xref: /openbmc/linux/drivers/scsi/libfc/fc_exch.c (revision 1fa6ac37)
1 /*
2  * Copyright(c) 2007 Intel Corporation. All rights reserved.
3  * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
4  * Copyright(c) 2008 Mike Christie
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Maintained at www.Open-FCoE.org
20  */
21 
22 /*
23  * Fibre Channel exchange and sequence handling.
24  */
25 
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 
30 #include <scsi/fc/fc_fc2.h>
31 
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
34 
35 #include "fc_libfc.h"
36 
37 u16	fc_cpu_mask;		/* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
41 struct workqueue_struct *fc_exch_workqueue;
42 
43 /*
44  * Structure and function definitions for managing Fibre Channel Exchanges
45  * and Sequences.
46  *
47  * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48  *
49  * fc_exch_mgr holds the exchange state for an N port
50  *
51  * fc_exch holds state for one exchange and links to its active sequence.
52  *
53  * fc_seq holds the state for an individual sequence.
54  */
55 
56 /**
57  * struct fc_exch_pool - Per cpu exchange pool
58  * @next_index:	  Next possible free exchange index
59  * @total_exches: Total allocated exchanges
60  * @lock:	  Exch pool lock
61  * @ex_list:	  List of exchanges
62  *
63  * This structure manages per cpu exchanges in array of exchange pointers.
64  * This array is allocated followed by struct fc_exch_pool memory for
65  * assigned range of exchanges to per cpu pool.
66  */
67 struct fc_exch_pool {
68 	u16		 next_index;
69 	u16		 total_exches;
70 	spinlock_t	 lock;
71 	struct list_head ex_list;
72 };
73 
74 /**
75  * struct fc_exch_mgr - The Exchange Manager (EM).
76  * @class:	    Default class for new sequences
77  * @kref:	    Reference counter
78  * @min_xid:	    Minimum exchange ID
79  * @max_xid:	    Maximum exchange ID
80  * @ep_pool:	    Reserved exchange pointers
81  * @pool_max_index: Max exch array index in exch pool
82  * @pool:	    Per cpu exch pool
83  * @stats:	    Statistics structure
84  *
85  * This structure is the center for creating exchanges and sequences.
86  * It manages the allocation of exchange IDs.
87  */
88 struct fc_exch_mgr {
89 	enum fc_class	class;
90 	struct kref	kref;
91 	u16		min_xid;
92 	u16		max_xid;
93 	mempool_t	*ep_pool;
94 	u16		pool_max_index;
95 	struct fc_exch_pool *pool;
96 
97 	/*
98 	 * currently exchange mgr stats are updated but not used.
99 	 * either stats can be expose via sysfs or remove them
100 	 * all together if not used XXX
101 	 */
102 	struct {
103 		atomic_t no_free_exch;
104 		atomic_t no_free_exch_xid;
105 		atomic_t xid_not_found;
106 		atomic_t xid_busy;
107 		atomic_t seq_not_found;
108 		atomic_t non_bls_resp;
109 	} stats;
110 };
111 #define	fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
112 
113 /**
114  * struct fc_exch_mgr_anchor - primary structure for list of EMs
115  * @ema_list: Exchange Manager Anchor list
116  * @mp:	      Exchange Manager associated with this anchor
117  * @match:    Routine to determine if this anchor's EM should be used
118  *
119  * When walking the list of anchors the match routine will be called
120  * for each anchor to determine if that EM should be used. The last
121  * anchor in the list will always match to handle any exchanges not
122  * handled by other EMs. The non-default EMs would be added to the
123  * anchor list by HW that provides FCoE offloads.
124  */
125 struct fc_exch_mgr_anchor {
126 	struct list_head ema_list;
127 	struct fc_exch_mgr *mp;
128 	bool (*match)(struct fc_frame *);
129 };
130 
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_seq *);
133 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason,
134 			  enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *);
137 
138 /*
139  * Internal implementation notes.
140  *
141  * The exchange manager is one by default in libfc but LLD may choose
142  * to have one per CPU. The sequence manager is one per exchange manager
143  * and currently never separated.
144  *
145  * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
146  * assigned by the Sequence Initiator that shall be unique for a specific
147  * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
148  * qualified by exchange ID, which one might think it would be.
149  * In practice this limits the number of open sequences and exchanges to 256
150  * per session.	 For most targets we could treat this limit as per exchange.
151  *
152  * The exchange and its sequence are freed when the last sequence is received.
153  * It's possible for the remote port to leave an exchange open without
154  * sending any sequences.
155  *
156  * Notes on reference counts:
157  *
158  * Exchanges are reference counted and exchange gets freed when the reference
159  * count becomes zero.
160  *
161  * Timeouts:
162  * Sequences are timed out for E_D_TOV and R_A_TOV.
163  *
164  * Sequence event handling:
165  *
166  * The following events may occur on initiator sequences:
167  *
168  *	Send.
169  *	    For now, the whole thing is sent.
170  *	Receive ACK
171  *	    This applies only to class F.
172  *	    The sequence is marked complete.
173  *	ULP completion.
174  *	    The upper layer calls fc_exch_done() when done
175  *	    with exchange and sequence tuple.
176  *	RX-inferred completion.
177  *	    When we receive the next sequence on the same exchange, we can
178  *	    retire the previous sequence ID.  (XXX not implemented).
179  *	Timeout.
180  *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
181  *	    E_D_TOV causes abort and calls upper layer response handler
182  *	    with FC_EX_TIMEOUT error.
183  *	Receive RJT
184  *	    XXX defer.
185  *	Send ABTS
186  *	    On timeout.
187  *
188  * The following events may occur on recipient sequences:
189  *
190  *	Receive
191  *	    Allocate sequence for first frame received.
192  *	    Hold during receive handler.
193  *	    Release when final frame received.
194  *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
195  *	Receive ABTS
196  *	    Deallocate sequence
197  *	Send RJT
198  *	    Deallocate
199  *
200  * For now, we neglect conditions where only part of a sequence was
201  * received or transmitted, or where out-of-order receipt is detected.
202  */
203 
204 /*
205  * Locking notes:
206  *
207  * The EM code run in a per-CPU worker thread.
208  *
209  * To protect against concurrency between a worker thread code and timers,
210  * sequence allocation and deallocation must be locked.
211  *  - exchange refcnt can be done atomicly without locks.
212  *  - sequence allocation must be locked by exch lock.
213  *  - If the EM pool lock and ex_lock must be taken at the same time, then the
214  *    EM pool lock must be taken before the ex_lock.
215  */
216 
217 /*
218  * opcode names for debugging.
219  */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221 
222 #define FC_TABLE_SIZE(x)   (sizeof(x) / sizeof(x[0]))
223 
224 /**
225  * fc_exch_name_lookup() - Lookup name by opcode
226  * @op:	       Opcode to be looked up
227  * @table:     Opcode/name table
228  * @max_index: Index not to be exceeded
229  *
230  * This routine is used to determine a human-readable string identifying
231  * a R_CTL opcode.
232  */
233 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
234 					      unsigned int max_index)
235 {
236 	const char *name = NULL;
237 
238 	if (op < max_index)
239 		name = table[op];
240 	if (!name)
241 		name = "unknown";
242 	return name;
243 }
244 
245 /**
246  * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
247  * @op: The opcode to be looked up
248  */
249 static const char *fc_exch_rctl_name(unsigned int op)
250 {
251 	return fc_exch_name_lookup(op, fc_exch_rctl_names,
252 				   FC_TABLE_SIZE(fc_exch_rctl_names));
253 }
254 
255 /**
256  * fc_exch_hold() - Increment an exchange's reference count
257  * @ep: Echange to be held
258  */
259 static inline void fc_exch_hold(struct fc_exch *ep)
260 {
261 	atomic_inc(&ep->ex_refcnt);
262 }
263 
264 /**
265  * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
266  *			 and determine SOF and EOF.
267  * @ep:	   The exchange to that will use the header
268  * @fp:	   The frame whose header is to be modified
269  * @f_ctl: F_CTL bits that will be used for the frame header
270  *
271  * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
272  * fh_seq_id, fh_seq_cnt and the SOF and EOF.
273  */
274 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
275 			      u32 f_ctl)
276 {
277 	struct fc_frame_header *fh = fc_frame_header_get(fp);
278 	u16 fill;
279 
280 	fr_sof(fp) = ep->class;
281 	if (ep->seq.cnt)
282 		fr_sof(fp) = fc_sof_normal(ep->class);
283 
284 	if (f_ctl & FC_FC_END_SEQ) {
285 		fr_eof(fp) = FC_EOF_T;
286 		if (fc_sof_needs_ack(ep->class))
287 			fr_eof(fp) = FC_EOF_N;
288 		/*
289 		 * From F_CTL.
290 		 * The number of fill bytes to make the length a 4-byte
291 		 * multiple is the low order 2-bits of the f_ctl.
292 		 * The fill itself will have been cleared by the frame
293 		 * allocation.
294 		 * After this, the length will be even, as expected by
295 		 * the transport.
296 		 */
297 		fill = fr_len(fp) & 3;
298 		if (fill) {
299 			fill = 4 - fill;
300 			/* TODO, this may be a problem with fragmented skb */
301 			skb_put(fp_skb(fp), fill);
302 			hton24(fh->fh_f_ctl, f_ctl | fill);
303 		}
304 	} else {
305 		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
306 		fr_eof(fp) = FC_EOF_N;
307 	}
308 
309 	/*
310 	 * Initialize remainig fh fields
311 	 * from fc_fill_fc_hdr
312 	 */
313 	fh->fh_ox_id = htons(ep->oxid);
314 	fh->fh_rx_id = htons(ep->rxid);
315 	fh->fh_seq_id = ep->seq.id;
316 	fh->fh_seq_cnt = htons(ep->seq.cnt);
317 }
318 
319 /**
320  * fc_exch_release() - Decrement an exchange's reference count
321  * @ep: Exchange to be released
322  *
323  * If the reference count reaches zero and the exchange is complete,
324  * it is freed.
325  */
326 static void fc_exch_release(struct fc_exch *ep)
327 {
328 	struct fc_exch_mgr *mp;
329 
330 	if (atomic_dec_and_test(&ep->ex_refcnt)) {
331 		mp = ep->em;
332 		if (ep->destructor)
333 			ep->destructor(&ep->seq, ep->arg);
334 		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
335 		mempool_free(ep, mp->ep_pool);
336 	}
337 }
338 
339 /**
340  * fc_exch_done_locked() - Complete an exchange with the exchange lock held
341  * @ep: The exchange that is complete
342  */
343 static int fc_exch_done_locked(struct fc_exch *ep)
344 {
345 	int rc = 1;
346 
347 	/*
348 	 * We must check for completion in case there are two threads
349 	 * tyring to complete this. But the rrq code will reuse the
350 	 * ep, and in that case we only clear the resp and set it as
351 	 * complete, so it can be reused by the timer to send the rrq.
352 	 */
353 	ep->resp = NULL;
354 	if (ep->state & FC_EX_DONE)
355 		return rc;
356 	ep->esb_stat |= ESB_ST_COMPLETE;
357 
358 	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
359 		ep->state |= FC_EX_DONE;
360 		if (cancel_delayed_work(&ep->timeout_work))
361 			atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
362 		rc = 0;
363 	}
364 	return rc;
365 }
366 
367 /**
368  * fc_exch_ptr_get() - Return an exchange from an exchange pool
369  * @pool:  Exchange Pool to get an exchange from
370  * @index: Index of the exchange within the pool
371  *
372  * Use the index to get an exchange from within an exchange pool. exches
373  * will point to an array of exchange pointers. The index will select
374  * the exchange within the array.
375  */
376 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
377 					      u16 index)
378 {
379 	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
380 	return exches[index];
381 }
382 
383 /**
384  * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
385  * @pool:  The pool to assign the exchange to
386  * @index: The index in the pool where the exchange will be assigned
387  * @ep:	   The exchange to assign to the pool
388  */
389 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
390 				   struct fc_exch *ep)
391 {
392 	((struct fc_exch **)(pool + 1))[index] = ep;
393 }
394 
395 /**
396  * fc_exch_delete() - Delete an exchange
397  * @ep: The exchange to be deleted
398  */
399 static void fc_exch_delete(struct fc_exch *ep)
400 {
401 	struct fc_exch_pool *pool;
402 
403 	pool = ep->pool;
404 	spin_lock_bh(&pool->lock);
405 	WARN_ON(pool->total_exches <= 0);
406 	pool->total_exches--;
407 	fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
408 			NULL);
409 	list_del(&ep->ex_list);
410 	spin_unlock_bh(&pool->lock);
411 	fc_exch_release(ep);	/* drop hold for exch in mp */
412 }
413 
414 /**
415  * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
416  *				the exchange lock held
417  * @ep:		The exchange whose timer will start
418  * @timer_msec: The timeout period
419  *
420  * Used for upper level protocols to time out the exchange.
421  * The timer is cancelled when it fires or when the exchange completes.
422  */
423 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
424 					    unsigned int timer_msec)
425 {
426 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
427 		return;
428 
429 	FC_EXCH_DBG(ep, "Exchange timer armed\n");
430 
431 	if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
432 			       msecs_to_jiffies(timer_msec)))
433 		fc_exch_hold(ep);		/* hold for timer */
434 }
435 
436 /**
437  * fc_exch_timer_set() - Lock the exchange and set the timer
438  * @ep:		The exchange whose timer will start
439  * @timer_msec: The timeout period
440  */
441 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
442 {
443 	spin_lock_bh(&ep->ex_lock);
444 	fc_exch_timer_set_locked(ep, timer_msec);
445 	spin_unlock_bh(&ep->ex_lock);
446 }
447 
448 /**
449  * fc_seq_send() - Send a frame using existing sequence/exchange pair
450  * @lport: The local port that the exchange will be sent on
451  * @sp:	   The sequence to be sent
452  * @fp:	   The frame to be sent on the exchange
453  */
454 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
455 		       struct fc_frame *fp)
456 {
457 	struct fc_exch *ep;
458 	struct fc_frame_header *fh = fc_frame_header_get(fp);
459 	int error;
460 	u32 f_ctl;
461 
462 	ep = fc_seq_exch(sp);
463 	WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
464 
465 	f_ctl = ntoh24(fh->fh_f_ctl);
466 	fc_exch_setup_hdr(ep, fp, f_ctl);
467 
468 	/*
469 	 * update sequence count if this frame is carrying
470 	 * multiple FC frames when sequence offload is enabled
471 	 * by LLD.
472 	 */
473 	if (fr_max_payload(fp))
474 		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
475 					fr_max_payload(fp));
476 	else
477 		sp->cnt++;
478 
479 	/*
480 	 * Send the frame.
481 	 */
482 	error = lport->tt.frame_send(lport, fp);
483 
484 	/*
485 	 * Update the exchange and sequence flags,
486 	 * assuming all frames for the sequence have been sent.
487 	 * We can only be called to send once for each sequence.
488 	 */
489 	spin_lock_bh(&ep->ex_lock);
490 	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
491 	if (f_ctl & FC_FC_SEQ_INIT)
492 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
493 	spin_unlock_bh(&ep->ex_lock);
494 	return error;
495 }
496 
497 /**
498  * fc_seq_alloc() - Allocate a sequence for a given exchange
499  * @ep:	    The exchange to allocate a new sequence for
500  * @seq_id: The sequence ID to be used
501  *
502  * We don't support multiple originated sequences on the same exchange.
503  * By implication, any previously originated sequence on this exchange
504  * is complete, and we reallocate the same sequence.
505  */
506 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
507 {
508 	struct fc_seq *sp;
509 
510 	sp = &ep->seq;
511 	sp->ssb_stat = 0;
512 	sp->cnt = 0;
513 	sp->id = seq_id;
514 	return sp;
515 }
516 
517 /**
518  * fc_seq_start_next_locked() - Allocate a new sequence on the same
519  *				exchange as the supplied sequence
520  * @sp: The sequence/exchange to get a new sequence for
521  */
522 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
523 {
524 	struct fc_exch *ep = fc_seq_exch(sp);
525 
526 	sp = fc_seq_alloc(ep, ep->seq_id++);
527 	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
528 		    ep->f_ctl, sp->id);
529 	return sp;
530 }
531 
532 /**
533  * fc_seq_start_next() - Lock the exchange and get a new sequence
534  *			 for a given sequence/exchange pair
535  * @sp: The sequence/exchange to get a new exchange for
536  */
537 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
538 {
539 	struct fc_exch *ep = fc_seq_exch(sp);
540 
541 	spin_lock_bh(&ep->ex_lock);
542 	sp = fc_seq_start_next_locked(sp);
543 	spin_unlock_bh(&ep->ex_lock);
544 
545 	return sp;
546 }
547 
548 /**
549  * fc_seq_exch_abort() - Abort an exchange and sequence
550  * @req_sp:	The sequence to be aborted
551  * @timer_msec: The period of time to wait before aborting
552  *
553  * Generally called because of a timeout or an abort from the upper layer.
554  */
555 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
556 			     unsigned int timer_msec)
557 {
558 	struct fc_seq *sp;
559 	struct fc_exch *ep;
560 	struct fc_frame *fp;
561 	int error;
562 
563 	ep = fc_seq_exch(req_sp);
564 
565 	spin_lock_bh(&ep->ex_lock);
566 	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
567 	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
568 		spin_unlock_bh(&ep->ex_lock);
569 		return -ENXIO;
570 	}
571 
572 	/*
573 	 * Send the abort on a new sequence if possible.
574 	 */
575 	sp = fc_seq_start_next_locked(&ep->seq);
576 	if (!sp) {
577 		spin_unlock_bh(&ep->ex_lock);
578 		return -ENOMEM;
579 	}
580 
581 	ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
582 	if (timer_msec)
583 		fc_exch_timer_set_locked(ep, timer_msec);
584 	spin_unlock_bh(&ep->ex_lock);
585 
586 	/*
587 	 * If not logged into the fabric, don't send ABTS but leave
588 	 * sequence active until next timeout.
589 	 */
590 	if (!ep->sid)
591 		return 0;
592 
593 	/*
594 	 * Send an abort for the sequence that timed out.
595 	 */
596 	fp = fc_frame_alloc(ep->lp, 0);
597 	if (fp) {
598 		fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
599 			       FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
600 		error = fc_seq_send(ep->lp, sp, fp);
601 	} else
602 		error = -ENOBUFS;
603 	return error;
604 }
605 
606 /**
607  * fc_exch_timeout() - Handle exchange timer expiration
608  * @work: The work_struct identifying the exchange that timed out
609  */
610 static void fc_exch_timeout(struct work_struct *work)
611 {
612 	struct fc_exch *ep = container_of(work, struct fc_exch,
613 					  timeout_work.work);
614 	struct fc_seq *sp = &ep->seq;
615 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
616 	void *arg;
617 	u32 e_stat;
618 	int rc = 1;
619 
620 	FC_EXCH_DBG(ep, "Exchange timed out\n");
621 
622 	spin_lock_bh(&ep->ex_lock);
623 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
624 		goto unlock;
625 
626 	e_stat = ep->esb_stat;
627 	if (e_stat & ESB_ST_COMPLETE) {
628 		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
629 		spin_unlock_bh(&ep->ex_lock);
630 		if (e_stat & ESB_ST_REC_QUAL)
631 			fc_exch_rrq(ep);
632 		goto done;
633 	} else {
634 		resp = ep->resp;
635 		arg = ep->arg;
636 		ep->resp = NULL;
637 		if (e_stat & ESB_ST_ABNORMAL)
638 			rc = fc_exch_done_locked(ep);
639 		spin_unlock_bh(&ep->ex_lock);
640 		if (!rc)
641 			fc_exch_delete(ep);
642 		if (resp)
643 			resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
644 		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
645 		goto done;
646 	}
647 unlock:
648 	spin_unlock_bh(&ep->ex_lock);
649 done:
650 	/*
651 	 * This release matches the hold taken when the timer was set.
652 	 */
653 	fc_exch_release(ep);
654 }
655 
656 /**
657  * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
658  * @lport: The local port that the exchange is for
659  * @mp:	   The exchange manager that will allocate the exchange
660  *
661  * Returns pointer to allocated fc_exch with exch lock held.
662  */
663 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
664 					struct fc_exch_mgr *mp)
665 {
666 	struct fc_exch *ep;
667 	unsigned int cpu;
668 	u16 index;
669 	struct fc_exch_pool *pool;
670 
671 	/* allocate memory for exchange */
672 	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
673 	if (!ep) {
674 		atomic_inc(&mp->stats.no_free_exch);
675 		goto out;
676 	}
677 	memset(ep, 0, sizeof(*ep));
678 
679 	cpu = get_cpu();
680 	pool = per_cpu_ptr(mp->pool, cpu);
681 	spin_lock_bh(&pool->lock);
682 	put_cpu();
683 	index = pool->next_index;
684 	/* allocate new exch from pool */
685 	while (fc_exch_ptr_get(pool, index)) {
686 		index = index == mp->pool_max_index ? 0 : index + 1;
687 		if (index == pool->next_index)
688 			goto err;
689 	}
690 	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
691 
692 	fc_exch_hold(ep);	/* hold for exch in mp */
693 	spin_lock_init(&ep->ex_lock);
694 	/*
695 	 * Hold exch lock for caller to prevent fc_exch_reset()
696 	 * from releasing exch	while fc_exch_alloc() caller is
697 	 * still working on exch.
698 	 */
699 	spin_lock_bh(&ep->ex_lock);
700 
701 	fc_exch_ptr_set(pool, index, ep);
702 	list_add_tail(&ep->ex_list, &pool->ex_list);
703 	fc_seq_alloc(ep, ep->seq_id++);
704 	pool->total_exches++;
705 	spin_unlock_bh(&pool->lock);
706 
707 	/*
708 	 *  update exchange
709 	 */
710 	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
711 	ep->em = mp;
712 	ep->pool = pool;
713 	ep->lp = lport;
714 	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
715 	ep->rxid = FC_XID_UNKNOWN;
716 	ep->class = mp->class;
717 	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
718 out:
719 	return ep;
720 err:
721 	spin_unlock_bh(&pool->lock);
722 	atomic_inc(&mp->stats.no_free_exch_xid);
723 	mempool_free(ep, mp->ep_pool);
724 	return NULL;
725 }
726 
727 /**
728  * fc_exch_alloc() - Allocate an exchange from an EM on a
729  *		     local port's list of EMs.
730  * @lport: The local port that will own the exchange
731  * @fp:	   The FC frame that the exchange will be for
732  *
733  * This function walks the list of exchange manager(EM)
734  * anchors to select an EM for a new exchange allocation. The
735  * EM is selected when a NULL match function pointer is encountered
736  * or when a call to a match function returns true.
737  */
738 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
739 					    struct fc_frame *fp)
740 {
741 	struct fc_exch_mgr_anchor *ema;
742 
743 	list_for_each_entry(ema, &lport->ema_list, ema_list)
744 		if (!ema->match || ema->match(fp))
745 			return fc_exch_em_alloc(lport, ema->mp);
746 	return NULL;
747 }
748 
749 /**
750  * fc_exch_find() - Lookup and hold an exchange
751  * @mp:	 The exchange manager to lookup the exchange from
752  * @xid: The XID of the exchange to look up
753  */
754 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
755 {
756 	struct fc_exch_pool *pool;
757 	struct fc_exch *ep = NULL;
758 
759 	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
760 		pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
761 		spin_lock_bh(&pool->lock);
762 		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
763 		if (ep) {
764 			fc_exch_hold(ep);
765 			WARN_ON(ep->xid != xid);
766 		}
767 		spin_unlock_bh(&pool->lock);
768 	}
769 	return ep;
770 }
771 
772 
773 /**
774  * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
775  *		    the memory allocated for the related objects may be freed.
776  * @sp: The sequence that has completed
777  */
778 static void fc_exch_done(struct fc_seq *sp)
779 {
780 	struct fc_exch *ep = fc_seq_exch(sp);
781 	int rc;
782 
783 	spin_lock_bh(&ep->ex_lock);
784 	rc = fc_exch_done_locked(ep);
785 	spin_unlock_bh(&ep->ex_lock);
786 	if (!rc)
787 		fc_exch_delete(ep);
788 }
789 
790 /**
791  * fc_exch_resp() - Allocate a new exchange for a response frame
792  * @lport: The local port that the exchange was for
793  * @mp:	   The exchange manager to allocate the exchange from
794  * @fp:	   The response frame
795  *
796  * Sets the responder ID in the frame header.
797  */
798 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
799 				    struct fc_exch_mgr *mp,
800 				    struct fc_frame *fp)
801 {
802 	struct fc_exch *ep;
803 	struct fc_frame_header *fh;
804 
805 	ep = fc_exch_alloc(lport, fp);
806 	if (ep) {
807 		ep->class = fc_frame_class(fp);
808 
809 		/*
810 		 * Set EX_CTX indicating we're responding on this exchange.
811 		 */
812 		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
813 		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
814 		fh = fc_frame_header_get(fp);
815 		ep->sid = ntoh24(fh->fh_d_id);
816 		ep->did = ntoh24(fh->fh_s_id);
817 		ep->oid = ep->did;
818 
819 		/*
820 		 * Allocated exchange has placed the XID in the
821 		 * originator field. Move it to the responder field,
822 		 * and set the originator XID from the frame.
823 		 */
824 		ep->rxid = ep->xid;
825 		ep->oxid = ntohs(fh->fh_ox_id);
826 		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
827 		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
828 			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
829 
830 		fc_exch_hold(ep);	/* hold for caller */
831 		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
832 	}
833 	return ep;
834 }
835 
836 /**
837  * fc_seq_lookup_recip() - Find a sequence where the other end
838  *			   originated the sequence
839  * @lport: The local port that the frame was sent to
840  * @mp:	   The Exchange Manager to lookup the exchange from
841  * @fp:	   The frame associated with the sequence we're looking for
842  *
843  * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
844  * on the ep that should be released by the caller.
845  */
846 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
847 						 struct fc_exch_mgr *mp,
848 						 struct fc_frame *fp)
849 {
850 	struct fc_frame_header *fh = fc_frame_header_get(fp);
851 	struct fc_exch *ep = NULL;
852 	struct fc_seq *sp = NULL;
853 	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
854 	u32 f_ctl;
855 	u16 xid;
856 
857 	f_ctl = ntoh24(fh->fh_f_ctl);
858 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
859 
860 	/*
861 	 * Lookup or create the exchange if we will be creating the sequence.
862 	 */
863 	if (f_ctl & FC_FC_EX_CTX) {
864 		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
865 		ep = fc_exch_find(mp, xid);
866 		if (!ep) {
867 			atomic_inc(&mp->stats.xid_not_found);
868 			reject = FC_RJT_OX_ID;
869 			goto out;
870 		}
871 		if (ep->rxid == FC_XID_UNKNOWN)
872 			ep->rxid = ntohs(fh->fh_rx_id);
873 		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
874 			reject = FC_RJT_OX_ID;
875 			goto rel;
876 		}
877 	} else {
878 		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
879 
880 		/*
881 		 * Special case for MDS issuing an ELS TEST with a
882 		 * bad rxid of 0.
883 		 * XXX take this out once we do the proper reject.
884 		 */
885 		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
886 		    fc_frame_payload_op(fp) == ELS_TEST) {
887 			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
888 			xid = FC_XID_UNKNOWN;
889 		}
890 
891 		/*
892 		 * new sequence - find the exchange
893 		 */
894 		ep = fc_exch_find(mp, xid);
895 		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
896 			if (ep) {
897 				atomic_inc(&mp->stats.xid_busy);
898 				reject = FC_RJT_RX_ID;
899 				goto rel;
900 			}
901 			ep = fc_exch_resp(lport, mp, fp);
902 			if (!ep) {
903 				reject = FC_RJT_EXCH_EST;	/* XXX */
904 				goto out;
905 			}
906 			xid = ep->xid;	/* get our XID */
907 		} else if (!ep) {
908 			atomic_inc(&mp->stats.xid_not_found);
909 			reject = FC_RJT_RX_ID;	/* XID not found */
910 			goto out;
911 		}
912 	}
913 
914 	/*
915 	 * At this point, we have the exchange held.
916 	 * Find or create the sequence.
917 	 */
918 	if (fc_sof_is_init(fr_sof(fp))) {
919 		sp = &ep->seq;
920 		sp->ssb_stat |= SSB_ST_RESP;
921 		sp->id = fh->fh_seq_id;
922 	} else {
923 		sp = &ep->seq;
924 		if (sp->id != fh->fh_seq_id) {
925 			atomic_inc(&mp->stats.seq_not_found);
926 			reject = FC_RJT_SEQ_ID;	/* sequence/exch should exist */
927 			goto rel;
928 		}
929 	}
930 	WARN_ON(ep != fc_seq_exch(sp));
931 
932 	if (f_ctl & FC_FC_SEQ_INIT)
933 		ep->esb_stat |= ESB_ST_SEQ_INIT;
934 
935 	fr_seq(fp) = sp;
936 out:
937 	return reject;
938 rel:
939 	fc_exch_done(&ep->seq);
940 	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
941 	return reject;
942 }
943 
944 /**
945  * fc_seq_lookup_orig() - Find a sequence where this end
946  *			  originated the sequence
947  * @mp:	   The Exchange Manager to lookup the exchange from
948  * @fp:	   The frame associated with the sequence we're looking for
949  *
950  * Does not hold the sequence for the caller.
951  */
952 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
953 					 struct fc_frame *fp)
954 {
955 	struct fc_frame_header *fh = fc_frame_header_get(fp);
956 	struct fc_exch *ep;
957 	struct fc_seq *sp = NULL;
958 	u32 f_ctl;
959 	u16 xid;
960 
961 	f_ctl = ntoh24(fh->fh_f_ctl);
962 	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
963 	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
964 	ep = fc_exch_find(mp, xid);
965 	if (!ep)
966 		return NULL;
967 	if (ep->seq.id == fh->fh_seq_id) {
968 		/*
969 		 * Save the RX_ID if we didn't previously know it.
970 		 */
971 		sp = &ep->seq;
972 		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
973 		    ep->rxid == FC_XID_UNKNOWN) {
974 			ep->rxid = ntohs(fh->fh_rx_id);
975 		}
976 	}
977 	fc_exch_release(ep);
978 	return sp;
979 }
980 
981 /**
982  * fc_exch_set_addr() - Set the source and destination IDs for an exchange
983  * @ep:	     The exchange to set the addresses for
984  * @orig_id: The originator's ID
985  * @resp_id: The responder's ID
986  *
987  * Note this must be done before the first sequence of the exchange is sent.
988  */
989 static void fc_exch_set_addr(struct fc_exch *ep,
990 			     u32 orig_id, u32 resp_id)
991 {
992 	ep->oid = orig_id;
993 	if (ep->esb_stat & ESB_ST_RESP) {
994 		ep->sid = resp_id;
995 		ep->did = orig_id;
996 	} else {
997 		ep->sid = orig_id;
998 		ep->did = resp_id;
999 	}
1000 }
1001 
1002 /**
1003  * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1004  *			   the existing sequence/exchange.
1005  * @sp:	      The sequence/exchange to get information from
1006  * @els_cmd:  The ELS command to be sent
1007  * @els_data: The ELS data to be sent
1008  */
1009 static void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd,
1010 				struct fc_seq_els_data *els_data)
1011 {
1012 	switch (els_cmd) {
1013 	case ELS_LS_RJT:
1014 		fc_seq_ls_rjt(sp, els_data->reason, els_data->explan);
1015 		break;
1016 	case ELS_LS_ACC:
1017 		fc_seq_ls_acc(sp);
1018 		break;
1019 	case ELS_RRQ:
1020 		fc_exch_els_rrq(sp, els_data->fp);
1021 		break;
1022 	case ELS_REC:
1023 		fc_exch_els_rec(sp, els_data->fp);
1024 		break;
1025 	default:
1026 		FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd);
1027 	}
1028 }
1029 
1030 /**
1031  * fc_seq_send_last() - Send a sequence that is the last in the exchange
1032  * @sp:	     The sequence that is to be sent
1033  * @fp:	     The frame that will be sent on the sequence
1034  * @rctl:    The R_CTL information to be sent
1035  * @fh_type: The frame header type
1036  */
1037 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1038 			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1039 {
1040 	u32 f_ctl;
1041 	struct fc_exch *ep = fc_seq_exch(sp);
1042 
1043 	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1044 	f_ctl |= ep->f_ctl;
1045 	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1046 	fc_seq_send(ep->lp, sp, fp);
1047 }
1048 
1049 /**
1050  * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1051  * @sp:	   The sequence to send the ACK on
1052  * @rx_fp: The received frame that is being acknoledged
1053  *
1054  * Send ACK_1 (or equiv.) indicating we received something.
1055  */
1056 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1057 {
1058 	struct fc_frame *fp;
1059 	struct fc_frame_header *rx_fh;
1060 	struct fc_frame_header *fh;
1061 	struct fc_exch *ep = fc_seq_exch(sp);
1062 	struct fc_lport *lport = ep->lp;
1063 	unsigned int f_ctl;
1064 
1065 	/*
1066 	 * Don't send ACKs for class 3.
1067 	 */
1068 	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1069 		fp = fc_frame_alloc(lport, 0);
1070 		if (!fp)
1071 			return;
1072 
1073 		fh = fc_frame_header_get(fp);
1074 		fh->fh_r_ctl = FC_RCTL_ACK_1;
1075 		fh->fh_type = FC_TYPE_BLS;
1076 
1077 		/*
1078 		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1079 		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1080 		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1081 		 * Last ACK uses bits 7-6 (continue sequence),
1082 		 * bits 5-4 are meaningful (what kind of ACK to use).
1083 		 */
1084 		rx_fh = fc_frame_header_get(rx_fp);
1085 		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1086 		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1087 			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1088 			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1089 			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1090 		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1091 		hton24(fh->fh_f_ctl, f_ctl);
1092 
1093 		fc_exch_setup_hdr(ep, fp, f_ctl);
1094 		fh->fh_seq_id = rx_fh->fh_seq_id;
1095 		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1096 		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1097 
1098 		fr_sof(fp) = fr_sof(rx_fp);
1099 		if (f_ctl & FC_FC_END_SEQ)
1100 			fr_eof(fp) = FC_EOF_T;
1101 		else
1102 			fr_eof(fp) = FC_EOF_N;
1103 
1104 		lport->tt.frame_send(lport, fp);
1105 	}
1106 }
1107 
1108 /**
1109  * fc_exch_send_ba_rjt() - Send BLS Reject
1110  * @rx_fp:  The frame being rejected
1111  * @reason: The reason the frame is being rejected
1112  * @explan: The explaination for the rejection
1113  *
1114  * This is for rejecting BA_ABTS only.
1115  */
1116 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1117 				enum fc_ba_rjt_reason reason,
1118 				enum fc_ba_rjt_explan explan)
1119 {
1120 	struct fc_frame *fp;
1121 	struct fc_frame_header *rx_fh;
1122 	struct fc_frame_header *fh;
1123 	struct fc_ba_rjt *rp;
1124 	struct fc_lport *lport;
1125 	unsigned int f_ctl;
1126 
1127 	lport = fr_dev(rx_fp);
1128 	fp = fc_frame_alloc(lport, sizeof(*rp));
1129 	if (!fp)
1130 		return;
1131 	fh = fc_frame_header_get(fp);
1132 	rx_fh = fc_frame_header_get(rx_fp);
1133 
1134 	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1135 
1136 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1137 	rp->br_reason = reason;
1138 	rp->br_explan = explan;
1139 
1140 	/*
1141 	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1142 	 */
1143 	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1144 	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1145 	fh->fh_ox_id = rx_fh->fh_ox_id;
1146 	fh->fh_rx_id = rx_fh->fh_rx_id;
1147 	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1148 	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1149 	fh->fh_type = FC_TYPE_BLS;
1150 
1151 	/*
1152 	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1153 	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1154 	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1155 	 * Last ACK uses bits 7-6 (continue sequence),
1156 	 * bits 5-4 are meaningful (what kind of ACK to use).
1157 	 * Always set LAST_SEQ, END_SEQ.
1158 	 */
1159 	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1160 	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1161 		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1162 		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1163 	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1164 	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1165 	f_ctl &= ~FC_FC_FIRST_SEQ;
1166 	hton24(fh->fh_f_ctl, f_ctl);
1167 
1168 	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1169 	fr_eof(fp) = FC_EOF_T;
1170 	if (fc_sof_needs_ack(fr_sof(fp)))
1171 		fr_eof(fp) = FC_EOF_N;
1172 
1173 	lport->tt.frame_send(lport, fp);
1174 }
1175 
1176 /**
1177  * fc_exch_recv_abts() - Handle an incoming ABTS
1178  * @ep:	   The exchange the abort was on
1179  * @rx_fp: The ABTS frame
1180  *
1181  * This would be for target mode usually, but could be due to lost
1182  * FCP transfer ready, confirm or RRQ. We always handle this as an
1183  * exchange abort, ignoring the parameter.
1184  */
1185 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1186 {
1187 	struct fc_frame *fp;
1188 	struct fc_ba_acc *ap;
1189 	struct fc_frame_header *fh;
1190 	struct fc_seq *sp;
1191 
1192 	if (!ep)
1193 		goto reject;
1194 	spin_lock_bh(&ep->ex_lock);
1195 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1196 		spin_unlock_bh(&ep->ex_lock);
1197 		goto reject;
1198 	}
1199 	if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1200 		fc_exch_hold(ep);		/* hold for REC_QUAL */
1201 	ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1202 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1203 
1204 	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1205 	if (!fp) {
1206 		spin_unlock_bh(&ep->ex_lock);
1207 		goto free;
1208 	}
1209 	fh = fc_frame_header_get(fp);
1210 	ap = fc_frame_payload_get(fp, sizeof(*ap));
1211 	memset(ap, 0, sizeof(*ap));
1212 	sp = &ep->seq;
1213 	ap->ba_high_seq_cnt = htons(0xffff);
1214 	if (sp->ssb_stat & SSB_ST_RESP) {
1215 		ap->ba_seq_id = sp->id;
1216 		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1217 		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1218 		ap->ba_low_seq_cnt = htons(sp->cnt);
1219 	}
1220 	sp = fc_seq_start_next_locked(sp);
1221 	spin_unlock_bh(&ep->ex_lock);
1222 	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1223 	fc_frame_free(rx_fp);
1224 	return;
1225 
1226 reject:
1227 	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1228 free:
1229 	fc_frame_free(rx_fp);
1230 }
1231 
1232 /**
1233  * fc_exch_recv_req() - Handler for an incoming request where is other
1234  *			end is originating the sequence
1235  * @lport: The local port that received the request
1236  * @mp:	   The EM that the exchange is on
1237  * @fp:	   The request frame
1238  */
1239 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1240 			     struct fc_frame *fp)
1241 {
1242 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1243 	struct fc_seq *sp = NULL;
1244 	struct fc_exch *ep = NULL;
1245 	enum fc_pf_rjt_reason reject;
1246 
1247 	/* We can have the wrong fc_lport at this point with NPIV, which is a
1248 	 * problem now that we know a new exchange needs to be allocated
1249 	 */
1250 	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1251 	if (!lport) {
1252 		fc_frame_free(fp);
1253 		return;
1254 	}
1255 
1256 	fr_seq(fp) = NULL;
1257 	reject = fc_seq_lookup_recip(lport, mp, fp);
1258 	if (reject == FC_RJT_NONE) {
1259 		sp = fr_seq(fp);	/* sequence will be held */
1260 		ep = fc_seq_exch(sp);
1261 		fc_seq_send_ack(sp, fp);
1262 
1263 		/*
1264 		 * Call the receive function.
1265 		 *
1266 		 * The receive function may allocate a new sequence
1267 		 * over the old one, so we shouldn't change the
1268 		 * sequence after this.
1269 		 *
1270 		 * The frame will be freed by the receive function.
1271 		 * If new exch resp handler is valid then call that
1272 		 * first.
1273 		 */
1274 		if (ep->resp)
1275 			ep->resp(sp, fp, ep->arg);
1276 		else
1277 			lport->tt.lport_recv(lport, sp, fp);
1278 		fc_exch_release(ep);	/* release from lookup */
1279 	} else {
1280 		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1281 			     reject);
1282 		fc_frame_free(fp);
1283 	}
1284 }
1285 
1286 /**
1287  * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1288  *			     end is the originator of the sequence that is a
1289  *			     response to our initial exchange
1290  * @mp: The EM that the exchange is on
1291  * @fp: The response frame
1292  */
1293 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1294 {
1295 	struct fc_frame_header *fh = fc_frame_header_get(fp);
1296 	struct fc_seq *sp;
1297 	struct fc_exch *ep;
1298 	enum fc_sof sof;
1299 	u32 f_ctl;
1300 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1301 	void *ex_resp_arg;
1302 	int rc;
1303 
1304 	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1305 	if (!ep) {
1306 		atomic_inc(&mp->stats.xid_not_found);
1307 		goto out;
1308 	}
1309 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1310 		atomic_inc(&mp->stats.xid_not_found);
1311 		goto out;
1312 	}
1313 	if (ep->rxid == FC_XID_UNKNOWN)
1314 		ep->rxid = ntohs(fh->fh_rx_id);
1315 	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1316 		atomic_inc(&mp->stats.xid_not_found);
1317 		goto rel;
1318 	}
1319 	if (ep->did != ntoh24(fh->fh_s_id) &&
1320 	    ep->did != FC_FID_FLOGI) {
1321 		atomic_inc(&mp->stats.xid_not_found);
1322 		goto rel;
1323 	}
1324 	sof = fr_sof(fp);
1325 	sp = &ep->seq;
1326 	if (fc_sof_is_init(sof)) {
1327 		sp->ssb_stat |= SSB_ST_RESP;
1328 		sp->id = fh->fh_seq_id;
1329 	} else if (sp->id != fh->fh_seq_id) {
1330 		atomic_inc(&mp->stats.seq_not_found);
1331 		goto rel;
1332 	}
1333 
1334 	f_ctl = ntoh24(fh->fh_f_ctl);
1335 	fr_seq(fp) = sp;
1336 	if (f_ctl & FC_FC_SEQ_INIT)
1337 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1338 
1339 	if (fc_sof_needs_ack(sof))
1340 		fc_seq_send_ack(sp, fp);
1341 	resp = ep->resp;
1342 	ex_resp_arg = ep->arg;
1343 
1344 	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1345 	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1346 	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1347 		spin_lock_bh(&ep->ex_lock);
1348 		rc = fc_exch_done_locked(ep);
1349 		WARN_ON(fc_seq_exch(sp) != ep);
1350 		spin_unlock_bh(&ep->ex_lock);
1351 		if (!rc)
1352 			fc_exch_delete(ep);
1353 	}
1354 
1355 	/*
1356 	 * Call the receive function.
1357 	 * The sequence is held (has a refcnt) for us,
1358 	 * but not for the receive function.
1359 	 *
1360 	 * The receive function may allocate a new sequence
1361 	 * over the old one, so we shouldn't change the
1362 	 * sequence after this.
1363 	 *
1364 	 * The frame will be freed by the receive function.
1365 	 * If new exch resp handler is valid then call that
1366 	 * first.
1367 	 */
1368 	if (resp)
1369 		resp(sp, fp, ex_resp_arg);
1370 	else
1371 		fc_frame_free(fp);
1372 	fc_exch_release(ep);
1373 	return;
1374 rel:
1375 	fc_exch_release(ep);
1376 out:
1377 	fc_frame_free(fp);
1378 }
1379 
1380 /**
1381  * fc_exch_recv_resp() - Handler for a sequence where other end is
1382  *			 responding to our sequence
1383  * @mp: The EM that the exchange is on
1384  * @fp: The response frame
1385  */
1386 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1387 {
1388 	struct fc_seq *sp;
1389 
1390 	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1391 
1392 	if (!sp)
1393 		atomic_inc(&mp->stats.xid_not_found);
1394 	else
1395 		atomic_inc(&mp->stats.non_bls_resp);
1396 
1397 	fc_frame_free(fp);
1398 }
1399 
1400 /**
1401  * fc_exch_abts_resp() - Handler for a response to an ABT
1402  * @ep: The exchange that the frame is on
1403  * @fp: The response frame
1404  *
1405  * This response would be to an ABTS cancelling an exchange or sequence.
1406  * The response can be either BA_ACC or BA_RJT
1407  */
1408 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1409 {
1410 	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1411 	void *ex_resp_arg;
1412 	struct fc_frame_header *fh;
1413 	struct fc_ba_acc *ap;
1414 	struct fc_seq *sp;
1415 	u16 low;
1416 	u16 high;
1417 	int rc = 1, has_rec = 0;
1418 
1419 	fh = fc_frame_header_get(fp);
1420 	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1421 		    fc_exch_rctl_name(fh->fh_r_ctl));
1422 
1423 	if (cancel_delayed_work_sync(&ep->timeout_work))
1424 		fc_exch_release(ep);	/* release from pending timer hold */
1425 
1426 	spin_lock_bh(&ep->ex_lock);
1427 	switch (fh->fh_r_ctl) {
1428 	case FC_RCTL_BA_ACC:
1429 		ap = fc_frame_payload_get(fp, sizeof(*ap));
1430 		if (!ap)
1431 			break;
1432 
1433 		/*
1434 		 * Decide whether to establish a Recovery Qualifier.
1435 		 * We do this if there is a non-empty SEQ_CNT range and
1436 		 * SEQ_ID is the same as the one we aborted.
1437 		 */
1438 		low = ntohs(ap->ba_low_seq_cnt);
1439 		high = ntohs(ap->ba_high_seq_cnt);
1440 		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1441 		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1442 		     ap->ba_seq_id == ep->seq_id) && low != high) {
1443 			ep->esb_stat |= ESB_ST_REC_QUAL;
1444 			fc_exch_hold(ep);  /* hold for recovery qualifier */
1445 			has_rec = 1;
1446 		}
1447 		break;
1448 	case FC_RCTL_BA_RJT:
1449 		break;
1450 	default:
1451 		break;
1452 	}
1453 
1454 	resp = ep->resp;
1455 	ex_resp_arg = ep->arg;
1456 
1457 	/* do we need to do some other checks here. Can we reuse more of
1458 	 * fc_exch_recv_seq_resp
1459 	 */
1460 	sp = &ep->seq;
1461 	/*
1462 	 * do we want to check END_SEQ as well as LAST_SEQ here?
1463 	 */
1464 	if (ep->fh_type != FC_TYPE_FCP &&
1465 	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1466 		rc = fc_exch_done_locked(ep);
1467 	spin_unlock_bh(&ep->ex_lock);
1468 	if (!rc)
1469 		fc_exch_delete(ep);
1470 
1471 	if (resp)
1472 		resp(sp, fp, ex_resp_arg);
1473 	else
1474 		fc_frame_free(fp);
1475 
1476 	if (has_rec)
1477 		fc_exch_timer_set(ep, ep->r_a_tov);
1478 
1479 }
1480 
1481 /**
1482  * fc_exch_recv_bls() - Handler for a BLS sequence
1483  * @mp: The EM that the exchange is on
1484  * @fp: The request frame
1485  *
1486  * The BLS frame is always a sequence initiated by the remote side.
1487  * We may be either the originator or recipient of the exchange.
1488  */
1489 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1490 {
1491 	struct fc_frame_header *fh;
1492 	struct fc_exch *ep;
1493 	u32 f_ctl;
1494 
1495 	fh = fc_frame_header_get(fp);
1496 	f_ctl = ntoh24(fh->fh_f_ctl);
1497 	fr_seq(fp) = NULL;
1498 
1499 	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1500 			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1501 	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1502 		spin_lock_bh(&ep->ex_lock);
1503 		ep->esb_stat |= ESB_ST_SEQ_INIT;
1504 		spin_unlock_bh(&ep->ex_lock);
1505 	}
1506 	if (f_ctl & FC_FC_SEQ_CTX) {
1507 		/*
1508 		 * A response to a sequence we initiated.
1509 		 * This should only be ACKs for class 2 or F.
1510 		 */
1511 		switch (fh->fh_r_ctl) {
1512 		case FC_RCTL_ACK_1:
1513 		case FC_RCTL_ACK_0:
1514 			break;
1515 		default:
1516 			FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1517 				    fh->fh_r_ctl,
1518 				    fc_exch_rctl_name(fh->fh_r_ctl));
1519 			break;
1520 		}
1521 		fc_frame_free(fp);
1522 	} else {
1523 		switch (fh->fh_r_ctl) {
1524 		case FC_RCTL_BA_RJT:
1525 		case FC_RCTL_BA_ACC:
1526 			if (ep)
1527 				fc_exch_abts_resp(ep, fp);
1528 			else
1529 				fc_frame_free(fp);
1530 			break;
1531 		case FC_RCTL_BA_ABTS:
1532 			fc_exch_recv_abts(ep, fp);
1533 			break;
1534 		default:			/* ignore junk */
1535 			fc_frame_free(fp);
1536 			break;
1537 		}
1538 	}
1539 	if (ep)
1540 		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1541 }
1542 
1543 /**
1544  * fc_seq_ls_acc() - Accept sequence with LS_ACC
1545  * @req_sp: The request sequence
1546  *
1547  * If this fails due to allocation or transmit congestion, assume the
1548  * originator will repeat the sequence.
1549  */
1550 static void fc_seq_ls_acc(struct fc_seq *req_sp)
1551 {
1552 	struct fc_seq *sp;
1553 	struct fc_els_ls_acc *acc;
1554 	struct fc_frame *fp;
1555 
1556 	sp = fc_seq_start_next(req_sp);
1557 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1558 	if (fp) {
1559 		acc = fc_frame_payload_get(fp, sizeof(*acc));
1560 		memset(acc, 0, sizeof(*acc));
1561 		acc->la_cmd = ELS_LS_ACC;
1562 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1563 	}
1564 }
1565 
1566 /**
1567  * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1568  * @req_sp: The request sequence
1569  * @reason: The reason the sequence is being rejected
1570  * @explan: The explaination for the rejection
1571  *
1572  * If this fails due to allocation or transmit congestion, assume the
1573  * originator will repeat the sequence.
1574  */
1575 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason,
1576 			  enum fc_els_rjt_explan explan)
1577 {
1578 	struct fc_seq *sp;
1579 	struct fc_els_ls_rjt *rjt;
1580 	struct fc_frame *fp;
1581 
1582 	sp = fc_seq_start_next(req_sp);
1583 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt));
1584 	if (fp) {
1585 		rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1586 		memset(rjt, 0, sizeof(*rjt));
1587 		rjt->er_cmd = ELS_LS_RJT;
1588 		rjt->er_reason = reason;
1589 		rjt->er_explan = explan;
1590 		fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1591 	}
1592 }
1593 
1594 /**
1595  * fc_exch_reset() - Reset an exchange
1596  * @ep: The exchange to be reset
1597  */
1598 static void fc_exch_reset(struct fc_exch *ep)
1599 {
1600 	struct fc_seq *sp;
1601 	void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1602 	void *arg;
1603 	int rc = 1;
1604 
1605 	spin_lock_bh(&ep->ex_lock);
1606 	ep->state |= FC_EX_RST_CLEANUP;
1607 	if (cancel_delayed_work(&ep->timeout_work))
1608 		atomic_dec(&ep->ex_refcnt);	/* drop hold for timer */
1609 	resp = ep->resp;
1610 	ep->resp = NULL;
1611 	if (ep->esb_stat & ESB_ST_REC_QUAL)
1612 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1613 	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1614 	arg = ep->arg;
1615 	sp = &ep->seq;
1616 	rc = fc_exch_done_locked(ep);
1617 	spin_unlock_bh(&ep->ex_lock);
1618 	if (!rc)
1619 		fc_exch_delete(ep);
1620 
1621 	if (resp)
1622 		resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1623 }
1624 
1625 /**
1626  * fc_exch_pool_reset() - Reset a per cpu exchange pool
1627  * @lport: The local port that the exchange pool is on
1628  * @pool:  The exchange pool to be reset
1629  * @sid:   The source ID
1630  * @did:   The destination ID
1631  *
1632  * Resets a per cpu exches pool, releasing all of its sequences
1633  * and exchanges. If sid is non-zero then reset only exchanges
1634  * we sourced from the local port's FID. If did is non-zero then
1635  * only reset exchanges destined for the local port's FID.
1636  */
1637 static void fc_exch_pool_reset(struct fc_lport *lport,
1638 			       struct fc_exch_pool *pool,
1639 			       u32 sid, u32 did)
1640 {
1641 	struct fc_exch *ep;
1642 	struct fc_exch *next;
1643 
1644 	spin_lock_bh(&pool->lock);
1645 restart:
1646 	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1647 		if ((lport == ep->lp) &&
1648 		    (sid == 0 || sid == ep->sid) &&
1649 		    (did == 0 || did == ep->did)) {
1650 			fc_exch_hold(ep);
1651 			spin_unlock_bh(&pool->lock);
1652 
1653 			fc_exch_reset(ep);
1654 
1655 			fc_exch_release(ep);
1656 			spin_lock_bh(&pool->lock);
1657 
1658 			/*
1659 			 * must restart loop incase while lock
1660 			 * was down multiple eps were released.
1661 			 */
1662 			goto restart;
1663 		}
1664 	}
1665 	spin_unlock_bh(&pool->lock);
1666 }
1667 
1668 /**
1669  * fc_exch_mgr_reset() - Reset all EMs of a local port
1670  * @lport: The local port whose EMs are to be reset
1671  * @sid:   The source ID
1672  * @did:   The destination ID
1673  *
1674  * Reset all EMs associated with a given local port. Release all
1675  * sequences and exchanges. If sid is non-zero then reset only the
1676  * exchanges sent from the local port's FID. If did is non-zero then
1677  * reset only exchanges destined for the local port's FID.
1678  */
1679 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1680 {
1681 	struct fc_exch_mgr_anchor *ema;
1682 	unsigned int cpu;
1683 
1684 	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1685 		for_each_possible_cpu(cpu)
1686 			fc_exch_pool_reset(lport,
1687 					   per_cpu_ptr(ema->mp->pool, cpu),
1688 					   sid, did);
1689 	}
1690 }
1691 EXPORT_SYMBOL(fc_exch_mgr_reset);
1692 
1693 /**
1694  * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1695  * @sp:	 The sequence the REC is on
1696  * @rfp: The REC frame
1697  *
1698  * Note that the requesting port may be different than the S_ID in the request.
1699  */
1700 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp)
1701 {
1702 	struct fc_frame *fp;
1703 	struct fc_exch *ep;
1704 	struct fc_exch_mgr *em;
1705 	struct fc_els_rec *rp;
1706 	struct fc_els_rec_acc *acc;
1707 	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1708 	enum fc_els_rjt_explan explan;
1709 	u32 sid;
1710 	u16 rxid;
1711 	u16 oxid;
1712 
1713 	rp = fc_frame_payload_get(rfp, sizeof(*rp));
1714 	explan = ELS_EXPL_INV_LEN;
1715 	if (!rp)
1716 		goto reject;
1717 	sid = ntoh24(rp->rec_s_id);
1718 	rxid = ntohs(rp->rec_rx_id);
1719 	oxid = ntohs(rp->rec_ox_id);
1720 
1721 	/*
1722 	 * Currently it's hard to find the local S_ID from the exchange
1723 	 * manager.  This will eventually be fixed, but for now it's easier
1724 	 * to lookup the subject exchange twice, once as if we were
1725 	 * the initiator, and then again if we weren't.
1726 	 */
1727 	em = fc_seq_exch(sp)->em;
1728 	ep = fc_exch_find(em, oxid);
1729 	explan = ELS_EXPL_OXID_RXID;
1730 	if (ep && ep->oid == sid) {
1731 		if (ep->rxid != FC_XID_UNKNOWN &&
1732 		    rxid != FC_XID_UNKNOWN &&
1733 		    ep->rxid != rxid)
1734 			goto rel;
1735 	} else {
1736 		if (ep)
1737 			fc_exch_release(ep);
1738 		ep = NULL;
1739 		if (rxid != FC_XID_UNKNOWN)
1740 			ep = fc_exch_find(em, rxid);
1741 		if (!ep)
1742 			goto reject;
1743 	}
1744 
1745 	fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1746 	if (!fp) {
1747 		fc_exch_done(sp);
1748 		goto out;
1749 	}
1750 	acc = fc_frame_payload_get(fp, sizeof(*acc));
1751 	memset(acc, 0, sizeof(*acc));
1752 	acc->reca_cmd = ELS_LS_ACC;
1753 	acc->reca_ox_id = rp->rec_ox_id;
1754 	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1755 	acc->reca_rx_id = htons(ep->rxid);
1756 	if (ep->sid == ep->oid)
1757 		hton24(acc->reca_rfid, ep->did);
1758 	else
1759 		hton24(acc->reca_rfid, ep->sid);
1760 	acc->reca_fc4value = htonl(ep->seq.rec_data);
1761 	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1762 						 ESB_ST_SEQ_INIT |
1763 						 ESB_ST_COMPLETE));
1764 	sp = fc_seq_start_next(sp);
1765 	fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1766 out:
1767 	fc_exch_release(ep);
1768 	fc_frame_free(rfp);
1769 	return;
1770 
1771 rel:
1772 	fc_exch_release(ep);
1773 reject:
1774 	fc_seq_ls_rjt(sp, reason, explan);
1775 	fc_frame_free(rfp);
1776 }
1777 
1778 /**
1779  * fc_exch_rrq_resp() - Handler for RRQ responses
1780  * @sp:	 The sequence that the RRQ is on
1781  * @fp:	 The RRQ frame
1782  * @arg: The exchange that the RRQ is on
1783  *
1784  * TODO: fix error handler.
1785  */
1786 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1787 {
1788 	struct fc_exch *aborted_ep = arg;
1789 	unsigned int op;
1790 
1791 	if (IS_ERR(fp)) {
1792 		int err = PTR_ERR(fp);
1793 
1794 		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1795 			goto cleanup;
1796 		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1797 			    "frame error %d\n", err);
1798 		return;
1799 	}
1800 
1801 	op = fc_frame_payload_op(fp);
1802 	fc_frame_free(fp);
1803 
1804 	switch (op) {
1805 	case ELS_LS_RJT:
1806 		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1807 		/* fall through */
1808 	case ELS_LS_ACC:
1809 		goto cleanup;
1810 	default:
1811 		FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1812 			    "for RRQ", op);
1813 		return;
1814 	}
1815 
1816 cleanup:
1817 	fc_exch_done(&aborted_ep->seq);
1818 	/* drop hold for rec qual */
1819 	fc_exch_release(aborted_ep);
1820 }
1821 
1822 
1823 /**
1824  * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1825  * @lport:	The local port to send the frame on
1826  * @fp:		The frame to be sent
1827  * @resp:	The response handler for this request
1828  * @destructor: The destructor for the exchange
1829  * @arg:	The argument to be passed to the response handler
1830  * @timer_msec: The timeout period for the exchange
1831  *
1832  * The frame pointer with some of the header's fields must be
1833  * filled before calling this routine, those fields are:
1834  *
1835  * - routing control
1836  * - FC port did
1837  * - FC port sid
1838  * - FC header type
1839  * - frame control
1840  * - parameter or relative offset
1841  */
1842 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1843 				       struct fc_frame *fp,
1844 				       void (*resp)(struct fc_seq *,
1845 						    struct fc_frame *fp,
1846 						    void *arg),
1847 				       void (*destructor)(struct fc_seq *,
1848 							  void *),
1849 				       void *arg, u32 timer_msec)
1850 {
1851 	struct fc_exch *ep;
1852 	struct fc_seq *sp = NULL;
1853 	struct fc_frame_header *fh;
1854 	int rc = 1;
1855 
1856 	ep = fc_exch_alloc(lport, fp);
1857 	if (!ep) {
1858 		fc_frame_free(fp);
1859 		return NULL;
1860 	}
1861 	ep->esb_stat |= ESB_ST_SEQ_INIT;
1862 	fh = fc_frame_header_get(fp);
1863 	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1864 	ep->resp = resp;
1865 	ep->destructor = destructor;
1866 	ep->arg = arg;
1867 	ep->r_a_tov = FC_DEF_R_A_TOV;
1868 	ep->lp = lport;
1869 	sp = &ep->seq;
1870 
1871 	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1872 	ep->f_ctl = ntoh24(fh->fh_f_ctl);
1873 	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1874 	sp->cnt++;
1875 
1876 	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1877 		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1878 
1879 	if (unlikely(lport->tt.frame_send(lport, fp)))
1880 		goto err;
1881 
1882 	if (timer_msec)
1883 		fc_exch_timer_set_locked(ep, timer_msec);
1884 	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
1885 
1886 	if (ep->f_ctl & FC_FC_SEQ_INIT)
1887 		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1888 	spin_unlock_bh(&ep->ex_lock);
1889 	return sp;
1890 err:
1891 	rc = fc_exch_done_locked(ep);
1892 	spin_unlock_bh(&ep->ex_lock);
1893 	if (!rc)
1894 		fc_exch_delete(ep);
1895 	return NULL;
1896 }
1897 
1898 /**
1899  * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1900  * @ep: The exchange to send the RRQ on
1901  *
1902  * This tells the remote port to stop blocking the use of
1903  * the exchange and the seq_cnt range.
1904  */
1905 static void fc_exch_rrq(struct fc_exch *ep)
1906 {
1907 	struct fc_lport *lport;
1908 	struct fc_els_rrq *rrq;
1909 	struct fc_frame *fp;
1910 	u32 did;
1911 
1912 	lport = ep->lp;
1913 
1914 	fp = fc_frame_alloc(lport, sizeof(*rrq));
1915 	if (!fp)
1916 		goto retry;
1917 
1918 	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1919 	memset(rrq, 0, sizeof(*rrq));
1920 	rrq->rrq_cmd = ELS_RRQ;
1921 	hton24(rrq->rrq_s_id, ep->sid);
1922 	rrq->rrq_ox_id = htons(ep->oxid);
1923 	rrq->rrq_rx_id = htons(ep->rxid);
1924 
1925 	did = ep->did;
1926 	if (ep->esb_stat & ESB_ST_RESP)
1927 		did = ep->sid;
1928 
1929 	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1930 		       lport->port_id, FC_TYPE_ELS,
1931 		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1932 
1933 	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
1934 			     lport->e_d_tov))
1935 		return;
1936 
1937 retry:
1938 	spin_lock_bh(&ep->ex_lock);
1939 	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1940 		spin_unlock_bh(&ep->ex_lock);
1941 		/* drop hold for rec qual */
1942 		fc_exch_release(ep);
1943 		return;
1944 	}
1945 	ep->esb_stat |= ESB_ST_REC_QUAL;
1946 	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1947 	spin_unlock_bh(&ep->ex_lock);
1948 }
1949 
1950 
1951 /**
1952  * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
1953  * @sp: The sequence that the RRQ is on
1954  * @fp: The RRQ frame
1955  */
1956 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp)
1957 {
1958 	struct fc_exch *ep = NULL;	/* request or subject exchange */
1959 	struct fc_els_rrq *rp;
1960 	u32 sid;
1961 	u16 xid;
1962 	enum fc_els_rjt_explan explan;
1963 
1964 	rp = fc_frame_payload_get(fp, sizeof(*rp));
1965 	explan = ELS_EXPL_INV_LEN;
1966 	if (!rp)
1967 		goto reject;
1968 
1969 	/*
1970 	 * lookup subject exchange.
1971 	 */
1972 	ep = fc_seq_exch(sp);
1973 	sid = ntoh24(rp->rrq_s_id);		/* subject source */
1974 	xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1975 	ep = fc_exch_find(ep->em, xid);
1976 
1977 	explan = ELS_EXPL_OXID_RXID;
1978 	if (!ep)
1979 		goto reject;
1980 	spin_lock_bh(&ep->ex_lock);
1981 	if (ep->oxid != ntohs(rp->rrq_ox_id))
1982 		goto unlock_reject;
1983 	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
1984 	    ep->rxid != FC_XID_UNKNOWN)
1985 		goto unlock_reject;
1986 	explan = ELS_EXPL_SID;
1987 	if (ep->sid != sid)
1988 		goto unlock_reject;
1989 
1990 	/*
1991 	 * Clear Recovery Qualifier state, and cancel timer if complete.
1992 	 */
1993 	if (ep->esb_stat & ESB_ST_REC_QUAL) {
1994 		ep->esb_stat &= ~ESB_ST_REC_QUAL;
1995 		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
1996 	}
1997 	if (ep->esb_stat & ESB_ST_COMPLETE) {
1998 		if (cancel_delayed_work(&ep->timeout_work))
1999 			atomic_dec(&ep->ex_refcnt);	/* drop timer hold */
2000 	}
2001 
2002 	spin_unlock_bh(&ep->ex_lock);
2003 
2004 	/*
2005 	 * Send LS_ACC.
2006 	 */
2007 	fc_seq_ls_acc(sp);
2008 	goto out;
2009 
2010 unlock_reject:
2011 	spin_unlock_bh(&ep->ex_lock);
2012 reject:
2013 	fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan);
2014 out:
2015 	fc_frame_free(fp);
2016 	if (ep)
2017 		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2018 }
2019 
2020 /**
2021  * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2022  * @lport: The local port to add the exchange manager to
2023  * @mp:	   The exchange manager to be added to the local port
2024  * @match: The match routine that indicates when this EM should be used
2025  */
2026 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2027 					   struct fc_exch_mgr *mp,
2028 					   bool (*match)(struct fc_frame *))
2029 {
2030 	struct fc_exch_mgr_anchor *ema;
2031 
2032 	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2033 	if (!ema)
2034 		return ema;
2035 
2036 	ema->mp = mp;
2037 	ema->match = match;
2038 	/* add EM anchor to EM anchors list */
2039 	list_add_tail(&ema->ema_list, &lport->ema_list);
2040 	kref_get(&mp->kref);
2041 	return ema;
2042 }
2043 EXPORT_SYMBOL(fc_exch_mgr_add);
2044 
2045 /**
2046  * fc_exch_mgr_destroy() - Destroy an exchange manager
2047  * @kref: The reference to the EM to be destroyed
2048  */
2049 static void fc_exch_mgr_destroy(struct kref *kref)
2050 {
2051 	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2052 
2053 	mempool_destroy(mp->ep_pool);
2054 	free_percpu(mp->pool);
2055 	kfree(mp);
2056 }
2057 
2058 /**
2059  * fc_exch_mgr_del() - Delete an EM from a local port's list
2060  * @ema: The exchange manager anchor identifying the EM to be deleted
2061  */
2062 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2063 {
2064 	/* remove EM anchor from EM anchors list */
2065 	list_del(&ema->ema_list);
2066 	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2067 	kfree(ema);
2068 }
2069 EXPORT_SYMBOL(fc_exch_mgr_del);
2070 
2071 /**
2072  * fc_exch_mgr_list_clone() - Share all exchange manager objects
2073  * @src: Source lport to clone exchange managers from
2074  * @dst: New lport that takes references to all the exchange managers
2075  */
2076 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2077 {
2078 	struct fc_exch_mgr_anchor *ema, *tmp;
2079 
2080 	list_for_each_entry(ema, &src->ema_list, ema_list) {
2081 		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2082 			goto err;
2083 	}
2084 	return 0;
2085 err:
2086 	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2087 		fc_exch_mgr_del(ema);
2088 	return -ENOMEM;
2089 }
2090 
2091 /**
2092  * fc_exch_mgr_alloc() - Allocate an exchange manager
2093  * @lport:   The local port that the new EM will be associated with
2094  * @class:   The default FC class for new exchanges
2095  * @min_xid: The minimum XID for exchanges from the new EM
2096  * @max_xid: The maximum XID for exchanges from the new EM
2097  * @match:   The match routine for the new EM
2098  */
2099 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2100 				      enum fc_class class,
2101 				      u16 min_xid, u16 max_xid,
2102 				      bool (*match)(struct fc_frame *))
2103 {
2104 	struct fc_exch_mgr *mp;
2105 	u16 pool_exch_range;
2106 	size_t pool_size;
2107 	unsigned int cpu;
2108 	struct fc_exch_pool *pool;
2109 
2110 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2111 	    (min_xid & fc_cpu_mask) != 0) {
2112 		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2113 			     min_xid, max_xid);
2114 		return NULL;
2115 	}
2116 
2117 	/*
2118 	 * allocate memory for EM
2119 	 */
2120 	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2121 	if (!mp)
2122 		return NULL;
2123 
2124 	mp->class = class;
2125 	/* adjust em exch xid range for offload */
2126 	mp->min_xid = min_xid;
2127 	mp->max_xid = max_xid;
2128 
2129 	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2130 	if (!mp->ep_pool)
2131 		goto free_mp;
2132 
2133 	/*
2134 	 * Setup per cpu exch pool with entire exchange id range equally
2135 	 * divided across all cpus. The exch pointers array memory is
2136 	 * allocated for exch range per pool.
2137 	 */
2138 	pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2139 	mp->pool_max_index = pool_exch_range - 1;
2140 
2141 	/*
2142 	 * Allocate and initialize per cpu exch pool
2143 	 */
2144 	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2145 	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2146 	if (!mp->pool)
2147 		goto free_mempool;
2148 	for_each_possible_cpu(cpu) {
2149 		pool = per_cpu_ptr(mp->pool, cpu);
2150 		spin_lock_init(&pool->lock);
2151 		INIT_LIST_HEAD(&pool->ex_list);
2152 	}
2153 
2154 	kref_init(&mp->kref);
2155 	if (!fc_exch_mgr_add(lport, mp, match)) {
2156 		free_percpu(mp->pool);
2157 		goto free_mempool;
2158 	}
2159 
2160 	/*
2161 	 * Above kref_init() sets mp->kref to 1 and then
2162 	 * call to fc_exch_mgr_add incremented mp->kref again,
2163 	 * so adjust that extra increment.
2164 	 */
2165 	kref_put(&mp->kref, fc_exch_mgr_destroy);
2166 	return mp;
2167 
2168 free_mempool:
2169 	mempool_destroy(mp->ep_pool);
2170 free_mp:
2171 	kfree(mp);
2172 	return NULL;
2173 }
2174 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2175 
2176 /**
2177  * fc_exch_mgr_free() - Free all exchange managers on a local port
2178  * @lport: The local port whose EMs are to be freed
2179  */
2180 void fc_exch_mgr_free(struct fc_lport *lport)
2181 {
2182 	struct fc_exch_mgr_anchor *ema, *next;
2183 
2184 	flush_workqueue(fc_exch_workqueue);
2185 	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2186 		fc_exch_mgr_del(ema);
2187 }
2188 EXPORT_SYMBOL(fc_exch_mgr_free);
2189 
2190 /**
2191  * fc_exch_recv() - Handler for received frames
2192  * @lport: The local port the frame was received on
2193  * @fp:	   The received frame
2194  */
2195 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2196 {
2197 	struct fc_frame_header *fh = fc_frame_header_get(fp);
2198 	struct fc_exch_mgr_anchor *ema;
2199 	u32 f_ctl, found = 0;
2200 	u16 oxid;
2201 
2202 	/* lport lock ? */
2203 	if (!lport || lport->state == LPORT_ST_DISABLED) {
2204 		FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2205 			     "has not been initialized correctly\n");
2206 		fc_frame_free(fp);
2207 		return;
2208 	}
2209 
2210 	f_ctl = ntoh24(fh->fh_f_ctl);
2211 	oxid = ntohs(fh->fh_ox_id);
2212 	if (f_ctl & FC_FC_EX_CTX) {
2213 		list_for_each_entry(ema, &lport->ema_list, ema_list) {
2214 			if ((oxid >= ema->mp->min_xid) &&
2215 			    (oxid <= ema->mp->max_xid)) {
2216 				found = 1;
2217 				break;
2218 			}
2219 		}
2220 
2221 		if (!found) {
2222 			FC_LPORT_DBG(lport, "Received response for out "
2223 				     "of range oxid:%hx\n", oxid);
2224 			fc_frame_free(fp);
2225 			return;
2226 		}
2227 	} else
2228 		ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2229 
2230 	/*
2231 	 * If frame is marked invalid, just drop it.
2232 	 */
2233 	switch (fr_eof(fp)) {
2234 	case FC_EOF_T:
2235 		if (f_ctl & FC_FC_END_SEQ)
2236 			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2237 		/* fall through */
2238 	case FC_EOF_N:
2239 		if (fh->fh_type == FC_TYPE_BLS)
2240 			fc_exch_recv_bls(ema->mp, fp);
2241 		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2242 			 FC_FC_EX_CTX)
2243 			fc_exch_recv_seq_resp(ema->mp, fp);
2244 		else if (f_ctl & FC_FC_SEQ_CTX)
2245 			fc_exch_recv_resp(ema->mp, fp);
2246 		else
2247 			fc_exch_recv_req(lport, ema->mp, fp);
2248 		break;
2249 	default:
2250 		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2251 			     fr_eof(fp));
2252 		fc_frame_free(fp);
2253 	}
2254 }
2255 EXPORT_SYMBOL(fc_exch_recv);
2256 
2257 /**
2258  * fc_exch_init() - Initialize the exchange layer for a local port
2259  * @lport: The local port to initialize the exchange layer for
2260  */
2261 int fc_exch_init(struct fc_lport *lport)
2262 {
2263 	if (!lport->tt.seq_start_next)
2264 		lport->tt.seq_start_next = fc_seq_start_next;
2265 
2266 	if (!lport->tt.exch_seq_send)
2267 		lport->tt.exch_seq_send = fc_exch_seq_send;
2268 
2269 	if (!lport->tt.seq_send)
2270 		lport->tt.seq_send = fc_seq_send;
2271 
2272 	if (!lport->tt.seq_els_rsp_send)
2273 		lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2274 
2275 	if (!lport->tt.exch_done)
2276 		lport->tt.exch_done = fc_exch_done;
2277 
2278 	if (!lport->tt.exch_mgr_reset)
2279 		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2280 
2281 	if (!lport->tt.seq_exch_abort)
2282 		lport->tt.seq_exch_abort = fc_seq_exch_abort;
2283 
2284 	return 0;
2285 }
2286 EXPORT_SYMBOL(fc_exch_init);
2287 
2288 /**
2289  * fc_setup_exch_mgr() - Setup an exchange manager
2290  */
2291 int fc_setup_exch_mgr()
2292 {
2293 	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2294 					 0, SLAB_HWCACHE_ALIGN, NULL);
2295 	if (!fc_em_cachep)
2296 		return -ENOMEM;
2297 
2298 	/*
2299 	 * Initialize fc_cpu_mask and fc_cpu_order. The
2300 	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2301 	 * to order of 2's * power and order is stored
2302 	 * in fc_cpu_order as this is later required in
2303 	 * mapping between an exch id and exch array index
2304 	 * in per cpu exch pool.
2305 	 *
2306 	 * This round up is required to align fc_cpu_mask
2307 	 * to exchange id's lower bits such that all incoming
2308 	 * frames of an exchange gets delivered to the same
2309 	 * cpu on which exchange originated by simple bitwise
2310 	 * AND operation between fc_cpu_mask and exchange id.
2311 	 */
2312 	fc_cpu_mask = 1;
2313 	fc_cpu_order = 0;
2314 	while (fc_cpu_mask < nr_cpu_ids) {
2315 		fc_cpu_mask <<= 1;
2316 		fc_cpu_order++;
2317 	}
2318 	fc_cpu_mask--;
2319 
2320 	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2321 	if (!fc_exch_workqueue)
2322 		return -ENOMEM;
2323 	return 0;
2324 }
2325 
2326 /**
2327  * fc_destroy_exch_mgr() - Destroy an exchange manager
2328  */
2329 void fc_destroy_exch_mgr()
2330 {
2331 	destroy_workqueue(fc_exch_workqueue);
2332 	kmem_cache_destroy(fc_em_cachep);
2333 }
2334