1 /* 2 * Copyright(c) 2007 Intel Corporation. All rights reserved. 3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved. 4 * Copyright(c) 2008 Mike Christie 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Maintained at www.Open-FCoE.org 20 */ 21 22 /* 23 * Fibre Channel exchange and sequence handling. 24 */ 25 26 #include <linux/timer.h> 27 #include <linux/slab.h> 28 #include <linux/err.h> 29 #include <linux/export.h> 30 #include <linux/log2.h> 31 32 #include <scsi/fc/fc_fc2.h> 33 34 #include <scsi/libfc.h> 35 #include <scsi/fc_encode.h> 36 37 #include "fc_libfc.h" 38 39 u16 fc_cpu_mask; /* cpu mask for possible cpus */ 40 EXPORT_SYMBOL(fc_cpu_mask); 41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */ 42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */ 43 static struct workqueue_struct *fc_exch_workqueue; 44 45 /* 46 * Structure and function definitions for managing Fibre Channel Exchanges 47 * and Sequences. 48 * 49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq. 50 * 51 * fc_exch_mgr holds the exchange state for an N port 52 * 53 * fc_exch holds state for one exchange and links to its active sequence. 54 * 55 * fc_seq holds the state for an individual sequence. 56 */ 57 58 /** 59 * struct fc_exch_pool - Per cpu exchange pool 60 * @next_index: Next possible free exchange index 61 * @total_exches: Total allocated exchanges 62 * @lock: Exch pool lock 63 * @ex_list: List of exchanges 64 * 65 * This structure manages per cpu exchanges in array of exchange pointers. 66 * This array is allocated followed by struct fc_exch_pool memory for 67 * assigned range of exchanges to per cpu pool. 68 */ 69 struct fc_exch_pool { 70 spinlock_t lock; 71 struct list_head ex_list; 72 u16 next_index; 73 u16 total_exches; 74 75 /* two cache of free slot in exch array */ 76 u16 left; 77 u16 right; 78 } ____cacheline_aligned_in_smp; 79 80 /** 81 * struct fc_exch_mgr - The Exchange Manager (EM). 82 * @class: Default class for new sequences 83 * @kref: Reference counter 84 * @min_xid: Minimum exchange ID 85 * @max_xid: Maximum exchange ID 86 * @ep_pool: Reserved exchange pointers 87 * @pool_max_index: Max exch array index in exch pool 88 * @pool: Per cpu exch pool 89 * @stats: Statistics structure 90 * 91 * This structure is the center for creating exchanges and sequences. 92 * It manages the allocation of exchange IDs. 93 */ 94 struct fc_exch_mgr { 95 struct fc_exch_pool __percpu *pool; 96 mempool_t *ep_pool; 97 enum fc_class class; 98 struct kref kref; 99 u16 min_xid; 100 u16 max_xid; 101 u16 pool_max_index; 102 103 struct { 104 atomic_t no_free_exch; 105 atomic_t no_free_exch_xid; 106 atomic_t xid_not_found; 107 atomic_t xid_busy; 108 atomic_t seq_not_found; 109 atomic_t non_bls_resp; 110 } stats; 111 }; 112 113 /** 114 * struct fc_exch_mgr_anchor - primary structure for list of EMs 115 * @ema_list: Exchange Manager Anchor list 116 * @mp: Exchange Manager associated with this anchor 117 * @match: Routine to determine if this anchor's EM should be used 118 * 119 * When walking the list of anchors the match routine will be called 120 * for each anchor to determine if that EM should be used. The last 121 * anchor in the list will always match to handle any exchanges not 122 * handled by other EMs. The non-default EMs would be added to the 123 * anchor list by HW that provides offloads. 124 */ 125 struct fc_exch_mgr_anchor { 126 struct list_head ema_list; 127 struct fc_exch_mgr *mp; 128 bool (*match)(struct fc_frame *); 129 }; 130 131 static void fc_exch_rrq(struct fc_exch *); 132 static void fc_seq_ls_acc(struct fc_frame *); 133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason, 134 enum fc_els_rjt_explan); 135 static void fc_exch_els_rec(struct fc_frame *); 136 static void fc_exch_els_rrq(struct fc_frame *); 137 138 /* 139 * Internal implementation notes. 140 * 141 * The exchange manager is one by default in libfc but LLD may choose 142 * to have one per CPU. The sequence manager is one per exchange manager 143 * and currently never separated. 144 * 145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field 146 * assigned by the Sequence Initiator that shall be unique for a specific 147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't 148 * qualified by exchange ID, which one might think it would be. 149 * In practice this limits the number of open sequences and exchanges to 256 150 * per session. For most targets we could treat this limit as per exchange. 151 * 152 * The exchange and its sequence are freed when the last sequence is received. 153 * It's possible for the remote port to leave an exchange open without 154 * sending any sequences. 155 * 156 * Notes on reference counts: 157 * 158 * Exchanges are reference counted and exchange gets freed when the reference 159 * count becomes zero. 160 * 161 * Timeouts: 162 * Sequences are timed out for E_D_TOV and R_A_TOV. 163 * 164 * Sequence event handling: 165 * 166 * The following events may occur on initiator sequences: 167 * 168 * Send. 169 * For now, the whole thing is sent. 170 * Receive ACK 171 * This applies only to class F. 172 * The sequence is marked complete. 173 * ULP completion. 174 * The upper layer calls fc_exch_done() when done 175 * with exchange and sequence tuple. 176 * RX-inferred completion. 177 * When we receive the next sequence on the same exchange, we can 178 * retire the previous sequence ID. (XXX not implemented). 179 * Timeout. 180 * R_A_TOV frees the sequence ID. If we're waiting for ACK, 181 * E_D_TOV causes abort and calls upper layer response handler 182 * with FC_EX_TIMEOUT error. 183 * Receive RJT 184 * XXX defer. 185 * Send ABTS 186 * On timeout. 187 * 188 * The following events may occur on recipient sequences: 189 * 190 * Receive 191 * Allocate sequence for first frame received. 192 * Hold during receive handler. 193 * Release when final frame received. 194 * Keep status of last N of these for the ELS RES command. XXX TBD. 195 * Receive ABTS 196 * Deallocate sequence 197 * Send RJT 198 * Deallocate 199 * 200 * For now, we neglect conditions where only part of a sequence was 201 * received or transmitted, or where out-of-order receipt is detected. 202 */ 203 204 /* 205 * Locking notes: 206 * 207 * The EM code run in a per-CPU worker thread. 208 * 209 * To protect against concurrency between a worker thread code and timers, 210 * sequence allocation and deallocation must be locked. 211 * - exchange refcnt can be done atomicly without locks. 212 * - sequence allocation must be locked by exch lock. 213 * - If the EM pool lock and ex_lock must be taken at the same time, then the 214 * EM pool lock must be taken before the ex_lock. 215 */ 216 217 /* 218 * opcode names for debugging. 219 */ 220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT; 221 222 /** 223 * fc_exch_name_lookup() - Lookup name by opcode 224 * @op: Opcode to be looked up 225 * @table: Opcode/name table 226 * @max_index: Index not to be exceeded 227 * 228 * This routine is used to determine a human-readable string identifying 229 * a R_CTL opcode. 230 */ 231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table, 232 unsigned int max_index) 233 { 234 const char *name = NULL; 235 236 if (op < max_index) 237 name = table[op]; 238 if (!name) 239 name = "unknown"; 240 return name; 241 } 242 243 /** 244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup() 245 * @op: The opcode to be looked up 246 */ 247 static const char *fc_exch_rctl_name(unsigned int op) 248 { 249 return fc_exch_name_lookup(op, fc_exch_rctl_names, 250 ARRAY_SIZE(fc_exch_rctl_names)); 251 } 252 253 /** 254 * fc_exch_hold() - Increment an exchange's reference count 255 * @ep: Echange to be held 256 */ 257 static inline void fc_exch_hold(struct fc_exch *ep) 258 { 259 atomic_inc(&ep->ex_refcnt); 260 } 261 262 /** 263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields 264 * and determine SOF and EOF. 265 * @ep: The exchange to that will use the header 266 * @fp: The frame whose header is to be modified 267 * @f_ctl: F_CTL bits that will be used for the frame header 268 * 269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id, 270 * fh_seq_id, fh_seq_cnt and the SOF and EOF. 271 */ 272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp, 273 u32 f_ctl) 274 { 275 struct fc_frame_header *fh = fc_frame_header_get(fp); 276 u16 fill; 277 278 fr_sof(fp) = ep->class; 279 if (ep->seq.cnt) 280 fr_sof(fp) = fc_sof_normal(ep->class); 281 282 if (f_ctl & FC_FC_END_SEQ) { 283 fr_eof(fp) = FC_EOF_T; 284 if (fc_sof_needs_ack(ep->class)) 285 fr_eof(fp) = FC_EOF_N; 286 /* 287 * From F_CTL. 288 * The number of fill bytes to make the length a 4-byte 289 * multiple is the low order 2-bits of the f_ctl. 290 * The fill itself will have been cleared by the frame 291 * allocation. 292 * After this, the length will be even, as expected by 293 * the transport. 294 */ 295 fill = fr_len(fp) & 3; 296 if (fill) { 297 fill = 4 - fill; 298 /* TODO, this may be a problem with fragmented skb */ 299 skb_put(fp_skb(fp), fill); 300 hton24(fh->fh_f_ctl, f_ctl | fill); 301 } 302 } else { 303 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */ 304 fr_eof(fp) = FC_EOF_N; 305 } 306 307 /* Initialize remaining fh fields from fc_fill_fc_hdr */ 308 fh->fh_ox_id = htons(ep->oxid); 309 fh->fh_rx_id = htons(ep->rxid); 310 fh->fh_seq_id = ep->seq.id; 311 fh->fh_seq_cnt = htons(ep->seq.cnt); 312 } 313 314 /** 315 * fc_exch_release() - Decrement an exchange's reference count 316 * @ep: Exchange to be released 317 * 318 * If the reference count reaches zero and the exchange is complete, 319 * it is freed. 320 */ 321 static void fc_exch_release(struct fc_exch *ep) 322 { 323 struct fc_exch_mgr *mp; 324 325 if (atomic_dec_and_test(&ep->ex_refcnt)) { 326 mp = ep->em; 327 if (ep->destructor) 328 ep->destructor(&ep->seq, ep->arg); 329 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE)); 330 mempool_free(ep, mp->ep_pool); 331 } 332 } 333 334 /** 335 * fc_exch_timer_cancel() - cancel exch timer 336 * @ep: The exchange whose timer to be canceled 337 */ 338 static inline void fc_exch_timer_cancel(struct fc_exch *ep) 339 { 340 if (cancel_delayed_work(&ep->timeout_work)) { 341 FC_EXCH_DBG(ep, "Exchange timer canceled\n"); 342 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */ 343 } 344 } 345 346 /** 347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the 348 * the exchange lock held 349 * @ep: The exchange whose timer will start 350 * @timer_msec: The timeout period 351 * 352 * Used for upper level protocols to time out the exchange. 353 * The timer is cancelled when it fires or when the exchange completes. 354 */ 355 static inline void fc_exch_timer_set_locked(struct fc_exch *ep, 356 unsigned int timer_msec) 357 { 358 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 359 return; 360 361 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec); 362 363 fc_exch_hold(ep); /* hold for timer */ 364 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work, 365 msecs_to_jiffies(timer_msec))) 366 fc_exch_release(ep); 367 } 368 369 /** 370 * fc_exch_timer_set() - Lock the exchange and set the timer 371 * @ep: The exchange whose timer will start 372 * @timer_msec: The timeout period 373 */ 374 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec) 375 { 376 spin_lock_bh(&ep->ex_lock); 377 fc_exch_timer_set_locked(ep, timer_msec); 378 spin_unlock_bh(&ep->ex_lock); 379 } 380 381 /** 382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held 383 * @ep: The exchange that is complete 384 * 385 * Note: May sleep if invoked from outside a response handler. 386 */ 387 static int fc_exch_done_locked(struct fc_exch *ep) 388 { 389 int rc = 1; 390 391 /* 392 * We must check for completion in case there are two threads 393 * tyring to complete this. But the rrq code will reuse the 394 * ep, and in that case we only clear the resp and set it as 395 * complete, so it can be reused by the timer to send the rrq. 396 */ 397 if (ep->state & FC_EX_DONE) 398 return rc; 399 ep->esb_stat |= ESB_ST_COMPLETE; 400 401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 402 ep->state |= FC_EX_DONE; 403 fc_exch_timer_cancel(ep); 404 rc = 0; 405 } 406 return rc; 407 } 408 409 /** 410 * fc_exch_ptr_get() - Return an exchange from an exchange pool 411 * @pool: Exchange Pool to get an exchange from 412 * @index: Index of the exchange within the pool 413 * 414 * Use the index to get an exchange from within an exchange pool. exches 415 * will point to an array of exchange pointers. The index will select 416 * the exchange within the array. 417 */ 418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool, 419 u16 index) 420 { 421 struct fc_exch **exches = (struct fc_exch **)(pool + 1); 422 return exches[index]; 423 } 424 425 /** 426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool 427 * @pool: The pool to assign the exchange to 428 * @index: The index in the pool where the exchange will be assigned 429 * @ep: The exchange to assign to the pool 430 */ 431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index, 432 struct fc_exch *ep) 433 { 434 ((struct fc_exch **)(pool + 1))[index] = ep; 435 } 436 437 /** 438 * fc_exch_delete() - Delete an exchange 439 * @ep: The exchange to be deleted 440 */ 441 static void fc_exch_delete(struct fc_exch *ep) 442 { 443 struct fc_exch_pool *pool; 444 u16 index; 445 446 pool = ep->pool; 447 spin_lock_bh(&pool->lock); 448 WARN_ON(pool->total_exches <= 0); 449 pool->total_exches--; 450 451 /* update cache of free slot */ 452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order; 453 if (pool->left == FC_XID_UNKNOWN) 454 pool->left = index; 455 else if (pool->right == FC_XID_UNKNOWN) 456 pool->right = index; 457 else 458 pool->next_index = index; 459 460 fc_exch_ptr_set(pool, index, NULL); 461 list_del(&ep->ex_list); 462 spin_unlock_bh(&pool->lock); 463 fc_exch_release(ep); /* drop hold for exch in mp */ 464 } 465 466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp, 467 struct fc_frame *fp) 468 { 469 struct fc_exch *ep; 470 struct fc_frame_header *fh = fc_frame_header_get(fp); 471 int error = -ENXIO; 472 u32 f_ctl; 473 u8 fh_type = fh->fh_type; 474 475 ep = fc_seq_exch(sp); 476 477 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) { 478 fc_frame_free(fp); 479 goto out; 480 } 481 482 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT)); 483 484 f_ctl = ntoh24(fh->fh_f_ctl); 485 fc_exch_setup_hdr(ep, fp, f_ctl); 486 fr_encaps(fp) = ep->encaps; 487 488 /* 489 * update sequence count if this frame is carrying 490 * multiple FC frames when sequence offload is enabled 491 * by LLD. 492 */ 493 if (fr_max_payload(fp)) 494 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)), 495 fr_max_payload(fp)); 496 else 497 sp->cnt++; 498 499 /* 500 * Send the frame. 501 */ 502 error = lport->tt.frame_send(lport, fp); 503 504 if (fh_type == FC_TYPE_BLS) 505 goto out; 506 507 /* 508 * Update the exchange and sequence flags, 509 * assuming all frames for the sequence have been sent. 510 * We can only be called to send once for each sequence. 511 */ 512 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */ 513 if (f_ctl & FC_FC_SEQ_INIT) 514 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 515 out: 516 return error; 517 } 518 519 /** 520 * fc_seq_send() - Send a frame using existing sequence/exchange pair 521 * @lport: The local port that the exchange will be sent on 522 * @sp: The sequence to be sent 523 * @fp: The frame to be sent on the exchange 524 * 525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp) 526 * or indirectly by calling libfc_function_template.frame_send(). 527 */ 528 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, 529 struct fc_frame *fp) 530 { 531 struct fc_exch *ep; 532 int error; 533 ep = fc_seq_exch(sp); 534 spin_lock_bh(&ep->ex_lock); 535 error = fc_seq_send_locked(lport, sp, fp); 536 spin_unlock_bh(&ep->ex_lock); 537 return error; 538 } 539 540 /** 541 * fc_seq_alloc() - Allocate a sequence for a given exchange 542 * @ep: The exchange to allocate a new sequence for 543 * @seq_id: The sequence ID to be used 544 * 545 * We don't support multiple originated sequences on the same exchange. 546 * By implication, any previously originated sequence on this exchange 547 * is complete, and we reallocate the same sequence. 548 */ 549 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id) 550 { 551 struct fc_seq *sp; 552 553 sp = &ep->seq; 554 sp->ssb_stat = 0; 555 sp->cnt = 0; 556 sp->id = seq_id; 557 return sp; 558 } 559 560 /** 561 * fc_seq_start_next_locked() - Allocate a new sequence on the same 562 * exchange as the supplied sequence 563 * @sp: The sequence/exchange to get a new sequence for 564 */ 565 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp) 566 { 567 struct fc_exch *ep = fc_seq_exch(sp); 568 569 sp = fc_seq_alloc(ep, ep->seq_id++); 570 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n", 571 ep->f_ctl, sp->id); 572 return sp; 573 } 574 575 /** 576 * fc_seq_start_next() - Lock the exchange and get a new sequence 577 * for a given sequence/exchange pair 578 * @sp: The sequence/exchange to get a new exchange for 579 */ 580 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp) 581 { 582 struct fc_exch *ep = fc_seq_exch(sp); 583 584 spin_lock_bh(&ep->ex_lock); 585 sp = fc_seq_start_next_locked(sp); 586 spin_unlock_bh(&ep->ex_lock); 587 588 return sp; 589 } 590 591 /* 592 * Set the response handler for the exchange associated with a sequence. 593 * 594 * Note: May sleep if invoked from outside a response handler. 595 */ 596 static void fc_seq_set_resp(struct fc_seq *sp, 597 void (*resp)(struct fc_seq *, struct fc_frame *, 598 void *), 599 void *arg) 600 { 601 struct fc_exch *ep = fc_seq_exch(sp); 602 DEFINE_WAIT(wait); 603 604 spin_lock_bh(&ep->ex_lock); 605 while (ep->resp_active && ep->resp_task != current) { 606 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE); 607 spin_unlock_bh(&ep->ex_lock); 608 609 schedule(); 610 611 spin_lock_bh(&ep->ex_lock); 612 } 613 finish_wait(&ep->resp_wq, &wait); 614 ep->resp = resp; 615 ep->arg = arg; 616 spin_unlock_bh(&ep->ex_lock); 617 } 618 619 /** 620 * fc_exch_abort_locked() - Abort an exchange 621 * @ep: The exchange to be aborted 622 * @timer_msec: The period of time to wait before aborting 623 * 624 * Locking notes: Called with exch lock held 625 * 626 * Return value: 0 on success else error code 627 */ 628 static int fc_exch_abort_locked(struct fc_exch *ep, 629 unsigned int timer_msec) 630 { 631 struct fc_seq *sp; 632 struct fc_frame *fp; 633 int error; 634 635 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) || 636 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) 637 return -ENXIO; 638 639 /* 640 * Send the abort on a new sequence if possible. 641 */ 642 sp = fc_seq_start_next_locked(&ep->seq); 643 if (!sp) 644 return -ENOMEM; 645 646 if (timer_msec) 647 fc_exch_timer_set_locked(ep, timer_msec); 648 649 if (ep->sid) { 650 /* 651 * Send an abort for the sequence that timed out. 652 */ 653 fp = fc_frame_alloc(ep->lp, 0); 654 if (fp) { 655 ep->esb_stat |= ESB_ST_SEQ_INIT; 656 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid, 657 FC_TYPE_BLS, FC_FC_END_SEQ | 658 FC_FC_SEQ_INIT, 0); 659 error = fc_seq_send_locked(ep->lp, sp, fp); 660 } else { 661 error = -ENOBUFS; 662 } 663 } else { 664 /* 665 * If not logged into the fabric, don't send ABTS but leave 666 * sequence active until next timeout. 667 */ 668 error = 0; 669 } 670 ep->esb_stat |= ESB_ST_ABNORMAL; 671 return error; 672 } 673 674 /** 675 * fc_seq_exch_abort() - Abort an exchange and sequence 676 * @req_sp: The sequence to be aborted 677 * @timer_msec: The period of time to wait before aborting 678 * 679 * Generally called because of a timeout or an abort from the upper layer. 680 * 681 * Return value: 0 on success else error code 682 */ 683 static int fc_seq_exch_abort(const struct fc_seq *req_sp, 684 unsigned int timer_msec) 685 { 686 struct fc_exch *ep; 687 int error; 688 689 ep = fc_seq_exch(req_sp); 690 spin_lock_bh(&ep->ex_lock); 691 error = fc_exch_abort_locked(ep, timer_msec); 692 spin_unlock_bh(&ep->ex_lock); 693 return error; 694 } 695 696 /** 697 * fc_invoke_resp() - invoke ep->resp() 698 * 699 * Notes: 700 * It is assumed that after initialization finished (this means the 701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are 702 * modified only via fc_seq_set_resp(). This guarantees that none of these 703 * two variables changes if ep->resp_active > 0. 704 * 705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when 706 * this function is invoked, the first spin_lock_bh() call in this function 707 * will wait until fc_seq_set_resp() has finished modifying these variables. 708 * 709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that 710 * ep->resp() won't be invoked after fc_exch_done() has returned. 711 * 712 * The response handler itself may invoke fc_exch_done(), which will clear the 713 * ep->resp pointer. 714 * 715 * Return value: 716 * Returns true if and only if ep->resp has been invoked. 717 */ 718 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp, 719 struct fc_frame *fp) 720 { 721 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg); 722 void *arg; 723 bool res = false; 724 725 spin_lock_bh(&ep->ex_lock); 726 ep->resp_active++; 727 if (ep->resp_task != current) 728 ep->resp_task = !ep->resp_task ? current : NULL; 729 resp = ep->resp; 730 arg = ep->arg; 731 spin_unlock_bh(&ep->ex_lock); 732 733 if (resp) { 734 resp(sp, fp, arg); 735 res = true; 736 } 737 738 spin_lock_bh(&ep->ex_lock); 739 if (--ep->resp_active == 0) 740 ep->resp_task = NULL; 741 spin_unlock_bh(&ep->ex_lock); 742 743 if (ep->resp_active == 0) 744 wake_up(&ep->resp_wq); 745 746 return res; 747 } 748 749 /** 750 * fc_exch_timeout() - Handle exchange timer expiration 751 * @work: The work_struct identifying the exchange that timed out 752 */ 753 static void fc_exch_timeout(struct work_struct *work) 754 { 755 struct fc_exch *ep = container_of(work, struct fc_exch, 756 timeout_work.work); 757 struct fc_seq *sp = &ep->seq; 758 u32 e_stat; 759 int rc = 1; 760 761 FC_EXCH_DBG(ep, "Exchange timed out\n"); 762 763 spin_lock_bh(&ep->ex_lock); 764 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) 765 goto unlock; 766 767 e_stat = ep->esb_stat; 768 if (e_stat & ESB_ST_COMPLETE) { 769 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL; 770 spin_unlock_bh(&ep->ex_lock); 771 if (e_stat & ESB_ST_REC_QUAL) 772 fc_exch_rrq(ep); 773 goto done; 774 } else { 775 if (e_stat & ESB_ST_ABNORMAL) 776 rc = fc_exch_done_locked(ep); 777 spin_unlock_bh(&ep->ex_lock); 778 if (!rc) 779 fc_exch_delete(ep); 780 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT)); 781 fc_seq_set_resp(sp, NULL, ep->arg); 782 fc_seq_exch_abort(sp, 2 * ep->r_a_tov); 783 goto done; 784 } 785 unlock: 786 spin_unlock_bh(&ep->ex_lock); 787 done: 788 /* 789 * This release matches the hold taken when the timer was set. 790 */ 791 fc_exch_release(ep); 792 } 793 794 /** 795 * fc_exch_em_alloc() - Allocate an exchange from a specified EM. 796 * @lport: The local port that the exchange is for 797 * @mp: The exchange manager that will allocate the exchange 798 * 799 * Returns pointer to allocated fc_exch with exch lock held. 800 */ 801 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport, 802 struct fc_exch_mgr *mp) 803 { 804 struct fc_exch *ep; 805 unsigned int cpu; 806 u16 index; 807 struct fc_exch_pool *pool; 808 809 /* allocate memory for exchange */ 810 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC); 811 if (!ep) { 812 atomic_inc(&mp->stats.no_free_exch); 813 goto out; 814 } 815 memset(ep, 0, sizeof(*ep)); 816 817 cpu = get_cpu(); 818 pool = per_cpu_ptr(mp->pool, cpu); 819 spin_lock_bh(&pool->lock); 820 put_cpu(); 821 822 /* peek cache of free slot */ 823 if (pool->left != FC_XID_UNKNOWN) { 824 index = pool->left; 825 pool->left = FC_XID_UNKNOWN; 826 goto hit; 827 } 828 if (pool->right != FC_XID_UNKNOWN) { 829 index = pool->right; 830 pool->right = FC_XID_UNKNOWN; 831 goto hit; 832 } 833 834 index = pool->next_index; 835 /* allocate new exch from pool */ 836 while (fc_exch_ptr_get(pool, index)) { 837 index = index == mp->pool_max_index ? 0 : index + 1; 838 if (index == pool->next_index) 839 goto err; 840 } 841 pool->next_index = index == mp->pool_max_index ? 0 : index + 1; 842 hit: 843 fc_exch_hold(ep); /* hold for exch in mp */ 844 spin_lock_init(&ep->ex_lock); 845 /* 846 * Hold exch lock for caller to prevent fc_exch_reset() 847 * from releasing exch while fc_exch_alloc() caller is 848 * still working on exch. 849 */ 850 spin_lock_bh(&ep->ex_lock); 851 852 fc_exch_ptr_set(pool, index, ep); 853 list_add_tail(&ep->ex_list, &pool->ex_list); 854 fc_seq_alloc(ep, ep->seq_id++); 855 pool->total_exches++; 856 spin_unlock_bh(&pool->lock); 857 858 /* 859 * update exchange 860 */ 861 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid; 862 ep->em = mp; 863 ep->pool = pool; 864 ep->lp = lport; 865 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */ 866 ep->rxid = FC_XID_UNKNOWN; 867 ep->class = mp->class; 868 ep->resp_active = 0; 869 init_waitqueue_head(&ep->resp_wq); 870 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout); 871 out: 872 return ep; 873 err: 874 spin_unlock_bh(&pool->lock); 875 atomic_inc(&mp->stats.no_free_exch_xid); 876 mempool_free(ep, mp->ep_pool); 877 return NULL; 878 } 879 880 /** 881 * fc_exch_alloc() - Allocate an exchange from an EM on a 882 * local port's list of EMs. 883 * @lport: The local port that will own the exchange 884 * @fp: The FC frame that the exchange will be for 885 * 886 * This function walks the list of exchange manager(EM) 887 * anchors to select an EM for a new exchange allocation. The 888 * EM is selected when a NULL match function pointer is encountered 889 * or when a call to a match function returns true. 890 */ 891 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport, 892 struct fc_frame *fp) 893 { 894 struct fc_exch_mgr_anchor *ema; 895 896 list_for_each_entry(ema, &lport->ema_list, ema_list) 897 if (!ema->match || ema->match(fp)) 898 return fc_exch_em_alloc(lport, ema->mp); 899 return NULL; 900 } 901 902 /** 903 * fc_exch_find() - Lookup and hold an exchange 904 * @mp: The exchange manager to lookup the exchange from 905 * @xid: The XID of the exchange to look up 906 */ 907 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid) 908 { 909 struct fc_exch_pool *pool; 910 struct fc_exch *ep = NULL; 911 912 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) { 913 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask); 914 spin_lock_bh(&pool->lock); 915 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order); 916 if (ep) { 917 WARN_ON(ep->xid != xid); 918 fc_exch_hold(ep); 919 } 920 spin_unlock_bh(&pool->lock); 921 } 922 return ep; 923 } 924 925 926 /** 927 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and 928 * the memory allocated for the related objects may be freed. 929 * @sp: The sequence that has completed 930 * 931 * Note: May sleep if invoked from outside a response handler. 932 */ 933 static void fc_exch_done(struct fc_seq *sp) 934 { 935 struct fc_exch *ep = fc_seq_exch(sp); 936 int rc; 937 938 spin_lock_bh(&ep->ex_lock); 939 rc = fc_exch_done_locked(ep); 940 spin_unlock_bh(&ep->ex_lock); 941 942 fc_seq_set_resp(sp, NULL, ep->arg); 943 if (!rc) 944 fc_exch_delete(ep); 945 } 946 947 /** 948 * fc_exch_resp() - Allocate a new exchange for a response frame 949 * @lport: The local port that the exchange was for 950 * @mp: The exchange manager to allocate the exchange from 951 * @fp: The response frame 952 * 953 * Sets the responder ID in the frame header. 954 */ 955 static struct fc_exch *fc_exch_resp(struct fc_lport *lport, 956 struct fc_exch_mgr *mp, 957 struct fc_frame *fp) 958 { 959 struct fc_exch *ep; 960 struct fc_frame_header *fh; 961 962 ep = fc_exch_alloc(lport, fp); 963 if (ep) { 964 ep->class = fc_frame_class(fp); 965 966 /* 967 * Set EX_CTX indicating we're responding on this exchange. 968 */ 969 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */ 970 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */ 971 fh = fc_frame_header_get(fp); 972 ep->sid = ntoh24(fh->fh_d_id); 973 ep->did = ntoh24(fh->fh_s_id); 974 ep->oid = ep->did; 975 976 /* 977 * Allocated exchange has placed the XID in the 978 * originator field. Move it to the responder field, 979 * and set the originator XID from the frame. 980 */ 981 ep->rxid = ep->xid; 982 ep->oxid = ntohs(fh->fh_ox_id); 983 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT; 984 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0) 985 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 986 987 fc_exch_hold(ep); /* hold for caller */ 988 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */ 989 } 990 return ep; 991 } 992 993 /** 994 * fc_seq_lookup_recip() - Find a sequence where the other end 995 * originated the sequence 996 * @lport: The local port that the frame was sent to 997 * @mp: The Exchange Manager to lookup the exchange from 998 * @fp: The frame associated with the sequence we're looking for 999 * 1000 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold 1001 * on the ep that should be released by the caller. 1002 */ 1003 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport, 1004 struct fc_exch_mgr *mp, 1005 struct fc_frame *fp) 1006 { 1007 struct fc_frame_header *fh = fc_frame_header_get(fp); 1008 struct fc_exch *ep = NULL; 1009 struct fc_seq *sp = NULL; 1010 enum fc_pf_rjt_reason reject = FC_RJT_NONE; 1011 u32 f_ctl; 1012 u16 xid; 1013 1014 f_ctl = ntoh24(fh->fh_f_ctl); 1015 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0); 1016 1017 /* 1018 * Lookup or create the exchange if we will be creating the sequence. 1019 */ 1020 if (f_ctl & FC_FC_EX_CTX) { 1021 xid = ntohs(fh->fh_ox_id); /* we originated exch */ 1022 ep = fc_exch_find(mp, xid); 1023 if (!ep) { 1024 atomic_inc(&mp->stats.xid_not_found); 1025 reject = FC_RJT_OX_ID; 1026 goto out; 1027 } 1028 if (ep->rxid == FC_XID_UNKNOWN) 1029 ep->rxid = ntohs(fh->fh_rx_id); 1030 else if (ep->rxid != ntohs(fh->fh_rx_id)) { 1031 reject = FC_RJT_OX_ID; 1032 goto rel; 1033 } 1034 } else { 1035 xid = ntohs(fh->fh_rx_id); /* we are the responder */ 1036 1037 /* 1038 * Special case for MDS issuing an ELS TEST with a 1039 * bad rxid of 0. 1040 * XXX take this out once we do the proper reject. 1041 */ 1042 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ && 1043 fc_frame_payload_op(fp) == ELS_TEST) { 1044 fh->fh_rx_id = htons(FC_XID_UNKNOWN); 1045 xid = FC_XID_UNKNOWN; 1046 } 1047 1048 /* 1049 * new sequence - find the exchange 1050 */ 1051 ep = fc_exch_find(mp, xid); 1052 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) { 1053 if (ep) { 1054 atomic_inc(&mp->stats.xid_busy); 1055 reject = FC_RJT_RX_ID; 1056 goto rel; 1057 } 1058 ep = fc_exch_resp(lport, mp, fp); 1059 if (!ep) { 1060 reject = FC_RJT_EXCH_EST; /* XXX */ 1061 goto out; 1062 } 1063 xid = ep->xid; /* get our XID */ 1064 } else if (!ep) { 1065 atomic_inc(&mp->stats.xid_not_found); 1066 reject = FC_RJT_RX_ID; /* XID not found */ 1067 goto out; 1068 } 1069 } 1070 1071 spin_lock_bh(&ep->ex_lock); 1072 /* 1073 * At this point, we have the exchange held. 1074 * Find or create the sequence. 1075 */ 1076 if (fc_sof_is_init(fr_sof(fp))) { 1077 sp = &ep->seq; 1078 sp->ssb_stat |= SSB_ST_RESP; 1079 sp->id = fh->fh_seq_id; 1080 } else { 1081 sp = &ep->seq; 1082 if (sp->id != fh->fh_seq_id) { 1083 atomic_inc(&mp->stats.seq_not_found); 1084 if (f_ctl & FC_FC_END_SEQ) { 1085 /* 1086 * Update sequence_id based on incoming last 1087 * frame of sequence exchange. This is needed 1088 * for FC target where DDP has been used 1089 * on target where, stack is indicated only 1090 * about last frame's (payload _header) header. 1091 * Whereas "seq_id" which is part of 1092 * frame_header is allocated by initiator 1093 * which is totally different from "seq_id" 1094 * allocated when XFER_RDY was sent by target. 1095 * To avoid false -ve which results into not 1096 * sending RSP, hence write request on other 1097 * end never finishes. 1098 */ 1099 sp->ssb_stat |= SSB_ST_RESP; 1100 sp->id = fh->fh_seq_id; 1101 } else { 1102 spin_unlock_bh(&ep->ex_lock); 1103 1104 /* sequence/exch should exist */ 1105 reject = FC_RJT_SEQ_ID; 1106 goto rel; 1107 } 1108 } 1109 } 1110 WARN_ON(ep != fc_seq_exch(sp)); 1111 1112 if (f_ctl & FC_FC_SEQ_INIT) 1113 ep->esb_stat |= ESB_ST_SEQ_INIT; 1114 spin_unlock_bh(&ep->ex_lock); 1115 1116 fr_seq(fp) = sp; 1117 out: 1118 return reject; 1119 rel: 1120 fc_exch_done(&ep->seq); 1121 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */ 1122 return reject; 1123 } 1124 1125 /** 1126 * fc_seq_lookup_orig() - Find a sequence where this end 1127 * originated the sequence 1128 * @mp: The Exchange Manager to lookup the exchange from 1129 * @fp: The frame associated with the sequence we're looking for 1130 * 1131 * Does not hold the sequence for the caller. 1132 */ 1133 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp, 1134 struct fc_frame *fp) 1135 { 1136 struct fc_frame_header *fh = fc_frame_header_get(fp); 1137 struct fc_exch *ep; 1138 struct fc_seq *sp = NULL; 1139 u32 f_ctl; 1140 u16 xid; 1141 1142 f_ctl = ntoh24(fh->fh_f_ctl); 1143 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX); 1144 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id); 1145 ep = fc_exch_find(mp, xid); 1146 if (!ep) 1147 return NULL; 1148 if (ep->seq.id == fh->fh_seq_id) { 1149 /* 1150 * Save the RX_ID if we didn't previously know it. 1151 */ 1152 sp = &ep->seq; 1153 if ((f_ctl & FC_FC_EX_CTX) != 0 && 1154 ep->rxid == FC_XID_UNKNOWN) { 1155 ep->rxid = ntohs(fh->fh_rx_id); 1156 } 1157 } 1158 fc_exch_release(ep); 1159 return sp; 1160 } 1161 1162 /** 1163 * fc_exch_set_addr() - Set the source and destination IDs for an exchange 1164 * @ep: The exchange to set the addresses for 1165 * @orig_id: The originator's ID 1166 * @resp_id: The responder's ID 1167 * 1168 * Note this must be done before the first sequence of the exchange is sent. 1169 */ 1170 static void fc_exch_set_addr(struct fc_exch *ep, 1171 u32 orig_id, u32 resp_id) 1172 { 1173 ep->oid = orig_id; 1174 if (ep->esb_stat & ESB_ST_RESP) { 1175 ep->sid = resp_id; 1176 ep->did = orig_id; 1177 } else { 1178 ep->sid = orig_id; 1179 ep->did = resp_id; 1180 } 1181 } 1182 1183 /** 1184 * fc_seq_els_rsp_send() - Send an ELS response using information from 1185 * the existing sequence/exchange. 1186 * @fp: The received frame 1187 * @els_cmd: The ELS command to be sent 1188 * @els_data: The ELS data to be sent 1189 * 1190 * The received frame is not freed. 1191 */ 1192 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd, 1193 struct fc_seq_els_data *els_data) 1194 { 1195 switch (els_cmd) { 1196 case ELS_LS_RJT: 1197 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan); 1198 break; 1199 case ELS_LS_ACC: 1200 fc_seq_ls_acc(fp); 1201 break; 1202 case ELS_RRQ: 1203 fc_exch_els_rrq(fp); 1204 break; 1205 case ELS_REC: 1206 fc_exch_els_rec(fp); 1207 break; 1208 default: 1209 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd); 1210 } 1211 } 1212 1213 /** 1214 * fc_seq_send_last() - Send a sequence that is the last in the exchange 1215 * @sp: The sequence that is to be sent 1216 * @fp: The frame that will be sent on the sequence 1217 * @rctl: The R_CTL information to be sent 1218 * @fh_type: The frame header type 1219 */ 1220 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp, 1221 enum fc_rctl rctl, enum fc_fh_type fh_type) 1222 { 1223 u32 f_ctl; 1224 struct fc_exch *ep = fc_seq_exch(sp); 1225 1226 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT; 1227 f_ctl |= ep->f_ctl; 1228 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0); 1229 fc_seq_send_locked(ep->lp, sp, fp); 1230 } 1231 1232 /** 1233 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame 1234 * @sp: The sequence to send the ACK on 1235 * @rx_fp: The received frame that is being acknoledged 1236 * 1237 * Send ACK_1 (or equiv.) indicating we received something. 1238 */ 1239 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp) 1240 { 1241 struct fc_frame *fp; 1242 struct fc_frame_header *rx_fh; 1243 struct fc_frame_header *fh; 1244 struct fc_exch *ep = fc_seq_exch(sp); 1245 struct fc_lport *lport = ep->lp; 1246 unsigned int f_ctl; 1247 1248 /* 1249 * Don't send ACKs for class 3. 1250 */ 1251 if (fc_sof_needs_ack(fr_sof(rx_fp))) { 1252 fp = fc_frame_alloc(lport, 0); 1253 if (!fp) 1254 return; 1255 1256 fh = fc_frame_header_get(fp); 1257 fh->fh_r_ctl = FC_RCTL_ACK_1; 1258 fh->fh_type = FC_TYPE_BLS; 1259 1260 /* 1261 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1262 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1263 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1264 * Last ACK uses bits 7-6 (continue sequence), 1265 * bits 5-4 are meaningful (what kind of ACK to use). 1266 */ 1267 rx_fh = fc_frame_header_get(rx_fp); 1268 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1269 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1270 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ | 1271 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT | 1272 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1273 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1274 hton24(fh->fh_f_ctl, f_ctl); 1275 1276 fc_exch_setup_hdr(ep, fp, f_ctl); 1277 fh->fh_seq_id = rx_fh->fh_seq_id; 1278 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1279 fh->fh_parm_offset = htonl(1); /* ack single frame */ 1280 1281 fr_sof(fp) = fr_sof(rx_fp); 1282 if (f_ctl & FC_FC_END_SEQ) 1283 fr_eof(fp) = FC_EOF_T; 1284 else 1285 fr_eof(fp) = FC_EOF_N; 1286 1287 lport->tt.frame_send(lport, fp); 1288 } 1289 } 1290 1291 /** 1292 * fc_exch_send_ba_rjt() - Send BLS Reject 1293 * @rx_fp: The frame being rejected 1294 * @reason: The reason the frame is being rejected 1295 * @explan: The explanation for the rejection 1296 * 1297 * This is for rejecting BA_ABTS only. 1298 */ 1299 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp, 1300 enum fc_ba_rjt_reason reason, 1301 enum fc_ba_rjt_explan explan) 1302 { 1303 struct fc_frame *fp; 1304 struct fc_frame_header *rx_fh; 1305 struct fc_frame_header *fh; 1306 struct fc_ba_rjt *rp; 1307 struct fc_lport *lport; 1308 unsigned int f_ctl; 1309 1310 lport = fr_dev(rx_fp); 1311 fp = fc_frame_alloc(lport, sizeof(*rp)); 1312 if (!fp) 1313 return; 1314 fh = fc_frame_header_get(fp); 1315 rx_fh = fc_frame_header_get(rx_fp); 1316 1317 memset(fh, 0, sizeof(*fh) + sizeof(*rp)); 1318 1319 rp = fc_frame_payload_get(fp, sizeof(*rp)); 1320 rp->br_reason = reason; 1321 rp->br_explan = explan; 1322 1323 /* 1324 * seq_id, cs_ctl, df_ctl and param/offset are zero. 1325 */ 1326 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3); 1327 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3); 1328 fh->fh_ox_id = rx_fh->fh_ox_id; 1329 fh->fh_rx_id = rx_fh->fh_rx_id; 1330 fh->fh_seq_cnt = rx_fh->fh_seq_cnt; 1331 fh->fh_r_ctl = FC_RCTL_BA_RJT; 1332 fh->fh_type = FC_TYPE_BLS; 1333 1334 /* 1335 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22). 1336 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT. 1337 * Bits 9-8 are meaningful (retransmitted or unidirectional). 1338 * Last ACK uses bits 7-6 (continue sequence), 1339 * bits 5-4 are meaningful (what kind of ACK to use). 1340 * Always set LAST_SEQ, END_SEQ. 1341 */ 1342 f_ctl = ntoh24(rx_fh->fh_f_ctl); 1343 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX | 1344 FC_FC_END_CONN | FC_FC_SEQ_INIT | 1345 FC_FC_RETX_SEQ | FC_FC_UNI_TX; 1346 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX; 1347 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ; 1348 f_ctl &= ~FC_FC_FIRST_SEQ; 1349 hton24(fh->fh_f_ctl, f_ctl); 1350 1351 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp)); 1352 fr_eof(fp) = FC_EOF_T; 1353 if (fc_sof_needs_ack(fr_sof(fp))) 1354 fr_eof(fp) = FC_EOF_N; 1355 1356 lport->tt.frame_send(lport, fp); 1357 } 1358 1359 /** 1360 * fc_exch_recv_abts() - Handle an incoming ABTS 1361 * @ep: The exchange the abort was on 1362 * @rx_fp: The ABTS frame 1363 * 1364 * This would be for target mode usually, but could be due to lost 1365 * FCP transfer ready, confirm or RRQ. We always handle this as an 1366 * exchange abort, ignoring the parameter. 1367 */ 1368 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp) 1369 { 1370 struct fc_frame *fp; 1371 struct fc_ba_acc *ap; 1372 struct fc_frame_header *fh; 1373 struct fc_seq *sp; 1374 1375 if (!ep) 1376 goto reject; 1377 1378 fp = fc_frame_alloc(ep->lp, sizeof(*ap)); 1379 if (!fp) 1380 goto free; 1381 1382 spin_lock_bh(&ep->ex_lock); 1383 if (ep->esb_stat & ESB_ST_COMPLETE) { 1384 spin_unlock_bh(&ep->ex_lock); 1385 1386 fc_frame_free(fp); 1387 goto reject; 1388 } 1389 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) { 1390 ep->esb_stat |= ESB_ST_REC_QUAL; 1391 fc_exch_hold(ep); /* hold for REC_QUAL */ 1392 } 1393 fc_exch_timer_set_locked(ep, ep->r_a_tov); 1394 fh = fc_frame_header_get(fp); 1395 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1396 memset(ap, 0, sizeof(*ap)); 1397 sp = &ep->seq; 1398 ap->ba_high_seq_cnt = htons(0xffff); 1399 if (sp->ssb_stat & SSB_ST_RESP) { 1400 ap->ba_seq_id = sp->id; 1401 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL; 1402 ap->ba_high_seq_cnt = fh->fh_seq_cnt; 1403 ap->ba_low_seq_cnt = htons(sp->cnt); 1404 } 1405 sp = fc_seq_start_next_locked(sp); 1406 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS); 1407 ep->esb_stat |= ESB_ST_ABNORMAL; 1408 spin_unlock_bh(&ep->ex_lock); 1409 1410 free: 1411 fc_frame_free(rx_fp); 1412 return; 1413 1414 reject: 1415 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID); 1416 goto free; 1417 } 1418 1419 /** 1420 * fc_seq_assign() - Assign exchange and sequence for incoming request 1421 * @lport: The local port that received the request 1422 * @fp: The request frame 1423 * 1424 * On success, the sequence pointer will be returned and also in fr_seq(@fp). 1425 * A reference will be held on the exchange/sequence for the caller, which 1426 * must call fc_seq_release(). 1427 */ 1428 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp) 1429 { 1430 struct fc_exch_mgr_anchor *ema; 1431 1432 WARN_ON(lport != fr_dev(fp)); 1433 WARN_ON(fr_seq(fp)); 1434 fr_seq(fp) = NULL; 1435 1436 list_for_each_entry(ema, &lport->ema_list, ema_list) 1437 if ((!ema->match || ema->match(fp)) && 1438 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE) 1439 break; 1440 return fr_seq(fp); 1441 } 1442 1443 /** 1444 * fc_seq_release() - Release the hold 1445 * @sp: The sequence. 1446 */ 1447 static void fc_seq_release(struct fc_seq *sp) 1448 { 1449 fc_exch_release(fc_seq_exch(sp)); 1450 } 1451 1452 /** 1453 * fc_exch_recv_req() - Handler for an incoming request 1454 * @lport: The local port that received the request 1455 * @mp: The EM that the exchange is on 1456 * @fp: The request frame 1457 * 1458 * This is used when the other end is originating the exchange 1459 * and the sequence. 1460 */ 1461 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp, 1462 struct fc_frame *fp) 1463 { 1464 struct fc_frame_header *fh = fc_frame_header_get(fp); 1465 struct fc_seq *sp = NULL; 1466 struct fc_exch *ep = NULL; 1467 enum fc_pf_rjt_reason reject; 1468 1469 /* We can have the wrong fc_lport at this point with NPIV, which is a 1470 * problem now that we know a new exchange needs to be allocated 1471 */ 1472 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id)); 1473 if (!lport) { 1474 fc_frame_free(fp); 1475 return; 1476 } 1477 fr_dev(fp) = lport; 1478 1479 BUG_ON(fr_seq(fp)); /* XXX remove later */ 1480 1481 /* 1482 * If the RX_ID is 0xffff, don't allocate an exchange. 1483 * The upper-level protocol may request one later, if needed. 1484 */ 1485 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN)) 1486 return lport->tt.lport_recv(lport, fp); 1487 1488 reject = fc_seq_lookup_recip(lport, mp, fp); 1489 if (reject == FC_RJT_NONE) { 1490 sp = fr_seq(fp); /* sequence will be held */ 1491 ep = fc_seq_exch(sp); 1492 fc_seq_send_ack(sp, fp); 1493 ep->encaps = fr_encaps(fp); 1494 1495 /* 1496 * Call the receive function. 1497 * 1498 * The receive function may allocate a new sequence 1499 * over the old one, so we shouldn't change the 1500 * sequence after this. 1501 * 1502 * The frame will be freed by the receive function. 1503 * If new exch resp handler is valid then call that 1504 * first. 1505 */ 1506 if (!fc_invoke_resp(ep, sp, fp)) 1507 lport->tt.lport_recv(lport, fp); 1508 fc_exch_release(ep); /* release from lookup */ 1509 } else { 1510 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n", 1511 reject); 1512 fc_frame_free(fp); 1513 } 1514 } 1515 1516 /** 1517 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other 1518 * end is the originator of the sequence that is a 1519 * response to our initial exchange 1520 * @mp: The EM that the exchange is on 1521 * @fp: The response frame 1522 */ 1523 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1524 { 1525 struct fc_frame_header *fh = fc_frame_header_get(fp); 1526 struct fc_seq *sp; 1527 struct fc_exch *ep; 1528 enum fc_sof sof; 1529 u32 f_ctl; 1530 int rc; 1531 1532 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id)); 1533 if (!ep) { 1534 atomic_inc(&mp->stats.xid_not_found); 1535 goto out; 1536 } 1537 if (ep->esb_stat & ESB_ST_COMPLETE) { 1538 atomic_inc(&mp->stats.xid_not_found); 1539 goto rel; 1540 } 1541 if (ep->rxid == FC_XID_UNKNOWN) 1542 ep->rxid = ntohs(fh->fh_rx_id); 1543 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) { 1544 atomic_inc(&mp->stats.xid_not_found); 1545 goto rel; 1546 } 1547 if (ep->did != ntoh24(fh->fh_s_id) && 1548 ep->did != FC_FID_FLOGI) { 1549 atomic_inc(&mp->stats.xid_not_found); 1550 goto rel; 1551 } 1552 sof = fr_sof(fp); 1553 sp = &ep->seq; 1554 if (fc_sof_is_init(sof)) { 1555 sp->ssb_stat |= SSB_ST_RESP; 1556 sp->id = fh->fh_seq_id; 1557 } else if (sp->id != fh->fh_seq_id) { 1558 atomic_inc(&mp->stats.seq_not_found); 1559 goto rel; 1560 } 1561 1562 f_ctl = ntoh24(fh->fh_f_ctl); 1563 fr_seq(fp) = sp; 1564 1565 spin_lock_bh(&ep->ex_lock); 1566 if (f_ctl & FC_FC_SEQ_INIT) 1567 ep->esb_stat |= ESB_ST_SEQ_INIT; 1568 spin_unlock_bh(&ep->ex_lock); 1569 1570 if (fc_sof_needs_ack(sof)) 1571 fc_seq_send_ack(sp, fp); 1572 1573 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T && 1574 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) == 1575 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) { 1576 spin_lock_bh(&ep->ex_lock); 1577 rc = fc_exch_done_locked(ep); 1578 WARN_ON(fc_seq_exch(sp) != ep); 1579 spin_unlock_bh(&ep->ex_lock); 1580 if (!rc) 1581 fc_exch_delete(ep); 1582 } 1583 1584 /* 1585 * Call the receive function. 1586 * The sequence is held (has a refcnt) for us, 1587 * but not for the receive function. 1588 * 1589 * The receive function may allocate a new sequence 1590 * over the old one, so we shouldn't change the 1591 * sequence after this. 1592 * 1593 * The frame will be freed by the receive function. 1594 * If new exch resp handler is valid then call that 1595 * first. 1596 */ 1597 if (!fc_invoke_resp(ep, sp, fp)) 1598 fc_frame_free(fp); 1599 1600 fc_exch_release(ep); 1601 return; 1602 rel: 1603 fc_exch_release(ep); 1604 out: 1605 fc_frame_free(fp); 1606 } 1607 1608 /** 1609 * fc_exch_recv_resp() - Handler for a sequence where other end is 1610 * responding to our sequence 1611 * @mp: The EM that the exchange is on 1612 * @fp: The response frame 1613 */ 1614 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp) 1615 { 1616 struct fc_seq *sp; 1617 1618 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */ 1619 1620 if (!sp) 1621 atomic_inc(&mp->stats.xid_not_found); 1622 else 1623 atomic_inc(&mp->stats.non_bls_resp); 1624 1625 fc_frame_free(fp); 1626 } 1627 1628 /** 1629 * fc_exch_abts_resp() - Handler for a response to an ABT 1630 * @ep: The exchange that the frame is on 1631 * @fp: The response frame 1632 * 1633 * This response would be to an ABTS cancelling an exchange or sequence. 1634 * The response can be either BA_ACC or BA_RJT 1635 */ 1636 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp) 1637 { 1638 struct fc_frame_header *fh; 1639 struct fc_ba_acc *ap; 1640 struct fc_seq *sp; 1641 u16 low; 1642 u16 high; 1643 int rc = 1, has_rec = 0; 1644 1645 fh = fc_frame_header_get(fp); 1646 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl, 1647 fc_exch_rctl_name(fh->fh_r_ctl)); 1648 1649 if (cancel_delayed_work_sync(&ep->timeout_work)) { 1650 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n"); 1651 fc_exch_release(ep); /* release from pending timer hold */ 1652 } 1653 1654 spin_lock_bh(&ep->ex_lock); 1655 switch (fh->fh_r_ctl) { 1656 case FC_RCTL_BA_ACC: 1657 ap = fc_frame_payload_get(fp, sizeof(*ap)); 1658 if (!ap) 1659 break; 1660 1661 /* 1662 * Decide whether to establish a Recovery Qualifier. 1663 * We do this if there is a non-empty SEQ_CNT range and 1664 * SEQ_ID is the same as the one we aborted. 1665 */ 1666 low = ntohs(ap->ba_low_seq_cnt); 1667 high = ntohs(ap->ba_high_seq_cnt); 1668 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 && 1669 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL || 1670 ap->ba_seq_id == ep->seq_id) && low != high) { 1671 ep->esb_stat |= ESB_ST_REC_QUAL; 1672 fc_exch_hold(ep); /* hold for recovery qualifier */ 1673 has_rec = 1; 1674 } 1675 break; 1676 case FC_RCTL_BA_RJT: 1677 break; 1678 default: 1679 break; 1680 } 1681 1682 /* do we need to do some other checks here. Can we reuse more of 1683 * fc_exch_recv_seq_resp 1684 */ 1685 sp = &ep->seq; 1686 /* 1687 * do we want to check END_SEQ as well as LAST_SEQ here? 1688 */ 1689 if (ep->fh_type != FC_TYPE_FCP && 1690 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ) 1691 rc = fc_exch_done_locked(ep); 1692 spin_unlock_bh(&ep->ex_lock); 1693 1694 fc_exch_hold(ep); 1695 if (!rc) 1696 fc_exch_delete(ep); 1697 if (!fc_invoke_resp(ep, sp, fp)) 1698 fc_frame_free(fp); 1699 if (has_rec) 1700 fc_exch_timer_set(ep, ep->r_a_tov); 1701 fc_exch_release(ep); 1702 } 1703 1704 /** 1705 * fc_exch_recv_bls() - Handler for a BLS sequence 1706 * @mp: The EM that the exchange is on 1707 * @fp: The request frame 1708 * 1709 * The BLS frame is always a sequence initiated by the remote side. 1710 * We may be either the originator or recipient of the exchange. 1711 */ 1712 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp) 1713 { 1714 struct fc_frame_header *fh; 1715 struct fc_exch *ep; 1716 u32 f_ctl; 1717 1718 fh = fc_frame_header_get(fp); 1719 f_ctl = ntoh24(fh->fh_f_ctl); 1720 fr_seq(fp) = NULL; 1721 1722 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ? 1723 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id)); 1724 if (ep && (f_ctl & FC_FC_SEQ_INIT)) { 1725 spin_lock_bh(&ep->ex_lock); 1726 ep->esb_stat |= ESB_ST_SEQ_INIT; 1727 spin_unlock_bh(&ep->ex_lock); 1728 } 1729 if (f_ctl & FC_FC_SEQ_CTX) { 1730 /* 1731 * A response to a sequence we initiated. 1732 * This should only be ACKs for class 2 or F. 1733 */ 1734 switch (fh->fh_r_ctl) { 1735 case FC_RCTL_ACK_1: 1736 case FC_RCTL_ACK_0: 1737 break; 1738 default: 1739 if (ep) 1740 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n", 1741 fh->fh_r_ctl, 1742 fc_exch_rctl_name(fh->fh_r_ctl)); 1743 break; 1744 } 1745 fc_frame_free(fp); 1746 } else { 1747 switch (fh->fh_r_ctl) { 1748 case FC_RCTL_BA_RJT: 1749 case FC_RCTL_BA_ACC: 1750 if (ep) 1751 fc_exch_abts_resp(ep, fp); 1752 else 1753 fc_frame_free(fp); 1754 break; 1755 case FC_RCTL_BA_ABTS: 1756 fc_exch_recv_abts(ep, fp); 1757 break; 1758 default: /* ignore junk */ 1759 fc_frame_free(fp); 1760 break; 1761 } 1762 } 1763 if (ep) 1764 fc_exch_release(ep); /* release hold taken by fc_exch_find */ 1765 } 1766 1767 /** 1768 * fc_seq_ls_acc() - Accept sequence with LS_ACC 1769 * @rx_fp: The received frame, not freed here. 1770 * 1771 * If this fails due to allocation or transmit congestion, assume the 1772 * originator will repeat the sequence. 1773 */ 1774 static void fc_seq_ls_acc(struct fc_frame *rx_fp) 1775 { 1776 struct fc_lport *lport; 1777 struct fc_els_ls_acc *acc; 1778 struct fc_frame *fp; 1779 1780 lport = fr_dev(rx_fp); 1781 fp = fc_frame_alloc(lport, sizeof(*acc)); 1782 if (!fp) 1783 return; 1784 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1785 memset(acc, 0, sizeof(*acc)); 1786 acc->la_cmd = ELS_LS_ACC; 1787 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1788 lport->tt.frame_send(lport, fp); 1789 } 1790 1791 /** 1792 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT 1793 * @rx_fp: The received frame, not freed here. 1794 * @reason: The reason the sequence is being rejected 1795 * @explan: The explanation for the rejection 1796 * 1797 * If this fails due to allocation or transmit congestion, assume the 1798 * originator will repeat the sequence. 1799 */ 1800 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason, 1801 enum fc_els_rjt_explan explan) 1802 { 1803 struct fc_lport *lport; 1804 struct fc_els_ls_rjt *rjt; 1805 struct fc_frame *fp; 1806 1807 lport = fr_dev(rx_fp); 1808 fp = fc_frame_alloc(lport, sizeof(*rjt)); 1809 if (!fp) 1810 return; 1811 rjt = fc_frame_payload_get(fp, sizeof(*rjt)); 1812 memset(rjt, 0, sizeof(*rjt)); 1813 rjt->er_cmd = ELS_LS_RJT; 1814 rjt->er_reason = reason; 1815 rjt->er_explan = explan; 1816 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0); 1817 lport->tt.frame_send(lport, fp); 1818 } 1819 1820 /** 1821 * fc_exch_reset() - Reset an exchange 1822 * @ep: The exchange to be reset 1823 * 1824 * Note: May sleep if invoked from outside a response handler. 1825 */ 1826 static void fc_exch_reset(struct fc_exch *ep) 1827 { 1828 struct fc_seq *sp; 1829 int rc = 1; 1830 1831 spin_lock_bh(&ep->ex_lock); 1832 fc_exch_abort_locked(ep, 0); 1833 ep->state |= FC_EX_RST_CLEANUP; 1834 fc_exch_timer_cancel(ep); 1835 if (ep->esb_stat & ESB_ST_REC_QUAL) 1836 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */ 1837 ep->esb_stat &= ~ESB_ST_REC_QUAL; 1838 sp = &ep->seq; 1839 rc = fc_exch_done_locked(ep); 1840 spin_unlock_bh(&ep->ex_lock); 1841 1842 fc_exch_hold(ep); 1843 1844 if (!rc) 1845 fc_exch_delete(ep); 1846 1847 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED)); 1848 fc_seq_set_resp(sp, NULL, ep->arg); 1849 fc_exch_release(ep); 1850 } 1851 1852 /** 1853 * fc_exch_pool_reset() - Reset a per cpu exchange pool 1854 * @lport: The local port that the exchange pool is on 1855 * @pool: The exchange pool to be reset 1856 * @sid: The source ID 1857 * @did: The destination ID 1858 * 1859 * Resets a per cpu exches pool, releasing all of its sequences 1860 * and exchanges. If sid is non-zero then reset only exchanges 1861 * we sourced from the local port's FID. If did is non-zero then 1862 * only reset exchanges destined for the local port's FID. 1863 */ 1864 static void fc_exch_pool_reset(struct fc_lport *lport, 1865 struct fc_exch_pool *pool, 1866 u32 sid, u32 did) 1867 { 1868 struct fc_exch *ep; 1869 struct fc_exch *next; 1870 1871 spin_lock_bh(&pool->lock); 1872 restart: 1873 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) { 1874 if ((lport == ep->lp) && 1875 (sid == 0 || sid == ep->sid) && 1876 (did == 0 || did == ep->did)) { 1877 fc_exch_hold(ep); 1878 spin_unlock_bh(&pool->lock); 1879 1880 fc_exch_reset(ep); 1881 1882 fc_exch_release(ep); 1883 spin_lock_bh(&pool->lock); 1884 1885 /* 1886 * must restart loop incase while lock 1887 * was down multiple eps were released. 1888 */ 1889 goto restart; 1890 } 1891 } 1892 pool->next_index = 0; 1893 pool->left = FC_XID_UNKNOWN; 1894 pool->right = FC_XID_UNKNOWN; 1895 spin_unlock_bh(&pool->lock); 1896 } 1897 1898 /** 1899 * fc_exch_mgr_reset() - Reset all EMs of a local port 1900 * @lport: The local port whose EMs are to be reset 1901 * @sid: The source ID 1902 * @did: The destination ID 1903 * 1904 * Reset all EMs associated with a given local port. Release all 1905 * sequences and exchanges. If sid is non-zero then reset only the 1906 * exchanges sent from the local port's FID. If did is non-zero then 1907 * reset only exchanges destined for the local port's FID. 1908 */ 1909 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did) 1910 { 1911 struct fc_exch_mgr_anchor *ema; 1912 unsigned int cpu; 1913 1914 list_for_each_entry(ema, &lport->ema_list, ema_list) { 1915 for_each_possible_cpu(cpu) 1916 fc_exch_pool_reset(lport, 1917 per_cpu_ptr(ema->mp->pool, cpu), 1918 sid, did); 1919 } 1920 } 1921 EXPORT_SYMBOL(fc_exch_mgr_reset); 1922 1923 /** 1924 * fc_exch_lookup() - find an exchange 1925 * @lport: The local port 1926 * @xid: The exchange ID 1927 * 1928 * Returns exchange pointer with hold for caller, or NULL if not found. 1929 */ 1930 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid) 1931 { 1932 struct fc_exch_mgr_anchor *ema; 1933 1934 list_for_each_entry(ema, &lport->ema_list, ema_list) 1935 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid) 1936 return fc_exch_find(ema->mp, xid); 1937 return NULL; 1938 } 1939 1940 /** 1941 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests 1942 * @rfp: The REC frame, not freed here. 1943 * 1944 * Note that the requesting port may be different than the S_ID in the request. 1945 */ 1946 static void fc_exch_els_rec(struct fc_frame *rfp) 1947 { 1948 struct fc_lport *lport; 1949 struct fc_frame *fp; 1950 struct fc_exch *ep; 1951 struct fc_els_rec *rp; 1952 struct fc_els_rec_acc *acc; 1953 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC; 1954 enum fc_els_rjt_explan explan; 1955 u32 sid; 1956 u16 rxid; 1957 u16 oxid; 1958 1959 lport = fr_dev(rfp); 1960 rp = fc_frame_payload_get(rfp, sizeof(*rp)); 1961 explan = ELS_EXPL_INV_LEN; 1962 if (!rp) 1963 goto reject; 1964 sid = ntoh24(rp->rec_s_id); 1965 rxid = ntohs(rp->rec_rx_id); 1966 oxid = ntohs(rp->rec_ox_id); 1967 1968 ep = fc_exch_lookup(lport, 1969 sid == fc_host_port_id(lport->host) ? oxid : rxid); 1970 explan = ELS_EXPL_OXID_RXID; 1971 if (!ep) 1972 goto reject; 1973 if (ep->oid != sid || oxid != ep->oxid) 1974 goto rel; 1975 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid) 1976 goto rel; 1977 fp = fc_frame_alloc(lport, sizeof(*acc)); 1978 if (!fp) 1979 goto out; 1980 1981 acc = fc_frame_payload_get(fp, sizeof(*acc)); 1982 memset(acc, 0, sizeof(*acc)); 1983 acc->reca_cmd = ELS_LS_ACC; 1984 acc->reca_ox_id = rp->rec_ox_id; 1985 memcpy(acc->reca_ofid, rp->rec_s_id, 3); 1986 acc->reca_rx_id = htons(ep->rxid); 1987 if (ep->sid == ep->oid) 1988 hton24(acc->reca_rfid, ep->did); 1989 else 1990 hton24(acc->reca_rfid, ep->sid); 1991 acc->reca_fc4value = htonl(ep->seq.rec_data); 1992 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP | 1993 ESB_ST_SEQ_INIT | 1994 ESB_ST_COMPLETE)); 1995 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0); 1996 lport->tt.frame_send(lport, fp); 1997 out: 1998 fc_exch_release(ep); 1999 return; 2000 2001 rel: 2002 fc_exch_release(ep); 2003 reject: 2004 fc_seq_ls_rjt(rfp, reason, explan); 2005 } 2006 2007 /** 2008 * fc_exch_rrq_resp() - Handler for RRQ responses 2009 * @sp: The sequence that the RRQ is on 2010 * @fp: The RRQ frame 2011 * @arg: The exchange that the RRQ is on 2012 * 2013 * TODO: fix error handler. 2014 */ 2015 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg) 2016 { 2017 struct fc_exch *aborted_ep = arg; 2018 unsigned int op; 2019 2020 if (IS_ERR(fp)) { 2021 int err = PTR_ERR(fp); 2022 2023 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT) 2024 goto cleanup; 2025 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, " 2026 "frame error %d\n", err); 2027 return; 2028 } 2029 2030 op = fc_frame_payload_op(fp); 2031 fc_frame_free(fp); 2032 2033 switch (op) { 2034 case ELS_LS_RJT: 2035 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n"); 2036 /* fall through */ 2037 case ELS_LS_ACC: 2038 goto cleanup; 2039 default: 2040 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n", 2041 op); 2042 return; 2043 } 2044 2045 cleanup: 2046 fc_exch_done(&aborted_ep->seq); 2047 /* drop hold for rec qual */ 2048 fc_exch_release(aborted_ep); 2049 } 2050 2051 2052 /** 2053 * fc_exch_seq_send() - Send a frame using a new exchange and sequence 2054 * @lport: The local port to send the frame on 2055 * @fp: The frame to be sent 2056 * @resp: The response handler for this request 2057 * @destructor: The destructor for the exchange 2058 * @arg: The argument to be passed to the response handler 2059 * @timer_msec: The timeout period for the exchange 2060 * 2061 * The frame pointer with some of the header's fields must be 2062 * filled before calling this routine, those fields are: 2063 * 2064 * - routing control 2065 * - FC port did 2066 * - FC port sid 2067 * - FC header type 2068 * - frame control 2069 * - parameter or relative offset 2070 */ 2071 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport, 2072 struct fc_frame *fp, 2073 void (*resp)(struct fc_seq *, 2074 struct fc_frame *fp, 2075 void *arg), 2076 void (*destructor)(struct fc_seq *, 2077 void *), 2078 void *arg, u32 timer_msec) 2079 { 2080 struct fc_exch *ep; 2081 struct fc_seq *sp = NULL; 2082 struct fc_frame_header *fh; 2083 struct fc_fcp_pkt *fsp = NULL; 2084 int rc = 1; 2085 2086 ep = fc_exch_alloc(lport, fp); 2087 if (!ep) { 2088 fc_frame_free(fp); 2089 return NULL; 2090 } 2091 ep->esb_stat |= ESB_ST_SEQ_INIT; 2092 fh = fc_frame_header_get(fp); 2093 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id)); 2094 ep->resp = resp; 2095 ep->destructor = destructor; 2096 ep->arg = arg; 2097 ep->r_a_tov = FC_DEF_R_A_TOV; 2098 ep->lp = lport; 2099 sp = &ep->seq; 2100 2101 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */ 2102 ep->f_ctl = ntoh24(fh->fh_f_ctl); 2103 fc_exch_setup_hdr(ep, fp, ep->f_ctl); 2104 sp->cnt++; 2105 2106 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) { 2107 fsp = fr_fsp(fp); 2108 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid); 2109 } 2110 2111 if (unlikely(lport->tt.frame_send(lport, fp))) 2112 goto err; 2113 2114 if (timer_msec) 2115 fc_exch_timer_set_locked(ep, timer_msec); 2116 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */ 2117 2118 if (ep->f_ctl & FC_FC_SEQ_INIT) 2119 ep->esb_stat &= ~ESB_ST_SEQ_INIT; 2120 spin_unlock_bh(&ep->ex_lock); 2121 return sp; 2122 err: 2123 if (fsp) 2124 fc_fcp_ddp_done(fsp); 2125 rc = fc_exch_done_locked(ep); 2126 spin_unlock_bh(&ep->ex_lock); 2127 if (!rc) 2128 fc_exch_delete(ep); 2129 return NULL; 2130 } 2131 2132 /** 2133 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command 2134 * @ep: The exchange to send the RRQ on 2135 * 2136 * This tells the remote port to stop blocking the use of 2137 * the exchange and the seq_cnt range. 2138 */ 2139 static void fc_exch_rrq(struct fc_exch *ep) 2140 { 2141 struct fc_lport *lport; 2142 struct fc_els_rrq *rrq; 2143 struct fc_frame *fp; 2144 u32 did; 2145 2146 lport = ep->lp; 2147 2148 fp = fc_frame_alloc(lport, sizeof(*rrq)); 2149 if (!fp) 2150 goto retry; 2151 2152 rrq = fc_frame_payload_get(fp, sizeof(*rrq)); 2153 memset(rrq, 0, sizeof(*rrq)); 2154 rrq->rrq_cmd = ELS_RRQ; 2155 hton24(rrq->rrq_s_id, ep->sid); 2156 rrq->rrq_ox_id = htons(ep->oxid); 2157 rrq->rrq_rx_id = htons(ep->rxid); 2158 2159 did = ep->did; 2160 if (ep->esb_stat & ESB_ST_RESP) 2161 did = ep->sid; 2162 2163 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did, 2164 lport->port_id, FC_TYPE_ELS, 2165 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0); 2166 2167 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep, 2168 lport->e_d_tov)) 2169 return; 2170 2171 retry: 2172 spin_lock_bh(&ep->ex_lock); 2173 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) { 2174 spin_unlock_bh(&ep->ex_lock); 2175 /* drop hold for rec qual */ 2176 fc_exch_release(ep); 2177 return; 2178 } 2179 ep->esb_stat |= ESB_ST_REC_QUAL; 2180 fc_exch_timer_set_locked(ep, ep->r_a_tov); 2181 spin_unlock_bh(&ep->ex_lock); 2182 } 2183 2184 /** 2185 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests 2186 * @fp: The RRQ frame, not freed here. 2187 */ 2188 static void fc_exch_els_rrq(struct fc_frame *fp) 2189 { 2190 struct fc_lport *lport; 2191 struct fc_exch *ep = NULL; /* request or subject exchange */ 2192 struct fc_els_rrq *rp; 2193 u32 sid; 2194 u16 xid; 2195 enum fc_els_rjt_explan explan; 2196 2197 lport = fr_dev(fp); 2198 rp = fc_frame_payload_get(fp, sizeof(*rp)); 2199 explan = ELS_EXPL_INV_LEN; 2200 if (!rp) 2201 goto reject; 2202 2203 /* 2204 * lookup subject exchange. 2205 */ 2206 sid = ntoh24(rp->rrq_s_id); /* subject source */ 2207 xid = fc_host_port_id(lport->host) == sid ? 2208 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id); 2209 ep = fc_exch_lookup(lport, xid); 2210 explan = ELS_EXPL_OXID_RXID; 2211 if (!ep) 2212 goto reject; 2213 spin_lock_bh(&ep->ex_lock); 2214 if (ep->oxid != ntohs(rp->rrq_ox_id)) 2215 goto unlock_reject; 2216 if (ep->rxid != ntohs(rp->rrq_rx_id) && 2217 ep->rxid != FC_XID_UNKNOWN) 2218 goto unlock_reject; 2219 explan = ELS_EXPL_SID; 2220 if (ep->sid != sid) 2221 goto unlock_reject; 2222 2223 /* 2224 * Clear Recovery Qualifier state, and cancel timer if complete. 2225 */ 2226 if (ep->esb_stat & ESB_ST_REC_QUAL) { 2227 ep->esb_stat &= ~ESB_ST_REC_QUAL; 2228 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */ 2229 } 2230 if (ep->esb_stat & ESB_ST_COMPLETE) 2231 fc_exch_timer_cancel(ep); 2232 2233 spin_unlock_bh(&ep->ex_lock); 2234 2235 /* 2236 * Send LS_ACC. 2237 */ 2238 fc_seq_ls_acc(fp); 2239 goto out; 2240 2241 unlock_reject: 2242 spin_unlock_bh(&ep->ex_lock); 2243 reject: 2244 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan); 2245 out: 2246 if (ep) 2247 fc_exch_release(ep); /* drop hold from fc_exch_find */ 2248 } 2249 2250 /** 2251 * fc_exch_update_stats() - update exches stats to lport 2252 * @lport: The local port to update exchange manager stats 2253 */ 2254 void fc_exch_update_stats(struct fc_lport *lport) 2255 { 2256 struct fc_host_statistics *st; 2257 struct fc_exch_mgr_anchor *ema; 2258 struct fc_exch_mgr *mp; 2259 2260 st = &lport->host_stats; 2261 2262 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2263 mp = ema->mp; 2264 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch); 2265 st->fc_no_free_exch_xid += 2266 atomic_read(&mp->stats.no_free_exch_xid); 2267 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found); 2268 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy); 2269 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found); 2270 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp); 2271 } 2272 } 2273 EXPORT_SYMBOL(fc_exch_update_stats); 2274 2275 /** 2276 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs 2277 * @lport: The local port to add the exchange manager to 2278 * @mp: The exchange manager to be added to the local port 2279 * @match: The match routine that indicates when this EM should be used 2280 */ 2281 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport, 2282 struct fc_exch_mgr *mp, 2283 bool (*match)(struct fc_frame *)) 2284 { 2285 struct fc_exch_mgr_anchor *ema; 2286 2287 ema = kmalloc(sizeof(*ema), GFP_ATOMIC); 2288 if (!ema) 2289 return ema; 2290 2291 ema->mp = mp; 2292 ema->match = match; 2293 /* add EM anchor to EM anchors list */ 2294 list_add_tail(&ema->ema_list, &lport->ema_list); 2295 kref_get(&mp->kref); 2296 return ema; 2297 } 2298 EXPORT_SYMBOL(fc_exch_mgr_add); 2299 2300 /** 2301 * fc_exch_mgr_destroy() - Destroy an exchange manager 2302 * @kref: The reference to the EM to be destroyed 2303 */ 2304 static void fc_exch_mgr_destroy(struct kref *kref) 2305 { 2306 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref); 2307 2308 mempool_destroy(mp->ep_pool); 2309 free_percpu(mp->pool); 2310 kfree(mp); 2311 } 2312 2313 /** 2314 * fc_exch_mgr_del() - Delete an EM from a local port's list 2315 * @ema: The exchange manager anchor identifying the EM to be deleted 2316 */ 2317 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema) 2318 { 2319 /* remove EM anchor from EM anchors list */ 2320 list_del(&ema->ema_list); 2321 kref_put(&ema->mp->kref, fc_exch_mgr_destroy); 2322 kfree(ema); 2323 } 2324 EXPORT_SYMBOL(fc_exch_mgr_del); 2325 2326 /** 2327 * fc_exch_mgr_list_clone() - Share all exchange manager objects 2328 * @src: Source lport to clone exchange managers from 2329 * @dst: New lport that takes references to all the exchange managers 2330 */ 2331 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst) 2332 { 2333 struct fc_exch_mgr_anchor *ema, *tmp; 2334 2335 list_for_each_entry(ema, &src->ema_list, ema_list) { 2336 if (!fc_exch_mgr_add(dst, ema->mp, ema->match)) 2337 goto err; 2338 } 2339 return 0; 2340 err: 2341 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list) 2342 fc_exch_mgr_del(ema); 2343 return -ENOMEM; 2344 } 2345 EXPORT_SYMBOL(fc_exch_mgr_list_clone); 2346 2347 /** 2348 * fc_exch_mgr_alloc() - Allocate an exchange manager 2349 * @lport: The local port that the new EM will be associated with 2350 * @class: The default FC class for new exchanges 2351 * @min_xid: The minimum XID for exchanges from the new EM 2352 * @max_xid: The maximum XID for exchanges from the new EM 2353 * @match: The match routine for the new EM 2354 */ 2355 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport, 2356 enum fc_class class, 2357 u16 min_xid, u16 max_xid, 2358 bool (*match)(struct fc_frame *)) 2359 { 2360 struct fc_exch_mgr *mp; 2361 u16 pool_exch_range; 2362 size_t pool_size; 2363 unsigned int cpu; 2364 struct fc_exch_pool *pool; 2365 2366 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN || 2367 (min_xid & fc_cpu_mask) != 0) { 2368 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n", 2369 min_xid, max_xid); 2370 return NULL; 2371 } 2372 2373 /* 2374 * allocate memory for EM 2375 */ 2376 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC); 2377 if (!mp) 2378 return NULL; 2379 2380 mp->class = class; 2381 /* adjust em exch xid range for offload */ 2382 mp->min_xid = min_xid; 2383 2384 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */ 2385 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) / 2386 sizeof(struct fc_exch *); 2387 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) { 2388 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) + 2389 min_xid - 1; 2390 } else { 2391 mp->max_xid = max_xid; 2392 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / 2393 (fc_cpu_mask + 1); 2394 } 2395 2396 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep); 2397 if (!mp->ep_pool) 2398 goto free_mp; 2399 2400 /* 2401 * Setup per cpu exch pool with entire exchange id range equally 2402 * divided across all cpus. The exch pointers array memory is 2403 * allocated for exch range per pool. 2404 */ 2405 mp->pool_max_index = pool_exch_range - 1; 2406 2407 /* 2408 * Allocate and initialize per cpu exch pool 2409 */ 2410 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *); 2411 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool)); 2412 if (!mp->pool) 2413 goto free_mempool; 2414 for_each_possible_cpu(cpu) { 2415 pool = per_cpu_ptr(mp->pool, cpu); 2416 pool->next_index = 0; 2417 pool->left = FC_XID_UNKNOWN; 2418 pool->right = FC_XID_UNKNOWN; 2419 spin_lock_init(&pool->lock); 2420 INIT_LIST_HEAD(&pool->ex_list); 2421 } 2422 2423 kref_init(&mp->kref); 2424 if (!fc_exch_mgr_add(lport, mp, match)) { 2425 free_percpu(mp->pool); 2426 goto free_mempool; 2427 } 2428 2429 /* 2430 * Above kref_init() sets mp->kref to 1 and then 2431 * call to fc_exch_mgr_add incremented mp->kref again, 2432 * so adjust that extra increment. 2433 */ 2434 kref_put(&mp->kref, fc_exch_mgr_destroy); 2435 return mp; 2436 2437 free_mempool: 2438 mempool_destroy(mp->ep_pool); 2439 free_mp: 2440 kfree(mp); 2441 return NULL; 2442 } 2443 EXPORT_SYMBOL(fc_exch_mgr_alloc); 2444 2445 /** 2446 * fc_exch_mgr_free() - Free all exchange managers on a local port 2447 * @lport: The local port whose EMs are to be freed 2448 */ 2449 void fc_exch_mgr_free(struct fc_lport *lport) 2450 { 2451 struct fc_exch_mgr_anchor *ema, *next; 2452 2453 flush_workqueue(fc_exch_workqueue); 2454 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list) 2455 fc_exch_mgr_del(ema); 2456 } 2457 EXPORT_SYMBOL(fc_exch_mgr_free); 2458 2459 /** 2460 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending 2461 * upon 'xid'. 2462 * @f_ctl: f_ctl 2463 * @lport: The local port the frame was received on 2464 * @fh: The received frame header 2465 */ 2466 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl, 2467 struct fc_lport *lport, 2468 struct fc_frame_header *fh) 2469 { 2470 struct fc_exch_mgr_anchor *ema; 2471 u16 xid; 2472 2473 if (f_ctl & FC_FC_EX_CTX) 2474 xid = ntohs(fh->fh_ox_id); 2475 else { 2476 xid = ntohs(fh->fh_rx_id); 2477 if (xid == FC_XID_UNKNOWN) 2478 return list_entry(lport->ema_list.prev, 2479 typeof(*ema), ema_list); 2480 } 2481 2482 list_for_each_entry(ema, &lport->ema_list, ema_list) { 2483 if ((xid >= ema->mp->min_xid) && 2484 (xid <= ema->mp->max_xid)) 2485 return ema; 2486 } 2487 return NULL; 2488 } 2489 /** 2490 * fc_exch_recv() - Handler for received frames 2491 * @lport: The local port the frame was received on 2492 * @fp: The received frame 2493 */ 2494 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp) 2495 { 2496 struct fc_frame_header *fh = fc_frame_header_get(fp); 2497 struct fc_exch_mgr_anchor *ema; 2498 u32 f_ctl; 2499 2500 /* lport lock ? */ 2501 if (!lport || lport->state == LPORT_ST_DISABLED) { 2502 FC_LPORT_DBG(lport, "Receiving frames for an lport that " 2503 "has not been initialized correctly\n"); 2504 fc_frame_free(fp); 2505 return; 2506 } 2507 2508 f_ctl = ntoh24(fh->fh_f_ctl); 2509 ema = fc_find_ema(f_ctl, lport, fh); 2510 if (!ema) { 2511 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor," 2512 "fc_ctl <0x%x>, xid <0x%x>\n", 2513 f_ctl, 2514 (f_ctl & FC_FC_EX_CTX) ? 2515 ntohs(fh->fh_ox_id) : 2516 ntohs(fh->fh_rx_id)); 2517 fc_frame_free(fp); 2518 return; 2519 } 2520 2521 /* 2522 * If frame is marked invalid, just drop it. 2523 */ 2524 switch (fr_eof(fp)) { 2525 case FC_EOF_T: 2526 if (f_ctl & FC_FC_END_SEQ) 2527 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl)); 2528 /* fall through */ 2529 case FC_EOF_N: 2530 if (fh->fh_type == FC_TYPE_BLS) 2531 fc_exch_recv_bls(ema->mp, fp); 2532 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) == 2533 FC_FC_EX_CTX) 2534 fc_exch_recv_seq_resp(ema->mp, fp); 2535 else if (f_ctl & FC_FC_SEQ_CTX) 2536 fc_exch_recv_resp(ema->mp, fp); 2537 else /* no EX_CTX and no SEQ_CTX */ 2538 fc_exch_recv_req(lport, ema->mp, fp); 2539 break; 2540 default: 2541 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)", 2542 fr_eof(fp)); 2543 fc_frame_free(fp); 2544 } 2545 } 2546 EXPORT_SYMBOL(fc_exch_recv); 2547 2548 /** 2549 * fc_exch_init() - Initialize the exchange layer for a local port 2550 * @lport: The local port to initialize the exchange layer for 2551 */ 2552 int fc_exch_init(struct fc_lport *lport) 2553 { 2554 if (!lport->tt.seq_start_next) 2555 lport->tt.seq_start_next = fc_seq_start_next; 2556 2557 if (!lport->tt.seq_set_resp) 2558 lport->tt.seq_set_resp = fc_seq_set_resp; 2559 2560 if (!lport->tt.exch_seq_send) 2561 lport->tt.exch_seq_send = fc_exch_seq_send; 2562 2563 if (!lport->tt.seq_send) 2564 lport->tt.seq_send = fc_seq_send; 2565 2566 if (!lport->tt.seq_els_rsp_send) 2567 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send; 2568 2569 if (!lport->tt.exch_done) 2570 lport->tt.exch_done = fc_exch_done; 2571 2572 if (!lport->tt.exch_mgr_reset) 2573 lport->tt.exch_mgr_reset = fc_exch_mgr_reset; 2574 2575 if (!lport->tt.seq_exch_abort) 2576 lport->tt.seq_exch_abort = fc_seq_exch_abort; 2577 2578 if (!lport->tt.seq_assign) 2579 lport->tt.seq_assign = fc_seq_assign; 2580 2581 if (!lport->tt.seq_release) 2582 lport->tt.seq_release = fc_seq_release; 2583 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(fc_exch_init); 2587 2588 /** 2589 * fc_setup_exch_mgr() - Setup an exchange manager 2590 */ 2591 int fc_setup_exch_mgr(void) 2592 { 2593 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch), 2594 0, SLAB_HWCACHE_ALIGN, NULL); 2595 if (!fc_em_cachep) 2596 return -ENOMEM; 2597 2598 /* 2599 * Initialize fc_cpu_mask and fc_cpu_order. The 2600 * fc_cpu_mask is set for nr_cpu_ids rounded up 2601 * to order of 2's * power and order is stored 2602 * in fc_cpu_order as this is later required in 2603 * mapping between an exch id and exch array index 2604 * in per cpu exch pool. 2605 * 2606 * This round up is required to align fc_cpu_mask 2607 * to exchange id's lower bits such that all incoming 2608 * frames of an exchange gets delivered to the same 2609 * cpu on which exchange originated by simple bitwise 2610 * AND operation between fc_cpu_mask and exchange id. 2611 */ 2612 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids)); 2613 fc_cpu_mask = (1 << fc_cpu_order) - 1; 2614 2615 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue"); 2616 if (!fc_exch_workqueue) 2617 goto err; 2618 return 0; 2619 err: 2620 kmem_cache_destroy(fc_em_cachep); 2621 return -ENOMEM; 2622 } 2623 2624 /** 2625 * fc_destroy_exch_mgr() - Destroy an exchange manager 2626 */ 2627 void fc_destroy_exch_mgr(void) 2628 { 2629 destroy_workqueue(fc_exch_workqueue); 2630 kmem_cache_destroy(fc_em_cachep); 2631 } 2632