1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 56 #include <scsi/scsi_cmnd.h> 57 #include "isci.h" 58 #include "task.h" 59 #include "request.h" 60 #include "scu_completion_codes.h" 61 #include "scu_event_codes.h" 62 #include "sas.h" 63 64 #undef C 65 #define C(a) (#a) 66 const char *req_state_name(enum sci_base_request_states state) 67 { 68 static const char * const strings[] = REQUEST_STATES; 69 70 return strings[state]; 71 } 72 #undef C 73 74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq, 75 int idx) 76 { 77 if (idx == 0) 78 return &ireq->tc->sgl_pair_ab; 79 else if (idx == 1) 80 return &ireq->tc->sgl_pair_cd; 81 else if (idx < 0) 82 return NULL; 83 else 84 return &ireq->sg_table[idx - 2]; 85 } 86 87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost, 88 struct isci_request *ireq, u32 idx) 89 { 90 u32 offset; 91 92 if (idx == 0) { 93 offset = (void *) &ireq->tc->sgl_pair_ab - 94 (void *) &ihost->task_context_table[0]; 95 return ihost->tc_dma + offset; 96 } else if (idx == 1) { 97 offset = (void *) &ireq->tc->sgl_pair_cd - 98 (void *) &ihost->task_context_table[0]; 99 return ihost->tc_dma + offset; 100 } 101 102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]); 103 } 104 105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg) 106 { 107 e->length = sg_dma_len(sg); 108 e->address_upper = upper_32_bits(sg_dma_address(sg)); 109 e->address_lower = lower_32_bits(sg_dma_address(sg)); 110 e->address_modifier = 0; 111 } 112 113 static void sci_request_build_sgl(struct isci_request *ireq) 114 { 115 struct isci_host *ihost = ireq->isci_host; 116 struct sas_task *task = isci_request_access_task(ireq); 117 struct scatterlist *sg = NULL; 118 dma_addr_t dma_addr; 119 u32 sg_idx = 0; 120 struct scu_sgl_element_pair *scu_sg = NULL; 121 struct scu_sgl_element_pair *prev_sg = NULL; 122 123 if (task->num_scatter > 0) { 124 sg = task->scatter; 125 126 while (sg) { 127 scu_sg = to_sgl_element_pair(ireq, sg_idx); 128 init_sgl_element(&scu_sg->A, sg); 129 sg = sg_next(sg); 130 if (sg) { 131 init_sgl_element(&scu_sg->B, sg); 132 sg = sg_next(sg); 133 } else 134 memset(&scu_sg->B, 0, sizeof(scu_sg->B)); 135 136 if (prev_sg) { 137 dma_addr = to_sgl_element_pair_dma(ihost, 138 ireq, 139 sg_idx); 140 141 prev_sg->next_pair_upper = 142 upper_32_bits(dma_addr); 143 prev_sg->next_pair_lower = 144 lower_32_bits(dma_addr); 145 } 146 147 prev_sg = scu_sg; 148 sg_idx++; 149 } 150 } else { /* handle when no sg */ 151 scu_sg = to_sgl_element_pair(ireq, sg_idx); 152 153 dma_addr = dma_map_single(&ihost->pdev->dev, 154 task->scatter, 155 task->total_xfer_len, 156 task->data_dir); 157 158 ireq->zero_scatter_daddr = dma_addr; 159 160 scu_sg->A.length = task->total_xfer_len; 161 scu_sg->A.address_upper = upper_32_bits(dma_addr); 162 scu_sg->A.address_lower = lower_32_bits(dma_addr); 163 } 164 165 if (scu_sg) { 166 scu_sg->next_pair_upper = 0; 167 scu_sg->next_pair_lower = 0; 168 } 169 } 170 171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq) 172 { 173 struct ssp_cmd_iu *cmd_iu; 174 struct sas_task *task = isci_request_access_task(ireq); 175 176 cmd_iu = &ireq->ssp.cmd; 177 178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8); 179 cmd_iu->add_cdb_len = 0; 180 cmd_iu->_r_a = 0; 181 cmd_iu->_r_b = 0; 182 cmd_iu->en_fburst = 0; /* unsupported */ 183 cmd_iu->task_prio = task->ssp_task.task_prio; 184 cmd_iu->task_attr = task->ssp_task.task_attr; 185 cmd_iu->_r_c = 0; 186 187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd, 188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32)); 189 } 190 191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq) 192 { 193 struct ssp_task_iu *task_iu; 194 struct sas_task *task = isci_request_access_task(ireq); 195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); 196 197 task_iu = &ireq->ssp.tmf; 198 199 memset(task_iu, 0, sizeof(struct ssp_task_iu)); 200 201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8); 202 203 task_iu->task_func = isci_tmf->tmf_code; 204 task_iu->task_tag = 205 (test_bit(IREQ_TMF, &ireq->flags)) ? 206 isci_tmf->io_tag : 207 SCI_CONTROLLER_INVALID_IO_TAG; 208 } 209 210 /* 211 * This method is will fill in the SCU Task Context for any type of SSP request. 212 */ 213 static void scu_ssp_request_construct_task_context( 214 struct isci_request *ireq, 215 struct scu_task_context *task_context) 216 { 217 dma_addr_t dma_addr; 218 struct isci_remote_device *idev; 219 struct isci_port *iport; 220 221 idev = ireq->target_device; 222 iport = idev->owning_port; 223 224 /* Fill in the TC with its required data */ 225 task_context->abort = 0; 226 task_context->priority = 0; 227 task_context->initiator_request = 1; 228 task_context->connection_rate = idev->connection_rate; 229 task_context->protocol_engine_index = ISCI_PEG; 230 task_context->logical_port_index = iport->physical_port_index; 231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP; 232 task_context->valid = SCU_TASK_CONTEXT_VALID; 233 task_context->context_type = SCU_TASK_CONTEXT_TYPE; 234 235 task_context->remote_node_index = idev->rnc.remote_node_index; 236 task_context->command_code = 0; 237 238 task_context->link_layer_control = 0; 239 task_context->do_not_dma_ssp_good_response = 1; 240 task_context->strict_ordering = 0; 241 task_context->control_frame = 0; 242 task_context->timeout_enable = 0; 243 task_context->block_guard_enable = 0; 244 245 task_context->address_modifier = 0; 246 247 /* task_context->type.ssp.tag = ireq->io_tag; */ 248 task_context->task_phase = 0x01; 249 250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | 251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | 252 (iport->physical_port_index << 253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | 254 ISCI_TAG_TCI(ireq->io_tag)); 255 256 /* 257 * Copy the physical address for the command buffer to the 258 * SCU Task Context 259 */ 260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd); 261 262 task_context->command_iu_upper = upper_32_bits(dma_addr); 263 task_context->command_iu_lower = lower_32_bits(dma_addr); 264 265 /* 266 * Copy the physical address for the response buffer to the 267 * SCU Task Context 268 */ 269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp); 270 271 task_context->response_iu_upper = upper_32_bits(dma_addr); 272 task_context->response_iu_lower = lower_32_bits(dma_addr); 273 } 274 275 static u8 scu_bg_blk_size(struct scsi_device *sdp) 276 { 277 switch (sdp->sector_size) { 278 case 512: 279 return 0; 280 case 1024: 281 return 1; 282 case 4096: 283 return 3; 284 default: 285 return 0xff; 286 } 287 } 288 289 static u32 scu_dif_bytes(u32 len, u32 sector_size) 290 { 291 return (len >> ilog2(sector_size)) * 8; 292 } 293 294 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op) 295 { 296 struct scu_task_context *tc = ireq->tc; 297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task; 298 u8 blk_sz = scu_bg_blk_size(scmd->device); 299 300 tc->block_guard_enable = 1; 301 tc->blk_prot_en = 1; 302 tc->blk_sz = blk_sz; 303 /* DIF write insert */ 304 tc->blk_prot_func = 0x2; 305 306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes, 307 scmd->device->sector_size); 308 309 /* always init to 0, used by hw */ 310 tc->interm_crc_val = 0; 311 312 tc->init_crc_seed = 0; 313 tc->app_tag_verify = 0; 314 tc->app_tag_gen = 0; 315 tc->ref_tag_seed_verify = 0; 316 317 /* always init to same as bg_blk_sz */ 318 tc->UD_bytes_immed_val = scmd->device->sector_size; 319 320 tc->reserved_DC_0 = 0; 321 322 /* always init to 8 */ 323 tc->DIF_bytes_immed_val = 8; 324 325 tc->reserved_DC_1 = 0; 326 tc->bgc_blk_sz = scmd->device->sector_size; 327 tc->reserved_E0_0 = 0; 328 tc->app_tag_gen_mask = 0; 329 330 /** setup block guard control **/ 331 tc->bgctl = 0; 332 333 /* DIF write insert */ 334 tc->bgctl_f.op = 0x2; 335 336 tc->app_tag_verify_mask = 0; 337 338 /* must init to 0 for hw */ 339 tc->blk_guard_err = 0; 340 341 tc->reserved_E8_0 = 0; 342 343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) 344 tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd); 345 else if (type & SCSI_PROT_DIF_TYPE3) 346 tc->ref_tag_seed_gen = 0; 347 } 348 349 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op) 350 { 351 struct scu_task_context *tc = ireq->tc; 352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task; 353 u8 blk_sz = scu_bg_blk_size(scmd->device); 354 355 tc->block_guard_enable = 1; 356 tc->blk_prot_en = 1; 357 tc->blk_sz = blk_sz; 358 /* DIF read strip */ 359 tc->blk_prot_func = 0x1; 360 361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes, 362 scmd->device->sector_size); 363 364 /* always init to 0, used by hw */ 365 tc->interm_crc_val = 0; 366 367 tc->init_crc_seed = 0; 368 tc->app_tag_verify = 0; 369 tc->app_tag_gen = 0; 370 371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) 372 tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd); 373 else if (type & SCSI_PROT_DIF_TYPE3) 374 tc->ref_tag_seed_verify = 0; 375 376 /* always init to same as bg_blk_sz */ 377 tc->UD_bytes_immed_val = scmd->device->sector_size; 378 379 tc->reserved_DC_0 = 0; 380 381 /* always init to 8 */ 382 tc->DIF_bytes_immed_val = 8; 383 384 tc->reserved_DC_1 = 0; 385 tc->bgc_blk_sz = scmd->device->sector_size; 386 tc->reserved_E0_0 = 0; 387 tc->app_tag_gen_mask = 0; 388 389 /** setup block guard control **/ 390 tc->bgctl = 0; 391 392 /* DIF read strip */ 393 tc->bgctl_f.crc_verify = 1; 394 tc->bgctl_f.op = 0x1; 395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) { 396 tc->bgctl_f.ref_tag_chk = 1; 397 tc->bgctl_f.app_f_detect = 1; 398 } else if (type & SCSI_PROT_DIF_TYPE3) 399 tc->bgctl_f.app_ref_f_detect = 1; 400 401 tc->app_tag_verify_mask = 0; 402 403 /* must init to 0 for hw */ 404 tc->blk_guard_err = 0; 405 406 tc->reserved_E8_0 = 0; 407 tc->ref_tag_seed_gen = 0; 408 } 409 410 /* 411 * This method is will fill in the SCU Task Context for a SSP IO request. 412 */ 413 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq, 414 enum dma_data_direction dir, 415 u32 len) 416 { 417 struct scu_task_context *task_context = ireq->tc; 418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr; 419 struct scsi_cmnd *scmd = sas_task->uldd_task; 420 u8 prot_type = scsi_get_prot_type(scmd); 421 u8 prot_op = scsi_get_prot_op(scmd); 422 423 scu_ssp_request_construct_task_context(ireq, task_context); 424 425 task_context->ssp_command_iu_length = 426 sizeof(struct ssp_cmd_iu) / sizeof(u32); 427 task_context->type.ssp.frame_type = SSP_COMMAND; 428 429 switch (dir) { 430 case DMA_FROM_DEVICE: 431 case DMA_NONE: 432 default: 433 task_context->task_type = SCU_TASK_TYPE_IOREAD; 434 break; 435 case DMA_TO_DEVICE: 436 task_context->task_type = SCU_TASK_TYPE_IOWRITE; 437 break; 438 } 439 440 task_context->transfer_length_bytes = len; 441 442 if (task_context->transfer_length_bytes > 0) 443 sci_request_build_sgl(ireq); 444 445 if (prot_type != SCSI_PROT_DIF_TYPE0) { 446 if (prot_op == SCSI_PROT_READ_STRIP) 447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op); 448 else if (prot_op == SCSI_PROT_WRITE_INSERT) 449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op); 450 } 451 } 452 453 /** 454 * scu_ssp_task_request_construct_task_context() - This method will fill in 455 * the SCU Task Context for a SSP Task request. The following important 456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This 457 * ensures that the task request is issued ahead of other task destined 458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This 459 * simply indicates that a normal request type (i.e. non-raw frame) is 460 * being utilized to perform task management. -#control_frame == 1. This 461 * ensures that the proper endianness is set so that the bytes are 462 * transmitted in the right order for a task frame. 463 * @ireq: This parameter specifies the task request object being constructed. 464 */ 465 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq) 466 { 467 struct scu_task_context *task_context = ireq->tc; 468 469 scu_ssp_request_construct_task_context(ireq, task_context); 470 471 task_context->control_frame = 1; 472 task_context->priority = SCU_TASK_PRIORITY_HIGH; 473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME; 474 task_context->transfer_length_bytes = 0; 475 task_context->type.ssp.frame_type = SSP_TASK; 476 task_context->ssp_command_iu_length = 477 sizeof(struct ssp_task_iu) / sizeof(u32); 478 } 479 480 /** 481 * scu_sata_request_construct_task_context() 482 * This method is will fill in the SCU Task Context for any type of SATA 483 * request. This is called from the various SATA constructors. 484 * @ireq: The general IO request object which is to be used in 485 * constructing the SCU task context. 486 * @task_context: The buffer pointer for the SCU task context which is being 487 * constructed. 488 * 489 * The general io request construction is complete. The buffer assignment for 490 * the command buffer is complete. none Revisit task context construction to 491 * determine what is common for SSP/SMP/STP task context structures. 492 */ 493 static void scu_sata_request_construct_task_context( 494 struct isci_request *ireq, 495 struct scu_task_context *task_context) 496 { 497 dma_addr_t dma_addr; 498 struct isci_remote_device *idev; 499 struct isci_port *iport; 500 501 idev = ireq->target_device; 502 iport = idev->owning_port; 503 504 /* Fill in the TC with its required data */ 505 task_context->abort = 0; 506 task_context->priority = SCU_TASK_PRIORITY_NORMAL; 507 task_context->initiator_request = 1; 508 task_context->connection_rate = idev->connection_rate; 509 task_context->protocol_engine_index = ISCI_PEG; 510 task_context->logical_port_index = iport->physical_port_index; 511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP; 512 task_context->valid = SCU_TASK_CONTEXT_VALID; 513 task_context->context_type = SCU_TASK_CONTEXT_TYPE; 514 515 task_context->remote_node_index = idev->rnc.remote_node_index; 516 task_context->command_code = 0; 517 518 task_context->link_layer_control = 0; 519 task_context->do_not_dma_ssp_good_response = 1; 520 task_context->strict_ordering = 0; 521 task_context->control_frame = 0; 522 task_context->timeout_enable = 0; 523 task_context->block_guard_enable = 0; 524 525 task_context->address_modifier = 0; 526 task_context->task_phase = 0x01; 527 528 task_context->ssp_command_iu_length = 529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32); 530 531 /* Set the first word of the H2D REG FIS */ 532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd; 533 534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | 535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | 536 (iport->physical_port_index << 537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | 538 ISCI_TAG_TCI(ireq->io_tag)); 539 /* 540 * Copy the physical address for the command buffer to the SCU Task 541 * Context. We must offset the command buffer by 4 bytes because the 542 * first 4 bytes are transfered in the body of the TC. 543 */ 544 dma_addr = sci_io_request_get_dma_addr(ireq, 545 ((char *) &ireq->stp.cmd) + 546 sizeof(u32)); 547 548 task_context->command_iu_upper = upper_32_bits(dma_addr); 549 task_context->command_iu_lower = lower_32_bits(dma_addr); 550 551 /* SATA Requests do not have a response buffer */ 552 task_context->response_iu_upper = 0; 553 task_context->response_iu_lower = 0; 554 } 555 556 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq) 557 { 558 struct scu_task_context *task_context = ireq->tc; 559 560 scu_sata_request_construct_task_context(ireq, task_context); 561 562 task_context->control_frame = 0; 563 task_context->priority = SCU_TASK_PRIORITY_NORMAL; 564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME; 565 task_context->type.stp.fis_type = FIS_REGH2D; 566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32); 567 } 568 569 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq, 570 bool copy_rx_frame) 571 { 572 struct isci_stp_request *stp_req = &ireq->stp.req; 573 574 scu_stp_raw_request_construct_task_context(ireq); 575 576 stp_req->status = 0; 577 stp_req->sgl.offset = 0; 578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A; 579 580 if (copy_rx_frame) { 581 sci_request_build_sgl(ireq); 582 stp_req->sgl.index = 0; 583 } else { 584 /* The user does not want the data copied to the SGL buffer location */ 585 stp_req->sgl.index = -1; 586 } 587 588 return SCI_SUCCESS; 589 } 590 591 /* 592 * sci_stp_optimized_request_construct() 593 * @ireq: This parameter specifies the request to be constructed as an 594 * optimized request. 595 * @optimized_task_type: This parameter specifies whether the request is to be 596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A 597 * value of 1 indicates NCQ. 598 * 599 * This method will perform request construction common to all types of STP 600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method 601 * returns an indication as to whether the construction was successful. 602 */ 603 static void sci_stp_optimized_request_construct(struct isci_request *ireq, 604 u8 optimized_task_type, 605 u32 len, 606 enum dma_data_direction dir) 607 { 608 struct scu_task_context *task_context = ireq->tc; 609 610 /* Build the STP task context structure */ 611 scu_sata_request_construct_task_context(ireq, task_context); 612 613 /* Copy over the SGL elements */ 614 sci_request_build_sgl(ireq); 615 616 /* Copy over the number of bytes to be transfered */ 617 task_context->transfer_length_bytes = len; 618 619 if (dir == DMA_TO_DEVICE) { 620 /* 621 * The difference between the DMA IN and DMA OUT request task type 622 * values are consistent with the difference between FPDMA READ 623 * and FPDMA WRITE values. Add the supplied task type parameter 624 * to this difference to set the task type properly for this 625 * DATA OUT (WRITE) case. */ 626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT 627 - SCU_TASK_TYPE_DMA_IN); 628 } else { 629 /* 630 * For the DATA IN (READ) case, simply save the supplied 631 * optimized task type. */ 632 task_context->task_type = optimized_task_type; 633 } 634 } 635 636 static void sci_atapi_construct(struct isci_request *ireq) 637 { 638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd; 639 struct sas_task *task; 640 641 /* To simplify the implementation we take advantage of the 642 * silicon's partial acceleration of atapi protocol (dma data 643 * transfers), so we promote all commands to dma protocol. This 644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives. 645 */ 646 h2d_fis->features |= ATAPI_PKT_DMA; 647 648 scu_stp_raw_request_construct_task_context(ireq); 649 650 task = isci_request_access_task(ireq); 651 if (task->data_dir == DMA_NONE) 652 task->total_xfer_len = 0; 653 654 /* clear the response so we can detect arrivial of an 655 * unsolicited h2d fis 656 */ 657 ireq->stp.rsp.fis_type = 0; 658 } 659 660 static enum sci_status 661 sci_io_request_construct_sata(struct isci_request *ireq, 662 u32 len, 663 enum dma_data_direction dir, 664 bool copy) 665 { 666 enum sci_status status = SCI_SUCCESS; 667 struct sas_task *task = isci_request_access_task(ireq); 668 struct domain_device *dev = ireq->target_device->domain_dev; 669 670 /* check for management protocols */ 671 if (test_bit(IREQ_TMF, &ireq->flags)) { 672 struct isci_tmf *tmf = isci_request_access_tmf(ireq); 673 674 dev_err(&ireq->owning_controller->pdev->dev, 675 "%s: Request 0x%p received un-handled SAT " 676 "management protocol 0x%x.\n", 677 __func__, ireq, tmf->tmf_code); 678 679 return SCI_FAILURE; 680 } 681 682 if (!sas_protocol_ata(task->task_proto)) { 683 dev_err(&ireq->owning_controller->pdev->dev, 684 "%s: Non-ATA protocol in SATA path: 0x%x\n", 685 __func__, 686 task->task_proto); 687 return SCI_FAILURE; 688 689 } 690 691 /* ATAPI */ 692 if (dev->sata_dev.class == ATA_DEV_ATAPI && 693 task->ata_task.fis.command == ATA_CMD_PACKET) { 694 sci_atapi_construct(ireq); 695 return SCI_SUCCESS; 696 } 697 698 /* non data */ 699 if (task->data_dir == DMA_NONE) { 700 scu_stp_raw_request_construct_task_context(ireq); 701 return SCI_SUCCESS; 702 } 703 704 /* NCQ */ 705 if (task->ata_task.use_ncq) { 706 sci_stp_optimized_request_construct(ireq, 707 SCU_TASK_TYPE_FPDMAQ_READ, 708 len, dir); 709 return SCI_SUCCESS; 710 } 711 712 /* DMA */ 713 if (task->ata_task.dma_xfer) { 714 sci_stp_optimized_request_construct(ireq, 715 SCU_TASK_TYPE_DMA_IN, 716 len, dir); 717 return SCI_SUCCESS; 718 } else /* PIO */ 719 return sci_stp_pio_request_construct(ireq, copy); 720 721 return status; 722 } 723 724 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq) 725 { 726 struct sas_task *task = isci_request_access_task(ireq); 727 728 ireq->protocol = SAS_PROTOCOL_SSP; 729 730 scu_ssp_io_request_construct_task_context(ireq, 731 task->data_dir, 732 task->total_xfer_len); 733 734 sci_io_request_build_ssp_command_iu(ireq); 735 736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); 737 738 return SCI_SUCCESS; 739 } 740 741 enum sci_status sci_task_request_construct_ssp( 742 struct isci_request *ireq) 743 { 744 /* Construct the SSP Task SCU Task Context */ 745 scu_ssp_task_request_construct_task_context(ireq); 746 747 /* Fill in the SSP Task IU */ 748 sci_task_request_build_ssp_task_iu(ireq); 749 750 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); 751 752 return SCI_SUCCESS; 753 } 754 755 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq) 756 { 757 enum sci_status status; 758 bool copy = false; 759 struct sas_task *task = isci_request_access_task(ireq); 760 761 ireq->protocol = SAS_PROTOCOL_STP; 762 763 copy = (task->data_dir == DMA_NONE) ? false : true; 764 765 status = sci_io_request_construct_sata(ireq, 766 task->total_xfer_len, 767 task->data_dir, 768 copy); 769 770 if (status == SCI_SUCCESS) 771 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); 772 773 return status; 774 } 775 776 #define SCU_TASK_CONTEXT_SRAM 0x200000 777 /** 778 * sci_req_tx_bytes - bytes transferred when reply underruns request 779 * @ireq: request that was terminated early 780 */ 781 static u32 sci_req_tx_bytes(struct isci_request *ireq) 782 { 783 struct isci_host *ihost = ireq->owning_controller; 784 u32 ret_val = 0; 785 786 if (readl(&ihost->smu_registers->address_modifier) == 0) { 787 void __iomem *scu_reg_base = ihost->scu_registers; 788 789 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where 790 * BAR1 is the scu_registers 791 * 0x20002C = 0x200000 + 0x2c 792 * = start of task context SRAM + offset of (type.ssp.data_offset) 793 * TCi is the io_tag of struct sci_request 794 */ 795 ret_val = readl(scu_reg_base + 796 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) + 797 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag))); 798 } 799 800 return ret_val; 801 } 802 803 enum sci_status sci_request_start(struct isci_request *ireq) 804 { 805 enum sci_base_request_states state; 806 struct scu_task_context *tc = ireq->tc; 807 struct isci_host *ihost = ireq->owning_controller; 808 809 state = ireq->sm.current_state_id; 810 if (state != SCI_REQ_CONSTRUCTED) { 811 dev_warn(&ihost->pdev->dev, 812 "%s: SCIC IO Request requested to start while in wrong " 813 "state %d\n", __func__, state); 814 return SCI_FAILURE_INVALID_STATE; 815 } 816 817 tc->task_index = ISCI_TAG_TCI(ireq->io_tag); 818 819 switch (tc->protocol_type) { 820 case SCU_TASK_CONTEXT_PROTOCOL_SMP: 821 case SCU_TASK_CONTEXT_PROTOCOL_SSP: 822 /* SSP/SMP Frame */ 823 tc->type.ssp.tag = ireq->io_tag; 824 tc->type.ssp.target_port_transfer_tag = 0xFFFF; 825 break; 826 827 case SCU_TASK_CONTEXT_PROTOCOL_STP: 828 /* STP/SATA Frame 829 * tc->type.stp.ncq_tag = ireq->ncq_tag; 830 */ 831 break; 832 833 case SCU_TASK_CONTEXT_PROTOCOL_NONE: 834 /* / @todo When do we set no protocol type? */ 835 break; 836 837 default: 838 /* This should never happen since we build the IO 839 * requests */ 840 break; 841 } 842 843 /* Add to the post_context the io tag value */ 844 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag); 845 846 /* Everything is good go ahead and change state */ 847 sci_change_state(&ireq->sm, SCI_REQ_STARTED); 848 849 return SCI_SUCCESS; 850 } 851 852 enum sci_status 853 sci_io_request_terminate(struct isci_request *ireq) 854 { 855 enum sci_base_request_states state; 856 857 state = ireq->sm.current_state_id; 858 859 switch (state) { 860 case SCI_REQ_CONSTRUCTED: 861 /* Set to make sure no HW terminate posting is done: */ 862 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags); 863 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; 864 ireq->sci_status = SCI_FAILURE_IO_TERMINATED; 865 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 866 return SCI_SUCCESS; 867 case SCI_REQ_STARTED: 868 case SCI_REQ_TASK_WAIT_TC_COMP: 869 case SCI_REQ_SMP_WAIT_RESP: 870 case SCI_REQ_SMP_WAIT_TC_COMP: 871 case SCI_REQ_STP_UDMA_WAIT_TC_COMP: 872 case SCI_REQ_STP_UDMA_WAIT_D2H: 873 case SCI_REQ_STP_NON_DATA_WAIT_H2D: 874 case SCI_REQ_STP_NON_DATA_WAIT_D2H: 875 case SCI_REQ_STP_PIO_WAIT_H2D: 876 case SCI_REQ_STP_PIO_WAIT_FRAME: 877 case SCI_REQ_STP_PIO_DATA_IN: 878 case SCI_REQ_STP_PIO_DATA_OUT: 879 case SCI_REQ_ATAPI_WAIT_H2D: 880 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: 881 case SCI_REQ_ATAPI_WAIT_D2H: 882 case SCI_REQ_ATAPI_WAIT_TC_COMP: 883 /* Fall through and change state to ABORTING... */ 884 case SCI_REQ_TASK_WAIT_TC_RESP: 885 /* The task frame was already confirmed to have been 886 * sent by the SCU HW. Since the state machine is 887 * now only waiting for the task response itself, 888 * abort the request and complete it immediately 889 * and don't wait for the task response. 890 */ 891 sci_change_state(&ireq->sm, SCI_REQ_ABORTING); 892 fallthrough; /* and handle like ABORTING */ 893 case SCI_REQ_ABORTING: 894 if (!isci_remote_device_is_safe_to_abort(ireq->target_device)) 895 set_bit(IREQ_PENDING_ABORT, &ireq->flags); 896 else 897 clear_bit(IREQ_PENDING_ABORT, &ireq->flags); 898 /* If the request is only waiting on the remote device 899 * suspension, return SUCCESS so the caller will wait too. 900 */ 901 return SCI_SUCCESS; 902 case SCI_REQ_COMPLETED: 903 default: 904 dev_warn(&ireq->owning_controller->pdev->dev, 905 "%s: SCIC IO Request requested to abort while in wrong " 906 "state %d\n", __func__, ireq->sm.current_state_id); 907 break; 908 } 909 910 return SCI_FAILURE_INVALID_STATE; 911 } 912 913 enum sci_status sci_request_complete(struct isci_request *ireq) 914 { 915 enum sci_base_request_states state; 916 struct isci_host *ihost = ireq->owning_controller; 917 918 state = ireq->sm.current_state_id; 919 if (WARN_ONCE(state != SCI_REQ_COMPLETED, 920 "isci: request completion from wrong state (%s)\n", 921 req_state_name(state))) 922 return SCI_FAILURE_INVALID_STATE; 923 924 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) 925 sci_controller_release_frame(ihost, 926 ireq->saved_rx_frame_index); 927 928 /* XXX can we just stop the machine and remove the 'final' state? */ 929 sci_change_state(&ireq->sm, SCI_REQ_FINAL); 930 return SCI_SUCCESS; 931 } 932 933 enum sci_status sci_io_request_event_handler(struct isci_request *ireq, 934 u32 event_code) 935 { 936 enum sci_base_request_states state; 937 struct isci_host *ihost = ireq->owning_controller; 938 939 state = ireq->sm.current_state_id; 940 941 if (state != SCI_REQ_STP_PIO_DATA_IN) { 942 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n", 943 __func__, event_code, req_state_name(state)); 944 945 return SCI_FAILURE_INVALID_STATE; 946 } 947 948 switch (scu_get_event_specifier(event_code)) { 949 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT: 950 /* We are waiting for data and the SCU has R_ERR the data frame. 951 * Go back to waiting for the D2H Register FIS 952 */ 953 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); 954 return SCI_SUCCESS; 955 default: 956 dev_err(&ihost->pdev->dev, 957 "%s: pio request unexpected event %#x\n", 958 __func__, event_code); 959 960 /* TODO Should we fail the PIO request when we get an 961 * unexpected event? 962 */ 963 return SCI_FAILURE; 964 } 965 } 966 967 /* 968 * This function copies response data for requests returning response data 969 * instead of sense data. 970 * @sci_req: This parameter specifies the request object for which to copy 971 * the response data. 972 */ 973 static void sci_io_request_copy_response(struct isci_request *ireq) 974 { 975 void *resp_buf; 976 u32 len; 977 struct ssp_response_iu *ssp_response; 978 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq); 979 980 ssp_response = &ireq->ssp.rsp; 981 982 resp_buf = &isci_tmf->resp.resp_iu; 983 984 len = min_t(u32, 985 SSP_RESP_IU_MAX_SIZE, 986 be32_to_cpu(ssp_response->response_data_len)); 987 988 memcpy(resp_buf, ssp_response->resp_data, len); 989 } 990 991 static enum sci_status 992 request_started_state_tc_event(struct isci_request *ireq, 993 u32 completion_code) 994 { 995 struct ssp_response_iu *resp_iu; 996 u8 datapres; 997 998 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000 999 * to determine SDMA status 1000 */ 1001 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1002 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1003 ireq->scu_status = SCU_TASK_DONE_GOOD; 1004 ireq->sci_status = SCI_SUCCESS; 1005 break; 1006 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): { 1007 /* There are times when the SCU hardware will return an early 1008 * response because the io request specified more data than is 1009 * returned by the target device (mode pages, inquiry data, 1010 * etc.). We must check the response stats to see if this is 1011 * truly a failed request or a good request that just got 1012 * completed early. 1013 */ 1014 struct ssp_response_iu *resp = &ireq->ssp.rsp; 1015 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); 1016 1017 sci_swab32_cpy(&ireq->ssp.rsp, 1018 &ireq->ssp.rsp, 1019 word_cnt); 1020 1021 if (resp->status == 0) { 1022 ireq->scu_status = SCU_TASK_DONE_GOOD; 1023 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; 1024 } else { 1025 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1026 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1027 } 1028 break; 1029 } 1030 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): { 1031 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); 1032 1033 sci_swab32_cpy(&ireq->ssp.rsp, 1034 &ireq->ssp.rsp, 1035 word_cnt); 1036 1037 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1038 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1039 break; 1040 } 1041 1042 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR): 1043 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame 1044 * guaranteed to be received before this completion status is 1045 * posted? 1046 */ 1047 resp_iu = &ireq->ssp.rsp; 1048 datapres = resp_iu->datapres; 1049 1050 if (datapres == SAS_DATAPRES_RESPONSE_DATA || 1051 datapres == SAS_DATAPRES_SENSE_DATA) { 1052 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1053 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1054 } else { 1055 ireq->scu_status = SCU_TASK_DONE_GOOD; 1056 ireq->sci_status = SCI_SUCCESS; 1057 } 1058 break; 1059 /* only stp device gets suspended. */ 1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): 1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR): 1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR): 1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR): 1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR): 1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN): 1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR): 1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP): 1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS): 1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): 1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR): 1071 if (ireq->protocol == SAS_PROTOCOL_STP) { 1072 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> 1073 SCU_COMPLETION_TL_STATUS_SHIFT; 1074 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; 1075 } else { 1076 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> 1077 SCU_COMPLETION_TL_STATUS_SHIFT; 1078 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1079 } 1080 break; 1081 1082 /* both stp/ssp device gets suspended */ 1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR): 1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION): 1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1): 1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2): 1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3): 1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION): 1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION): 1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY): 1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED): 1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED): 1093 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> 1094 SCU_COMPLETION_TL_STATUS_SHIFT; 1095 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED; 1096 break; 1097 1098 /* neither ssp nor stp gets suspended. */ 1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR): 1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR): 1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR): 1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR): 1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR): 1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA): 1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): 1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): 1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): 1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): 1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA): 1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL): 1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV): 1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV): 1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND): 1114 default: 1115 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >> 1116 SCU_COMPLETION_TL_STATUS_SHIFT; 1117 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1118 break; 1119 } 1120 1121 /* 1122 * TODO: This is probably wrong for ACK/NAK timeout conditions 1123 */ 1124 1125 /* In all cases we will treat this as the completion of the IO req. */ 1126 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1127 return SCI_SUCCESS; 1128 } 1129 1130 static enum sci_status 1131 request_aborting_state_tc_event(struct isci_request *ireq, 1132 u32 completion_code) 1133 { 1134 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1135 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): 1136 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT): 1137 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT; 1138 ireq->sci_status = SCI_FAILURE_IO_TERMINATED; 1139 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1140 break; 1141 1142 default: 1143 /* Unless we get some strange error wait for the task abort to complete 1144 * TODO: Should there be a state change for this completion? 1145 */ 1146 break; 1147 } 1148 1149 return SCI_SUCCESS; 1150 } 1151 1152 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq, 1153 u32 completion_code) 1154 { 1155 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1156 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1157 ireq->scu_status = SCU_TASK_DONE_GOOD; 1158 ireq->sci_status = SCI_SUCCESS; 1159 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); 1160 break; 1161 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO): 1162 /* Currently, the decision is to simply allow the task request 1163 * to timeout if the task IU wasn't received successfully. 1164 * There is a potential for receiving multiple task responses if 1165 * we decide to send the task IU again. 1166 */ 1167 dev_warn(&ireq->owning_controller->pdev->dev, 1168 "%s: TaskRequest:0x%p CompletionCode:%x - " 1169 "ACK/NAK timeout\n", __func__, ireq, 1170 completion_code); 1171 1172 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP); 1173 break; 1174 default: 1175 /* 1176 * All other completion status cause the IO to be complete. 1177 * If a NAK was received, then it is up to the user to retry 1178 * the request. 1179 */ 1180 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1181 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1182 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1183 break; 1184 } 1185 1186 return SCI_SUCCESS; 1187 } 1188 1189 static enum sci_status 1190 smp_request_await_response_tc_event(struct isci_request *ireq, 1191 u32 completion_code) 1192 { 1193 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1194 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1195 /* In the AWAIT RESPONSE state, any TC completion is 1196 * unexpected. but if the TC has success status, we 1197 * complete the IO anyway. 1198 */ 1199 ireq->scu_status = SCU_TASK_DONE_GOOD; 1200 ireq->sci_status = SCI_SUCCESS; 1201 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1202 break; 1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR): 1204 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR): 1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR): 1206 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR): 1207 /* These status has been seen in a specific LSI 1208 * expander, which sometimes is not able to send smp 1209 * response within 2 ms. This causes our hardware break 1210 * the connection and set TC completion with one of 1211 * these SMP_XXX_XX_ERR status. For these type of error, 1212 * we ask ihost user to retry the request. 1213 */ 1214 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR; 1215 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED; 1216 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1217 break; 1218 default: 1219 /* All other completion status cause the IO to be complete. If a NAK 1220 * was received, then it is up to the user to retry the request 1221 */ 1222 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1223 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1224 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1225 break; 1226 } 1227 1228 return SCI_SUCCESS; 1229 } 1230 1231 static enum sci_status 1232 smp_request_await_tc_event(struct isci_request *ireq, 1233 u32 completion_code) 1234 { 1235 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1236 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1237 ireq->scu_status = SCU_TASK_DONE_GOOD; 1238 ireq->sci_status = SCI_SUCCESS; 1239 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1240 break; 1241 default: 1242 /* All other completion status cause the IO to be 1243 * complete. If a NAK was received, then it is up to 1244 * the user to retry the request. 1245 */ 1246 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1247 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1248 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1249 break; 1250 } 1251 1252 return SCI_SUCCESS; 1253 } 1254 1255 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req) 1256 { 1257 struct scu_sgl_element *sgl; 1258 struct scu_sgl_element_pair *sgl_pair; 1259 struct isci_request *ireq = to_ireq(stp_req); 1260 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl; 1261 1262 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); 1263 if (!sgl_pair) 1264 sgl = NULL; 1265 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) { 1266 if (sgl_pair->B.address_lower == 0 && 1267 sgl_pair->B.address_upper == 0) { 1268 sgl = NULL; 1269 } else { 1270 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B; 1271 sgl = &sgl_pair->B; 1272 } 1273 } else { 1274 if (sgl_pair->next_pair_lower == 0 && 1275 sgl_pair->next_pair_upper == 0) { 1276 sgl = NULL; 1277 } else { 1278 pio_sgl->index++; 1279 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A; 1280 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index); 1281 sgl = &sgl_pair->A; 1282 } 1283 } 1284 1285 return sgl; 1286 } 1287 1288 static enum sci_status 1289 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq, 1290 u32 completion_code) 1291 { 1292 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1293 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1294 ireq->scu_status = SCU_TASK_DONE_GOOD; 1295 ireq->sci_status = SCI_SUCCESS; 1296 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H); 1297 break; 1298 1299 default: 1300 /* All other completion status cause the IO to be 1301 * complete. If a NAK was received, then it is up to 1302 * the user to retry the request. 1303 */ 1304 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1305 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1306 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1307 break; 1308 } 1309 1310 return SCI_SUCCESS; 1311 } 1312 1313 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */ 1314 1315 /* transmit DATA_FIS from (current sgl + offset) for input 1316 * parameter length. current sgl and offset is alreay stored in the IO request 1317 */ 1318 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame( 1319 struct isci_request *ireq, 1320 u32 length) 1321 { 1322 struct isci_stp_request *stp_req = &ireq->stp.req; 1323 struct scu_task_context *task_context = ireq->tc; 1324 struct scu_sgl_element_pair *sgl_pair; 1325 struct scu_sgl_element *current_sgl; 1326 1327 /* Recycle the TC and reconstruct it for sending out DATA FIS containing 1328 * for the data from current_sgl+offset for the input length 1329 */ 1330 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); 1331 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) 1332 current_sgl = &sgl_pair->A; 1333 else 1334 current_sgl = &sgl_pair->B; 1335 1336 /* update the TC */ 1337 task_context->command_iu_upper = current_sgl->address_upper; 1338 task_context->command_iu_lower = current_sgl->address_lower; 1339 task_context->transfer_length_bytes = length; 1340 task_context->type.stp.fis_type = FIS_DATA; 1341 1342 /* send the new TC out. */ 1343 return sci_controller_continue_io(ireq); 1344 } 1345 1346 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq) 1347 { 1348 struct isci_stp_request *stp_req = &ireq->stp.req; 1349 struct scu_sgl_element_pair *sgl_pair; 1350 enum sci_status status = SCI_SUCCESS; 1351 struct scu_sgl_element *sgl; 1352 u32 offset; 1353 u32 len = 0; 1354 1355 offset = stp_req->sgl.offset; 1356 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index); 1357 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__)) 1358 return SCI_FAILURE; 1359 1360 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) { 1361 sgl = &sgl_pair->A; 1362 len = sgl_pair->A.length - offset; 1363 } else { 1364 sgl = &sgl_pair->B; 1365 len = sgl_pair->B.length - offset; 1366 } 1367 1368 if (stp_req->pio_len == 0) 1369 return SCI_SUCCESS; 1370 1371 if (stp_req->pio_len >= len) { 1372 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len); 1373 if (status != SCI_SUCCESS) 1374 return status; 1375 stp_req->pio_len -= len; 1376 1377 /* update the current sgl, offset and save for future */ 1378 sgl = pio_sgl_next(stp_req); 1379 offset = 0; 1380 } else if (stp_req->pio_len < len) { 1381 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len); 1382 1383 /* Sgl offset will be adjusted and saved for future */ 1384 offset += stp_req->pio_len; 1385 sgl->address_lower += stp_req->pio_len; 1386 stp_req->pio_len = 0; 1387 } 1388 1389 stp_req->sgl.offset = offset; 1390 1391 return status; 1392 } 1393 1394 /** 1395 * sci_stp_request_pio_data_in_copy_data_buffer() 1396 * @stp_req: The request that is used for the SGL processing. 1397 * @data_buf: The buffer of data to be copied. 1398 * @len: The length of the data transfer. 1399 * 1400 * Copy the data from the buffer for the length specified to the IO request SGL 1401 * specified data region. enum sci_status 1402 */ 1403 static enum sci_status 1404 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req, 1405 u8 *data_buf, u32 len) 1406 { 1407 struct isci_request *ireq; 1408 u8 *src_addr; 1409 int copy_len; 1410 struct sas_task *task; 1411 struct scatterlist *sg; 1412 void *kaddr; 1413 int total_len = len; 1414 1415 ireq = to_ireq(stp_req); 1416 task = isci_request_access_task(ireq); 1417 src_addr = data_buf; 1418 1419 if (task->num_scatter > 0) { 1420 sg = task->scatter; 1421 1422 while (total_len > 0) { 1423 struct page *page = sg_page(sg); 1424 1425 copy_len = min_t(int, total_len, sg_dma_len(sg)); 1426 kaddr = kmap_atomic(page); 1427 memcpy(kaddr + sg->offset, src_addr, copy_len); 1428 kunmap_atomic(kaddr); 1429 total_len -= copy_len; 1430 src_addr += copy_len; 1431 sg = sg_next(sg); 1432 } 1433 } else { 1434 BUG_ON(task->total_xfer_len < total_len); 1435 memcpy(task->scatter, src_addr, total_len); 1436 } 1437 1438 return SCI_SUCCESS; 1439 } 1440 1441 /** 1442 * sci_stp_request_pio_data_in_copy_data() 1443 * @stp_req: The PIO DATA IN request that is to receive the data. 1444 * @data_buffer: The buffer to copy from. 1445 * 1446 * Copy the data buffer to the io request data region. enum sci_status 1447 */ 1448 static enum sci_status sci_stp_request_pio_data_in_copy_data( 1449 struct isci_stp_request *stp_req, 1450 u8 *data_buffer) 1451 { 1452 enum sci_status status; 1453 1454 /* 1455 * If there is less than 1K remaining in the transfer request 1456 * copy just the data for the transfer */ 1457 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) { 1458 status = sci_stp_request_pio_data_in_copy_data_buffer( 1459 stp_req, data_buffer, stp_req->pio_len); 1460 1461 if (status == SCI_SUCCESS) 1462 stp_req->pio_len = 0; 1463 } else { 1464 /* We are transfering the whole frame so copy */ 1465 status = sci_stp_request_pio_data_in_copy_data_buffer( 1466 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE); 1467 1468 if (status == SCI_SUCCESS) 1469 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE; 1470 } 1471 1472 return status; 1473 } 1474 1475 static enum sci_status 1476 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq, 1477 u32 completion_code) 1478 { 1479 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1480 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1481 ireq->scu_status = SCU_TASK_DONE_GOOD; 1482 ireq->sci_status = SCI_SUCCESS; 1483 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); 1484 break; 1485 1486 default: 1487 /* All other completion status cause the IO to be 1488 * complete. If a NAK was received, then it is up to 1489 * the user to retry the request. 1490 */ 1491 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1492 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1493 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1494 break; 1495 } 1496 1497 return SCI_SUCCESS; 1498 } 1499 1500 static enum sci_status 1501 pio_data_out_tx_done_tc_event(struct isci_request *ireq, 1502 u32 completion_code) 1503 { 1504 enum sci_status status = SCI_SUCCESS; 1505 bool all_frames_transferred = false; 1506 struct isci_stp_request *stp_req = &ireq->stp.req; 1507 1508 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 1509 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 1510 /* Transmit data */ 1511 if (stp_req->pio_len != 0) { 1512 status = sci_stp_request_pio_data_out_transmit_data(ireq); 1513 if (status == SCI_SUCCESS) { 1514 if (stp_req->pio_len == 0) 1515 all_frames_transferred = true; 1516 } 1517 } else if (stp_req->pio_len == 0) { 1518 /* 1519 * this will happen if the all data is written at the 1520 * first time after the pio setup fis is received 1521 */ 1522 all_frames_transferred = true; 1523 } 1524 1525 /* all data transferred. */ 1526 if (all_frames_transferred) { 1527 /* 1528 * Change the state to SCI_REQ_STP_PIO_DATA_IN 1529 * and wait for PIO_SETUP fis / or D2H REg fis. */ 1530 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); 1531 } 1532 break; 1533 1534 default: 1535 /* 1536 * All other completion status cause the IO to be complete. 1537 * If a NAK was received, then it is up to the user to retry 1538 * the request. 1539 */ 1540 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 1541 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1542 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1543 break; 1544 } 1545 1546 return status; 1547 } 1548 1549 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq, 1550 u32 frame_index) 1551 { 1552 struct isci_host *ihost = ireq->owning_controller; 1553 struct dev_to_host_fis *frame_header; 1554 enum sci_status status; 1555 u32 *frame_buffer; 1556 1557 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1558 frame_index, 1559 (void **)&frame_header); 1560 1561 if ((status == SCI_SUCCESS) && 1562 (frame_header->fis_type == FIS_REGD2H)) { 1563 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1564 frame_index, 1565 (void **)&frame_buffer); 1566 1567 sci_controller_copy_sata_response(&ireq->stp.rsp, 1568 frame_header, 1569 frame_buffer); 1570 } 1571 1572 sci_controller_release_frame(ihost, frame_index); 1573 1574 return status; 1575 } 1576 1577 static enum sci_status process_unsolicited_fis(struct isci_request *ireq, 1578 u32 frame_index) 1579 { 1580 struct isci_host *ihost = ireq->owning_controller; 1581 enum sci_status status; 1582 struct dev_to_host_fis *frame_header; 1583 u32 *frame_buffer; 1584 1585 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1586 frame_index, 1587 (void **)&frame_header); 1588 1589 if (status != SCI_SUCCESS) 1590 return status; 1591 1592 if (frame_header->fis_type != FIS_REGD2H) { 1593 dev_err(&ireq->isci_host->pdev->dev, 1594 "%s ERROR: invalid fis type 0x%X\n", 1595 __func__, frame_header->fis_type); 1596 return SCI_FAILURE; 1597 } 1598 1599 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1600 frame_index, 1601 (void **)&frame_buffer); 1602 1603 sci_controller_copy_sata_response(&ireq->stp.rsp, 1604 (u32 *)frame_header, 1605 frame_buffer); 1606 1607 /* Frame has been decoded return it to the controller */ 1608 sci_controller_release_frame(ihost, frame_index); 1609 1610 return status; 1611 } 1612 1613 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq, 1614 u32 frame_index) 1615 { 1616 struct sas_task *task = isci_request_access_task(ireq); 1617 enum sci_status status; 1618 1619 status = process_unsolicited_fis(ireq, frame_index); 1620 1621 if (status == SCI_SUCCESS) { 1622 if (ireq->stp.rsp.status & ATA_ERR) 1623 status = SCI_FAILURE_IO_RESPONSE_VALID; 1624 } else { 1625 status = SCI_FAILURE_IO_RESPONSE_VALID; 1626 } 1627 1628 if (status != SCI_SUCCESS) { 1629 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1630 ireq->sci_status = status; 1631 } else { 1632 ireq->scu_status = SCU_TASK_DONE_GOOD; 1633 ireq->sci_status = SCI_SUCCESS; 1634 } 1635 1636 /* the d2h ufi is the end of non-data commands */ 1637 if (task->data_dir == DMA_NONE) 1638 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1639 1640 return status; 1641 } 1642 1643 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq) 1644 { 1645 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); 1646 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet; 1647 struct scu_task_context *task_context = ireq->tc; 1648 1649 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame 1650 * type. The TC for previous Packet fis was already there, we only need to 1651 * change the H2D fis content. 1652 */ 1653 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis)); 1654 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN); 1655 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context)); 1656 task_context->type.stp.fis_type = FIS_DATA; 1657 task_context->transfer_length_bytes = dev->cdb_len; 1658 } 1659 1660 static void scu_atapi_construct_task_context(struct isci_request *ireq) 1661 { 1662 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev); 1663 struct sas_task *task = isci_request_access_task(ireq); 1664 struct scu_task_context *task_context = ireq->tc; 1665 int cdb_len = dev->cdb_len; 1666 1667 /* reference: SSTL 1.13.4.2 1668 * task_type, sata_direction 1669 */ 1670 if (task->data_dir == DMA_TO_DEVICE) { 1671 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT; 1672 task_context->sata_direction = 0; 1673 } else { 1674 /* todo: for NO_DATA command, we need to send out raw frame. */ 1675 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN; 1676 task_context->sata_direction = 1; 1677 } 1678 1679 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp)); 1680 task_context->type.stp.fis_type = FIS_DATA; 1681 1682 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); 1683 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len); 1684 task_context->ssp_command_iu_length = cdb_len / sizeof(u32); 1685 1686 /* task phase is set to TX_CMD */ 1687 task_context->task_phase = 0x1; 1688 1689 /* retry counter */ 1690 task_context->stp_retry_count = 0; 1691 1692 /* data transfer size. */ 1693 task_context->transfer_length_bytes = task->total_xfer_len; 1694 1695 /* setup sgl */ 1696 sci_request_build_sgl(ireq); 1697 } 1698 1699 enum sci_status 1700 sci_io_request_frame_handler(struct isci_request *ireq, 1701 u32 frame_index) 1702 { 1703 struct isci_host *ihost = ireq->owning_controller; 1704 struct isci_stp_request *stp_req = &ireq->stp.req; 1705 enum sci_base_request_states state; 1706 enum sci_status status; 1707 ssize_t word_cnt; 1708 1709 state = ireq->sm.current_state_id; 1710 switch (state) { 1711 case SCI_REQ_STARTED: { 1712 struct ssp_frame_hdr ssp_hdr; 1713 void *frame_header; 1714 1715 sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1716 frame_index, 1717 &frame_header); 1718 1719 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32); 1720 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt); 1721 1722 if (ssp_hdr.frame_type == SSP_RESPONSE) { 1723 struct ssp_response_iu *resp_iu; 1724 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32); 1725 1726 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1727 frame_index, 1728 (void **)&resp_iu); 1729 1730 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt); 1731 1732 resp_iu = &ireq->ssp.rsp; 1733 1734 if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA || 1735 resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) { 1736 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1737 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1738 } else { 1739 ireq->scu_status = SCU_TASK_DONE_GOOD; 1740 ireq->sci_status = SCI_SUCCESS; 1741 } 1742 } else { 1743 /* not a response frame, why did it get forwarded? */ 1744 dev_err(&ihost->pdev->dev, 1745 "%s: SCIC IO Request 0x%p received unexpected " 1746 "frame %d type 0x%02x\n", __func__, ireq, 1747 frame_index, ssp_hdr.frame_type); 1748 } 1749 1750 /* 1751 * In any case we are done with this frame buffer return it to 1752 * the controller 1753 */ 1754 sci_controller_release_frame(ihost, frame_index); 1755 1756 return SCI_SUCCESS; 1757 } 1758 1759 case SCI_REQ_TASK_WAIT_TC_RESP: 1760 sci_io_request_copy_response(ireq); 1761 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1762 sci_controller_release_frame(ihost, frame_index); 1763 return SCI_SUCCESS; 1764 1765 case SCI_REQ_SMP_WAIT_RESP: { 1766 struct sas_task *task = isci_request_access_task(ireq); 1767 struct scatterlist *sg = &task->smp_task.smp_resp; 1768 void *frame_header, *kaddr; 1769 u8 *rsp; 1770 1771 sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1772 frame_index, 1773 &frame_header); 1774 kaddr = kmap_atomic(sg_page(sg)); 1775 rsp = kaddr + sg->offset; 1776 sci_swab32_cpy(rsp, frame_header, 1); 1777 1778 if (rsp[0] == SMP_RESPONSE) { 1779 void *smp_resp; 1780 1781 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1782 frame_index, 1783 &smp_resp); 1784 1785 word_cnt = (sg->length/4)-1; 1786 if (word_cnt > 0) 1787 word_cnt = min_t(unsigned int, word_cnt, 1788 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4); 1789 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt); 1790 1791 ireq->scu_status = SCU_TASK_DONE_GOOD; 1792 ireq->sci_status = SCI_SUCCESS; 1793 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP); 1794 } else { 1795 /* 1796 * This was not a response frame why did it get 1797 * forwarded? 1798 */ 1799 dev_err(&ihost->pdev->dev, 1800 "%s: SCIC SMP Request 0x%p received unexpected " 1801 "frame %d type 0x%02x\n", 1802 __func__, 1803 ireq, 1804 frame_index, 1805 rsp[0]); 1806 1807 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR; 1808 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 1809 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1810 } 1811 kunmap_atomic(kaddr); 1812 1813 sci_controller_release_frame(ihost, frame_index); 1814 1815 return SCI_SUCCESS; 1816 } 1817 1818 case SCI_REQ_STP_UDMA_WAIT_TC_COMP: 1819 return sci_stp_request_udma_general_frame_handler(ireq, 1820 frame_index); 1821 1822 case SCI_REQ_STP_UDMA_WAIT_D2H: 1823 /* Use the general frame handler to copy the resposne data */ 1824 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index); 1825 1826 if (status != SCI_SUCCESS) 1827 return status; 1828 1829 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1830 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1831 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1832 return SCI_SUCCESS; 1833 1834 case SCI_REQ_STP_NON_DATA_WAIT_D2H: { 1835 struct dev_to_host_fis *frame_header; 1836 u32 *frame_buffer; 1837 1838 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1839 frame_index, 1840 (void **)&frame_header); 1841 1842 if (status != SCI_SUCCESS) { 1843 dev_err(&ihost->pdev->dev, 1844 "%s: SCIC IO Request 0x%p could not get frame " 1845 "header for frame index %d, status %x\n", 1846 __func__, 1847 stp_req, 1848 frame_index, 1849 status); 1850 1851 return status; 1852 } 1853 1854 switch (frame_header->fis_type) { 1855 case FIS_REGD2H: 1856 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1857 frame_index, 1858 (void **)&frame_buffer); 1859 1860 sci_controller_copy_sata_response(&ireq->stp.rsp, 1861 frame_header, 1862 frame_buffer); 1863 1864 /* The command has completed with error */ 1865 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1866 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1867 break; 1868 1869 default: 1870 dev_warn(&ihost->pdev->dev, 1871 "%s: IO Request:0x%p Frame Id:%d protocol " 1872 "violation occurred\n", __func__, stp_req, 1873 frame_index); 1874 1875 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS; 1876 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION; 1877 break; 1878 } 1879 1880 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1881 1882 /* Frame has been decoded return it to the controller */ 1883 sci_controller_release_frame(ihost, frame_index); 1884 1885 return status; 1886 } 1887 1888 case SCI_REQ_STP_PIO_WAIT_FRAME: { 1889 struct sas_task *task = isci_request_access_task(ireq); 1890 struct dev_to_host_fis *frame_header; 1891 u32 *frame_buffer; 1892 1893 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1894 frame_index, 1895 (void **)&frame_header); 1896 1897 if (status != SCI_SUCCESS) { 1898 dev_err(&ihost->pdev->dev, 1899 "%s: SCIC IO Request 0x%p could not get frame " 1900 "header for frame index %d, status %x\n", 1901 __func__, stp_req, frame_index, status); 1902 return status; 1903 } 1904 1905 switch (frame_header->fis_type) { 1906 case FIS_PIO_SETUP: 1907 /* Get from the frame buffer the PIO Setup Data */ 1908 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1909 frame_index, 1910 (void **)&frame_buffer); 1911 1912 /* Get the data from the PIO Setup The SCU Hardware 1913 * returns first word in the frame_header and the rest 1914 * of the data is in the frame buffer so we need to 1915 * back up one dword 1916 */ 1917 1918 /* transfer_count: first 16bits in the 4th dword */ 1919 stp_req->pio_len = frame_buffer[3] & 0xffff; 1920 1921 /* status: 4th byte in the 3rd dword */ 1922 stp_req->status = (frame_buffer[2] >> 24) & 0xff; 1923 1924 sci_controller_copy_sata_response(&ireq->stp.rsp, 1925 frame_header, 1926 frame_buffer); 1927 1928 ireq->stp.rsp.status = stp_req->status; 1929 1930 /* The next state is dependent on whether the 1931 * request was PIO Data-in or Data out 1932 */ 1933 if (task->data_dir == DMA_FROM_DEVICE) { 1934 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN); 1935 } else if (task->data_dir == DMA_TO_DEVICE) { 1936 /* Transmit data */ 1937 status = sci_stp_request_pio_data_out_transmit_data(ireq); 1938 if (status != SCI_SUCCESS) 1939 break; 1940 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT); 1941 } 1942 break; 1943 1944 case FIS_SETDEVBITS: 1945 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); 1946 break; 1947 1948 case FIS_REGD2H: 1949 if (frame_header->status & ATA_BUSY) { 1950 /* 1951 * Now why is the drive sending a D2H Register 1952 * FIS when it is still busy? Do nothing since 1953 * we are still in the right state. 1954 */ 1955 dev_dbg(&ihost->pdev->dev, 1956 "%s: SCIC PIO Request 0x%p received " 1957 "D2H Register FIS with BSY status " 1958 "0x%x\n", 1959 __func__, 1960 stp_req, 1961 frame_header->status); 1962 break; 1963 } 1964 1965 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 1966 frame_index, 1967 (void **)&frame_buffer); 1968 1969 sci_controller_copy_sata_response(&ireq->stp.rsp, 1970 frame_header, 1971 frame_buffer); 1972 1973 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 1974 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 1975 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 1976 break; 1977 1978 default: 1979 /* FIXME: what do we do here? */ 1980 break; 1981 } 1982 1983 /* Frame is decoded return it to the controller */ 1984 sci_controller_release_frame(ihost, frame_index); 1985 1986 return status; 1987 } 1988 1989 case SCI_REQ_STP_PIO_DATA_IN: { 1990 struct dev_to_host_fis *frame_header; 1991 struct sata_fis_data *frame_buffer; 1992 1993 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 1994 frame_index, 1995 (void **)&frame_header); 1996 1997 if (status != SCI_SUCCESS) { 1998 dev_err(&ihost->pdev->dev, 1999 "%s: SCIC IO Request 0x%p could not get frame " 2000 "header for frame index %d, status %x\n", 2001 __func__, 2002 stp_req, 2003 frame_index, 2004 status); 2005 return status; 2006 } 2007 2008 if (frame_header->fis_type != FIS_DATA) { 2009 dev_err(&ihost->pdev->dev, 2010 "%s: SCIC PIO Request 0x%p received frame %d " 2011 "with fis type 0x%02x when expecting a data " 2012 "fis.\n", 2013 __func__, 2014 stp_req, 2015 frame_index, 2016 frame_header->fis_type); 2017 2018 ireq->scu_status = SCU_TASK_DONE_GOOD; 2019 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT; 2020 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2021 2022 /* Frame is decoded return it to the controller */ 2023 sci_controller_release_frame(ihost, frame_index); 2024 return status; 2025 } 2026 2027 if (stp_req->sgl.index < 0) { 2028 ireq->saved_rx_frame_index = frame_index; 2029 stp_req->pio_len = 0; 2030 } else { 2031 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 2032 frame_index, 2033 (void **)&frame_buffer); 2034 2035 status = sci_stp_request_pio_data_in_copy_data(stp_req, 2036 (u8 *)frame_buffer); 2037 2038 /* Frame is decoded return it to the controller */ 2039 sci_controller_release_frame(ihost, frame_index); 2040 } 2041 2042 /* Check for the end of the transfer, are there more 2043 * bytes remaining for this data transfer 2044 */ 2045 if (status != SCI_SUCCESS || stp_req->pio_len != 0) 2046 return status; 2047 2048 if ((stp_req->status & ATA_BUSY) == 0) { 2049 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 2050 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 2051 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2052 } else { 2053 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME); 2054 } 2055 return status; 2056 } 2057 2058 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: { 2059 struct sas_task *task = isci_request_access_task(ireq); 2060 2061 sci_controller_release_frame(ihost, frame_index); 2062 ireq->target_device->working_request = ireq; 2063 if (task->data_dir == DMA_NONE) { 2064 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP); 2065 scu_atapi_reconstruct_raw_frame_task_context(ireq); 2066 } else { 2067 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); 2068 scu_atapi_construct_task_context(ireq); 2069 } 2070 2071 sci_controller_continue_io(ireq); 2072 return SCI_SUCCESS; 2073 } 2074 case SCI_REQ_ATAPI_WAIT_D2H: 2075 return atapi_d2h_reg_frame_handler(ireq, frame_index); 2076 case SCI_REQ_ABORTING: 2077 /* 2078 * TODO: Is it even possible to get an unsolicited frame in the 2079 * aborting state? 2080 */ 2081 sci_controller_release_frame(ihost, frame_index); 2082 return SCI_SUCCESS; 2083 2084 default: 2085 dev_warn(&ihost->pdev->dev, 2086 "%s: SCIC IO Request given unexpected frame %x while " 2087 "in state %d\n", 2088 __func__, 2089 frame_index, 2090 state); 2091 2092 sci_controller_release_frame(ihost, frame_index); 2093 return SCI_FAILURE_INVALID_STATE; 2094 } 2095 } 2096 2097 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq, 2098 u32 completion_code) 2099 { 2100 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 2101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 2102 ireq->scu_status = SCU_TASK_DONE_GOOD; 2103 ireq->sci_status = SCI_SUCCESS; 2104 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2105 break; 2106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS): 2107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR): 2108 /* We must check ther response buffer to see if the D2H 2109 * Register FIS was received before we got the TC 2110 * completion. 2111 */ 2112 if (ireq->stp.rsp.fis_type == FIS_REGD2H) { 2113 sci_remote_device_suspend(ireq->target_device, 2114 SCI_SW_SUSPEND_NORMAL); 2115 2116 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 2117 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 2118 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2119 } else { 2120 /* If we have an error completion status for the 2121 * TC then we can expect a D2H register FIS from 2122 * the device so we must change state to wait 2123 * for it 2124 */ 2125 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H); 2126 } 2127 break; 2128 2129 /* TODO Check to see if any of these completion status need to 2130 * wait for the device to host register fis. 2131 */ 2132 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR 2133 * - this comes only for B0 2134 */ 2135 default: 2136 /* All other completion status cause the IO to be complete. */ 2137 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 2138 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 2139 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2140 break; 2141 } 2142 2143 return SCI_SUCCESS; 2144 } 2145 2146 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code, 2147 enum sci_base_request_states next) 2148 { 2149 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 2150 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD): 2151 ireq->scu_status = SCU_TASK_DONE_GOOD; 2152 ireq->sci_status = SCI_SUCCESS; 2153 sci_change_state(&ireq->sm, next); 2154 break; 2155 default: 2156 /* All other completion status cause the IO to be complete. 2157 * If a NAK was received, then it is up to the user to retry 2158 * the request. 2159 */ 2160 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code); 2161 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR; 2162 2163 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2164 break; 2165 } 2166 2167 return SCI_SUCCESS; 2168 } 2169 2170 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq, 2171 u32 completion_code) 2172 { 2173 struct isci_remote_device *idev = ireq->target_device; 2174 struct dev_to_host_fis *d2h = &ireq->stp.rsp; 2175 enum sci_status status = SCI_SUCCESS; 2176 2177 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) { 2178 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT): 2179 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2180 break; 2181 2182 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): { 2183 u16 len = sci_req_tx_bytes(ireq); 2184 2185 /* likely non-error data underrun, workaround missing 2186 * d2h frame from the controller 2187 */ 2188 if (d2h->fis_type != FIS_REGD2H) { 2189 d2h->fis_type = FIS_REGD2H; 2190 d2h->flags = (1 << 6); 2191 d2h->status = 0x50; 2192 d2h->error = 0; 2193 d2h->lbal = 0; 2194 d2h->byte_count_low = len & 0xff; 2195 d2h->byte_count_high = len >> 8; 2196 d2h->device = 0xa0; 2197 d2h->lbal_exp = 0; 2198 d2h->lbam_exp = 0; 2199 d2h->lbah_exp = 0; 2200 d2h->_r_a = 0; 2201 d2h->sector_count = 0x3; 2202 d2h->sector_count_exp = 0; 2203 d2h->_r_b = 0; 2204 d2h->_r_c = 0; 2205 d2h->_r_d = 0; 2206 } 2207 2208 ireq->scu_status = SCU_TASK_DONE_GOOD; 2209 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY; 2210 status = ireq->sci_status; 2211 2212 /* the hw will have suspended the rnc, so complete the 2213 * request upon pending resume 2214 */ 2215 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); 2216 break; 2217 } 2218 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT): 2219 /* In this case, there is no UF coming after. 2220 * compelte the IO now. 2221 */ 2222 ireq->scu_status = SCU_TASK_DONE_GOOD; 2223 ireq->sci_status = SCI_SUCCESS; 2224 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED); 2225 break; 2226 2227 default: 2228 if (d2h->fis_type == FIS_REGD2H) { 2229 /* UF received change the device state to ATAPI_ERROR */ 2230 status = ireq->sci_status; 2231 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR); 2232 } else { 2233 /* If receiving any non-success TC status, no UF 2234 * received yet, then an UF for the status fis 2235 * is coming after (XXX: suspect this is 2236 * actually a protocol error or a bug like the 2237 * DONE_UNEXP_FIS case) 2238 */ 2239 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE; 2240 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID; 2241 2242 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H); 2243 } 2244 break; 2245 } 2246 2247 return status; 2248 } 2249 2250 static int sci_request_smp_completion_status_is_tx_suspend( 2251 unsigned int completion_status) 2252 { 2253 switch (completion_status) { 2254 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: 2255 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: 2256 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: 2257 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: 2258 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: 2259 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: 2260 return 1; 2261 } 2262 return 0; 2263 } 2264 2265 static int sci_request_smp_completion_status_is_tx_rx_suspend( 2266 unsigned int completion_status) 2267 { 2268 return 0; /* There are no Tx/Rx SMP suspend conditions. */ 2269 } 2270 2271 static int sci_request_ssp_completion_status_is_tx_suspend( 2272 unsigned int completion_status) 2273 { 2274 switch (completion_status) { 2275 case SCU_TASK_DONE_TX_RAW_CMD_ERR: 2276 case SCU_TASK_DONE_LF_ERR: 2277 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: 2278 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: 2279 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: 2280 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: 2281 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: 2282 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: 2283 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: 2284 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: 2285 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: 2286 return 1; 2287 } 2288 return 0; 2289 } 2290 2291 static int sci_request_ssp_completion_status_is_tx_rx_suspend( 2292 unsigned int completion_status) 2293 { 2294 return 0; /* There are no Tx/Rx SSP suspend conditions. */ 2295 } 2296 2297 static int sci_request_stpsata_completion_status_is_tx_suspend( 2298 unsigned int completion_status) 2299 { 2300 switch (completion_status) { 2301 case SCU_TASK_DONE_TX_RAW_CMD_ERR: 2302 case SCU_TASK_DONE_LL_R_ERR: 2303 case SCU_TASK_DONE_LL_PERR: 2304 case SCU_TASK_DONE_REG_ERR: 2305 case SCU_TASK_DONE_SDB_ERR: 2306 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: 2307 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: 2308 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: 2309 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: 2310 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: 2311 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: 2312 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: 2313 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: 2314 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: 2315 return 1; 2316 } 2317 return 0; 2318 } 2319 2320 2321 static int sci_request_stpsata_completion_status_is_tx_rx_suspend( 2322 unsigned int completion_status) 2323 { 2324 switch (completion_status) { 2325 case SCU_TASK_DONE_LF_ERR: 2326 case SCU_TASK_DONE_LL_SY_TERM: 2327 case SCU_TASK_DONE_LL_LF_TERM: 2328 case SCU_TASK_DONE_BREAK_RCVD: 2329 case SCU_TASK_DONE_INV_FIS_LEN: 2330 case SCU_TASK_DONE_UNEXP_FIS: 2331 case SCU_TASK_DONE_UNEXP_SDBFIS: 2332 case SCU_TASK_DONE_MAX_PLD_ERR: 2333 return 1; 2334 } 2335 return 0; 2336 } 2337 2338 static void sci_request_handle_suspending_completions( 2339 struct isci_request *ireq, 2340 u32 completion_code) 2341 { 2342 int is_tx = 0; 2343 int is_tx_rx = 0; 2344 2345 switch (ireq->protocol) { 2346 case SAS_PROTOCOL_SMP: 2347 is_tx = sci_request_smp_completion_status_is_tx_suspend( 2348 completion_code); 2349 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend( 2350 completion_code); 2351 break; 2352 case SAS_PROTOCOL_SSP: 2353 is_tx = sci_request_ssp_completion_status_is_tx_suspend( 2354 completion_code); 2355 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend( 2356 completion_code); 2357 break; 2358 case SAS_PROTOCOL_STP: 2359 is_tx = sci_request_stpsata_completion_status_is_tx_suspend( 2360 completion_code); 2361 is_tx_rx = 2362 sci_request_stpsata_completion_status_is_tx_rx_suspend( 2363 completion_code); 2364 break; 2365 default: 2366 dev_warn(&ireq->isci_host->pdev->dev, 2367 "%s: request %p has no valid protocol\n", 2368 __func__, ireq); 2369 break; 2370 } 2371 if (is_tx || is_tx_rx) { 2372 BUG_ON(is_tx && is_tx_rx); 2373 2374 sci_remote_node_context_suspend( 2375 &ireq->target_device->rnc, 2376 SCI_HW_SUSPEND, 2377 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX 2378 : SCU_EVENT_TL_RNC_SUSPEND_TX); 2379 } 2380 } 2381 2382 enum sci_status 2383 sci_io_request_tc_completion(struct isci_request *ireq, 2384 u32 completion_code) 2385 { 2386 enum sci_base_request_states state; 2387 struct isci_host *ihost = ireq->owning_controller; 2388 2389 state = ireq->sm.current_state_id; 2390 2391 /* Decode those completions that signal upcoming suspension events. */ 2392 sci_request_handle_suspending_completions( 2393 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code)); 2394 2395 switch (state) { 2396 case SCI_REQ_STARTED: 2397 return request_started_state_tc_event(ireq, completion_code); 2398 2399 case SCI_REQ_TASK_WAIT_TC_COMP: 2400 return ssp_task_request_await_tc_event(ireq, 2401 completion_code); 2402 2403 case SCI_REQ_SMP_WAIT_RESP: 2404 return smp_request_await_response_tc_event(ireq, 2405 completion_code); 2406 2407 case SCI_REQ_SMP_WAIT_TC_COMP: 2408 return smp_request_await_tc_event(ireq, completion_code); 2409 2410 case SCI_REQ_STP_UDMA_WAIT_TC_COMP: 2411 return stp_request_udma_await_tc_event(ireq, 2412 completion_code); 2413 2414 case SCI_REQ_STP_NON_DATA_WAIT_H2D: 2415 return stp_request_non_data_await_h2d_tc_event(ireq, 2416 completion_code); 2417 2418 case SCI_REQ_STP_PIO_WAIT_H2D: 2419 return stp_request_pio_await_h2d_completion_tc_event(ireq, 2420 completion_code); 2421 2422 case SCI_REQ_STP_PIO_DATA_OUT: 2423 return pio_data_out_tx_done_tc_event(ireq, completion_code); 2424 2425 case SCI_REQ_ABORTING: 2426 return request_aborting_state_tc_event(ireq, 2427 completion_code); 2428 2429 case SCI_REQ_ATAPI_WAIT_H2D: 2430 return atapi_raw_completion(ireq, completion_code, 2431 SCI_REQ_ATAPI_WAIT_PIO_SETUP); 2432 2433 case SCI_REQ_ATAPI_WAIT_TC_COMP: 2434 return atapi_raw_completion(ireq, completion_code, 2435 SCI_REQ_ATAPI_WAIT_D2H); 2436 2437 case SCI_REQ_ATAPI_WAIT_D2H: 2438 return atapi_data_tc_completion_handler(ireq, completion_code); 2439 2440 default: 2441 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n", 2442 __func__, completion_code, req_state_name(state)); 2443 return SCI_FAILURE_INVALID_STATE; 2444 } 2445 } 2446 2447 /** 2448 * isci_request_process_response_iu() - This function sets the status and 2449 * response iu, in the task struct, from the request object for the upper 2450 * layer driver. 2451 * @task: This parameter is the task struct from the upper layer driver. 2452 * @resp_iu: This parameter points to the response iu of the completed request. 2453 * @dev: This parameter specifies the linux device struct. 2454 * 2455 * none. 2456 */ 2457 static void isci_request_process_response_iu( 2458 struct sas_task *task, 2459 struct ssp_response_iu *resp_iu, 2460 struct device *dev) 2461 { 2462 dev_dbg(dev, 2463 "%s: resp_iu = %p " 2464 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d " 2465 "resp_iu->response_data_len = %x, " 2466 "resp_iu->sense_data_len = %x\nresponse data: ", 2467 __func__, 2468 resp_iu, 2469 resp_iu->status, 2470 resp_iu->datapres, 2471 resp_iu->response_data_len, 2472 resp_iu->sense_data_len); 2473 2474 task->task_status.stat = resp_iu->status; 2475 2476 /* libsas updates the task status fields based on the response iu. */ 2477 sas_ssp_task_response(dev, task, resp_iu); 2478 } 2479 2480 /** 2481 * isci_request_set_open_reject_status() - This function prepares the I/O 2482 * completion for OPEN_REJECT conditions. 2483 * @request: This parameter is the completed isci_request object. 2484 * @task: This parameter is the task struct from the upper layer driver. 2485 * @response_ptr: This parameter specifies the service response for the I/O. 2486 * @status_ptr: This parameter specifies the exec status for the I/O. 2487 * @open_rej_reason: This parameter specifies the encoded reason for the 2488 * abandon-class reject. 2489 * 2490 * none. 2491 */ 2492 static void isci_request_set_open_reject_status( 2493 struct isci_request *request, 2494 struct sas_task *task, 2495 enum service_response *response_ptr, 2496 enum exec_status *status_ptr, 2497 enum sas_open_rej_reason open_rej_reason) 2498 { 2499 /* Task in the target is done. */ 2500 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2501 *response_ptr = SAS_TASK_UNDELIVERED; 2502 *status_ptr = SAS_OPEN_REJECT; 2503 task->task_status.open_rej_reason = open_rej_reason; 2504 } 2505 2506 /** 2507 * isci_request_handle_controller_specific_errors() - This function decodes 2508 * controller-specific I/O completion error conditions. 2509 * @idev: Remote device 2510 * @request: This parameter is the completed isci_request object. 2511 * @task: This parameter is the task struct from the upper layer driver. 2512 * @response_ptr: This parameter specifies the service response for the I/O. 2513 * @status_ptr: This parameter specifies the exec status for the I/O. 2514 * 2515 * none. 2516 */ 2517 static void isci_request_handle_controller_specific_errors( 2518 struct isci_remote_device *idev, 2519 struct isci_request *request, 2520 struct sas_task *task, 2521 enum service_response *response_ptr, 2522 enum exec_status *status_ptr) 2523 { 2524 unsigned int cstatus; 2525 2526 cstatus = request->scu_status; 2527 2528 dev_dbg(&request->isci_host->pdev->dev, 2529 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR " 2530 "- controller status = 0x%x\n", 2531 __func__, request, cstatus); 2532 2533 /* Decode the controller-specific errors; most 2534 * important is to recognize those conditions in which 2535 * the target may still have a task outstanding that 2536 * must be aborted. 2537 * 2538 * Note that there are SCU completion codes being 2539 * named in the decode below for which SCIC has already 2540 * done work to handle them in a way other than as 2541 * a controller-specific completion code; these are left 2542 * in the decode below for completeness sake. 2543 */ 2544 switch (cstatus) { 2545 case SCU_TASK_DONE_DMASETUP_DIRERR: 2546 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */ 2547 case SCU_TASK_DONE_XFERCNT_ERR: 2548 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */ 2549 if (task->task_proto == SAS_PROTOCOL_SMP) { 2550 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */ 2551 *response_ptr = SAS_TASK_COMPLETE; 2552 2553 /* See if the device has been/is being stopped. Note 2554 * that we ignore the quiesce state, since we are 2555 * concerned about the actual device state. 2556 */ 2557 if (!idev) 2558 *status_ptr = SAS_DEVICE_UNKNOWN; 2559 else 2560 *status_ptr = SAS_ABORTED_TASK; 2561 2562 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2563 } else { 2564 /* Task in the target is not done. */ 2565 *response_ptr = SAS_TASK_UNDELIVERED; 2566 2567 if (!idev) 2568 *status_ptr = SAS_DEVICE_UNKNOWN; 2569 else 2570 *status_ptr = SAS_SAM_STAT_TASK_ABORTED; 2571 2572 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2573 } 2574 2575 break; 2576 2577 case SCU_TASK_DONE_CRC_ERR: 2578 case SCU_TASK_DONE_NAK_CMD_ERR: 2579 case SCU_TASK_DONE_EXCESS_DATA: 2580 case SCU_TASK_DONE_UNEXP_FIS: 2581 /* Also SCU_TASK_DONE_UNEXP_RESP: */ 2582 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */ 2583 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */ 2584 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */ 2585 /* These are conditions in which the target 2586 * has completed the task, so that no cleanup 2587 * is necessary. 2588 */ 2589 *response_ptr = SAS_TASK_COMPLETE; 2590 2591 /* See if the device has been/is being stopped. Note 2592 * that we ignore the quiesce state, since we are 2593 * concerned about the actual device state. 2594 */ 2595 if (!idev) 2596 *status_ptr = SAS_DEVICE_UNKNOWN; 2597 else 2598 *status_ptr = SAS_ABORTED_TASK; 2599 2600 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2601 break; 2602 2603 2604 /* Note that the only open reject completion codes seen here will be 2605 * abandon-class codes; all others are automatically retried in the SCU. 2606 */ 2607 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: 2608 2609 isci_request_set_open_reject_status( 2610 request, task, response_ptr, status_ptr, 2611 SAS_OREJ_WRONG_DEST); 2612 break; 2613 2614 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: 2615 2616 /* Note - the return of AB0 will change when 2617 * libsas implements detection of zone violations. 2618 */ 2619 isci_request_set_open_reject_status( 2620 request, task, response_ptr, status_ptr, 2621 SAS_OREJ_RESV_AB0); 2622 break; 2623 2624 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: 2625 2626 isci_request_set_open_reject_status( 2627 request, task, response_ptr, status_ptr, 2628 SAS_OREJ_RESV_AB1); 2629 break; 2630 2631 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: 2632 2633 isci_request_set_open_reject_status( 2634 request, task, response_ptr, status_ptr, 2635 SAS_OREJ_RESV_AB2); 2636 break; 2637 2638 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: 2639 2640 isci_request_set_open_reject_status( 2641 request, task, response_ptr, status_ptr, 2642 SAS_OREJ_RESV_AB3); 2643 break; 2644 2645 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: 2646 2647 isci_request_set_open_reject_status( 2648 request, task, response_ptr, status_ptr, 2649 SAS_OREJ_BAD_DEST); 2650 break; 2651 2652 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: 2653 2654 isci_request_set_open_reject_status( 2655 request, task, response_ptr, status_ptr, 2656 SAS_OREJ_STP_NORES); 2657 break; 2658 2659 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: 2660 2661 isci_request_set_open_reject_status( 2662 request, task, response_ptr, status_ptr, 2663 SAS_OREJ_EPROTO); 2664 break; 2665 2666 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: 2667 2668 isci_request_set_open_reject_status( 2669 request, task, response_ptr, status_ptr, 2670 SAS_OREJ_CONN_RATE); 2671 break; 2672 2673 case SCU_TASK_DONE_LL_R_ERR: 2674 /* Also SCU_TASK_DONE_ACK_NAK_TO: */ 2675 case SCU_TASK_DONE_LL_PERR: 2676 case SCU_TASK_DONE_LL_SY_TERM: 2677 /* Also SCU_TASK_DONE_NAK_ERR:*/ 2678 case SCU_TASK_DONE_LL_LF_TERM: 2679 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */ 2680 case SCU_TASK_DONE_LL_ABORT_ERR: 2681 case SCU_TASK_DONE_SEQ_INV_TYPE: 2682 /* Also SCU_TASK_DONE_UNEXP_XR: */ 2683 case SCU_TASK_DONE_XR_IU_LEN_ERR: 2684 case SCU_TASK_DONE_INV_FIS_LEN: 2685 /* Also SCU_TASK_DONE_XR_WD_LEN: */ 2686 case SCU_TASK_DONE_SDMA_ERR: 2687 case SCU_TASK_DONE_OFFSET_ERR: 2688 case SCU_TASK_DONE_MAX_PLD_ERR: 2689 case SCU_TASK_DONE_LF_ERR: 2690 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */ 2691 case SCU_TASK_DONE_SMP_LL_RX_ERR: 2692 case SCU_TASK_DONE_UNEXP_DATA: 2693 case SCU_TASK_DONE_UNEXP_SDBFIS: 2694 case SCU_TASK_DONE_REG_ERR: 2695 case SCU_TASK_DONE_SDB_ERR: 2696 case SCU_TASK_DONE_TASK_ABORT: 2697 default: 2698 /* Task in the target is not done. */ 2699 *response_ptr = SAS_TASK_UNDELIVERED; 2700 *status_ptr = SAS_SAM_STAT_TASK_ABORTED; 2701 2702 if (task->task_proto == SAS_PROTOCOL_SMP) 2703 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2704 else 2705 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2706 break; 2707 } 2708 } 2709 2710 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis) 2711 { 2712 struct task_status_struct *ts = &task->task_status; 2713 struct ata_task_resp *resp = (void *)&ts->buf[0]; 2714 2715 resp->frame_len = sizeof(*fis); 2716 memcpy(resp->ending_fis, fis, sizeof(*fis)); 2717 ts->buf_valid_size = sizeof(*resp); 2718 2719 /* If an error is flagged let libata decode the fis */ 2720 if (ac_err_mask(fis->status)) 2721 ts->stat = SAS_PROTO_RESPONSE; 2722 else 2723 ts->stat = SAS_SAM_STAT_GOOD; 2724 2725 ts->resp = SAS_TASK_COMPLETE; 2726 } 2727 2728 static void isci_request_io_request_complete(struct isci_host *ihost, 2729 struct isci_request *request, 2730 enum sci_io_status completion_status) 2731 { 2732 struct sas_task *task = isci_request_access_task(request); 2733 struct ssp_response_iu *resp_iu; 2734 unsigned long task_flags; 2735 struct isci_remote_device *idev = request->target_device; 2736 enum service_response response = SAS_TASK_UNDELIVERED; 2737 enum exec_status status = SAS_ABORTED_TASK; 2738 2739 dev_dbg(&ihost->pdev->dev, 2740 "%s: request = %p, task = %p, " 2741 "task->data_dir = %d completion_status = 0x%x\n", 2742 __func__, request, task, task->data_dir, completion_status); 2743 2744 /* The request is done from an SCU HW perspective. */ 2745 2746 /* This is an active request being completed from the core. */ 2747 switch (completion_status) { 2748 2749 case SCI_IO_FAILURE_RESPONSE_VALID: 2750 dev_dbg(&ihost->pdev->dev, 2751 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n", 2752 __func__, request, task); 2753 2754 if (sas_protocol_ata(task->task_proto)) { 2755 isci_process_stp_response(task, &request->stp.rsp); 2756 } else if (SAS_PROTOCOL_SSP == task->task_proto) { 2757 2758 /* crack the iu response buffer. */ 2759 resp_iu = &request->ssp.rsp; 2760 isci_request_process_response_iu(task, resp_iu, 2761 &ihost->pdev->dev); 2762 2763 } else if (SAS_PROTOCOL_SMP == task->task_proto) { 2764 2765 dev_err(&ihost->pdev->dev, 2766 "%s: SCI_IO_FAILURE_RESPONSE_VALID: " 2767 "SAS_PROTOCOL_SMP protocol\n", 2768 __func__); 2769 2770 } else 2771 dev_err(&ihost->pdev->dev, 2772 "%s: unknown protocol\n", __func__); 2773 2774 /* use the task status set in the task struct by the 2775 * isci_request_process_response_iu call. 2776 */ 2777 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2778 response = task->task_status.resp; 2779 status = task->task_status.stat; 2780 break; 2781 2782 case SCI_IO_SUCCESS: 2783 case SCI_IO_SUCCESS_IO_DONE_EARLY: 2784 2785 response = SAS_TASK_COMPLETE; 2786 status = SAS_SAM_STAT_GOOD; 2787 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2788 2789 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) { 2790 2791 /* This was an SSP / STP / SATA transfer. 2792 * There is a possibility that less data than 2793 * the maximum was transferred. 2794 */ 2795 u32 transferred_length = sci_req_tx_bytes(request); 2796 2797 task->task_status.residual 2798 = task->total_xfer_len - transferred_length; 2799 2800 /* If there were residual bytes, call this an 2801 * underrun. 2802 */ 2803 if (task->task_status.residual != 0) 2804 status = SAS_DATA_UNDERRUN; 2805 2806 dev_dbg(&ihost->pdev->dev, 2807 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n", 2808 __func__, status); 2809 2810 } else 2811 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n", 2812 __func__); 2813 break; 2814 2815 case SCI_IO_FAILURE_TERMINATED: 2816 2817 dev_dbg(&ihost->pdev->dev, 2818 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n", 2819 __func__, request, task); 2820 2821 /* The request was terminated explicitly. */ 2822 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2823 response = SAS_TASK_UNDELIVERED; 2824 2825 /* See if the device has been/is being stopped. Note 2826 * that we ignore the quiesce state, since we are 2827 * concerned about the actual device state. 2828 */ 2829 if (!idev) 2830 status = SAS_DEVICE_UNKNOWN; 2831 else 2832 status = SAS_ABORTED_TASK; 2833 break; 2834 2835 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR: 2836 2837 isci_request_handle_controller_specific_errors(idev, request, 2838 task, &response, 2839 &status); 2840 break; 2841 2842 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED: 2843 /* This is a special case, in that the I/O completion 2844 * is telling us that the device needs a reset. 2845 * In order for the device reset condition to be 2846 * noticed, the I/O has to be handled in the error 2847 * handler. Set the reset flag and cause the 2848 * SCSI error thread to be scheduled. 2849 */ 2850 spin_lock_irqsave(&task->task_state_lock, task_flags); 2851 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; 2852 spin_unlock_irqrestore(&task->task_state_lock, task_flags); 2853 2854 /* Fail the I/O. */ 2855 response = SAS_TASK_UNDELIVERED; 2856 status = SAS_SAM_STAT_TASK_ABORTED; 2857 2858 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2859 break; 2860 2861 case SCI_FAILURE_RETRY_REQUIRED: 2862 2863 /* Fail the I/O so it can be retried. */ 2864 response = SAS_TASK_UNDELIVERED; 2865 if (!idev) 2866 status = SAS_DEVICE_UNKNOWN; 2867 else 2868 status = SAS_ABORTED_TASK; 2869 2870 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2871 break; 2872 2873 2874 default: 2875 /* Catch any otherwise unhandled error codes here. */ 2876 dev_dbg(&ihost->pdev->dev, 2877 "%s: invalid completion code: 0x%x - " 2878 "isci_request = %p\n", 2879 __func__, completion_status, request); 2880 2881 response = SAS_TASK_UNDELIVERED; 2882 2883 /* See if the device has been/is being stopped. Note 2884 * that we ignore the quiesce state, since we are 2885 * concerned about the actual device state. 2886 */ 2887 if (!idev) 2888 status = SAS_DEVICE_UNKNOWN; 2889 else 2890 status = SAS_ABORTED_TASK; 2891 2892 if (SAS_PROTOCOL_SMP == task->task_proto) 2893 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2894 else 2895 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags); 2896 break; 2897 } 2898 2899 switch (task->task_proto) { 2900 case SAS_PROTOCOL_SSP: 2901 if (task->data_dir == DMA_NONE) 2902 break; 2903 if (task->num_scatter == 0) 2904 /* 0 indicates a single dma address */ 2905 dma_unmap_single(&ihost->pdev->dev, 2906 request->zero_scatter_daddr, 2907 task->total_xfer_len, task->data_dir); 2908 else /* unmap the sgl dma addresses */ 2909 dma_unmap_sg(&ihost->pdev->dev, task->scatter, 2910 request->num_sg_entries, task->data_dir); 2911 break; 2912 case SAS_PROTOCOL_SMP: { 2913 struct scatterlist *sg = &task->smp_task.smp_req; 2914 struct smp_req *smp_req; 2915 void *kaddr; 2916 2917 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE); 2918 2919 /* need to swab it back in case the command buffer is re-used */ 2920 kaddr = kmap_atomic(sg_page(sg)); 2921 smp_req = kaddr + sg->offset; 2922 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); 2923 kunmap_atomic(kaddr); 2924 break; 2925 } 2926 default: 2927 break; 2928 } 2929 2930 spin_lock_irqsave(&task->task_state_lock, task_flags); 2931 2932 task->task_status.resp = response; 2933 task->task_status.stat = status; 2934 2935 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) { 2936 /* Normal notification (task_done) */ 2937 task->task_state_flags |= SAS_TASK_STATE_DONE; 2938 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2939 } 2940 spin_unlock_irqrestore(&task->task_state_lock, task_flags); 2941 2942 /* complete the io request to the core. */ 2943 sci_controller_complete_io(ihost, request->target_device, request); 2944 2945 /* set terminated handle so it cannot be completed or 2946 * terminated again, and to cause any calls into abort 2947 * task to recognize the already completed case. 2948 */ 2949 set_bit(IREQ_TERMINATED, &request->flags); 2950 2951 ireq_done(ihost, request, task); 2952 } 2953 2954 static void sci_request_started_state_enter(struct sci_base_state_machine *sm) 2955 { 2956 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); 2957 struct domain_device *dev = ireq->target_device->domain_dev; 2958 enum sci_base_request_states state; 2959 struct sas_task *task; 2960 2961 /* XXX as hch said always creating an internal sas_task for tmf 2962 * requests would simplify the driver 2963 */ 2964 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq); 2965 2966 /* all unaccelerated request types (non ssp or ncq) handled with 2967 * substates 2968 */ 2969 if (!task && dev->dev_type == SAS_END_DEVICE) { 2970 state = SCI_REQ_TASK_WAIT_TC_COMP; 2971 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) { 2972 state = SCI_REQ_SMP_WAIT_RESP; 2973 } else if (task && sas_protocol_ata(task->task_proto) && 2974 !task->ata_task.use_ncq) { 2975 if (dev->sata_dev.class == ATA_DEV_ATAPI && 2976 task->ata_task.fis.command == ATA_CMD_PACKET) { 2977 state = SCI_REQ_ATAPI_WAIT_H2D; 2978 } else if (task->data_dir == DMA_NONE) { 2979 state = SCI_REQ_STP_NON_DATA_WAIT_H2D; 2980 } else if (task->ata_task.dma_xfer) { 2981 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP; 2982 } else /* PIO */ { 2983 state = SCI_REQ_STP_PIO_WAIT_H2D; 2984 } 2985 } else { 2986 /* SSP or NCQ are fully accelerated, no substates */ 2987 return; 2988 } 2989 sci_change_state(sm, state); 2990 } 2991 2992 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm) 2993 { 2994 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); 2995 struct isci_host *ihost = ireq->owning_controller; 2996 2997 /* Tell the SCI_USER that the IO request is complete */ 2998 if (!test_bit(IREQ_TMF, &ireq->flags)) 2999 isci_request_io_request_complete(ihost, ireq, 3000 ireq->sci_status); 3001 else 3002 isci_task_request_complete(ihost, ireq, ireq->sci_status); 3003 } 3004 3005 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm) 3006 { 3007 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); 3008 3009 /* Setting the abort bit in the Task Context is required by the silicon. */ 3010 ireq->tc->abort = 1; 3011 } 3012 3013 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm) 3014 { 3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); 3016 3017 ireq->target_device->working_request = ireq; 3018 } 3019 3020 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm) 3021 { 3022 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm); 3023 3024 ireq->target_device->working_request = ireq; 3025 } 3026 3027 static const struct sci_base_state sci_request_state_table[] = { 3028 [SCI_REQ_INIT] = { }, 3029 [SCI_REQ_CONSTRUCTED] = { }, 3030 [SCI_REQ_STARTED] = { 3031 .enter_state = sci_request_started_state_enter, 3032 }, 3033 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = { 3034 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter, 3035 }, 3036 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { }, 3037 [SCI_REQ_STP_PIO_WAIT_H2D] = { 3038 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter, 3039 }, 3040 [SCI_REQ_STP_PIO_WAIT_FRAME] = { }, 3041 [SCI_REQ_STP_PIO_DATA_IN] = { }, 3042 [SCI_REQ_STP_PIO_DATA_OUT] = { }, 3043 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { }, 3044 [SCI_REQ_STP_UDMA_WAIT_D2H] = { }, 3045 [SCI_REQ_TASK_WAIT_TC_COMP] = { }, 3046 [SCI_REQ_TASK_WAIT_TC_RESP] = { }, 3047 [SCI_REQ_SMP_WAIT_RESP] = { }, 3048 [SCI_REQ_SMP_WAIT_TC_COMP] = { }, 3049 [SCI_REQ_ATAPI_WAIT_H2D] = { }, 3050 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { }, 3051 [SCI_REQ_ATAPI_WAIT_D2H] = { }, 3052 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { }, 3053 [SCI_REQ_COMPLETED] = { 3054 .enter_state = sci_request_completed_state_enter, 3055 }, 3056 [SCI_REQ_ABORTING] = { 3057 .enter_state = sci_request_aborting_state_enter, 3058 }, 3059 [SCI_REQ_FINAL] = { }, 3060 }; 3061 3062 static void 3063 sci_general_request_construct(struct isci_host *ihost, 3064 struct isci_remote_device *idev, 3065 struct isci_request *ireq) 3066 { 3067 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT); 3068 3069 ireq->target_device = idev; 3070 ireq->protocol = SAS_PROTOCOL_NONE; 3071 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX; 3072 3073 ireq->sci_status = SCI_SUCCESS; 3074 ireq->scu_status = 0; 3075 ireq->post_context = 0xFFFFFFFF; 3076 } 3077 3078 static enum sci_status 3079 sci_io_request_construct(struct isci_host *ihost, 3080 struct isci_remote_device *idev, 3081 struct isci_request *ireq) 3082 { 3083 struct domain_device *dev = idev->domain_dev; 3084 enum sci_status status = SCI_SUCCESS; 3085 3086 /* Build the common part of the request */ 3087 sci_general_request_construct(ihost, idev, ireq); 3088 3089 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) 3090 return SCI_FAILURE_INVALID_REMOTE_DEVICE; 3091 3092 if (dev->dev_type == SAS_END_DEVICE) 3093 /* pass */; 3094 else if (dev_is_sata(dev)) 3095 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd)); 3096 else if (dev_is_expander(dev->dev_type)) 3097 /* pass */; 3098 else 3099 return SCI_FAILURE_UNSUPPORTED_PROTOCOL; 3100 3101 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab)); 3102 3103 return status; 3104 } 3105 3106 enum sci_status sci_task_request_construct(struct isci_host *ihost, 3107 struct isci_remote_device *idev, 3108 u16 io_tag, struct isci_request *ireq) 3109 { 3110 struct domain_device *dev = idev->domain_dev; 3111 enum sci_status status = SCI_SUCCESS; 3112 3113 /* Build the common part of the request */ 3114 sci_general_request_construct(ihost, idev, ireq); 3115 3116 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) { 3117 set_bit(IREQ_TMF, &ireq->flags); 3118 memset(ireq->tc, 0, sizeof(struct scu_task_context)); 3119 3120 /* Set the protocol indicator. */ 3121 if (dev_is_sata(dev)) 3122 ireq->protocol = SAS_PROTOCOL_STP; 3123 else 3124 ireq->protocol = SAS_PROTOCOL_SSP; 3125 } else 3126 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; 3127 3128 return status; 3129 } 3130 3131 static enum sci_status isci_request_ssp_request_construct( 3132 struct isci_request *request) 3133 { 3134 enum sci_status status; 3135 3136 dev_dbg(&request->isci_host->pdev->dev, 3137 "%s: request = %p\n", 3138 __func__, 3139 request); 3140 status = sci_io_request_construct_basic_ssp(request); 3141 return status; 3142 } 3143 3144 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq) 3145 { 3146 struct sas_task *task = isci_request_access_task(ireq); 3147 struct host_to_dev_fis *fis = &ireq->stp.cmd; 3148 struct ata_queued_cmd *qc = task->uldd_task; 3149 enum sci_status status; 3150 3151 dev_dbg(&ireq->isci_host->pdev->dev, 3152 "%s: ireq = %p\n", 3153 __func__, 3154 ireq); 3155 3156 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); 3157 if (!task->ata_task.device_control_reg_update) 3158 fis->flags |= 0x80; 3159 fis->flags &= 0xF0; 3160 3161 status = sci_io_request_construct_basic_sata(ireq); 3162 3163 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE || 3164 qc->tf.command == ATA_CMD_FPDMA_READ || 3165 qc->tf.command == ATA_CMD_FPDMA_RECV || 3166 qc->tf.command == ATA_CMD_FPDMA_SEND || 3167 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) { 3168 fis->sector_count = qc->tag << 3; 3169 ireq->tc->type.stp.ncq_tag = qc->tag; 3170 } 3171 3172 return status; 3173 } 3174 3175 static enum sci_status 3176 sci_io_request_construct_smp(struct device *dev, 3177 struct isci_request *ireq, 3178 struct sas_task *task) 3179 { 3180 struct scatterlist *sg = &task->smp_task.smp_req; 3181 struct isci_remote_device *idev; 3182 struct scu_task_context *task_context; 3183 struct isci_port *iport; 3184 struct smp_req *smp_req; 3185 void *kaddr; 3186 u8 req_len; 3187 u32 cmd; 3188 3189 kaddr = kmap_atomic(sg_page(sg)); 3190 smp_req = kaddr + sg->offset; 3191 /* 3192 * Look at the SMP requests' header fields; for certain SAS 1.x SMP 3193 * functions under SAS 2.0, a zero request length really indicates 3194 * a non-zero default length. 3195 */ 3196 if (smp_req->req_len == 0) { 3197 switch (smp_req->func) { 3198 case SMP_DISCOVER: 3199 case SMP_REPORT_PHY_ERR_LOG: 3200 case SMP_REPORT_PHY_SATA: 3201 case SMP_REPORT_ROUTE_INFO: 3202 smp_req->req_len = 2; 3203 break; 3204 case SMP_CONF_ROUTE_INFO: 3205 case SMP_PHY_CONTROL: 3206 case SMP_PHY_TEST_FUNCTION: 3207 smp_req->req_len = 9; 3208 break; 3209 /* Default - zero is a valid default for 2.0. */ 3210 } 3211 } 3212 req_len = smp_req->req_len; 3213 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32)); 3214 cmd = *(u32 *) smp_req; 3215 kunmap_atomic(kaddr); 3216 3217 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE)) 3218 return SCI_FAILURE; 3219 3220 ireq->protocol = SAS_PROTOCOL_SMP; 3221 3222 /* byte swap the smp request. */ 3223 3224 task_context = ireq->tc; 3225 3226 idev = ireq->target_device; 3227 iport = idev->owning_port; 3228 3229 /* 3230 * Fill in the TC with its required data 3231 * 00h 3232 */ 3233 task_context->priority = 0; 3234 task_context->initiator_request = 1; 3235 task_context->connection_rate = idev->connection_rate; 3236 task_context->protocol_engine_index = ISCI_PEG; 3237 task_context->logical_port_index = iport->physical_port_index; 3238 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP; 3239 task_context->abort = 0; 3240 task_context->valid = SCU_TASK_CONTEXT_VALID; 3241 task_context->context_type = SCU_TASK_CONTEXT_TYPE; 3242 3243 /* 04h */ 3244 task_context->remote_node_index = idev->rnc.remote_node_index; 3245 task_context->command_code = 0; 3246 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST; 3247 3248 /* 08h */ 3249 task_context->link_layer_control = 0; 3250 task_context->do_not_dma_ssp_good_response = 1; 3251 task_context->strict_ordering = 0; 3252 task_context->control_frame = 1; 3253 task_context->timeout_enable = 0; 3254 task_context->block_guard_enable = 0; 3255 3256 /* 0ch */ 3257 task_context->address_modifier = 0; 3258 3259 /* 10h */ 3260 task_context->ssp_command_iu_length = req_len; 3261 3262 /* 14h */ 3263 task_context->transfer_length_bytes = 0; 3264 3265 /* 3266 * 18h ~ 30h, protocol specific 3267 * since commandIU has been build by framework at this point, we just 3268 * copy the frist DWord from command IU to this location. */ 3269 memcpy(&task_context->type.smp, &cmd, sizeof(u32)); 3270 3271 /* 3272 * 40h 3273 * "For SMP you could program it to zero. We would prefer that way 3274 * so that done code will be consistent." - Venki 3275 */ 3276 task_context->task_phase = 0; 3277 3278 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC | 3279 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) | 3280 (iport->physical_port_index << 3281 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) | 3282 ISCI_TAG_TCI(ireq->io_tag)); 3283 /* 3284 * Copy the physical address for the command buffer to the SCU Task 3285 * Context command buffer should not contain command header. 3286 */ 3287 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg)); 3288 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32)); 3289 3290 /* SMP response comes as UF, so no need to set response IU address. */ 3291 task_context->response_iu_upper = 0; 3292 task_context->response_iu_lower = 0; 3293 3294 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED); 3295 3296 return SCI_SUCCESS; 3297 } 3298 3299 /* 3300 * isci_smp_request_build() - This function builds the smp request. 3301 * @ireq: This parameter points to the isci_request allocated in the 3302 * request construct function. 3303 * 3304 * SCI_SUCCESS on successfull completion, or specific failure code. 3305 */ 3306 static enum sci_status isci_smp_request_build(struct isci_request *ireq) 3307 { 3308 struct sas_task *task = isci_request_access_task(ireq); 3309 struct device *dev = &ireq->isci_host->pdev->dev; 3310 enum sci_status status = SCI_FAILURE; 3311 3312 status = sci_io_request_construct_smp(dev, ireq, task); 3313 if (status != SCI_SUCCESS) 3314 dev_dbg(&ireq->isci_host->pdev->dev, 3315 "%s: failed with status = %d\n", 3316 __func__, 3317 status); 3318 3319 return status; 3320 } 3321 3322 /** 3323 * isci_io_request_build() - This function builds the io request object. 3324 * @ihost: This parameter specifies the ISCI host object 3325 * @request: This parameter points to the isci_request object allocated in the 3326 * request construct function. 3327 * @idev: This parameter is the handle for the sci core's remote device 3328 * object that is the destination for this request. 3329 * 3330 * SCI_SUCCESS on successfull completion, or specific failure code. 3331 */ 3332 static enum sci_status isci_io_request_build(struct isci_host *ihost, 3333 struct isci_request *request, 3334 struct isci_remote_device *idev) 3335 { 3336 enum sci_status status = SCI_SUCCESS; 3337 struct sas_task *task = isci_request_access_task(request); 3338 3339 dev_dbg(&ihost->pdev->dev, 3340 "%s: idev = 0x%p; request = %p, " 3341 "num_scatter = %d\n", 3342 __func__, 3343 idev, 3344 request, 3345 task->num_scatter); 3346 3347 /* map the sgl addresses, if present. 3348 * libata does the mapping for sata devices 3349 * before we get the request. 3350 */ 3351 if (task->num_scatter && 3352 !sas_protocol_ata(task->task_proto) && 3353 !(SAS_PROTOCOL_SMP & task->task_proto)) { 3354 3355 request->num_sg_entries = dma_map_sg( 3356 &ihost->pdev->dev, 3357 task->scatter, 3358 task->num_scatter, 3359 task->data_dir 3360 ); 3361 3362 if (request->num_sg_entries == 0) 3363 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 3364 } 3365 3366 status = sci_io_request_construct(ihost, idev, request); 3367 3368 if (status != SCI_SUCCESS) { 3369 dev_dbg(&ihost->pdev->dev, 3370 "%s: failed request construct\n", 3371 __func__); 3372 return SCI_FAILURE; 3373 } 3374 3375 switch (task->task_proto) { 3376 case SAS_PROTOCOL_SMP: 3377 status = isci_smp_request_build(request); 3378 break; 3379 case SAS_PROTOCOL_SSP: 3380 status = isci_request_ssp_request_construct(request); 3381 break; 3382 case SAS_PROTOCOL_SATA: 3383 case SAS_PROTOCOL_STP: 3384 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: 3385 status = isci_request_stp_request_construct(request); 3386 break; 3387 default: 3388 dev_dbg(&ihost->pdev->dev, 3389 "%s: unknown protocol\n", __func__); 3390 return SCI_FAILURE; 3391 } 3392 3393 return SCI_SUCCESS; 3394 } 3395 3396 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag) 3397 { 3398 struct isci_request *ireq; 3399 3400 ireq = ihost->reqs[ISCI_TAG_TCI(tag)]; 3401 ireq->io_tag = tag; 3402 ireq->io_request_completion = NULL; 3403 ireq->flags = 0; 3404 ireq->num_sg_entries = 0; 3405 3406 return ireq; 3407 } 3408 3409 struct isci_request *isci_io_request_from_tag(struct isci_host *ihost, 3410 struct sas_task *task, 3411 u16 tag) 3412 { 3413 struct isci_request *ireq; 3414 3415 ireq = isci_request_from_tag(ihost, tag); 3416 ireq->ttype_ptr.io_task_ptr = task; 3417 clear_bit(IREQ_TMF, &ireq->flags); 3418 task->lldd_task = ireq; 3419 3420 return ireq; 3421 } 3422 3423 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost, 3424 struct isci_tmf *isci_tmf, 3425 u16 tag) 3426 { 3427 struct isci_request *ireq; 3428 3429 ireq = isci_request_from_tag(ihost, tag); 3430 ireq->ttype_ptr.tmf_task_ptr = isci_tmf; 3431 set_bit(IREQ_TMF, &ireq->flags); 3432 3433 return ireq; 3434 } 3435 3436 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev, 3437 struct sas_task *task, struct isci_request *ireq) 3438 { 3439 enum sci_status status; 3440 unsigned long flags; 3441 int ret = 0; 3442 3443 status = isci_io_request_build(ihost, ireq, idev); 3444 if (status != SCI_SUCCESS) { 3445 dev_dbg(&ihost->pdev->dev, 3446 "%s: request_construct failed - status = 0x%x\n", 3447 __func__, 3448 status); 3449 return status; 3450 } 3451 3452 spin_lock_irqsave(&ihost->scic_lock, flags); 3453 3454 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) { 3455 3456 if (isci_task_is_ncq_recovery(task)) { 3457 3458 /* The device is in an NCQ recovery state. Issue the 3459 * request on the task side. Note that it will 3460 * complete on the I/O request side because the 3461 * request was built that way (ie. 3462 * ireq->is_task_management_request is false). 3463 */ 3464 status = sci_controller_start_task(ihost, 3465 idev, 3466 ireq); 3467 } else { 3468 status = SCI_FAILURE; 3469 } 3470 } else { 3471 /* send the request, let the core assign the IO TAG. */ 3472 status = sci_controller_start_io(ihost, idev, 3473 ireq); 3474 } 3475 3476 if (status != SCI_SUCCESS && 3477 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { 3478 dev_dbg(&ihost->pdev->dev, 3479 "%s: failed request start (0x%x)\n", 3480 __func__, status); 3481 spin_unlock_irqrestore(&ihost->scic_lock, flags); 3482 return status; 3483 } 3484 /* Either I/O started OK, or the core has signaled that 3485 * the device needs a target reset. 3486 */ 3487 if (status != SCI_SUCCESS) { 3488 /* The request did not really start in the 3489 * hardware, so clear the request handle 3490 * here so no terminations will be done. 3491 */ 3492 set_bit(IREQ_TERMINATED, &ireq->flags); 3493 } 3494 spin_unlock_irqrestore(&ihost->scic_lock, flags); 3495 3496 if (status == 3497 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { 3498 /* Signal libsas that we need the SCSI error 3499 * handler thread to work on this I/O and that 3500 * we want a device reset. 3501 */ 3502 spin_lock_irqsave(&task->task_state_lock, flags); 3503 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; 3504 spin_unlock_irqrestore(&task->task_state_lock, flags); 3505 3506 /* Cause this task to be scheduled in the SCSI error 3507 * handler thread. 3508 */ 3509 sas_task_abort(task); 3510 3511 /* Change the status, since we are holding 3512 * the I/O until it is managed by the SCSI 3513 * error handler. 3514 */ 3515 status = SCI_SUCCESS; 3516 } 3517 3518 return ret; 3519 } 3520