xref: /openbmc/linux/drivers/scsi/isci/phy.c (revision 9c1f8594)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61 
62 /* Maximum arbitration wait time in micro-seconds */
63 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
64 
65 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
66 {
67 	return iphy->max_negotiated_speed;
68 }
69 
70 static enum sci_status
71 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
72 				       struct scu_transport_layer_registers __iomem *reg)
73 {
74 	u32 tl_control;
75 
76 	iphy->transport_layer_registers = reg;
77 
78 	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
79 		&iphy->transport_layer_registers->stp_rni);
80 
81 	/*
82 	 * Hardware team recommends that we enable the STP prefetch for all
83 	 * transports
84 	 */
85 	tl_control = readl(&iphy->transport_layer_registers->control);
86 	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
87 	writel(tl_control, &iphy->transport_layer_registers->control);
88 
89 	return SCI_SUCCESS;
90 }
91 
92 static enum sci_status
93 sci_phy_link_layer_initialization(struct isci_phy *iphy,
94 				  struct scu_link_layer_registers __iomem *reg)
95 {
96 	struct isci_host *ihost = iphy->owning_port->owning_controller;
97 	int phy_idx = iphy->phy_index;
98 	struct sci_phy_user_params *phy_user = &ihost->user_parameters.phys[phy_idx];
99 	struct sci_phy_oem_params *phy_oem =
100 		&ihost->oem_parameters.phys[phy_idx];
101 	u32 phy_configuration;
102 	struct sci_phy_cap phy_cap;
103 	u32 parity_check = 0;
104 	u32 parity_count = 0;
105 	u32 llctl, link_rate;
106 	u32 clksm_value = 0;
107 	u32 sp_timeouts = 0;
108 
109 	iphy->link_layer_registers = reg;
110 
111 	/* Set our IDENTIFY frame data */
112 	#define SCI_END_DEVICE 0x01
113 
114 	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
115 	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
116 	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
117 	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
118 	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
119 	       &iphy->link_layer_registers->transmit_identification);
120 
121 	/* Write the device SAS Address */
122 	writel(0xFEDCBA98,
123 	       &iphy->link_layer_registers->sas_device_name_high);
124 	writel(phy_idx, &iphy->link_layer_registers->sas_device_name_low);
125 
126 	/* Write the source SAS Address */
127 	writel(phy_oem->sas_address.high,
128 		&iphy->link_layer_registers->source_sas_address_high);
129 	writel(phy_oem->sas_address.low,
130 		&iphy->link_layer_registers->source_sas_address_low);
131 
132 	/* Clear and Set the PHY Identifier */
133 	writel(0, &iphy->link_layer_registers->identify_frame_phy_id);
134 	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx),
135 		&iphy->link_layer_registers->identify_frame_phy_id);
136 
137 	/* Change the initial state of the phy configuration register */
138 	phy_configuration =
139 		readl(&iphy->link_layer_registers->phy_configuration);
140 
141 	/* Hold OOB state machine in reset */
142 	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
143 	writel(phy_configuration,
144 		&iphy->link_layer_registers->phy_configuration);
145 
146 	/* Configure the SNW capabilities */
147 	phy_cap.all = 0;
148 	phy_cap.start = 1;
149 	phy_cap.gen3_no_ssc = 1;
150 	phy_cap.gen2_no_ssc = 1;
151 	phy_cap.gen1_no_ssc = 1;
152 	if (ihost->oem_parameters.controller.do_enable_ssc == true) {
153 		phy_cap.gen3_ssc = 1;
154 		phy_cap.gen2_ssc = 1;
155 		phy_cap.gen1_ssc = 1;
156 	}
157 
158 	/*
159 	 * The SAS specification indicates that the phy_capabilities that
160 	 * are transmitted shall have an even parity.  Calculate the parity. */
161 	parity_check = phy_cap.all;
162 	while (parity_check != 0) {
163 		if (parity_check & 0x1)
164 			parity_count++;
165 		parity_check >>= 1;
166 	}
167 
168 	/*
169 	 * If parity indicates there are an odd number of bits set, then
170 	 * set the parity bit to 1 in the phy capabilities. */
171 	if ((parity_count % 2) != 0)
172 		phy_cap.parity = 1;
173 
174 	writel(phy_cap.all, &iphy->link_layer_registers->phy_capabilities);
175 
176 	/* Set the enable spinup period but disable the ability to send
177 	 * notify enable spinup
178 	 */
179 	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
180 			phy_user->notify_enable_spin_up_insertion_frequency),
181 		&iphy->link_layer_registers->notify_enable_spinup_control);
182 
183 	/* Write the ALIGN Insertion Ferequency for connected phy and
184 	 * inpendent of connected state
185 	 */
186 	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
187 			phy_user->in_connection_align_insertion_frequency);
188 
189 	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
190 			phy_user->align_insertion_frequency);
191 
192 	writel(clksm_value, &iphy->link_layer_registers->clock_skew_management);
193 
194 	/* @todo Provide a way to write this register correctly */
195 	writel(0x02108421,
196 		&iphy->link_layer_registers->afe_lookup_table_control);
197 
198 	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
199 		(u8)ihost->user_parameters.no_outbound_task_timeout);
200 
201 	switch (phy_user->max_speed_generation) {
202 	case SCIC_SDS_PARM_GEN3_SPEED:
203 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
204 		break;
205 	case SCIC_SDS_PARM_GEN2_SPEED:
206 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
207 		break;
208 	default:
209 		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
210 		break;
211 	}
212 	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
213 	writel(llctl, &iphy->link_layer_registers->link_layer_control);
214 
215 	sp_timeouts = readl(&iphy->link_layer_registers->sas_phy_timeouts);
216 
217 	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
218 	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
219 
220 	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
221 	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
222 	 */
223 	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
224 
225 	writel(sp_timeouts, &iphy->link_layer_registers->sas_phy_timeouts);
226 
227 	if (is_a2(ihost->pdev)) {
228 		/* Program the max ARB time for the PHY to 700us so we inter-operate with
229 		 * the PMC expander which shuts down PHYs if the expander PHY generates too
230 		 * many breaks.  This time value will guarantee that the initiator PHY will
231 		 * generate the break.
232 		 */
233 		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
234 			&iphy->link_layer_registers->maximum_arbitration_wait_timer_timeout);
235 	}
236 
237 	/* Disable link layer hang detection, rely on the OS timeout for I/O timeouts. */
238 	writel(0, &iphy->link_layer_registers->link_layer_hang_detection_timeout);
239 
240 	/* We can exit the initial state to the stopped state */
241 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
242 
243 	return SCI_SUCCESS;
244 }
245 
246 static void phy_sata_timeout(unsigned long data)
247 {
248 	struct sci_timer *tmr = (struct sci_timer *)data;
249 	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
250 	struct isci_host *ihost = iphy->owning_port->owning_controller;
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&ihost->scic_lock, flags);
254 
255 	if (tmr->cancel)
256 		goto done;
257 
258 	dev_dbg(sciphy_to_dev(iphy),
259 		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
260 		 "timeout.\n",
261 		 __func__,
262 		 iphy);
263 
264 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
265 done:
266 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
267 }
268 
269 /**
270  * This method returns the port currently containing this phy. If the phy is
271  *    currently contained by the dummy port, then the phy is considered to not
272  *    be part of a port.
273  * @sci_phy: This parameter specifies the phy for which to retrieve the
274  *    containing port.
275  *
276  * This method returns a handle to a port that contains the supplied phy.
277  * NULL This value is returned if the phy is not part of a real
278  * port (i.e. it's contained in the dummy port). !NULL All other
279  * values indicate a handle/pointer to the port containing the phy.
280  */
281 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
282 {
283 	struct isci_port *iport = iphy->owning_port;
284 
285 	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
286 		return NULL;
287 
288 	return iphy->owning_port;
289 }
290 
291 /**
292  * This method will assign a port to the phy object.
293  * @out]: iphy This parameter specifies the phy for which to assign a port
294  *    object.
295  *
296  *
297  */
298 void sci_phy_set_port(
299 	struct isci_phy *iphy,
300 	struct isci_port *iport)
301 {
302 	iphy->owning_port = iport;
303 
304 	if (iphy->bcn_received_while_port_unassigned) {
305 		iphy->bcn_received_while_port_unassigned = false;
306 		sci_port_broadcast_change_received(iphy->owning_port, iphy);
307 	}
308 }
309 
310 enum sci_status sci_phy_initialize(struct isci_phy *iphy,
311 				   struct scu_transport_layer_registers __iomem *tl,
312 				   struct scu_link_layer_registers __iomem *ll)
313 {
314 	/* Perfrom the initialization of the TL hardware */
315 	sci_phy_transport_layer_initialization(iphy, tl);
316 
317 	/* Perofrm the initialization of the PE hardware */
318 	sci_phy_link_layer_initialization(iphy, ll);
319 
320 	/* There is nothing that needs to be done in this state just
321 	 * transition to the stopped state
322 	 */
323 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
324 
325 	return SCI_SUCCESS;
326 }
327 
328 /**
329  * This method assigns the direct attached device ID for this phy.
330  *
331  * @iphy The phy for which the direct attached device id is to
332  *       be assigned.
333  * @device_id The direct attached device ID to assign to the phy.
334  *       This will either be the RNi for the device or an invalid RNi if there
335  *       is no current device assigned to the phy.
336  */
337 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
338 {
339 	u32 tl_control;
340 
341 	writel(device_id, &iphy->transport_layer_registers->stp_rni);
342 
343 	/*
344 	 * The read should guarantee that the first write gets posted
345 	 * before the next write
346 	 */
347 	tl_control = readl(&iphy->transport_layer_registers->control);
348 	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
349 	writel(tl_control, &iphy->transport_layer_registers->control);
350 }
351 
352 static void sci_phy_suspend(struct isci_phy *iphy)
353 {
354 	u32 scu_sas_pcfg_value;
355 
356 	scu_sas_pcfg_value =
357 		readl(&iphy->link_layer_registers->phy_configuration);
358 	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
359 	writel(scu_sas_pcfg_value,
360 		&iphy->link_layer_registers->phy_configuration);
361 
362 	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
363 }
364 
365 void sci_phy_resume(struct isci_phy *iphy)
366 {
367 	u32 scu_sas_pcfg_value;
368 
369 	scu_sas_pcfg_value =
370 		readl(&iphy->link_layer_registers->phy_configuration);
371 	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
372 	writel(scu_sas_pcfg_value,
373 		&iphy->link_layer_registers->phy_configuration);
374 }
375 
376 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
377 {
378 	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
379 	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
380 }
381 
382 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
383 {
384 	struct sas_identify_frame *iaf;
385 
386 	iaf = &iphy->frame_rcvd.iaf;
387 	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
388 }
389 
390 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
391 {
392 	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
393 }
394 
395 enum sci_status sci_phy_start(struct isci_phy *iphy)
396 {
397 	enum sci_phy_states state = iphy->sm.current_state_id;
398 
399 	if (state != SCI_PHY_STOPPED) {
400 		dev_dbg(sciphy_to_dev(iphy),
401 			 "%s: in wrong state: %d\n", __func__, state);
402 		return SCI_FAILURE_INVALID_STATE;
403 	}
404 
405 	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
406 	return SCI_SUCCESS;
407 }
408 
409 enum sci_status sci_phy_stop(struct isci_phy *iphy)
410 {
411 	enum sci_phy_states state = iphy->sm.current_state_id;
412 
413 	switch (state) {
414 	case SCI_PHY_SUB_INITIAL:
415 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
416 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
417 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
418 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
419 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
420 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
421 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
422 	case SCI_PHY_SUB_FINAL:
423 	case SCI_PHY_READY:
424 		break;
425 	default:
426 		dev_dbg(sciphy_to_dev(iphy),
427 			"%s: in wrong state: %d\n", __func__, state);
428 		return SCI_FAILURE_INVALID_STATE;
429 	}
430 
431 	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
432 	return SCI_SUCCESS;
433 }
434 
435 enum sci_status sci_phy_reset(struct isci_phy *iphy)
436 {
437 	enum sci_phy_states state = iphy->sm.current_state_id;
438 
439 	if (state != SCI_PHY_READY) {
440 		dev_dbg(sciphy_to_dev(iphy),
441 			"%s: in wrong state: %d\n", __func__, state);
442 		return SCI_FAILURE_INVALID_STATE;
443 	}
444 
445 	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
446 	return SCI_SUCCESS;
447 }
448 
449 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
450 {
451 	enum sci_phy_states state = iphy->sm.current_state_id;
452 
453 	switch (state) {
454 	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
455 		u32 enable_spinup;
456 
457 		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
458 		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
459 		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
460 
461 		/* Change state to the final state this substate machine has run to completion */
462 		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
463 
464 		return SCI_SUCCESS;
465 	}
466 	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
467 		u32 scu_sas_pcfg_value;
468 
469 		/* Release the spinup hold state and reset the OOB state machine */
470 		scu_sas_pcfg_value =
471 			readl(&iphy->link_layer_registers->phy_configuration);
472 		scu_sas_pcfg_value &=
473 			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
474 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
475 		writel(scu_sas_pcfg_value,
476 			&iphy->link_layer_registers->phy_configuration);
477 
478 		/* Now restart the OOB operation */
479 		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
480 		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
481 		writel(scu_sas_pcfg_value,
482 			&iphy->link_layer_registers->phy_configuration);
483 
484 		/* Change state to the final state this substate machine has run to completion */
485 		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
486 
487 		return SCI_SUCCESS;
488 	}
489 	default:
490 		dev_dbg(sciphy_to_dev(iphy),
491 			"%s: in wrong state: %d\n", __func__, state);
492 		return SCI_FAILURE_INVALID_STATE;
493 	}
494 }
495 
496 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
497 {
498 	/* continue the link training for the phy as if it were a SAS PHY
499 	 * instead of a SATA PHY. This is done because the completion queue had a SAS
500 	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
501 	 */
502 	u32 phy_control;
503 
504 	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
505 	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
506 	writel(phy_control,
507 	       &iphy->link_layer_registers->phy_configuration);
508 
509 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
510 
511 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
512 }
513 
514 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
515 {
516 	/* This method continues the link training for the phy as if it were a SATA PHY
517 	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
518 	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
519 	 */
520 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
521 
522 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
523 }
524 
525 /**
526  * sci_phy_complete_link_training - perform processing common to
527  *    all protocols upon completion of link training.
528  * @sci_phy: This parameter specifies the phy object for which link training
529  *    has completed.
530  * @max_link_rate: This parameter specifies the maximum link rate to be
531  *    associated with this phy.
532  * @next_state: This parameter specifies the next state for the phy's starting
533  *    sub-state machine.
534  *
535  */
536 static void sci_phy_complete_link_training(struct isci_phy *iphy,
537 					   enum sas_linkrate max_link_rate,
538 					   u32 next_state)
539 {
540 	iphy->max_negotiated_speed = max_link_rate;
541 
542 	sci_change_state(&iphy->sm, next_state);
543 }
544 
545 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
546 {
547 	enum sci_phy_states state = iphy->sm.current_state_id;
548 
549 	switch (state) {
550 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
551 		switch (scu_get_event_code(event_code)) {
552 		case SCU_EVENT_SAS_PHY_DETECTED:
553 			sci_phy_start_sas_link_training(iphy);
554 			iphy->is_in_link_training = true;
555 			break;
556 		case SCU_EVENT_SATA_SPINUP_HOLD:
557 			sci_phy_start_sata_link_training(iphy);
558 			iphy->is_in_link_training = true;
559 			break;
560 		default:
561 			dev_dbg(sciphy_to_dev(iphy),
562 				"%s: PHY starting substate machine received "
563 				"unexpected event_code %x\n",
564 				__func__,
565 				event_code);
566 			return SCI_FAILURE;
567 		}
568 		return SCI_SUCCESS;
569 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
570 		switch (scu_get_event_code(event_code)) {
571 		case SCU_EVENT_SAS_PHY_DETECTED:
572 			/*
573 			 * Why is this being reported again by the controller?
574 			 * We would re-enter this state so just stay here */
575 			break;
576 		case SCU_EVENT_SAS_15:
577 		case SCU_EVENT_SAS_15_SSC:
578 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
579 						       SCI_PHY_SUB_AWAIT_IAF_UF);
580 			break;
581 		case SCU_EVENT_SAS_30:
582 		case SCU_EVENT_SAS_30_SSC:
583 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
584 						       SCI_PHY_SUB_AWAIT_IAF_UF);
585 			break;
586 		case SCU_EVENT_SAS_60:
587 		case SCU_EVENT_SAS_60_SSC:
588 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
589 						       SCI_PHY_SUB_AWAIT_IAF_UF);
590 			break;
591 		case SCU_EVENT_SATA_SPINUP_HOLD:
592 			/*
593 			 * We were doing SAS PHY link training and received a SATA PHY event
594 			 * continue OOB/SN as if this were a SATA PHY */
595 			sci_phy_start_sata_link_training(iphy);
596 			break;
597 		case SCU_EVENT_LINK_FAILURE:
598 			/* Link failure change state back to the starting state */
599 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
600 			break;
601 		default:
602 			dev_warn(sciphy_to_dev(iphy),
603 				 "%s: PHY starting substate machine received "
604 				 "unexpected event_code %x\n",
605 				 __func__, event_code);
606 
607 			return SCI_FAILURE;
608 			break;
609 		}
610 		return SCI_SUCCESS;
611 	case SCI_PHY_SUB_AWAIT_IAF_UF:
612 		switch (scu_get_event_code(event_code)) {
613 		case SCU_EVENT_SAS_PHY_DETECTED:
614 			/* Backup the state machine */
615 			sci_phy_start_sas_link_training(iphy);
616 			break;
617 		case SCU_EVENT_SATA_SPINUP_HOLD:
618 			/* We were doing SAS PHY link training and received a
619 			 * SATA PHY event continue OOB/SN as if this were a
620 			 * SATA PHY
621 			 */
622 			sci_phy_start_sata_link_training(iphy);
623 			break;
624 		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
625 		case SCU_EVENT_LINK_FAILURE:
626 		case SCU_EVENT_HARD_RESET_RECEIVED:
627 			/* Start the oob/sn state machine over again */
628 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
629 			break;
630 		default:
631 			dev_warn(sciphy_to_dev(iphy),
632 				 "%s: PHY starting substate machine received "
633 				 "unexpected event_code %x\n",
634 				 __func__, event_code);
635 			return SCI_FAILURE;
636 		}
637 		return SCI_SUCCESS;
638 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
639 		switch (scu_get_event_code(event_code)) {
640 		case SCU_EVENT_LINK_FAILURE:
641 			/* Link failure change state back to the starting state */
642 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
643 			break;
644 		default:
645 			dev_warn(sciphy_to_dev(iphy),
646 				"%s: PHY starting substate machine received unexpected "
647 				"event_code %x\n",
648 				__func__,
649 				event_code);
650 			return SCI_FAILURE;
651 		}
652 		return SCI_SUCCESS;
653 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
654 		switch (scu_get_event_code(event_code)) {
655 		case SCU_EVENT_LINK_FAILURE:
656 			/* Link failure change state back to the starting state */
657 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
658 			break;
659 		case SCU_EVENT_SATA_SPINUP_HOLD:
660 			/* These events are received every 10ms and are
661 			 * expected while in this state
662 			 */
663 			break;
664 
665 		case SCU_EVENT_SAS_PHY_DETECTED:
666 			/* There has been a change in the phy type before OOB/SN for the
667 			 * SATA finished start down the SAS link traning path.
668 			 */
669 			sci_phy_start_sas_link_training(iphy);
670 			break;
671 
672 		default:
673 			dev_warn(sciphy_to_dev(iphy),
674 				 "%s: PHY starting substate machine received "
675 				 "unexpected event_code %x\n",
676 				 __func__, event_code);
677 
678 			return SCI_FAILURE;
679 		}
680 		return SCI_SUCCESS;
681 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
682 		switch (scu_get_event_code(event_code)) {
683 		case SCU_EVENT_LINK_FAILURE:
684 			/* Link failure change state back to the starting state */
685 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
686 			break;
687 		case SCU_EVENT_SATA_SPINUP_HOLD:
688 			/* These events might be received since we dont know how many may be in
689 			 * the completion queue while waiting for power
690 			 */
691 			break;
692 		case SCU_EVENT_SATA_PHY_DETECTED:
693 			iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
694 
695 			/* We have received the SATA PHY notification change state */
696 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
697 			break;
698 		case SCU_EVENT_SAS_PHY_DETECTED:
699 			/* There has been a change in the phy type before OOB/SN for the
700 			 * SATA finished start down the SAS link traning path.
701 			 */
702 			sci_phy_start_sas_link_training(iphy);
703 			break;
704 		default:
705 			dev_warn(sciphy_to_dev(iphy),
706 				 "%s: PHY starting substate machine received "
707 				 "unexpected event_code %x\n",
708 				 __func__,
709 				 event_code);
710 
711 			return SCI_FAILURE;;
712 		}
713 		return SCI_SUCCESS;
714 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
715 		switch (scu_get_event_code(event_code)) {
716 		case SCU_EVENT_SATA_PHY_DETECTED:
717 			/*
718 			 * The hardware reports multiple SATA PHY detected events
719 			 * ignore the extras */
720 			break;
721 		case SCU_EVENT_SATA_15:
722 		case SCU_EVENT_SATA_15_SSC:
723 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
724 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
725 			break;
726 		case SCU_EVENT_SATA_30:
727 		case SCU_EVENT_SATA_30_SSC:
728 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
729 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
730 			break;
731 		case SCU_EVENT_SATA_60:
732 		case SCU_EVENT_SATA_60_SSC:
733 			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
734 						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
735 			break;
736 		case SCU_EVENT_LINK_FAILURE:
737 			/* Link failure change state back to the starting state */
738 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
739 			break;
740 		case SCU_EVENT_SAS_PHY_DETECTED:
741 			/*
742 			 * There has been a change in the phy type before OOB/SN for the
743 			 * SATA finished start down the SAS link traning path. */
744 			sci_phy_start_sas_link_training(iphy);
745 			break;
746 		default:
747 			dev_warn(sciphy_to_dev(iphy),
748 				 "%s: PHY starting substate machine received "
749 				 "unexpected event_code %x\n",
750 				 __func__, event_code);
751 
752 			return SCI_FAILURE;
753 		}
754 
755 		return SCI_SUCCESS;
756 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
757 		switch (scu_get_event_code(event_code)) {
758 		case SCU_EVENT_SATA_PHY_DETECTED:
759 			/* Backup the state machine */
760 			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
761 			break;
762 
763 		case SCU_EVENT_LINK_FAILURE:
764 			/* Link failure change state back to the starting state */
765 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
766 			break;
767 
768 		default:
769 			dev_warn(sciphy_to_dev(iphy),
770 				 "%s: PHY starting substate machine received "
771 				 "unexpected event_code %x\n",
772 				 __func__,
773 				 event_code);
774 
775 			return SCI_FAILURE;
776 		}
777 		return SCI_SUCCESS;
778 	case SCI_PHY_READY:
779 		switch (scu_get_event_code(event_code)) {
780 		case SCU_EVENT_LINK_FAILURE:
781 			/* Link failure change state back to the starting state */
782 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
783 			break;
784 		case SCU_EVENT_BROADCAST_CHANGE:
785 			/* Broadcast change received. Notify the port. */
786 			if (phy_get_non_dummy_port(iphy) != NULL)
787 				sci_port_broadcast_change_received(iphy->owning_port, iphy);
788 			else
789 				iphy->bcn_received_while_port_unassigned = true;
790 			break;
791 		default:
792 			dev_warn(sciphy_to_dev(iphy),
793 				 "%sP SCIC PHY 0x%p ready state machine received "
794 				 "unexpected event_code %x\n",
795 				 __func__, iphy, event_code);
796 			return SCI_FAILURE_INVALID_STATE;
797 		}
798 		return SCI_SUCCESS;
799 	case SCI_PHY_RESETTING:
800 		switch (scu_get_event_code(event_code)) {
801 		case SCU_EVENT_HARD_RESET_TRANSMITTED:
802 			/* Link failure change state back to the starting state */
803 			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
804 			break;
805 		default:
806 			dev_warn(sciphy_to_dev(iphy),
807 				 "%s: SCIC PHY 0x%p resetting state machine received "
808 				 "unexpected event_code %x\n",
809 				 __func__, iphy, event_code);
810 
811 			return SCI_FAILURE_INVALID_STATE;
812 			break;
813 		}
814 		return SCI_SUCCESS;
815 	default:
816 		dev_dbg(sciphy_to_dev(iphy),
817 			"%s: in wrong state: %d\n", __func__, state);
818 		return SCI_FAILURE_INVALID_STATE;
819 	}
820 }
821 
822 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
823 {
824 	enum sci_phy_states state = iphy->sm.current_state_id;
825 	struct isci_host *ihost = iphy->owning_port->owning_controller;
826 	enum sci_status result;
827 	unsigned long flags;
828 
829 	switch (state) {
830 	case SCI_PHY_SUB_AWAIT_IAF_UF: {
831 		u32 *frame_words;
832 		struct sas_identify_frame iaf;
833 
834 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
835 								  frame_index,
836 								  (void **)&frame_words);
837 
838 		if (result != SCI_SUCCESS)
839 			return result;
840 
841 		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
842 		if (iaf.frame_type == 0) {
843 			u32 state;
844 
845 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
846 			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
847 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
848 			if (iaf.smp_tport) {
849 				/* We got the IAF for an expander PHY go to the final
850 				 * state since there are no power requirements for
851 				 * expander phys.
852 				 */
853 				state = SCI_PHY_SUB_FINAL;
854 			} else {
855 				/* We got the IAF we can now go to the await spinup
856 				 * semaphore state
857 				 */
858 				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
859 			}
860 			sci_change_state(&iphy->sm, state);
861 			result = SCI_SUCCESS;
862 		} else
863 			dev_warn(sciphy_to_dev(iphy),
864 				"%s: PHY starting substate machine received "
865 				"unexpected frame id %x\n",
866 				__func__, frame_index);
867 
868 		sci_controller_release_frame(ihost, frame_index);
869 		return result;
870 	}
871 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
872 		struct dev_to_host_fis *frame_header;
873 		u32 *fis_frame_data;
874 
875 		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
876 								  frame_index,
877 								  (void **)&frame_header);
878 
879 		if (result != SCI_SUCCESS)
880 			return result;
881 
882 		if ((frame_header->fis_type == FIS_REGD2H) &&
883 		    !(frame_header->status & ATA_BUSY)) {
884 			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
885 								 frame_index,
886 								 (void **)&fis_frame_data);
887 
888 			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
889 			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
890 							  frame_header,
891 							  fis_frame_data);
892 			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
893 
894 			/* got IAF we can now go to the await spinup semaphore state */
895 			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
896 
897 			result = SCI_SUCCESS;
898 		} else
899 			dev_warn(sciphy_to_dev(iphy),
900 				 "%s: PHY starting substate machine received "
901 				 "unexpected frame id %x\n",
902 				 __func__, frame_index);
903 
904 		/* Regardless of the result we are done with this frame with it */
905 		sci_controller_release_frame(ihost, frame_index);
906 
907 		return result;
908 	}
909 	default:
910 		dev_dbg(sciphy_to_dev(iphy),
911 			"%s: in wrong state: %d\n", __func__, state);
912 		return SCI_FAILURE_INVALID_STATE;
913 	}
914 
915 }
916 
917 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
918 {
919 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
920 
921 	/* This is just an temporary state go off to the starting state */
922 	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
923 }
924 
925 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
926 {
927 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
928 	struct isci_host *ihost = iphy->owning_port->owning_controller;
929 
930 	sci_controller_power_control_queue_insert(ihost, iphy);
931 }
932 
933 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
934 {
935 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
936 	struct isci_host *ihost = iphy->owning_port->owning_controller;
937 
938 	sci_controller_power_control_queue_remove(ihost, iphy);
939 }
940 
941 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
942 {
943 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
944 	struct isci_host *ihost = iphy->owning_port->owning_controller;
945 
946 	sci_controller_power_control_queue_insert(ihost, iphy);
947 }
948 
949 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
950 {
951 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
952 	struct isci_host *ihost = iphy->owning_port->owning_controller;
953 
954 	sci_controller_power_control_queue_remove(ihost, iphy);
955 }
956 
957 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
958 {
959 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
960 
961 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
962 }
963 
964 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
965 {
966 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
967 
968 	sci_del_timer(&iphy->sata_timer);
969 }
970 
971 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
972 {
973 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
974 
975 	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
976 }
977 
978 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
979 {
980 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
981 
982 	sci_del_timer(&iphy->sata_timer);
983 }
984 
985 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
986 {
987 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
988 
989 	if (sci_port_link_detected(iphy->owning_port, iphy)) {
990 
991 		/*
992 		 * Clear the PE suspend condition so we can actually
993 		 * receive SIG FIS
994 		 * The hardware will not respond to the XRDY until the PE
995 		 * suspend condition is cleared.
996 		 */
997 		sci_phy_resume(iphy);
998 
999 		sci_mod_timer(&iphy->sata_timer,
1000 			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1001 	} else
1002 		iphy->is_in_link_training = false;
1003 }
1004 
1005 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1006 {
1007 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1008 
1009 	sci_del_timer(&iphy->sata_timer);
1010 }
1011 
1012 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1013 {
1014 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1015 
1016 	/* State machine has run to completion so exit out and change
1017 	 * the base state machine to the ready state
1018 	 */
1019 	sci_change_state(&iphy->sm, SCI_PHY_READY);
1020 }
1021 
1022 /**
1023  *
1024  * @sci_phy: This is the struct isci_phy object to stop.
1025  *
1026  * This method will stop the struct isci_phy object. This does not reset the
1027  * protocol engine it just suspends it and places it in a state where it will
1028  * not cause the end device to power up. none
1029  */
1030 static void scu_link_layer_stop_protocol_engine(
1031 	struct isci_phy *iphy)
1032 {
1033 	u32 scu_sas_pcfg_value;
1034 	u32 enable_spinup_value;
1035 
1036 	/* Suspend the protocol engine and place it in a sata spinup hold state */
1037 	scu_sas_pcfg_value =
1038 		readl(&iphy->link_layer_registers->phy_configuration);
1039 	scu_sas_pcfg_value |=
1040 		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1041 		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1042 		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1043 	writel(scu_sas_pcfg_value,
1044 	       &iphy->link_layer_registers->phy_configuration);
1045 
1046 	/* Disable the notify enable spinup primitives */
1047 	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1048 	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1049 	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1050 }
1051 
1052 /**
1053  *
1054  *
1055  * This method will start the OOB/SN state machine for this struct isci_phy object.
1056  */
1057 static void scu_link_layer_start_oob(
1058 	struct isci_phy *iphy)
1059 {
1060 	u32 scu_sas_pcfg_value;
1061 
1062 	scu_sas_pcfg_value =
1063 		readl(&iphy->link_layer_registers->phy_configuration);
1064 	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1065 	scu_sas_pcfg_value &=
1066 		~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1067 		SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1068 	writel(scu_sas_pcfg_value,
1069 	       &iphy->link_layer_registers->phy_configuration);
1070 }
1071 
1072 /**
1073  *
1074  *
1075  * This method will transmit a hard reset request on the specified phy. The SCU
1076  * hardware requires that we reset the OOB state machine and set the hard reset
1077  * bit in the phy configuration register. We then must start OOB over with the
1078  * hard reset bit set.
1079  */
1080 static void scu_link_layer_tx_hard_reset(
1081 	struct isci_phy *iphy)
1082 {
1083 	u32 phy_configuration_value;
1084 
1085 	/*
1086 	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1087 	 * to the starting state. */
1088 	phy_configuration_value =
1089 		readl(&iphy->link_layer_registers->phy_configuration);
1090 	phy_configuration_value |=
1091 		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1092 		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1093 	writel(phy_configuration_value,
1094 	       &iphy->link_layer_registers->phy_configuration);
1095 
1096 	/* Now take the OOB state machine out of reset */
1097 	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1098 	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1099 	writel(phy_configuration_value,
1100 	       &iphy->link_layer_registers->phy_configuration);
1101 }
1102 
1103 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1104 {
1105 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1106 	struct isci_port *iport = iphy->owning_port;
1107 	struct isci_host *ihost = iport->owning_controller;
1108 
1109 	/*
1110 	 * @todo We need to get to the controller to place this PE in a
1111 	 * reset state
1112 	 */
1113 	sci_del_timer(&iphy->sata_timer);
1114 
1115 	scu_link_layer_stop_protocol_engine(iphy);
1116 
1117 	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1118 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1119 }
1120 
1121 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1122 {
1123 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1124 	struct isci_port *iport = iphy->owning_port;
1125 	struct isci_host *ihost = iport->owning_controller;
1126 
1127 	scu_link_layer_stop_protocol_engine(iphy);
1128 	scu_link_layer_start_oob(iphy);
1129 
1130 	/* We don't know what kind of phy we are going to be just yet */
1131 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1132 	iphy->bcn_received_while_port_unassigned = false;
1133 
1134 	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1135 		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1136 
1137 	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1138 }
1139 
1140 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1141 {
1142 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1143 	struct isci_port *iport = iphy->owning_port;
1144 	struct isci_host *ihost = iport->owning_controller;
1145 
1146 	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1147 }
1148 
1149 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1150 {
1151 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152 
1153 	sci_phy_suspend(iphy);
1154 }
1155 
1156 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1157 {
1158 	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159 
1160 	/* The phy is being reset, therefore deactivate it from the port.  In
1161 	 * the resetting state we don't notify the user regarding link up and
1162 	 * link down notifications
1163 	 */
1164 	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1165 
1166 	if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1167 		scu_link_layer_tx_hard_reset(iphy);
1168 	} else {
1169 		/* The SCU does not need to have a discrete reset state so
1170 		 * just go back to the starting state.
1171 		 */
1172 		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1173 	}
1174 }
1175 
1176 static const struct sci_base_state sci_phy_state_table[] = {
1177 	[SCI_PHY_INITIAL] = { },
1178 	[SCI_PHY_STOPPED] = {
1179 		.enter_state = sci_phy_stopped_state_enter,
1180 	},
1181 	[SCI_PHY_STARTING] = {
1182 		.enter_state = sci_phy_starting_state_enter,
1183 	},
1184 	[SCI_PHY_SUB_INITIAL] = {
1185 		.enter_state = sci_phy_starting_initial_substate_enter,
1186 	},
1187 	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1188 	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1189 	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1190 	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1191 		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1192 		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1193 	},
1194 	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1195 		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1196 		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1197 	},
1198 	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1199 		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1200 		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1201 	},
1202 	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1203 		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1204 		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1205 	},
1206 	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1207 		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1208 		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1209 	},
1210 	[SCI_PHY_SUB_FINAL] = {
1211 		.enter_state = sci_phy_starting_final_substate_enter,
1212 	},
1213 	[SCI_PHY_READY] = {
1214 		.enter_state = sci_phy_ready_state_enter,
1215 		.exit_state = sci_phy_ready_state_exit,
1216 	},
1217 	[SCI_PHY_RESETTING] = {
1218 		.enter_state = sci_phy_resetting_state_enter,
1219 	},
1220 	[SCI_PHY_FINAL] = { },
1221 };
1222 
1223 void sci_phy_construct(struct isci_phy *iphy,
1224 			    struct isci_port *iport, u8 phy_index)
1225 {
1226 	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1227 
1228 	/* Copy the rest of the input data to our locals */
1229 	iphy->owning_port = iport;
1230 	iphy->phy_index = phy_index;
1231 	iphy->bcn_received_while_port_unassigned = false;
1232 	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1233 	iphy->link_layer_registers = NULL;
1234 	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1235 
1236 	/* Create the SIGNATURE FIS Timeout timer for this phy */
1237 	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1238 }
1239 
1240 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1241 {
1242 	struct sci_oem_params *oem = &ihost->oem_parameters;
1243 	u64 sci_sas_addr;
1244 	__be64 sas_addr;
1245 
1246 	sci_sas_addr = oem->phys[index].sas_address.high;
1247 	sci_sas_addr <<= 32;
1248 	sci_sas_addr |= oem->phys[index].sas_address.low;
1249 	sas_addr = cpu_to_be64(sci_sas_addr);
1250 	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1251 
1252 	iphy->isci_port = NULL;
1253 	iphy->sas_phy.enabled = 0;
1254 	iphy->sas_phy.id = index;
1255 	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1256 	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1257 	iphy->sas_phy.ha = &ihost->sas_ha;
1258 	iphy->sas_phy.lldd_phy = iphy;
1259 	iphy->sas_phy.enabled = 1;
1260 	iphy->sas_phy.class = SAS;
1261 	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1262 	iphy->sas_phy.tproto = 0;
1263 	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1264 	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1265 	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1266 	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1267 	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1268 }
1269 
1270 
1271 /**
1272  * isci_phy_control() - This function is one of the SAS Domain Template
1273  *    functions. This is a phy management function.
1274  * @phy: This parameter specifies the sphy being controlled.
1275  * @func: This parameter specifies the phy control function being invoked.
1276  * @buf: This parameter is specific to the phy function being invoked.
1277  *
1278  * status, zero indicates success.
1279  */
1280 int isci_phy_control(struct asd_sas_phy *sas_phy,
1281 		     enum phy_func func,
1282 		     void *buf)
1283 {
1284 	int ret = 0;
1285 	struct isci_phy *iphy = sas_phy->lldd_phy;
1286 	struct isci_port *iport = iphy->isci_port;
1287 	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1288 	unsigned long flags;
1289 
1290 	dev_dbg(&ihost->pdev->dev,
1291 		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1292 		__func__, sas_phy, func, buf, iphy, iport);
1293 
1294 	switch (func) {
1295 	case PHY_FUNC_DISABLE:
1296 		spin_lock_irqsave(&ihost->scic_lock, flags);
1297 		sci_phy_stop(iphy);
1298 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1299 		break;
1300 
1301 	case PHY_FUNC_LINK_RESET:
1302 		spin_lock_irqsave(&ihost->scic_lock, flags);
1303 		sci_phy_stop(iphy);
1304 		sci_phy_start(iphy);
1305 		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1306 		break;
1307 
1308 	case PHY_FUNC_HARD_RESET:
1309 		if (!iport)
1310 			return -ENODEV;
1311 
1312 		/* Perform the port reset. */
1313 		ret = isci_port_perform_hard_reset(ihost, iport, iphy);
1314 
1315 		break;
1316 
1317 	default:
1318 		dev_dbg(&ihost->pdev->dev,
1319 			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1320 			   __func__, sas_phy, func);
1321 		ret = -ENOSYS;
1322 		break;
1323 	}
1324 	return ret;
1325 }
1326