1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 56 #include "isci.h" 57 #include "host.h" 58 #include "phy.h" 59 #include "scu_event_codes.h" 60 #include "probe_roms.h" 61 62 #undef C 63 #define C(a) (#a) 64 static const char *phy_state_name(enum sci_phy_states state) 65 { 66 static const char * const strings[] = PHY_STATES; 67 68 return strings[state]; 69 } 70 #undef C 71 72 /* Maximum arbitration wait time in micro-seconds */ 73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) 74 75 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy) 76 { 77 return iphy->max_negotiated_speed; 78 } 79 80 static struct isci_host *phy_to_host(struct isci_phy *iphy) 81 { 82 struct isci_phy *table = iphy - iphy->phy_index; 83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]); 84 85 return ihost; 86 } 87 88 static struct device *sciphy_to_dev(struct isci_phy *iphy) 89 { 90 return &phy_to_host(iphy)->pdev->dev; 91 } 92 93 static enum sci_status 94 sci_phy_transport_layer_initialization(struct isci_phy *iphy, 95 struct scu_transport_layer_registers __iomem *reg) 96 { 97 u32 tl_control; 98 99 iphy->transport_layer_registers = reg; 100 101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX, 102 &iphy->transport_layer_registers->stp_rni); 103 104 /* 105 * Hardware team recommends that we enable the STP prefetch for all 106 * transports 107 */ 108 tl_control = readl(&iphy->transport_layer_registers->control); 109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); 110 writel(tl_control, &iphy->transport_layer_registers->control); 111 112 return SCI_SUCCESS; 113 } 114 115 static enum sci_status 116 sci_phy_link_layer_initialization(struct isci_phy *iphy, 117 struct scu_link_layer_registers __iomem *llr) 118 { 119 struct isci_host *ihost = iphy->owning_port->owning_controller; 120 struct sci_phy_user_params *phy_user; 121 struct sci_phy_oem_params *phy_oem; 122 int phy_idx = iphy->phy_index; 123 struct sci_phy_cap phy_cap; 124 u32 phy_configuration; 125 u32 parity_check = 0; 126 u32 parity_count = 0; 127 u32 llctl, link_rate; 128 u32 clksm_value = 0; 129 u32 sp_timeouts = 0; 130 131 phy_user = &ihost->user_parameters.phys[phy_idx]; 132 phy_oem = &ihost->oem_parameters.phys[phy_idx]; 133 iphy->link_layer_registers = llr; 134 135 /* Set our IDENTIFY frame data */ 136 #define SCI_END_DEVICE 0x01 137 138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | 139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | 140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | 141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | 142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE), 143 &llr->transmit_identification); 144 145 /* Write the device SAS Address */ 146 writel(0xFEDCBA98, &llr->sas_device_name_high); 147 writel(phy_idx, &llr->sas_device_name_low); 148 149 /* Write the source SAS Address */ 150 writel(phy_oem->sas_address.high, &llr->source_sas_address_high); 151 writel(phy_oem->sas_address.low, &llr->source_sas_address_low); 152 153 /* Clear and Set the PHY Identifier */ 154 writel(0, &llr->identify_frame_phy_id); 155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id); 156 157 /* Change the initial state of the phy configuration register */ 158 phy_configuration = readl(&llr->phy_configuration); 159 160 /* Hold OOB state machine in reset */ 161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 162 writel(phy_configuration, &llr->phy_configuration); 163 164 /* Configure the SNW capabilities */ 165 phy_cap.all = 0; 166 phy_cap.start = 1; 167 phy_cap.gen3_no_ssc = 1; 168 phy_cap.gen2_no_ssc = 1; 169 phy_cap.gen1_no_ssc = 1; 170 if (ihost->oem_parameters.controller.do_enable_ssc) { 171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 172 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_idx]; 173 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 174 bool en_sas = false; 175 bool en_sata = false; 176 u32 sas_type = 0; 177 u32 sata_spread = 0x2; 178 u32 sas_spread = 0x2; 179 180 phy_cap.gen3_ssc = 1; 181 phy_cap.gen2_ssc = 1; 182 phy_cap.gen1_ssc = 1; 183 184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1) 185 en_sas = en_sata = true; 186 else { 187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level; 188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level; 189 190 if (sata_spread) 191 en_sata = true; 192 193 if (sas_spread) { 194 en_sas = true; 195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type; 196 } 197 198 } 199 200 if (en_sas) { 201 u32 reg; 202 203 reg = readl(&xcvr->afe_xcvr_control0); 204 reg |= (0x00100000 | (sas_type << 19)); 205 writel(reg, &xcvr->afe_xcvr_control0); 206 207 reg = readl(&xcvr->afe_tx_ssc_control); 208 reg |= sas_spread << 8; 209 writel(reg, &xcvr->afe_tx_ssc_control); 210 } 211 212 if (en_sata) { 213 u32 reg; 214 215 reg = readl(&xcvr->afe_tx_ssc_control); 216 reg |= sata_spread; 217 writel(reg, &xcvr->afe_tx_ssc_control); 218 219 reg = readl(&llr->stp_control); 220 reg |= 1 << 12; 221 writel(reg, &llr->stp_control); 222 } 223 } 224 225 /* The SAS specification indicates that the phy_capabilities that 226 * are transmitted shall have an even parity. Calculate the parity. 227 */ 228 parity_check = phy_cap.all; 229 while (parity_check != 0) { 230 if (parity_check & 0x1) 231 parity_count++; 232 parity_check >>= 1; 233 } 234 235 /* If parity indicates there are an odd number of bits set, then 236 * set the parity bit to 1 in the phy capabilities. 237 */ 238 if ((parity_count % 2) != 0) 239 phy_cap.parity = 1; 240 241 writel(phy_cap.all, &llr->phy_capabilities); 242 243 /* Set the enable spinup period but disable the ability to send 244 * notify enable spinup 245 */ 246 writel(SCU_ENSPINUP_GEN_VAL(COUNT, 247 phy_user->notify_enable_spin_up_insertion_frequency), 248 &llr->notify_enable_spinup_control); 249 250 /* Write the ALIGN Insertion Ferequency for connected phy and 251 * inpendent of connected state 252 */ 253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED, 254 phy_user->in_connection_align_insertion_frequency); 255 256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL, 257 phy_user->align_insertion_frequency); 258 259 writel(clksm_value, &llr->clock_skew_management); 260 261 if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) { 262 writel(0x04210400, &llr->afe_lookup_table_control); 263 writel(0x020A7C05, &llr->sas_primitive_timeout); 264 } else 265 writel(0x02108421, &llr->afe_lookup_table_control); 266 267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT, 268 (u8)ihost->user_parameters.no_outbound_task_timeout); 269 270 switch (phy_user->max_speed_generation) { 271 case SCIC_SDS_PARM_GEN3_SPEED: 272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3; 273 break; 274 case SCIC_SDS_PARM_GEN2_SPEED: 275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2; 276 break; 277 default: 278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1; 279 break; 280 } 281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate); 282 writel(llctl, &llr->link_layer_control); 283 284 sp_timeouts = readl(&llr->sas_phy_timeouts); 285 286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */ 287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF); 288 289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can 290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb. 291 */ 292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B); 293 294 writel(sp_timeouts, &llr->sas_phy_timeouts); 295 296 if (is_a2(ihost->pdev)) { 297 /* Program the max ARB time for the PHY to 700us so we 298 * inter-operate with the PMC expander which shuts down 299 * PHYs if the expander PHY generates too many breaks. 300 * This time value will guarantee that the initiator PHY 301 * will generate the break. 302 */ 303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME, 304 &llr->maximum_arbitration_wait_timer_timeout); 305 } 306 307 /* Disable link layer hang detection, rely on the OS timeout for 308 * I/O timeouts. 309 */ 310 writel(0, &llr->link_layer_hang_detection_timeout); 311 312 /* We can exit the initial state to the stopped state */ 313 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 314 315 return SCI_SUCCESS; 316 } 317 318 static void phy_sata_timeout(unsigned long data) 319 { 320 struct sci_timer *tmr = (struct sci_timer *)data; 321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer); 322 struct isci_host *ihost = iphy->owning_port->owning_controller; 323 unsigned long flags; 324 325 spin_lock_irqsave(&ihost->scic_lock, flags); 326 327 if (tmr->cancel) 328 goto done; 329 330 dev_dbg(sciphy_to_dev(iphy), 331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before " 332 "timeout.\n", 333 __func__, 334 iphy); 335 336 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 337 done: 338 spin_unlock_irqrestore(&ihost->scic_lock, flags); 339 } 340 341 /** 342 * This method returns the port currently containing this phy. If the phy is 343 * currently contained by the dummy port, then the phy is considered to not 344 * be part of a port. 345 * @sci_phy: This parameter specifies the phy for which to retrieve the 346 * containing port. 347 * 348 * This method returns a handle to a port that contains the supplied phy. 349 * NULL This value is returned if the phy is not part of a real 350 * port (i.e. it's contained in the dummy port). !NULL All other 351 * values indicate a handle/pointer to the port containing the phy. 352 */ 353 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy) 354 { 355 struct isci_port *iport = iphy->owning_port; 356 357 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT) 358 return NULL; 359 360 return iphy->owning_port; 361 } 362 363 /** 364 * This method will assign a port to the phy object. 365 * @out]: iphy This parameter specifies the phy for which to assign a port 366 * object. 367 * 368 * 369 */ 370 void sci_phy_set_port( 371 struct isci_phy *iphy, 372 struct isci_port *iport) 373 { 374 iphy->owning_port = iport; 375 376 if (iphy->bcn_received_while_port_unassigned) { 377 iphy->bcn_received_while_port_unassigned = false; 378 sci_port_broadcast_change_received(iphy->owning_port, iphy); 379 } 380 } 381 382 enum sci_status sci_phy_initialize(struct isci_phy *iphy, 383 struct scu_transport_layer_registers __iomem *tl, 384 struct scu_link_layer_registers __iomem *ll) 385 { 386 /* Perfrom the initialization of the TL hardware */ 387 sci_phy_transport_layer_initialization(iphy, tl); 388 389 /* Perofrm the initialization of the PE hardware */ 390 sci_phy_link_layer_initialization(iphy, ll); 391 392 /* There is nothing that needs to be done in this state just 393 * transition to the stopped state 394 */ 395 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 396 397 return SCI_SUCCESS; 398 } 399 400 /** 401 * This method assigns the direct attached device ID for this phy. 402 * 403 * @iphy The phy for which the direct attached device id is to 404 * be assigned. 405 * @device_id The direct attached device ID to assign to the phy. 406 * This will either be the RNi for the device or an invalid RNi if there 407 * is no current device assigned to the phy. 408 */ 409 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id) 410 { 411 u32 tl_control; 412 413 writel(device_id, &iphy->transport_layer_registers->stp_rni); 414 415 /* 416 * The read should guarantee that the first write gets posted 417 * before the next write 418 */ 419 tl_control = readl(&iphy->transport_layer_registers->control); 420 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); 421 writel(tl_control, &iphy->transport_layer_registers->control); 422 } 423 424 static void sci_phy_suspend(struct isci_phy *iphy) 425 { 426 u32 scu_sas_pcfg_value; 427 428 scu_sas_pcfg_value = 429 readl(&iphy->link_layer_registers->phy_configuration); 430 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 431 writel(scu_sas_pcfg_value, 432 &iphy->link_layer_registers->phy_configuration); 433 434 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); 435 } 436 437 void sci_phy_resume(struct isci_phy *iphy) 438 { 439 u32 scu_sas_pcfg_value; 440 441 scu_sas_pcfg_value = 442 readl(&iphy->link_layer_registers->phy_configuration); 443 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 444 writel(scu_sas_pcfg_value, 445 &iphy->link_layer_registers->phy_configuration); 446 } 447 448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 449 { 450 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high); 451 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low); 452 } 453 454 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 455 { 456 struct sas_identify_frame *iaf; 457 458 iaf = &iphy->frame_rcvd.iaf; 459 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE); 460 } 461 462 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto) 463 { 464 proto->all = readl(&iphy->link_layer_registers->transmit_identification); 465 } 466 467 enum sci_status sci_phy_start(struct isci_phy *iphy) 468 { 469 enum sci_phy_states state = iphy->sm.current_state_id; 470 471 if (state != SCI_PHY_STOPPED) { 472 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 473 __func__, phy_state_name(state)); 474 return SCI_FAILURE_INVALID_STATE; 475 } 476 477 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 478 return SCI_SUCCESS; 479 } 480 481 enum sci_status sci_phy_stop(struct isci_phy *iphy) 482 { 483 enum sci_phy_states state = iphy->sm.current_state_id; 484 485 switch (state) { 486 case SCI_PHY_SUB_INITIAL: 487 case SCI_PHY_SUB_AWAIT_OSSP_EN: 488 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 489 case SCI_PHY_SUB_AWAIT_SAS_POWER: 490 case SCI_PHY_SUB_AWAIT_SATA_POWER: 491 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 492 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 493 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 494 case SCI_PHY_SUB_FINAL: 495 case SCI_PHY_READY: 496 break; 497 default: 498 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 499 __func__, phy_state_name(state)); 500 return SCI_FAILURE_INVALID_STATE; 501 } 502 503 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 504 return SCI_SUCCESS; 505 } 506 507 enum sci_status sci_phy_reset(struct isci_phy *iphy) 508 { 509 enum sci_phy_states state = iphy->sm.current_state_id; 510 511 if (state != SCI_PHY_READY) { 512 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 513 __func__, phy_state_name(state)); 514 return SCI_FAILURE_INVALID_STATE; 515 } 516 517 sci_change_state(&iphy->sm, SCI_PHY_RESETTING); 518 return SCI_SUCCESS; 519 } 520 521 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy) 522 { 523 enum sci_phy_states state = iphy->sm.current_state_id; 524 525 switch (state) { 526 case SCI_PHY_SUB_AWAIT_SAS_POWER: { 527 u32 enable_spinup; 528 529 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 530 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); 531 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control); 532 533 /* Change state to the final state this substate machine has run to completion */ 534 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 535 536 return SCI_SUCCESS; 537 } 538 case SCI_PHY_SUB_AWAIT_SATA_POWER: { 539 u32 scu_sas_pcfg_value; 540 541 /* Release the spinup hold state and reset the OOB state machine */ 542 scu_sas_pcfg_value = 543 readl(&iphy->link_layer_registers->phy_configuration); 544 scu_sas_pcfg_value &= 545 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); 546 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 547 writel(scu_sas_pcfg_value, 548 &iphy->link_layer_registers->phy_configuration); 549 550 /* Now restart the OOB operation */ 551 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 552 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 553 writel(scu_sas_pcfg_value, 554 &iphy->link_layer_registers->phy_configuration); 555 556 /* Change state to the final state this substate machine has run to completion */ 557 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN); 558 559 return SCI_SUCCESS; 560 } 561 default: 562 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 563 __func__, phy_state_name(state)); 564 return SCI_FAILURE_INVALID_STATE; 565 } 566 } 567 568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy) 569 { 570 /* continue the link training for the phy as if it were a SAS PHY 571 * instead of a SATA PHY. This is done because the completion queue had a SAS 572 * PHY DETECTED event when the state machine was expecting a SATA PHY event. 573 */ 574 u32 phy_control; 575 576 phy_control = readl(&iphy->link_layer_registers->phy_configuration); 577 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); 578 writel(phy_control, 579 &iphy->link_layer_registers->phy_configuration); 580 581 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN); 582 583 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS; 584 } 585 586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy) 587 { 588 /* This method continues the link training for the phy as if it were a SATA PHY 589 * instead of a SAS PHY. This is done because the completion queue had a SATA 590 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none 591 */ 592 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER); 593 594 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; 595 } 596 597 /** 598 * sci_phy_complete_link_training - perform processing common to 599 * all protocols upon completion of link training. 600 * @sci_phy: This parameter specifies the phy object for which link training 601 * has completed. 602 * @max_link_rate: This parameter specifies the maximum link rate to be 603 * associated with this phy. 604 * @next_state: This parameter specifies the next state for the phy's starting 605 * sub-state machine. 606 * 607 */ 608 static void sci_phy_complete_link_training(struct isci_phy *iphy, 609 enum sas_linkrate max_link_rate, 610 u32 next_state) 611 { 612 iphy->max_negotiated_speed = max_link_rate; 613 614 sci_change_state(&iphy->sm, next_state); 615 } 616 617 static const char *phy_event_name(u32 event_code) 618 { 619 switch (scu_get_event_code(event_code)) { 620 case SCU_EVENT_PORT_SELECTOR_DETECTED: 621 return "port selector"; 622 case SCU_EVENT_SENT_PORT_SELECTION: 623 return "port selection"; 624 case SCU_EVENT_HARD_RESET_TRANSMITTED: 625 return "tx hard reset"; 626 case SCU_EVENT_HARD_RESET_RECEIVED: 627 return "rx hard reset"; 628 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 629 return "identify timeout"; 630 case SCU_EVENT_LINK_FAILURE: 631 return "link fail"; 632 case SCU_EVENT_SATA_SPINUP_HOLD: 633 return "sata spinup hold"; 634 case SCU_EVENT_SAS_15_SSC: 635 case SCU_EVENT_SAS_15: 636 return "sas 1.5"; 637 case SCU_EVENT_SAS_30_SSC: 638 case SCU_EVENT_SAS_30: 639 return "sas 3.0"; 640 case SCU_EVENT_SAS_60_SSC: 641 case SCU_EVENT_SAS_60: 642 return "sas 6.0"; 643 case SCU_EVENT_SATA_15_SSC: 644 case SCU_EVENT_SATA_15: 645 return "sata 1.5"; 646 case SCU_EVENT_SATA_30_SSC: 647 case SCU_EVENT_SATA_30: 648 return "sata 3.0"; 649 case SCU_EVENT_SATA_60_SSC: 650 case SCU_EVENT_SATA_60: 651 return "sata 6.0"; 652 case SCU_EVENT_SAS_PHY_DETECTED: 653 return "sas detect"; 654 case SCU_EVENT_SATA_PHY_DETECTED: 655 return "sata detect"; 656 default: 657 return "unknown"; 658 } 659 } 660 661 #define phy_event_dbg(iphy, state, code) \ 662 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ 663 phy_to_host(iphy)->id, iphy->phy_index, \ 664 phy_state_name(state), phy_event_name(code), code) 665 666 #define phy_event_warn(iphy, state, code) \ 667 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ 668 phy_to_host(iphy)->id, iphy->phy_index, \ 669 phy_state_name(state), phy_event_name(code), code) 670 671 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code) 672 { 673 enum sci_phy_states state = iphy->sm.current_state_id; 674 675 switch (state) { 676 case SCI_PHY_SUB_AWAIT_OSSP_EN: 677 switch (scu_get_event_code(event_code)) { 678 case SCU_EVENT_SAS_PHY_DETECTED: 679 sci_phy_start_sas_link_training(iphy); 680 iphy->is_in_link_training = true; 681 break; 682 case SCU_EVENT_SATA_SPINUP_HOLD: 683 sci_phy_start_sata_link_training(iphy); 684 iphy->is_in_link_training = true; 685 break; 686 default: 687 phy_event_dbg(iphy, state, event_code); 688 return SCI_FAILURE; 689 } 690 return SCI_SUCCESS; 691 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 692 switch (scu_get_event_code(event_code)) { 693 case SCU_EVENT_SAS_PHY_DETECTED: 694 /* 695 * Why is this being reported again by the controller? 696 * We would re-enter this state so just stay here */ 697 break; 698 case SCU_EVENT_SAS_15: 699 case SCU_EVENT_SAS_15_SSC: 700 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 701 SCI_PHY_SUB_AWAIT_IAF_UF); 702 break; 703 case SCU_EVENT_SAS_30: 704 case SCU_EVENT_SAS_30_SSC: 705 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 706 SCI_PHY_SUB_AWAIT_IAF_UF); 707 break; 708 case SCU_EVENT_SAS_60: 709 case SCU_EVENT_SAS_60_SSC: 710 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 711 SCI_PHY_SUB_AWAIT_IAF_UF); 712 break; 713 case SCU_EVENT_SATA_SPINUP_HOLD: 714 /* 715 * We were doing SAS PHY link training and received a SATA PHY event 716 * continue OOB/SN as if this were a SATA PHY */ 717 sci_phy_start_sata_link_training(iphy); 718 break; 719 case SCU_EVENT_LINK_FAILURE: 720 /* Link failure change state back to the starting state */ 721 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 722 break; 723 default: 724 phy_event_warn(iphy, state, event_code); 725 return SCI_FAILURE; 726 break; 727 } 728 return SCI_SUCCESS; 729 case SCI_PHY_SUB_AWAIT_IAF_UF: 730 switch (scu_get_event_code(event_code)) { 731 case SCU_EVENT_SAS_PHY_DETECTED: 732 /* Backup the state machine */ 733 sci_phy_start_sas_link_training(iphy); 734 break; 735 case SCU_EVENT_SATA_SPINUP_HOLD: 736 /* We were doing SAS PHY link training and received a 737 * SATA PHY event continue OOB/SN as if this were a 738 * SATA PHY 739 */ 740 sci_phy_start_sata_link_training(iphy); 741 break; 742 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 743 case SCU_EVENT_LINK_FAILURE: 744 case SCU_EVENT_HARD_RESET_RECEIVED: 745 /* Start the oob/sn state machine over again */ 746 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 747 break; 748 default: 749 phy_event_warn(iphy, state, event_code); 750 return SCI_FAILURE; 751 } 752 return SCI_SUCCESS; 753 case SCI_PHY_SUB_AWAIT_SAS_POWER: 754 switch (scu_get_event_code(event_code)) { 755 case SCU_EVENT_LINK_FAILURE: 756 /* Link failure change state back to the starting state */ 757 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 758 break; 759 default: 760 phy_event_warn(iphy, state, event_code); 761 return SCI_FAILURE; 762 } 763 return SCI_SUCCESS; 764 case SCI_PHY_SUB_AWAIT_SATA_POWER: 765 switch (scu_get_event_code(event_code)) { 766 case SCU_EVENT_LINK_FAILURE: 767 /* Link failure change state back to the starting state */ 768 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 769 break; 770 case SCU_EVENT_SATA_SPINUP_HOLD: 771 /* These events are received every 10ms and are 772 * expected while in this state 773 */ 774 break; 775 776 case SCU_EVENT_SAS_PHY_DETECTED: 777 /* There has been a change in the phy type before OOB/SN for the 778 * SATA finished start down the SAS link traning path. 779 */ 780 sci_phy_start_sas_link_training(iphy); 781 break; 782 783 default: 784 phy_event_warn(iphy, state, event_code); 785 return SCI_FAILURE; 786 } 787 return SCI_SUCCESS; 788 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 789 switch (scu_get_event_code(event_code)) { 790 case SCU_EVENT_LINK_FAILURE: 791 /* Link failure change state back to the starting state */ 792 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 793 break; 794 case SCU_EVENT_SATA_SPINUP_HOLD: 795 /* These events might be received since we dont know how many may be in 796 * the completion queue while waiting for power 797 */ 798 break; 799 case SCU_EVENT_SATA_PHY_DETECTED: 800 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; 801 802 /* We have received the SATA PHY notification change state */ 803 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 804 break; 805 case SCU_EVENT_SAS_PHY_DETECTED: 806 /* There has been a change in the phy type before OOB/SN for the 807 * SATA finished start down the SAS link traning path. 808 */ 809 sci_phy_start_sas_link_training(iphy); 810 break; 811 default: 812 phy_event_warn(iphy, state, event_code); 813 return SCI_FAILURE; 814 } 815 return SCI_SUCCESS; 816 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 817 switch (scu_get_event_code(event_code)) { 818 case SCU_EVENT_SATA_PHY_DETECTED: 819 /* 820 * The hardware reports multiple SATA PHY detected events 821 * ignore the extras */ 822 break; 823 case SCU_EVENT_SATA_15: 824 case SCU_EVENT_SATA_15_SSC: 825 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 826 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 827 break; 828 case SCU_EVENT_SATA_30: 829 case SCU_EVENT_SATA_30_SSC: 830 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 831 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 832 break; 833 case SCU_EVENT_SATA_60: 834 case SCU_EVENT_SATA_60_SSC: 835 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 836 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 837 break; 838 case SCU_EVENT_LINK_FAILURE: 839 /* Link failure change state back to the starting state */ 840 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 841 break; 842 case SCU_EVENT_SAS_PHY_DETECTED: 843 /* 844 * There has been a change in the phy type before OOB/SN for the 845 * SATA finished start down the SAS link traning path. */ 846 sci_phy_start_sas_link_training(iphy); 847 break; 848 default: 849 phy_event_warn(iphy, state, event_code); 850 return SCI_FAILURE; 851 } 852 853 return SCI_SUCCESS; 854 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 855 switch (scu_get_event_code(event_code)) { 856 case SCU_EVENT_SATA_PHY_DETECTED: 857 /* Backup the state machine */ 858 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 859 break; 860 861 case SCU_EVENT_LINK_FAILURE: 862 /* Link failure change state back to the starting state */ 863 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 864 break; 865 866 default: 867 phy_event_warn(iphy, state, event_code); 868 return SCI_FAILURE; 869 } 870 return SCI_SUCCESS; 871 case SCI_PHY_READY: 872 switch (scu_get_event_code(event_code)) { 873 case SCU_EVENT_LINK_FAILURE: 874 /* Link failure change state back to the starting state */ 875 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 876 break; 877 case SCU_EVENT_BROADCAST_CHANGE: 878 /* Broadcast change received. Notify the port. */ 879 if (phy_get_non_dummy_port(iphy) != NULL) 880 sci_port_broadcast_change_received(iphy->owning_port, iphy); 881 else 882 iphy->bcn_received_while_port_unassigned = true; 883 break; 884 default: 885 phy_event_warn(iphy, state, event_code); 886 return SCI_FAILURE_INVALID_STATE; 887 } 888 return SCI_SUCCESS; 889 case SCI_PHY_RESETTING: 890 switch (scu_get_event_code(event_code)) { 891 case SCU_EVENT_HARD_RESET_TRANSMITTED: 892 /* Link failure change state back to the starting state */ 893 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 894 break; 895 default: 896 phy_event_warn(iphy, state, event_code); 897 return SCI_FAILURE_INVALID_STATE; 898 break; 899 } 900 return SCI_SUCCESS; 901 default: 902 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 903 __func__, phy_state_name(state)); 904 return SCI_FAILURE_INVALID_STATE; 905 } 906 } 907 908 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index) 909 { 910 enum sci_phy_states state = iphy->sm.current_state_id; 911 struct isci_host *ihost = iphy->owning_port->owning_controller; 912 enum sci_status result; 913 unsigned long flags; 914 915 switch (state) { 916 case SCI_PHY_SUB_AWAIT_IAF_UF: { 917 u32 *frame_words; 918 struct sas_identify_frame iaf; 919 920 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 921 frame_index, 922 (void **)&frame_words); 923 924 if (result != SCI_SUCCESS) 925 return result; 926 927 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32)); 928 if (iaf.frame_type == 0) { 929 u32 state; 930 931 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 932 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf)); 933 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 934 if (iaf.smp_tport) { 935 /* We got the IAF for an expander PHY go to the final 936 * state since there are no power requirements for 937 * expander phys. 938 */ 939 state = SCI_PHY_SUB_FINAL; 940 } else { 941 /* We got the IAF we can now go to the await spinup 942 * semaphore state 943 */ 944 state = SCI_PHY_SUB_AWAIT_SAS_POWER; 945 } 946 sci_change_state(&iphy->sm, state); 947 result = SCI_SUCCESS; 948 } else 949 dev_warn(sciphy_to_dev(iphy), 950 "%s: PHY starting substate machine received " 951 "unexpected frame id %x\n", 952 __func__, frame_index); 953 954 sci_controller_release_frame(ihost, frame_index); 955 return result; 956 } 957 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: { 958 struct dev_to_host_fis *frame_header; 959 u32 *fis_frame_data; 960 961 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 962 frame_index, 963 (void **)&frame_header); 964 965 if (result != SCI_SUCCESS) 966 return result; 967 968 if ((frame_header->fis_type == FIS_REGD2H) && 969 !(frame_header->status & ATA_BUSY)) { 970 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 971 frame_index, 972 (void **)&fis_frame_data); 973 974 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 975 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis, 976 frame_header, 977 fis_frame_data); 978 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 979 980 /* got IAF we can now go to the await spinup semaphore state */ 981 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 982 983 result = SCI_SUCCESS; 984 } else 985 dev_warn(sciphy_to_dev(iphy), 986 "%s: PHY starting substate machine received " 987 "unexpected frame id %x\n", 988 __func__, frame_index); 989 990 /* Regardless of the result we are done with this frame with it */ 991 sci_controller_release_frame(ihost, frame_index); 992 993 return result; 994 } 995 default: 996 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", 997 __func__, phy_state_name(state)); 998 return SCI_FAILURE_INVALID_STATE; 999 } 1000 1001 } 1002 1003 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm) 1004 { 1005 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1006 1007 /* This is just an temporary state go off to the starting state */ 1008 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN); 1009 } 1010 1011 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm) 1012 { 1013 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1014 struct isci_host *ihost = iphy->owning_port->owning_controller; 1015 1016 sci_controller_power_control_queue_insert(ihost, iphy); 1017 } 1018 1019 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm) 1020 { 1021 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1022 struct isci_host *ihost = iphy->owning_port->owning_controller; 1023 1024 sci_controller_power_control_queue_remove(ihost, iphy); 1025 } 1026 1027 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm) 1028 { 1029 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1030 struct isci_host *ihost = iphy->owning_port->owning_controller; 1031 1032 sci_controller_power_control_queue_insert(ihost, iphy); 1033 } 1034 1035 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm) 1036 { 1037 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1038 struct isci_host *ihost = iphy->owning_port->owning_controller; 1039 1040 sci_controller_power_control_queue_remove(ihost, iphy); 1041 } 1042 1043 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm) 1044 { 1045 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1046 1047 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 1048 } 1049 1050 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm) 1051 { 1052 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1053 1054 sci_del_timer(&iphy->sata_timer); 1055 } 1056 1057 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm) 1058 { 1059 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1060 1061 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 1062 } 1063 1064 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm) 1065 { 1066 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1067 1068 sci_del_timer(&iphy->sata_timer); 1069 } 1070 1071 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm) 1072 { 1073 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1074 1075 if (sci_port_link_detected(iphy->owning_port, iphy)) { 1076 1077 /* 1078 * Clear the PE suspend condition so we can actually 1079 * receive SIG FIS 1080 * The hardware will not respond to the XRDY until the PE 1081 * suspend condition is cleared. 1082 */ 1083 sci_phy_resume(iphy); 1084 1085 sci_mod_timer(&iphy->sata_timer, 1086 SCIC_SDS_SIGNATURE_FIS_TIMEOUT); 1087 } else 1088 iphy->is_in_link_training = false; 1089 } 1090 1091 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm) 1092 { 1093 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1094 1095 sci_del_timer(&iphy->sata_timer); 1096 } 1097 1098 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm) 1099 { 1100 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1101 1102 /* State machine has run to completion so exit out and change 1103 * the base state machine to the ready state 1104 */ 1105 sci_change_state(&iphy->sm, SCI_PHY_READY); 1106 } 1107 1108 /** 1109 * 1110 * @sci_phy: This is the struct isci_phy object to stop. 1111 * 1112 * This method will stop the struct isci_phy object. This does not reset the 1113 * protocol engine it just suspends it and places it in a state where it will 1114 * not cause the end device to power up. none 1115 */ 1116 static void scu_link_layer_stop_protocol_engine( 1117 struct isci_phy *iphy) 1118 { 1119 u32 scu_sas_pcfg_value; 1120 u32 enable_spinup_value; 1121 1122 /* Suspend the protocol engine and place it in a sata spinup hold state */ 1123 scu_sas_pcfg_value = 1124 readl(&iphy->link_layer_registers->phy_configuration); 1125 scu_sas_pcfg_value |= 1126 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1127 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | 1128 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)); 1129 writel(scu_sas_pcfg_value, 1130 &iphy->link_layer_registers->phy_configuration); 1131 1132 /* Disable the notify enable spinup primitives */ 1133 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 1134 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); 1135 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control); 1136 } 1137 1138 static void scu_link_layer_start_oob(struct isci_phy *iphy) 1139 { 1140 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers; 1141 u32 val; 1142 1143 /** Reset OOB sequence - start */ 1144 val = readl(&ll->phy_configuration); 1145 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1146 SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); 1147 writel(val, &ll->phy_configuration); 1148 readl(&ll->phy_configuration); /* flush */ 1149 /** Reset OOB sequence - end */ 1150 1151 /** Start OOB sequence - start */ 1152 val = readl(&ll->phy_configuration); 1153 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1154 writel(val, &ll->phy_configuration); 1155 readl(&ll->phy_configuration); /* flush */ 1156 /** Start OOB sequence - end */ 1157 } 1158 1159 /** 1160 * 1161 * 1162 * This method will transmit a hard reset request on the specified phy. The SCU 1163 * hardware requires that we reset the OOB state machine and set the hard reset 1164 * bit in the phy configuration register. We then must start OOB over with the 1165 * hard reset bit set. 1166 */ 1167 static void scu_link_layer_tx_hard_reset( 1168 struct isci_phy *iphy) 1169 { 1170 u32 phy_configuration_value; 1171 1172 /* 1173 * SAS Phys must wait for the HARD_RESET_TX event notification to transition 1174 * to the starting state. */ 1175 phy_configuration_value = 1176 readl(&iphy->link_layer_registers->phy_configuration); 1177 phy_configuration_value |= 1178 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | 1179 SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); 1180 writel(phy_configuration_value, 1181 &iphy->link_layer_registers->phy_configuration); 1182 1183 /* Now take the OOB state machine out of reset */ 1184 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1185 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 1186 writel(phy_configuration_value, 1187 &iphy->link_layer_registers->phy_configuration); 1188 } 1189 1190 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm) 1191 { 1192 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1193 struct isci_port *iport = iphy->owning_port; 1194 struct isci_host *ihost = iport->owning_controller; 1195 1196 /* 1197 * @todo We need to get to the controller to place this PE in a 1198 * reset state 1199 */ 1200 sci_del_timer(&iphy->sata_timer); 1201 1202 scu_link_layer_stop_protocol_engine(iphy); 1203 1204 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL) 1205 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1206 } 1207 1208 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm) 1209 { 1210 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1211 struct isci_port *iport = iphy->owning_port; 1212 struct isci_host *ihost = iport->owning_controller; 1213 1214 scu_link_layer_stop_protocol_engine(iphy); 1215 scu_link_layer_start_oob(iphy); 1216 1217 /* We don't know what kind of phy we are going to be just yet */ 1218 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; 1219 iphy->bcn_received_while_port_unassigned = false; 1220 1221 if (iphy->sm.previous_state_id == SCI_PHY_READY) 1222 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1223 1224 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL); 1225 } 1226 1227 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm) 1228 { 1229 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1230 struct isci_port *iport = iphy->owning_port; 1231 struct isci_host *ihost = iport->owning_controller; 1232 1233 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy); 1234 } 1235 1236 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm) 1237 { 1238 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1239 1240 sci_phy_suspend(iphy); 1241 } 1242 1243 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm) 1244 { 1245 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1246 1247 /* The phy is being reset, therefore deactivate it from the port. In 1248 * the resetting state we don't notify the user regarding link up and 1249 * link down notifications 1250 */ 1251 sci_port_deactivate_phy(iphy->owning_port, iphy, false); 1252 1253 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { 1254 scu_link_layer_tx_hard_reset(iphy); 1255 } else { 1256 /* The SCU does not need to have a discrete reset state so 1257 * just go back to the starting state. 1258 */ 1259 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 1260 } 1261 } 1262 1263 static const struct sci_base_state sci_phy_state_table[] = { 1264 [SCI_PHY_INITIAL] = { }, 1265 [SCI_PHY_STOPPED] = { 1266 .enter_state = sci_phy_stopped_state_enter, 1267 }, 1268 [SCI_PHY_STARTING] = { 1269 .enter_state = sci_phy_starting_state_enter, 1270 }, 1271 [SCI_PHY_SUB_INITIAL] = { 1272 .enter_state = sci_phy_starting_initial_substate_enter, 1273 }, 1274 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { }, 1275 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { }, 1276 [SCI_PHY_SUB_AWAIT_IAF_UF] = { }, 1277 [SCI_PHY_SUB_AWAIT_SAS_POWER] = { 1278 .enter_state = sci_phy_starting_await_sas_power_substate_enter, 1279 .exit_state = sci_phy_starting_await_sas_power_substate_exit, 1280 }, 1281 [SCI_PHY_SUB_AWAIT_SATA_POWER] = { 1282 .enter_state = sci_phy_starting_await_sata_power_substate_enter, 1283 .exit_state = sci_phy_starting_await_sata_power_substate_exit 1284 }, 1285 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = { 1286 .enter_state = sci_phy_starting_await_sata_phy_substate_enter, 1287 .exit_state = sci_phy_starting_await_sata_phy_substate_exit 1288 }, 1289 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = { 1290 .enter_state = sci_phy_starting_await_sata_speed_substate_enter, 1291 .exit_state = sci_phy_starting_await_sata_speed_substate_exit 1292 }, 1293 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = { 1294 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter, 1295 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit 1296 }, 1297 [SCI_PHY_SUB_FINAL] = { 1298 .enter_state = sci_phy_starting_final_substate_enter, 1299 }, 1300 [SCI_PHY_READY] = { 1301 .enter_state = sci_phy_ready_state_enter, 1302 .exit_state = sci_phy_ready_state_exit, 1303 }, 1304 [SCI_PHY_RESETTING] = { 1305 .enter_state = sci_phy_resetting_state_enter, 1306 }, 1307 [SCI_PHY_FINAL] = { }, 1308 }; 1309 1310 void sci_phy_construct(struct isci_phy *iphy, 1311 struct isci_port *iport, u8 phy_index) 1312 { 1313 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL); 1314 1315 /* Copy the rest of the input data to our locals */ 1316 iphy->owning_port = iport; 1317 iphy->phy_index = phy_index; 1318 iphy->bcn_received_while_port_unassigned = false; 1319 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; 1320 iphy->link_layer_registers = NULL; 1321 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN; 1322 1323 /* Create the SIGNATURE FIS Timeout timer for this phy */ 1324 sci_init_timer(&iphy->sata_timer, phy_sata_timeout); 1325 } 1326 1327 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index) 1328 { 1329 struct sci_oem_params *oem = &ihost->oem_parameters; 1330 u64 sci_sas_addr; 1331 __be64 sas_addr; 1332 1333 sci_sas_addr = oem->phys[index].sas_address.high; 1334 sci_sas_addr <<= 32; 1335 sci_sas_addr |= oem->phys[index].sas_address.low; 1336 sas_addr = cpu_to_be64(sci_sas_addr); 1337 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr)); 1338 1339 iphy->sas_phy.enabled = 0; 1340 iphy->sas_phy.id = index; 1341 iphy->sas_phy.sas_addr = &iphy->sas_addr[0]; 1342 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd; 1343 iphy->sas_phy.ha = &ihost->sas_ha; 1344 iphy->sas_phy.lldd_phy = iphy; 1345 iphy->sas_phy.enabled = 1; 1346 iphy->sas_phy.class = SAS; 1347 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL; 1348 iphy->sas_phy.tproto = 0; 1349 iphy->sas_phy.type = PHY_TYPE_PHYSICAL; 1350 iphy->sas_phy.role = PHY_ROLE_INITIATOR; 1351 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED; 1352 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN; 1353 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd)); 1354 } 1355 1356 1357 /** 1358 * isci_phy_control() - This function is one of the SAS Domain Template 1359 * functions. This is a phy management function. 1360 * @phy: This parameter specifies the sphy being controlled. 1361 * @func: This parameter specifies the phy control function being invoked. 1362 * @buf: This parameter is specific to the phy function being invoked. 1363 * 1364 * status, zero indicates success. 1365 */ 1366 int isci_phy_control(struct asd_sas_phy *sas_phy, 1367 enum phy_func func, 1368 void *buf) 1369 { 1370 int ret = 0; 1371 struct isci_phy *iphy = sas_phy->lldd_phy; 1372 struct asd_sas_port *port = sas_phy->port; 1373 struct isci_host *ihost = sas_phy->ha->lldd_ha; 1374 unsigned long flags; 1375 1376 dev_dbg(&ihost->pdev->dev, 1377 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n", 1378 __func__, sas_phy, func, buf, iphy, port); 1379 1380 switch (func) { 1381 case PHY_FUNC_DISABLE: 1382 spin_lock_irqsave(&ihost->scic_lock, flags); 1383 sci_phy_stop(iphy); 1384 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1385 break; 1386 1387 case PHY_FUNC_LINK_RESET: 1388 spin_lock_irqsave(&ihost->scic_lock, flags); 1389 sci_phy_stop(iphy); 1390 sci_phy_start(iphy); 1391 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1392 break; 1393 1394 case PHY_FUNC_HARD_RESET: 1395 if (!port) 1396 return -ENODEV; 1397 1398 ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy); 1399 1400 break; 1401 case PHY_FUNC_GET_EVENTS: { 1402 struct scu_link_layer_registers __iomem *r; 1403 struct sas_phy *phy = sas_phy->phy; 1404 1405 r = iphy->link_layer_registers; 1406 phy->running_disparity_error_count = readl(&r->running_disparity_error_count); 1407 phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count); 1408 phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count); 1409 phy->invalid_dword_count = readl(&r->invalid_dword_counter); 1410 break; 1411 } 1412 1413 default: 1414 dev_dbg(&ihost->pdev->dev, 1415 "%s: phy %p; func %d NOT IMPLEMENTED!\n", 1416 __func__, sas_phy, func); 1417 ret = -ENOSYS; 1418 break; 1419 } 1420 return ret; 1421 } 1422