xref: /openbmc/linux/drivers/scsi/isci/host.c (revision e0652f8b)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71 
72 #define smu_max_ports(dcc_value) \
73 	(\
74 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76 	)
77 
78 #define smu_max_task_contexts(dcc_value)	\
79 	(\
80 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82 	)
83 
84 #define smu_max_rncs(dcc_value) \
85 	(\
86 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88 	)
89 
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91 
92 /*
93  * The number of milliseconds to wait while a given phy is consuming power
94  * before allowing another set of phys to consume power. Ultimately, this will
95  * be specified by OEM parameter.
96  */
97 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
98 
99 /*
100  * NORMALIZE_PUT_POINTER() -
101  *
102  * This macro will normalize the completion queue put pointer so its value can
103  * be used as an array inde
104  */
105 #define NORMALIZE_PUT_POINTER(x) \
106 	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
107 
108 
109 /*
110  * NORMALIZE_EVENT_POINTER() -
111  *
112  * This macro will normalize the completion queue event entry so its value can
113  * be used as an index.
114  */
115 #define NORMALIZE_EVENT_POINTER(x) \
116 	(\
117 		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
118 		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
119 	)
120 
121 /*
122  * NORMALIZE_GET_POINTER() -
123  *
124  * This macro will normalize the completion queue get pointer so its value can
125  * be used as an index into an array
126  */
127 #define NORMALIZE_GET_POINTER(x) \
128 	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
129 
130 /*
131  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
132  *
133  * This macro will normalize the completion queue cycle pointer so it matches
134  * the completion queue cycle bit
135  */
136 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
137 	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
138 
139 /*
140  * COMPLETION_QUEUE_CYCLE_BIT() -
141  *
142  * This macro will return the cycle bit of the completion queue entry
143  */
144 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
145 
146 /* Init the state machine and call the state entry function (if any) */
147 void sci_init_sm(struct sci_base_state_machine *sm,
148 		 const struct sci_base_state *state_table, u32 initial_state)
149 {
150 	sci_state_transition_t handler;
151 
152 	sm->initial_state_id    = initial_state;
153 	sm->previous_state_id   = initial_state;
154 	sm->current_state_id    = initial_state;
155 	sm->state_table         = state_table;
156 
157 	handler = sm->state_table[initial_state].enter_state;
158 	if (handler)
159 		handler(sm);
160 }
161 
162 /* Call the state exit fn, update the current state, call the state entry fn */
163 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
164 {
165 	sci_state_transition_t handler;
166 
167 	handler = sm->state_table[sm->current_state_id].exit_state;
168 	if (handler)
169 		handler(sm);
170 
171 	sm->previous_state_id = sm->current_state_id;
172 	sm->current_state_id = next_state;
173 
174 	handler = sm->state_table[sm->current_state_id].enter_state;
175 	if (handler)
176 		handler(sm);
177 }
178 
179 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
180 {
181 	u32 get_value = ihost->completion_queue_get;
182 	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
183 
184 	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
185 	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
186 		return true;
187 
188 	return false;
189 }
190 
191 static bool sci_controller_isr(struct isci_host *ihost)
192 {
193 	if (sci_controller_completion_queue_has_entries(ihost))
194 		return true;
195 
196 	/* we have a spurious interrupt it could be that we have already
197 	 * emptied the completion queue from a previous interrupt
198 	 * FIXME: really!?
199 	 */
200 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
201 
202 	/* There is a race in the hardware that could cause us not to be
203 	 * notified of an interrupt completion if we do not take this
204 	 * step.  We will mask then unmask the interrupts so if there is
205 	 * another interrupt pending the clearing of the interrupt
206 	 * source we get the next interrupt message.
207 	 */
208 	spin_lock(&ihost->scic_lock);
209 	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
210 		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
211 		writel(0, &ihost->smu_registers->interrupt_mask);
212 	}
213 	spin_unlock(&ihost->scic_lock);
214 
215 	return false;
216 }
217 
218 irqreturn_t isci_msix_isr(int vec, void *data)
219 {
220 	struct isci_host *ihost = data;
221 
222 	if (sci_controller_isr(ihost))
223 		tasklet_schedule(&ihost->completion_tasklet);
224 
225 	return IRQ_HANDLED;
226 }
227 
228 static bool sci_controller_error_isr(struct isci_host *ihost)
229 {
230 	u32 interrupt_status;
231 
232 	interrupt_status =
233 		readl(&ihost->smu_registers->interrupt_status);
234 	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
235 
236 	if (interrupt_status != 0) {
237 		/*
238 		 * There is an error interrupt pending so let it through and handle
239 		 * in the callback */
240 		return true;
241 	}
242 
243 	/*
244 	 * There is a race in the hardware that could cause us not to be notified
245 	 * of an interrupt completion if we do not take this step.  We will mask
246 	 * then unmask the error interrupts so if there was another interrupt
247 	 * pending we will be notified.
248 	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
249 	writel(0xff, &ihost->smu_registers->interrupt_mask);
250 	writel(0, &ihost->smu_registers->interrupt_mask);
251 
252 	return false;
253 }
254 
255 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
256 {
257 	u32 index = SCU_GET_COMPLETION_INDEX(ent);
258 	struct isci_request *ireq = ihost->reqs[index];
259 
260 	/* Make sure that we really want to process this IO request */
261 	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
262 	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
263 	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
264 		/* Yep this is a valid io request pass it along to the
265 		 * io request handler
266 		 */
267 		sci_io_request_tc_completion(ireq, ent);
268 }
269 
270 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
271 {
272 	u32 index;
273 	struct isci_request *ireq;
274 	struct isci_remote_device *idev;
275 
276 	index = SCU_GET_COMPLETION_INDEX(ent);
277 
278 	switch (scu_get_command_request_type(ent)) {
279 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
280 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
281 		ireq = ihost->reqs[index];
282 		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
283 			 __func__, ent, ireq);
284 		/* @todo For a post TC operation we need to fail the IO
285 		 * request
286 		 */
287 		break;
288 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
289 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
290 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
291 		idev = ihost->device_table[index];
292 		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
293 			 __func__, ent, idev);
294 		/* @todo For a port RNC operation we need to fail the
295 		 * device
296 		 */
297 		break;
298 	default:
299 		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
300 			 __func__, ent);
301 		break;
302 	}
303 }
304 
305 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
306 {
307 	u32 index;
308 	u32 frame_index;
309 
310 	struct scu_unsolicited_frame_header *frame_header;
311 	struct isci_phy *iphy;
312 	struct isci_remote_device *idev;
313 
314 	enum sci_status result = SCI_FAILURE;
315 
316 	frame_index = SCU_GET_FRAME_INDEX(ent);
317 
318 	frame_header = ihost->uf_control.buffers.array[frame_index].header;
319 	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
320 
321 	if (SCU_GET_FRAME_ERROR(ent)) {
322 		/*
323 		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
324 		 * /       this cause a problem? We expect the phy initialization will
325 		 * /       fail if there is an error in the frame. */
326 		sci_controller_release_frame(ihost, frame_index);
327 		return;
328 	}
329 
330 	if (frame_header->is_address_frame) {
331 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
332 		iphy = &ihost->phys[index];
333 		result = sci_phy_frame_handler(iphy, frame_index);
334 	} else {
335 
336 		index = SCU_GET_COMPLETION_INDEX(ent);
337 
338 		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
339 			/*
340 			 * This is a signature fis or a frame from a direct attached SATA
341 			 * device that has not yet been created.  In either case forwared
342 			 * the frame to the PE and let it take care of the frame data. */
343 			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
344 			iphy = &ihost->phys[index];
345 			result = sci_phy_frame_handler(iphy, frame_index);
346 		} else {
347 			if (index < ihost->remote_node_entries)
348 				idev = ihost->device_table[index];
349 			else
350 				idev = NULL;
351 
352 			if (idev != NULL)
353 				result = sci_remote_device_frame_handler(idev, frame_index);
354 			else
355 				sci_controller_release_frame(ihost, frame_index);
356 		}
357 	}
358 
359 	if (result != SCI_SUCCESS) {
360 		/*
361 		 * / @todo Is there any reason to report some additional error message
362 		 * /       when we get this failure notifiction? */
363 	}
364 }
365 
366 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
367 {
368 	struct isci_remote_device *idev;
369 	struct isci_request *ireq;
370 	struct isci_phy *iphy;
371 	u32 index;
372 
373 	index = SCU_GET_COMPLETION_INDEX(ent);
374 
375 	switch (scu_get_event_type(ent)) {
376 	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
377 		/* / @todo The driver did something wrong and we need to fix the condtion. */
378 		dev_err(&ihost->pdev->dev,
379 			"%s: SCIC Controller 0x%p received SMU command error "
380 			"0x%x\n",
381 			__func__,
382 			ihost,
383 			ent);
384 		break;
385 
386 	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
387 	case SCU_EVENT_TYPE_SMU_ERROR:
388 	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
389 		/*
390 		 * / @todo This is a hardware failure and its likely that we want to
391 		 * /       reset the controller. */
392 		dev_err(&ihost->pdev->dev,
393 			"%s: SCIC Controller 0x%p received fatal controller "
394 			"event  0x%x\n",
395 			__func__,
396 			ihost,
397 			ent);
398 		break;
399 
400 	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
401 		ireq = ihost->reqs[index];
402 		sci_io_request_event_handler(ireq, ent);
403 		break;
404 
405 	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
406 		switch (scu_get_event_specifier(ent)) {
407 		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
408 		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
409 			ireq = ihost->reqs[index];
410 			if (ireq != NULL)
411 				sci_io_request_event_handler(ireq, ent);
412 			else
413 				dev_warn(&ihost->pdev->dev,
414 					 "%s: SCIC Controller 0x%p received "
415 					 "event 0x%x for io request object "
416 					 "that doesnt exist.\n",
417 					 __func__,
418 					 ihost,
419 					 ent);
420 
421 			break;
422 
423 		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
424 			idev = ihost->device_table[index];
425 			if (idev != NULL)
426 				sci_remote_device_event_handler(idev, ent);
427 			else
428 				dev_warn(&ihost->pdev->dev,
429 					 "%s: SCIC Controller 0x%p received "
430 					 "event 0x%x for remote device object "
431 					 "that doesnt exist.\n",
432 					 __func__,
433 					 ihost,
434 					 ent);
435 
436 			break;
437 		}
438 		break;
439 
440 	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
441 	/*
442 	 * direct the broadcast change event to the phy first and then let
443 	 * the phy redirect the broadcast change to the port object */
444 	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
445 	/*
446 	 * direct error counter event to the phy object since that is where
447 	 * we get the event notification.  This is a type 4 event. */
448 	case SCU_EVENT_TYPE_OSSP_EVENT:
449 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
450 		iphy = &ihost->phys[index];
451 		sci_phy_event_handler(iphy, ent);
452 		break;
453 
454 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
455 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
456 	case SCU_EVENT_TYPE_RNC_OPS_MISC:
457 		if (index < ihost->remote_node_entries) {
458 			idev = ihost->device_table[index];
459 
460 			if (idev != NULL)
461 				sci_remote_device_event_handler(idev, ent);
462 		} else
463 			dev_err(&ihost->pdev->dev,
464 				"%s: SCIC Controller 0x%p received event 0x%x "
465 				"for remote device object 0x%0x that doesnt "
466 				"exist.\n",
467 				__func__,
468 				ihost,
469 				ent,
470 				index);
471 
472 		break;
473 
474 	default:
475 		dev_warn(&ihost->pdev->dev,
476 			 "%s: SCIC Controller received unknown event code %x\n",
477 			 __func__,
478 			 ent);
479 		break;
480 	}
481 }
482 
483 static void sci_controller_process_completions(struct isci_host *ihost)
484 {
485 	u32 completion_count = 0;
486 	u32 ent;
487 	u32 get_index;
488 	u32 get_cycle;
489 	u32 event_get;
490 	u32 event_cycle;
491 
492 	dev_dbg(&ihost->pdev->dev,
493 		"%s: completion queue beginning get:0x%08x\n",
494 		__func__,
495 		ihost->completion_queue_get);
496 
497 	/* Get the component parts of the completion queue */
498 	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
499 	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
500 
501 	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
502 	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
503 
504 	while (
505 		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
506 		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
507 		) {
508 		completion_count++;
509 
510 		ent = ihost->completion_queue[get_index];
511 
512 		/* increment the get pointer and check for rollover to toggle the cycle bit */
513 		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
514 			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
515 		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
516 
517 		dev_dbg(&ihost->pdev->dev,
518 			"%s: completion queue entry:0x%08x\n",
519 			__func__,
520 			ent);
521 
522 		switch (SCU_GET_COMPLETION_TYPE(ent)) {
523 		case SCU_COMPLETION_TYPE_TASK:
524 			sci_controller_task_completion(ihost, ent);
525 			break;
526 
527 		case SCU_COMPLETION_TYPE_SDMA:
528 			sci_controller_sdma_completion(ihost, ent);
529 			break;
530 
531 		case SCU_COMPLETION_TYPE_UFI:
532 			sci_controller_unsolicited_frame(ihost, ent);
533 			break;
534 
535 		case SCU_COMPLETION_TYPE_EVENT:
536 			sci_controller_event_completion(ihost, ent);
537 			break;
538 
539 		case SCU_COMPLETION_TYPE_NOTIFY: {
540 			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
541 				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
542 			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
543 
544 			sci_controller_event_completion(ihost, ent);
545 			break;
546 		}
547 		default:
548 			dev_warn(&ihost->pdev->dev,
549 				 "%s: SCIC Controller received unknown "
550 				 "completion type %x\n",
551 				 __func__,
552 				 ent);
553 			break;
554 		}
555 	}
556 
557 	/* Update the get register if we completed one or more entries */
558 	if (completion_count > 0) {
559 		ihost->completion_queue_get =
560 			SMU_CQGR_GEN_BIT(ENABLE) |
561 			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
562 			event_cycle |
563 			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
564 			get_cycle |
565 			SMU_CQGR_GEN_VAL(POINTER, get_index);
566 
567 		writel(ihost->completion_queue_get,
568 		       &ihost->smu_registers->completion_queue_get);
569 
570 	}
571 
572 	dev_dbg(&ihost->pdev->dev,
573 		"%s: completion queue ending get:0x%08x\n",
574 		__func__,
575 		ihost->completion_queue_get);
576 
577 }
578 
579 static void sci_controller_error_handler(struct isci_host *ihost)
580 {
581 	u32 interrupt_status;
582 
583 	interrupt_status =
584 		readl(&ihost->smu_registers->interrupt_status);
585 
586 	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
587 	    sci_controller_completion_queue_has_entries(ihost)) {
588 
589 		sci_controller_process_completions(ihost);
590 		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
591 	} else {
592 		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
593 			interrupt_status);
594 
595 		sci_change_state(&ihost->sm, SCIC_FAILED);
596 
597 		return;
598 	}
599 
600 	/* If we dont process any completions I am not sure that we want to do this.
601 	 * We are in the middle of a hardware fault and should probably be reset.
602 	 */
603 	writel(0, &ihost->smu_registers->interrupt_mask);
604 }
605 
606 irqreturn_t isci_intx_isr(int vec, void *data)
607 {
608 	irqreturn_t ret = IRQ_NONE;
609 	struct isci_host *ihost = data;
610 
611 	if (sci_controller_isr(ihost)) {
612 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
613 		tasklet_schedule(&ihost->completion_tasklet);
614 		ret = IRQ_HANDLED;
615 	} else if (sci_controller_error_isr(ihost)) {
616 		spin_lock(&ihost->scic_lock);
617 		sci_controller_error_handler(ihost);
618 		spin_unlock(&ihost->scic_lock);
619 		ret = IRQ_HANDLED;
620 	}
621 
622 	return ret;
623 }
624 
625 irqreturn_t isci_error_isr(int vec, void *data)
626 {
627 	struct isci_host *ihost = data;
628 
629 	if (sci_controller_error_isr(ihost))
630 		sci_controller_error_handler(ihost);
631 
632 	return IRQ_HANDLED;
633 }
634 
635 /**
636  * isci_host_start_complete() - This function is called by the core library,
637  *    through the ISCI Module, to indicate controller start status.
638  * @ihost: This parameter specifies the ISCI host object
639  * @completion_status: This parameter specifies the completion status from the
640  *    core library.
641  *
642  */
643 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
644 {
645 	if (completion_status != SCI_SUCCESS)
646 		dev_info(&ihost->pdev->dev,
647 			"controller start timed out, continuing...\n");
648 	clear_bit(IHOST_START_PENDING, &ihost->flags);
649 	wake_up(&ihost->eventq);
650 }
651 
652 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
653 {
654 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
655 	struct isci_host *ihost = ha->lldd_ha;
656 
657 	if (test_bit(IHOST_START_PENDING, &ihost->flags))
658 		return 0;
659 
660 	sas_drain_work(ha);
661 
662 	return 1;
663 }
664 
665 /**
666  * sci_controller_get_suggested_start_timeout() - This method returns the
667  *    suggested sci_controller_start() timeout amount.  The user is free to
668  *    use any timeout value, but this method provides the suggested minimum
669  *    start timeout value.  The returned value is based upon empirical
670  *    information determined as a result of interoperability testing.
671  * @ihost: the handle to the controller object for which to return the
672  *    suggested start timeout.
673  *
674  * This method returns the number of milliseconds for the suggested start
675  * operation timeout.
676  */
677 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
678 {
679 	/* Validate the user supplied parameters. */
680 	if (!ihost)
681 		return 0;
682 
683 	/*
684 	 * The suggested minimum timeout value for a controller start operation:
685 	 *
686 	 *     Signature FIS Timeout
687 	 *   + Phy Start Timeout
688 	 *   + Number of Phy Spin Up Intervals
689 	 *   ---------------------------------
690 	 *   Number of milliseconds for the controller start operation.
691 	 *
692 	 * NOTE: The number of phy spin up intervals will be equivalent
693 	 *       to the number of phys divided by the number phys allowed
694 	 *       per interval - 1 (once OEM parameters are supported).
695 	 *       Currently we assume only 1 phy per interval. */
696 
697 	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
698 		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
699 		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
700 }
701 
702 static void sci_controller_enable_interrupts(struct isci_host *ihost)
703 {
704 	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
705 	writel(0, &ihost->smu_registers->interrupt_mask);
706 }
707 
708 void sci_controller_disable_interrupts(struct isci_host *ihost)
709 {
710 	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
711 	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
712 	readl(&ihost->smu_registers->interrupt_mask); /* flush */
713 }
714 
715 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
716 {
717 	u32 port_task_scheduler_value;
718 
719 	port_task_scheduler_value =
720 		readl(&ihost->scu_registers->peg0.ptsg.control);
721 	port_task_scheduler_value |=
722 		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
723 		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
724 	writel(port_task_scheduler_value,
725 	       &ihost->scu_registers->peg0.ptsg.control);
726 }
727 
728 static void sci_controller_assign_task_entries(struct isci_host *ihost)
729 {
730 	u32 task_assignment;
731 
732 	/*
733 	 * Assign all the TCs to function 0
734 	 * TODO: Do we actually need to read this register to write it back?
735 	 */
736 
737 	task_assignment =
738 		readl(&ihost->smu_registers->task_context_assignment[0]);
739 
740 	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
741 		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
742 		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
743 
744 	writel(task_assignment,
745 		&ihost->smu_registers->task_context_assignment[0]);
746 
747 }
748 
749 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
750 {
751 	u32 index;
752 	u32 completion_queue_control_value;
753 	u32 completion_queue_get_value;
754 	u32 completion_queue_put_value;
755 
756 	ihost->completion_queue_get = 0;
757 
758 	completion_queue_control_value =
759 		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
760 		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
761 
762 	writel(completion_queue_control_value,
763 	       &ihost->smu_registers->completion_queue_control);
764 
765 
766 	/* Set the completion queue get pointer and enable the queue */
767 	completion_queue_get_value = (
768 		(SMU_CQGR_GEN_VAL(POINTER, 0))
769 		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
770 		| (SMU_CQGR_GEN_BIT(ENABLE))
771 		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
772 		);
773 
774 	writel(completion_queue_get_value,
775 	       &ihost->smu_registers->completion_queue_get);
776 
777 	/* Set the completion queue put pointer */
778 	completion_queue_put_value = (
779 		(SMU_CQPR_GEN_VAL(POINTER, 0))
780 		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
781 		);
782 
783 	writel(completion_queue_put_value,
784 	       &ihost->smu_registers->completion_queue_put);
785 
786 	/* Initialize the cycle bit of the completion queue entries */
787 	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
788 		/*
789 		 * If get.cycle_bit != completion_queue.cycle_bit
790 		 * its not a valid completion queue entry
791 		 * so at system start all entries are invalid */
792 		ihost->completion_queue[index] = 0x80000000;
793 	}
794 }
795 
796 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
797 {
798 	u32 frame_queue_control_value;
799 	u32 frame_queue_get_value;
800 	u32 frame_queue_put_value;
801 
802 	/* Write the queue size */
803 	frame_queue_control_value =
804 		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
805 
806 	writel(frame_queue_control_value,
807 	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
808 
809 	/* Setup the get pointer for the unsolicited frame queue */
810 	frame_queue_get_value = (
811 		SCU_UFQGP_GEN_VAL(POINTER, 0)
812 		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
813 		);
814 
815 	writel(frame_queue_get_value,
816 	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
817 	/* Setup the put pointer for the unsolicited frame queue */
818 	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
819 	writel(frame_queue_put_value,
820 	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
821 }
822 
823 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
824 {
825 	if (ihost->sm.current_state_id == SCIC_STARTING) {
826 		/*
827 		 * We move into the ready state, because some of the phys/ports
828 		 * may be up and operational.
829 		 */
830 		sci_change_state(&ihost->sm, SCIC_READY);
831 
832 		isci_host_start_complete(ihost, status);
833 	}
834 }
835 
836 static bool is_phy_starting(struct isci_phy *iphy)
837 {
838 	enum sci_phy_states state;
839 
840 	state = iphy->sm.current_state_id;
841 	switch (state) {
842 	case SCI_PHY_STARTING:
843 	case SCI_PHY_SUB_INITIAL:
844 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
845 	case SCI_PHY_SUB_AWAIT_IAF_UF:
846 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
847 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
848 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
849 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
850 	case SCI_PHY_SUB_AWAIT_OSSP_EN:
851 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
852 	case SCI_PHY_SUB_FINAL:
853 		return true;
854 	default:
855 		return false;
856 	}
857 }
858 
859 bool is_controller_start_complete(struct isci_host *ihost)
860 {
861 	int i;
862 
863 	for (i = 0; i < SCI_MAX_PHYS; i++) {
864 		struct isci_phy *iphy = &ihost->phys[i];
865 		u32 state = iphy->sm.current_state_id;
866 
867 		/* in apc mode we need to check every phy, in
868 		 * mpc mode we only need to check phys that have
869 		 * been configured into a port
870 		 */
871 		if (is_port_config_apc(ihost))
872 			/* pass */;
873 		else if (!phy_get_non_dummy_port(iphy))
874 			continue;
875 
876 		/* The controller start operation is complete iff:
877 		 * - all links have been given an opportunity to start
878 		 * - have no indication of a connected device
879 		 * - have an indication of a connected device and it has
880 		 *   finished the link training process.
881 		 */
882 		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
883 		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
884 		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
885 		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
886 			return false;
887 	}
888 
889 	return true;
890 }
891 
892 /**
893  * sci_controller_start_next_phy - start phy
894  * @ihost: controller
895  *
896  * If all the phys have been started, then attempt to transition the
897  * controller to the READY state and inform the user
898  * (sci_cb_controller_start_complete()).
899  */
900 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
901 {
902 	struct sci_oem_params *oem = &ihost->oem_parameters;
903 	struct isci_phy *iphy;
904 	enum sci_status status;
905 
906 	status = SCI_SUCCESS;
907 
908 	if (ihost->phy_startup_timer_pending)
909 		return status;
910 
911 	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
912 		if (is_controller_start_complete(ihost)) {
913 			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914 			sci_del_timer(&ihost->phy_timer);
915 			ihost->phy_startup_timer_pending = false;
916 		}
917 	} else {
918 		iphy = &ihost->phys[ihost->next_phy_to_start];
919 
920 		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921 			if (phy_get_non_dummy_port(iphy) == NULL) {
922 				ihost->next_phy_to_start++;
923 
924 				/* Caution recursion ahead be forwarned
925 				 *
926 				 * The PHY was never added to a PORT in MPC mode
927 				 * so start the next phy in sequence This phy
928 				 * will never go link up and will not draw power
929 				 * the OEM parameters either configured the phy
930 				 * incorrectly for the PORT or it was never
931 				 * assigned to a PORT
932 				 */
933 				return sci_controller_start_next_phy(ihost);
934 			}
935 		}
936 
937 		status = sci_phy_start(iphy);
938 
939 		if (status == SCI_SUCCESS) {
940 			sci_mod_timer(&ihost->phy_timer,
941 				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942 			ihost->phy_startup_timer_pending = true;
943 		} else {
944 			dev_warn(&ihost->pdev->dev,
945 				 "%s: Controller stop operation failed "
946 				 "to stop phy %d because of status "
947 				 "%d.\n",
948 				 __func__,
949 				 ihost->phys[ihost->next_phy_to_start].phy_index,
950 				 status);
951 		}
952 
953 		ihost->next_phy_to_start++;
954 	}
955 
956 	return status;
957 }
958 
959 static void phy_startup_timeout(struct timer_list *t)
960 {
961 	struct sci_timer *tmr = from_timer(tmr, t, timer);
962 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963 	unsigned long flags;
964 	enum sci_status status;
965 
966 	spin_lock_irqsave(&ihost->scic_lock, flags);
967 
968 	if (tmr->cancel)
969 		goto done;
970 
971 	ihost->phy_startup_timer_pending = false;
972 
973 	do {
974 		status = sci_controller_start_next_phy(ihost);
975 	} while (status != SCI_SUCCESS);
976 
977 done:
978 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
979 }
980 
981 static u16 isci_tci_active(struct isci_host *ihost)
982 {
983 	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984 }
985 
986 static enum sci_status sci_controller_start(struct isci_host *ihost,
987 					     u32 timeout)
988 {
989 	enum sci_status result;
990 	u16 index;
991 
992 	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
994 			 __func__, ihost->sm.current_state_id);
995 		return SCI_FAILURE_INVALID_STATE;
996 	}
997 
998 	/* Build the TCi free pool */
999 	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000 	ihost->tci_head = 0;
1001 	ihost->tci_tail = 0;
1002 	for (index = 0; index < ihost->task_context_entries; index++)
1003 		isci_tci_free(ihost, index);
1004 
1005 	/* Build the RNi free pool */
1006 	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007 					 ihost->remote_node_entries);
1008 
1009 	/*
1010 	 * Before anything else lets make sure we will not be
1011 	 * interrupted by the hardware.
1012 	 */
1013 	sci_controller_disable_interrupts(ihost);
1014 
1015 	/* Enable the port task scheduler */
1016 	sci_controller_enable_port_task_scheduler(ihost);
1017 
1018 	/* Assign all the task entries to ihost physical function */
1019 	sci_controller_assign_task_entries(ihost);
1020 
1021 	/* Now initialize the completion queue */
1022 	sci_controller_initialize_completion_queue(ihost);
1023 
1024 	/* Initialize the unsolicited frame queue for use */
1025 	sci_controller_initialize_unsolicited_frame_queue(ihost);
1026 
1027 	/* Start all of the ports on this controller */
1028 	for (index = 0; index < ihost->logical_port_entries; index++) {
1029 		struct isci_port *iport = &ihost->ports[index];
1030 
1031 		result = sci_port_start(iport);
1032 		if (result)
1033 			return result;
1034 	}
1035 
1036 	sci_controller_start_next_phy(ihost);
1037 
1038 	sci_mod_timer(&ihost->timer, timeout);
1039 
1040 	sci_change_state(&ihost->sm, SCIC_STARTING);
1041 
1042 	return SCI_SUCCESS;
1043 }
1044 
1045 void isci_host_start(struct Scsi_Host *shost)
1046 {
1047 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048 	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049 
1050 	set_bit(IHOST_START_PENDING, &ihost->flags);
1051 
1052 	spin_lock_irq(&ihost->scic_lock);
1053 	sci_controller_start(ihost, tmo);
1054 	sci_controller_enable_interrupts(ihost);
1055 	spin_unlock_irq(&ihost->scic_lock);
1056 }
1057 
1058 static void isci_host_stop_complete(struct isci_host *ihost)
1059 {
1060 	sci_controller_disable_interrupts(ihost);
1061 	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062 	wake_up(&ihost->eventq);
1063 }
1064 
1065 static void sci_controller_completion_handler(struct isci_host *ihost)
1066 {
1067 	/* Empty out the completion queue */
1068 	if (sci_controller_completion_queue_has_entries(ihost))
1069 		sci_controller_process_completions(ihost);
1070 
1071 	/* Clear the interrupt and enable all interrupts again */
1072 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073 	/* Could we write the value of SMU_ISR_COMPLETION? */
1074 	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075 	writel(0, &ihost->smu_registers->interrupt_mask);
1076 }
1077 
1078 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079 {
1080 	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081 	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082 		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083 			/* Normal notification (task_done) */
1084 			dev_dbg(&ihost->pdev->dev,
1085 				"%s: Normal - ireq/task = %p/%p\n",
1086 				__func__, ireq, task);
1087 			task->lldd_task = NULL;
1088 			task->task_done(task);
1089 		} else {
1090 			dev_dbg(&ihost->pdev->dev,
1091 				"%s: Error - ireq/task = %p/%p\n",
1092 				__func__, ireq, task);
1093 			if (sas_protocol_ata(task->task_proto))
1094 				task->lldd_task = NULL;
1095 			sas_task_abort(task);
1096 		}
1097 	} else
1098 		task->lldd_task = NULL;
1099 
1100 	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101 		wake_up_all(&ihost->eventq);
1102 
1103 	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104 		isci_free_tag(ihost, ireq->io_tag);
1105 }
1106 /**
1107  * isci_host_completion_routine() - This function is the delayed service
1108  *    routine that calls the sci core library's completion handler. It's
1109  *    scheduled as a tasklet from the interrupt service routine when interrupts
1110  *    in use, or set as the timeout function in polled mode.
1111  * @data: This parameter specifies the ISCI host object
1112  *
1113  */
1114 void isci_host_completion_routine(unsigned long data)
1115 {
1116 	struct isci_host *ihost = (struct isci_host *)data;
1117 	u16 active;
1118 
1119 	spin_lock_irq(&ihost->scic_lock);
1120 	sci_controller_completion_handler(ihost);
1121 	spin_unlock_irq(&ihost->scic_lock);
1122 
1123 	/*
1124 	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125 	 * issued for hardware issue workaround
1126 	 */
1127 	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128 
1129 	/*
1130 	 * the coalesence timeout doubles at each encoding step, so
1131 	 * update it based on the ilog2 value of the outstanding requests
1132 	 */
1133 	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134 	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135 	       &ihost->smu_registers->interrupt_coalesce_control);
1136 }
1137 
1138 /**
1139  * sci_controller_stop() - This method will stop an individual controller
1140  *    object.This method will invoke the associated user callback upon
1141  *    completion.  The completion callback is called when the following
1142  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143  *    controller has been quiesced. This method will ensure that all IO
1144  *    requests are quiesced, phys are stopped, and all additional operation by
1145  *    the hardware is halted.
1146  * @ihost: the handle to the controller object to stop.
1147  * @timeout: This parameter specifies the number of milliseconds in which the
1148  *    stop operation should complete.
1149  *
1150  * The controller must be in the STARTED or STOPPED state. Indicate if the
1151  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154  * controller is not either in the STARTED or STOPPED states.
1155  */
1156 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157 {
1158 	if (ihost->sm.current_state_id != SCIC_READY) {
1159 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160 			 __func__, ihost->sm.current_state_id);
1161 		return SCI_FAILURE_INVALID_STATE;
1162 	}
1163 
1164 	sci_mod_timer(&ihost->timer, timeout);
1165 	sci_change_state(&ihost->sm, SCIC_STOPPING);
1166 	return SCI_SUCCESS;
1167 }
1168 
1169 /**
1170  * sci_controller_reset() - This method will reset the supplied core
1171  *    controller regardless of the state of said controller.  This operation is
1172  *    considered destructive.  In other words, all current operations are wiped
1173  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174  *    requests are not aborted or completed at the actual remote device.
1175  * @ihost: the handle to the controller object to reset.
1176  *
1177  * Indicate if the controller reset method succeeded or failed in some way.
1178  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179  * the controller reset operation is unable to complete.
1180  */
1181 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182 {
1183 	switch (ihost->sm.current_state_id) {
1184 	case SCIC_RESET:
1185 	case SCIC_READY:
1186 	case SCIC_STOPPING:
1187 	case SCIC_FAILED:
1188 		/*
1189 		 * The reset operation is not a graceful cleanup, just
1190 		 * perform the state transition.
1191 		 */
1192 		sci_change_state(&ihost->sm, SCIC_RESETTING);
1193 		return SCI_SUCCESS;
1194 	default:
1195 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196 			 __func__, ihost->sm.current_state_id);
1197 		return SCI_FAILURE_INVALID_STATE;
1198 	}
1199 }
1200 
1201 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202 {
1203 	u32 index;
1204 	enum sci_status status;
1205 	enum sci_status phy_status;
1206 
1207 	status = SCI_SUCCESS;
1208 
1209 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1210 		phy_status = sci_phy_stop(&ihost->phys[index]);
1211 
1212 		if (phy_status != SCI_SUCCESS &&
1213 		    phy_status != SCI_FAILURE_INVALID_STATE) {
1214 			status = SCI_FAILURE;
1215 
1216 			dev_warn(&ihost->pdev->dev,
1217 				 "%s: Controller stop operation failed to stop "
1218 				 "phy %d because of status %d.\n",
1219 				 __func__,
1220 				 ihost->phys[index].phy_index, phy_status);
1221 		}
1222 	}
1223 
1224 	return status;
1225 }
1226 
1227 
1228 /**
1229  * isci_host_deinit - shutdown frame reception and dma
1230  * @ihost: host to take down
1231  *
1232  * This is called in either the driver shutdown or the suspend path.  In
1233  * the shutdown case libsas went through port teardown and normal device
1234  * removal (i.e. physical links stayed up to service scsi_device removal
1235  * commands).  In the suspend case we disable the hardware without
1236  * notifying libsas of the link down events since we want libsas to
1237  * remember the domain across the suspend/resume cycle
1238  */
1239 void isci_host_deinit(struct isci_host *ihost)
1240 {
1241 	int i;
1242 
1243 	/* disable output data selects */
1244 	for (i = 0; i < isci_gpio_count(ihost); i++)
1245 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246 
1247 	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248 
1249 	spin_lock_irq(&ihost->scic_lock);
1250 	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251 	spin_unlock_irq(&ihost->scic_lock);
1252 
1253 	wait_for_stop(ihost);
1254 
1255 	/* phy stop is after controller stop to allow port and device to
1256 	 * go idle before shutting down the phys, but the expectation is
1257 	 * that i/o has been shut off well before we reach this
1258 	 * function.
1259 	 */
1260 	sci_controller_stop_phys(ihost);
1261 
1262 	/* disable sgpio: where the above wait should give time for the
1263 	 * enclosure to sample the gpios going inactive
1264 	 */
1265 	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266 
1267 	spin_lock_irq(&ihost->scic_lock);
1268 	sci_controller_reset(ihost);
1269 	spin_unlock_irq(&ihost->scic_lock);
1270 
1271 	/* Cancel any/all outstanding port timers */
1272 	for (i = 0; i < ihost->logical_port_entries; i++) {
1273 		struct isci_port *iport = &ihost->ports[i];
1274 		del_timer_sync(&iport->timer.timer);
1275 	}
1276 
1277 	/* Cancel any/all outstanding phy timers */
1278 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1279 		struct isci_phy *iphy = &ihost->phys[i];
1280 		del_timer_sync(&iphy->sata_timer.timer);
1281 	}
1282 
1283 	del_timer_sync(&ihost->port_agent.timer.timer);
1284 
1285 	del_timer_sync(&ihost->power_control.timer.timer);
1286 
1287 	del_timer_sync(&ihost->timer.timer);
1288 
1289 	del_timer_sync(&ihost->phy_timer.timer);
1290 }
1291 
1292 static void __iomem *scu_base(struct isci_host *isci_host)
1293 {
1294 	struct pci_dev *pdev = isci_host->pdev;
1295 	int id = isci_host->id;
1296 
1297 	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298 }
1299 
1300 static void __iomem *smu_base(struct isci_host *isci_host)
1301 {
1302 	struct pci_dev *pdev = isci_host->pdev;
1303 	int id = isci_host->id;
1304 
1305 	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306 }
1307 
1308 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309 {
1310 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311 
1312 	sci_change_state(&ihost->sm, SCIC_RESET);
1313 }
1314 
1315 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316 {
1317 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318 
1319 	sci_del_timer(&ihost->timer);
1320 }
1321 
1322 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328 
1329 /**
1330  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331  *    configure the interrupt coalescence.
1332  * @ihost: This parameter represents the handle to the controller object
1333  *    for which its interrupt coalesce register is overridden.
1334  * @coalesce_number: Used to control the number of entries in the Completion
1335  *    Queue before an interrupt is generated. If the number of entries exceed
1336  *    this number, an interrupt will be generated. The valid range of the input
1337  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340  *    interrupt coalescing timeout.
1341  *
1342  * Indicate if the user successfully set the interrupt coalesce parameters.
1343  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345  */
1346 static enum sci_status
1347 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348 					 u32 coalesce_number,
1349 					 u32 coalesce_timeout)
1350 {
1351 	u8 timeout_encode = 0;
1352 	u32 min = 0;
1353 	u32 max = 0;
1354 
1355 	/* Check if the input parameters fall in the range. */
1356 	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357 		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358 
1359 	/*
1360 	 *  Defined encoding for interrupt coalescing timeout:
1361 	 *              Value   Min      Max     Units
1362 	 *              -----   ---      ---     -----
1363 	 *              0       -        -       Disabled
1364 	 *              1       13.3     20.0    ns
1365 	 *              2       26.7     40.0
1366 	 *              3       53.3     80.0
1367 	 *              4       106.7    160.0
1368 	 *              5       213.3    320.0
1369 	 *              6       426.7    640.0
1370 	 *              7       853.3    1280.0
1371 	 *              8       1.7      2.6     us
1372 	 *              9       3.4      5.1
1373 	 *              10      6.8      10.2
1374 	 *              11      13.7     20.5
1375 	 *              12      27.3     41.0
1376 	 *              13      54.6     81.9
1377 	 *              14      109.2    163.8
1378 	 *              15      218.5    327.7
1379 	 *              16      436.9    655.4
1380 	 *              17      873.8    1310.7
1381 	 *              18      1.7      2.6     ms
1382 	 *              19      3.5      5.2
1383 	 *              20      7.0      10.5
1384 	 *              21      14.0     21.0
1385 	 *              22      28.0     41.9
1386 	 *              23      55.9     83.9
1387 	 *              24      111.8    167.8
1388 	 *              25      223.7    335.5
1389 	 *              26      447.4    671.1
1390 	 *              27      894.8    1342.2
1391 	 *              28      1.8      2.7     s
1392 	 *              Others Undefined */
1393 
1394 	/*
1395 	 * Use the table above to decide the encode of interrupt coalescing timeout
1396 	 * value for register writing. */
1397 	if (coalesce_timeout == 0)
1398 		timeout_encode = 0;
1399 	else{
1400 		/* make the timeout value in unit of (10 ns). */
1401 		coalesce_timeout = coalesce_timeout * 100;
1402 		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403 		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404 
1405 		/* get the encode of timeout for register writing. */
1406 		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407 		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408 		      timeout_encode++) {
1409 			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410 				break;
1411 			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412 				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413 				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414 					break;
1415 				else{
1416 					timeout_encode++;
1417 					break;
1418 				}
1419 			} else {
1420 				max = max * 2;
1421 				min = min * 2;
1422 			}
1423 		}
1424 
1425 		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426 			/* the value is out of range. */
1427 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428 	}
1429 
1430 	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431 	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432 	       &ihost->smu_registers->interrupt_coalesce_control);
1433 
1434 
1435 	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436 	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437 
1438 	return SCI_SUCCESS;
1439 }
1440 
1441 
1442 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443 {
1444 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445 	u32 val;
1446 
1447 	/* enable clock gating for power control of the scu unit */
1448 	val = readl(&ihost->smu_registers->clock_gating_control);
1449 	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450 		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451 		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452 	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453 	writel(val, &ihost->smu_registers->clock_gating_control);
1454 
1455 	/* set the default interrupt coalescence number and timeout value. */
1456 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457 }
1458 
1459 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460 {
1461 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462 
1463 	/* disable interrupt coalescence. */
1464 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465 }
1466 
1467 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468 {
1469 	u32 index;
1470 	enum sci_status port_status;
1471 	enum sci_status status = SCI_SUCCESS;
1472 
1473 	for (index = 0; index < ihost->logical_port_entries; index++) {
1474 		struct isci_port *iport = &ihost->ports[index];
1475 
1476 		port_status = sci_port_stop(iport);
1477 
1478 		if ((port_status != SCI_SUCCESS) &&
1479 		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1480 			status = SCI_FAILURE;
1481 
1482 			dev_warn(&ihost->pdev->dev,
1483 				 "%s: Controller stop operation failed to "
1484 				 "stop port %d because of status %d.\n",
1485 				 __func__,
1486 				 iport->logical_port_index,
1487 				 port_status);
1488 		}
1489 	}
1490 
1491 	return status;
1492 }
1493 
1494 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495 {
1496 	u32 index;
1497 	enum sci_status status;
1498 	enum sci_status device_status;
1499 
1500 	status = SCI_SUCCESS;
1501 
1502 	for (index = 0; index < ihost->remote_node_entries; index++) {
1503 		if (ihost->device_table[index] != NULL) {
1504 			/* / @todo What timeout value do we want to provide to this request? */
1505 			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506 
1507 			if ((device_status != SCI_SUCCESS) &&
1508 			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1509 				dev_warn(&ihost->pdev->dev,
1510 					 "%s: Controller stop operation failed "
1511 					 "to stop device 0x%p because of "
1512 					 "status %d.\n",
1513 					 __func__,
1514 					 ihost->device_table[index], device_status);
1515 			}
1516 		}
1517 	}
1518 
1519 	return status;
1520 }
1521 
1522 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523 {
1524 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525 
1526 	sci_controller_stop_devices(ihost);
1527 	sci_controller_stop_ports(ihost);
1528 
1529 	if (!sci_controller_has_remote_devices_stopping(ihost))
1530 		isci_host_stop_complete(ihost);
1531 }
1532 
1533 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534 {
1535 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536 
1537 	sci_del_timer(&ihost->timer);
1538 }
1539 
1540 static void sci_controller_reset_hardware(struct isci_host *ihost)
1541 {
1542 	/* Disable interrupts so we dont take any spurious interrupts */
1543 	sci_controller_disable_interrupts(ihost);
1544 
1545 	/* Reset the SCU */
1546 	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547 
1548 	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1549 	udelay(1000);
1550 
1551 	/* The write to the CQGR clears the CQP */
1552 	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553 
1554 	/* The write to the UFQGP clears the UFQPR */
1555 	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556 
1557 	/* clear all interrupts */
1558 	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559 }
1560 
1561 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562 {
1563 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564 
1565 	sci_controller_reset_hardware(ihost);
1566 	sci_change_state(&ihost->sm, SCIC_RESET);
1567 }
1568 
1569 static const struct sci_base_state sci_controller_state_table[] = {
1570 	[SCIC_INITIAL] = {
1571 		.enter_state = sci_controller_initial_state_enter,
1572 	},
1573 	[SCIC_RESET] = {},
1574 	[SCIC_INITIALIZING] = {},
1575 	[SCIC_INITIALIZED] = {},
1576 	[SCIC_STARTING] = {
1577 		.exit_state  = sci_controller_starting_state_exit,
1578 	},
1579 	[SCIC_READY] = {
1580 		.enter_state = sci_controller_ready_state_enter,
1581 		.exit_state  = sci_controller_ready_state_exit,
1582 	},
1583 	[SCIC_RESETTING] = {
1584 		.enter_state = sci_controller_resetting_state_enter,
1585 	},
1586 	[SCIC_STOPPING] = {
1587 		.enter_state = sci_controller_stopping_state_enter,
1588 		.exit_state = sci_controller_stopping_state_exit,
1589 	},
1590 	[SCIC_FAILED] = {}
1591 };
1592 
1593 static void controller_timeout(struct timer_list *t)
1594 {
1595 	struct sci_timer *tmr = from_timer(tmr, t, timer);
1596 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597 	struct sci_base_state_machine *sm = &ihost->sm;
1598 	unsigned long flags;
1599 
1600 	spin_lock_irqsave(&ihost->scic_lock, flags);
1601 
1602 	if (tmr->cancel)
1603 		goto done;
1604 
1605 	if (sm->current_state_id == SCIC_STARTING)
1606 		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607 	else if (sm->current_state_id == SCIC_STOPPING) {
1608 		sci_change_state(sm, SCIC_FAILED);
1609 		isci_host_stop_complete(ihost);
1610 	} else	/* / @todo Now what do we want to do in this case? */
1611 		dev_err(&ihost->pdev->dev,
1612 			"%s: Controller timer fired when controller was not "
1613 			"in a state being timed.\n",
1614 			__func__);
1615 
1616 done:
1617 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618 }
1619 
1620 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621 						void __iomem *scu_base,
1622 						void __iomem *smu_base)
1623 {
1624 	u8 i;
1625 
1626 	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627 
1628 	ihost->scu_registers = scu_base;
1629 	ihost->smu_registers = smu_base;
1630 
1631 	sci_port_configuration_agent_construct(&ihost->port_agent);
1632 
1633 	/* Construct the ports for this controller */
1634 	for (i = 0; i < SCI_MAX_PORTS; i++)
1635 		sci_port_construct(&ihost->ports[i], i, ihost);
1636 	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637 
1638 	/* Construct the phys for this controller */
1639 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1640 		/* Add all the PHYs to the dummy port */
1641 		sci_phy_construct(&ihost->phys[i],
1642 				  &ihost->ports[SCI_MAX_PORTS], i);
1643 	}
1644 
1645 	ihost->invalid_phy_mask = 0;
1646 
1647 	sci_init_timer(&ihost->timer, controller_timeout);
1648 
1649 	return sci_controller_reset(ihost);
1650 }
1651 
1652 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < SCI_MAX_PORTS; i++)
1657 		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658 			return -EINVAL;
1659 
1660 	for (i = 0; i < SCI_MAX_PHYS; i++)
1661 		if (oem->phys[i].sas_address.high == 0 &&
1662 		    oem->phys[i].sas_address.low == 0)
1663 			return -EINVAL;
1664 
1665 	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666 		for (i = 0; i < SCI_MAX_PHYS; i++)
1667 			if (oem->ports[i].phy_mask != 0)
1668 				return -EINVAL;
1669 	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670 		u8 phy_mask = 0;
1671 
1672 		for (i = 0; i < SCI_MAX_PHYS; i++)
1673 			phy_mask |= oem->ports[i].phy_mask;
1674 
1675 		if (phy_mask == 0)
1676 			return -EINVAL;
1677 	} else
1678 		return -EINVAL;
1679 
1680 	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681 	    oem->controller.max_concurr_spin_up < 1)
1682 		return -EINVAL;
1683 
1684 	if (oem->controller.do_enable_ssc) {
1685 		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686 			return -EINVAL;
1687 
1688 		if (version >= ISCI_ROM_VER_1_1) {
1689 			u8 test = oem->controller.ssc_sata_tx_spread_level;
1690 
1691 			switch (test) {
1692 			case 0:
1693 			case 2:
1694 			case 3:
1695 			case 6:
1696 			case 7:
1697 				break;
1698 			default:
1699 				return -EINVAL;
1700 			}
1701 
1702 			test = oem->controller.ssc_sas_tx_spread_level;
1703 			if (oem->controller.ssc_sas_tx_type == 0) {
1704 				switch (test) {
1705 				case 0:
1706 				case 2:
1707 				case 3:
1708 					break;
1709 				default:
1710 					return -EINVAL;
1711 				}
1712 			} else if (oem->controller.ssc_sas_tx_type == 1) {
1713 				switch (test) {
1714 				case 0:
1715 				case 3:
1716 				case 6:
1717 					break;
1718 				default:
1719 					return -EINVAL;
1720 				}
1721 			}
1722 		}
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static u8 max_spin_up(struct isci_host *ihost)
1729 {
1730 	if (ihost->user_parameters.max_concurr_spinup)
1731 		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733 	else
1734 		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736 }
1737 
1738 static void power_control_timeout(struct timer_list *t)
1739 {
1740 	struct sci_timer *tmr = from_timer(tmr, t, timer);
1741 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742 	struct isci_phy *iphy;
1743 	unsigned long flags;
1744 	u8 i;
1745 
1746 	spin_lock_irqsave(&ihost->scic_lock, flags);
1747 
1748 	if (tmr->cancel)
1749 		goto done;
1750 
1751 	ihost->power_control.phys_granted_power = 0;
1752 
1753 	if (ihost->power_control.phys_waiting == 0) {
1754 		ihost->power_control.timer_started = false;
1755 		goto done;
1756 	}
1757 
1758 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1759 
1760 		if (ihost->power_control.phys_waiting == 0)
1761 			break;
1762 
1763 		iphy = ihost->power_control.requesters[i];
1764 		if (iphy == NULL)
1765 			continue;
1766 
1767 		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768 			break;
1769 
1770 		ihost->power_control.requesters[i] = NULL;
1771 		ihost->power_control.phys_waiting--;
1772 		ihost->power_control.phys_granted_power++;
1773 		sci_phy_consume_power_handler(iphy);
1774 
1775 		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776 			u8 j;
1777 
1778 			for (j = 0; j < SCI_MAX_PHYS; j++) {
1779 				struct isci_phy *requester = ihost->power_control.requesters[j];
1780 
1781 				/*
1782 				 * Search the power_control queue to see if there are other phys
1783 				 * attached to the same remote device. If found, take all of
1784 				 * them out of await_sas_power state.
1785 				 */
1786 				if (requester != NULL && requester != iphy) {
1787 					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788 							  iphy->frame_rcvd.iaf.sas_addr,
1789 							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1790 
1791 					if (other == 0) {
1792 						ihost->power_control.requesters[j] = NULL;
1793 						ihost->power_control.phys_waiting--;
1794 						sci_phy_consume_power_handler(requester);
1795 					}
1796 				}
1797 			}
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * It doesn't matter if the power list is empty, we need to start the
1803 	 * timer in case another phy becomes ready.
1804 	 */
1805 	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806 	ihost->power_control.timer_started = true;
1807 
1808 done:
1809 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810 }
1811 
1812 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813 					       struct isci_phy *iphy)
1814 {
1815 	BUG_ON(iphy == NULL);
1816 
1817 	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818 		ihost->power_control.phys_granted_power++;
1819 		sci_phy_consume_power_handler(iphy);
1820 
1821 		/*
1822 		 * stop and start the power_control timer. When the timer fires, the
1823 		 * no_of_phys_granted_power will be set to 0
1824 		 */
1825 		if (ihost->power_control.timer_started)
1826 			sci_del_timer(&ihost->power_control.timer);
1827 
1828 		sci_mod_timer(&ihost->power_control.timer,
1829 				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830 		ihost->power_control.timer_started = true;
1831 
1832 	} else {
1833 		/*
1834 		 * There are phys, attached to the same sas address as this phy, are
1835 		 * already in READY state, this phy don't need wait.
1836 		 */
1837 		u8 i;
1838 		struct isci_phy *current_phy;
1839 
1840 		for (i = 0; i < SCI_MAX_PHYS; i++) {
1841 			u8 other;
1842 			current_phy = &ihost->phys[i];
1843 
1844 			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845 				       iphy->frame_rcvd.iaf.sas_addr,
1846 				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847 
1848 			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849 			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1850 			    other == 0) {
1851 				sci_phy_consume_power_handler(iphy);
1852 				break;
1853 			}
1854 		}
1855 
1856 		if (i == SCI_MAX_PHYS) {
1857 			/* Add the phy in the waiting list */
1858 			ihost->power_control.requesters[iphy->phy_index] = iphy;
1859 			ihost->power_control.phys_waiting++;
1860 		}
1861 	}
1862 }
1863 
1864 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865 					       struct isci_phy *iphy)
1866 {
1867 	BUG_ON(iphy == NULL);
1868 
1869 	if (ihost->power_control.requesters[iphy->phy_index])
1870 		ihost->power_control.phys_waiting--;
1871 
1872 	ihost->power_control.requesters[iphy->phy_index] = NULL;
1873 }
1874 
1875 static int is_long_cable(int phy, unsigned char selection_byte)
1876 {
1877 	return !!(selection_byte & (1 << phy));
1878 }
1879 
1880 static int is_medium_cable(int phy, unsigned char selection_byte)
1881 {
1882 	return !!(selection_byte & (1 << (phy + 4)));
1883 }
1884 
1885 static enum cable_selections decode_selection_byte(
1886 	int phy,
1887 	unsigned char selection_byte)
1888 {
1889 	return ((selection_byte & (1 << phy)) ? 1 : 0)
1890 		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891 }
1892 
1893 static unsigned char *to_cable_select(struct isci_host *ihost)
1894 {
1895 	if (is_cable_select_overridden())
1896 		return ((unsigned char *)&cable_selection_override)
1897 			+ ihost->id;
1898 	else
1899 		return &ihost->oem_parameters.controller.cable_selection_mask;
1900 }
1901 
1902 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903 {
1904 	return decode_selection_byte(phy, *to_cable_select(ihost));
1905 }
1906 
1907 char *lookup_cable_names(enum cable_selections selection)
1908 {
1909 	static char *cable_names[] = {
1910 		[short_cable]     = "short",
1911 		[long_cable]      = "long",
1912 		[medium_cable]    = "medium",
1913 		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914 	};
1915 	return (selection <= undefined_cable) ? cable_names[selection]
1916 					      : cable_names[undefined_cable];
1917 }
1918 
1919 #define AFE_REGISTER_WRITE_DELAY 10
1920 
1921 static void sci_controller_afe_initialization(struct isci_host *ihost)
1922 {
1923 	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924 	const struct sci_oem_params *oem = &ihost->oem_parameters;
1925 	struct pci_dev *pdev = ihost->pdev;
1926 	u32 afe_status;
1927 	u32 phy_id;
1928 	unsigned char cable_selection_mask = *to_cable_select(ihost);
1929 
1930 	/* Clear DFX Status registers */
1931 	writel(0x0081000f, &afe->afe_dfx_master_control0);
1932 	udelay(AFE_REGISTER_WRITE_DELAY);
1933 
1934 	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935 		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936 		 * Timer, PM Stagger Timer
1937 		 */
1938 		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939 		udelay(AFE_REGISTER_WRITE_DELAY);
1940 	}
1941 
1942 	/* Configure bias currents to normal */
1943 	if (is_a2(pdev))
1944 		writel(0x00005A00, &afe->afe_bias_control);
1945 	else if (is_b0(pdev) || is_c0(pdev))
1946 		writel(0x00005F00, &afe->afe_bias_control);
1947 	else if (is_c1(pdev))
1948 		writel(0x00005500, &afe->afe_bias_control);
1949 
1950 	udelay(AFE_REGISTER_WRITE_DELAY);
1951 
1952 	/* Enable PLL */
1953 	if (is_a2(pdev))
1954 		writel(0x80040908, &afe->afe_pll_control0);
1955 	else if (is_b0(pdev) || is_c0(pdev))
1956 		writel(0x80040A08, &afe->afe_pll_control0);
1957 	else if (is_c1(pdev)) {
1958 		writel(0x80000B08, &afe->afe_pll_control0);
1959 		udelay(AFE_REGISTER_WRITE_DELAY);
1960 		writel(0x00000B08, &afe->afe_pll_control0);
1961 		udelay(AFE_REGISTER_WRITE_DELAY);
1962 		writel(0x80000B08, &afe->afe_pll_control0);
1963 	}
1964 
1965 	udelay(AFE_REGISTER_WRITE_DELAY);
1966 
1967 	/* Wait for the PLL to lock */
1968 	do {
1969 		afe_status = readl(&afe->afe_common_block_status);
1970 		udelay(AFE_REGISTER_WRITE_DELAY);
1971 	} while ((afe_status & 0x00001000) == 0);
1972 
1973 	if (is_a2(pdev)) {
1974 		/* Shorten SAS SNW lock time (RxLock timer value from 76
1975 		 * us to 50 us)
1976 		 */
1977 		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978 		udelay(AFE_REGISTER_WRITE_DELAY);
1979 	}
1980 
1981 	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982 		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983 		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984 		int cable_length_long =
1985 			is_long_cable(phy_id, cable_selection_mask);
1986 		int cable_length_medium =
1987 			is_medium_cable(phy_id, cable_selection_mask);
1988 
1989 		if (is_a2(pdev)) {
1990 			/* All defaults, except the Receive Word
1991 			 * Alignament/Comma Detect Enable....(0xe800)
1992 			 */
1993 			writel(0x00004512, &xcvr->afe_xcvr_control0);
1994 			udelay(AFE_REGISTER_WRITE_DELAY);
1995 
1996 			writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997 			udelay(AFE_REGISTER_WRITE_DELAY);
1998 		} else if (is_b0(pdev)) {
1999 			/* Configure transmitter SSC parameters */
2000 			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001 			udelay(AFE_REGISTER_WRITE_DELAY);
2002 		} else if (is_c0(pdev)) {
2003 			/* Configure transmitter SSC parameters */
2004 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005 			udelay(AFE_REGISTER_WRITE_DELAY);
2006 
2007 			/* All defaults, except the Receive Word
2008 			 * Alignament/Comma Detect Enable....(0xe800)
2009 			 */
2010 			writel(0x00014500, &xcvr->afe_xcvr_control0);
2011 			udelay(AFE_REGISTER_WRITE_DELAY);
2012 		} else if (is_c1(pdev)) {
2013 			/* Configure transmitter SSC parameters */
2014 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015 			udelay(AFE_REGISTER_WRITE_DELAY);
2016 
2017 			/* All defaults, except the Receive Word
2018 			 * Alignament/Comma Detect Enable....(0xe800)
2019 			 */
2020 			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021 			udelay(AFE_REGISTER_WRITE_DELAY);
2022 		}
2023 
2024 		/* Power up TX and RX out from power down (PWRDNTX and
2025 		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026 		 */
2027 		if (is_a2(pdev))
2028 			writel(0x000003F0, &xcvr->afe_channel_control);
2029 		else if (is_b0(pdev)) {
2030 			writel(0x000003D7, &xcvr->afe_channel_control);
2031 			udelay(AFE_REGISTER_WRITE_DELAY);
2032 
2033 			writel(0x000003D4, &xcvr->afe_channel_control);
2034 		} else if (is_c0(pdev)) {
2035 			writel(0x000001E7, &xcvr->afe_channel_control);
2036 			udelay(AFE_REGISTER_WRITE_DELAY);
2037 
2038 			writel(0x000001E4, &xcvr->afe_channel_control);
2039 		} else if (is_c1(pdev)) {
2040 			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041 			       &xcvr->afe_channel_control);
2042 			udelay(AFE_REGISTER_WRITE_DELAY);
2043 
2044 			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045 			       &xcvr->afe_channel_control);
2046 		}
2047 		udelay(AFE_REGISTER_WRITE_DELAY);
2048 
2049 		if (is_a2(pdev)) {
2050 			/* Enable TX equalization (0xe824) */
2051 			writel(0x00040000, &xcvr->afe_tx_control);
2052 			udelay(AFE_REGISTER_WRITE_DELAY);
2053 		}
2054 
2055 		if (is_a2(pdev) || is_b0(pdev))
2056 			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057 			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058 			 * Enabled) ....(0xe800)
2059 			 */
2060 			writel(0x00004100, &xcvr->afe_xcvr_control0);
2061 		else if (is_c0(pdev))
2062 			writel(0x00014100, &xcvr->afe_xcvr_control0);
2063 		else if (is_c1(pdev))
2064 			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065 		udelay(AFE_REGISTER_WRITE_DELAY);
2066 
2067 		/* Leave DFE/FFE on */
2068 		if (is_a2(pdev))
2069 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070 		else if (is_b0(pdev)) {
2071 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072 			udelay(AFE_REGISTER_WRITE_DELAY);
2073 			/* Enable TX equalization (0xe824) */
2074 			writel(0x00040000, &xcvr->afe_tx_control);
2075 		} else if (is_c0(pdev)) {
2076 			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077 			udelay(AFE_REGISTER_WRITE_DELAY);
2078 
2079 			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080 			udelay(AFE_REGISTER_WRITE_DELAY);
2081 
2082 			/* Enable TX equalization (0xe824) */
2083 			writel(0x00040000, &xcvr->afe_tx_control);
2084 		} else if (is_c1(pdev)) {
2085 			writel(cable_length_long ? 0x01500C0C :
2086 			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087 			       &xcvr->afe_xcvr_control1);
2088 			udelay(AFE_REGISTER_WRITE_DELAY);
2089 
2090 			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091 			udelay(AFE_REGISTER_WRITE_DELAY);
2092 
2093 			writel(cable_length_long ? 0x33091C1F :
2094 			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2095 			       &xcvr->afe_rx_ssc_control0);
2096 			udelay(AFE_REGISTER_WRITE_DELAY);
2097 
2098 			/* Enable TX equalization (0xe824) */
2099 			writel(0x00040000, &xcvr->afe_tx_control);
2100 		}
2101 
2102 		udelay(AFE_REGISTER_WRITE_DELAY);
2103 
2104 		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105 		udelay(AFE_REGISTER_WRITE_DELAY);
2106 
2107 		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108 		udelay(AFE_REGISTER_WRITE_DELAY);
2109 
2110 		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111 		udelay(AFE_REGISTER_WRITE_DELAY);
2112 
2113 		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114 		udelay(AFE_REGISTER_WRITE_DELAY);
2115 	}
2116 
2117 	/* Transfer control to the PEs */
2118 	writel(0x00010f00, &afe->afe_dfx_master_control0);
2119 	udelay(AFE_REGISTER_WRITE_DELAY);
2120 }
2121 
2122 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123 {
2124 	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125 
2126 	memset(ihost->power_control.requesters, 0,
2127 	       sizeof(ihost->power_control.requesters));
2128 
2129 	ihost->power_control.phys_waiting = 0;
2130 	ihost->power_control.phys_granted_power = 0;
2131 }
2132 
2133 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134 {
2135 	struct sci_base_state_machine *sm = &ihost->sm;
2136 	enum sci_status result = SCI_FAILURE;
2137 	unsigned long i, state, val;
2138 
2139 	if (ihost->sm.current_state_id != SCIC_RESET) {
2140 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141 			 __func__, ihost->sm.current_state_id);
2142 		return SCI_FAILURE_INVALID_STATE;
2143 	}
2144 
2145 	sci_change_state(sm, SCIC_INITIALIZING);
2146 
2147 	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148 
2149 	ihost->next_phy_to_start = 0;
2150 	ihost->phy_startup_timer_pending = false;
2151 
2152 	sci_controller_initialize_power_control(ihost);
2153 
2154 	/*
2155 	 * There is nothing to do here for B0 since we do not have to
2156 	 * program the AFE registers.
2157 	 * / @todo The AFE settings are supposed to be correct for the B0 but
2158 	 * /       presently they seem to be wrong. */
2159 	sci_controller_afe_initialization(ihost);
2160 
2161 
2162 	/* Take the hardware out of reset */
2163 	writel(0, &ihost->smu_registers->soft_reset_control);
2164 
2165 	/*
2166 	 * / @todo Provide meaningfull error code for hardware failure
2167 	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168 	for (i = 100; i >= 1; i--) {
2169 		u32 status;
2170 
2171 		/* Loop until the hardware reports success */
2172 		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173 		status = readl(&ihost->smu_registers->control_status);
2174 
2175 		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176 			break;
2177 	}
2178 	if (i == 0)
2179 		goto out;
2180 
2181 	/*
2182 	 * Determine what are the actaul device capacities that the
2183 	 * hardware will support */
2184 	val = readl(&ihost->smu_registers->device_context_capacity);
2185 
2186 	/* Record the smaller of the two capacity values */
2187 	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188 	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189 	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190 
2191 	/*
2192 	 * Make all PEs that are unassigned match up with the
2193 	 * logical ports
2194 	 */
2195 	for (i = 0; i < ihost->logical_port_entries; i++) {
2196 		struct scu_port_task_scheduler_group_registers __iomem
2197 			*ptsg = &ihost->scu_registers->peg0.ptsg;
2198 
2199 		writel(i, &ptsg->protocol_engine[i]);
2200 	}
2201 
2202 	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2203 	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204 	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205 	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206 
2207 	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208 	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209 	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210 
2211 	/*
2212 	 * Initialize the PHYs before the PORTs because the PHY registers
2213 	 * are accessed during the port initialization.
2214 	 */
2215 	for (i = 0; i < SCI_MAX_PHYS; i++) {
2216 		result = sci_phy_initialize(&ihost->phys[i],
2217 					    &ihost->scu_registers->peg0.pe[i].tl,
2218 					    &ihost->scu_registers->peg0.pe[i].ll);
2219 		if (result != SCI_SUCCESS)
2220 			goto out;
2221 	}
2222 
2223 	for (i = 0; i < ihost->logical_port_entries; i++) {
2224 		struct isci_port *iport = &ihost->ports[i];
2225 
2226 		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227 		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228 		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229 	}
2230 
2231 	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232 
2233  out:
2234 	/* Advance the controller state machine */
2235 	if (result == SCI_SUCCESS)
2236 		state = SCIC_INITIALIZED;
2237 	else
2238 		state = SCIC_FAILED;
2239 	sci_change_state(sm, state);
2240 
2241 	return result;
2242 }
2243 
2244 static int sci_controller_dma_alloc(struct isci_host *ihost)
2245 {
2246 	struct device *dev = &ihost->pdev->dev;
2247 	size_t size;
2248 	int i;
2249 
2250 	/* detect re-initialization */
2251 	if (ihost->completion_queue)
2252 		return 0;
2253 
2254 	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255 	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256 						      GFP_KERNEL);
2257 	if (!ihost->completion_queue)
2258 		return -ENOMEM;
2259 
2260 	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261 	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262 							       GFP_KERNEL);
2263 
2264 	if (!ihost->remote_node_context_table)
2265 		return -ENOMEM;
2266 
2267 	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268 	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269 							GFP_KERNEL);
2270 	if (!ihost->task_context_table)
2271 		return -ENOMEM;
2272 
2273 	size = SCI_UFI_TOTAL_SIZE;
2274 	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275 	if (!ihost->ufi_buf)
2276 		return -ENOMEM;
2277 
2278 	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279 		struct isci_request *ireq;
2280 		dma_addr_t dma;
2281 
2282 		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283 		if (!ireq)
2284 			return -ENOMEM;
2285 
2286 		ireq->tc = &ihost->task_context_table[i];
2287 		ireq->owning_controller = ihost;
2288 		ireq->request_daddr = dma;
2289 		ireq->isci_host = ihost;
2290 		ihost->reqs[i] = ireq;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 static int sci_controller_mem_init(struct isci_host *ihost)
2297 {
2298 	int err = sci_controller_dma_alloc(ihost);
2299 
2300 	if (err)
2301 		return err;
2302 
2303 	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304 	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305 
2306 	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307 	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308 
2309 	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310 	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311 
2312 	sci_unsolicited_frame_control_construct(ihost);
2313 
2314 	/*
2315 	 * Inform the silicon as to the location of the UF headers and
2316 	 * address table.
2317 	 */
2318 	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319 		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2320 	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321 		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2322 
2323 	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324 		&ihost->scu_registers->sdma.uf_address_table_lower);
2325 	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326 		&ihost->scu_registers->sdma.uf_address_table_upper);
2327 
2328 	return 0;
2329 }
2330 
2331 /**
2332  * isci_host_init - (re-)initialize hardware and internal (private) state
2333  * @ihost: host to init
2334  *
2335  * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336  * one-time initialization objects like locks and waitqueues, are
2337  * not touched (they are initialized in isci_host_alloc)
2338  */
2339 int isci_host_init(struct isci_host *ihost)
2340 {
2341 	int i, err;
2342 	enum sci_status status;
2343 
2344 	spin_lock_irq(&ihost->scic_lock);
2345 	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346 	spin_unlock_irq(&ihost->scic_lock);
2347 	if (status != SCI_SUCCESS) {
2348 		dev_err(&ihost->pdev->dev,
2349 			"%s: sci_controller_construct failed - status = %x\n",
2350 			__func__,
2351 			status);
2352 		return -ENODEV;
2353 	}
2354 
2355 	spin_lock_irq(&ihost->scic_lock);
2356 	status = sci_controller_initialize(ihost);
2357 	spin_unlock_irq(&ihost->scic_lock);
2358 	if (status != SCI_SUCCESS) {
2359 		dev_warn(&ihost->pdev->dev,
2360 			 "%s: sci_controller_initialize failed -"
2361 			 " status = 0x%x\n",
2362 			 __func__, status);
2363 		return -ENODEV;
2364 	}
2365 
2366 	err = sci_controller_mem_init(ihost);
2367 	if (err)
2368 		return err;
2369 
2370 	/* enable sgpio */
2371 	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372 	for (i = 0; i < isci_gpio_count(ihost); i++)
2373 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374 	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375 
2376 	return 0;
2377 }
2378 
2379 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380 			    struct isci_phy *iphy)
2381 {
2382 	switch (ihost->sm.current_state_id) {
2383 	case SCIC_STARTING:
2384 		sci_del_timer(&ihost->phy_timer);
2385 		ihost->phy_startup_timer_pending = false;
2386 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387 						  iport, iphy);
2388 		sci_controller_start_next_phy(ihost);
2389 		break;
2390 	case SCIC_READY:
2391 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392 						  iport, iphy);
2393 		break;
2394 	default:
2395 		dev_dbg(&ihost->pdev->dev,
2396 			"%s: SCIC Controller linkup event from phy %d in "
2397 			"unexpected state %d\n", __func__, iphy->phy_index,
2398 			ihost->sm.current_state_id);
2399 	}
2400 }
2401 
2402 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403 			      struct isci_phy *iphy)
2404 {
2405 	switch (ihost->sm.current_state_id) {
2406 	case SCIC_STARTING:
2407 	case SCIC_READY:
2408 		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409 						   iport, iphy);
2410 		break;
2411 	default:
2412 		dev_dbg(&ihost->pdev->dev,
2413 			"%s: SCIC Controller linkdown event from phy %d in "
2414 			"unexpected state %d\n",
2415 			__func__,
2416 			iphy->phy_index,
2417 			ihost->sm.current_state_id);
2418 	}
2419 }
2420 
2421 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422 {
2423 	u32 index;
2424 
2425 	for (index = 0; index < ihost->remote_node_entries; index++) {
2426 		if ((ihost->device_table[index] != NULL) &&
2427 		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428 			return true;
2429 	}
2430 
2431 	return false;
2432 }
2433 
2434 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435 					  struct isci_remote_device *idev)
2436 {
2437 	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438 		dev_dbg(&ihost->pdev->dev,
2439 			"SCIC Controller 0x%p remote device stopped event "
2440 			"from device 0x%p in unexpected state %d\n",
2441 			ihost, idev,
2442 			ihost->sm.current_state_id);
2443 		return;
2444 	}
2445 
2446 	if (!sci_controller_has_remote_devices_stopping(ihost))
2447 		isci_host_stop_complete(ihost);
2448 }
2449 
2450 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451 {
2452 	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453 		__func__, ihost->id, request);
2454 
2455 	writel(request, &ihost->smu_registers->post_context_port);
2456 }
2457 
2458 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459 {
2460 	u16 task_index;
2461 	u16 task_sequence;
2462 
2463 	task_index = ISCI_TAG_TCI(io_tag);
2464 
2465 	if (task_index < ihost->task_context_entries) {
2466 		struct isci_request *ireq = ihost->reqs[task_index];
2467 
2468 		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469 			task_sequence = ISCI_TAG_SEQ(io_tag);
2470 
2471 			if (task_sequence == ihost->io_request_sequence[task_index])
2472 				return ireq;
2473 		}
2474 	}
2475 
2476 	return NULL;
2477 }
2478 
2479 /**
2480  * sci_controller_allocate_remote_node_context()
2481  * This method allocates remote node index and the reserves the remote node
2482  *    context space for use. This method can fail if there are no more remote
2483  *    node index available.
2484  * @ihost: This is the controller object which contains the set of
2485  *    free remote node ids
2486  * @idev: This is the device object which is requesting the a remote node
2487  *    id
2488  * @node_id: This is the remote node id that is assinged to the device if one
2489  *    is available
2490  *
2491  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492  * node index available.
2493  */
2494 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495 							    struct isci_remote_device *idev,
2496 							    u16 *node_id)
2497 {
2498 	u16 node_index;
2499 	u32 remote_node_count = sci_remote_device_node_count(idev);
2500 
2501 	node_index = sci_remote_node_table_allocate_remote_node(
2502 		&ihost->available_remote_nodes, remote_node_count
2503 		);
2504 
2505 	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506 		ihost->device_table[node_index] = idev;
2507 
2508 		*node_id = node_index;
2509 
2510 		return SCI_SUCCESS;
2511 	}
2512 
2513 	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514 }
2515 
2516 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517 					     struct isci_remote_device *idev,
2518 					     u16 node_id)
2519 {
2520 	u32 remote_node_count = sci_remote_device_node_count(idev);
2521 
2522 	if (ihost->device_table[node_id] == idev) {
2523 		ihost->device_table[node_id] = NULL;
2524 
2525 		sci_remote_node_table_release_remote_node_index(
2526 			&ihost->available_remote_nodes, remote_node_count, node_id
2527 			);
2528 	}
2529 }
2530 
2531 void sci_controller_copy_sata_response(void *response_buffer,
2532 				       void *frame_header,
2533 				       void *frame_buffer)
2534 {
2535 	/* XXX type safety? */
2536 	memcpy(response_buffer, frame_header, sizeof(u32));
2537 
2538 	memcpy(response_buffer + sizeof(u32),
2539 	       frame_buffer,
2540 	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2541 }
2542 
2543 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544 {
2545 	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546 		writel(ihost->uf_control.get,
2547 			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548 }
2549 
2550 void isci_tci_free(struct isci_host *ihost, u16 tci)
2551 {
2552 	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553 
2554 	ihost->tci_pool[tail] = tci;
2555 	ihost->tci_tail = tail + 1;
2556 }
2557 
2558 static u16 isci_tci_alloc(struct isci_host *ihost)
2559 {
2560 	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561 	u16 tci = ihost->tci_pool[head];
2562 
2563 	ihost->tci_head = head + 1;
2564 	return tci;
2565 }
2566 
2567 static u16 isci_tci_space(struct isci_host *ihost)
2568 {
2569 	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570 }
2571 
2572 u16 isci_alloc_tag(struct isci_host *ihost)
2573 {
2574 	if (isci_tci_space(ihost)) {
2575 		u16 tci = isci_tci_alloc(ihost);
2576 		u8 seq = ihost->io_request_sequence[tci];
2577 
2578 		return ISCI_TAG(seq, tci);
2579 	}
2580 
2581 	return SCI_CONTROLLER_INVALID_IO_TAG;
2582 }
2583 
2584 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585 {
2586 	u16 tci = ISCI_TAG_TCI(io_tag);
2587 	u16 seq = ISCI_TAG_SEQ(io_tag);
2588 
2589 	/* prevent tail from passing head */
2590 	if (isci_tci_active(ihost) == 0)
2591 		return SCI_FAILURE_INVALID_IO_TAG;
2592 
2593 	if (seq == ihost->io_request_sequence[tci]) {
2594 		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595 
2596 		isci_tci_free(ihost, tci);
2597 
2598 		return SCI_SUCCESS;
2599 	}
2600 	return SCI_FAILURE_INVALID_IO_TAG;
2601 }
2602 
2603 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604 					struct isci_remote_device *idev,
2605 					struct isci_request *ireq)
2606 {
2607 	enum sci_status status;
2608 
2609 	if (ihost->sm.current_state_id != SCIC_READY) {
2610 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611 			 __func__, ihost->sm.current_state_id);
2612 		return SCI_FAILURE_INVALID_STATE;
2613 	}
2614 
2615 	status = sci_remote_device_start_io(ihost, idev, ireq);
2616 	if (status != SCI_SUCCESS)
2617 		return status;
2618 
2619 	set_bit(IREQ_ACTIVE, &ireq->flags);
2620 	sci_controller_post_request(ihost, ireq->post_context);
2621 	return SCI_SUCCESS;
2622 }
2623 
2624 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625 						 struct isci_remote_device *idev,
2626 						 struct isci_request *ireq)
2627 {
2628 	/* terminate an ongoing (i.e. started) core IO request.  This does not
2629 	 * abort the IO request at the target, but rather removes the IO
2630 	 * request from the host controller.
2631 	 */
2632 	enum sci_status status;
2633 
2634 	if (ihost->sm.current_state_id != SCIC_READY) {
2635 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636 			 __func__, ihost->sm.current_state_id);
2637 		return SCI_FAILURE_INVALID_STATE;
2638 	}
2639 	status = sci_io_request_terminate(ireq);
2640 
2641 	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642 		__func__, status, ireq, ireq->flags);
2643 
2644 	if ((status == SCI_SUCCESS) &&
2645 	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646 	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647 		/* Utilize the original post context command and or in the
2648 		 * POST_TC_ABORT request sub-type.
2649 		 */
2650 		sci_controller_post_request(
2651 			ihost, ireq->post_context |
2652 				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653 	}
2654 	return status;
2655 }
2656 
2657 /**
2658  * sci_controller_complete_io() - This method will perform core specific
2659  *    completion operations for an IO request.  After this method is invoked,
2660  *    the user should consider the IO request as invalid until it is properly
2661  *    reused (i.e. re-constructed).
2662  * @ihost: The handle to the controller object for which to complete the
2663  *    IO request.
2664  * @idev: The handle to the remote device object for which to complete
2665  *    the IO request.
2666  * @ireq: the handle to the io request object to complete.
2667  */
2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669 					   struct isci_remote_device *idev,
2670 					   struct isci_request *ireq)
2671 {
2672 	enum sci_status status;
2673 
2674 	switch (ihost->sm.current_state_id) {
2675 	case SCIC_STOPPING:
2676 		/* XXX: Implement this function */
2677 		return SCI_FAILURE;
2678 	case SCIC_READY:
2679 		status = sci_remote_device_complete_io(ihost, idev, ireq);
2680 		if (status != SCI_SUCCESS)
2681 			return status;
2682 
2683 		clear_bit(IREQ_ACTIVE, &ireq->flags);
2684 		return SCI_SUCCESS;
2685 	default:
2686 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687 			 __func__, ihost->sm.current_state_id);
2688 		return SCI_FAILURE_INVALID_STATE;
2689 	}
2690 
2691 }
2692 
2693 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694 {
2695 	struct isci_host *ihost = ireq->owning_controller;
2696 
2697 	if (ihost->sm.current_state_id != SCIC_READY) {
2698 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699 			 __func__, ihost->sm.current_state_id);
2700 		return SCI_FAILURE_INVALID_STATE;
2701 	}
2702 
2703 	set_bit(IREQ_ACTIVE, &ireq->flags);
2704 	sci_controller_post_request(ihost, ireq->post_context);
2705 	return SCI_SUCCESS;
2706 }
2707 
2708 /**
2709  * sci_controller_start_task() - This method is called by the SCIC user to
2710  *    send/start a framework task management request.
2711  * @ihost: the handle to the controller object for which to start the task
2712  *    management request.
2713  * @idev: the handle to the remote device object for which to start
2714  *    the task management request.
2715  * @ireq: the handle to the task request object to start.
2716  */
2717 enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718 					  struct isci_remote_device *idev,
2719 					  struct isci_request *ireq)
2720 {
2721 	enum sci_status status;
2722 
2723 	if (ihost->sm.current_state_id != SCIC_READY) {
2724 		dev_warn(&ihost->pdev->dev,
2725 			 "%s: SCIC Controller starting task from invalid "
2726 			 "state\n",
2727 			 __func__);
2728 		return SCI_FAILURE_INVALID_STATE;
2729 	}
2730 
2731 	status = sci_remote_device_start_task(ihost, idev, ireq);
2732 	switch (status) {
2733 	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734 		set_bit(IREQ_ACTIVE, &ireq->flags);
2735 
2736 		/*
2737 		 * We will let framework know this task request started successfully,
2738 		 * although core is still woring on starting the request (to post tc when
2739 		 * RNC is resumed.)
2740 		 */
2741 		return SCI_SUCCESS;
2742 	case SCI_SUCCESS:
2743 		set_bit(IREQ_ACTIVE, &ireq->flags);
2744 		sci_controller_post_request(ihost, ireq->post_context);
2745 		break;
2746 	default:
2747 		break;
2748 	}
2749 
2750 	return status;
2751 }
2752 
2753 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754 {
2755 	int d;
2756 
2757 	/* no support for TX_GP_CFG */
2758 	if (reg_index == 0)
2759 		return -EINVAL;
2760 
2761 	for (d = 0; d < isci_gpio_count(ihost); d++) {
2762 		u32 val = 0x444; /* all ODx.n clear */
2763 		int i;
2764 
2765 		for (i = 0; i < 3; i++) {
2766 			int bit;
2767 
2768 			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769 						       write_data, reg_index,
2770 						       reg_count);
2771 			if (bit < 0)
2772 				break;
2773 
2774 			/* if od is set, clear the 'invert' bit */
2775 			val &= ~(bit << ((i << 2) + 2));
2776 		}
2777 
2778 		if (i < 3)
2779 			break;
2780 		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781 	}
2782 
2783 	/* unless reg_index is > 1, we should always be able to write at
2784 	 * least one register
2785 	 */
2786 	return d > 0;
2787 }
2788 
2789 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790 		    u8 reg_count, u8 *write_data)
2791 {
2792 	struct isci_host *ihost = sas_ha->lldd_ha;
2793 	int written;
2794 
2795 	switch (reg_type) {
2796 	case SAS_GPIO_REG_TX_GP:
2797 		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798 		break;
2799 	default:
2800 		written = -EINVAL;
2801 	}
2802 
2803 	return written;
2804 }
2805