xref: /openbmc/linux/drivers/scsi/isci/request.c (revision babbdf5b)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include <scsi/scsi_cmnd.h>
57 #include "isci.h"
58 #include "task.h"
59 #include "request.h"
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
62 #include "sas.h"
63 
64 #undef C
65 #define C(a) (#a)
66 const char *req_state_name(enum sci_base_request_states state)
67 {
68 	static const char * const strings[] = REQUEST_STATES;
69 
70 	return strings[state];
71 }
72 #undef C
73 
74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 							int idx)
76 {
77 	if (idx == 0)
78 		return &ireq->tc->sgl_pair_ab;
79 	else if (idx == 1)
80 		return &ireq->tc->sgl_pair_cd;
81 	else if (idx < 0)
82 		return NULL;
83 	else
84 		return &ireq->sg_table[idx - 2];
85 }
86 
87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 					  struct isci_request *ireq, u32 idx)
89 {
90 	u32 offset;
91 
92 	if (idx == 0) {
93 		offset = (void *) &ireq->tc->sgl_pair_ab -
94 			 (void *) &ihost->task_context_table[0];
95 		return ihost->tc_dma + offset;
96 	} else if (idx == 1) {
97 		offset = (void *) &ireq->tc->sgl_pair_cd -
98 			 (void *) &ihost->task_context_table[0];
99 		return ihost->tc_dma + offset;
100 	}
101 
102 	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103 }
104 
105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106 {
107 	e->length = sg_dma_len(sg);
108 	e->address_upper = upper_32_bits(sg_dma_address(sg));
109 	e->address_lower = lower_32_bits(sg_dma_address(sg));
110 	e->address_modifier = 0;
111 }
112 
113 static void sci_request_build_sgl(struct isci_request *ireq)
114 {
115 	struct isci_host *ihost = ireq->isci_host;
116 	struct sas_task *task = isci_request_access_task(ireq);
117 	struct scatterlist *sg = NULL;
118 	dma_addr_t dma_addr;
119 	u32 sg_idx = 0;
120 	struct scu_sgl_element_pair *scu_sg   = NULL;
121 	struct scu_sgl_element_pair *prev_sg  = NULL;
122 
123 	if (task->num_scatter > 0) {
124 		sg = task->scatter;
125 
126 		while (sg) {
127 			scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 			init_sgl_element(&scu_sg->A, sg);
129 			sg = sg_next(sg);
130 			if (sg) {
131 				init_sgl_element(&scu_sg->B, sg);
132 				sg = sg_next(sg);
133 			} else
134 				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135 
136 			if (prev_sg) {
137 				dma_addr = to_sgl_element_pair_dma(ihost,
138 								   ireq,
139 								   sg_idx);
140 
141 				prev_sg->next_pair_upper =
142 					upper_32_bits(dma_addr);
143 				prev_sg->next_pair_lower =
144 					lower_32_bits(dma_addr);
145 			}
146 
147 			prev_sg = scu_sg;
148 			sg_idx++;
149 		}
150 	} else {	/* handle when no sg */
151 		scu_sg = to_sgl_element_pair(ireq, sg_idx);
152 
153 		dma_addr = dma_map_single(&ihost->pdev->dev,
154 					  task->scatter,
155 					  task->total_xfer_len,
156 					  task->data_dir);
157 
158 		ireq->zero_scatter_daddr = dma_addr;
159 
160 		scu_sg->A.length = task->total_xfer_len;
161 		scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 		scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 	}
164 
165 	if (scu_sg) {
166 		scu_sg->next_pair_upper = 0;
167 		scu_sg->next_pair_lower = 0;
168 	}
169 }
170 
171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172 {
173 	struct ssp_cmd_iu *cmd_iu;
174 	struct sas_task *task = isci_request_access_task(ireq);
175 
176 	cmd_iu = &ireq->ssp.cmd;
177 
178 	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 	cmd_iu->add_cdb_len = 0;
180 	cmd_iu->_r_a = 0;
181 	cmd_iu->_r_b = 0;
182 	cmd_iu->en_fburst = 0; /* unsupported */
183 	cmd_iu->task_prio = task->ssp_task.task_prio;
184 	cmd_iu->task_attr = task->ssp_task.task_attr;
185 	cmd_iu->_r_c = 0;
186 
187 	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 		       (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189 }
190 
191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192 {
193 	struct ssp_task_iu *task_iu;
194 	struct sas_task *task = isci_request_access_task(ireq);
195 	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196 
197 	task_iu = &ireq->ssp.tmf;
198 
199 	memset(task_iu, 0, sizeof(struct ssp_task_iu));
200 
201 	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202 
203 	task_iu->task_func = isci_tmf->tmf_code;
204 	task_iu->task_tag =
205 		(test_bit(IREQ_TMF, &ireq->flags)) ?
206 		isci_tmf->io_tag :
207 		SCI_CONTROLLER_INVALID_IO_TAG;
208 }
209 
210 /*
211  * This method is will fill in the SCU Task Context for any type of SSP request.
212  */
213 static void scu_ssp_request_construct_task_context(
214 	struct isci_request *ireq,
215 	struct scu_task_context *task_context)
216 {
217 	dma_addr_t dma_addr;
218 	struct isci_remote_device *idev;
219 	struct isci_port *iport;
220 
221 	idev = ireq->target_device;
222 	iport = idev->owning_port;
223 
224 	/* Fill in the TC with its required data */
225 	task_context->abort = 0;
226 	task_context->priority = 0;
227 	task_context->initiator_request = 1;
228 	task_context->connection_rate = idev->connection_rate;
229 	task_context->protocol_engine_index = ISCI_PEG;
230 	task_context->logical_port_index = iport->physical_port_index;
231 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 	task_context->valid = SCU_TASK_CONTEXT_VALID;
233 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234 
235 	task_context->remote_node_index = idev->rnc.remote_node_index;
236 	task_context->command_code = 0;
237 
238 	task_context->link_layer_control = 0;
239 	task_context->do_not_dma_ssp_good_response = 1;
240 	task_context->strict_ordering = 0;
241 	task_context->control_frame = 0;
242 	task_context->timeout_enable = 0;
243 	task_context->block_guard_enable = 0;
244 
245 	task_context->address_modifier = 0;
246 
247 	/* task_context->type.ssp.tag = ireq->io_tag; */
248 	task_context->task_phase = 0x01;
249 
250 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 			      (iport->physical_port_index <<
253 			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 			      ISCI_TAG_TCI(ireq->io_tag));
255 
256 	/*
257 	 * Copy the physical address for the command buffer to the
258 	 * SCU Task Context
259 	 */
260 	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261 
262 	task_context->command_iu_upper = upper_32_bits(dma_addr);
263 	task_context->command_iu_lower = lower_32_bits(dma_addr);
264 
265 	/*
266 	 * Copy the physical address for the response buffer to the
267 	 * SCU Task Context
268 	 */
269 	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270 
271 	task_context->response_iu_upper = upper_32_bits(dma_addr);
272 	task_context->response_iu_lower = lower_32_bits(dma_addr);
273 }
274 
275 static u8 scu_bg_blk_size(struct scsi_device *sdp)
276 {
277 	switch (sdp->sector_size) {
278 	case 512:
279 		return 0;
280 	case 1024:
281 		return 1;
282 	case 4096:
283 		return 3;
284 	default:
285 		return 0xff;
286 	}
287 }
288 
289 static u32 scu_dif_bytes(u32 len, u32 sector_size)
290 {
291 	return (len >> ilog2(sector_size)) * 8;
292 }
293 
294 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295 {
296 	struct scu_task_context *tc = ireq->tc;
297 	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 	u8 blk_sz = scu_bg_blk_size(scmd->device);
299 
300 	tc->block_guard_enable = 1;
301 	tc->blk_prot_en = 1;
302 	tc->blk_sz = blk_sz;
303 	/* DIF write insert */
304 	tc->blk_prot_func = 0x2;
305 
306 	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 						   scmd->device->sector_size);
308 
309 	/* always init to 0, used by hw */
310 	tc->interm_crc_val = 0;
311 
312 	tc->init_crc_seed = 0;
313 	tc->app_tag_verify = 0;
314 	tc->app_tag_gen = 0;
315 	tc->ref_tag_seed_verify = 0;
316 
317 	/* always init to same as bg_blk_sz */
318 	tc->UD_bytes_immed_val = scmd->device->sector_size;
319 
320 	tc->reserved_DC_0 = 0;
321 
322 	/* always init to 8 */
323 	tc->DIF_bytes_immed_val = 8;
324 
325 	tc->reserved_DC_1 = 0;
326 	tc->bgc_blk_sz = scmd->device->sector_size;
327 	tc->reserved_E0_0 = 0;
328 	tc->app_tag_gen_mask = 0;
329 
330 	/** setup block guard control **/
331 	tc->bgctl = 0;
332 
333 	/* DIF write insert */
334 	tc->bgctl_f.op = 0x2;
335 
336 	tc->app_tag_verify_mask = 0;
337 
338 	/* must init to 0 for hw */
339 	tc->blk_guard_err = 0;
340 
341 	tc->reserved_E8_0 = 0;
342 
343 	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 		tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
345 	else if (type & SCSI_PROT_DIF_TYPE3)
346 		tc->ref_tag_seed_gen = 0;
347 }
348 
349 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350 {
351 	struct scu_task_context *tc = ireq->tc;
352 	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 	u8 blk_sz = scu_bg_blk_size(scmd->device);
354 
355 	tc->block_guard_enable = 1;
356 	tc->blk_prot_en = 1;
357 	tc->blk_sz = blk_sz;
358 	/* DIF read strip */
359 	tc->blk_prot_func = 0x1;
360 
361 	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 						   scmd->device->sector_size);
363 
364 	/* always init to 0, used by hw */
365 	tc->interm_crc_val = 0;
366 
367 	tc->init_crc_seed = 0;
368 	tc->app_tag_verify = 0;
369 	tc->app_tag_gen = 0;
370 
371 	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 		tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
373 	else if (type & SCSI_PROT_DIF_TYPE3)
374 		tc->ref_tag_seed_verify = 0;
375 
376 	/* always init to same as bg_blk_sz */
377 	tc->UD_bytes_immed_val = scmd->device->sector_size;
378 
379 	tc->reserved_DC_0 = 0;
380 
381 	/* always init to 8 */
382 	tc->DIF_bytes_immed_val = 8;
383 
384 	tc->reserved_DC_1 = 0;
385 	tc->bgc_blk_sz = scmd->device->sector_size;
386 	tc->reserved_E0_0 = 0;
387 	tc->app_tag_gen_mask = 0;
388 
389 	/** setup block guard control **/
390 	tc->bgctl = 0;
391 
392 	/* DIF read strip */
393 	tc->bgctl_f.crc_verify = 1;
394 	tc->bgctl_f.op = 0x1;
395 	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 		tc->bgctl_f.ref_tag_chk = 1;
397 		tc->bgctl_f.app_f_detect = 1;
398 	} else if (type & SCSI_PROT_DIF_TYPE3)
399 		tc->bgctl_f.app_ref_f_detect = 1;
400 
401 	tc->app_tag_verify_mask = 0;
402 
403 	/* must init to 0 for hw */
404 	tc->blk_guard_err = 0;
405 
406 	tc->reserved_E8_0 = 0;
407 	tc->ref_tag_seed_gen = 0;
408 }
409 
410 /*
411  * This method is will fill in the SCU Task Context for a SSP IO request.
412  */
413 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 						      enum dma_data_direction dir,
415 						      u32 len)
416 {
417 	struct scu_task_context *task_context = ireq->tc;
418 	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 	struct scsi_cmnd *scmd = sas_task->uldd_task;
420 	u8 prot_type = scsi_get_prot_type(scmd);
421 	u8 prot_op = scsi_get_prot_op(scmd);
422 
423 	scu_ssp_request_construct_task_context(ireq, task_context);
424 
425 	task_context->ssp_command_iu_length =
426 		sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 	task_context->type.ssp.frame_type = SSP_COMMAND;
428 
429 	switch (dir) {
430 	case DMA_FROM_DEVICE:
431 	case DMA_NONE:
432 	default:
433 		task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 		break;
435 	case DMA_TO_DEVICE:
436 		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 		break;
438 	}
439 
440 	task_context->transfer_length_bytes = len;
441 
442 	if (task_context->transfer_length_bytes > 0)
443 		sci_request_build_sgl(ireq);
444 
445 	if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 		if (prot_op == SCSI_PROT_READ_STRIP)
447 			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 		else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450 	}
451 }
452 
453 /**
454  * scu_ssp_task_request_construct_task_context() - This method will fill in
455  *    the SCU Task Context for a SSP Task request.  The following important
456  *    settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH.  This
457  *    ensures that the task request is issued ahead of other task destined
458  *    for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD.  This
459  *    simply indicates that a normal request type (i.e. non-raw frame) is
460  *    being utilized to perform task management. -#control_frame == 1.  This
461  *    ensures that the proper endianness is set so that the bytes are
462  *    transmitted in the right order for a task frame.
463  * @ireq: This parameter specifies the task request object being constructed.
464  */
465 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466 {
467 	struct scu_task_context *task_context = ireq->tc;
468 
469 	scu_ssp_request_construct_task_context(ireq, task_context);
470 
471 	task_context->control_frame                = 1;
472 	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
473 	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
474 	task_context->transfer_length_bytes        = 0;
475 	task_context->type.ssp.frame_type          = SSP_TASK;
476 	task_context->ssp_command_iu_length =
477 		sizeof(struct ssp_task_iu) / sizeof(u32);
478 }
479 
480 /**
481  * scu_sata_request_construct_task_context()
482  * This method is will fill in the SCU Task Context for any type of SATA
483  *    request.  This is called from the various SATA constructors.
484  * @ireq: The general IO request object which is to be used in
485  *    constructing the SCU task context.
486  * @task_context: The buffer pointer for the SCU task context which is being
487  *    constructed.
488  *
489  * The general io request construction is complete. The buffer assignment for
490  * the command buffer is complete. none Revisit task context construction to
491  * determine what is common for SSP/SMP/STP task context structures.
492  */
493 static void scu_sata_request_construct_task_context(
494 	struct isci_request *ireq,
495 	struct scu_task_context *task_context)
496 {
497 	dma_addr_t dma_addr;
498 	struct isci_remote_device *idev;
499 	struct isci_port *iport;
500 
501 	idev = ireq->target_device;
502 	iport = idev->owning_port;
503 
504 	/* Fill in the TC with its required data */
505 	task_context->abort = 0;
506 	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 	task_context->initiator_request = 1;
508 	task_context->connection_rate = idev->connection_rate;
509 	task_context->protocol_engine_index = ISCI_PEG;
510 	task_context->logical_port_index = iport->physical_port_index;
511 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 	task_context->valid = SCU_TASK_CONTEXT_VALID;
513 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514 
515 	task_context->remote_node_index = idev->rnc.remote_node_index;
516 	task_context->command_code = 0;
517 
518 	task_context->link_layer_control = 0;
519 	task_context->do_not_dma_ssp_good_response = 1;
520 	task_context->strict_ordering = 0;
521 	task_context->control_frame = 0;
522 	task_context->timeout_enable = 0;
523 	task_context->block_guard_enable = 0;
524 
525 	task_context->address_modifier = 0;
526 	task_context->task_phase = 0x01;
527 
528 	task_context->ssp_command_iu_length =
529 		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530 
531 	/* Set the first word of the H2D REG FIS */
532 	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533 
534 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 			      (iport->physical_port_index <<
537 			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 			      ISCI_TAG_TCI(ireq->io_tag));
539 	/*
540 	 * Copy the physical address for the command buffer to the SCU Task
541 	 * Context. We must offset the command buffer by 4 bytes because the
542 	 * first 4 bytes are transfered in the body of the TC.
543 	 */
544 	dma_addr = sci_io_request_get_dma_addr(ireq,
545 						((char *) &ireq->stp.cmd) +
546 						sizeof(u32));
547 
548 	task_context->command_iu_upper = upper_32_bits(dma_addr);
549 	task_context->command_iu_lower = lower_32_bits(dma_addr);
550 
551 	/* SATA Requests do not have a response buffer */
552 	task_context->response_iu_upper = 0;
553 	task_context->response_iu_lower = 0;
554 }
555 
556 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557 {
558 	struct scu_task_context *task_context = ireq->tc;
559 
560 	scu_sata_request_construct_task_context(ireq, task_context);
561 
562 	task_context->control_frame         = 0;
563 	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
564 	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 	task_context->type.stp.fis_type     = FIS_REGH2D;
566 	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567 }
568 
569 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 							  bool copy_rx_frame)
571 {
572 	struct isci_stp_request *stp_req = &ireq->stp.req;
573 
574 	scu_stp_raw_request_construct_task_context(ireq);
575 
576 	stp_req->status = 0;
577 	stp_req->sgl.offset = 0;
578 	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579 
580 	if (copy_rx_frame) {
581 		sci_request_build_sgl(ireq);
582 		stp_req->sgl.index = 0;
583 	} else {
584 		/* The user does not want the data copied to the SGL buffer location */
585 		stp_req->sgl.index = -1;
586 	}
587 
588 	return SCI_SUCCESS;
589 }
590 
591 /*
592  * sci_stp_optimized_request_construct()
593  * @ireq: This parameter specifies the request to be constructed as an
594  *    optimized request.
595  * @optimized_task_type: This parameter specifies whether the request is to be
596  *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597  *    value of 1 indicates NCQ.
598  *
599  * This method will perform request construction common to all types of STP
600  * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601  * returns an indication as to whether the construction was successful.
602  */
603 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 						     u8 optimized_task_type,
605 						     u32 len,
606 						     enum dma_data_direction dir)
607 {
608 	struct scu_task_context *task_context = ireq->tc;
609 
610 	/* Build the STP task context structure */
611 	scu_sata_request_construct_task_context(ireq, task_context);
612 
613 	/* Copy over the SGL elements */
614 	sci_request_build_sgl(ireq);
615 
616 	/* Copy over the number of bytes to be transfered */
617 	task_context->transfer_length_bytes = len;
618 
619 	if (dir == DMA_TO_DEVICE) {
620 		/*
621 		 * The difference between the DMA IN and DMA OUT request task type
622 		 * values are consistent with the difference between FPDMA READ
623 		 * and FPDMA WRITE values.  Add the supplied task type parameter
624 		 * to this difference to set the task type properly for this
625 		 * DATA OUT (WRITE) case. */
626 		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 								 - SCU_TASK_TYPE_DMA_IN);
628 	} else {
629 		/*
630 		 * For the DATA IN (READ) case, simply save the supplied
631 		 * optimized task type. */
632 		task_context->task_type = optimized_task_type;
633 	}
634 }
635 
636 static void sci_atapi_construct(struct isci_request *ireq)
637 {
638 	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 	struct sas_task *task;
640 
641 	/* To simplify the implementation we take advantage of the
642 	 * silicon's partial acceleration of atapi protocol (dma data
643 	 * transfers), so we promote all commands to dma protocol.  This
644 	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645 	 */
646 	h2d_fis->features |= ATAPI_PKT_DMA;
647 
648 	scu_stp_raw_request_construct_task_context(ireq);
649 
650 	task = isci_request_access_task(ireq);
651 	if (task->data_dir == DMA_NONE)
652 		task->total_xfer_len = 0;
653 
654 	/* clear the response so we can detect arrivial of an
655 	 * unsolicited h2d fis
656 	 */
657 	ireq->stp.rsp.fis_type = 0;
658 }
659 
660 static enum sci_status
661 sci_io_request_construct_sata(struct isci_request *ireq,
662 			       u32 len,
663 			       enum dma_data_direction dir,
664 			       bool copy)
665 {
666 	enum sci_status status = SCI_SUCCESS;
667 	struct sas_task *task = isci_request_access_task(ireq);
668 	struct domain_device *dev = ireq->target_device->domain_dev;
669 
670 	/* check for management protocols */
671 	if (test_bit(IREQ_TMF, &ireq->flags)) {
672 		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673 
674 		dev_err(&ireq->owning_controller->pdev->dev,
675 			"%s: Request 0x%p received un-handled SAT "
676 			"management protocol 0x%x.\n",
677 			__func__, ireq, tmf->tmf_code);
678 
679 		return SCI_FAILURE;
680 	}
681 
682 	if (!sas_protocol_ata(task->task_proto)) {
683 		dev_err(&ireq->owning_controller->pdev->dev,
684 			"%s: Non-ATA protocol in SATA path: 0x%x\n",
685 			__func__,
686 			task->task_proto);
687 		return SCI_FAILURE;
688 
689 	}
690 
691 	/* ATAPI */
692 	if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 	    task->ata_task.fis.command == ATA_CMD_PACKET) {
694 		sci_atapi_construct(ireq);
695 		return SCI_SUCCESS;
696 	}
697 
698 	/* non data */
699 	if (task->data_dir == DMA_NONE) {
700 		scu_stp_raw_request_construct_task_context(ireq);
701 		return SCI_SUCCESS;
702 	}
703 
704 	/* NCQ */
705 	if (task->ata_task.use_ncq) {
706 		sci_stp_optimized_request_construct(ireq,
707 							 SCU_TASK_TYPE_FPDMAQ_READ,
708 							 len, dir);
709 		return SCI_SUCCESS;
710 	}
711 
712 	/* DMA */
713 	if (task->ata_task.dma_xfer) {
714 		sci_stp_optimized_request_construct(ireq,
715 							 SCU_TASK_TYPE_DMA_IN,
716 							 len, dir);
717 		return SCI_SUCCESS;
718 	} else /* PIO */
719 		return sci_stp_pio_request_construct(ireq, copy);
720 
721 	return status;
722 }
723 
724 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725 {
726 	struct sas_task *task = isci_request_access_task(ireq);
727 
728 	ireq->protocol = SAS_PROTOCOL_SSP;
729 
730 	scu_ssp_io_request_construct_task_context(ireq,
731 						  task->data_dir,
732 						  task->total_xfer_len);
733 
734 	sci_io_request_build_ssp_command_iu(ireq);
735 
736 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737 
738 	return SCI_SUCCESS;
739 }
740 
741 enum sci_status sci_task_request_construct_ssp(
742 	struct isci_request *ireq)
743 {
744 	/* Construct the SSP Task SCU Task Context */
745 	scu_ssp_task_request_construct_task_context(ireq);
746 
747 	/* Fill in the SSP Task IU */
748 	sci_task_request_build_ssp_task_iu(ireq);
749 
750 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
751 
752 	return SCI_SUCCESS;
753 }
754 
755 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
756 {
757 	enum sci_status status;
758 	bool copy = false;
759 	struct sas_task *task = isci_request_access_task(ireq);
760 
761 	ireq->protocol = SAS_PROTOCOL_STP;
762 
763 	copy = (task->data_dir == DMA_NONE) ? false : true;
764 
765 	status = sci_io_request_construct_sata(ireq,
766 						task->total_xfer_len,
767 						task->data_dir,
768 						copy);
769 
770 	if (status == SCI_SUCCESS)
771 		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
772 
773 	return status;
774 }
775 
776 #define SCU_TASK_CONTEXT_SRAM 0x200000
777 /**
778  * sci_req_tx_bytes - bytes transferred when reply underruns request
779  * @ireq: request that was terminated early
780  */
781 static u32 sci_req_tx_bytes(struct isci_request *ireq)
782 {
783 	struct isci_host *ihost = ireq->owning_controller;
784 	u32 ret_val = 0;
785 
786 	if (readl(&ihost->smu_registers->address_modifier) == 0) {
787 		void __iomem *scu_reg_base = ihost->scu_registers;
788 
789 		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
790 		 *   BAR1 is the scu_registers
791 		 *   0x20002C = 0x200000 + 0x2c
792 		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
793 		 *   TCi is the io_tag of struct sci_request
794 		 */
795 		ret_val = readl(scu_reg_base +
796 				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
797 				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
798 	}
799 
800 	return ret_val;
801 }
802 
803 enum sci_status sci_request_start(struct isci_request *ireq)
804 {
805 	enum sci_base_request_states state;
806 	struct scu_task_context *tc = ireq->tc;
807 	struct isci_host *ihost = ireq->owning_controller;
808 
809 	state = ireq->sm.current_state_id;
810 	if (state != SCI_REQ_CONSTRUCTED) {
811 		dev_warn(&ihost->pdev->dev,
812 			"%s: SCIC IO Request requested to start while in wrong "
813 			 "state %d\n", __func__, state);
814 		return SCI_FAILURE_INVALID_STATE;
815 	}
816 
817 	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
818 
819 	switch (tc->protocol_type) {
820 	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
821 	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
822 		/* SSP/SMP Frame */
823 		tc->type.ssp.tag = ireq->io_tag;
824 		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
825 		break;
826 
827 	case SCU_TASK_CONTEXT_PROTOCOL_STP:
828 		/* STP/SATA Frame
829 		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
830 		 */
831 		break;
832 
833 	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
834 		/* / @todo When do we set no protocol type? */
835 		break;
836 
837 	default:
838 		/* This should never happen since we build the IO
839 		 * requests */
840 		break;
841 	}
842 
843 	/* Add to the post_context the io tag value */
844 	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
845 
846 	/* Everything is good go ahead and change state */
847 	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
848 
849 	return SCI_SUCCESS;
850 }
851 
852 enum sci_status
853 sci_io_request_terminate(struct isci_request *ireq)
854 {
855 	enum sci_base_request_states state;
856 
857 	state = ireq->sm.current_state_id;
858 
859 	switch (state) {
860 	case SCI_REQ_CONSTRUCTED:
861 		/* Set to make sure no HW terminate posting is done: */
862 		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
863 		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
864 		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
865 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
866 		return SCI_SUCCESS;
867 	case SCI_REQ_STARTED:
868 	case SCI_REQ_TASK_WAIT_TC_COMP:
869 	case SCI_REQ_SMP_WAIT_RESP:
870 	case SCI_REQ_SMP_WAIT_TC_COMP:
871 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
872 	case SCI_REQ_STP_UDMA_WAIT_D2H:
873 	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
874 	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
875 	case SCI_REQ_STP_PIO_WAIT_H2D:
876 	case SCI_REQ_STP_PIO_WAIT_FRAME:
877 	case SCI_REQ_STP_PIO_DATA_IN:
878 	case SCI_REQ_STP_PIO_DATA_OUT:
879 	case SCI_REQ_ATAPI_WAIT_H2D:
880 	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
881 	case SCI_REQ_ATAPI_WAIT_D2H:
882 	case SCI_REQ_ATAPI_WAIT_TC_COMP:
883 		/* Fall through and change state to ABORTING... */
884 	case SCI_REQ_TASK_WAIT_TC_RESP:
885 		/* The task frame was already confirmed to have been
886 		 * sent by the SCU HW.  Since the state machine is
887 		 * now only waiting for the task response itself,
888 		 * abort the request and complete it immediately
889 		 * and don't wait for the task response.
890 		 */
891 		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
892 		fallthrough;	/* and handle like ABORTING */
893 	case SCI_REQ_ABORTING:
894 		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
895 			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
896 		else
897 			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
898 		/* If the request is only waiting on the remote device
899 		 * suspension, return SUCCESS so the caller will wait too.
900 		 */
901 		return SCI_SUCCESS;
902 	case SCI_REQ_COMPLETED:
903 	default:
904 		dev_warn(&ireq->owning_controller->pdev->dev,
905 			 "%s: SCIC IO Request requested to abort while in wrong "
906 			 "state %d\n", __func__, ireq->sm.current_state_id);
907 		break;
908 	}
909 
910 	return SCI_FAILURE_INVALID_STATE;
911 }
912 
913 enum sci_status sci_request_complete(struct isci_request *ireq)
914 {
915 	enum sci_base_request_states state;
916 	struct isci_host *ihost = ireq->owning_controller;
917 
918 	state = ireq->sm.current_state_id;
919 	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
920 		      "isci: request completion from wrong state (%s)\n",
921 		      req_state_name(state)))
922 		return SCI_FAILURE_INVALID_STATE;
923 
924 	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
925 		sci_controller_release_frame(ihost,
926 						  ireq->saved_rx_frame_index);
927 
928 	/* XXX can we just stop the machine and remove the 'final' state? */
929 	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
930 	return SCI_SUCCESS;
931 }
932 
933 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
934 						  u32 event_code)
935 {
936 	enum sci_base_request_states state;
937 	struct isci_host *ihost = ireq->owning_controller;
938 
939 	state = ireq->sm.current_state_id;
940 
941 	if (state != SCI_REQ_STP_PIO_DATA_IN) {
942 		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
943 			 __func__, event_code, req_state_name(state));
944 
945 		return SCI_FAILURE_INVALID_STATE;
946 	}
947 
948 	switch (scu_get_event_specifier(event_code)) {
949 	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
950 		/* We are waiting for data and the SCU has R_ERR the data frame.
951 		 * Go back to waiting for the D2H Register FIS
952 		 */
953 		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
954 		return SCI_SUCCESS;
955 	default:
956 		dev_err(&ihost->pdev->dev,
957 			"%s: pio request unexpected event %#x\n",
958 			__func__, event_code);
959 
960 		/* TODO Should we fail the PIO request when we get an
961 		 * unexpected event?
962 		 */
963 		return SCI_FAILURE;
964 	}
965 }
966 
967 /*
968  * This function copies response data for requests returning response data
969  *    instead of sense data.
970  * @sci_req: This parameter specifies the request object for which to copy
971  *    the response data.
972  */
973 static void sci_io_request_copy_response(struct isci_request *ireq)
974 {
975 	void *resp_buf;
976 	u32 len;
977 	struct ssp_response_iu *ssp_response;
978 	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
979 
980 	ssp_response = &ireq->ssp.rsp;
981 
982 	resp_buf = &isci_tmf->resp.resp_iu;
983 
984 	len = min_t(u32,
985 		    SSP_RESP_IU_MAX_SIZE,
986 		    be32_to_cpu(ssp_response->response_data_len));
987 
988 	memcpy(resp_buf, ssp_response->resp_data, len);
989 }
990 
991 static enum sci_status
992 request_started_state_tc_event(struct isci_request *ireq,
993 			       u32 completion_code)
994 {
995 	struct ssp_response_iu *resp_iu;
996 	u8 datapres;
997 
998 	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
999 	 * to determine SDMA status
1000 	 */
1001 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1002 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1003 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1004 		ireq->sci_status = SCI_SUCCESS;
1005 		break;
1006 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1007 		/* There are times when the SCU hardware will return an early
1008 		 * response because the io request specified more data than is
1009 		 * returned by the target device (mode pages, inquiry data,
1010 		 * etc.).  We must check the response stats to see if this is
1011 		 * truly a failed request or a good request that just got
1012 		 * completed early.
1013 		 */
1014 		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1015 		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1016 
1017 		sci_swab32_cpy(&ireq->ssp.rsp,
1018 			       &ireq->ssp.rsp,
1019 			       word_cnt);
1020 
1021 		if (resp->status == 0) {
1022 			ireq->scu_status = SCU_TASK_DONE_GOOD;
1023 			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1024 		} else {
1025 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1026 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1027 		}
1028 		break;
1029 	}
1030 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1031 		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1032 
1033 		sci_swab32_cpy(&ireq->ssp.rsp,
1034 			       &ireq->ssp.rsp,
1035 			       word_cnt);
1036 
1037 		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1038 		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1039 		break;
1040 	}
1041 
1042 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1043 		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1044 		 * guaranteed to be received before this completion status is
1045 		 * posted?
1046 		 */
1047 		resp_iu = &ireq->ssp.rsp;
1048 		datapres = resp_iu->datapres;
1049 
1050 		if (datapres == 1 || datapres == 2) {
1051 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1052 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1053 		} else {
1054 			ireq->scu_status = SCU_TASK_DONE_GOOD;
1055 			ireq->sci_status = SCI_SUCCESS;
1056 		}
1057 		break;
1058 	/* only stp device gets suspended. */
1059 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1060 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1061 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1062 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1063 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1064 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1065 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1066 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1067 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1068 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1069 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1070 		if (ireq->protocol == SAS_PROTOCOL_STP) {
1071 			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1072 					   SCU_COMPLETION_TL_STATUS_SHIFT;
1073 			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1074 		} else {
1075 			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1076 					   SCU_COMPLETION_TL_STATUS_SHIFT;
1077 			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1078 		}
1079 		break;
1080 
1081 	/* both stp/ssp device gets suspended */
1082 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1083 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1084 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1085 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1086 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1087 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1088 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1089 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1090 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1091 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1092 		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1093 				   SCU_COMPLETION_TL_STATUS_SHIFT;
1094 		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1095 		break;
1096 
1097 	/* neither ssp nor stp gets suspended. */
1098 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1099 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1100 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1101 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1102 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1103 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1104 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1105 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1106 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1107 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1108 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1109 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1110 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1111 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1112 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1113 	default:
1114 		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1115 				   SCU_COMPLETION_TL_STATUS_SHIFT;
1116 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1117 		break;
1118 	}
1119 
1120 	/*
1121 	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122 	 */
1123 
1124 	/* In all cases we will treat this as the completion of the IO req. */
1125 	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1126 	return SCI_SUCCESS;
1127 }
1128 
1129 static enum sci_status
1130 request_aborting_state_tc_event(struct isci_request *ireq,
1131 				u32 completion_code)
1132 {
1133 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1134 	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1135 	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1136 		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1137 		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1138 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1139 		break;
1140 
1141 	default:
1142 		/* Unless we get some strange error wait for the task abort to complete
1143 		 * TODO: Should there be a state change for this completion?
1144 		 */
1145 		break;
1146 	}
1147 
1148 	return SCI_SUCCESS;
1149 }
1150 
1151 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1152 						       u32 completion_code)
1153 {
1154 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1155 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1156 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1157 		ireq->sci_status = SCI_SUCCESS;
1158 		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1159 		break;
1160 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1161 		/* Currently, the decision is to simply allow the task request
1162 		 * to timeout if the task IU wasn't received successfully.
1163 		 * There is a potential for receiving multiple task responses if
1164 		 * we decide to send the task IU again.
1165 		 */
1166 		dev_warn(&ireq->owning_controller->pdev->dev,
1167 			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1168 			 "ACK/NAK timeout\n", __func__, ireq,
1169 			 completion_code);
1170 
1171 		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1172 		break;
1173 	default:
1174 		/*
1175 		 * All other completion status cause the IO to be complete.
1176 		 * If a NAK was received, then it is up to the user to retry
1177 		 * the request.
1178 		 */
1179 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1180 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1181 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1182 		break;
1183 	}
1184 
1185 	return SCI_SUCCESS;
1186 }
1187 
1188 static enum sci_status
1189 smp_request_await_response_tc_event(struct isci_request *ireq,
1190 				    u32 completion_code)
1191 {
1192 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1193 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1194 		/* In the AWAIT RESPONSE state, any TC completion is
1195 		 * unexpected.  but if the TC has success status, we
1196 		 * complete the IO anyway.
1197 		 */
1198 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1199 		ireq->sci_status = SCI_SUCCESS;
1200 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1201 		break;
1202 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1203 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1204 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1205 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1206 		/* These status has been seen in a specific LSI
1207 		 * expander, which sometimes is not able to send smp
1208 		 * response within 2 ms. This causes our hardware break
1209 		 * the connection and set TC completion with one of
1210 		 * these SMP_XXX_XX_ERR status. For these type of error,
1211 		 * we ask ihost user to retry the request.
1212 		 */
1213 		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1214 		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1215 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1216 		break;
1217 	default:
1218 		/* All other completion status cause the IO to be complete.  If a NAK
1219 		 * was received, then it is up to the user to retry the request
1220 		 */
1221 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1222 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1223 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1224 		break;
1225 	}
1226 
1227 	return SCI_SUCCESS;
1228 }
1229 
1230 static enum sci_status
1231 smp_request_await_tc_event(struct isci_request *ireq,
1232 			   u32 completion_code)
1233 {
1234 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1235 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1236 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1237 		ireq->sci_status = SCI_SUCCESS;
1238 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1239 		break;
1240 	default:
1241 		/* All other completion status cause the IO to be
1242 		 * complete.  If a NAK was received, then it is up to
1243 		 * the user to retry the request.
1244 		 */
1245 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1246 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1247 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1248 		break;
1249 	}
1250 
1251 	return SCI_SUCCESS;
1252 }
1253 
1254 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1255 {
1256 	struct scu_sgl_element *sgl;
1257 	struct scu_sgl_element_pair *sgl_pair;
1258 	struct isci_request *ireq = to_ireq(stp_req);
1259 	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1260 
1261 	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1262 	if (!sgl_pair)
1263 		sgl = NULL;
1264 	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1265 		if (sgl_pair->B.address_lower == 0 &&
1266 		    sgl_pair->B.address_upper == 0) {
1267 			sgl = NULL;
1268 		} else {
1269 			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1270 			sgl = &sgl_pair->B;
1271 		}
1272 	} else {
1273 		if (sgl_pair->next_pair_lower == 0 &&
1274 		    sgl_pair->next_pair_upper == 0) {
1275 			sgl = NULL;
1276 		} else {
1277 			pio_sgl->index++;
1278 			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1279 			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1280 			sgl = &sgl_pair->A;
1281 		}
1282 	}
1283 
1284 	return sgl;
1285 }
1286 
1287 static enum sci_status
1288 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1289 					u32 completion_code)
1290 {
1291 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1292 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1293 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1294 		ireq->sci_status = SCI_SUCCESS;
1295 		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1296 		break;
1297 
1298 	default:
1299 		/* All other completion status cause the IO to be
1300 		 * complete.  If a NAK was received, then it is up to
1301 		 * the user to retry the request.
1302 		 */
1303 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1304 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1305 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1306 		break;
1307 	}
1308 
1309 	return SCI_SUCCESS;
1310 }
1311 
1312 #define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1313 
1314 /* transmit DATA_FIS from (current sgl + offset) for input
1315  * parameter length. current sgl and offset is alreay stored in the IO request
1316  */
1317 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1318 	struct isci_request *ireq,
1319 	u32 length)
1320 {
1321 	struct isci_stp_request *stp_req = &ireq->stp.req;
1322 	struct scu_task_context *task_context = ireq->tc;
1323 	struct scu_sgl_element_pair *sgl_pair;
1324 	struct scu_sgl_element *current_sgl;
1325 
1326 	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1327 	 * for the data from current_sgl+offset for the input length
1328 	 */
1329 	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1330 	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1331 		current_sgl = &sgl_pair->A;
1332 	else
1333 		current_sgl = &sgl_pair->B;
1334 
1335 	/* update the TC */
1336 	task_context->command_iu_upper = current_sgl->address_upper;
1337 	task_context->command_iu_lower = current_sgl->address_lower;
1338 	task_context->transfer_length_bytes = length;
1339 	task_context->type.stp.fis_type = FIS_DATA;
1340 
1341 	/* send the new TC out. */
1342 	return sci_controller_continue_io(ireq);
1343 }
1344 
1345 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1346 {
1347 	struct isci_stp_request *stp_req = &ireq->stp.req;
1348 	struct scu_sgl_element_pair *sgl_pair;
1349 	enum sci_status status = SCI_SUCCESS;
1350 	struct scu_sgl_element *sgl;
1351 	u32 offset;
1352 	u32 len = 0;
1353 
1354 	offset = stp_req->sgl.offset;
1355 	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1356 	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1357 		return SCI_FAILURE;
1358 
1359 	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1360 		sgl = &sgl_pair->A;
1361 		len = sgl_pair->A.length - offset;
1362 	} else {
1363 		sgl = &sgl_pair->B;
1364 		len = sgl_pair->B.length - offset;
1365 	}
1366 
1367 	if (stp_req->pio_len == 0)
1368 		return SCI_SUCCESS;
1369 
1370 	if (stp_req->pio_len >= len) {
1371 		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1372 		if (status != SCI_SUCCESS)
1373 			return status;
1374 		stp_req->pio_len -= len;
1375 
1376 		/* update the current sgl, offset and save for future */
1377 		sgl = pio_sgl_next(stp_req);
1378 		offset = 0;
1379 	} else if (stp_req->pio_len < len) {
1380 		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1381 
1382 		/* Sgl offset will be adjusted and saved for future */
1383 		offset += stp_req->pio_len;
1384 		sgl->address_lower += stp_req->pio_len;
1385 		stp_req->pio_len = 0;
1386 	}
1387 
1388 	stp_req->sgl.offset = offset;
1389 
1390 	return status;
1391 }
1392 
1393 /**
1394  * sci_stp_request_pio_data_in_copy_data_buffer()
1395  * @stp_req: The request that is used for the SGL processing.
1396  * @data_buf: The buffer of data to be copied.
1397  * @len: The length of the data transfer.
1398  *
1399  * Copy the data from the buffer for the length specified to the IO request SGL
1400  * specified data region. enum sci_status
1401  */
1402 static enum sci_status
1403 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1404 					     u8 *data_buf, u32 len)
1405 {
1406 	struct isci_request *ireq;
1407 	u8 *src_addr;
1408 	int copy_len;
1409 	struct sas_task *task;
1410 	struct scatterlist *sg;
1411 	void *kaddr;
1412 	int total_len = len;
1413 
1414 	ireq = to_ireq(stp_req);
1415 	task = isci_request_access_task(ireq);
1416 	src_addr = data_buf;
1417 
1418 	if (task->num_scatter > 0) {
1419 		sg = task->scatter;
1420 
1421 		while (total_len > 0) {
1422 			struct page *page = sg_page(sg);
1423 
1424 			copy_len = min_t(int, total_len, sg_dma_len(sg));
1425 			kaddr = kmap_atomic(page);
1426 			memcpy(kaddr + sg->offset, src_addr, copy_len);
1427 			kunmap_atomic(kaddr);
1428 			total_len -= copy_len;
1429 			src_addr += copy_len;
1430 			sg = sg_next(sg);
1431 		}
1432 	} else {
1433 		BUG_ON(task->total_xfer_len < total_len);
1434 		memcpy(task->scatter, src_addr, total_len);
1435 	}
1436 
1437 	return SCI_SUCCESS;
1438 }
1439 
1440 /**
1441  * sci_stp_request_pio_data_in_copy_data()
1442  * @stp_req: The PIO DATA IN request that is to receive the data.
1443  * @data_buffer: The buffer to copy from.
1444  *
1445  * Copy the data buffer to the io request data region. enum sci_status
1446  */
1447 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1448 	struct isci_stp_request *stp_req,
1449 	u8 *data_buffer)
1450 {
1451 	enum sci_status status;
1452 
1453 	/*
1454 	 * If there is less than 1K remaining in the transfer request
1455 	 * copy just the data for the transfer */
1456 	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1457 		status = sci_stp_request_pio_data_in_copy_data_buffer(
1458 			stp_req, data_buffer, stp_req->pio_len);
1459 
1460 		if (status == SCI_SUCCESS)
1461 			stp_req->pio_len = 0;
1462 	} else {
1463 		/* We are transfering the whole frame so copy */
1464 		status = sci_stp_request_pio_data_in_copy_data_buffer(
1465 			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1466 
1467 		if (status == SCI_SUCCESS)
1468 			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1469 	}
1470 
1471 	return status;
1472 }
1473 
1474 static enum sci_status
1475 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1476 					      u32 completion_code)
1477 {
1478 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1479 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1480 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1481 		ireq->sci_status = SCI_SUCCESS;
1482 		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1483 		break;
1484 
1485 	default:
1486 		/* All other completion status cause the IO to be
1487 		 * complete.  If a NAK was received, then it is up to
1488 		 * the user to retry the request.
1489 		 */
1490 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1491 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1492 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1493 		break;
1494 	}
1495 
1496 	return SCI_SUCCESS;
1497 }
1498 
1499 static enum sci_status
1500 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1501 			      u32 completion_code)
1502 {
1503 	enum sci_status status = SCI_SUCCESS;
1504 	bool all_frames_transferred = false;
1505 	struct isci_stp_request *stp_req = &ireq->stp.req;
1506 
1507 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1508 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1509 		/* Transmit data */
1510 		if (stp_req->pio_len != 0) {
1511 			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1512 			if (status == SCI_SUCCESS) {
1513 				if (stp_req->pio_len == 0)
1514 					all_frames_transferred = true;
1515 			}
1516 		} else if (stp_req->pio_len == 0) {
1517 			/*
1518 			 * this will happen if the all data is written at the
1519 			 * first time after the pio setup fis is received
1520 			 */
1521 			all_frames_transferred  = true;
1522 		}
1523 
1524 		/* all data transferred. */
1525 		if (all_frames_transferred) {
1526 			/*
1527 			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1528 			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1529 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1530 		}
1531 		break;
1532 
1533 	default:
1534 		/*
1535 		 * All other completion status cause the IO to be complete.
1536 		 * If a NAK was received, then it is up to the user to retry
1537 		 * the request.
1538 		 */
1539 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1540 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1541 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1542 		break;
1543 	}
1544 
1545 	return status;
1546 }
1547 
1548 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1549 								       u32 frame_index)
1550 {
1551 	struct isci_host *ihost = ireq->owning_controller;
1552 	struct dev_to_host_fis *frame_header;
1553 	enum sci_status status;
1554 	u32 *frame_buffer;
1555 
1556 	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1557 							       frame_index,
1558 							       (void **)&frame_header);
1559 
1560 	if ((status == SCI_SUCCESS) &&
1561 	    (frame_header->fis_type == FIS_REGD2H)) {
1562 		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1563 							      frame_index,
1564 							      (void **)&frame_buffer);
1565 
1566 		sci_controller_copy_sata_response(&ireq->stp.rsp,
1567 						       frame_header,
1568 						       frame_buffer);
1569 	}
1570 
1571 	sci_controller_release_frame(ihost, frame_index);
1572 
1573 	return status;
1574 }
1575 
1576 static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1577 					       u32 frame_index)
1578 {
1579 	struct isci_host *ihost = ireq->owning_controller;
1580 	enum sci_status status;
1581 	struct dev_to_host_fis *frame_header;
1582 	u32 *frame_buffer;
1583 
1584 	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1585 							  frame_index,
1586 							  (void **)&frame_header);
1587 
1588 	if (status != SCI_SUCCESS)
1589 		return status;
1590 
1591 	if (frame_header->fis_type != FIS_REGD2H) {
1592 		dev_err(&ireq->isci_host->pdev->dev,
1593 			"%s ERROR: invalid fis type 0x%X\n",
1594 			__func__, frame_header->fis_type);
1595 		return SCI_FAILURE;
1596 	}
1597 
1598 	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1599 						 frame_index,
1600 						 (void **)&frame_buffer);
1601 
1602 	sci_controller_copy_sata_response(&ireq->stp.rsp,
1603 					  (u32 *)frame_header,
1604 					  frame_buffer);
1605 
1606 	/* Frame has been decoded return it to the controller */
1607 	sci_controller_release_frame(ihost, frame_index);
1608 
1609 	return status;
1610 }
1611 
1612 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1613 						   u32 frame_index)
1614 {
1615 	struct sas_task *task = isci_request_access_task(ireq);
1616 	enum sci_status status;
1617 
1618 	status = process_unsolicited_fis(ireq, frame_index);
1619 
1620 	if (status == SCI_SUCCESS) {
1621 		if (ireq->stp.rsp.status & ATA_ERR)
1622 			status = SCI_FAILURE_IO_RESPONSE_VALID;
1623 	} else {
1624 		status = SCI_FAILURE_IO_RESPONSE_VALID;
1625 	}
1626 
1627 	if (status != SCI_SUCCESS) {
1628 		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1629 		ireq->sci_status = status;
1630 	} else {
1631 		ireq->scu_status = SCU_TASK_DONE_GOOD;
1632 		ireq->sci_status = SCI_SUCCESS;
1633 	}
1634 
1635 	/* the d2h ufi is the end of non-data commands */
1636 	if (task->data_dir == DMA_NONE)
1637 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1638 
1639 	return status;
1640 }
1641 
1642 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1643 {
1644 	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1645 	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1646 	struct scu_task_context *task_context = ireq->tc;
1647 
1648 	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1649 	 * type. The TC for previous Packet fis was already there, we only need to
1650 	 * change the H2D fis content.
1651 	 */
1652 	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1653 	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1654 	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1655 	task_context->type.stp.fis_type = FIS_DATA;
1656 	task_context->transfer_length_bytes = dev->cdb_len;
1657 }
1658 
1659 static void scu_atapi_construct_task_context(struct isci_request *ireq)
1660 {
1661 	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1662 	struct sas_task *task = isci_request_access_task(ireq);
1663 	struct scu_task_context *task_context = ireq->tc;
1664 	int cdb_len = dev->cdb_len;
1665 
1666 	/* reference: SSTL 1.13.4.2
1667 	 * task_type, sata_direction
1668 	 */
1669 	if (task->data_dir == DMA_TO_DEVICE) {
1670 		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1671 		task_context->sata_direction = 0;
1672 	} else {
1673 		/* todo: for NO_DATA command, we need to send out raw frame. */
1674 		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1675 		task_context->sata_direction = 1;
1676 	}
1677 
1678 	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1679 	task_context->type.stp.fis_type = FIS_DATA;
1680 
1681 	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1682 	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1683 	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1684 
1685 	/* task phase is set to TX_CMD */
1686 	task_context->task_phase = 0x1;
1687 
1688 	/* retry counter */
1689 	task_context->stp_retry_count = 0;
1690 
1691 	/* data transfer size. */
1692 	task_context->transfer_length_bytes = task->total_xfer_len;
1693 
1694 	/* setup sgl */
1695 	sci_request_build_sgl(ireq);
1696 }
1697 
1698 enum sci_status
1699 sci_io_request_frame_handler(struct isci_request *ireq,
1700 				  u32 frame_index)
1701 {
1702 	struct isci_host *ihost = ireq->owning_controller;
1703 	struct isci_stp_request *stp_req = &ireq->stp.req;
1704 	enum sci_base_request_states state;
1705 	enum sci_status status;
1706 	ssize_t word_cnt;
1707 
1708 	state = ireq->sm.current_state_id;
1709 	switch (state)  {
1710 	case SCI_REQ_STARTED: {
1711 		struct ssp_frame_hdr ssp_hdr;
1712 		void *frame_header;
1713 
1714 		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1715 							      frame_index,
1716 							      &frame_header);
1717 
1718 		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1719 		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1720 
1721 		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1722 			struct ssp_response_iu *resp_iu;
1723 			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1724 
1725 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1726 								      frame_index,
1727 								      (void **)&resp_iu);
1728 
1729 			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1730 
1731 			resp_iu = &ireq->ssp.rsp;
1732 
1733 			if (resp_iu->datapres == 0x01 ||
1734 			    resp_iu->datapres == 0x02) {
1735 				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1736 				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1737 			} else {
1738 				ireq->scu_status = SCU_TASK_DONE_GOOD;
1739 				ireq->sci_status = SCI_SUCCESS;
1740 			}
1741 		} else {
1742 			/* not a response frame, why did it get forwarded? */
1743 			dev_err(&ihost->pdev->dev,
1744 				"%s: SCIC IO Request 0x%p received unexpected "
1745 				"frame %d type 0x%02x\n", __func__, ireq,
1746 				frame_index, ssp_hdr.frame_type);
1747 		}
1748 
1749 		/*
1750 		 * In any case we are done with this frame buffer return it to
1751 		 * the controller
1752 		 */
1753 		sci_controller_release_frame(ihost, frame_index);
1754 
1755 		return SCI_SUCCESS;
1756 	}
1757 
1758 	case SCI_REQ_TASK_WAIT_TC_RESP:
1759 		sci_io_request_copy_response(ireq);
1760 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1761 		sci_controller_release_frame(ihost, frame_index);
1762 		return SCI_SUCCESS;
1763 
1764 	case SCI_REQ_SMP_WAIT_RESP: {
1765 		struct sas_task *task = isci_request_access_task(ireq);
1766 		struct scatterlist *sg = &task->smp_task.smp_resp;
1767 		void *frame_header, *kaddr;
1768 		u8 *rsp;
1769 
1770 		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1771 							 frame_index,
1772 							 &frame_header);
1773 		kaddr = kmap_atomic(sg_page(sg));
1774 		rsp = kaddr + sg->offset;
1775 		sci_swab32_cpy(rsp, frame_header, 1);
1776 
1777 		if (rsp[0] == SMP_RESPONSE) {
1778 			void *smp_resp;
1779 
1780 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1781 								 frame_index,
1782 								 &smp_resp);
1783 
1784 			word_cnt = (sg->length/4)-1;
1785 			if (word_cnt > 0)
1786 				word_cnt = min_t(unsigned int, word_cnt,
1787 						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1788 			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1789 
1790 			ireq->scu_status = SCU_TASK_DONE_GOOD;
1791 			ireq->sci_status = SCI_SUCCESS;
1792 			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1793 		} else {
1794 			/*
1795 			 * This was not a response frame why did it get
1796 			 * forwarded?
1797 			 */
1798 			dev_err(&ihost->pdev->dev,
1799 				"%s: SCIC SMP Request 0x%p received unexpected "
1800 				"frame %d type 0x%02x\n",
1801 				__func__,
1802 				ireq,
1803 				frame_index,
1804 				rsp[0]);
1805 
1806 			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1807 			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1808 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1809 		}
1810 		kunmap_atomic(kaddr);
1811 
1812 		sci_controller_release_frame(ihost, frame_index);
1813 
1814 		return SCI_SUCCESS;
1815 	}
1816 
1817 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1818 		return sci_stp_request_udma_general_frame_handler(ireq,
1819 								       frame_index);
1820 
1821 	case SCI_REQ_STP_UDMA_WAIT_D2H:
1822 		/* Use the general frame handler to copy the resposne data */
1823 		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1824 
1825 		if (status != SCI_SUCCESS)
1826 			return status;
1827 
1828 		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1829 		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1830 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1831 		return SCI_SUCCESS;
1832 
1833 	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1834 		struct dev_to_host_fis *frame_header;
1835 		u32 *frame_buffer;
1836 
1837 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1838 								       frame_index,
1839 								       (void **)&frame_header);
1840 
1841 		if (status != SCI_SUCCESS) {
1842 			dev_err(&ihost->pdev->dev,
1843 				"%s: SCIC IO Request 0x%p could not get frame "
1844 				"header for frame index %d, status %x\n",
1845 				__func__,
1846 				stp_req,
1847 				frame_index,
1848 				status);
1849 
1850 			return status;
1851 		}
1852 
1853 		switch (frame_header->fis_type) {
1854 		case FIS_REGD2H:
1855 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1856 								      frame_index,
1857 								      (void **)&frame_buffer);
1858 
1859 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1860 							       frame_header,
1861 							       frame_buffer);
1862 
1863 			/* The command has completed with error */
1864 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1865 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1866 			break;
1867 
1868 		default:
1869 			dev_warn(&ihost->pdev->dev,
1870 				 "%s: IO Request:0x%p Frame Id:%d protocol "
1871 				  "violation occurred\n", __func__, stp_req,
1872 				  frame_index);
1873 
1874 			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1875 			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1876 			break;
1877 		}
1878 
1879 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1880 
1881 		/* Frame has been decoded return it to the controller */
1882 		sci_controller_release_frame(ihost, frame_index);
1883 
1884 		return status;
1885 	}
1886 
1887 	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1888 		struct sas_task *task = isci_request_access_task(ireq);
1889 		struct dev_to_host_fis *frame_header;
1890 		u32 *frame_buffer;
1891 
1892 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1893 								       frame_index,
1894 								       (void **)&frame_header);
1895 
1896 		if (status != SCI_SUCCESS) {
1897 			dev_err(&ihost->pdev->dev,
1898 				"%s: SCIC IO Request 0x%p could not get frame "
1899 				"header for frame index %d, status %x\n",
1900 				__func__, stp_req, frame_index, status);
1901 			return status;
1902 		}
1903 
1904 		switch (frame_header->fis_type) {
1905 		case FIS_PIO_SETUP:
1906 			/* Get from the frame buffer the PIO Setup Data */
1907 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1908 								      frame_index,
1909 								      (void **)&frame_buffer);
1910 
1911 			/* Get the data from the PIO Setup The SCU Hardware
1912 			 * returns first word in the frame_header and the rest
1913 			 * of the data is in the frame buffer so we need to
1914 			 * back up one dword
1915 			 */
1916 
1917 			/* transfer_count: first 16bits in the 4th dword */
1918 			stp_req->pio_len = frame_buffer[3] & 0xffff;
1919 
1920 			/* status: 4th byte in the 3rd dword */
1921 			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1922 
1923 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1924 							       frame_header,
1925 							       frame_buffer);
1926 
1927 			ireq->stp.rsp.status = stp_req->status;
1928 
1929 			/* The next state is dependent on whether the
1930 			 * request was PIO Data-in or Data out
1931 			 */
1932 			if (task->data_dir == DMA_FROM_DEVICE) {
1933 				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1934 			} else if (task->data_dir == DMA_TO_DEVICE) {
1935 				/* Transmit data */
1936 				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1937 				if (status != SCI_SUCCESS)
1938 					break;
1939 				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1940 			}
1941 			break;
1942 
1943 		case FIS_SETDEVBITS:
1944 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1945 			break;
1946 
1947 		case FIS_REGD2H:
1948 			if (frame_header->status & ATA_BUSY) {
1949 				/*
1950 				 * Now why is the drive sending a D2H Register
1951 				 * FIS when it is still busy?  Do nothing since
1952 				 * we are still in the right state.
1953 				 */
1954 				dev_dbg(&ihost->pdev->dev,
1955 					"%s: SCIC PIO Request 0x%p received "
1956 					"D2H Register FIS with BSY status "
1957 					"0x%x\n",
1958 					__func__,
1959 					stp_req,
1960 					frame_header->status);
1961 				break;
1962 			}
1963 
1964 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1965 								      frame_index,
1966 								      (void **)&frame_buffer);
1967 
1968 			sci_controller_copy_sata_response(&ireq->stp.rsp,
1969 							       frame_header,
1970 							       frame_buffer);
1971 
1972 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1973 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1974 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1975 			break;
1976 
1977 		default:
1978 			/* FIXME: what do we do here? */
1979 			break;
1980 		}
1981 
1982 		/* Frame is decoded return it to the controller */
1983 		sci_controller_release_frame(ihost, frame_index);
1984 
1985 		return status;
1986 	}
1987 
1988 	case SCI_REQ_STP_PIO_DATA_IN: {
1989 		struct dev_to_host_fis *frame_header;
1990 		struct sata_fis_data *frame_buffer;
1991 
1992 		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1993 								       frame_index,
1994 								       (void **)&frame_header);
1995 
1996 		if (status != SCI_SUCCESS) {
1997 			dev_err(&ihost->pdev->dev,
1998 				"%s: SCIC IO Request 0x%p could not get frame "
1999 				"header for frame index %d, status %x\n",
2000 				__func__,
2001 				stp_req,
2002 				frame_index,
2003 				status);
2004 			return status;
2005 		}
2006 
2007 		if (frame_header->fis_type != FIS_DATA) {
2008 			dev_err(&ihost->pdev->dev,
2009 				"%s: SCIC PIO Request 0x%p received frame %d "
2010 				"with fis type 0x%02x when expecting a data "
2011 				"fis.\n",
2012 				__func__,
2013 				stp_req,
2014 				frame_index,
2015 				frame_header->fis_type);
2016 
2017 			ireq->scu_status = SCU_TASK_DONE_GOOD;
2018 			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2019 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2020 
2021 			/* Frame is decoded return it to the controller */
2022 			sci_controller_release_frame(ihost, frame_index);
2023 			return status;
2024 		}
2025 
2026 		if (stp_req->sgl.index < 0) {
2027 			ireq->saved_rx_frame_index = frame_index;
2028 			stp_req->pio_len = 0;
2029 		} else {
2030 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2031 								      frame_index,
2032 								      (void **)&frame_buffer);
2033 
2034 			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2035 									    (u8 *)frame_buffer);
2036 
2037 			/* Frame is decoded return it to the controller */
2038 			sci_controller_release_frame(ihost, frame_index);
2039 		}
2040 
2041 		/* Check for the end of the transfer, are there more
2042 		 * bytes remaining for this data transfer
2043 		 */
2044 		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2045 			return status;
2046 
2047 		if ((stp_req->status & ATA_BUSY) == 0) {
2048 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2049 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2050 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2051 		} else {
2052 			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2053 		}
2054 		return status;
2055 	}
2056 
2057 	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2058 		struct sas_task *task = isci_request_access_task(ireq);
2059 
2060 		sci_controller_release_frame(ihost, frame_index);
2061 		ireq->target_device->working_request = ireq;
2062 		if (task->data_dir == DMA_NONE) {
2063 			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2064 			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2065 		} else {
2066 			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2067 			scu_atapi_construct_task_context(ireq);
2068 		}
2069 
2070 		sci_controller_continue_io(ireq);
2071 		return SCI_SUCCESS;
2072 	}
2073 	case SCI_REQ_ATAPI_WAIT_D2H:
2074 		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2075 	case SCI_REQ_ABORTING:
2076 		/*
2077 		 * TODO: Is it even possible to get an unsolicited frame in the
2078 		 * aborting state?
2079 		 */
2080 		sci_controller_release_frame(ihost, frame_index);
2081 		return SCI_SUCCESS;
2082 
2083 	default:
2084 		dev_warn(&ihost->pdev->dev,
2085 			 "%s: SCIC IO Request given unexpected frame %x while "
2086 			 "in state %d\n",
2087 			 __func__,
2088 			 frame_index,
2089 			 state);
2090 
2091 		sci_controller_release_frame(ihost, frame_index);
2092 		return SCI_FAILURE_INVALID_STATE;
2093 	}
2094 }
2095 
2096 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2097 						       u32 completion_code)
2098 {
2099 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2100 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2101 		ireq->scu_status = SCU_TASK_DONE_GOOD;
2102 		ireq->sci_status = SCI_SUCCESS;
2103 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2104 		break;
2105 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2106 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2107 		/* We must check ther response buffer to see if the D2H
2108 		 * Register FIS was received before we got the TC
2109 		 * completion.
2110 		 */
2111 		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2112 			sci_remote_device_suspend(ireq->target_device,
2113 						  SCI_SW_SUSPEND_NORMAL);
2114 
2115 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2116 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2117 			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2118 		} else {
2119 			/* If we have an error completion status for the
2120 			 * TC then we can expect a D2H register FIS from
2121 			 * the device so we must change state to wait
2122 			 * for it
2123 			 */
2124 			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2125 		}
2126 		break;
2127 
2128 	/* TODO Check to see if any of these completion status need to
2129 	 * wait for the device to host register fis.
2130 	 */
2131 	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2132 	 * - this comes only for B0
2133 	 */
2134 	default:
2135 		/* All other completion status cause the IO to be complete. */
2136 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2137 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2138 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2139 		break;
2140 	}
2141 
2142 	return SCI_SUCCESS;
2143 }
2144 
2145 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2146 						  enum sci_base_request_states next)
2147 {
2148 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2149 	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2150 		ireq->scu_status = SCU_TASK_DONE_GOOD;
2151 		ireq->sci_status = SCI_SUCCESS;
2152 		sci_change_state(&ireq->sm, next);
2153 		break;
2154 	default:
2155 		/* All other completion status cause the IO to be complete.
2156 		 * If a NAK was received, then it is up to the user to retry
2157 		 * the request.
2158 		 */
2159 		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2160 		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2161 
2162 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2163 		break;
2164 	}
2165 
2166 	return SCI_SUCCESS;
2167 }
2168 
2169 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2170 							u32 completion_code)
2171 {
2172 	struct isci_remote_device *idev = ireq->target_device;
2173 	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2174 	enum sci_status status = SCI_SUCCESS;
2175 
2176 	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2177 	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2178 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179 		break;
2180 
2181 	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2182 		u16 len = sci_req_tx_bytes(ireq);
2183 
2184 		/* likely non-error data underrrun, workaround missing
2185 		 * d2h frame from the controller
2186 		 */
2187 		if (d2h->fis_type != FIS_REGD2H) {
2188 			d2h->fis_type = FIS_REGD2H;
2189 			d2h->flags = (1 << 6);
2190 			d2h->status = 0x50;
2191 			d2h->error = 0;
2192 			d2h->lbal = 0;
2193 			d2h->byte_count_low = len & 0xff;
2194 			d2h->byte_count_high = len >> 8;
2195 			d2h->device = 0xa0;
2196 			d2h->lbal_exp = 0;
2197 			d2h->lbam_exp = 0;
2198 			d2h->lbah_exp = 0;
2199 			d2h->_r_a = 0;
2200 			d2h->sector_count = 0x3;
2201 			d2h->sector_count_exp = 0;
2202 			d2h->_r_b = 0;
2203 			d2h->_r_c = 0;
2204 			d2h->_r_d = 0;
2205 		}
2206 
2207 		ireq->scu_status = SCU_TASK_DONE_GOOD;
2208 		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2209 		status = ireq->sci_status;
2210 
2211 		/* the hw will have suspended the rnc, so complete the
2212 		 * request upon pending resume
2213 		 */
2214 		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2215 		break;
2216 	}
2217 	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2218 		/* In this case, there is no UF coming after.
2219 		 * compelte the IO now.
2220 		 */
2221 		ireq->scu_status = SCU_TASK_DONE_GOOD;
2222 		ireq->sci_status = SCI_SUCCESS;
2223 		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2224 		break;
2225 
2226 	default:
2227 		if (d2h->fis_type == FIS_REGD2H) {
2228 			/* UF received change the device state to ATAPI_ERROR */
2229 			status = ireq->sci_status;
2230 			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231 		} else {
2232 			/* If receiving any non-success TC status, no UF
2233 			 * received yet, then an UF for the status fis
2234 			 * is coming after (XXX: suspect this is
2235 			 * actually a protocol error or a bug like the
2236 			 * DONE_UNEXP_FIS case)
2237 			 */
2238 			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2239 			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2240 
2241 			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2242 		}
2243 		break;
2244 	}
2245 
2246 	return status;
2247 }
2248 
2249 static int sci_request_smp_completion_status_is_tx_suspend(
2250 	unsigned int completion_status)
2251 {
2252 	switch (completion_status) {
2253 	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2254 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2255 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2256 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2257 	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2258 	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2259 		return 1;
2260 	}
2261 	return 0;
2262 }
2263 
2264 static int sci_request_smp_completion_status_is_tx_rx_suspend(
2265 	unsigned int completion_status)
2266 {
2267 	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268 }
2269 
2270 static int sci_request_ssp_completion_status_is_tx_suspend(
2271 	unsigned int completion_status)
2272 {
2273 	switch (completion_status) {
2274 	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2275 	case SCU_TASK_DONE_LF_ERR:
2276 	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2277 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2278 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2279 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2280 	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2281 	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2282 	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2283 	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2284 	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2285 		return 1;
2286 	}
2287 	return 0;
2288 }
2289 
2290 static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2291 	unsigned int completion_status)
2292 {
2293 	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294 }
2295 
2296 static int sci_request_stpsata_completion_status_is_tx_suspend(
2297 	unsigned int completion_status)
2298 {
2299 	switch (completion_status) {
2300 	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2301 	case SCU_TASK_DONE_LL_R_ERR:
2302 	case SCU_TASK_DONE_LL_PERR:
2303 	case SCU_TASK_DONE_REG_ERR:
2304 	case SCU_TASK_DONE_SDB_ERR:
2305 	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2306 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2307 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2308 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2309 	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2310 	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2311 	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2312 	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2313 	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2314 		return 1;
2315 	}
2316 	return 0;
2317 }
2318 
2319 
2320 static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2321 	unsigned int completion_status)
2322 {
2323 	switch (completion_status) {
2324 	case SCU_TASK_DONE_LF_ERR:
2325 	case SCU_TASK_DONE_LL_SY_TERM:
2326 	case SCU_TASK_DONE_LL_LF_TERM:
2327 	case SCU_TASK_DONE_BREAK_RCVD:
2328 	case SCU_TASK_DONE_INV_FIS_LEN:
2329 	case SCU_TASK_DONE_UNEXP_FIS:
2330 	case SCU_TASK_DONE_UNEXP_SDBFIS:
2331 	case SCU_TASK_DONE_MAX_PLD_ERR:
2332 		return 1;
2333 	}
2334 	return 0;
2335 }
2336 
2337 static void sci_request_handle_suspending_completions(
2338 	struct isci_request *ireq,
2339 	u32 completion_code)
2340 {
2341 	int is_tx = 0;
2342 	int is_tx_rx = 0;
2343 
2344 	switch (ireq->protocol) {
2345 	case SAS_PROTOCOL_SMP:
2346 		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2347 			completion_code);
2348 		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2349 			completion_code);
2350 		break;
2351 	case SAS_PROTOCOL_SSP:
2352 		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2353 			completion_code);
2354 		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2355 			completion_code);
2356 		break;
2357 	case SAS_PROTOCOL_STP:
2358 		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2359 			completion_code);
2360 		is_tx_rx =
2361 			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2362 				completion_code);
2363 		break;
2364 	default:
2365 		dev_warn(&ireq->isci_host->pdev->dev,
2366 			 "%s: request %p has no valid protocol\n",
2367 			 __func__, ireq);
2368 		break;
2369 	}
2370 	if (is_tx || is_tx_rx) {
2371 		BUG_ON(is_tx && is_tx_rx);
2372 
2373 		sci_remote_node_context_suspend(
2374 			&ireq->target_device->rnc,
2375 			SCI_HW_SUSPEND,
2376 			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2377 				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2378 	}
2379 }
2380 
2381 enum sci_status
2382 sci_io_request_tc_completion(struct isci_request *ireq,
2383 			     u32 completion_code)
2384 {
2385 	enum sci_base_request_states state;
2386 	struct isci_host *ihost = ireq->owning_controller;
2387 
2388 	state = ireq->sm.current_state_id;
2389 
2390 	/* Decode those completions that signal upcoming suspension events. */
2391 	sci_request_handle_suspending_completions(
2392 		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2393 
2394 	switch (state) {
2395 	case SCI_REQ_STARTED:
2396 		return request_started_state_tc_event(ireq, completion_code);
2397 
2398 	case SCI_REQ_TASK_WAIT_TC_COMP:
2399 		return ssp_task_request_await_tc_event(ireq,
2400 						       completion_code);
2401 
2402 	case SCI_REQ_SMP_WAIT_RESP:
2403 		return smp_request_await_response_tc_event(ireq,
2404 							   completion_code);
2405 
2406 	case SCI_REQ_SMP_WAIT_TC_COMP:
2407 		return smp_request_await_tc_event(ireq, completion_code);
2408 
2409 	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2410 		return stp_request_udma_await_tc_event(ireq,
2411 						       completion_code);
2412 
2413 	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2414 		return stp_request_non_data_await_h2d_tc_event(ireq,
2415 							       completion_code);
2416 
2417 	case SCI_REQ_STP_PIO_WAIT_H2D:
2418 		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2419 								     completion_code);
2420 
2421 	case SCI_REQ_STP_PIO_DATA_OUT:
2422 		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2423 
2424 	case SCI_REQ_ABORTING:
2425 		return request_aborting_state_tc_event(ireq,
2426 						       completion_code);
2427 
2428 	case SCI_REQ_ATAPI_WAIT_H2D:
2429 		return atapi_raw_completion(ireq, completion_code,
2430 					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2431 
2432 	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2433 		return atapi_raw_completion(ireq, completion_code,
2434 					    SCI_REQ_ATAPI_WAIT_D2H);
2435 
2436 	case SCI_REQ_ATAPI_WAIT_D2H:
2437 		return atapi_data_tc_completion_handler(ireq, completion_code);
2438 
2439 	default:
2440 		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2441 			 __func__, completion_code, req_state_name(state));
2442 		return SCI_FAILURE_INVALID_STATE;
2443 	}
2444 }
2445 
2446 /**
2447  * isci_request_process_response_iu() - This function sets the status and
2448  *    response iu, in the task struct, from the request object for the upper
2449  *    layer driver.
2450  * @task: This parameter is the task struct from the upper layer driver.
2451  * @resp_iu: This parameter points to the response iu of the completed request.
2452  * @dev: This parameter specifies the linux device struct.
2453  *
2454  * none.
2455  */
2456 static void isci_request_process_response_iu(
2457 	struct sas_task *task,
2458 	struct ssp_response_iu *resp_iu,
2459 	struct device *dev)
2460 {
2461 	dev_dbg(dev,
2462 		"%s: resp_iu = %p "
2463 		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2464 		"resp_iu->response_data_len = %x, "
2465 		"resp_iu->sense_data_len = %x\nresponse data: ",
2466 		__func__,
2467 		resp_iu,
2468 		resp_iu->status,
2469 		resp_iu->datapres,
2470 		resp_iu->response_data_len,
2471 		resp_iu->sense_data_len);
2472 
2473 	task->task_status.stat = resp_iu->status;
2474 
2475 	/* libsas updates the task status fields based on the response iu. */
2476 	sas_ssp_task_response(dev, task, resp_iu);
2477 }
2478 
2479 /**
2480  * isci_request_set_open_reject_status() - This function prepares the I/O
2481  *    completion for OPEN_REJECT conditions.
2482  * @request: This parameter is the completed isci_request object.
2483  * @task: This parameter is the task struct from the upper layer driver.
2484  * @response_ptr: This parameter specifies the service response for the I/O.
2485  * @status_ptr: This parameter specifies the exec status for the I/O.
2486  * @open_rej_reason: This parameter specifies the encoded reason for the
2487  *    abandon-class reject.
2488  *
2489  * none.
2490  */
2491 static void isci_request_set_open_reject_status(
2492 	struct isci_request *request,
2493 	struct sas_task *task,
2494 	enum service_response *response_ptr,
2495 	enum exec_status *status_ptr,
2496 	enum sas_open_rej_reason open_rej_reason)
2497 {
2498 	/* Task in the target is done. */
2499 	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2500 	*response_ptr                     = SAS_TASK_UNDELIVERED;
2501 	*status_ptr                       = SAS_OPEN_REJECT;
2502 	task->task_status.open_rej_reason = open_rej_reason;
2503 }
2504 
2505 /**
2506  * isci_request_handle_controller_specific_errors() - This function decodes
2507  *    controller-specific I/O completion error conditions.
2508  * @idev: Remote device
2509  * @request: This parameter is the completed isci_request object.
2510  * @task: This parameter is the task struct from the upper layer driver.
2511  * @response_ptr: This parameter specifies the service response for the I/O.
2512  * @status_ptr: This parameter specifies the exec status for the I/O.
2513  *
2514  * none.
2515  */
2516 static void isci_request_handle_controller_specific_errors(
2517 	struct isci_remote_device *idev,
2518 	struct isci_request *request,
2519 	struct sas_task *task,
2520 	enum service_response *response_ptr,
2521 	enum exec_status *status_ptr)
2522 {
2523 	unsigned int cstatus;
2524 
2525 	cstatus = request->scu_status;
2526 
2527 	dev_dbg(&request->isci_host->pdev->dev,
2528 		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2529 		"- controller status = 0x%x\n",
2530 		__func__, request, cstatus);
2531 
2532 	/* Decode the controller-specific errors; most
2533 	 * important is to recognize those conditions in which
2534 	 * the target may still have a task outstanding that
2535 	 * must be aborted.
2536 	 *
2537 	 * Note that there are SCU completion codes being
2538 	 * named in the decode below for which SCIC has already
2539 	 * done work to handle them in a way other than as
2540 	 * a controller-specific completion code; these are left
2541 	 * in the decode below for completeness sake.
2542 	 */
2543 	switch (cstatus) {
2544 	case SCU_TASK_DONE_DMASETUP_DIRERR:
2545 	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2546 	case SCU_TASK_DONE_XFERCNT_ERR:
2547 		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2548 		if (task->task_proto == SAS_PROTOCOL_SMP) {
2549 			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2550 			*response_ptr = SAS_TASK_COMPLETE;
2551 
2552 			/* See if the device has been/is being stopped. Note
2553 			 * that we ignore the quiesce state, since we are
2554 			 * concerned about the actual device state.
2555 			 */
2556 			if (!idev)
2557 				*status_ptr = SAS_DEVICE_UNKNOWN;
2558 			else
2559 				*status_ptr = SAS_ABORTED_TASK;
2560 
2561 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2562 		} else {
2563 			/* Task in the target is not done. */
2564 			*response_ptr = SAS_TASK_UNDELIVERED;
2565 
2566 			if (!idev)
2567 				*status_ptr = SAS_DEVICE_UNKNOWN;
2568 			else
2569 				*status_ptr = SAM_STAT_TASK_ABORTED;
2570 
2571 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2572 		}
2573 
2574 		break;
2575 
2576 	case SCU_TASK_DONE_CRC_ERR:
2577 	case SCU_TASK_DONE_NAK_CMD_ERR:
2578 	case SCU_TASK_DONE_EXCESS_DATA:
2579 	case SCU_TASK_DONE_UNEXP_FIS:
2580 	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2581 	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2582 	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2583 	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2584 		/* These are conditions in which the target
2585 		 * has completed the task, so that no cleanup
2586 		 * is necessary.
2587 		 */
2588 		*response_ptr = SAS_TASK_COMPLETE;
2589 
2590 		/* See if the device has been/is being stopped. Note
2591 		 * that we ignore the quiesce state, since we are
2592 		 * concerned about the actual device state.
2593 		 */
2594 		if (!idev)
2595 			*status_ptr = SAS_DEVICE_UNKNOWN;
2596 		else
2597 			*status_ptr = SAS_ABORTED_TASK;
2598 
2599 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2600 		break;
2601 
2602 
2603 	/* Note that the only open reject completion codes seen here will be
2604 	 * abandon-class codes; all others are automatically retried in the SCU.
2605 	 */
2606 	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2607 
2608 		isci_request_set_open_reject_status(
2609 			request, task, response_ptr, status_ptr,
2610 			SAS_OREJ_WRONG_DEST);
2611 		break;
2612 
2613 	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2614 
2615 		/* Note - the return of AB0 will change when
2616 		 * libsas implements detection of zone violations.
2617 		 */
2618 		isci_request_set_open_reject_status(
2619 			request, task, response_ptr, status_ptr,
2620 			SAS_OREJ_RESV_AB0);
2621 		break;
2622 
2623 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2624 
2625 		isci_request_set_open_reject_status(
2626 			request, task, response_ptr, status_ptr,
2627 			SAS_OREJ_RESV_AB1);
2628 		break;
2629 
2630 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2631 
2632 		isci_request_set_open_reject_status(
2633 			request, task, response_ptr, status_ptr,
2634 			SAS_OREJ_RESV_AB2);
2635 		break;
2636 
2637 	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2638 
2639 		isci_request_set_open_reject_status(
2640 			request, task, response_ptr, status_ptr,
2641 			SAS_OREJ_RESV_AB3);
2642 		break;
2643 
2644 	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2645 
2646 		isci_request_set_open_reject_status(
2647 			request, task, response_ptr, status_ptr,
2648 			SAS_OREJ_BAD_DEST);
2649 		break;
2650 
2651 	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2652 
2653 		isci_request_set_open_reject_status(
2654 			request, task, response_ptr, status_ptr,
2655 			SAS_OREJ_STP_NORES);
2656 		break;
2657 
2658 	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2659 
2660 		isci_request_set_open_reject_status(
2661 			request, task, response_ptr, status_ptr,
2662 			SAS_OREJ_EPROTO);
2663 		break;
2664 
2665 	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2666 
2667 		isci_request_set_open_reject_status(
2668 			request, task, response_ptr, status_ptr,
2669 			SAS_OREJ_CONN_RATE);
2670 		break;
2671 
2672 	case SCU_TASK_DONE_LL_R_ERR:
2673 	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2674 	case SCU_TASK_DONE_LL_PERR:
2675 	case SCU_TASK_DONE_LL_SY_TERM:
2676 	/* Also SCU_TASK_DONE_NAK_ERR:*/
2677 	case SCU_TASK_DONE_LL_LF_TERM:
2678 	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2679 	case SCU_TASK_DONE_LL_ABORT_ERR:
2680 	case SCU_TASK_DONE_SEQ_INV_TYPE:
2681 	/* Also SCU_TASK_DONE_UNEXP_XR: */
2682 	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2683 	case SCU_TASK_DONE_INV_FIS_LEN:
2684 	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2685 	case SCU_TASK_DONE_SDMA_ERR:
2686 	case SCU_TASK_DONE_OFFSET_ERR:
2687 	case SCU_TASK_DONE_MAX_PLD_ERR:
2688 	case SCU_TASK_DONE_LF_ERR:
2689 	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2690 	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2691 	case SCU_TASK_DONE_UNEXP_DATA:
2692 	case SCU_TASK_DONE_UNEXP_SDBFIS:
2693 	case SCU_TASK_DONE_REG_ERR:
2694 	case SCU_TASK_DONE_SDB_ERR:
2695 	case SCU_TASK_DONE_TASK_ABORT:
2696 	default:
2697 		/* Task in the target is not done. */
2698 		*response_ptr = SAS_TASK_UNDELIVERED;
2699 		*status_ptr = SAM_STAT_TASK_ABORTED;
2700 
2701 		if (task->task_proto == SAS_PROTOCOL_SMP)
2702 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703 		else
2704 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2705 		break;
2706 	}
2707 }
2708 
2709 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2710 {
2711 	struct task_status_struct *ts = &task->task_status;
2712 	struct ata_task_resp *resp = (void *)&ts->buf[0];
2713 
2714 	resp->frame_len = sizeof(*fis);
2715 	memcpy(resp->ending_fis, fis, sizeof(*fis));
2716 	ts->buf_valid_size = sizeof(*resp);
2717 
2718 	/* If an error is flagged let libata decode the fis */
2719 	if (ac_err_mask(fis->status))
2720 		ts->stat = SAS_PROTO_RESPONSE;
2721 	else
2722 		ts->stat = SAM_STAT_GOOD;
2723 
2724 	ts->resp = SAS_TASK_COMPLETE;
2725 }
2726 
2727 static void isci_request_io_request_complete(struct isci_host *ihost,
2728 					     struct isci_request *request,
2729 					     enum sci_io_status completion_status)
2730 {
2731 	struct sas_task *task = isci_request_access_task(request);
2732 	struct ssp_response_iu *resp_iu;
2733 	unsigned long task_flags;
2734 	struct isci_remote_device *idev = request->target_device;
2735 	enum service_response response = SAS_TASK_UNDELIVERED;
2736 	enum exec_status status = SAS_ABORTED_TASK;
2737 
2738 	dev_dbg(&ihost->pdev->dev,
2739 		"%s: request = %p, task = %p, "
2740 		"task->data_dir = %d completion_status = 0x%x\n",
2741 		__func__, request, task, task->data_dir, completion_status);
2742 
2743 	/* The request is done from an SCU HW perspective. */
2744 
2745 	/* This is an active request being completed from the core. */
2746 	switch (completion_status) {
2747 
2748 	case SCI_IO_FAILURE_RESPONSE_VALID:
2749 		dev_dbg(&ihost->pdev->dev,
2750 			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2751 			__func__, request, task);
2752 
2753 		if (sas_protocol_ata(task->task_proto)) {
2754 			isci_process_stp_response(task, &request->stp.rsp);
2755 		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2756 
2757 			/* crack the iu response buffer. */
2758 			resp_iu = &request->ssp.rsp;
2759 			isci_request_process_response_iu(task, resp_iu,
2760 							 &ihost->pdev->dev);
2761 
2762 		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2763 
2764 			dev_err(&ihost->pdev->dev,
2765 				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2766 					"SAS_PROTOCOL_SMP protocol\n",
2767 				__func__);
2768 
2769 		} else
2770 			dev_err(&ihost->pdev->dev,
2771 				"%s: unknown protocol\n", __func__);
2772 
2773 		/* use the task status set in the task struct by the
2774 		* isci_request_process_response_iu call.
2775 		*/
2776 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2777 		response = task->task_status.resp;
2778 		status = task->task_status.stat;
2779 		break;
2780 
2781 	case SCI_IO_SUCCESS:
2782 	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2783 
2784 		response = SAS_TASK_COMPLETE;
2785 		status   = SAM_STAT_GOOD;
2786 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2787 
2788 		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2789 
2790 			/* This was an SSP / STP / SATA transfer.
2791 			* There is a possibility that less data than
2792 			* the maximum was transferred.
2793 			*/
2794 			u32 transferred_length = sci_req_tx_bytes(request);
2795 
2796 			task->task_status.residual
2797 				= task->total_xfer_len - transferred_length;
2798 
2799 			/* If there were residual bytes, call this an
2800 			* underrun.
2801 			*/
2802 			if (task->task_status.residual != 0)
2803 				status = SAS_DATA_UNDERRUN;
2804 
2805 			dev_dbg(&ihost->pdev->dev,
2806 				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2807 				__func__, status);
2808 
2809 		} else
2810 			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2811 				__func__);
2812 		break;
2813 
2814 	case SCI_IO_FAILURE_TERMINATED:
2815 
2816 		dev_dbg(&ihost->pdev->dev,
2817 			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2818 			__func__, request, task);
2819 
2820 		/* The request was terminated explicitly. */
2821 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2822 		response = SAS_TASK_UNDELIVERED;
2823 
2824 		/* See if the device has been/is being stopped. Note
2825 		* that we ignore the quiesce state, since we are
2826 		* concerned about the actual device state.
2827 		*/
2828 		if (!idev)
2829 			status = SAS_DEVICE_UNKNOWN;
2830 		else
2831 			status = SAS_ABORTED_TASK;
2832 		break;
2833 
2834 	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2835 
2836 		isci_request_handle_controller_specific_errors(idev, request,
2837 							       task, &response,
2838 							       &status);
2839 		break;
2840 
2841 	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2842 		/* This is a special case, in that the I/O completion
2843 		* is telling us that the device needs a reset.
2844 		* In order for the device reset condition to be
2845 		* noticed, the I/O has to be handled in the error
2846 		* handler.  Set the reset flag and cause the
2847 		* SCSI error thread to be scheduled.
2848 		*/
2849 		spin_lock_irqsave(&task->task_state_lock, task_flags);
2850 		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2851 		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2852 
2853 		/* Fail the I/O. */
2854 		response = SAS_TASK_UNDELIVERED;
2855 		status = SAM_STAT_TASK_ABORTED;
2856 
2857 		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2858 		break;
2859 
2860 	case SCI_FAILURE_RETRY_REQUIRED:
2861 
2862 		/* Fail the I/O so it can be retried. */
2863 		response = SAS_TASK_UNDELIVERED;
2864 		if (!idev)
2865 			status = SAS_DEVICE_UNKNOWN;
2866 		else
2867 			status = SAS_ABORTED_TASK;
2868 
2869 		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2870 		break;
2871 
2872 
2873 	default:
2874 		/* Catch any otherwise unhandled error codes here. */
2875 		dev_dbg(&ihost->pdev->dev,
2876 			"%s: invalid completion code: 0x%x - "
2877 				"isci_request = %p\n",
2878 			__func__, completion_status, request);
2879 
2880 		response = SAS_TASK_UNDELIVERED;
2881 
2882 		/* See if the device has been/is being stopped. Note
2883 		* that we ignore the quiesce state, since we are
2884 		* concerned about the actual device state.
2885 		*/
2886 		if (!idev)
2887 			status = SAS_DEVICE_UNKNOWN;
2888 		else
2889 			status = SAS_ABORTED_TASK;
2890 
2891 		if (SAS_PROTOCOL_SMP == task->task_proto)
2892 			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893 		else
2894 			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2895 		break;
2896 	}
2897 
2898 	switch (task->task_proto) {
2899 	case SAS_PROTOCOL_SSP:
2900 		if (task->data_dir == DMA_NONE)
2901 			break;
2902 		if (task->num_scatter == 0)
2903 			/* 0 indicates a single dma address */
2904 			dma_unmap_single(&ihost->pdev->dev,
2905 					 request->zero_scatter_daddr,
2906 					 task->total_xfer_len, task->data_dir);
2907 		else  /* unmap the sgl dma addresses */
2908 			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2909 				     request->num_sg_entries, task->data_dir);
2910 		break;
2911 	case SAS_PROTOCOL_SMP: {
2912 		struct scatterlist *sg = &task->smp_task.smp_req;
2913 		struct smp_req *smp_req;
2914 		void *kaddr;
2915 
2916 		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2917 
2918 		/* need to swab it back in case the command buffer is re-used */
2919 		kaddr = kmap_atomic(sg_page(sg));
2920 		smp_req = kaddr + sg->offset;
2921 		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2922 		kunmap_atomic(kaddr);
2923 		break;
2924 	}
2925 	default:
2926 		break;
2927 	}
2928 
2929 	spin_lock_irqsave(&task->task_state_lock, task_flags);
2930 
2931 	task->task_status.resp = response;
2932 	task->task_status.stat = status;
2933 
2934 	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2935 		/* Normal notification (task_done) */
2936 		task->task_state_flags |= SAS_TASK_STATE_DONE;
2937 		task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2938 					    SAS_TASK_STATE_PENDING);
2939 	}
2940 	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2941 
2942 	/* complete the io request to the core. */
2943 	sci_controller_complete_io(ihost, request->target_device, request);
2944 
2945 	/* set terminated handle so it cannot be completed or
2946 	 * terminated again, and to cause any calls into abort
2947 	 * task to recognize the already completed case.
2948 	 */
2949 	set_bit(IREQ_TERMINATED, &request->flags);
2950 
2951 	ireq_done(ihost, request, task);
2952 }
2953 
2954 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2955 {
2956 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2957 	struct domain_device *dev = ireq->target_device->domain_dev;
2958 	enum sci_base_request_states state;
2959 	struct sas_task *task;
2960 
2961 	/* XXX as hch said always creating an internal sas_task for tmf
2962 	 * requests would simplify the driver
2963 	 */
2964 	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2965 
2966 	/* all unaccelerated request types (non ssp or ncq) handled with
2967 	 * substates
2968 	 */
2969 	if (!task && dev->dev_type == SAS_END_DEVICE) {
2970 		state = SCI_REQ_TASK_WAIT_TC_COMP;
2971 	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2972 		state = SCI_REQ_SMP_WAIT_RESP;
2973 	} else if (task && sas_protocol_ata(task->task_proto) &&
2974 		   !task->ata_task.use_ncq) {
2975 		if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2976 			task->ata_task.fis.command == ATA_CMD_PACKET) {
2977 			state = SCI_REQ_ATAPI_WAIT_H2D;
2978 		} else if (task->data_dir == DMA_NONE) {
2979 			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2980 		} else if (task->ata_task.dma_xfer) {
2981 			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2982 		} else /* PIO */ {
2983 			state = SCI_REQ_STP_PIO_WAIT_H2D;
2984 		}
2985 	} else {
2986 		/* SSP or NCQ are fully accelerated, no substates */
2987 		return;
2988 	}
2989 	sci_change_state(sm, state);
2990 }
2991 
2992 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2993 {
2994 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2995 	struct isci_host *ihost = ireq->owning_controller;
2996 
2997 	/* Tell the SCI_USER that the IO request is complete */
2998 	if (!test_bit(IREQ_TMF, &ireq->flags))
2999 		isci_request_io_request_complete(ihost, ireq,
3000 						 ireq->sci_status);
3001 	else
3002 		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3003 }
3004 
3005 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3006 {
3007 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3008 
3009 	/* Setting the abort bit in the Task Context is required by the silicon. */
3010 	ireq->tc->abort = 1;
3011 }
3012 
3013 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3014 {
3015 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016 
3017 	ireq->target_device->working_request = ireq;
3018 }
3019 
3020 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3021 {
3022 	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3023 
3024 	ireq->target_device->working_request = ireq;
3025 }
3026 
3027 static const struct sci_base_state sci_request_state_table[] = {
3028 	[SCI_REQ_INIT] = { },
3029 	[SCI_REQ_CONSTRUCTED] = { },
3030 	[SCI_REQ_STARTED] = {
3031 		.enter_state = sci_request_started_state_enter,
3032 	},
3033 	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3034 		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3035 	},
3036 	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3037 	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3038 		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3039 	},
3040 	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3041 	[SCI_REQ_STP_PIO_DATA_IN] = { },
3042 	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3043 	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3044 	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3045 	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3046 	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3047 	[SCI_REQ_SMP_WAIT_RESP] = { },
3048 	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3049 	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3050 	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3051 	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3052 	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3053 	[SCI_REQ_COMPLETED] = {
3054 		.enter_state = sci_request_completed_state_enter,
3055 	},
3056 	[SCI_REQ_ABORTING] = {
3057 		.enter_state = sci_request_aborting_state_enter,
3058 	},
3059 	[SCI_REQ_FINAL] = { },
3060 };
3061 
3062 static void
3063 sci_general_request_construct(struct isci_host *ihost,
3064 				   struct isci_remote_device *idev,
3065 				   struct isci_request *ireq)
3066 {
3067 	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3068 
3069 	ireq->target_device = idev;
3070 	ireq->protocol = SAS_PROTOCOL_NONE;
3071 	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3072 
3073 	ireq->sci_status   = SCI_SUCCESS;
3074 	ireq->scu_status   = 0;
3075 	ireq->post_context = 0xFFFFFFFF;
3076 }
3077 
3078 static enum sci_status
3079 sci_io_request_construct(struct isci_host *ihost,
3080 			  struct isci_remote_device *idev,
3081 			  struct isci_request *ireq)
3082 {
3083 	struct domain_device *dev = idev->domain_dev;
3084 	enum sci_status status = SCI_SUCCESS;
3085 
3086 	/* Build the common part of the request */
3087 	sci_general_request_construct(ihost, idev, ireq);
3088 
3089 	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3090 		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3091 
3092 	if (dev->dev_type == SAS_END_DEVICE)
3093 		/* pass */;
3094 	else if (dev_is_sata(dev))
3095 		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3096 	else if (dev_is_expander(dev->dev_type))
3097 		/* pass */;
3098 	else
3099 		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3100 
3101 	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3102 
3103 	return status;
3104 }
3105 
3106 enum sci_status sci_task_request_construct(struct isci_host *ihost,
3107 					    struct isci_remote_device *idev,
3108 					    u16 io_tag, struct isci_request *ireq)
3109 {
3110 	struct domain_device *dev = idev->domain_dev;
3111 	enum sci_status status = SCI_SUCCESS;
3112 
3113 	/* Build the common part of the request */
3114 	sci_general_request_construct(ihost, idev, ireq);
3115 
3116 	if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3117 		set_bit(IREQ_TMF, &ireq->flags);
3118 		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3119 
3120 		/* Set the protocol indicator. */
3121 		if (dev_is_sata(dev))
3122 			ireq->protocol = SAS_PROTOCOL_STP;
3123 		else
3124 			ireq->protocol = SAS_PROTOCOL_SSP;
3125 	} else
3126 		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3127 
3128 	return status;
3129 }
3130 
3131 static enum sci_status isci_request_ssp_request_construct(
3132 	struct isci_request *request)
3133 {
3134 	enum sci_status status;
3135 
3136 	dev_dbg(&request->isci_host->pdev->dev,
3137 		"%s: request = %p\n",
3138 		__func__,
3139 		request);
3140 	status = sci_io_request_construct_basic_ssp(request);
3141 	return status;
3142 }
3143 
3144 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3145 {
3146 	struct sas_task *task = isci_request_access_task(ireq);
3147 	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3148 	struct ata_queued_cmd *qc = task->uldd_task;
3149 	enum sci_status status;
3150 
3151 	dev_dbg(&ireq->isci_host->pdev->dev,
3152 		"%s: ireq = %p\n",
3153 		__func__,
3154 		ireq);
3155 
3156 	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3157 	if (!task->ata_task.device_control_reg_update)
3158 		fis->flags |= 0x80;
3159 	fis->flags &= 0xF0;
3160 
3161 	status = sci_io_request_construct_basic_sata(ireq);
3162 
3163 	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3164 		   qc->tf.command == ATA_CMD_FPDMA_READ ||
3165 		   qc->tf.command == ATA_CMD_FPDMA_RECV ||
3166 		   qc->tf.command == ATA_CMD_FPDMA_SEND ||
3167 		   qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3168 		fis->sector_count = qc->tag << 3;
3169 		ireq->tc->type.stp.ncq_tag = qc->tag;
3170 	}
3171 
3172 	return status;
3173 }
3174 
3175 static enum sci_status
3176 sci_io_request_construct_smp(struct device *dev,
3177 			      struct isci_request *ireq,
3178 			      struct sas_task *task)
3179 {
3180 	struct scatterlist *sg = &task->smp_task.smp_req;
3181 	struct isci_remote_device *idev;
3182 	struct scu_task_context *task_context;
3183 	struct isci_port *iport;
3184 	struct smp_req *smp_req;
3185 	void *kaddr;
3186 	u8 req_len;
3187 	u32 cmd;
3188 
3189 	kaddr = kmap_atomic(sg_page(sg));
3190 	smp_req = kaddr + sg->offset;
3191 	/*
3192 	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3193 	 * functions under SAS 2.0, a zero request length really indicates
3194 	 * a non-zero default length.
3195 	 */
3196 	if (smp_req->req_len == 0) {
3197 		switch (smp_req->func) {
3198 		case SMP_DISCOVER:
3199 		case SMP_REPORT_PHY_ERR_LOG:
3200 		case SMP_REPORT_PHY_SATA:
3201 		case SMP_REPORT_ROUTE_INFO:
3202 			smp_req->req_len = 2;
3203 			break;
3204 		case SMP_CONF_ROUTE_INFO:
3205 		case SMP_PHY_CONTROL:
3206 		case SMP_PHY_TEST_FUNCTION:
3207 			smp_req->req_len = 9;
3208 			break;
3209 			/* Default - zero is a valid default for 2.0. */
3210 		}
3211 	}
3212 	req_len = smp_req->req_len;
3213 	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3214 	cmd = *(u32 *) smp_req;
3215 	kunmap_atomic(kaddr);
3216 
3217 	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3218 		return SCI_FAILURE;
3219 
3220 	ireq->protocol = SAS_PROTOCOL_SMP;
3221 
3222 	/* byte swap the smp request. */
3223 
3224 	task_context = ireq->tc;
3225 
3226 	idev = ireq->target_device;
3227 	iport = idev->owning_port;
3228 
3229 	/*
3230 	 * Fill in the TC with its required data
3231 	 * 00h
3232 	 */
3233 	task_context->priority = 0;
3234 	task_context->initiator_request = 1;
3235 	task_context->connection_rate = idev->connection_rate;
3236 	task_context->protocol_engine_index = ISCI_PEG;
3237 	task_context->logical_port_index = iport->physical_port_index;
3238 	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3239 	task_context->abort = 0;
3240 	task_context->valid = SCU_TASK_CONTEXT_VALID;
3241 	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3242 
3243 	/* 04h */
3244 	task_context->remote_node_index = idev->rnc.remote_node_index;
3245 	task_context->command_code = 0;
3246 	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3247 
3248 	/* 08h */
3249 	task_context->link_layer_control = 0;
3250 	task_context->do_not_dma_ssp_good_response = 1;
3251 	task_context->strict_ordering = 0;
3252 	task_context->control_frame = 1;
3253 	task_context->timeout_enable = 0;
3254 	task_context->block_guard_enable = 0;
3255 
3256 	/* 0ch */
3257 	task_context->address_modifier = 0;
3258 
3259 	/* 10h */
3260 	task_context->ssp_command_iu_length = req_len;
3261 
3262 	/* 14h */
3263 	task_context->transfer_length_bytes = 0;
3264 
3265 	/*
3266 	 * 18h ~ 30h, protocol specific
3267 	 * since commandIU has been build by framework at this point, we just
3268 	 * copy the frist DWord from command IU to this location. */
3269 	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3270 
3271 	/*
3272 	 * 40h
3273 	 * "For SMP you could program it to zero. We would prefer that way
3274 	 * so that done code will be consistent." - Venki
3275 	 */
3276 	task_context->task_phase = 0;
3277 
3278 	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3279 			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3280 			       (iport->physical_port_index <<
3281 				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3282 			      ISCI_TAG_TCI(ireq->io_tag));
3283 	/*
3284 	 * Copy the physical address for the command buffer to the SCU Task
3285 	 * Context command buffer should not contain command header.
3286 	 */
3287 	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3288 	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3289 
3290 	/* SMP response comes as UF, so no need to set response IU address. */
3291 	task_context->response_iu_upper = 0;
3292 	task_context->response_iu_lower = 0;
3293 
3294 	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3295 
3296 	return SCI_SUCCESS;
3297 }
3298 
3299 /*
3300  * isci_smp_request_build() - This function builds the smp request.
3301  * @ireq: This parameter points to the isci_request allocated in the
3302  *    request construct function.
3303  *
3304  * SCI_SUCCESS on successfull completion, or specific failure code.
3305  */
3306 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3307 {
3308 	struct sas_task *task = isci_request_access_task(ireq);
3309 	struct device *dev = &ireq->isci_host->pdev->dev;
3310 	enum sci_status status = SCI_FAILURE;
3311 
3312 	status = sci_io_request_construct_smp(dev, ireq, task);
3313 	if (status != SCI_SUCCESS)
3314 		dev_dbg(&ireq->isci_host->pdev->dev,
3315 			 "%s: failed with status = %d\n",
3316 			 __func__,
3317 			 status);
3318 
3319 	return status;
3320 }
3321 
3322 /**
3323  * isci_io_request_build() - This function builds the io request object.
3324  * @ihost: This parameter specifies the ISCI host object
3325  * @request: This parameter points to the isci_request object allocated in the
3326  *    request construct function.
3327  * @idev: This parameter is the handle for the sci core's remote device
3328  *    object that is the destination for this request.
3329  *
3330  * SCI_SUCCESS on successfull completion, or specific failure code.
3331  */
3332 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3333 					     struct isci_request *request,
3334 					     struct isci_remote_device *idev)
3335 {
3336 	enum sci_status status = SCI_SUCCESS;
3337 	struct sas_task *task = isci_request_access_task(request);
3338 
3339 	dev_dbg(&ihost->pdev->dev,
3340 		"%s: idev = 0x%p; request = %p, "
3341 		"num_scatter = %d\n",
3342 		__func__,
3343 		idev,
3344 		request,
3345 		task->num_scatter);
3346 
3347 	/* map the sgl addresses, if present.
3348 	 * libata does the mapping for sata devices
3349 	 * before we get the request.
3350 	 */
3351 	if (task->num_scatter &&
3352 	    !sas_protocol_ata(task->task_proto) &&
3353 	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3354 
3355 		request->num_sg_entries = dma_map_sg(
3356 			&ihost->pdev->dev,
3357 			task->scatter,
3358 			task->num_scatter,
3359 			task->data_dir
3360 			);
3361 
3362 		if (request->num_sg_entries == 0)
3363 			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3364 	}
3365 
3366 	status = sci_io_request_construct(ihost, idev, request);
3367 
3368 	if (status != SCI_SUCCESS) {
3369 		dev_dbg(&ihost->pdev->dev,
3370 			 "%s: failed request construct\n",
3371 			 __func__);
3372 		return SCI_FAILURE;
3373 	}
3374 
3375 	switch (task->task_proto) {
3376 	case SAS_PROTOCOL_SMP:
3377 		status = isci_smp_request_build(request);
3378 		break;
3379 	case SAS_PROTOCOL_SSP:
3380 		status = isci_request_ssp_request_construct(request);
3381 		break;
3382 	case SAS_PROTOCOL_SATA:
3383 	case SAS_PROTOCOL_STP:
3384 	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3385 		status = isci_request_stp_request_construct(request);
3386 		break;
3387 	default:
3388 		dev_dbg(&ihost->pdev->dev,
3389 			 "%s: unknown protocol\n", __func__);
3390 		return SCI_FAILURE;
3391 	}
3392 
3393 	return SCI_SUCCESS;
3394 }
3395 
3396 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3397 {
3398 	struct isci_request *ireq;
3399 
3400 	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3401 	ireq->io_tag = tag;
3402 	ireq->io_request_completion = NULL;
3403 	ireq->flags = 0;
3404 	ireq->num_sg_entries = 0;
3405 
3406 	return ireq;
3407 }
3408 
3409 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3410 						     struct sas_task *task,
3411 						     u16 tag)
3412 {
3413 	struct isci_request *ireq;
3414 
3415 	ireq = isci_request_from_tag(ihost, tag);
3416 	ireq->ttype_ptr.io_task_ptr = task;
3417 	clear_bit(IREQ_TMF, &ireq->flags);
3418 	task->lldd_task = ireq;
3419 
3420 	return ireq;
3421 }
3422 
3423 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3424 					       struct isci_tmf *isci_tmf,
3425 					       u16 tag)
3426 {
3427 	struct isci_request *ireq;
3428 
3429 	ireq = isci_request_from_tag(ihost, tag);
3430 	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3431 	set_bit(IREQ_TMF, &ireq->flags);
3432 
3433 	return ireq;
3434 }
3435 
3436 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3437 			 struct sas_task *task, u16 tag)
3438 {
3439 	enum sci_status status;
3440 	struct isci_request *ireq;
3441 	unsigned long flags;
3442 	int ret = 0;
3443 
3444 	/* do common allocation and init of request object. */
3445 	ireq = isci_io_request_from_tag(ihost, task, tag);
3446 
3447 	status = isci_io_request_build(ihost, ireq, idev);
3448 	if (status != SCI_SUCCESS) {
3449 		dev_dbg(&ihost->pdev->dev,
3450 			 "%s: request_construct failed - status = 0x%x\n",
3451 			 __func__,
3452 			 status);
3453 		return status;
3454 	}
3455 
3456 	spin_lock_irqsave(&ihost->scic_lock, flags);
3457 
3458 	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3459 
3460 		if (isci_task_is_ncq_recovery(task)) {
3461 
3462 			/* The device is in an NCQ recovery state.  Issue the
3463 			 * request on the task side.  Note that it will
3464 			 * complete on the I/O request side because the
3465 			 * request was built that way (ie.
3466 			 * ireq->is_task_management_request is false).
3467 			 */
3468 			status = sci_controller_start_task(ihost,
3469 							    idev,
3470 							    ireq);
3471 		} else {
3472 			status = SCI_FAILURE;
3473 		}
3474 	} else {
3475 		/* send the request, let the core assign the IO TAG.	*/
3476 		status = sci_controller_start_io(ihost, idev,
3477 						  ireq);
3478 	}
3479 
3480 	if (status != SCI_SUCCESS &&
3481 	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3482 		dev_dbg(&ihost->pdev->dev,
3483 			 "%s: failed request start (0x%x)\n",
3484 			 __func__, status);
3485 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3486 		return status;
3487 	}
3488 	/* Either I/O started OK, or the core has signaled that
3489 	 * the device needs a target reset.
3490 	 */
3491 	if (status != SCI_SUCCESS) {
3492 		/* The request did not really start in the
3493 		 * hardware, so clear the request handle
3494 		 * here so no terminations will be done.
3495 		 */
3496 		set_bit(IREQ_TERMINATED, &ireq->flags);
3497 	}
3498 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3499 
3500 	if (status ==
3501 	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3502 		/* Signal libsas that we need the SCSI error
3503 		 * handler thread to work on this I/O and that
3504 		 * we want a device reset.
3505 		 */
3506 		spin_lock_irqsave(&task->task_state_lock, flags);
3507 		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3508 		spin_unlock_irqrestore(&task->task_state_lock, flags);
3509 
3510 		/* Cause this task to be scheduled in the SCSI error
3511 		 * handler thread.
3512 		 */
3513 		sas_task_abort(task);
3514 
3515 		/* Change the status, since we are holding
3516 		 * the I/O until it is managed by the SCSI
3517 		 * error handler.
3518 		 */
3519 		status = SCI_SUCCESS;
3520 	}
3521 
3522 	return ret;
3523 }
3524