xref: /openbmc/linux/drivers/scsi/isci/phy.c (revision cd6d421e)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61 
62 #undef C
63 #define C(a) (#a)
64 static const char *phy_state_name(enum sci_phy_states state)
65 {
66 	static const char * const strings[] = PHY_STATES;
67 
68 	return strings[state];
69 }
70 #undef C
71 
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
74 
75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76 {
77 	return iphy->max_negotiated_speed;
78 }
79 
80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
81 {
82 	struct isci_phy *table = iphy - iphy->phy_index;
83 	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84 
85 	return ihost;
86 }
87 
88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
89 {
90 	return &phy_to_host(iphy)->pdev->dev;
91 }
92 
93 static enum sci_status
94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 				       struct scu_transport_layer_registers __iomem *reg)
96 {
97 	u32 tl_control;
98 
99 	iphy->transport_layer_registers = reg;
100 
101 	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 		&iphy->transport_layer_registers->stp_rni);
103 
104 	/*
105 	 * Hardware team recommends that we enable the STP prefetch for all
106 	 * transports
107 	 */
108 	tl_control = readl(&iphy->transport_layer_registers->control);
109 	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 	writel(tl_control, &iphy->transport_layer_registers->control);
111 
112 	return SCI_SUCCESS;
113 }
114 
115 static enum sci_status
116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 				  struct scu_link_layer_registers __iomem *llr)
118 {
119 	struct isci_host *ihost = iphy->owning_port->owning_controller;
120 	struct sci_phy_user_params *phy_user;
121 	struct sci_phy_oem_params *phy_oem;
122 	int phy_idx = iphy->phy_index;
123 	struct sci_phy_cap phy_cap;
124 	u32 phy_configuration;
125 	u32 parity_check = 0;
126 	u32 parity_count = 0;
127 	u32 llctl, link_rate;
128 	u32 clksm_value = 0;
129 	u32 sp_timeouts = 0;
130 
131 	phy_user = &ihost->user_parameters.phys[phy_idx];
132 	phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 	iphy->link_layer_registers = llr;
134 
135 	/* Set our IDENTIFY frame data */
136 	#define SCI_END_DEVICE 0x01
137 
138 	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 	       &llr->transmit_identification);
144 
145 	/* Write the device SAS Address */
146 	writel(0xFEDCBA98, &llr->sas_device_name_high);
147 	writel(phy_idx, &llr->sas_device_name_low);
148 
149 	/* Write the source SAS Address */
150 	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152 
153 	/* Clear and Set the PHY Identifier */
154 	writel(0, &llr->identify_frame_phy_id);
155 	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156 
157 	/* Change the initial state of the phy configuration register */
158 	phy_configuration = readl(&llr->phy_configuration);
159 
160 	/* Hold OOB state machine in reset */
161 	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 	writel(phy_configuration, &llr->phy_configuration);
163 
164 	/* Configure the SNW capabilities */
165 	phy_cap.all = 0;
166 	phy_cap.start = 1;
167 	phy_cap.gen3_no_ssc = 1;
168 	phy_cap.gen2_no_ssc = 1;
169 	phy_cap.gen1_no_ssc = 1;
170 	if (ihost->oem_parameters.controller.do_enable_ssc) {
171 		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 		bool en_sas = false;
175 		bool en_sata = false;
176 		u32 sas_type = 0;
177 		u32 sata_spread = 0x2;
178 		u32 sas_spread = 0x2;
179 
180 		phy_cap.gen3_ssc = 1;
181 		phy_cap.gen2_ssc = 1;
182 		phy_cap.gen1_ssc = 1;
183 
184 		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 			en_sas = en_sata = true;
186 		else {
187 			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189 
190 			if (sata_spread)
191 				en_sata = true;
192 
193 			if (sas_spread) {
194 				en_sas = true;
195 				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 			}
197 
198 		}
199 
200 		if (en_sas) {
201 			u32 reg;
202 
203 			reg = readl(&xcvr->afe_xcvr_control0);
204 			reg |= (0x00100000 | (sas_type << 19));
205 			writel(reg, &xcvr->afe_xcvr_control0);
206 
207 			reg = readl(&xcvr->afe_tx_ssc_control);
208 			reg |= sas_spread << 8;
209 			writel(reg, &xcvr->afe_tx_ssc_control);
210 		}
211 
212 		if (en_sata) {
213 			u32 reg;
214 
215 			reg = readl(&xcvr->afe_tx_ssc_control);
216 			reg |= sata_spread;
217 			writel(reg, &xcvr->afe_tx_ssc_control);
218 
219 			reg = readl(&llr->stp_control);
220 			reg |= 1 << 12;
221 			writel(reg, &llr->stp_control);
222 		}
223 	}
224 
225 	/* The SAS specification indicates that the phy_capabilities that
226 	 * are transmitted shall have an even parity.  Calculate the parity.
227 	 */
228 	parity_check = phy_cap.all;
229 	while (parity_check != 0) {
230 		if (parity_check & 0x1)
231 			parity_count++;
232 		parity_check >>= 1;
233 	}
234 
235 	/* If parity indicates there are an odd number of bits set, then
236 	 * set the parity bit to 1 in the phy capabilities.
237 	 */
238 	if ((parity_count % 2) != 0)
239 		phy_cap.parity = 1;
240 
241 	writel(phy_cap.all, &llr->phy_capabilities);
242 
243 	/* Set the enable spinup period but disable the ability to send
244 	 * notify enable spinup
245 	 */
246 	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 			phy_user->notify_enable_spin_up_insertion_frequency),
248 		&llr->notify_enable_spinup_control);
249 
250 	/* Write the ALIGN Insertion Ferequency for connected phy and
251 	 * inpendent of connected state
252 	 */
253 	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 			phy_user->in_connection_align_insertion_frequency);
255 
256 	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 			phy_user->align_insertion_frequency);
258 
259 	writel(clksm_value, &llr->clock_skew_management);
260 
261 	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 		writel(0x04210400, &llr->afe_lookup_table_control);
263 		writel(0x020A7C05, &llr->sas_primitive_timeout);
264 	} else
265 		writel(0x02108421, &llr->afe_lookup_table_control);
266 
267 	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 		(u8)ihost->user_parameters.no_outbound_task_timeout);
269 
270 	switch (phy_user->max_speed_generation) {
271 	case SCIC_SDS_PARM_GEN3_SPEED:
272 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 		break;
274 	case SCIC_SDS_PARM_GEN2_SPEED:
275 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 		break;
277 	default:
278 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 		break;
280 	}
281 	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 	writel(llctl, &llr->link_layer_control);
283 
284 	sp_timeouts = readl(&llr->sas_phy_timeouts);
285 
286 	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288 
289 	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
290 	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 	 */
292 	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293 
294 	writel(sp_timeouts, &llr->sas_phy_timeouts);
295 
296 	if (is_a2(ihost->pdev)) {
297 		/* Program the max ARB time for the PHY to 700us so we
298 		 * inter-operate with the PMC expander which shuts down
299 		 * PHYs if the expander PHY generates too many breaks.
300 		 * This time value will guarantee that the initiator PHY
301 		 * will generate the break.
302 		 */
303 		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 		       &llr->maximum_arbitration_wait_timer_timeout);
305 	}
306 
307 	/* Disable link layer hang detection, rely on the OS timeout for
308 	 * I/O timeouts.
309 	 */
310 	writel(0, &llr->link_layer_hang_detection_timeout);
311 
312 	/* We can exit the initial state to the stopped state */
313 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314 
315 	return SCI_SUCCESS;
316 }
317 
318 static void phy_sata_timeout(struct timer_list *t)
319 {
320 	struct sci_timer *tmr = from_timer(tmr, t, timer);
321 	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 	struct isci_host *ihost = iphy->owning_port->owning_controller;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&ihost->scic_lock, flags);
326 
327 	if (tmr->cancel)
328 		goto done;
329 
330 	dev_dbg(sciphy_to_dev(iphy),
331 		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 		 "timeout.\n",
333 		 __func__,
334 		 iphy);
335 
336 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
339 }
340 
341 /**
342  * This method returns the port currently containing this phy. If the phy is
343  *    currently contained by the dummy port, then the phy is considered to not
344  *    be part of a port.
345  * @sci_phy: This parameter specifies the phy for which to retrieve the
346  *    containing port.
347  *
348  * This method returns a handle to a port that contains the supplied phy.
349  * NULL This value is returned if the phy is not part of a real
350  * port (i.e. it's contained in the dummy port). !NULL All other
351  * values indicate a handle/pointer to the port containing the phy.
352  */
353 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
354 {
355 	struct isci_port *iport = iphy->owning_port;
356 
357 	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358 		return NULL;
359 
360 	return iphy->owning_port;
361 }
362 
363 /**
364  * This method will assign a port to the phy object.
365  * @out]: iphy This parameter specifies the phy for which to assign a port
366  *    object.
367  *
368  *
369  */
370 void sci_phy_set_port(
371 	struct isci_phy *iphy,
372 	struct isci_port *iport)
373 {
374 	iphy->owning_port = iport;
375 
376 	if (iphy->bcn_received_while_port_unassigned) {
377 		iphy->bcn_received_while_port_unassigned = false;
378 		sci_port_broadcast_change_received(iphy->owning_port, iphy);
379 	}
380 }
381 
382 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383 				   struct scu_transport_layer_registers __iomem *tl,
384 				   struct scu_link_layer_registers __iomem *ll)
385 {
386 	/* Perfrom the initialization of the TL hardware */
387 	sci_phy_transport_layer_initialization(iphy, tl);
388 
389 	/* Perofrm the initialization of the PE hardware */
390 	sci_phy_link_layer_initialization(iphy, ll);
391 
392 	/* There is nothing that needs to be done in this state just
393 	 * transition to the stopped state
394 	 */
395 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396 
397 	return SCI_SUCCESS;
398 }
399 
400 /**
401  * This method assigns the direct attached device ID for this phy.
402  *
403  * @iphy The phy for which the direct attached device id is to
404  *       be assigned.
405  * @device_id The direct attached device ID to assign to the phy.
406  *       This will either be the RNi for the device or an invalid RNi if there
407  *       is no current device assigned to the phy.
408  */
409 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
410 {
411 	u32 tl_control;
412 
413 	writel(device_id, &iphy->transport_layer_registers->stp_rni);
414 
415 	/*
416 	 * The read should guarantee that the first write gets posted
417 	 * before the next write
418 	 */
419 	tl_control = readl(&iphy->transport_layer_registers->control);
420 	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421 	writel(tl_control, &iphy->transport_layer_registers->control);
422 }
423 
424 static void sci_phy_suspend(struct isci_phy *iphy)
425 {
426 	u32 scu_sas_pcfg_value;
427 
428 	scu_sas_pcfg_value =
429 		readl(&iphy->link_layer_registers->phy_configuration);
430 	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431 	writel(scu_sas_pcfg_value,
432 		&iphy->link_layer_registers->phy_configuration);
433 
434 	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
435 }
436 
437 void sci_phy_resume(struct isci_phy *iphy)
438 {
439 	u32 scu_sas_pcfg_value;
440 
441 	scu_sas_pcfg_value =
442 		readl(&iphy->link_layer_registers->phy_configuration);
443 	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444 	writel(scu_sas_pcfg_value,
445 		&iphy->link_layer_registers->phy_configuration);
446 }
447 
448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449 {
450 	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451 	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452 }
453 
454 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
455 {
456 	struct sas_identify_frame *iaf;
457 
458 	iaf = &iphy->frame_rcvd.iaf;
459 	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460 }
461 
462 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
463 {
464 	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465 }
466 
467 enum sci_status sci_phy_start(struct isci_phy *iphy)
468 {
469 	enum sci_phy_states state = iphy->sm.current_state_id;
470 
471 	if (state != SCI_PHY_STOPPED) {
472 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473 			__func__, phy_state_name(state));
474 		return SCI_FAILURE_INVALID_STATE;
475 	}
476 
477 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478 	return SCI_SUCCESS;
479 }
480 
481 enum sci_status sci_phy_stop(struct isci_phy *iphy)
482 {
483 	enum sci_phy_states state = iphy->sm.current_state_id;
484 
485 	switch (state) {
486 	case SCI_PHY_SUB_INITIAL:
487 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
488 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
490 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
491 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494 	case SCI_PHY_SUB_FINAL:
495 	case SCI_PHY_READY:
496 		break;
497 	default:
498 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499 			__func__, phy_state_name(state));
500 		return SCI_FAILURE_INVALID_STATE;
501 	}
502 
503 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504 	return SCI_SUCCESS;
505 }
506 
507 enum sci_status sci_phy_reset(struct isci_phy *iphy)
508 {
509 	enum sci_phy_states state = iphy->sm.current_state_id;
510 
511 	if (state != SCI_PHY_READY) {
512 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513 			__func__, phy_state_name(state));
514 		return SCI_FAILURE_INVALID_STATE;
515 	}
516 
517 	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518 	return SCI_SUCCESS;
519 }
520 
521 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
522 {
523 	enum sci_phy_states state = iphy->sm.current_state_id;
524 
525 	switch (state) {
526 	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527 		u32 enable_spinup;
528 
529 		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530 		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531 		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532 
533 		/* Change state to the final state this substate machine has run to completion */
534 		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535 
536 		return SCI_SUCCESS;
537 	}
538 	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539 		u32 scu_sas_pcfg_value;
540 
541 		/* Release the spinup hold state and reset the OOB state machine */
542 		scu_sas_pcfg_value =
543 			readl(&iphy->link_layer_registers->phy_configuration);
544 		scu_sas_pcfg_value &=
545 			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547 		writel(scu_sas_pcfg_value,
548 			&iphy->link_layer_registers->phy_configuration);
549 
550 		/* Now restart the OOB operation */
551 		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553 		writel(scu_sas_pcfg_value,
554 			&iphy->link_layer_registers->phy_configuration);
555 
556 		/* Change state to the final state this substate machine has run to completion */
557 		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558 
559 		return SCI_SUCCESS;
560 	}
561 	default:
562 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563 			__func__, phy_state_name(state));
564 		return SCI_FAILURE_INVALID_STATE;
565 	}
566 }
567 
568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569 {
570 	/* continue the link training for the phy as if it were a SAS PHY
571 	 * instead of a SATA PHY. This is done because the completion queue had a SAS
572 	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573 	 */
574 	u32 phy_control;
575 
576 	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577 	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578 	writel(phy_control,
579 	       &iphy->link_layer_registers->phy_configuration);
580 
581 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582 
583 	iphy->protocol = SAS_PROTOCOL_SSP;
584 }
585 
586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587 {
588 	/* This method continues the link training for the phy as if it were a SATA PHY
589 	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
590 	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591 	 */
592 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593 
594 	iphy->protocol = SAS_PROTOCOL_SATA;
595 }
596 
597 /**
598  * sci_phy_complete_link_training - perform processing common to
599  *    all protocols upon completion of link training.
600  * @sci_phy: This parameter specifies the phy object for which link training
601  *    has completed.
602  * @max_link_rate: This parameter specifies the maximum link rate to be
603  *    associated with this phy.
604  * @next_state: This parameter specifies the next state for the phy's starting
605  *    sub-state machine.
606  *
607  */
608 static void sci_phy_complete_link_training(struct isci_phy *iphy,
609 					   enum sas_linkrate max_link_rate,
610 					   u32 next_state)
611 {
612 	iphy->max_negotiated_speed = max_link_rate;
613 
614 	sci_change_state(&iphy->sm, next_state);
615 }
616 
617 static const char *phy_event_name(u32 event_code)
618 {
619 	switch (scu_get_event_code(event_code)) {
620 	case SCU_EVENT_PORT_SELECTOR_DETECTED:
621 		return "port selector";
622 	case SCU_EVENT_SENT_PORT_SELECTION:
623 		return "port selection";
624 	case SCU_EVENT_HARD_RESET_TRANSMITTED:
625 		return "tx hard reset";
626 	case SCU_EVENT_HARD_RESET_RECEIVED:
627 		return "rx hard reset";
628 	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629 		return "identify timeout";
630 	case SCU_EVENT_LINK_FAILURE:
631 		return "link fail";
632 	case SCU_EVENT_SATA_SPINUP_HOLD:
633 		return "sata spinup hold";
634 	case SCU_EVENT_SAS_15_SSC:
635 	case SCU_EVENT_SAS_15:
636 		return "sas 1.5";
637 	case SCU_EVENT_SAS_30_SSC:
638 	case SCU_EVENT_SAS_30:
639 		return "sas 3.0";
640 	case SCU_EVENT_SAS_60_SSC:
641 	case SCU_EVENT_SAS_60:
642 		return "sas 6.0";
643 	case SCU_EVENT_SATA_15_SSC:
644 	case SCU_EVENT_SATA_15:
645 		return "sata 1.5";
646 	case SCU_EVENT_SATA_30_SSC:
647 	case SCU_EVENT_SATA_30:
648 		return "sata 3.0";
649 	case SCU_EVENT_SATA_60_SSC:
650 	case SCU_EVENT_SATA_60:
651 		return "sata 6.0";
652 	case SCU_EVENT_SAS_PHY_DETECTED:
653 		return "sas detect";
654 	case SCU_EVENT_SATA_PHY_DETECTED:
655 		return "sata detect";
656 	default:
657 		return "unknown";
658 	}
659 }
660 
661 #define phy_event_dbg(iphy, state, code) \
662 	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663 		phy_to_host(iphy)->id, iphy->phy_index, \
664 		phy_state_name(state), phy_event_name(code), code)
665 
666 #define phy_event_warn(iphy, state, code) \
667 	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668 		phy_to_host(iphy)->id, iphy->phy_index, \
669 		phy_state_name(state), phy_event_name(code), code)
670 
671 
672 static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
673 {
674 	u32 val;
675 
676 	/* Extend timeout */
677 	val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
678 	val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
679 	val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
680 
681 	writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
682 }
683 
684 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
685 {
686 	enum sci_phy_states state = iphy->sm.current_state_id;
687 
688 	switch (state) {
689 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
690 		switch (scu_get_event_code(event_code)) {
691 		case SCU_EVENT_SAS_PHY_DETECTED:
692 			sci_phy_start_sas_link_training(iphy);
693 			iphy->is_in_link_training = true;
694 			break;
695 		case SCU_EVENT_SATA_SPINUP_HOLD:
696 			sci_phy_start_sata_link_training(iphy);
697 			iphy->is_in_link_training = true;
698 			break;
699 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
700 		       /* Extend timeout value */
701 		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
702 
703 		       /* Start the oob/sn state machine over again */
704 		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705 		       break;
706 		default:
707 			phy_event_dbg(iphy, state, event_code);
708 			return SCI_FAILURE;
709 		}
710 		return SCI_SUCCESS;
711 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712 		switch (scu_get_event_code(event_code)) {
713 		case SCU_EVENT_SAS_PHY_DETECTED:
714 			/*
715 			 * Why is this being reported again by the controller?
716 			 * We would re-enter this state so just stay here */
717 			break;
718 		case SCU_EVENT_SAS_15:
719 		case SCU_EVENT_SAS_15_SSC:
720 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721 						       SCI_PHY_SUB_AWAIT_IAF_UF);
722 			break;
723 		case SCU_EVENT_SAS_30:
724 		case SCU_EVENT_SAS_30_SSC:
725 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726 						       SCI_PHY_SUB_AWAIT_IAF_UF);
727 			break;
728 		case SCU_EVENT_SAS_60:
729 		case SCU_EVENT_SAS_60_SSC:
730 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731 						       SCI_PHY_SUB_AWAIT_IAF_UF);
732 			break;
733 		case SCU_EVENT_SATA_SPINUP_HOLD:
734 			/*
735 			 * We were doing SAS PHY link training and received a SATA PHY event
736 			 * continue OOB/SN as if this were a SATA PHY */
737 			sci_phy_start_sata_link_training(iphy);
738 			break;
739 		case SCU_EVENT_LINK_FAILURE:
740 			/* Change the timeout value to default */
741 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
742 
743 			/* Link failure change state back to the starting state */
744 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745 			break;
746 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
747 		       /* Extend the timeout value */
748 		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
749 
750 		       /* Start the oob/sn state machine over again */
751 		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752 		       break;
753 		default:
754 			phy_event_warn(iphy, state, event_code);
755 			return SCI_FAILURE;
756 		}
757 		return SCI_SUCCESS;
758 	case SCI_PHY_SUB_AWAIT_IAF_UF:
759 		switch (scu_get_event_code(event_code)) {
760 		case SCU_EVENT_SAS_PHY_DETECTED:
761 			/* Backup the state machine */
762 			sci_phy_start_sas_link_training(iphy);
763 			break;
764 		case SCU_EVENT_SATA_SPINUP_HOLD:
765 			/* We were doing SAS PHY link training and received a
766 			 * SATA PHY event continue OOB/SN as if this were a
767 			 * SATA PHY
768 			 */
769 			sci_phy_start_sata_link_training(iphy);
770 			break;
771 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
772 			/* Extend the timeout value */
773 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
774 
775 			/* Start the oob/sn state machine over again */
776 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
777 			break;
778 		case SCU_EVENT_LINK_FAILURE:
779 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
780 			fallthrough;
781 		case SCU_EVENT_HARD_RESET_RECEIVED:
782 			/* Start the oob/sn state machine over again */
783 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
784 			break;
785 		default:
786 			phy_event_warn(iphy, state, event_code);
787 			return SCI_FAILURE;
788 		}
789 		return SCI_SUCCESS;
790 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
791 		switch (scu_get_event_code(event_code)) {
792 		case SCU_EVENT_LINK_FAILURE:
793 			/* Change the timeout value to default */
794 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
795 
796 			/* Link failure change state back to the starting state */
797 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
798 			break;
799 		default:
800 			phy_event_warn(iphy, state, event_code);
801 			return SCI_FAILURE;
802 		}
803 		return SCI_SUCCESS;
804 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
805 		switch (scu_get_event_code(event_code)) {
806 		case SCU_EVENT_LINK_FAILURE:
807 			/* Change the timeout value to default */
808 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
809 
810 			/* Link failure change state back to the starting state */
811 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
812 			break;
813 		case SCU_EVENT_SATA_SPINUP_HOLD:
814 			/* These events are received every 10ms and are
815 			 * expected while in this state
816 			 */
817 			break;
818 
819 		case SCU_EVENT_SAS_PHY_DETECTED:
820 			/* There has been a change in the phy type before OOB/SN for the
821 			 * SATA finished start down the SAS link traning path.
822 			 */
823 			sci_phy_start_sas_link_training(iphy);
824 			break;
825 
826 		default:
827 			phy_event_warn(iphy, state, event_code);
828 			return SCI_FAILURE;
829 		}
830 		return SCI_SUCCESS;
831 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
832 		switch (scu_get_event_code(event_code)) {
833 		case SCU_EVENT_LINK_FAILURE:
834 			/* Change the timeout value to default */
835 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
836 
837 			/* Link failure change state back to the starting state */
838 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
839 			break;
840 		case SCU_EVENT_SATA_SPINUP_HOLD:
841 			/* These events might be received since we dont know how many may be in
842 			 * the completion queue while waiting for power
843 			 */
844 			break;
845 		case SCU_EVENT_SATA_PHY_DETECTED:
846 			iphy->protocol = SAS_PROTOCOL_SATA;
847 
848 			/* We have received the SATA PHY notification change state */
849 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
850 			break;
851 		case SCU_EVENT_SAS_PHY_DETECTED:
852 			/* There has been a change in the phy type before OOB/SN for the
853 			 * SATA finished start down the SAS link traning path.
854 			 */
855 			sci_phy_start_sas_link_training(iphy);
856 			break;
857 		default:
858 			phy_event_warn(iphy, state, event_code);
859 			return SCI_FAILURE;
860 		}
861 		return SCI_SUCCESS;
862 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
863 		switch (scu_get_event_code(event_code)) {
864 		case SCU_EVENT_SATA_PHY_DETECTED:
865 			/*
866 			 * The hardware reports multiple SATA PHY detected events
867 			 * ignore the extras */
868 			break;
869 		case SCU_EVENT_SATA_15:
870 		case SCU_EVENT_SATA_15_SSC:
871 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
872 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
873 			break;
874 		case SCU_EVENT_SATA_30:
875 		case SCU_EVENT_SATA_30_SSC:
876 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
877 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
878 			break;
879 		case SCU_EVENT_SATA_60:
880 		case SCU_EVENT_SATA_60_SSC:
881 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
882 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
883 			break;
884 		case SCU_EVENT_LINK_FAILURE:
885 			/* Change the timeout value to default */
886 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
887 
888 			/* Link failure change state back to the starting state */
889 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
890 			break;
891 		case SCU_EVENT_SAS_PHY_DETECTED:
892 			/*
893 			 * There has been a change in the phy type before OOB/SN for the
894 			 * SATA finished start down the SAS link traning path. */
895 			sci_phy_start_sas_link_training(iphy);
896 			break;
897 		default:
898 			phy_event_warn(iphy, state, event_code);
899 			return SCI_FAILURE;
900 		}
901 
902 		return SCI_SUCCESS;
903 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
904 		switch (scu_get_event_code(event_code)) {
905 		case SCU_EVENT_SATA_PHY_DETECTED:
906 			/* Backup the state machine */
907 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
908 			break;
909 
910 		case SCU_EVENT_LINK_FAILURE:
911 			/* Change the timeout value to default */
912 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
913 
914 			/* Link failure change state back to the starting state */
915 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
916 			break;
917 
918 		default:
919 			phy_event_warn(iphy, state, event_code);
920 			return SCI_FAILURE;
921 		}
922 		return SCI_SUCCESS;
923 	case SCI_PHY_READY:
924 		switch (scu_get_event_code(event_code)) {
925 		case SCU_EVENT_LINK_FAILURE:
926 			/* Set default timeout */
927 			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
928 
929 			/* Link failure change state back to the starting state */
930 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
931 			break;
932 		case SCU_EVENT_BROADCAST_CHANGE:
933 		case SCU_EVENT_BROADCAST_SES:
934 		case SCU_EVENT_BROADCAST_RESERVED0:
935 		case SCU_EVENT_BROADCAST_RESERVED1:
936 		case SCU_EVENT_BROADCAST_EXPANDER:
937 		case SCU_EVENT_BROADCAST_AEN:
938 			/* Broadcast change received. Notify the port. */
939 			if (phy_get_non_dummy_port(iphy) != NULL)
940 				sci_port_broadcast_change_received(iphy->owning_port, iphy);
941 			else
942 				iphy->bcn_received_while_port_unassigned = true;
943 			break;
944 		case SCU_EVENT_BROADCAST_RESERVED3:
945 		case SCU_EVENT_BROADCAST_RESERVED4:
946 		default:
947 			phy_event_warn(iphy, state, event_code);
948 			return SCI_FAILURE_INVALID_STATE;
949 		}
950 		return SCI_SUCCESS;
951 	case SCI_PHY_RESETTING:
952 		switch (scu_get_event_code(event_code)) {
953 		case SCU_EVENT_HARD_RESET_TRANSMITTED:
954 			/* Link failure change state back to the starting state */
955 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
956 			break;
957 		default:
958 			phy_event_warn(iphy, state, event_code);
959 			return SCI_FAILURE_INVALID_STATE;
960 		}
961 		return SCI_SUCCESS;
962 	default:
963 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
964 			__func__, phy_state_name(state));
965 		return SCI_FAILURE_INVALID_STATE;
966 	}
967 }
968 
969 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
970 {
971 	enum sci_phy_states state = iphy->sm.current_state_id;
972 	struct isci_host *ihost = iphy->owning_port->owning_controller;
973 	enum sci_status result;
974 	unsigned long flags;
975 
976 	switch (state) {
977 	case SCI_PHY_SUB_AWAIT_IAF_UF: {
978 		u32 *frame_words;
979 		struct sas_identify_frame iaf;
980 
981 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
982 								  frame_index,
983 								  (void **)&frame_words);
984 
985 		if (result != SCI_SUCCESS)
986 			return result;
987 
988 		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
989 		if (iaf.frame_type == 0) {
990 			u32 state;
991 
992 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
993 			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
994 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
995 			if (iaf.smp_tport) {
996 				/* We got the IAF for an expander PHY go to the final
997 				 * state since there are no power requirements for
998 				 * expander phys.
999 				 */
1000 				state = SCI_PHY_SUB_FINAL;
1001 			} else {
1002 				/* We got the IAF we can now go to the await spinup
1003 				 * semaphore state
1004 				 */
1005 				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1006 			}
1007 			sci_change_state(&iphy->sm, state);
1008 			result = SCI_SUCCESS;
1009 		} else
1010 			dev_warn(sciphy_to_dev(iphy),
1011 				"%s: PHY starting substate machine received "
1012 				"unexpected frame id %x\n",
1013 				__func__, frame_index);
1014 
1015 		sci_controller_release_frame(ihost, frame_index);
1016 		return result;
1017 	}
1018 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1019 		struct dev_to_host_fis *frame_header;
1020 		u32 *fis_frame_data;
1021 
1022 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1023 								  frame_index,
1024 								  (void **)&frame_header);
1025 
1026 		if (result != SCI_SUCCESS)
1027 			return result;
1028 
1029 		if ((frame_header->fis_type == FIS_REGD2H) &&
1030 		    !(frame_header->status & ATA_BUSY)) {
1031 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1032 								 frame_index,
1033 								 (void **)&fis_frame_data);
1034 
1035 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1036 			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1037 							  frame_header,
1038 							  fis_frame_data);
1039 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1040 
1041 			/* got IAF we can now go to the await spinup semaphore state */
1042 			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1043 
1044 			result = SCI_SUCCESS;
1045 		} else
1046 			dev_warn(sciphy_to_dev(iphy),
1047 				 "%s: PHY starting substate machine received "
1048 				 "unexpected frame id %x\n",
1049 				 __func__, frame_index);
1050 
1051 		/* Regardless of the result we are done with this frame with it */
1052 		sci_controller_release_frame(ihost, frame_index);
1053 
1054 		return result;
1055 	}
1056 	default:
1057 		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1058 			__func__, phy_state_name(state));
1059 		return SCI_FAILURE_INVALID_STATE;
1060 	}
1061 
1062 }
1063 
1064 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1065 {
1066 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1067 
1068 	/* This is just an temporary state go off to the starting state */
1069 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1070 }
1071 
1072 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1073 {
1074 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1075 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1076 
1077 	sci_controller_power_control_queue_insert(ihost, iphy);
1078 }
1079 
1080 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1081 {
1082 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1083 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1084 
1085 	sci_controller_power_control_queue_remove(ihost, iphy);
1086 }
1087 
1088 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1089 {
1090 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1091 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1092 
1093 	sci_controller_power_control_queue_insert(ihost, iphy);
1094 }
1095 
1096 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1097 {
1098 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1099 	struct isci_host *ihost = iphy->owning_port->owning_controller;
1100 
1101 	sci_controller_power_control_queue_remove(ihost, iphy);
1102 }
1103 
1104 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1105 {
1106 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1107 
1108 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1109 }
1110 
1111 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1112 {
1113 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1114 
1115 	sci_del_timer(&iphy->sata_timer);
1116 }
1117 
1118 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1119 {
1120 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1121 
1122 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1123 }
1124 
1125 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1126 {
1127 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1128 
1129 	sci_del_timer(&iphy->sata_timer);
1130 }
1131 
1132 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1133 {
1134 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1135 
1136 	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1137 
1138 		/*
1139 		 * Clear the PE suspend condition so we can actually
1140 		 * receive SIG FIS
1141 		 * The hardware will not respond to the XRDY until the PE
1142 		 * suspend condition is cleared.
1143 		 */
1144 		sci_phy_resume(iphy);
1145 
1146 		sci_mod_timer(&iphy->sata_timer,
1147 			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1148 	} else
1149 		iphy->is_in_link_training = false;
1150 }
1151 
1152 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1153 {
1154 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1155 
1156 	sci_del_timer(&iphy->sata_timer);
1157 }
1158 
1159 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1160 {
1161 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1162 
1163 	/* State machine has run to completion so exit out and change
1164 	 * the base state machine to the ready state
1165 	 */
1166 	sci_change_state(&iphy->sm, SCI_PHY_READY);
1167 }
1168 
1169 /**
1170  *
1171  * @sci_phy: This is the struct isci_phy object to stop.
1172  *
1173  * This method will stop the struct isci_phy object. This does not reset the
1174  * protocol engine it just suspends it and places it in a state where it will
1175  * not cause the end device to power up. none
1176  */
1177 static void scu_link_layer_stop_protocol_engine(
1178 	struct isci_phy *iphy)
1179 {
1180 	u32 scu_sas_pcfg_value;
1181 	u32 enable_spinup_value;
1182 
1183 	/* Suspend the protocol engine and place it in a sata spinup hold state */
1184 	scu_sas_pcfg_value =
1185 		readl(&iphy->link_layer_registers->phy_configuration);
1186 	scu_sas_pcfg_value |=
1187 		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1188 		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1189 		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1190 	writel(scu_sas_pcfg_value,
1191 	       &iphy->link_layer_registers->phy_configuration);
1192 
1193 	/* Disable the notify enable spinup primitives */
1194 	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1195 	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1196 	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1197 }
1198 
1199 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1200 {
1201 	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1202 	u32 val;
1203 
1204 	/** Reset OOB sequence - start */
1205 	val = readl(&ll->phy_configuration);
1206 	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1207 		 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1208 		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1209 	writel(val, &ll->phy_configuration);
1210 	readl(&ll->phy_configuration); /* flush */
1211 	/** Reset OOB sequence - end */
1212 
1213 	/** Start OOB sequence - start */
1214 	val = readl(&ll->phy_configuration);
1215 	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1216 	writel(val, &ll->phy_configuration);
1217 	readl(&ll->phy_configuration); /* flush */
1218 	/** Start OOB sequence - end */
1219 }
1220 
1221 /**
1222  *
1223  *
1224  * This method will transmit a hard reset request on the specified phy. The SCU
1225  * hardware requires that we reset the OOB state machine and set the hard reset
1226  * bit in the phy configuration register. We then must start OOB over with the
1227  * hard reset bit set.
1228  */
1229 static void scu_link_layer_tx_hard_reset(
1230 	struct isci_phy *iphy)
1231 {
1232 	u32 phy_configuration_value;
1233 
1234 	/*
1235 	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1236 	 * to the starting state. */
1237 	phy_configuration_value =
1238 		readl(&iphy->link_layer_registers->phy_configuration);
1239 	phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1240 	phy_configuration_value |=
1241 		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1242 		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1243 	writel(phy_configuration_value,
1244 	       &iphy->link_layer_registers->phy_configuration);
1245 
1246 	/* Now take the OOB state machine out of reset */
1247 	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1248 	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1249 	writel(phy_configuration_value,
1250 	       &iphy->link_layer_registers->phy_configuration);
1251 }
1252 
1253 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1254 {
1255 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1256 	struct isci_port *iport = iphy->owning_port;
1257 	struct isci_host *ihost = iport->owning_controller;
1258 
1259 	/*
1260 	 * @todo We need to get to the controller to place this PE in a
1261 	 * reset state
1262 	 */
1263 	sci_del_timer(&iphy->sata_timer);
1264 
1265 	scu_link_layer_stop_protocol_engine(iphy);
1266 
1267 	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1268 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1269 }
1270 
1271 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1272 {
1273 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1274 	struct isci_port *iport = iphy->owning_port;
1275 	struct isci_host *ihost = iport->owning_controller;
1276 
1277 	scu_link_layer_stop_protocol_engine(iphy);
1278 	scu_link_layer_start_oob(iphy);
1279 
1280 	/* We don't know what kind of phy we are going to be just yet */
1281 	iphy->protocol = SAS_PROTOCOL_NONE;
1282 	iphy->bcn_received_while_port_unassigned = false;
1283 
1284 	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1285 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1286 
1287 	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1288 }
1289 
1290 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1291 {
1292 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1293 	struct isci_port *iport = iphy->owning_port;
1294 	struct isci_host *ihost = iport->owning_controller;
1295 
1296 	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1297 }
1298 
1299 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1300 {
1301 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1302 
1303 	sci_phy_suspend(iphy);
1304 }
1305 
1306 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1307 {
1308 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1309 
1310 	/* The phy is being reset, therefore deactivate it from the port.  In
1311 	 * the resetting state we don't notify the user regarding link up and
1312 	 * link down notifications
1313 	 */
1314 	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1315 
1316 	if (iphy->protocol == SAS_PROTOCOL_SSP) {
1317 		scu_link_layer_tx_hard_reset(iphy);
1318 	} else {
1319 		/* The SCU does not need to have a discrete reset state so
1320 		 * just go back to the starting state.
1321 		 */
1322 		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1323 	}
1324 }
1325 
1326 static const struct sci_base_state sci_phy_state_table[] = {
1327 	[SCI_PHY_INITIAL] = { },
1328 	[SCI_PHY_STOPPED] = {
1329 		.enter_state = sci_phy_stopped_state_enter,
1330 	},
1331 	[SCI_PHY_STARTING] = {
1332 		.enter_state = sci_phy_starting_state_enter,
1333 	},
1334 	[SCI_PHY_SUB_INITIAL] = {
1335 		.enter_state = sci_phy_starting_initial_substate_enter,
1336 	},
1337 	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1338 	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1339 	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1340 	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1341 		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1342 		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1343 	},
1344 	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1345 		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1346 		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1347 	},
1348 	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1349 		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1350 		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1351 	},
1352 	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1353 		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1354 		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1355 	},
1356 	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1357 		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1358 		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1359 	},
1360 	[SCI_PHY_SUB_FINAL] = {
1361 		.enter_state = sci_phy_starting_final_substate_enter,
1362 	},
1363 	[SCI_PHY_READY] = {
1364 		.enter_state = sci_phy_ready_state_enter,
1365 		.exit_state = sci_phy_ready_state_exit,
1366 	},
1367 	[SCI_PHY_RESETTING] = {
1368 		.enter_state = sci_phy_resetting_state_enter,
1369 	},
1370 	[SCI_PHY_FINAL] = { },
1371 };
1372 
1373 void sci_phy_construct(struct isci_phy *iphy,
1374 			    struct isci_port *iport, u8 phy_index)
1375 {
1376 	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1377 
1378 	/* Copy the rest of the input data to our locals */
1379 	iphy->owning_port = iport;
1380 	iphy->phy_index = phy_index;
1381 	iphy->bcn_received_while_port_unassigned = false;
1382 	iphy->protocol = SAS_PROTOCOL_NONE;
1383 	iphy->link_layer_registers = NULL;
1384 	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1385 
1386 	/* Create the SIGNATURE FIS Timeout timer for this phy */
1387 	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1388 }
1389 
1390 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1391 {
1392 	struct sci_oem_params *oem = &ihost->oem_parameters;
1393 	u64 sci_sas_addr;
1394 	__be64 sas_addr;
1395 
1396 	sci_sas_addr = oem->phys[index].sas_address.high;
1397 	sci_sas_addr <<= 32;
1398 	sci_sas_addr |= oem->phys[index].sas_address.low;
1399 	sas_addr = cpu_to_be64(sci_sas_addr);
1400 	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1401 
1402 	iphy->sas_phy.enabled = 0;
1403 	iphy->sas_phy.id = index;
1404 	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1405 	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1406 	iphy->sas_phy.ha = &ihost->sas_ha;
1407 	iphy->sas_phy.lldd_phy = iphy;
1408 	iphy->sas_phy.enabled = 1;
1409 	iphy->sas_phy.class = SAS;
1410 	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1411 	iphy->sas_phy.tproto = 0;
1412 	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1413 	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1414 	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1415 	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1416 	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1417 }
1418 
1419 
1420 /**
1421  * isci_phy_control() - This function is one of the SAS Domain Template
1422  *    functions. This is a phy management function.
1423  * @phy: This parameter specifies the sphy being controlled.
1424  * @func: This parameter specifies the phy control function being invoked.
1425  * @buf: This parameter is specific to the phy function being invoked.
1426  *
1427  * status, zero indicates success.
1428  */
1429 int isci_phy_control(struct asd_sas_phy *sas_phy,
1430 		     enum phy_func func,
1431 		     void *buf)
1432 {
1433 	int ret = 0;
1434 	struct isci_phy *iphy = sas_phy->lldd_phy;
1435 	struct asd_sas_port *port = sas_phy->port;
1436 	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1437 	unsigned long flags;
1438 
1439 	dev_dbg(&ihost->pdev->dev,
1440 		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1441 		__func__, sas_phy, func, buf, iphy, port);
1442 
1443 	switch (func) {
1444 	case PHY_FUNC_DISABLE:
1445 		spin_lock_irqsave(&ihost->scic_lock, flags);
1446 		scu_link_layer_start_oob(iphy);
1447 		sci_phy_stop(iphy);
1448 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1449 		break;
1450 
1451 	case PHY_FUNC_LINK_RESET:
1452 		spin_lock_irqsave(&ihost->scic_lock, flags);
1453 		scu_link_layer_start_oob(iphy);
1454 		sci_phy_stop(iphy);
1455 		sci_phy_start(iphy);
1456 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1457 		break;
1458 
1459 	case PHY_FUNC_HARD_RESET:
1460 		if (!port)
1461 			return -ENODEV;
1462 
1463 		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1464 
1465 		break;
1466 	case PHY_FUNC_GET_EVENTS: {
1467 		struct scu_link_layer_registers __iomem *r;
1468 		struct sas_phy *phy = sas_phy->phy;
1469 
1470 		r = iphy->link_layer_registers;
1471 		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1472 		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1473 		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1474 		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1475 		break;
1476 	}
1477 
1478 	default:
1479 		dev_dbg(&ihost->pdev->dev,
1480 			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1481 			   __func__, sas_phy, func);
1482 		ret = -ENOSYS;
1483 		break;
1484 	}
1485 	return ret;
1486 }
1487