1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 56 #include <linux/completion.h> 57 #include <linux/irqflags.h> 58 #include "sas.h" 59 #include <scsi/libsas.h> 60 #include "remote_device.h" 61 #include "remote_node_context.h" 62 #include "isci.h" 63 #include "request.h" 64 #include "task.h" 65 #include "host.h" 66 67 /** 68 * isci_task_refuse() - complete the request to the upper layer driver in 69 * the case where an I/O needs to be completed back in the submit path. 70 * @ihost: host on which the the request was queued 71 * @task: request to complete 72 * @response: response code for the completed task. 73 * @status: status code for the completed task. 74 * 75 */ 76 static void isci_task_refuse(struct isci_host *ihost, struct sas_task *task, 77 enum service_response response, 78 enum exec_status status) 79 80 { 81 enum isci_completion_selection disposition; 82 83 disposition = isci_perform_normal_io_completion; 84 disposition = isci_task_set_completion_status(task, response, status, 85 disposition); 86 87 /* Tasks aborted specifically by a call to the lldd_abort_task 88 * function should not be completed to the host in the regular path. 89 */ 90 switch (disposition) { 91 case isci_perform_normal_io_completion: 92 /* Normal notification (task_done) */ 93 dev_dbg(&ihost->pdev->dev, 94 "%s: Normal - task = %p, response=%d, " 95 "status=%d\n", 96 __func__, task, response, status); 97 98 task->lldd_task = NULL; 99 task->task_done(task); 100 break; 101 102 case isci_perform_aborted_io_completion: 103 /* 104 * No notification because this request is already in the 105 * abort path. 106 */ 107 dev_dbg(&ihost->pdev->dev, 108 "%s: Aborted - task = %p, response=%d, " 109 "status=%d\n", 110 __func__, task, response, status); 111 break; 112 113 case isci_perform_error_io_completion: 114 /* Use sas_task_abort */ 115 dev_dbg(&ihost->pdev->dev, 116 "%s: Error - task = %p, response=%d, " 117 "status=%d\n", 118 __func__, task, response, status); 119 sas_task_abort(task); 120 break; 121 122 default: 123 dev_dbg(&ihost->pdev->dev, 124 "%s: isci task notification default case!", 125 __func__); 126 sas_task_abort(task); 127 break; 128 } 129 } 130 131 #define for_each_sas_task(num, task) \ 132 for (; num > 0; num--,\ 133 task = list_entry(task->list.next, struct sas_task, list)) 134 135 136 static inline int isci_device_io_ready(struct isci_remote_device *idev, 137 struct sas_task *task) 138 { 139 return idev ? test_bit(IDEV_IO_READY, &idev->flags) || 140 (test_bit(IDEV_IO_NCQERROR, &idev->flags) && 141 isci_task_is_ncq_recovery(task)) 142 : 0; 143 } 144 /** 145 * isci_task_execute_task() - This function is one of the SAS Domain Template 146 * functions. This function is called by libsas to send a task down to 147 * hardware. 148 * @task: This parameter specifies the SAS task to send. 149 * @num: This parameter specifies the number of tasks to queue. 150 * @gfp_flags: This parameter specifies the context of this call. 151 * 152 * status, zero indicates success. 153 */ 154 int isci_task_execute_task(struct sas_task *task, int num, gfp_t gfp_flags) 155 { 156 struct isci_host *ihost = dev_to_ihost(task->dev); 157 struct isci_remote_device *idev; 158 unsigned long flags; 159 bool io_ready; 160 u16 tag; 161 162 dev_dbg(&ihost->pdev->dev, "%s: num=%d\n", __func__, num); 163 164 for_each_sas_task(num, task) { 165 enum sci_status status = SCI_FAILURE; 166 167 spin_lock_irqsave(&ihost->scic_lock, flags); 168 idev = isci_lookup_device(task->dev); 169 io_ready = isci_device_io_ready(idev, task); 170 tag = isci_alloc_tag(ihost); 171 spin_unlock_irqrestore(&ihost->scic_lock, flags); 172 173 dev_dbg(&ihost->pdev->dev, 174 "task: %p, num: %d dev: %p idev: %p:%#lx cmd = %p\n", 175 task, num, task->dev, idev, idev ? idev->flags : 0, 176 task->uldd_task); 177 178 if (!idev) { 179 isci_task_refuse(ihost, task, SAS_TASK_UNDELIVERED, 180 SAS_DEVICE_UNKNOWN); 181 } else if (!io_ready || tag == SCI_CONTROLLER_INVALID_IO_TAG) { 182 /* Indicate QUEUE_FULL so that the scsi midlayer 183 * retries. 184 */ 185 isci_task_refuse(ihost, task, SAS_TASK_COMPLETE, 186 SAS_QUEUE_FULL); 187 } else { 188 /* There is a device and it's ready for I/O. */ 189 spin_lock_irqsave(&task->task_state_lock, flags); 190 191 if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { 192 /* The I/O was aborted. */ 193 spin_unlock_irqrestore(&task->task_state_lock, 194 flags); 195 196 isci_task_refuse(ihost, task, 197 SAS_TASK_UNDELIVERED, 198 SAM_STAT_TASK_ABORTED); 199 } else { 200 task->task_state_flags |= SAS_TASK_AT_INITIATOR; 201 spin_unlock_irqrestore(&task->task_state_lock, flags); 202 203 /* build and send the request. */ 204 status = isci_request_execute(ihost, idev, task, tag); 205 206 if (status != SCI_SUCCESS) { 207 208 spin_lock_irqsave(&task->task_state_lock, flags); 209 /* Did not really start this command. */ 210 task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; 211 spin_unlock_irqrestore(&task->task_state_lock, flags); 212 213 if (test_bit(IDEV_GONE, &idev->flags)) { 214 215 /* Indicate that the device 216 * is gone. 217 */ 218 isci_task_refuse(ihost, task, 219 SAS_TASK_UNDELIVERED, 220 SAS_DEVICE_UNKNOWN); 221 } else { 222 /* Indicate QUEUE_FULL so that 223 * the scsi midlayer retries. 224 * If the request failed for 225 * remote device reasons, it 226 * gets returned as 227 * SAS_TASK_UNDELIVERED next 228 * time through. 229 */ 230 isci_task_refuse(ihost, task, 231 SAS_TASK_COMPLETE, 232 SAS_QUEUE_FULL); 233 } 234 } 235 } 236 } 237 if (status != SCI_SUCCESS && tag != SCI_CONTROLLER_INVALID_IO_TAG) { 238 spin_lock_irqsave(&ihost->scic_lock, flags); 239 /* command never hit the device, so just free 240 * the tci and skip the sequence increment 241 */ 242 isci_tci_free(ihost, ISCI_TAG_TCI(tag)); 243 spin_unlock_irqrestore(&ihost->scic_lock, flags); 244 } 245 isci_put_device(idev); 246 } 247 return 0; 248 } 249 250 static struct isci_request *isci_task_request_build(struct isci_host *ihost, 251 struct isci_remote_device *idev, 252 u16 tag, struct isci_tmf *isci_tmf) 253 { 254 enum sci_status status = SCI_FAILURE; 255 struct isci_request *ireq = NULL; 256 struct domain_device *dev; 257 258 dev_dbg(&ihost->pdev->dev, 259 "%s: isci_tmf = %p\n", __func__, isci_tmf); 260 261 dev = idev->domain_dev; 262 263 /* do common allocation and init of request object. */ 264 ireq = isci_tmf_request_from_tag(ihost, isci_tmf, tag); 265 if (!ireq) 266 return NULL; 267 268 /* let the core do it's construct. */ 269 status = sci_task_request_construct(ihost, idev, tag, 270 ireq); 271 272 if (status != SCI_SUCCESS) { 273 dev_warn(&ihost->pdev->dev, 274 "%s: sci_task_request_construct failed - " 275 "status = 0x%x\n", 276 __func__, 277 status); 278 return NULL; 279 } 280 281 /* XXX convert to get this from task->tproto like other drivers */ 282 if (dev->dev_type == SAS_END_DEV) { 283 isci_tmf->proto = SAS_PROTOCOL_SSP; 284 status = sci_task_request_construct_ssp(ireq); 285 if (status != SCI_SUCCESS) 286 return NULL; 287 } 288 289 return ireq; 290 } 291 292 /** 293 * isci_request_mark_zombie() - This function must be called with scic_lock held. 294 */ 295 static void isci_request_mark_zombie(struct isci_host *ihost, struct isci_request *ireq) 296 { 297 struct completion *tmf_completion = NULL; 298 struct completion *req_completion; 299 300 /* Set the request state to "dead". */ 301 ireq->status = dead; 302 303 req_completion = ireq->io_request_completion; 304 ireq->io_request_completion = NULL; 305 306 if (test_bit(IREQ_TMF, &ireq->flags)) { 307 /* Break links with the TMF request. */ 308 struct isci_tmf *tmf = isci_request_access_tmf(ireq); 309 310 /* In the case where a task request is dying, 311 * the thread waiting on the complete will sit and 312 * timeout unless we wake it now. Since the TMF 313 * has a default error status, complete it here 314 * to wake the waiting thread. 315 */ 316 if (tmf) { 317 tmf_completion = tmf->complete; 318 tmf->complete = NULL; 319 } 320 ireq->ttype_ptr.tmf_task_ptr = NULL; 321 dev_dbg(&ihost->pdev->dev, "%s: tmf_code %d, managed tag %#x\n", 322 __func__, tmf->tmf_code, tmf->io_tag); 323 } else { 324 /* Break links with the sas_task - the callback is done 325 * elsewhere. 326 */ 327 struct sas_task *task = isci_request_access_task(ireq); 328 329 if (task) 330 task->lldd_task = NULL; 331 332 ireq->ttype_ptr.io_task_ptr = NULL; 333 } 334 335 dev_warn(&ihost->pdev->dev, "task context unrecoverable (tag: %#x)\n", 336 ireq->io_tag); 337 338 /* Don't force waiting threads to timeout. */ 339 if (req_completion) 340 complete(req_completion); 341 342 if (tmf_completion != NULL) 343 complete(tmf_completion); 344 } 345 346 static int isci_task_execute_tmf(struct isci_host *ihost, 347 struct isci_remote_device *idev, 348 struct isci_tmf *tmf, unsigned long timeout_ms) 349 { 350 DECLARE_COMPLETION_ONSTACK(completion); 351 enum sci_task_status status = SCI_TASK_FAILURE; 352 struct isci_request *ireq; 353 int ret = TMF_RESP_FUNC_FAILED; 354 unsigned long flags; 355 unsigned long timeleft; 356 u16 tag; 357 358 spin_lock_irqsave(&ihost->scic_lock, flags); 359 tag = isci_alloc_tag(ihost); 360 spin_unlock_irqrestore(&ihost->scic_lock, flags); 361 362 if (tag == SCI_CONTROLLER_INVALID_IO_TAG) 363 return ret; 364 365 /* sanity check, return TMF_RESP_FUNC_FAILED 366 * if the device is not there and ready. 367 */ 368 if (!idev || 369 (!test_bit(IDEV_IO_READY, &idev->flags) && 370 !test_bit(IDEV_IO_NCQERROR, &idev->flags))) { 371 dev_dbg(&ihost->pdev->dev, 372 "%s: idev = %p not ready (%#lx)\n", 373 __func__, 374 idev, idev ? idev->flags : 0); 375 goto err_tci; 376 } else 377 dev_dbg(&ihost->pdev->dev, 378 "%s: idev = %p\n", 379 __func__, idev); 380 381 /* Assign the pointer to the TMF's completion kernel wait structure. */ 382 tmf->complete = &completion; 383 tmf->status = SCI_FAILURE_TIMEOUT; 384 385 ireq = isci_task_request_build(ihost, idev, tag, tmf); 386 if (!ireq) 387 goto err_tci; 388 389 spin_lock_irqsave(&ihost->scic_lock, flags); 390 391 /* start the TMF io. */ 392 status = sci_controller_start_task(ihost, idev, ireq); 393 394 if (status != SCI_TASK_SUCCESS) { 395 dev_dbg(&ihost->pdev->dev, 396 "%s: start_io failed - status = 0x%x, request = %p\n", 397 __func__, 398 status, 399 ireq); 400 spin_unlock_irqrestore(&ihost->scic_lock, flags); 401 goto err_tci; 402 } 403 404 if (tmf->cb_state_func != NULL) 405 tmf->cb_state_func(isci_tmf_started, tmf, tmf->cb_data); 406 407 isci_request_change_state(ireq, started); 408 409 /* add the request to the remote device request list. */ 410 list_add(&ireq->dev_node, &idev->reqs_in_process); 411 412 spin_unlock_irqrestore(&ihost->scic_lock, flags); 413 414 /* Wait for the TMF to complete, or a timeout. */ 415 timeleft = wait_for_completion_timeout(&completion, 416 msecs_to_jiffies(timeout_ms)); 417 418 if (timeleft == 0) { 419 /* The TMF did not complete - this could be because 420 * of an unplug. Terminate the TMF request now. 421 */ 422 spin_lock_irqsave(&ihost->scic_lock, flags); 423 424 if (tmf->cb_state_func != NULL) 425 tmf->cb_state_func(isci_tmf_timed_out, tmf, 426 tmf->cb_data); 427 428 sci_controller_terminate_request(ihost, idev, ireq); 429 430 spin_unlock_irqrestore(&ihost->scic_lock, flags); 431 432 timeleft = wait_for_completion_timeout( 433 &completion, 434 msecs_to_jiffies(ISCI_TERMINATION_TIMEOUT_MSEC)); 435 436 if (!timeleft) { 437 /* Strange condition - the termination of the TMF 438 * request timed-out. 439 */ 440 spin_lock_irqsave(&ihost->scic_lock, flags); 441 442 /* If the TMF status has not changed, kill it. */ 443 if (tmf->status == SCI_FAILURE_TIMEOUT) 444 isci_request_mark_zombie(ihost, ireq); 445 446 spin_unlock_irqrestore(&ihost->scic_lock, flags); 447 } 448 } 449 450 isci_print_tmf(ihost, tmf); 451 452 if (tmf->status == SCI_SUCCESS) 453 ret = TMF_RESP_FUNC_COMPLETE; 454 else if (tmf->status == SCI_FAILURE_IO_RESPONSE_VALID) { 455 dev_dbg(&ihost->pdev->dev, 456 "%s: tmf.status == " 457 "SCI_FAILURE_IO_RESPONSE_VALID\n", 458 __func__); 459 ret = TMF_RESP_FUNC_COMPLETE; 460 } 461 /* Else - leave the default "failed" status alone. */ 462 463 dev_dbg(&ihost->pdev->dev, 464 "%s: completed request = %p\n", 465 __func__, 466 ireq); 467 468 return ret; 469 470 err_tci: 471 spin_lock_irqsave(&ihost->scic_lock, flags); 472 isci_tci_free(ihost, ISCI_TAG_TCI(tag)); 473 spin_unlock_irqrestore(&ihost->scic_lock, flags); 474 475 return ret; 476 } 477 478 static void isci_task_build_tmf(struct isci_tmf *tmf, 479 enum isci_tmf_function_codes code, 480 void (*tmf_sent_cb)(enum isci_tmf_cb_state, 481 struct isci_tmf *, 482 void *), 483 void *cb_data) 484 { 485 memset(tmf, 0, sizeof(*tmf)); 486 487 tmf->tmf_code = code; 488 tmf->cb_state_func = tmf_sent_cb; 489 tmf->cb_data = cb_data; 490 } 491 492 static void isci_task_build_abort_task_tmf(struct isci_tmf *tmf, 493 enum isci_tmf_function_codes code, 494 void (*tmf_sent_cb)(enum isci_tmf_cb_state, 495 struct isci_tmf *, 496 void *), 497 struct isci_request *old_request) 498 { 499 isci_task_build_tmf(tmf, code, tmf_sent_cb, old_request); 500 tmf->io_tag = old_request->io_tag; 501 } 502 503 /** 504 * isci_task_validate_request_to_abort() - This function checks the given I/O 505 * against the "started" state. If the request is still "started", it's 506 * state is changed to aborted. NOTE: isci_host->scic_lock MUST BE HELD 507 * BEFORE CALLING THIS FUNCTION. 508 * @isci_request: This parameter specifies the request object to control. 509 * @isci_host: This parameter specifies the ISCI host object 510 * @isci_device: This is the device to which the request is pending. 511 * @aborted_io_completion: This is a completion structure that will be added to 512 * the request in case it is changed to aborting; this completion is 513 * triggered when the request is fully completed. 514 * 515 * Either "started" on successful change of the task status to "aborted", or 516 * "unallocated" if the task cannot be controlled. 517 */ 518 static enum isci_request_status isci_task_validate_request_to_abort( 519 struct isci_request *isci_request, 520 struct isci_host *isci_host, 521 struct isci_remote_device *isci_device, 522 struct completion *aborted_io_completion) 523 { 524 enum isci_request_status old_state = unallocated; 525 526 /* Only abort the task if it's in the 527 * device's request_in_process list 528 */ 529 if (isci_request && !list_empty(&isci_request->dev_node)) { 530 old_state = isci_request_change_started_to_aborted( 531 isci_request, aborted_io_completion); 532 533 } 534 535 return old_state; 536 } 537 538 static int isci_request_is_dealloc_managed(enum isci_request_status stat) 539 { 540 switch (stat) { 541 case aborted: 542 case aborting: 543 case terminating: 544 case completed: 545 case dead: 546 return true; 547 default: 548 return false; 549 } 550 } 551 552 /** 553 * isci_terminate_request_core() - This function will terminate the given 554 * request, and wait for it to complete. This function must only be called 555 * from a thread that can wait. Note that the request is terminated and 556 * completed (back to the host, if started there). 557 * @ihost: This SCU. 558 * @idev: The target. 559 * @isci_request: The I/O request to be terminated. 560 * 561 */ 562 static void isci_terminate_request_core(struct isci_host *ihost, 563 struct isci_remote_device *idev, 564 struct isci_request *isci_request) 565 { 566 enum sci_status status = SCI_SUCCESS; 567 bool was_terminated = false; 568 bool needs_cleanup_handling = false; 569 unsigned long flags; 570 unsigned long termination_completed = 1; 571 struct completion *io_request_completion; 572 573 dev_dbg(&ihost->pdev->dev, 574 "%s: device = %p; request = %p\n", 575 __func__, idev, isci_request); 576 577 spin_lock_irqsave(&ihost->scic_lock, flags); 578 579 io_request_completion = isci_request->io_request_completion; 580 581 /* Note that we are not going to control 582 * the target to abort the request. 583 */ 584 set_bit(IREQ_COMPLETE_IN_TARGET, &isci_request->flags); 585 586 /* Make sure the request wasn't just sitting around signalling 587 * device condition (if the request handle is NULL, then the 588 * request completed but needed additional handling here). 589 */ 590 if (!test_bit(IREQ_TERMINATED, &isci_request->flags)) { 591 was_terminated = true; 592 needs_cleanup_handling = true; 593 status = sci_controller_terminate_request(ihost, 594 idev, 595 isci_request); 596 } 597 spin_unlock_irqrestore(&ihost->scic_lock, flags); 598 599 /* 600 * The only time the request to terminate will 601 * fail is when the io request is completed and 602 * being aborted. 603 */ 604 if (status != SCI_SUCCESS) { 605 dev_dbg(&ihost->pdev->dev, 606 "%s: sci_controller_terminate_request" 607 " returned = 0x%x\n", 608 __func__, status); 609 610 isci_request->io_request_completion = NULL; 611 612 } else { 613 if (was_terminated) { 614 dev_dbg(&ihost->pdev->dev, 615 "%s: before completion wait (%p/%p)\n", 616 __func__, isci_request, io_request_completion); 617 618 /* Wait here for the request to complete. */ 619 termination_completed 620 = wait_for_completion_timeout( 621 io_request_completion, 622 msecs_to_jiffies(ISCI_TERMINATION_TIMEOUT_MSEC)); 623 624 if (!termination_completed) { 625 626 /* The request to terminate has timed out. */ 627 spin_lock_irqsave(&ihost->scic_lock, flags); 628 629 /* Check for state changes. */ 630 if (!test_bit(IREQ_TERMINATED, 631 &isci_request->flags)) { 632 633 /* The best we can do is to have the 634 * request die a silent death if it 635 * ever really completes. 636 */ 637 isci_request_mark_zombie(ihost, 638 isci_request); 639 needs_cleanup_handling = true; 640 } else 641 termination_completed = 1; 642 643 spin_unlock_irqrestore(&ihost->scic_lock, 644 flags); 645 646 if (!termination_completed) { 647 648 dev_dbg(&ihost->pdev->dev, 649 "%s: *** Timeout waiting for " 650 "termination(%p/%p)\n", 651 __func__, io_request_completion, 652 isci_request); 653 654 /* The request can no longer be referenced 655 * safely since it may go away if the 656 * termination every really does complete. 657 */ 658 isci_request = NULL; 659 } 660 } 661 if (termination_completed) 662 dev_dbg(&ihost->pdev->dev, 663 "%s: after completion wait (%p/%p)\n", 664 __func__, isci_request, io_request_completion); 665 } 666 667 if (termination_completed) { 668 669 isci_request->io_request_completion = NULL; 670 671 /* Peek at the status of the request. This will tell 672 * us if there was special handling on the request such that it 673 * needs to be detached and freed here. 674 */ 675 spin_lock_irqsave(&isci_request->state_lock, flags); 676 677 needs_cleanup_handling 678 = isci_request_is_dealloc_managed( 679 isci_request->status); 680 681 spin_unlock_irqrestore(&isci_request->state_lock, flags); 682 683 } 684 if (needs_cleanup_handling) { 685 686 dev_dbg(&ihost->pdev->dev, 687 "%s: cleanup isci_device=%p, request=%p\n", 688 __func__, idev, isci_request); 689 690 if (isci_request != NULL) { 691 spin_lock_irqsave(&ihost->scic_lock, flags); 692 isci_free_tag(ihost, isci_request->io_tag); 693 isci_request_change_state(isci_request, unallocated); 694 list_del_init(&isci_request->dev_node); 695 spin_unlock_irqrestore(&ihost->scic_lock, flags); 696 } 697 } 698 } 699 } 700 701 /** 702 * isci_terminate_pending_requests() - This function will change the all of the 703 * requests on the given device's state to "aborting", will terminate the 704 * requests, and wait for them to complete. This function must only be 705 * called from a thread that can wait. Note that the requests are all 706 * terminated and completed (back to the host, if started there). 707 * @isci_host: This parameter specifies SCU. 708 * @idev: This parameter specifies the target. 709 * 710 */ 711 void isci_terminate_pending_requests(struct isci_host *ihost, 712 struct isci_remote_device *idev) 713 { 714 struct completion request_completion; 715 enum isci_request_status old_state; 716 unsigned long flags; 717 LIST_HEAD(list); 718 719 spin_lock_irqsave(&ihost->scic_lock, flags); 720 list_splice_init(&idev->reqs_in_process, &list); 721 722 /* assumes that isci_terminate_request_core deletes from the list */ 723 while (!list_empty(&list)) { 724 struct isci_request *ireq = list_entry(list.next, typeof(*ireq), dev_node); 725 726 /* Change state to "terminating" if it is currently 727 * "started". 728 */ 729 old_state = isci_request_change_started_to_newstate(ireq, 730 &request_completion, 731 terminating); 732 switch (old_state) { 733 case started: 734 case completed: 735 case aborting: 736 break; 737 default: 738 /* termination in progress, or otherwise dispositioned. 739 * We know the request was on 'list' so should be safe 740 * to move it back to reqs_in_process 741 */ 742 list_move(&ireq->dev_node, &idev->reqs_in_process); 743 ireq = NULL; 744 break; 745 } 746 747 if (!ireq) 748 continue; 749 spin_unlock_irqrestore(&ihost->scic_lock, flags); 750 751 init_completion(&request_completion); 752 753 dev_dbg(&ihost->pdev->dev, 754 "%s: idev=%p request=%p; task=%p old_state=%d\n", 755 __func__, idev, ireq, 756 (!test_bit(IREQ_TMF, &ireq->flags) 757 ? isci_request_access_task(ireq) 758 : NULL), 759 old_state); 760 761 /* If the old_state is started: 762 * This request was not already being aborted. If it had been, 763 * then the aborting I/O (ie. the TMF request) would not be in 764 * the aborting state, and thus would be terminated here. Note 765 * that since the TMF completion's call to the kernel function 766 * "complete()" does not happen until the pending I/O request 767 * terminate fully completes, we do not have to implement a 768 * special wait here for already aborting requests - the 769 * termination of the TMF request will force the request 770 * to finish it's already started terminate. 771 * 772 * If old_state == completed: 773 * This request completed from the SCU hardware perspective 774 * and now just needs cleaning up in terms of freeing the 775 * request and potentially calling up to libsas. 776 * 777 * If old_state == aborting: 778 * This request has already gone through a TMF timeout, but may 779 * not have been terminated; needs cleaning up at least. 780 */ 781 isci_terminate_request_core(ihost, idev, ireq); 782 spin_lock_irqsave(&ihost->scic_lock, flags); 783 } 784 spin_unlock_irqrestore(&ihost->scic_lock, flags); 785 } 786 787 /** 788 * isci_task_send_lu_reset_sas() - This function is called by of the SAS Domain 789 * Template functions. 790 * @lun: This parameter specifies the lun to be reset. 791 * 792 * status, zero indicates success. 793 */ 794 static int isci_task_send_lu_reset_sas( 795 struct isci_host *isci_host, 796 struct isci_remote_device *isci_device, 797 u8 *lun) 798 { 799 struct isci_tmf tmf; 800 int ret = TMF_RESP_FUNC_FAILED; 801 802 dev_dbg(&isci_host->pdev->dev, 803 "%s: isci_host = %p, isci_device = %p\n", 804 __func__, isci_host, isci_device); 805 /* Send the LUN reset to the target. By the time the call returns, 806 * the TMF has fully exected in the target (in which case the return 807 * value is "TMF_RESP_FUNC_COMPLETE", or the request timed-out (or 808 * was otherwise unable to be executed ("TMF_RESP_FUNC_FAILED"). 809 */ 810 isci_task_build_tmf(&tmf, isci_tmf_ssp_lun_reset, NULL, NULL); 811 812 #define ISCI_LU_RESET_TIMEOUT_MS 2000 /* 2 second timeout. */ 813 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, ISCI_LU_RESET_TIMEOUT_MS); 814 815 if (ret == TMF_RESP_FUNC_COMPLETE) 816 dev_dbg(&isci_host->pdev->dev, 817 "%s: %p: TMF_LU_RESET passed\n", 818 __func__, isci_device); 819 else 820 dev_dbg(&isci_host->pdev->dev, 821 "%s: %p: TMF_LU_RESET failed (%x)\n", 822 __func__, isci_device, ret); 823 824 return ret; 825 } 826 827 int isci_task_lu_reset(struct domain_device *dev, u8 *lun) 828 { 829 struct isci_host *isci_host = dev_to_ihost(dev); 830 struct isci_remote_device *isci_device; 831 unsigned long flags; 832 int ret; 833 834 spin_lock_irqsave(&isci_host->scic_lock, flags); 835 isci_device = isci_lookup_device(dev); 836 spin_unlock_irqrestore(&isci_host->scic_lock, flags); 837 838 dev_dbg(&isci_host->pdev->dev, 839 "%s: domain_device=%p, isci_host=%p; isci_device=%p\n", 840 __func__, dev, isci_host, isci_device); 841 842 if (!isci_device) { 843 /* If the device is gone, stop the escalations. */ 844 dev_dbg(&isci_host->pdev->dev, "%s: No dev\n", __func__); 845 846 ret = TMF_RESP_FUNC_COMPLETE; 847 goto out; 848 } 849 850 /* Send the task management part of the reset. */ 851 if (dev_is_sata(dev)) { 852 sas_ata_schedule_reset(dev); 853 ret = TMF_RESP_FUNC_COMPLETE; 854 } else 855 ret = isci_task_send_lu_reset_sas(isci_host, isci_device, lun); 856 857 /* If the LUN reset worked, all the I/O can now be terminated. */ 858 if (ret == TMF_RESP_FUNC_COMPLETE) 859 /* Terminate all I/O now. */ 860 isci_terminate_pending_requests(isci_host, 861 isci_device); 862 863 out: 864 isci_put_device(isci_device); 865 return ret; 866 } 867 868 869 /* int (*lldd_clear_nexus_port)(struct asd_sas_port *); */ 870 int isci_task_clear_nexus_port(struct asd_sas_port *port) 871 { 872 return TMF_RESP_FUNC_FAILED; 873 } 874 875 876 877 int isci_task_clear_nexus_ha(struct sas_ha_struct *ha) 878 { 879 return TMF_RESP_FUNC_FAILED; 880 } 881 882 /* Task Management Functions. Must be called from process context. */ 883 884 /** 885 * isci_abort_task_process_cb() - This is a helper function for the abort task 886 * TMF command. It manages the request state with respect to the successful 887 * transmission / completion of the abort task request. 888 * @cb_state: This parameter specifies when this function was called - after 889 * the TMF request has been started and after it has timed-out. 890 * @tmf: This parameter specifies the TMF in progress. 891 * 892 * 893 */ 894 static void isci_abort_task_process_cb( 895 enum isci_tmf_cb_state cb_state, 896 struct isci_tmf *tmf, 897 void *cb_data) 898 { 899 struct isci_request *old_request; 900 901 old_request = (struct isci_request *)cb_data; 902 903 dev_dbg(&old_request->isci_host->pdev->dev, 904 "%s: tmf=%p, old_request=%p\n", 905 __func__, tmf, old_request); 906 907 switch (cb_state) { 908 909 case isci_tmf_started: 910 /* The TMF has been started. Nothing to do here, since the 911 * request state was already set to "aborted" by the abort 912 * task function. 913 */ 914 if ((old_request->status != aborted) 915 && (old_request->status != completed)) 916 dev_dbg(&old_request->isci_host->pdev->dev, 917 "%s: Bad request status (%d): tmf=%p, old_request=%p\n", 918 __func__, old_request->status, tmf, old_request); 919 break; 920 921 case isci_tmf_timed_out: 922 923 /* Set the task's state to "aborting", since the abort task 924 * function thread set it to "aborted" (above) in anticipation 925 * of the task management request working correctly. Since the 926 * timeout has now fired, the TMF request failed. We set the 927 * state such that the request completion will indicate the 928 * device is no longer present. 929 */ 930 isci_request_change_state(old_request, aborting); 931 break; 932 933 default: 934 dev_dbg(&old_request->isci_host->pdev->dev, 935 "%s: Bad cb_state (%d): tmf=%p, old_request=%p\n", 936 __func__, cb_state, tmf, old_request); 937 break; 938 } 939 } 940 941 /** 942 * isci_task_abort_task() - This function is one of the SAS Domain Template 943 * functions. This function is called by libsas to abort a specified task. 944 * @task: This parameter specifies the SAS task to abort. 945 * 946 * status, zero indicates success. 947 */ 948 int isci_task_abort_task(struct sas_task *task) 949 { 950 struct isci_host *isci_host = dev_to_ihost(task->dev); 951 DECLARE_COMPLETION_ONSTACK(aborted_io_completion); 952 struct isci_request *old_request = NULL; 953 enum isci_request_status old_state; 954 struct isci_remote_device *isci_device = NULL; 955 struct isci_tmf tmf; 956 int ret = TMF_RESP_FUNC_FAILED; 957 unsigned long flags; 958 int perform_termination = 0; 959 960 /* Get the isci_request reference from the task. Note that 961 * this check does not depend on the pending request list 962 * in the device, because tasks driving resets may land here 963 * after completion in the core. 964 */ 965 spin_lock_irqsave(&isci_host->scic_lock, flags); 966 spin_lock(&task->task_state_lock); 967 968 old_request = task->lldd_task; 969 970 /* If task is already done, the request isn't valid */ 971 if (!(task->task_state_flags & SAS_TASK_STATE_DONE) && 972 (task->task_state_flags & SAS_TASK_AT_INITIATOR) && 973 old_request) 974 isci_device = isci_lookup_device(task->dev); 975 976 spin_unlock(&task->task_state_lock); 977 spin_unlock_irqrestore(&isci_host->scic_lock, flags); 978 979 dev_dbg(&isci_host->pdev->dev, 980 "%s: dev = %p, task = %p, old_request == %p\n", 981 __func__, isci_device, task, old_request); 982 983 /* Device reset conditions signalled in task_state_flags are the 984 * responsbility of libsas to observe at the start of the error 985 * handler thread. 986 */ 987 if (!isci_device || !old_request) { 988 /* The request has already completed and there 989 * is nothing to do here other than to set the task 990 * done bit, and indicate that the task abort function 991 * was sucessful. 992 */ 993 spin_lock_irqsave(&task->task_state_lock, flags); 994 task->task_state_flags |= SAS_TASK_STATE_DONE; 995 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | 996 SAS_TASK_STATE_PENDING); 997 spin_unlock_irqrestore(&task->task_state_lock, flags); 998 999 ret = TMF_RESP_FUNC_COMPLETE; 1000 1001 dev_dbg(&isci_host->pdev->dev, 1002 "%s: abort task not needed for %p\n", 1003 __func__, task); 1004 goto out; 1005 } 1006 1007 spin_lock_irqsave(&isci_host->scic_lock, flags); 1008 1009 /* Check the request status and change to "aborted" if currently 1010 * "starting"; if true then set the I/O kernel completion 1011 * struct that will be triggered when the request completes. 1012 */ 1013 old_state = isci_task_validate_request_to_abort( 1014 old_request, isci_host, isci_device, 1015 &aborted_io_completion); 1016 if ((old_state != started) && 1017 (old_state != completed) && 1018 (old_state != aborting)) { 1019 1020 spin_unlock_irqrestore(&isci_host->scic_lock, flags); 1021 1022 /* The request was already being handled by someone else (because 1023 * they got to set the state away from started). 1024 */ 1025 dev_dbg(&isci_host->pdev->dev, 1026 "%s: device = %p; old_request %p already being aborted\n", 1027 __func__, 1028 isci_device, old_request); 1029 ret = TMF_RESP_FUNC_COMPLETE; 1030 goto out; 1031 } 1032 if (task->task_proto == SAS_PROTOCOL_SMP || 1033 sas_protocol_ata(task->task_proto) || 1034 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) { 1035 1036 spin_unlock_irqrestore(&isci_host->scic_lock, flags); 1037 1038 dev_dbg(&isci_host->pdev->dev, 1039 "%s: %s request" 1040 " or complete_in_target (%d), thus no TMF\n", 1041 __func__, 1042 ((task->task_proto == SAS_PROTOCOL_SMP) 1043 ? "SMP" 1044 : (sas_protocol_ata(task->task_proto) 1045 ? "SATA/STP" 1046 : "<other>") 1047 ), 1048 test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)); 1049 1050 if (test_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags)) { 1051 spin_lock_irqsave(&task->task_state_lock, flags); 1052 task->task_state_flags |= SAS_TASK_STATE_DONE; 1053 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | 1054 SAS_TASK_STATE_PENDING); 1055 spin_unlock_irqrestore(&task->task_state_lock, flags); 1056 ret = TMF_RESP_FUNC_COMPLETE; 1057 } else { 1058 spin_lock_irqsave(&task->task_state_lock, flags); 1059 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR | 1060 SAS_TASK_STATE_PENDING); 1061 spin_unlock_irqrestore(&task->task_state_lock, flags); 1062 } 1063 1064 /* STP and SMP devices are not sent a TMF, but the 1065 * outstanding I/O request is terminated below. This is 1066 * because SATA/STP and SMP discovery path timeouts directly 1067 * call the abort task interface for cleanup. 1068 */ 1069 perform_termination = 1; 1070 1071 } else { 1072 /* Fill in the tmf stucture */ 1073 isci_task_build_abort_task_tmf(&tmf, isci_tmf_ssp_task_abort, 1074 isci_abort_task_process_cb, 1075 old_request); 1076 1077 spin_unlock_irqrestore(&isci_host->scic_lock, flags); 1078 1079 #define ISCI_ABORT_TASK_TIMEOUT_MS 500 /* 1/2 second timeout */ 1080 ret = isci_task_execute_tmf(isci_host, isci_device, &tmf, 1081 ISCI_ABORT_TASK_TIMEOUT_MS); 1082 1083 if (ret == TMF_RESP_FUNC_COMPLETE) 1084 perform_termination = 1; 1085 else 1086 dev_dbg(&isci_host->pdev->dev, 1087 "%s: isci_task_send_tmf failed\n", __func__); 1088 } 1089 if (perform_termination) { 1090 set_bit(IREQ_COMPLETE_IN_TARGET, &old_request->flags); 1091 1092 /* Clean up the request on our side, and wait for the aborted 1093 * I/O to complete. 1094 */ 1095 isci_terminate_request_core(isci_host, isci_device, 1096 old_request); 1097 } 1098 1099 /* Make sure we do not leave a reference to aborted_io_completion */ 1100 old_request->io_request_completion = NULL; 1101 out: 1102 isci_put_device(isci_device); 1103 return ret; 1104 } 1105 1106 /** 1107 * isci_task_abort_task_set() - This function is one of the SAS Domain Template 1108 * functions. This is one of the Task Management functoins called by libsas, 1109 * to abort all task for the given lun. 1110 * @d_device: This parameter specifies the domain device associated with this 1111 * request. 1112 * @lun: This parameter specifies the lun associated with this request. 1113 * 1114 * status, zero indicates success. 1115 */ 1116 int isci_task_abort_task_set( 1117 struct domain_device *d_device, 1118 u8 *lun) 1119 { 1120 return TMF_RESP_FUNC_FAILED; 1121 } 1122 1123 1124 /** 1125 * isci_task_clear_aca() - This function is one of the SAS Domain Template 1126 * functions. This is one of the Task Management functoins called by libsas. 1127 * @d_device: This parameter specifies the domain device associated with this 1128 * request. 1129 * @lun: This parameter specifies the lun associated with this request. 1130 * 1131 * status, zero indicates success. 1132 */ 1133 int isci_task_clear_aca( 1134 struct domain_device *d_device, 1135 u8 *lun) 1136 { 1137 return TMF_RESP_FUNC_FAILED; 1138 } 1139 1140 1141 1142 /** 1143 * isci_task_clear_task_set() - This function is one of the SAS Domain Template 1144 * functions. This is one of the Task Management functoins called by libsas. 1145 * @d_device: This parameter specifies the domain device associated with this 1146 * request. 1147 * @lun: This parameter specifies the lun associated with this request. 1148 * 1149 * status, zero indicates success. 1150 */ 1151 int isci_task_clear_task_set( 1152 struct domain_device *d_device, 1153 u8 *lun) 1154 { 1155 return TMF_RESP_FUNC_FAILED; 1156 } 1157 1158 1159 /** 1160 * isci_task_query_task() - This function is implemented to cause libsas to 1161 * correctly escalate the failed abort to a LUN or target reset (this is 1162 * because sas_scsi_find_task libsas function does not correctly interpret 1163 * all return codes from the abort task call). When TMF_RESP_FUNC_SUCC is 1164 * returned, libsas turns this into a LUN reset; when FUNC_FAILED is 1165 * returned, libsas will turn this into a target reset 1166 * @task: This parameter specifies the sas task being queried. 1167 * @lun: This parameter specifies the lun associated with this request. 1168 * 1169 * status, zero indicates success. 1170 */ 1171 int isci_task_query_task( 1172 struct sas_task *task) 1173 { 1174 /* See if there is a pending device reset for this device. */ 1175 if (task->task_state_flags & SAS_TASK_NEED_DEV_RESET) 1176 return TMF_RESP_FUNC_FAILED; 1177 else 1178 return TMF_RESP_FUNC_SUCC; 1179 } 1180 1181 /* 1182 * isci_task_request_complete() - This function is called by the sci core when 1183 * an task request completes. 1184 * @ihost: This parameter specifies the ISCI host object 1185 * @ireq: This parameter is the completed isci_request object. 1186 * @completion_status: This parameter specifies the completion status from the 1187 * sci core. 1188 * 1189 * none. 1190 */ 1191 void 1192 isci_task_request_complete(struct isci_host *ihost, 1193 struct isci_request *ireq, 1194 enum sci_task_status completion_status) 1195 { 1196 struct isci_tmf *tmf = isci_request_access_tmf(ireq); 1197 struct completion *tmf_complete = NULL; 1198 struct completion *request_complete = ireq->io_request_completion; 1199 1200 dev_dbg(&ihost->pdev->dev, 1201 "%s: request = %p, status=%d\n", 1202 __func__, ireq, completion_status); 1203 1204 isci_request_change_state(ireq, completed); 1205 1206 set_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags); 1207 1208 if (tmf) { 1209 tmf->status = completion_status; 1210 1211 if (tmf->proto == SAS_PROTOCOL_SSP) { 1212 memcpy(&tmf->resp.resp_iu, 1213 &ireq->ssp.rsp, 1214 SSP_RESP_IU_MAX_SIZE); 1215 } else if (tmf->proto == SAS_PROTOCOL_SATA) { 1216 memcpy(&tmf->resp.d2h_fis, 1217 &ireq->stp.rsp, 1218 sizeof(struct dev_to_host_fis)); 1219 } 1220 /* PRINT_TMF( ((struct isci_tmf *)request->task)); */ 1221 tmf_complete = tmf->complete; 1222 } 1223 sci_controller_complete_io(ihost, ireq->target_device, ireq); 1224 /* set the 'terminated' flag handle to make sure it cannot be terminated 1225 * or completed again. 1226 */ 1227 set_bit(IREQ_TERMINATED, &ireq->flags); 1228 1229 /* As soon as something is in the terminate path, deallocation is 1230 * managed there. Note that the final non-managed state of a task 1231 * request is "completed". 1232 */ 1233 if ((ireq->status == completed) || 1234 !isci_request_is_dealloc_managed(ireq->status)) { 1235 isci_request_change_state(ireq, unallocated); 1236 isci_free_tag(ihost, ireq->io_tag); 1237 list_del_init(&ireq->dev_node); 1238 } 1239 1240 /* "request_complete" is set if the task was being terminated. */ 1241 if (request_complete) 1242 complete(request_complete); 1243 1244 /* The task management part completes last. */ 1245 if (tmf_complete) 1246 complete(tmf_complete); 1247 } 1248 1249 static int isci_reset_device(struct isci_host *ihost, 1250 struct domain_device *dev, 1251 struct isci_remote_device *idev) 1252 { 1253 int rc; 1254 unsigned long flags; 1255 enum sci_status status; 1256 struct sas_phy *phy = sas_get_local_phy(dev); 1257 struct isci_port *iport = dev->port->lldd_port; 1258 1259 dev_dbg(&ihost->pdev->dev, "%s: idev %p\n", __func__, idev); 1260 1261 spin_lock_irqsave(&ihost->scic_lock, flags); 1262 status = sci_remote_device_reset(idev); 1263 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1264 1265 if (status != SCI_SUCCESS) { 1266 dev_dbg(&ihost->pdev->dev, 1267 "%s: sci_remote_device_reset(%p) returned %d!\n", 1268 __func__, idev, status); 1269 rc = TMF_RESP_FUNC_FAILED; 1270 goto out; 1271 } 1272 1273 if (scsi_is_sas_phy_local(phy)) { 1274 struct isci_phy *iphy = &ihost->phys[phy->number]; 1275 1276 rc = isci_port_perform_hard_reset(ihost, iport, iphy); 1277 } else 1278 rc = sas_phy_reset(phy, !dev_is_sata(dev)); 1279 1280 /* Terminate in-progress I/O now. */ 1281 isci_remote_device_nuke_requests(ihost, idev); 1282 1283 /* Since all pending TCs have been cleaned, resume the RNC. */ 1284 spin_lock_irqsave(&ihost->scic_lock, flags); 1285 status = sci_remote_device_reset_complete(idev); 1286 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1287 1288 if (status != SCI_SUCCESS) { 1289 dev_dbg(&ihost->pdev->dev, 1290 "%s: sci_remote_device_reset_complete(%p) " 1291 "returned %d!\n", __func__, idev, status); 1292 } 1293 1294 dev_dbg(&ihost->pdev->dev, "%s: idev %p complete.\n", __func__, idev); 1295 out: 1296 sas_put_local_phy(phy); 1297 return rc; 1298 } 1299 1300 int isci_task_I_T_nexus_reset(struct domain_device *dev) 1301 { 1302 struct isci_host *ihost = dev_to_ihost(dev); 1303 struct isci_remote_device *idev; 1304 unsigned long flags; 1305 int ret; 1306 1307 spin_lock_irqsave(&ihost->scic_lock, flags); 1308 idev = isci_lookup_device(dev); 1309 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1310 1311 if (!idev) { 1312 /* XXX: need to cleanup any ireqs targeting this 1313 * domain_device 1314 */ 1315 ret = TMF_RESP_FUNC_COMPLETE; 1316 goto out; 1317 } 1318 1319 ret = isci_reset_device(ihost, dev, idev); 1320 out: 1321 isci_put_device(idev); 1322 return ret; 1323 } 1324