fc_frame_alloc(ep->lp, 0);
626 	if (fp) {
627 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
628 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
629 		error = fc_seq_send(ep->lp, sp, fp);
630 	} else
631 		error = -ENOBUFS;
632 	return error;
633 }
634 
635 /**
636  * fc_exch_timeout() - Handle exchange timer expiration
637  * @work: The work_struct identifying the exchange that timed out
638  */
639 static void fc_exch_timeout(struct work_struct *work)
640 {
641 	struct fc_exch *ep = container_of(work, struct fc_exch,
642 					  timeout_work.work);
643 	struct fc_seq *sp = &ep->seq;
644 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
645 	void *arg;
646 	u32 e_stat;
647 	int rc = 1;
648 
649 	FC_EXCH_DBG(ep, "Exchange timed out\n");
650 
651 	spin_lock_bh(&ep->ex_lock);
652 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
653 		goto unlock;
654 
655 	e_stat = ep->esb_stat;
656 	if (e_stat & ESB_ST_COMPLETE) {
657 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
658 		spin_unlock_bh(&ep->ex_lock);
659 		if (e_stat & ESB_ST_REC_QUAL)
660 			fc_exch_rrq(ep);
661 		goto done;
662 	} else {
663 		resp = ep->resp;
664 		arg = ep->arg;
665 		ep->resp = NULL;
666 		if (e_stat & ESB_ST_ABNORMAL)
667 			rc = fc_exch_done_locked(ep);
668 		spin_unlock_bh(&ep->ex_lock);
669 		if (!rc)
670 			fc_exch_delete(ep);
671 		if (resp)
672 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
673 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
674 		goto done;
675 	}
676 unlock:
677 	spin_unlock_bh(&ep->ex_lock);
678 done:
679 	/*
680 	 * This release matches the hold taken when the timer was set.
681 	 */
682 	fc_exch_release(ep);
683 }
684 
685 /**
686  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
687  * @lport: The local port that the exchange is for
688  * @mp:	   The exchange manager that will allocate the exchange
689  *
690  * Returns pointer to allocated fc_exch with exch lock held.
691  */
692 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
693 					struct fc_exch_mgr *mp)
694 {
695 	struct fc_exch *ep;
696 	unsigned int cpu;
697 	u16 index;
698 	struct fc_exch_pool *pool;
699 
700 	/* allocate memory for exchange */
701 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
702 	if (!ep) {
703 		atomic_inc(&mp->stats.no_free_exch);
704 		goto out;
705 	}
706 	memset(ep, 0, sizeof(*ep));
707 
708 	cpu = get_cpu();
709 	pool = per_cpu_ptr(mp->pool, cpu);
710 	spin_lock_bh(&pool->lock);
711 	put_cpu();
712 
713 	/* peek cache of free slot */
714 	if (pool->left != FC_XID_UNKNOWN) {
715 		index = pool->left;
716 		pool->left = FC_XID_UNKNOWN;
717 		goto hit;
718 	}
719 	if (pool->right != FC_XID_UNKNOWN) {
720 		index = pool->right;
721 		pool->right = FC_XID_UNKNOWN;
722 		goto hit;
723 	}
724 
725 	index = pool->next_index;
726 	/* allocate new exch from pool */
727 	while (fc_exch_ptr_get(pool, index)) {
728 		index = index == mp->pool_max_index ? 0 : index + 1;
729 		if (index == pool->next_index)
730 			goto err;
731 	}
732 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
733 hit:
734 	fc_exch_hold(ep);	/* hold for exch in mp */
735 	spin_lock_init(&ep->ex_lock);
736 	/*
737 	 * Hold exch lock for caller to prevent fc_exch_reset()
738 	 * from releasing exch	while fc_exch_alloc() caller is
739 	 * still working on exch.
740 	 */
741 	spin_lock_bh(&ep->ex_lock);
742 
743 	fc_exch_ptr_set(pool, index, ep);
744 	list_add_tail(&ep->ex_list, &pool->ex_list);
745 	fc_seq_alloc(ep, ep->seq_id++);
746 	pool->total_exches++;
747 	spin_unlock_bh(&pool->lock);
748 
749 	/*
750 	 *  update exchange
751 	 */
752 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
753 	ep->em = mp;
754 	ep->pool = pool;
755 	ep->lp = lport;
756 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
757 	ep->rxid = FC_XID_UNKNOWN;
758 	ep->class = mp->class;
759 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
760 out:
761 	return ep;
762 err:
763 	spin_unlock_bh(&pool->lock);
764 	atomic_inc(&mp->stats.no_free_exch_xid);
765 	mempool_free(ep, mp->ep_pool);
766 	return NULL;
767 }
768 
769 /**
770  * fc_exch_alloc() - Allocate an exchange from an EM on a
771  *		     local port's list of EMs.
772  * @lport: The local port that will own the exchange
773  * @fp:	   The FC frame that the exchange will be for
774  *
775  * This function walks the list of exchange manager(EM)
776  * anchors to select an EM for a new exchange allocation. The
777  * EM is selected when a NULL match function pointer is encountered
778  * or when a call to a match function returns true.
779  */
780 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
781 					    struct fc_frame *fp)
782 {
783 	struct fc_exch_mgr_anchor *ema;
784 
785 	list_for_each_entry(ema, &lport->ema_list, ema_list)
786 		if (!ema->match || ema->match(fp))
787 			return fc_exch_em_alloc(lport, ema->mp);
788 	return NULL;
789 }
790 
791 /**
792  * fc_exch_find() - Lookup and hold an exchange
793  * @mp:	 The exchange manager to lookup the exchange from
794  * @xid: The XID of the exchange to look up
795  */
796 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
797 {
798 	struct fc_exch_pool *pool;
799 	struct fc_exch *ep = NULL;
800 
801 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
802 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
803 		spin_lock_bh(&pool->lock);
804 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
805 		if (ep) {
806 			fc_exch_hold(ep);
807 			WARN_ON(ep->xid != xid);
808 		}
809 		spin_unlock_bh(&pool->lock);
810 	}
811 	return ep;
812 }
813 
814 
815 /**
816  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
817  *		    the memory allocated for the related objects may be freed.
818  * @sp: The sequence that has completed
819  */
820 static void fc_exch_done(struct fc_seq *sp)
821 {
822 	struct fc_exch *ep = fc_seq_exch(sp);
823 	int rc;
824 
825 	spin_lock_bh(&ep->ex_lock);
826 	rc = fc_exch_done_locked(ep);
827 	spin_unlock_bh(&ep->ex_lock);
828 	if (!rc)
829 		fc_exch_delete(ep);
830 }
831 
832 /**
833  * fc_exch_resp() - Allocate a new exchange for a response frame
834  * @lport: The local port that the exchange was for
835  * @mp:	   The exchange manager to allocate the exchange from
836  * @fp:	   The response frame
837  *
838  * Sets the responder ID in the frame header.
839  */
840 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
841 				    struct fc_exch_mgr *mp,
842 				    struct fc_frame *fp)
843 {
844 	struct fc_exch *ep;
845 	struct fc_frame_header *fh;
846 
847 	ep = fc_exch_alloc(lport, fp);
848 	if (ep) {
849 		ep->class = fc_frame_class(fp);
850 
851 		/*
852 		 * Set EX_CTX indicating we're responding on this exchange.
853 		 */
854 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
855 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
856 		fh = fc_frame_header_get(fp);
857 		ep->sid = ntoh24(fh->fh_d_id);
858 		ep->did = ntoh24(fh->fh_s_id);
859 		ep->oid = ep->did;
860 
861 		/*
862 		 * Allocated exchange has placed the XID in the
863 		 * originator field. Move it to the responder field,
864 		 * and set the originator XID from the frame.
865 		 */
866 		ep->rxid = ep->xid;
867 		ep->oxid = ntohs(fh->fh_ox_id);
868 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
869 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
870 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
871 
872 		fc_exch_hold(ep);	/* hold for caller */
873 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
874 	}
875 	return ep;
876 }
877 
878 /**
879  * fc_seq_lookup_recip() - Find a sequence where the other end
880  *			   originated the sequence
881  * @lport: The local port that the frame was sent to
882  * @mp:	   The Exchange Manager to lookup the exchange from
883  * @fp:	   The frame associated with the sequence we're looking for
884  *
885  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
886  * on the ep that should be released by the caller.
887  */
888 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
889 						 struct fc_exch_mgr *mp,
890 						 struct fc_frame *fp)
891 {
892 	struct fc_frame_header *fh = fc_frame_header_get(fp);
893 	struct fc_exch *ep = NULL;
894 	struct fc_seq *sp = NULL;
895 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
896 	u32 f_ctl;
897 	u16 xid;
898 
899 	f_ctl = ntoh24(fh->fh_f_ctl);
900 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
901 
902 	/*
903 	 * Lookup or create the exchange if we will be creating the sequence.
904 	 */
905 	if (f_ctl & FC_FC_EX_CTX) {
906 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
907 		ep = fc_exch_find(mp, xid);
908 		if (!ep) {
909 			atomic_inc(&mp->stats.xid_not_found);
910 			reject = FC_RJT_OX_ID;
911 			goto out;
912 		}
913 		if (ep->rxid == FC_XID_UNKNOWN)
914 			ep->rxid = ntohs(fh->fh_rx_id);
915 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
916 			reject = FC_RJT_OX_ID;
917 			goto rel;
918 		}
919 	} else {
920 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
921 
922 		/*
923 		 * Special case for MDS issuing an ELS TEST with a
924 		 * bad rxid of 0.
925 		 * XXX take this out once we do the proper reject.
926 		 */
927 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
928 		    fc_frame_payload_op(fp) == ELS_TEST) {
929 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
930 			xid = FC_XID_UNKNOWN;
931 		}
932 
933 		/*
934 		 * new sequence - find the exchange
935 		 */
936 		ep = fc_exch_find(mp, xid);
937 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
938 			if (ep) {
939 				atomic_inc(&mp->stats.xid_busy);
940 				reject = FC_RJT_RX_ID;
941 				goto rel;
942 			}
943 			ep = fc_exch_resp(lport, mp, fp);
944 			if (!ep) {
945 				reject = FC_RJT_EXCH_EST;	/* XXX */
946 				goto out;
947 			}
948 			xid = ep->xid;	/* get our XID */
949 		} else if (!ep) {
950 			atomic_inc(&mp->stats.xid_not_found);
951 			reject = FC_RJT_RX_ID;	/* XID not found */
952 			goto out;
953 		}
954 	}
955 
956 	/*
957 	 * At this point, we have the exchange held.
958 	 * Find or create the sequence.
959 	 */
960 	if (fc_sof_is_init(fr_sof(fp))) {
961 		sp = &ep->seq;
962 		sp->ssb_stat |= SSB_ST_RESP;
963 		sp->id = fh->fh_seq_id;
964 	} else {
965 		sp = &ep->seq;
966 		if (sp->id != fh->fh_seq_id) {
967 			atomic_inc(&mp->stats.seq_not_found);
968 			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
969 			goto rel;
970 		}
971 	}
972 	WARN_ON(ep != fc_seq_exch(sp));
973 
974 	if (f_ctl & FC_FC_SEQ_INIT)
975 		ep->esb_stat |= ESB_ST_SEQ_INIT;
976 
977 	fr_seq(fp) = sp;
978 out:
979 	return reject;
980 rel:
981 	fc_exch_done(&ep->seq);
982 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
983 	return reject;
984 }
985 
986 /**
987  * fc_seq_lookup_orig() - Find a sequence where this end
988  *			  originated the sequence
989  * @mp:	   The Exchange Manager to lookup the exchange from
990  * @fp:	   The frame associated with the sequence we're looking for
991  *
992  * Does not hold the sequence for the caller.
993  */
994 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
995 					 struct fc_frame *fp)
996 {
997 	struct fc_frame_header *fh = fc_frame_header_get(fp);
998 	struct fc_exch *ep;
999 	struct fc_seq *sp = NULL;
1000 	u32 f_ctl;
1001 	u16 xid;
1002 
1003 	f_ctl = ntoh24(fh->fh_f_ctl);
1004 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1005 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1006 	ep = fc_exch_find(mp, xid);
1007 	if (!ep)
1008 		return NULL;
1009 	if (ep->seq.id == fh->fh_seq_id) {
1010 		/*
1011 		 * Save the RX_ID if we didn't previously know it.
1012 		 */
1013 		sp = &ep->seq;
1014 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1015 		    ep->rxid == FC_XID_UNKNOWN) {
1016 			ep->rxid = ntohs(fh->fh_rx_id);
1017 		}
1018 	}
1019 	fc_exch_release(ep);
1020 	return sp;
1021 }
1022 
1023 /**
1024  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1025  * @ep:	     The exchange to set the addresses for
1026  * @orig_id: The originator's ID
1027  * @resp_id: The responder's ID
1028  *
1029  * Note this must be done before the first sequence of the exchange is sent.
1030  */
1031 static void fc_exch_set_addr(struct fc_exch *ep,
1032 			     u32 orig_id, u32 resp_id)
1033 {
1034 	ep->oid = orig_id;
1035 	if (ep->esb_stat & ESB_ST_RESP) {
1036 		ep->sid = resp_id;
1037 		ep->did = orig_id;
1038 	} else {
1039 		ep->sid = orig_id;
1040 		ep->did = resp_id;
1041 	}
1042 }
1043 
1044 /**
1045  * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1046  *			   the existing sequence/exchange.
1047  * @fp:	      The received frame
1048  * @els_cmd:  The ELS command to be sent
1049  * @els_data: The ELS data to be sent
1050  *
1051  * The received frame is not freed.
1052  */
1053 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1054 				struct fc_seq_els_data *els_data)
1055 {
1056 	switch (els_cmd) {
1057 	case ELS_LS_RJT:
1058 		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1059 		break;
1060 	case ELS_LS_ACC:
1061 		fc_seq_ls_acc(fp);
1062 		break;
1063 	case ELS_RRQ:
1064 		fc_exch_els_rrq(fp);
1065 		break;
1066 	case ELS_REC:
1067 		fc_exch_els_rec(fp);
1068 		break;
1069 	default:
1070 		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1071 	}
1072 }
1073 
1074 /**
1075  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1076  * @sp:	     The sequence that is to be sent
1077  * @fp:	     The frame that will be sent on the sequence
1078  * @rctl:    The R_CTL information to be sent
1079  * @fh_type: The frame header type
1080  */
1081 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1082 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1083 {
1084 	u32 f_ctl;
1085 	struct fc_exch *ep = fc_seq_exch(sp);
1086 
1087 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1088 	f_ctl |= ep->f_ctl;
1089 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1090 	fc_seq_send(ep->lp, sp, fp);
1091 }
1092 
1093 /**
1094  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1095  * @sp:	   The sequence to send the ACK on
1096  * @rx_fp: The received frame that is being acknoledged
1097  *
1098  * Send ACK_1 (or equiv.) indicating we received something.
1099  */
1100 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1101 {
1102 	struct fc_frame *fp;
1103 	struct fc_frame_header *rx_fh;
1104 	struct fc_frame_header *fh;
1105 	struct fc_exch *ep = fc_seq_exch(sp);
1106 	struct fc_lport *lport = ep->lp;
1107 	unsigned int f_ctl;
1108 
1109 	/*
1110 	 * Don't send ACKs for class 3.
1111 	 */
1112 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1113 		fp = fc_frame_alloc(lport, 0);
1114 		if (!fp)
1115 			return;
1116 
1117 		fh = fc_frame_header_get(fp);
1118 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1119 		fh->fh_type = FC_TYPE_BLS;
1120 
1121 		/*
1122 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1123 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1124 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1125 		 * Last ACK uses bits 7-6 (continue sequence),
1126 		 * bits 5-4 are meaningful (what kind of ACK to use).
1127 		 */
1128 		rx_fh = fc_frame_header_get(rx_fp);
1129 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1130 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1131 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1132 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1133 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1134 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1135 		hton24(fh->fh_f_ctl, f_ctl);
1136 
1137 		fc_exch_setup_hdr(ep, fp, f_ctl);
1138 		fh->fh_seq_id = rx_fh->fh_seq_id;
1139 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1140 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1141 
1142 		fr_sof(fp) = fr_sof(rx_fp);
1143 		if (f_ctl & FC_FC_END_SEQ)
1144 			fr_eof(fp) = FC_EOF_T;
1145 		else
1146 			fr_eof(fp) = FC_EOF_N;
1147 
1148 		lport->tt.frame_send(lport, fp);
1149 	}
1150 }
1151 
1152 /**
1153  * fc_exch_send_ba_rjt() - Send BLS Reject
1154  * @rx_fp:  The frame being rejected
1155  * @reason: The reason the frame is being rejected
1156  * @explan: The explaination for the rejection
1157  *
1158  * This is for rejecting BA_ABTS only.
1159  */
1160 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1161 				enum fc_ba_rjt_reason reason,
1162 				enum fc_ba_rjt_explan explan)
1163 {
1164 	struct fc_frame *fp;
1165 	struct fc_frame_header *rx_fh;
1166 	struct fc_frame_header *fh;
1167 	struct fc_ba_rjt *rp;
1168 	struct fc_lport *lport;
1169 	unsigned int f_ctl;
1170 
1171 	lport = fr_dev(rx_fp);
1172 	fp = fc_frame_alloc(lport, sizeof(*rp));
1173 	if (!fp)
1174 		return;
1175 	fh = fc_frame_header_get(fp);
1176 	rx_fh = fc_frame_header_get(rx_fp);
1177 
1178 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1179 
1180 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1181 	rp->br_reason = reason;
1182 	rp->br_explan = explan;
1183 
1184 	/*
1185 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1186 	 */
1187 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1188 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1189 	fh->fh_ox_id = rx_fh->fh_ox_id;
1190 	fh->fh_rx_id = rx_fh->fh_rx_id;
1191 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1192 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1193 	fh->fh_type = FC_TYPE_BLS;
1194 
1195 	/*
1196 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1197 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1198 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1199 	 * Last ACK uses bits 7-6 (continue sequence),
1200 	 * bits 5-4 are meaningful (what kind of ACK to use).
1201 	 * Always set LAST_SEQ, END_SEQ.
1202 	 */
1203 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1204 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1205 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1206 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1207 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1208 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1209 	f_ctl &= ~FC_FC_FIRST_SEQ;
1210 	hton24(fh->fh_f_ctl, f_ctl);
1211 
1212 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1213 	fr_eof(fp) = FC_EOF_T;
1214 	if (fc_sof_needs_ack(fr_sof(fp)))
1215 		fr_eof(fp) = FC_EOF_N;
1216 
1217 	lport->tt.frame_send(lport, fp);
1218 }
1219 
1220 /**
1221  * fc_exch_recv_abts() - Handle an incoming ABTS
1222  * @ep:	   The exchange the abort was on
1223  * @rx_fp: The ABTS frame
1224  *
1225  * This would be for target mode usually, but could be due to lost
1226  * FCP transfer ready, confirm or RRQ. We always handle this as an
1227  * exchange abort, ignoring the parameter.
1228  */
1229 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1230 {
1231 	struct fc_frame *fp;
1232 	struct fc_ba_acc *ap;
1233 	struct fc_frame_header *fh;
1234 	struct fc_seq *sp;
1235 
1236 	if (!ep)
1237 		goto reject;
1238 	spin_lock_bh(&ep->ex_lock);
1239 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1240 		spin_unlock_bh(&ep->ex_lock);
1241 		goto reject;
1242 	}
1243 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1244 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1245 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1246 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1247 
1248 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1249 	if (!fp) {
1250 		spin_unlock_bh(&ep->ex_lock);
1251 		goto free;
1252 	}
1253 	fh = fc_frame_header_get(fp);
1254 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1255 	memset(ap, 0, sizeof(*ap));
1256 	sp = &ep->seq;
1257 	ap->ba_high_seq_cnt = htons(0xffff);
1258 	if (sp->ssb_stat & SSB_ST_RESP) {
1259 		ap->ba_seq_id = sp->id;
1260 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1261 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1262 		ap->ba_low_seq_cnt = htons(sp->cnt);
1263 	}
1264 	sp = fc_seq_start_next_locked(sp);
1265 	spin_unlock_bh(&ep->ex_lock);
1266 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1267 	fc_frame_free(rx_fp);
1268 	return;
1269 
1270 reject:
1271 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1272 free:
1273 	fc_frame_free(rx_fp);
1274 }
1275 
1276 /**
1277  * fc_seq_assign() - Assign exchange and sequence for incoming request
1278  * @lport: The local port that received the request
1279  * @fp:    The request frame
1280  *
1281  * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1282  * A reference will be held on the exchange/sequence for the caller, which
1283  * must call fc_seq_release().
1284  */
1285 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1286 {
1287 	struct fc_exch_mgr_anchor *ema;
1288 
1289 	WARN_ON(lport != fr_dev(fp));
1290 	WARN_ON(fr_seq(fp));
1291 	fr_seq(fp) = NULL;
1292 
1293 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1294 		if ((!ema->match || ema->match(fp)) &&
1295 		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1296 			break;
1297 	return fr_seq(fp);
1298 }
1299 
1300 /**
1301  * fc_seq_release() - Release the hold
1302  * @sp:    The sequence.
1303  */
1304 static void fc_seq_release(struct fc_seq *sp)
1305 {
1306 	fc_exch_release(fc_seq_exch(sp));
1307 }
1308 
1309 /**
1310  * fc_exch_recv_req() - Handler for an incoming request
1311  * @lport: The local port that received the request
1312  * @mp:	   The EM that the exchange is on
1313  * @fp:	   The request frame
1314  *
1315  * This is used when the other end is originating the exchange
1316  * and the sequence.
1317  */
1318 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1319 			     struct fc_frame *fp)
1320 {
1321 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1322 	struct fc_seq *sp = NULL;
1323 	struct fc_exch *ep = NULL;
1324 	enum fc_pf_rjt_reason reject;
1325 
1326 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1327 	 * problem now that we know a new exchange needs to be allocated
1328 	 */
1329 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1330 	if (!lport) {
1331 		fc_frame_free(fp);
1332 		return;
1333 	}
1334 	fr_dev(fp) = lport;
1335 
1336 	BUG_ON(fr_seq(fp));		/* XXX remove later */
1337 
1338 	/*
1339 	 * If the RX_ID is 0xffff, don't allocate an exchange.
1340 	 * The upper-level protocol may request one later, if needed.
1341 	 */
1342 	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1343 		return lport->tt.lport_recv(lport, fp);
1344 
1345 	reject = fc_seq_lookup_recip(lport, mp, fp);
1346 	if (reject == FC_RJT_NONE) {
1347 		sp = fr_seq(fp);	/* sequence will be held */
1348 		ep = fc_seq_exch(sp);
1349 		fc_seq_send_ack(sp, fp);
1350 		ep->encaps = fr_encaps(fp);
1351 
1352 		/*
1353 		 * Call the receive function.
1354 		 *
1355 		 * The receive function may allocate a new sequence
1356 		 * over the old one, so we shouldn't change the
1357 		 * sequence after this.
1358 		 *
1359 		 * The frame will be freed by the receive function.
1360 		 * If new exch resp handler is valid then call that
1361 		 * first.
1362 		 */
1363 		if (ep->resp)
1364 			ep->resp(sp, fp, ep->arg);
1365 		else
1366 			lport->tt.lport_recv(lport, fp);
1367 		fc_exch_release(ep);	/* release from lookup */
1368 	} else {
1369 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1370 			     reject);
1371 		fc_frame_free(fp);
1372 	}
1373 }
1374 
1375 /**
1376  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1377  *			     end is the originator of the sequence that is a
1378  *			     response to our initial exchange
1379  * @mp: The EM that the exchange is on
1380  * @fp: The response frame
1381  */
1382 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1383 {
1384 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1385 	struct fc_seq *sp;
1386 	struct fc_exch *ep;
1387 	enum fc_sof sof;
1388 	u32 f_ctl;
1389 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1390 	void *ex_resp_arg;
1391 	int rc;
1392 
1393 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1394 	if (!ep) {
1395 		atomic_inc(&mp->stats.xid_not_found);
1396 		goto out;
1397 	}
1398 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1399 		atomic_inc(&mp->stats.xid_not_found);
1400 		goto rel;
1401 	}
1402 	if (ep->rxid == FC_XID_UNKNOWN)
1403 		ep->rxid = ntohs(fh->fh_rx_id);
1404 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1405 		atomic_inc(&mp->stats.xid_not_found);
1406 		goto rel;
1407 	}
1408 	if (ep->did != ntoh24(fh->fh_s_id) &&
1409 	    ep->did != FC_FID_FLOGI) {
1410 		atomic_inc(&mp->stats.xid_not_found);
1411 		goto rel;
1412 	}
1413 	sof = fr_sof(fp);
1414 	sp = &ep->seq;
1415 	if (fc_sof_is_init(sof)) {
1416 		sp->ssb_stat |= SSB_ST_RESP;
1417 		sp->id = fh->fh_seq_id;
1418 	} else if (sp->id != fh->fh_seq_id) {
1419 		atomic_inc(&mp->stats.seq_not_found);
1420 		goto rel;
1421 	}
1422 
1423 	f_ctl = ntoh24(fh->fh_f_ctl);
1424 	fr_seq(fp) = sp;
1425 	if (f_ctl & FC_FC_SEQ_INIT)
1426 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1427 
1428 	if (fc_sof_needs_ack(sof))
1429 		fc_seq_send_ack(sp, fp);
1430 	resp = ep->resp;
1431 	ex_resp_arg = ep->arg;
1432 
1433 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1434 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1435 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1436 		spin_lock_bh(&ep->ex_lock);
1437 		rc = fc_exch_done_locked(ep);
1438 		WARN_ON(fc_seq_exch(sp) != ep);
1439 		spin_unlock_bh(&ep->ex_lock);
1440 		if (!rc)
1441 			fc_exch_delete(ep);
1442 	}
1443 
1444 	/*
1445 	 * Call the receive function.
1446 	 * The sequence is held (has a refcnt) for us,
1447 	 * but not for the receive function.
1448 	 *
1449 	 * The receive function may allocate a new sequence
1450 	 * over the old one, so we shouldn't change the
1451 	 * sequence after this.
1452 	 *
1453 	 * The frame will be freed by the receive function.
1454 	 * If new exch resp handler is valid then call that
1455 	 * first.
1456 	 */
1457 	if (resp)
1458 		resp(sp, fp, ex_resp_arg);
1459 	else
1460 		fc_frame_free(fp);
1461 	fc_exch_release(ep);
1462 	return;
1463 rel:
1464 	fc_exch_release(ep);
1465 out:
1466 	fc_frame_free(fp);
1467 }
1468 
1469 /**
1470  * fc_exch_recv_resp() - Handler for a sequence where other end is
1471  *			 responding to our sequence
1472  * @mp: The EM that the exchange is on
1473  * @fp: The response frame
1474  */
1475 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1476 {
1477 	struct fc_seq *sp;
1478 
1479 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1480 
1481 	if (!sp)
1482 		atomic_inc(&mp->stats.xid_not_found);
1483 	else
1484 		atomic_inc(&mp->stats.non_bls_resp);
1485 
1486 	fc_frame_free(fp);
1487 }
1488 
1489 /**
1490  * fc_exch_abts_resp() - Handler for a response to an ABT
1491  * @ep: The exchange that the frame is on
1492  * @fp: The response frame
1493  *
1494  * This response would be to an ABTS cancelling an exchange or sequence.
1495  * The response can be either BA_ACC or BA_RJT
1496  */
1497 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1498 {
1499 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1500 	void *ex_resp_arg;
1501 	struct fc_frame_header *fh;
1502 	struct fc_ba_acc *ap;
1503 	struct fc_seq *sp;
1504 	u16 low;
1505 	u16 high;
1506 	int rc = 1, has_rec = 0;
1507 
1508 	fh = fc_frame_header_get(fp);
1509 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1510 		    fc_exch_rctl_name(fh->fh_r_ctl));
1511 
1512 	if (cancel_delayed_work_sync(&ep->timeout_work))
1513 		fc_exch_release(ep);	/* release from pending timer hold */
1514 
1515 	spin_lock_bh(&ep->ex_lock);
1516 	switch (fh->fh_r_ctl) {
1517 	case FC_RCTL_BA_ACC:
1518 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1519 		if (!ap)
1520 			break;
1521 
1522 		/*
1523 		 * Decide whether to establish a Recovery Qualifier.
1524 		 * We do this if there is a non-empty SEQ_CNT range and
1525 		 * SEQ_ID is the same as the one we aborted.
1526 		 */
1527 		low = ntohs(ap->ba_low_seq_cnt);
1528 		high = ntohs(ap->ba_high_seq_cnt);
1529 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1530 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1531 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1532 			ep->esb_stat |= ESB_ST_REC_QUAL;
1533 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1534 			has_rec = 1;
1535 		}
1536 		break;
1537 	case FC_RCTL_BA_RJT:
1538 		break;
1539 	default:
1540 		break;
1541 	}
1542 
1543 	resp = ep->resp;
1544 	ex_resp_arg = ep->arg;
1545 
1546 	/* do we need to do some other checks here. Can we reuse more of
1547 	 * fc_exch_recv_seq_resp
1548 	 */
1549 	sp = &ep->seq;
1550 	/*
1551 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1552 	 */
1553 	if (ep->fh_type != FC_TYPE_FCP &&
1554 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1555 		rc = fc_exch_done_locked(ep);
1556 	spin_unlock_bh(&ep->ex_lock);
1557 	if (!rc)
1558 		fc_exch_delete(ep);
1559 
1560 	if (resp)
1561 		resp(sp, fp, ex_resp_arg);
1562 	else
1563 		fc_frame_free(fp);
1564 
1565 	if (has_rec)
1566 		fc_exch_timer_set(ep, ep->r_a_tov);
1567 
1568 }
1569 
1570 /**
1571  * fc_exch_recv_bls() - Handler for a BLS sequence
1572  * @mp: The EM that the exchange is on
1573  * @fp: The request frame
1574  *
1575  * The BLS frame is always a sequence initiated by the remote side.
1576  * We may be either the originator or recipient of the exchange.
1577  */
1578 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1579 {
1580 	struct fc_frame_header *fh;
1581 	struct fc_exch *ep;
1582 	u32 f_ctl;
1583 
1584 	fh = fc_frame_header_get(fp);
1585 	f_ctl = ntoh24(fh->fh_f_ctl);
1586 	fr_seq(fp) = NULL;
1587 
1588 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1589 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1590 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1591 		spin_lock_bh(&ep->ex_lock);
1592 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1593 		spin_unlock_bh(&ep->ex_lock);
1594 	}
1595 	if (f_ctl & FC_FC_SEQ_CTX) {
1596 		/*
1597 		 * A response to a sequence we initiated.
1598 		 * This should only be ACKs for class 2 or F.
1599 		 */
1600 		switch (fh->fh_r_ctl) {
1601 		case FC_RCTL_ACK_1:
1602 		case FC_RCTL_ACK_0:
1603 			break;
1604 		default:
1605 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1606 				    fh->fh_r_ctl,
1607 				    fc_exch_rctl_name(fh->fh_r_ctl));
1608 			break;
1609 		}
1610 		fc_frame_free(fp);
1611 	} else {
1612 		switch (fh->fh_r_ctl) {
1613 		case FC_RCTL_BA_RJT:
1614 		case FC_RCTL_BA_ACC:
1615 			if (ep)
1616 				fc_exch_abts_resp(ep, fp);
1617 			else
1618 				fc_frame_free(fp);
1619 			break;
1620 		case FC_RCTL_BA_ABTS:
1621 			fc_exch_recv_abts(ep, fp);
1622 			break;
1623 		default:			/* ignore junk */
1624 			fc_frame_free(fp);
1625 			break;
1626 		}
1627 	}
1628 	if (ep)
1629 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1630 }
1631 
1632 /**
1633  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1634  * @rx_fp: The received frame, not freed here.
1635  *
1636  * If this fails due to allocation or transmit congestion, assume the
1637  * originator will repeat the sequence.
1638  */
1639 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1640 {
1641 	struct fc_lport *lport;
1642 	struct fc_els_ls_acc *acc;
1643 	struct fc_frame *fp;
1644 
1645 	lport = fr_dev(rx_fp);
1646 	fp = fc_frame_alloc(lport, sizeof(*acc));
1647 	if (!fp)
1648 		return;
1649 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1650 	memset(acc, 0, sizeof(*acc));
1651 	acc->la_cmd = ELS_LS_ACC;
1652 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1653 	lport->tt.frame_send(lport, fp);
1654 }
1655 
1656 /**
1657  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1658  * @rx_fp: The received frame, not freed here.
1659  * @reason: The reason the sequence is being rejected
1660  * @explan: The explanation for the rejection
1661  *
1662  * If this fails due to allocation or transmit congestion, assume the
1663  * originator will repeat the sequence.
1664  */
1665 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1666 			  enum fc_els_rjt_explan explan)
1667 {
1668 	struct fc_lport *lport;
1669 	struct fc_els_ls_rjt *rjt;
1670 	struct fc_frame *fp;
1671 
1672 	lport = fr_dev(rx_fp);
1673 	fp = fc_frame_alloc(lport, sizeof(*rjt));
1674 	if (!fp)
1675 		return;
1676 	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1677 	memset(rjt, 0, sizeof(*rjt));
1678 	rjt->er_cmd = ELS_LS_RJT;
1679 	rjt->er_reason = reason;
1680 	rjt->er_explan = explan;
1681 	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1682 	lport->tt.frame_send(lport, fp);
1683 }
1684 
1685 /**
1686  * fc_exch_reset() - Reset an exchange
1687  * @ep: The exchange to be reset
1688  */
1689 static void fc_exch_reset(struct fc_exch *ep)
1690 {
1691 	struct fc_seq *sp;
1692 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1693 	void *arg;
1694 	int rc = 1;
1695 
1696 	spin_lock_bh(&ep->ex_lock);
1697 	ep->state |= FC_EX_RST_CLEANUP;
1698 	if (cancel_delayed_work(&ep->timeout_work))
1699 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1700 	resp = ep->resp;
1701 	ep->resp = NULL;
1702 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1703 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1704 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1705 	arg = ep->arg;
1706 	sp = &ep->seq;
1707 	rc = fc_exch_done_locked(ep);
1708 	spin_unlock_bh(&ep->ex_lock);
1709 	if (!rc)
1710 		fc_exch_delete(ep);
1711 
1712 	if (resp)
1713 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1714 }
1715 
1716 /**
1717  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1718  * @lport: The local port that the exchange pool is on
1719  * @pool:  The exchange pool to be reset
1720  * @sid:   The source ID
1721  * @did:   The destination ID
1722  *
1723  * Resets a per cpu exches pool, releasing all of its sequences
1724  * and exchanges. If sid is non-zero then reset only exchanges
1725  * we sourced from the local port's FID. If did is non-zero then
1726  * only reset exchanges destined for the local port's FID.
1727  */
1728 static void fc_exch_pool_reset(struct fc_lport *lport,
1729 			       struct fc_exch_pool *pool,
1730 			       u32 sid, u32 did)
1731 {
1732 	struct fc_exch *ep;
1733 	struct fc_exch *next;
1734 
1735 	spin_lock_bh(&pool->lock);
1736 restart:
1737 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1738 		if ((lport == ep->lp) &&
1739 		    (sid == 0 || sid == ep->sid) &&
1740 		    (did == 0 || did == ep->did)) {
1741 			fc_exch_hold(ep);
1742 			spin_unlock_bh(&pool->lock);
1743 
1744 			fc_exch_reset(ep);
1745 
1746 			fc_exch_release(ep);
1747 			spin_lock_bh(&pool->lock);
1748 
1749 			/*
1750 			 * must restart loop incase while lock
1751 			 * was down multiple eps were released.
1752 			 */
1753 			goto restart;
1754 		}
1755 	}
1756 	spin_unlock_bh(&pool->lock);
1757 }
1758 
1759 /**
1760  * fc_exch_mgr_reset() - Reset all EMs of a local port
1761  * @lport: The local port whose EMs are to be reset
1762  * @sid:   The source ID
1763  * @did:   The destination ID
1764  *
1765  * Reset all EMs associated with a given local port. Release all
1766  * sequences and exchanges. If sid is non-zero then reset only the
1767  * exchanges sent from the local port's FID. If did is non-zero then
1768  * reset only exchanges destined for the local port's FID.
1769  */
1770 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1771 {
1772 	struct fc_exch_mgr_anchor *ema;
1773 	unsigned int cpu;
1774 
1775 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1776 		for_each_possible_cpu(cpu)
1777 			fc_exch_pool_reset(lport,
1778 					   per_cpu_ptr(ema->mp->pool, cpu),
1779 					   sid, did);
1780 	}
1781 }
1782 EXPORT_SYMBOL(fc_exch_mgr_reset);
1783 
1784 /**
1785  * fc_exch_lookup() - find an exchange
1786  * @lport: The local port
1787  * @xid: The exchange ID
1788  *
1789  * Returns exchange pointer with hold for caller, or NULL if not found.
1790  */
1791 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1792 {
1793 	struct fc_exch_mgr_anchor *ema;
1794 
1795 	list_for_each_entry(ema, &lport->ema_list, ema_list)
1796 		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1797 			return fc_exch_find(ema->mp, xid);
1798 	return NULL;
1799 }
1800 
1801 /**
1802  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1803  * @rfp: The REC frame, not freed here.
1804  *
1805  * Note that the requesting port may be different than the S_ID in the request.
1806  */
1807 static void fc_exch_els_rec(struct fc_frame *rfp)
1808 {
1809 	struct fc_lport *lport;
1810 	struct fc_frame *fp;
1811 	struct fc_exch *ep;
1812 	struct fc_els_rec *rp;
1813 	struct fc_els_rec_acc *acc;
1814 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1815 	enum fc_els_rjt_explan explan;
1816 	u32 sid;
1817 	u16 rxid;
1818 	u16 oxid;
1819 
1820 	lport = fr_dev(rfp);
1821 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1822 	explan = ELS_EXPL_INV_LEN;
1823 	if (!rp)
1824 		goto reject;
1825 	sid = ntoh24(rp->rec_s_id);
1826 	rxid = ntohs(rp->rec_rx_id);
1827 	oxid = ntohs(rp->rec_ox_id);
1828 
1829 	ep = fc_exch_lookup(lport,
1830 			    sid == fc_host_port_id(lport->host) ? oxid : rxid);
1831 	explan = ELS_EXPL_OXID_RXID;
1832 	if (!ep)
1833 		goto reject;
1834 	if (ep->oid != sid || oxid != ep->oxid)
1835 		goto rel;
1836 	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1837 		goto rel;
1838 	fp = fc_frame_alloc(lport, sizeof(*acc));
1839 	if (!fp)
1840 		goto out;
1841 
1842 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1843 	memset(acc, 0, sizeof(*acc));
1844 	acc->reca_cmd = ELS_LS_ACC;
1845 	acc->reca_ox_id = rp->rec_ox_id;
1846 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1847 	acc->reca_rx_id = htons(ep->rxid);
1848 	if (ep->sid == ep->oid)
1849 		hton24(acc->reca_rfid, ep->did);
1850 	else
1851 		hton24(acc->reca_rfid, ep->sid);
1852 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1853 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1854 						 ESB_ST_SEQ_INIT |
1855 						 ESB_ST_COMPLETE));
1856 	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1857 	lport->tt.frame_send(lport, fp);
1858 out:
1859 	fc_exch_release(ep);
1860 	return;
1861 
1862 rel:
1863 	fc_exch_release(ep);
1864 reject:
1865 	fc_seq_ls_rjt(rfp, reason, explan);
1866 }
1867 
1868 /**
1869  * fc_exch_rrq_resp() - Handler for RRQ responses
1870  * @sp:	 The sequence that the RRQ is on
1871  * @fp:	 The RRQ frame
1872  * @arg: The exchange that the RRQ is on
1873  *
1874  * TODO: fix error handler.
1875  */
1876 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1877 {
1878 	struct fc_exch *aborted_ep = arg;
1879 	unsigned int op;
1880 
1881 	if (IS_ERR(fp)) {
1882 		int err = PTR_ERR(fp);
1883 
1884 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1885 			goto cleanup;
1886 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1887 			    "frame error %d\n", err);
1888 		return;
1889 	}
1890 
1891 	op = fc_frame_payload_op(fp);
1892 	fc_frame_free(fp);
1893 
1894 	switch (op) {
1895 	case ELS_LS_RJT:
1896 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1897 		/* fall through */
1898 	case ELS_LS_ACC:
1899 		goto cleanup;
1900 	default:
1901 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1902 			    "for RRQ", op);
1903 		return;
1904 	}
1905 
1906 cleanup:
1907 	fc_exch_done(&aborted_ep->seq);
1908 	/* drop hold for rec qual */
1909 	fc_exch_release(aborted_ep);
1910 }
1911 
1912 
1913 /**
1914  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1915  * @lport:	The local port to send the frame on
1916  * @fp:		The frame to be sent
1917  * @resp:	The response handler for this request
1918  * @destructor: The destructor for the exchange
1919  * @arg:	The argument to be passed to the response handler
1920  * @timer_msec: The timeout period for the exchange
1921  *
1922  * The frame pointer with some of the header's fields must be
1923  * filled before calling this routine, those fields are:
1924  *
1925  * - routing control
1926  * - FC port did
1927  * - FC port sid
1928  * - FC header type
1929  * - frame control
1930  * - parameter or relative offset
1931  */
1932 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1933 				       struct fc_frame *fp,
1934 				       void (*resp)(struct fc_seq *,
1935 						    struct fc_frame *fp,
1936 						    void *arg),
1937 				       void (*destructor)(struct fc_seq *,
1938 							  void *),
1939 				       void *arg, u32 timer_msec)
1940 {
1941 	struct fc_exch *ep;
1942 	struct fc_seq *sp = NULL;
1943 	struct fc_frame_header *fh;
1944 	int rc = 1;
1945 
1946 	ep = fc_exch_alloc(lport, fp);
1947 	if (!ep) {
1948 		fc_frame_free(fp);
1949 		return NULL;
1950 	}
1951 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1952 	fh = fc_frame_header_get(fp);
1953 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1954 	ep->resp = resp;
1955 	ep->destructor = destructor;
1956 	ep->arg = arg;
1957 	ep->r_a_tov = FC_DEF_R_A_TOV;
1958 	ep->lp = lport;
1959 	sp = &ep->seq;
1960 
1961 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1962 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1963 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1964 	sp->cnt++;
1965 
1966 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1967 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1968 
1969 	if (unlikely(lport->tt.frame_send(lport, fp)))
1970 		goto err;
1971 
1972 	if (timer_msec)
1973 		fc_exch_timer_set_locked(ep, timer_msec);
1974 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1975 
1976 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1977 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1978 	spin_unlock_bh(&ep->ex_lock);
1979 	return sp;
1980 err:
1981 	rc = fc_exch_done_locked(ep);
1982 	spin_unlock_bh(&ep->ex_lock);
1983 	if (!rc)
1984 		fc_exch_delete(ep);
1985 	return NULL;
1986 }
1987 
1988 /**
1989  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1990  * @ep: The exchange to send the RRQ on
1991  *
1992  * This tells the remote port to stop blocking the use of
1993  * the exchange and the seq_cnt range.
1994  */
1995 static void fc_exch_rrq(struct fc_exch *ep)
1996 {
1997 	struct fc_lport *lport;
1998 	struct fc_els_rrq *rrq;
1999 	struct fc_frame *fp;
2000 	u32 did;
2001 
2002 	lport = ep->lp;
2003 
2004 	fp = fc_frame_alloc(lport, sizeof(*rrq));
2005 	if (!fp)
2006 		goto retry;
2007 
2008 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2009 	memset(rrq, 0, sizeof(*rrq));
2010 	rrq->rrq_cmd = ELS_RRQ;
2011 	hton24(rrq->rrq_s_id, ep->sid);
2012 	rrq->rrq_ox_id = htons(ep->oxid);
2013 	rrq->rrq_rx_id = htons(ep->rxid);
2014 
2015 	did = ep->did;
2016 	if (ep->esb_stat & ESB_ST_RESP)
2017 		did = ep->sid;
2018 
2019 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2020 		       lport->port_id, FC_TYPE_ELS,
2021 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2022 
2023 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2024 			     lport->e_d_tov))
2025 		return;
2026 
2027 retry:
2028 	spin_lock_bh(&ep->ex_lock);
2029 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2030 		spin_unlock_bh(&ep->ex_lock);
2031 		/* drop hold for rec qual */
2032 		fc_exch_release(ep);
2033 		return;
2034 	}
2035 	ep->esb_stat |= ESB_ST_REC_QUAL;
2036 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2037 	spin_unlock_bh(&ep->ex_lock);
2038 }
2039 
2040 /**
2041  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2042  * @fp: The RRQ frame, not freed here.
2043  */
2044 static void fc_exch_els_rrq(struct fc_frame *fp)
2045 {
2046 	struct fc_lport *lport;
2047 	struct fc_exch *ep = NULL;	/* request or subject exchange */
2048 	struct fc_els_rrq *rp;
2049 	u32 sid;
2050 	u16 xid;
2051 	enum fc_els_rjt_explan explan;
2052 
2053 	lport = fr_dev(fp);
2054 	rp = fc_frame_payload_get(fp, sizeof(*rp));
2055 	explan = ELS_EXPL_INV_LEN;
2056 	if (!rp)
2057 		goto reject;
2058 
2059 	/*
2060 	 * lookup subject exchange.
2061 	 */
2062 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2063 	xid = fc_host_port_id(lport->host) == sid ?
2064 			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2065 	ep = fc_exch_lookup(lport, xid);
2066 	explan = ELS_EXPL_OXID_RXID;
2067 	if (!ep)
2068 		goto reject;
2069 	spin_lock_bh(&ep->ex_lock);
2070 	if (ep->oxid != ntohs(rp->rrq_ox_id))
2071 		goto unlock_reject;
2072 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2073 	    ep->rxid != FC_XID_UNKNOWN)
2074 		goto unlock_reject;
2075 	explan = ELS_EXPL_SID;
2076 	if (ep->sid != sid)
2077 		goto unlock_reject;
2078 
2079 	/*
2080 	 * Clear Recovery Qualifier state, and cancel timer if complete.
2081 	 */
2082 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2083 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2084 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2085 	}
2086 	if (ep->esb_stat & ESB_ST_COMPLETE) {
2087 		if (cancel_delayed_work(&ep->timeout_work))
2088 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2089 	}
2090 
2091 	spin_unlock_bh(&ep->ex_lock);
2092 
2093 	/*
2094 	 * Send LS_ACC.
2095 	 */
2096 	fc_seq_ls_acc(fp);
2097 	goto out;
2098 
2099 unlock_reject:
2100 	spin_unlock_bh(&ep->ex_lock);
2101 reject:
2102 	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2103 out:
2104 	if (ep)
2105 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2106 }
2107 
2108 /**
2109  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2110  * @lport: The local port to add the exchange manager to
2111  * @mp:	   The exchange manager to be added to the local port
2112  * @match: The match routine that indicates when this EM should be used
2113  */
2114 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2115 					   struct fc_exch_mgr *mp,
2116 					   bool (*match)(struct fc_frame *))
2117 {
2118 	struct fc_exch_mgr_anchor *ema;
2119 
2120 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2121 	if (!ema)
2122 		return ema;
2123 
2124 	ema->mp = mp;
2125 	ema->match = match;
2126 	/* add EM anchor to EM anchors list */
2127 	list_add_tail(&ema->ema_list, &lport->ema_list);
2128 	kref_get(&mp->kref);
2129 	return ema;
2130 }
2131 EXPORT_SYMBOL(fc_exch_mgr_add);
2132 
2133 /**
2134  * fc_exch_mgr_destroy() - Destroy an exchange manager
2135  * @kref: The reference to the EM to be destroyed
2136  */
2137 static void fc_exch_mgr_destroy(struct kref *kref)
2138 {
2139 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2140 
2141 	mempool_destroy(mp->ep_pool);
2142 	free_percpu(mp->pool);
2143 	kfree(mp);
2144 }
2145 
2146 /**
2147  * fc_exch_mgr_del() - Delete an EM from a local port's list
2148  * @ema: The exchange manager anchor identifying the EM to be deleted
2149  */
2150 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2151 {
2152 	/* remove EM anchor from EM anchors list */
2153 	list_del(&ema->ema_list);
2154 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2155 	kfree(ema);
2156 }
2157 EXPORT_SYMBOL(fc_exch_mgr_del);
2158 
2159 /**
2160  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2161  * @src: Source lport to clone exchange managers from
2162  * @dst: New lport that takes references to all the exchange managers
2163  */
2164 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2165 {
2166 	struct fc_exch_mgr_anchor *ema, *tmp;
2167 
2168 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2169 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2170 			goto err;
2171 	}
2172 	return 0;
2173 err:
2174 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2175 		fc_exch_mgr_del(ema);
2176 	return -ENOMEM;
2177 }
2178 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2179 
2180 /**
2181  * fc_exch_mgr_alloc() - Allocate an exchange manager
2182  * @lport:   The local port that the new EM will be associated with
2183  * @class:   The default FC class for new exchanges
2184  * @min_xid: The minimum XID for exchanges from the new EM
2185  * @max_xid: The maximum XID for exchanges from the new EM
2186  * @match:   The match routine for the new EM
2187  */
2188 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2189 				      enum fc_class class,
2190 				      u16 min_xid, u16 max_xid,
2191 				      bool (*match)(struct fc_frame *))
2192 {
2193 	struct fc_exch_mgr *mp;
2194 	u16 pool_exch_range;
2195 	size_t pool_size;
2196 	unsigned int cpu;
2197 	struct fc_exch_pool *pool;
2198 
2199 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2200 	    (min_xid & fc_cpu_mask) != 0) {
2201 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2202 			     min_xid, max_xid);
2203 		return NULL;
2204 	}
2205 
2206 	/*
2207 	 * allocate memory for EM
2208 	 */
2209 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2210 	if (!mp)
2211 		return NULL;
2212 
2213 	mp->class = class;
2214 	/* adjust em exch xid range for offload */
2215 	mp->min_xid = min_xid;
2216 	mp->max_xid = max_xid;
2217 
2218 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2219 	if (!mp->ep_pool)
2220 		goto free_mp;
2221 
2222 	/*
2223 	 * Setup per cpu exch pool with entire exchange id range equally
2224 	 * divided across all cpus. The exch pointers array memory is
2225 	 * allocated for exch range per pool.
2226 	 */
2227 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2228 	mp->pool_max_index = pool_exch_range - 1;
2229 
2230 	/*
2231 	 * Allocate and initialize per cpu exch pool
2232 	 */
2233 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2234 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2235 	if (!mp->pool)
2236 		goto free_mempool;
2237 	for_each_possible_cpu(cpu) {
2238 		pool = per_cpu_ptr(mp->pool, cpu);
2239 		pool->left = FC_XID_UNKNOWN;
2240 		pool->right = FC_XID_UNKNOWN;
2241 		spin_lock_init(&pool->lock);
2242 		INIT_LIST_HEAD(&pool->ex_list);
2243 	}
2244 
2245 	kref_init(&mp->kref);
2246 	if (!fc_exch_mgr_add(lport, mp, match)) {
2247 		free_percpu(mp->pool);
2248 		goto free_mempool;
2249 	}
2250 
2251 	/*
2252 	 * Above kref_init() sets mp->kref to 1 and then
2253 	 * call to fc_exch_mgr_add incremented mp->kref again,
2254 	 * so adjust that extra increment.
2255 	 */
2256 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2257 	return mp;
2258 
2259 free_mempool:
2260 	mempool_destroy(mp->ep_pool);
2261 free_mp:
2262 	kfree(mp);
2263 	return NULL;
2264 }
2265 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2266 
2267 /**
2268  * fc_exch_mgr_free() - Free all exchange managers on a local port
2269  * @lport: The local port whose EMs are to be freed
2270  */
2271 void fc_exch_mgr_free(struct fc_lport *lport)
2272 {
2273 	struct fc_exch_mgr_anchor *ema, *next;
2274 
2275 	flush_workqueue(fc_exch_workqueue);
2276 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2277 		fc_exch_mgr_del(ema);
2278 }
2279 EXPORT_SYMBOL(fc_exch_mgr_free);
2280 
2281 /**
2282  * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2283  * upon 'xid'.
2284  * @f_ctl: f_ctl
2285  * @lport: The local port the frame was received on
2286  * @fh: The received frame header
2287  */
2288 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2289 					      struct fc_lport *lport,
2290 					      struct fc_frame_header *fh)
2291 {
2292 	struct fc_exch_mgr_anchor *ema;
2293 	u16 xid;
2294 
2295 	if (f_ctl & FC_FC_EX_CTX)
2296 		xid = ntohs(fh->fh_ox_id);
2297 	else {
2298 		xid = ntohs(fh->fh_rx_id);
2299 		if (xid == FC_XID_UNKNOWN)
2300 			return list_entry(lport->ema_list.prev,
2301 					  typeof(*ema), ema_list);
2302 	}
2303 
2304 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2305 		if ((xid >= ema->mp->min_xid) &&
2306 		    (xid <= ema->mp->max_xid))
2307 			return ema;
2308 	}
2309 	return NULL;
2310 }
2311 /**
2312  * fc_exch_recv() - Handler for received frames
2313  * @lport: The local port the frame was received on
2314  * @fp:	The received frame
2315  */
2316 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2317 {
2318 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2319 	struct fc_exch_mgr_anchor *ema;
2320 	u32 f_ctl;
2321 
2322 	/* lport lock ? */
2323 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2324 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2325 			     "has not been initialized correctly\n");
2326 		fc_frame_free(fp);
2327 		return;
2328 	}
2329 
2330 	f_ctl = ntoh24(fh->fh_f_ctl);
2331 	ema = fc_find_ema(f_ctl, lport, fh);
2332 	if (!ema) {
2333 		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2334 				    "fc_ctl <0x%x>, xid <0x%x>\n",
2335 				     f_ctl,
2336 				     (f_ctl & FC_FC_EX_CTX) ?
2337 				     ntohs(fh->fh_ox_id) :
2338 				     ntohs(fh->fh_rx_id));
2339 		fc_frame_free(fp);
2340 		return;
2341 	}
2342 
2343 	/*
2344 	 * If frame is marked invalid, just drop it.
2345 	 */
2346 	switch (fr_eof(fp)) {
2347 	case FC_EOF_T:
2348 		if (f_ctl & FC_FC_END_SEQ)
2349 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2350 		/* fall through */
2351 	case FC_EOF_N:
2352 		if (fh->fh_type == FC_TYPE_BLS)
2353 			fc_exch_recv_bls(ema->mp, fp);
2354 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2355 			 FC_FC_EX_CTX)
2356 			fc_exch_recv_seq_resp(ema->mp, fp);
2357 		else if (f_ctl & FC_FC_SEQ_CTX)
2358 			fc_exch_recv_resp(ema->mp, fp);
2359 		else	/* no EX_CTX and no SEQ_CTX */
2360 			fc_exch_recv_req(lport, ema->mp, fp);
2361 		break;
2362 	default:
2363 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2364 			     fr_eof(fp));
2365 		fc_frame_free(fp);
2366 	}
2367 }
2368 EXPORT_SYMBOL(fc_exch_recv);
2369 
2370 /**
2371  * fc_exch_init() - Initialize the exchange layer for a local port
2372  * @lport: The local port to initialize the exchange layer for
2373  */
2374 int fc_exch_init(struct fc_lport *lport)
2375 {
2376 	if (!lport->tt.seq_start_next)
2377 		lport->tt.seq_start_next = fc_seq_start_next;
2378 
2379 	if (!lport->tt.seq_set_resp)
2380 		lport->tt.seq_set_resp = fc_seq_set_resp;
2381 
2382 	if (!lport->tt.exch_seq_send)
2383 		lport->tt.exch_seq_send = fc_exch_seq_send;
2384 
2385 	if (!lport->tt.seq_send)
2386 		lport->tt.seq_send = fc_seq_send;
2387 
2388 	if (!lport->tt.seq_els_rsp_send)
2389 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2390 
2391 	if (!lport->tt.exch_done)
2392 		lport->tt.exch_done = fc_exch_done;
2393 
2394 	if (!lport->tt.exch_mgr_reset)
2395 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2396 
2397 	if (!lport->tt.seq_exch_abort)
2398 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2399 
2400 	if (!lport->tt.seq_assign)
2401 		lport->tt.seq_assign = fc_seq_assign;
2402 
2403 	if (!lport->tt.seq_release)
2404 		lport->tt.seq_release = fc_seq_release;
2405 
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL(fc_exch_init);
2409 
2410 /**
2411  * fc_setup_exch_mgr() - Setup an exchange manager
2412  */
2413 int fc_setup_exch_mgr(void)
2414 {
2415 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2416 					 0, SLAB_HWCACHE_ALIGN, NULL);
2417 	if (!fc_em_cachep)
2418 		return -ENOMEM;
2419 
2420 	/*
2421 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2422 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2423 	 * to order of 2's * power and order is stored
2424 	 * in fc_cpu_order as this is later required in
2425 	 * mapping between an exch id and exch array index
2426 	 * in per cpu exch pool.
2427 	 *
2428 	 * This round up is required to align fc_cpu_mask
2429 	 * to exchange id's lower bits such that all incoming
2430 	 * frames of an exchange gets delivered to the same
2431 	 * cpu on which exchange originated by simple bitwise
2432 	 * AND operation between fc_cpu_mask and exchange id.
2433 	 */
2434 	fc_cpu_mask = 1;
2435 	fc_cpu_order = 0;
2436 	while (fc_cpu_mask < nr_cpu_ids) {
2437 		fc_cpu_mask <<= 1;
2438 		fc_cpu_order++;
2439 	}
2440 	fc_cpu_mask--;
2441 
2442 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2443 	if (!fc_exch_workqueue)
2444 		return -ENOMEM;
2445 	return 0;
2446 }
2447 
2448 /**
2449  * fc_destroy_exch_mgr() - Destroy an exchange manager
2450  */
2451 void fc_destroy_exch_mgr(void)
2452 {
2453 	destroy_workqueue(fc_exch_workqueue);
2454 	kmem_cache_destroy(fc_em_cachep);
2455 }
2456